Science.gov

Sample records for affects surface water

  1. Activities affecting surface water resources: A general overview

    SciTech Connect

    Not Available

    1990-01-01

    In November 1987, P.E.I. signed a federal/provincial work-sharing arrangement on water resource management focusing on groundwater pollution, surface water degradation and estuarine eutrophication. The surface water program was designed to identify current surface water uses and users within 12 major watersheds across the Island containing 26 individual rivers, as well as problems arising due to practices that degrade the quality of surface water and restricts its value to other user groups. This report presents a general overview of the program, covering the general characteristics of the Island; operations in agriculture, fish and wildlife, forestry, recreation, fisheries, and industry; alterations of natural features of waterways; wetlands; additional watershed activities such as hydrometric stations and subdivision development; and activities affecting surface water resources such as sedimentation sources, pollution point sources and instream obstructions.

  2. Near-surface physics during convection affecting air-water gas transfer

    NASA Astrophysics Data System (ADS)

    Fredriksson, S. T.; Arneborg, L.; Nilsson, H.; Handler, R. A.

    2016-05-01

    The gas flux at the water surface is affected by physical processes including turbulence from wind shear, microscale wave breaking, large-scale breaking, and convection due to heat loss at the surface. The main route in the parameterizations of the gas flux has been to use the wind speed as a proxy for the gas flux velocity, indirectly taking into account the dependency of the wind shear and the wave processes. The interest in the contributions from convection processes has increased as the gas flux from inland waters (with typically lower wind and sheltered conditions) now is believed to play a substantial role in the air-water gas flux budget. The gas flux is enhanced by convection through the mixing of the mixed layer as well as by decreasing the diffusive boundary layer thickness. The direct numerical simulations performed in this study are shown to be a valuable tool to enhance the understanding of this flow configuration often present in nature.

  3. Water chemistry of surface waters affected by the Fourmile Canyon wildfire, Colorado, 2010-2011

    USGS Publications Warehouse

    McCleskey, R. Blaine; Writer, Jeffrey H.; Murphy, Sheila F.

    2012-01-01

    In September 2010, the Fourmile Canyon fire burned about 23 percent of the Fourmile Creek watershed in Boulder County, Colo. Water-quality sampling of Fourmile Creek began within a month after the wildfire to assess its effects on surface-water chemistry. Water samples were collected from five sites along Fourmile Creek (above, within, and below the burned area) monthly during base flow, twice weekly during snowmelt runoff, and at higher frequencies during storm events. Stream discharge was also monitored. Water-quality samples were collected less frequently from an additional 6 sites on Fourmile Creek, from 11 tributaries or other inputs, and from 3 sites along Boulder Creek. The pH, electrical conductivity, temperature, specific ultraviolet absorbance, total suspended solids, and concentrations (dissolved and total) of major cations (calcium, magnesium, sodium, and potassium), anions (chloride, sulfate, alkalinity, fluoride, and bromide), nutrients (nitrate, ammonium, and phosphorus), trace metals (aluminum, arsenic, boron, barium, beryllium, cadmium, cobalt, chromium, copper, iron, mercury, lithium, manganese, molybdenum, nickel, lead, rubidium, antimony, selenium, strontium, vanadium, and zinc), and dissolved organic carbon are here reported for 436 samples collected during 2010 and 2011.

  4. Elucidating Sources and Factors Affecting Delivery of Nitrogen to Surface Waters of New York State

    NASA Astrophysics Data System (ADS)

    Golden, H. E.; Boyer, E. W.; Burns, D. A.; Elliott, E.; Kendall, C.; Butler, T.

    2005-12-01

    Rapid changes in power generation, transportation, and agriculture have appreciably altered nitrogen (N) cycling at regional scales, increasing N inputs to landscapes and surface waters. Numerous studies have linked this surplus N to a host of concerns, including eutrophication and violations in drinking water standards. Inputs of N nation-wide have increased during recent decades, primarily from the production and use of fertilizers, the planting of N-fixing crops, and the combustion of fossil fuels. The role of atmospheric N sources is of particular concern in New York, as rates of atmospheric N deposition in the northeast are among the highest in the nation. Our work aims to quantify nitrogen sources and fate in watersheds throughout the state. Further, we intend to elucidate factors controlling the retention and release of N to surface waters. We quantify nitrogen inputs through both measurement data (e.g., from wet and dry atmospheric deposition, precipitation, streamflow, water quality, and isotopic tracers) and from synoptic spatial databases (e.g., of terrain, land use, and fertilizer inputs). We present preliminary results from large catchments in contrasting spatial settings across the state (different land use configurations and atmospheric deposition gradients), illustrating the contribution of nitrogen sources to each region and factors affecting delivery to surface waters. Further, we present 30 years of temporal data from a large watershed (Fall Creek) in the Finger Lakes region of the state to demonstrate how hydrological and biogeochemical factors, over seasons and under varying hydrological regimes, combine to control N dynamics in surface waters. Our collective work provides information that is necessary to develop sound strategies for understanding and managing nutrients at regional scales.

  5. Seasonal Influences on Ground-Surface Water Interactions in an Arsenic-Affected Aquifer in Cambodia

    NASA Astrophysics Data System (ADS)

    Richards, L. A.; Magnone, D.; Van Dongen, B.; Bryant, C.; Boyce, A.; Ballentine, C. J.; Polya, D. A.

    2015-12-01

    Millions of people in South and Southeast Asia consume drinking water daily which contains dangerous levels of arsenic exceeding health-based recommendations [1]. A key control on arsenic mobilization in aquifers in these areas has been controversially identified as the interaction of 'labile' organic matter contained in surface waters with groundwaters and sediments at depth [2-4], which may trigger the release of arsenic from the solid- to aqueous-phase via reductive dissolution of iron-(hyr)oxide minerals [5]. In a field site in Kandal Province, Cambodia, which is an arsenic-affected area typical to others in the region, there are strong seasonal patterns in groundwater flow direction, which are closely related to monsoonal rains [6] and may contribute to arsenic release in this aquifer. The aim of this study is to explore the implications of the high susceptibility of this aquifer system to seasonal changes on potential ground-surface water interactions. The main objectives are to (i) identify key zones where there are likely ground-surface water interactions, (ii) assess the seasonal impact of such interactions and (iii) quantify the influence of interactions using geochemical parameters (such as As, Fe, NO3, NH4, 14C, 3T/3He, δ18O, δ2H). Identifying the zones, magnitude and seasonal influence of ground-surface water interactions elucidates new information regarding potential locations/pathways of arsenic mobilization and/or transport in affected aquifers and may be important for water management strategies in affected areas. This research is supported by NERC (NE/J023833/1) to DP, BvD and CJB and a NERC PhD studentship (NE/L501591/1) to DM. References: [1] World Health Organization, 2008. [2] Charlet & Polya (2006), Elements, 2, 91-96. [3] Harvey et al. (2002), Science, 298, 1602-1606. [4] Lawson et al. (2013), Env. Sci. Technol. 47, 7085 - 7094. [5] Islam et al. (2004), Nature, 430, 68-71. [6] Benner et al. (2008) Appl. Geochem. 23(11), 3072 - 3087.

  6. Occurrence of perchloroethylene in surface water and fish in a river ecosystem affected by groundwater contamination.

    PubMed

    Wittlingerová, Zdena; Macháčková, Jiřina; Petruželková, Anna; Zimová, Magdalena

    2016-03-01

    Long-term monitoring of the content of perchloroethylene (PCE) in a river ecosystem affected by groundwater contamination was performed at a site in the Czech Republic. The quality of surface water was monitored quarterly between 1994 and 2013, and fish were collected from the affected ecosystem to analyse the content of PCE in their tissue in 1998, 2011 and 2012. Concentrations of PCE (9-140 μg/kg) in the tissue of fish collected from the contaminated part of the river were elevated compared to the part of the river unaffected by the contamination (ND to 5 μg/kg PCE). The quality of surface water has improved as a result of groundwater remediation during the evaluated period. Before the remedial action, PCE concentrations ranged from 30 to 95 μg/L (1994-1997). Following commencement of remedial activities in September 1997, a decrease in the content of PCE in the surface water to 7.3 μg/L (1998) and further to 1 μg/L (2011) and 1.1 μg/L (2012) led to a progressive decrease in the average concentration of PCE in the fish muscle tissue from 79 μg/kg (1998) to 24 (2011) and 30 μg/kg (2012), respectively. It was determined that the bioconcentration of PCE does not have a linear dependence because the decrease in contamination in the fish muscle tissue is not directly proportional to the decrease in contamination in the river water. The observed average bioconcentration factors were 24 and 28 for the lower concentrations of PCE and 11 for the higher concentrations of PCE in the river. In terms of age, length and weight of the collected fish, weight had the greatest significance for bioconcentration, followed by the length, with age being evaluated as a less significant factor.

  7. Abiotic factors affecting the persistence of avian influenza virus in surface waters of waterfowl habitats.

    PubMed

    Keeler, Shamus P; Dalton, Melinda S; Cressler, Alan M; Berghaus, Roy D; Stallknecht, David E

    2014-05-01

    Avian influenza (AI) virus can remain infectious in water for months, and virus-contaminated surface water is considered to be a source of infection within wild waterfowl populations. Previous work has characterized the effects of pH, salinity, and temperature on viral persistence in water, but most of that work was done with modified distilled water. The objective of this study was to identify the abiotic factors that influence the duration of AI virus persistence in natural surface water. Surface water samples were collected from 38 waterfowl habitats distributed across the United States. Samples were submitted to the U.S. Geological Survey National Water Quality Laboratory for chemical analysis and the University of Georgia for viral reduction time analysis. Samples were filtered with 0.22-μm filters, and the durations of persistence of three wild-bird-derived influenza A viruses within each water sample at 10, 17, and 28°C were determined. The effects of the surface water physicochemical factors on the duration of AI viral persistence in laboratory experiments were evaluated by multivariable linear regression with robust standard errors. The duration of AI virus persistence was determined to be longest in filtered surface water with a low temperature (<17°C), a neutral-to-basic pH (7.0 to 8.5), low salinity (<0.5 ppt), and a low ammonia concentration (<0.5 mg/liter). Our results also highlighted potential strain-related variation in the stability of AI virus in surface water. These results bring us closer to being able to predict the duration of AI virus persistence in surface water of waterfowl habitats.

  8. Abiotic Factors Affecting the Persistence of Avian Influenza Virus in Surface Waters of Waterfowl Habitats

    PubMed Central

    Dalton, Melinda S.; Cressler, Alan M.; Berghaus, Roy D.; Stallknecht, David E.

    2014-01-01

    Avian influenza (AI) virus can remain infectious in water for months, and virus-contaminated surface water is considered to be a source of infection within wild waterfowl populations. Previous work has characterized the effects of pH, salinity, and temperature on viral persistence in water, but most of that work was done with modified distilled water. The objective of this study was to identify the abiotic factors that influence the duration of AI virus persistence in natural surface water. Surface water samples were collected from 38 waterfowl habitats distributed across the United States. Samples were submitted to the U.S. Geological Survey National Water Quality Laboratory for chemical analysis and the University of Georgia for viral reduction time analysis. Samples were filtered with 0.22-μm filters, and the durations of persistence of three wild-bird-derived influenza A viruses within each water sample at 10, 17, and 28°C were determined. The effects of the surface water physicochemical factors on the duration of AI viral persistence in laboratory experiments were evaluated by multivariable linear regression with robust standard errors. The duration of AI virus persistence was determined to be longest in filtered surface water with a low temperature (<17°C), a neutral-to-basic pH (7.0 to 8.5), low salinity (<0.5 ppt), and a low ammonia concentration (<0.5 mg/liter). Our results also highlighted potential strain-related variation in the stability of AI virus in surface water. These results bring us closer to being able to predict the duration of AI virus persistence in surface water of waterfowl habitats. PMID:24584247

  9. Surface and ground water quality in a restored urban stream affected by road salts

    EPA Science Inventory

    In 2001 research began in Minebank Run, MD to examine the impact of restoration on water quality. Our research area was to determine if road salts in the surface and ground waters are detrimental to the stream channel restoration. The upstream reach (UP), above the Baltimore I-...

  10. Surface applied water treatment residuals affect bioavailable phosphorus losses in Florida sands.

    PubMed

    Oladeji, Olawale O; O'Connor, George A; Brinton, Scott R

    2008-09-01

    Water treatment residuals (WTR) can reduce runoff P loss and surface co-application of P-sources and WTR is a practical way of land applying the residuals. In a rainfall simulation study, we evaluated the effects of surface co-applied P-sources and an Al-WTR on runoff and leacheate bioavailable P (BAP) losses from a Florida sand. Four P-sources, namely poultry manure, Boca Raton biosolids (high water-soluble P), Pompano biosolids (moderate water-soluble P), and triple super phosphate (TSP) were surface applied at 56 and 224 kg P ha(-1) (by weight) to represent low and high soil P loads typical of P- and N-based amendments rates. The treatments further received surface applied WTR at 0 or 10 g WTR kg(-1) soil. BAP loss masses were greater in leachate (16.4-536 mg) than in runoff (0.91-46 mg), but were reduced in runoff and leachate by surface applied WTR. Masses of total BAP lost in the presence of surface applied WTR were less than approximately 75% of BAP losses in the absence of WTR. Total BAP losses from each of the organic sources applied at N-based rates were not greater than P loss from TSP applied at a P-based rate. The BAP loss at the N-based rate of moderate water-soluble P-source (Pompano biosolids) was not greater than BAP losses at the P-based rates of other organic sources tested. The hazards of excess P from applying organic P-sources at N-based rates are not greater than observed at P-based rates of mineral fertilizer. Results suggest that management of the environmental P hazards associated with N-based rates of organic materials in Florida sands is possible by either applying P-sources with WTR or using a moderate water-soluble P-source.

  11. A new capture fraction method to map how pumpage affects surface water flow

    USGS Publications Warehouse

    Leake, S.A.; Reeves, H.W.; Dickinson, J.E.

    2010-01-01

    All groundwater pumped is balanced by removal of water somewhere, initially from storage in the aquifer and later from capture in the form of increase in recharge and decrease in discharge. Capture that results in a loss of water in streams, rivers, and wetlands now is a concern in many parts of the United States. Hydrologists commonly use analytical and numerical approaches to study temporal variations in sources of water to wells for select points of interest. Much can be learned about coupled surface/groundwater systems, however, by looking at the spatial distribution of theoretical capture for select times of interest. Development of maps of capture requires (1) a reasonably well-constructed transient or steady state model of an aquifer with head-dependent flow boundaries representing surface water features or evapotranspiration and (2) an automated procedure to run the model repeatedly and extract results, each time with a well in a different location. This paper presents new methods for simulating and mapping capture using three-dimensional groundwater flow models and presents examples from Arizona, Oregon, and Michigan. Journal compilation ?? 2010 National Ground Water Association. No claim to original US government works.

  12. Water color affects the stratification, surface temperature, heat content, and mean epilimnetic irradiance of small lakes

    USGS Publications Warehouse

    Houser, J.N.

    2006-01-01

    The effects of water color on lake stratification, mean epilimnetic irradiance, and lake temperature dynamics were examined in small, north-temperate lakes that differed widely in water color (1.5-19.8 m -1). Among these lakes, colored lakes differed from clear lakes in the following ways: (i) the epilimnia were shallower and colder, and mean epilimnetic irradiance was reduced; (ii) the diel temperature cycles were more pronounced; (iii) whole-lake heat accumulation during stratification was reduced. The depth of the epilimnion ranged from 2.5 m in the clearest lake to 0.75 m in the most colored lake, and 91% of the variation in epilimnetic depth was explained by water color. Summer mean morning epilimnetic temperature was ???2??C cooler in the most colored lake compared with the clearest lake. In clear lakes, the diel temperature range (1.4 ?? 0.7??C) was significantly (p = 0.01) less than that in the most colored lake (2.1 ?? 1.0??C). Change in whole-lake heat content was negatively correlated with water color. Increasing water color decreased light penetration more than thermocline depth, leading to reduced mean epilimnetic irradiance in the colored lakes. Thus, in these small lakes, water color significantly affected temperature, thermocline depth, and light climate. ?? 2006 NRC.

  13. Factors Affecting P Loads to Surface Waters: Comparing the Roles of Precipitation and Land Management Practices

    NASA Astrophysics Data System (ADS)

    Motew, M.; Booth, E.; Carpenter, S. R.; Kucharik, C. J.

    2014-12-01

    Surface water quality is a major concern in the Yahara watershed (YW) of southern Wisconsin, home to a thriving dairy industry, the city of Madison, and five highly valued lakes that are eutrophic. Despite management interventions to mitigate runoff, there has been no significant trend in P loading to the lakes since 1975. Increases in manure production and heavy rainfall events over this time period may have offset any effects of management. We developed a comprehensive, integrated modeling framework that can simulate the effects of multiple drivers on ecosystem services, including surface water quality. The framework includes process-based representation of terrestrial ecosystems (Agro-IBIS) and groundwater flow (MODFLOW), hydrologic routing of water and nutrients across the landscape (THMB), and assessment of lake water quality (YWQM). Biogeochemical cycling and hydrologic transport of P have been added to the framework to enable detailed simulation of P dynamics within the watershed, including interactions with climate and management. The P module features in-soil cycling of organic, inorganic, and labile forms of P; manure application, decomposition, and subsequent loss of dissolved P in runoff; loss of particulate-bound P with erosion; and transport of dissolved and particulate P within waterways. Model results will compare the effects of increased heavy rainfall events, increased manure production, and implementation of best management practices on P loads to the Yahara lakes.

  14. Application of an environmental decision support system to a water quality trading program affected by surface water diversions.

    PubMed

    Obropta, Christopher C; Niazi, Mehran; Kardos, Josef S

    2008-12-01

    Environmental decision support systems (EDSSs) are an emerging tool used to integrate the evaluation of highly complex and interrelated physicochemical, biological, hydrological, social, and economic aspects of environmental problems. An EDSS approach is developed to address hot-spot concerns for a water quality trading program intended to implement the total maximum daily load (TMDL) for phosphorus in the Non-Tidal Passaic River Basin of New Jersey. Twenty-two wastewater treatment plants (WWTPs) spread throughout the watershed are considered the major sources of phosphorus loading to the river system. Periodic surface water diversions to a major reservoir from the confluence of two key tributaries alter the natural hydrology of the watershed and must be considered in the development of a trading framework that ensures protection of water quality. An EDSS is applied that enables the selection of a water quality trading framework that protects the watershed from phosphorus-induced hot spots. The EDSS employs Simon's (1960) three stages of the decision-making process: intelligence, design, and choice. The identification of two potential hot spots and three diversion scenarios enables the delineation of three management areas for buying and selling of phosphorus credits among WWTPs. The result shows that the most conservative option entails consideration of two possible diversion scenarios, and trading between management areas is restricted accordingly. The method described here is believed to be the first application of an EDSS to a water quality trading program that explicitly accounts for surface water diversions.

  15. Surface and subsurface geologic risk factors to ground water affecting brownfield redevelopment potential.

    PubMed

    Kaufman, Martin M; Murray, Kent S; Rogers, Daniel T

    2003-01-01

    A model is created for assessing the redevelopment potential of brownfields. The model is derived from a space and time conceptual framework that identifies and measures the surface and subsurface risk factors present at brownfield sites. The model then combines these factors with a contamination extent multiplier at each site to create an index of redevelopment potential. Results from the application of the model within an urbanized watershed demonstrate clear differences between the redevelopment potential present within five different near-surface geologic units, with those units containing clay being less vulnerable to subsurface contamination. With and without the extent multiplier, the total risk present at the brownfield sites within all the geologic units is also strongly correlated to the actual costs of remediation. Thus, computing the total surface and subsurface risk within a watershed can help guide the remediation efforts at broad geographic scales, and prioritize the locations for redevelopment.

  16. Processes affecting the transport of Cryptosporidium parvum and other persistent pathogens in surface- and ground-waters

    NASA Astrophysics Data System (ADS)

    Packman, A. I.; Lau, B. L.; Harter, T.; Atwill, E. R.

    2007-12-01

    Waterborne diseases are transmitted through numerous environmental pathways, and their migration is strongly mediated by interaction with a wide variety of sediments and other natural materials during transport. Here we provide an overview of factors that affect the fate of persistent water-borne pathogens, focusing particularly on the zoonotic pathogen Cryptosporidium parvum as an example. While individual microbial cells are both small and have low specific gravity, suggesting that they should be highly mobile and remain suspended for long periods of time, attachment to a variety of background materials can substantially reduce pathogen mobility. Cryptosporidium oocysts readily associate with both inorganic and organic particles, resulting in the formation of aggregates. This process tends to increase the effective settling velocity of C. parvum in surface waters. Similarly, pathogens readily become associated with the solid matrix during transport in groundwater, resulting in removal by filtration. However, this process is reversible with C. parvum, resulting in a slow long-term release following the initial deposition. Pathogens also become associated with biofilms, which are surface-attached communities of microorganisms in a gelatinous matrix. The presence of biofilms increases the immobilization and retention of Cryptosporidium on solid surfaces. All of these processes influence pathogen transmission in surface waters such as rivers and water-supply canals. In these environments, pathogens can be immobilized by deposition into stable sediment beds by a combination of gravitational sedimentation and advection into pore waters followed by subsurface filtration. Association with background suspended matter tends to increase pathogen deposition by sedimentation, and the presence of benthic (sedimentary) biofilms also tends to increase pathogen retention. For pathogens that remain viable for long periods of time in natural aquatic systems, as is the case with

  17. Water-Quality Assessment of the Rio Grande Valley, Colorado, New Mexico, and Texas--Surface-Water Quality, Shallow Ground-Water Quality, and Factors Affecting Water Quality in the Rincon Valley, South-Central New Mexico, 1994-95

    USGS Publications Warehouse

    Anderholm, Scott K.

    2002-01-01

    As part of the National Water-Quality Assessment Program, surface-water and ground-water samples were collected in 1994 and 1995 for analysis of common constituents, nutrients, dissolved organic carbon, trace elements, radioactivity, volatile organic compounds, and pesticides to characterize surface- water quality and shallow ground-water quality and to determine factors affecting water quality in the Rincon Valley, south-central New Mexico. Samples of surface water were collected from three sites on the Rio Grande and from sites on three agricultural drains in the Rincon Valley in January 1994 and 1995, April 1994, and October 1994. Ground-water samples were collected in late April and early May 1994 from 30 shallow wells that were installed during the investigation. Dissolved-solids concentrations in surface water ranged from 434 to 1,510 milligrams per liter (mg/L). Dissolved-solids concentrations were smallest in water from the Rio Grande below Caballo Dam and largest in the drains. Nitrite plus nitrate concentrations ranged from less than 0.05 to 3.3 mg/L as nitrogen, and ammonia concentrations ranged from less than 0.015 to 0.33 mg/L as nitrogen in surface-water samples. Trace-element concentrations in surface water were significantly smaller than the acute-fisheries standards. One or more pesticides were detected in 34 of 37 surface-water samples. DCPA (dacthal) and metolachlor were the most commonly detected pesticides. No standards have been established for the pesticides analyzed for in this study. Dissolved-solids concentrations in shallow ground water ranged from 481 to 3,630 mg/L. All but 2 of 30 samples exceeded the secondary maximum contaminant level for dissolved solids of 500 mg/L. Water from about 73 percent of the wells sampled exceeded the secondary maximum contaminant level of 250 mg/L for sulfate, and water from about 7 percent of the wells sampled exceeded the secondary maximum contaminant level of 250 mg/L for chloride. Nitrite plus nitrate

  18. Uranium in Surface Waters and Sediments Affected by Historical Mining in the Denver West 1:100,000 Quadrangle, Colorado

    USGS Publications Warehouse

    Zielinski, Robert A.; Otton, James K.; Schumann, R. Randall; Wirt, Laurie

    2008-01-01

    Geochemical sampling of 82 stream waters and 87 stream sediments within mountainous areas immediately west of Denver, Colorado, was conducted by the U.S. Geological Survey in October 1994. The primary purpose was to evaluate regionally the effects of geology and past mining on the concentration and distribution of uranium. The study area contains uranium- and thorium-rich bedrock, numerous noneconomic occurrences of uranium minerals, and several uranium deposits of variable size and production history. During the sampling period, local streams had low discharge and were more susceptible to uranium-bearing acid drainage originating from historical mines of base- and precious-metal sulfides. Results indicated that the spatial distribution of Precambrian granites and metamorphic rocks strongly influences the concentration of uranium in stream sediments. Within-stream transport increases the dispersion of uranium- and thorium rich mineral grains derived primarily from granitic source rocks. Dissolved uranium occurs predominantly as uranyl carbonate complexes, and concentrations ranged from less than 1 to 65 micrograms per liter. Most values were less than 5 micrograms per liter, which is less than the current drinking water standard of 30 micrograms per liter and much less than locally applied aquatic-life toxicity standards of several hundred micrograms per liter. In local streams that are affected by uranium-bearing acid mine drainage, dissolved uranium is moderated by dilution and sorptive uptake by stream sediments. Sorbents include mineral alteration products and chemical precipitates of iron- and aluminum-oxyhydroxides, which form where acid drainage enters streams and is neutralized. Suspended uranium is relatively abundant in some stream segments affected by nearby acid drainage, which likely represents mobilization of these chemical precipitates. The 234U/238U activity ratio of acid drainage (0.95-1.0) is distinct from that of local surface waters (more than 1

  19. International Studies of Hazardous Groundwater/Surface Water Exchange in the Volcanic Eruption and Tsunami Affected Areas of Kamchatka

    NASA Astrophysics Data System (ADS)

    Kontar, Y. A.; Gusiakov, V. K.; Izbekov, P. E.; Gordeev, E.; Titov, V. V.; Verstraeten, I. M.; Pinegina, T. K.; Tsadikovsky, E. I.; Heilweil, V. M.; Gingerich, S. B.

    2012-12-01

    During the US-Russia Geohazards Workshop held July 17-19, 2012 in Moscow, Russia the international research effort was asked to identify cooperative actions for disaster risk reduction, focusing on extreme geophysical events. As a part of this recommendation the PIRE project was developed to understand, quantify, forecast and protect the coastal zone aquifers and inland water resources of Kamchatka (Russia) and its ecosystems affected by the November 4, 1952 Kamchatka tsunami (Khalatyrka Beach near Petropavlovsk-Kamchatskiy) and the January 2, 1996 Karymskiy volcano eruption and the lake tsunami. This project brings together teams from U.S. universities and research institutions located in Russia. The research consortium was briefed on recent technical developments and will utilize samples secured via major international volcanic and tsunami programs for the purpose of advancing the study of submarine groundwater discharge (SGD) in the volcanic eruption and tsunami affected coastal areas and inland lakes of Kamchatka. We plan to accomplish this project by developing and applying the next generation of field sampling, remote sensing, laboratory techniques and mathematical tools to study groundwater-surface water interaction processes and SGD. We will develop a field and modeling approach to define SGD environment, key controls, and influence of volcano eruption and tsunami, which will provide a framework for making recommendations to combat contamination. This is valuable for politicians, water resource managers and decision-makers and for the volcano eruption and tsunami affected region water supply and water quality of Kamchatka. Data mining and results of our field work will be compiled for spatial modeling by Geo-Information System (GIS) using 3-D Earth Systems Visualization Lab. The field and model results will be communicated to interested stakeholders via an interactive web site. This will allow computation of SGD spatial patterns. In addition, thanks to the

  20. Carcass orientation and drip time affect potential surface water carryover for broiler carcasses subjected to a post-chill water dip or spray1.

    PubMed

    Bourassa, D V; Wilson, K M; Bartenfeld, L N; Harris, C E; Howard, A K; Ingram, K D; Hinton, A; Adams, E S; Berrang, M E; Feldner, P W; Gamble, G R; Frye, J G; Jackson, C R; Johnston, J J; Buhr, R J

    2017-01-01

    To estimate the potential for residual antimicrobial solution carryover, surface water accumulation and loss was measured on post-chill carcasses that were either dipped or sprayed with water. For all experiments, broilers were slaughtered, soft or hard scalded, defeathered, and eviscerated. Carcasses were immersion chilled, allowed to drip, and post-chill carcass weight (CW) recorded. For water dip treatment, carcasses were dipped for 0.5 min in water and hung by a wing (n = 33) or a leg (n = 30) and CW recorded at 0, 0.5, 1, 2, and 5 min post-dip. For water spray treatment, individual carcasses were hung by either the wings (n = 35) or legs (n = 34) from a shackle suspended from a scale. Water was sprayed at 80 psi and post-spray CW recorded. Initial water accumulation (0 min) for dipped carcasses was not significantly different (P > 0.05) for carcasses hung by the leg (101.0 g) or wing (108.8 g). Following the 5 min drip time, 31 g of water remained on the carcasses hung by the leg and only 10 g on carcasses hung by the wing (P < 0.05). When carcasses were sprayed with water, initial water accumulation (0 min) was 62 g for carcasses hung by the legs and 60 g for carcasses hung by the wings (P > 0.05). Following the 5 min drip time, 1 g or no water remained on the sprayed carcasses (P > 0.05). Carcasses that were dipped and hung by a leg for 5 min retained significantly more water (31 g) than carcasses that were dipped and hung by a wing (10 g) or sprayed carcasses hung either way (0.3 g) (P < 0.05). Post-chill water dip resulted in significantly higher initial carcass water accumulation than spraying (105 g vs. 61 g, P < 0.05). Carcass orientation during dripping only affected the amount of retained water for dipped carcasses. Dipped carcasses hung by a leg have the highest potential for residual carcass antimicrobial solution carryover and sprayed carcasses hung by either orientation have the lowest potential for residual antimicrobial

  1. Groundwater and surface-water interaction, water quality, and processes affecting loads of dissolved solids, selenium, and uranium in Fountain Creek near Pueblo, Colorado, 2012–2014

    USGS Publications Warehouse

    Arnold, L. Rick; Ortiz, Roderick F.; Brown, Christopher R.; Watts, Kenneth R.

    2016-11-28

    In 2012, the U.S. Geological Survey, in cooperation with the Arkansas River Basin Regional Resource Planning Group, initiated a study of groundwater and surface-water interaction, water quality, and loading of dissolved solids, selenium, and uranium to Fountain Creek near Pueblo, Colorado, to improve understanding of sources and processes affecting loading of these constituents to streams in the Arkansas River Basin. Fourteen monitoring wells were installed in a series of three transects across Fountain Creek near Pueblo, and temporary streamgages were established at each transect to facilitate data collection for the study. Groundwater and surface-water interaction was characterized by using hydrogeologic mapping, groundwater and stream-surface levels, groundwater and stream temperatures, vertical hydraulic-head gradients and ratios of oxygen and hydrogen isotopes in the hyporheic zone, and streamflow mass-balance measurements. Water quality was characterized by collecting periodic samples from groundwater, surface water, and the hyporheic zone for analysis of dissolved solids, selenium, uranium, and other selected constituents and by evaluating the oxidation-reduction condition for each groundwater sample under different hydrologic conditions throughout the study period. Groundwater loads to Fountain Creek and in-stream loads were computed for the study area, and processes affecting loads of dissolved solids, selenium, and uranium were evaluated on the basis of geology, geochemical conditions, land and water use, and evapoconcentration.During the study period, the groundwater-flow system generally contributed flow to Fountain Creek and its hyporheic zone (as a single system) except for the reach between the north and middle transects. However, the direction of flow between the stream, the hyporheic zone, and the near-stream aquifer was variable in response to streamflow and stage. During periods of low streamflow, Fountain Creek generally gained flow from

  2. Potential Environmental Factors Affecting Oil-Degrading Bacterial Populations in Deep and Surface Waters of the Northern Gulf of Mexico

    PubMed Central

    Liu, Jiqing; Bacosa, Hernando P.; Liu, Zhanfei

    2017-01-01

    Understanding bacterial community dynamics as a result of an oil spill is important for predicting the fate of oil released to the environment and developing bioremediation strategies in the Gulf of Mexico. In this study, we aimed to elucidate the roles of temperature, water chemistry (nutrients), and initial bacterial community in selecting oil degraders through a series of incubation experiments. Surface (2 m) and bottom (1537 m) waters, collected near the Deepwater Horizon site, were amended with 200 ppm light Louisiana sweet crude oil and bacterial inoculums from surface or bottom water, and incubated at 4 or 24°C for 50 days. Bacterial community and residual oil were analyzed by pyrosequencing and gas chromatography-mass spectrometry (GC-MS), respectively. The results showed that temperature played a key role in selecting oil-degrading bacteria. Incubation at 4°C favored the development of Cycloclasticus, Pseudoalteromonas, Sulfitobacter, and Reinekea, while 24°C incubations enhanced Oleibacter, Thalassobius, Phaeobacter, and Roseobacter. Water chemistry and the initial community also had potential roles in the development of hydrocarbon-degrading bacterial communities. Pseudoalteromonas, Oleibacter, and Winogradskyella developed well in the nutrient-enriched bottom water, while Reinekea and Thalassobius were favored by low-nutrient surface water. We revealed that the combination of 4°C, crude oil and bottom inoculum was a key factor for the growth of Cycloclasticus, while the combination of surface inoculum and bottom water chemistry was important for the growth of Pseudoalteromonas. Moreover, regardless of the source of inoculum, bottom water at 24°C was a favorable condition for Oleibacter. Redundancy analysis further showed that temperature and initial community explained 57 and 19% of the variation observed, while oil and water chemistry contributed 14 and 10%, respectively. Overall, this study revealed the relative roles of temperature, water

  3. Potential Environmental Factors Affecting Oil-Degrading Bacterial Populations in Deep and Surface Waters of the Northern Gulf of Mexico.

    PubMed

    Liu, Jiqing; Bacosa, Hernando P; Liu, Zhanfei

    2016-01-01

    Understanding bacterial community dynamics as a result of an oil spill is important for predicting the fate of oil released to the environment and developing bioremediation strategies in the Gulf of Mexico. In this study, we aimed to elucidate the roles of temperature, water chemistry (nutrients), and initial bacterial community in selecting oil degraders through a series of incubation experiments. Surface (2 m) and bottom (1537 m) waters, collected near the Deepwater Horizon site, were amended with 200 ppm light Louisiana sweet crude oil and bacterial inoculums from surface or bottom water, and incubated at 4 or 24°C for 50 days. Bacterial community and residual oil were analyzed by pyrosequencing and gas chromatography-mass spectrometry (GC-MS), respectively. The results showed that temperature played a key role in selecting oil-degrading bacteria. Incubation at 4°C favored the development of Cycloclasticus, Pseudoalteromonas, Sulfitobacter, and Reinekea, while 24°C incubations enhanced Oleibacter, Thalassobius, Phaeobacter, and Roseobacter. Water chemistry and the initial community also had potential roles in the development of hydrocarbon-degrading bacterial communities. Pseudoalteromonas, Oleibacter, and Winogradskyella developed well in the nutrient-enriched bottom water, while Reinekea and Thalassobius were favored by low-nutrient surface water. We revealed that the combination of 4°C, crude oil and bottom inoculum was a key factor for the growth of Cycloclasticus, while the combination of surface inoculum and bottom water chemistry was important for the growth of Pseudoalteromonas. Moreover, regardless of the source of inoculum, bottom water at 24°C was a favorable condition for Oleibacter. Redundancy analysis further showed that temperature and initial community explained 57 and 19% of the variation observed, while oil and water chemistry contributed 14 and 10%, respectively. Overall, this study revealed the relative roles of temperature, water

  4. Surface waves affect frontogenesis

    NASA Astrophysics Data System (ADS)

    Suzuki, Nobuhiro; Fox-Kemper, Baylor; Hamlington, Peter E.; Van Roekel, Luke P.

    2016-05-01

    This paper provides a detailed analysis of momentum, angular momentum, vorticity, and energy budgets of a submesoscale front undergoing frontogenesis driven by an upper-ocean, submesoscale eddy field in a Large Eddy Simulation (LES). The LES solves the wave-averaged, or Craik-Leibovich, equations in order to account for the Stokes forces that result from interactions between nonbreaking surface waves and currents, and resolves both submesoscale eddies and boundary layer turbulence down to 4.9 m × 4.9 m × 1.25 m grid scales. It is found that submesoscale frontogenesis differs from traditional frontogenesis theory due to four effects: Stokes forces, momentum and kinetic energy transfer from submesoscale eddies to frontal secondary circulations, resolved turbulent stresses, and unbalanced torque. In the energy, momentum, angular momentum, and vorticity budgets for the frontal overturning circulation, the Stokes shear force is a leading-order contributor, typically either the second or third largest source of frontal overturning. These effects violate hydrostatic and thermal wind balances during submesoscale frontogenesis. The effect of the Stokes shear force becomes stronger with increasing alignment of the front and Stokes shear and with a nondimensional scaling. The Stokes shear force and momentum transfer from submesoscale eddies significantly energize the frontal secondary circulation along with the buoyancy.

  5. Isotopic assessment of sources and processes affecting sulfate and nitrate in surface water and groundwater of Luxembourg.

    PubMed

    Rock, L; Mayer, B

    2002-12-01

    Surface water and deep and shallow groundwater samples were taken from selected parts of the Grand-Duchy of Luxembourg to determine the isotopic composition of nitrate and sulfate, in order to identify sources and/or processes affecting these solutes. Deep groundwater had sulfate concentrations between 20 and 40 mg/L, delta34S(sulfate) values between -3.0 and -20.0 per thousand, and delta18O(sulfate) values between +1.5 and +5.0 per thousand; nitrate was characterized by concentrations varying between < 0.5 and 10 mg/L, delta15N(nitrate) values of approximately -0.5 per thousand, and delta18O(nitrate) values approximately +3.0 per thousand. In the shallow groundwater, sulfate concentrations ranged from 25 to 30 mg/L, delta34S(sulfate) values from -20.0 to +4.5 per thousand, and delta18O(sulfate) values from approximately +0.5 to +4.5 per thousand; nitrate concentrations varied between approximately 10 and 75 mg/L, delta15N(nitrate) values between +2.5 and +10.0 per thousand, and delta18O(nitrate) values between +1.0 and +3.0 per thousand. In surface water, sulfate concentrations ranged from 10 to 210 mg/L, delta34S(sulfate) values varied between -9.3 and +10.9 per thousand, and delta18O(sulfate) values between +3.0 and +10.7 per thousand were observed. Nitrate concentrations ranged from 10 to 40 mg/L, delta15N(nitrate) values from +6.5 to +12.0 per thousand, and delta18O(nitrate) values from -0.4 to +4.0 per thousand. Based on these data, three sulfate sources were identified controlling the riverine sulfate load. These are soil sulfate, dissolution of evaporites, and oxidation of reduced S minerals in the bedrock. Both groundwater types were predominantly influenced by sulfate from the two latter lithogenic S sources. The deep groundwater and a couple shallow groundwater samples had nitrate derived mainly from soil nitrification. All other sampling sites were influenced by nitrate originating from sewage and/or manure. A decrease in nitrate concentration observed

  6. Surface Water in Hawaii

    USGS Publications Warehouse

    Oki, Delwyn S.

    2003-01-01

    Surface water in Hawaii is a valued resource as well as a potential threat to human lives and property. The surface-water resources of Hawaii are of significant economic, ecologic, cultural, and aesthetic importance. Streams supply more than 50 percent of the irrigation water in Hawaii, and although streams supply only a few percent of the drinking water statewide, surface water is the main source of drinking water in some places. Streams also are a source of hydroelectric power, provide important riparian and instream habitats for many unique native species, support traditional and customary Hawaiian gathering rights and the practice of taro cultivation, and possess valued aesthetic qualities. Streams affect the physical, chemical, and aesthetic quality of receiving waters, such as estuaries, bays, and nearshore waters, which are critical to the tourism-based economy of the islands. Streams in Hawaii pose a danger because of their flashy nature; a stream's stage, or water level, can rise several feet in less than an hour during periods of intense rainfall. Streams in Hawaii are flashy because rainfall is intense, drainage basins are small, basins and streams are steep, and channel storage is limited. Streamflow generated during periods of heavy rainfall has led to loss of property and human lives in Hawaii. Most Hawaiian streams originate in the mountainous interiors of the islands and terminate at the coast. Streams are significant sculptors of the Hawaiian landscape because of the erosive power of the water they convey. In geologically young areas, such as much of the southern part of the island of Hawaii, well-defined stream channels have not developed because the permeability of the surface rocks generally is so high that rainfall infiltrates before flowing for significant distances on the surface. In geologically older areas that have received significant rainfall, streams and mass wasting have carved out large valleys.

  7. Surface pressure affects B-hordein network formation at the air-water interface in relation to gastric digestibility.

    PubMed

    Yang, Jingqi; Huang, Jun; Zeng, Hongbo; Chen, Lingyun

    2015-11-01

    Protein interfacial network formation under mechanical pressure and its influence on degradation was investigated at molecular level using Langmuir-Blodgett B-hordein monolayer as a 2D model. Surface properties, such as surface pressure, dilatational and shear rheology and the surface pressure--area (π-A) isotherm, of B-hordein at air-water interface were analyzed by tensiometer, rheometer and a Langmuir-Blodgett trough respectively. B-Hordein conformation and orientation under different surface pressures were determined by polarization modulation-infrared reflection absorption spectroscopy (PM-IRRAS). The interfacial network morphology was observed by atomic force microscopy (AFM). B-Hordein could reduce the air-water surface tension rapidly to ∼ 45 mN/m and form a solid-like network with high rheological elasticity and compressibility at interface, which could be a result of interactions developed by intermolecular β-sheets. The results also revealed that B-hordein interfacial network switched from an expanded liquid phase to a solid-like film with increasing compression pressure. The orientation of B-hordein was parallel to the surface when in expended liquid phase, whereas upon compression, the hydrophobic repetitive region tilted away from water phase. When compressed to 30 mN/m, a strong elastic network was formed at the interface, and it was resistant to a harsh gastric-like environment of low pH and pepsin. This work generated fundamental knowledge, which suggested the potential to design B-hordein stabilized emulsions and encapsulations with controllable digestibility for small intestine targeted delivery of bioactive compounds.

  8. Estimating environmental conditions affecting protozoal pathogen removal in surface water wetland systems using a multi-scale, model-based approach.

    PubMed

    Daniels, Miles E; Hogan, Jennifer; Smith, Woutrina A; Oates, Stori C; Miller, Melissa A; Hardin, Dane; Shapiro, Karen; Los Huertos, Marc; Conrad, Patricia A; Dominik, Clare; Watson, Fred G R

    2014-09-15

    Cryptosporidium parvum, Giardia lamblia, and Toxoplasma gondii are waterborne protozoal pathogens distributed worldwide and empirical evidence suggests that wetlands reduce the concentrations of these pathogens under certain environmental conditions. The goal of this study was to evaluate how protozoal removal in surface water is affected by the water temperature, turbidity, salinity, and vegetation cover of wetlands in the Monterey Bay region of California. To examine how protozoal removal was affected by these environmental factors, we conducted observational experiments at three primary spatial scales: settling columns, recirculating wetland mesocosm tanks, and an experimental research wetland (Molera Wetland). Simultaneously, we developed a protozoal transport model for surface water to simulate the settling columns, the mesocosm tanks, and the Molera Wetland. With a high degree of uncertainty expected in the model predictions and field observations, we developed the model within a Bayesian statistical framework. We found protozoal removal increased when water flowed through vegetation, and with higher levels of turbidity, salinity, and temperature. Protozoal removal in surface water was maximized (~0.1 hour(-1)) when flowing through emergent vegetation at 2% cover, and with a vegetation contact time of ~30 minutes compared to the effects of temperature, salinity, and turbidity. Our studies revealed that an increase in vegetated wetland area, with water moving through vegetation, would likely improve regional water quality through the reduction of fecal protozoal pathogen loads.

  9. Surface roughness rather than surface chemistry essentially affects insect adhesion

    PubMed Central

    England, Matt W; Sato, Tomoya; Yagihashi, Makoto; Gorb, Stanislav N

    2016-01-01

    Summary The attachment ability of ladybird beetles Coccinella septempunctata was systematically investigated on eight types of surface, each with different chemical and topographical properties. The results of traction force tests clearly demonstrated that chemical surface properties, such as static/dynamic de-wettability of water and oil caused by specific chemical compositions, had no significant effect on the attachment of the beetles. Surface roughness was found to be the dominant factor, strongly affecting the attachment ability of the beetles. PMID:27826522

  10. Surface roughness rather than surface chemistry essentially affects insect adhesion.

    PubMed

    England, Matt W; Sato, Tomoya; Yagihashi, Makoto; Hozumi, Atsushi; Gorb, Stanislav N; Gorb, Elena V

    2016-01-01

    The attachment ability of ladybird beetles Coccinella septempunctata was systematically investigated on eight types of surface, each with different chemical and topographical properties. The results of traction force tests clearly demonstrated that chemical surface properties, such as static/dynamic de-wettability of water and oil caused by specific chemical compositions, had no significant effect on the attachment of the beetles. Surface roughness was found to be the dominant factor, strongly affecting the attachment ability of the beetles.

  11. Dissolved organic matter dynamics in surface waters affected by oil spill pollution: Results from the Serious Game exercise

    NASA Astrophysics Data System (ADS)

    Gonnelli, M.; Galletti, Y.; Marchetti, E.; Mercadante, L.; Retelletti Brogi, S.; Ribotti, A.; Sorgente, R.; Vestri, S.; Santinelli, C.

    2016-11-01

    Dissolved organic carbon (DOC), chromophoric and fluorescent dissolved organic matter (CDOM and FDOM, respectively) surface distribution was studied during the Serious Game exercise carried out in the Eastern Ligurian Sea, where an oil spill was localized by using satellite images and models. This paper reports the first DOC, CDOM and FDOM data for this area together with an evaluation of fluorescence as a fast and inexpensive tool for early oil spill detection in marine waters. The samples collected in the oil spill showed a fluorescence intensity markedly higher ( 5 fold) than all the other samples. The excitation-emission matrixes, coupled with parallel factor analysis (PARAFAC), allowed for the identification in the FDOM pool of a mixture of polycyclic aromatic hydrocarbons, humic-like and protein-like fluorophores.

  12. Effect of sampling method on contaminant measurement in pore-water and surface water at two uranium operations: can method affect conclusions?

    PubMed

    Robertson, Erin L; Liber, Karsten

    2009-08-01

    This paper describes a comparison of two methods of sediment pore-water sampling and two methods of surface water sampling that were used in a broader investigation of cause(s) of adverse effects on benthic invertebrate communities at two Saskatchewan uranium operations (Key Lake and Rabbit Lake). Variables measured and compared included pH, ammonia, DOC, and trace metals. The two types of sediment pore-water samples that were compared are centrifuged and 0.45-microm filtered sediment core samples vs. 0.2-microm dialysis (peeper) samples. The two types of surface water samples that were compared are 53-microm filtered Van Dorn horizontal beta samples vs. 0.2-microm dialysis (peeper) samples. Results showed that 62% of the sediment core pore water values were higher than the corresponding peeper pore-water measurements, and that 63% of the Van Dorn surface water measurements were lower than corresponding peeper surface water measurements. Furthermore, only 24% and 14% of surface water and pore-water measurements, respectively, fell within +/-10% range of one another; 73% and 50%, respectively, fell within +/-50%. Although somewhat confounded by differences in filtering method, the observed differences are believed to primarily be related to small, vertical differences in the environment sampled. Despite observed differences in concentrations of toxicologically relevant variables generated by the different sampling methods, the weight of evidence (WOE) conclusions drawn from each set of exposure data on the possible cause(s) of in situ toxicity to Hyalella azteca from a related study were the same at each uranium operation. However, this concurrence was largely due to other dominant lines of evidence. The WOE conclusions at Key Lake were dominated by the toxicity response of H. azteca in relation to exposure chemistry, where as the WOE conclusions at Rabbit Lake were informed by exposure chemistry, the toxicological response of H. azteca, and whole-body contaminant

  13. Assessment of Spatial and Temporal Variation of Surface Water Quality in Streams Affected by Coalbed Methane Development

    NASA Astrophysics Data System (ADS)

    Chitrakar, S.; Miller, S. N.; Liu, T.; Caffrey, P. A.

    2015-12-01

    Water quality data have been collected from three representative stream reaches in a coalbed methane (CBM) development area for over five years to improve the understanding of salt loading in the system. These streams are located within Atlantic Rim development area of the Muddy Creek in south-central Wyoming. Significant development of CBM wells is ongoing in the study area. Three representative sampling stream reaches included the Duck Pond Draw and Cow Creek, which receive co-produced water, and; South Fork Creek, and upstream Cow Creek which do not receive co-produced water. Water samples were assayed for various parameters which included sodium, calcium, magnesium, fluoride, chlorine, nitrate, O-phosphate, sulfate, carbonate, bicarbonates, and other water quality parameters such as pH, conductivity, and TDS. Based on these water quality parameters we have investigated various hydrochemical and geochemical processes responsible for the high variability in water quality in the region. However, effective interpretation of complex databases to understand aforementioned processes has been a challenging task due to the system's complexity. In this work we applied multivariate statistical techniques including cluster analysis (CA), principle component analysis (PCA) and discriminant analysis (DA) to analyze water quality data and identify similarities and differences among our locations. First, CA technique was applied to group the monitoring sites based on the multivariate similarities. Second, PCA technique was applied to identify the prevalent parameters responsible for the variation of water quality in each group. Third, the DA technique was used to identify the most important factors responsible for variation of water quality during low flow season and high flow season. The purpose of this study is to improve the understanding of factors or sources influencing the spatial and temporal variation of water quality. The ultimate goal of this whole research is to

  14. Surface-water surveillance

    SciTech Connect

    Saldi, K.A.; Dirkes, R.L.; Blanton, M.L.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the Surface water on and near the Hanford Site is monitored to determine the potential effects of Hanford operations. Surface water at Hanford includes the Columbia River, riverbank springs, ponds located on the Hanford Site, and offsite water systems directly east and across the Columbia River from the Hanford Site, and offsite water systems directly east and across the Columbia River from the Hanford Site. Columbia River sediments are also included in this discussion. Tables 5.3.1 and 5.3.2 summarize the sampling locations, sample types, sampling frequencies, and sample analyses included in surface-water surveillance activities during 1994. Sample locations are also identified in Figure 5.3.1. This section describes the surveillance effort and summarizes the results for these aquatic environments. Detailed analytical results are reported by Bisping (1995).

  15. Water surface is acidic

    PubMed Central

    Buch, Victoria; Milet, Anne; Vácha, Robert; Jungwirth, Pavel; Devlin, J. Paul

    2007-01-01

    Water autoionization reaction 2H2O → H3O− + OH− is a textbook process of basic importance, resulting in pH = 7 for pure water. However, pH of pure water surface is shown to be significantly lower, the reduction being caused by proton stabilization at the surface. The evidence presented here includes ab initio and classical molecular dynamics simulations of water slabs with solvated H3O+ and OH− ions, density functional studies of (H2O)48H+ clusters, and spectroscopic isotopic-exchange data for D2O substitutional impurities at the surface and in the interior of ice nanocrystals. Because H3O+ does, but OH− does not, display preference for surface sites, the H2O surface is predicted to be acidic with pH < 4.8. For similar reasons, the strength of some weak acids, such as carbonic acid, is expected to increase at the surface. Enhanced surface acidity can have a significant impact on aqueous surface chemistry, e.g., in the atmosphere. PMID:17452650

  16. Evaluation of the surface-water sampling design in the Western Lake Michigan Drainages in relation to environmental factors affecting water quality at base flow

    USGS Publications Warehouse

    Robertson, Dale M.

    1998-01-01

    The variability in water quality throughout the WMIC Study Unit during base-flow conditions could be described very well by subdividing the area into Relatively Homogeneous Units and sampling a few streams with drainage basins completely within these homogeneous units. This subdivision and sampling scheme enabled the differences in water quality to be directly related to the differences in the environmental characteristics that exist throughout the Study Unit.

  17. Cryptosporidiosis and surface water.

    PubMed Central

    Gallaher, M M; Herndon, J L; Nims, L J; Sterling, C R; Grabowski, D J; Hull, H F

    1989-01-01

    In the period July through October, 1986, 78 laboratory-confirmed cases of cryptosporidiosis were identified in New Mexico. To determine possible risk factors for development of this disease, we conducted a case-control study; 24 case-patients and 46 neighborhood controls were interviewed. Seventeen (71 per cent) of the 24 case-patients were females, seven (29%) were males; their ages ranged from 4 months to 44 years, median 3 years. There was a strong association between drinking surface water and illness: five of the 24 case-patients, but none of the 46 controls drank untreated surface water. Among children, illness was also associated with attending a day care center where other children were ill (odds ratio = 13.1). PMID:2909180

  18. Is increasing industrialization affecting remote ecosystem health in the South Americas? Insights from ocean surface water measurements of As, Sb and Pb from a GEOTRACES transect

    NASA Astrophysics Data System (ADS)

    Weiss, Dominik; Salaun, Pascal; Van den Berg, Stan; Bi, Zaoshun

    2014-05-01

    Continued industrial development of the South Americas with increasing atmospheric emission of toxic trace metals has lead to a growing concern about possible effects on pristine ecosystem health. Concentration measurements of trace metals in ocean surface waters in the North Atlantic have successfully revealed the global extent of atmospheric pollution in the Northern Hemisphere during economical growth in the USA and Europe, suggesting a similar approach can be applied to the Southern Hemisphere. To this end, we determined concentrations of lead (Pb), antimony (Sb) and arsenic (As) using voltammetry in surface water samples of the South Atlantic Ocean collected during the third leg of the GEOTRACES West Atlantic Cruise. These elements are volatile and therefore most likely suitable tracer elements of industrial emissions from South America. The samples were not filtered and the solutions were acidified and UV digested. Total concentrations of Pb were detected. Detected As levels correspond to the sum of inorganic species (AsIII + AsV) plus the mono methyl arsenic acid (MMA) while the dimethyl arsenic acid (DMA) is not detected in such conditions. For Sb, detected levels correspond at least to the sum of inorganic fractions (SbIII + SbV). The measured concentrations for Pb varied from 6 to 23 pM. Concentrations were highest at -35° latitude and lowest at -40° and -50° latitude. We found a decreasing trend from about -35° latitude southwards. The average concentrations of As was 20 nM and of Sb 1.2 nM. Arsenic showed a more significant north to south trend than Sb. Arsenic concentration was highest at -23 ° latitude (21 nM) and the lowest at -43 ° latitude (17.7 nM). Antimony concentration was highest at -31 ° latitude (1.5 nM) and lowest at -35 ° latitude (1.0 nM). Our preliminary data suggests that the major industrial centres in Brazil (i.e., Sao Paolo, Rio de Janeiro) and Argentina (i.e., Buenos Aires) affect atmospheric metal fluxes to remote

  19. Pesticide distributions in surface water: The distribution of pesticide concentrations at two study sites points to herbicides that may affect management of public water supplies

    USGS Publications Warehouse

    Stamer, J.K.; Wieczorek, M.E.

    1996-01-01

    Distributions of concentrations of 46 pesticides were documented from May 1992 through March 1994 for Maple Creek near Nickerson, Neb., and Platte River at Louisville, Neb. As their source of public water supplies, Lincoln and the western part of Omaha withdraw groundwater from the adjacent alluvium near the Platte River site, which is hydraulically connected to the Platte River. Organonitrogen herbicides dominated the pesticide distributions at each site. Variations in the distributions of pesticides at the two sites partly reflect differences in land use and land management practices. Diazinon, an insecticide used in urban areas, was commonly detected at the Platte River site but not at the Maple Creek site. Of the 46 pesticides analyzed at the Platte River site, the herbicides atrazine and alachlor were more likely to exceed their respective maximum contaminant levels of 3.0 and 2.0 pg/L; cyanazine was more likely to exceed the health advisory level of 1.0 ??g/L.

  20. Combining Remotely Sensed Environmental Characteristics with Social and Behavioral Conditions that Affect Surface Water Use in Spatiotemporal Modelling of Schistosomiasis in Ghana

    NASA Astrophysics Data System (ADS)

    Kulinkina, A. V.; Walz, Y.; Liss, A.; Kosinski, K. C.; Biritwum, N. K.; Naumova, E. N.

    2016-06-01

    Schistosoma haematobium transmission is influenced by environmental conditions that determine the suitability of the parasite and intermediate host snail habitats, as well as by socioeconomic conditions, access to water and sanitation infrastructure, and human behaviors. Remote sensing is a demonstrated valuable tool to characterize environmental conditions that support schistosomiasis transmission. Socioeconomic and behavioral conditions that propagate repeated domestic and recreational surface water contact are more difficult to quantify at large spatial scales. We present a mixed-methods approach that builds on the remotely sensed ecological variables by exploring water and sanitation related community characteristics as independent risk factors of schistosomiasis transmission.

  1. How surface roughness affects chemical transfer from soil to surface runoff?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil surface roughness affects transport processes, e.g., runoff generation, infiltration, sediment detachment, etc., occurring on the surface. Nevertheless, how soil roughness affects chemical transport is less known. In this study, we partitioned roughness elements into mounds which diverge water ...

  2. Internal Surface Water Flows

    USGS Publications Warehouse

    Murray, Mitchell H.

    1999-01-01

    Introduction The South Florida Ecosystem Restoration Program is an intergovernmental effort to reestablish and maintain the ecosystem of south Florida. One element of the restoration effort is the development of a firm scientific basis for resource decision making.The U.S. Geological Survey (USGS) provides scientitic information as part of the South Florida Ecosystem Restoration Program. The USGS began its own project, called the South Florida Ecosystem Project in fiscal year 1995 for the purpose of gathering hydrologic, cartographic, and geologic data that relate to the mainland of south Florida, Florida Bay, and the Florida Keys and Reef ecosystems. Historical changes in water-management practices to accommodate a large and rapidly growing urban population along the Atlantic coast, as well as intensive agricultural activities, have resulted in a highly managed hydrologic system with canals, levees, and pumping stations. These structures have altered the hydology of the Everglades ecosystem on both coastal and interior lands. Surface-water flows in a direction south of Lake Okeechobee have been regulated by an extensive canal network, begun in the 1940's, to provide for drainage, flood control, saltwater intrusion control, agricultural requirements, and various environmental needs. Much of the development and subsequent monitoring of canal and river discharge south of Lake Okeechobee has traditionally emphasized the eastern coastal areas of Florida. Recently, more emphasis has been placed on providing a more accurate water budget for internal canal flows.

  3. Sustaining dry surfaces under water

    NASA Astrophysics Data System (ADS)

    Jones, Paul R.; Hao, Xiuqing; Cruz-Chu, Eduardo R.; Rykaczewski, Konrad; Nandy, Krishanu; Schutzius, Thomas M.; Varanasi, Kripa K.; Megaridis, Constantine M.; Walther, Jens H.; Koumoutsakos, Petros; Espinosa, Horacio D.; Patankar, Neelesh A.

    2015-08-01

    Rough surfaces immersed under water remain practically dry if the liquid-solid contact is on roughness peaks, while the roughness valleys are filled with gas. Mechanisms that prevent water from invading the valleys are well studied. However, to remain practically dry under water, additional mechanisms need consideration. This is because trapped gas (e.g. air) in the roughness valleys can dissolve into the water pool, leading to invasion. Additionally, water vapor can also occupy the roughness valleys of immersed surfaces. If water vapor condenses, that too leads to invasion. These effects have not been investigated, and are critically important to maintain surfaces dry under water. In this work, we identify the critical roughness scale, below which it is possible to sustain the vapor phase of water and/or trapped gases in roughness valleys - thus keeping the immersed surface dry. Theoretical predictions are consistent with molecular dynamics simulations and experiments.

  4. Sustaining dry surfaces under water.

    PubMed

    Jones, Paul R; Hao, Xiuqing; Cruz-Chu, Eduardo R; Rykaczewski, Konrad; Nandy, Krishanu; Schutzius, Thomas M; Varanasi, Kripa K; Megaridis, Constantine M; Walther, Jens H; Koumoutsakos, Petros; Espinosa, Horacio D; Patankar, Neelesh A

    2015-08-18

    Rough surfaces immersed under water remain practically dry if the liquid-solid contact is on roughness peaks, while the roughness valleys are filled with gas. Mechanisms that prevent water from invading the valleys are well studied. However, to remain practically dry under water, additional mechanisms need consideration. This is because trapped gas (e.g. air) in the roughness valleys can dissolve into the water pool, leading to invasion. Additionally, water vapor can also occupy the roughness valleys of immersed surfaces. If water vapor condenses, that too leads to invasion. These effects have not been investigated, and are critically important to maintain surfaces dry under water. In this work, we identify the critical roughness scale, below which it is possible to sustain the vapor phase of water and/or trapped gases in roughness valleys - thus keeping the immersed surface dry. Theoretical predictions are consistent with molecular dynamics simulations and experiments.

  5. Sustaining dry surfaces under water

    PubMed Central

    Jones, Paul R.; Hao, Xiuqing; Cruz-Chu, Eduardo R.; Rykaczewski, Konrad; Nandy, Krishanu; Schutzius, Thomas M.; Varanasi, Kripa K.; Megaridis, Constantine M.; Walther, Jens H.; Koumoutsakos, Petros; Espinosa, Horacio D.; Patankar, Neelesh A.

    2015-01-01

    Rough surfaces immersed under water remain practically dry if the liquid-solid contact is on roughness peaks, while the roughness valleys are filled with gas. Mechanisms that prevent water from invading the valleys are well studied. However, to remain practically dry under water, additional mechanisms need consideration. This is because trapped gas (e.g. air) in the roughness valleys can dissolve into the water pool, leading to invasion. Additionally, water vapor can also occupy the roughness valleys of immersed surfaces. If water vapor condenses, that too leads to invasion. These effects have not been investigated, and are critically important to maintain surfaces dry under water. In this work, we identify the critical roughness scale, below which it is possible to sustain the vapor phase of water and/or trapped gases in roughness valleys – thus keeping the immersed surface dry. Theoretical predictions are consistent with molecular dynamics simulations and experiments. PMID:26282732

  6. Water surface depth instrument

    NASA Technical Reports Server (NTRS)

    Davis, Q. C., IV

    1970-01-01

    Measurement gage provides instant visual indication of water depth based on capillary action and light diffraction in a group of solid, highly polished polymethyl methacrylate rods. Rod lengths are adjustable to measure various water depths in any desired increments.

  7. Factors affecting the fate and transport of glyphosate and AMPA into surface waters of agricultural watersheds in the United States and Europe

    NASA Astrophysics Data System (ADS)

    Coupe, R.; Kalkhoff, S.; Capel, P.; Gregoire, C.

    2012-04-01

    Glyphosate [N-(phosphonomethyl)glycine] is a herbicide used extensively in almost all agricultural and urban areas of the United States and Europe. Although, glyphosate is used widely throughout the world in the production of many crops, it is predominately used in the United States on soybeans, corn, potatoes, and cotton that have been genetically modified to be tolerant to glyphosate. From 1992 to 2007, the agricultural use of glyphosate has increased from less than 10,000 Mg to more than 80,000 Mg, respectively. The greatest areal use is in the midwestern United States where glyphosate is applied on transgenic corn and soybeans. Because of the difficulty and expense in analyzing for glyphosate and AMPA (aminomethylphosphonic acid, a primary glyphosate degradate) in water, there have been only small scale studies on the fate and transport of glyphosate. The characterization of the transport of glyphosate and AMPA on a watershed scale is lacking. Glyphosate and AMPA were frequently detected in the surface waters of 4 agricultural watersheds in studies conducted by the U.S. Geological Survey in the United States and at the Laboratory of Hydrology and Geochemistry of Strasbourg. Two of these basins were located in the midwestern United States where the major crops are corn and soybean, the third is located the lower Mississippi River Basin where the major crops are soybean, corn, rice, and cotton, and the fourth was located near Strasbourg, France where the use of glyphosate was on a vineyard. The load as a percent of use ranged from 0.009 to 0.86 percent and could be related to 3 factors: source strength, hydrology, and flowpath. Glyphosate use in a watershed results in some occurrence in surface water at the part per billion level; however, those watersheds most at risk for the offsite transport of glyphosate are those with high application rates, rainfall that results in overland runoff, and a flowpath that does not include transport through the soil.

