Science.gov

Sample records for affects water quality

  1. Mechanisms affecting water quality in an intermittent piped water supply.

    PubMed

    Kumpel, Emily; Nelson, Kara L

    2014-01-01

    Drinking water distribution systems throughout the world supply water intermittently, leaving pipes without pressure between supply cycles. Understanding the multiple mechanisms that affect contamination in these intermittent water supplies (IWS) can be used to develop strategies to improve water quality. To study these effects, we tested water quality in an IWS system with infrequent and short water delivery periods in Hubli-Dharwad, India. We continuously measured pressure and physicochemical parameters and periodically collected grab samples to test for total coliform and E. coli throughout supply cycles at 11 sites. When the supply was first turned on, water with elevated turbidity and high concentrations of indicator bacteria was flushed out of pipes. At low pressures (<10 psi), elevated indicator bacteria were frequently detected even when there was a chlorine residual, suggesting persistent contamination had occurred through intrusion or backflow. At pressures between 10 and 17 psi, evidence of periodic contamination suggested that transient intrusion, backflow, release of particulates, or sloughing of biofilms from pipe walls had occurred. Few total coliform and no E. coli were detected when water was delivered with a chlorine residual and at pressures >17 psi.

  2. How Do Our Actions Affect Water Quantity and Quality?

    ERIC Educational Resources Information Center

    Gordon, Jessica

    2008-01-01

    Water is an essential resource for all living things. How we live on our watershed can impact water quantity and quality. It is important to recognize how humans alter watershed dynamics, but students often find it challenging to visualize watershed processes and understand how decisions that they make as individuals and together as a community…

  3. Factors affecting ground-water quality in Oakland County, Michigan

    USGS Publications Warehouse

    ,

    2004-01-01

    Ground water is water stored in pores within soil and rock beneath the land surface. When these pores are connected so that water can be transmitted to wells or springs, these bodies of soil and rock are termed aquifers, from two Greek words meaning “water” and “to bear.” 

  4. Using Gypsum to Affect Soil Erosion Processes and Water Quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A driving force in soil erosion is the low electrolyte content of rain water. Various electrolyte sources have proven useful in serving as electrolyte sources such as phosphogypsum, lime and various salts, however, each has other potential problems. We performed a number of studies on low cost gypsu...

  5. The quality of our Nation's waters: factors affecting public-supply-well vulnerability to contamination: understanding observed water quality and anticipating future water quality

    USGS Publications Warehouse

    Eberts, Sandra M.; Thomas, Mary Ann; Jagucki, Martha L.

    2013-01-01

    As part of the U.S. Geological Survey National Water-Quality Assessment (NAWQA) Program, a study was conducted from 2001 to 2011 to shed light on factors that affect the vulnerability of water from public-supply wells to contamination (referred to hereafter as “public-supply-well vulnerability”). The study was designed as a follow-up to earlier NAWQA studies that found mixtures of contaminants at low concentrations in groundwater near the water table in urban areas across the Nation and, less frequently, in deeper groundwater typically used for public supply. Beside the factors affecting public-supply-well vulnerability to contamination, this circular describes measures that can be used to determine which factor (or factors) plays a dominant role at an individual public-supply well. Case-study examples are used throughout to show how such information can be used to improve water quality. In general, the vulnerability of the water from public-supply wells to contamination is a function of contaminant input within the area that contributes water to a well, the mobility and persistence of a contaminant once released to the groundwater, and the ease of groundwater and contaminant movement from the point of recharge to the open interval of a well. The following measures described in this circular are particularly useful for indicating which contaminants in an aquifer might reach an individual public-supply well and when, how, and at what concentration they might arrive: * Sources of recharge—Information on the sources of recharge for a well provides insight into contaminants that might enter the aquifer with the recharge water and potentially reach the well. * Geochemical conditions—Information on the geochemical conditions encountered by groundwater traveling to a well provides insight into contaminants that might persist in the water all the way to the well. * Groundwater-age mixtures—Information on the ages of the different waters that mix in a well

  6. Plant Litter Submergence Affects the Water Quality of a Constructed Wetland.

    PubMed

    Pan, Xu; Ping, Yunmei; Cui, Lijuan; Li, Wei; Zhang, Xiaodong; Zhou, Jian; Yu, Fei-Hai; Prinzing, Andreas

    2017-01-01

    Plant litter is an indispensable component of constructed wetlands, but how the submergence of plant litter affects their ecosystem functions and services, such as water purification, is still unclear. Moreover, it is also unclear whether the effects of plant litter submergence depend on other factors such as the duration of litter submergence, water source or litter species identity. Here we conducted a greenhouse experiment by submerging the litter of 7 wetland plant species into three types of water substrates and monitoring changes in water nutrient concentrations. Litter submergence affected water quality positively via decreasing the concentration of nitrate nitrogen and negatively via increasing the concentrations of total nitrogen, ammonium nitrogen and total phosphorus. The effects of litter submergence depended on the duration of litter submergence, the water source, the litter species identity, and the plant life form. Different plant species had different effects on the water nutrient concentrations during litter submergence, and the effects of floating plants might be more negative than that of emergent plants. These results are novel evidence of how the submergence of different plant (life form) litter may affect the purification function of constructed wetlands. For water at low eutrophication levels, submerging a relative small amount of plant litter might improve water quality, via benefiting the denitrification process in water. These findings emphasized the management of floating plant litter (a potential removal) during the maintenance of human-controlled wetland ecosystems and provided a potential tool to improve the water quality of constructed wetlands via submerging plant litter of different types.

  7. WATER QUALITY IN THE NEAR COASTAL WATERS OF THE GULF OF MEXICO AFFECTED BY HURRICANE KATRINA: BEFORE AND AFTER THE STORM

    EPA Science Inventory

    Water quality was assessed following Hurricane Katrina in the affected waters of Alabama, Mississippi and Louisiana. Post-landfall water quality was compared to pre-hurricane conditions using indicators assessed by EPA's National Coastal Assessment program and additional indicat...

  8. Plant Litter Submergence Affects the Water Quality of a Constructed Wetland

    PubMed Central

    Cui, Lijuan; Li, Wei; Zhang, Xiaodong; Zhou, Jian; Yu, Fei-Hai; Prinzing, Andreas

    2017-01-01

    Plant litter is an indispensable component of constructed wetlands, but how the submergence of plant litter affects their ecosystem functions and services, such as water purification, is still unclear. Moreover, it is also unclear whether the effects of plant litter submergence depend on other factors such as the duration of litter submergence, water source or litter species identity. Here we conducted a greenhouse experiment by submerging the litter of 7 wetland plant species into three types of water substrates and monitoring changes in water nutrient concentrations. Litter submergence affected water quality positively via decreasing the concentration of nitrate nitrogen and negatively via increasing the concentrations of total nitrogen, ammonium nitrogen and total phosphorus. The effects of litter submergence depended on the duration of litter submergence, the water source, the litter species identity, and the plant life form. Different plant species had different effects on the water nutrient concentrations during litter submergence, and the effects of floating plants might be more negative than that of emergent plants. These results are novel evidence of how the submergence of different plant (life form) litter may affect the purification function of constructed wetlands. For water at low eutrophication levels, submerging a relative small amount of plant litter might improve water quality, via benefiting the denitrification process in water. These findings emphasized the management of floating plant litter (a potential removal) during the maintenance of human-controlled wetland ecosystems and provided a potential tool to improve the water quality of constructed wetlands via submerging plant litter of different types. PMID:28129405

  9. Assessment of processes affecting low-flow water quality of Cedar Creek, west-central Illinois

    USGS Publications Warehouse

    Schmidt, Arthur R.; Freeman, W.O.; McFarlane, R.D.

    1989-01-01

    Water quality and the processes that affect dissolved oxygen, nutrient (nitrogen and phosphorus species), and algal concentrations were evaluated for a 23.8-mile reach of Cedar Creek near Galesburg, west-central Illinois, during periods of warm-weather, low-flow conditions. Water quality samples were collected and stream conditions were measured over a diel (24 hour) period on three occasions during July and August 1985. Analysis of data from the diel-sampling periods indicates that concentrations of iron, copper, manganese, phenols, and total dissolved-solids exceeded Illinois ' general-use water quality standards in some locations. Dissolved-oxygen concentrations were less than the State minimum standard throughout much of the study reach. These data were used to calibrate and verify a one-dimensional, steady-state, water quality model. The computer model was used to assess the relative effects on low-flow water quality of processes such as algal photosynthesis and respiration, ammonia oxidation, biochemical oxygen demand, sediment oxygen demand, and stream reaeration. Results from model simulations and sensitivity analysis indicate that sediment oxygen demand is the principal cause of low dissolved-oxygen concentrations in the creek. (USGS)

  10. Water-Quality Assessment of the Rio Grande Valley, Colorado, New Mexico, and Texas--Surface-Water Quality, Shallow Ground-Water Quality, and Factors Affecting Water Quality in the Rincon Valley, South-Central New Mexico, 1994-95

    USGS Publications Warehouse

    Anderholm, Scott K.

    2002-01-01

    As part of the National Water-Quality Assessment Program, surface-water and ground-water samples were collected in 1994 and 1995 for analysis of common constituents, nutrients, dissolved organic carbon, trace elements, radioactivity, volatile organic compounds, and pesticides to characterize surface- water quality and shallow ground-water quality and to determine factors affecting water quality in the Rincon Valley, south-central New Mexico. Samples of surface water were collected from three sites on the Rio Grande and from sites on three agricultural drains in the Rincon Valley in January 1994 and 1995, April 1994, and October 1994. Ground-water samples were collected in late April and early May 1994 from 30 shallow wells that were installed during the investigation. Dissolved-solids concentrations in surface water ranged from 434 to 1,510 milligrams per liter (mg/L). Dissolved-solids concentrations were smallest in water from the Rio Grande below Caballo Dam and largest in the drains. Nitrite plus nitrate concentrations ranged from less than 0.05 to 3.3 mg/L as nitrogen, and ammonia concentrations ranged from less than 0.015 to 0.33 mg/L as nitrogen in surface-water samples. Trace-element concentrations in surface water were significantly smaller than the acute-fisheries standards. One or more pesticides were detected in 34 of 37 surface-water samples. DCPA (dacthal) and metolachlor were the most commonly detected pesticides. No standards have been established for the pesticides analyzed for in this study. Dissolved-solids concentrations in shallow ground water ranged from 481 to 3,630 mg/L. All but 2 of 30 samples exceeded the secondary maximum contaminant level for dissolved solids of 500 mg/L. Water from about 73 percent of the wells sampled exceeded the secondary maximum contaminant level of 250 mg/L for sulfate, and water from about 7 percent of the wells sampled exceeded the secondary maximum contaminant level of 250 mg/L for chloride. Nitrite plus nitrate

  11. Factors Affecting Water Quality in Selected Carbonate Aquifers in the United States,1993-2005

    USGS Publications Warehouse

    Lindsey, Bruce D.; Berndt, Marian P.; Katz, Brian G.; Ardis, Ann F.; Skach, Kenneth A.

    2009-01-01

    Carbonate aquifers are an important source of water in the United States; however, these aquifers can be particularly susceptible to contamination from the land surface. The U.S. Geological Survey National Water-Quality Assessment (NAWQA) Program collected samples from wells and springs in 12 carbonate aquifers across the country during 1993-2005; water-quality results for 1,042 samples were available to assess the factors affecting ground-water quality. These aquifers represent a wide range of climate, land-use types, degrees of confinement, and other characteristics that were compared and evaluated to assess the effect of those factors on water quality. Differences and similarities among the aquifers were also identified. Samples were analyzed for major ions, radon, nutrients, 47 pesticides, and 54 volatile organic compounds (VOCs). Geochemical analysis helped to identify dominant processes that may contribute to the differences in aquifer susceptibility to anthropogenic contamination. Differences in concentrations of dissolved oxygen and dissolved organic carbon and in ground-water age were directly related to the occurrence of anthropogenic contaminants. Other geochemical indicators, such as mineral saturation indexes and calcium-magnesium molar ratio, were used to infer residence time, an indirect indicator of potential for anthropogenic contamination. Radon exceeded the U.S. Environmental Protection Agency proposed Maximum Contaminant Level (MCL) of 300 picocuries per liter in 423 of 735 wells sampled, of which 309 were drinking-water wells. In general, land use, oxidation-reduction (redox) status, and degree of aquifer confinement were the most important factors affecting the occurrence of anthropogenic contaminants. Although none of these factors individually accounts for all the variation in water quality among the aquifers, a combination of these characteristics accounts for the majority of the variation. Unconfined carbonate aquifers that had high

  12. Factors Affecting Source-Water Quality after Disturbance of Forests by Wildfire

    NASA Astrophysics Data System (ADS)

    Murphy, S. F.; Martin, D. A.; McCleskey, R. B.; Writer, J. H.

    2015-12-01

    Forests yield high-quality water supplies to communities throughout the world, in part because forest cover reduces flooding and the consequent transport of suspended and dissolved constituents to surface water. Disturbance by wildfire reduces or eliminates forest cover, leaving watersheds susceptible to increased surface runoff during storms and reduced ability to retain contaminants. We assessed water-quality response to hydrologic events for three years after a wildfire in the Fourmile Creek Watershed, near Boulder, Colorado, and found that hydrologic and geochemical responses downstream of a burned area were primarily driven by small, brief convective storms that had relatively high, but not unusual, rainfall intensity. Total suspended sediment, dissolved organic carbon, nitrate, and manganese concentrations were 10-156 times higher downstream of a burned area compared to upstream, and water quality was sufficiently impaired to pose water-treatment concerns. The response in both concentration and yield of water-quality constituents differed depending on source availability and dominant watershed processes controlling the constituent. For example, while all constituent concentrations were highest during storm events, annual sediment yields downstream of the burned area were controlled by storm events and subsequent mobilization, whereas dissolved organic carbon yields were more dependent on spring runoff from upstream areas. The watershed response was affected by a legacy of historical disturbance: the watershed had been recovering from extensive disturbance by mining, railroad and road development, logging, and fires in the late 19th and early 20th centuries, and we observed extensive erosion of mine waste in response to these summer storms. Therefore, both storm characteristics and historical disturbance in a burned watershed must be considered when evaluating the role of wildfire on water quality.

  13. Primer on Water Quality

    MedlinePlus

    ... fs-027-01.pdf--665KB A Primer on Water Quality What is in the water? Is it safe for drinking? Can fish and ... affect water quality. What do we mean by "water quality"? Water quality can be thought of as ...

  14. Water quality and processes affecting dissolved oxygen concentrations in the Blackwater River, Canaan Valley, West Virginia

    USGS Publications Warehouse

    Waldron, M.C.; Wiley, J.B.

    1996-01-01

    The water quality and environmental processes affecting dissolved oxygen were determined for the Blackwater River in Canaan Valley, West Virginia. Canaan Valley is oval-shaped (14 miles by 5 miles) and is located in the Allegheny Mountains at an average elevation of 3,200 feet above sea level. Tourism, population, and real estate development have increased in the past two decades. Most streams in Canaan Valley are a dilute calcium magnesium bicarbonate-type water. Streamwater typicaly was soft and low in alkalinity and dissolved solids. Maximum values for specific conductance, hardness, alkalinity, and dissolved solids occurred during low-flow periods when streamflow was at or near baseflow. Dissolved oxygen concentrations are most sensitive to processes affecting the rate of reaeration. The reaeration is affected by solubility (atmospheric pressure, water temperature, humidity, and cloud cover) and processes that determine stream turbulence (stream depth, width, velocity, and roughness). In the headwaters, photosynthetic dissolved oxygen production by benthic algae can result in supersaturated dissolved oxygen concentrations. In beaver pools, dissolved oxygen consumption from sediment oxygen demand and carbonaceous biochemical oxygen demand can result in dissolved oxygen deficits.

  15. Water quality in the near coastal waters of the Gulf of Mexico affected by Hurricane Katrina: before and after the storm.

    PubMed

    Smith, Lisa M; Macauley, John M; Harwell, Linda C; Chancy, Cynthia A

    2009-07-01

    Water quality was assessed following Hurricane Katrina in the affected waters of Alabama, Mississippi, and Louisiana. Post-landfall water quality was compared to pre-hurricane conditions using indicators assessed by EPA's National Coastal Assessment program and additional indicators of contaminants in water and pathogens. Water quality data collected after Hurricane Katrina suggest that the coastal waters affected by the storm exhibited higher salinity and concentrations of chlorophyll a, dissolved inorganic phosphorus, and total suspended solids following the storm compared to the previous 5-year averages. Higher bottom dissolved oxygen concentrations and light attenuation were also observed. Contaminant concentrations measured in the water column were very low or undetectable, as were the presence of pathogens. Overall water quality did not significantly differ from water quality assessed in the five years preceding the storm. Statistical analyses indicate that use of a probabilistic survey design is appropriate for making pre-storm and post storm comparisons for water quality condition on an areal basis.

  16. Water quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aquatic animals are healthiest and grow best when environmental conditions are within certain ranges that define, for a particular species, “good” water quality. From the outset, successful aquaculture requires a high-quality water supply. Water quality in aquaculture systems also deteriorates as an...

  17. Water quality of a reservoir as affected by agriculture in the east of Thailand: a preliminary study.

    PubMed

    Tonmanee, N; Wada, H

    2001-01-01

    A preliminary study on the water quality of a reservoir, affected by agriculture, in the east of Thailand was conducted during 1996-1997. Monitoring water quality of a reservoir is important because the sloping lands surrounding the reservoirs are mainly utilized for cultivating cash crops (pineapple, cassava, etc). A lot of fertilizers and agrochemicals were applied to soil and crops which can polluted the water. The results from the preliminary studied will be applied for the monitoring of the water quality in other reservoirs in the 16 pilot areas.

  18. Distribution System Water Quality Affects Responses of Opportunistic Pathogen Gene Markers in Household Water Heaters.

    PubMed

    Wang, Hong; Masters, Sheldon; Falkinham, Joseph O; Edwards, Marc A; Pruden, Amy

    2015-07-21

    Illustrative distribution system operation and management practices shaped the occurrence and persistence of Legionella spp., nontuberculous mycobacteria (NTM), Pseudomonas aeruginosa, and two amoebae host (Acanthamoeba spp., Vermamoeba vermiformis) gene markers in the effluent of standardized simulated household water heaters (SWHs). The interplay between disinfectant type (chlorine or chloramine), water age (2.3-5.7 days) and materials (polyvinyl chloride (PVC), cement or iron) in upstream simulated distribution systems (SDSs) profoundly influenced levels of pathogen gene markers in corresponding SWH bulk waters. For example, Legionella spp. were 3-4 log higher in SWHs receiving water from chloraminated vs chlorinated SDSs, because of disinfectant decay from nitrification. By contrast, SWHs fed with chlorinated PVC SDS water not only harbored the lowest levels of all pathogen markers, but effluent from the chlorinated SWHs were even lower than influent levels in several instances (e.g., 2 log less Legionella spp. and NTM for PVC and 3-5 log less P. aeruginosa for cement). However, pathogen gene marker influent levels correlated positively to effluent levels in the SWHs (P < 0.05). Likewise, microbial community structures were similar between SWHs and the corresponding SDS feed waters. This study highlights the importance and challenges of distribution system management/operation to help control opportunistic pathogens.