  8. The important role of surface ligand on CdSe/CdS core/shell nanocrystals in affecting the efficiency of H2 photogeneration from water

    NASA Astrophysics Data System (ADS)

    Wang, Ping; Zhang, Jie; He, Haili; Xu, Xiaolong; Jin, Yongdong

    2015-03-01

    The use of colloidal semiconductor nanocrystals (NCs), especially those with a core/shell structure, for photocatalytic hydrogen (H2) production from water is currently one of the hottest research fields. Although the ligand on the semiconductor NC surface is crucial to the optical and optoelectronic properties of the NC, the study of the ligand effect on the photocatalytic activity of H2 generation is rarely reported. Herein, we employ nearly monodispersed CdSe/CdS core/shell NCs as a model photocatalytic system, and three kinds of ligands with different numbers of functional thiol groups (i.e., poly(acrylic acid), 3-mercaptopropionic acid and 2,3-dimercaptosuccinic acid) are selected as the ligands to investigate the effect of ligand on the efficiency of H2 photogeneration. The results show that the H2 photogeneration efficiency is highly dependent on the surface ligand of the NCs, and it increases with the increase of the number of the functional thiol groups in the ligand, and correspondingly, the photoluminescence intensity and average fluorescence lifetime, which are measured by steady state and time-resolved fluorescence measurements, are decreased. The surface trap-related charge separation efficiency, which is mediated by surface coating with different ligands, is supposed to cause the distinct ligand-dependent performance in the H2 evolution.The use of colloidal semiconductor nanocrystals (NCs), especially those with a core/shell structure, for photocatalytic hydrogen (H2) production from water is currently one of the hottest research fields. Although the ligand on the semiconductor NC surface is crucial to the optical and optoelectronic properties of the NC, the study of the ligand effect on the photocatalytic activity of H2 generation is rarely reported. Herein, we employ nearly monodispersed CdSe/CdS core/shell NCs as a model photocatalytic system, and three kinds of ligands with different numbers of functional thiol groups (i.e., poly(acrylic acid), 3

  9. Water chemistry affects catfish susceptibility to columnaris

    Technology Transfer Automated Retrieval System (TEKTRAN)

    While columnaris disease has been well-studied, little is known about how specific water chemistries can affect attachment. Recent studies in our labs offer new insight on this subject. Well waters from the USDA/ARS Stuttgart National Aquaculture Research Center (SNARC; Stuttgart, Arkansas) and fr...

  10. Water hardness affects catfish susceptibility to columnaris

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Columnaris disease can cause tremendous losses of freshwater fish. While it has been studied exhaustively, little is known about its affinity to specific water chemistries that affects attachment. Recent studies in our labs have illuminated this subject. In the first experiment, two waters were ...

  11. How hydrophobic buckminsterfullerene affects surrounding water structure.

    PubMed

    Weiss, Dahlia R; Raschke, Tanya M; Levitt, Michael

    2008-03-13

    The hydrophobic hydration of fullerenes in water is of significant interest as the most common Buckminsterfullerene (C60) is a mesoscale sphere; C60 also has potential in pharmaceutical and nanomaterial applications. We use an all-atom molecular dynamics simulation lasting hundreds of nanoseconds to determine the behavior of a single molecule of C60 in a periodic box of water, and compare this to methane. A C60 molecule does not induce drying at the surface; however, unlike a hard sphere methane, a hard sphere C60 solute does. This is due to a larger number of attractive Lennard-Jones interactions between the carbon atom centers in C60 and the surrounding waters. In these simulations, water is not uniformly arranged but rather adopts a range of orientations in the first hydration shell despite the spherical symmetry of both solutes. There is a clear effect of solute size on the orientation of the first hydration shell waters. There is a large increase in hydrogen-bonding contacts between waters in the C60 first hydration shell. There is also a disruption of hydrogen bonds between waters in the first and second hydration shells. Water molecules in the first hydration shell preferentially create triangular structures that minimize the net water dipole near the surface near both the methane and C60 surface, reducing the total energy of the system. Additionally, in the first and second hydration shells, the water dipoles are ordered to a distance of 8 A from the solute surface. We conclude that, with a diameter of approximately 1 nm, C60 behaves as a large hydrophobic solute.

  12. Surface Water Response Modeling

    EPA Science Inventory

    During response to spills, or for facility planning, the vulnerability of downstream water resources is a major concern. How long and at what concentration do spilled contaminants reach downstream receptors? Models have the potential to answer these questions, but only if they ...

  13. Water in Biomaterials Surface Science

    NASA Astrophysics Data System (ADS)

    Morra, M.

    2001-10-01

    Presents the latest ideas and research on molecular hydration and hydration forces, and how they determine the interaction between water molecules and biomaterials surfaces. Consisting of three sections; theoretical aspects, analytical aspects and practical applications, it begins by placing the properties of water in a proper molecular perspective. The analytical aspects and practical applications offer a complete overview with new insights into the biomaterials/water interface by: - Discussing the latest approaches to the characterisation of water at interfaces and surface modification of biomaterials - Examining the problems related to the understanding and characterisation of interfacial water - Providing new perspectives of the interfacial interactions between materials and the physiological aqueous environment An invaluable resource for researchers in biomaterials surface science and the biotechnology industry.

  14. Ocean Surface Water Sampling Devices.

    DTIC Science & Technology

    1963-10-01

    also parachuted, captures a volume of the water surface by a cookie cutter action and drew it into a 1-liter Thermos bottle for protection from...effective in landing upright on the water. Faster Dewar samplers without the cookie cutter action but with the same intake method proved about 95

  15. How processing digital elevation models can affect simulated water budgets.

    PubMed

    Kuniansky, Eve L; Lowery, Mark A; Campbell, Bruce G

    2009-01-01

    For regional models, the shallow water table surface is often used as a source/sink boundary condition, as model grid scale precludes simulation of the water table aquifer. This approach is appropriate when the water table surface is relatively stationary. Since water table surface maps are not readily available, the elevation of the water table used in model cells is estimated via a two-step process. First, a regression equation is developed using existing land and water table elevations from wells in the area. This equation is then used to predict the water table surface for each model cell using land surface elevation available from digital elevation models (DEM). Two methods of processing DEM for estimating the land surface for each cell are commonly used (value nearest the cell centroid or mean value in the cell). This article demonstrates how these two methods of DEM processing can affect the simulated water budget. For the example presented, approximately 20% more total flow through the aquifer system is simulated if the centroid value rather than the mean value is used. This is due to the one-third greater average ground water gradients associated with the centroid value than the mean value. The results will vary depending on the particular model area topography and cell size. The use of the mean DEM value in each model cell will result in a more conservative water budget and is more appropriate because the model cell water table value should be representative of the entire cell area, not the centroid of the model cell.

  16. Water Bouncing Balls: how material stiffness affects water entry

    NASA Astrophysics Data System (ADS)

    Truscott, Tadd

    2014-03-01

    It is well known that one can skip a stone across the water surface, but less well known that a ball can also be skipped on water. Even though 17th century ship gunners were aware that cannonballs could be skipped on the water surface, they did not know that using elastic spheres rather than rigid ones could greatly improve skipping performance (yet would have made for more peaceful volleys). The water bouncing ball (Waboba®) is an elastic ball used in a game of aquatic keep away in which players pass the ball by skipping it along the water surface. The ball skips easily along the surface creating a sense that breaking the world record for number of skips could easily be achieved (51 rock skips Russell Byers 2007). We investigate the physics of skipping elastic balls to elucidate the mechanisms by which they bounce off of the water. High-speed video reveals that, upon impact with the water, the balls create a cavity and deform significantly due to the extreme elasticity; the flattened spheres resemble skipping stones. With an increased wetted surface area, a large hydrodynamic lift force is generated causing the ball to launch back into the air. Unlike stone skipping, the elasticity of the ball plays an important roll in determining the success of the skip. Through experimentation, we demonstrate that the deformation timescale during impact must be longer than the collision time in order to achieve a successful skip. Further, several material deformation modes can be excited upon free surface impact. The effect of impact velocity and angle on the two governing timescales and material wave modes are also experimentally investigated. Scaling for the deformation and collision times are derived and used to establish criteria for skipping in terms of relevant physical parameters.

  17. Distribution, sources, and risk assessment of polycyclic aromatic hydrocarbons (PAHs) in surface water in industrial affected areas of the Three Gorges Reservoir, China.

    PubMed

    Zheng, Binghui; Ma, Yingqun; Qin, Yanwen; Zhang, Lei; Zhao, Yanmin; Cao, Wei; Yang, Chenchen; Han, Chaonan

    2016-12-01

    Water samples were collected from wastewater treatment plant (WWTP), drain water (DW), major tributaries (MT), and main course of the Yangtze River (MY) in areas of three industrial parks (IPs) in Chongqing city in the Three Gorges Reservoir (TGR). Sixteen EPA priority polycyclic aromatic hydrocarbon (PAH) pollutants were quantified to identify the effects of industrial activities on water quality of the TGR. The results showed that 11 individual PAHs were quantified and 5 PAHs (naphthalene (Nap), acenaphthylene (Acy), benzo[k]fluoranthene (BkF), indeno[1,2,3-cd]pyrene (InP), and benzo[g,h,i]perylene (BgP)) were under detection limits in all of the water samples. Three-ring and four-ring PAHs were the most detected PAHs. Concentrations of individual PAHs were in the range of not detected (nd) to 24.3 ng/L. Total PAH concentrations for each site ranged from nd to 42.9 ng/L and were lower compared to those in other studies. The mean PAH concentrations for sites WWTP, DW, MT, and MY showed as follows: DW (25.9 ng/L) > MY (15.5 ng/L) > MT (14.0 ng/L) > WWTP (9.3 ng/L), and DW contains the highest PAH concentrations. Source identification ratios showed that petroleum and combustion of biomass coal and petroleum were the main sources of PAHs. The results of potential ecosystem risk assessment indicated that, although PAH concentrations in MT and MY are likely harmless to ecosystem, contaminations of PAHs in DW were listed as middle levels and some management strategies and remediation actions, like strengthen clean production processes and banning illegal sewage discharging activities, etc., should be taken to lighten the ecosystem risk caused by PAHs especially risks caused by water discharging drains.

  18. Relaxations and Interfacial Water Ordering at the Corundum (110) Surface

    SciTech Connect

    Catalano, Jeffrey G.

    2010-09-17

    In situ high resolution specular X-ray reflectivity measurements were used to examine relaxations and interfacial water ordering occurring at the corundum (110)-water interface. Sample preparation affected the resulting surface structure. Annealing in air at 1373 K produced a reconstructed surface formed through an apparently ordered aluminum vacancy. The effect of the reconstruction on in-plane periodicity was not determined. The remaining aluminum sites on the surface maintain full coordination by oxygen and the surface was coated with a layer of physically adsorbed water. Ordering of water further from the surface was not observed. Acid etching of this surface and preparing a surface through annealing at 723 K both produced an unreconstructed surface with identical relaxations and water ordering. Relaxations were confined primarily to the top {approx}4 {angstrom} of the surface and were dominated by an increased distribution width of the fully occupied surface aluminum site and outward relaxation of the oxygen surface functional groups. A layer of adsorbed water fully coated the surface and occurred in two distinct sites. Water above this showed signs of layering and indicated that water ordering extended 7-10 {angstrom} from the surface. Relaxations and the arrangement of interfacial water were nearly identical on both the unreconstructed corundum and isostructural hematite (110) surfaces. Comparison to corundum and hematite (012) suggests that the arrangement of interfacial water is primarily controlled by mineral surface structure.

  19. Water dynamics near solutes and surfaces

    NASA Astrophysics Data System (ADS)

    Moilanen, David Emil

    The hydrogen bonding structure and dynamics of water are fundamentally important in a wide range of chemical, biological, geological, and industrial systems. Infrared spectroscopy of the OD stretch of dilute HOD in H2 O provides a sensitive probe of the hydrogen bonding network of water. Water forms a nominally tetrahedral hydrogen bonding network as a liquid but rapid hydrogen bond switching events lead to fast water reorientation. A mechanism for water reorientation that involves large amplitude angular jumps has recently been proposed to describe the long time orientational dynamics. At short times, water molecules quickly sample a restricted range of angular space within an intact hydrogen bonding configuration. The amplitude of this inertial reorientation depends on the strength of the local hydrogen bonding network. When hydrogen bonds are stronger, the water is restricted to a smaller angular range about the hydrogen bond axis. Weaker hydrogen bonds allow larger angular excursions. A simple model for the angular hydrogen bond potential energy surface is presented based on the experimental data. Water is rarely found as a pure liquid in real systems. Often it is in contact with a surface and its dynamics are modified near the surface. Reverse micelles formed using the surfactant Aerosol-OT (AOT), water, and isooctane, as well as AOT lamellar structures provide well-defined, tunable model systems to study the dynamics of water interacting with an interface. Reverse micelles are spherical water pools with radii that can be varied from less than one nanometer up to tens of nanometers. Lamellar structures are surfactant bilayers separated by thin sheets of water ranging in thickness from approximately one nanometer up to four nanometers. In large reverse micelles and lamellar structures, the confined water can be separated into two components, a core of bulk-like water and a shell of interfacial water. Polarization selective pump-probe spectroscopy of the OD

  20. Mechanisms affecting water quality in an intermittent piped water supply.

    PubMed

    Kumpel, Emily; Nelson, Kara L

    2014-01-01

    Drinking water distribution systems throughout the world supply water intermittently, leaving pipes without pressure between supply cycles. Understanding the multiple mechanisms that affect contamination in these intermittent water supplies (IWS) can be used to develop strategies to improve water quality. To study these effects, we tested water quality in an IWS system with infrequent and short water delivery periods in Hubli-Dharwad, India. We continuously measured pressure and physicochemical parameters and periodically collected grab samples to test for total coliform and E. coli throughout supply cycles at 11 sites. When the supply was first turned on, water with elevated turbidity and high concentrations of indicator bacteria was flushed out of pipes. At low pressures (<10 psi), elevated indicator bacteria were frequently detected even when there was a chlorine residual, suggesting persistent contamination had occurred through intrusion or backflow. At pressures between 10 and 17 psi, evidence of periodic contamination suggested that transient intrusion, backflow, release of particulates, or sloughing of biofilms from pipe walls had occurred. Few total coliform and no E. coli were detected when water was delivered with a chlorine residual and at pressures >17 psi.

  1. Water droplet impact on elastic superhydrophobic surfaces

    PubMed Central

    Weisensee, Patricia B.; Tian, Junjiao; Miljkovic, Nenad; King, William P.

    2016-01-01

    Water droplet impact on surfaces is a ubiquitous phenomenon in nature and industry, where the time of contact between droplet and surface influences the transfer of mass, momentum and energy. To manipulate and reduce the contact time of impacting droplets, previous publications report tailoring of surface microstructures that influence the droplet - surface interface. Here we show that surface elasticity also affects droplet impact, where a droplet impacting an elastic superhydrophobic surface can lead to a two-fold reduction in contact time compared to equivalent rigid surfaces. Using high speed imaging, we investigated the impact dynamics on elastic nanostructured superhydrophobic substrates having membrane and cantilever designs with stiffness 0.5–7630 N/m. Upon impact, the droplet excites the substrate to oscillate, while during liquid retraction, the substrate imparts vertical momentum back to the droplet with a springboard effect, causing early droplet lift-off with reduced contact time. Through detailed experimental and theoretical analysis, we show that this novel springboarding phenomenon is achieved for a specific range of Weber numbers (We >40) and droplet Froude numbers during spreading (Fr >1). The observation of the substrate elasticity-mediated droplet springboard effect provides new insight into droplet impact physics. PMID:27461899

  2. Water molecules orientation in surface layer

    NASA Astrophysics Data System (ADS)

    Klingo, V. V.

    2000-08-01

    The water molecules orientation has been investigated theoretically in the water surface layer. The surface molecule orientation is determined by the direction of a molecule dipole moment in relation to outward normal to the water surface. Entropy expressions of the superficial molecules in statistical meaning and from thermodynamical approach to a liquid surface tension have been found. The molecules share directed opposite to the outward normal that is hydrogen protons inside is equal 51.6%. 48.4% water molecules are directed along to surface outward normal that is by oxygen inside. A potential jump at the water surface layer amounts about 0.2 volts.

  3. Water quality analysis of surface water: a Web approach.

    PubMed

    Prasad, Poonam; Chaurasia, Meenal; Sohony, R A; Gupta, Indrani; Kumar, R

    2013-07-01

    The chemical, physical and biological characteristics of water with respect to its suitability describe its quality. Concentration of pesticides or fertilisers degrades the water quality and affects marine life. A comprehensive environmental data information system helps to perform and complete common tasks in less time with less effort for data verification, data calculations, graph generation, and proper monitoring, which helps in the further mitigation step. In this paper, focus is given to a web-based system developed to express the quality of water in the imprecise environment of monitoring data. Water samples were analyzed for eight different surface water parameters, in which four parameters such as pH, dissolved oxygen, biochemical oxygen demand, and fecal coliform were used for the water quality index calculation following MPCB Water Quality Standards of class A-II for best designated use. The analysis showed that river points in a particular year were in very bad category with certainty level of 0-38% which is unsuitable for drinking purposes; samples in bad category had certainty level that ranged from 38 to 50%; samples in medium to good category had certainty levels from 50 to 100%, and the remaining samples were in good to excellent category, suitable for drinking purposes, with certainty levels from 63 to 100%.

  4. Global modeling of fresh surface water temperature

    NASA Astrophysics Data System (ADS)

    Bierkens, M. F.; Eikelboom, T.; van Vliet, M. T.; Van Beek, L. P.

    2011-12-01

    Temperature determines a range of water physical properties, the solubility of oxygen and other gases and acts as a strong control on fresh water biogeochemistry, influencing chemical reaction rates, phytoplankton and zooplankton composition and the presence or absence of pathogens. Thus, in freshwater ecosystems the thermal regime affects the geographical distribution of aquatic species through their growth and metabolism, tolerance to parasites, diseases and pollution and life history. Compared to statistical approaches, physically-based models of surface water temperature have the advantage that they are robust in light of changes in flow regime, river morphology, radiation balance and upstream hydrology. Such models are therefore better suited for projecting the effects of global change on water temperature. Till now, physically-based models have only been applied to well-defined fresh water bodies of limited size (e.g., lakes or stream segments), where the numerous parameters can be measured or otherwise established, whereas attempts to model water temperature over larger scales has thus far been limited to regression type of models. Here, we present a first attempt to apply a physically-based model of global fresh surface water temperature. The model adds a surface water energy balance to river discharge modelled by the global hydrological model PCR-GLOBWB. In addition to advection of energy from direct precipitation, runoff and lateral exchange along the drainage network, energy is exchanged between the water body and the atmosphere by short and long-wave radiation and sensible and latent heat fluxes. Also included are ice-formation and its effect on heat storage and river hydraulics. We used the coupled surface water and energy balance model to simulate global fresh surface water temperature at daily time steps on a 0.5x0.5 degree grid for the period 1970-2000. Meteorological forcing was obtained from the CRU data set, downscaled to daily values with ECMWF

  5. Surface water discharges from onshore stripper wells.

    SciTech Connect

    Veil, J. A.

    1998-01-16

    Under current US Environmental Protection Agency (EPA) rules, small onshore oil producers are allowed to discharge produced water to surface waters with approval from state agencies; but small onshore gas producers, however, are prohibited from discharging produced water to surface waters. The purpose of this report is to identify those states that allow surface water discharges from small onshore oil operations and to summarize the types of permitting controls they use. It is intended that the findings of this report will serve as a rationale to encourage the EPA to revise its rules and to remove the prohibition on surface water discharges from small gas operations.

  6. River regulation and interactions groundwater - surface water

    NASA Astrophysics Data System (ADS)

    Colleuille, H.; Wong, W. K.; Dimakis, P.; Pedersen, T. S.

    2003-04-01

    The determination of a minimum acceptable flow in a river affected by regulation is a major task in management of hydropower development. The Norwegian Water Resources and Energy Directorate (NVE), responsible for administrating the nation's water resources, requires an objective system that takes into account the needs of the developer and the rivers environment such as water quality, river biota, landscape, erosion and groundwater. A research project has been initiated with focus on interactions between groundwater and surface water. The purpose of the project is to provide the licensing authorities with tools for quantitative assessment of the effects of regulation on groundwater resources and at the same time the effect of groundwater abstraction on river flows. A small, urbanised alluvial plain (2 km^2) by the river Glomma in Central Southern Norway is used as a case study. The local aquifer consists of heterogeneous glaciofluvial and fluvial deposit, mainly sand and gravel. Two three-dimensional numerical models (Visual Modflow 3.0 and Feflow 5.0) have been used for this study. The models were calibrated with hydro-geological data collected in the field. Aquifer and river sediment has been examined by use of Ground Penetrating Radar (GPR) and soil samples collection. Preferential flow has been examined by tracer tests. Water level, temperature and electric conductivity have been recorded in both aquifer and river. Hydro-climatic regime has been analysed by statistical tools. The first task of the project is to carry out water balance studies in order to estimate the change in rate of groundwater recharge from and to the river along a normal hydrologic year with snowmelting, flood, and baseflow. The second task is to analyse the potential effect of change in the river water regime (due to regulation and consecutive clogging) on groundwater resources and their interaction with stream water.

  7. Water surface capturing by image processing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An alternative means of measuring the water surface interface during laboratory experiments is processing a series of sequentially captured images. Image processing can provide a continuous, non-intrusive record of the water surface profile whose accuracy is not dependent on water depth. More trad...

  8. Ground water and surface water; a single resource

    USGS Publications Warehouse

    Winter, Thomas C.; Harvey, Judson W.; Franke, O. Lehn; Alley, William M.

    1998-01-01

    The importance of considering ground water and surface water as a single resource has become increasingly evident. Issues related to water supply, water quality, and degradation of aquatic environments are reported on frequently. The interaction of ground water and surface water has been shown to be a significant concern in many of these issues. Contaminated aquifers that discharge to streams can result in long-term contamination of surface water; conversely, streams can be a major source of contamination to aquifers. Surface water commonly is hydraulically connected to ground water, but the interactions are difficult to observe and measure. The purpose of this report is to present our current understanding of these processes and activities as well as limitations in our knowledge and ability to characterize them.

  9. Surface Water Treatment Rules State Implementation Guidance

    EPA Pesticide Factsheets

    These documents provide guidance to states, tribes and U.S. EPA Regions exercising primary enforcement responsibility under the Safe Drinking Water Act. The documents contain EPA’s recommendations for implementation of the Surface Water Treatment Rules.

  10. Hydrology: The dynamics of Earth's surface water

    NASA Astrophysics Data System (ADS)

    Yamazaki, Dai; Trigg, Mark A.

    2016-12-01

    High-resolution satellite mapping of Earth's surface water during the past 32 years reveals changes in the planet's water systems, including the influence of natural cycles and human activities. See Letter p.418

  11. Effect of Metal Surface on Molecular Behavior of Supercooled Water

    NASA Astrophysics Data System (ADS)

    Okawa, Seiji; Saito, Akio; Hosoya, Kazuhiro

    Study on surface effect of heterogeneous nucleation was investigated using molecular dynamics method with NPT ensemble. Around 1000 water molecules were used and set in a periodic cell. Platinum was selected as material for top and bottom surfaces, since its lattice constant fits closely with ice Ih. Temperature and pressure were set at 250 K and 0. 1 MPa, respectively, for each calculation. Behavior of ice Ih on fcc(111) surface was examined. It was found that the structure of ice remained stable in a case of platinum surface and the structure was destroyed in a case of having a slightly different lattice constant. Behavior of water on Pt surface was also investigated by varying the shape of the surface. Three types of surface were selected, namely, a flat surface, a surface with one projection and a surface with three projections. It was found that, in a case of a flat plate, water next to Pt surface was strongly influenced by the surface and was prevented from forming ice structure. In a case of having one projection, there was a tendency to form an ice structure near the surface. In a case of having three projections, however, the tendency was weakened. Hence, it was concluded that heterogeneous nucleation of water is affected by a lattice constant of the substance as well as the shape of the surface.

  12. Temperature of surface waters in the conterminous United States

    USGS Publications Warehouse

    Blakey, James F.

    1966-01-01

    Temperature is probably the most important, but least discussed, parameter in determining water quality. The purpose of this report is to present the average or most probable temperatures of surface waters in the conterminous United States and to cite factors that affect and are affected by water temperature. Temperature is related, usually directly, to all the chemical, physical, and biological properties of water. The ability of water to dissolve or precipitate materials is temperature dependent, the ability of water to transport or deposit suspended material is temperature dependent, and the aquatic life of a lake or stream may thrive or die because of the water temperature.Everyone is concerned, though often unknowingly, about water temperature. The amount and type of treatment necessary for a municipal supply are temperature dependent; therefore it affects the consumer cost. Temperature determines the volume of cooling water needed for industrial processes and steampower generation. Conservation and recreation practices are affected by water temperature, and the farmers' irrigation practices and livestock production may be affected by the water temperature.

  13. Interaction between water and defective silica surfaces

    SciTech Connect

    Chen Yunwen; Cheng Haiping

    2011-03-21

    We use the density functional theory method to study dry (1 x 1) {alpha}-quartz (0001) surfaces that have Frenkel-like defects such as oxygen vacancy and oxygen displacement. These defects have distinctively different effects on the water-silica interface depending on whether the adsorbent is a single water molecule, a cluster, or a thin film. The adsorption energies, bonding energies, and charge transfer or redistributions are analyzed, from which we find that the existence of a defect enhances the water molecule and cluster surface interaction by a large amount, but has little or even negative effect on water thin film-silica surface interaction. The origin of the weakening in film-surface systems is the collective hydrogen bonding that compromises the water-surface interaction in the process of optimizing the total energy. For clusters on surfaces, the lowest total energy states lower both the bonding energy and the adsorption energy.

  14. Water: one molecule, two surfaces, one mistake

    NASA Astrophysics Data System (ADS)

    Vega, Carlos

    2015-05-01

    In order to rigorously evaluate the energy and dipole moment of a certain configuration of molecules, one needs to solve the Schrödinger equation. Repeating this for many different configurations allows one to determine the potential energy surface (PES) and the dipole moment surface (DMS). Since the early days of computer simulation, it has been implicitly accepted that for empirical potentials the charges used to fit the PES should also be used to describe the DMS. This is a mistake. Partial charges are not observable magnitudes. They should be regarded as adjustable fitting parameters. Optimal values used to describe the PES are not necessarily the best to describe the DMS. One could use two fits: one for the PES and the other for the DMS. This is a common practice in the quantum chemistry community, but not used so often by the community performing computer simulations. This idea affects all types of modelling of water (with the exception of ab initio calculations) from coarse-grained to non-polarisable and polarisable models. We anticipate that an area that will benefit dramatically from having both, a good PES and a good DMS, is the modelling of water in the presence of electric fields.

  15. Ground Water / Surface Water Exchange: Streambed Versus a Channel Bar

    NASA Astrophysics Data System (ADS)

    Shope, C. L.; Constantz, J. E.; Cooper, C. A.; McKay, W. A.

    2007-12-01

    The streambed is important in controlling exchange of water, solutes, and heat between streams and ground water. Processes such as sedimentation, erosion, and fluctuations in diurnal temperatures can have significant effects on the streambed hydraulic conductivity, which in turn affects fluid velocities across the streambed. The objectives of this study are to quantify the difference in flux magnitude and direction within and around a channel bar. The focus of this presentation is to compare fluxes in channel bar sediments with fluxes in the streambed to determine the effect of the upper boundary conditions on sediment fluxes. A network of piezometers was installed on and around a channel bar located within the Truckee River, a dense 6th order river network, located primarily in northwest Nevada. Instruments used were temperature loggers, pressure transducers, and stage recorders. Several methods were simultaneously utilized to quantify water and heat fluxes and to interpret the hydrodynamic processes through the streambed sediments. Numerical simulations are being completed to quantify the spatial and temporal fluid flux and heat transport in relation to varied hydraulic parameters such as variable river stage, geometry, and hydraulic conductivity. In general, we have found that surface water exchange to the streambed occurs at the upstream portion of bed features and streambed discharge dominates at the downstream bed feature. This exchange is evidenced at the channel bar as well as localized riffles and point bars adjacent to the channel bar. We found that at least two separate hydraulic conditions are evident during our study. The range in water levels between the piezometers was altered from approximately 1.25 m to a minimum of 0.10 m and the mean potentiometric surface increased by 1 m. These variations are geomorphic responses due to a flood event, inundating the channel bar, and a channel restoration project both upstream and downstream of the study area

  16. Gray solitons on the surface of water.

    PubMed

    Chabchoub, A; Kimmoun, O; Branger, H; Kharif, C; Hoffmann, N; Onorato, M; Akhmediev, N

    2014-01-01

    The dynamics of surface gravity water waves can be described by the self-defocusing nonlinear Schrödinger equation. Recent observations of black solitons on the surface of water confirmed its validity for finite, below critical depth. The black soliton is a limiting case of a family of gray soliton solutions with finite amplitude depressions. Here, we report observations of gray solitons in water waves, thus, complementing our previous observations of black solitons.

  17. Water diffusion on TiO2 anatase surface

    NASA Astrophysics Data System (ADS)

    Agosta, L.; Gala, F.; Zollo, G.

    2015-06-01

    Compatibility between biological molecules and inorganic materials, such as crystalline metal oxides, is strongly dependent on the selectivity properties and the adhesion processes at the interface between the two systems. Among the many different aspects that affect the adsorption processes of peptides or proteins onto inorganic surfaces, such as the charge state of the amino acids, the peptide 3D structure, the surface roughness, the presence of vacancies or defects on and below the surface, a key role is certainly played by the water solvent whose molecules mediate the interaction. Then the surface hydration pattern may strongly affect the adsorption behavior of biological molecules. For the particular case of (101) anatase TiO2 surface that has a fundamental importance in the interaction of biocompatible nano-devices with biological environment, it was shown, both theoretically and experimentally, that various hydration patterns are close in energy and that the water molecules are mobile at as low temperature values as 190 K. Then it is important to understand the dynamical behavior of first hydration layer of the (101) anatase surface. As a first approach to this problem, density functional calculations are used to investigate water diffusion on the (101) anatase TiO2 surface by sampling the potential energy surface of water molecules of the first hydration layer thus calculating the water molecule migration energy along some relevant diffusion paths on the (101) surface. The measured activation energy of water migration seems in contrast with the observed surface mobility of the water molecules that, as a consequence could be explained invoking a strong role of the entropic term in the context of the transition state theory.

  18. Arsenic in Drinking Water in Bangladesh: Factors Affecting Child Health

    PubMed Central

    Aziz, Sonia N.; Aziz, Khwaja M. S.; Boyle, Kevin J.

    2014-01-01

    The focus of this paper is to present an empirical model of factors affecting child health by observing actions households take to avoid exposure to arsenic in drinking water. Millions of Bangladeshis face multiple health hazards from high levels of arsenic in drinking water. Safe water sources are either expensive or difficult to access, affecting people’s individuals’ time available for work and ultimately affecting the health of household members. Since children are particularly susceptible and live with parents who are primary decision makers for sustenance, parental actions linking child health outcomes is used in the empirical model. Empirical results suggest that child health is significantly affected by the age and gender of the household water procurer. Adults with a high degree of concern for children’s health risk from arsenic contamination, and who actively mitigate their arsenic contaminated water have a positive effect on child health. PMID:24982854

  19. Factors affecting ground-water quality in Oakland County, Michigan

    USGS Publications Warehouse

    ,

    2004-01-01

    Ground water is water stored in pores within soil and rock beneath the land surface. When these pores are connected so that water can be transmitted to wells or springs, these bodies of soil and rock are termed aquifers, from two Greek words meaning “water” and “to bear.” 

  20. Water evaporation from substrate tooth surface during dentin treatments.

    PubMed

    Kusunoki, Mizuho; Itoh, Kazuo; Gokan, Yuka; Nagai, Yoshitaka; Tani, Chihiro; Hisamitsu, Hisashi

    2011-01-01

    The purpose of this study was to evaluate changes in the quantity of water evaporation from tooth surfaces. The amount of water evaporation was measured using Multi probe adapter MPA5 and Tewameter TM300 (Courage+Khazaka Electric GmbH, Köln, Germany) after acid etching and GM priming of enamel; and after EDTA conditioning and GM priming of dentin. The results indicated that the amount of water evaporation from the enamel surface was significantly less than that from the dentin. Acid etching did not affect the water evaporation from enamel, though GM priming significantly decreased the evaporation (83.48 ± 15.14% of that before priming). The evaporation from dentin was significantly increased by EDTA conditioning (131.38 ± 42.08% of that before conditioning) and significantly reduced by GM priming (80.26 ± 7.43% of that before priming). It was concluded that dentin priming reduced water evaporation from the dentin surface.

  1. A Review of Surface Water Quality Models

    PubMed Central

    Li, Shibei; Jia, Peng; Qi, Changjun; Ding, Feng

    2013-01-01

    Surface water quality models can be useful tools to simulate and predict the levels, distributions, and risks of chemical pollutants in a given water body. The modeling results from these models under different pollution scenarios are very important components of environmental impact assessment and can provide a basis and technique support for environmental management agencies to make right decisions. Whether the model results are right or not can impact the reasonability and scientificity of the authorized construct projects and the availability of pollution control measures. We reviewed the development of surface water quality models at three stages and analyzed the suitability, precisions, and methods among different models. Standardization of water quality models can help environmental management agencies guarantee the consistency in application of water quality models for regulatory purposes. We concluded the status of standardization of these models in developed countries and put forward available measures for the standardization of these surface water quality models, especially in developing countries. PMID:23853533

  2. Surface Water Treatment Workshop Manual.

    ERIC Educational Resources Information Center

    Ontario Ministry of the Environment, Toronto.

    This manual was developed for use at workshops designed to increase the knowledge of experienced water treatment plant operators. Each of the fourteen lessons in this document has clearly stated behavioral objectives to tell the trainee what he should know or do after completing that topic. Areas covered in this manual include: basic water…

  3. Water vapor retrieval over many surface types

    SciTech Connect

    Borel, C.C.; Clodius, W.C.; Johnson, J.

    1996-04-01

    In this paper we present a study of of the water vapor retrieval for many natural surface types which would be valuable for multi-spectral instruments using the existing Continuum Interpolated Band Ratio (CIBR) for the 940 nm water vapor absorption feature. An atmospheric code (6S) and 562 spectra were used to compute the top of the atmosphere radiance near the 940 nm water vapor absorption feature in steps of 2.5 nm as a function of precipitable water (PW). We derive a novel technique called ``Atmospheric Pre-corrected Differential Absorption`` (APDA) and show that APDA performs better than the CIBR over many surface types.

  4. Shallow water sound propagation with surface waves.

    PubMed

    Tindle, Chris T; Deane, Grant B

    2005-05-01

    The theory of wavefront modeling in underwater acoustics is extended to allow rapid range dependence of the boundaries such as occurs in shallow water with surface waves. The theory allows for multiple reflections at surface and bottom as well as focusing and defocusing due to reflection from surface waves. The phase and amplitude of the field are calculated directly and used to model pulse propagation in the time domain. Pulse waveforms are obtained directly for all wavefront arrivals including both insonified and shadow regions near caustics. Calculated waveforms agree well with a reference solution and data obtained in a near-shore shallow water experiment with surface waves over a sloping bottom.

  5. Evidence for water structuring forces between surfaces

    SciTech Connect

    Stanley, Christopher B; Rau, Dr. Donald

    2011-01-01

    Structured water on apposing surfaces can generate significant energies due to reorganization and displacement as the surfaces encounter each other. Force measurements on a multitude of biological structures using the osmotic stress technique have elucidated commonalities that point toward an underlying hydration force. In this review, the forces of two contrasting systems are considered in detail: highly charged DNA and nonpolar, uncharged hydroxypropyl cellulose. Conditions for both net repulsion and attraction, along with the measured exclusion of chemically different solutes from these macromolecular surfaces, are explored and demonstrate features consistent with a hydration force origin. Specifically, the observed interaction forces can be reduced to the effects of perturbing structured surface water.

  6. Clean Air Markets - Monitoring Surface Water Chemistry

    EPA Pesticide Factsheets

    Learn about how EPA uses Long Term Monitoring (LTM) and Temporily Integrated Monitoring of Ecosystems (TIME) to track the effect of the Clean Air Act Amendments on acidity of surface waters in the eastern U.S.

  7. Subsurface And Surface Water Flow Interactions

    EPA Science Inventory

    In this chapter we present basic concepts and principles underlying the phenomena of groundwater and surface water interactions. Fundamental equations and analytical and numerical solutions describing stream-aquifer interactions are presented in hillslope and riparian aquifer en...

  8. Inland surface water: Chapter 18

    USGS Publications Warehouse

    Baron, J.S.; Driscoll, C.T.; Stoddard, J.L.

    2011-01-01

    Freshwater aquatic ecosystems include rivers and streams, large and small lakes, reservoirs, and ephemeral ponds. Wetlands are defi ned and discussed in Chapter 17 of this report. It is estimated that there are 123,400 lakes with a surface area greater than 4 ha in the United States. Most lakes, however, are smaller than 4 ha; small lakes account for the majority of lake surface area both globally and in the United States (Table 18.1; Downing et al. 2006). Th e density of lakes varies greatly by region of the country, from 8.4 lakes per 100 km2 in the upper Midwest and 7.8 lakes per 100 km2 in Florida, to much lower values in other areas of the country (e.g., mid-Atlantic, Southeast, and West <1.0 lakes per 100 km2 ) ( Eilers and Selle 1991). Th e cumulative surface area of these lakes is approximately 9.5 million ha. Th e U.S. Geologic Survey's National Hydrographic Dataset (NHD) estimates that there are approximately 1.1 million km of perennial fl owing streams in the United States. Of these about 91 percent are fi rst through fourth order (“wadeable”) (US EPA 2006).

  9. Research on Outer Factor Affecting the Freezing of Supercooled Water

    NASA Astrophysics Data System (ADS)

    Saito, Akio; Okawa, Seiji; Une, Hiroshi; Tanogashira, Ken'ichi; Tojiki, Akira

    In relation to the problem of supercooling for ice storage devices, various kinds of experiments were carried out to find some factors which control the supercooling phenomenon. Convection due to rotating solid in water, stirring, vibration, shock, rubbing glass with glass in water and collision of solid in water were selected as outer factors. It was found that factors such as convection, stirring, vibration, non-contacting shock have no effect on freezing supercooled water. They seem to be just adding some positive energy to water. On the other hand, collision or rubbing between solids or solid and liquid surface helps supercooled water to freeze. We believe that making water molecules closer to each other, whose motion were restricted by solid or liquid surface, induce the growth of ice embryo.

  10. The Dynamic Surface Tension of Water.

    PubMed

    Hauner, Ines M; Deblais, Antoine; Beattie, James K; Kellay, Hamid; Bonn, Daniel

    2017-03-23

    The surface tension of water is an important parameter for many biological or industrial processes, and roughly a factor of 3 higher than that of nonpolar liquids such as oils, which is usually attributed to hydrogen bonding and dipolar interactions. Here we show by studying the formation of water drops that the surface tension of a freshly created water surface is even higher (∼90 mN m(-1)) than under equilibrium conditions (∼72 mN m(-1)) with a relaxation process occurring on a long time scale (∼1 ms). Dynamic adsorption effects of protons or hydroxides may be at the origin of this dynamic surface tension. However, changing the pH does not significantly change the dynamic surface tension. It also seems unlikely that hydrogen bonding or dipole orientation effects play any role at the relatively long time scale probed in the experiments.

  11. The Dynamic Surface Tension of Water

    PubMed Central

    2017-01-01

    The surface tension of water is an important parameter for many biological or industrial processes, and roughly a factor of 3 higher than that of nonpolar liquids such as oils, which is usually attributed to hydrogen bonding and dipolar interactions. Here we show by studying the formation of water drops that the surface tension of a freshly created water surface is even higher (∼90 mN m–1) than under equilibrium conditions (∼72 mN m–1) with a relaxation process occurring on a long time scale (∼1 ms). Dynamic adsorption effects of protons or hydroxides may be at the origin of this dynamic surface tension. However, changing the pH does not significantly change the dynamic surface tension. It also seems unlikely that hydrogen bonding or dipole orientation effects play any role at the relatively long time scale probed in the experiments.

  12. Identifying and Mapping Seasonal Surface Water Frost with MGS TES

    NASA Astrophysics Data System (ADS)

    Bapst, J.; Bandfield, J. L.; Wood, S. E.

    2013-12-01

    The Thermal Emission Spectrometer (TES) visible/near-infrared and thermal infrared bolometers measured surface broadband albedo and temperature for more than three Mars years. As seasons progress on Mars, surface temperatures may fall below the frost point of volatiles in the atmosphere (namely, carbon dioxide and water). Systematic mapping of the spatial and temporal occurrence of these volatiles in the martian atmosphere, on the surface, and in the subsurface has shown their importance in understanding the climate of Mars. However, few studies have investigated seasonal surface water frost and its role in the global water cycle. We examine zonally-averaged TES daytime albedo, temperature, and water vapor abundance data [after Smith, 2004] to map the presence of surface water frost on Mars. Surface water frost occurs in the polar and mid latitudes, in regions with surface temperatures less than 220 K and above 150 K, and can significantly increase albedo relative to the bare surface. In the northern hemisphere water frost is most apparent in late fall/early winter, before the onset of carbon dioxide frost. Dust storms occurring near northern winter solstice affect albedo data and prevent us from putting a latitudinal lower limit on the water frost in the northern hemisphere. Regardless, seasonal water frost occurs at least as low as 48°N in Utopia Planitia, beginning at Ls=~230°, as observed by Viking Lander 2 [Svitek and Murray, 1990]. Daytime surface water frost was also observed at the Phoenix Lander site (68°N) beginning at Ls=~160° [Cull et al., 2010]. The timing of albedo variations observed by TES agree relatively well with lander observations of seasonal frost. Seasonal water frost is not detected during fall in the southern hemisphere. A potential explanation for this discrepancy, compared with frost detections in the north, is the disparity in atmospheric water vapor abundance between the two hemispheres. The frost point temperatures for water vapor

  13. Context affects lightness at the level of surfaces.

    PubMed

    Maertens, Marianne; Wichmann, Felix A; Shapley, Robert

    2015-01-14

    Visual perception of object attributes such as surface lightness is crucial for successful interaction with the environment. How the visual system assigns lightness to image regions is not yet understood. It has been shown that the context in which a surface is embedded influences its perceived lightness, but whether that influence involves predominantly low-, mid-, or high-level visual mechanisms has not been resolved. To answer this question, we measured whether perceptual attributes of target image regions affected their perceived lightness when they were placed in different contexts. We varied the sharpness of the edge while keeping total target flux fixed. Targets with a sharp edge were consistent with the perceptual interpretation of a surface, and in that case, observers perceived significant brightening or darkening of the target. Targets with blurred edges rather appeared to be spotlights instead of surfaces; for targets with blurred edges, there was much less of a contextual effect on target lightness. The results indicate that the effect of context on the lightness of an image region is not fixed but is strongly affected by image manipulations that modify the perceptual attributes of the target, implying that a mid-level scene interpretation affects lightness perception.

  14. Mars water vapor, near-surface

    NASA Technical Reports Server (NTRS)

    Ryan, J. A.; Sharman, R. D.; Lucich, R. D.

    1982-01-01

    In a previous paper we concluded that the temperature sensors aboard the Viking landers (VL-1 and VL-2) were detecting the water vapor frost point. Analysis of one Mars year of data at both lander sites substantiates this conclusion. At VL-1 it is found that the water vapor mixing ratio is constant with height through the bulk of the atmosphere, most of the time. Exceptions are during the onset phases of the two major dust storms when temporary enhancement of near-surface vapor occurs (the same phenomenon is observed at VL-2), and some depletion of near-surface vapor during the decay phase of the first storm, possibly the second storm as well. The former suggests near-surface, northward transport of water vapor with the storms. The latter suggests adsorption of vapor on dust particles followed by surface deposition. At VL-2, severe near-surface depletion of water vapor occurs during northern autumn and winter. The residual vapor is in equilibrium with the surface condensate observed at the site during this period, indicating that the source region for the condensate must be aloft with downward transport by dust fall-out. Since the near-surface water vapor mixing ratio and concentration at VL-1 generally parallels the column abundance over VL-1 obtained by the orbiters, this suggests that VL-1 can be used to give a measure of column abundance for as long as the temperature sensors remain operational.

  15. Cell-based metabolomics for assessing chemical exposure and toxicity of environmental surface waters (presentation)

    EPA Science Inventory

    Introduction: Waste water treatment plants (WWTPs), concentrated animal feeding operations (CAFOs), mining activities, and agricultural operations release contaminants that negatively affect surface water quality. Traditional methods using live animals (e.g. fish) to monitor/as...

  16. Cell-based Metabolomics for Assessing Chemical Exposure and Toxicity of Environmental Surface Waters

    EPA Science Inventory

    Waste water treatment plants (WWTPs), concentrated animal feeding operations (CAFOs), mining activities, and agricultural operations release contaminants that negatively affect surface water quality. Traditional methods using live animals/fish to monitor/assess contaminant exposu...

  17. Water drop friction on superhydrophobic surfaces.

    PubMed

    Olin, Pontus; Lindström, Stefan B; Pettersson, Torbjörn; Wågberg, Lars

    2013-07-23

    To investigate water drop friction on superhydrophobic surfaces, the motion of water drops on three different superhydrophobic surfaces has been studied by allowing drops to slide down an incline and capturing their motion using high-speed video. Two surfaces were prepared using crystallization of an alkyl ketene dimer (AKD) wax, and the third surface was the leaf of a Lotus (Nelumbo Nucifera). The acceleration of the water droplets on these superhydrophobic surfaces was measured as a function of droplet size and inclination of the surface. For small capillary numbers, we propose that the energy dissipation is dominated by intermittent pinning-depinning transitions at microscopic pinning sites along the trailing contact line of the drop, while at capillary numbers exceeding a critical value, energy dissipation is dominated by circulatory flow in the vicinity of the contacting disc between the droplet and the surface. By combining the results of the droplet acceleration with a theoretical model based on energy dissipation, we have introduced a material-specific coefficient called the superhydrophobic sliding resistance, b(sh). Once determined, this parameter is sufficient for predicting the motion of water drops on superhydrophobic surfaces of a general macroscopic topography. This theory also infers the existence of an equilibrium sliding angle, β(eq), at which the drop acceleration is zero. This angle is decreasing with the radius of the drop and is in quantitative agreement with the measured tilt angles required for a stationary drop to start sliding down an incline.

  18. Shale gas development impacts on surface water quality in Pennsylvania

    PubMed Central

    Olmstead, Sheila M.; Muehlenbachs, Lucija A.; Shih, Jhih-Shyang; Chu, Ziyan; Krupnick, Alan J.

    2013-01-01

    Concern has been raised in the scientific literature about the environmental implications of extracting natural gas from deep shale formations, and published studies suggest that shale gas development may affect local groundwater quality. The potential for surface water quality degradation has been discussed in prior work, although no empirical analysis of this issue has been published. The potential for large-scale surface water quality degradation has affected regulatory approaches to shale gas development in some US states, despite the dearth of evidence. This paper conducts a large-scale examination of the extent to which shale gas development activities affect surface water quality. Focusing on the Marcellus Shale in Pennsylvania, we estimate the effect of shale gas wells and the release of treated shale gas waste by permitted treatment facilities on observed downstream concentrations of chloride (Cl−) and total suspended solids (TSS), controlling for other factors. Results suggest that (i) the treatment of shale gas waste by treatment plants in a watershed raises downstream Cl− concentrations but not TSS concentrations, and (ii) the presence of shale gas wells in a watershed raises downstream TSS concentrations but not Cl− concentrations. These results can inform future voluntary measures taken by shale gas operators and policy approaches taken by regulators to protect surface water quality as the scale of this economically important activity increases. PMID:23479604

  19. Shale gas development impacts on surface water quality in Pennsylvania.

    PubMed

    Olmstead, Sheila M; Muehlenbachs, Lucija A; Shih, Jhih-Shyang; Chu, Ziyan; Krupnick, Alan J

    2013-03-26

    Concern has been raised in the scientific literature about the environmental implications of extracting natural gas from deep shale formations, and published studies suggest that shale gas development may affect local groundwater quality. The potential for surface water quality degradation has been discussed in prior work, although no empirical analysis of this issue has been published. The potential for large-scale surface water quality degradation has affected regulatory approaches to shale gas development in some US states, despite the dearth of evidence. This paper conducts a large-scale examination of the extent to which shale gas development activities affect surface water quality. Focusing on the Marcellus Shale in Pennsylvania, we estimate the effect of shale gas wells and the release of treated shale gas waste by permitted treatment facilities on observed downstream concentrations of chloride (Cl(-)) and total suspended solids (TSS), controlling for other factors. Results suggest that (i) the treatment of shale gas waste by treatment plants in a watershed raises downstream Cl(-) concentrations but not TSS concentrations, and (ii) the presence of shale gas wells in a watershed raises downstream TSS concentrations but not Cl(-) concentrations. These results can inform future voluntary measures taken by shale gas operators and policy approaches taken by regulators to protect surface water quality as the scale of this economically important activity increases.

  20. Bulk water freezing dynamics on superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Chavan, S.; Carpenter, J.; Nallapaneni, M.; Chen, J. Y.; Miljkovic, N.

    2017-01-01

    In this study, we elucidate the mechanisms governing the heat-transfer mediated, non-thermodynamic limited, freezing delay on non-wetting surfaces for a variety of characteristic length scales, Lc (volume/surface area, 3 mm < Lc < 6 mm) using carefully designed freezing experiments in a temperature-controlled, zero-humidity environment on thin water slabs. To probe the effect of surface wettability, we investigated the total time for room temperature water to completely freeze into ice on superhydrophilic ( θaapp→ 0°), hydrophilic (0° < θa < 90°), hydrophobic (90° < θa < 125°), and superhydrophobic ( θaapp→ 180°) surfaces. Our results show that at macroscopic length scales, heat conduction through the bulk water/ice layer dominates the freezing process when compared to heat conduction through the functional coatings or nanoscale gaps at the superhydrophobic substrate-water/ice interface. In order to verify our findings, and to determine when the surface structure thermal resistance approaches the water/ice resistance, we fabricated and tested the additional substrates coated with commercial superhydrophobic spray coatings, showing a monotonic increase in freezing time with coating thickness. The added thermal resistance of thicker coatings was much larger than that of the nanoscale superhydrophobic features, which reduced the droplet heat transfer and increased the total freezing time. Transient finite element method heat transfer simulations of the water slab freezing process were performed to calculate the overall heat transfer coefficient at the substrate-water/ice interface during freezing, and shown to be in the range of 1-2.5 kW/m2K for these experiments. The results shown here suggest that in order to exploit the heat-transfer mediated freezing delay, thicker superhydrophobic coatings must be deposited on the surface, where the coating resistance is comparable to the bulk water/ice conduction resistance.

  1. Microcystins in potable surface waters: toxic effects and removal strategies.

    PubMed

    Roegner, Amber F; Brena, Beatriz; González-Sapienza, Gualberto; Puschner, Birgit

    2014-05-01

    In freshwater, harmful cyanobacterial blooms threaten to increase with global climate change and eutrophication of surface waters. In addition to the burden and necessity of removal of algal material during water treatment processes, bloom-forming cyanobacteria can produce a class of remarkably stable toxins, microcystins, difficult to remove from drinking water sources. A number of animal intoxications over the past 20 years have served as sentinels for widespread risk presented by microcystins. Cyanobacterial blooms have the potential to threaten severely both public health and the regional economy of affected communities, particularly those with limited infrastructure or resources. Our main objectives were to assess whether existing water treatment infrastructure provides sufficient protection against microcystin exposure, identify available options feasible to implement in resource-limited communities in bloom scenarios and to identify strategies for improved solutions. Finally, interventions at the watershed level aimed at bloom prevention and risk reduction for entry into potable water sources were outlined. We evaluated primary studies, reviews and reports for treatment options for microcystins in surface waters, potable water sources and treatment plants. Because of the difficulty of removal of microcystins, prevention is ideal; once in the public water supply, the coarse removal of cyanobacterial cells combined with secondary carbon filtration of dissolved toxins currently provides the greatest potential for protection of public health. Options for point of use filtration must be optimized to provide affordable and adequate protection for affected communities.

  2. The effect of water temperature and synoptic winds on the development of surface flows over narrow, elongated water bodies

    NASA Technical Reports Server (NTRS)

    Segal, M.; Pielke, R. A.

    1985-01-01

    Simulations of the thermally induced breeze involved with a relatively narrow, elongated water body is presented in conjunction with evaluations of sensible heat fluxes in a stable marine atmospheric surface layer. The effect of the water surface temperature and of the large-scale synoptic winds on the development of surface flows over the water is examined. As implied by the sensible heat flux patterns, the simulation results reveal the following trends: (1) when the synoptic flow is absent or light, the induced surface breeze is not affected noticeably by a reduction of the water surface temperature; and (2) for stronger synoptic flow, the resultant surface flow may be significantly affected by the water surface temperature.

  3. Groundwater - surface water interactions in the Ayeyarwady river delta, Myanmar

    NASA Astrophysics Data System (ADS)

    Miyaoka, K.; Haruyama, S.; Kuzuha, Y.; Kay, T.

    2012-12-01

    Groundwater is widely used as a water resource in the Ayeyarwady River delta. But, Groundwater has some chemical problem in part of the area. To use safety groundwater for health, it is important to make clear the actual conditions of physical and chemical characteristics of groundwater in this delta. Besides, Ayeyarwady River delta has remarkable wet and dry season. Surface water - groundwater interaction is also different in each season, and it is concerned that physical and chemical characteristics of groundwater is affected by the flood and high waves through cyclone or monsoon. So, it is necessary to research a good aquifer distribution for sustainable groundwater resource supply. The purposes of this study are evaluate to seasonal change of groundwater - surface water interactions, and to investigate the more safety aquifer to reduce the healthy risk. Water samples are collected at 49 measurement points of river and groundwater, and are analyzed dissolved major ions and oxygen and hydro-stable isotope compositions. There are some groundwater flow systems and these water qualities are different in each depth. These showed that physical and chemical characteristics of groundwater are closely related to climatological, geomorphogical, geological and land use conditions. At the upper Alluvium, groundwater quality changes to lower concentration in wet season, so Ayeyarwady River water is main recharge water at this layer in the wet season. Besides, in the dry season, water quality is high concentration by artificial activities. Shallower groundwater is affected by land surface conditions such as the river water and land use in this layer. At lower Alluvium, Arakan and Pegu mountains are main recharge area of good water quality aquifers. Oxygen18 value showed a little affected by river water infiltration in the wet season, but keep stable good water quality through the both seasons. In the wet season, the same groundwater exists and water quality changes through

  4. Radiolysis of water with aluminum oxide surfaces

    NASA Astrophysics Data System (ADS)

    Reiff, Sarah C.; LaVerne, Jay A.

    2017-02-01

    Aluminum oxide, Al2O3, nanoparticles with water were irradiated with γ-rays and 5 MeV He ions followed by the determination of the production of molecular hydrogen, H2, and characterization of changes in the particle surface. Surface analysis techniques included: diffuse reflectance infrared Fourier transform spectroscopy (DRIFT), nitrogen absorption with the Brunauer - Emmett - Teller (BET) methodology for surface area determination, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Production of H2 by γ-ray radiolysis was determined for samples with adsorbed water and for Al2O3 - water slurries. For Al2O3 samples with adsorbed water, the radiation chemical yield of H2 was measured as 80±20 molecules/100 eV (1 molecule/100 eV=1.04×10-7 mol/J). The yield of H2 was observed to decrease as the amount of water present in the Al2O3 - water slurries increased. Surface studies indicated that the α-phase Al2O3 samples changed phase following irradiation by He ions, and that the oxyhydroxide layer, present on the pristine sample, is removed by γ-ray and He ion irradiation.

  5. Water vapor interactions with polycrystalline titanium surfaces

    NASA Astrophysics Data System (ADS)

    Azoulay, A.; Shamir, N.; Volterra, V.; Mintz, M. H.

    1999-02-01

    The initial interactions of water vapor with polycrystalline titanium surfaces were studied at room temperature. Measurements of water vapor surface accumulation were performed in a combined surface analysis system incorporating direct recoils spectrometry (DRS), Auger electron spectroscopy and X-ray photoelectron spectroscopy. The kinetics of accommodation of the water dissociation fragments (H, O and OH) displayed a complex behavior depending not only on the exposure dose but also on the exposure pressure. For a given exposure dose the efficiency of chemisorption increased with increasing exposure pressure. DRS measurements indicated the occurrence of clustered hydroxyl moieties with tilted O-H bonds formed even at very low surface coverage. A model which assumes two parallel routes of chemisorption, by direct collisions (Langmuir type) and by a precursor state is proposed to account for the observed behavior. The oxidation efficiency of water seemed to be much lower than that of oxygen. No Ti 4+ states were detected even at high water exposure values. It is likely that hydroxyl species play an important role in the reduced oxidation efficiency of water.

  6. Polarimetric thermal emission from periodic water surfaces

    NASA Technical Reports Server (NTRS)

    Yueh, S. H.; Nghiem, S. V.; Kwok, R.; Wilson, W. J.; Li, F. K.; Johnson, J. T.; Kong, J. A.

    1993-01-01

    Experimental results and theoretical calculations are presented to study the polarimetric emission from water surfaces with directional features. For our ground-based Ku-band radiometer measurements, a water pool was constructed on the roof of a building in the Jet Propulsion Laboratory, and a fiberglass surface with periodic corrugations in one direction was impressed on the top of the water surface to create a stationary water surface underneath it. It is observed that the measured Stokes parameters of corrugated fiberglass-covered water surfaces are functions of azimuth angles and agree very well with the theoretical calculations. The theory, after being verified by the experimental data, was then used to calculate the Stokes parameters of periodic surfaces without fiberglass surface layer and with rms height of the order of wind-generated water ripples. The magnitudes of the azimuthal variation of the calculated emissivities at horizontal and vertical polarizations corresponding to the first two Stokes parameters are found to be comparable to the values measured by airborne radiometers and SSM/I. In addition, the third Stokes parameter not shown in the literature is seen to have approximately twice the magnitude of the azimuth variation of either T(sub h) or T(sub v), which may make it more sensitive to the row direction, while less susceptive to noises because the atmospheric and system noises tend to be unpolarized and are expected to be cancelled out when the third Stokes parameter is derived as the difference of two or three power measurements, as indicated by another experiment carried out at a swimming pool with complicated surroundings. The results indicate that passive polarimetry is a potential technology in the remote sensing of ocean wind vector which is a crucial component in the understanding of global climate change. Issues related to the application of microwave passive polarimetry to ocean wind are also discussed.

  7. Water surface locomotion in tropical canopy ants.

    PubMed

    Yanoviak, S P; Frederick, D N

    2014-06-15

    Upon falling onto the water surface, most terrestrial arthropods helplessly struggle and are quickly eaten by aquatic predators. Exceptions to this outcome mostly occur among riparian taxa that escape by walking or swimming at the water surface. Here we document sustained, directional, neustonic locomotion (i.e. surface swimming) in tropical arboreal ants. We dropped 35 species of ants into natural and artificial aquatic settings in Peru and Panama to assess their swimming ability. Ten species showed directed surface swimming at speeds >3 body lengths s(-1), with some swimming at absolute speeds >10 cm s(-1). Ten other species exhibited partial swimming ability characterized by relatively slow but directed movement. The remaining species showed no locomotory control at the surface. The phylogenetic distribution of swimming among ant genera indicates parallel evolution and a trend toward negative association with directed aerial descent behavior. Experiments with workers of Odontomachus bauri showed that they escape from the water by directing their swimming toward dark emergent objects (i.e. skototaxis). Analyses of high-speed video images indicate that Pachycondyla spp. and O. bauri use a modified alternating tripod gait when swimming; they generate thrust at the water surface via synchronized treading and rowing motions of the contralateral fore and mid legs, respectively, while the hind legs provide roll stability. These results expand the list of facultatively neustonic terrestrial taxa to include various species of tropical arboreal ants.

  8. Photochemical Transformation Processes in Sunlit Surface Waters

    NASA Astrophysics Data System (ADS)

    Vione, D.

    2012-12-01

    of water can significantly increase 1O2 half-life time (the main deactivation process of 1O2 in solution is collision with the solvent), thereby affording considerable reactivity toward hydrophobic solutes. The current knowledge in the field of natural photosensitizers in surface waters allows photoinduced transformation processes of organic pollutants to be assessed and modelled. For instance, it is possible to predict pollutant half-life times by knowing absorption spectrum, direct photolysis quantum yield and reaction rate constants with °OH, CO3-°, 1O2 and 3CDOM*, as a function of sunlight irradiance, water chemical composition (also affecting absorption) and column depth. Some examples of model application to real cases will be presented [6-8]. [1] Halladja et al., Environ Sci Technol 41, 6066 (2007) [2] Canonica et al., Environ Sci Technol 39, 9182 (2005) [3] De Laurentiis et al., Chemosphere 88, 1208 (2012) [4] Latch & McNeill, Science 311, 1743 (2006) [5] Minella et al., Chemosphere, accepted [6] Vione et al., Wat Res 45, 6725 (2011) [7] Sur et al., Sci Total Environ 426, 296 (2012) [8] De Laurentiis et al., Environ Sci Technol, DOI 10.1012/es3015887

  9. A Water Rich Mars Surface Mission Scenario

    NASA Technical Reports Server (NTRS)

    Hoffman, Stephen; Andrews, Alida; Joosten, Kent; Watts, Kevin

    2017-01-01

    The surface of Mars once had abundant water flowing on its surface, but now there is a general perception that this surface is completely dry. Several lines of research have shown that there are sources of potentially large quantities of water at many locations on the surface, including regions considered as candidates for future human missions. Traditionally, system designs for these human missions are constrained to tightly recycle water and oxygen, and current resource utilization strategies involve ascent vehicle oxidizer production only. But the assumption of relatively abundant extant water may change this. Several scenarios were constructed to evaluate water requirements for human Mars expeditions to assess the impact to system design if locally produced water is available. Specifically, we have assessed water resources needed for 1) ascent vehicle oxidizer and fuel production, 2) open-loop water and oxygen life support requirements along with more robust usage scenarios, and 3) crew radiation protection augmentation. In this assessment, production techniques and the associated chemistry to transform Martian water and atmosphere into these useful commodities are identified, but production mass and power requirements are left to future analyses. The figure below illustrates the type of water need assessment performed and that will be discussed. There have been several sources of feedstock material discussed in recent literature that could be used to produce these quantities of water. This paper will focus on Mars surface features that resemble glacier-like forms on Earth. Several lines of evidence indicate that some of these features are in fact buried ice, likely remnants from an earlier ice age on Mars. This paper examines techniques and hardware systems used in the polar regions of Earth to access this buried ice and withdraw water from it. These techniques and systems will be described to illustrate options available. A technique known as a Rodriguez Well

  10. A water-budget approach to restoring a sedge fen affected by diking and ditching

    USGS Publications Warehouse

    Wilcox, Douglas A.; Sweat, Michael J.; Carlson, Martha L.; Kowalski, Kurt P.

    2006-01-01

    A vast, ground-water-supported sedge fen in the Upper Peninsula of Michigan, USA was ditched in the early 1900s in a failed attempt to promote agriculture. Dikes were later constructed to impound seasonal sheet surface flows for waterfowl management. The US Fish and Wildlife Service, which now manages the wetland as part of Seney National Wildlife Refuge, sought to redirect water flows from impounded C-3 Pool to reduce erosion in downstream Walsh Ditch, reduce ground-water losses into the ditch, and restore sheet flows of surface water to the peatland. A water budget was developed for C-3 Pool, which serves as the central receiving and distribution body for water in the affected wetland. Surface-water inflows and outflows were measured in associated ditches and natural creeks, ground-water flows were estimated using a network of wells and piezometers, and precipitation and evaporation/evapotranspiration components were estimated using local meteorological data. Water budgets for the 1999 springtime peak flow period and the 1999 water year were used to estimate required releases of water from C-3 Pool via outlets other than Walsh Ditch and to guide other restoration activities. Refuge managers subsequently used these results to guide restoration efforts, including construction of earthen dams in Walsh Ditch upslope from the pool to stop surface flow, installation of new water-control structures to redirect surface water to sheet flow and natural creek channels, planning seasonal releases from C-3 Pool to avoid erosion in natural channels, stopping flow in downslope Walsh Ditch to reduce erosion, and using constructed earthen dams and natural beaver dams to flood the ditch channel below C-3 Pool. Interactions between ground water and surface water are critical for maintaining ecosystem processes in many wetlands, and management actions directed at restoring either ground- or surface-water flow patterns often affect both of these components of the water budget. This

  11. Coupled surface-water and ground-water model

    USGS Publications Warehouse

    Swain, Eric D.; Wexler, Eliezer J.

    1991-01-01

    In areas with dynamic and hydraulically well connected ground-water and surface-water systems, it is desirable that stream-aquifer interaction be simulated with models of equal sophistication and accuracy. Accordingly, a new, coupled ground-water and surface-water model was developed by combining the U.S. Geological Survey models MODFLOW and BRANCH. MODFLOW is the widely used modular three-dimensional, finite-difference, ground-water model and BRANCH is a one-dimensional numerical model commonly used to simulate flow in open-channel networks. Because time steps used in ground-water modeling commonly are much longer than those used in surface-water simulations, provision has been made for handling multiple BRANCH time steps within one MODFLOW time step. Verification testing of the coupled model was done using data from previous studies and by comparing results with output from a simpler four-point implicit open-channel flow model linked with MODFLOW.

  12. Survey of state water laws affecting coal slurry pipeline development

    SciTech Connect

    Rogozen, M.B.

    1980-11-01

    This report summarizes state water laws likely to affect the development of coal slurry pipelines. It was prepared as part of a project to analyze environmental issues related to energy transportation systems. Coal slurry pipelines have been proposed as a means to expand the existing transportation system to handle the increasing coal shipments that will be required in the future. The availability of water for use in coal slurry systems in the coal-producing states is an issue of major concern.