  19. Physical-Chemical Factors Affecting the Low Quality of Natural Water in the Khibiny Massif

    NASA Astrophysics Data System (ADS)

    Mazukhina, Svetlana; Masloboev, Vladimir; Chudnenko, Konstantin; Maksimova, Viktoriia; Belkina, Natalia

    2014-05-01

    One peculiarity of the Khibiny Massif is its spatial location. Rising over 1000 m above the surrounding hilly land and thus obstructing the passage of air masses, it promotes condensation and accumulation of surface and underground water. Annual precipitation here amounts to 600-700 mm in the valleys and up to 1600 mm on mountainous plateaus. Using this water for drinking and household purposes is problematic due to excess Al and F concentrations and high pH values. Now it is known that in its profile, the Massif is represented by three hydrogeological subzones: the upper (aerated), medium and lower ones. The upper subzone spreads throughout the Massif and is affected by the local drainage network and climatic conditions. The medium subzone is permanently saturated with underground water flowing horizontally to sites of discharge at the level of local river valleys and lakes. The fissure-vein water in the lower subzone is confined to tectonic fractures and faults in the so far underexplored, deeper parts of the Massif. Being abundant, this water ascends under high pressure. At places, water has been observed spurting from as deep as 700 m, and even 960 m. In the latter case, the temperature of ascending water was higher than 18 centigrade (Hydrogeology of the USSR, V. 27, 1971). This work was undertaken to reveal the nature of the low quality of water in the Khibiny by using physical-chemical modeling (software package Selector, Chudnenko, 2010). Processes of surface and underground water formation in the Khibiny were examined within a physical-chemical model (PCM) of the "water-rock-atmosphere-hydrogen" system. In a multi-vessel model used, each vessel represented a geochemical level of the process interpreted as spatiotemporal data - ξ (Karpov, 1981). The flow reactor consisted of 4 tanks. In the first tank, water of the Kuniok River (1000 L) interacted with atmosphere and an organic substance. The resulting solution proceeded to tanks 2-4 containing with

  20. Primary factors affecting water quality and quantity in four watersheds in Eastern Puerto Rico

    USGS Publications Warehouse

    Murphy, Sheila F.; Stallard, Robert F.

    2009-01-01

    As part of the U.S. Geological Survey (USGS) Water, Energy, and Biogeochemical Budgets (WEBB) program, four small watersheds in eastern Puerto Rico were monitored to identify and evaluate the effects of geology, landcover, atmospheric deposition, and other factors on stream water quality and quantity. Two catchments are located on coarse-grained granitic plutonic rocks, which weather to quartz- and clay-rich, sandy soils, and two are located on fine-grained volcanic rocks and volcaniclastic sediments, which weather to quartz-poor, fine-grained soils. These differing soil materials result in different hydrologic regimes. Soils on the granitic rocks have greater permeability than those developed on the volcaniclastic rocks, allowing more water infiltration and potentially greater landslide erosion rates. For each bedrock type, one catchment was covered with mature rainforest, and the other catchment was affected by agricultural practices typical of eastern Puerto Rico. These practices led to the erosion of much of the original surface soil in the agricultural watersheds, which introduced large quantities of sediment to stream channels. The agricultural watersheds are undergoing natural reforestation, like much of Puerto Rico. Eastern Puerto Rico receives large atmospheric inputs of marine salts, pollutants from the Northern Hemisphere, and Saharan Desert dust. Marine salts contribute over 80 percent of the ionic charge in precipitation, with peak inputs in January. Intense storms, mostly hurricanes, are associated with exceptionally high chloride concentrations in stream waters. Temperate pollution contributes nitrate, ammonia, and sulfate, with maximum inputs during northern cold fronts in January, April, and May. Pollution inputs have increased through time. Desert dust peaks in June and July, during times of maximum dust transport from the Saharan Desert across the Atlantic Ocean.

  1. Benthic invertebrate population characteristics as affected by water quality in coal-bearing regions of Tennessee

    USGS Publications Warehouse

    Bradfield, A.D.

    1986-01-01

    Benthic invertebrate and water quality data collected during previous U.S. Geological Survey studies to provide background hydrologic information on streams draining Tennessee coal reserves, were evaluated to identify possible relations between stream biota and water quality. Linear regressions produced low correlation coefficients relating the number of taxa/sample, total number of organisms/sample, sample diversity, and percentage composition of selected orders of invertebrates, with average water quality parameter values available at sampling stations (r is < 0.62 at p=0.05). Analyses of these data by linear regressions explained little of the variability in benthic invertebrate samples primarily because the distributions of benthic organisms along environmental gradients are nonlinear. Variability in substrate characteristics in the study area and seasonal insect emergence patterns also complicated interpretation of these data. However, analysis of variance tests did indicate significant trends towards reduced number of taxa, number of organisms, and sample diversity at stations with relatively poor water quality conditions. Decreasing percentage composition of Ephemeroptera was generally accompanied by an increase in percent Diptera at stations with higher water quality constituent concentrations and acidic pH ( > than 0.6 units). These trends indicate significant differences in benthic communities at sites with evidence of more severe land use impacts. Additional data on benthic invertebrates, water quality , and physical habitat conditions, along with analyses of data using multivariate statistical methods are needed to define ecological relations between specific groups of invertebrates and environmental conditions. (Author 's abstract)

  2. Surface and ground water quality in a restored urban stream affected by road salts

    EPA Science Inventory

    In 2001 research began in Minebank Run, MD to examine the impact of restoration on water quality. Our research area was to determine if road salts in the surface and ground waters are detrimental to the stream channel restoration. The upstream reach (UP), above the Baltimore I-...

  3. CO2-induced shift in microbial activity affects carbon trapping and water quality in anoxic bioreactors

    NASA Astrophysics Data System (ADS)

    Kirk, Matthew F.; Santillan, Eugenio F. U.; Sanford, Robert A.; Altman, Susan J.

    2013-12-01

    Microbial activity is a potentially important yet poorly understood control on the fate and environmental impact of CO2 that leaks into aquifers from deep storage reservoirs. In this study we examine how variation in CO2 abundance affected competition between Fe(III) and SO42--reducers in anoxic bioreactors inoculated with a mixed-microbial community from a freshwater aquifer. We performed two sets of experiments: one with low CO2 partial pressure (∼0.02 atm) in the headspace of the reactors and one with high CO2 partial pressure (∼1 atm). A fluid residence time of 35 days was maintained in the reactors by replacing one-fifth of the aqueous volume with fresh medium every seven days. The aqueous medium was composed of groundwater amended with small amounts of acetate (250 μM), phosphate (1 μM), and ammonium (50 μM) to stimulate microbial activity. Synthetic goethite (1 mmol) and SO42- (500 μM influent concentration) were also available in each reactor to serve as electron acceptors. Results of this study show that higher CO2 abundance increased the ability of Fe(III) reducers to compete with SO42- reducers, leading to significant shifts in CO2 trapping and water quality. Mass-balance calculations and pyrosequencing results demonstrate that SO42- reducers were dominant in reactors with low CO2 content. They consumed 85% of the acetate after acetate consumption reached steady state while Fe(III) reducers consumed only 15% on average. In contrast, Fe(III) reducers were dominant during that same interval in reactors with high CO2 content, consuming at least 90% of the acetate while SO42- reducers consumed a negligible amount (<1%). The higher rate of Fe(III) reduction in the high-CO2 bioreactors enhanced CO2 solubility trapping relative to the low-CO2 bioreactors by increasing alkalinity generation (6X). Hence, the shift in microbial activity we observed was a positive feedback on CO2 trapping. More rapid Fe(III) reduction degraded water quality, however, by

  4. Do reports on drinking water quality affect customers' concerns? Experiments in report content.

    PubMed

    Johnson, Branden B

    2003-10-01

    The Safe Drinking Water Act Amendments of 1996 required U.S. utilities to report on drinking water quality to their customers annually, beginning in fall 1999, on the assumption that such reports would alert them to quality problems and perhaps mobilize pressure for improvement. A random sample of New Jersey customers read alternative versions of a water quality report, in an experiment on reactions to water quality information under U.S. Environmental Protection Agency (USEPA) rules. Experiment design was 2 x 3 + 1: two versions each--one with, one without, a violation of a health standard--of a report that was (1) Qualitative (without water quality numbers, thus not meeting USEPA rules); (2) Basic, with minimal information meeting the rules; or (3) Extended, adding reading aids and utility performance information; plus a control instrument without any hypothetical report. Results of ANOVA suggest the reports will have less effect than hoped or feared. These manipulations were successful: people reading the Qualitative versions were less likely to say that the report gave the amounts of substances found in the water, and those reading Violation versions were more likely to report a violation of a health standard. The main differences in responses to the report involved the judged adequacy of the information, and to a lesser extent responses on a Concern scale (constructed from measures of concern, judged risk, clean-up intentions, distrust of utility information, and doubt that the utility was doing all it could to improve water quality). Overall judgments of water quality and utility performance did not change, either relative to the controls or in before versus after responses. Qualitative reports performed worse than others, confirming the decision to have utilities report actual contaminant levels. Extended reports did only slightly better than the Basic versions on these measures. Many respondents had trouble identifying the presence or absence of substance

  5. Reconnaissance Assessment of the Potential for Roadside Dry Wells to Affect Water Quality on the Island of Hawai'i

    USGS Publications Warehouse

    Izuka, Scot K.; Senter, Craig A.; Johnson, Adam G.

    2009-01-01

    The County of Hawai'i Department of Public Works (DPW) uses dry wells to dispose of stormwater runoff from roads. Recently, concern has been raised that water entering the dry wells may transport contaminants to groundwater and affect the quality of receiving waters. The DPW operates 2,052 dry wells. Compiling an inventory of these dry wells and sorting it on the basis of presence or absence of urbanization in the drainage area, distance between the bottom of the dry well and the water table, and proximity to receiving waters helps identify the dry wells having greatest potential to affect the quality of receiving waters so that future studies or mitigation efforts can focus on a smaller number of dry wells. The drainage areas of some DPW dry wells encompass urbanized areas, which could be a source of contaminants. Some dry wells penetrate close to or through the water table, eliminating or substantially reducing opportunities for contaminant attenuation between the ground surface and water table. Dry wells that have drainage areas that encompass urbanization, penetrate to near the water table, and are near the coast have the highest potential to affect the quality of coastal waters (this study did not consider specific sections of coastline that may be of greater concern than others). Some DPW dry wells, including a few that have drainage areas that encompass urbanization, lie within the areas contributing recharge (ACR) to drinking-water wells. Numerical groundwater modeling studies by previous investigators indicate that water infiltrating those dry wells could eventually be pumped at drinking-water wells. Dry wells that have a high potential for affecting coastal receiving waters or drinking-water wells can be the focus of studies to further understand the effect of the dry wells on the quality of receiving waters. Possible study approaches include sampling for contaminants at the dry well and receiving water, injecting and monitoring the movement of tracers

  6. WATER QUALITY

    EPA Science Inventory

    This manual was develped to provide an overview of microfiltration and ultrafiltration technology for operators, administrators, engineers, scientists, educators, and anyone seeking an introduction to these processes. Chapters on theory, water quality, applications, design, equip...

  7. Water quality.

    USGS Publications Warehouse

    Steele, T.D.; Stefan, H.G.

    1979-01-01

    Significant contributions in the broad area of water quality over the quadrennium 1975-78 are highlighted. This summare is concerned primarily with physical and chemical aspects of water quality. The diversity of subject areas within the topic heading and the large volume of published research results necessitated the selection of representative contributions. Over 400 references are cited which are believed to be indicative of general trends in research and of the more important developments during this period.- from Authors

  8. Amending greenroof soil with biochar to affect runoff water quantity and quality.

    PubMed

    Beck, Deborah A; Johnson, Gwynn R; Spolek, Graig A

    2011-01-01

    Numbers of greenroofs in urban areas continue to grow internationally; so designing greenroof soil to reduce the amount of nutrients in the stormwater runoff from these roofs is becoming essential. This study evaluated changes in extensive greenroof water discharge quality and quantity after adding biochar, a soil amendment promoted for its ability to retain nutrients in soils and increase soil fertility. Prototype greenroof trays with and without biochar were planted with sedum or ryegrass, with barren soil trays used as controls. The greenroof trays were subjected to two sequential 7.4cm/h rainfall events using a rain simulator. Runoff from the rain events was collected and evaluated. Trays containing 7% biochar showed increased water retention and significant decreases in discharge of total nitrogen, total phosphorus, nitrate, phosphate, and organic carbon. The addition of biochar to greenroof soil improves both runoff water quality and retention.

  9. Bark-beetle infestation affects water quality in the Rocky Mountains of Colorado

    NASA Astrophysics Data System (ADS)

    Mikkelson, K.; Dickenson, E.; Maxwell, R. M.; McCray, J. E.; Sharp, J. O.

    2012-12-01

    In the previous decade, millions of acres in the Rocky Mountains of Colorado have been infested by the mountain pine beetle (MPB) leading to large-scale tree mortality. These vegetation changes can impact hydrological and biogeochemical processes, possibly altering the leaching of natural organic matter to surrounding waters and increasing the potential for harmful disinfection byproducts (DBP) during water treatments. To investigate these adverse outcomes, we have collected water quality data sets from local water treatment facilities in the Rocky Mountains of Colorado that have either been infested with MPB or remain a control. Results demonstrate significantly more total organic carbon (TOC) and DBPs in water treatment facilities receiving their source water from infested watersheds as compared to the control sites. Temporal DBP concentrations in MPB-watersheds also have increased significantly in conjunction with the bark-beetle infestation. Interestingly, only modest increases in TOC concentrations were observed in infested watersheds despite more pronounced increases in DBP concentrations. Total trihalomethanes, a heavily regulated DBP, was found to approach the regulatory limit in two out of four reporting quarters at facilities receiving their water from infested forests. These findings indicate that bark-beetle infestation alters TOC composition and loading in impacted watersheds and that this large-scale phenomenon has implications on the municipal water supply in the region.

  10. Biofouling of inlet pipes affects water quality in running seawater aquaria and compromises sponge cell proliferation

    PubMed Central

    Mueller, Benjamin; Vermeij, Mark J.A.; van der Geest, Harm H.G.

    2015-01-01

    Marine organism are often kept, cultured, and experimented on in running seawater aquaria. However, surprisingly little attention is given to the nutrient composition of the water flowing through these systems, which is generally assumed to equal in situ conditions, but may change due to the presence of biofouling organisms. Significantly lower bacterial abundances and higher inorganic nitrogen species (nitrate, nitrite, and ammonium) were measured in aquarium water when biofouling organisms were present within a 7-year old inlet pipe feeding a tropical reef running seawater aquaria system, compared with aquarium water fed by a new, biofouling-free inlet pipe. These water quality changes are indicative of the feeding activity and waste production of the suspension- and filter-feeding communities found in the old pipe, which included sponges, bivalves, barnacles, and ascidians. To illustrate the physiological consequences of these water quality changes on a model organism kept in the aquaria system, we investigated the influence of the presence and absence of the biofouling community on the functioning of the filter-feeding sponge Halisarca caerulea, by determining its choanocyte (filter cell) proliferation rates. We found a 34% increase in choanocyte proliferation rates following the replacement of the inlet pipe (i.e., removal of the biofouling community). This indicates that the physiological functioning of the sponge was compromised due to suboptimal food conditions within the aquarium resulting from the presence of the biofouling organisms in the inlet pipe. This study has implications for the husbandry and performance of experiments with marine organisms in running seawater aquaria systems. Inlet pipes should be checked regularly, and replaced if necessary, in order to avoid excessive biofouling and to approach in situ water quality. PMID:26664799

  11. Application of an environmental decision support system to a water quality trading program affected by surface water diversions.

    PubMed

    Obropta, Christopher C; Niazi, Mehran; Kardos, Josef S

    2008-12-01

    Environmental decision support systems (EDSSs) are an emerging tool used to integrate the evaluation of highly complex and interrelated physicochemical, biological, hydrological, social, and economic aspects of environmental problems. An EDSS approach is developed to address hot-spot concerns for a water quality trading program intended to implement the total maximum daily load (TMDL) for phosphorus in the Non-Tidal Passaic River Basin of New Jersey. Twenty-two wastewater treatment plants (WWTPs) spread throughout the watershed are considered the major sources of phosphorus loading to the river system. Periodic surface water diversions to a major reservoir from the confluence of two key tributaries alter the natural hydrology of the watershed and must be considered in the development of a trading framework that ensures protection of water quality. An EDSS is applied that enables the selection of a water quality trading framework that protects the watershed from phosphorus-induced hot spots. The EDSS employs Simon's (1960) three stages of the decision-making process: intelligence, design, and choice. The identification of two potential hot spots and three diversion scenarios enables the delineation of three management areas for buying and selling of phosphorus credits among WWTPs. The result shows that the most conservative option entails consideration of two possible diversion scenarios, and trading between management areas is restricted accordingly. The method described here is believed to be the first application of an EDSS to a water quality trading program that explicitly accounts for surface water diversions.

  12. Catchment process affecting drinking water quality, including the significance of rainfall events, using factor analysis and event mean concentrations.

    PubMed

    Cinque, Kathy; Jayasuriya, Niranjali

    2010-12-01

    To ensure the protection of drinking water an understanding of the catchment processes which can affect water quality is important as it enables targeted catchment management actions to be implemented. In this study factor analysis (FA) and comparing event mean concentrations (EMCs) with baseline values were techniques used to asses the relationships between water quality parameters and linking those parameters to processes within an agricultural drinking water catchment. FA found that 55% of the variance in the water quality data could be explained by the first factor, which was dominated by parameters usually associated with erosion. Inclusion of pathogenic indicators in an additional FA showed that Enterococcus and Clostridium perfringens (C. perfringens) were also related to the erosion factor. Analysis of the EMCs found that most parameters were significantly higher during periods of rainfall runoff. This study shows that the most dominant processes in an agricultural catchment are surface runoff and erosion. It also shows that it is these processes which mobilise pathogenic indicators and are therefore most likely to influence the transport of pathogens. Catchment management efforts need to focus on reducing the effect of these processes on water quality.

  13. Effects of mineral content of bovine drinking water: does iron content affect milk quality?

    PubMed

    Mann, G R; Duncan, S E; Knowlton, K F; Dietrich, A D; O'Keefe, S F

    2013-01-01

    The composition of water given to dairy cattle is often ignored, yet water is a very important nutrient and plays a major role in milk synthesis. The objective of this study was to study effects of elevated levels of iron in bovine drinking water on milk quality. Ferrous lactate treatments corresponding to 0, 2, 5, and 12.5mg/kg drinking water concentrations were delivered through the abomasum at 10 L/d to 4 lactating dairy cows over 4 periods (1 wk infusion/period) in a Latin square design. On d 6 of infusion, milk was collected, processed (homogenized, pasteurized), and analyzed. Mineral content (Fe, Cu, P, Ca) was measured by inductively coupled plasma mass spectrometry. Oxidative stability of whole processed milk was measured by the thiobarbituric acid reactive substances (TBARS) assay for malondialdehyde (MDA) and sensory analysis (triangle test) within 72 h of processing and after 7d of storage (4°C). Significant sensory differences between processed milks from cows receiving iron and the control infusion were observed. No differences in TBARS (1.46±0.04 mg of MDA/kg) or mineral content (0.22±0.01 mg/kg Fe) were observed. A 2-way interaction (iron treatment by cow) for Ca, Cu, and Fe concentrations was seen. While iron added directly to milk causes changes in oxidation of milk, high levels of iron given to cattle have subtle effects that initially may not be obvious.

  14. Water deficit alters differentially metabolic pathways affecting important flavor and quality traits in grape berries of Cabernet Sauvignon and Chardonnay

    PubMed Central

    Deluc, Laurent G; Quilici, David R; Decendit, Alain; Grimplet, Jérôme; Wheatley, Matthew D; Schlauch, Karen A; Mérillon, Jean-Michel; Cushman, John C; Cramer, Grant R

    2009-01-01

    Background Water deficit has significant effects on grape berry composition resulting in improved wine quality by the enhancement of color, flavors, or aromas. While some pathways or enzymes affected by water deficit have been identified, little is known about the global effects of water deficit on grape berry metabolism. Results The effects of long-term, seasonal water deficit on berries of Cabernet Sauvignon, a red-wine grape, and Chardonnay, a white-wine grape were analyzed by integrated transcript and metabolite profiling. Over the course of berry development, the steady-state transcript abundance of approximately 6,000 Unigenes differed significantly between the cultivars and the irrigation treatments. Water deficit most affected the phenylpropanoid, ABA, isoprenoid, carotenoid, amino acid and fatty acid metabolic pathways. Targeted metabolites were profiled to confirm putative changes in specific metabolic pathways. Water deficit activated the expression of numerous transcripts associated with glutamate and proline biosynthesis and some committed steps of the phenylpropanoid pathway that increased anthocyanin concentrations in Cabernet Sauvignon. In Chardonnay, water deficit activated parts of the phenylpropanoid, energy, carotenoid and isoprenoid metabolic pathways that contribute to increased concentrations of antheraxanthin, flavonols and aroma volatiles. Water deficit affected the ABA metabolic pathway in both cultivars. Berry ABA concentrations were highly correlated with 9-cis-epoxycarotenoid dioxygenase (NCED1) transcript abundance, whereas the mRNA expression of other NCED genes and ABA catabolic and glycosylation processes were largely unaffected. Water deficit nearly doubled ABA concentrations within berries of Cabernet Sauvignon, whereas it decreased ABA in Chardonnay at véraison and shortly thereafter. Conclusion The metabolic responses of grapes to water deficit varied with the cultivar and fruit pigmentation. Chardonnay berries, which lack any

  15. Water-Quality Data

    MedlinePlus

    ... Water Quality? [1.7MB PDF] Past featured science... Water Quality Data Today's Water Conditions Get continuous real- ... list of USGS water-quality data resources . USGS Water Science Areas Water Resources Groundwater Surface Water Water ...

  16. Principles of Water Quality

    SciTech Connect

    Waite, T.D.

    1984-01-01

    CONTENTS: Introduction to Water Quality Concepts. Natural Environmental Processes. Toxic Metals as Factors in Water Quality. Refractory Organic Compounds. Nutrients, Productivity, and Eutrophication. Microbes and Water Quality. Thermal Effects and Water Quality. Air Quality. Water Quality Interactions. Introduction to Water Quality Modeling. Water Quality Standards, and Management Approaches.

  17. Acclimations to light quality on plant and leaf level affect the vulnerability of pepper (Capsicum annuum L.) to water deficit.

    PubMed

    Hoffmann, Anna M; Noga, Georg; Hunsche, Mauricio

    2015-03-01

    We investigated the influence of light quality on the vulnerability of pepper plants to water deficit. For this purpose plants were cultivated either under compact fluorescence lamps (CFL) or light-emitting diodes (LED) providing similar photon fluence rates (95 µmol m(-2) s(-1)) but distinct light quality. CFL emit a wide-band spectrum with dominant peaks in the green and red spectral region, whereas LEDs offer narrow band spectra with dominant peaks at blue (445 nm) and red (665 nm) regions. After one-week acclimation to light conditions plants were exposed to water deficit by withholding irrigation; this period was followed by a one-week regeneration period and a second water deficit cycle. In general, plants grown under CFL suffered more from water deficit than plants grown under LED modules, as indicated by the impairment of the photosynthetic efficiency of PSII, resulting in less biomass accumulation compared to respective control plants. As affected by water shortage, plants grown under CFL had a stronger decrease in the electron transport rate (ETR) and more pronounced increase in heat dissipation (NPQ). The higher amount of blue light suppressed plant growth and biomass formation, and consequently reduced the water demand of plants grown under LEDs. Moreover, pepper plants exposed to high blue light underwent adjustments at chloroplast level (e.g., higher Chl a/Chl b ratio), increasing the photosynthetic performance under the LED spectrum. Differently than expected, stomatal conductance was comparable for water-deficit and control plants in both light conditions during the stress and recovery phases, indicating only minor adjustments at the stomatal level. Our results highlight the potential of the target-use of light quality to induce structural and functional acclimations improving plant performance under stress situations.

  18. Local point sources that affect ground-water quality in the East Meadow area, Long Island, New York

    USGS Publications Warehouse

    Heisig, Paul M.

    1994-01-01

    The extent and chemical characteristics of ground water affected by three local point sources--a stormwater basin, uncovered road-salt-storage piles, and an abandoned sewage-treatment plant--were delineated during a 3-year study of the chemical characteristics and migration of a body of reclaimed wastewater that was applied to the watertable aquifer during recharge experiments from October 1982 through January 1984 in East Meadow. The timing, magnitude, and chemical quality of recharge from these point sources is highly variable, and all sources have the potential to skew determinations of the quality of ambient ground-water and of the reclaimed-wastewater plume if they are not taken into account. Ground water affected by recharge from the stormwater basin is characterized by low concentrations of nitrate + nitrite (less than 5 mg/L [milligrams per liter] as N) and sulfate (less than 40 mg/L) and is almost entirely within the upper glacial aquifer. The plume derived from road-salt piles is narrow, has high concentrations of chloride (greater than 50 mg/L) and sodium (greater than 75 mg/L), and also is limited to the upper glacial aquifer. The sodium, in high concentrations, could react with aquifer material and exchange for sorbed cations such as calcium, potassium, and magnesium. Water affected by secondary-treated sewage from the abandoned treatment plant extends 152 feet below land surface into the upper part of the Magothy aquifer and longitudinally beyond the southern edge of the study area, 7,750 feet south of the recharge site. Ground water affected by secondary-treated sewage within the study area typically contains elevated concentrations of reactive chemical constituents, such as potassium and ammonium, and low concentrations of dissolved oxygen. Conservative or minimally reactive constituents such as chloride and sodium have been transported out of the study area in the upper glacial aquifer and the intermediate (transitional) zone but remain in the less

  19. Fermentation Quality of Ensiled Water Hyacinth (Eichhornia crassipes) as Affected by Additives.

    PubMed

    Tham, Ho Thanh; Van Man, Ngo; Pauly, Thomas

    2013-02-01

    A lab-scale ensiling study was carried out to investigate the fermentation quality of water hyacinth (WH) supplemented with molasses, rice bran, as an absorbent, and an inoculant in the form of fermented vegetable juice and their combinations. After wilting the water hyacinths for 7 h to a dry matter (DM) content of 240 to 250 g/kg, the following treatments were applied: i) Control (C), WH only; ii) WH with sugarcane molasses at 40 g/kg WH (CM); iii) WH inoculated with fermented vegetable juice at 10 ml/kg WH (CI); iv) CM and CI (CMI) combined; v) WH with 150 g rice bran/kg WH (CA); vi) CA and CI combined (CAI); vii) CA and CM combined (CAM); and viii) CA, CM and CI combined (CAMI). After application of additives, the differently treated forages were mixed and ensiled in triplicates in 1,500-ml polyethylene jars. After ensiling for 3 d, pH values in all treatments, except C and CI, had decreased to approximately 4.0 and remained low till 14 d. After 56 d, pH had increased between 0.4 to 0.9 pH-units compared to those at 14 d. The ammonia nitrogen (NH3-N) concentration ranged from an acceptable level in treatment CM (8 g/kg N) to a high NH3-N value in treatment CMI (16 g/kg N). Lactic acid formation was higher in CI than in all other treatments. Butyric acid contents, which indicate badly fermented silages, were low in all silages (<2 g/kg DM). There were two-way interactions (p-values from <0.001 to 0.045) for almost all fermentation end-products and pH, except for the molasses×inoculant interaction on NH3-N (p = 0.26). Significant 3-way interactions were found on all observed variables except for weight losses of silages. It is concluded that conserving wilted WH as silage for ruminants may be improved by the addition of molasses or rice bran.

  20. Fermentation Quality of Ensiled Water Hyacinth (Eichhornia crassipes) as Affected by Additives

    PubMed Central

    Tham, Ho Thanh; Van Man, Ngo; Pauly, Thomas

    2013-01-01

    A lab-scale ensiling study was carried out to investigate the fermentation quality of water hyacinth (WH) supplemented with molasses, rice bran, as an absorbent, and an inoculant in the form of fermented vegetable juice and their combinations. After wilting the water hyacinths for 7 h to a dry matter (DM) content of 240 to 250 g/kg, the following treatments were applied: i) Control (C), WH only; ii) WH with sugarcane molasses at 40 g/kg WH (CM); iii) WH inoculated with fermented vegetable juice at 10 ml/kg WH (CI); iv) CM and CI (CMI) combined; v) WH with 150 g rice bran/kg WH (CA); vi) CA and CI combined (CAI); vii) CA and CM combined (CAM); and viii) CA, CM and CI combined (CAMI). After application of additives, the differently treated forages were mixed and ensiled in triplicates in 1,500-ml polyethylene jars. After ensiling for 3 d, pH values in all treatments, except C and CI, had decreased to approximately 4.0 and remained low till 14 d. After 56 d, pH had increased between 0.4 to 0.9 pH-units compared to those at 14 d. The ammonia nitrogen (NH3-N) concentration ranged from an acceptable level in treatment CM (8 g/kg N) to a high NH3-N value in treatment CMI (16 g/kg N). Lactic acid formation was higher in CI than in all other treatments. Butyric acid contents, which indicate badly fermented silages, were low in all silages (<2 g/kg DM). There were two-way interactions (p-values from <0.001 to 0.045) for almost all fermentation end-products and pH, except for the molasses×inoculant interaction on NH3-N (p = 0.26). Significant 3-way interactions were found on all observed variables except for weight losses of silages. It is concluded that conserving wilted WH as silage for ruminants may be improved by the addition of molasses or rice bran. PMID:25049776

  1. The cleaning method selected for new PEX pipe installation can affect short-term drinking water quality.

    PubMed

    Kelley, Keven M; Stenson, Alexandra C; Cooley, Racheal; Dey, Rajarashi; Whelton, Andrew J

    2015-12-01

    The influence of four different cleaning methods used for newly installed polyethylene (PEX) pipes on chemical and odor quality was determined. Bench-scale testing of two PEX (type b) pipe brands showed that the California Plumbing Code PEX installation method does not maximize total organic carbon (TOC) removal. TOC concentration and threshold odor number values significantly varied between two pipe brands. Different cleaning methods impacted carbon release, odor, as well the level of drinking water odorant ethyl tert-butyl ether. Both pipes caused odor values up to eight times greater than the US federal drinking water odor limit. Unique to this project was that organic chemicals released by PEX pipe were affected by pipe brand, fill/empty cycle frequency, and the pipe cleaning method selected by the installer.

  2. Assessment of water quality and factors affecting dissolved oxygen in the Sangamon River, Decatur to Riverton, Illinois, summer 1982

    USGS Publications Warehouse

    Schmidt, A.R.; Stamer, J.K.

    1987-01-01

    Water quality and processes that affect the dissolved-oxygen concentration in a 45.9 mile reach of the Sangamon River from Decatur to Riverton, Illinois, were determined from data collected during low-flow periods in the summer of 1982. Relations among dissolved oxygen, water discharge, biochemical oxygen demand, ammonia and nitrite plus nitrate concentrations, and photosynthetic-oxygen production were simulated using a one-dimensional, steady-state computer model. Average dissolved oxygen concentrations ranged from 8.0 milligrams per liter at the upstream end of the study reach at Decatur to 5.2 milligrams per liter 12.2 miles downstream. Ammonia concentrations ranged from 45 milligrams per liter at the mouth of Stevens Creek (2.6 miles downstream from Decatur) to 0.03 milligram per liter at the downstream end of the study reach. Un-ionized ammonia concentrations exceeded the maximum concentration specified in the State water quality standard (0.04 milligram per liter) throughout most of the study reach. Model simulations indicated that oxidation of ammonia to form nitrite plus nitrate was the most significant process leading to low dissolved oxygen concentrations in the river. (USGS)

  3. Identification of key water quality characteristics affecting the filterability of biologically treated effluent in low-pressure membrane filtration.

    PubMed

    Nguyen, T; Fan, L; Roddick, F A; Harris, J L

    2010-01-01

    There are many water quality characteristics which could influence the filterability of biologically treated effluent from Melbourne's Western Treatment Plant (WTP). Statistical correlation was used to identify the key water characteristics affecting the microfiltration (MF) and ultrafiltration (UF) filterability in terms of permeate volume of the treated effluent. The models developed showed that turbidity, dissolved organic carbon (DOC) and total suspended solids (TSS) were the key factors which influenced the MF and UF filterability. Turbidity was the dominant factor affecting the accuracy of the model for MF filterability while DOC was the major factor affecting the accuracy of the model for UF filterability. A prediction accuracy of 85% was obtained for MF and 86% for UF filterability of the WTP effluent. The characteristics of the organic components of the wastewater were demonstrated by EEM spectra to have seasonal variation which would have reduced the prediction accuracy. As turbidity, DOC and TSS can be determined on-line, the models would be useful for rapid prediction of the filterability of WTP effluent and this may assist the control of low-pressure membrane filtration processes.

  4. Reconnaissance Study of Water Quality in the Mining-Affected Aries River Basin, Romania

    USGS Publications Warehouse

    Friedel, Michael J.; Tindall, James A.; Sardan, Daniel; Fey, David L.; Poputa, G.L.

    2008-01-01

    The Aries River basin of western Romania has been subject to mining activities as far back as Roman times. Present mining activities are associated with the extraction and processing of various metals including Au, Cu, Pb, and Zn. To understand the effects of these mining activities on the environment, this study focused on three objectives: (1) establish a baseline set of physical parameters, and water- and sediment-associated concentrations of metals in river-valley floors and floodplains; (2) establish a baseline set of physical and chemical measurements of pore water and sediment in tailings; and (3) provide training in sediment and water sampling to personnel in the National Agency for Mineral Resources and the Rosia Poieni Mine. This report summarizes basin findings of physical parameters and chemistry (sediment and water), and ancillary data collected during the low-flow synoptic sampling of May 2006.

  5. Environmental setting and factors that affect water quality in the Georgia-Florida Coastal Plain study unit

    USGS Publications Warehouse

    Berndt, M.P.; Oaksford, E.T.; Darst, M.R.; Marella, R.L.

    1996-01-01

    , geologic setting, ground-water systems, surface- water systems, climate, floods, droughts, population, land use, and water use. Factors affecting water quality in the study area are land use (primarily urban and agricultural land uses), water use in coastal areas, hydrogeology, ground-water/surface-water interaction, geology, and climate. Surface-water quality problems in urban areas have occurred in the Ogeechee, Canoochee, Ocmulgee, St. Marys, Alapaha, Withlacoochee (north), Santa Fe, Ochlockonee, St. Johns, and Oklawaha Rivers and include nitrogen and phosphorus loading, low dissolved oxygen, elevated bacteria, sediment, and turbidity, and increased concentrations of metals. In agricultural areas, surface-water quality problems include elevated nitrogen and phosphorus concentrations, erosion, and sedimentation and have occurred in the Ocmulgee, St. Marys, Santa Fe, Ochlockonee, St. Johns, Oklawaha, Withlacoochee (South), Hillsborough, and Alafia Rivers. Ground water-quality problems such as saltwater intrusion have occurred mostly in coastal areas and were caused by excessive withdrawals.

  6. THE SIGNIFICANCE OF "STAGNATION CURVES" FOR LEAD AND COPPER, AND WATER QUALITY FACTORS AFFECTING THEM

    EPA Science Inventory

    "Stagnation curves" are the response of metal levels, particularly lead and copper, to time under conditions of no water flow. Research on lead pipe in the early 1980's in the United States, Germany, and in the United Kingdom suggested that they were characterized by rapid incre...

  7. Recent (2003-05) water quality of Barton Springs, Austin, Texas, with emphasis on factors affecting variability

    USGS Publications Warehouse

    Mahler, Barbara J.; Garner, Bradley D.; Musgrove, MaryLynn; Guilfoyle, Amber L.; Rao, Mohan V.

    2006-01-01

    From 2003 to 2005, the U.S. Geological Survey, in cooperation with the Texas Commission on Environmental Quality, collected and analyzed water samples from the four springs (orifices) of Barton Springs in Austin, Texas (Upper, Main, Eliza, and Old Mill Springs), with the objective of characterizing water quality. Barton Springs is the major discharge point for the Barton Springs segment of the Edwards aquifer. A three-pronged sampling approach was used: physicochemical properties (including specific conductance and turbidity) were measured continuously; samples were collected from the four springs routinely every 2 weeks (during August-September 2003) to 3 weeks (during June 2004-June 2005) and analyzed for some or all major ions, nutrients, trace elements, soluble pesticides, and volatile organic compounds; and samples were collected from the four springs at more closely spaced intervals during the 2 weeks following two storms and analyzed for the same suite of constituents. Following the two storms, samples also were collected from five of the six major streams that provide recharge to Barton Springs. Spring discharge during both sample collection periods was above average (60 cubic feet per second or greater). Barton Springs was found to be affected by persistent low concentrations of atrazine (an herbicide), chloroform (a drinking-water disinfection by-product), and tetrachloroethene (a solvent). Increased recharge from the major recharging streams resulted in increased calcium, sulfate, atrazine, simazine, and tetrachloroethene concentrations and decreased concentrations of most other major ions, nitrate, and chloroform at one or more of the springs. These changes in concentration demonstrate the influence of water quality in recharging streams on water quality at the springs even during non-stormflow conditions. The geochemical compositions of the four springs indicate that Upper Spring is more contaminated and is influenced by a contributing flow path that

  8. Recovery approach affects soil quality in the water level fluctuation zone of the Three Gorges Reservoir, China: implications for revegetation.

    PubMed

    Ye, Chen; Cheng, Xiaoli; Zhang, Quanfa

    2014-02-01

    Plants in the water level fluctuation zone of the Three Gorges Reservoir Region disappeared due to winter-flooding and prolonged inundation. Revegetation (plantation and natural recovery) have been promoted to restore and protect the riparian ecosystem in recent years. Revegetation may affect soil qualities and have broad important implications both for ecological services and soil recovery. In this study, we investigated soil properties including soil pH values, bulk density, soil organic matter (SOM), soil nutrients and heavy metals, soil microbial community structure, microbial biomass, and soil quality index under plantation and natural recovery in the Three Gorges Reservoir Region. Most soil properties showed significant temporal and spatial variations in both the plantation and natural recovery areas. Higher contents of SOM and NO3-N were found in plantation area, while higher contents of soil pH values, bulk density, and total potassium were observed in the natural recovery area. However, there were no significant differences in plant richness and diversity and soil microbial community structure between the two restoration approaches. A soil quality index derived from SOM, bulk density, Zn, Cd, and Hg indicated that natural recovery areas with larger herbaceous coverage had more effective capacity for soil restoration.

  9. Water and sediment quality factors affecting unionid mussel populations in the Clinch River, Virginia, USA

    SciTech Connect

    Hassel, J.H Van; Cherry, D.S.; Yeager, M.M.; Farris, J.L.

    1995-12-31

    The Clinch River contains a very diverse unionid mussel fauna of 45 species, including 21 endemics and 11 federally listed endangered species. Recent surveys indicate that the mussel fauna is in decline in several areas of the river. To study this problem, differences in unionid mussel species-distribution, density, size demography, physiological condition, and contaminant body burden were quantified at sixteen sites encompassing 200 miles of the Clinch River in Virginia. These differences were associated with corresponding site differences in physical habitat and water and sediment contamination attributable to point (STPS, small industries) and nonpoint (abandoned mine lands, agriculture) discharge sources. Some of the documented impacts have been severe enough to prevent successful recruitment into local populations of several unionid species for several years. Validation of these sources of impact will allow evaluation of specific watershed management options for the protection and enhancement of unionid mussel resources of the Clinch River.