  13. Surface Modification of Water Purification Membranes.

    PubMed

    Miller, Daniel J; Dreyer, Daniel R; Bielawski, Christopher W; Paul, Donald R; Freeman, Benny D

    2017-04-18

    Polymeric membranes are an energy-efficient means of purifying water, but they suffer from fouling during filtration. Modification of the membrane surface is one route to mitigating membrane fouling, as it helps to maintain high levels of water productivity. Here, a series of common techniques for modification of the membrane surface are reviewed, including surface coating, grafting, and various treatment techniques such as chemical treatment, UV irradiation, and plasma treatment. Historical background on membrane development and surface modification is also provided. Finally, polydopamine, an emerging material that can be easily deposited onto a wide variety of substrates, is discussed within the context of membrane modification. A brief summary of the chemistry of polydopamine, particularly as it may pertain to membrane development, is also described.

  14. Infiltration of pesticides in surface water into nearby drinking water supply wells

    NASA Astrophysics Data System (ADS)

    Malaguerra, F.; Albrechtsen, H.; Binning, P. J.

    2010-12-01

    Drinking water wells are often placed near streams because streams often overly permeable sediments and the water table is near the surface in valleys, and so pumping costs are reduced. The lowering of the water table by pumping wells can reverse the natural flow from the groundwater to the stream, inducing infiltration of surface water to groundwater and consequently to the drinking water well. Many attenuation processes can take place in the riparian zone, mainly due to mixing, biodegradation and sorption. However, if the water travel time from the surface water to the pumping well is too short, or if the compounds are poorly degradable, contaminants can reach the drinking water well at high concentrations, jeopardizing drinking water quality. Here we developed a reactive transport model to evaluate the risk of contamination of drinking water wells by surface water pollution. The model was validated using data of a tracer experiment in a riparian zone. Three compounds were considered: an older pesticide MCPP (Mecoprop) which is mobile and persistent, glyphosate (Roundup), a new biodegradable and strongly sorbed pesticide, and its degradation product AMPA. Global sensitivity analysis using the method of Morris was employed to identify the dominant model parameters. Results showed that the presence of an aquitard and its characteristics (degree of fracturing and thickness), pollutant properties and well depth are the crucial factors affecting the risk of drinking water well contamination from surface water. Global sensitivity analysis results were compared with rank correlation statistics between pesticide concentrations and geological parameters derived from a comprehensive database of Danish drinking water wells. Aquitard thickness and well depth are the most critical parameters in both the model and observed data.

  15. 30 CFR 942.20 - Approval of Tennessee reclamation plan for lands and waters affected by past coal mining.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... lands and waters affected by past coal mining. 942.20 Section 942.20 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING... affected by past coal mining. The Tennessee Reclamation Plan, as submitted on March 24, 1982, is...

  16. 30 CFR 942.20 - Approval of Tennessee reclamation plan for lands and waters affected by past coal mining.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... lands and waters affected by past coal mining. 942.20 Section 942.20 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING... affected by past coal mining. The Tennessee Reclamation Plan, as submitted on March 24, 1982, is...

  17. 30 CFR 942.20 - Approval of Tennessee reclamation plan for lands and waters affected by past coal mining.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... lands and waters affected by past coal mining. 942.20 Section 942.20 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING... affected by past coal mining. The Tennessee Reclamation Plan, as submitted on March 24, 1982, is...

  18. 30 CFR 942.20 - Approval of Tennessee reclamation plan for lands and waters affected by past coal mining.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... lands and waters affected by past coal mining. 942.20 Section 942.20 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING... affected by past coal mining. The Tennessee Reclamation Plan, as submitted on March 24, 1982, is...

  19. 30 CFR 942.20 - Approval of Tennessee reclamation plan for lands and waters affected by past coal mining.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... lands and waters affected by past coal mining. 942.20 Section 942.20 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING... affected by past coal mining. The Tennessee Reclamation Plan, as submitted on March 24, 1982, is...

  20. Surface-Water Conditions in Georgia, Water Year 2005

    USGS Publications Warehouse

    Painter, Jaime A.; Landers, Mark N.

    2007-01-01

    INTRODUCTION The U.S. Geological Survey (USGS) Georgia Water Science Center-in cooperation with Federal, State, and local agencies-collected surface-water streamflow, water-quality, and ecological data during the 2005 Water Year (October 1, 2004-September 30, 2005). These data were compiled into layers of an interactive ArcReaderTM published map document (pmf). ArcReaderTM is a product of Environmental Systems Research Institute, Inc (ESRI?). Datasets represented on the interactive map are * continuous daily mean streamflow * continuous daily mean water levels * continuous daily total precipitation * continuous daily water quality (water temperature, specific conductance dissolved oxygen, pH, and turbidity) * noncontinuous peak streamflow * miscellaneous streamflow measurements * lake or reservoir elevation * periodic surface-water quality * periodic ecological data * historical continuous daily mean streamflow discontinued prior to the 2005 water year The map interface provides the ability to identify a station in spatial reference to the political boundaries of the State of Georgia and other features-such as major streams, major roads, and other collection stations. Each station is hyperlinked to a station summary showing seasonal and annual stream characteristics for the current year and for the period of record. For continuous discharge stations, the station summary includes a one page graphical summary page containing five graphs, a station map, and a photograph of the station. The graphs provide a quick overview of the current and period-of-record hydrologic conditions of the station by providing a daily mean discharge graph for the water year, monthly statistics graph for the water year and period of record, an annual mean streamflow graph for the period of record, an annual minimum 7-day average streamflow graph for the period of record, and an annual peak streamflow graph for the period of record. Additionally, data can be accessed through the layer's link

  1. Ultra Water Repellent Polypropylene Surfaces with Tunable Water Adhesion.

    PubMed

    Zhu, Tang; Cai, Chao; Guo, Jing; Wang, Rong; Zhao, Ning; Xu, Jian

    2017-03-09

    Polypropylene (PP), including isotactic PP (i-PP) and atactic PP (a-PP) with distinct tacticity, is one of the most widely used general plastics. Herein, ultra water repellent PP coatings with tunable adhesion to water were prepared via a simple casting method. The pure i-PP coating shows a hierarchical morphology with micro/nanobinary structures, exhibiting a water contact angle (CA) larger than 150° and a sliding angle less than 5° (for 5 μL water droplet). In contrast, the pure a-PP coating has a less rough morphology with a water contact angle of about 130°, and the water droplets stick on the coating at any tilted angles. For the composite i-PP/a-PP coatings, however, ultra water repellency with CA > 150° but water adhesion tailorable from slippery to sticky can be realized, depending on the contents of a-PP and i-PP. The different wetting behaviors are due to the various microstructures of the composite coatings resulting from the distinct crystallization ability of a-PP and i-PP. Furthermore, the existence of a-PP in the composite coatings enhances the mechanical properties compared to the i-PP coating. The proposed method is feasible to modify various substrates and potential applications in no-loss liquid transportation, slippery surfaces, and patterned superhydrophobic surfaces are demonstrated.

  2. Pollution of surface water in Europe

    PubMed Central

    Key, A.

    1956-01-01

    This paper discusses pollution of surface water in 18 European countries. For each an account is given of its physical character, population, industries, and present condition of water supplies; the legal, administrative, and technical means of controlling pollution are then described, and an outline is given of current research on the difficulties peculiar to each country. A general discussion of various aspects common to the European problem of water pollution follows; standards of quality are suggested; some difficulties likely to arise in the near future are indicated, and international collaboration, primarily by the exchange of information, is recommended to check or forestall these trends. PMID:13374532

  3. Surface-Water Data, Georgia, Water Year 1999

    USGS Publications Warehouse

    Alhadeff, S. Jack; Landers, Mark N.; McCallum, Brian E.

    1999-01-01

    Water resources data for the 1999 water year for Georgia consists of records of stage, discharge, and water quality of streams; and the stage and contents of lakes and reservoirs published in one volume in a digital format on a CD-ROM. This volume contains discharge records of 121 gaging stations; stage for 13 gaging stations; stage and contents for 18 lakes and reservoirs; continuous water quality records for 10 stations; and the annual peak stage and annual peak discharge for 75 crest-stage partial-record stations. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Georgia. Records of discharge and stage of streams, and contents or stage of lakes and reservoirs were first published in a series of U.S. Geological water-supply papers entitled, 'Surface-Water Supply of the United States.' Through September 30, 1960, these water-supply papers were in an annual series and then in a 5-year series for 1961-65 and 1966-70. Records of chemical quality, water temperature, and suspended sediment were published from 1941 to 1970 in an annual series of water-supply papers entitled, 'Quality of Surface Waters of the United States.' Records of ground-water levels were published from 1935 to 1974 in a series of water-supply papers entitled, 'Ground-Water Levels in the United States.' Water-supply papers may be consulted in the libraries of the principal cities in the United States or may be purchased from the U.S. Geological Survey, Branch of Information Services, Federal Center, Box 25286, Denver, CO 80225. For water years 1961 through 1970, streamflow data were released by the U.S. Geological Survey in annual reports on a State-boundary basis prior to the two 5-year series water-supply papers, which cover this period. The data contained in the water-supply papers are considered the official record. Water-quality records for water years 1964 through 1970 were similarly released

  4. Global modelling of Cryptosporidium in surface water

    NASA Astrophysics Data System (ADS)

    Vermeulen, Lucie; Hofstra, Nynke

    2016-04-01

    Introduction Waterborne pathogens that cause diarrhoea, such as Cryptosporidium, pose a health risk all over the world. In many regions quantitative information on pathogens in surface water is unavailable. Our main objective is to model Cryptosporidium concentrations in surface waters worldwide. We present the GloWPa-Crypto model and use the model in a scenario analysis. A first exploration of global Cryptosporidium emissions to surface waters has been published by Hofstra et al. (2013). Further work has focused on modelling emissions of Cryptosporidium and Rotavirus to surface waters from human sources (Vermeulen et al 2015, Kiulia et al 2015). A global waterborne pathogen model can provide valuable insights by (1) providing quantitative information on pathogen levels in data-sparse regions, (2) identifying pathogen hotspots, (3) enabling future projections under global change scenarios and (4) supporting decision making. Material and Methods GloWPa-Crypto runs on a monthly time step and represents conditions for approximately the year 2010. The spatial resolution is a 0.5 x 0.5 degree latitude x longitude grid for the world. We use livestock maps (http://livestock.geo-wiki.org/) combined with literature estimates to calculate spatially explicit livestock Cryptosporidium emissions. For human Cryptosporidium emissions, we use UN population estimates, the WHO/UNICEF JMP sanitation country data and literature estimates of wastewater treatment. We combine our emissions model with a river routing model and data from the VIC hydrological model (http://vic.readthedocs.org/en/master/) to calculate concentrations in surface water. Cryptosporidium survival during transport depends on UV radiation and water temperature. We explore pathogen emissions and concentrations in 2050 with the new Shared Socio-economic Pathways (SSPs) 1 and 3. These scenarios describe plausible future trends in demographics, economic development and the degree of global integration. Results and

  5. The chemistry of salt-affected soils and waters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Knowledge of the chemistry of salt affected soils and waters is necessary for management of irrigation in arid and semi-arid regions. In this chapter we review the origin of salts in the landscape, the major chemical reactions necessary for prediction of the soil solution composition, and the use of...

  6. NANOFILTRATION FOULANTS FROM A TREATED SURFACE WATER

    EPA Science Inventory

    The foulant from pilot nanofiltration membrane elements fed conventionally-treated surface water for 15 months was analyzed for organic, inorganic, and biological parameters. The foulant responsible for flux loss was shown to be a film layer 20 to 80 um thick with the greatest de...

  7. Global water resources affected by human interventions and climate change.

    PubMed

    Haddeland, Ingjerd; Heinke, Jens; Biemans, Hester; Eisner, Stephanie; Flörke, Martina; Hanasaki, Naota; Konzmann, Markus; Ludwig, Fulco; Masaki, Yoshimitsu; Schewe, Jacob; Stacke, Tobias; Tessler, Zachary D; Wada, Yoshihide; Wisser, Dominik

    2014-03-04

    Humans directly change the dynamics of the water cycle through dams constructed for water storage, and through water withdrawals for industrial, agricultural, or domestic purposes. Climate change is expected to additionally affect water supply and demand. Here, analyses of climate change and direct human impacts on the terrestrial water cycle are presented and compared using a multimodel approach. Seven global hydrological models have been forced with multiple climate projections, and with and without taking into account impacts of human interventions such as dams and water withdrawals on the hydrological cycle. Model results are analyzed for different levels of global warming, allowing for analyses in line with temperature targets for climate change mitigation. The results indicate that direct human impacts on the water cycle in some regions, e.g., parts of Asia and in the western United States, are of the same order of magnitude, or even exceed impacts to be expected for moderate levels of global warming (+2 K). Despite some spread in model projections, irrigation water consumption is generally projected to increase with higher global mean temperatures. Irrigation water scarcity is particularly large in parts of southern and eastern Asia, and is expected to become even larger in the future.

  8. Global water resources affected by human interventions and climate change

    PubMed Central

    Haddeland, Ingjerd; Heinke, Jens; Biemans, Hester; Eisner, Stephanie; Flörke, Martina; Hanasaki, Naota; Konzmann, Markus; Ludwig, Fulco; Masaki, Yoshimitsu; Schewe, Jacob; Stacke, Tobias; Tessler, Zachary D.; Wada, Yoshihide; Wisser, Dominik

    2014-01-01

    Humans directly change the dynamics of the water cycle through dams constructed for water storage, and through water withdrawals for industrial, agricultural, or domestic purposes. Climate change is expected to additionally affect water supply and demand. Here, analyses of climate change and direct human impacts on the terrestrial water cycle are presented and compared using a multimodel approach. Seven global hydrological models have been forced with multiple climate projections, and with and without taking into account impacts of human interventions such as dams and water withdrawals on the hydrological cycle. Model results are analyzed for different levels of global warming, allowing for analyses in line with temperature targets for climate change mitigation. The results indicate that direct human impacts on the water cycle in some regions, e.g., parts of Asia and in the western United States, are of the same order of magnitude, or even exceed impacts to be expected for moderate levels of global warming (+2 K). Despite some spread in model projections, irrigation water consumption is generally projected to increase with higher global mean temperatures. Irrigation water scarcity is particularly large in parts of southern and eastern Asia, and is expected to become even larger in the future. PMID:24344275

  9. Climate change will affect the Asian water towers.

    PubMed

    Immerzeel, Walter W; van Beek, Ludovicus P H; Bierkens, Marc F P

    2010-06-11

    More than 1.4 billion people depend on water from the Indus, Ganges, Brahmaputra, Yangtze, and Yellow rivers. Upstream snow and ice reserves of these basins, important in sustaining seasonal water availability, are likely to be affected substantially by climate change, but to what extent is yet unclear. Here, we show that meltwater is extremely important in the Indus basin and important for the Brahmaputra basin, but plays only a modest role for the Ganges, Yangtze, and Yellow rivers. A huge difference also exists between basins in the extent to which climate change is predicted to affect water availability and food security. The Brahmaputra and Indus basins are most susceptible to reductions of flow, threatening the food security of an estimated 60 million people.

  10. Spreading of Cholera through Surface Water

    NASA Astrophysics Data System (ADS)

    Bertuzzo, E.; Casagrandi, R.; Gatto, M.; Rodriguez-Iturbe, I.; Rinaldo, A.

    2009-12-01

    Cholera epidemics are still a major public health concern to date in many areas of the world. In order to understand and forecast cholera outbreaks, one of the most important factors is the role played by the environmental matrix in which the disease spreads. We study how river networks, acting as environmental corridors for pathogens, affect the spreading of cholera epidemics. The environmental matrix in which the disease spreads is constituted by different human communities and their hydrologic interconnections. Each community is characterized by its spatial position, population size, water resources availability and hygiene conditions. By implementing a spatially explicit cholera model we seek the effects on epidemic dynamics of: i) the topology and metrics of the pathogens pathways that connect different communities; ii) the spatial distribution of the population size; and iii) the spatial distributions and quality of surface water resources and public health conditions, and how they vary with population size. The model has been applied to study the space-time evolution of a well documented cholera epidemic occurred in the KwaZulu-Natal province of South Africa. The epidemic lasted for two years and involved about 140,000 confirmed cholera cases. The model does well in reproducing the distribution of the cholera cases during the two outbreaks as well as their spatial spreading. We further extend the model by deriving the speed of propagation of traveling fronts in the case of uniformly distributed systems for different topologies: one and two dimensional lattices and river networks. The derivation of the spreading celerity proves instrumental in establishing the overall conditions for the relevance of spatially explicit models. The conditions are sought by comparison between spreading and disease timescales. Consider a cholera epidemic that starts from a point and spreads throughout a finite size system, it is possible to identify two different timescales: i

  11. Surface water and groundwater interactions in coastal wetlands

    NASA Astrophysics Data System (ADS)

    Li, Ling; Xin, Pei; Shen, Chengji

    2014-05-01

    Salt marshes are an important wetland system in the upper intertidal zone, interfacing the land and coastal water. Dominated by salt-tolerant plants, these wetlands provide essential eco-environmental services for maintaining coastal biodiversity. They also act as sediment traps and help stabilize the coastline. While they play an active role in moderating greenhouse gas emissions, these wetlands have become increasingly vulnerable to the impact of global climate change. Salt marshes are a complex hydrological system characterized by strong, dynamic interactions between surface water and groundwater, which underpin the wetland's eco-functionality. Bordered with coastal water, the marsh system undergoes cycles of inundation and exposure driven by the tide. This leads to dynamic, complex pore-water flow and solute transport in the marsh soil. Pore-water circulations occur at different spatial and temporal scales with strong link to the marsh topography. These circulations control solute transport between the marsh soil and the tidal creek, and ultimately affect the overall nutrient exchange between the marsh and coastal water. The pore-water flows also dictate the soil aeration conditions, which in turn affect marsh plant growth. This talk presents results and findings from recent numerical and experimental studies, focusing on the pore-water flow behaviour in the marsh soil under the influence of tides and density-gradients.

  12. Water at surfaces with tunable surface chemistries and the chiral imprint of water around DNA

    NASA Astrophysics Data System (ADS)

    Petersen, Poul

    Aqueous interfaces are ubiquitous in atmospheric chemistry and biological systems but are notoriously hard to probe experimentally. Surface-specific vibrational spectroscopy offers an avenue to directly probe the vibrational modes of the water OH stretching band but this method is challenging to implement to buried surfaces. Here we present results from sum-frequency generation (SFG) spectroscopy probing the buried interface between a functionalized surface and aqueous solutions. Studying such buried surfaces offers the advantage of being able to systematically tune the surface chemistry using self-assembled monolayers, i.e. the hydrophobic and hydrophilic character, and examine the effect on the interfacial water. In addition to water at these controlled surfaces, we have initiated studying water at biological surfaces. This includes the solvation structure around DNA. X-ray experiments at cryogenic temperatures have found crystallographic water in the minor grove of DNA giving rise to the notion of a spine of hydration surrounding DNA. Such structured water should exhibit a chiral structure adapted from DNA. We investigate if such a chiral water structure exist around DNA at room temperature using chiral SFG. This work was supported by the National Science Foundation under a NSF CAREER Grant (CHE-1151079).

  13. Three-dimensional topographies of water surface dimples formed by superhydrophobic water strider legs

    NASA Astrophysics Data System (ADS)

    Yin, W.; Zheng, Y. L.; Lu, H. Y.; Zhang, X. J.; Tian, Y.

    2016-10-01

    A water strider has a remarkable capability to stand and walk freely on water. Supporting forces of a water strider and a bionic robot have been calculated from the side view of pressed depth of legs to reconstruct the water surface dimples. However, in situ measurements of the multiple leg forces and significantly small leg/water contact dimples have not been realized yet. In this study, a shadow method was proposed to reconstruct the in situ three-dimensional topographies of leg/water contact dimples and their corresponding supporting forces. Results indicated that the supporting forces were affected by the depth, width, and length of the dimple, and that the maximum dimple depth was not proportional to the supporting forces. The shadow method also has advantages in disclosing tiny supporting force of legs in their subtle actions. These results are helpful for understanding the locomotion principles of water-walking insects and the design of biomimetic aquatic devices.

  14. A Water Rich Mars Surface Mission Scenario

    NASA Technical Reports Server (NTRS)

    Hoffman, Stephen J.; Andrews, Alida; Joosten, B. Kent; Watts, Kevin

    2017-01-01

    In an on-going effort to make human Mars missions more affordable and sustainable, NASA continues to investigate the innovative leveraging of technological advances in conjunction with the use of accessible Martian resources directly applicable to these missions. One of the resources with the broadest utility for human missions is water. Many past studies of human Mars missions assumed a complete lack of water derivable from local sources. However, recent advances in our understanding of the Martian environment provides growing evidence that Mars may be more "water rich" than previously suspected. This is based on data indicating that substantial quantities of water are mixed with surface regolith, bound in minerals located at or near the surface, and buried in large glacier-like forms. This paper describes an assessment of what could be done in a "water rich" human Mars mission scenario. A description of what is meant by "water rich" in this context is provided, including a quantification of the water that would be used by crews in this scenario. The different types of potential feedstock that could be used to generate these quantities of water are described, drawing on the most recently available assessments of data being returned from Mars. This paper specifically focuses on sources that appear to be buried quantities of water ice. (An assessment of other potential feedstock materials is documented in another paper.) Technologies and processes currently used in terrestrial Polar Regions are reviewed. One process with a long history of use on Earth and with potential application on Mars - the Rodriguez Well - is described and results of an analysis simulating the performance of such a well on Mars are presented. These results indicate that a Rodriguez Well capable of producing the quantities of water identified for a "water rich" human mission are within the capabilities assumed to be available on the Martian surface, as envisioned in other comparable Evolvable

  15. Factors affecting sustainability of rural water schemes in Swaziland

    NASA Astrophysics Data System (ADS)

    Peter, Graciana; Nkambule, Sizwe E.

    The Millennium Development Goal (MDG) target to reduce the proportion of people without sustainable access to safe drinking water by the year 2015 has been met as of 2010, but huge disparities exist. Some regions, particularly Sub-Saharan Africa are lagging behind it is also in this region where up to 30% of the rural schemes are not functional at any given time. There is need for more studies on factors affecting sustainability and necessary measures which when implemented will improve the sustainability of rural water schemes. The main objective of this study was to assess the main factors affecting the sustainability of rural water schemes in Swaziland using a Multi-Criteria Analysis Approach. The main factors considered were: financial, social, technical, environmental and institutional. The study was done in Lubombo region. Fifteen functional water schemes in 11 communities were studied. Data was collected using questionnaires, checklist and focused group discussion guide. A total of 174 heads of households were interviewed. Statistical Package for Social Sciences (SPSS) was used to analyse the data and to calculate sustainability scores for water schemes. SPSS was also used to classify sustainability scores according to sustainability categories: sustainable, partially sustainable and non-sustainable. The averages of the ratings for the different sub-factors studied and the results on the sustainability scores for the sustainable, partially sustainable and non-sustainable schemes were then computed and compared to establish the main factors influencing sustainability of the water schemes. The results indicated technical and social factors as most critical while financial and institutional, although important, played a lesser role. Factors which contributed to the sustainability of water schemes were: functionality; design flow; water fetching time; ability to meet additional demand; use by population; equity; participation in decision making on operation and

  16. Surface Chemistry and Water Dispersability of Carbon Black Materials

    SciTech Connect

    Contescu, Cristian I; Baker, Frederick S; Burchell, Timothy D

    2006-01-01

    Formulation of water-stable carbon black dispersions is a double-sided task, which requires selection of a proper dispersing agents and matching it with the properties of a specific carbon black. Among other properties that affect water dispersability of carbon blacks (particle size, surface area, and aggregate structure), surface chemistry plays a prime-order role. We have characterized physical and chemical properties of several carbon black materials, and correlated them with the stability of dispersions formed with ionic and non-ionic surfactants. In particular, chemical characterization of surface functional groups on carbon blacks based on potentiometric titration measurements (pKa spectra) provided a comprehensive picture of pH effects on dispersion stability. The results obtained were complemented by information from physical characterization methods, such as XPS and FTIR. The selection of a suitable dispersing agent able to withstand large pH variations will be discussed.

  17. Long Term 1 Enhanced Surface Water Treatment Rule Documents

    EPA Pesticide Factsheets

    The Long Term 1 Enhanced Surface Water Treatment Rule (LT1ESWTR) builds on the requirements of the Surface Water Treatment Rule and specifies treatment requirements to address Cryptosporidium m and other microbial contaminants in public water systems.

  18. Mitigation of acid deposition: Liming of surface waters. Final report

    SciTech Connect

    Bartoshesky, J.; Price, R.; DeMuro, J.

    1989-05-01

    In recent years acid deposition has become a serious concern internationally. Scientific literature has documented the acidification of numerous lakes and streams in North America and Scandinavia resulting in the depletion or total loss of fisheries and other aquatic biota. Liming represents the only common corrective practice aimed specifically at remediating an affected acid receptor. This report reviews a range of liming technologies and liming materials, as well as the effect of surface-water liming on water quality and aquatic biota. As background to the liming discussion, the hydrologic cycle and the factors that make surface waters sensitive to acid deposition are also discussed. Finally, a brief review of some of the liming projects that have been conducted, or are currently in operation is presented, giving special emphasis to mitigation efforts in Maryland. Liming has been effectively used to counteract surface-water acidification in parts of Scandinavia, Canada, and the U.S. To date, liming has generally been shown to improve physical and chemical conditions and enhance the biological recovery of aquatic ecosystems affected by acidification.

  19. Structural features affecting variant surface glycoprotein expression in Trypanosoma brucei.

    PubMed

    Wang, Jun; Böhme, Ulrike; Cross, George A M

    2003-05-01

    The glycosylphosphatidylinositol (GPI)-anchored variant surface glycoprotein (VSG) of Trypanosoma brucei is the most abundant GPI-anchored protein expressed on any cell, and is an essential virulence factor. To determine what structural features affect efficient expression of VSG, we made a series of mutations in two VSGs. Inserting 18 amino acids, between the amino- and carboxy-terminal domains, reduced the expression of VSG 221 to about 3% of the wild-type level. When this insertion was combined with deletion of the single carboxy-terminal subdomain, expression was reduced a further three-fold. In VSG 117, which contains two carboxy-terminal subdomains, point mutation of the intervening N-glycosylation site reduced expression about 15-fold. Deleting the most carboxy-terminal subdomain and intervening region, including the N-glycosylation site, reduced expression to 15-20% of wild type VSG, and deletion of both subdomains reduced expression to <1%. Despite their low abundance, all VSG mutants were GPI anchored on the cell surface. Our results suggest that, for a protein to be efficiently displayed on the surface of bloodstream-form T. brucei, it is essential that it contains the conserved structural motifs of a T. brucei VSG. Serum resistance-associated protein (SRA), which confers human infectivity on T. brucei, strongly resembles a VSG deletion mutant. Expression of three epitope-tagged versions of SRA in T. brucei conferred total resistance to human serum. SRA possesses a canonical GPI signal sequence, but we were unable to obtain unequivocal evidence for the presence of a GPI anchor. SRA was not released during osmotic lysis, indicating that it is not GPI anchored on the cell surface.

  20. Understanding Surface water Ground water Interactions in Arkansas-Red River Basin using Coupled Modeling

    NASA Astrophysics Data System (ADS)

    Joshi, C.; Mohanty, B. P.

    2006-12-01

    Subsurface water exists primarily as groundwater and also in small quantity as soil water in the unsaturated zone. This soil water plays a vital role in the hydrologic cycle by supporting plant growth, regulating the amount of water lost to evapo-transpiration and affecting the surface water groundwater interaction to a certain extent. As such, the interaction between surface water and groundwater is complex and little understood. This study aims at investigating the surface water groundwater interaction in the Arkansas-Red river basin, using a coupled modeling platform. For this purpose, an ecohydrological model (SWAP) has been coupled with the groundwater model (MODFLOW). Inputs to this coupled model are collected from NEXRAD precipitation data at a resolution of ~4 km, meteorological forcings from Oklahoma mesonet and NCDC sites, STATSGO soil property data, LAI (Leaf Area Index) data from MODIS at a resolution of ~1 km, and DEM (Digital Elevation Model). For numerical modeling, a spatial resolution of ~1 km and a temporal resolution of one day is used. The modeled base flow and total groundwater storage change would be tested using ground water table observation data. The modeled ground water storage is further improved using GRACE (Gravity Recovery and Climate Experiment) satellite data at a resolution of ~400 km, with the help of appropriate data assimilation technique.

  1. Source Water Assessment for the Las Vegas Valley Surface Waters

    NASA Astrophysics Data System (ADS)

    Albuquerque, S. P.; Piechota, T. C.

    2003-12-01

    The 1996 amendment to the Safe Drinking Water Act of 1974 created the Source Water Assessment Program (SWAP) with an objective to evaluate potential sources of contamination to drinking water intakes. The development of a Source Water Assessment Plan for Las Vegas Valley surface water runoff into Lake Mead is important since it will guide future work on source water protection of the main source of water. The first step was the identification of the watershed boundary and source water protection area. Two protection zones were delineated. Zone A extends 500 ft around water bodies, and Zone B extends 3000 ft from the boundaries of Zone A. These Zones extend upstream to the limits of dry weather flows in the storm channels within the Las Vegas Valley. After the protection areas were identified, the potential sources of contamination in the protection area were inventoried. Field work was conducted to identify possible sources of contamination. A GIS coverage obtained from local data sources was used to identify the septic tank locations. Finally, the National Pollutant Discharge Elimination System (NPDES) Permits were obtained from the State of Nevada, and included in the inventory. After the inventory was completed, a level of risk was assigned to each potential contaminating activity (PCA). The contaminants of concern were grouped into five categories: volatile organic compounds (VOCs), synthetic organic compounds (SOCs), inorganic compounds (IOCs), microbiological, and radionuclides. The vulnerability of the water intake to each of the PCAs was assigned based on these five categories, and also on three other factors: the physical barrier effectiveness, the risk potential, and the time of travel. The vulnerability analysis shows that the PCAs with the highest vulnerability rating include septic systems, golf courses/parks, storm channels, gas stations, auto repair shops, construction, and the wastewater treatment plant discharges. Based on the current water quality

  2. Evaporation of water between two microspheres: how wetting affects drying

    NASA Astrophysics Data System (ADS)

    Cho, Kun; Kim, Yeseul; Lim, Jun; Kim, Joon Heon; Weon, Byung Mook

    2016-11-01

    When a small volume of water is confined between microparticles or nanoparticles, its evaporation behavior can be influenced by wettability of particles. This situation frequently appears in coating or printing of colloidal drops in which colloidal particles are uniformly dispersed into a liquid. To explore water evaporation between particles, here we study on evaporation dynamics of water between two microspheres by utilizing high-resolution X-ray microscopy for side views and optical microscopy for bottom views. We find that evaporating water gets pinned on microsphere surfaces, due to a force balance among air, water, and microspheres. Side and bottom views of evaporating water enable us to evaluate water curvature evolution around microspheres before and after pinning. Interestingly curvature evolution is controlled by cooperation of evaporation and wetting dynamics. This study would be useful in identifying and controlling of coating or printing for colloidal drops. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1D1A1B01007133).

  3. Exploration mode affects visuohaptic integration of surface orientation.

    PubMed

    Plaisier, Myrthe A; van Dam, Loes C J; Glowania, Catharina; Ernst, Marc O

    2014-11-20

    We experience the world mostly in a multisensory fashion using a combination of all of our senses. Depending on the modality we can select different exploration strategies for extracting perceptual information. For instance, using touch we can enclose an object in our hand to explore parts of the object in parallel. Alternatively, we can trace the object with a single finger to explore its parts in a serial fashion. In this study we investigated whether the exploration mode (parallel vs. serial) affects the way sensory signals are combined. To this end, participants visually and haptically explored surfaces that varied in roll angle and indicated which side of the surface was perceived as higher. In Experiment 1, the exploration mode was the same for both modalities (i.e., both parallel or both serial). In Experiment 2, we introduced a difference in exploration mode between the two modalities (visual exploration was parallel while haptic exploration was serial or vice versa). The results showed that visual and haptic signals were combined in a statistically optimal fashion only when the exploration modes were the same. In case of an asymmetry in the exploration modes across modalities, integration was suboptimal. This indicates that spatial-temporal discrepancies in the acquisition of information in the two senses (i.e., haptic and visual) can lead to the breakdown of sensory integration.

  4. Atmospheric radiation model for water surfaces

    NASA Technical Reports Server (NTRS)

    Turner, R. E.; Gaskill, D. W.; Lierzer, J. R.

    1982-01-01

    An atmospheric correction model was extended to account for various atmospheric radiation components in remotely sensed data. Components such as the atmospheric path radiance which results from singly scattered sky radiation specularly reflected by the water surface are considered. A component which is referred to as the virtual Sun path radiance, i.e. the singly scattered path radiance which results from the solar radiation which is specularly reflected by the water surface is also considered. These atmospheric radiation components are coded into a computer program for the analysis of multispectral remote sensor data over the Great Lakes of the United States. The user must know certain parameters, such as the visibility or spectral optical thickness of the atmosphere and the geometry of the sensor with respect to the Sun and the target elements under investigation.

  5. Nutrient losses in runoff from feedlot surfaces as affected by unconsolidated surface materials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Beef cattle feedlots contain unconsolidated surface materials (USM) (loose manure pack) that accumulate within feedlot pens during a feeding cycle. The effects of varying amounts of USM on feedlot runoff water quality are not well defined. The objectives of this field investigation were to: a) compa...

  6. Simulation of lakes and surface water heat exchangers for design of surface water heat pump systems

    NASA Astrophysics Data System (ADS)

    Conjeevaram Bashyam, Krishna

    Surface Water Heat Pump (SWHP) system utilize surface water bodies, such as ponds, lakes, rivers, and the sea, as heat sources and/or sinks. These systems may be open-loop, circulating water between the surface water body and a heat exchanger on dry land, or closed-loop, utilizing a submerged surface water heat exchanger (SWHE). Both types of SWHP systems have been widely used, but little in the way of design data, design procedures, or energy calculation procedures is available to aid engineers in the design and analysis of these systems. For either type of SWHP system, the ability to predict the evolution of lake temperature with time is an important aspect of needed design and energy analysis procedures. This thesis describes the development and validation of a lake model that is coupled with a surface water heat exchanger model to predict both the lake dynamics (temperature, stratification, ice/snow cover) and the heat transfer performance of different types of SWHE. This one-dimensional model utilizes a detailed surface heat balance model at the upper boundary, a sediment conduction heat transfer model at the lower boundary, and an eddy diffusion model to predict transport within the lake. The lake model is implemented as part of the developed software design tool, which can be used as an aid in the sizing of SWHE used in closed loop SWHP systems.

  7. Optical Triangulation on Instationary Water Surfaces

    NASA Astrophysics Data System (ADS)

    Mulsow, C.; Maas, H.-G.; Hentschel, B.

    2016-06-01

    The measurement of water surfaces is a key task in the field of experimental hydromechanics. Established techniques are usually gauge-based and often come with a large instrumental effort and a limited spatial resolution. The paper shows a photogrammetric alternative based on the well-known laser light sheet projection technique. While the original approach is limited to surfaces with diffuse reflection properties, the developed technique is capable of measuring dynamically on reflecting instationary surfaces. Contrary to the traditional way, the laser line is not observed on the object. Instead, using the properties of water, the laser light is reflected on to a set of staggered vertical planes. The resulting laser line is observed by a camera and measured by subpixel operators. A calibration based on known still water levels provides the parameters for the translation of image space measurements into water level and gradient determination in dynamic experiments. As a side-effect of the principle of measuring the reflected laser line rather than the projected one, the accuracy can be improved by almost a factor two. In experiments a standard deviation of 0.03 mm for water level changes could be achieved. The measuring rate corresponds to the frame rate of the camera. A complete measuring system is currently under development for the Federal Waterways Engineering and Research Institute (BAW). This article shows the basic principle, potential and limitations of the method. Furthermore, several system variants optimised for different requirements are presented. Besides the geometrical models of different levels of complexity, system calibration procedures are described too. The applicability of the techniques and their accuracy potential are shown in several practical tests.

  8. Exploring global Cryptosporidium emissions to surface water.

    PubMed

    Hofstra, N; Bouwman, A F; Beusen, A H W; Medema, G J

    2013-01-01

    The protozoan parasite Cryptosporidium is a major cause of diarrhoea worldwide. This paper presents the first model-based inventory with 0.5 by 0.5 degree resolution of global Cryptosporidium emissions for the year 2000 from humans and animals to surface water. The model is based on nutrient distribution modelling, because the sources and transport of oocysts and nutrients to the surface water are comparable. Total emissions consist of point source emissions from wastewater and nonpoint source emissions by runoff of oocysts in manure from agricultural lands. Results indicate a global emission of 3 × 10(17) oocysts per year, with comparable contributions from point and nonpoint sources. Hot-spot areas for point sources are big cities in China, India and Latin America, while the area with the largest nonpoint source emissions is in China. Uncertainties in the model are large. Main areas for further study are (i) excretion rates of oocysts by humans and animals, (ii) emissions of humans not connected to sewage systems, and (iii) retention of oocysts to determine surface water pathogen concentrations rather than emissions. Our results are useful to health organisations to identify priority areas for further study and intervention.

  9. Storm water contamination and its effect on the quality of urban surface waters.

    PubMed

    Barałkiewicz, Danuta; Chudzińska, Maria; Szpakowska, Barbara; Świerk, Dariusz; Gołdyn, Ryszard; Dondajewska, Renata

    2014-10-01

    We studied the effect of storm water drained by the sewerage system and discharged into a river and a small reservoir, on the example of five catchments located within the boundaries of the city of Poznań (Poland). These catchments differed both in terms of their surface area and land use (single- and multi-family housing, industrial areas). The aim of the analyses was to explain to what extent pollutants found in storm water runoff from the studied catchments affected the quality of surface waters and whether it threatened the aquatic organisms. Only some of the 14 studied variables and 22 chemical elements were important for the water quality of the river, i.e., pH, TSS, rain intensity, temperature, conductivity, dissolved oxygen, organic matter content, Al, Cu, Pb, Zn, Fe, Cd, Ni, Se, and Tl. The most serious threat to biota in the receiver came from the copper contamination of storm water runoff. Of all samples below the sewerage outflow, 74% exceeded the mean acute value for Daphnia species. Some of them exceeded safe concentrations for other aquatic organisms. Only the outlet from the industrial area with the highest impervious surface had a substantial influence on the water quality of the river. A reservoir situated in the river course had an important influence on the elimination of storm water pollution, despite the very short residence time of its water.

  10. How Water Advances on Superhydrophobic Surfaces

    NASA Astrophysics Data System (ADS)

    Schellenberger, Frank; Encinas, Noemí; Vollmer, Doris; Butt, Hans-Jürgen

    2016-03-01

    Superliquid repellency can be achieved by nano- and microstructuring surfaces in such a way that protrusions entrap air underneath the liquid. It is still not known how the three-phase contact line advances on such structured surfaces. In contrast to a smooth surface, where the contact line can advance continuously, on a superliquid-repellent surface, the contact line has to overcome an air gap between protrusions. Here, we apply laser scanning confocal microscopy to get the first microscopic videos of water drops advancing on a superhydrophobic array of micropillars. In contrast to common belief, the liquid surface gradually bends down until it touches the top face of the next micropillars. The apparent advancing contact angle is 180°. On the receding side, pinning to the top faces of the micropillars determines the apparent receding contact angle. Based on these observations, we propose that the apparent receding contact angle should be used for characterizing superliquid-repellent surfaces rather than the apparent advancing contact angle and hysteresis.

  11. Field Techniques for Estimating Water Fluxes Between Surface Water and Ground Water

    USGS Publications Warehouse

    Rosenberry, Donald O.; LaBaugh, James W.

    2008-01-01

    This report focuses on measuring the flow of water across the interface between surface water and ground water, rather than the hydrogeological or geochemical processes that occur at or near this interface. The methods, however, that use hydrogeological and geochemical evidence to quantify water fluxes are described herein. This material is presented as a guide for those who have to examine the interaction of surface water and ground water. The intent here is that both the overview of the many available methods and the in-depth presentation of specific methods will enable the reader to choose those study approaches that will best meet the requirements of the environments and processes they are investigating, as well as to recognize the merits of using more than one approach. This report is designed to make the reader aware of the breadth of approaches available for the study of the exchange between surface and ground water. To accomplish this, the report is divided into four chapters. Chapter 1 describes many well-documented approaches for defining the flow between surface and ground waters. Subsequent chapters provide an in-depth presentation of particular methods. Chapter 2 focuses on three of the most commonly used methods to either calculate or directly measure flow of water between surface-water bodies and the ground-water domain: (1) measurement of water levels in well networks in combination with measurement of water level in nearby surface water to determine water-level gradients and flow; (2) use of portable piezometers (wells) or hydraulic potentiomanometers to measure hydraulic gradients; and (3) use of seepage meters to measure flow directly. Chapter 3 focuses on describing the techniques involved in conducting water-tracer tests using fluorescent dyes, a method commonly used in the hydrogeologic investigation and characterization of karst aquifers, and in the study of water fluxes in karst terranes. Chapter 4 focuses on heat as a tracer in hydrological

  12. [Prevalence of Aeromonas spp. in surface water].

    PubMed

    Hernández, P; Rodríguez de García, R

    1997-03-01

    Some Aeromonas strains are well recognized enteropathogens according to microbiological, clinical, immunological and epidemiological evidence. The main source of infection seems to be untreated water, these microorganisms can be found in virtually all aquatic environments. Additionally, some Aeromonas, which include enterotoxigenic strains, are capable of rapid growth at 5 degrees C and even of producing toxins. Vegetable products irrigated with contaminated water may reach critical Aeromonas levels after being kept under refrigeration, this could represent a public health risk when they are consumed as uncooked salads. This study was pursued to evaluate such risk. Surface water samples were streaked on starch ampicillin and inositol-brilliant green-bile salts agar dishes. In addition, 100 ml of each sample were filtered through a 0.45 micron Millipore membrane filter. The filters were incubated on alkaline peptone water as enrichment media during 24 h at 35 degrees C. Enrichment broth was then streaked on the selective agars above mentioned. Isolates from both tests were identified using the API 20 E System. The prevalence of Aeromonas strains in the analyzed samples was 17.8%. A higher isolation rate was observed after the enrichment technique. Starch ampicillin agar showed a higher recuperation rate. A Veronii biotype sobria (formerly A. sobria) was isolated with higher frequency. Since this species has been associated with the greatest virulence, the use of contaminated water to irrigate vegetable products that are to be kept under refrigeration and consumed without ulterior cooking may represent a risk to the public health.

  13. Chemical composition of Texas surface waters, 1949

    USGS Publications Warehouse

    Irelan, Burdge

    1950-01-01

    This report is the fifth the a series of publications by the Texas Board of Water Engineers giving chemical analyses of the surface waters in the State of Texas. The samples for which data are given were collected between October 1, 1948 and September 30, 1949. During the water year 25 daily sampling stations were maintained by the Geological Survey. Sampled were collected less frequently during the year at many other points. Quality of water records for previous years can be found in the following reports: "Chemical Composition of Texas Surface Waters, 1938-1945," by W. W. Hastings, and J. H. Rowley; "Chemical Composition of Texas Surface Waters, 1946," by W. W. Hastings and B. Irelan; "Chemical Composition of Texas Surface Waters, 1947," by B. Irelan and J. R. Avrett; "Chemical Composition of Texas Surface Waters, 1948," by B. Irelan, D. E. Weaver, and J. R. Avrett. These reports may be obtained from the Texas Board of Water Engineers and Geological Survey at Austin, Texas. Samples for chemical analysis were collected daily at or near points on streams where gaging stations are maintained for measurement of discharge. Most of the analyses were made of 10-day composites of daily samples collected for a year at each sampling point. Three composite samples were usually prepared each month by mixing together equal quantities of daily samples collected for the 1st to the 10th, from the 11th to the 20th, and during the remainder of the month. Monthly composites were made at a few stations where variation in daily conductance was small. For some streams that are subject to sudden large changes in chemical composition, composite samples were made for shorter periods on the basis of the concentration of dissolved solids as indicated by measurement of specific conductance of the daily samples. The mean discharge for the composite period is reported in second-feet. Specific conductance values are expressed as "micromhos, K x 10 at 25° C." Silica, calcium, magnesium, sodium

  14. Sulfide in surface waters of the western Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Cutter, Gregory A.; Krahforst, Christian F.

    1988-11-01

    Using newly developed techniques, some preliminary data on hydrogen sulfide in surface waters of the western Atlantic have been obtained. Concentrations of total sulfide range from <0.1 to 1.1 nmol/L, and vary on a diel basis. At these concentrations, sulfide may affect the cycling of several trace metals via the formation of stable complexes. Production of sulfide in oxygenated seawater may occur through the hydrolysis of carbonyl sulfide or by sulfate reduction within macroscopic particles in the water column. Removal mechanisms can include oxidation, complexation with particulate trace metals, and metal sulfide precipitation. However, the temporal and spatial distributions suggest a complex set of processes governing the behavior of sulfide in the surface ocean.

  15. Acidic deposition and surface water chemistry

    NASA Astrophysics Data System (ADS)

    Church, M. R.

    A pair of back-to-back (morning and afternoon) hydrology sessions, held December 10, 1987, at the AGU Fall Meeting in San Francisco, Calif., covered “Predicting the Effects of Acidic Deposition on Surface Water Chemistry.” The combined sessions included four invited papers, 12 contributed papers, and a panel discussion at its conclusion. The gathering dealt with questions on a variety of aspects of modeling the effects of acidic deposition on surface water chemistry.Contributed papers included discussions on the representation of processes in models as well as limiting assumptions in model application (V. S. Tripathi et al., Oak Ridge National Laboratory, Oak Ridge, Tenn., and E. C. Krug, Illinois State Water Survey, Champaign), along with problems in estimating depositional inputs to catchments and thus inputs to be used in the simulation of catchment response (M. M. Reddy et al., U.S. Geological Survey, Lakewood, Colo.; and E. A. McBean, University of Waterloo, Waterloo, Canada). L. A. Baker et al. (University of Minnesota, Minneapolis) dealt with the problem of modeling seepage lake systems, an exceedingly important portion of the aquatic resources in Florida and parts of the upper U.S. Midwest. J. A. Hau and Y. Eckstein (Kent State University, Kent, Ohio) considered equilibrium modeling of two northern Ohio watersheds that receive very different loads of acidic deposition but are highly similar in other respects.

  16. Marathon Race Affects Neutrophil Surface Molecules: Role of Inflammatory Mediators.

    PubMed

    Santos, Vinicius Coneglian; Sierra, Ana Paula Renno; Oliveira, Rodrigo; Caçula, Kim Guimarães; Momesso, César Miguel; Sato, Fabio Takeo; Silva, Maysa Braga Barros; Oliveira, Heloisa Helena; Passos, Maria Elizabeth Pereira; de Souza, Diego Ribeiro; Gondim, Olivia Santos; Benetti, Marino; Levada-Pires, Adriana Cristina; Ghorayeb, Nabil; Kiss, Maria Augusta Peduti Dal Molin; Gorjão, Renata; Pithon-Curi, Tânia Cristina; Cury-Boaventura, Maria Fernanda

    2016-01-01

    The fatigue induced by marathon races was observed in terms of inflammatory and immunological outcomes. Neutrophil survival and activation are essential for inflammation resolution and contributes directly to the pathogenesis of many infectious and inflammatory conditions. The aim of this study was to investigate the effect of marathon races on surface molecules related to neutrophil adhesion and extrinsic apoptosis pathway and its association with inflammatory markers. We evaluated 23 trained male runners at the São Paulo International Marathon 2013. The following components were measured: hematological and inflammatory mediators, muscle damage markers, and neutrophil function. The marathon race induced an increased leukocyte and neutrophil counts; creatine kinase (CK), lactate dehydrogenase (LDH), CK-MB, interleukin (IL)-6, IL-10, and IL-8 levels. C-reactive protein (CRP), IL-12, and tumor necrosis factor (TNF)-α plasma concentrations were significantly higher 24 h and 72 h after the marathon race. Hemoglobin and hematocrit levels decreased 72 h after the marathon race. We also observed an increased intercellular adhesion molecule-1 (ICAM-1) expression and decreasedTNF receptor-1 (TNFR1) expression immediately after and 24 h after the marathon race. We observed an increased DNA fragmentation and L-selectin and Fas receptor expressions in the recovery period, indicating a possible slow rolling phase and delayed neutrophil activation and apoptosis. Marathon racing affects neutrophils adhesion and survival in the course of inflammation, supporting the "open-window" post-exercise hypothesis.

  17. Marathon Race Affects Neutrophil Surface Molecules: Role of Inflammatory Mediators

    PubMed Central

    2016-01-01

    The fatigue induced by marathon races was observed in terms of inflammatory and immunological outcomes. Neutrophil survival and activation are essential for inflammation resolution and contributes directly to the pathogenesis of many infectious and inflammatory conditions. The aim of this study was to investigate the effect of marathon races on surface molecules related to neutrophil adhesion and extrinsic apoptosis pathway and its association with inflammatory markers. We evaluated 23 trained male runners at the São Paulo International Marathon 2013. The following components were measured: hematological and inflammatory mediators, muscle damage markers, and neutrophil function. The marathon race induced an increased leukocyte and neutrophil counts; creatine kinase (CK), lactate dehydrogenase (LDH), CK-MB, interleukin (IL)-6, IL-10, and IL-8 levels. C-reactive protein (CRP), IL-12, and tumor necrosis factor (TNF)-α plasma concentrations were significantly higher 24 h and 72 h after the marathon race. Hemoglobin and hematocrit levels decreased 72 h after the marathon race. We also observed an increased intercellular adhesion molecule-1 (ICAM-1) expression and decreasedTNF receptor-1 (TNFR1) expression immediately after and 24 h after the marathon race. We observed an increased DNA fragmentation and L-selectin and Fas receptor expressions in the recovery period, indicating a possible slow rolling phase and delayed neutrophil activation and apoptosis. Marathon racing affects neutrophils adhesion and survival in the course of inflammation, supporting the “open-window” post-exercise hypothesis. PMID:27911915

  18. Thin Water and Ice Films at Mineral Surfaces

    NASA Astrophysics Data System (ADS)

    Yeşilbaş, Merve; Boily, Jean-François

    2016-04-01

    Mineral-water and ice interactions play important roles in atmospheric cloud formation. They also affect soil biogeochemistry as well as outer-space processes. In this study, thin water and ice films formed on minerals of varied bulk and surface structure, shape, size and surface roughness were probed by Fourier Transform Infrared Spectroscopy (FTIR) and by Dynamic Vapor Adsorption (DVA). Measurements on several types of iron (oxyhydr)oxides, phyllosilicates, orthosilicates, tectosilicates as well as Arizona Test Dust (ATD) and Icelandic volcanic ash constrained our understanding of the molecular-level nature of mineral surface-water and ice interactions. DVA experiments showed that particle size is the key feature controlling water loadings at 25 ° C. Under this condition, nano-sized particles stabilized the equivalence of no more than ˜6 monolayers of water at the near saturation of water vapor while sub-micron sized particles stabilized several thousand layers. This result can be explained by the greater ability of larger sized particles at driving water condensation reactions. Cryogenic FTIR measurements at -10 and -50 ° C revealed that most minerals acquired the thin ice films with similar hydrogen bonding environments as those formed at room temperature.[1,2] These thin ice films have weaker hydrogen bond environments than hexagonal ice (νOH ≈ 3130 cm-1), a result seen by FTIR through predominant O-H stretching modes at νOH ≈ 3408-3425 cm-1. The water bending region (˜1630 cm-1) also reveals that most thin ice films are rather supercooled forms of water. Only the materials with greatest levels of heterogeneity, namely ATD and volcanic ash, stabilized solid forms of water reminiscent to hexagonal ice. This work thus constrains further our understanding of how interfacial ice is stabilized at mineral surfaces, and opens possibilities for future studies focused on atmospheric gas uptake on mineral- water and ice admixtures. [1] Song, X. and Boily, J

  19. The Upper Colorado River; National Water-Quality Assessment Program; surface-water-monitoring network

    USGS Publications Warehouse

    Spahr, Norman E.; Driver, Nancy E.; Stephens, Verlin C.

    1996-01-01

    The U.S. Geological Survey began full implementation of the National Water-Quality Assessment (NAWQA) program in 1991. The long-term goals of the NAWQA program are to (1) describe current water-quality conditions for a large part of the Nation's freshwater streams, rivers, and aquifers; (2) describe how water quality is changing over time; and (3) improve understanding of the primary natural and human factors that affect water-quality conditions (Leahy and others, 1990). To meet these goals, 60 study units representing the Nation's most important river basins and aquifers are being investigated. The program design balances the unique assessment requirements of individual study units with a nationally consistent design structure that incorporates a multiscale, interdisciplinary approach for assessment of surface and ground water.

  20. Water evaporation on highly viscoelastic polymer surfaces.

    PubMed

    Pu, Gang; Severtson, Steven J

    2012-07-03

    Results are reported for a study on the evaporation of water droplets from a highly viscoelastic acrylic polymer surface. These are contrasted with those collected for the same measurements carried out on polydimethylsiloxane (PDMS). For PDMS, the evaporation process involves the expected multistep process including constant drop area, constant contact angle, and finally a combination of these steps until the liquid is gone. In contrast, water evaporation from the acrylic polymer shows a constant drop area mode throughout. Furthermore, during the evaporation process, the drop area actually expands on the acrylic polymer. The single mode evaporation process is consistent with formation of wetting structures, which cannot be propagated by the capillary forces. Expansion of the drop area is attributed to the influence of the drop capillary pressure. Furthermore, the rate of drop area expansion is shown to be dependent on the thickness of the polymer film.

  1. Evaporating behaviors of water droplet on superhydrophobic surface

    NASA Astrophysics Data System (ADS)

    Hao, PengFei; Lv, CunJing; He, Feng

    2012-12-01

    We investigated the dynamic evaporating behaviors of water droplet on superhydrophobic surfaces with micropillars. Our experimental data showed that receding contact angles of the water droplet increased with the decreasing of the scale of the micropillars during evaporation, even though the solid area fractions of the microstructured substrates remained constant. We also experimentally found that the critical contact diameters of the transition between the Cassie-Baxter and Wenzel states are affected not only by the geometrical parameters of the microstructures, but also by the initial volume of the water droplet. The measured critical pressure is consistent with the theoretical model, which validated the pressure-induced impalement mechanism for the wetting state transition.

  2. Protonation and Deprotonation on Water's Surface

    NASA Astrophysics Data System (ADS)

    Colussi, A. J.; Enami, S.; Stewart, L.; Hoffmann, M. R.

    2010-12-01

    How the acidity of bulk water (pHbulk) regulates the degree of protonation of Brönsted acids and bases on water surfaces facing hydrophobic media is a key unresolved issue in chemistry and biology. We addressed experimentally the important case of the air/water interface and report the strikingly dissimilar pHbulk-dependences of the protonation/deprotonation of aqueous versus gaseous n-hexanoic acid (HxOH) determined on the surface of aqueous microjets by online electrospray mass spectrometry. We confirm that HxOH(aq) is deprotonated at pHbulk > pKa(HxOH) = 4.8, but find that the deprotonation of HxOH(g) into interfacial HxO-(s) displays two equivalence points at pHbulk ~ 2.5 and ~ 10.0. The weak base HxOH(aq) (pKa(HxOH2+) < - 4) is barely protonated at pHbulk > 1, whereas HxOH(g) is significantly protonated to HxOH2+(s) on pHbulk < 4 water, as expected from the proton affinities PA(HxOH) > PA(H2O) of gas-phase species. The exceptionally large kinetic isotope effect for the protonation of HxOH(g) on D2O/H2O: KIE = HxOH2+/HxODH+ ~ 100, is ascribed to a desolvated transition state. Since ion creation at the interface via proton transfer between H2O itself and neutral species is thermodynamically disallowed i.e., HxOH(g) is actually deprotonated by interfacial OH-(s), whereas Me3N(g) is hardly protonated by H3O+(s) on pHbulk ~ 4 - 8 water (Enami et al., J. Phys. Chem. Lett. 2010, 1, 1599) we conclude that [OH-(s)] > [H3O+(s)] above pHbulk ~ 4, at variance with inferences drawn from spectroscopic signatures or model calculations of water’s surface.

  3. Ionization dynamics of water dimer on ice surface

    NASA Astrophysics Data System (ADS)

    Tachikawa, Hiroto

    2016-05-01

    The solid surface provides an effective two-dimensional reaction field because the surface increases the encounter probability of bi-molecular collision reactions. Also, the solid surface stabilizes a reaction intermediate because the excess energy generated by the reaction dissipates into the bath modes of surface. The ice surface in the universe is one of the two dimensional reaction fields. However, it is still unknown how the ice surface affects to the reaction mechanism. In the present study, to elucidate the specific property of the ice surface reaction, ionization dynamics of water dimer adsorbed on the ice surface was theoretically investigated by means of direct ab-initio molecular dynamics (AIMD) method combined with ONIOM (our own n-layered integrated molecular orbital and molecular mechanics) technique, and the result was compared with that of gas phase reaction. It was found that a proton is transferred from H2O+ to H2O within the dimer and the intermediate complex H3O+(OH) is formed in both cases. However, the dynamic features were different from each other. The reaction rate of the proton transfer on the ice surface was three times faster than that in the gas phase. The intermediate complex H3O+(OH) was easily dissociated to H3O+ and OH radical on the ice surface, and the lifetime of the complex was significantly shorter than that of gas phase (100 fs vs. infinite). The reason why the ice surface accelerates the reaction was discussed in the present study.

  4. Specific Ions Modulate Diffusion Dynamics of Hydration Water on Lipid Membrane Surfaces

    PubMed Central

    2015-01-01

    Effects of specific ions on the local translational diffusion of water near large hydrophilic lipid vesicle surfaces were measured by Overhauser dynamic nuclear polarization (ODNP). ODNP relies on an unpaired electron spin-containing probe located at molecular or surface sites to report on the dynamics of water protons within ∼10 Å from the spin probe, which give rise to spectral densities for electron–proton cross-relaxation processes in the 10 GHz regime. This pushes nuclear magnetic resonance relaxometry to more than an order of magnitude higher frequencies than conventionally feasible, permitting the measurement of water moving with picosecond to subnanosecond correlation times. Diffusion of water within ∼10 Å of, i.e., up to ∼3 water layers around the spin probes located on hydrophilic lipid vesicle surfaces is ∼5 times retarded compared to the bulk water translational diffusion. This directly reflects on the activation barrier for surface water diffusion, i.e., how tightly water is bound to the hydrophilic surface and surrounding waters. We find this value to be modulated by the presence of specific ions in solution, with its order following the known Hofmeister series. While a molecular description of how ions affect the hydration structure at the hydrophilic surface remains to be answered, the finding that Hofmeister ions directly modulate the surface water diffusivity implies that the strength of the hydrogen bond network of surface hydration water is directly modulated on hydrophilic surfaces. PMID:24456096

  5. Does mineral surface area affect chemical weathering rates?

    NASA Astrophysics Data System (ADS)

    Salome Eiriksdottir, Eydis; Reynir Gislason, Sigurdur; Oelkers, Eric H.

    2010-05-01

    Iceland is a basaltic volcanic island representative of the high relief, volcanic and tectonic active islands that contribute over 45% of river suspended material to the oceans worldwide (Milliman and Syvitski, 1992). These islands have enormous mechanical and chemical weathering rates due to the combined effects of high relief, high runoff, the presence of glaciers and easily weathered volcanic rocks, and a lack of sedimentary traps. In total, Iceland delivers 0.7% of the worldwide river suspended matter flux to the ocean, which is approximately one fourth that of Africa (Tómasson, 1990). River suspended matter from volcanic islands is highly reactive in seawater and might play an important role in the global carbon cycle (Gislason et al., 2006). Thus it is important to define and understand the mechanical and chemical weathering rates of these islands. Experimental dissolution experiments performed in the laboratory suggest that chemical weathering rates should be proportional to rock-water interfacial surface area. This hypothesis is tested in the present study through a study of the chemical composition of suspended material collected from rivers located in Northeast Iceland. These rivers were selected for this study because their catchments essentially monolithic, consisting of uniform compositioned and aged basalts. Gaillardet (1999) described weathering intensities of the worlds river systems to be from 1 (low weathering intensity) to 25 (high weathering intensity). These indexes were calculated to be from 1.8 to 3.2 in rivers in NE-Iceland (Eiriksdottir et al., 2008). The surface area of sediments is inversely proportional to particle size; smaller particles have larger specific surface areas. As a result, smaller particles should weather faster. This trend is confirmed by the measured compositions of analyzed suspended material. The concentration of insoluble elements (Zr, Fe, Cu, Ni, Y) is found to increase in the suspended material, whereas the

  6. Surface-water quality-assurance plan for the USGS Georgia Water Science Center, 2010

    USGS Publications Warehouse

    Gotvald, Anthony J.

    2010-01-01

    The U.S. Geological Survey requires that each Water Science Center prepare a surface-water quality-assurance plan to describe policies and procedures that ensure high quality surface-water data collection, processing, analysis, computer storage, and publication. The Georgia Water Science Center's standards, policies, and procedures for activities related to the collection, processing, analysis, computer storage, and publication of surface-water data are documented in this Surface-Water Quality-Assurance Plan for 2010.

  7. Impact of Water Withdrawals from Groundwater and Surface Water on Continental Water Storage Variations

    NASA Technical Reports Server (NTRS)

    Doell, Petra; Hoffmann-Dobrev, Heike; Portmann, Felix T.; Siebert, Stefan; Eicker, Annette; Rodell, Matthew; Strassberg, Gil

    2011-01-01

    Humans have strongly impacted the global water cycle, not only water flows but also water storage. We have performed a first global-scale analysis of the impact of water withdrawals on water storage variations, using the global water resources and use model WaterGAP. This required estimation of fractions of total water withdrawals from groundwater, considering five water use sectors. According to our assessment, the source of 35% of the water withdrawn worldwide (4300 cubic km/yr during 1998-2002) is groundwater. Groundwater contributes 42%, 36% and 27% of water used for irrigation, households and manufacturing, respectively, while we assume that only surface water is used for livestock and for cooling of thermal power plants. Consumptive water use was 1400 cubic km/yr during 1998-2002. It is the sum of the net abstraction of 250 cubic km/yr of groundwater (taking into account evapotranspiration and return flows of withdrawn surface water and groundwater) and the net abstraction of 1150 km3/yr of surface water. Computed net abstractions indicate, for the first time at the global scale, where and when human water withdrawals decrease or increase groundwater or surface water storage. In regions with extensive surface water irrigation, such as Southern China, net abstractions from groundwater are negative, i.e. groundwater is recharged by irrigation. The opposite is true for areas dominated by groundwater irrigation, such as in the High Plains aquifer of the central USA, where net abstraction of surface water is negative because return flow of withdrawn groundwater recharges the surface water compartments. In intensively irrigated areas, the amplitude of seasonal total water storage variations is generally increased due to human water use; however, in some areas, it is decreased. For the High Plains aquifer and the whole Mississippi basin, modeled groundwater and total water storage variations were compared with estimates of groundwater storage variations based on

  8. Urban areas impact on surface water quality during rainfall events

    NASA Astrophysics Data System (ADS)

    Ferreira, C. S. S.; Soares, D.; Ferreira, A. J. D.; Costa, M. L.; Steenhuis, T. S.; Coelho, C. O. A.; Walsh, R. P. D.

    2012-04-01

    Increasing population and welfare puts water management under stress, especially in what concerns water quality. Surface water properties are strongly linked with hydrological processes and are affected by stream flow variability. Changes in some chemical substances concentrations can be ascribed to different water sources. Runoff generated in urban areas is considered the main responsible for water quality degradation inside catchments. This poster presents the methodology and first results of a study that is being developed to assess the impact of urbanization on surface water quality, during rainfall events. It focuses on the Ribeira dos Covões catchment (620 ha) located in central Portugal. Due to its proximity to the Coimbra city in central region, the urban areas sprawled during the last decades. In 2008, urban areas represented 32% of the area. Recently a highway was constructed crossing the catchment and a technological industrial park is being build-up in the headwaters. Several water samples were collected at four different locations: the catchment outlet and in three sub-catchments with distinct urbanization patterns - Espírito Santo that represents a highly urbanized area (45%) located over sandstone, Porto do Bordalo with 30% of urbanized area located over limestone, and IParque, mainly forest and just downstream the disturbed technological industrial park construction area. The samples were collected at different times during rainfall events to monitor the variability along the hydrograph. Six monitoring campaigns were performed: two in April 2011, at the end of the winter period, and the others between October and November 2011, after the dry summer. The number of samples collected per monitoring campaign is variable according with rainfall pattern. Parameters such as pH, conductivity, turbidity and total suspended sediments were immediately analyzed. The samples were then preserved, after filtered (0.45µm), and later analyzed for dissolved

  9. Organic acids in naturally colored surface waters

    USGS Publications Warehouse

    Lamar, William L.; Goerlitz, D.F.

    1966-01-01

    Most of the organic matter in naturally colored surface waters consists of a mixture of carboxylic acids or salts of these acids. Many of the acids color the water yellow to brown; however, not all of the acids are colored. These acids range from simple to complex, but predominantly they are nonvolatile polymeric carboxylic acids. The organic acids were recovered from the water by two techniques: continuous liquid-liquid extraction with n-butanol and vacuum evaporation at 50?C (centigrade). The isolated acids were studied by techniques of gas, paper, and column chromatography and infrared spectroscopy. About 10 percent of the acids recovered were volatile or could be made volatile for gas chromatographic analysis. Approximately 30 of these carboxylic acids were isolated, and 13 of them were individually identified. The predominant part of the total acids could not be made volatile for gas chromatographic analysis. Infrared examination of many column chromatographic fractions indicated that these nonvolatile substances are primarily polymeric hydroxy carboxylic acids having aromatic and olefinic unsaturation. The evidence suggests that some of these acids result from polymerization in aqueous solution. Elemental analysis of the sodium fusion products disclosed the absence of nitrogen, sulfur, and halogens.

  10. Landscape approach to identifying environments where ground water and surface water are closely interrelated

    USGS Publications Warehouse

    Winter, Thomas C.

    1995-01-01

    Understanding the interaction of ground water and surface water is fundamental to solving many of the water resource problems facing the Nation. To facilitate efficient management of the Nation's water resources, a program of study and evaluation of the interaction of ground water and surface water is proposed that would emphasize intersite comparison between 24 environments throughout the Nation.

  11. Factors Affecting Nitrate Delivery to Streams from Shallow Ground Water in the North Carolina Coastal Plain

    USGS Publications Warehouse

    Harden, Stephen L.; Spruill, Timothy B.

    2008-01-01

    An analysis of data collected at five flow-path study sites between 1997 and 2006 was performed to identify the factors needed to formulate a comprehensive program, with a focus on nitrogen, for protecting ground water and surface water in the North Carolina Coastal Plain. Water-quality protection in the Coastal Plain requires the identification of factors that affect the transport of nutrients from recharge areas to streams through the shallow ground-water system. Some basins process or retain nitrogen more readily than others, and the factors that affect nitrogen processing and retention were the focus of this investigation to improve nutrient management in Coastal Plain streams and to reduce nutrient loads to coastal waters. Nitrate reduction in ground water was observed at all five flow-path study sites in the North Carolina Coastal Plain, although the extent of reduction at each site was influenced by various environmental, hydrogeologic, and geochemical factors. Denitrification was the most common factor responsible for decreases in nitrate along the ground-water flow paths. Specific factors, some of which affect denitrification rates, that appeared to influence ground-water nitrate concentrations along the flow paths or in the streams include soil drainage, presence or absence of riparian buffers, evapotranspiration, fertilizer use, ground-water recharge rates and residence times, aquifer properties, subsurface tile drainage, sources and amounts of organic matter, and hyporheic processes. The study data indicate that the nitrate-reducing capacity of the buffer zone combined with that of the hyporheic zone can substantially lower the amount of ground-water nitrate discharged to streams in agricultural settings of the North Carolina Coastal Plain. At the watershed scale, the effects of ground-water discharge on surface-water quality appear to be greatly influenced by streamflow conditions and the presence of extensive riparian vegetation. Streamflow statistics

  12. Water Resources Data, Florida, Water Year 2001, Volume 3A. Southwest Florida Surface Water

    USGS Publications Warehouse

    Stoker, Y.E.; Kane, R.L.; Fletcher, W.L.

    2002-01-01

    Water resources data for the 2001 water year in Florida consist of continuous or daily discharges for 406 streams, periodic discharge for 12 streams, continuous daily stage for 142 streams, periodic stage for 12 streams, peak stage and discharge for 37 streams, continuous or daily elevations for 11 lakes, periodic elevations for 30 lakes; continuous ground-water levels for 424 wells, periodic ground-water levels for 1,426 wells, and quality-of-water data for 80 surface-water sites and 245 wells. The data for Southwest Florida include records of stage, discharge, and water quality of streams; stage, contents, water quality of lakes and reservoirs, and water levels and water quality of ground-water wells. Volume 3A contains continuous or daily discharge for 83 streams, periodic discharge for 10 streams, continuous or daily stage for 43 streams, peak stage and discharge for 8 streams, continuous or daily elevations for 2 lakes, periodic elevations for 26 lakes, and quality-of-water data for 37 surface-water sites. These data represent the national Water Data System records collected by the U.S. Geological Survey and cooperating local, state, and federal agencies in Florida.

  13. Water Resources Data, Florida, Water Year 2002, Volume 3A. Southwest Florida Surface Water

    USGS Publications Warehouse

    Kane, R.L.; Fletcher, W.L.

    2003-01-01

    Water resources data for the 2002 water year in Florida consist of continuous or daily discharges for 392 streams, periodic discharge for 15 streams, continuous daily stage for 191 streams, periodic stage for 13 streams, peak stage for 33 streams and peak discharge for 33 streams, continuous or daily elevations for 14 lakes, periodic elevations for 49 lakes; continuous ground-water levels for 418 wells, periodic ground-water levels for 1,287 wells, and quality-of-water data for 116 surface-water sites and 291 wells. The data for Southwest Florida include records of stage, discharge, and water quality of streams; stage, contents, water quality of lakes and reservoirs, and water levels and water quality of ground-water wells. Volume 3A contains continuous or daily discharge for 99 streams, periodic discharge for 11 streams, continuous or daily stage for 63 streams, peak stage and discharge for 7 streams, continuous or daily elevations for 2 lakes, periodic elevations for 26 lakes, and quality-of-water data for 59 surface-water sites. These data represent the national Water Data System records collected by the U.S. Geological Survey and cooperating local, state, and federal agencies in Florida.

  14. Water Resources Data, Florida, Water Year 2003, Volume 3A: Southwest Florida Surface Water

    USGS Publications Warehouse

    Kane, R.L.; Fletcher, W.L.

    2004-01-01

    Water resources data for the 2003 water year in Florida consist of continuous or daily discharges for 385 streams, periodic discharge for 13 streams, continuous daily stage for 255 streams, periodic stage for 13 streams, peak stage for 36 streams and peak discharge for 36 streams, continuous or daily elevations for 13 lakes, periodic elevations for 46 lakes; continuous ground-water levels for 441 wells, periodic ground-water levels for 1,227 wells, and quality-of-water data for 133 surface-water sites and 308 wells. The data for Southwest Florida include records of stage, discharge, and water quality of streams; stage, contents, water quality of lakes and reservoirs, and water levels and water quality of ground-water wells. Volume 3A contains continuous or daily discharge for 103 streams, periodic discharge for 7 streams, continuous or daily stage for 67 streams, periodic stage for 13 streams, peak stage and discharge for 8 streams, continuous or daily elevations for 2 lakes, periodic elevations for 26 lakes, and quality-of-water data for 62 surface-water sites. These data represent the national Water Data System records collected by the U.S. Geological Survey and cooperating local, state, and federal agencies in Florida.

  15. Structured free-water clusters near lubricating surfaces are essential in water-based lubrication.

    PubMed

    Hou, Jiapeng; Veeregowda, Deepak H; de Vries, Joop; Van der Mei, Henny C; Busscher, Henk J

    2016-10-01

    Water-based lubrication provides cheap and environmentally friendly lubrication and, although hydrophilic surfaces are preferred in water-based lubrication, often lubricating surfaces do not retain water molecules during shear. We show here that hydrophilic (42° water contact angle) quartz surfaces facilitate water-based lubrication to the same extent as more hydrophobic Si crystal surfaces (61°), while lubrication by hydrophilic Ge crystal surfaces (44°) is best. Thus surface hydrophilicity is not sufficient for water-based lubrication. Surface-thermodynamic analyses demonstrated that all surfaces, regardless of their water-based lubrication, were predominantly electron donating, implying water binding with their hydrogen groups. X-ray photoelectron spectroscopy showed that Ge crystal surfaces providing optimal lubrication consisted of a mixture of -O and =O functionalities, while Si crystal and quartz surfaces solely possessed -O functionalities. Comparison of infrared absorption bands of the crystals in water indicated fewer bound-water layers on hydrophilic Ge than on hydrophobic Si crystal surfaces, while absorption bands for free water on the Ge crystal surface indicated a much more pronounced presence of structured, free-water clusters near the Ge crystal than near Si crystal surfaces. Accordingly, we conclude that the presence of structured, free-water clusters is essential for water-based lubrication. The prevalence of structured water clusters can be regulated by adjusting the ratio between surface electron-donating and electron-accepting groups and between -O and =O functionalities.

  16. Surface water quality-assurance plan, U.S. Geological Survey, Kentucky Water Science Center, water year 2006

    USGS Publications Warehouse

    Griffin, Michael S.

    2006-01-01

    This Surface Water Quality-Assurance Plan documents the standards, policies, and procedures used by the Kentucky Water Science Center for activities related to the collection, processing, storage, analysis, and publication of surface-water data.

  17. Metolachlor and atrazine fate in surface water systems

    SciTech Connect

    Rice, P.J.; Anderson, T.A.; Coats, J.R.

    1995-12-31

    The detection of pesticides in surface water and ground water provokes concern involving human health risks associated with pesticide exposure. Monitoring studies of surface waters have detected concentrations of herbicides that exceed the U.S. Environmental Protection Agency proposed maximum contamination level (MCL) for drinking water. Conventional water treatment processes do not remove many herbicides. Tap water drawn from surface-water sources has been reported to contain levels of herbicides above the regulatory limits. There is current interest in the use of artificial wetlands and macrophyte-cultured ponds in waste-water-treatment systems. Aquatic plant-based water treatment systems improve waste water effluent by solid filtration and nutrient assimilation. Various aquatic plants have been shown to accumulate metals, absorb inorganic ions, and accelerate the biodegradation of complex organics. Our research evaluates the fate of metolachlor and atrazine in surface water, surface water/sediment, and surface water/aquatic plant incubation systems to study the influence of sediment and aquatic plants in the removal and biotransformation of herbicides from contaminated waters. Aquatic macrophyte systems may prove to be useful in the remediation of herbicide contaminated surface waters in water treatment facilities or in the reduction of herbicide concentrations from tile drain effluents prior to entering watersheds.

  18. 43 CFR 404.57 - Does this rule have any affect on state water law?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... water law? 404.57 Section 404.57 Public Lands: Interior Regulations Relating to Public Lands BUREAU OF... this rule have any affect on state water law? No. Neither the Act nor this rule preempts or affects state water law or any interstate compact governing water. Reclamation will comply with state water...

  19. 43 CFR 404.57 - Does this rule have any affect on state water law?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... water law? 404.57 Section 404.57 Public Lands: Interior Regulations Relating to Public Lands BUREAU OF... this rule have any affect on state water law? No. Neither the Act nor this rule preempts or affects state water law or any interstate compact governing water. Reclamation will comply with state water...

  20. 43 CFR 404.57 - Does this rule have any affect on state water law?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... water law? 404.57 Section 404.57 Public Lands: Interior Regulations Relating to Public Lands BUREAU OF... this rule have any affect on state water law? No. Neither the Act nor this rule preempts or affects state water law or any interstate compact governing water. Reclamation will comply with state water...

  1. Titanium surface topography affects collagen biosynthesis of adherent cells.

    PubMed

    Mendonça, Daniela B S; Miguez, Patrícia A; Mendonça, Gustavo; Yamauchi, Mitsuo; Aragão, Francisco J L; Cooper, Lyndon F

    2011-09-01

    Collagen-dependent microstructure and physicochemical properties of newly formed bone around implant surfaces represent key determinants of implant biomechanics. This study investigated the effects of implant surface topography on collagen biosynthesis of adherent human mesenchymal stem cells (hMSCs). hMSCs were grown for 0 to 42 days on titanium disks (20.0 × 1.0 mm) with smooth or rough surfaces. Cell attachment and spreading were evaluated by incubating cells with Texas-Red-conjugated phalloidin antibody. Quantitative real-time PCR was used to measure the mRNA levels of Col1α1 and collagen modifying genes including prolyl hydroxylases (PHs), lysyl oxidases (LOXs) and lysyl hydroxylases (LHs). Osteogenesis was assessed at the level of osteoblast specific gene expression and alizarin red staining for mineralization. Cell layer-associated matrix and collagen content were determined by amino acid analysis. At 4h, 100% cells were flattened on both surfaces, however the cells on smooth surface had a fibroblast-like shape, while cells on rough surface lacked any defined long axis. PH, LH, and most LOX mRNA levels were greater in hMSCs grown on rough surfaces for 3 days. The mineralized area was greater for rough surface at 28 and 42 days. The collagen content (percent total protein) was also greater at rough surface compared to smooth surface at 28 (36% versus 26%) and 42 days (46% versus 29%), respectively (p<.05). In a cell culture model, rough surface topography positively modulates collagen biosynthesis and accumulation and the expression of genes associated with collagen cross-linking in adherent hMSC. The altered biosynthesis of the collagen-rich ECM adjacent to endosseous implants may influence the biomechanical properties of osseointegrated endosseous implants.

  2. Tracer injection techniques in flowing surface water

    NASA Astrophysics Data System (ADS)

    Wörman, A.

    2009-04-01

    Residence time distributions for flowing water and reactive matter are commonly used integrated properties of the transport process for determining technical issues of water resource management and in eco-hydrological science. Two general issues for tracer techniques are that the concentration-vs-time relation following a tracer injection (the breakthrough curve) gives unique transport information in different parts of the curve and separation of hydromechanical and reactive mechanisms often require simultaneous tracer injections. This presentation discusses evaluation methods for simultaneous tracer injections based on examples of tracer experiments in small rivers, streams and wetlands. Tritiated water is used as a practically inert substance to reflect the actual hydrodynamics, but other involved tracers are Cr(III)-51, P-32 and N-15. Hydromechanical, in-stream dispersion is reflected as a symmetrical spreading of the spatial concentration distribution. This requires that the transport distance over water depth is larger than about five times the flow Peclet number. Transversal retention of both inert and reactive solutes is reflected in terms of the tail of the breakthrough curve. Especially, reactive solutes can have a substantial magnification of the tailing behaviour depending on reaction rates or partitioning coefficients. To accurately discriminate between the effects of reactions and hydromechanical mixing its is relevant to use simultaneous injections of inert and reactive tracers with a sequential or integrated evaluation procedure. As an example, the slope of the P-32 tailing is consistently smaller than that of a simultaneous tritium injection in Ekeby wetland, Eskilstuna. The same applies to N-15 injected in the same experiment, but nitrogen is affected also by a systematic loss due to denitrification. Uptake in stream-bed sediments can be caused by a pumping effect arising when a variable pressure field is created on the stream bottom due to bed

  3. Surface-water availability, Tuscaloosa County, Alabama

    USGS Publications Warehouse

    Knight, Alfred L.; Davis, Marvin E.

    1975-01-01

    The average annual runoff, about 1,270 mgd (million gallons per day), originating in Tuscaloosa County is equivalent to 20 inches or 0.95 mgd per square mile. The Black Warrior and Sipsey Rivers, the largest streams in the county, have average flows of 5,230 mgd and 580 mgd, respectively, where they leave the county, and median annual 7-day low flows in excess of 150 mgd and 35 mgd, respectively. North River, Big Sandy Creek, and Hurricane Creek have average flows in excess of 100 mgd and median annual 7-day low flows in excess of 2 mgd. Surface water generally contains less than 100 mg/l (milligrams per liter) dissolved solids, less than 10 mg/l chloride, and is soft to moderately hard. Streams having the higher hardness and the higher dissolved-solids content are in eastern Tuscaloosa County.

  4. Sensors and OBIA synergy for operational monitoring of surface water

    NASA Astrophysics Data System (ADS)

    Masson, Eric; Thenard, Lucas

    2010-05-01

    This contribution will focus on combining Object Based Image Analysis (i.e. OBIA with e-Cognition 8) and recent sensors (i.e. Spot 5 XS, Pan and ALOS Prism, Avnir2, Palsar) to address the technical feasibility for an operational monitoring of surface water. Three cases of river meandering (India), flood mapping (Nepal) and dam's seasonal water level monitoring (Morocco) using recent sensors will present various application of surface water monitoring. The operational aspect will be demonstrated either by sensor properties (i.e. spatial resolution and bandwidth), data acquisition properties (i.e. multi sensor, return period and near real-time acquisition) but also with OBIA algorithms (i.e. fusion of multi sensors / multi resolution data and batch processes). In the first case of river meandering (India) we will address multi sensor and multi date satellite acquisition to monitor the river bed mobility within a floodplain using an ALOS dataset. It will demonstrate the possibility of an operational monitoring system that helps the geomorphologist in the analysis of fluvial dynamic and sediment budget for high energy rivers. In the second case of flood mapping (Nepal) we will address near real time Palsar data acquisition at high spatial resolution to monitor and to map a flood extension. This ALOS sensor takes benefit both from SAR and L band properties (i.e. atmospheric transparency, day/night acquisition, low sensibility to surface wind). It's a real achievement compared to optical imagery or even other high resolution SAR properties (i.e. acquisition swath, bandwidth and data price). These advantages meet the operational needs set by crisis management of hydrological disasters but also for the implementation of flood risk management plans. The last case of dam surface water monitoring (Morocco) will address an important issue of water resource management in countries affected by water scarcity. In such countries water users have to cope with over exploitation

  5. Grooved organogel surfaces towards anisotropic sliding of water droplets.

    PubMed

    Zhang, Pengchao; Liu, Hongliang; Meng, Jingxin; Yang, Gao; Liu, Xueli; Wang, Shutao; Jiang, Lei

    2014-05-21

    Periodic micro-grooved organogel surfaces can easily realize the anisotropic sliding of water droplets attributing to the formed slippery water/oil/solid interface. Different from the existing anisotropic surfaces, this novel surface provides a versatile candidate for the anisotropic sliding of water droplets and might present a promising way for the easy manipulation of liquid droplets for water collection, liquid-directional transportation, and microfluidics.

  6. How Direction of Illumination Affects Visually Perceived Surface Roughness

    PubMed Central

    Ho, Yun-Xian; Landy, Michael S.; Maloney, Laurence T.

    2009-01-01

    We examined visual estimation of surface roughness using random computer-generated three-dimensional (3D) surfaces rendered under a mixture of diffuse lighting and a punctate source. The angle between the tangent to the plane containing the surface texture and the direction to the punctate source was varied from 50 to 70 degrees across lighting conditions. Observers were presented with pairs of surfaces under different lighting conditions and indicated which 3D surface appeared rougher. Surfaces were viewed either in isolation or in scenes with added objects whose shading, cast shadows and specular highlights provided information about the spatial distribution of illumination. All observers perceived surfaces to be markedly rougher with decreasing illuminant angle. Performance in scenes with added objects was no closer to constant than that in scenes without added objects. We identified four novel cues that are valid cues to roughness under any single lighting condition but that are not invariant under changes in lighting condition. We modeled observers’ deviations from roughness constancy as a weighted linear combination of these “pseudo-cues” and found that they account for a substantial amount of observers’ systematic deviations from roughness constancy with changes in lighting condition. PMID:16881794

  7. Analysis of selected pharmaceuticals in fish and the fresh water bodies directly affected by reclaimed water using liquid chromatography-tandem mass spectrometry.

    PubMed

    Wang, Jian; Gardinali, Piero R

    2012-11-01

    A comprehensive method for the analysis of 11 target pharmaceuticals representing multiple commonly used therapeutic classes was developed for biological tissues (fish), reclaimed water, and the surface water directly affected by irrigation with reclaimed water. One gram of fish tissue homogenate was extracted by accelerated solvent extraction with methylene chloride followed by mixed-mode cation exchange solid phase extraction (SPE) cleanup and analyzed by liquid chromatography-tandem mass spectrometry. Compared to previously reported methods, the protocol produces cleaner extracts resulting in lower method detection limits. Similarly, an SPE method based on Oasis HLB cartridges was used to concentrate and cleanup reclaimed and surface water samples. Among the 11 target compounds analyzed, trimethoprim, caffeine, sulfamethoxazole, diphenhydramine, diltiazem, carbamazepine, erythromycin, and fluoxetine were consistently detected in reclaimed water. Caffeine, diphenhydramine, and carbamazepine were consistently detected in fish and surface water samples. Bioaccumulation factors for caffeine, diphenhydramine, and carbamazepine in mosquito fish (Gambusia holbrooki) were calculated at 29 ± 26, 821 ± 422, and 108 ± 144, respectively. This is the first report of potential accumulation of caffeine in fish from a water body directly influenced by reclaimed water. Figure The pharmaceuticals detected in reclaimed water and the fresh water directly affected by reclaimed water.

  8. Water consumption, not expectancies about water consumption, affects cognitive performance in adults.

    PubMed

    Edmonds, Caroline J; Crombie, Rosanna; Ballieux, Haiko; Gardner, Mark R; Dawkins, Lynne

    2013-01-01

    Research has shown that water supplementation positively affects cognitive performance in children and adults. The present study considered whether this could be a result of expectancies that individuals have about the effects of water on cognition. Forty-seven participants were recruited and told the study was examining the effects of repeated testing on cognitive performance. They were assigned either to a condition in which positive expectancies about the effects of drinking water were induced, or a control condition in which no expectancies were induced. Within these groups, approximately half were given a drink of water, while the remainder were not. Performance on a thirst scale, letter cancellation, digit span forwards and backwards and a simple reaction time task was assessed at baseline (before the drink) and 20 min and 40 min after water consumption. Effects of water, but not expectancy, were found on subjective thirst ratings and letter cancellation task performance, but not on digit span or reaction time. This suggests that water consumption effects on letter cancellation are due to the physiological effects of water, rather than expectancies about the effects of drinking water.

  9. The interaction between surface water and groundwater and its effect on water quality in the Second Songhua River basin, northeast China

    NASA Astrophysics Data System (ADS)

    Zhang, Bing; Song, Xianfang; Zhang, Yinghua; Ma, Ying; Tang, Changyuan; Yang, Lihu; Wang, Zhong-Liang

    2016-10-01

    The relationship between surface water and groundwater not only influences the water quantity, but also affects the water quality. The stable isotopes ( δD, δ 18O) and hydrochemical compositions in water samples were analysed in the Second Songhua River basin. The deep groundwater is mainly recharged from shallow groundwater in the middle and upper reaches. The shallow groundwater is discharged to rivers in the downstream. The runoff from upper reaches mainly contributed the river flow in the downstream. The CCME WQI indicated that the quality of surface water and groundwater was `Fair'. The mixing process between surface water and groundwater was simulated by the PHREEQC code with the results from the stable isotopes. The interaction between surface water and groundwater influences the composition of ions in the mixing water, and further affects the water quality with other factors.

  10. Structure and reactivity of water at biomaterial surfaces.

    PubMed

    Vogler, E A

    1998-02-01

    Molecular self association in liquids is a physical process that can dominate cohesion (interfacial tension) and miscibility. In water, self association is a powerful organizational force leading to a three-dimensional hydrogen-bonded network (water structure). Localized perturbations in the chemical potential of water as by, for example, contact with a solid surface, induces compensating changes in water structure that can be sensed tens of nanometers from the point of origin using the surface force apparatus (SFA) and ancillary techniques. These instruments reveal attractive or repulsive forces between opposing surfaces immersed in water, over and above that anticipated by continuum theory (DLVO), that are attributed to a variable density (partial molar volume) of a more-or-less ordered water structure, depending on the water wettability (surface energy) of the water-contacting surfaces. Water structure at surfaces is thus found to be a manifestation of hydrophobicity and, while mechanistic/theoretical interpretation of experimental results remain the subject of some debate in the literature, convergence of experimental observations permit, for the first time, quantitative definition of the relative terms 'hydrophobic' and 'hydrophilic'. In particular, long-range attractive forces are detected only between surfaces exhibiting a water contact angle theta > 65 degrees (herein defined as hydrophobic surfaces with pure water adhesion tension tau O = gamma O cos theta < 30 dyn/cm where gamma O is water interfacial tension = 72.8 dyn/cm). Repulsive forces are detected between surfaces exhibiting theta < 65 degrees (hydrophilic surfaces, tau O > 30 dyn/cm). These findings suggest at least two distinct kinds of water structure and reactivity: a relatively less-dense water region against hydrophobic surfaces with an open hydrogen-bonded network and a relatively more-dense water region against hydrophilic surfaces with a collapsed hydrogen-bonded network. Importantly

  11. Floating Vegetated Mats For Improving Surface Water Quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Contamination of surface and ground waters is an environmental concern. Pollution from both point and nonpoint sources can render water unsuitable for use. Surface waters of concern include streams, rivers, ponds, lakes, canals, and wastewater lagoons. Lagooned wastewater from confined animal feedi...

  12. 40 CFR 258.27 - Surface water requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... FOR MUNICIPAL SOLID WASTE LANDFILLS Operating Criteria § 258.27 Surface water requirements. MSWLF..., that violates any requirement of an area-wide or State-wide water quality management plan that has been... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Surface water requirements....

  13. 40 CFR 258.27 - Surface water requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Surface water requirements. 258.27... FOR MUNICIPAL SOLID WASTE LANDFILLS Operating Criteria § 258.27 Surface water requirements. MSWLF... wetlands, that violates any requirements of the Clean Water Act, including, but not limited to,...

  14. 40 CFR 258.27 - Surface water requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Surface water requirements. 258.27... FOR MUNICIPAL SOLID WASTE LANDFILLS Operating Criteria § 258.27 Surface water requirements. MSWLF... wetlands, that violates any requirements of the Clean Water Act, including, but not limited to,...

  15. 40 CFR 258.27 - Surface water requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Surface water requirements. 258.27... FOR MUNICIPAL SOLID WASTE LANDFILLS Operating Criteria § 258.27 Surface water requirements. MSWLF... wetlands, that violates any requirements of the Clean Water Act, including, but not limited to,...

  16. 40 CFR 258.27 - Surface water requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Surface water requirements. 258.27... FOR MUNICIPAL SOLID WASTE LANDFILLS Operating Criteria § 258.27 Surface water requirements. MSWLF... wetlands, that violates any requirements of the Clean Water Act, including, but not limited to,...

  17. Contamination of ground water, surface water, and soil, and evaluation of selected ground-water pumping alternatives in the Canal Creek area of Aberdeen Proving Ground, Maryland

    USGS Publications Warehouse

    Lorah, Michelle M.; Clark, Jeffrey S.

    1996-01-01

    Chemical manufacturing, munitions filling, and other military-support activities have resulted in the contamination of ground water, surface water, and soil in the Canal Creek area of Aberdeen Proving Ground, Maryland. Chlorinated volatile organic compounds, including 1,1,2,2-tetrachloroethane and trichloroethylene, are widespread ground-water contaminants in two aquifers that are composed of unconsolidated sand and gravel. Distribution and fate of chlorinated organic compounds in the ground water has been affected by the movement and dissolution of solvents in their dense immiscible phase and by microbial degradation under anaerobic conditions. Detection of volatile organic contaminants in adjacent surface water indicates that shallow contaminated ground water discharges to surface water. Semivolatile organic compounds, especially polycyclic aromatic hydrocarbons, are the most prevalent organic contaminants in soils. Various trace elements, such as arsenic, cadmium, lead, and zinc, were found in elevated concentrations in ground water, surface water, and soil. Simulations with a ground-water-flow model and particle tracker postprocessor show that, without remedial pumpage, the contaminants will eventually migrate to Canal Creek and Gunpowder River. Simulations indicate that remedial pumpage of 2.0 million gallons per day from existing wells is needed to capture all particles originating in the contaminant plumes. Simulated pumpage from offsite wells screened in a lower confined aquifer does not affect the flow of contaminated ground water in the Canal Creek area.

  18. Impact of river restoration on groundwater - surface water - interactions

    NASA Astrophysics Data System (ADS)

    Kurth, Anne-Marie; Schirmer, Mario

    2014-05-01

    Since the end of the 19th century, flood protection was increasingly based on the construction of impermeable dams and side walls (BWG, 2003). In spite of providing flood protection, these measures also limited the connectivity between the river and the land, restricted the area available for flooding, and hampered the natural flow dynamics of the river. Apart from the debilitating effect on riverine ecosystems due to loss of habitats, these measures also limited bank filtration, inhibited the infiltration of storm water, and affected groundwater-surface water-interactions. This in turn had a profound effect on ecosystem health, as a lack of groundwater-surface water interactions led to decreased cycling of pollutants and nutrients in the hyporheic zone and limited the moderation of the water temperature (EA, 2009). In recent decades, it has become apparent that further damages to riverine ecosystems must be prohibited, as the damages to ecology, economy and society surmount any benefits gained from exploiting them. Nowadays, the restoration of rivers is a globally accepted means to restore ecosystem functioning, protect water resources and amend flood protection (Andrea et al., 2012; Palmer et al., 2005; Wortley et al., 2013). In spite of huge efforts regarding the restoration of rivers over the last 30 years, the question of its effectiveness remains, as river restorations often reconstruct a naturally looking rather than a naturally functioning stream (EA, 2009). We therefore focussed our research on the effectiveness of river restorations, represented by the groundwater-surface water-interactions. Given a sufficiently high groundwater level, a lack of groundwater-surface water-interactions after restoration may indicate that the vertical connectivity in the stream was not fully restored. In order to investigate groundwater-surface water-interactions we determined the thermal signature on the stream bed and in +/- 40 cm depth by using Distributed Temperature

  19. High volume hydraulic fracturing operations: potential impacts on surface water and human health.

    PubMed

    Mrdjen, Igor; Lee, Jiyoung

    2016-08-01

    High volume, hydraulic fracturing (HVHF) processes, used to extract natural gas and oil from underground shale deposits, pose many potential hazards to the environment and human health. HVHF can negatively affect the environment by contaminating soil, water, and air matrices with potential pollutants. Due to the relatively novel nature of the process, hazards to surface waters and human health are not well known. The purpose of this article is to link the impacts of HVHF operations on surface water integrity, with human health consequences. Surface water contamination risks include: increased structural failure rates of unconventional wells, issues with wastewater treatment, and accidental discharge of contaminated fluids. Human health risks associated with exposure to surface water contaminated with HVHF chemicals include increased cancer risk and turbidity of water, leading to increased pathogen survival time. Future research should focus on modeling contamination spread throughout the environment, and minimizing occupational exposure to harmful chemicals.

  20. Groundwater and surface water discharge from an abandoned tailings impoundment: Implications for watershed water quality

    NASA Astrophysics Data System (ADS)

    Moncur, M. C.; Ptacek, C. J.; Blowes, D. W.; Birks, S. J.

    2006-12-01

    Release of acid drainage from mine-waste disposal areas is a problem of international scale. Drainage from sulfide-rich waste can result in contaminated surface waters, directly through surface runoff and indirectly, from discharge of contaminated groundwater flow. Camp Lake, located in Northern Manitoba, receives both direct and indirect drainage from an abandoned tailings impoundment, which has severely affected the quality of the downstream watershed. Nearly a century of sulfide oxidation at this mine site has resulted in extremely high concentrations of oxidation products in the surface water and groundwater discharging from the two tailings impoundments, both of which flow into an adjacent semi-isolated shallow bay in Camp Lake. The incorporation of these aqueous effluents has altered the composition of the lake water, which in turn has modified the physical limnology of the lake. The various sources of water and solutes to the lake (surface inflows, perched water table, primary water table) contribute varying concentrations of metals to the overall contaminant loadings to the lake, and can be characterized by distinct 3H, δ18O, and δ2H compositions. Geochemical profiles of the water column indicate that, despite its shallow depth (6 m), the bay is stratified throughout the year. The greatest accumulation of dissolved metals and SO4 is in the lower portion of the water column, with concentrations up to 8500 mg/L Fe, 20,000 mg/L SO4, 30 mg/L Zn, and 100 mg/L Al, including elevated concentrations of Cu, Cd, Pb, and Ni. This stratification is mirrored in the δ18O, δ2H and d-excess profiles within the lake water column, with an evaporatively enriched surface layer overlying the isotopically lighter, higher d-excess hypolimnion. Despite meromictic conditions and very high solute concentrations being limited to the semi-isolated bay, the annual loadings of acid, sulfate, and metals from Camp Lake to the adjacent lake are extremely large, and fluctuate seasonally

  1. Plant surface wax affects parasitoid's response to host footprints

    NASA Astrophysics Data System (ADS)

    Rostás, Michael; Ruf, Daniel; Zabka, Vanessa; Hildebrandt, Ulrich

    2008-10-01

    The plant surface is the substrate upon which herbivorous insects and natural enemies meet and thus represents the stage for interactions between the three trophic levels. Plant surfaces are covered by an epicuticular wax layer which is highly variable depending on species, cultivar or plant part. Differences in wax chemistry may modulate ecological interactions. We explored whether caterpillars of Spodoptera frugiperda, when walking over a plant surface, leave a chemical trail (kairomones) that can be detected by the parasitoid Cotesia marginiventris. Chemistry and micromorphology of cuticular waxes of two barley eceriferum wax mutants ( cer-za.126, cer-yp.949) and wild-type cv. Bonus (wt) were assessed. The plants were then used to investigate potential surface effects on the detectability of caterpillar kairomones. Here we provide evidence that C. marginiventris responds to chemical footprints of its host. Parasitoids were able to detect the kairomone on wild-type plants and on both cer mutants but the response to cer-yp.949 (reduced wax, high aldehyde fraction) was less pronounced. Experiments with caterpillar-treated wt and mutant leaves offered simultaneously, confirmed this observation: no difference in wasp response was found when wt was tested against cer-za.126 (reduced wax, wt-like chemical composition) but wt was significantly more attractive than cer-yp.949. This demonstrates for the first time that the wax layer can modulate the detectability of host kairomones.

  2. Identifying the regional-scale groundwater-surface water interaction on the Sanjiang Plain, Northeast China.

    PubMed

    Wang, Xihua; Zhang, Guangxin; Xu, Y Jun; Sun, Guangzhi

    2015-11-01

    Assessment on the interaction between groundwater and surface water (GW-SW) can generate information that is critical to regional water resource management, especially for regions that are highly dependent on groundwater resources for irrigation. This study investigated such interaction on China's Sanjiang Plain (10.9 × 10(4) km(2)) and produced results to assist sustainable regional water management for intensive agricultural activities. Methods of hierarchical cluster analysis (HCA), principal component analysis (PCA), and statistical analysis were used in this study. One hundred two water samplings (60 from shallow groundwater, 7 from deep groundwater, and 35 from surface water) were collected and grouped into three clusters and seven sub-clusters during the analyses. The PCA analysis identified four principal components of the interaction, which explained 85.9% variance of total database, attributed to the dissolution and evolution of gypsum, feldspar, and other natural minerals in the region that was affected by anthropic and geological (sedimentary rock mineral) activities. The analyses showed that surface water in the upper region of the Sanjiang Plain gained water from local shallow groundwater, indicating that the surface water in the upper region was relatively more resilient to withdrawal for usage, whereas in the middle region, there was only a weak interaction between shallow groundwater and surface water. In the lower region of the Sanjiang Plain, surface water lost water to shallow groundwater, indicating that the groundwater was vulnerable to pollution by pesticides and fertilizers from terrestrial sources.

  3. Physicochemical properties of concentrated Martian surface waters

    NASA Astrophysics Data System (ADS)

    Tosca, Nicholas J.; McLennan, Scott M.; Lamb, Michael P.; Grotzinger, John P.

    2011-05-01

    Understanding the processes controlling chemical sedimentation is an important step in deciphering paleoclimatic conditions from the rock records preserved on both Earth and Mars. Clear evidence for subaqueous sedimentation at Meridiani Planum, widespread saline mineral deposits in the Valles Marineris region, and the possible role of saline waters in forming recent geomorphologic features all underscore the need to understand the physical properties of highly concentrated solutions on Mars in addition to, and as a function of, their distinct chemistry. Using thermodynamic models predicting saline mineral solubility, we generate likely brine compositions ranging from bicarbonate-dominated to sulfate-dominated and predict their saline mineralogy. For each brine composition, we then estimate a number of thermal, transport, and colligative properties using established models that have been developed for highly concentrated multicomponent electrolyte solutions. The available experimental data and theoretical models that allow estimation of these physicochemical properties encompass, for the most part, much of the anticipated variation in chemistry for likely Martian brines. These estimates allow significant progress in building a detailed analysis of physical sedimentation at the ancient Martian surface and allow more accurate predictions of thermal behavior and the diffusive transport of matter through chemically distinct solutions under comparatively nonstandard conditions.

  4. Potentiometric surface of Floridan aquifer, Southwest Florida Water Management District and adjacent areas, September 1977

    USGS Publications Warehouse

    Ryder, P.D.; Mills, L.R.; Laughlin, C.P.

    1978-01-01

    A potentiometric-surface map of the Southwest Florida Water Management District depicts the annual high water-level period. Potentiometric levels increased 15 to 30 feet between May 1977 and September 1977 in the citrus and farming sections of southeastern Hillsborough, northern Hardee, and southwestern Polk Counties. These areas are widely affected by pumpage for irrigation and have the greatest range in water-level fluctuations between the low and high water-level periods. Water-level rises in coastal, northern, and southern areas of the Water Management District ranged from 0 to 15 feet. (Woodard-USGS)

  5. Water Resources Data: New Jersey, Water Year 1998, Volume 1, Surface-Water Data

    USGS Publications Warehouse

    Reed, T.J.; Centinaro, G.L.; Dudek, J.F.; Corcino, V.; Stekroadt, G.C.; McTigure, R.C.

    1999-01-01

    This volume of the annual hydrologic data report of New Jersey is one of a series of annual reports that document hydrologic data gathered from the U.S. Geological Survey's surface- and ground-water data-collection networks in each State, Puerto Rico, and the Trust Territories. These records of streamflow, ground-water levels, and water quality provide the hydrologic information needed by state, local and federal agencies, and the private sector for developing and managing our Nation's land and water resources.

  6. Section 11: Surface Water Pathway - Likelihood of Release

    EPA Pesticide Factsheets

    Surface water releases can include the threat to targets from overland flow of hazardous substances and from flooding or the threat from the release of hazardous substances to ground water and the subsequent discharge of contaminated ground w

  7. Free-surface stability criterion as affected by velocity distribution

    USGS Publications Warehouse

    Cheng-Lung, Chen

    1995-01-01

    This paper examines how the velocity distribution of flow in open channels affects the kinematic and dynamic wave velocities, from which the various forms of the Vedernikov number V can be formulated. When V >1, disturbances created in open-channel flow will amplify in the form of roll waves; when V <1, some (though not all) disturbances will attenuate. A study of the Vedernikov stability criterion reveals that it can be readily deduced within the framework of the kinematic and dynamic wave theories by comparing the kinematic wave velocity to the corresponding dynamic wave velocity. -from Author

  8. The glass-liquid transition of water on hydrophobic surfaces.

    PubMed

    Souda, Ryutaro

    2008-09-28

    Interactions of thin water films with surfaces of graphite and vitrified room-temperature ionic liquid [1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF(6)])] were investigated using time-of-flight secondary ion mass spectrometry as a function of temperature and annealing time to elucidate the glass-liquid transition of water at the molecular level. Surface diffusion of water occurs at temperatures higher than 120 K, thereby forming three-dimensional clusters (a two-dimensional layer) on the [bmim][PF(6)] (graphite) surface. The hydrophobic effect of the surface decreases with increasing coverage of water; the bulklike properties evolve up to 40 ML, as evidenced by the occurrence of film dewetting at around the conventional glass transition temperature (140 K). Results also showed that aging is necessary for the water monolayer (a 40 ML water film) to dewet the graphite ([bmim][PF(6)]) surface. The occurrence of aging is explainable by the successive evolution of two distinct liquids during the glass-liquid transition: low density liquid is followed by supercooled liquid water. The water monolayer on graphite is characterized by the preferred orientation of unpaired OH groups toward the surface; this structure is arrested during the aging time despite the occurrence of surface diffusion. However, the water monolayer formed on the [bmim][PF(6)] surface agglomerates immediately after the commencement of surface diffusion. The structure of low density liquid tends to be arrested by the attractive interaction with the neighbors.

  9. Relaxational dynamics of water molecules at protein surface

    NASA Astrophysics Data System (ADS)

    Dellerue, S.; Bellissent-Funel, M.-C.

    2000-08-01

    Relaxational dynamics of water molecules at the surface of a C-phycocyanin protein is studied by high resolution quasi-elastic neutron scattering. The neutron quasi-elastic spectra are well described by the α-relaxation process of mode coupling theory of supercooled liquids. The relaxation times of interfacial water exhibit a power law dependence on the wave vector Q. The average diffusion coefficient is 10 times lower than that of bulk water. This confirms that there is a retardation of water molecules at the protein surface which is in good agreement with the results of water at the surface of hydrophilic model systems.

  10. Structure of water adsorbed on a mica surface

    SciTech Connect

    Park, Sung-Ho; Sposito, Garrison

    2002-01-29

    Monte Carlo simulations of hydration water on the mica (001) surface under ambient conditions revealed water molecules bound closely to the ditrigonal cavities in the surface, with a lateral distribution of approximately one per cavity, and water molecules interposed between K{sup +} counter ions in a layer situated about 2.5 {angstrom} from a surface O along a direction normal to the (001) plane. The calculated water O density profile was in quantitative agreement with recent X-ray reflectivity measurements indicating strong lateral ordering of the hydration water but liquid-like disorder otherwise.

  11. High-resolution mapping of global surface water and its long-term changes.

    PubMed

    Pekel, Jean-François; Cottam, Andrew; Gorelick, Noel; Belward, Alan S

    2016-12-15

    The location and persistence of surface water (inland and coastal) is both affected by climate and human activity and affects climate, biological diversity and human wellbeing. Global data sets documenting surface water location and seasonality have been produced from inventories and national descriptions, statistical extrapolation of regional data and satellite imagery, but measuring long-term changes at high resolution remains a challenge. Here, using three million Landsat satellite images, we quantify changes in global surface water over the past 32 years at 30-metre resolution. We record the months and years when water was present, where occurrence changed and what form changes took in terms of seasonality and persistence. Between 1984 and 2015 permanent surface water has disappeared from an area of almost 90,000 square kilometres, roughly equivalent to that of Lake Superior, though new permanent bodies of surface water covering 184,000 square kilometres have formed elsewhere. All continental regions show a net increase in permanent water, except Oceania, which has a fractional (one per cent) net loss. Much of the increase is from reservoir filling, although climate change is also implicated. Loss is more geographically concentrated than gain. Over 70 per cent of global net permanent water loss occurred in the Middle East and Central Asia, linked to drought and human actions including river diversion or damming and unregulated withdrawal. Losses in Australia and the USA linked to long-term droughts are also evident. This globally consistent, validated data set shows that impacts of climate change and climate oscillations on surface water occurrence can be measured and that evidence can be gathered to show how surface water is altered by human activities. We anticipate that this freely available data will improve the modelling of surface forcing, provide evidence of state and change in wetland ecotones (the transition areas between biomes), and inform water

  12. High-resolution mapping of global surface water and its long-term changes

    NASA Astrophysics Data System (ADS)

    Pekel, Jean-François; Cottam, Andrew; Gorelick, Noel; Belward, Alan S.

    2016-12-01

    The location and persistence of surface water (inland and coastal) is both affected by climate and human activity and affects climate, biological diversity and human wellbeing. Global data sets documenting surface water location and seasonality have been produced from inventories and national descriptions, statistical extrapolation of regional data and satellite imagery, but measuring long-term changes at high resolution remains a challenge. Here, using three million Landsat satellite images, we quantify changes in global surface water over the past 32 years at 30-metre resolution. We record the months and years when water was present, where occurrence changed and what form changes took in terms of seasonality and persistence. Between 1984 and 2015 permanent surface water has disappeared from an area of almost 90,000 square kilometres, roughly equivalent to that of Lake Superior, though new permanent bodies of surface water covering 184,000 square kilometres have formed elsewhere. All continental regions show a net increase in permanent water, except Oceania, which has a fractional (one per cent) net loss. Much of the increase is from reservoir filling, although climate change is also implicated. Loss is more geographically concentrated than gain. Over 70 per cent of global net permanent water loss occurred in the Middle East and Central Asia, linked to drought and human actions including river diversion or damming and unregulated withdrawal. Losses in Australia and the USA linked to long-term droughts are also evident. This globally consistent, validated data set shows that impacts of climate change and climate oscillations on surface water occurrence can be measured and that evidence can be gathered to show how surface water is altered by human activities. We anticipate that this freely available data will improve the modelling of surface forcing, provide evidence of state and change in wetland ecotones (the transition areas between biomes), and inform water

  13. Factors Affecting Water Quality in Selected Carbonate Aquifers in the United States,1993-2005

    USGS Publications Warehouse

    Lindsey, Bruce D.; Berndt, Marian P.; Katz, Brian G.; Ardis, Ann F.; Skach, Kenneth A.

    2009-01-01

    Carbonate aquifers are an important source of water in the United States; however, these aquifers can be particularly susceptible to contamination from the land surface. The U.S. Geological Survey National Water-Quality Assessment (NAWQA) Program collected samples from wells and springs in 12 carbonate aquifers across the country during 1993-2005; water-quality results for 1,042 samples were available to assess the factors affecting ground-water quality. These aquifers represent a wide range of climate, land-use types, degrees of confinement, and other characteristics that were compared and evaluated to assess the effect of those factors on water quality. Differences and similarities among the aquifers were also identified. Samples were analyzed for major ions, radon, nutrients, 47 pesticides, and 54 volatile organic compounds (VOCs). Geochemical analysis helped to identify dominant processes that may contribute to the differences in aquifer susceptibility to anthropogenic contamination. Differences in concentrations of dissolved oxygen and dissolved organic carbon and in ground-water age were directly related to the occurrence of anthropogenic contaminants. Other geochemical indicators, such as mineral saturation indexes and calcium-magnesium molar ratio, were used to infer residence time, an indirect indicator of potential for anthropogenic contamination. Radon exceeded the U.S. Environmental Protection Agency proposed Maximum Contaminant Level (MCL) of 300 picocuries per liter in 423 of 735 wells sampled, of which 309 were drinking-water wells. In general, land use, oxidation-reduction (redox) status, and degree of aquifer confinement were the most important factors affecting the occurrence of anthropogenic contaminants. Although none of these factors individually accounts for all the variation in water quality among the aquifers, a combination of these characteristics accounts for the majority of the variation. Unconfined carbonate aquifers that had high

  14. Surface Tension: The Ways of Water.

    ERIC Educational Resources Information Center

    Donalson-Sams, Marilyn

    1988-01-01

    Describes activities which help students understand several basic scientific concepts regarding water. Outlines objectives, materials needed, procedures, and questions to ask about student observations. Investigations include working with the self-sealing property of water, talcum powder, paper clips, and making water wetter. (RT)

  15. Water ordering and surface relaxations at the hematite (110) water interface

    SciTech Connect

    Catalano, Jeffrey G.; Fenter, Paul; Park, Changyong

    2009-02-07

    Structural characterization of iron oxide-water interfaces provides insight into the mechanisms through which these minerals control contaminant fate and element cycling in soil, sedimentary, and groundwater systems. Ordering of interfacial water and structural relaxations at the hematite (1 1 0) surface have been investigated in situ using high-resolution specular X-ray reflectivity. These measurements demonstrate that relaxations are constrained to primarily the top ~5 Å of the surface. Near-surface iron atoms do not relax substantially, although the uppermost layer displays an increased distribution width, while the undercoordinated oxygens on the surface uniformly relaxed outward. Two sites of adsorbed water and additional layering of water farther from the surface were observed. Water fully covers the (1 1 0) surface and appears to form a continuous network extending into bulk solution, with positional order decreasing to that of a disordered bulk fluid within 1 nm. The arrangement of water is similar to that on the hematite (0 1 2) surface, which has a similar surface topography, although these surfaces display different vibrational amplitudes or positional disorder of adsorbed water molecules and average spacings of near-surface layered water. Comparison between these surfaces suggests that interfacial water ordering on hematite is controlled primarily by surface structure and steric constraints and that highly ordered water is likely common to most hematite-water interfaces.

  16. Water drop impact onto oil covered solid surfaces

    NASA Astrophysics Data System (ADS)

    Chen, Ningli; Chen, Huanchen; Amirfazli, Alidad

    2016-11-01

    Droplet impact onto an oily surface can be encountered routinely in industrial applications; e.g., in spray cooling. It is not clear from literature what impact an oil film may have on the impact process. In this work, water drop impact onto both hydrophobic (glass) and hydrophilic (OTS) substrates which were covered by oil films (silicone) of different thickness (5um-50um) and viscosity (5cst-100cst) were performed. The effects of drop impact velocity, film thickness, and viscosity of the oil film and wettability of the substrate were studied. Our results show that when the film viscosity and impact velocity is low, the water drop deformed into the usual disk shape after impact, and rebounded from the surface. Such rebound phenomena disappears, when the viscosity of oil becomes very large. With the increase of the impact velocity, crown and splashing appears in the spreading phase. The crown and splashing behavior appears more easily with the increase of film thickness and decrease of its viscosity. It was also found that the substrate wettability can only affect the impact process in cases which drop has a large Webber number (We = 594), and the film's viscosity and thickness are small. This work was support by National Natural Science Foundation of China and the Project Number is 51506084.

  17. Water surface slope spectra in nearshore and river mouth environments

    NASA Astrophysics Data System (ADS)

    Laxague, N. J. M.; Ortiz-Suslow, D. G.; Haus, B. K.; Williams, N. J.; Graber, H. C.

    2016-05-01

    With the ever-growing interest in satellite remote sensing, direct observations of short wave characteristics are needed along coastal margins. These zones are characterized by a diversity of physical processes that can affect sea surface topography. Here we present connections made between ocean wave spectral shape and wind forcing in coastal waters using polarimetric slope sensing and eddy covariance methods; this is based on data collected in the vicinity of the mouth of the Columbia River (MCR) on the Oregon-Washington border. These results provide insights into the behavior of short waves in coastal environments under variable wind forcing; this characterization of wave spectra is an important step towards improving the use of radar remote sensing to sample these dynamic coastal waters. High wavenumber spectral peaks are found to appear for U 10 > 6 m/s but vanish for τ > 0.1 N/m2, indicating a stark difference between how wind speed and wind stress are related to the short-scale structure of the ocean surface. Near-capillary regime spectral shape is found to be less steep than in past observations and to show no discernable sensitivity to wind forcing.

  18. Factors Affecting Source-Water Quality after Disturbance of Forests by Wildfire

    NASA Astrophysics Data System (ADS)

    Murphy, S. F.; Martin, D. A.; McCleskey, R. B.; Writer, J. H.

    2015-12-01

    Forests yield high-quality water supplies to communities throughout the world, in part because forest cover reduces flooding and the consequent transport of suspended and dissolved constituents to surface water. Disturbance by wildfire reduces or eliminates forest cover, leaving watersheds susceptible to increased surface runoff during storms and reduced ability to retain contaminants. We assessed water-quality response to hydrologic events for three years after a wildfire in the Fourmile Creek Watershed, near Boulder, Colorado, and found that hydrologic and geochemical responses downstream of a burned area were primarily driven by small, brief convective storms that had relatively high, but not unusual, rainfall intensity. Total suspended sediment, dissolved organic carbon, nitrate, and manganese concentrations were 10-156 times higher downstream of a burned area compared to upstream, and water quality was sufficiently impaired to pose water-treatment concerns. The response in both concentration and yield of water-quality constituents differed depending on source availability and dominant watershed processes controlling the constituent. For example, while all constituent concentrations were highest during storm events, annual sediment yields downstream of the burned area were controlled by storm events and subsequent mobilization, whereas dissolved organic carbon yields were more dependent on spring runoff from upstream areas. The watershed response was affected by a legacy of historical disturbance: the watershed had been recovering from extensive disturbance by mining, railroad and road development, logging, and fires in the late 19th and early 20th centuries, and we observed extensive erosion of mine waste in response to these summer storms. Therefore, both storm characteristics and historical disturbance in a burned watershed must be considered when evaluating the role of wildfire on water quality.

  19. An ontology design pattern for surface water features

    USGS Publications Warehouse

    Sinha, Gaurav; Mark, David; Kolas, Dave; Varanka, Dalia; Romero, Boleslo E.; Feng, Chen-Chieh; Usery, E. Lynn; Liebermann, Joshua; Sorokine, Alexandre

    2014-01-01

    Surface water is a primary concept of human experience but concepts are captured in cultures and languages in many different ways. Still, many commonalities exist due to the physical basis of many of the properties and categories. An abstract ontology of surface water features based only on those physical properties of landscape features has the best potential for serving as a foundational domain ontology for other more context-dependent ontologies. The Surface Water ontology design pattern was developed both for domain knowledge distillation and to serve as a conceptual building-block for more complex or specialized surface water ontologies. A fundamental distinction is made in this ontology between landscape features that act as containers (e.g., stream channels, basins) and the bodies of water (e.g., rivers, lakes) that occupy those containers. Concave (container) landforms semantics are specified in a Dry module and the semantics of contained bodies of water in a Wet module. The pattern is implemented in OWL, but Description Logic axioms and a detailed explanation is provided in this paper. The OWL ontology will be an important contribution to Semantic Web vocabulary for annotating surface water feature datasets. Also provided is a discussion of why there is a need to complement the pattern with other ontologies, especially the previously developed Surface Network pattern. Finally, the practical value of the pattern in semantic querying of surface water datasets is illustrated through an annotated geospatial dataset and sample queries using the classes of the Surface Water pattern.

  20. Adsorption mechanism of water molecule on goethite (010) surface

    NASA Astrophysics Data System (ADS)

    Xiu, Fangyuan; Zhou, Long; Xia, Shuwei; Yu, Liangmin

    2016-12-01

    Goethite widely exists among ocean sediments; it plays an important role in fixing heavy metals and adsorbing organic contaminants. So the understanding of the adsorbing process of water molecule on its surface will be very helpful to further reveal such environmental friendly processes. The configuration, electronic properties and interaction energy of water molecules adsorbed on pnma goethite (010) surface were investigated in detail by using density functional theory on 6-31G (d,p) basis set and projector- augment wave (PAW) method. The mechanism of the interaction between goethite surface and H2O was proposed. Despite the differences in total energy, there are four possible types of water molecule adsorption configurations on goethite (010) surface (Aa, Ab, Ba, Bb), forming coordination bond with surface Fe atom. Results of theoretical modeling indicate that the dissociation process of adsorbed water is an endothermic reaction with high activation energy. The dissociation of adsorbed water molecule is a proton transportation process between water's O atoms and surface. PDOS results indicate that the bonding between H2O and (010) surface is due to the overlapping of water's 2p orbitals and Fe's 3d orbitals. These results clarify the mechanism on how adsorbed water is dissociated on the surface of goethite and potentially provide useful information of the surface chemistry of goethite.

  1. On the surface physics affecting solar oscillation frequencies

    NASA Astrophysics Data System (ADS)

    Houdek, G.; Trampedach, R.; Aarslev, M. J.; Christensen-Dalsgaard, J.

    2017-01-01

    Adiabatic oscillation frequencies of stellar models, computed with the standard mixing-length formulation for convection, increasingly deviate with radial order from observations in solar-like stars. Standard solar models overestimate adiabatic frequencies by as much as ˜ 20 μHz. In this Letter, we address the physical processes of turbulent convection that are predominantly responsible for the frequency differences between standard models and observations, also called `surface effects'. We compare measured solar frequencies from the Michelson Doppler Imager instrument on the SOlar and Heliospheric Observatory spacecraft with frequency calculations that include 3D hydrodynamical simulation results in the equilibrium model, non-adiabatic effects, and a consistent treatment of the turbulent pressure in both the equilibrium and stability computations. With the consistent inclusion of the above physics in our model computation, we are able to reproduce the observed solar frequencies to ≲3 μHz without the need of any additional ad hoc functional corrections.

  2. Quantitative evolution of volcanic surfaces affected by erosional processes

    NASA Astrophysics Data System (ADS)

    Lahitte, Pierre; Boillot-Airaksinen, Kim; Germa, Aurélie; Lavigne, Franck

    2016-04-01

    Variations through time of erosion dynamics, a key point to investigate correlation between climates and landform evolution, still remains poorly documented. One of the main issue in this type of study is the difficulty in determining for how long the erosion has operated. For this purpose, volcanic contexts are particularly suitable for defining the temporal dynamics governing erosion since the age of volcanic activity also constrains the age of emplacement of the surface today eroded, and thus the erosion duration. Furthermore, quantitative analysis of river profiles offers the opportunity to discriminate, among the wide variety of geological phenomena influencing erosion, their respective influence. Quantification of erosion processes and constrain of their signature on reliefs can be addressed by a morphometric approach of river profiles in volcanic environment through the analysis of digital topography (DEM). Break in slope zones, the so-called knickpoints, are usually related to a retreat of the point between the relict channel, upstream, and the adjusted channel, downstream. They are induced by either a lithological contrast, a change in the base level, uplift or eustatism, or a rejuvenation of the age of the volcanic surface. The stream long-profile and its watershed is also investigated by their concavity and hypsometric indexes to determine for how long the complexity and its heterogeneity along the valley incision remain visible. The present study focusses on the erosion of volcanoes in the Lesser Antilles, Reunion Island and Lombok Island (Indonesia). All located in tropical environments, these volcanoes offer a wide diversity of age (30 - 0 Ma) and lithology for investigating the respective influence of geological processes that have induced a large variety of shapes and volcanic history that we try to correlate to geometry of river profiles.

  3. Geomorphic and biophysical factors affecting water tracks in northern Alaska

    NASA Astrophysics Data System (ADS)

    Trochim, E. D.; Jorgenson, M. T.; Prakash, A.; Kane, D. L.

    2016-03-01

    A better understanding of water movement on hillslopes in Arctic environments is necessary for evaluating the effects of climate variability. Drainage networks include a range of features that vary in transport capacity from rills to water tracks to rivers. This research focuses on describing and classifying water tracks, which are saturated linear-curvilinear stripes that act as first-order pathways for transporting water off of hillslopes into valley bottoms and streams. Multiple factor analysis was used to develop five water tracks classes based on their geomorphic, soil, and vegetation characteristics. The water track classes were then validated using conditional inference trees, to verify that the classes were repeatable. Analysis of the classes and their characteristics indicate that water tracks cover a broad spectrum of patterns and processes primarily driven by surficial geology. This research demonstrates an improved approach to quantifying water track characteristics for specific areas, which is a major step toward understanding hydrological processes and feedbacks within a region.

  4. Factors Affecting Atrazine Concentration and Quantitative Determination in Chlorinated Water

    EPA Science Inventory

    Although the herbicide atrazine has been reported to not react measurably with free chlorine during drinking water treatment, this work demonstrates that at contact times consistent with drinking water distribution system residence times, a transformation of atrazine can be obser...

  5. [Distribution of perfluorinated compounds in surface water of Shenzhen reservoir groups].

    PubMed

    Wang, Xin-Xuan; Zhang, Hong; He, Long; Shen, Jin-Can; Chai, Zhi-Fang; Yang, Bo; Wang, Yan-Ping

    2014-06-01

    In order to study the concentrations of 14 perfluorinated compounds (PFCs) in 25 surface water samples collected from 12 Shenzhen reservoirs in November of 2012 and January of 2013, high performance liquid chromatography-tandem mass spectrometry was combined with solid phase extraction enrichment in this research. The results indicated that perfluorohexane sulfonate and long-chain (C > or = 11) PFCs were below the detection limit in all samples and perfluorooctane acid was the primary species. No significant difference in concentration was found between samples from the center of the reservoir and the outlet. Heavy precipitations diluted PFCs concentrations in surface water, but also led to PFOA input. PFCs concentrations in surface water of the reservoir were mainly affected by water inlet, source environment and geography. Although the water temperature had positive correlations with sigma PFCs concentration, the influence of heavy precipitations was stronger than that of water temperature.

  6. Biofilm Formation by the Fish Pathogen Flavobacterium columnare: Development and Parameters Affecting Surface Attachment

    PubMed Central

    Cai, Wenlong; De La Fuente, Leonardo

    2013-01-01

    Flavobacterium columnare is a bacterial fish pathogen that affects many freshwater species worldwide. The natural reservoir of this pathogen is unknown, but its resilience in closed aquaculture systems posits biofilm as the source of contagion for farmed fish. The objectives of this study were (i) to characterize the dynamics of biofilm formation and morphology under static and flow conditions and (ii) to evaluate the effects of temperature, pH, salinity, hardness, and carbohydrates on biofilm formation. Nineteen F. columnare strains, including representatives of all of the defined genetic groups (genomovars), were compared in this study. The structure of biofilm was characterized by light microscopy, confocal laser scanning microscopy, and scanning electron microscopy. F. columnare was able to attach to and colonize inert surfaces by producing biofilm. Surface colonization started within 6 h postinoculation, and microcolonies were observed within 24 h. Extracellular polysaccharide substances and water channels were observed in mature biofilms (24 to 48 h). A similar time course was observed when F. columnare formed biofilm in microfluidic chambers under flow conditions. The virulence potential of biofilm was confirmed by cutaneous inoculation of channel catfish fingerlings with mature biofilm. Several physicochemical parameters modulate attachment to surfaces, with the largest influence being exerted by hardness, salinity, and the presence of mannose. Maintenance of hardness and salinity values within certain ranges could prevent biofilm formation by F. columnare in aquaculture systems. PMID:23851087

  7. Biofilm formation by the fish pathogen Flavobacterium columnare: development and parameters affecting surface attachment.

    PubMed

    Cai, Wenlong; De La Fuente, Leonardo; Arias, Covadonga R

    2013-09-01

    Flavobacterium columnare is a bacterial fish pathogen that affects many freshwater species worldwide. The natural reservoir of this pathogen is unknown, but its resilience in closed aquaculture systems posits biofilm as the source of contagion for farmed fish. The objectives of this study were (i) to characterize the dynamics of biofilm formation and morphology under static and flow conditions and (ii) to evaluate the effects of temperature, pH, salinity, hardness, and carbohydrates on biofilm formation. Nineteen F. columnare strains, including representatives of all of the defined genetic groups (genomovars), were compared in this study. The structure of biofilm was characterized by light microscopy, confocal laser scanning microscopy, and scanning electron microscopy. F. columnare was able to attach to and colonize inert surfaces by producing biofilm. Surface colonization started within 6 h postinoculation, and microcolonies were observed within 24 h. Extracellular polysaccharide substances and water channels were observed in mature biofilms (24 to 48 h). A similar time course was observed when F. columnare formed biofilm in microfluidic chambers under flow conditions. The virulence potential of biofilm was confirmed by cutaneous inoculation of channel catfish fingerlings with mature biofilm. Several physicochemical parameters modulate attachment to surfaces, with the largest influence being exerted by hardness, salinity, and the presence of mannose. Maintenance of hardness and salinity values within certain ranges could prevent biofilm formation by F. columnare in aquaculture systems.

  8. Molecular dynamics studies of interfacial water at the alumina surface.

    SciTech Connect

    Argyris, Dr. Dimitrios; Ho, Thomas; Cole, David

    2011-01-01

    Interfacial water properties at the alumina surface were investigated via all-atom equilibrium molecular dynamics simulations at ambient temperature. Al-terminated and OH-terminated alumina surfaces were considered to assess the structural and dynamic behavior of the first few hydration layers in contact with the substrates. Density profiles suggest water layering up to {approx}10 {angstrom} from the solid substrate. Planar density distribution data indicate that water molecules in the first interfacial layer are organized in well-defined patterns dictated by the atomic terminations of the alumina surface. Interfacial water exhibits preferential orientation and delayed dynamics compared to bulk water. Water exhibits bulk-like behavior at distances greater than {approx}10 {angstrom} from the substrate. The formation of an extended hydrogen bond network within the first few hydration layers illustrates the significance of water?water interactions on the structural properties at the interface.

  9. SWOT, The Surface Water and Ocean Topography Satellite Mission (Invited)

    NASA Astrophysics Data System (ADS)

    Alsdorf, D.; Andreadis, K.; Bates, P. D.; Biancamaria, S.; Clark, E.; Durand, M. T.; Fu, L.; Lee, H.; Lettenmaier, D. P.; Mognard, N. M.; Moller, D.; Morrow, R. A.; Rodriguez, E.; Shum, C.

    2009-12-01

    Surface fresh water is essential for life, yet we have surprisingly poor knowledge of its variability in space and time. Similarly, ocean circulation fundamentally drives global climate variability, yet the ocean current and eddy field that affects ocean circulation and heat transport at the sub-mesoscale resolution and particularly near coastal and estuary regions, is poorly known. About 50% of the vertical exchange of water properties (nutrients, dissovled CO2, heat, etc) in the upper ocean is taking place at the sub-mesoscale. Measurements from the Surface Water and Ocean Topography satellite mission (SWOT) will make strides in understanding these processes and improving global ocean models for studying climate change. SWOT is a swath-based interferometric-altimeter designed to acquire elevations of ocean and terrestrial water surfaces at unprecedented spatial and temporal resolutions. The mission will provide measurements of storage changes in lakes, reservoirs, and wetlands as well as estimates of discharge in rivers. These measurements are important for global water and energy budgets, constraining hydrodynamic models of floods, carbon evasion through wetlands, and water management, especially in developing nations. Perhaps most importantly, SWOT measurements will provide a fundamental understanding of the spatial and temporal variations in global surface waters, which for many countries are the primary source of water. An on-going effort, the “virtual mission” (VM) is designed to help constrain the required height and slope accuracies, the spatial sampling (both pixels and orbital coverage), and the trade-offs in various temporal revisits. Example results include the following: (1) Ensemble Kalman filtering of VM simulations recover water depth and discharge, reducing the discharge RMSE from 23.2% to 10.0% over an 84-day simulation period, relative to a simulation without assimilation. (2) Ensemble-based data assimilation of SWOT like measurements yields

  10. Investigation of surface water behavior during glaze ice accretion

    NASA Technical Reports Server (NTRS)

    Hansman, R. John, Jr.; Turnock, Stephen R.