  10. Water quality, sediment, and soil characteristics near Fargo-Moorhead urban areas as affected by major flooding of the Red River of the North

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objectives of this study were to assess if urban environments affect floodwater quality, and to determine the quantity and quality of overbank sediment deposited in an urban environment after floodwaters recede. Water samples during major flooding of the Red River of the North (RR) were taken on...

  11. Does Personalized Water and Hand Quality Information Affect Attitudes, Behavior, and Health in Dar es Salaam, Tanzania?

    NASA Astrophysics Data System (ADS)

    Davis, J.; Pickering, A.; Horak, H.; Boehm, A.

    2008-12-01

    Tanzania (TZ) has one of the highest rates of child mortality due to enteric disease in the world. NGOs and local agencies have introduced numerous technologies (e.g., chlorine tablets, borewells) to increase the quantity and quality of water in Dar es Salaam, the capital of Tanzania, in hopes of reducing morbidity and mortality of waterborne disease. The objective of the present study is to determine if providing personalized information about water quality and hand surface quality, as determined by concentrations of enterococci and E. coli, results in improved health and water quality in households. A cohort study was completed in June-September 2008 in 3 communities ranging from urban to per-urban in Dar es Salaam, Tanzania to achieve our objective. The study consisted of 4 cohorts that were visited 4 times over the 3 month study. One cohort received no information about water and hand quality until the end of the summer, while the other groups received either just information on hand surface quality, just information on water quality, and information on both hand surface and water quality after the first (baseline) household visit. We report concentrations of enterococci and E. coli in water sources (surface waters and bore wells), water stored in households, and environmental waters were children and adults swim and bathe. In addition, we report concentrations of enterococci and E. coli on hands of caregivers and children in households. Preliminary results of surveys on health and perceptions of water quality and illness from the households are provided. Ongoing work will integrate the microbiological and sociological data sets to determine if personalized information interventions resulted in changes in health, water quality in the household, or perceptions of water quality, quantity and relation to human health. Future work will analyze DNA samples from hands and water for human-specific Bacteroides bacteria which are only present in human feces. Our study

  12. Seasonal water quality variations in a river affected by acid mine drainage: the Odiel River (South West Spain).

    PubMed

    Olías, M; Nieto, J M; Sarmiento, A M; Cerón, J C; Cánovas, C R

    2004-10-15

    This paper intends to analyse seasonal variations of the quality of the water of the Odiel River. This river, together with the Tinto River, drains the Iberian Pyrite Belt (IPB), a region containing an abundance of massive sulphide deposits. Because of mining activity dating back to prehistoric times, these two rivers are heavily contaminated. The Odiel and Tinto Rivers drain into a shared estuary known as the Ría of Huelva. This work studies dissolved contaminant data in water of the Odiel River collected by various organisations, between October 1980 and October 2002, close to the rivers entry into the estuary. Flow data for this location were also obtained. The most abundant metals in the water, in order of abundance, are zinc (Zn), iron (Fe), manganese (Mn) and copper (Cu). Arsenic (As), cadmium (Cd) and lead (Pb) are also present but in much lower quantities. The quality of the river water is linked to precipitation; the maximum sulphate, Fe, Zn, Mn, Cd and Pb concentrations occur during the autumn rains, which dissolve the Fe hydroxysulphates that were precipitated during the summer months. In winter, the intense rains cause an increase in the river flow, producing a dilution of the contaminants and a slight increase in the pH. During spring and summer, the sulphate and metal concentration (except Fe) recover and once again increase. The Fe concentration pattern displays a low value during summer due to increased precipitation of ferric oxyhydroxides. The arsenic concentration displays a different evolution, with maximum values in winter, and minimum in spring and summer as they are strongly adsorbed and/or coprecipitated by the ferric oxyhydroxides. Mn and sulphates are the most conservative species in the water. Relative to sulphate, Mn, Zn and Cd, copper displays greater values in winter and lower ones in summer, probably due to its coprecipitation with hydroxysulphates during the spring and summer months. Cd and Zn also appear to be affected by the same

  13. Assessment of Spatial and Temporal Variation of Surface Water Quality in Streams Affected by Coalbed Methane Development

    NASA Astrophysics Data System (ADS)

    Chitrakar, S.; Miller, S. N.; Liu, T.; Caffrey, P. A.

    2015-12-01

    Water quality data have been collected from three representative stream reaches in a coalbed methane (CBM) development area for over five years to improve the understanding of salt loading in the system. These streams are located within Atlantic Rim development area of the Muddy Creek in south-central Wyoming. Significant development of CBM wells is ongoing in the study area. Three representative sampling stream reaches included the Duck Pond Draw and Cow Creek, which receive co-produced water, and; South Fork Creek, and upstream Cow Creek which do not receive co-produced water. Water samples were assayed for various parameters which included sodium, calcium, magnesium, fluoride, chlorine, nitrate, O-phosphate, sulfate, carbonate, bicarbonates, and other water quality parameters such as pH, conductivity, and TDS. Based on these water quality parameters we have investigated various hydrochemical and geochemical processes responsible for the high variability in water quality in the region. However, effective interpretation of complex databases to understand aforementioned processes has been a challenging task due to the system's complexity. In this work we applied multivariate statistical techniques including cluster analysis (CA), principle component analysis (PCA) and discriminant analysis (DA) to analyze water quality data and identify similarities and differences among our locations. First, CA technique was applied to group the monitoring sites based on the multivariate similarities. Second, PCA technique was applied to identify the prevalent parameters responsible for the variation of water quality in each group. Third, the DA technique was used to identify the most important factors responsible for variation of water quality during low flow season and high flow season. The purpose of this study is to improve the understanding of factors or sources influencing the spatial and temporal variation of water quality. The ultimate goal of this whole research is to

  14. Community Perception of Water Quality in a Mining-Affected Area: A Case Study for the Certej Catchment in the Apuseni Mountains in Romania

    NASA Astrophysics Data System (ADS)

    Dogaru, Diana; Zobrist, Jürg; Balteanu, Dan; Popescu, Claudia; Sima, Mihaela; Amini, Manouchehr; Yang, Hong

    2009-06-01

    Mining-contaminated sites and the affected communities at risk are important issues on the agenda of both researchers and policy makers, particularly in the former communist block countries in Eastern Europe. Integrated analyses and expert based assessments concerning mining affected areas are important in providing solid policy guidelines for environmental and social risk management and mitigation. Based on a survey for 103 households conducted in a former mining site in the Certej Catchment of the Apuseni Mountains, western Romania, this study assesses local communities’ perceptions on the quality of water in their living area. Logistic regression was used to examine peoples’ perception on the quality of the main river water and of the drinking water based on several predictors relating to social and economic conditions. The results from the perception analysis were then compared with the measurements of heavy metal contamination of the main river and drinking water undertaken in the same study area. The findings indicate that perception and measurement results for the water quality in the Certej Catchment are convergent, suggesting an obvious risk that mining activities pose on the surface water. However, the perception on drinking water quality was little predicted by the regression model and does not seem to be so much related to mining as to other explanatory factors, such as special mineralogy of rock and soils or improper water treatment infrastructure, facts suggested by the measurements of the contaminants. Discussion about the implications of these joint findings for risk mitigation policies completes this article.

  15. Community perception of water quality in a mining-affected area: a case study for the Certej catchment in the Apuseni Mountains in Romania.

    PubMed

    Dogaru, Diana; Zobrist, Jürg; Balteanu, Dan; Popescu, Claudia; Sima, Mihaela; Amini, Manouchehr; Yang, Hong

    2009-06-01

    Mining-contaminated sites and the affected communities at risk are important issues on the agenda of both researchers and policy makers, particularly in the former communist block countries in Eastern Europe. Integrated analyses and expert based assessments concerning mining affected areas are important in providing solid policy guidelines for environmental and social risk management and mitigation. Based on a survey for 103 households conducted in a former mining site in the Certej Catchment of the Apuseni Mountains, western Romania, this study assesses local communities' perceptions on the quality of water in their living area. Logistic regression was used to examine peoples' perception on the quality of the main river water and of the drinking water based on several predictors relating to social and economic conditions. The results from the perception analysis were then compared with the measurements of heavy metal contamination of the main river and drinking water undertaken in the same study area. The findings indicate that perception and measurement results for the water quality in the Certej Catchment are convergent, suggesting an obvious risk that mining activities pose on the surface water. However, the perception on drinking water quality was little predicted by the regression model and does not seem to be so much related to mining as to other explanatory factors, such as special mineralogy of rock and soils or improper water treatment infrastructure, facts suggested by the measurements of the contaminants. Discussion about the implications of these joint findings for risk mitigation policies completes this article.

  16. Water Quality: An Introduction

    ERIC Educational Resources Information Center

    Merritt, LaVere B.

    1977-01-01

    An overview of the various aspects of water quality, including a rationale for multidisciplinary cooperation in water quality management, a list of beneficial water uses, a discussion of the major types of water pollutants, and an explanation of the use of aquatic biota in testing for water quality. (CS)

  17. Factors affecting reservoir and stream-water quality in the Cambridge, Massachusetts, drinking-water source area and implications for source-water protection

    USGS Publications Warehouse

    Waldron, Marcus C.; Bent, Gardner C.

    2001-01-01

    This report presents the results of a study conducted by the U.S. Geological Survey, in cooperation with the city of Cambridge, Massachusetts, Water Department, to assess reservoir and tributary-stream quality in the Cambridge drinking-water source area, and to use the information gained to help guide the design of a comprehensive water-quality monitoring program for the source area. Assessments of the quality and trophic state of the three primary storage reservoirs, Hobbs Brook Reservoir, Stony Brook Reservoir, and Fresh Pond, were conducted (September 1997-November 1998) to provide baseline information on the state of these resources and to determine the vulnerability of the reservoirs to increased loads of nutrients and other contaminants. The effects of land use, land cover, and other drainage-basin characteristics on sources, transport, and fate of fecal-indicator bacteria, highway deicing chemicals, nutrients, selected metals, and naturally occurring organic compounds in 11 subbasins that contribute water to the reservoirs also was investigated, and the data used to select sampling stations for incorporation into a water-quality monitoring network for the source area. All three reservoirs exhibited thermal and chemical stratification, despite artificial mixing by air hoses in Stony Brook Reservoir and Fresh Pond. The stratification produced anoxic or hypoxic conditions in the deepest parts of the reservoirs and these conditions resulted in the release of ammonia nitrogen orthophosphate phosphorus, and dissolved iron and manganese from the reservoir bed sediments. Concentrations of sodium and chloride in the reservoirs usually were higher than the amounts recommended by the U.S. Environmental Protection agency for drinking-water sources (20 milligrams per liter for sodium and 250 milligrams per liter for chloride). Maximum measured sodium concentrations were highest in Hobbs Brook Reservoir (113 milligrams per liter), intermediate in Stony Brook Reservoir (62

  18. Groundwater and surface-water interaction, water quality, and processes affecting loads of dissolved solids, selenium, and uranium in Fountain Creek near Pueblo, Colorado, 2012–2014

    USGS Publications Warehouse

    Arnold, L. Rick; Ortiz, Roderick F.; Brown, Christopher R.; Watts, Kenneth R.

    2016-11-28

    In 2012, the U.S. Geological Survey, in cooperation with the Arkansas River Basin Regional Resource Planning Group, initiated a study of groundwater and surface-water interaction, water quality, and loading of dissolved solids, selenium, and uranium to Fountain Creek near Pueblo, Colorado, to improve understanding of sources and processes affecting loading of these constituents to streams in the Arkansas River Basin. Fourteen monitoring wells were installed in a series of three transects across Fountain Creek near Pueblo, and temporary streamgages were established at each transect to facilitate data collection for the study. Groundwater and surface-water interaction was characterized by using hydrogeologic mapping, groundwater and stream-surface levels, groundwater and stream temperatures, vertical hydraulic-head gradients and ratios of oxygen and hydrogen isotopes in the hyporheic zone, and streamflow mass-balance measurements. Water quality was characterized by collecting periodic samples from groundwater, surface water, and the hyporheic zone for analysis of dissolved solids, selenium, uranium, and other selected constituents and by evaluating the oxidation-reduction condition for each groundwater sample under different hydrologic conditions throughout the study period. Groundwater loads to Fountain Creek and in-stream loads were computed for the study area, and processes affecting loads of dissolved solids, selenium, and uranium were evaluated on the basis of geology, geochemical conditions, land and water use, and evapoconcentration.During the study period, the groundwater-flow system generally contributed flow to Fountain Creek and its hyporheic zone (as a single system) except for the reach between the north and middle transects. However, the direction of flow between the stream, the hyporheic zone, and the near-stream aquifer was variable in response to streamflow and stage. During periods of low streamflow, Fountain Creek generally gained flow from

  19. Thermoregulation and water balance as affected by water and food restrictions in Sudanese desert goats fed good-quality and poor-quality diets.

    PubMed

    Ahmed, Muna M M; El Kheir, I M

    2004-02-01

    Nine desert goats were used in a 3 x 3 Latin square design in which they were subjected to (a) ad libitum water and food (control), (b) ad libitum food and water restricted to about 40% of the control, and (c) ad libitum water and restricted food (same amount as given to group b). Parameters measured were dry matter intake (DMI), water intake, rectal temperature (Tr), respiration rate (RR), water balance and body weight (BW) changes. The acute effects of the above treatments on these parameters were monitored during the dry summer using two types of feed. The ratio of DMI to water intake decreased (p < 0.01) due to water restriction but increased (p < 0.01) with Lucerne hay compared to grass hay. With both feeds, BW decreased (p < 0.01) with water restriction, with a further decrease (p < 0.01) observed with food restriction. The control group showed a higher (p < 0.01) gain with Lucerne hay than grass hay. Tr and RR increased (p < 0.01) from morning to afternoon; Tr decreased due to food restriction during both morning and afternoon with Lucerne hay (p < 0.05) and grass hay (p < 0.05), whereas RR decreased (p < 0.01) with both types of feeds. For all groups of animals, Tr was higher (p < 0.05) with Lucerne hay than with grass hay, this effect being more pronounced (p < 0.01) with the control group. With both feeds, water restriction decreased (p < 0.01) water turnover rate and evaporative losses, with decreased (p < 0.05) faecal losses observed in the water-restricted groups on Lucerne hay but higher (p < 0.05) losses of urine. The tolerance of desert goats to thermal stress and their coping with shortage of water and food depended on their capacity to lose heat through panting and cutenaous evaporation as well as their ability to concentrate urine.

  20. Impacts of a flash flood on drinking water quality: case study of areas most affected by the 2012 Beijing flood.

    PubMed

    Sun, Rubao; An, Daizhi; Lu, Wei; Shi, Yun; Wang, Lili; Zhang, Can; Zhang, Ping; Qi, Hongjuan; Wang, Qiang

    2016-02-01

    In this study, we present a method for identifying sources of water pollution and their relative contributions in pollution disasters. The method uses a combination of principal component analysis and factor analysis. We carried out a case study in three rural villages close to Beijing after torrential rain on July 21, 2012. Nine water samples were analyzed for eight parameters, namely turbidity, total hardness, total dissolved solids, sulfates, chlorides, nitrates, total bacterial count, and total coliform groups. All of the samples showed different degrees of pollution, and most were unsuitable for drinking water as concentrations of various parameters exceeded recommended thresholds. Principal component analysis and factor analysis showed that two factors, the degree of mineralization and agricultural runoff, and flood entrainment, explained 82.50% of the total variance. The case study demonstrates that this method is useful for evaluating and interpreting large, complex water-quality data sets.

  1. Factors Affecting Medical Service Quality

    PubMed Central

    MOSADEGHRAD, Ali Mohammad

    2014-01-01

    Abstract Background A better understanding of factors influencing quality of medical service can pinpoint better strategies for quality assurance in medical services. This study aimed to identify factors affecting the quality of medical services provided by Iranian physicians. Methods Exploratory in-depth individual interviews were conducted with sixty-four physicians working in various medical institutions in Iran. Results Individual, organizational and environmental factors enhance or inhibit the quality of medical services. Quality of medical services depends on the personal factors of the physician and patient, and factors pertaining to the healthcare setting and the broader environment. Conclusion Differences in internal and external factors such as availability of resources, patient cooperation and collaboration among providers affect the quality of medical services and patient outcomes. Supportive leadership, proper planning, education and training and effective management of resources and processes improve the quality of medical services. This article contributes to healthcare theory and practice by developing a conceptual framework for understanding factors that influence medical services quality. PMID:26060745

  2. Water Quality Criteria

    EPA Pesticide Factsheets

    EPA develops water quality criteria based on the latest scientific knowledge to protect human health and aquatic life. This information serves as guidance to states and tribes in adopting water quality standards.

  3. Water Quality Standards Handbook

    EPA Pesticide Factsheets

    The Water Quality Standards Handbook is a compilation of the EPA's water quality standards (WQS) program guidance including recommendations for states, authorized tribes, and territories in reviewing, revising, and implementing WQS.

  4. Water Quality Statistics

    ERIC Educational Resources Information Center

    Hodgson, Ted; Andersen, Lyle; Robison-Cox, Jim; Jones, Clain

    2004-01-01

    Water quality experiments, especially the use of macroinvertebrates as indicators of water quality, offer an ideal context for connecting statistics and science. In the STAR program for secondary students and teachers, water quality experiments were also used as a context for teaching statistics. In this article, we trace one activity that uses…

  5. Evaluation of the surface-water sampling design in the Western Lake Michigan Drainages in relation to environmental factors affecting water quality at base flow

    USGS Publications Warehouse

    Robertson, Dale M.

    1998-01-01

    The variability in water quality throughout the WMIC Study Unit during base-flow conditions could be described very well by subdividing the area into Relatively Homogeneous Units and sampling a few streams with drainage basins completely within these homogeneous units. This subdivision and sampling scheme enabled the differences in water quality to be directly related to the differences in the environmental characteristics that exist throughout the Study Unit.

  6. Tsunamis: Water Quality

    MedlinePlus

    ... Landslides Tornadoes Tsunamis Volcanoes Wildfires Winter Weather Tsunamis: Water Quality Language: English Español (Spanish) Recommend on Facebook ... about testing should be directed to local authorities. Water for Drinking, Cooking, and Personal Hygiene Safe water ...

  7. Nowcasting recreational water quality

    USGS Publications Warehouse

    Boehm, Alexandria B.; Whitman, Richard L.; Nevers, Meredith; Hou, Deyi; Weisberg, Stephen B.

    2007-01-01

    Advances in molecular techniques may soon provide new opportunities to provide more timely information on whether recreational beaches are free from fecal contamination. However, an alternative approach is the use of predictive models. This chapter presents a summary of these developing efforts. First, we describe documented physical, chemical, and biological factors that have been demonstrated by researchers to affect bacterial concentrations at beaches and thus represent logical parameters for inclusion in a model. Then, we illustrate how various types of models can be applied to predict water quality at freshwater and marine beaches.