    1990-01-01

    A series of experimental investigations that focused on isolating the primary factors that control the behavior of unfrozen surface water during glaze ice accretion were conducted. Detailed microvideo observations were made of glaze ice accretions on 2.54 cm diam cylinders in a closed-loop refrigerated wind tunnel. Distinct zones of surface water behavior were observed; a smooth wet zone in the stagnation region with a uniform water film, a rough zone where surface tension effects caused coalescence of surface water into stationary beads, and a zone where surface water ran back as rivulets. The location of the transition from the smooth to the rough zone was found to migrate towards the stagnation point with time. Comparative tests were conducted to study the effect of the substrate thermal and roughness properties on ice accretion. The importance of surface water behavior was evaluated by the addition of a surface tension reducing agent to the icing tunnel water supply, which significantly altered the accreted glaze ice shape. Measurements were made to determine the contact angle behavior of water droplets on ice. A simple multizone modification to current glaze ice accretion models was proposed to include the observed surface roughness behavior.

  11. Economic Impacts of Surface Mining on Household Drinking Water Supplies

    EPA Science Inventory

    This report provides information on the economic and social impacts of contaminated surface and ground water supplies on residents and households near surface mining operations. The focus is on coal slurry contamination of water supplies in Mingo County, West Virginia, and descr...

  12. Models of Fate and Transport of Pollutants in Surface Waters

    ERIC Educational Resources Information Center

    Okome, Gloria Eloho

    2013-01-01

    There is the need to answer very crucial questions of "what happens to pollutants in surface waters?" This question must be answered to determine the factors controlling fate and transport of chemicals and their evolutionary state in surface waters. Monitoring and experimental methods are used in establishing the environmental states.…

  13. Biogeochemistry of DMS in Surface Waters

    NASA Technical Reports Server (NTRS)

    Dacey, J. W. H.

    1997-01-01

    Dimethylsulfide (DMS) is important in influencing the formation of aerosols in the troposphere over large areas of the world's oceans. Understanding the dynamics of aerosols is important to understanding the earth's radiation balance. In evaluating the factors controlling DMS in the troposphere it is vital to understand the dynamics of DMS in the surface ocean. The biogeochemical processes controlling DMS concentration in seawater are myriad; modeling and theoretical estimation are problematic. At the beginning of this project we believed that we were on the verge of simplifying the ship-track measurement of DMS, and we proposed to deploy such a system to develop a database relating high frequency DMS measurements to biological and physicochemical and optical properties of surface water that can be quantified by remote sensing techniques. We designed a system to measure DMS concomitantly with other basic chemical and biological data in a flow-through system. The project was collaborative between Woods Hole Oceanographic Institution (WHOI) and Bermuda Biological Station for Research (BBSR). The project on which we are reporting was budgeted for only one year with a one year no-cost extension. At WHOI our effort was directed towards designing traps which would be used to concentrate DMS from seawater and allow storage for subsequent analysis. At that time, GC systems were too large for easy long-term deployment on a research vessel like R/V Weatherbird, so we focused on simplifying the shipboard sampling procedure. Initial studies of sample recovery with high levels of DMS suggested that Carboxen 1000, a relatively new carbon molecular sieve, could be used as a stable storage medium. The affinity of Carboxen for DMS is several orders of magnitude higher than gold wool (another adsorbent used for DMS collection) on a weight or volume basis. Furthermore, Carboxen's affinity for DMS is also far less susceptible to humidity than gold wool. Unfortunately, further

  14. Sea-ice and surface water circulation, Alaskan continental shelf

    NASA Technical Reports Server (NTRS)

    Wright, F. F.; Sharma, G. D.; Burns, J. J. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Over 1500 water samples from surface and from standard hydrographic depths were collected during June and July 1973 from Bering Sea and Gulf of Alaska. The measurement of temperature, salinity, and productivity indicated that various distinct water masses cover the Bering Sea Shelf. The suspended load in surface waters will be correlated with the ERTS-1 imagery as it becomes available to delineate the surface water circulation. The movement of ice floes in the Bering Strait and Bering Sea indicated that movement of ice varies considerably and may depend on wind stress as well as ocean currents.

  15. Potentiometric surface of the Floridan Aquifer, Southwest Florida Water Management District and adjacent areas, September 1978

    USGS Publications Warehouse

    Wolansky, R.M.; Mills, L.R.; Woodham, W.M.; Laughlin, C.P.

    1978-01-01

    A September 1978 potentiometric-surface map depicts the annual high water-level period of the Floridan aquifer in the Southwest Florida Management District. Potentiometric levels increased 10 to 25 feet between May 1978 and September 1978, in the citrus and farming sections of southern Hillsborough, northern Hardee, southwestern Polk and Manatee Counties. These areas are widely affected by pumping for irrigation and have the greatest fluctuations in water-levels between the low and high water-level periods. Water-level rises in coastal, northern and southern areas of the Water Management District ranged from 0 to 10 feet. (Woodard-USGS)

  16. Potentiometric surface of the Floridan Aquifer, Southwest Florida Water Management District, September 1979

    USGS Publications Warehouse

    Yobbi, D.K.; Woodham, W.M.; Laughlin, Charles P.

    1979-01-01

    A September 1979 potentiometric-surface map of the Southwest Florida Water Management District depicts the annual high water-level period. Potentiometric levels increased 1 to 20 feet between May 1979 and September 1979, in the citrus and farming sections of southern Hillsborough, northern Hardee, southwestern Polk, northwestern DeSoto, and Manatee Counties. Water levels in these areas are widely affected by pumping for irrigation and have the greatest range in fluctuations. Water-level increases ranged from 0 to 7 feet in coastal, northern, and southern areas of the Water Management District. Generally, potentiometric levels were higher than previous September levels due to heavy rains in August and September. (USGS)

  17. Water resources data, New Jersey, water year 2005. Volume 1 - surface-water data

    USGS Publications Warehouse

    White, B.T.; Hoppe, H.L.; Centinaro, G.L.; Dudek, J.F.; Painter, B.S.; Protz, A.R.; Reed, T.J.; Shvanda, J.C.; Watson, A.F.

    2006-01-01

    Water-resources data for the 2005 water year for New Jersey are presented in three volumes, and consists of records of stage, discharge, and water-quality of streams; stage and contents of lakes and reservoirs; and water levels and water-quality of ground water. Volume 1 contains discharge records for 103 gaging stations; tide summaries at 28 tidal gaging stations; stage and contents at 34 lakes and reservoirs; and diversions from 50 surface-water sources. Also included are stage and discharge for 116 crest-stage partial-record stations, stage-only at 33 tidal crest-stage gages, and discharge for 155 low-flow partial-record stations. Locations of these sites are shown in figures 8-11. Additional discharge measurements were made at 222 miscellaneous sites that are not part of the systematic data-collection program. Discontinued station tables for gaging stations, crest-stage gages, tidal crest-stage and tidal gaging stations show historical coverage. The data in this report represent that part of the National Water Information System (NWIS) data collected by the United States Geological Survey (USGS). Hydrologic conditions are also described for this water year, including stream-flow, precipitation, reservoir conditions, and air temperatures.

  18. Water resources data, New Jersey, water year 2004-volume 1. surface-water data

    USGS Publications Warehouse

    Centinaro, G.L.; White, B.T.; Hoppe, H.L.; Dudek, J.F.; Protz, A.R.; Reed, T.J.; Shvanda, J.C.; Watson, A.F.

    2005-01-01

    Water-resources data for the 2004 water year for New Jersey are presented in three volumes, and consists of records of stage, discharge, and water-quality of streams; stage and contents of lakes and reservoirs; and water levels and water-quality of ground water. Volume 1 contains discharge records for 105 gaging stations; tide summaries at 27 tidal gaging stations; stage and contents at 39 lakes and reservoirs; and diversions from 51 surface-water sources. Also included are stage and discharge for 108 crest-stage partial-record stations, stage-only at 34 tidal crest-stage gages, and discharge for 124 low-flow partial-record stations. Locations of these sites are shown in figures 8-11. Additional discharge measurements were made at 131 miscellaneous sites that are not part of the systematic data-collection program. Discontinued station tables for gaging stations, crest-stage gages, tidal crest-stage and tidal gaging stations show historical coverage. The data in this report represent that part of the National Water Information System (NWIS) data collected by the United States Geological Survey (USGS). Hydrologic conditions are also described for this water year, including stream-flow, precipitation, reservoir conditions, and air temperatures.

  19. Water Interaction with Pristine and Nanopatterned Graphite Surfaces

    NASA Astrophysics Data System (ADS)

    Chakarov, Dinko

    2015-03-01

    We used number of surface sensitive techniques to study and compare the interaction of water with pristine surface of highly oriented pyrolytic graphite and model nanostructured surfaces fabricated by hole-mask colloidal lithography and oxygen plasma etching. Surface morphology and concentration of defects play important role and determine the amount of water bound in two- and three-dimensional hydrogen-bonded networks and thus the structure of ice films. Similarly, the amount and concentration of intersheet openings control the rate of water intercalation into graphite structures. The new findings are of particular interest for development of graphene exfoliation methods and for better understanding of graphene functionalization.

  20. Herbicide Metabolites in Surface Water and Groundwater: Introduction and Overview

    USGS Publications Warehouse

    Thurman, E.M.; Meyer, M.T.

    1996-01-01

    Several future research topics for herbicide metabolites in surface and ground water are outlined in this chapter. They are herbicide usage, chemical analysis of metabolites, and fate and transport of metabolites in surface and ground water. These three ideas follow the themes in this book, which are the summary of a symposium of the American Chemical Society on herbicide metabolites in surface and ground water. First, geographic information systems allow the spatial distribution of herbicide-use data to be combined with geochemical information on fate and transport of herbicides. Next these two types of information are useful in predicting the kinds of metabolites present and their probable distribution in surface and ground water. Finally, methods development efforts may be focused on these specific target analytes. This chapter discusses these three concepts and provides an introduction to this book on the analysis, chemistry, and fate and transport of herbicide metabolites in surface and ground water.

  1. Does colloid shape affect detachment of colloids by a moving air-water interface?

    PubMed

    Aramrak, Surachet; Flury, Markus; Harsh, James B; Zollars, Richard L; Davis, Howard P

    2013-05-14

    Air-water interfaces interact strongly with colloidal particles by capillary forces. The magnitude of the interaction force depends on, among other things, the particle shape. Here, we investigate the effects of particle shape on colloid detachment by a moving air-water interface. We used hydrophilic polystyrene colloids with four different shapes (spheres, barrels, rods, and oblong disks), but otherwise identical surface properties. The nonspherical shapes were created by stretching spherical microspheres on a film of polyvinyl alcohol (PVA). The colloids were then deposited onto the inner surface of a glass channel. An air bubble was introduced into the channel and passed through, thereby generating a receding followed by an advancing air-water interface. The detachment of colloids by the air-water interfaces was visualized with a confocal microscope, quantified by image analysis, and analyzed statistically to determine significant differences. For all colloid shapes, the advancing air-water interface caused pronounced colloid detachment (>63%), whereas the receding interface was ineffective in colloid detachment (<1.5%). Among the different colloid shapes, the barrels were most readily removed (94%) by the advancing interface, followed by the spheres and oblong disks (80%) and the rods (63%). Colloid detachment was significantly affected by colloid shape. The presence of an edge, as it occurs in a barrel-shaped colloid, promoted colloid detachment because the air-water interface is being pinned at the edge of the colloid. This suggests that the magnitude of colloid mobilization and transport in porous media is underestimated for edged particles and overestimated for rodlike particles when a sphere is used as a model colloid.

  2. Adsorption of n-alkane vapours at the water surface.

    PubMed

    Biscay, Frédéric; Ghoufi, Aziz; Malfreyt, Patrice

    2011-06-21

    Monte Carlo simulations are reported here to predict the surface tension of the liquid-vapour interface of water upon adsorption of alkane vapours (methane to hexane). A decrease of the surface tension has been established from n-pentane. A correlation has been evidenced between the decrease of the surface tension and the absence of specific arrangement at the water surface for n-pentane and n-hexane. The thermodynamic stability of the adsorption layer and the absence of film for longer alkanes have been checked through the calculation of a potential of mean force. This complements the work recently published [Ghoufi et al., Phys. Chem. Chem. Phys., 2010, 12, 5203] concerning the adsorption of methane at the water surface. The decrease of the surface tension has been interpreted in terms of the degree of hydrogen bonding of water molecules at the liquid-vapour interface upon adsorption.

  3. 40 CFR 257.3-3 - Surface water.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Surface water. 257.3-3 Section 257.3-3... and Practices § 257.3-3 Surface water. (a) For purposes of section 4004(a) of the Act, a facility... Water Act, as amended. (b) For purposes of section 4004(a) of the Act, a facility shall not cause...

  4. 40 CFR 257.3-3 - Surface water.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Surface water. 257.3-3 Section 257.3-3... and Practices § 257.3-3 Surface water. (a) For purposes of section 4004(a) of the Act, a facility... Water Act, as amended. (b) For purposes of section 4004(a) of the Act, a facility shall not cause...

  5. 40 CFR 257.3-3 - Surface water.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Surface water. 257.3-3 Section 257.3-3... and Practices § 257.3-3 Surface water. (a) For purposes of section 4004(a) of the Act, a facility... Water Act, as amended. (b) For purposes of section 4004(a) of the Act, a facility shall not cause...

  6. 40 CFR 257.3-3 - Surface water.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Surface water. 257.3-3 Section 257.3-3... and Practices § 257.3-3 Surface water. (a) For purposes of section 4004(a) of the Act, a facility... Water Act, as amended. (b) For purposes of section 4004(a) of the Act, a facility shall not cause...

  7. 40 CFR 257.3-3 - Surface water.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Surface water. 257.3-3 Section 257.3-3... and Practices § 257.3-3 Surface water. (a) For purposes of section 4004(a) of the Act, a facility... Water Act, as amended. (b) For purposes of section 4004(a) of the Act, a facility shall not cause...

  8. Surface-Water Quality-Assurance Plan for the USGS Wisconsin Water Science Center

    USGS Publications Warehouse

    Garn, H.S.

    2007-01-01

    This surface-water quality-assurance plan documents the standards, policies, and procedures used by the Wisconsin Water Science Center of the U.S. Geological Survey, Water Resources Discipline, for activities related to the collection, processing, storage, analysis, management, and publication of surface-water data. The roles and responsibilities of Water Science Center personnel in following these policies and procedures including those related to safety and training are presented.

  9. Simulating continental surface waters: An application to Holocene northern Africa

    SciTech Connect

    Coe, M.T.

    1997-07-01

    A model (SWAM) to predict surface waters (lakes and wetlands) on the scale of atmospheric general circulation models is developed. SWAM is based on a linear reservoir hydrologic model and is driven by runoff, precipitation, evaporation, topography, and water transport directions. SWAM is applied to the modern climate using observed estimates of the hydrologic variables and a 5{prime} {times} 5{prime} digital terrain model to represent topography. It simulates the surface water area of northern Africa (about 1% of the land area) in reasonable agreement with observed estimates (0.65%). A middle Holocene (6000 yr BP) simulation using the results of the GENESIS atmospheric general circulation model (AGCM) illustrates the sensitivity of the simulated surface waters to climatic changes and the model`s utility as a diagnostic tool for AGCMs. SWAM and GENESIS capture the general pattern of climate change 6000 yr BP. There is an increase in the simulated surface water area from about 1% to about 3% of the land area, including an increase in the area of Lake Chad by about five times and extensive surface water throughout northern Mali, consistent with observed patterns of surface water change during the Holocene. Limitations in the modeling of surface waters appear to result from the relatively coarse resolution of global elevation data. 73 refs., 6 figs., 2 tabs.

  10. Implementation of remote-sensed surface water condition into a land surfaces model

    NASA Astrophysics Data System (ADS)

    Byun, Ui-Yong; Sung, Hyun Min; Hong, Je-Woo; Hong, Jinkyu; Kunstmann, Harald; Arnault, Joel

    2016-04-01

    We will present our current efforts to incorporate remote-sensed surface water conditions into a land surface model in the Weather Research and Forecasting model (WRF) for better representation of cropland in East Asia. In this presentation, we introduce the model development and discuss its regional impacts on hydrological cycle in perspectives of the PBL-surface interactions and surface evapotranspiration tagging.

  11. Water Quality Indicators Guide [and Teacher's Handbook]: Surface Waters.

    ERIC Educational Resources Information Center

    Terrell, Charles R.; Perfetti, Patricia Bytnar

    This guide aids in finding water quality solutions to problems from sediment, animal wastes, nutrients, pesticides, and salts. The guide allows users to learn the fundamental concepts of water quality assessment by extracting basic tenets from geology, hydrology, biology, ecology, and wastewater treatment. An introduction and eight chapters are…

  12. Layers of Porous Superhydrophobic Surfaces for Robust Water Repellency

    NASA Astrophysics Data System (ADS)

    Ahmadi, Farzad; Boreyko, Jonathan; Nature-Inspired Fluids; Interfaces Team

    2015-11-01

    In nature, birds exhibit multiple layers of superhydrophobic feathers that repel water. Inspired by bird feathers, we utilize porous superhydrophobic surfaces and compare the wetting and dewetting characteristics of a single surface to stacks of multiple surfaces. The superhydrophobic surfaces were submerged in water in a closed chamber. Pressurized gas was regulated to measure the critical pressure for the water to fully penetrate through the surfaces. In addition to using duck feathers, two-tier porous superhydrophobic surfaces were fabricated to serve as synthetic mimics with a controlled surface structure. The energy barrier for the wetting transition was modeled as a function of the number of layers and their orientations with respect to each other. Moreover, after partial impalement into a subset of the superhydrophobic layers, it was observed that a full dewetting transition was possible, which suggests that natural organisms can exploit their multiple layers to prevent irreversible wetting.

  13. Water resources data, Iowa, water year 2001, Volume 2. surface water--Missouri River basin, and ground water

    USGS Publications Warehouse

    Nalley, G.M.; Gorman, J.G.; Goodrich, R.D.; Miller, V.E.; Turco, M.J.; Linhart, S.M.

    2002-01-01

    The Water Resources Division of the U.S. Geological Survey, in cooperation with State, county, municipal, and other Federal agencies, obtains a large amount of data pertaining to the water resources of Iowa each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make this data readily available to interested parties outside of the Geological Survey, the data is published annually in this report series entitled “Water Resources Data - Iowa” as part of the National Water Data System. Water resources data for water year 2001 for Iowa consists of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality of ground water. This report, in two volumes, contains stage or discharge records for 132 gaging stations; stage records for 9 lakes and reservoirs; water-quality records for 4 gaging stations; sediment records for 13 gaging stations; and water levels for 163 ground-water observation wells. Also included are peak-flow data for 92 crest-stage partial-record stations, water-quality data from 86 municipal wells, and precipitation data collected at 6 gaging stations and 2 precipitation sites. Additional water data were collected at various sites not included in the systematic data-collection program, and are published here as miscellaneous measurements and analyses. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating local, State, and Federal agencies in Iowa.Records of discharge or stage of streams, and contents or stage of lakes and reservoirs were first published in a series of U.S. Geological Survey water-supply papers entitled “Surface Water Supply of the United States.” Through September 30, 1960, these water-supply papers were published in an annual series; during 1961-65 and 1966-70, they

  14. DO AUTOCHTHONOUS BACTERIA AFFECT GIARDIA CYST SURVIVAL IN NATURAL WATERS?

    EPA Science Inventory

    Giardia lamblia survives in and is transmitted to susceptible human and animal populations via water, where it is present in an environmentally resistant cyst form. Previous research has highlighted the importance of water temperature in cyst survival, and has also suggested the ...

  15. Investigating Factors that Affect Dissolved Oxygen Concentration in Water

    ERIC Educational Resources Information Center

    Jantzen, Paul G.

    1978-01-01

    Describes activities that demonstrate the effects of factors such as wind velocity, water temperature, convection currents, intensity of light, rate of photosynthesis, atmospheric pressure, humidity, numbers of decomposers, presence of oxidizable ions, and respiration by plants and animals on the dissolved oxygen concentration in water. (MA)

  16. How Do Our Actions Affect Water Quantity and Quality?

    ERIC Educational Resources Information Center

    Gordon, Jessica

    2008-01-01

    Water is an essential resource for all living things. How we live on our watershed can impact water quantity and quality. It is important to recognize how humans alter watershed dynamics, but students often find it challenging to visualize watershed processes and understand how decisions that they make as individuals and together as a community…

  17. The Impact of Surface/Ground Water Interactions on Wetland Hydrology

    NASA Astrophysics Data System (ADS)

    Kazezyilmaz-Alhan, C. M.; Medina, M. A.

    2004-12-01

    The crucial role of surface water/ground water interactions in water resources and hydrologic applications has been taking center stage recently. The interaction of ground water occurs with all types of surface waters (e.g., streams, lakes, wetlands and reservoirs) and pollutants in either surface or ground water get mixed and the quality of both sources is affected by each other. Wetlands are land areas which are frequently transitional between uplands and flooded systems. In the last two decades, the beneficial aspects of treatment wetlands have been studied. Yet, investigating surface/ground water interactions within wetlands has only recently become a critical issue, especially in order to understand the effect of wetland hydrology on water quality. For this purpose, a comprehensive wetland model is being developed that incorporates these surface/ground water interactions. The effect of wetlands on storm water runoff is investigated by routing the overland flow through the wetland area, collecting the runoff within the stream and transporting it to the receiving water using diffusion wave routing techniques. An implicit finite difference numerical scheme is used to solve the diffusion wave formulation. The wetland model includes Thornthwaite evapotranspiration and Green-Ampt infiltration models in the water budget, in addition to rainfall and groundwater recharge/discharge terms. The exchange of water between the wetland and subsurface is represented by Darcy's Law. In addition, the newest version of the well-known EPA Stormwater Management Model (SWMM5) is incorporated into this wetland model to simulate the runoff quantity and quality flowing into the wetland area from upstream urban areas. A preliminary application of the model to the Duke University West Campus and the Duke University constructed wetland area in the Sandy Creek watershed is presented for a one-year continuous simulation. The obtained velocity profiles are used to investigate the effect of

  18. Surface properties of a single perfluoroalkyl group on water surfaces studied by surface potential measurements.

    PubMed

    Shimoaka, Takafumi; Tanaka, Yuki; Shioya, Nobutaka; Morita, Kohei; Sonoyama, Masashi; Amii, Hideki; Takagi, Toshiyuki; Kanamori, Toshiyuki; Hasegawa, Takeshi

    2016-12-01

    A discriminative study of a single perfluoroalkyl (Rf) group from a bulk material is recently recognized to be necessary toward the total understanding of Rf compounds based on a primary chemical structure. The single molecule and the bulk matter have an interrelationship via an intrinsic two-dimensional (2D) aggregation property of an Rf group, which is theorized by the stratified dipole-arrays (SDA) theory. Since an Rf group has dipole moments along many C-F bonds, a single Rf group would possess a hydrophilic-like character on the surface. To reveal the hydration character of a single Rf group, in the present study, surface potential (ΔV) measurements are performed for Langmuir monolayers of Rf-containing compounds. From a comparative study with a monolayer of a normal hydrocarbon compound, the hydration/dehydration dynamics of a lying Rf group on water has first been monitored by ΔV measurements, through which a single Rf group has been revealed to have a unique "dipole-interactive" character, which enables the Rf group interacted with the water 'surface.' In addition, the SDA theory proves to be useful to predict the 2D aggregation property across the phase transition temperature of 19°C by use of the ΔV measurements.

  19. Interaction of Water with Metal Surfaces

    DTIC Science & Technology

    1994-02-18

    Government This document has been approved for public release and sale; its distribution is unlimited 94-06693 94 2 28 1104 IIIi Ih im1lii P Best...label w) To begin, consider a perfect crystal surface in which the basic vectors of the lattice are a, and a 2. Next consider a point particle p at r...pp, zp) where zp is the perpendicular distance above the surface and pp is the projection of rp onto the surface plane. The label p stands for 0 or

  20. Interim Enhanced Surface Water Treatment Rule Documents

    EPA Pesticide Factsheets

    The IESWTR balances the need for treatment with potential increases in disinfection by -products. The materials found on this page are intended to assist public water systems and state in the implementation of the IESWTR.

  1. OCCURRENCE OF ENTERIC VIRUSES IN SURFACE WATERS

    EPA Science Inventory

    Human enteric viruses cause a number of diseases when individuals are exposed to contaminated drinking & recreational waters. Vaccination against poliovirus has virtually eliminated poliomyelitis from the planet. Other members of enterovirus group cause numerous diseases. Hepatit...

  2. Petroleum coke adsorption as a water management option for oil sands process-affected water.

    PubMed

    Zubot, Warren; MacKinnon, Michael D; Chelme-Ayala, Pamela; Smith, Daniel W; Gamal El-Din, Mohamed

    2012-06-15

    Water is integral to both operational and environmental aspects of the oil sands industry. A water treatment option based on the use of petroleum coke (PC), a by-product of bitumen upgrading, was examined as an opportunity to reduce site oil sands process-affected water (OSPW) inventories and net raw water demand. Changes in OSPW quality when treated with PC included increments in pH levels and concentrations of vanadium, molybdenum, and sulphate. Constituents that decreased in concentration after PC adsorption included total acid-extractable organics (TAO), bicarbonate, calcium, barium, magnesium, and strontium. Changes in naphthenic acids (NAs) speciation were observed after PC adsorption. A battery of bioassays was used to measure the OSPW toxicity. The results indicated that untreated OSPW was toxic towards Vibrio fischeri and rainbow trout. However, OSPW treated with PC at appropriate dosages was not acutely toxic towards these test organisms. Removal of TAO was found to be an adsorption process, fitting the Langmuir and Langmuir-Freundlich isotherm models. For TAO concentrations of 60 mg/L, adsorption capacities ranged between 0.1 and 0.46 mg/g. This study demonstrates that freshly produced PC from fluid cokers provides an effective treatment of OSPW in terms of key constituents' removal and toxicity reduction.

  3. Factors affecting the surface shape and removal rate of workpiece in CMP

    NASA Astrophysics Data System (ADS)

    Fan, Quantang; Zhu, Jianqiang; Zhang, Baoan; Shen, Weixing

    2006-02-01

    The factors affecting the removal rate and surface shape in CMP is introduced. The edge effect is a critical problem in CMP process, which behaves on the global planarization of workpiece-pad interface and change on local planarization and results in collapse or rise in workpiece edges. One of the main factors of edge effect is Von Mises stress, which is a composition stress. The main affecting factor of Von Mises is the axial stress component. The factors affecting the material removal rate (MRR) of workpiece surface and surface nonuniformity include shape, material properties and thickness of pad and polishing media. Factors of load and relative velocity in CMP are also discussed.

  4. Surface coating affects behavior of metallic nanoparticles in a biological environment

    PubMed Central

    Jurašin, Darija Domazet; Ćurlin, Marija; Capjak, Ivona; Crnković, Tea; Lovrić, Marija; Babič, Michal; Horák, Daniel; Gajović, Srećko

    2016-01-01

    Summary Silver (AgNPs) and maghemite, i.e., superparamagnetic iron oxide nanoparticles (SPIONs) are promising candidates for new medical applications, which implies the need for strict information regarding their physicochemical characteristics and behavior in a biological environment. The currently developed AgNPs and SPIONs encompass a myriad of sizes and surface coatings, which affect NPs properties and may improve their biocompatibility. This study is aimed to evaluate the effects of surface coating on colloidal stability and behavior of AgNPs and SPIONs in modelled biological environments using dynamic and electrophoretic light scattering techniques, as well as transmission electron microscopy to visualize the behavior of the NP. Three dispersion media were investigated: ultrapure water (UW), biological cell culture medium without addition of protein (BM), and BM supplemented with common serum protein (BMP). The obtained results showed that different coating agents on AgNPs and SPIONs produced different stabilities in the same biological media. The combination of negative charge and high adsorption strength of coating agents proved to be important for achieving good stability of metallic NPs in electrolyte-rich fluids. Most importantly, the presence of proteins provided colloidal stabilization to metallic NPs in biological fluids regardless of their chemical composition, surface structure and surface charge. In addition, an assessment of AgNP and SPION behavior in real biological fluids, rat whole blood (WhBl) and blood plasma (BlPl), revealed that the composition of a biological medium is crucial for the colloidal stability and type of metallic NP transformation. Our results highlight the importance of physicochemical characterization and stability evaluation of metallic NPs in a variety of biological systems including as many NP properties as possible. PMID:26977382

  5. Coastal groundwater/surface-water interactions: a Great Lakes case study

    USGS Publications Warehouse

    Neff, Brian P.; Haack, Sheridan K.; Rosenberry, Donald O.; Savino, Jacqueline F.; Lundstrom, Scott C.

    2006-01-01

    Key similarities exist between marine and Great Lakes coastal environments. Water and nutrient fluxes across lakebeds in the Great Lakes are influenced by seiche and wind set-up and set-down, analogous to tidal influence in marine settings. Groundwater/surface-water interactions also commonly involve a saline-fresh water interface, although in the Great-Lakes cases, it is groundwater that is commonly saline and surface water that is fresh. Evapotranspiration also affects nearshore hydrology in both settings. Interactions between groundwater and surface water have recently been identified as an important component of ecological processes in the Great Lakes. Water withdrawals and the reversal of the groundwater/surface water seepage gradient are also common to many coastal areas around the Great Lakes. As compared to surface water, regional groundwater that discharges to western Lake Erie from Michigan is highly mineralized. Studies conducted by the U.S. Geological Survey at Erie State Game Area in southeastern Michigan, describe groundwater flow dynamics and chemistry, shallow lake-water chemistry, and fish and invertebrate communities. Results presented here provide an overview of recent progress of ongoing interdisciplinary studies of Great Lakes nearshore systems and describe a conceptual model that identifies relations among geologic, hydrologic, chemical, and biological processes in the coastal habitats of Lake Erie. This conceptual model is based on analysis of hydraulic head in piezometers at the study site and chemical analysis of deep and shallow coastal groundwater.

  6. Dietary water affects human skin hydration and biomechanics

    PubMed Central

    Palma, Lídia; Marques, Liliana Tavares; Bujan, Julia; Rodrigues, Luís Monteiro

    2015-01-01

    It is generally assumed that dietary water might be beneficial for the health, especially in dermatological (age preventing) terms. The present study was designed to quantify the impact of dietary water on major indicators of skin physiology. A total of 49 healthy females (mean 24.5±4.3 years) were selected and characterized in terms of their dietary daily habits, especially focused in water consumption, by a Food Frequency Questionnaire. This allowed two groups to be set – Group 1 consuming less than 3,200 mL/day (n=38), and Group 2 consuming more than 3,200 mL/day (n=11). Approximately 2 L of water were added to the daily diet of Group 2 individuals for 1 month to quantify the impact of this surplus in their skin physiology. Measurements involving epidermal superficial and deep hydration, transepidermal water loss, and several biomechanical descriptors were taken at day 0 (T0), 15 (T1), and 30 (T2) in several anatomical sites (face, upper limb, and leg). This stress test (2 L/day for 30 days) significantly modified superficial and deep skin hydration, especially in Group 1. The same impact was registered with the most relevant biomechanical descriptors. Thus, in this study, it is clear that higher water inputs in regular diet might positively impact normal skin physiology, in particular in those individuals with lower daily water consumptions. PMID:26345226

  7. Screening and human health risk assessment of pharmaceuticals and their transformation products in Dutch surface waters and drinking water.

    PubMed

    de Jongh, Cindy M; Kooij, Pascal J F; de Voogt, Pim; ter Laak, Thomas L

    2012-06-15

    Numerous studies describe the presence of pharmaceuticals in the water cycle, while their transformation products are usually not included. In the current study 17 common pharmaceuticals and 9 transformation products were monitored in the Dutch waters, including surface waters, pre-treated surface waters, river bank filtrates, two groundwater samples affected by surface water and drinking waters. In these samples, 12 pharmaceuticals and 7 transformation products were present. Concentrations were generally highest in surface waters, intermediate in treated surface waters and river bank filtrates and lowest or not detected in produced drinking water. However, the concentrations of phenazone and its environmental transformation product AMPH were significantly higher in river bank filtrates, which is likely due to historical contamination. Fairly constant ratios were observed between concentrations of transformation products and parent pharmaceuticals. This might enable prediction of concentrations of transformation products from concentrations of parent pharmaceuticals. The toxicological relevance of the observed pharmaceuticals and transformation products was assessed by deriving (i) a substance specific provisional guideline value (pGLV) and (ii) a group pGLV for groups of related compounds were under the assumption of additivity of effects within each group. A substantial margin exists between the maximum summed concentrations of these compounds present in different water types and the derived (group) pGLVs. Based on the results of this limited screening campaign no adverse health effects of the studied compounds are expected in (sources of) drinking water in the Netherlands. The presence of transformation products with similar pharmacological activities and concentration levels as their parents illustrates the relevance of monitoring transformation products, and including these in risk assessment. More thorough monitoring yielding information on statistical

  8. Use of upscaled elevation and surface roughness data in two-dimensional surface water models

    USGS Publications Warehouse

    Hughes, J.D.; Decker, J.D.; Langevin, C.D.

    2011-01-01

    In this paper, we present an approach that uses a combination of cell-block- and cell-face-averaging of high-resolution cell elevation and roughness data to upscale hydraulic parameters and accurately simulate surface water flow in relatively low-resolution numerical models. The method developed allows channelized features that preferentially connect large-scale grid cells at cell interfaces to be represented in models where these features are significantly smaller than the selected grid size. The developed upscaling approach has been implemented in a two-dimensional finite difference model that solves a diffusive wave approximation of the depth-integrated shallow surface water equations using preconditioned Newton–Krylov methods. Computational results are presented to show the effectiveness of the mixed cell-block and cell-face averaging upscaling approach in maintaining model accuracy, reducing model run-times, and how decreased grid resolution affects errors. Application examples demonstrate that sub-grid roughness coefficient variations have a larger effect on simulated error than sub-grid elevation variations.

  9. Global patterns of water intake: how intake data affect recommendations.

    PubMed

    Shirreffs, Susan M

    2012-11-01

    Studies to assess water intake have been undertaken in many countries around the world. Some of these have been large-scale studies, whereas others have used a small number of subjects. These studies provide an emerging picture of water and/or fluid consumption in different populations around the world. Studies of this nature have also formed the basis of a number of recommendations published by different organizations, including the US Institute of Medicine and the European Food Safety Authority. The results of these intake studies indicate substantial differences in water and/or fluid intake in different populations, which have translated into different intake recommendations.

  10. Summary of surface-water quality, ground-water quality, and water withdrawals for the Spirit Lake Reservation, North Dakota

    USGS Publications Warehouse

    Vining, Kevin C.; Cates, Steven W.

    2006-01-01

    Available surface-water quality, ground-water quality, and water-withdrawal data for the Spirit Lake Reservation were summarized. The data were collected intermittently from 1948 through 2004 and were compiled from U.S. Geological Survey databases, North Dakota State Water Commission databases, and Spirit Lake Nation tribal agencies. Although the quality of surface water on the reservation generally is satisfactory, no surface-water sources are used for consumable water supplies. Ground water on the reservation is of sufficient quality for most uses. The Tokio and Warwick aquifers have better overall water quality than the Spiritwood aquifer. Water from the Spiritwood aquifer is used mostly for irrigation. The Warwick aquifer provides most of the consumable water for the reservation and for the city of Devils Lake. Annual water withdrawals from the Warwick aquifer by the Spirit Lake Nation ranged from 71 million gallons to 122 million gallons during 2000-04.

  11. Interfacial entropy of water on rigid hydrophobic surfaces.

    PubMed

    Taherian, Fereshte; Leroy, Frédéric; van der Vegt, Nico F A

    2013-08-06

    A simple theoretical model is proposed for computing the interfacial entropy of water at rigid hydrophobic surfaces. The interfacial entropy, which is not considered in mean field models of static wettability, is evaluated from the fluctuations of the water-surface dispersion energy at the single particle level and represents the configurational bias imposed on the fluid molecules by the attractive external potential of a solid wall. A comparison with results obtained from molecular dynamics simulations shows that the model quantitatively describes the entropy loss of water when a water-vapor interface turns to water in contact with hydrophobic surfaces such as graphene, graphite, and diamond, while it overestimates this quantity on hydrophilic surfaces.

  12. Isotope geochemistry of waters affected by acid mine drainage in old labour sites (SE, Spain).

    NASA Astrophysics Data System (ADS)

    Pérez-Sirvent, Carmen; Martinez-Sanchez, Maria Jose; Garcia-Lorenzo, Maria Luz; Agudo, Ines; Hernandez-Cordoba, Manuel; Recio, Clemente

    2015-04-01

    The ore deposits of this zone have iron, lead and zinc as the main metal components. Iron is present in oxides, hydroxides, sulfides, sulfates, carbonates, and silicates; lead and zinc occur in sulfides (galena and sphalerite, respectively), carbonates, sulfates, and lead or zinc-bearing (manganese, iron) oxides. Mining started with the Romans and activity peaked in the second half of the 19th century and throughout the 20th century until the 1980's. From 1940 to 1957, mineral concentration was made by froth flotation and, prior to this, by gravimetric techniques. The mining wastes, or tailings, with a very fine particle size were deposited inland (tailings dams) and, since 1957, huge releases were made in directly the sea coast. The objective of this work was to evaluate processes affecting waters from abandoned mine sites by way of stable isotopic analysis, particularly H and O stable isotopes from water and S and O from dissolved sulfates. Several common chemical and physical processes, such as evaporation, water-rock interaction and mixing could alter water isotopic composition. Evaporation, which causes an enrichment in δD and δ18O in the residual water, is an important process in semiarid areas. The results obtained indicate that, for sites near the coast, waters are meteoric, and marine infiltration only takes place in the deepest layers near the shore or if water remains stagnated in sediments with low permeability. The main source of sulfate was the oxidation of sulfides, resulting in the liberation of acid, sulfate and metals. In order to assess the mechanism responsible for sulfide oxidation, the stoichiometric isotope balance model and the general isotope balance model were tested, suggesting that the oxidation via Fe3+ was predominant in the surface, and controlled by A. ferrooxidans, while at depth, sulfate reduction occurred.

  13. Quality of Surface Water in Missouri, Water Year 2007

    USGS Publications Warehouse

    Otero-Benitez, William; Davis, Jerri V.

    2009-01-01

    The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, designed and operates a series of monitoring stations on streams throughout Missouri known as the Ambient Water-Quality Monitoring Network. During the 2007 water year (October 1, 2006 through September 30, 2007), data were collected at 67 stations including two U.S. Geological Survey National Stream Quality Accounting Network stations and one spring sampled in cooperation with the U.S. Forest Service. Dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, fecal coliform bacteria, dissolved nitrite plus nitrte, total phosphorus, dissolved and total recoverable lead and zinc, and selected pesticide data summaries are presented for 64 of these stations, which primarily have been classified in groups corresponding to the physiography of the State, main land use, or unique station types. In addition, a summary of hydrologic conditions in the State during water year 2007 is presented.

  14. Interaction Of Water Molecules With SiC(001) Surfaces

    SciTech Connect

    Cicero, G; Catellani, A; Galli, G

    2004-08-10

    We have investigated the interaction of water molecules with the polar Si- and C- terminated surfaces of cubic Silicon Carbide by means of ab initio molecular dynamics simulations at finite temperature. Different water coverages were considered, from {1/4} to a complete monolayer. Irrespective of coverage, we find that water dissociates on the silicon terminated surfaces, leading to important changes in both its structural and electronic properties. On the contrary, the carbon terminated surface remains inert when exposed to water. We propose experiments to reveal the ionic and electronic structure of wet Si-terminated surfaces predicted by our calculations, which at full coverage are notably different from those of hydrated Si(001) substrates. Finally, we discuss the implications of our results for SiC surface functionalization.

  15. Liquid water can slip on a hydrophilic surface

    PubMed Central

    Ho, Tuan Anh; Papavassiliou, Dimitrios V.; Lee, Lloyd L.; Striolo, Alberto

    2011-01-01

    Understanding and predicting the behavior of water, especially in contact with various surfaces, is a scientific challenge. Molecular-level understanding of hydrophobic effects and their macroscopic consequences, in particular, is critical to many applications. Macroscopically, a surface is classified as hydrophilic or hydrophobic depending on the contact angle formed by a water droplet. Because hydrophobic surfaces tend to cause water slip whereas hydrophilic ones do not, the former surfaces can yield self-cleaning garments and ice-repellent materials whereas the latter cannot. The results presented herein suggest that this dichotomy might be purely coincidental. Our simulation results demonstrate that hydrophilic surfaces can show features typically associated with hydrophobicity, namely liquid water slip. Further analysis provides details on the molecular mechanism responsible for this surprising result. PMID:21911406

  16. Interaction between water cluster ions and mica surface

    SciTech Connect

    Ryuto, Hiromichi Ohmura, Yuki; Nakagawa, Minoru; Takeuchi, Mitsuaki; Takaoka, Gikan H.

    2014-03-15

    Water cluster ion beams were irradiated on mica surfaces to investigate the interaction between molecular cluster ions and a mica surface. The contact angle of the mica surface increased with increasing dose of the water cluster ion beam, but the increase in the contact angle was smaller than that induced by an ethanol cluster ion beam. The surface roughness also increased with increasing dose of the water cluster ion beam, whereas the intensity of K 2p x-ray photoelectron spectroscopy peaks decreased with increasing dose of the water cluster ion beam. The decrease in the number of potassium atoms together with the increase in the surface roughness may be the causes of the increase in the contact angle.

  17. Iron oxidation kinetics and phosphorus immobilization at the groundwater-surface water interface

    NASA Astrophysics Data System (ADS)

    van der Grift, Bas; Rozemeijer, Joachim; Griffioen, Jasper; van der Velde, Ype

    2014-05-01

    Eutrophication of freshwater environments following diffuse nutrient loads is a widely recognized water quality problem in catchments. Fluxes of non-point P sources to surface waters originate from surface runoff and flow from soil water and groundwater into surface water. The availability of P in surface waters is controlled strongly by biogeochemical nutrient cycling processes at the soil-water interface. The mechanisms and rates of the iron oxidation process with associated binding of phosphate during exfiltration of anaerobic Fe(II) bearing groundwater are among the key unknowns in P retention processes in surface waters in delta areas where the shallow groundwater is typically pH-neutral to slightly acid, anoxic, iron-rich. We developed an experimental field set-up to study the dynamics in Fe(II) oxidation and mechanisms of P immobilization at the groundwater-surface water interface in an agricultural experimental catchment of a small lowland river. We physically separated tube drain effluent from groundwater discharge before it entered a ditch in an agricultural field. The exfiltrating groundwater was captured in in-stream reservoirs constructed in the ditch. Through continuous discharge measurements and weekly water quality sampling of groundwater, tube drain water, exfiltrated groundwater, and ditch water, we quantified Fe(II) oxidation kinetics and P immobilization processes across the seasons. This study showed that seasonal changes in climatic conditions affect the Fe(II) oxidation process. In winter time the dissolved iron concentrations in the in-stream reservoirs reached the levels of the anaerobic groundwater. In summer time, the dissolved iron concentrations of the water in the reservoirs are low, indicating that dissolved Fe(II) is completely oxidized prior to inflow into the reservoirs. Higher discharges, lower temperatures and lower pH of the exfiltrated groundwater in winter compared to summer shifts the location of the redox transition zone

  18. Nutrients in ground water and surface water of the United States; an analysis of data through 1992

    USGS Publications Warehouse

    Mueller, D.K.; Hamilton, P.A.; Helsel, D.R.; Hitt, K.J.; Ruddy, B.C.

    1995-01-01

    Historical data on nutrient (nitrogen and phosphorus species) concentrations in ground-and surface-water samples were compiled from 20 study units of the National Water-Quality Assessment (NAWQA) Program and 5 supplemental study areas. The resultant national retrospective data sets contained analyses of about 12,000 Found-water and more than 22,000 surface-water samples. These data were interpreted on regional and national scales by relating the distributions of nutrient concentrations to ancillary data, such as land use, soil characteristics, and hydrogeology, provided by local study-unit personnel. The information provided in this report on environmental factors that affect nutrient concentrations in ground and surface water can be used to identify areas of the Nation where the vulnerability to nutrient contamination is greatest. Nitrate was the nutrient of greatest concern in the historical ground-water data. It is the only nutrient that is regulated by a national drinking-water standard. Nitrate concentrations were significantly different in ground water affected by various land uses. Concentrations in about 16 percent of the samples collected in agricultural areas exceeded the drinking-water standard. However, the standard was exceeded in only about 1 percent of samples collected from public-supply wells. A variety of ancillary factors had significant relations to nitrate concentrations in ground water beneath agricultural areas. Concentrations generally were highest within 100 feet of the land surface. They were also higher in areas where soil and geologic characteristics promoted rapid movement of water to the aquifer. Elevated concentrations commonly occurred in areas underlain by permeable materials, such as carbonate bedrock or unconsolidated sand and gravel, and where soils are generally well drained. In areas where water movement is impeded, denitrification might lead to low concentrations of nitrate in the ground water. Low concentrations were also

  19. Intermittent Surface Water Connectivity: Fill and Spill vs. Fill ...

    EPA Pesticide Factsheets

    Intermittent surface connectivity can influence aquatic systems, since chemical and biotic movements are often associated with water flow. Although often referred to as fill and spill, wetlands also fill and merge. We examined the effects of these connection types on water levels, ion concentrations, and biotic communities of eight prairie pothole wetlands between 1979 and 2015. Fill and spill caused pulsed surface water connections that were limited to periods following spring snow melt. In contrast, two wetlands connected through fill and merge experienced a nearly continuous, 20-year surface water connection and had completely coincident water levels. Fill and spill led to minimal convergence in dissolved ions and macroinvertebrate composition, while these constituents converged under fill and merge. The primary factor determining difference in responses was duration of the surface water connection between wetland pairs. Our findings suggest that investigations into the effects of intermittent surface water connections should not consider these connections generically, but need to address the specific types of connections. In particular, fill and spill promotes external water exports while fill and merge favors internal storage. The behaviors of such intermittent connections will likely be accentuated under a future with more frequent and severe climate extremes. Under the Safe and Sustainable Water Resources National Program, work is being done to qu

  20. Georgia's Surface-Water Resources and Streamflow Monitoring Network, 2008

    USGS Publications Warehouse

    ,

    2008-01-01

    Surface water provides 5 billion gallons per day, or 78 percent, of the total freshwater used (including thermoelectric) in Georgia (Fanning, 2003). Climate, geology, and landforms control the natural distribution of Georgia's water resources. Georgia is a 'headwaters' State, with most of the rivers beginning in northern Georgia and increasing in size downstream (see map at right for major watersheds). Surface water is the primary source of water in the northern one-half of the State, including the Atlanta metropolitan area, where limited ground-water resources are difficult to obtain. In Georgia, periodic droughts exacerbate competition for surface-water supplies. Many areas of Georgia also face a threat of flooding because of spring frontal thunderstorms and the potential for hurricanes from both the Atlantic Ocean and Gulf of Mexico. As the population of Georgia increases, these flood risks will increase with development in flood-risk zones, particularly in the coastal region.

  1. Reactions and clustering of water with silica surface.

    PubMed

    Ma, Yuchen; Foster, A S; Nieminen, R M

    2005-04-08

    The interaction between silica surface and water is an important topic in geophysics and materials science, yet little is known about the reaction process. In this study we use first-principles molecular dynamics to simulate the hydrolysis process of silica surface using large cluster models. We find that a single water molecule is stable near the surface but can easily dissociate at three-coordinated silicon atom defect sites in the presence of other water molecules. These extra molecules provide a mechanism for hydrogen transfer from the original water molecule, hence catalyzing the reaction. The two-coordinated silicon atom is inert to the water molecule, and water clusters up to pentamer could be stably adsorbed at this site at room temperature.

  2. Investigation of surface water behavior during glaze ice accretion

    NASA Technical Reports Server (NTRS)

    Hansman, R. John, Jr.; Turnock, Stephen R.

    1988-01-01

    Microvideo observations of glaze ice accretions on 1-in-diameter cylinders in a closed-loop refrigerated wind tunnel were obtained to study factors controlling the behavior of unfrozen surface water during glaze ice accretion. Three zones of surface water behavior were noted, each with a characteristic roughness. The effect of substrate thermal and roughness properties on ice accretions was also studied. The contact angle and hysteresis were found to increase sharply at temperatures just below 0 C, explaining the high resistance to motion of water beads observed on accreting glaze ice surfaces. Based on the results, a simple multizone modification to the current glaze ice accretion model is proposed.

  3. Thin Water Films at Multifaceted Hematite Particle Surfaces.

    PubMed

    Boily, Jean-François; Yeşilbaş, Merve; Uddin, Munshi Md Musleh; Baiqing, Lu; Trushkina, Yulia; Salazar-Alvarez, Germàn

    2015-12-08

    Mineral surfaces exposed to moist air stabilize nanometer- to micrometer-thick water films. This study resolves the nature of thin water film formation at multifaceted hematite (α-Fe2O3) nanoparticle surfaces with crystallographic faces resolved by selected area electron diffraction. Dynamic vapor adsorption (DVA) in the 0-19 Torr range at 298 K showed that these particles stabilize water films consisting of up to 4-5 monolayers. Modeling of these data predicts water loadings in terms of an "adsorption regime" (up to 16 H2O/nm(2)) involving direct water binding to hematite surface sites, and of a "condensation regime" (up to 34 H2O/nm(2)) involving water binding to hematite-bound water nanoclusters. Vibration spectroscopy identified the predominant hematite surface hydroxo groups (-OH, μ-OH, μ3-OH) through which first layer water molecules formed hydrogen bonds, as well as surface iron sites directly coordinating water molecules (i.e., as geminal η-(OH2)2 sites). Chemometric analyses of the vibration spectra also revealed a strong correspondence in the response of hematite surface hydroxo groups to DVA-derived water loadings. These findings point to a near-saturation of the hydrogen-bonding environment of surface hydroxo groups at a partial water vapor pressure of ∼8 Torr (∼40% relative humidity). Classical molecular dynamics (MD) resolved the interfacial water structures and hydrogen bonding populations at five representative crystallographic faces expressed in these nanoparticles. Simulations of single oriented slabs underscored the individual roles of all (hydro)oxo groups in donating and accepting hydrogen bonds with first layer water in the "adsorption regime". These analyses pointed to the preponderance of hydrogen bond-donating -OH groups in the stabilization of thin water films. Contributions of μ-OH and μ3-OH groups are secondary, yet remain essential in the stabilization of thin water films. MD simulations also helped resolve crystallographic

  4. Interactions between ground water and surface water in the Suwannee River basin, Florida

    USGS Publications Warehouse

    Katz, B.G.; DeHan, R.S.; Hirten, J.J.; Catches, J.S.

    1997-01-01

    Ground water and surface water constitute a single dynamic system in roost parts of the Suwannee River basin due to the presence of karat features that facilitate the interaction between the surface and subsurface. Low radon-222 concentrations (below background levels) and enriched amounts of oxygen-18 and deuterium in ground water indicate mixing with surface water in parts of the basin. Comparison of surface water and regional ground water flow patterns indicate that boundaries for ground water basins typically do not coincide with surface water drainage subbasins. There are several areas in the basin where ground water flow that originates outside of the Suwannee River basin crosses surface water basin boundaries during both low-flow and high-flow conditions. In a study area adjacent to the Suwannee River that consists predominantly of agricultural land use, 18 wells tapping the Upper Floridan aquifer and 7 springs were sampled three times during 1990 through 1994 for major dissolved inorganic constituents, trace elements, and nutrients. During a period of above normal rainfall that resulted in high river stage and high ground water levels in 1991, the combination of increased amounts of dissolved organic carbon and decreased levels of dissolved oxygen in ground water created conditions favorable for the natural reduction of nitrate by denitrification reactions in the aquifer. As a result, less nitrate was discharged by ground water to the Suwannee River.

  5. Quality of surface water in Missouri, water year 2012

    USGS Publications Warehouse

    Barr, Miya N.

    2014-01-01

    The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, designed and operates a series of monitoring stations on streams and springs throughout Missouri known as the Ambient Water-Quality Monitoring Network. During the 2012 water year (October 1, 2011, through September 30, 2012), data were collected at 81 stations—73 Ambient Water-Quality Monitoring Network stations, 6 alternate Ambient Water-Quality Monitoring Network stations, and 2 U.S. Geological Survey National Stream Quality Accounting Network stations. Dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, fecal coliform bacteria, Escherichia coli bacteria, dissolved nitrate plus nitrite as nitrogen, total phosphorus, dissolved and total recoverable lead and zinc, and select pesticide compound summaries are presented for 78 of these stations. The stations primarily have been classified into groups corresponding to the physiography of the State, primary land use, or unique station types. In addition, a summary of hydrologic conditions in the State including peak discharges, monthly mean discharges, and 7-day low flow is presented.

  6. Quality of surface water in Missouri, water year 2013

    USGS Publications Warehouse

    Barr, Miya N.; Schneider, Rachel E.

    2014-01-01

    The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, designed and operates a series of monitoring stations on streams and springs throughout Missouri known as the Ambient Water-Quality Monitoring Network. During the 2013 water year (October 1, 2012, through September 30, 2013), data were collected at 79 stations—73 Ambient Water-Quality Monitoring Network stations, 4 alternate Ambient Water-Quality Monitoring Network stations, and 2 U.S. Geological Survey National Stream Quality Accounting Network stations. Dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, Escherichia coli bacteria, fecal coliform bacteria, dissolved nitrate plus nitrite as nitrogen, total phosphorus, dissolved and total recoverable lead and zinc, and select pesticide compound summaries are presented for 76 of these stations. The stations primarily have been classified into groups corresponding to the physiography of the State, primary land use, or unique station types. In addition, a summary of hydrologic conditions in the State including peak discharges, monthly mean discharges, and 7-day low flow is presented.

  7. Surface waters of Kansas, 1895-1919

    USGS Publications Warehouse

    Rice, R.C.

    1921-01-01

    The collection of long-time records of stream-flow in Kansas which is published in this volume has been prepared for the use of those who are concerned with the different phases of the utilization of water in the state.

  8. Third Stokes parameter emission from a periodic water surface

    NASA Technical Reports Server (NTRS)

    Johnson, J. T.; Kong, J. A.; Shin, R. T.; Staelin, D. H.; Oneill, K.; Lohanick, A.

    1991-01-01

    An experiment in which the third Stokes parameter thermal emission from a periodic water surface was measured is documented. This parameter is shown to be related to the direction of periodicity of the periodic surface and to approach brightnesses of up to 30 K at X band for the surface used in the experiment. The surface actually analyzed was a 'two-layer' periodic surface; the theory of thermal emission from such a surface is derived and the theoretical results are found to be in good agreement with the experimental measurements. These results further the idea of using the third Stokes parameter emission as an indicator of wind direction over the ocean.

  9. New forcefield for water nanodroplet on a graphene surface

    NASA Astrophysics Data System (ADS)

    Włoch, Jerzy; Terzyk, Artur P.; Kowalczyk, Piotr

    2017-04-01

    We propose a new forcefield for water TIP4P/2005 nanodroplet sitting on a surface of a graphene. Existing in literature forcefield uses the SPC/E model. However, this model does not predict the accurate water surface tension, and in this way a contact angle (CA) can also be incorrect. Additionally, our new calibration bases on the results of long - term simulation, and on a new procedure of CA calculation, and this is crucial for the estimation of precise and equilibrium values. Finally, we discuss the new dependence of the water nanodroplet line tension on the energy of water - graphene interactions.

  10. Friction, Wear, and Surface Damage of Metals as Affected by Solid Surface Films

    NASA Technical Reports Server (NTRS)

    Bisson, Edmond E; Johnson, Robert L; Swikert, Max A; Godfrey, Douglas

    1956-01-01

    As predicted by friction theory, experiments showed that friction and surface damage of metals can be reduced by solid surface films. The ability of materials to form surface films that prevent welding was a very important factor in wear of dry and boundary lubricated surfaces. Films of graphitic carbon on cast irons, nio on nickel alloys, and feo and fe sub 3 o sub 4 on ferrous materials were found to be beneficial. Abrasive films such as fe sub 2 o sub 3 or moo sub 3 were definitely detrimental. It appears that the importance of oxide films to friction and wear processes has not been fully appreciated.

  11. Global surface water quality hotspots under climate change and anthropogenic developments

    NASA Astrophysics Data System (ADS)

    van Vliet, Michelle T. H.; Yearsley, John R.

    2016-04-01

    In recent decades, freshwater usage for various sectors (e.g. agriculture, industry, energy and domestic) has more than doubled. A growing global population will place further demands on water supplies, whereas the availability and quality of water resources will be affected by climate change and human impacts. These developments will increase imbalances between fresh water demand and supply in terms of both water quantity and water quality. Here we discuss a methodology to identify regions of the world where surface water quality is expected to deteriorate under climate change and anthropogenic developments. Our approach integrates global hydrological-water quality modelling, climate and socio-economic scenarios and relations of water quality with physical and socio-economic drivers.

  12. Reconnaissance Assessment of the Potential for Roadside Dry Wells to Affect Water Quality on the Island of Hawai'i

    USGS Publications Warehouse

    Izuka, Scot K.; Senter, Craig A.; Johnson, Adam G.

    2009-01-01

    The County of Hawai'i Department of Public Works (DPW) uses dry wells to dispose of stormwater runoff from roads. Recently, concern has been raised that water entering the dry wells may transport contaminants to groundwater and affect the quality of receiving waters. The DPW operates 2,052 dry wells. Compiling an inventory of these dry wells and sorting it on the basis of presence or absence of urbanization in the drainage area, distance between the bottom of the dry well and the water table, and proximity to receiving waters helps identify the dry wells having greatest potential to affect the quality of receiving waters so that future studies or mitigation efforts can focus on a smaller number of dry wells. The drainage areas of some DPW dry wells encompass urbanized areas, which could be a source of contaminants. Some dry wells penetrate close to or through the water table, eliminating or substantially reducing opportunities for contaminant attenuation between the ground surface and water table. Dry wells that have drainage areas that encompass urbanization, penetrate to near the water table, and are near the coast have the highest potential to affect the quality of coastal waters (this study did not consider specific sections of coastline that may be of greater concern than others). Some DPW dry wells, including a few that have drainage areas that encompass urbanization, lie within the areas contributing recharge (ACR) to drinking-water wells. Numerical groundwater modeling studies by previous investigators indicate that water infiltrating those dry wells could eventually be pumped at drinking-water wells. Dry wells that have a high potential for affecting coastal receiving waters or drinking-water wells can be the focus of studies to further understand the effect of the dry wells on the quality of receiving waters. Possible study approaches include sampling for contaminants at the dry well and receiving water, injecting and monitoring the movement of tracers

  13. Anomalously Rapid Hydration Water Diffusion Dynamics Near DNA Surfaces.

    PubMed

    Franck, John M; Ding, Yuan; Stone, Katherine; Qin, Peter Z; Han, Songi

    2015-09-23

    The emerging Overhauser effect dynamic nuclear polarization (ODNP) technique measures the translational mobility of water within the vicinity (5-15 Å) of preselected sites. The work presented here expands the capabilities of the ODNP technique and illuminates an important, previously unseen, property of the translational diffusion dynamics of water at the surface of DNA duplexes. We attach nitroxide radicals (i.e., spin labels) to multiple phosphate backbone positions of DNA duplexes, allowing ODNP to measure the hydration dynamics at select positions along the DNA surface. With a novel approach to ODNP analysis, we isolate the contributions of water molecules at these sites that undergo free translational diffusion from water molecules that either loosely bind to or exchange protons with the DNA. The results reveal that a significant population of water in a localized volume adjacent to the DNA surface exhibits fast, bulk-like characteristics and moves unusually rapidly compared to water found in similar probe volumes near protein and membrane surfaces. Control studies show that the observation of these characteristics are upheld even when the DNA duplex is tethered to streptavidin or the mobility of the nitroxides is altered. This implies that, as compared to protein or lipid surfaces, it is an intrinsic feature of the DNA duplex surface that it interacts only weakly with a significant fraction of the surface hydration water network. The displacement of this translationally mobile water is energetically less costly than that of more strongly bound water by up to several kBT and thus can lower the activation barrier for interactions involving the DNA surface.

  14. Overview of surface-water quality in Ohio's coal regions

    USGS Publications Warehouse

    Westover, Susan; Eberle, Michael

    1987-01-01

    This report is designed to provide the nontechnical audience with some of the results of an 'Assessment of Water Quality in Streams Draining Coal-Producing Areas in Ohio,' by Christine L. Pfaff and others (published by the U.S. Geological Survey in 1981). The purpose of the assessment was to document the occurrence of certain chemical constituents in streams in Ohio's coal region and determine to what extent the presence of these constituents was related to mining. Ohio's most productive coal seams are associated with the Allegheny and Monongahela Formation of Pennsylvanian age. These coals were mined by underground methods very early in Ohio's history. Underground mining continues in the state today; however, surface mining now produces significantly more coal. Acid mine drainage from unreclaimed surface and underground mines has affected surface-water quality in Ohio for many years, and recently has led to establishment of reclamation programs by State and Federal agencies. In their assessment of Ohio's coal region, Pfaff and others sampled 150 sites in small watersheds underlain by the Allegheny and the Monogahela Formations. Each site represented only one of four land-use types (active-mine, unmined, abandoned-mine, or reclaimed). Statistical analysis of data from the unmined, abandoned-mine, and reclaimed sites showed that there were significant differences in pH, specific conductance, alkalinity, and concentrations of sulfate and aluminum among abandoned-mine and unmined sites. Reclaimed sites had average pH values and aluminum concentrations similar to those unmined sites. Average specific conductance and sulfate concentrations were about the same for reclaimed abandoned-mine sites, but were significantly lower at unmined sites; specific conductance and sulfate concentration, in fact, proved to be reliable indicators of basins that had been disturbed by mining. Alkalinity was significantly different for all three land uses, the highest values being found at

  15. Chloride in ground water and surface water in the vicinity of selected surface-water sampling sites of the beneficial use monitoring program of Oklahoma, 2003

    USGS Publications Warehouse

    Mashburn, Shana L.; Sughru, Michael P.

    2004-01-01

    The Oklahoma Water Resources Board Beneficial Use Monitoring Program reported exceedances of beneficial-use standards for chloride at 11 surface-water sampling sites from January to October 2002. The U.S. Geological Survey, in cooperation with the Oklahoma Department of Environmental Quality, conducted a study to determine the chloride concentrations in ground water in the vicinity of Beneficial Use Monitoring Program surface-water sampling sites not meeting beneficial use standards for chloride and compare chloride concentrations in ground water and surface water. The chloride-impaired Beneficial Use Monitoring Program surface-water sampling sites are located in the western and southern regions of Oklahoma. The ground-water sampling sites were placed in proximity to the 11 surface-water sampling sites designated impaired by chloride by the Oklahoma Water Resources Board. Two surface-water sampling sites were located on the Beaver River (headwaters of the North Canadian River), three sites on the Cimarron River, one site on Sandy Creek, one site on North Fork Red River, and four sites on the Red River. Six ground-water samples were collected, when possible, from two test holes located upstream from each of the 11 Beneficial Use Monitoring Program surface-water sampling sites. One test hole was placed on the left bank and right bank, when possible, of each Beneficial Use Monitoring Program surfacewater sampling site. All test holes were located on alluvial deposits adjacent to the Beneficial Use Monitoring Program surface-water sampling sites within 0.5 mile of the stream. Top, middle, and bottom ground-water samples were collected from the alluvium at each test hole, when possible. Water properties of specific conductance, pH, water temperature, and dissolved oxygen were recorded in the field before sampling for chloride. The ground-water median chloride concentrations at 8 of the 11 Beneficial Use Monitoring Program sites were less than the surface-water median

  16. A siphon gage for monitoring surface-water levels

    USGS Publications Warehouse

    McCobb, T.D.; LeBlanc, D.R.; Socolow, R.S.

    1999-01-01

    A device that uses a siphon tube to establish a hydraulic connection between the bottom of an onshore standpipe and a point at the bottom of a water body was designed and tested for monitoring surface-water levels. Water is added to the standpipe to a level sufficient to drive a complete slug of water through the siphoning tube and to flush all air out of the system. The water levels in the standpipe and the water body equilibrate and provide a measurable static water surface in the standpipe. The siphon gage was designed to allow quick and accurate year-round measurements with minimal maintenance. Currently available devices for monitoring surface-water levels commonly involve time-consuming and costly installation and surveying, and the movement of reference points and the presence of ice cover in cold regions cause discontinuity and inaccuracy in the data collected. Installation and field testing of a siphon gage using 0.75-in-diameter polyethylene tubing at Ashumet Pond in Falmouth, Massachusetts, demonstrated that the siphon gage can provide long-term data with a field effort and accuracy equivalent to measurement of ground-water levels at an observation well.A device that uses a siphon tube to establish a hydraulic connection between the bottom of an onshore standpipe and a point at the bottom of a water body was designed and tested for monitoring surface-water levels. Water is added to the standpipe to a level sufficient to drive a complete slug of water through the siphoning tube and to flush all air out of the system. The water levels in the standpipe and the water body equilibrate and provide a measurable static water surface in the standpipe. The siphon gage was designed to allow quick and accurate year-round measurements with minimal maintenance. Currently available devices for monitoring surface-water levels commonly involve time-consuming and costly installation and surveying, and the movement of reference points and the presence of ice cover in cold

  17. Quality of surface water in Missouri, water year 2010

    USGS Publications Warehouse

    Barr, Miya N.

    2011-01-01

    The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, designs and operates a series of monitoring stations on streams throughout Missouri known as the Ambient Water-Quality Monitoring Network. During the 2010 water year (October 1, 2009 through September 30, 2010), data were collected at 75 stations-72 Ambient Water-Quality Monitoring Network stations, 2 U.S. Geological Survey National Stream Quality Accounting Network stations, and 1 spring sampled in cooperation with the U.S. Forest Service. Dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, fecal coliform bacteria, Escherichia coli bacteria, dissolved nitrate plus nitrite, total phosphorus, dissolved and total recoverable lead and zinc, and select pesticide compound summaries are presented for 72 of these stations. The stations primarily have been classified into groups corresponding to the physiography of the State, primary land use, or unique station types. In addition, a summary of hydrologic conditions in the State including peak discharges, monthly mean discharges, and 7-day low flow is presented.

  18. Quality of surface water in Missouri, water year 2009

    USGS Publications Warehouse

    Barr, Miya N.

    2010-01-01

    The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, designs and operates a series of monitoring stations on streams throughout Missouri known as the Ambient Water-Quality Monitoring Network. During the 2009 water year (October 1, 2008, through September 30, 2009), data were collected at 75 stations-69 Ambient Water-Quality Monitoring Network stations, 2 U.S. Geological Survey National Stream Quality Accounting Network stations, 1 spring sampled in cooperation with the U.S. Forest Service, and 3 stations sampled in cooperation with the Elk River Watershed Improvement Association. Dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, fecal coliform bacteria, Escherichia coli bacteria, dissolved nitrate plus nitrite, total phosphorus, dissolved and total recoverable lead and zinc, and select pesticide compound summaries are presented for 72 of these stations. The stations primarily have been classified into groups corresponding to the physiography of the State, primary land use, or unique station types. In addition, a summary of hydrologic conditions in the State including peak discharges, monthly mean discharges, and seven-day low flow is presented.

  19. Quality of surface water in Missouri, water year 2011

    USGS Publications Warehouse

    Barr, Miya N.

    2012-01-01

    The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, designed and operates a series of monitoring stations on streams throughout Missouri known as the Ambient Water-Quality Monitoring Network. During the 2011 water year (October 1, 2010, through September 30, 2011), data were collected at 75 stations—72 Ambient Water-Quality Monitoring Network stations, 2 U.S. Geological Survey National Stream Quality Accounting Network stations, and 1 spring sampled in cooperation with the U.S. Forest Service. Dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, fecal coliform bacteria, Escherichia coli bacteria, dissolved nitrate plus nitrite, total phosphorus, dissolved and total recoverable lead and zinc, and select pesticide compound summaries are presented for 72 of these stations. The stations primarily have been classified into groups corresponding to the physiography of the State, primary land use, or unique station types. In addition, a summary of hydrologic conditions in the State including peak discharges, monthly mean discharges, and 7-day low flow is presented.

  20. Quality of surface water in Missouri, water year 2014

    USGS Publications Warehouse

    Barr, Miya N.

    2015-12-18

    The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, designed and operates a series of monitoring stations on streams and springs throughout Missouri known as the Ambient Water-Quality Monitoring Network. During the 2014 water year (October 1, 2013, through September 30, 2014), data were collected at 74 stations—72 Ambient Water-Quality Monitoring Network stations and 2 U.S. Geological Survey National Stream Quality Assessment Network stations. Dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, Escherichia coli bacteria, fecal coliform bacteria, dissolved nitrate plus nitrite as nitrogen, total phosphorus, dissolved and total recoverable lead and zinc, and select pesticide compound summaries are presented for 71 of these stations. The stations primarily have been classified into groups corresponding to the physiography of the State, primary land use, or unique station types. In addition, a summary of hydrologic conditions in the State including peak discharges, monthly mean discharges, and 7-day low flow is presented.

  1. Quality of surface water in Missouri, water year 2015

    USGS Publications Warehouse

    Barr, Miya N.; Heimann, David C.

    2016-11-14

    The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, designed and operates a series of monitoring stations on streams and springs throughout Missouri known as the Ambient Water-Quality Monitoring Network. During water year 2015 (October 1, 2014, through September 30, 2015), data were collected at 74 stations—72 Ambient Water-Quality Monitoring Network stations and 2 U.S. Geological Survey National Stream Quality Assessment Network stations. Dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, Escherichia coli bacteria, fecal coliform bacteria, dissolved nitrate plus nitrite as nitrogen, total phosphorus, dissolved and total recoverable lead and zinc, and select pesticide compound summaries are presented for 71 of these stations. The stations primarily have been classified into groups corresponding to the physiography of the State, primary land use, or unique station types. In addition, a summary of hydrologic conditions in the State including peak streamflows, monthly mean streamflows, and 7-day low flows is presented.

  2. Role of water in polymer surface modification using organosilanes

    NASA Astrophysics Data System (ADS)

    Thallapalle, Pradeep Kumar; Zhang Newby, Bi-Min

    2002-03-01

    In general, polymers exhibit excellent bulk properties but may not possess specific surface properties for successful applications in biomaterials and nanotechnology. Surface modification of polymers with the self-assembled monolayers (SAMs) of organosilanes - ‘Silanization’ - is an attractive approach to alter surface properties without altering the polymer’s desired bulk properties. However, a pretreatment such as exposure to UV/O or plasma is normally required to generate active surface groups prior to silanization. These pretreatments cause undesirable surface changes such as severe surface roughening and excessive surface damage. Recent studies in silanization suggest that the presence of water or OH groups on the surface is essential to form SAMs. In this study we investigated the importance of surface water layer and OH groups in the formation of SAMs for a variety of polymers. The pre and post-modified polymers were examined using fourier transform infrared spectrometry, scanning probe microscopy and contact angle measurements. The results show that organosilanes can be grafted to a polymer surface as long as a water layer can be physisorbed to the surface or the polymer itself contains OH groups. However the monolayers formed are less organized compared to those formed on silicon wafers due to the amorphous nature of the polymers.

  3. CAN FLUORIDATION AFFECT WATER LEAD LEVELS AND LEAD NEUROTOXICITY?

    EPA Science Inventory

    Recent reports have attempted to show that certain approaches to fluoridating potable water is linked to increased levels of lead(II) in the blood. We examine these claims in light of the established science and critically evaluate their significance. The completeness of nexafluo...

  4. Using Gypsum to Affect Soil Erosion Processes and Water Quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A driving force in soil erosion is the low electrolyte content of rain water. Various electrolyte sources have proven useful in serving as electrolyte sources such as phosphogypsum, lime and various salts, however, each has other potential problems. We performed a number of studies on low cost gypsu...

  5. ICESat-derived inland water surface spot heights

    NASA Astrophysics Data System (ADS)

    O'Loughlin, Fiachra E.; Neal, Jeffrey; Yamazaki, Dai; Bates, Paul D.

    2016-04-01

    Accurate measurement of water surface height is key to many fields in hydrology and limnology. Satellite radar and laser altimetry have been shown to be useful means of obtaining such data where no ground gauging stations exist, and the accuracy of different satellite instruments is now reasonably well understood. Past validation studies have shown water surface height data from the ICESat instrument to have the highest vertical accuracy (mean absolute errors of ˜10 cm for ICESat, compared, for example, with ˜28 cm from Envisat), yet no freely available source of processed ICESat data currently exists for inland water bodies. Here we present a database of processed and quality checked ICESat-derived inland water surface heights (IWSH) for water bodies greater than 3 arc sec (˜92 m at the equator) in width. Four automated methods for removing spurious observations or outliers were investigated, along with the impact of using different water masks. We find that the best performing method ensures that observations used are completely surrounded by water in the SRTM Water Body data. Using this method for removing spurious observations, we estimate transect-averaged water surface heights at 587,292 unique locations from 2003 to 2009, with the number of locations proportional to the size of the river.

  6. Surface water and erosion calculations to support the MDA G performance assessment

    SciTech Connect

    Springer, E.P.

    1997-03-01

    The performance of MDA G is dependent on surface hydrological and ecological processes because radionuclide transport by surface runoff can affect human and/or environmental receptors directly and the percolation for the subsurface radionuclide transport pathway is determined by the water balance in the near surface. For subsurface disposal of waste, surface soil erosion reduces the effectiveness of the surface cover and if wastes are exposed, then surface runoff can transport contaminants either in a soluble phase or sorbed to eroded soil particles. The objectives of this section are to estimate the effects at MDA G of surface runoff, soil erosion, and percolation. The conceptual and mathematical models will be reviewed, parameter estimation for the models will be presented and results and sensitivity analyses for a surface cover at MDA G will be presented.

  7. Nanostructured Anti-Reflecting and Water-Repellent Surface Coatings

    ScienceCinema

    None

    2016-11-23

    A nanotechnology-based surface-texturing method developed at Brookhaven Lab’s Center for Functional Nanomaterials imparts perfect anti-reflection and robust water-repellency to silicon, glass, and some plastics.

  8. Nanostructured Anti-Reflecting and Water-Repellent Surface Coatings

    SciTech Connect

    2016-11-08

    A nanotechnology-based surface-texturing method developed at Brookhaven Lab’s Center for Functional Nanomaterials imparts perfect anti-reflection and robust water-repellency to silicon, glass, and some plastics.

  9. Documentation of the Santa Clara Valley regional ground-water/surface-water flow model, Santa Clara Valley, California

    USGS Publications Warehouse

    Hanson, R.T.; Li, Zhen; Faunt, C.C.

    2004-01-01

    The Santa Clara Valley is a long, narrow trough extending about 35 miles southeast from the southern end of San Francisco Bay where the regional alluvial-aquifer system has been a major source of water. Intensive agricultural and urban development throughout the 20th century and related ground-water development resulted in ground-water-level declines of more than 200 feet and land subsidence of as much as 12.7 feet between the early 1900s and the mid-1960s. Since the 1960s, Santa Clara Valley Water District has imported surface water to meet growing demands and reduce dependence on ground-water supplies. This importation of water has resulted in a sustained recovery of the ground-water flow system. To help support effective management of the ground-water resources, a regional ground-water/surface-water flow model was developed. This model simulates the flow of ground water and surface water, changes in ground-water storage, and related effects such as land subsidence. A numerical ground-water/surface-water flow model of the Santa Clara Valley subbasin of the Santa Clara Valley was developed as part of a cooperative investigation with the Santa Clara Valley Water District. The model better defines the geohydrologic framework of the regional flow system and better delineates the supply and demand components that affect the inflows to and outflows from the regional ground-water flow system. Development of the model includes revisions to the previous ground-water flow model that upgraded the temporal and spatial discretization, added source-specific inflows and outflows, simulated additional flow features such as land subsidence and multi-aquifer wellbore flow, and extended the period of simulation through September 1999. The transient-state model was calibrated to historical surface-water and ground-water data for the period 197099 and to historical subsidence for the period 198399. The regional ground-water flow system consists of multiple aquifers that are grouped

  10. Shallow Water Propagation and Surface Reverberation Modeling

    DTIC Science & Technology

    2013-09-30

    original goals have been augmented in 2013 to study ambient noise from glaciers in high latitude regions. OBJECTIVES Objectives for 2013 The overall...to deduce the form of surfaces from scattered sound and (2) to measure and analyze the underwater ambient noise marine terminating glaciers in high...particularly those that contain the terminus of one or more glaciers . The program objective was to measure the directionality of underwater ambient

  11. Shallow Water Propagation and Surface Reverberation Modeling

    DTIC Science & Technology

    2012-09-30

    compare the results with experiment. This work will be used to help interpret field data of bistatic scattering from sea ice cover and calibrate...approximate analytical and numerical acoustic models used to compute bistatic scattering. The clouds of bubbles entrained at the sea surface by breaking...ABSTRACT SAR 18. NUMBER OF PAGES 7 19a. NAME OF RESPONSIBLE PERSON a. REPORT unclassified b. ABSTRACT unclassified c. THIS PAGE unclassified

  12. How Circulation of Water Affects Freezing in Ponds

    ERIC Educational Resources Information Center

    Moreau, Theresa; Lamontagne, Robert; Letzring, Daniel

    2007-01-01

    One means of preventing the top of a pond from freezing involves running a circulating pump near the bottom to agitate the surface and expose it to air throughout the winter months. This phenomenon is similar to that of the flowing of streams in subzero temperatures and to the running of taps to prevent pipe bursts in winter. All of these cases…

  13. 43 CFR 404.57 - Does this rule have any affect on state water law?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 1 2014-10-01 2014-10-01 false Does this rule have any affect on state water law? 404.57 Section 404.57 Public Lands: Interior Regulations Relating to Public Lands BUREAU OF RECLAMATION, DEPARTMENT OF THE INTERIOR RECLAMATION RURAL WATER SUPPLY PROGRAM Miscellaneous § 404.57 Does this rule have any affect on state...

  14. 43 CFR 404.57 - Does this rule have any affect on state water law?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 1 2012-10-01 2011-10-01 true Does this rule have any affect on state water law? 404.57 Section 404.57 Public Lands: Interior Regulations Relating to Public Lands BUREAU OF... this rule have any affect on state water law? No. Neither the Act nor this rule preempts or...

  15. The biological impact of landfill leachate on nearby surface water

    SciTech Connect

    Geis, S.W.

    1994-12-31

    Five landfill sites were evaluated for their potential to adversely impact the biotic community of surface waters. Acute and chronic aquatic toxicity tests were used to determine the toxicity of water samples collected from landfill monitoring wells and the nearest surface water. Four of the five landfill sites exhibited acute or chronic toxicity to Ceriodaphnia dubia, Daphnia magna, or Pimephales promelas. Toxicity identification procedures performed on water samples revealed toxic responses to metals and one toxic response to organic compounds. Surface water toxicity at an industrial landfill is most likely due to zinc from a tire production facility. Iron and a surfactant were determined to be the probable causes for toxicity at two municipal solid waste landfills.

  16. Surface water connectivity dynamics of a large scale extreme flood

    NASA Astrophysics Data System (ADS)

    Trigg, Mark A.; Michaelides, Katerina; Neal, Jeffrey C.; Bates, Paul D.

    2013-11-01

    Uses the MODIS surface water product observations of the 2011 Bangkok flood.A data gap filling method is developed to better preserve the dynamics of the event.We quantify surface water connectivity geostatistically to give new flood insights.There is a clear structure to the connectivity of the event through time and space.Changes and thresholds in the connectivity are linked to major flood mechanisms.

  17. Physical-Chemical Factors Affecting the Low Quality of Natural Water in the Khibiny Massif

    NASA Astrophysics Data System (ADS)

    Mazukhina, Svetlana; Masloboev, Vladimir; Chudnenko, Konstantin; Maksimova, Viktoriia; Belkina, Natalia

    2014-05-01

    One peculiarity of the Khibiny Massif is its spatial location. Rising over 1000 m above the surrounding hilly land and thus obstructing the passage of air masses, it promotes condensation and accumulation of surface and underground water. Annual precipitation here amounts to 600-700 mm in the valleys and up to 1600 mm on mountainous plateaus. Using this water for drinking and household purposes is problematic due to excess Al and F concentrations and high pH values. Now it is known that in its profile, the Massif is represented by three hydrogeological subzones: the upper (aerated), medium and lower ones. The upper subzone spreads throughout the Massif and is affected by the local drainage network and climatic conditions. The medium subzone is permanently saturated with underground water flowing horizontally to sites of discharge at the level of local river valleys and lakes. The fissure-vein water in the lower subzone is confined to tectonic fractures and faults in the so far underexplored, deeper parts of the Massif. Being abundant, this water ascends under high pressure. At places, water has been observed spurting from as deep as 700 m, and even 960 m. In the latter case, the temperature of ascending water was higher than 18 centigrade (Hydrogeology of the USSR, V. 27, 1971). This work was undertaken to reveal the nature of the low quality of water in the Khibiny by using physical-chemical modeling (software package Selector, Chudnenko, 2010). Processes of surface and underground water formation in the Khibiny were examined within a physical-chemical model (PCM) of the "water-rock-atmosphere-hydrogen" system. In a multi-vessel model used, each vessel represented a geochemical level of the process interpreted as spatiotemporal data - ξ (Karpov, 1981). The flow reactor consisted of 4 tanks. In the first tank, water of the Kuniok River (1000 L) interacted with atmosphere and an organic substance. The resulting solution proceeded to tanks 2-4 containing with

  18. Quality-control results for ground-water and surface-water data, Sacramento River Basin, California, National Water-Quality Assessment, 1996-1998

    USGS Publications Warehouse

    Munday, Cathy; Domagalski, Joseph L.

    2003-01-01

    Evaluating the extent that bias and variability affect the interpretation of ground- and surface-water data is necessary to meet the objectives of the National Water-Quality Assessment (NAWQA) Program. Quality-control samples used to evaluate the bias and variability include annual equipment blanks, field blanks, field matrix spikes, surrogates, and replicates. This report contains quality-control results for the constituents critical to the ground- and surface-water components of the Sacramento River Basin study unit of the NAWQA Program. A critical constituent is one that was detected frequently (more than 50 percent of the time in blank samples), was detected at amounts exceeding water-quality standards or goals, or was important for the interpretation of water-quality data. Quality-control samples were collected along with ground- and surface-water samples during the high intensity phase (cycle 1) of the Sacramento River Basin NAWQA beginning early in 1996 and ending in 1998. Ground-water field blanks indicated contamination of varying levels of significance when compared with concentrations detected in environmental ground-water samples for ammonia, dissolved organic carbon, aluminum, and copper. Concentrations of aluminum in surface-water field blanks were significant when compared with environmental samples. Field blank samples collected for pesticide and volatile organic compound analyses revealed no contamination in either ground- or surface-water samples that would effect the interpretation of environmental data, with the possible exception of the volatile organic compound trichloromethane (chloroform) in ground water. Replicate samples for ground water and surface water indicate that variability resulting from sample collection, processing, and analysis was generally low. Some of the larger maximum relative percentage differences calculated for replicate samples occurred between samples having lowest absolute concentration differences and(or) values near

  19. Quality of Surface Water in Missouri, Water Year 2008

    USGS Publications Warehouse

    Otero-Benitez, William; Davis, Jerri V.

    2009-01-01

    The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, designed and operates a series of monitoring stations on streams throughout Missouri known as the Ambient Water-Quality Monitoring Network. During the 2008 water year (October 1, 2007, through September 30, 2008), data were collected at 67 stations, including two U.S. Geological Survey National Stream Quality Accounting Network stations and one spring sampled in cooperation with the U.S. Forest Service. Dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, fecal coliform bacteria, Escherichia coli bacteria, dissolved nitrate plus nitrite, total phosphorus, dissolved and total recoverable lead and zinc, and selected pesticide data summaries are presented for 64 of these stations. The stations primarily have been classified into groups corresponding to the physiography of the State, primary land use, or unique station types. In addition, a summary of hydrologic conditions in the State including peak discharges, monthly mean discharges, and seven-day low flow is presented.

  20. Formation and transport of deethylatrazine and deisopropylatrazine in surface water

    USGS Publications Warehouse

    Thurman, E.M.; Meyer, M.T.; Mills, M.S.; Zimmerman, L.R.; Perry, C.A.; Goolsby, D.A.

    1994-01-01

    Field disappearance studies and a regional study of nine rivers in the Midwest Corn Belt show that deethylatrazine (DEA; 2-amino-4-chloro-6-isopropylamino-s-triazine) and deisopropylatrazine (DIA; 2-amino-4-chloro-6-ethylaminos-triazine) occur frequently in surface water that has received runoff from two parent triazine herbicides, atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine) and cyanazine (2-chloro-4-ethylamino-6-methylpropionitrileamino-s-triazine). The concentration of DEA and DIA in surface water varies with the hydrologic conditions of the basin and the timing of runoff, with maximum concentrations reaching 5 ??g/L (DEA + DIA). Early rainfall followed by a dry summer will result in an early peak concentration of metabolites in surface water. A wet summer will delay the maximum concentrations of metabolites and increase their runoff into surface water, occasionally resulting in a slight separation of the parent atrazine maximum concentrations from the metabolite maximum concentrations, giving a "second flush?? of triazine metabolites to surface water. Replicated field dissipation studies of atrazine and cyanazine indicate that DIA/DEA ratios will vary from 0.4 ?? 0.1 when atrazine is the major triazine present to 0.6 ?? 0.1 when significant amounts of cyanazine are present. A comparison of transport time of DEA and DIA from field plots to their appearance in surface water indicates that storage and dilution are occurring in the alluvial aquifers of the basin.

  1. Chlorine stress mediates microbial surface attachment in drinking water systems.

    PubMed

    Liu, Li; Le, Yang; Jin, Juliang; Zhou, Yuliang; Chen, Guowei

    2015-03-01

    Microbial attachment to drinking water pipe surfaces facilitates pathogen survival and deteriorates disinfection performance, directly threatening the safety of drinking water. Notwithstanding that the formation of biofilm has been studied for decades, the underlying mechanisms for the origins of microbial surface attachment in biofilm development in drinking water pipelines remain largely elusive. We combined experimental and mathematical methods to investigate the role of environmental stress-mediated cell motility on microbial surface attachment in chlorination-stressed drinking water distribution systems. Results show that at low levels of disinfectant (0.0-1.0 mg/L), the presence of chlorine promotes initiation of microbial surface attachment, while higher amounts of disinfectant (>1.0 mg/L) inhibit microbial attachment. The proposed mathematical model further demonstrates that chlorination stress (0.0-5.0 mg/L)-mediated microbial cell motility regulates the frequency of cell-wall collision and thereby controls initial microbial surface attachment. The results reveal that transport processes and decay patterns of chlorine in drinking water pipelines regulate microbial cell motility and, thus, control initial surface cell attachment. It provides a mechanistic understanding of microbial attachment shaped by environmental disinfection stress and leads to new insights into microbial safety protocols in water distribution systems.

  2. Occurrence of deeethylatrazine and deisopropylatrazine in surface and ground water

    SciTech Connect

    Thurman, E.M.; Goolsby, D.A.

    1996-10-01

    Field-disappearance studies and a regional study of nine rivers in the Midwest show that deethylatrazine (DEA) and deisopropylatrazine (DIA) occur frequently in surface water that has received runoff from two parent triazine herbicides, atrazine and cyanazine. The concentration of DEA and DIA in surface water varies with the hydrologic conditions of the basin and the timing of runoff, with maximum concentrations reaching 5 mg/L (DEA + DIA). Early rainfall followed by a dry summer will result in an early peak concentration of metabolites in surface water. A wet summer will delay the maximum concentrations of metabolites and increase their runoff into surface water, occasionally resulting in a slight separation of the parent atrazine maximum concentrations from the metabolite maximum concentrations giving a {open_quotes}second flush{close_quotes} of triazine metabolites to surface water. Replicated field dissipation studies of atrazine and cyanazine indicate that DIA/DEA ratios will vary from 0.4{plus_minus}0.1 when atrazine is the major triazine present to 0.6{plus_minus}0.1 when significant amounts of cyanazine are present. A comparison of transport time of DEA and DIA from field plots to their appearance in surface water indicates that storage and dilution are occurring in the alluvial aquifers of the basin.

  3. Langmuir circulation inhibits near-surface water turbulence

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2012-07-01

    In the surface ocean, breaking waves are a major source of air bubbles and turbulent kinetic energy. During the presence of a consistent surface wind, these wave-generated bubbles, along with other surface material like seaweed or foam, can be drawn into long rows along the surface. Driving this organization is Langmuir circulation, a phenomenon in which the wind and waves cause surface waters to rotate helically, moving like a wire wrapped around a pole in the windward direction. These spiral currents oscillate between clockwise and counterclockwise rotations, such that in some places the surface waters are pushed together and in others they are pulled apart. Researchers have previously found that at sites of convergence the bubbles produced by breaking waves are pushed to depths of 15 meters or more, with important implications for air-sea gas mixing and other processes.

  4. The Impact of Adsorbed Triethylene Glycol on Water Wettability of the {1014} Calcium Carbonate Surface

    NASA Astrophysics Data System (ADS)

    Olsen, R.

    2015-12-01

    Water flooding is increasingly being used as a method of enhanced oil recovery and frequently involves calcium carbonate reservoirs. Very often, thermodynamic conditions in the upper few hundred meters allow for hydrate formation. One possible method of preventing hydrates is to inject hydrate inhibitors such as triethylene glycol (TEG) into the reservoir. Thus, it is of importance to know how such glycols affect water wettability, which is an important factor defining the oil behavior in such reservoirs. Wettability of a surface is defined by the contact angle of a liquid drop on the surface. The stronger the liquid is attracted to the surface, the smaller the wetting angle becomes, implying an increased degree of wetting. Therefore, it is possible to gain qualitative knowledge of the change in wetting properties with respect to external influences by studying corresponding changes in free energy of adsorption of the liquid. In our work [1], we used molecular dynamics (MD) and Born-Oppenheimer molecular dynamics (BOMD) to study how adsorbed TEG on the {1014} calcium carbonate surface affected adsorbed water. We used the changes in density profiles of water to estimate changes in adsorption free energy of water. The adaptive biasing force (ABF) method was applied to TEG to calculate the adsorption free energy of TEG on the calcium carbonate surface. We found that water wetting of the calcium carbonate surface decreased in the presence of adsorbed TEG. [1] - Olsen, R.; Leirvik, K.; Kvamme, B.; Kuznetsova, T. Adsorption Properties of Triethylene Glycol on a Hydrated {1014} Calcite Surface and Its Effect on Adsorbed Water, Langmuir 2015, DOI: 10.1021/acs.langmuir.5b02228

  5. Glutinous Water. Protecting Vertical and Overhead Surfaces from Fire Spread

    DTIC Science & Technology

    1994-02-28

    DISTRIBUTION CODE Approved for public release; distribution unlimited. 13. ABSTRACT (Maximum 200 words ) Most of the water used in firefighting is not only...Naval Research Laboratory AD-A277 280 Washington, DC 20375-5320 NRL/MR/6180--94-7431 DTIC S ELECTE MAR 24 19941 Glutinous Water F Protecting Vertical...TYPE AND DATES COVERED February 28, 1994 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS Glutinous Water Protecting Vertical and Overhead Surfaces From Fire

  6. An Ontology Design Pattern for Surface Water Features

    SciTech Connect

    Sinha, Gaurav; Mark, David; Kolas, Dave; Varanka, Dalia; Romero, Boleslo E; Feng, Chen-Chieh; Usery, Lynn; Liebermann, Joshua; Sorokine, Alexandre

    2014-01-01

    Surface water is a primary concept of human experience but concepts are captured in cultures and languages in many different ways. Still, many commonalities can be found due to the physical basis of many of the properties and categories. An abstract ontology of surface water features based only on those physical properties of landscape features has the best potential for serving as a foundational domain ontology. It can then be used to systematically incor-porate concepts that are specific to a culture, language, or scientific domain. The Surface Water ontology design pattern was developed both for domain knowledge distillation and to serve as a conceptual building-block for more complex surface water ontologies. A fundamental distinction is made in this on-tology between landscape features that act as containers (e.g., stream channels, basins) and the bodies of water (e.g., rivers, lakes) that occupy those containers. Concave (container) landforms semantics are specified in a Dry module and the semantics of contained bodies of water in a Wet module. The pattern is imple-mented in OWL, but Description Logic axioms and a detailed explanation is provided. The OWL ontology will be an important contribution to Semantic Web vocabulary for annotating surface water feature datasets. A discussion about why there is a need to complement the pattern with other ontologies, es-pecially the previously developed Surface Network pattern is also provided. Fi-nally, the practical value of the pattern in semantic querying of surface water datasets is illustrated through a few queries and annotated geospatial datasets.

  7. Martian surface/near-surface water inventory: Sources, sinks, and changes with time

    NASA Astrophysics Data System (ADS)

    Carr, M. H.; Head, J. W.

    2015-02-01

    Today, a 34 m global equivalent water layer (GEL) lies in the Martian polar-layered deposits and shallow ground ice. During the Amazonian, 3 m was outgassed, and 31 m was lost to space and to the surface, leaving 62 m at the end of Hesperian. During the Hesperian, volcanic outgassing added 5 m, 7 m was lost, and 40 m GEL of groundwater was added to form outflow channels, leaving 24 m carryover of surface water from the Noachian into the Hesperian. The Hesperian budget is incompatible with a northern ocean during this era. These figures are for near-surface water; substantial amounts of water may have existed as deep ground ice and groundwater. Our estimate of approximately 24 m near-surface water in the Late Noachian is insufficient to support an ocean at that time also and favors episodic melting of an icy highlands to produce the fluvial and lacustrine features.

  8. Rapid surface-water volume estimations in beaver ponds

    NASA Astrophysics Data System (ADS)

    Karran, Daniel J.; Westbrook, Cherie J.; Wheaton, Joseph M.; Johnston, Carol A.; Bedard-Haughn, Angela

    2017-02-01

    Beaver ponds are surface-water features that are transient through space and time. Such qualities complicate the inclusion of beaver ponds in local and regional water balances, and in hydrological models, as reliable estimates of surface-water storage are difficult to acquire without time- and labour-intensive topographic surveys. A simpler approach to overcome this challenge is needed, given the abundance of the beaver ponds in North America, Eurasia, and southern South America. We investigated whether simple morphometric characteristics derived from readily available aerial imagery or quickly measured field attributes of beaver ponds can be used to approximate surface-water storage among the range of environmental settings in which beaver ponds are found. Studied were a total of 40 beaver ponds from four different sites in North and South America. The simplified volume-area-depth (V-A-h) approach, originally developed for prairie potholes, was tested. With only two measurements of pond depth and corresponding surface area, this method estimated surface-water storage in beaver ponds within 5 % on average. Beaver pond morphometry was characterized by a median basin coefficient of 0.91, and dam length and pond surface area were strongly correlated with beaver pond storage capacity, regardless of geographic setting. These attributes provide a means for coarsely estimating surface-water storage capacity in beaver ponds. Overall, this research demonstrates that reliable estimates of surface-water storage in beaver ponds only requires simple measurements derived from aerial imagery and/or brief visits to the field. Future research efforts should be directed at incorporating these simple methods into both broader beaver-related tools and catchment-scale hydrological models.

  9. Metropolitan Spokane Region Water Resources Study. Appendix A. Surface Water

    DTIC Science & Technology

    1976-01-01

    Plain Delineation and , 410.2-1 to 410.2-68 307 "Inventory of Water Quality Data and Identification of Data Gaps 307-1 to 307-104 A detailed index for...absence of a gage between the Hangman CieeK and Little Spokane confluence does not pose a serious data gap since Hangman Creek is gaged near the...a significa.t data gap for two reasons. The Little Spokane gage at Dartford, USGS number 12-4310-00, is 10.8 miles upstream from the confluence and

  10. Probing the water on chemically heterogeneous surface: interfacial-structural analysis for surface charge distribution

    NASA Astrophysics Data System (ADS)

    Shin, Sucheol; Willard, Adam

    We introduce the novel method for predicting the charge distribution of chemically heterogeneous surface, but reconstructed from the perspective of the interfacial water molecules. Our approach is to analyze the response of water to a disordered surface and infer from that response the heterogeneous distribution of surface charge. We accomplish this using a framework that is based on a probabilistic description of water's interfacial molecular structure and maximum likelihood estimation. This framework allows to deduce the apparent charge that is most congruently represented by the set of water configurations over the particular region of a surface. We demonstrate that the estimated charge distribution is consistent to the actual distribution for a static model substrate and hence that our method can be applied to investigate a dynamic fluctuating substrate such as the surface of a hydrated protein. This novel technique provides the useful information that can reflect the influence of fluctuations in the structure of biomolecule.

  11. A CBO Paper. How Federal Policies Affect the Allocation of Water

    DTIC Science & Technology

    2006-08-01

    Act were the major catalyst for the formation of the Edwards Aquifer Bank in Texas , the Environmental Water Account in California, and the Klamath...Kaiser and L.M. Phillips, “Dividing the Waters: Water Marketing as a Con- flict Resolution Strategy in the Edwards Aquifer Region,” Natural...freshwater from precipitation and underground sources, stores surface water with dams and reservoirs, pumps water from aquifers and uses them for

  12. Integrated Water Flow Model (IWFM), A Tool For Numerically Simulating Linked Groundwater, Surface Water And Land-Surface Hydrologic Processes

    NASA Astrophysics Data System (ADS)

    Dogrul, E. C.; Brush, C. F.; Kadir, T. N.

    2006-12-01

    The Integrated Water Flow Model (IWFM) is a comprehensive input-driven application for simulating groundwater flow, surface water flow and land-surface hydrologic processes, and interactions between these processes, developed by the California Department of Water Resources (DWR). IWFM couples a 3-D finite element groundwater flow process and 1-D land surface, lake, stream flow and vertical unsaturated-zone flow processes which are solved simultaneously at each time step. The groundwater flow system is simulated as a multilayer aquifer system with a mixture of confined and unconfined aquifers separated by semiconfining layers. The groundwater flow process can simulate changing aquifer conditions (confined to unconfined and vice versa), subsidence, tile drains, injection wells and pumping wells. The land surface process calculates elemental water budgets for agricultural, urban, riparian and native vegetation classes. Crop water demands are dynamically calculated using distributed soil properties, land use and crop data, and precipitation and evapotranspiration rates. The crop mix can also be automatically modified as a function of pumping lift using logit functions. Surface water diversions and groundwater pumping can each be specified, or can be automatically adjusted at run time to balance water supply with water demand. The land-surface process also routes runoff to streams and deep percolation to the unsaturated zone. Surface water networks are specified as a series of stream nodes (coincident with groundwater nodes) with specified bed elevation, conductance and stage-flow relationships. Stream nodes are linked to form stream reaches. Stream inflows at the model boundary, surface water diversion locations, and one or more surface water deliveries per location are specified. IWFM routes stream flows through the network, calculating groundwater-surface water interactions, accumulating inflows from runoff, and allocating available stream flows to meet specified or

  13. Map showing general chemical quality of surface water in the Richfield Quadrangle, Utah

    USGS Publications Warehouse

    Price, Don

    1980-01-01

    This is one of a series of maps that describe the geology and related natural resources of the Richfield 2° quadrangle, Utah. The purpose of this map is to show the general chemical quality of surface water in the area by ranges of dissolved-solids concentrations.Data used to compile this map were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights. In those areas where little or no surface-water-quality data are available, ranges of dissolved-solids concentrations of the water are inferred on the basis of such factors as geology (Stokes, 1964), precipitation, topography, known ground-water quality, and water uses – all of which affect the chemical quality of surface water.Additional information about the chemical quality of surface water in various parts of the Richfield 2° quadrangle may be found in the following reports: Hahl and Cabell (1965), Hahl and Mundorff (1968), Stephens (1974, 1976), Cruff and Mower (1976), and Cruff(1977)

  14. Water transport mechanism through open capillaries analyzed by direct surface modifications on biological surfaces

    NASA Astrophysics Data System (ADS)

    Ishii, Daisuke; Horiguchi, Hiroko; Hirai, Yuji; Yabu, Hiroshi; Matsuo, Yasutaka; Ijiro, Kuniharu; Tsujii, Kaoru; Shimozawa, Tateo; Hariyama, Takahiko; Shimomura, Masatsugu

    2013-10-01

    Some small animals only use water transport mechanisms passively driven by surface energies. However, little is known about passive water transport mechanisms because it is difficult to measure the wettability of microstructures in small areas and determine the chemistry of biological surfaces. Herein, we developed to directly analyse the structural effects of wettability of chemically modified biological surfaces by using a nanoliter volume water droplet and a hi-speed video system. The wharf roach Ligia exotica transports water only by using open capillaries in its legs containing hair- and paddle-like microstructures. The structural effects of legs chemically modified with a self-assembled monolayer were analysed, so that the wharf roach has a smart water transport system passively driven by differences of wettability between the microstructures. We anticipate that this passive water transport mechanism may inspire novel biomimetic fluid manipulations with or without a gravitational field.

  15. Water transport mechanism through open capillaries analyzed by direct surface modifications on biological surfaces.

    PubMed

    Ishii, Daisuke; Horiguchi, Hiroko; Hirai, Yuji; Yabu, Hiroshi; Matsuo, Yasutaka; Ijiro, Kuniharu; Tsujii, Kaoru; Shimozawa, Tateo; Hariyama, Takahiko; Shimomura, Masatsugu

    2013-10-23

    Some small animals only use water transport mechanisms passively driven by surface energies. However, little is known about passive water transport mechanisms because it is difficult to measure the wettability of microstructures in small areas and determine the chemistry of biological surfaces. Herein, we developed to directly analyse the structural effects of wettability of chemically modified biological surfaces by using a nanoliter volume water droplet and a hi-speed video system. The wharf roach Ligia exotica transports water only by using open capillaries in its legs containing hair- and paddle-like microstructures. The structural effects of legs chemically modified with a self-assembled monolayer were analysed, so that the wharf roach has a smart water transport system passively driven by differences of wettability between the microstructures. We anticipate that this passive water transport mechanism may inspire novel biomimetic fluid manipulations with or without a gravitational field.

  16. Experimental Observation of Dark Solitons on Water Surface

    DTIC Science & Technology

    2016-06-13

    Experimental observation of dark solitons on water surface A. Chabchoub1,∗, O. Kimmoun2, H. Branger3, N. Hoffmann1, D. Proment4, M. Onorato4,5, and N...observation of dark solitons on the water surface. It takes the form of an amplitude drop of the carrier wave which does not change shape in propagation...The shape and width of the soliton depend on the water depth, carrier frequency and the amplitude of the background wave. The experimental data

  17. Asphaltene surface activity at oil/water interfaces

    SciTech Connect

    Sheu, E.Y.; Shields, M.B.

    1995-11-01

    Small angle neutron scattering (SANS) dynamic surface tension (DST), dynamic interfacial tension (DIFT), and zero shear viscosity were used to study the surface activity of Ratawi asphaltenes in organic solvents, in the asphaltene/water/toluene emulsions and at the toluene/aqueous solution interfaces. In organic solvents, the kinetic process of micellization and the micellar structure are characterized. Their dependence on asphaltene concentration was investigated. The emulsion droplet structure and their capability in water uptake was tested. Also, the enhancement of surface activity of asphaltenes and its potential applications are briefly discussed.

  18. Hydrology and geochemistry of a slag-affected aquifer and chemical characteristics of slag-affected ground water, northwestern Indiana and northeastern Illinois

    USGS Publications Warehouse

    Bayless, E. Randall; Greeman, T.K.; Harvey, C.C.

    1998-01-01

    Slag is a by-product of steel manufacturing and a ubiquitous fill material in northwestern Indiana. Ground water associated with slag deposits generally is characterized by high pH and elevated concentrations of many inorganic water-quality constituents. The U.S. Geological Survey, in cooperation with the Indiana Department of Environmental Management, conducted a study in northwestern Indiana from June 1995 to September 1996 to improve understanding of the effects of slag deposits on the water quality of a glacial-outwash aquifer. The Bairstow Landfill, a slag-fill deposit overlying the Calumet aquifer near Hammond, Indiana, was studied to represent conditions in slag-deposit settings that are common in northwestern Indiana. Ground water from 10 observation wells, located in four nests at the site, and surface water from the adjacent Lake George were analyzed for values of field-measured parameters and concentrations of major ions, nutrients, trace elements, and bulk properties. Solid-phase samples of slag and aquifer sediment collected during drilling were examined with X-ray diffraction and geochemical digestion and analysis. Concentrations of calcium, potassium, sodium, and sulfate were highest in wells screened partly or fully in slag. Potassium concentrations in ground water ranged from 2.9 to 120 milligrams per liter (mg/L), were highest in water from slag deposits, and decreased with depth. The highest concentrations for aluminum, barium, molybdenum, nickel, and selenium were in water from the slag. Silica concentrations were highest in wells screened directly beneath the slag?aquifer interface, and magnesium concentrations were highest in intermediate and deep aquifer wells. Silica concentrations in shallow and intermediate aquifer wells ranged from 27 to 41 mg/L and were about 10 times greater than those in water from slag deposits. The highest concentrations for chromium, lead, and zinc were in ground water from immediately below the slag

  19. Estimation of surface runoff and water-covered area during filling of surface microrelief depressions

    NASA Astrophysics Data System (ADS)

    Hansen, B.

    2000-05-01

    During the filling of surface microrelief depressions the precipitation excess (precipitation minus infiltration and interception) is divided between surface storage and runoff, i.e. runoff starts before the surface depressions are filled. Information on the division of precipitation excess is needed for modelling surface runoff during the filling of surface depressions. Furthermore, information on the surface of the area covered with water is needed for calculating infiltration of water stored in soil surface depressions. Thirty-two soil surface microreliefs were determined in Danish erosion study plots. The slope was c. 10% for all plots. Data were treated initially by removing the slope, after which 20 artificial slopes (1-20%) were introduced producing 640 new data sets. Runoff during filling of the microrelief storage was calculated for each of the 640 data sets using a model developed for calculating surface storage and runoff from grid elevation measurements. Runoff started immediately after the first addition of water for all data sets. On a field scale, however, runoff has to travel some distance as overland flow and storage in smaller and larger depressions below the runoff initiation point must be taken into consideration. The runoff increases by intermittent steps. Whenever a depression starts to overflow to the border of the plot, the runoff jumps accordingly. In spite of the jumps, the distribution between surface storage and runoff was closely related to the quotient between precipitation excess and depression storage capacity. Surface area covered with water was exponentially related to the amount of water stored in surface depressions. Models for calculating surface storage and runoff from grid elevation measurements are cumbersome and require time-consuming measurements of the soil surface microrelief. Therefore, estimation from roughness indices requiring fewer measurements is desirable. New improved equations for such estimations are suggested.

  20. The Proposed Surface Water and Ocean Topography (SWOT) Mission

    NASA Technical Reports Server (NTRS)

    Fu, Lee-Lueng; Alsdorf, Douglas; Rodriguez, Ernesto; Morrow, Rosemary; Mognard, Nelly; Vaze, Parag; Lafon, Thierry

    2012-01-01

    A new space mission concept called Surface Water and Ocean Topography (SWOT) is being developed jointly by a collaborative effort of the international oceanographic and hydrological communities for making high-resolution measurement of the water elevation of both the ocean and land surface water to answer the questions about the oceanic submesoscale processes and the storage and discharge of land surface water. The key instrument payload would be a Ka-band radar interferometer capable of making high-resolution wide-swath altimetry measurement. This paper describes the proposed science objectives and requirements as well as the measurement approach of SWOT, which is baselined to be launched in 2019. SWOT would demonstrate this new approach to advancing both oceanography and land hydrology and set a standard for future altimetry missions.

  1. Thermal surface signatures of ship propeller wakes in stratified waters

    NASA Astrophysics Data System (ADS)

    Voropayev, S. I.; Nath, C.; Fernando, H. J. S.

    2012-11-01

    When a ship moves in temperature stratified water, e.g., in the ocean diurnal thermocline, the propeller(s) as well as the turbulent boundary layer of the hull mix the surface water with underlying colder fluid. As a result, when observed from above, a temperature "wake signature" of ˜1-2 °C may be detected at the water surface. To quantify this phenomenon, theoretical modeling and physical experiments were conducted. The dominant processes responsible for thermal wake generation were identified and parameterized. Most important similarity parameters were derived and estimates for wake signature contrast were made. To verify model predictions, scaled experiments were conducted, with the water surface temperature measured using a sensitive infrared camera. Comparison of laboratory measurements with model estimates has shown satisfactory agreement, both qualitative and quantitatively. Estimates for ocean ship-wake scenarios are also given, which are supported by available field observations.

  2. Circumnutation on the water surface: female flowers of Vallisneria

    PubMed Central

    Kosuge, Keiko; Iida, Satoko; Katou, Kiyoshi; Mimura, Tetsuro

    2013-01-01

    Circumnutation, the helical movement of growing organ tips, is ubiquitous in land plants. The mechanisms underlying circumnutation have been debated since Darwin's time. Experiments in space and mutant analyses have revealed that internal oscillatory (tropism-independent) movement and gravitropic response are involved in circumnutation. Female flower buds of tape grass (Vallisneria asiatica var. biwaensis) circumnutate on the water surface. Our observations and experiments with an artificial model indicated that gravitropism is barely involved in circumnutation. Instead, we show that helical intercalary growth at the base of peduncle plays the primary role in all movements in Vallisneria. This growth pattern produces torsional bud rotation, and gravity and buoyancy forces have a physical effect on the direction of peduncle elongation, resulting in bud circumnutation on the water surface. In contrast to other water-pollinated hydrophilous plants, circumnutation in Vallisneria enables female flowers to actively collect male flowers from a larger surface area of water. PMID:23355948

  3. Experimental water droplet impingement data on modern aircraft surfaces

    NASA Technical Reports Server (NTRS)

    Papadakis, Michael; Breer, Marlin D.; Craig, Neil C.; Bidwell, Colin S.

    1991-01-01

    An experimental method has been developed to determine the water droplet impingement characteristics on two- and three-dimensional aircraft surfaces. The experimental water droplet impingement data are used to validate particle trajectory analysis codes that are used in aircraft icing analyses and engine inlet particle separator analyses. The aircraft surface is covered with thin strips of blotter paper in areas of interest. The surface is then exposed to an airstream that contains a dyed-water spray cloud. The water droplet impingement data are extracted from the dyed blotter paper strips by measuring the optical reflectance of each strip with an automated reflectometer. Preliminary experimental and analytical impingement efficiency data are presented for a NLF(1)-0414F airfoil, s swept MS(1)-0317 airfoil, a swept NACA 0012 wingtip and for a Boeing 737-300 engine inlet model.

  4. How surface density of galaxy disks affects metallicity? Outflow and Accretion

    NASA Astrophysics Data System (ADS)

    Wu, Po-Feng; Kudritzki, Rolf-Peter; Tully, R. Brent; Neill, J. D.

    2015-08-01

    The surface density of disk is considered as a second parameter affecting the evolution of disk galaxies other than mass. Several physical and chemical properties of galaxies are found to be correlated with surface density of disk galaxies. However, the surface density, or surface brightness, is also strongly correlated with mass. It's not clear whether surface density really plays a role, or those correlations simply reflect the effect from stellar mass. To ask the question properly, one should take away the dependence on mass of galaxies, i.e., compare galaxies with the same mass but different surface densities.In this study, we ask, besides stellar mass, whether the surface density of disks also affects chemical evolution of galaxies. We demonstrate that, after removing the dependence on stellar mass and gas mass, the metallicity of galaxy still correlates with surface density of the galaxy disk. At the same stellar and gas mass, higher surface brightness galaxies on average possess both higher stellar and gas-phase metallicity, inferred from broadband color and spectrosopy of HII regions, respectively.We use an analytical model of chemical evolution involving gas outflow and accretion to explore possible reasons causing the difference in metallicity. Accroding to the model, at the same mass, lower metallicity galaxies should have experienced severer mass loss during star-formation events, and/or be inert to gas accretion. Both scenarios are consistent with general expections from properties of low surface density disks of shallow potential wells and dynamical stability.

  5. Thin water film formation on metal oxide crystal surfaces.

    PubMed

    Gilbert, Benjamin; Katz, Jordan E; Rude, Bruce; Glover, T E; Hertlein, Marcus P; Kurz, Charles; Zhang, Xiaoyi

    2012-10-09

    Reactions taking place at hydrated metal oxide surfaces are of considerable environmental and technological importance. Surface-sensitive X-ray methods can provide structural and chemical information on stable interfacial species, but it is challenging to perform in situ studies of reaction kinetics in the presence of water. We have implemented a new approach to creating a micrometer-scale water film on a metal oxide surface by combining liquid and gas jets on a spinning crystal. The water films are stable indefinitely and sufficiently thin to allow grazing incidence X-ray reflectivity and spectroscopy measurements. The approach will enable studies of a wide range of surface reactions and is compatible with interfacial optical-pump/X-ray-probe studies.

  6. Hydrodynamic interaction between rigid surfaces planing on water

    NASA Astrophysics Data System (ADS)

    Bari, Ghazi; Matveev, Konstantin

    2016-11-01

    This study addresses hydrodynamic interaction of multi-surface planing hulls in the linearized, inviscid, steady flow approximation. A potential-flow-based hydrodynamic sources are distributed on the water surface to model water flow around three-dimensional hulls at finite Froude numbers. The pressure distribution on the hull surfaces are calculated as a part of the solution, and then the lift force and center of pressure are determined. For validation, numerical results are compared with an available analytical solution, experimental results, and empirical correlation equations. Parametric calculations are carried out for different hull designs in variable speed regimes, hull aspect ratios, deadrise angles and hull spacings. Results are presented for the lift coefficient, drag components, lift-drag ratio, center of pressure, and some illustrations are given for the water surface elevations. Obtained results can assist naval architects in improving design of high speed marine vehicles.

  7. Hydrogen bonding at the water surface revealed by isotopic dilution spectroscopy.

    PubMed

    Stiopkin, Igor V; Weeraman, Champika; Pieniazek, Piotr A; Shalhout, Fadel Y; Skinner, James L; Benderskii, Alexander V

    2011-06-08

    The air-water interface is perhaps the most common liquid interface. It covers more than 70 per cent of the Earth's surface and strongly affects atmospheric, aerosol and environmental chemistry. The air-water interface has also attracted much interest as a model system that allows rigorous tests of theory, with one fundamental question being just how thin it is. Theoretical studies have suggested a surprisingly short 'healing length' of about 3 ångströms (1 Å = 0.1 nm), with the bulk-phase properties of water recovered within the top few monolayers. However, direct experimental evidence has been elusive owing to the difficulty of depth-profiling the liquid surface on the ångström scale. Most physical, chemical and biological properties of water, such as viscosity, solvation, wetting and the hydrophobic effect, are determined by its hydrogen-bond network. This can be probed by observing the lineshape of the OH-stretch mode, the frequency shift of which is related to the hydrogen-bond strength. Here we report a combined experimental and theoretical study of the air-water interface using surface-selective heterodyne-detected vibrational sum frequency spectroscopy to focus on the 'free OD' transition found only in the topmost water layer. By using deuterated water and isotopic dilution to reveal the vibrational coupling mechanism, we find that the free OD stretch is affected only by intramolecular coupling to the stretching of the other OD group on the same molecule. The other OD stretch frequency indicates the strength of one of the first hydrogen bonds encountered at the surface; this is the donor hydrogen bond of the water molecule straddling the interface, which we find to be only slightly weaker than bulk-phase water hydrogen bonds. We infer from this observation a remarkably fast onset of bulk-phase behaviour on crossing from the air into the water phase.

  8. Sorption processes affecting arsenic solubility in oxidized surface sediments from Tulare Lake Bed, California

    USGS Publications Warehouse

    Gao, S.; Goldberg, S.; Herbel, M.J.; Chalmers, A.T.; Fujii, R.; Tanji, K.K.

    2006-01-01

    Elevated concentrations of arsenic (As) in shallow groundwater in Tulare Basin pose an environmental risk because of the carcinogenic properties of As and the potential for its migration to deep aquifers that could serve as a future drinking water source. Adsorption and desorption are hypothesized to be the major processes controlling As solubility in oxidized surface sediments where arsenate [As(V)] is dominant. This study examined the relationship between sorption processes and arsenic solubility in shallow sediments from the dry Tulare Lake bed by determining sorption isotherms, pH effect on solubility, and desorption-readsorption behavior (hysteresis), and by using a surface complexation model to describe sorption. The sediments showed a high capacity to adsorb As(V). Estimates of the maximum adsorption capacity were 92 mg As kg- 1 at pH 7.5 and 70 mg As kg- 1 at pH 8.5 obtained using the Langmuir adsorption isotherm. Soluble arsenic [> 97% As(V)] did not increase dramatically until above pH 10. In the native pH range (7.5-8.5), soluble As concentrations were close to the lowest, indicating that As was strongly retained on the sediment. A surface complexation model, the constant capacitance model, was able to provide a simultaneous fit to both adsorption isotherms (pH 7.5 and 8.5) and the adsorption envelope (pH effect on soluble As), although the data ranges are one order of magnitude different. A hysteresis phenomenon between As adsorbed on the sediment and As in solution phase was observed in the desorption-readsorption processes and differs from conventional hysteresis observed in adsorption-desorption processes. The cause is most likely due to modification of adsorbent surfaces in sediment samples upon extensive extractions (or desorption). The significance of the hysteresis phenomenon in affecting As solubility and mobility may be better understood by further microscopic studies of As interaction mechanisms with sediments subjected to extensive leaching

  9. Does the Economy or Surface Warfare Officer Career Pay Affect Surface Warfare Officer Retention?

    DTIC Science & Technology

    2014-12-01

    Table 13.  OLS coefficients and T-stat for female data set .................................. 35  Table 14.  Summary of expected and observed...retention to the economy, SWO career pay (SWOCP), and an interaction of the economy and SWOCP. B. EXPECTED BENEFITS A better understanding of...insufficient evidence to support H2, that career pay positively affects the female SWO population. 36 (3) Female Data Set—H3 The female data set is

  10. Surface tension isotherms of the dioxane-acetone-water and glycerol-ethanol-water ternary systems

    NASA Astrophysics Data System (ADS)

    Dzhambulatov, R. S.; Dadashev, R. Kh.; Elimkhanov, D. Z.; Dadashev, I. N.

    2016-10-01

    The results of the experimental and theoretical studies of the concentration dependence of surface tension of aqueous solutions of the 1,4-dioxane-acetone-water and glycerol-ethanol-water ternary systems were given. The studies were performed by the hanging-drop method on a DSA100 tensiometer. The maximum error of surface tension was 1%. The theoretical models for calculating the surface tension of the ternary systems of organic solutions were analyzed.

  11. Supplementary report on surface-water and ground-water surveys, Nueces River Basin, Texas

    USGS Publications Warehouse

    Broadhurst, W.L.; Ellsworth, C.E.

    1950-01-01

    A report on the ground-water and surface-water surveys of the Nueces River Basin was included in a report by the Bureau of Reclamation, entitled "Comprehensive plan for water-resources development of the Nueces River Basin project planning report number 5-14.04-3, February 1946".

  12. DETECTION OF A GROUND-WATER/SURFACE-WATER INTERFACE WITH DIRECT-PUSH EQUIPMENT

    EPA Science Inventory

    A ground-water/surface-water interface (GSI) was documented at the Thermo Chem CERCLA Site in Muskegon, MI via direct-push (DP) sampling. At that time, contaminated ground water flowed from the upland area of the site into the Black Creek floodplain. DP rods equipped with a 1.5...

  13. ARSENIC SORUCE IDENTIFICATION AT THE GROUND WATER-SURFACE WATER INTERACTION ZONE AT A CONTAMINATED SITE

    EPA Science Inventory

    One of the challenges in assessing the current impact of the discharge of arsenic contaminated ground water into a surface water body is differentiating the arsenic ground-water flux versus dissolution of in-place contaminated sediments. A field investigation has been carried ou...

  14. 77 FR 12227 - Long Term 2 Enhanced Surface Water Treatment Rule: Uncovered Finished Water Reservoirs; Public...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-29

    ... AGENCY 40 CFR Parts 141 and 142 Long Term 2 Enhanced Surface Water Treatment Rule: Uncovered Finished Water Reservoirs; Public Meeting AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of public..., concerning information that may inform the regulatory review of the uncovered finished water...

  15. Hydrochemical characteristics and water quality assessment of surface water and groundwater in Songnen plain, Northeast China.

    PubMed

    Zhang, Bing; Song, Xianfang; Zhang, Yinghua; Han, Dongmei; Tang, Changyuan; Yu, Yilei; Ma, Ying

    2012-05-15

    Water quality is the critical factor that influence on human health and quantity and quality of grain production in semi-humid and semi-arid area. Songnen plain is one of the grain bases in China, as well as one of the three major distribution regions of soda saline-alkali soil in the world. To assess the water quality, surface water and groundwater were sampled and analyzed by fuzzy membership analysis and multivariate statistics. The surface water were gather into class I, IV and V, while groundwater were grouped as class I, II, III and V by fuzzy membership analysis. The water samples were grouped into four categories according to irrigation water quality assessment diagrams of USDA. Most water samples distributed in category C1-S1, C2-S2 and C3-S3. Three groups were generated from hierarchical cluster analysis. Four principal components were extracted from principal component analysis. The indicators to water quality assessment were Na, HCO(3), NO(3), Fe, Mn and EC from principal component analysis. We conclude that surface water and shallow groundwater are suitable for irrigation, the reservoir and deep groundwater in upstream are the resources for drinking. The water for drinking should remove of the naturally occurring ions of Fe and Mn. The control of sodium and salinity hazard is required for irrigation. The integrated management of surface water and groundwater for drinking and irrigation is to solve the water issues.

  16. Water use and quality of fresh surface-water resources in the Barataria-Terrebonne Basins, Louisiana

    USGS Publications Warehouse

    Johnson-Thibaut, Penny M.; Demcheck, Dennis K.; Swarzenski, Christopher M.; Ensminger, Paul A.

    1998-01-01

    Approximately 170 Mgal/d (million gallons per day) of ground- and surface-water was withdrawn from the Barataria-Terrebonne Basins in 1995. Of this amount, surface water accounted for 64 percent ( 110 MgaVd) of the total withdrawal rates in the basins. The largest surface-water withdrawal rates were from Bayou Lafourche ( 40 Mgal/d), Bayou Boeuf ( 14 MgaVd), and the Gulf Intracoastal Waterway (4.2 Mgal/d). The largest ground-water withdrawal rates were from the Mississippi River alluvial aquifer (29 Mgal/d), the Gonzales-New Orleans aquifer (9.5 Mgal/d), and the Norco aquifer (3.6 MgaVd). The amounts of water withdrawn in the basins in 1995 differed by category of use. Public water suppliers within the basins withdrew 41 Mgal/d of water. The five largest public water suppliers in the basins withdrew 30 Mgal/d of surface water: Terrebonne Waterworks District 1 withdrew the largest amount, almost 15 MgaVd. Industrial facilities withdrew 88 Mgal/d, fossil-fuel plants withdrew 4.7 MgaVd, and commercial facilities withdrew 0.67 MgaVd. Aggregate water-withdrawal rates, compiled by parish for aquaculture (37 Mgal/d), livestock (0.56 Mgal/d), rural domestic (0.44 MgaVd), and irrigation uses (0.54 MgaVd), totaled about 38 MgaVd in the basins. Ninety-five percent of aquaculture withdrawal rates, primarily for crawfish and alligator farming, were from surface-water sources. >br> Total water-withdrawal rates increased 221 percent from 1960–95. Surface-water withdrawal rates have increased by 310 percent, and ground-water withdrawal rates have increased by 133 percent. The projection for the total water-withdrawal rates in 2020 is 220 MgaVd, an increase of 30 percent from 1995. Surface-water withdrawal rates would account for 59 percent of the total, or 130 Mgal/d. Surface-water withdrawal rates are projected to increase by 20 percent from 1995 to 2020. Analysis of water-quality data from the Mississippi River indicates that the main threats to surface water resources are

  17. Experimental Values of the Surface Tension of Supercooled Water

    NASA Technical Reports Server (NTRS)

    Hacker, P. T.

    1951-01-01

    The results of surface-tension measurements for supercooled water are presented. A total of 702 individual measurements of surface tension of triple-distilled water were made in the temperature range, 27 to -22.2 C, with 404 of these measurements at temperatures below 0 C. The increase in magnitude of surface tension with decreasing temperature, as indicated by measurements above 0 C, continues to -22.2 C. The inflection point in the surface-tension - temperature relation in the vicinity of 0 C, as indicated by the International Critical Table values for temperatures down to -8 C, is substantiated by the measurements in the temperature range, 0 to -22.2 C. The surface tension increases at approximately a linear rate from a value of 76.96+/-0.06 dynes per centimeter at -8 C to 79.67+/-0.06 dynes per centimeter at -22.2 C.

  18. Influence of surface structure and chemistry on water droplet splashing.

    PubMed

    Koch, Kerstin; Grichnik, Roland

    2016-08-06

    Water droplet splashing and aerosolization play a role in human hygiene and health systems as well as in crop culturing. Prevention or reduction of splashing can prevent transmission of diseases between animals and plants and keep technical systems such as pipe or bottling systems free of contamination. This study demonstrates to what extent the surface chemistry and structures influence the water droplet splashing behaviour. Smooth surfaces and structured replicas of Calathea zebrina (Sims) Lindl. leaves were produced. Modification of their wettability was done by coating with hydrophobizing and hydrophilizing agents. Their wetting was characterized by contact angle measurement and splashing behaviour was observed with a high-speed video camera. Hydrophobic and superhydrophilic surfaces generally showed fewer tendencies to splash than hydrophobic ones. Structuring amplified the underlying behaviour of the surface chemistries, increasing hydrophobic surfaces' tendency to splash and decreasing splash on hydrophilic surfaces by quickly transporting water off the impact point by capillary forces. The non-porous surface structures found in C. zebrina could easily be applied to technical products such as plastic foils or mats and coated with hydrophilizing agents to suppress splash in areas of increased hygiene requirements or wherever pooling of liquids is not desirable.This article is part of the themed issue 'Bioinspired hierarchically structured surfaces for green science'.

  19. Solitary Water Waves of Large Amplitude Generated by Surface Pressure

    NASA Astrophysics Data System (ADS)

    Wheeler, Miles H.

    2015-11-01

    We consider exact nonlinear solitary water waves on a shear flow with an arbitrary distribution of vorticity. Ignoring surface tension, we impose a non-constant pressure on the free surface. Starting from a uniform shear flow with a flat free surface and a supercritical wave speed, we vary the surface pressure and use a continuation argument to construct a global connected set of symmetric solitary waves. This set includes waves of depression whose profiles increase monotonically from a central trough where the surface pressure is at its lowest, as well as waves of elevation whose profiles decrease monotonically from a central crest where the surface pressure is at its highest. There may also be two waves in this connected set with identical surface pressure, only one of which is a wave of depression.

  20. Half of the world's population affected by changes in the water cycle by the end of the century

    NASA Astrophysics Data System (ADS)

    Sedlacek, J.; Knutti, R.

    2013-12-01

    Water is one of the most valuable resources on Earth. Thus it is not only important to know what the projected changes are but also how robust these changes are. Further it is also of advantage to know where these changes occur and how many people are affected by these changes. In this study we use the CMIP5 archive to investigate the changes of the water cycle. As a measure of significance we use two different quantities. The first one is called robustness and is adapted from weather forecasting evaluation. The second quantity is the number of models, which project a significant change. Several variables of the water cycle such as evaporation and relative humidity show a robust change already with a warming of 1C over more than 50% of the land surface. A warming of 2C, which corresponds roughly to the warming excepted by the mid-century in a RCP8.5 scenario, shows that more than half of the world's population/land surface is affected by robust changes in the water cycle. Interestingly the population affected are well distributed over the globe and not concentrated in a few hot-spots. This means also that the changes of the hydrological cycle are distributed over the whole land mass.

  1. Origin of subdiffusion of water molecules on cell membrane surfaces

    PubMed Central

    Yamamoto, Eiji; Akimoto, Takuma; Yasui, Masato; Yasuoka, Kenji

    2014-01-01

    Water molecules play an important role in providing unique environments for biological reactions on cell membranes. It is widely believed that water molecules form bridges that connect lipid molecules and stabilize cell membranes. Using all-atom molecular dynamics simulations, we show that translational and rotational diffusion of water molecules on lipid membrane surfaces exhibit subdiffusion and aging. Moreover, we provide evidence that both divergent mean trapping time (continuous-time random walk) and long-correlated noise (fractional Brownian motion) contribute to this subdiffusion. These results suggest that subdiffusion on cell membranes causes the water retardation, an enhancement of cell membrane stability, and a higher reaction efficiency. PMID:24739933

  2. The Assessment of Instruments for Detecting Surface Water Spills Associated with Oil and Gas Operations

    SciTech Connect

    Harris, Aubrey E.; Hopkinson, Leslie; Soeder, Daniel

    2016-12-02

    Surface water and groundwater risks associated with unconventional oil and gas development result from potential spills of the large volumes of chemicals stored on-site during drilling and hydraulic fracturing operations, and the return to the surface of significant quantities of saline water produced during oil or gas well production. To better identify and mitigate risks, watershed models and tools are needed to evaluate the dispersion of pollutants in possible spill scenarios. This information may be used to determine the placement of in-stream water-quality monitoring instruments and to develop early-warning systems and emergency plans. A chemical dispersion model has been used to estimate the contaminant signal for in-stream measurements. Spills associated with oil and gas operations were identified within the Susquehanna River Basin Commission’s Remote Water Quality Monitoring Network. The volume of some contaminants was found to be sufficient to affect the water quality of certain drainage areas. The most commonly spilled compounds and expected peak concentrations at monitoring stations were used in laboratory experiments to determine if a signal could be detected and positively identified using standard water-quality monitoring equipment. The results were compared to historical data and baseline observations of water quality parameters, and showed that the chemicals tested do commonly affect water quality parameters. This work is an effort to demonstrate that hydrologic and water quality models may be applied to improve the placement of in-stream water quality monitoring devices. This information may increase the capability of early-warning systems to alert community health and environmental agencies of surface water spills associated with unconventional oil and gas operations.