  8. How does higher frequency monitoring data affect the calibration of a process-based water quality model?

    NASA Astrophysics Data System (ADS)

    Jackson-Blake, Leah; Helliwell, Rachel

    2015-04-01

    Process-based catchment water quality models are increasingly used as tools to inform land management. However, for such models to be reliable they need to be well calibrated and shown to reproduce key catchment processes. Calibration can be challenging for process-based models, which tend to be complex and highly parameterised. Calibrating a large number of parameters generally requires a large amount of monitoring data, spanning all hydrochemical conditions. However, regulatory agencies and research organisations generally only sample at a fortnightly or monthly frequency, even in well-studied catchments, often missing peak flow events. The primary aim of this study was therefore to investigate how the quality and uncertainty of model simulations produced by a process-based, semi-distributed catchment model, INCA-P (the INtegrated CAtchment model of Phosphorus dynamics), were improved by calibration to higher frequency water chemistry data. Two model calibrations were carried out for a small rural Scottish catchment: one using 18 months of daily total dissolved phosphorus (TDP) concentration data, another using a fortnightly dataset derived from the daily data. To aid comparability, calibrations were carried out automatically using the Markov Chain Monte Carlo - DiffeRential Evolution Adaptive Metropolis (MCMC-DREAM) algorithm. Calibration to daily data resulted in improved simulation of peak TDP concentrations and improved model performance statistics. Parameter-related uncertainty in simulated TDP was large when fortnightly data was used for calibration, with a 95% credible interval of 26 μg/l. This uncertainty is comparable in size to the difference between Water Framework Directive (WFD) chemical status classes, and would therefore make it difficult to use this calibration to predict shifts in WFD status. The 95% credible interval reduced markedly with the higher frequency monitoring data, to 6 μg/l. The number of parameters that could be reliably auto

  9. Factors Affecting Water Quality in Domestic Wells in the Upper Floridan Aquifer, Southeastern United States, 1998-2005

    USGS Publications Warehouse

    Berndt, Marian P.; Crandall, Christy A.; Deacon, Michael; Embry, Teresa L.; Howard, Rhonda S.

    2009-01-01

    The Floridan aquifer system is a highly productive carbonate aquifer that provides drinking water to about 10 million people in Florida, Georgia, and South Carolina. Approximately 1.6 million people rely on domestic wells (privately owned household wells) for drinking water. Withdrawals of water from the Floridan aquifer system have increased by more than 500 percent from 630 million gallons per day (2.38 cubic meters per day) in 1950 to 4,020 million gallons per day (15.2 cubic meters per day) in 2000, largely due to increases in population, tourism, and agriculture production. Water samples were collected from 148 domestic wells in the Upper Floridan aquifer in Florida, Georgia, South Carolina, and Alabama during 1998-2005 as part of the U.S. Geological Survey (USGS) National Water-Quality Assessment Program. The wells were located in different hydrogeologic settings based on confinement of the Upper Floridan aquifer. Five networks of wells were sampled con-sisting of 28 to 30 wells each: two networks were in unconfined areas, two networks were in semiconfined areas, and one network was in the confined area. Physical properties and concentrations of major ions, trace elements, nutrients, radon, and organic compounds (volatile organic compounds and pesticides) were measured in water samples. Concentrations were compared to water-quality benchmarks for human health, either U.S. Environmental Protection Agency (USEPA) Maximum Contaminant Levels (MCLs) for public water supplies or USGS Health-Based Screening Levels (HBSLs). The MCL for fluoride of 4 milligrams per liter (mg/L) was exceeded for two samples (about 1 percent of samples). A proposed MCL for radon of 300 picocuries per liter was exceeded in about 40 percent of samples. Nitrate concentrations in the Upper Floridan aquifer ranged from less than the laboratory reporting level of 0.06 to 8 mg/L, with a median nitrate concentration less than 0.06 mg/L (as nitrogen). Nitrate concentrations did not exceed the

  10. Pesticide Use and Water Quality.

    ERIC Educational Resources Information Center

    Reneau, Fred

    This publication describes in nontechnical language the problem of pesticide use and how it affects water quality. It provides information on laws affecting pesticide use and the reasons for them, as well as giving directions for the proper use of pesticides. The booklet is divided into five chapters, each of which concludes with a list of study…

  11. QMRAcatch - faecal microbial quality of water resources in a river-floodplain area affected by urban sources and recreational visitors

    NASA Astrophysics Data System (ADS)

    Derx, Julia; Schijven, Jack; Sommer, Regina; Kirschner, Alexander; Farnleitner, Andreas H.; Blaschke, Alfred Paul

    2016-04-01

    QMRAcatch, a tool to simulate microbial water quality including infection risk assessment, was previously developed and successfully tested at a Danube river site (Schijven et al. 2015). In the tool concentrations of target faecal microorganisms and viruses (TMVs) are computed at a point of interest (PI) along the main river and the floodplain river at daily intervals for a one year period. Even though faecal microbial pathogen concentrations in water resources are usually below the sample limit of detection, this does not ensure, that the water quality complies with a certain required health based target. The aim of this study was therefore to improve the predictability of relevant human pathogenic viruses, i.e. enterovirus and norovirus, in the studied river/floodplain area. This was done by following an innovative calibration strategy based on human-associated microbial source tracking (MST) marker data which were determined following the HF183 TaqMan assay (Green et al. 2011). The MST marker is strongly associated with human faeces and communal sewage, occurring there in numbers by several magnitudes higher than for human enteric pathogens (Mayer et al 2015). The calibrated tool was then evaluated with measured enterovirus concentrations at the PI and in the floodplain river. In the simulation tool the discharges of 5 wastewater treatment plants (WWTPs) were considered with point discharges along a 200 km reach of the Danube river. The MST marker and target virus concentrations at the PI at a certain day were computed based on the concentrations of the previous day, plus the wastewater concentrations times the WWTP discharge divided by the river discharge. A ratio of the river width was also considered, over which the MST marker and virus particles have fully mixed with river water. In the tool, the excrements from recreational visitors frequenting the floodplain area every day were assumed to be homogeneously distributed in the area. A binomial distributed

  12. Source Water Quality Monitoring

    EPA Science Inventory

    Presentation will provide background information on continuous source water monitoring using online toxicity monitors and cover various tools available. Conceptual and practical aspects of source water quality monitoring will be discussed.

  13. How Does Higher Frequency Monitoring Data Affect the Calibration of a Process-Based Water Quality Model?

    NASA Astrophysics Data System (ADS)

    Jackson-Blake, L.

    2014-12-01

    Process-based catchment water quality models are increasingly used as tools to inform land management. However, for such models to be reliable they need to be well calibrated and shown to reproduce key catchment processes. Calibration can be challenging for process-based models, which tend to be complex and highly parameterised. Calibrating a large number of parameters generally requires a large amount of monitoring data, but even in well-studied catchments, streams are often only sampled at a fortnightly or monthly frequency. The primary aim of this study was therefore to investigate how the quality and uncertainty of model simulations produced by one process-based catchment model, INCA-P (the INtegrated CAtchment model of Phosphorus dynamics), were improved by calibration to higher frequency water chemistry data. Two model calibrations were carried out for a small rural Scottish catchment: one using 18 months of daily total dissolved phosphorus (TDP) concentration data, another using a fortnightly dataset derived from the daily data. To aid comparability, calibrations were carried out automatically using the MCMC-DREAM algorithm. Using daily rather than fortnightly data resulted in improved simulation of the magnitude of peak TDP concentrations, in turn resulting in improved model performance statistics. Marginal posteriors were better constrained by the higher frequency data, resulting in a large reduction in parameter-related uncertainty in simulated TDP (the 95% credible interval decreased from 26 to 6 μg/l). The number of parameters that could be reliably auto-calibrated was lower for the fortnightly data, leading to the recommendation that parameters should not be varied spatially for models such as INCA-P unless there is solid evidence that this is appropriate, or there is a real need to do so for the model to fulfil its purpose. Secondary study aims were to highlight the subjective elements involved in auto-calibration and suggest practical improvements

  14. Computeer-based decision support tools for evaluation of actions affecting flow and water quality in the San Joaquin Basin

    SciTech Connect

    Quinn, N.W.T.

    1993-01-01

    This document is a preliminary effort to draw together some of the important simulation models that are available to Reclamation or that have been developed by Reclamation since 1987. This document has also attempted to lay out a framework by which these models might be used both for the purposes for which they were originally intended and to support the analysis of other issues that relate to the hydrology and to salt and water quality management within the San Joaquin Valley. To be successful as components of a larger Decision Support System the models should to be linked together using custom designed interfaces that permit data sharing between models and that are easy to use. Several initiatives are currently underway within Reclamation to develop GIS - based and graphics - based decision support systems to improve the general level of understanding of the models currently in use, to standardize the methodology used in making planning and operations studies and to permit improved data analysis, interpretation and display. The decision support systems should allow greater participation in the planning process, allow the analysis of innovative actions that are currently difficult to study with present models and should lead to better integrated and more comprehensive plans and policy decisions in future years.

  15. Water Quality Assessment and Management

    EPA Pesticide Factsheets

    Overview of Clean Water Act (CWA) restoration framework including; water quality standards, monitoring/assessment, reporting water quality status, TMDL development, TMDL implementation (point & nonpoint source control)

  16. Quality of Drinking Water

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2009-01-01

    The quality of drinking water has been gaining a great deal of attention lately, especially as water delivery infrastructure continues to age. Particles of various metals such as lead and copper, and other substances like radon and arsenic could be entering drinking water supplies. Spilled-on-the-ground hydrocarbon-based substances are also…

  17. Irrigation water quality assessments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasing demands on fresh water supplies by municipal and industrial users means decreased fresh water availability for irrigated agriculture in semi arid and arid regions. There is potential for agricultural use of treated wastewaters and low quality waters for irrigation but this will require co...

  18. Selenium Supplementation Affects Physiological and Biochemical Processes to Improve Fodder Yield and Quality of Maize (Zea mays L.) under Water Deficit Conditions

    PubMed Central

    Nawaz, Fahim; Naeem, Muhammad; Ashraf, Muhammad Y.; Tahir, Muhammad N.; Zulfiqar, Bilal; Salahuddin, Muhammad; Shabbir, Rana N.; Aslam, Muhammad

    2016-01-01

    Climate change is one of the most complex challenges that pose serious threats to livelihoods of poor people who rely heavily on agriculture and livestock particularly in climate-sensitive developing countries of the world. The negative effects of water scarcity, due to climate change, are not limited to productivity food crops but have far-reaching consequences on livestock feed production systems. Selenium (Se) is considered essential for animal health and has also been reported to counteract various abiotic stresses in plants, however, understanding of Se regulated mechanisms for improving nutritional status of fodder crops remains elusive. We report the effects of exogenous selenium supply on physiological and biochemical processes that may influence green fodder yield and quality of maize (Zea mays L.) under drought stress conditions. The plants were grown in lysimeter tanks under natural conditions and were subjected to normal (100% field capacity) and water stress (60% field capacity) conditions. Foliar spray of Se was carried out before the start of tasseling stage (65 days after sowing) and was repeated after 1 week, whereas, water spray was used as a control. Drought stress markedly reduced the water status, pigments and green fodder yield and resulted in low forage quality in water stressed maize plants. Nevertheless, exogenous Se application at 40 mg L-1 resulted in less negative leaf water potential (41%) and enhanced relative water contents (30%), total chlorophyll (53%), carotenoid contents (60%), accumulation of total free amino acids (40%) and activities of superoxide dismutase (53%), catalase (30%), peroxidase (27%), and ascorbate peroxidase (27%) with respect to control under water deficit conditions. Consequently, Se regulated processes improved fodder yield (15%) and increased crude protein (47%), fiber (10%), nitrogen free extract (10%) and Se content (36%) but did not affect crude ash content in water stressed maize plants. We propose that Se

  19. Selenium Supplementation Affects Physiological and Biochemical Processes to Improve Fodder Yield and Quality of Maize (Zea mays L.) under Water Deficit Conditions.

    PubMed

    Nawaz, Fahim; Naeem, Muhammad; Ashraf, Muhammad Y; Tahir, Muhammad N; Zulfiqar, Bilal; Salahuddin, Muhammad; Shabbir, Rana N; Aslam, Muhammad

    2016-01-01

    Climate change is one of the most complex challenges that pose serious threats to livelihoods of poor people who rely heavily on agriculture and livestock particularly in climate-sensitive developing countries of the world. The negative effects of water scarcity, due to climate change, are not limited to productivity food crops but have far-reaching consequences on livestock feed production systems. Selenium (Se) is considered essential for animal health and has also been reported to counteract various abiotic stresses in plants, however, understanding of Se regulated mechanisms for improving nutritional status of fodder crops remains elusive. We report the effects of exogenous selenium supply on physiological and biochemical processes that may influence green fodder yield and quality of maize (Zea mays L.) under drought stress conditions. The plants were grown in lysimeter tanks under natural conditions and were subjected to normal (100% field capacity) and water stress (60% field capacity) conditions. Foliar spray of Se was carried out before the start of tasseling stage (65 days after sowing) and was repeated after 1 week, whereas, water spray was used as a control. Drought stress markedly reduced the water status, pigments and green fodder yield and resulted in low forage quality in water stressed maize plants. Nevertheless, exogenous Se application at 40 mg L(-1) resulted in less negative leaf water potential (41%) and enhanced relative water contents (30%), total chlorophyll (53%), carotenoid contents (60%), accumulation of total free amino acids (40%) and activities of superoxide dismutase (53%), catalase (30%), peroxidase (27%), and ascorbate peroxidase (27%) with respect to control under water deficit conditions. Consequently, Se regulated processes improved fodder yield (15%) and increased crude protein (47%), fiber (10%), nitrogen free extract (10%) and Se content (36%) but did not affect crude ash content in water stressed maize plants. We propose that

  20. Water Quality Monitor

    NASA Technical Reports Server (NTRS)

    1979-01-01

    In the photo above, the cylindrical container being lowered into the water is a water quality probe developed by NASA's Langley Research Center for the Environmental Protection Agency (EPA) in an applications engineering project. It is part of a system- which also includes recording equipment in the helicopter-for on-the-spot analysis of water samples. It gives EPA immediate and more accurate information than the earlier method, in which samples are transported to a lab for analysis. Designed primarily for rapid assessment of hazardous spills in coastal and inland waters, the system provides a wide range of biological and chemical information relative to water pollution.

  1. Water Quality Monitoring

    NASA Technical Reports Server (NTRS)

    2002-01-01

    With the backing of NASA, researchers at Michigan State University, the University of Minnesota, and the University of Wisconsin have begun using satellite data to measure lake water quality and clarity of the lakes in the Upper Midwest. This false color IKONOS image displays the water clarity of the lakes in Eagan, Minnesota. Scientists measure the lake quality in satellite data by observing the ratio of blue to red light in the satellite data. When the amount of blue light reflecting off of the lake is high and the red light is low, a lake generally had high water quality. Lakes loaded with algae and sediments, on the other hand, reflect less blue light and more red light. In this image, scientists used false coloring to depict the level of clarity of the water. Clear lakes are blue, moderately clear lakes are green and yellow, and murky lakes are orange and red. Using images such as these along with data from the Landsat satellites and NASA's Terra satellite, the scientists plan to create a comprehensive water quality map for the entire Great Lakes region in the next few years. For more information, read: Testing the Waters (Image courtesy Upper Great Lakes Regional Earth Science Applications Center, based on data copyright Space Imaging)

  2. Streamflow and water-quality conditions including geologic sources and processes affecting selenium loading in the Toll Gate Creek watershed, Aurora, Arapahoe County, Colorado, 2007

    USGS Publications Warehouse

    Paschke, Suzanne S.; Runkel, Robert L.; Walton-Day, Katherine; Kimball, Briant A.; Schaffrath, Keelin R.

    2013-01-01

    Toll Gate Creek is a perennial stream draining a suburban area in Aurora, Colorado, where selenium concentrations have consistently exceeded the State of Colorado aquatic-life standard for selenium of 4.6 micrograms per liter since the early 2000s. In cooperation with the City of Aurora, Colorado, Utilities Department, a synoptic water-quality study was performed along an 18-kilometer reach of Toll Gate Creek extending from downstream from Quincy Reservoir to the confluence with Sand Creek to develop a detailed understanding of streamflow and concentrations and loads of selenium in Toll Gate Creek. Streamflow and surface-water quality were characterized for summer low-flow conditions (July–August 2007) using four spatially overlapping synoptic-sampling subreaches. Mass-balance methods were applied to the synoptic-sampling and tracer-injection results to estimate streamflow and develop spatial profiles of concentration and load for selenium and other chemical constituents in Toll Gate Creek surface water. Concurrent groundwater sampling determined concentrations of selenium and other chemical constituents in groundwater in areas surrounding the Toll Gate Creek study reaches. Multivariate principal-component analysis was used to group samples and to suggest common sources for dissolved selenium and major ions. Hydrogen and oxygen stable-isotope ratios, groundwater-age interpretations, and chemical analysis of water-soluble paste extractions from core samples are presented, and interpretation of the hydrologic and geochemical data support conclusions regarding geologic sources of selenium and the processes affecting selenium loading in the Toll Gate Creek watershed.

  3. Factors affecting the formation of disinfection by-products during chlorination and chloramination of secondary effluent for the production of high quality recycled water.

    PubMed

    Doederer, Katrin; Gernjak, Wolfgang; Weinberg, Howard S; Farré, Maria José

    2014-01-01

    During the production of high quality recycled water by reverse osmosis membrane filtration secondary effluent must be disinfected to limit biofouling on the membrane surface. Advanced Water Treatment Plants in South East Queensland, Australia use disinfectant contact times ranging from 30 min up to 24 h. Disinfectants such as chlorine and chloramines react with effluent organic matter to generate disinfection by-products (DBPs) which could be potentially hazardous to human health if the water is destined for supplementing public water supplies. In this context, secondary effluents are of concern because of their high total organic carbon content which can act as DBP precursors. Also, effluent organic matter may form different DBPs to those formed from natural organic matter during conventional drinking water treatment, either in quantity, identity or simply in the abundance of different DBPs relative to each other. It cannot be assumed per se with certainty that DBP formation will be affected in the same way by operational changes as in drinking water production. Response surface modelling has been employed in this study at the bench scale to investigate the effect of reaction time (0-24 h), pH (5.5-8.5), temperature (23-35 °C), disinfection strategy (chlorine vs chloramines used prior to membrane treatment) and the interaction between these different parameters on DBP formation during disinfection of secondary effluent. The concentration of halogenated DBPs formed during the first 24 h of reaction with the different disinfectants followed the order chlorination > in line-formed monochloramine > pre-formed monochloramine. Contact time with chlorine was the major influencing factor on DBP formation during chlorination, except for the bromine-containing trihalomethanes and dibromoacetonitrile for which pH was more significant. Chlorination at high pH led to an increased formation of chloral hydrate, trichloronitromethane, dibromoacetonitrile and the four

  4. Water quality and daily temperature cycle affect biofilm formation in drip irrigation devices revealed by optical coherence tomography.

    PubMed

    Qian, Jueying; Horn, Harald; Tarchitzky, Jorge; Chen, Yona; Katz, Sagi; Wagner, Michael

    2017-03-01

    Drip irrigation is a water-saving technology. To date, little is known about how biofilm forms in drippers of irrigation systems. In this study, the internal dripper geometry was recreated in 3-D printed microfluidic devices (MFDs). To mimic the temperature conditions in (semi-) arid areas, experiments were conducted in a temperature controlled box between 20 and 50°C. MFDs were either fed with two different treated wastewater (TWW) or synthetic wastewater. Biofilm formation was monitored non-invasively and in situ by optical coherence tomography (OCT). 3-D OCT datasets reveal the major fouling position and illustrate that biofilm development was influenced by fluid dynamics. Biofilm volumetric coverage of the labyrinth up to 60% did not reduce the discharge rate, whereas a further increase to 80% reduced the discharge rate by 50%. Moreover, the biofilm formation rate was significantly inhibited in daily temperature cycle independent of the cultivation medium used.

  5. National Water Quality Benefits

    EPA Science Inventory

    This project will provide the basis for advancing the goal of producing tools in support of quantifying and valuing changes in water quality for EPA regulations. It will also identify specific data and modeling gaps and Improve benefits estimation for more complete benefit-cost a...