  3. Foulant characteristics comparison in recycling cooling water system makeup by municipal reclaimed water and surface water in power plant.

    PubMed

    Ping, Xu; Jing, Wang; Yajun, Zhang; Jie, Wang; Shuai, Si

    2015-01-01

    Due to water shortage, municipal reclaimed water rather than surface water was replenished into recycling cooling water system in power plants in some cities in China. In order to understand the effects of the measure on carbon steel corrosion, characteristics of two kinds of foulant produced in different systems were studied in the paper. Differences between municipal reclaimed water and surface water were analyzed firstly. Then, the weight and the morphology of two kinds of foulant were compared. Moreover, other characteristics including the total number of bacteria, sulfate reducing bacteria, iron bacteria, extracellular polymeric substance (EPS), protein (PN), and polysaccharide (PS) in foulant were analyzed. Based on results, it could be concluded that microbial and corrosive risk would be increased when the system replenished by municipal reclaimed water instead of surface water.

  4. Foulant Characteristics Comparison in Recycling Cooling Water System Makeup by Municipal Reclaimed Water and Surface Water in Power Plant

    PubMed Central

    Ping, Xu; Jing, Wang; Yajun, Zhang; Jie, Wang; Shuai, Si

    2015-01-01

    Due to water shortage, municipal reclaimed water rather than surface water was replenished into recycling cooling water system in power plants in some cities in China. In order to understand the effects of the measure on carbon steel corrosion, characteristics of two kinds of foulant produced in different systems were studied in the paper. Differences between municipal reclaimed water and surface water were analyzed firstly. Then, the weight and the morphology of two kinds of foulant were compared. Moreover, other characteristics including the total number of bacteria, sulfate reducing bacteria, iron bacteria, extracellular polymeric substance (EPS), protein (PN), and polysaccharide (PS) in foulant were analyzed. Based on results, it could be concluded that microbial and corrosive risk would be increased when the system replenished by municipal reclaimed water instead of surface water. PMID:25893132

  5. Interactions between groundwater and surface water: The state of the science

    USGS Publications Warehouse

    Sophocleous, M.

    2002-01-01

    The interactions between groundwater and surface water are complex. To understand these interactions in relation to climate, landform, geology, and biotic factors, a sound hydrogeoecological framework is needed. All these aspects are synthesized and exemplified in this overview. In addition, the mechanisms of interactions between groundwater and surface water (GW-SW) as they affect recharge-discharge processes are comprehensively outlined, and the ecological significance and the human impacts of such interactions are emphasized. Surface-water and groundwater ecosystems are viewed as linked components of a hydrologic continuum leading to related sustainability issues. This overview concludes with a discussion of research needs and challenges facting this evolving field. The biogeochemical processes within the upper few centimeters of sediments beneath nearly all surface-water bodies (hyporheic zone) have a profound effect on the chemistry of the water interchange, and here is where most of the recent research has been focusing. However, to advance conceptual and other modeling of GW-SW systems, a broader perspective of such interactions across and between surface-water bodies is needed, including multidimensional analyses, interface hydraulic characterization and spatial variability, site-to-region regionalization approaches, as well as cross-disciplinary collaborations.

  6. Scratching the surface of the water dication

    NASA Astrophysics Data System (ADS)

    Van Huis, Timothy J.; Wesolowski, Steven S.; Yamaguchi, Yukio; Schaefer, Henry F.

    1999-06-01

    The X˜ 3Σg-, ã 1Δg, and b˜ 1Σg+ states of the water dication, H2O2+, have been investigated using several high-level ab initio methods and a range of basis sets. With Dunning's augmented correlation consistent polarized valence quadruple-ζ (aug-cc-pVQZ) basis set at the complete active space self-consistent field second-order configuration interaction (CAS-SOCI) level, it is confirmed that the ground and first two excited states of H2O2+ are all of D∞h symmetry, in violation of Walsh's rules for 6 valence electron AH2 systems. The singlet-triplet splitting (X˜ 3Σg-—ã 1Δg) is predicted to be 53.6 kcal/mol (2.32 eV, 18 700 cm-1), while the X˜ 3Σg-—b˜ 1Σg+ separation is predicted to be 91.1 kcal/mol (3.95 eV, 31 900 cm-1). The vertical double ionization potentials (IPs) from X˜ 1A1 H2O to the X˜ 3B1, 1 1A1, b˜ 1B1, and 2 1A1 states of H2O2+ are predicted within the cc-pVQZ basis to be 40.1, 41.2, 42.6, and 46.1 eV, respectively, in good agreement with recent double-charge-transfer spectroscopic results. The corresponding adiabatic double IPs are 37.0, 39.3, and 41.0 eV to the X˜ 3Σg-, ã 1Δg, and b˜ 1Σg+ states of H2O2+, respectively. The activation barrier to fragmentation of H2O2+ (X˜ 3Σg- H2O2+→3Σ- OH++H+) at the cc-pVQZ CAS-SOCI level is predicted to be 2.1 kcal/mol (0.10 eV, 738 cm-1), and the reaction is exothermic by 126.4 kcal/mol (5.48 eV, 44 210 cm-1), providing a challenge for direct experimental detection of this elusive molecule.

  7. How Dutch drinking water production is affected by the use of herbicides on pavements.

    PubMed

    Bannink, A D

    2004-01-01

    About forty per cent of drinking water in The Netherlands is produced from surface water. Dutch water companies, that have to rely on this source, are dealing with major water quality problems due to the use of herbicides on pavements. Voluntary measures and bans have had only limited effect on the reduction of emissions of herbicides that runoff from pavements into surface water in The Netherlands. The effects on the production of drinking water from surface water should play a role in the authorisation of pesticides. Stricter regulations, including mandatory emission reduction measures and certification, are necessary. The enforcement of existing Dutch surface water pollution laws should solve part of the problem. Due to the international nature of most of the surface water used for drinking water supply, it is necessary that other countries take measures as well. European legislation brings a solution closer if implemented well and seriously enforced. The threat of strict legislation keeps pressure on the transition towards decreasing the dependence on chemicals for weed control on pavements.

  8. Lawrence Livermore National Laboratory Surface Water Protection: A Watershed Approach

    SciTech Connect

    Coty, J

    2009-03-16

    This surface water protection plan (plan) provides an overview of the management efforts implemented at Lawrence Livermore National Laboratory (LLNL) that support a watershed approach to protect surface water. This plan fulfills a requirement in the Department of Energy (DOE) Order 450.1A to demonstrate a watershed approach for surface water protection that protects the environment and public health. This plan describes the use of a watershed approach within which the Laboratory's current surface water management and protections efforts have been structured and coordinated. With more than 800 million acres of land in the U.S. under federal management and stewardship, a unified approach across agencies provides enhanced resource protection and cost-effectiveness. The DOE adopted, along with other federal agencies, the Unified Federal Policy for a Watershed Approach to Federal Land and Resource Management (UFP) with a goal to protect water quality and aquatic ecosystems on federal lands. This policy intends to prevent and/or reduce water pollution from federal activities while fostering a cost-effective watershed approach to federal land and resource management. The UFP also intends to enhance the implementation of existing laws (e.g., the Clean Water Act [CWA] and National Environmental Policy Act [NEPA]) and regulations. In addition, this provides an opportunity for the federal government to serve as a model for water quality stewardship using a watershed approach for federal land and resource activities that potentially impact surface water and its uses. As a federal land manager, the Laboratory is responsible for a small but important part of those 800 million acres of land. Diverse land uses are required to support the Laboratory's mission and provide an appropriate work environment for its staff. The Laboratory comprises two sites: its main site in Livermore, California, and the Experimental Test Site (Site 300), near Tracy, California. The main site is largely

  9. Occurrence of Diatoms in Lakeside Wells in Northern New Jersey as an Indicator of the Effect of Surface Water on Ground-Water Quality

    USGS Publications Warehouse

    Reilly, Timothy J.; Walker, Christopher E.; Baehr, Arthur L.; Schrock, Robin M.; Reinfelder, John R.

    2006-01-01

    In a novel approach for detecting ground-water/surface-water interaction, diatoms were used as an indicator that surface water affects ground-water quality in lakeside communities in northern New Jersey. The presence of diatoms, which are abundant in lakes, in adjacent domestic wells demonstrated that ground water in these lakeside communities was under the direct influence of surface water. Entire diatom frustules were present in 17 of 18 water samples collected in August 1999 from domestic wells in communities surrounding Cranberry Lake and Lake Lackawanna. Diatoms in water from the wells were of the same genus as those found in the lakes. The presence of diatoms in the wells, together with the fact that most static and stressed water levels in wells were below the elevation of the lake surfaces, indicates that ground-water/surface-water interaction is likely. Ground-water/surface-water interaction also probably accounts for the previously documented near-ubiquitous presence of methyl tertiary-butyl ether in the ground-water samples. Recreational use of lakes for motor boating and swimming, the application of herbicides for aquatic weed control, runoff from septic systems and roadways, and the presence of waterfowl all introduce contaminants to the lake. Samples from 4 of the 18 wells contained Navicula spp., a documented significant predictor of Giardia and Cryptosporidium. Because private well owners in New Jersey generally are not required to regularly monitor their wells, and tests conducted by public-water suppliers may not be sensitive to indicators of ground-water/surface-water interaction, these contaminants may remain undetected. The presence of diatoms in wells in similar settings can warn of lake/well interactions in the absence of other indicators.

  10. Model for outgassing of water from metal surfaces

    SciTech Connect

    Li, Minxu; Dylla, Fred

    1993-06-01

    Numerous measurements of outgassing from metal surfaces show that the outgassing obeys a power law of the form Q=Q{sub 10}t{sup -alpha}, where alpha is typically near unity. For unbaked systems, outgassing is dominated by water. This work demonstrates that alpha is a function of the water vapor exposure during venting of the system, and the physical properties of the passivation oxide layer on the surface. An analytic expression for the outgassing rate is derived based on the assumption that the rate of water diffusing through the passivation oxide layer to the surface governs the rate of its release into the vacuum. The source distribution function for the desorbing water is assumed to be a combination of a Gaussian distribution centered at the interior surface driven by atmospheric exposure, and a uniform concentration throughout the bulk. We have measured the outgassing rate from a clean stainless-steel (type 304) chamber as a function of water exposure to the chamber surface from <1 to 600 monolayers. The measured outgassing rate data show that alpha tends to 0.5 for low H{sub 2}O exposures and tends to 1.5 for high H{sub 2}O exposures as predicted by the model.

  11. Properties of water surface discharge at different pulse repetition rates

    SciTech Connect

    Ruma,; Yoshihara, K.; Hosseini, S. H. R. Sakugawa, T.; Akiyama, H.; Akiyama, M.; Lukeš, P.

    2014-09-28

    The properties of water surface discharge plasma for variety of pulse repetition rates are investigated. A magnetic pulse compression (MPC) pulsed power modulator able to deliver pulse repetition rates up to 1000 Hz, with 0.5 J per pulse energy output at 25 kV, was used as the pulsed power source. Positive pulse with a point-to-plane electrode configuration was used for the experiments. The concentration and production yield of hydrogen peroxide (H₂O₂) were quantitatively measured and orange II organic dye was treated, to evaluate the chemical properties of the discharge reactor. Experimental results show that the physical and chemical properties of water surface discharge are not influenced by pulse repetition rate, very different from those observed for under water discharge. The production yield of H₂O₂ and degradation rate per pulse of the dye did not significantly vary at different pulse repetition rates under a constant discharge mode on water surface. In addition, the solution temperature, pH, and conductivity for both water surface and underwater discharge reactors were measured to compare their plasma properties for different pulse repetition rates. The results confirm that surface discharge can be employed at high pulse repetition rates as a reliable and advantageous method for industrial and environmental decontamination applications.

  12. The significant surface-water connectivity of "geographically isolated wetlands"

    USGS Publications Warehouse

    Calhoun, Aram J. K.; Mushet, David M.; Alexander, Laurie C.; DeKeyser, Edward S.; Fowler, Laurie; Lane, Charles R.; Lang, Megan W.; Rains, Mark C.; Richter, Stephen; Walls, Susan

    2017-01-01

    We evaluated the current literature, coupled with our collective research expertise, on surface-water connectivity of wetlands considered to be “geographically isolated” (sensu Tiner Wetlands 23:494–516, 2003a) to critically assess the scientific foundation of grouping wetlands based on the singular condition of being surrounded by uplands. The most recent research on wetlands considered to be “geographically isolated” shows the difficulties in grouping an ecological resource that does not reliably indicate lack of surface water connectivity in order to meet legal, regulatory, or scientific needs. Additionally, the practice of identifying “geographically isolated wetlands” based on distance from a stream can result in gross overestimates of the number of wetlands lacking ecologically important surface-water connections. Our findings do not support use of the overly simplistic label of “geographically isolated wetlands”. Wetlands surrounded by uplands vary in function and surface-water connections based on wetland landscape setting, context, climate, and geographic region and should be evaluated as such. We found that the “geographically isolated” grouping does not reflect our understanding of the hydrologic variability of these wetlands and hence does not benefit conservation of the Nation’s diverse wetland resources. Therefore, we strongly discourage use of categorizations that provide overly simplistic views of surface-water connectivity of wetlands fully embedded in upland landscapes.

  13. How Venus surface conditions evolution can be affected by large impacts at long timescales?

    NASA Astrophysics Data System (ADS)

    Gillmann, Cedric; Golabek, Gregor; Tackley, Paul

    2016-04-01

    Using numerical simulations, we investigate how the evolution of Venus' atmosphere and mantle is modified by large impacts, during Late Veneer and Late Heavy Bombardment. We propose a coupled model of mantle/atmosphere feedback. We also focus on volatile fluxes in and out of the atmosphere: atmospheric escape and degassing. The solid part of the planet is simulated using the StagYY code (Armann and Tackley, 2012) and releases volatiles into the atmosphere through degassing. Physical properties are depth-dependent. The assumed rheology is Newtonian diffusion creep plus plastic yielding. Atmospheric escape modeling involves two different aspects: hydrodynamic escape (0-500 Myr) and non-thermal escape mechanisms (dominant post 4 Ga). Hydrodynamic escape is the massive outflow of volatiles occurring when the solar energy input is strong. Post 4 Ga escape from non-thermal processes is comparatively low. The evolution of surface temperature is calculated from the greenhouse effect dependent on CO2 and water concentrations in the atmosphere, using a one-dimensional gray radiative-convective atmosphere model. It allows us to complete the coupling of the model: feedback of the atmosphere on the mantle is obtained by using surface temperature as a boundary condition for the convection. Large impacts are capable of contributing to (i) atmospheric escape, (ii) volatile replenishment and (iii) energy transfer to the mantle of the solid planet. We test a wide range of impactor parameters (size, velocity, timing) and different assumptions related to impact erosion (Shuvalov, 2010). For energy transfer, 2D distribution of the thermal anomaly created by the impact is used, leading to melting and subjected to transport by the mantle convection. Small (0-50 km) meteorites have a negligible effect on the global scale: they only affect the impact point and do not have lasting consequences on surface conditions. Medium ones (50-150 km) have strong short term influence through volatile

  14. The utility of surface temperature measurements for the remote sensing of surface soil water status

    NASA Technical Reports Server (NTRS)

    Idso, S. B.; Jackson, R. D.; Reginato, R. J.; Schmugge, T. J.

    1975-01-01

    Experiments carried out on an Avondale loam soil indicated that the thermal inertia concept of soil water content detection is reasonably sound. The volumetric water contents of surface soil layers between 2 and 4 cm thick were found to be linear functions of the amplitude of the diurnal surface soil temperature wave for clear day-night periods. They were also found to be linear functions of the daily maximum value of the surface soil-air-temperature differential. Tests on three additional soils ranging from sandy loam to clay indicated that the relations determined for Avondale loam could not be accurately applied to these other soil types. When the moisture characteristic curves of each soil were used to transform water contents into pressure potentials, however, it was found that soil water pressure potential could be determined without prior knowledge of soil type, and thus its value as a potential soil water status survey tool was significantly enhanced.

  15. Water accommodation on ice and organic surfaces: insights from environmental molecular beam experiments.

    PubMed

    Kong, Xiangrui; Thomson, Erik S; Papagiannakopoulos, Panos; Johansson, Sofia M; Pettersson, Jan B C

    2014-11-26

    Water uptake on aerosol and cloud particles in the atmosphere modifies their chemistry and microphysics with important implications for climate on Earth. Here, we apply an environmental molecular beam (EMB) method to characterize water accommodation on ice and organic surfaces. The adsorption of surface-active compounds including short-chain alcohols, nitric acid, and acetic acid significantly affects accommodation of D2O on ice. n-Hexanol and n-butanol adlayers reduce water uptake by facilitating rapid desorption and function as inefficient barriers for accommodation as well as desorption of water, while the effect of adsorbed methanol is small. Water accommodation is close to unity on nitric-acid- and acetic-acid-covered ice, and accommodation is significantly more efficient than that on the bare ice surface. Water uptake is inefficient on solid alcohols and acetic acid but strongly enhanced on liquid phases including a quasi-liquid layer on solid n-butanol. The EMB method provides unique information on accommodation and rapid kinetics on volatile surfaces, and these studies suggest that adsorbed organic and acidic compounds need to be taken into account when describing water at environmental interfaces.

  16. Impact of Water Recovery from Wastes on the Lunar Surface Mission Water Balance

    NASA Technical Reports Server (NTRS)

    Fisher, John W.; Hogan, John Andrew; Wignarajah, Kanapathipi; Pace, Gregory S.

    2010-01-01

    Future extended lunar surface missions will require extensive recovery of resources to reduce mission costs and enable self-sufficiency. Water is of particular importance due to its potential use for human consumption and hygiene, general cleaning, clothes washing, radiation shielding, cooling for extravehicular activity suits, and oxygen and hydrogen production. Various water sources are inherently present or are generated in lunar surface missions, and subject to recovery. They include: initial water stores, water contained in food, human and other solid wastes, wastewaters and associated brines, ISRU water, and scavenging from residual propellant in landers. This paper presents the results of an analysis of the contribution of water recovery from life support wastes on the overall water balance for lunar surface missions. Water in human wastes, metabolic activity and survival needs are well characterized and dependable figures are available. A detailed life support waste model was developed that summarizes the composition of life support wastes and their water content. Waste processing technologies were reviewed for their potential to recover that water. The recoverable water in waste is a significant contribution to the overall water balance. The value of this contribution is discussed in the context of the other major sources and loses of water. Combined with other analyses these results provide guidance for research and technology development and down-selection.

  17. Recent changes in surface water extent over the Northern latitudes.

    NASA Astrophysics Data System (ADS)

    Papa, F.; Prigent, C.; Rossow, W. B.

    2009-04-01

    All climate scenarios agree on the high sensitivity of the northern regions to global change, with a stronger warming at these latitudes than globally. Continued warming will likely have profound consequences for many continental systems throughout the region. In particular, an increase in air temperature is expected to intensify the Arctic hydrological cycle. As a key parameter of the global biogeochemical and hydrological cycles, terrestrial surface waters (rivers, lakes, man-made reservoirs, wetlands and episodically inundation) are of a particular importance because they interact directly with the ocean and atmosphere. Using a multi-satellite method, including passive microwave land surface emissivities, along with active microwave, visible and near infrared observations developed to estimate inundated area at global scale, we present here the recent changes observed in surface water extent in Northern latitudes over the period 1993-2004. Over these regions, results show a decline in surface water extent with large geographical contrasts between Eurasia and America, between the different large river basins and between the regions underlain or not by permafrost. For six major basins located in Eurasia and North America, we analyze theses changes in comparison with precipitation, temperature and in-situ river discharge variations. The Yenissey and the Lena river basins, which are largely underlain by permafrost, show the largest changes in surface water extent especially in July/August with a decline of about 1-2% per year. Our results support the idea that more deeply thawed permafrost, due to temperature increase in the Boreal regions, would promote increased soil infiltration and a possible shift of water storage from the surface/near surface to the subsurface. The implications of these results in term of energy, biochemical and water cycles will be discussed.

  18. Surface water pesticide modelling for decision support in drinking water production

    NASA Astrophysics Data System (ADS)

    Desmet, Nele; Dams, Jef; Bronders, Jan; Peleman, Gisèle; Verdickt, Liesbeth

    2015-04-01

    The occurrence of pesticides and other contaminants in river systems may compromise the use of surface water for drinking water production. To reduce the cost of removal of pesticides from the raw water, drinking water companies can: search for other raw water sources, invest in water storage capacity to overcome periods with high pesticide concentrations (often related to the application period), or impose measures to reduce the emission of pesticides to surface water (i.e. sustainable application strategies or use restrictions). To select the most appropriate water management options, the costs and effects of the aforementioned actions need to be evaluated. This evaluation requires knowledge on the concentrations and loads of pesticides at the point of drinking water abstraction, as well as insight in the contribution and the temporal variability of different sources or subbasins. In such a case, a modelling approach can assist in generating measurement-based datasets and to compare different scenarios for water management. We illustrate how a modelling approach can provide decision support for water management related to drinking water abstraction from surface water in a catchment that suffers from elevated pesticide concentrations. The study area is a water production center (WPC) located in northwestern Belgium. The WPC abstracts raw water from the river IJzer or from a natural pond and its connected streams. The available quantities as well as the quality of the water vary throughout the year. The WPC uses a reservoir of 3 million m³ to capture and store raw water to overcome periods with limited water availability and/or poor water quality. However, the pressure on water increases and in the future this buffering capacity might be no longer sufficient to fulfill the drinking water production demand. A surface water quality model for the area is set up using InfoWorks RS. The model is applied to obtain insight in the concentrations and loads at the different

  19. Wetting hysteresis induced by temperature changes: Supercooled water on hydrophobic surfaces.

    PubMed

    Heydari, Golrokh; Sedighi Moghaddam, Maziar; Tuominen, Mikko; Fielden, Matthew; Haapanen, Janne; Mäkelä, Jyrki M; Claesson, Per M

    2016-04-15

    The state and stability of supercooled water on (super)hydrophobic surfaces is crucial for low temperature applications and it will affect anti-icing and de-icing properties. Surface characteristics such as topography and chemistry are expected to affect wetting hysteresis during temperature cycling experiments, and also the freezing delay of supercooled water. We utilized stochastically rough wood surfaces that were further modified to render them hydrophobic or superhydrophobic. Liquid flame spraying (LFS) was utilized to create a multi-scale roughness by depositing titanium dioxide nanoparticles. The coating was subsequently made non-polar by applying a thin plasma polymer layer. As flat reference samples modified silica surfaces with similar chemistries were utilized. With these substrates we test the hypothesis that superhydrophobic surfaces also should retard ice formation. Wetting hysteresis was evaluated using contact angle measurements during a freeze-thaw cycle from room temperature to freezing occurrence at -7°C, and then back to room temperature. Further, the delay in freezing of supercooled water droplets was studied at temperatures of -4°C and -7°C. The hysteresis in contact angle observed during a cooling-heating cycle is found to be small on flat hydrophobic surfaces. However, significant changes in contact angles during a cooling-heating cycle are observed on the rough surfaces, with a higher contact angle observed on cooling compared to during the subsequent heating. Condensation and subsequent frost formation at sub-zero temperatures induce the hysteresis. The freezing delay data show that the flat surface is more efficient in enhancing the freezing delay than the rougher surfaces, which can be rationalized considering heterogeneous nucleation theory. Thus, our data suggests that molecular flat surfaces, rather than rough superhydrophobic surfaces, are beneficial for retarding ice formation under conditions that allow condensation and frost

  20. Potentiometric surface of the Floridan Aquifer, Southwest Florida Water Management District, September 1980

    USGS Publications Warehouse

    Yobbi, D.K.; Woodham, W.M.; Schiner, George R.

    1980-01-01

    A September 1980 potentiometric-surface map of the Southwest Florida Water Management District depicts the annual high water-level period. Potentiometric levels rose 1 to 31 feet between May 1980 and September 1980 in the citrus and farming sections of southern Hillsborough, northern Hardee, southwestern Polk, northwestern DeSoto, and Manatee Counties. Water levels in these areas are widely affected by reduced pumping for irrigation and have the greatest range in fluctuations. Generally, potentiometric levels were lower than previous September levels except in Citrus, eastern Levy, and western Marion Counties where levels were 0 to 8 feet higher. (USGS)

  1. Primary factors affecting water quality and quantity in four watersheds in Eastern Puerto Rico

    USGS Publications Warehouse

    Murphy, Sheila F.; Stallard, Robert F.

    2009-01-01

    As part of the U.S. Geological Survey (USGS) Water, Energy, and Biogeochemical Budgets (WEBB) program, four small watersheds in eastern Puerto Rico were monitored to identify and evaluate the effects of geology, landcover, atmospheric deposition, and other factors on stream water quality and quantity. Two catchments are located on coarse-grained granitic plutonic rocks, which weather to quartz- and clay-rich, sandy soils, and two are located on fine-grained volcanic rocks and volcaniclastic sediments, which weather to quartz-poor, fine-grained soils. These differing soil materials result in different hydrologic regimes. Soils on the granitic rocks have greater permeability than those developed on the volcaniclastic rocks, allowing more water infiltration and potentially greater landslide erosion rates. For each bedrock type, one catchment was covered with mature rainforest, and the other catchment was affected by agricultural practices typical of eastern Puerto Rico. These practices led to the erosion of much of the original surface soil in the agricultural watersheds, which introduced large quantities of sediment to stream channels. The agricultural watersheds are undergoing natural reforestation, like much of Puerto Rico. Eastern Puerto Rico receives large atmospheric inputs of marine salts, pollutants from the Northern Hemisphere, and Saharan Desert dust. Marine salts contribute over 80 percent of the ionic charge in precipitation, with peak inputs in January. Intense storms, mostly hurricanes, are associated with exceptionally high chloride concentrations in stream waters. Temperate pollution contributes nitrate, ammonia, and sulfate, with maximum inputs during northern cold fronts in January, April, and May. Pollution inputs have increased through time. Desert dust peaks in June and July, during times of maximum dust transport from the Saharan Desert across the Atlantic Ocean.

  2. Photochemical Transformation Processes in Sunlit Surface Waters (Invited)

    NASA Astrophysics Data System (ADS)

    Vione, D.

    2013-12-01

    of water can significantly increase 1O2 half-life time (the main deactivation process of 1O2 in solution is collision with the solvent), thereby affording considerable reactivity toward hydrophobic solutes. The current knowledge in the field of natural photosensitizers in surface waters allows photoinduced transformation processes of organic pollutants to be assessed and modelled. For instance, it is possible to predict pollutant half-life times by knowing absorption spectrum, direct photolysis quantum yield and reaction rate constants with °OH, CO3-° 1O2 and 3CDOM*, as a function of sunlight irradiance, water chemical composition (also affecting absorption) and column depth. Some examples of model application to real cases will be presented [6-8]. [1] Halladja et al., Environ Sci Technol 41, 6066 (2007) [2] Canonica et al., Environ Sci Technol 39, 9182 (2005) [3] De Laurentiis et al., Chemosphere 88, 1208 (2012) [4] Latch & McNeill, Science 311, 1743 (2006) [5] Minella et al., Chemosphere 90, 881 (2013) [6] Vione et al., Wat Res 45, 6725 (2011) [7] Sur et al., Sci Total Environ 426, 296 (2012) [8] De Laurentiis et al., Environ Sci Technol 46, 8164 (2012)

  3. Effect of surface roughness and softness on water capillary adhesion in apolar media.

    PubMed

    Banerjee, Soumi; Mulder, Pieter; Kleijn, J Mieke; Cohen Stuart, Martien A

    2012-06-28

    The roughness and softness of interacting surfaces are both important parameters affecting the capillary condensation of water in apolar media, yet are poorly understood at present. We studied the water capillary adhesion between a cellulose surface and a silica colloidal probe in hexane by AFM force measurements. Nanomechanical measurements show that the Young's modulus of the cellulose layer in water is significantly less (~7 MPa) than in hexane (~7 GPa). In addition, the cellulose surface in both water and hexane is rather rough (6-10 nm) and the silica probe has a comparable roughness. The adhesion force between cellulose and silica in water-saturated hexane shows a time-dependent increase up to a waiting time of 200 s and is much (2 orders of magnitude) lower than that expected for a capillary bridge spanning the whole silica probe surface. This suggests the formation of one or more smaller bridges between asperities on both surfaces, which is confirmed by a theoretical analysis. The overall growth rate of the condensate cannot be explained from diffusion mediated capillary condensation alone; thin film flow due to the presence of a wetting layer of water at both the surfaces seems to be the dominant contribution. The logarithmic time dependence of the force can also be explained from the model of the formation of multiple capillary bridges with a distribution of activation times. Finally, the force-distance curves upon retraction show oscillations. Capillary condensation between an atomically smooth mica surface and the silica particle show less significant oscillations and the adhesion force is independent of waiting time. The oscillations in the force-distance curves between cellulose and silica may stem from multiple bridge formation between the asperities present on both surfaces. The softness of the cellulose surface can bring in additional complexities during retraction of the silica particle, also resulting in oscillations in the force-distance curves.

  4. 2H and 18O depletion of water close to organic surfaces

    NASA Astrophysics Data System (ADS)

    Chen, Guo; Auerswald, Karl; Schnyder, Hans

    2016-06-01

    Hydrophilic surfaces influence the structure of water close to them and may thus affect the isotope composition of water. Such an effect should be relevant and detectable for materials with large surface areas and low water contents. The relationship between the volumetric solid : water ratio and the isotopic fractionation between adsorbed water and unconfined water was investigated for the materials silage, hay, organic soil (litter), filter paper, cotton, casein and flour. Each of these materials was equilibrated via the gas phase with unconfined water of known isotopic composition to quantify the isotopic difference between adsorbed water and unconfined water. Across all materials, isotopic fractionation was significant (p<0.05) and negative (on average -0.91 ± 0.22 ‰ for 18/16O and -20.6 ± 2.4 ‰ for 2/1H at an average solid : water ratio of 0.9). The observed isotopic fractionation was not caused by solutes, volatiles or old water because the fractionation did not disappear for washed or oven-dried silage, the isotopic fractionation was also found in filter paper and cotton, and the fractionation was independent of the isotopic composition of the unconfined water. Isotopic fractionation became linearly more negative with increasing volumetric solid : water ratio and even exceeded -4 ‰ for 18/16O and -44 ‰ for 2/1H. This fractionation behaviour could be modelled by assuming two water layers: a thin layer that is in direct contact and influenced by the surface of the solid and a second layer of varying thickness depending on the total moisture content that is in equilibrium with the surrounding vapour. When we applied the model to soil water under grassland, the soil water extracted from 7 and 20 cm depth was significantly closer to local meteoric water than without correction for the surface effect. This study has major implications for the interpretation of the isotopic composition of water extracted from organic matter, especially when the volumetric

  5. Droplet evaporation of pure water and protein solution on nanostructured superhydrophobic surfaces of varying heights.

    PubMed

    Choi, Chang-Hwan; Kim, Chang-Jin C J

    2009-07-07

    Evaporation of liquids on substrates is important for many applications including lab-on-a-chip, especially when they are in droplets. Unlike on planar substrates, droplet evaporation on micropatterned substrates has been studied only recently and none so far on nanopatterns. Driven by the applicability of nanostructured surfaces to biomaterials and tissue engineering, we report on the evaporative process of sessile droplets of pure water and a protein solution on superhydrophobic surfaces of sharp-tip post structures in a submicrometer pitch (230 nm) and varying heights (100-500 nm). We find that the nanotopographical three-dimensionalities such as structural height and sidewall profile affect the surface superhydrophobicity in such a way that only tall and slender nanostructures provide the surface with great superhydrophobicity (a contact angle more than 170 degrees). The evaporation process was different between the pure water and the protein solution; unlike pure water, a significant contact-line spreading and pinning effect was observed in a droplet of a protein solution with an intermediate transition from a dewetting (Cassie) to a wetting (Wenzel) state. Enabled by well-defined nanostructures, our results highlight that the surface superhydrophobicity and the droplet evaporation are significantly affected by the three-dimensional nanometric topography and the surface fouling such as protein adsorption.

  6. Hydrogeology and ground-water/surface water interactions in the Des Moines River valley, southwestern Minnesota, 1997-2001

    USGS Publications Warehouse

    Cowdery, Timothy K.

    2005-01-01

    Long-term withdrawals of water for public supplies may cause a net decrease in ground-water discharge to surface water. Water that does not evaporate, or that is not exported, is discharged to the Des Moines River but with changed water quality. Because ground-water and surface-water qualities in the study area are similar, the ground-water discharge probably has little effect on river water quality.

  7. Potentiometric surface of the Floridan Aquifer, Southwest Florida Water Management District, May 1980

    USGS Publications Warehouse

    Yobbi, D.K.; Woodham, W.M.; Schiner, George R.

    1980-01-01

    A May 1980 potentiometric-surface map of the Southwest Florida Water Management District depicts the annual low water-level period. Potentiometric levels decreased 5 to 36 feet between September 1979 and May 1980, in the citrus and farming sections of southern Hillsborough, southwestern Polk, northwestern DeSoto , Hardee, and Manatee Counties. Water levels in these areas are widely affected by pumping for irrigation and have the greatest range in fluctuations. Water-level decreases ranged from 0 to 8 feet in coastal, northern, and southern areas of the Water Management District. Generally, potentiometric levels were lower than previous May levels except in the northernmost and southernmost counties where water levels were 1 to 5 feet higher. (USGS)

  8. Potentiometric surface of the Floridan Aquifer, Southwest Florida Water Management District, May 1981

    USGS Publications Warehouse

    Yobbi, D.K.; Woodham, W.M.; Schiner, George R.

    1981-01-01

    A May 1981 potentiometric-surface map of the Southwest Florida Water Management District depicts the annual low water-level period. Potentiometric levels decreased 10 to 45 feet between September 1980 and May 1981 in the citrus and farming sections of southern Hillsborough, northern Hardee, southwestern Polk, northwestern DeSoto, and Manatee Counties. Water levels in these areas are widely affected by pumping for irrigation and have the greatest range in fluctuations. Water-level decreases ranged from 0 to 1 feet in coastal, northern, and southern areas of the Water Management District. Water levels in all of the approximate 700 wells measured in May 1981 are lower than May 1980 because of the virtual absence of rainfall in April and May. (USGS)

  9. Hydroeconomic optimization of integrated water management and transfers under stochastic surface water supply

    NASA Astrophysics Data System (ADS)

    Zhu, Tingju; Marques, Guilherme Fernandes; Lund, Jay R.

    2015-05-01

    Efficient reallocation and conjunctive operation of existing water supplies is gaining importance as demands grow, competitions among users intensify, and new supplies become more costly. This paper analyzes the roles and benefits of conjunctive use of surface water and groundwater and market-based water transfers in an integrated regional water system where agricultural and urban water users coordinate supply and demand management based on supply reliability and economic values of water. Agricultural users optimize land and water use for annual and perennial crops to maximize farm income, while urban users choose short-term and long-term water conservation actions to maintain reliability and minimize costs. The temporal order of these decisions is represented in a two-stage optimization that maximizes the net expected benefits of crop production, urban conservation and water management including conjunctive use and water transfers. Long-term decisions are in the first stage and short-term decisions are in a second stage based on probabilities of water availability events. Analytical and numerical analyses are made. Results show that conjunctive use and water transfers can substantially stabilize farmer's income and reduce system costs by reducing expensive urban water conservation or construction. Water transfers can equalize marginal values of water across users, while conjunctive use minimizes water marginal value differences in time. Model results are useful for exploring the integration of different water demands and supplies through water transfers, conjunctive use, and conservation, providing valuable insights for improving system management.

  10. Spatial development of the wind-driven water surface flow

    NASA Astrophysics Data System (ADS)

    Chemin, Rémi; Caulliez, Guillemette

    2015-04-01

    The water velocity field induced by wind and waves beneath an air-water interface is investigated experimentally versus fetch in the large Marseille-Luminy wind wave tank. Measurements of the vertical velocity profiles inside the subsurface shear layer were performed by a three-component Nortek acoustic Doppler velocimeter. The surface drift current was also derived from visualizations of small floating drifters recorded by a video camera looking vertically from above the water surface. Surface wave height and slopes were determined simultaneously by means of capacitance gauges and a single-point laser slope system located in the immediate vicinity of the profiler. Observations were made at steady low to moderate wind speeds and various fetches ranging between 1 and 15 meters. This study first corroborates that the thin subsurface water boundary layer forced by wind at the leading edge of the water sheet is laminar. The surface drift current velocity indeed increases gradually with fetch, following a 1/3 power law characteristic of an accelerated flat-plate laminar boundary layer. The laminar-turbulent transition manifests itself by a sudden decrease in the water surface flow velocity and a rapid deepening of the boundary layer due to the development of large-scale longitudinal vortices. Further downstream, when characteristic capillary-gravity wind waves develop at the surface, the water flow velocity increases again rapidly within a sublayer of typically 4 mm depth. This phenomenon is explained by the occurrence of an intense momentum flux from waves to the mean flow due to the dissipation of parasitic capillaries generated ahead of the dominant wave crests. This phenomenon also sustains significant small-scale turbulent motions within the whole boundary layer. However, when gravity-capillary waves of length longer than 10 cm then grow at the water surface, the mean flow velocity field decreases drastically over the whole boundary layer thickness. At the same

  11. Octanol Water Partition Coefficients of Surface and Ground Water Contaminants Found at Military Installations

    DTIC Science & Technology

    1989-11-01

    and salt solutions. In Draft. 17. Wasik, S.P. 1978. Partition of Organoelements in Octanol/ Water /Air Systems. A.C.S. Syrnp. Ser. Organometallics and...relationship between N-octanol/ water partition coefficient and bloaccunulation of organic chemicals by Alga Chlorella . Chemosphere 13(2):269-284. 24...A D TECHNICAL REPORT 88-10 OCTANO. WATER PARTITION COEFFICIENTS OF SURFACE AND GROUND WATER CONTAMINANTS FOUND AT MILITARY INSTALLATIONS (0 MICHAEL A

  12. Imbalance in Groundwater-Surface Water Interactions and its Relationship to the Coastal Zone Hazards

    NASA Astrophysics Data System (ADS)

    Kontar, Y. A.; Ozorovich, Y. R.; Salokhiddinov, A. T.

    2011-12-01

    to their intensive pollution by industrial wastes and by drainage waters from irrigated fields, the Syr Darya and Amu Darya rivers can no longer be considered as a source of safe and sustainable water supply. In such a situation, a number of scientists consider that the population's water supply must be achieved through a more comprehensive use of fresh and even subsaline groundwater resources from the coastal aquifers. The 2004 tsunami in the Indian Ocean caused imbalance in groundwater-surface water interactions and a disaster affecting thousands of kilometers of coastal zone in SE Asia. Many coastal wetlands were affected in the short term by the large inflow of salt seawater and littoral sediment deposited during the tsunami, and in the longer-term by changes in their hydrogeology caused by changes to coastlines and damage to sea-defenses. Many water quality and associated problems were generated by the tsunami. The tsunami has created imbalance in groundwater-surface water interactions and an accelerating process of salt-water intrusion and fresh-water contaminations in affected regions that now require drastic remediation measures.

  13. EXPERIMENTAL EVALUATION OF THE THERMAL PERFORMANCE OF A WATER SHIELD FOR A SURFACE POWER REACTOR

    SciTech Connect

    REID, ROBERT S.; PEARSON, J. BOSIE; STEWART, ERIC T.

    2007-01-16

    Water based reactor shielding is being investigated for use on initial lunar surface power systems. A water shield may lower overall cost (as compared to development cost for other materials) and simplify operations in the setup and handling. The thermal hydraulic performance of the shield is of significant interest. The mechanism for transferring heat through the shield is natural convection. Natural convection in a 100 kWt lunar surface reactor shield design is evaluated with 2 kW power input to the water in the Water Shield Testbed (WST) at the NASA Marshall Space Flight Center. The experimental data from the WST is used to validate a CFD model. Performance of the water shield on the lunar surface is then predicted with a CFD model anchored to test data. The experiment had a maximum water temperature of 75 C. The CFD model with 1/6-g predicts a maximum water temperature of 88 C with the same heat load and external boundary conditions. This difference in maximum temperature does not greatly affect the structural design of the shield, and demonstrates that it may be possible to use water for a lunar reactor shield.

  14. Experimental Evaluation of the Thermal Performance of a Water Shield for a Surface Power Reactor

    SciTech Connect

    Pearson, J. Boise; Stewart, Eric T.; Reid, Robert S.

    2007-01-30

    Water based reactor shielding is being investigated for use on initial lunar surface power systems. A water shield may lower overall cost (as compared to development cost for other materials) and simplify operations in the setup and handling. The thermal hydraulic performance of the shield is of significant interest. The mechanism for transferring heat through the shield is natural convection. Natural convection in a 100 kWt lunar surface reactor shield design is evaluated with 2 kW power input to the water in the Water Shield Testbed (WST) at the NASA Marshall Space Flight Center. The experimental data from the WST is used to validate a CFD model. Performance of the water shield on the lunar surface is then predicted with a CFD model anchored to test data. The experiment had a maximum water temperature of 75 deg. C. The CFD model with 1/6-g predicts a maximum water temperature of 88 deg. C with the same heat load and external boundary conditions. This difference in maximum temperature does not greatly affect the structural design of the shield, and demonstrates that it may be possible to use water for a lunar reactor shield.

  15. Return of naturally sourced Pb to Atlantic surface waters

    PubMed Central

    Bridgestock, Luke; van de Flierdt, Tina; Rehkämper, Mark; Paul, Maxence; Middag, Rob; Milne, Angela; Lohan, Maeve C.; Baker, Alex R.; Chance, Rosie; Khondoker, Roulin; Strekopytov, Stanislav; Humphreys-Williams, Emma; Achterberg, Eric P.; Rijkenberg, Micha J. A.; Gerringa, Loes J. A.; de Baar, Hein J. W.

    2016-01-01

    Anthropogenic emissions completely overwhelmed natural marine lead (Pb) sources during the past century, predominantly due to leaded petrol usage. Here, based on Pb isotope measurements, we reassess the importance of natural and anthropogenic Pb sources to the tropical North Atlantic following the nearly complete global cessation of leaded petrol use. Significant proportions of up to 30–50% of natural Pb, derived from mineral dust, are observed in Atlantic surface waters, reflecting the success of the global effort to reduce anthropogenic Pb emissions. The observation of mineral dust derived Pb in surface waters is governed by the elevated atmospheric mineral dust concentration of the North African dust plume and the dominance of dry deposition for the atmospheric aerosol flux to surface waters. Given these specific regional conditions, emissions from anthropogenic activities will remain the dominant global marine Pb source, even in the absence of leaded petrol combustion. PMID:27678297

  16. In situ bioremediation of surface waters by periphytons.

    PubMed

    Wu, Yonghong; Xia, Lizhong; Yu, Zhiqiang; Shabbir, Sadaf; Kerr, Philip G

    2014-01-01

    Environmentally benign and sustainable biomeasures have become attractive options for the in situ remediation of polluted surface waters. In this paper, we review the current state of reported experiments utilizing naturally occurring periphyton. These are microbial communities consisting of heterotrophic and photoautotrophic microorganisms that are reportedly capable of remediating surface waters which suffer from pollution due to a variety of contaminants. In our review, we focus on four aspects of bioremediation: multiple contaminant removal, the processes involved in contaminant removal, successful cell immobilization technologies and finally, the consideration of safety in aquaculture. It has been noted that recent developments in immobilization technologies offer a fresh approach facilitating the application of periphyton. The use of periphyton biofilm overcomes several disadvantages of single species microbial aggregates. The inclusion of periphyton, as a stable micro-ecosystem, is a promising in situ strategy to restore decimated surface water ecosystems.

  17. Return of naturally sourced Pb to Atlantic surface waters

    NASA Astrophysics Data System (ADS)

    Bridgestock, Luke; van de Flierdt, Tina; Rehkämper, Mark; Paul, Maxence; Middag, Rob; Milne, Angela; Lohan, Maeve C.; Baker, Alex R.; Chance, Rosie; Khondoker, Roulin; Strekopytov, Stanislav; Humphreys-Williams, Emma; Achterberg, Eric P.; Rijkenberg, Micha J. A.; Gerringa, Loes J. A.; de Baar, Hein J. W.

    2016-09-01

    Anthropogenic emissions completely overwhelmed natural marine lead (Pb) sources during the past century, predominantly due to leaded petrol usage. Here, based on Pb isotope measurements, we reassess the importance of natural and anthropogenic Pb sources to the tropical North Atlantic following the nearly complete global cessation of leaded petrol use. Significant proportions of up to 30-50% of natural Pb, derived from mineral dust, are observed in Atlantic surface waters, reflecting the success of the global effort to reduce anthropogenic Pb emissions. The observation of mineral dust derived Pb in surface waters is governed by the elevated atmospheric mineral dust concentration of the North African dust plume and the dominance of dry deposition for the atmospheric aerosol flux to surface waters. Given these specific regional conditions, emissions from anthropogenic activities will remain the dominant global marine Pb source, even in the absence of leaded petrol combustion.

  18. Occurrence of illicit drugs in surface waters in China.

    PubMed

    Li, Kaiyang; Du, Peng; Xu, Zeqiong; Gao, Tingting; Li, Xiqing

    2016-06-01

    Illicit drugs have been recognized as a group of emerging contaminants. In this work, occurrence of common illicit drugs and their metabolites in Chinese surface waters was examined by collecting samples from 49 lakes and 4 major rivers across the country. Among the drugs examined, methamphetamine and ketamine were detected with highest frequencies and concentration levels, consistent with the fact that these are primary drugs of abuse in China. Detection frequencies and concentrations of other drugs were much lower than in European lakes and rivers reported in the literature. In most Chinese surface waters methamphetamine and ketamine were detected at concentrations of several ng L(-1) or less, but in some southern lakes and rivers, these two drugs were detected at much higher concentrations (up to several tens ng L(-1)). Greater occurrence of methamphetamine and ketamine in southern surface waters was attributed to greater abuse and more clandestine production of the two drugs in southern China.

  19. Effects of rock fragments on water dynamics in a fire-affected soil

    NASA Astrophysics Data System (ADS)

    Gordillo-Rivero, Ángel J.; García-Moreno, Jorge; Jordán, Antonio; Zavala, Lorena M.

    2014-05-01

    Rock fragments (RF) are common in the surface of Mediterranean semiarid soils, and have important effects on the soil physical (bulk density and porosity) and hydrological processes (infiltration, evaporation, splash erosion and runoff generation) (Poesen and Lavee, 1994; Rieke-Zapp et al., 2007). In some cases, RFs in Mediterranean areas have been shown to protect bare soils from erosion risk (Cerdà, 2001; Martínez-Zavala, Jordán, 2008; Zavala et al., 2010). Some of these effects are much more relevant when vegetation cover is low or has been reduced after land use change or other causes, as forest fires. Although very few studies exist, the interest on the hydrological effects of RFs in burned areas is increasing recently. After a forest fire, RFs may contribute significantly to soil recovery. In this research we have studied the effect of surface and embedded RFs on soil water control, infiltration and evaporation in calcareous fire-affected soils from a Mediterranean area (SW Spain). For this study, we selected an area with soils derived from limestone under holm oak forest, recently affected by a moderate severity forest fire. The proportion of RF cover showed a significant positive relation with soil water-holding capacity and infiltration rates, although infiltration rate reduced significantly when RF cover increased above a certain threshold. Soil evaporation rate decreased with increasing volumetric content of RFs and became stable with RF contents approximately above 30%. Evaporation also decreased with increasing RF cover. When RF cover increased above 50%, no significant differences were observed between burned and control vegetated plots. REFERENCES Poesen, J., Lavee, H. 1994. Rock fragments in top soils: significance and processes. Catena Supplement 23, 1-28. Cerdà, A. 2001. Effect of rock fragment cover on soil infiltration, interrill runoff and erosion. European Journal of Soil Science 52, 59-68. DOI: 10.1046/j.1365-2389.2001.00354.x. Rieke

  20. Salty glycerol versus salty water surface organization: bromide and iodide surface propensities.

    PubMed

    Huang, Zishuai; Hua, Wei; Verreault, Dominique; Allen, Heather C

    2013-07-25

    Salty NaBr and NaI glycerol solution interfaces are examined in the OH stretching region using broadband vibrational sum frequency generation (VSFG) spectroscopy. Raman and infrared (IR) spectroscopy are used to further understand the VSFG spectroscopic signature. The VSFG spectra of salty glycerol solutions reveal that bromide and iodide anions perturb the interfacial glycerol organization in a manner similar as that found in aqueous halide salt solutions, thus confirming the presence of bromide and iodide anions at the glycerol surface. Surface tension measurements are consistent with the surface propensity suggested by the VSFG data and also show that the surface excess increases with increasing salt concentration, similar to that of water. In addition, iodide is shown to have more surface prevalence than bromide, as has also been determined from aqueous solutions. These results suggest that glycerol behaves similarly to water with respect to surface activity and solvation of halide anions at its air/liquid interface.

  1. Evaluation of surface water characteristics of novel daily disposable contact lens materials, using refractive index shifts after wear

    PubMed Central

    Schafer, Jeffery; Steffen, Robert; Reindel, William; Chinn, Joseph

    2015-01-01

    Purpose Contact lens wearers today spend much time using digital display devices. Contact lens manufacturers are challenged to develop products that account for longer periods of time where blink rate is reduced and tear-film evaporation rate is increased, affecting both visual acuity and comfort. Two manufacturers recently introduced novel daily disposable contact lenses with high surface water content. The objective of the present study was to compare surface water characteristics before and after initial wear of recently introduced nesofilcon A and delefilcon A high surface water lenses with those of etafilcon A lenses. Patients and methods Twenty healthy subjects wore each of the three lens types studied in a randomly determined order for 15 minutes. After each wearing, lenses were removed and the surface refractive index (RI) of each lens was immediately measured. Results The mean RI of the unworn delefilcon A lens was 1.34, consistent with water content in excess of 80%. After 15 minutes of wear, the surface RI shifted to 1.43, consistent with its reported 33% bulk water content. In contrast, the mean surface RI of the nesofilcon A lens was 1.38, both initially and after 15 minutes of wear, and that of the etafilcon A lens was 1.41 initially and 1.42 after 15 minutes of wear. Conclusion The surface of the delefilcon A lens behaves like a high water hydrogel upon insertion but quickly dehydrates to behave like its low-water silicone-hydrogel bulk material with respect to surface water content during wear, while both nesofilcon A and etafilcon A lenses maintain their water content during initial wear. The nesofilcon A lens appears unique among high water lenses in maintaining high surface and bulk water content during wear. This is important because changes in surface RI due to dehydration are reported to lead to visual aberration affecting user experience. PMID:26543349

  2. Plant Litter Submergence Affects the Water Quality of a Constructed Wetland.

    PubMed

    Pan, Xu; Ping, Yunmei; Cui, Lijuan; Li, Wei; Zhang, Xiaodong; Zhou, Jian; Yu, Fei-Hai; Prinzing, Andreas

    2017-01-01

    Plant litter is an indispensable component of constructed wetlands, but how the submergence of plant litter affects their ecosystem functions and services, such as water purification, is still unclear. Moreover, it is also unclear whether the effects of plant litter submergence depend on other factors such as the duration of litter submergence, water source or litter species identity. Here we conducted a greenhouse experiment by submerging the litter of 7 wetland plant species into three types of water substrates and monitoring changes in water nutrient concentrations. Litter submergence affected water quality positively via decreasing the concentration of nitrate nitrogen and negatively via increasing the concentrations of total nitrogen, ammonium nitrogen and total phosphorus. The effects of litter submergence depended on the duration of litter submergence, the water source, the litter species identity, and the plant life form. Different plant species had different effects on the water nutrient concentrations during litter submergence, and the effects of floating plants might be more negative than that of emergent plants. These results are novel evidence of how the submergence of different plant (life form) litter may affect the purification function of constructed wetlands. For water at low eutrophication levels, submerging a relative small amount of plant litter might improve water quality, via benefiting the denitrification process in water. These findings emphasized the management of floating plant litter (a potential removal) during the maintenance of human-controlled wetland ecosystems and provided a potential tool to improve the water quality of constructed wetlands via submerging plant litter of different types.

  3. Improved simulation of groundwater - surface water interaction in catchment models

    NASA Astrophysics Data System (ADS)

    teklesadik, aklilu; van Griensven, Ann; Anibas, Christian; Huysmans, Marijke

    2016-04-01

    Groundwater storage can have a significant contribution to stream flow, therefore a thorough understanding of the groundwater surface water interaction is of prime important when doing catchment modeling. The aim of this study is to improve the simulation of groundwater - surface water interaction in a catchment model of the upper Zenne River basin located in Belgium. To achieve this objective we used the "Groundwater-Surface water Flow" (GSFLOW) modeling software, which is an integration of the surface water modeling tool "Precipitation and Runoff Modeling system" (PRMS) and the groundwater modeling tool MODFLOW. For this case study, the PRMS model and MODFLOW model were built and calibrated independently. The PRMS upper Zenne River basin model is divided into 84 hydrological response units (HRUs) and is calibrated with flow data at the Tubize gauging station. The spatial discretization of the MODFLOW upper Zenne groundwater flow model consists of 100m grids. Natural groundwater divides and the Brussels-Charleroi canal are used as boundary conditions for the MODFLOW model. The model is calibrated using piezometric data. The GSFLOW results were evaluated against a SWAT model application and field observations of groundwater-surface water interactions along a cross section of the Zenne River and riparian zone. The field observations confirm that there is no exchange of groundwater beyond the Brussel-Charleroi canal and that the interaction at the river bed is relatively low. The results show that there is a significant difference in the groundwater simulations when using GSFLOW versus SWAT. This indicates that the groundwater component representation in the SWAT model could be improved and that a more realistic implementation of the interactions between groundwater and surface water is advisable. This could be achieved by integrating SWAT and MODFLOW.

  4. The effect of surface water and wetting on gecko adhesion.

    PubMed

    Stark, Alyssa Y; Sullivan, Timothy W; Niewiarowski, Peter H

    2012-09-01

    Despite profound interest in the mechanics and performance of the gecko adhesive system, relatively few studies have focused on performance under conditions that are ecologically relevant to the natural habitats of geckos. Because geckos are likely to encounter surfaces that are wet, we used shear force adhesion measurements to examine the effect of surface water and toe pad wetting on the whole-animal performance of a tropical-dwelling gecko (Gekko gecko). To test the effect of surface wetting, we measured the shear adhesive force of geckos on three substrate conditions: dry glass, glass misted with water droplets and glass fully submerged in water. We also investigated the effect of wetting on the adhesive toe pad by soaking the toe pads prior to testing. Finally, we tested for repeatability of the adhesive system in each wetting condition by measuring shear adhesion after each step a gecko made under treatment conditions. Wetted toe pads had significantly lower shear adhesive force in all treatments (0.86 ± 0.09 N) than the control (17.96 ± 3.42 N), as did full immersion in water (0.44 ± 0.03 N). Treatments with droplets of water distributed across the surface were more variable and did not differ from treatments where the surface was dry (4.72 ± 1.59 N misted glass; 9.76 ± 2.81 N dry glass), except after the gecko took multiple steps. These findings suggest that surface water and the wetting of a gecko's adhesive toe pads may have significant consequences for the ecology and behavior of geckos living in tropical environments.

  5. Molecular dynamics studies of water deposition on hematite surfaces

    NASA Astrophysics Data System (ADS)

    Kvamme, Bjørn; Kuznetsova, Tatiana; Haynes, Martin

    2012-12-01

    The interest in carbon dioxide for enhanced oil recovery is increasing proportional to the decrease in naturally driven oil production and also due to the increasing demand for reduced emission of carbon dioxide to the atmosphere. Transport of carbon dioxide in offshore pipelines involves high pressure and low temperatures which may lead to the formation of hydrate between residual water dissolved in carbon dioxide. The critical question is whether the water at some condition of temperature and pressure will drop out as liquid droplets or as water adsorbed on the surfaces of the pipeline and then subsequently form hydrates heterogeneously. In this work we have used the 6-311G basis set with B3LYP to estimate the charge distribution of different sizes of hematite crystals. The obtained surface charge distribution were kept unchanged while the inner charge distribution where scaled so as to result in an overall neutral crystal. These rust particles were embedded in water and chemical potential for adsorbed water molecules were estimated through thermodynamic integration and compared to similar estimates for same size water cluster. Estimated values of water chemical potentials indicate that it is thermodynamically favorable for water to adsorb on hematite, and that evaluation of potential carbon dioxide hydrate formation conditions and kinetics should be based this sequence of processes.

  6. Retrieval of Surface Snow Grain Size and Melt Water from AVIRIS Spectra

    NASA Technical Reports Server (NTRS)

    Green Robert O.; Dozier, Jeff

    1996-01-01

    The Earth's energy balance and hydrology are affected by the distribution and characteristics of snow cover on the surface. Snow grain size and snow melt influence surface albedo and hydrology. A model of snow reflectance that depends on both grain size and surface melt water was developed to derive these parameters from remote spectral measurements. This reflectance model is based on a discrete ordinate radiative transfer approach that uses Mie calculations of snow optical properties, which are based on the complex refractive index of ice and water. This snow model was linked to an atmospheric radiative transfer code and a nonlinear least squares fitting algorithm. The resulting combined algorithm was applied to an AVIRIS snow data set acquired over Mammoth Mountain, California. Maps of grain size and surface snow melt were generated that are consistent with the expected ranges and distributions for conditions at the site.

  7. Zirconium fluoride glass - Surface crystals formed by reaction with water

    NASA Technical Reports Server (NTRS)

    Doremus, R. H.; Bansal, N. P.; Bradner, T.; Murphy, D.

    1984-01-01

    The hydrated surfaces of a zirconium barium fluoride glass, which has potential for application in optical fibers and other optical elements, were observed by scanning electron microscopy. Crystalline zirconium fluoride was identified by analysis of X-ray diffraction patterns of the surface crystals and found to be the main constituent of the surface material. It was also found that hydrated zirconium fluorides form only in highly acidic fluoride solutions. It is possible that the zirconium fluoride crystals form directly on the glass surface as a result of its depletion of other ions. The solubility of zirconium fluoride is suggested to be probably much lower than that of barium fluoride (0.16 g/100 cu cm at 18 C). Dissolution was determined to be the predominant process in the initial stages of the reaction of the glass with water. Penetration of water into the glass has little effect.

  8. Heterogeneous Nucleation of Naphthalene Vapor on Water Surface

    PubMed

    Smolík; Schwarz

    1997-01-15

    The evaporation of a water drop into a ternary gaseous mixture of air, steam, and naphthalene vapor was investigated. The experimental results were compared with a theoretical prediction based on a numerical solution of coupled boundary layer equations for heat and mass transfer from a drop moving in ternary gas. In the experiments the naphthalene vapor condensed on the water drop as a supercooled liquid even at temperatures far below the melting point of naphthalene. The condensation on drop surface is discussed in terms of classical theory of heterogeneous nucleation on smooth surfaces.

  9. Characteristics of pulse corona discharge over water surface

    NASA Astrophysics Data System (ADS)

    Fujii, Tomio; Arao, Yasushi; Rea, Massimo

    2008-12-01

    Production of ozone and OH radical is required to advance the plasma chemical reactions in the NOx removal processes for combustion gas treatment. The corona discharge to the water surface is expected to induce the good conditions for the proceeding of the NO oxidation and the NO2 dissolution removal into water. In order to get the fundamental data of the corona discharge over the water surface, the positive and negative V-I characteristics and the ozone production were measured with the multi needle and the saw-edge type of the discharge electrodes. The pulse corona characteristics were also measured with some different waveforms of the applied pulse voltage. The experiments were carried out under the atmospheric pressure and room temperature. Both the DC and the pulse corona to the water surface showed a stable and almost the same V-I characteristics as to plate electrodes though the surface of water was waved by corona wind. The positive streamer corona showed more ozone production than the negative one both in the DC and in the pulse corona.

  10. Aluminum in acidic surface waters: chemistry, transport, and effects.

    PubMed Central

    Driscoll, C T

    1985-01-01

    Ecologically significant concentrations of Al have been reported in surface waters draining "acid-sensitive" watersheds that are receiving elevated inputs of acidic deposition. It has been hypothesized that mineral acids from atmospheric deposition have remobilized Al previously precipitated within the soil during soil development. This Al is then thought to be transported to adjacent surface waters. Dissolved mononuclear Al occurs as aquo Al, as well as OH-, F-, SO4(2-), and organic complexes. Although past investigations have often ignored non-hydroxide complexes of Al, it appears that organic and F complexes are the predominant forms of Al in dilute (low ionic strength) acidic surface waters. The concentration of inorganic forms of Al increases exponentially with decreases in solution pH. This response is similar to the theoretical pH dependent solubility of Al mineral phases. The concentration of organic forms of Al, however, is strongly correlated with variations in organic carbon concentration of surface waters rather than pH. Elevated concentrations of Al in dilute acidic waters are of interest because: Al is an important pH buffer; Al may influence the cycling of important elements like P, organic carbon, and trace metals; and Al is potentially toxic to aquatic organisms. An understanding of the aqueous speciation of Al is essential for an evaluation of these processes. PMID:3935428

  11. Pesticides in surface waters: distribution, trends, and governing factors

    USGS Publications Warehouse

    Larson, Steven J.; Capel, Paul D.; Majewski, Michael

    1997-01-01

    Pesticde use in agriculture and non-agriculture settings has increased dramatically over the last several decades. Concern about adverse effects on the environment and human health has spurred an enormous amount of research into their environmental behavior and fate. Pesticides in Surface Waters presents a comprehensive summary of this research. This book evaluates published studies that focus on measuring pesticide concentration. The studies chosen include peer reviewed scientific literature, government reports, laboratory studies, and those using microcosms and artificial streams and ponds. The authors used this information to develop their overview of pesticide contamination of surface waters. The exhaustive compilation of data along with the fundamental science make this book essential for those involved in pesticide use, environmental protection, water quality, and human or ecological risk assessment. Pesticides in Surface Waters covers the results of actual studies, sources of pesticides to surface water, fate and transport, and environmental significance. Hundreds of data-packed tables, maps, charts, and drawings illustrate the key points, making research and application easy and cost effective.

  12. Methane transport and emissions from soil as affected by water table and vascular plants

    PubMed Central

    2013-01-01

    Background The important greenhouse gas (GHG) methane is produced naturally in anaerobic wetland soils. By affecting the production, oxidation and transport of methane to the atmosphere, plants have a major influence upon the quantities emitted by wetlands. Different species and functional plant groups have been shown to affect these processes differently, but our knowledge about how these effects are influenced by abiotic factors such as water regime and temperature remains limited. Here we present a mesocosm experiment comparing eight plant species for their effects on internal transport and overall emissions of methane under contrasting hydrological conditions. To quantify how much methane was transported internally through plants (the chimney effect), we blocked diffusion from the soil surface with an agar seal. Results We found that graminoids caused higher methane emissions than forbs, although the emissions from mesocosms with different species were either lower than or comparable to those from control mesocosms with no plant (i.e. bare soil). Species with a relatively greater root volume and a larger biomass exhibited a larger chimney effect, though overall methane emissions were negatively related to plant biomass. Emissions were also reduced by lowering the water table. Conclusions We conclude that plant species (and functional groups) vary in the degree to which they transport methane to the atmosphere. However, a plant with a high capacity to transport methane does not necessarily emit more methane, as it may also cause more rhizosphere oxidation of methane. A shift in plant species composition from graminoids to forbs and/or from low to high productive species may lead to reduction of methane emissions. PMID:24010540

  13. Energy Landscape of Water and Ethanol on Silica Surfaces

    SciTech Connect

    Wu, Di; Guo, Xiaofeng; Sun, Hui; Navrotsky, Alexandra

    2015-06-26

    Fundamental understanding of small molecule–silica surface interactions at their interfaces is essential for the scientific, technological, and medical communities. We report direct enthalpy of adsorption (Δhads) measurements for ethanol and water vapor on porous silica glass (CPG-10), in both hydroxylated and dehydroxylated (hydrophobic) forms. Results suggest a spectrum of energetics as a function of coverage, stepwise for ethanol but continuous for water. The zero-coverage enthalpy of adsorption for hydroxylated silica shows the most exothermic enthalpies for both water (-72.7 ± 3.1 kJ/mol water) and ethanol (-78.0 ± 1.9 kJ/mol ethanol). The water adsorption enthalpy becomes less exothermic gradually until reaching its only plateau (-20.7 ± 2.2 kJ/mol water) reflecting water clustering on a largely hydrophobic surface, while the enthalpy of ethanol adsorption profile presents two well separated plateaus, corresponding to strong chemisorption of ethanol on adsorbate-free silica surface (-66.4 ± 4.8 kJ/mol ethanol), and weak physisorption of ethanol on ethanol covered silica (-4.0 ± 1.6 kJ/mol ethanol). On the other hand, dehydroxylation leads to missing water–silica interactions, whereas the number of ethanol binding sites is not impacted. The isotherms and partial molar properties of adsorption suggest that water may only bind strongly onto the silanols (which are a minor species on silica glass), whereas ethanol can interact strongly with both silanols and the hydrophobic areas of the silica surface.

  14. Energy Landscape of Water and Ethanol on Silica Surfaces

    DOE PAGES

    Wu, Di; Guo, Xiaofeng; Sun, Hui; ...

    2015-06-26

    Fundamental understanding of small molecule–silica surface interactions at their interfaces is essential for the scientific, technological, and medical communities. We report direct enthalpy of adsorption (Δhads) measurements for ethanol and water vapor on porous silica glass (CPG-10), in both hydroxylated and dehydroxylated (hydrophobic) forms. Results suggest a spectrum of energetics as a function of coverage, stepwise for ethanol but continuous for water. The zero-coverage enthalpy of adsorption for hydroxylated silica shows the most exothermic enthalpies for both water (-72.7 ± 3.1 kJ/mol water) and ethanol (-78.0 ± 1.9 kJ/mol ethanol). The water adsorption enthalpy becomes less exothermic gradually until reachingmore » its only plateau (-20.7 ± 2.2 kJ/mol water) reflecting water clustering on a largely hydrophobic surface, while the enthalpy of ethanol adsorption profile presents two well separated plateaus, corresponding to strong chemisorption of ethanol on adsorbate-free silica surface (-66.4 ± 4.8 kJ/mol ethanol), and weak physisorption of ethanol on ethanol covered silica (-4.0 ± 1.6 kJ/mol ethanol). On the other hand, dehydroxylation leads to missing water–silica interactions, whereas the number of ethanol binding sites is not impacted. The isotherms and partial molar properties of adsorption suggest that water may only bind strongly onto the silanols (which are a minor species on silica glass), whereas ethanol can interact strongly with both silanols and the hydrophobic areas of the silica surface.« less

  15. Computer programs for modeling flow and water quality of surface water systems

    USGS Publications Warehouse

    Lorens, J.A.

    1982-01-01

    A selection of available computer programs for modeling flow and water quality in surface water systems is described. The models include programs developed as part of the U.S. Geological Survey Water Resources Division hydrologic research activities and others developed by other agencies, universities, and consulting firms. Each model description includes a statement of program use; data requirements; computer costs; availability of documentation and reference material; and a contact person for additional information. The report is intended to assist the researcher by presenting a very brief description of the surface-water models which are readily available for project use. (USGS)

  16. Occurrence and distribution of pesticides and volatile organic compounds in ground water and surface water in Central Arizona Basins, 1996-98, and their relation to land use

    USGS Publications Warehouse

    Gellenbeck, Dorinda J.; Anning, David W.

    2002-01-01

    Samples of ground water and surface water from the Sierra Vista subbasin, the Upper Santa Cruz Basin, and the West Salt River Valley were collected and analyzed to determine the occurrence and distribution of pesticides and volatile organic compounds in central Arizona. The study was done during 1996-98 within the Central Arizona Basins study unit of the National Water-Quality Assessment program. This study included 121 wells and 4 surface-water sites in the 3 basins and the analyses of samples from 4 sites along the Santa Cruz River that were part of a separate study. Samples were collected from 121 wells and 3 surface-water sites for pesticide analyses, and samples were collected from 109 wells and 3 surface-water sites for volatile organic compound analyses. Certain pesticides detected in ground water and surface water can be related specifically to agricultural or urban uses; others can be related to multiple land uses. Effects from historical agriculture are made evident by detections of DDE in ground-water and surface-water samples collected in the West Salt River Valley and detections of atrazine and deethylatrazine in the ground water in the Upper Santa Cruz Basin. Effects from present agriculture are evident in the seasonal variability in concentrations of pre-emergent pesticides in surface-water samples from the West Salt River Valley. Several detections of DDE and dieldrin in surface water were higher than established water-quality limits. Effects of urban land use are made evident by detections of volatile organic compounds in ground water and surface water from the West Salt River Valley. Detections of volatile organic compounds in surface water from the Santa Cruz River near Nogales, Arizona, also are indications of the effects of urban land use. One detection of tetrachloroethene in ground water was higher than established water-quality limits. Water reuse is an important conservation technique in the Southwest; however, the reuse of water provides a

  17. methodology to classify groundwater/surface water interaction

    NASA Astrophysics Data System (ADS)

    Nilsson, B.; Christensen, S.; Kronvang, B.; Langhoff, J. H.; Dahl, M.; Hoffmann, C. C.; Andersen, H. E.; Rasmussen, K. R.; Refsgaard, J. C.

    2003-04-01

    Introductory work on implementation of the EU Water Framework Directive has outlined criteria for classification of the physical-chemical status of groundwater and surface water bodies, recognizing that the quantitative and qualitative status of ground water may have an impact on the quantitative, qualitative and ecological status of surface waters if the two bodies interact. In Denmark the implementation of the Directive has started with classifying separately the status of ground water and the status of streams. This is done within each of many districts supposed to be responsible for the future’s water supply. Within each district the next step is to define to what extent ground water has (and is expected to have in the future) impact on the streams, and vice versa. This has motivated the present work on developing a methodology to classify how ground water interacts with surface waters in Danish stream valleys. The classification has got the acronym GOI-type, which is identical with the English term GSI-class (Groundwater/Surface water Interaction classification). To make the methodology operational the classification is made mainly on basis of already available information (from maps, data bases and previous investigations), and it is made in steps going from regional scale (hundreds of kilometers) over catchment scale (tens of kilometers) to the stream valley scale (hundreds of meters). On the regional scale it is classified whether the geological environment controlling water flow and solute transport is dominated by bedrock or sedimentary rock since the physical and chemical processes are very different in these two environments. On catchment scale the classification differentiates between various landscape types because the landscape creating processes have resulted in different geologic and geomorphologic environments from which for example a model of permeable and semi-permeable layers controlling groundwater recharge and flow can be produced

  18. Hydrodynamic boundary condition of water on hydrophobic surfaces.

    PubMed

    Schaeffel, David; Yordanov, Stoyan; Schmelzeisen, Marcus; Yamamoto, Tetsuya; Kappl, Michael; Schmitz, Roman; Dünweg, Burkhard; Butt, Hans-Jürgen; Koynov, Kaloian

    2013-05-01

    By combining total internal reflection fluorescence cross-correlation spectroscopy with Brownian dynamics simulations, we were able to measure the hydrodynamic boundary condition of water flowing over a smooth solid surface with exceptional accuracy. We analyzed the flow of aqueous electrolytes over glass coated with a layer of poly(dimethylsiloxane) (advancing contact angle Θ = 108°) or perfluorosilane (Θ = 113°). Within an error of better than 10 nm the slip length was indistinguishable from zero on all surfaces.

  19. Simulations of glass surfaces structure, water adsorption, and bond rupture

    NASA Astrophysics Data System (ADS)

    Garofalini, Stephen H.

    1990-12-01

    Molecular dynamics simulations of the structure of silica glass surfaces formed in a perfect vacuum as well as in the presence of a water vapor show the type, location, and concentration of specific features formed in the surface. A bond rupture mechanism which causes silanol formation far removed from the original reaction site is observed. The 3-membered ring is proposed as a site for H adsorption in the glass.

  20. Reconstruction of surfaces from mixed hydrocarbon and PEG components in water: responsive surfaces aid fouling release.

    PubMed

    Cho, Youngjin; Sundaram, Harihara S; Finlay, John A; Dimitriou, Michael D; Callow, Maureen E; Callow, James A; Kramer, Edward J; Ober, Christopher K

    2012-06-11

    Coatings derived from surface active block copolymers (SABCs) having a combination of hydrophobic aliphatic (linear hydrocarbon or propylene oxide-derived groups) and hydrophilic poly(ethlyene glycol) (PEG) side chains have been developed. The coatings demonstrate superior performance against protein adsorption as well as resistance to biofouling, providing an alternative to coatings containing fluorinated side chains as the hydrophobe, thus reducing the potential environmental impact. The surfaces were examined using dynamic water contact angle, captive air-bubble contact angle, atomic force microscopy, X-ray photoelectron spectroscopy, and near-edge X-ray absorption fine structure analysis. The PS(8K)-b-P(E/B)(25K)-b-PI(10K) triblock copolymer precursor (K3) initially dominated the dry surface. In contrast to previous studies with mixed fluorinated/PEG surfaces, these new materials displayed significant surface changes after exposure to water that allowed fouling resistant behavior. PEG groups buried several nanometers below the surface in the dry state were able to occupy the coating surface after placement in water. The resulting surface exhibits a very low contact angle and good antifouling properties that are very different from those of K3. The surfaces are strongly resistant to protein adsorption using bovine serum albumin as a standard protein challenge. Biofouling assays with sporelings of the green alga Ulva and cells of the diatom Navicula showed the level of adhesion was significantly reduced relative to that of a PDMS standard and that of the triblock copolymer precursor of the SABCs.

  1. Estimation of water surface elevations for the Everglades, Florida

    USGS Publications Warehouse

    Palaseanu, Monica; Pearlstine, Leonard

    2008-01-01

    The Everglades Depth Estimation Network (EDEN) is an integrated network of real-time water-level monitoring gages and modeling methods that provides scientists and managers with current (2000–present) online water surface and water depth information for the freshwater domain of the Greater Everglades. This integrated system presents data on a 400-m square grid to assist in (1) large-scale field operations; (2) integration of hydrologic and ecologic responses; (3) supporting biological and ecological assessment of the implementation of the Comprehensive Everglades Restoration Plan (CERP); and (4) assessing trophic-level responses to hydrodynamic changes in the Everglades.This paper investigates the radial basis function multiquadric method of interpolation to obtain a continuous freshwater surface across the entire Everglades using radio-transmitted data from a network of water-level gages managed by the US Geological Survey (USGS), the South Florida Water Management District (SFWMD), and the Everglades National Park (ENP). Since the hydrological connection is interrupted by canals and levees across the study area, boundary conditions were simulated by linearly interpolating along those features and integrating the results together with the data from marsh stations to obtain a continuous water surface through multiquadric interpolation. The absolute cross-validation errors greater than 5 cm correlate well with the local outliers and the minimum distance between the closest stations within 2000-m radius, but seem to be independent of vegetation or season.

  2. Estimation of water surface elevations for the Everglades, Florida

    NASA Astrophysics Data System (ADS)

    Palaseanu, Monica; Pearlstine, Leonard

    2008-07-01

    The Everglades Depth Estimation Network (EDEN) is an integrated network of real-time water-level monitoring gages and modeling methods that provides scientists and managers with current (2000-present) online water surface and water depth information for the freshwater domain of the Greater Everglades. This integrated system presents data on a 400-m square grid to assist in (1) large-scale field operations; (2) integration of hydrologic and ecologic responses; (3) supporting biological and ecological assessment of the implementation of the Comprehensive Everglades Restoration Plan (CERP); and (4) assessing trophic-level responses to hydrodynamic changes in the Everglades. This paper investigates the radial basis function multiquadric method of interpolation to obtain a continuous freshwater surface across the entire Everglades using radio-transmitted data from a network of water-level gages managed by the US Geological Survey (USGS), the South Florida Water Management District (SFWMD), and the Everglades National Park (ENP). Since the hydrological connection is interrupted by canals and levees across the study area, boundary conditions were simulated by linearly interpolating along those features and integrating the results together with the data from marsh stations to obtain a continuous water surface through multiquadric interpolation. The absolute cross-validation errors greater than 5 cm correlate well with the local outliers and the minimum distance between the closest stations within 2000-m radius, but seem to be independent of vegetation or season.

  3. Characterization of oil sands process-affected waters by liquid chromatography orbitrap mass spectrometry.

    PubMed

    Pereira, Alberto S; Bhattacharjee, Subir; Martin, Jonathan W

    2013-05-21

    Recovery of bitumen from oil sands in northern Alberta, Canada, occurs by surface mining or in situ thermal recovery, and both methods produce toxic oil sands process-affected water (OSPW). A new characterization strategy for surface mining OSPW (sm-OSPW) and in situ OSPW (is-OSPW) was achieved by combining liquid chromatography with orbitrap mass spectrometry (MS). In electrospray positive and negative ionization modes (ESI(+)/ESI(-)), mass spectral data were acquired with high resolving power (RP > 100,000-190,000) and mass accuracy (<2 ppm). The additional chromatographic resolution allowed for separation of various isomers and interference-free MS(n) experiments. Overall, ∼3000 elemental compositions were revealed in each OSPW sample, corresponding to a range of heteroatom-containing homologue classes: Ox (where x = 1-6), NOx (where x = 1-4), SOx (where x = 1-4), NO₂S, N, and S. Despite similarities between the OSPW samples at the level of heteroatom class, the two samples were very different when considering isomer patterns and double-bond equivalent profiles. The chromatographic separations also allowed for confirmation that, in both OSPW samples, the O₂ species detected in ESI(-) (i.e., naphthenic acids) were chemically distinct from the corresponding O₂ species detected in ESI(+). In comparison to model compounds, tandem MS spectra of these new O₂ species suggested a group of non-acidic compounds with dihydroxy, diketo, or ketohydroxy functionality. In light of the known endocrine-disrupting potential of sm-OSPW, the toxicity of these O₂ species deserves attention and the method should be further applied to environmental forensic analysis of water in the region.

  4. Polarimetric Retrievals of Surface and Cirrus Clouds Properties in the Region Affected by the Deepwater Horizon Oil Spill

    NASA Technical Reports Server (NTRS)

    Ottaviani, Matteo; Cairns, Brian; Chowdhary, Jacek; Van Diedenhoven, Bastiaan; Knobelspiesse, Kirk; Hostetler, Chris; Ferrare, Rich; Burton, Sharon; Hair, John; Obland, Michael D.; Rogers, Raymond

    2012-01-01

    In 2010, the Goddard Institute for Space Studies (GISS) Research Scanning Polarimeter (RSP) performed several aerial surveys over the region affected by the oil spill caused by the explosion of the Deepwater Horizon offshore platform. The instrument was deployed on the NASA Langley B200 aircraft together with the High Spectral Resolution Lidar (HSRL), which provides information on the distribution of the aerosol layers beneath the aircraft, including an accurate estimate of aerosol optical depth. This work illustrates the merits of polarization measurements in detecting variations of ocean surface properties linked to the presence of an oil slick. In particular, we make use of the degree of linear polarization in the glint region, which is severely affected by variations in the refractive index but insensitive to the waviness of the water surface. Alterations in the surface optical properties are therefore expected to directly affect the polarization response of the RSP channel at 2264 nm, where both molecular and aerosol scattering are negligible and virtually all of the observed signal is generated via Fresnel reflection at the surface. The glint profile at this wavelength is fitted with a model which can optimally estimate refractive index, wind speed and direction, together with aircraft attitude variations affecting the viewing geometry. The retrieved refractive index markedly increases over oil-contaminated waters, while the apparent wind speed is significantly lower than in adjacent uncontaminated areas, suggesting that the slick dampens high-frequency components of the ocean wave spectrum. The constraint on surface reflectance provided by the short-wave infrared channels is a cornerstone of established procedures to retrieve atmospheric aerosol microphysical parameters based on the inversion of the RSP multispectral measurements. This retrieval, which benefits from the ancillary information provided by the HSRL, was in this specific case hampered by

  5. Applying downscaled global climate model data to a hydrodynamic surface-water and groundwater model

    USGS Publications Warehouse

    Swain, Eric; Stefanova, Lydia; Smith, Thomas

    2014-01-01

    Precipitation data from Global Climate Models have been downscaled to smaller regions. Adapting this downscaled precipitation data to a coupled hydrodynamic surface-water/groundwater model of southern Florida allows an examination of future conditions and their effect on groundwater levels, inundation patterns, surface-water stage and flows, and salinity. The downscaled rainfall data include the 1996-2001 time series from the European Center for Medium-Range Weather Forecasting ERA-40 simulation and both the 1996-1999 and 2038-2057 time series from two global climate models: the Community Climate System Model (CCSM) and the Geophysical Fluid Dynamic Laboratory (GFDL). Synthesized surface-water inflow datasets were developed for the 2038-2057 simulations. The resulting hydrologic simulations, with and without a 30-cm sea-level rise, were compared with each other and field data to analyze a range of projected conditions. Simulations predicted generally higher future stage and groundwater levels and surface-water flows, with sea-level rise inducing higher coastal salinities. A coincident rise in sea level, precipitation and surface-water flows resulted in a narrower inland saline/fresh transition zone. The inland areas were affected more by the rainfall difference than the sea-level rise, and the rainfall differences make little difference in coastal inundation, but a larger difference in coastal salinities.

  6. Impact of trace metals on the water structure at the calcite surface

    NASA Astrophysics Data System (ADS)

    Wolthers, Mariette; Di Tommaso, Devis; De Leeuw, Nora

    2014-05-01

    Carbonate minerals play an important role in regulating the chemistry of aquatic environments, including the oceans, aquifers, hydrothermal systems, soils and sediments. Through mineral surface processes such as dissolution, precipitation and sorption, carbonate minerals affect the biogeochemical cycles of not only the constituent elements of carbonates, such as Ca, Mg, Fe and C, but also H, P and trace elements. Surface charging of the calcite mineral-water interface, and its reactivity towards foreign ions can be quantified using a surface structural model that includes, among others, the water structure at the interface (i.e. hydrogen bridging) [1,2] in accordance with the CD-MUSIC formalism [3]. Here we will show the impact of foreign metals such as Mg and Sr on the water structure around different surface sites present in etch pits and on growth terraces at the calcite (10-14) surface. We have performed Molecular Dynamics simulations of metal-doped calcite surfaces, using different interatomic water potentials. Results show that the local environment around the structurally distinct sites differs depending on metal presence, suggesting that metal substitutions in calcite affect its reactivity. The information obtained in this study will help in improving existing macroscopic surface model for the reactivity of calcite [2] and give more general insight in mineral surface reactivity in relation to crystal composition. [1] Wolthers, Charlet, & Van Cappellen (2008). Am. J. Sci., 308, 905-941. [2] Wolthers, Di Tommaso, Du, & de Leeuw (2012). Phys. Chem. Chem. Phys. 14, 15145-15157. [3] Hiemstra and Van Riemsdijk (1996) J. Colloid Interf. Sci. 179, 488-508.

  7. Water Surface Ripples Generated by the Turbulent Boundary Layer of a Surface-Piercing Moving Wall

    NASA Astrophysics Data System (ADS)

    Washuta, N.; Masnadi, N.; Duncan, J. H.

    2014-11-01

    Free surface ripples created by subsurface turbulence along a surface-piercing moving wall are studied experimentally. In this experiment, a meter-wide stainless steel belt travels horizontally in a loop around two rollers with vertically oriented axes, which are separated by 7.5 meters. One of the two 7.5-m-long belt sections between the rollers is in contact with the water in a large open-surface water tank and the water level is adjusted so that the top of the belt pierces the water free surface. The belt is launched from rest with a 3 g acceleration in order to quickly reach a steady state velocity. This belt motion creates a temporally evolving boundary layer analogous to the spatially evolving boundary layer created along the side of a ship hull moving at the belt velocity, with a length equivalent to the length of belt that has passed the measurement region. The water surface ripples generated by the subsurface turbulence are measured in a plane normal to the belt using a cinematic LIF technique. It is found that the overall RMS surface fluctuations increase linearly with belt speed and that the spatial distributions of the fluctuations show a sharp increase near the wall. The support of the Office of Naval Research is gratefully acknowledged.

  8. Tide-induced surface water and groundwater interactions in coastal wetlands

    NASA Astrophysics Data System (ADS)

    Xin, P.; Kong, J.; Li, L.; Barry, D. A.

    2011-12-01

    Intertidal wetlands such as salt marshes are complex hydrological systems characterized by strong, dynamic interactions between coastal surface water and groundwater, driven particularly by tides. We simulated such interactions with a focus on 3D, variably saturated pore water flow in a salt marsh with a two-layer soil configuration (with a low-permeability mud layer overlying a high-permeability sandy-loam layer), which is commonly found in natural marshes. Simulated intra-tidal groundwater dynamics exhibited significant flow asymmetry with non-zero mean flow velocities over the tidal period. The tidally averaged flow led to 3D pore water circulation linked strongly to the marsh topography, over a range of spatial scales: near the creek bank, around the creek meander and over long marsh sections inclined towards the main channel. Time scales associated with these circulations differed by orders of magnitude. Under the simulated conditions, the creek served as the main outlet of the pore water circulation paths, especially those with infiltration taking place in the upper marsh surface areas away from the main channel. Water infiltrating the soil in the lower marsh surface areas away from the creek tended to discharge to the main channel directly. These flow characteristics have important implications for mass and nutrient transport and transformations in the marsh soil. Since the origin of pore water in the marsh soil is largely the coastal surface water, the travel paths and times revealed by the particle tracking are key factors that determine the (modified) chemical composition of the recycling water at the circulation outlet, which in turn affects the net exchange between the marsh and coastal surface water. Our study highlights the hydrological complexity of intertidal marshes and the need for further research on interactions among marsh morphology, hydrology and ecology, which underpin the functionalities of these wetland systems.

  9. Hydrogeologic controls of surface-water chemistry in the Adirondack region of New York State

    USGS Publications Warehouse

    Peters, N.E.; Driscoll, C.T.

    1987-01-01

    Relationships between surface-water discharge, water chemistry, and watershed geology were investigated to evaluate factors affecting the sensitivity of drainage waters in the Adirondack region of New York to acidification by atmospheric deposition. Instantaneous discharge per unit area was derived from relationships between flow and staff-gage readings at 10 drainage basins throughout the region. The average chemical composition of the waters was assessed from monthly samples collected from July 1982 through July 1984. The ratio of flow at the 50-percent exceedence level to the flow at the 95-percent exceedence level of flow duration was negatively correlated with mean values of alkalinity or acid-neutralizing capacity (ANC), sum of basic cations (SBC), and dissolved silica, for basins containing predominantly aluminosilicate minerals and little or no carbonate-bearing minerals. Low ratios are indicative of systems in which flow is predominately derived from surface- and ground-water storage, whereas high ratios are characteristic of watersheds with variable flow that is largely derived from surface runoff. In an evaluation of two representative surface-water sites, concentrations of ANC, SBC, and dissolved silica, derived primarily from soil mineral weathering reactions. decreased with increasing flow. Furthermore, the ANC was highest at low flow when the percentage of streamflow derived from ground water was maximum. As flow increased, the ANC decreased because the contribution of dilute surface runoff and lateral flow through the shallow acidic soil horizons to total flow increased. Basins having relatively high ground-water contributions to total flow, in general, have large deposits of thick till or stratified drift. A major factor controlling the sensitivity of these streams and lakes to acidification is the relative contribution of ground water to total discharge. ?? 1987 Martinus Nijhoff/Dr W. Junk Publishers.

  10. The Inner Boundary of the Habitable Zone: Loss Processes of Liquid Water from Terrestrial Planet Surfaces

    NASA Astrophysics Data System (ADS)

    Stracke, B.; Godolt, M.; Grenfell, J. L.; von Paris, P.; Patzer, B.; Rauer, H.

    2012-04-01

    The question of habitability is very important in the context of terrestrial extrasolar planets. Generally, the Habitable Zone (HZ) is defined as the orbital region around a star, in which life-supporting (habitable) planets can exist. Taking into account that liquid water is a commonly accepted, fundamental requirement for the development of life - as we know it - the habitable region around a star is mainly determined by the stellar insolation of radiation, which is sufficient to maintain liquid water at the planetary surface. This study focuses on different processes that can lead to the complete loss of a liquid water reservoir from the surface of a terrestrial planet to determine the inner boundary of the HZ. The investigated criteria are, for example, reaching the temperature of the critical point of water at the planetary surface, the runaway greenhouse effect and the diffusion-limited escape of water from the atmosphere, which could lead to the loss of the complete water reservoir within the lifetime of a planet. We investigate these criteria, which determine the inner boundary of the HZ, with a one-dimensional radiative-convective model of a planetary atmosphere, which extends from the surface to the mid-mesosphere. Our modelling approach involves the step-by-step increase of the incoming stellar flux and the subsequent iterative calculation of resulting changes in the temperature profiles, the atmospheric water vapour content and the radiative properties. Therefore, this climate model had to be adapted to account for high temperatures and water mixing ratios. For example, the infrared radiative transfer scheme was improved to be suitable for such high temperature and pressure conditions. Modelling results are presented determining the inner boundary of the HZ affected by these processes, which can result in no liquid water on the planetary surface. In this context, especially the role of the runaway greenhouse effect is discussed in detail.

  11. Wastewater-contaminated groundwater as a source of endogenous hormones and pharmaceuticals to surface water ecosystems.

    PubMed

    Standley, Laurel J; Rudel, Ruthann A; Swartz, Christopher H; Attfield, Kathleen R; Christian, Jeff; Erickson, Mike; Brody, Julia G

    2008-12-01

    Increasing residential development in watershed recharge areas increases the likelihood of groundwater and surface water contamination by wastewater effluent, particularly where on-site sewage treatment is employed. This effluent contains a range of compounds including those that have been demonstrated to mimic or interfere with the function of natural hormones in aquatic organisms and humans. To explore whether groundwater contaminated by discharge from on-site septic systems affects water quality in surface water ecosystems, we measured steroidal hormones, pharmaceuticals, and other organic wastewater compounds (OWCs) in water collected from six aquifer-fed ponds in areas of higher and lower residential density on Cape Cod (Massachusetts, USA). We detected both a greater number and higher concentrations of OWCs in samples collected from ponds located in higher residential density areas. Most often detected were the steroidal hormones androstenedione, estrone, and progesterone and the pharmaceuticals carbamazepine, pentoxifylline, sulfamethoxazole, and trimethoprim. Of particular concern, estrogenic hormones were present at concentrations approaching those that induce physiological responses in fish. While a number of papers have reported on surface water contamination by OWCs from wastewater treatment plants, our results show that surface water ecosystems in unconfined aquifer settings are susceptible to contamination by estrogenic and other biologically active OWCs through recharge from aquifers contaminated by residential septic systems.

  12. Distribution of volatile organic compounds (VOCs) in surface water, soil, and groundwater within a chemical industry park in Eastern China.

    PubMed

    Liu, Benhua; Chen, Liang; Huang, Linxian; Wang, Yongseng; Li, Yuehua

    2015-01-01

    This paper focuses on the distribution of volatile organic compounds (VOCs) in the surface water, soil, and groundwater within a chemical industry park in Eastern China. At least one VOC was detected in each of the 20 sampling sites, and the maximum number of VOCs detected in the surface water, groundwater, and soil were 13, 16, and 14, respectively. Two of the 10 VOCs with elevated concentrations detected in surface water, groundwater, and soil were chloroform and 1,2-dichloroethane. The characteristics of VOCs, which include volatility, boiling point, and solubility, could significantly affect their distribution in surface water, soil, and groundwater. However, due to the direct discharging of chemical industry wastewater into surface water, higher concentrations of VOCs (except chloroform) were detected in surface water than in soil and groundwater. Fortunately, the higher volatility of VOCs prevents the VOCs from impacting groundwater, which helps to maintain a lower concentration of VOCs in the groundwater than in both surface water and soil. This is because pollutants with relatively higher boiling points and lower solubilities have higher detection frequencies in soil, and contaminants with relatively lower boiling points and higher solubilities have higher detection frequencies in water, notably in surface water.

  13. How water layers on graphene affect folding and adsorption of TrpZip2

    NASA Astrophysics Data System (ADS)

    Peter, Emanuel K.; Agarwal, Mrigya; Kim, BongKeun; Pivkin, Igor V.; Shea, Joan-Emma

    2014-12-01

    We present a computational study of the folding of the Trp-rich β-hairpin TrpZip2 near graphene, a surface of interest as a platform for biosensors. The protein adsorbs to the surface, populating a new bound, folded state, coexisting with extended, adsorbed conformations. Adsorption and folding are modulated by direct interactions between the indole rings of TrpZip2 and the rings on the graphene surface, as well as by indirect water-mediated interactions. In particular, we observe strong layering of water near graphene, ice-like water configurations, and the formation of short lived hydrogen-bonds between water and protein. In order to study the effect of this layering in more detail, we modified the interactions between graphene and water to obtain two extreme cases: (1) enhanced layering of water that prevents the peptide from penetrating the water layer thereby enabling it to fold to a bulk-like structure, and (2) disruption of the water layer leading to adsorption and unfolding of the protein on the surface. These studies illuminate the roles of direct and solvent mediated interactions in modulating adsorption and folding of proteins on surfaces.

  14. How water layers on graphene affect folding and adsorption of TrpZip2.

    PubMed

    Peter, Emanuel K; Agarwal, Mrigya; Kim, BongKeun; Pivkin, Igor V; Shea, Joan-Emma

    2014-12-14

    We present a computational study of the folding of the Trp-rich β-hairpin TrpZip2 near graphene, a surface of interest as a platform for biosensors. The protein adsorbs to the surface, populating a new bound, folded state, coexisting with extended, adsorbed conformations. Adsorption and folding are modulated by direct interactions between the indole rings of TrpZip2 and the rings on the graphene surface, as well as by indirect water-mediated interactions. In particular, we observe strong layering of water near graphene, ice-like water configurations, and the formation of short lived hydrogen-bonds between water and protein. In order to study the effect of this layering in more detail, we modified the interactions between graphene and water to obtain two extreme cases: (1) enhanced layering of water that prevents the peptide from penetrating the water layer thereby enabling it to fold to a bulk-like structure, and (2) disruption of the water layer leading to adsorption and unfolding of the protein on the surface. These studies illuminate the roles of direct and solvent mediated interactions in modulating adsorption and folding of proteins on surfaces.

  15. Surface-Water and Ground-Water Resources of Kendall County, Illinois

    USGS Publications Warehouse

    Kay, Robert T.; Mills, Patrick C.; Hogan, Jennifer L.; Arnold, Terri L.

    2005-01-01

    Water-supply needs in Kendall County, in northern Illinois, are met exclusively from ground water derived from glacial drift aquifers and bedrock aquifers open to Silurian, Ordovician, and Cambrian System units. As a result of population growth in Kendall County and the surrounding area, water use has increased from about 1.2 million gallons per day in 1957 to more than 5 million gallons per day in 2000. The purpose of this report is to characterize the surface-water and ground-water resources of Kendall County. The report presents a compilation of available information on geology, surface-water and ground-water hydrology, water quality, and water use. The Fox River is the primary surface-water body in Kendall County and is used for both wastewater disposal and as a drinking-water supply upstream of the county. Water from the Fox River requires pretreatment for use as drinking water, but the river is a potentially viable additional source of water for the county. Glacial drift aquifers capable of yielding sufficient water for municipal supply are expected to be present in northern Kendall County, along the Fox River, and in the Newark Valley and its tributaries. Glacial drift aquifers capable of yielding sufficient water for residential supply are present in most of the county, with the exception of the southeastern portion. Volatile organic compounds and select trace metals and pesticides have been detected at low concentrations in glacial drift aquifers near waste-disposal sites. Agricultural-related constituents have been detected infrequently in glacial drift aquifers near agricultural areas. However, on the basis of the available data, widespread, consistent problems with water quality are not apparent in these aquifers. These aquifers are a viable source for additional water supply, but would require further characterization prior to full development. The shallow bedrock aquifer is composed of the sandstone units of the Ancell Group, the Prairie du Chien

  16. Using fluorescent dissolved organic matter to trace and distinguish the origin of Arctic surface waters

    PubMed Central

    Gonçalves-Araujo, Rafael; Granskog, Mats A.; Bracher, Astrid; Azetsu-Scott, Kumiko; Dodd, Paul A.; Stedmon, Colin A.

    2016-01-01

    Climate change affects the Arctic with regards to permafrost thaw, sea-ice melt, alterations to the freshwater budget and increased export of terrestrial material to the Arctic Ocean. The Fram and Davis Straits represent the major gateways connecting the Arctic and Atlantic. Oceanographic surveys were performed in the Fram and Davis Straits, and on the east Greenland Shelf (EGS), in late summer 2012/2013. Meteoric (fmw), sea-ice melt, Atlantic and Pacific water fractions were determined and the fluorescence properties of dissolved organic matter (FDOM) were characterized. In Fram Strait and EGS, a robust correlation between visible wavelength fluorescence and fmw was apparent, suggesting it as a reliable tracer of polar waters. However, a pattern was observed which linked the organic matter characteristics to the origin of polar waters. At depth in Davis Strait, visible wavelength FDOM was correlated to apparent oxygen utilization (AOU) and traced deep-water DOM turnover. In surface waters FDOM characteristics could distinguish between surface waters from eastern (Atlantic + modified polar waters) and western (Canada-basin polar waters) Arctic sectors. The findings highlight the potential of designing in situ multi-channel DOM fluorometers to trace the freshwater origins and decipher water mass mixing dynamics in the region without laborious samples analyses. PMID:27667721

  17. Using fluorescent dissolved organic matter to trace and distinguish the origin of Arctic surface waters

    NASA Astrophysics Data System (ADS)

    Gonçalves-Araujo, Rafael; Granskog, Mats A.; Bracher, Astrid; Azetsu-Scott, Kumiko; Dodd, Paul A.; Stedmon, Colin A.

    2016-09-01

    Climate change affects the Arctic with regards to permafrost thaw, sea-ice melt, alterations to the freshwater budget and increased export of terrestrial material to the Arctic Ocean. The Fram and Davis Straits represent the major gateways connecting the Arctic and Atlantic. Oceanographic surveys were performed in the Fram and Davis Straits, and on the east Greenland Shelf (EGS), in late summer 2012/2013. Meteoric (fmw), sea-ice melt, Atlantic and Pacific water fractions were determined and the fluorescence properties of dissolved organic matter (FDOM) were characterized. In Fram Strait and EGS, a robust correlation between visible wavelength fluorescence and fmw was apparent, suggesting it as a reliable tracer of polar waters. However, a pattern was observed which linked the organic matter characteristics to the origin of polar waters. At depth in Davis Strait, visible wavelength FDOM was correlated to apparent oxygen utilization (AOU) and traced deep-water DOM turnover. In surface waters FDOM characteristics could distinguish between surface waters from eastern (Atlantic + modified polar waters) and western (Canada-basin polar waters) Arctic sectors. The findings highlight the potential of designing in situ multi-channel DOM fluorometers to trace the freshwater origins and decipher water mass mixing dynamics in the region without laborious samples analyses.

  18. Wormsphere Rover Pattern for Discovering Underground Water on Mars Surface

    NASA Astrophysics Data System (ADS)

    Kangi, A.

    Undoubtedly, access to Mars' subsurface liquid water can make abundance of future proposition plausible. In order to access this invaluable source, all of the Martian surface ought to be explored by special super active researchers. Wormsphere Rover, which, as an immense ball, could carry 20 kg radar equipment to detect subsurface water, would be able to move on Mars by the force of continuous, gale-force winds. Moreover, equipped with a certain wormlike kinetic system, this rover is capable of having controllable motion in requisite circumstances, and of exploring underground water in various regions. This vehicle displays a high degree of efficiency for extended exploration in the long term.

  19. Diffuse pollution of surface water by pharmaceutical products.

    PubMed

    Derksen, J G M; Rijs, G B J; Jongbloed, R H

    2004-01-01

    Pharmaceutical products for humans or animals, as well as their related metabolites (degradation products) end up in the aquatic environment after use. Recent investigations from abroad show that low concentrations of pharmaceuticals are detectable in municipal waste water, surface water, groundwater and even drinking water. Little is known about the effects, and with that the risk, of long term exposure to low concentrations of pharmaceuticals for aquatic organisms. On the basis of the current knowledge, further attention to map the presence and effects of pharmaceutical residues on aquatic organisms is justified. To map the Dutch situation, recently a monitoring program has started.

  20. Radiolysis Concerns for Water Shielding in Fission Surface Power Applications

    SciTech Connect

    Schoenfeld, Michael P.; Anghaie, Samim

    2008-01-21

    This paper presents an overview of radiolysis concerns with regard to water shields for fission surface power. A review of the radiolysis process is presented and key parameters and trends are identified. From this understanding of the radiolytic decomposition of water, shield pressurization and corrosion are identified as the primary concerns. Existing experimental and modeling data addressing concerns are summarized. It was found that radiolysis of pure water in a closed volume results in minimal, if any net decomposition, and therefore reduces the potential for shield pressurization and corrosion.

  1. Groundwater and surface water interaction in a basin surrounded by steep mountains, central Japan

    NASA Astrophysics Data System (ADS)

    Ikeda, Koichi; Tsujimura, Maki; Kaeriyama, Toshiaki; Nakano, Takanori

    2015-04-01

    Mountainous headwaters and lower stream alluvial plains are important as water recharge and discharge areas from the view point of groundwater flow system. Especially, groundwater and surface water interaction is one of the most important processes to understand the total groundwater flow system from the mountain to the alluvial plain. We performed tracer approach and hydrometric investigations in a basin with an area 948 square km surrounded by steep mountains with an altitude from 250m to 2060m, collected 258 groundwater samples and 112 surface water samples along four streams flowing in the basin. Also, Stable isotopes ratios of oxygen-18 (18O) and deuterium (D) and strontium (Sr) were determined on all water samples. The 18O and D show distinctive values for each sub-basin affected by different average recharge altitudes among four sub-basins. Also, Sr isotope ratio shows the same trend as 18O and D affected by different geological covers in the recharge areas among four sub-basins. The 18O, D and Sr isotope values of groundwater along some rivers in the middle stream region of the basin show close values as the rivers, and suggesting that direct recharge from the river to the shallow groundwater is predominant in that region. Also, a decreasing trend of discharge rate of the stream along the flow supports this idea of the groundwater and surface water interaction in the basin.

  2. Distribution of tritium in precipitation and surface water in California

    NASA Astrophysics Data System (ADS)

    Harms, Patrick A.; Visser, Ate; Moran, Jean E.; Esser, Brad K.

    2016-03-01

    The tritium concentration in the surface hydrosphere throughout California was characterized to examine the reasons for spatial variability and to enhance the applicability of tritium in hydrological investigations. Eighteen precipitation samples were analyzed and 148 samples were collected from surface waters across California in the Summer and Fall of 2013, with repeat samples from some locations collected in Winter and Spring of 2014 to examine seasonal variation. The concentration of tritium in present day precipitation varied from 4.0 pCi/L near the California coast to 17.8 pCi/L in the Sierra Nevada Mountains. Concentrations in precipitation increase in spring due to the 'Spring Leak' phenomenon. The average coastal concentration (6.3 ± 1.2 pCi/L) in precipitation matches estimated pre-nuclear levels. Surface water samples show a trend of increasing tritium with inland distance. Superimposed on that trend, elevated tritium concentrations are found in the San Francisco Bay area compared to other coastal areas, resulting from municipal water imported from inland mountain sources and local anthropogenic sources. Tritium concentrations in most surface waters decreased between Summer/Fall 2013 and Winter/Spring 2014 likely due to an increased groundwater signal as a result of drought conditions in 2014. A relationship between tritium and electrical conductivity in surface water was found to be indicative of water provenance and anthropogenic influences such as agricultural runoff. Despite low initial concentrations in precipitation, tritium continues to be a valuable tracer in a post nuclear bomb pulse world.

  3. Water and Carbon Dioxide Adsorption at Olivine Surfaces

    SciTech Connect

    Kerisit, Sebastien N.; Bylaska, Eric J.; Felmy, Andrew R.

    2013-11-14

    Plane-wave density functional theory (DFT) calculations were performed to simulate water and carbon dioxide adsorption at the (010) surface of five olivine minerals, namely, forsterite (Mg2SiO4), calcio-olivine (Ca2SiO4), tephroite (Mn2SiO4), fayalite (Fe2SiO4), and Co-olivine (Co2SiO4). Adsorption energies per water molecule obtained from energy minimizations varied from -78 kJ mol-1 for fayalite to -128 kJ mol-1 for calcio-olivine at sub-monolayer coverage and became less exothermic as coverage increased. In contrast, carbon dioxide adsorption energies at sub-monolayer coverage ranged from -20 kJ mol-1 for fayalite to -59 kJ mol-1 for calcio-olivine. Therefore, the DFT calculations show a strong driving force for carbon dioxide displacement by water at the surface of all olivine minerals in a competitive adsorption scenario. Additionally, adsorption energies for both water and carbon dioxide were found to be more exothermic for the alkaline-earth (AE) olivines than for the transition-metal (TM) olivines and to not correlate with the solvation enthalpies of the corresponding divalent cations. However, a correlation was obtained with the charge of the surface divalent cation indicating that the more ionic character of the AE cations in the olivine structure relative to the TM cations leads to greater interactions with adsorbed water and carbon dioxide molecules at the surface and thus more exothermic adsorption energies for the AE olivines. For calcio-olivine, which exhibits the highest divalent cation charge of the five olivines, ab initio molecular dynamics simulations showed that this effect leads both water and carbon dioxide to react with the surface and form hydroxyl groups and a carbonate-like species, respectively.

  4. DISTRIBUTION OF ORGANIC WASTEWATER CONTAMINANTS BETWEEN WATER AND SEDIMENT IN SURFACE WATERS OF THE UNITED STATES

    EPA Science Inventory

    Trace concentrations of pharmaceuticals and other organic wastewater contaminants have been determined in the surface waters of Europe and the United States. A preliminary report of substantially higher concentrations of pharmaceuticals in sediment suggests that bottom sediment ...

  5. Theoretical Study of Sodium-Water Surface Reaction Mechanism

    NASA Astrophysics Data System (ADS)

    Kikuchi, Shin; Kurihara, Akikazu; Ohshima, Hiroyuki; Hashimoto, Kenro

    Computational study of the sodium-water reaction at the gas (water) - liquid (sodium) interface has been carried out using the ab initio (first-principle) method. A possible reaction channel has been identified for the stepwise OH bond dissociations of a single water molecule. The energetics including the binding energy of a water molecule on the sodium surface, the activation energies of the bond cleavages, and the reaction energies, have been evaluated, and the rate constants of the first and second OH bond-breakings have been compared. It was found that the estimated rate constant of the former was much larger than the latter. The results are the basis for constructing the chemical reaction model used in a multi-dimensional sodium-water reaction code, SERAPHIM, being developed by Japan Atomic Energy Agency (JAEA) toward the safety assessment of the steam generator (SG) in a sodium-cooled fast reactor (SFR).

  6. Management of surface water and groundwater withdrawals to maintain environmental stream flows in Michigan

    USGS Publications Warehouse

    Reeves, Howard W.; Seelbach, Paul W.; Nicholas, James R.; Hamilton, David A.; Potter, Kenneth W.; Frevert, Donald K.

    2010-01-01

    In 2008, the State of Michigan enacted legislation requiring that new or increased high-capacity withdrawals (greater than 100,000 gallons per day) from either surface water or groundwater be reviewed to prevent Adverse Resource Impacts (ARI). Science- based guidance was sought in defining how groundwater or surface-water withdrawals affect streamflow and in quantifying the relation between reduced streamflow and changes in stream ecology. The implementation of the legislation led to a risk-based system based on a gradient of risk, ecological response curves, and estimation of groundwater-surface water interaction. All Michigan streams are included in the legislation, and, accordingly, all Michigan streams were classified into management types defined by size of watershed, stream-water temperature, and predicted fish assemblages. Different streamflow removal percentages define risk-based thresholds allowed for each type. These removal percentages were informed by ecological response curves of characteristic fish populations and finalized through a legislative workgroup process. The assessment process includes an on-line screening tool that may be used to evaluate new or increased withdrawals against the risk-based zones and allows withdrawals that are not likely to cause an ARI to proceed to water-use registration. The system is designed to consider cumulative impacts of high-capacity withdrawals and to promote user involvement in water resource management by the establishment of water-user committees as cumulative withdrawals indicate greater potential for ARI in the watershed.

  7. Molecular dynamics simulation of water at mineral surfaces: Structure, dynamics, energetics and hydrogen bonding

    NASA Astrophysics Data System (ADS)

    Kalinichev, A. G.; Wang, J.; Kirkpatrick, R.

    2006-05-01

    Fundamental molecular-level understanding of the properties of aqueous mineral interfaces is of great importance for many geochemical and environmental systems. Interaction between water and mineral surfaces substantially affects the properties of both phases, including the reactivity and functionality of the substrate surface, and the structure, dynamics, and energetics of the near surface aqueous phase. Experimental studies of interfacial water structure and dynamics using surface-sensitive techniques such as sum-frequency vibrational spectroscopy or X-ray and neutron reflectivity are not always possible for many practically important substrates, and their results often require interpretation concerning the atomistic mechanisms responsible for the observed behavior. Molecular computer simulations can provide new insight into the underlying molecular- level relationships between the inorganic substrate structure and composition and the structure, ordering, and dynamics of interfacial water. We have performed a series of molecular dynamics (MD) computer simulations of aqueous interfaces with several silicates (quartz, muscovite, and talc) and hydroxides (brucite, portlandite, gibbsite, Ca/Al and Mg/Al double hydroxides) to quantify the effects of the substrate mineral structure and composition on the structural, transport, and thermodynamic properties of water on these mineral surfaces. Due to the prevalent effects of the development of well-interconnected H-bonding networks across the mineral- water interfaces, all the hydroxide surfaces (including a fully hydroxylated quartz surface) show very similar H2O density profiles perpendicular to the interface. However, the predominant orientations of the interfacial H2O molecules and their detailed 2-dimensional near-surface structure and dynamics parallel to the interface are quite different reflecting the differences in the substrate structural charge distribution and the density and orientations of the surface OH

  8. Nonequilibrium water dynamics in the rhizosphere: How mucilage affects water flow in soils

    NASA Astrophysics Data System (ADS)

    Kroener, Eva; Zarebanadkouki, Mohsen; Kaestner, Anders; Carminati, Andrea

    2014-08-01

    The flow of water from soil to plant roots is controlled by the properties of the narrow region of soil close to the roots, the rhizosphere. In particular, the hydraulic properties of the rhizosphere are altered by mucilage, a polymeric gel exuded by the roots. In this paper we present experimental results and a conceptual model of water flow in unsaturated soils mixed with mucilage. A central hypothesis of the model is that the different drying/wetting rate of mucilage compared to the bulk soil results in nonequilibrium relations between water content and water potential in the rhizosphere. We coupled this nonequilibrium relation with the Richards equation and obtained a constitutive equation for water flow in soil and mucilage. To test the model assumptions, we measured the water retention curve and the saturated hydraulic conductivity of sandy soil mixed with mucilage from chia seeds. Additionally, we used neutron radiography to image water content in a layer of soil mixed with mucilage during drying and wetting cycles. The radiographs demonstrated the occurrence of nonequilibrium water dynamics in the soil-mucilage mixture. The experiments were simulated by numerically solving the nonequilibrium model. Our study provides conceptual and experimental evidences that mucilage has a strong impact on soil water dynamics. During drying, mucilage maintains a greater soil water content for an extended time, while during irrigation it delays the soil rewetting. We postulate that mucilage exudation by roots attenuates plant water stress by modulating water content dynamics in the rhizosphere.

  9. Surface fractal dimension, water adsorption efficiency, and cloud nucleation activity of insoluble aerosol

    PubMed Central

    Laaksonen, Ari; Malila, Jussi; Nenes, Athanasios; Hung, Hui-Ming; Chen, Jen-Ping

    2016-01-01

    Surface porosity affects the ability of a substance to adsorb gases. The surface fractal dimension D is a measure that indicates the amount that a surface fills a space, and can thereby be used to characterize the surface porosity. Here we propose a new method for determining D, based on measuring both the water vapour adsorption isotherm of a given substance, and its ability to act as a cloud condensation nucleus when introduced to humidified air in aerosol form. We show that our method agrees well with previous methods based on measurement of nitrogen adsorption. Besides proving the usefulness of the new method for general surface characterization of materials, our results show that the surface fractal dimension is an important determinant in cloud drop formation on water insoluble particles. We suggest that a closure can be obtained between experimental critical supersaturation for cloud drop activation and that calculated based on water adsorption data, if the latter is corrected using the surface fractal dimension of the insoluble cloud nucleus. PMID:27138171

  10. The inequality of water scarcity events: who is actually being affected?

    NASA Astrophysics Data System (ADS)

    Veldkamp, Ted I. E.; Wada, Yoshihide; Kummu, Matti; Aerts, Jeroen C. J. H.; Ward, Philip J.

    2015-04-01

    Over the past decades, changing hydro-climatic and socioeconomic conditions increased regional and global water scarcity problems. In the near future, projected changes in human water use and population growth - in combination with climate change - are expected to aggravate water scarcity conditions and its associated impacts on our society. Whilst a wide range of studies have modelled past and future regional and global patterns of change in population or land area impacted by water scarcity conditions, less attention is paid on who is actually affected and how vulnerable this share of the population is to water scarcity conditions. The actual impact of water scarcity events, however, not only depends on the numbers being affected, but merely on how sensitive this population is to water scarcity conditions, how quick and efficient governments can deal with the problems induced by water scarcity, and how many (financial and infrastructural) resources are available to cope with water scarce conditions. Only few studies have investigated the above mentioned interactions between societal composition and water scarcity conditions (e.g. by means of the social water scarcity index and the water poverty index) and, up to our knowledge, a comprehensive global analysis including different water scarcity indicators and multiple climate and socioeconomic scenarios is missing. To address this issue, we assess in this contribution the adaptive capacity of a society to water scarcity conditions, evaluate how this may be driven by different societal factors, and discuss how enhanced knowledge on this topic could be of interest for water managers in their design of adaptation strategies coping with water scarcity events. For that purpose, we couple spatial information on water scarcity conditions with different components from, among others, the Human Development Index and the Worldwide Governance Indicators, such as: the share of the population with an income below the poverty

  11. Geochemical characterization of surface water and spring water in SE Kashmir Valley, western Himalaya: Implications to water-rock interaction

    NASA Astrophysics Data System (ADS)

    Jeelani, Gh; Bhat, Nadeem A.; Shivanna, K.; Bhat, M. Y.

    2011-10-01

    Water samples from precipitation, glacier melt, snow melt, glacial lake, streams and karst springs were collected across SE of Kashmir Valley, to understand the hydrogeochemical processes governing the evolution of the water in a natural and non-industrial area of western Himalayas. The time series data on solute chemistry suggest that the hydrochemical processes controlling the chemistry of spring waters is more complex than the surface water. This is attributed to more time available for infiltrating water to interact with the diverse host lithology. Total dissolved solids (TDS), in general, increases with decrease in altitude. However, high TDS of some streams at higher altitudes and low TDS of some springs at lower altitudes indicated contribution of high TDS waters from glacial lakes and low TDS waters from streams, respectively. The results show that some karst springs are recharged by surface water; Achabalnag by the Bringi stream and Andernag and Martandnag by the Liddar stream. Calcite dissolution, dedolomitization and silicate weathering were found to be the main processes controlling the chemistry of the spring waters and calcite dissolution as the dominant process in controlling the chemistry of the surface waters. The spring waters were undersaturated with respect to calcite and dolomite in most of the seasons except in November, which is attributed to the replenishment of the CO2 by recharging waters during most of the seasons.

  12. Recovery of condensate water quality in power generator's surface condenser

    NASA Astrophysics Data System (ADS)

    Kurniawan, Lilik Adib

    2017-03-01

    In PT Badak NGL Plant, steam turbines are used to drive major power generators, compressors, and pumps. Steam exiting the turbines is condensed in surface condensers to be returned to boilers. Therefore, surface condenser performance and quality of condensate water are very important. One of the recent problem was caused by the leak of a surface condenser of Steam Turbine Power Generator. Thesteam turbine was overhauled, leaving the surface condenser idle and exposed to air for more than 1.5 years. Sea water ingress due to tube leaks worsens the corrosionof the condenser shell. The combination of mineral scale and corrosion product resulting high conductivity condensate at outlet condenser when we restarted up, beyond the acceptable limit. After assessing several options, chemical cleaning was the best way to overcome the problem according to condenser configuration. An 8 hour circulation of 5%wt citric acid had succeed reducing water conductivity from 50 μmhos/cm to below 5 μmhos/cm. The condensate water, then meets the required quality, i.e. pH 8.3 - 9.0; conductivity ≤ 5 μmhos/cm, therefore the power generator can be operated normally without any concern until now.

  13. Uranium in US surface, ground, and domestic waters. Volume 2

    SciTech Connect

    Drury, J.S.; Reynolds, S.; Owen, P.T.; Ross, R.H.; Ensminger, J.T.

    1981-04-01

    The report Uranium in US Surface, Ground, and Domestic Waters comprises four volumes. Volumes 2, 3, and 4 contain data characterizing the location, sampling date, type, use, and uranium conentrations of 89,994 individual samples presented in tabular form. The tabular data in volumes 2, 3, and 4 are summarized in volume 1 in narrative form and with maps and histograms.

  14. CONTROLLING STORM WATER RUNOFF WITH TRADABLE CREDITS FOR IMPERVIOUS SURFACES

    EPA Science Inventory

    Storm water flow off impervious surface in a watershed can lead to stream degradation, habitat alteration, low base flows and toxic leading. We show that a properly designed tradable runoff credit (TRC) system creates economic incentives for landowners to employ best management p...

  15. PARTITION COEFFICIENTS FOR METALS IN SURFACE WATER, SOIL, AND WASTE

    EPA Science Inventory

    This report presents metal partition coefficients for the surface water pathway and for the source model used in the Multimedia, Multi-pathway, Multi-receptor Exposure and Risk Assessment (3MRA) technology under development by the U.S. Environmental Protection Agency. Partition ...

  16. PHOTOREACTIONS IN SURFACE WATERS AND THEIR ROLE IN BIOGEOCHEMICAL CYCLES

    EPA Science Inventory

    During the past decade significant interest has developed in the influence of photochemical reactions on biogeochemical cycles in surface waters of lakes and the sea. A major portion of recent research on these photoreactions has focused on the colored component of dissolved org...

  17. Simulating the fate and transport of nanomaterials in surface waters

    EPA Science Inventory

    The unique properties of nanomaterials have resulted in their increased production. However, it is unclear how nanomaterials will move and react once released to the environment One approach for addressing possible exposure of nanomaterials in surface waters is by using numerical...

  18. Biphilic Surfaces for Enhanced Water Collection from Humid Air

    NASA Astrophysics Data System (ADS)

    Benkoski, Jason; Gerasopoulos, Konstantinos; Luedeman, William

    Surface wettability plays an important role in water recovery, distillation, dehumidification, and heat transfer. The efficiency of each process depends on the rate of droplet nucleation, droplet growth, and mass transfer. Unfortunately, hydrophilic surfaces are good at nucleation but poor at shedding. Hydrophobic surfaces are the reverse. Many plants and animals overcome this tradeoff through biphilic surfaces with patterned wettability. For example, the Stenocara beetle uses hydrophilic patches on a superhydrophobic background to collect fog from air. Cribellate spiders similarly collect fog on their webs through periodic spindle-knot structures. In this study, we investigate the effects of wettability patterns on the rate of water collection from humid air. The steady state rate of water collection per unit area is measured as a function of undercooling, angle of inclination, water contact angle, hydrophilic patch size, patch spacing, area fraction, and patch height relative to the hydrophobic background. We then model each pattern by comparing the potential and kinetic energy of a droplet as it rolls downwards at a fixed angle. The results indicate that the design rules for collecting fog differ from those for condensation from humid air. The authors gratefully acknowledge the Office of Naval Research for financial support through Grant Number N00014-15-1-2107.

  19. Spectroscopic measurements of the surface waters for evaluating the fresh-water transport to marine environments in the Southern Baltic

    NASA Astrophysics Data System (ADS)

    Drozdowska, Violetta; Markuszewski, Piotr; Kowalczyk, Jakub; Makuch, Przemysław; Pakszyc, Paulina; Strzałkowska, Agata; Piskozub, Jacek; Petelski, Tomasz; Zieliński, Tymon; Gutowska, Dorota

    2014-05-01

    To asses concentration and spatial distribution of surface-active molecules (surfactants) the spectrophotometric and spectrofluorometric measurements of water samples taken from a surface film and a depth 0.5 m were carried out during three cruises of r/v Oceania in Springs' 2010-2011 and Autumn' 2012. Measurements were conducted along the transects from the river outlets to the open waters of the Southern Baltic Sea. Surfactants consist of polar molecules of marine dissolved organic matter and are chemically not entirely classified. However, fractions of dissolved organic matter having chromophores or fluorophores (CDOM or FDOM) are recognized through their specific absorption and fluorescence spectra. The sea surface is a layer of transition between the atmosphere and the sea, where there is a variety of biological, physical and chemical processes which contribute to the accumulation and exchange of surfactants, the chemical species concentrated in the surface layer (surface active agents). The main source of marine surfactants are remains of phytoplankton and its degradation products, created by bacterial activity, and as a result of condensation of molecules of low molecular weight to form of surface-active macromolecules. The presence of surfactants in the surface layers can significantly affect the access of solar energy into the sea as well as the air-sea interaction processes. The main objective of the research was to investigate the luminescent properties of surfactants, sampled in different regions of the Southern Baltic, and to find the differences between a surface film and a subsurface layer (of 50 cm). The next aim was to combine the differences in optical properties with the different dynamics for various river outlets. The results of spectrophotometric studies show the differences in the intensity of spectral bands, particularly between coastal (estuaries) and the open sea zones. Also, analysis of the spectra shows differences between areas of the

  20. Roles of surface water areas for water and solute cycle in Hanoi city, Viet Nam

    NASA Astrophysics Data System (ADS)

    Hayashi, Takeshi; Kuroda, Keisuke; Do Thuan, An; Tran Thi Viet, Nga; Takizawa, Satoshi

    2013-04-01

    Hanoi city, the capital of Viet Nam, has developed beside the Red river. Recent rapid urbanization of this city has reduced a large number of natural water areas such as lakes, ponds and canals not only in the central area but the suburban area. Contrary, the urbanization has increased artificial water areas such as pond for fish cultivation and landscaping. On the other hand, the urbanization has induced the inflow of waste water from households and various kinds of factories to these water areas because of delay of sewerage system development. Inflow of the waste water has induced eutrophication and pollution of these water areas. Also, there is a possibility of groundwater pollution by infiltration of polluted surface water. However, the role of these water areas for water cycle and solute transport is not clarified. Therefore, this study focuses on the interaction between surface water areas and groundwater in Hanoi city to evaluate appropriate land development and groundwater resource management. We are carrying out three approaches: a) understanding of geochemical characteristics of surface water and groundwater, b) monitoring of water levels of pond and groundwater, c) sampling of soil and pond sediment. Correlation between d18O and dD of precipitation (after GNIP), the Red River (after GNIR) and the water samples of this study showed that the groundwater is composed of precipitation, the Red River and surface water that has evaporation process. Contribution of the surface water with evaporation process was widely found in the study area. As for groundwater monitoring, the Holocene aquifers at two sites were in unconfined condition in dry season and the groundwater levels in the aquifer continued to increase through rainy season. The results of isotopic analysis and groundwater level monitoring showed that the surface water areas are one of the major groundwater sources. On the other hand, concentrations of dissolved Arsenic (filtered by 0.45um) in the pore

  1. Surface water-groundwater connectivity in deltaic distributary channel networks

    NASA Astrophysics Data System (ADS)

    Sawyer, Audrey H.; Edmonds, Douglas A.; Knights, Deon

    2015-12-01

    Delta distributary channel networks increase river water contact with sediments and provide the final opportunity to process nutrients and other solutes before river water discharges to the ocean. In order to understand surface water-groundwater interactions at the scale of the distributary channel network, we created three numerical deltas that ranged in composition from silt to sand using Delft3D, a morphodynamic flow and sediment transport model. We then linked models of mean annual river discharge to steady groundwater flow in MODFLOW. Under mean annual discharge, exchange rates through the numerical deltas are enhanced relative to a single-threaded river. We calculate that exchange rates across a <10 km2 network are equivalent to exchange through ~10-100 km of single-threaded river channel. Exchange rates are greatest in the coarse-grained delta due to its permeability and morphology. Groundwater residence times range from hours to centuries and have fractal tails. Deltas are vanishing due to relative sea level rise. River diversion projects aimed at creating new deltaic land should also aim to restore surface water-groundwater connectivity, which is critical for biogeochemical processing in wetlands. We recommend designing diversions to capture more sand and thus maximize surface water-groundwater connectivity.

  2. Excess densities and equimolar surfaces for spherical cavities in water

    NASA Astrophysics Data System (ADS)

    Floris, Franca Maria

    2007-02-01

    For hard spheres with a radius up to 10Å in TIP4P water under ambient conditions, the author studies how the excess number of molecules at the accessible surface depends on the radius of the cavity. Simulation results derived from excess volumes are discussed in terms of radial distribution functions (rdfs), which compare well with extended simple point charge and theoretical rdfs from the literature. The excess number of molecules at the accessible surface inserted in the expression which refers to an arbitrary dividing surface enables one to find the position of the equimolar surface. The surface tension corresponding to this dividing surface was obtained from values of the free energy of cavity formation. For radii in the range of the simulation data, its behavior with curvature is quite different from that usually shown in the literature. A model, which describes how the excess number of molecules at the accessible surface changes with the radius, is discussed in the large length limit by examining consistent rdfs described by a simple analytical form. The inclusion in the model of a logarithmic term has also been considered. Comparison with theoretical results from the literature shows a good agreement for a cavity with a radius of 20Å. For a radius of 100Å and beyond, the model predicts instead sharper density profiles. Such differences have a poor effect on the surface tension at the equimolar surface.

  3. Magnetism in non-stoichiometric goethite of varying total water content and surface area

    NASA Astrophysics Data System (ADS)

    Barrero, C. A.; Betancur, J. D.; Greneche, J. M.; Goya, G. F.; Berquó, T. S.

    2006-02-01

    In this work, the magnetic properties of four non-stoichiometric goethites with varying total water content and surface area have been investigated. The samples were prepared using two different hydrothermal methods, deriving either from Fe(II) precursors or from Fe(III) precursors. The effects of both agitation during mixing solutions and drying time during synthesis upon the physical properties of the final products were also studied. The samples were characterized by XRD, TGA, BET, 57Fe Mössbauer spectrometry at 300 K, 77 K and 4.2 K, ZFC and FC curves, and magnetization curves. The goethites synthesized from the Fe(II) precursors result less crystalline, contain higher water content than those prepared from the Fe(III) precursor. In addition, ferrous precursor goethites exhibit superparamagnetic relaxation effects, while the ferric precursor goethites exhibit magnetic ordering of clusters. It is found that the stirring process during synthesis can affect the total water content and the magnetic behaviour of the goethites. Our results suggest that structural water content decreases the magnetic hyperfine field at 4.2 K. The adsorbed water content also affects this parameter as suggested by in situ annealing cycles of the goethites in a Mössbauer cryofurnace. Finally, we propose an unique 2-D phase diagram to describe all the magnetic properties of present goethites observed as a function of temperature, surface area (or particle size) and total water content.

  4. Evaluating the Effects of Climate Change on Water Supplies and Operations: How Important are Feedbacks between Groundwater and Surface Water Use and Management?

    NASA Astrophysics Data System (ADS)

    Ferguson, I. M.; Hanson, R. T.; Boyce, S. E.; Llewellyn, D.

    2015-12-01

    It is well established that groundwater pumping affects surface-water availability by intercepting water that would otherwise discharge to streams and/or by increasing seepage losses from stream channels. Conversely, surface-water management affects groundwater availability by altering the timing, location, and quantity of groundwater recharge and pumping. Analyses of climate change impacts on water resources, however, often fail to account for these interactions, in large part due to a lack of modeling tools capable of simulating interactions between surface-water and groundwater management and use. Here we use a modified version of the MODFLOW One Water Hydrologic Flow Model (MODFLOW-OWHM) to evaluate the role of feedbacks between surface-water and groundwater management and use in the context of climate change impact and adaptation studies. This modified version of MODFLOW-OWHM was developed by USBR and USGS by incorporating a fully-integrated surface-water operations module within MODFLOW-OWHM. We use a hypothetical) test case to compare direct and indirect effects of climate change on surface-water and groundwater resources. We define direct effects as changes in groundwater and surface-water conditions resulting from the hydrologic response to climate change (e.g., driven by changes in runoff, recharge, and demands resulting directly from climate change); we define indirect effects as changes arising from the anthropogenic response to direct effects (e.g., driven by changes in groundwater pumping in response to climate-driven changes in water demands or surface water supplies). Results demonstrate that indirect effects on groundwater from changes in demand can outweigh direct effects from changes in supply—viz., indirect effects of increased groundwater pumping due to decreasing surface water supplies can be greater than direct effects of decreasing groundwater recharge. Moreover, under some conditions, indirect effects from changes in groundwater use, and

  5. Soil water repellency