  6. Quality of water and sediment in streams affected by historical mining, and quality of Mine Tailings, in the Rio Grande/Rio Bravo Basin, Big Bend Area of the United States and Mexico, August 2002

    USGS Publications Warehouse

    Lambert, Rebecca B.; Kolbe, Christine M.; Belzer, Wayne

    2008-01-01

    The U.S. Geological Survey, in cooperation with the International Boundary and Water Commission - U.S. and Mexican Sections, the National Park Service, the Texas Commission on Environmental Quality, the Secretaria de Medio Ambiente y Recursos Naturales in Mexico, the Area de Proteccion de Flora y Fauna Canon de Santa Elena in Mexico, and the Area de Proteccion de Flora y Fauna Maderas del Carmen in Mexico, collected samples of stream water, streambed sediment, and mine tailings during August 2002 for a study to determine whether trace elements from abandoned mines in the area in and around Big Bend National Park have affected the water and sediment quality in the Rio Grande/Rio Bravo Basin of the United States and Mexico. Samples were collected from eight sites on the main stem of the Rio Grande/Rio Bravo, four Rio Grande/Rio Bravo tributary sites downstream from abandoned mines or mine-tailing sites, and 11 mine-tailing sites. Mines in the area were operated to produce fluorite, germanium, iron, lead, mercury, silver, and zinc during the late 1800s through at least the late 1970s. Moderate (relatively neutral) pHs in stream-water samples collected at the 12 Rio Grande/Rio Bravo main-stem and tributary sites indicate that water is well mixed, diluted, and buffered with respect to the solubility of trace elements. The highest sulfate concentrations were in water samples from tributaries draining the Terlingua mining district. Only the sample from the Rough Run Draw site exceeded the Texas Surface Water Quality Standards general-use protection criterion for sulfate. All chloride and dissolved solids concentrations in water samples were less than the general-use protection criteria. Aluminum, copper, mercury, nickel, selenium, and zinc were detected in all water samples for which each element was analyzed. Cadmium, chromium, and lead were detected in samples less frequently, and silver was not detected in any of the samples. None of the sample concentrations of

  7. Water Quality Monitor

    NASA Technical Reports Server (NTRS)

    1982-01-01

    An automated water quality monitoring system was developed by Langley Research Center to meet a need of the Environmental Protection Agency (EPA). Designed for unattended operation in water depths up to 100 feet, the system consists of a subsurface buoy anchored in the water, a surface control unit (SCU) and a hydrophone link for acoustic communication between buoy and SCU. Primary functional unit is the subsurface buoy. It incorporates 16 cells for water sampling, plus sensors for eight water quality measurements. Buoy contains all the electronic equipment needed for collecting and storing sensor data, including a microcomputer and a memory unit. Power for the electronics is supplied by a rechargeable nickel cadmium battery that is designed to operate for about two weeks. Through hydrophone link the subsurface buoy reports its data to the SCU, which relays it to land stations. Link allows two-way communications. If system encounters a problem, it automatically shuts down and sends alert signal. Sequence of commands sent via hydrophone link causes buoy to release from anchor and float to the surface for recovery.

  8. Factors affecting water quality and net flux of solutes in two stream basins in the Quabbin Reservoir drainage basin, central Massachusetts,1983-85

    USGS Publications Warehouse

    Rittmaster, R.L.; Shanley, J.B.

    1995-01-01

    The factors that affect stream-water quality were studied at West Branch Swift River (Swift River), and East Branch Fever Brook (Fever Brook), two forested watersheds that drain into the Quabbin Reservoir, central Massachusetts, from December 1983 through August 1985. Spatial and temporal variations of chemistry of precipitation, surface water; and ground water and the linkages between chemical changes and hydrologic processes were used to identify the mechanisms that control stream chemistry. Precipitation chemistry was dominated by hydrogen ion (composite p.H 4.23), sulfate, and nitrate. Inputs of hydrogen and nitrate from pre- cipitation were almost entirely retained in the basins, whereas input of sulfate was approximately balanced by export by streamflow draining the basins. Both streams were poorly buffered, with mean pH near 5.7, mean alkalinity less than 30 microequivalents per liter, and sulfate concen- trations greater than 130 microequivalents per liter. Sodium and chloride, derived primarily from highway deicing salts, were the dominant solutes at Fever Brook. After adjustments for deicing salts, fluxes of base cations during the 21-month study were 2,014 and 1,429 equivalents per hectare in Swift River and Fever Brook, respectively. Base cation fluxes were controlled primarily by weathering of hornblende (Fever Brook) and plagioclase (Swift River). The overall weathering rate was greater in the Swift River Basin because easily weathered gabbro underlies one subbasin which comprises 11.2 percent of the total basin area but contributed about 77 percent of the total alkalinity. Alkalinity export was nearly equal in the two basins, however, because some alkalinity was generated in wetlands in the Fever Brook Basin through bacterial sulfate reduction coupled with organic-carbon oxidation.

  9. Quality of waters in California

    USGS Publications Warehouse

    ,

    1963-01-01

    The quality-of-water investigations of the U.S. Geological Survey are concerned with the chemical and physical characteristics of surface and ground water supplies of the nation in conjunction with water usage and its availability. The basic records for the 1963 water year for quality of surface waters within the State of California are given in this report. For convenience and interest there are also records for a few water quality stations in bordering states. The data were collected and computed by the Water Resources Division of the U.S. Geological Survey, under the direction of Eugene Brown, district chemist, Quality of Water Branch.

  10. Water Quality Records in California

    USGS Publications Warehouse

    1964-01-01

    The quality-of-water investigations of the U.S. Geological Survey are concerned with the chemical and physical characteristics of surface and ground water supplies of the Nation in conjunction with water usage and its availability. The basic records for the 1964 water year for quality of surface waters within the State of California are given in this report. For convenience and interest there are also records for a few water quality stations in bordering States. The data were collected and computed by the Water Resources Division of the U.S. Geological Survey, under the direction of Eugene Brown, district chemist, Quality of Water Branch.

  11. Quality criteria for water, 1986

    SciTech Connect

    Not Available

    1986-05-01

    Section 304(a) (1) of the Clean Water Act 33 U.S.C. 1314(a) (1) requires the Environmental Protection Agency (EPA) to publish and periodically update ambient water-quality criteria. These criteria are to accurately reflect the latest scientific knowledge (a) on the kind and extent of all identifiable effects on health and welfare including, but not limited to, plankton, fish shellfish, wildlife, plant life, shorelines, beaches, aesthetics, and recreation that may be expected from the presence of pollutants in any body of water including ground water; (b) on the concentration and dispersal of pollutants, or their byproducts, through biological, physical, and chemical processes; and (c) on the effects of pollutants on biological community diversity, productivity, and stability, including information on the factors affecting rates of eutrophication and organic and inorganic sedimentation for varying types of receiving waters. In a continuing effort to provide those who use EPA's water-quality and human-health criteria with up-to-date criteria values and associated information, the document was assembled. The document includes summaries of all the contaminants for which EPA has developed criteria recommendations.

  12. Optical sensors for water quality

    USGS Publications Warehouse

    Pellerin, Brian A.; Bergamaschi, Brian A.

    2014-01-01

    Recent advancements in commercially available in situ sensors, data platforms, and new techniques for data analysis provide an opportunity to monitor water quality in rivers, lakes, and estuaries on the time scales in which changes occur. For example, measurements that capture the variability in freshwater systems over time help to assess how shifts in seasonal runoff, changes in precipitation intensity, and increased frequencies of disturbances (such as fire and insect outbreaks) affect the storage, production, and transport of carbon and nitrogen in watersheds. Transmitting these data in real-time also provides information that can be used for early trend detection, help identify monitoring gaps, and provide sciencebased decision support across a range of issues related to water quality, freshwater ecosystems, and human health.

  13. Handbook for aquaculture water quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Efficient aquaculture production depends upon maintaining acceptable water quality conditions in culture units. This handbook discusses background information from chemistry, physics, biology, and engineering necessary for understanding the principles of water quality management in aquaculture. It a...

  14. Hemodialysis and water quality.

    PubMed

    Coulliette, Angela D; Arduino, Matthew J

    2013-01-01

    Over 383,900 individuals in the U.S. undergo maintenance hemodialysis that exposes them to water, primarily in the form of dialysate. The quality of water and associated dialysis solutions have been implicated in adverse patient outcomes and is therefore critical. The Association for the Advancement of Medical Instrumentation has published both standards and recommended practices that address both water and the dialyzing solutions. Some of these recommendations have been adopted into Federal Regulations by the Centers for Medicare and Medicaid Services as part of the Conditions for Coverage, which includes limits on specific contaminants within water used for dialysis, dialysate, and substitution fluids. Chemical, bacterial, and endotoxin contaminants are health threats to dialysis patients, as shown by the continued episodic nature of outbreaks since the 1960s causing at least 592 cases and 16 deaths in the U.S. The importance of the dialysis water distribution system, current standards and recommendations, acceptable monitoring methods, a review of chemical, bacterial, and endotoxin outbreaks, and infection control programs are discussed.

  15. Hemodialysis and Water Quality

    PubMed Central

    Coulliette, Angela D.; Arduino, Matthew J.

    2015-01-01

    Over 383,900 individuals in the U.S. undergo maintenance hemodialysis that exposes them to water, primarily in the form of dialysate. The quality of water and associated dialysis solutions have been implicated in adverse patient outcomes and is therefore critical. The Association for the Advancement of Medical Instrumentation has published both standards and recommended practices that address both water and the dialyzing solutions. Some of these recommendations have been adopted into Federal Regulations by the Centers for Medicare and Medicaid Services as part of the Conditions for Coverage, which includes limits on specific contaminants within water used for dialysis, dialysate, and substitution fluids. Chemical, bacterial, and endotoxin contaminants are health threats to dialysis patients, as shown by the continued episodic nature of outbreaks since the 1960s causing at least 592 cases and 16 deaths in the U.S. The importance of the dialysis water distribution system, current standards and recommendations, acceptable monitoring methods, a review of chemical, bacterial, and endotoxin outbreaks, and infection control programs are discussed. PMID:23859187

  16. Ground water quality protection

    SciTech Connect

    Canter, L.W.; Fairchild, D.; Knox, R.C.

    1986-01-01

    Considered by the EPA to be one of the ''major Environmental Issues of the 1980s'' groundwater supplies a large majority of the water we use. Here is a book that deals with this problem. It is necessary that this problem be studied and action taken to prevent despoliation of the aquifers where this water is now found, because once contaminated an aquifer is difficult to decontaminate. CONTENTS-Groundwater: An Important Resource; Groundwater Hydrology; Groundwater Information Sources; Groundwater Pollution Sources; Pollutant Transport and Fate in the Subsurface Environment: Abiotic and Biotic Processes; Pollutant Transport and Fate in the Subsurface Environment: Hydrodynamic Processes and Flow and Solute Modeling; Pollution Source Evaluation; Empirical Assessment Methods; Groundwater Monitoring Planning; Groundwater Sampling and Analysis; Groundwater Quality Management; Groundwater Clean-up. References. Index.

  17. Parents' perceptions of water safety and quality.

    PubMed

    Merkel, Lori; Bicking, Cara; Sekhar, Deepa

    2012-02-01

    Every day parents make choices about the source of water their families consume. There are many contributing factors which could affect decisions about water consumption including taste, smell, color, safety, cost, and convenience. However, few studies have investigated what parents with young children think about water quality and safety in the US and how this affects the choices they are making. This study aimed to describe the perceptions of parents with regard to water quality and safety and to compare bottled water and tap water use, as well as to examine motivation for water choices. We conducted an online questionnaire to survey parents living in Pennsylvania about water quality and safety, and preference for bottled versus tap water. Parents were recruited through child care centers, and 143 surveys were returned. The survey results showed high overall scores for perception of tap water quality and safety, and a preference for tap water over bottled water. We found that parents were concerned for the environmental impact that buying bottled water may have but were also concerned about potential contamination of tap water by natural gas drilling processes and nuclear power plants. These findings regarding parental concerns are critical to inform pediatric health care providers, water sellers, and suppliers in order that they may provide parents with the necessary information to make educated choices for their families.

  18. Communicating water quality risk

    SciTech Connect

    Scherer, C.W. )

    1990-01-01

    Technology for detecting and understanding water quality problems and the impacts of activities on long-range groundwater quality has advanced considerably. In the past a technical solution was considered adequate but today one must consider a wide range of both technical and social factors in evaluating technical alternatives that are also acceptable social solutions. Policies developed and implemented with limited local participation generally are resisted and become ineffective if public cooperation is necessary for effective implementation. The public, the experts and the policymakers all must understand and appreciate the different perspectives present in risk policymaking. The typical model used to involve the public in policy decisions is a strategy described as the decide-announce-defend-approach. Much more acceptable to the public, but also more difficult to implement, is a strategy that calls for free flow of information within the community about the problem, policies and potential solutions. Communication about complex issues will be more successful if the communication is substantial; if it takes advantage of existing interpersonal networks and mass media; if it pays particular attention to existing audience knowledge, interest and behaviors; and if it clearly targets messages to various segments of the audience.

  19. Examination of Land Use, Hydrology, and Perceptions of Use and Management of the Colombian Paramo with Implications for Water Quality and Availability Concerns for Affected Watersheds

    NASA Astrophysics Data System (ADS)

    Tyson, A. F.; Covino, T.; Riveros-Iregui, D. A.; Gonzalez-Pinzon, R.

    2015-12-01

    The Northern and Central Andes have experienced greater anthropogenic land use/land-cover (LULC) change than nearly any other high mountain system on Earth. In particular, páramo ecosystems, high elevation grasslands of the tropical Andes of Colombia, are undergoing rapid conversion to cropland and pasture. These systems have strong hydrologic buffering capacity and have historically provided consistent freshwater flows to downstream communities. Therefore, loss of these systems could threaten the viability of freshwater resources in the region. While this region has some of the highest runoff ratios, precipitation, and largest river flows in the world, the resiliency of these hydrologic systems and the influence LULC change may have on them remains poorly understood. Here we seek to develop a deeper understanding of these relationships through quantitative analyses of LULC change and impacts on the quantity and quality of water exported from páramo landscapes of Colombia. Our results indicate the intensity and spatial distribution of LULC change, build upon past remote sensing studies of the region, and aid in prioritizing areas of concern for hydrologic research on the ground. This information provides an initial framework for characterizing the degree of modification and impact to water quantity/quality, as well as the long-term sustainability of water resources in the region. We highlight the complexities of watershed management practices in the Colombian páramo and the need to account for the impact of human activity on changes in water quantity and quality in the region.

  20. Water quality indicators: bacteria, coliphages, enteric viruses.

    PubMed

    Lin, Johnson; Ganesh, Atheesha

    2013-12-01

    Water quality through the presence of pathogenic enteric microorganisms may affect human health. Coliform bacteria, Escherichia coli and coliphages are normally used as indicators of water quality. However, the presence of above-mentioned indicators do not always suggest the presence of human enteric viruses. It is important to study human enteric viruses in water. Human enteric viruses can tolerate fluctuating environmental conditions and survive in the environment for long periods of time becoming causal agents of diarrhoeal diseases. Therefore, the potential of human pathogenic viruses as significant indicators of water quality is emerging. Human Adenoviruses and other viruses have been proposed as suitable indices for the effective identification of such organisms of human origin contaminating water systems. This article reports on the recent developments in the management of water quality specifically focusing on human enteric viruses as indicators.

  1. Real-time water quality monitoring and providing water quality ...

    EPA Pesticide Factsheets

    EPA and the U.S. Geological Survey (USGS) have initiated the “Village Blue” research project to provide real-time water quality monitoring data to the Baltimore community and increase public awareness about local water quality in Baltimore Harbor and the Chesapeake Bay. The Village Blue demonstration project complements work that a number of state and local organizations are doing to make Baltimore Harbor “swimmable and fishable” 2 by 2020. Village Blue is designed to build upon EPA’s “Village Green” project which provides real-time air quality information to communities in six locations across the country. The presentation, “Real-time water quality monitoring and providing water quality information to the Baltimore Community”, summarizes the Village Blue real-time water quality monitoring project being developed for the Baltimore Harbor.

  2. Water availability, water quality water governance: the future ahead

    NASA Astrophysics Data System (ADS)

    Tundisi, J. G.; Matsumura-Tundisi, T.; Ciminelli, V. S.; Barbosa, F. A.

    2015-04-01

    The major challenge for achieving a sustainable future for water resources and water security is the integration of water availability, water quality and water governance. Water is unevenly distributed on Planet Earth and these disparities are cause of several economic, ecological and social differences in the societies of many countries and regions. As a consequence of human misuse, growth of urbanization and soil degradation, water quality is deteriorating continuously. Key components for the maintenance of water quantity and water quality are the vegetation cover of watersheds, reduction of the demand and new water governance that includes integrated management, predictive evaluation of impacts, and ecosystem services. Future research needs are discussed.

  3. Watermelon quality traits as affected by ploidy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Growers offering high quality watermelons [Citrullus lanatus (Thumb.), Matsum & Nakai] that are also high in phytonutrients will have stronger market opportunities. In order to offer highly nutritious fruit, the industry must understand the nature of phytonutrient accumulation as it is affected by ...

  4. Microbiological quality of natural waters.

    PubMed

    Borrego, J J; Figueras, M J

    1997-12-01

    Several aspects of the microbiological quality of natural waters, especially recreational waters, have been reviewed. The importance of the water as a vehicle and/or a reservoir of human pathogenic microorganisms is also discussed. In addition, the concepts, types and techniques of microbial indicator and index microorganisms are established. The most important differences between faecal streptococci and enterococci have been discussed, defining the concept and species included. In addition, we have revised the main alternative indicators used to measure the water quality.

  5. [Drinking water quality and safety].

    PubMed

    Gómez-Gutiérrez, Anna; Miralles, Maria Josepa; Corbella, Irene; García, Soledad; Navarro, Sonia; Llebaria, Xavier

    2016-11-01

    The purpose of drinking water legislation is to guarantee the quality and safety of water intended for human consumption. In the European Union, Directive 98/83/EC updated the essential and binding quality criteria and standards, incorporated into Spanish national legislation by Royal Decree 140/2003. This article reviews the main characteristics of the aforementioned drinking water legislation and its impact on the improvement of water quality against empirical data from Catalonia. Analytical data reported in the Spanish national information system (SINAC) indicate that water quality in Catalonia has improved in recent years (from 88% of analytical reports in 2004 finding drinking water to be suitable for human consumption, compared to 95% in 2014). The improvement is fundamentally attributed to parameters concerning the organoleptic characteristics of water and parameters related to the monitoring of the drinking water treatment process. Two management experiences concerning compliance with quality standards for trihalomethanes and lead in Barcelona's water supply are also discussed. Finally, this paper presents some challenges that, in the opinion of the authors, still need to be incorporated into drinking water legislation. It is necessary to update Annex I of Directive 98/83/EC to integrate current scientific knowledge, as well as to improve consumer access to water quality data. Furthermore, a need to define common criteria for some non-resolved topics, such as products and materials in contact with drinking water and domestic conditioning equipment, has also been identified.

  6. Water shortages and implied water quality: A contingent valuation study

    NASA Astrophysics Data System (ADS)

    Genius, Margarita; Tsagarakis, Konstantinos P.

    2006-12-01

    This paper analyses the extent to which households in an urban area are willing to pay to ensure a fully reliable water supply when the latter induces changes in drinking water quality. The water supply system in the city of Heraklion, Greece, is characterized by periodic water rationing, which is more pronounced in the summer months. The generalized use of cisterns and even water tanks helps residents cope with quantity shortages but has a negative effect on the quality of the water reaching their taps. The results of our contingent valuation show that respondents not affected by shortages and already drinking tap water have a smaller willingness to pay, while positive perceptions on quality have a positive effect.

  7. Water Availability--The Connection Between Water Use and Quality

    USGS Publications Warehouse

    Hirsch, Robert M.; Hamilton, Pixie A.; Miller, Timothy L.; Myers, Donna N.

    2008-01-01

    Water availability has become a high priority in the United States, in large part because competition for water is becoming more intense across the Nation. Population growth in many areas competes with demands for water to support irrigation and power production. Cities, farms, and power plants compete for water needed by aquatic ecosystems to support their minimum flow requirements. At the same time, naturally occurring and human-related contaminants from chemical use, land use, and wastewater and industrial discharge are introduced into our waters and diminish its quality. The fact that degraded quality limits the availability and suitability of water for critical uses is a well-known reality in many communities. What may be less understood, but equally true, is that our everyday use of water can significantly affect water quality, and thus its availability. Landscape features (such as geology, soils, and vegetation) along with water-use practices (such as ground-water withdrawals and irrigation) govern water availability because, together, they affect the movement of chemical compounds over the land and in the subsurface. Understanding the interactions of human activities with natural sources and the landscape is critical to effectively managing water and sustaining water availability in the future.

  8. WaterQualityWatch and water-quality information bookmark

    USGS Publications Warehouse

    Wilde, Franceska D.

    2014-01-01

    WaterQualityWatch is an online resource of the U.S. Geological Survey (USGS) that provides access to continuous real-time measurements of water temperature, specific electrical conductance, pH, dissolved oxygen, turbidity, and nitrate at selected data-collection stations throughout the Nation. Additional online resources of the USGS that pertain to various types of water-quality information are shown on the reverse side of this bookmark.

  9. Instrumental Surveillance of Water Quality.

    ERIC Educational Resources Information Center

    Miller, J. A.; And Others

    The role analytical instrumentation performs in the surveillance and control of the quality of water resources is reviewed. Commonly performed analyses may range from simple tests for physical parameters to more highly sophisticated radiological or spectrophotometric methods. This publication explores many of these types of water quality analyses…

  10. Fertilizer Use and Water Quality.

    ERIC Educational Resources Information Center

    Reneau, Fred; And Others

    This booklet presents informative materials on fertilizer use and water quality, specifically in regard to environmental pollution and protection in Illinois. The five chapters cover these topics: Fertilizer and Water Quality, Fertilizer Use, Fertilizers and the Environment, Safety Practices, and Fertilizer Management Practices. Key questions are…

  11. Can Supersaturation Affect Protein Crystal Quality?

    NASA Technical Reports Server (NTRS)

    Gorti, Sridhar

    2013-01-01

    In quiescent environments (microgravity, capillary tubes, gels) formation of a depletion zone is to be expected, due either to limited sedimentation, density driven convection or a combination of both. The formation of a depletion zone can: Modify solution supersaturation near crystal; Give rise to impurity partitioning. It is conjectured that both supersaturation and impurity partitioning affect protein crystal quality and size. Further detailed investigations on various proteins are needed to assess above hypothesis.

  12. Space Station Water Quality

    NASA Technical Reports Server (NTRS)

    Willis, Charles E. (Editor)

    1987-01-01

    The manned Space Station will exist as an isolated system for periods of up to 90 days. During this period, safe drinking water and breathable air must be provided for an eight member crew. Because of the large mass involved, it is not practical to consider supplying the Space Station with water from Earth. Therefore, it is necessary to depend upon recycled water to meet both the human and nonhuman water needs on the station. Sources of water that will be recycled include hygiene water, urine, and cabin humidity condensate. A certain amount of fresh water can be produced by CO2 reduction process. Additional fresh water will be introduced into the total pool by way of food, because of the free water contained in food and the water liberated by metabolic oxidation of the food. A panel of scientists and engineers with extensive experience in the various aspects of wastewater reuse was assembled for a 2 day workshop at NASA-Johnson. The panel included individuals with expertise in toxicology, chemistry, microbiology, and sanitary engineering. A review of Space Station water reclamation systems was provided.

  13. Intermittent Water Supply: Prevalence, Practice, and Microbial Water Quality.

    PubMed

    Kumpel, Emily; Nelson, Kara L

    2016-01-19

    Intermittent water supplies (IWS), in which water is provided through pipes for only limited durations, serve at least 300 million people around the world. However, providing water intermittently can compromise water quality in the distribution system. In IWS systems, the pipes do not supply water for periods of time, supply periods are shortened, and pipes experience regular flow restarting and draining. These unique behaviors affect distribution system water quality in ways that are different than during normal operations in continuous water supplies (CWS). A better understanding of the influence of IWS on mechanisms causing contamination can help lead to incremental steps that protect water quality and minimize health risks. This review examines the status and nature of IWS practices throughout the world, the evidence of the effect of IWS on water quality, and how the typical contexts in which IWS systems often exist-low-income countries with under-resourced utilities and inadequate sanitation infrastructure-can exacerbate mechanisms causing contamination. We then highlight knowledge gaps for further research to improve our understanding of water quality in IWS.

  14. Water Quality Monitoring by Satellite

    ERIC Educational Resources Information Center

    Journal of Chemical Education, 2004

    2004-01-01

    The availability of abundant water resources in the Upper Midwest of the United States is nullified by their contamination through heavy commercial and industrial activities. Scientists have taken the responsibility of detecting the water quality of these resources through remote-sensing satellites to develop a wide-ranging water purification plan…

  15. Aquatic Plant Water Quality Criteria

    EPA Science Inventory

    The USEPA, as stated in the Clean Water Act, is tasked with developing numerical Aquatic Life Critiera for various pollutants found in the waters of the United States. These criteria serve as guidance for States and Tribes to use in developing their water quality standards. The G...

  16. What's in Your Water? An Educator's Guide to Water Quality.

    ERIC Educational Resources Information Center

    Constabile, Kerry, Comp.; Craig, Heidi, Comp.; O'Laughlin, Laura, Comp.; Reiss, Anne Bei, Comp.; Spencer, Liz, Comp.

    This guide provides basic information on the Clean Water Act, watersheds, and testing for water quality, and presents four science lesson plans on water quality. Activities include: (1) "Introduction to Water Quality"; (2) "Chemical Water Quality Testing"; (3) "Biological Water Quality Testing"; and (4) "What Can We Do?" (YDS)

  17. Injection-water quality

    SciTech Connect

    Patton, C.C. )

    1990-10-01

    Ideally, injection water should enter the reservoir free of suspended solids or oil. It should also be compatible with the reservoir rock and fluids and would be sterile and nonscaling. This paper discusses how the objective of any water-injection operation is to inject water into the reservoir rock without plugging or permeability reduction from particulates, dispersed oil, scale formation, bacterial growth, or clay swelling. In addition, souring of sweet reservoirs by sulfate-reducing bacteria should be prevented if possible.

  18. GREENROOF RUNOFF WATER QUALITY

    EPA Science Inventory

    This project evaluated green roofs as a stormwater management tool. Specifically, runoff quantity and quality from green and flat asphalt roofs was compared. Evapotranspiration from planted green roofs and evaporation unplanted media roofs was also compared, and the influence of ...

  19. Can Solution Supersaturation Affect Protein Crystal Quality?

    NASA Technical Reports Server (NTRS)

    Gorti, Sridhar

    2013-01-01

    The formation of large protein crystals of "high quality" is considered a characteristic manifestation of microgravity. The physical processes that predict the formation of large, high quality protein crystals in the microgravity environment of space are considered rooted in the existence of a "depletion zone" in the vicinity of crystal. Namely, it is considered reasonable that crystal quality suffers in earth-grown crystals as a result of the incorporation of large aggregates, micro-crystals and/or large molecular weight "impurities", processes which are aided by density driven convective flow or mixing at the crystal-liquid interface. Sedimentation and density driven convection produce unfavorable solution conditions in the vicinity of the crystal surface, which promotes rapid crystal growth to the detriment of crystal size and quality. In this effort, we shall further present the hypothesis that the solution supersaturatoin at the crystal surface determines the growth mechanism, or mode, by which protein crystals grow. It is further hypothesized that protein crystal quality is affected by the mechanism or mode of crystal growth. Hence the formation of a depletion zone in microgravity environment is beneficial due to inhibition of impurity incorporatoin as well as preventing a kinetic roughening transition. It should be noted that for many proteins the magnitude of neither protein crystal growth rates nor solution supersaturation are predictors of a kinetic roughening transition. That is, the kinetic roughening transition supersaturation must be dtermined for each individual protein.

  20. GKI water quality studies. Progress report

    SciTech Connect

    Hutchinson, D L

    1980-01-01

    GKI water quality data collected in 1978 and early 1979 was evaluated with the objective of developing preliminary characterizations of native groundwater and retort water at Kamp Kerogen, Uintah County, Utah. Restrictive analytical definitions were developed to describe native groundwater and GKI retort water in an effort to eliminate from the sample population both groundwater samples affected by retorting and retort water samples diluted by groundwater. Native groundwater and retort water sample analyses were subjected to statistical manipulation and testing to summarize the data to determine the statistical validity of characterizations based on the data available, and to identify probable differences between groundwater and retort water based on available data. An evaluation of GKI water quality data related to developing characterizations of native groundwater and retort water at Kamp Kerogen was conducted. GKI retort water and the local native groundwater both appeared to be of very poor quality. Statistical testing indicated that the data available is generally insufficient for conclusive characterizations of native groundwater and retort water. Statistical testing indicated some probable significant differences between native groundwater and retort water that could be determined with available data. Certain parameters should be added to and others deleted from future laboratory analyses suites of water samples.

  1. Quality of water, Quillayute River basin, Washington

    USGS Publications Warehouse

    Fretwell, M.O.

    1984-01-01

    Groundwater in Quillayute River basin is generally of the calcium bicarbonate type, although water from some wells is affected by seawater intrusion and is predominantly of the sodium chloride type. The water is generally of excellent quality for most uses. River-water quality was generally excellent, as evaluated against Washington State water-use and water-quality criteria. Fecal coliform concentrations in all major tributaries met State water-quality criteria; water temperatures occasionally exceeded criteria maximum during periods of warm weather and low streamflow. Nutrient concentrations were generally low to very low. The four largest lakes in the basin were temperature-stratified in summer and one had an algal bloom. The Quillayute estuary had salt-wedge mixing characteristics; pollutants entering the salt wedge tended to spread to the toe of the wedge. Upwelling ocean water was the major cause of the low dissolved-oxygen concentrations observed in the estuary; ammonia concentrations in the estuary, however, were increased by the upwelling ocean waters. As in the rivers, total-coliform bacteria concentrations in the estuary were greater than fecal-coliform concentrations, indicating that many of the bacteria were of nonfecal origin and probably originated from soils. (USGS)

  2. Water Quality Field Guide.

    ERIC Educational Resources Information Center

    Soil Conservation Service (USDA), Washington, DC.

    Nonpoint source pollution is both a relatively recent concern and a complex phenomenon with many unknowns. Knowing the extent to which agricultural sources contribute to the total pollutant load, the extent to which various control practices decrease this load, and the effect of reducing the pollutants delivered to a water body are basic to the…

  3. WATER QUALITY MODELING RESEARCH

    EPA Science Inventory

    The multi-year planning science question of what additions to models are most needed for the TMDL process for priority stressors is addressed. Our research provides both the needed process research and the necessary technology (watershed hydrologic, hydrodynamic, and water quali...

  4. Water Quality Analysis Tool (WQAT)

    EPA Science Inventory

    The purpose of the Water Quality Analysis Tool (WQAT) software is to provide a means for analyzing and producing useful remotely sensed data products for an entire estuary, a particular point or area of interest (AOI or POI) in estuaries, or water bodies of interest where pre-pro...

  5. Water Quality Control, Curriculum Guide.

    ERIC Educational Resources Information Center

    Washington City Board of Education, NC.

    Activities which study how water is used, contaminated, and treated or purified are presented in this curriculum guide, culminating in the investigation of a local water quality problem. Designed as a 12 week mini-course for students in grades eight and nine, the guide first presents a review of the content, objectives, major concepts, and sources…

  6. Water quality analysis of surface water: a Web approach.

    PubMed

    Prasad, Poonam; Chaurasia, Meenal; Sohony, R A; Gupta, Indrani; Kumar, R

    2013-07-01

    The chemical, physical and biological characteristics of water with respect to its suitability describe its quality. Concentration of pesticides or fertilisers degrades the water quality and affects marine life. A comprehensive environmental data information system helps to perform and complete common tasks in less time with less effort for data verification, data calculations, graph generation, and proper monitoring, which helps in the further mitigation step. In this paper, focus is given to a web-based system developed to express the quality of water in the imprecise environment of monitoring data. Water samples were analyzed for eight different surface water parameters, in which four parameters such as pH, dissolved oxygen, biochemical oxygen demand, and fecal coliform were used for the water quality index calculation following MPCB Water Quality Standards of class A-II for best designated use. The analysis showed that river points in a particular year were in very bad category with certainty level of 0-38% which is unsuitable for drinking purposes; samples in bad category had certainty level that ranged from 38 to 50%; samples in medium to good category had certainty levels from 50 to 100%, and the remaining samples were in good to excellent category, suitable for drinking purposes, with certainty levels from 63 to 100%.

  7. Water Quality Analysis Simulation Program (WASP)

    EPA Pesticide Factsheets

    The Water Quality Analysis Simulation Program (WASP7) model helps users interpret and predict water quality responses to natural phenomena and manmade pollution for various pollution management decisions.

  8. Water quality and the grazing animal.

    PubMed

    Hubbard, R K; Newton, G L; Hill, G M

    2004-01-01

    Grazing animals and pasture production can affect water quality both positively and negatively. Good management practices for forage production protect the soil surface from erosion compared with conventionally produced crops. Grazing animals and pasture production can negatively affect water quality through erosion and sediment transport into surface waters, through nutrients from urine and feces dropped by the animals and fertility practices associated with production of high-quality pasture, and through pathogens from the wastes. Erosion and sediment transport is primarily associated with high-density stocking and/or poor forage stands. The two nutrients of primary concern relating to animal production are N and P. Nitrogen is of concern because high concentrations in drinking water in the NO(3) form cause methemoglobinemia (blue baby disease), whereas other forms of N (primarily nitrite, NO(2)) are considered to be potentially carcinogenic. Phosphorus in the PO(4) form is of concern because it causes eutrophication of surface water bodies. The effect of grazing animals on soil and water quality must be evaluated at both the field and watershed scales. Such evaluation must account for both direct input of animal wastes from the grazing animal and also applications of inorganic fertilizers to produce quality pastures. Watershed-scale studies have primarily used the approach of nutrient loadings per land area and nutrient removals as livestock harvests. A number of studies have measured nutrient loads in surface runoff from grazed land and compared loads with other land uses, including row crop agriculture and forestry. Concentrations in discharge have been regressed against standard grazing animal units per land area. Watersheds with concentrated livestock populations have been shown to discharge as much as 5 to 10 times more nutrients than watersheds in cropland or forestry. The other major water quality concern with grazing animals is pathogens, which may move

  9. Water chemistry affects catfish susceptibility to columnaris

    Technology Transfer Automated Retrieval System (TEKTRAN)

    While columnaris disease has been well-studied, little is known about how specific water chemistries can affect attachment. Recent studies in our labs offer new insight on this subject. Well waters from the USDA/ARS Stuttgart National Aquaculture Research Center (SNARC; Stuttgart, Arkansas) and fr...

  10. Water hardness affects catfish susceptibility to columnaris

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Columnaris disease can cause tremendous losses of freshwater fish. While it has been studied exhaustively, little is known about its affinity to specific water chemistries that affects attachment. Recent studies in our labs have illuminated this subject. In the first experiment, two waters were ...

  11. [Factors that affect inpatients' quality of sleep].

    PubMed

    da Costa, Shíntia Viana; Ceolim, Maria Filomena

    2013-02-01

    The aim of this study was to identify factors that interfere with the sleep quality of patients admitted to a university hospital in a city in the state of São Paulo, Brazil. This was an exploratory, cross sectional study using non-probability sampling. Participants were 117 patients (59% men, mean age 48.0 years, standard deviation 16.9) hospitalized for at least 72 hours in stable clinical condition. The data were collected with an identification questionnaire and the Factors Affecting Sleep Quality (FASQ) questionnaire. Data processing was performed with descriptive statistics; each item of the FASQ underwent a test and a retest. The factors most often reported were waking up early (55.6%), disrupted sleep (52.1%), excessive lighting (34.2%), receipt of care by nursing staff (33.3%) and organic disorders such as pain and fatigue (26.5%). It is suggested that nurses should plan interventions to modify factors that require intense noise and lighting at night in order to reduce disruption and, consequently, sleep deprivation among patients.

  12. Iowa ground-water quality

    USGS Publications Warehouse

    Buchmiller, R.C.; Squillace, P.J.; Drustrup, R.D.

    1987-01-01

    The U.S. Geological Survey, in cooperation with the University of Iowa Hygienic Laboratory, the Iowa Department of Natural Resources, and several counties in Iowa, currently (1986) is monitoring about 1,500 public and private wells for inorganic and organic constituents. The principal objective of this program, begun in 1982, is to collect water-quality data that will describe the long-term chemical quality of the surficial and major bedrock aquifer systems in Iowa (Detroy, 1985).

  13. National Water Quality Laboratory Profile

    USGS Publications Warehouse

    Raese, Jon W.

    1994-01-01

    The National Water Quality Laboratory determines organic and inorganic constituents in samples of surface and ground water, river and lake sediment, aquatic plant and animal material, and precipitation collected throughout the United States and its territories by the U.S. Geological Survey. In water year 1994, the Laboratory produced more than 900,000 analytical results for about 65,000 samples. The Laboratory also coordinates an extensive network of contract laboratories for the determination of radiochemical and stable isotopes and work for the U.S. Department of Defense Environmental Contamination Hydrology Program. Heightened concerns about water quality and about the possible effects of toxic chemicals at trace and ultratrace levels have contributed to an increased demand for impartial, objective, and independent data.

  14. Water quality for freshwater fish

    SciTech Connect

    Howells, G. )

    1994-01-01

    This timely and up-to-date volume brings together recent critical reviews on water quality requirements for freshwater fish commissioned by the European Inland Fisheries Advisory Commission, an agency of the United Nations Food and Agriculture Organization. It provides a unique and authoritative source of critically evaluated water quality data concerning the effects of chromium, nickel, aluminum and nitrite on freshwater fish and includes an assessment of the toxicity of mixtures. The reports presented in this volume cover all stages of the life cycle and relevant trophic levels, including aquatic invertebrates and plants and potential bioaccumulation through the food chain. An extensive bibliography is provided for each chapter as well as a glossary of terms and a list of fish species mentioned in the text. This compilation of papers is the definitive reference volume for chemists, biologists, ecologists and toxicologists as well as for water resource managers concerned with management and control of pollution in fresh waters.

  15. Water quality . . . potential sources of pollution

    USGS Publications Warehouse

    Vandas, Stephen; Farrar, Frank

    1996-01-01

    What is water quality? To most students, water quality may suggest only "clean" water for drinking, swimming, and fishing. But to the farmer or manufacturer, water quality may have an entirely different meaning. One of the most important issues concerning the quality of water is how that water will be used. Water that is perfectly fine for irrigation might not be suitable for drinking or swimming.

  16. Factors affecting quality and safety of fresh-cut produce.

    PubMed

    Francis, G A; Gallone, A; Nychas, G J; Sofos, J N; Colelli, G; Amodio, M L; Spano, G

    2012-01-01

    The quality of fresh-cut fruit and vegetable products includes a combination of attributes, such as appearance, texture, and flavor, as well as nutritional and safety aspects that determine their value to the consumer. Nutritionally, fruit and vegetables represent a good source of vitamins, minerals, and dietary fiber, and fresh-cut produce satisfies consumer demand for freshly prepared, convenient, healthy food. However, fresh-cut produce deteriorates faster than corresponding intact produce, as a result of damage caused by minimal processing, which accelerates many physiological changes that lead to a reduction in produce quality and shelf-life. The symptoms of produce deterioration include discoloration, increased oxidative browning at cut surfaces, flaccidity as a result of loss of water, and decreased nutritional value. Damaged plant tissues also represent a better substrate for growth of microorganisms, including spoilage microorganisms and foodborne pathogens. The risk of pathogen contamination and growth is one of the main safety concerns associated with fresh-cut produce, as highlighted by the increasing number of produce-linked foodborne outbreaks in recent years. The pathogens of major concern in fresh-cut produce are Listeria monocytogenes, pathogenic Escherichia coli mainly O157:H7, and Salmonella spp. This article describes the quality of fresh-cut produce, factors affecting quality, and various techniques for evaluating quality. In addition, the microbiological safety of fresh-cut produce and factors affecting pathogen survival and growth on fresh-cut produce are discussed in detail.

  17. Changing Nitrate Concentrations in Arid Basin Aquifers- How Anthropogenic and Natural Processes Affect Water Quality and Availability in Trans-Pecos, TX

    NASA Astrophysics Data System (ADS)

    Robertson, W. M.; Bohlke, J. K.; Sharp, J. M.

    2012-12-01

    nitrogen. These effects are likely temporally and spatially variable, but have a substantial impact on strategies for addressing water quality and sustainability concerns in these basins and similar environments elsewhere.

  18. Water quality in organic systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Non-point source contamination is a major water quality concern in the upper Midwestern USA, where plant nutrients, especially NO3-N, are susceptible to leaching due to extensive subsurface draining of the highly productive, but poorly drained, soils found in this region. Environmental impacts assoc...

  19. Solid Wastes and Water Quality.

    ERIC Educational Resources Information Center

    DeWalle, F. B.; Chian, E. S. K.

    1978-01-01

    Presents a literature review of solid wastes and water quality, covering publications of 1976-77. This review covers areas such as: (1) environmental impacts and health aspects for waste disposal, and (2) processed and hazardous wastes. A list of 80 references is also presented. (HM)

  20. Undernutrition affects embryo quality of superovulated ewes.

    PubMed

    Abecia, J A; Forcada, F; Palacín, I; Sánchez-Prieto, L; Sosa, C; Fernández-Foren, A; Meikle, A

    2015-02-01

    To determine the effect of undernutrition on embryo production and quality in superovulated sheep, 45 ewes were allocated into two groups to be fed diets that provided 1.5 (control, C; n = 20) or 0.5 (low nutrition, L; n = 25) times daily requirements for maintenance, from oestrous synchronization with intravaginal sponges to embryo collection. Embryos were collected 7 days after the onset of oestrus (day 0). Low nutrition resulted in lower live weight and body condition at embryo collection (P < 0.05). Diet (P < 0.01) and day of sampling (P < 0.001) significantly affected plasma non-esterified fatty acid (NEFA) and insulin concentrations. Plasma leptin concentrations decreased on day 7 only in L ewes. A significant effect of dietary treatment (P < 0.05) and day (P < 0.0001) was observed on plasma insulin-like growth factor (IGF)-I concentrations. The number of recovered oocytes and embryos did not differ between the groups (L: 15.4 ± 0.4; C: 12.4 ± 0.4). Recovery rate was lower (P < 0.05) in the L (60%) than in the C group (73%). The total number of embryos and number of viable-transferable embryos (5.0 ± 0.3 and 3.4 ± 0.3 embryos, respectively) of the L group were lower (P < 0.1) when compared with controls (8.4 ± 0.4 and 6.2 ± 0.4 embryos, respectively). Undernutrition during the period of superovulation and early embryonic development reduced total and viable number of embryos. These effects might be mediated by disruption of endocrine homeostasis, oviduct environment and/or oocyte quality.

  1. Factors affecting the quality of cryoprecipitate

    PubMed Central

    Subramaniyan, Rajeswari; Marwaha, Neelam; Jain, Ashish; Ahluwalia, Jasmina

    2017-01-01

    BACKGROUND: Many variables affect the quality of cryoprecipitate (CRYO). We investigated the effect of freezing techniques and ABO blood groups on the quality of CRYO with respect to factor VIII: C and fibrinogen levels. MATERIALS AND METHODS: Ninety-six whole blood units each collected from in-house (Group I) and blood donation camps outside the hospital premises (Group II) were processed for CRYO preparation. Within each group, half the number of plasma units was frozen using blast freezer and another half using the conventional freezer. The CRYOs from blood groups A, B, and O were equally distributed, i.e. 32 within each of the Groups I and II. The fibrinogen and factor VIII: C levels in CRYO were analyzed using single-stage clotting assay. RESULTS: In Group I, the mean ± standard deviation percentage recovery of factor VIII levels in CRYO prepared using the conventional freezer and blast freezer were 58.5% ±16.2% and 66.7% ±16.4%, respectively, and in Group II, it was 55.3% ±17.6% and 70.4% ±13.4%, respectively. Recovery of factor VIII was higher in CRYO prepared using blast freezer than that of CRYO prepared using conventional freezer (P < 0.000). In Group II, CRYOs prepared using blast freezer had higher percent recovery of fibrinogen than that of Group I. In both the groups, the mean factor VIII levels in blood group A were higher than that of factor VIII levels in the blood group O CRYO. CONCLUSION: The factor VIII recovery in CRYO improves significantly with higher baseline factor VIII: C levels, blood group A donor, and rapid freezing using blast freezer. Rapid freezing also increases the fibrinogen yield. PMID:28316438

  2. Identification of water quality degradation hotspots in developing countries by applying large scale water quality modelling

    NASA Astrophysics Data System (ADS)

    Malsy, Marcus; Reder, Klara; Flörke, Martina

    2014-05-01

    Decreasing water quality is one of the main global issues which poses risks to food security, economy, and public health and is consequently crucial for ensuring environmental sustainability. During the last decades access to clean drinking water increased, but 2.5 billion people still do not have access to basic sanitation, especially in Africa and parts of Asia. In this context not only connection to sewage system is of high importance, but also treatment, as an increasing connection rate will lead to higher loadings and therefore higher pressure on water resources. Furthermore, poor people in developing countries use local surface waters for daily activities, e.g. bathing and washing. It is thus clear that water utilization and water sewerage are indispensable connected. In this study, large scale water quality modelling is used to point out hotspots of water pollution to get an insight on potential environmental impacts, in particular, in regions with a low observation density and data gaps in measured water quality parameters. We applied the global water quality model WorldQual to calculate biological oxygen demand (BOD) loadings from point and diffuse sources, as well as in-stream concentrations. Regional focus in this study is on developing countries i.e. Africa, Asia, and South America, as they are most affected by water pollution. Hereby, model runs were conducted for the year 2010 to draw a picture of recent status of surface waters quality and to figure out hotspots and main causes of pollution. First results show that hotspots mainly occur in highly agglomerated regions where population density is high. Large urban areas are initially loading hotspots and pollution prevention and control become increasingly important as point sources are subject to connection rates and treatment levels. Furthermore, river discharge plays a crucial role due to dilution potential, especially in terms of seasonal variability. Highly varying shares of BOD sources across

  3. National Water-Quality Assessment Program: Island of Oahu, Hawaii

    USGS Publications Warehouse

    Anthony, Stephen S.

    1998-01-01

    During the past 25 years, our Nation has sought to improve its water quality; however, many water-quality issues remain unresolved. To address the need for consistent and scientifically sound information for managing the Nation's water resources, the U.S. Geological Survey began a full-scale National Water-Quality Assessment (NAWQA) Program in 1991. This program is unique compared with other national water-quality assessment studies in that it integrates the monitoring of the quality of surface and ground waters with the study of aquatic ecosystems. The goals of the NAWQA Program are to (1) describe current water-quality conditions for a large part of the Nation's freshwater streams and aquifers, (2) describe how water quality is changing over time, and (3) improve our understanding of the primary natural and human factors affecting water quality. Assessing the quality of water in every location of the Nation would not be practical; therefore, NAWQA Program studies are conducted within a set of areas called study units. These study units represent the diverse geography, water resources, and land and water uses of the Nation. The island of Oahu, Hawaii, is one such study unit designed to supplement water-quality information collected in other study units across the Nation while addressing issues relevant to the island of Oahu.

  4. Water-quality monitoring of Sweetwater Reservoir

    USGS Publications Warehouse

    Majewski, Michael

    2001-01-01

    Sweetwater Authority is concerned with the quality of water it provides to its customers. Results from the water-quality monitoring study that the USGS is conducting in the Sweetwater watershed show that the contaminant concentrations in bed sediments, water, and air are reflected in increased urbanization. The bed sediments show the most dramatic evidence of this impact with a sharp increase of persistent organic chemical concentrations over the past 65 years. Water quality is also affected by urbanization in the form of chemicals in the runoff water and deposition of airborne chemicals. The concentrations of the detected organic chemicals in Sweetwater and Loveland Reservoirs are all well below the guidance limits set by State and Federal agencies to protect human health. Many of these compounds are detected only because of the sensitive analytical methods used. This monitoring program provides the Sweetwater Authority with information on what monitored chemicals are present in the reservoirs, and at what concentrations. With this information, the Authority can assess the associated risks, and consider future water treatment and remediation. These results also help focus and support future efforts by Sweetwater Authority to protect the watershed.

  5. Interspecies Correlation Estimation - Applications in Water Quality Criteria and Ecological Risk Assessment

    EPA Science Inventory

    Water quality criteria (WQC) designate the maximum concentrations of water-borne toxicants that do not adversely affect specific protection goals under certain natural conditions. As the foundation of water quality standards, WQC provide a critical scientific basis for environmen...

  6. Shallow Water Optical Water Quality Buoy

    NASA Technical Reports Server (NTRS)

    Bostater, Charles

    1998-01-01

    This NASA grant was funded as a result of an unsolicited proposal submission to Kennedy Space Center. The proposal proposed the development and testing of a shallow water optical water quality buoy. The buoy is meant to work in shallow aquatic systems (ponds, rivers, lagoons, and semi-enclosed water areas where strong wind wave action is not a major environmental During the project period of three years, a demonstration of the buoy was conducted. The last demonstration during the project period was held in November, 1996 when the buoy was demonstrated as being totally operational with no tethered communications line. During the last year of the project the buoy was made to be solar operated by large gel cell batteries. Fund limitations did not permit the batteries in metal enclosures as hoped for higher wind conditions, however the system used to date has worked continuously for in- situ operation of over 18 months continuous deployment. The system needs to have maintenance and somewhat continuous operational attention since various components have limited lifetime ages. For example, within the last six months the onboard computer has had to be repaired as it did approximately 6 months after deployment. The spectrograph had to be repaired and costs for repairs was covered by KB Science since no ftmds were available for this purpose after the grant expired. Most recently the computer web page server failed and it is currently being repaired by KB Science. In addition, the cell phone operation is currently being ftmded by Dr. Bostater in order to maintain the system's operation. The above points need to be made to allow NASA to understand that like any sophisticated measuring system in a lab or in the field, necessary funding and maintenance is needed to insure the system's operational state and to obtain quality factor. The proposal stated that the project was based upon the integration of a proprietary and confidential sensor and probe design that was developed by

  7. Initial Influence of Fertilizer Nitrogen Types on Water Quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using different sources of nitrogen as fertilizer in nursery ponds may affect water quality and plankton responses. We evaluated water quality variables and plankton population responses when using different nitrogen sources for catfish nursery pond fertilization. We compared calcium nitrate (12% ...

  8. Moderate and high doses of sodium hypochlorite, neutral electrolyzed oxidizing water, peroxyacetic acid, and gaseous chlorine dioxide did not affect the nutritional and sensory qualities of fresh-cut Iceberg lettuce (Lactuca sativa Var. capitata L.) after washing.

    PubMed

    Vandekinderen, Isabelle; Van Camp, John; De Meulenaer, Bruno; Veramme, Kim; Bernaert, Nathalie; Denon, Quenten; Ragaert, Peter; Devlieghere, Frank

    2009-05-27

    Besides the traditionally used sodium hypochlorite (20 and 200 mg L(-1)), alternative sanitizers such as peroxyacetic acid (80 and 250 mg L(-1)) and neutral electrolyzed oxidizing water (4.5 and 30 mg L(-1) free chlorine) as well as chlorine dioxide gas (1.54 mg L(-1)) were evaluated for their efficiency in reducing the microbial load of fresh-cut iceberg lettuce. An additional rinsing step with tap water and cooling of the sanitizing solutions, which are obvious for the fresh-cut industry, were not performed within the current study. The high doses of sodium hypochlorite and peroxyacetic acid tested within this study do not conform to the normally used concentrations within the fresh-cut industry. Neutral electrolyzed oxidizing water (30 mg L(-1)), peroxyacetic acid (250 mg L(-1)), and gaseous chlorine dioxide significantly reduced the total aerobic plate count of cut lettuce in comparison with water wash treatments alone. None of the treatments significantly affected the sensory quality of the lettuce, although small color changes were observed after colorimetric measurements. From a nutritional point of view water rinsing significantly decreased the vitamin C (maximum 35%) and phenol (maximum 17%) contents, but did not affect the carotenoid and α-tocopherol contents. Additional effects caused by adding a sanitizer to the wash water were not observed for vitamin C and phenols. Conversely, washing with 250 mg L(-1) peroxyacetic acid reduced the β-carotene content by about 30%, whereas using 200 mg L(-1) sodium hypochlorite reduced both the lactucaxanthin and the lutein contents by about 60%. Use of gaseous chlorine dioxide also had an impact on the lutein content (-18%). Furthermore, the α-tocopherol content was reduced by 19.7 and 15.4% when the two concentrations of neutral electrolyzed oxidizing water were used, respectively. These data represent the situation on day 0. In a next phase, shelf-life studies considering microbial and sensory quality and

  9. Dam water quality study. Report to Congress

    SciTech Connect

    Not Available

    1989-05-01

    The objective of the report is to identify water quality effects attributable to the impoundment of water by dams as required by Section 524 of the Water Quality Act of 1987. The document presents a study of water quality effects associated with impoundments in the U.S.A.

  10. 43 CFR 414.5 - Water quality.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 1 2012-10-01 2011-10-01 true Water quality. 414.5 Section 414.5 Public... OFFSTREAM STORAGE OF COLORADO RIVER WATER AND DEVELOPMENT AND RELEASE OF INTENTIONALLY CREATED UNUSED APPORTIONMENT IN THE LOWER DIVISION STATES Water Quality and Environmental Compliance § 414.5 Water quality....

  11. 43 CFR 414.5 - Water quality.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 1 2011-10-01 2011-10-01 false Water quality. 414.5 Section 414.5 Public... OFFSTREAM STORAGE OF COLORADO RIVER WATER AND DEVELOPMENT AND RELEASE OF INTENTIONALLY CREATED UNUSED APPORTIONMENT IN THE LOWER DIVISION STATES Water Quality and Environmental Compliance § 414.5 Water quality....

  12. 43 CFR 414.5 - Water quality.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Water quality. 414.5 Section 414.5 Public... OFFSTREAM STORAGE OF COLORADO RIVER WATER AND DEVELOPMENT AND RELEASE OF INTENTIONALLY CREATED UNUSED APPORTIONMENT IN THE LOWER DIVISION STATES Water Quality and Environmental Compliance § 414.5 Water quality....

  13. 43 CFR 414.5 - Water quality.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 1 2013-10-01 2013-10-01 false Water quality. 414.5 Section 414.5 Public... OFFSTREAM STORAGE OF COLORADO RIVER WATER AND DEVELOPMENT AND RELEASE OF INTENTIONALLY CREATED UNUSED APPORTIONMENT IN THE LOWER DIVISION STATES Water Quality and Environmental Compliance § 414.5 Water quality....

  14. 43 CFR 414.5 - Water quality.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 1 2014-10-01 2014-10-01 false Water quality. 414.5 Section 414.5 Public... OFFSTREAM STORAGE OF COLORADO RIVER WATER AND DEVELOPMENT AND RELEASE OF INTENTIONALLY CREATED UNUSED APPORTIONMENT IN THE LOWER DIVISION STATES Water Quality and Environmental Compliance § 414.5 Water quality....

  15. Water quality monitor. [spacecraft potable water

    NASA Technical Reports Server (NTRS)

    West, S.; Crisos, J.; Baxter, W.

    1979-01-01

    The preprototype water quality monitor (WQM) subsystem was designed based on a breadboard monitor for pH, specific conductance, and total organic carbon (TOC). The breadboard equipment demonstrated the feasibility of continuous on-line analysis of potable water for a spacecraft. The WQM subsystem incorporated these breadboard features and, in addition, measures ammonia and includes a failure detection system. The sample, reagent, and standard solutions are delivered to the WQM sensing manifold where chemical operations and measurements are performed using flow through sensors for conductance, pH, TOC, and NH3. Fault monitoring flow detection is also accomplished in this manifold assembly. The WQM is designed to operate automatically using a hardwired electronic controller. In addition, automatic shutdown is incorporated which is keyed to four flow sensors strategically located within the fluid system.

  16. Illinois water quality management plan

    SciTech Connect

    Not Available

    1992-12-01

    The report describes the purpose of the plan to consolidate and streamline portions of approved state and areawide water quality management (WQM) plans in order to facilitate their usage in the operations of all designated WQM agencies. The report identifies both point and nonpoint pollution sources, reviews policies and regulations already in place and makes recommendations for pollution prevention and control. Information on the plan's management structure is also included.

  17. Oxycline formation induced by Fe(II) oxidation in a water reservoir affected by acid mine drainage modeled using a 2D hydrodynamic and water quality model - CE-QUAL-W2.

    PubMed

    Torres, Ester; Galván, Laura; Cánovas, Carlos Ruiz; Soria-Píriz, Sara; Arbat-Bofill, Marina; Nardi, Albert; Papaspyrou, Sokratis; Ayora, Carlos

    2016-08-15

    The Sancho reservoir is an acid mine drainage (AMD)-contaminated reservoir located in the Huelva province (SW Spain) with a pH close to 3.5. The water is only used for a refrigeration system of a paper mill. The Sancho reservoir is holomictic with one mixing period per year in the winter. During this mixing period, oxygenated water reaches the sediment, while under stratified conditions (the rest of the year) hypoxic conditions develop at the hypolimnion. A CE-QUAL-W2 model was calibrated for the Sancho Reservoir to predict the thermocline and oxycline formation, as well as the salinity, ammonium, nitrate, phosphorous, algal, chlorophyll-a, and iron concentrations. The version 3.7 of the model does not allow simulating the oxidation of Fe(II) in the water column, which limits the oxygen consumption of the organic matter oxidation. However, to evaluate the impact of Fe(II) oxidation on the oxycline formation, Fe(II) has been introduced into the model based on its relationship with labile dissolved organic matter (LDOM). The results show that Fe oxidation is the main factor responsible for the oxygen depletion in the hypolimnion of the Sancho Reservoir. The limiting factors for green algal growth have also been studied. The model predicted that ammonium, nitrate, and phosphate were not limiting factors for green algal growth. Light appeared to be one of the limiting factors for algal growth, while chlorophyll-a and dissolved oxygen concentrations could not be fully described. We hypothesize that dissolved CO2 is one of the limiting nutrients due to losses by the high acidity of the water column. The sensitivity tests carried out support this hypothesis. Two different remediation scenarios have been tested with the calibrated model: 1) an AMD passive treatment plant installed at the river, which removes completely Fe, and 2) different depth water extractions. If no Fe was introduced into the reservoir, water quality would significantly improve in only two years

  18. Activities affecting surface water resources: A general overview

    SciTech Connect

    Not Available

    1990-01-01

    In November 1987, P.E.I. signed a federal/provincial work-sharing arrangement on water resource management focusing on groundwater pollution, surface water degradation and estuarine eutrophication. The surface water program was designed to identify current surface water uses and users within 12 major watersheds across the Island containing 26 individual rivers, as well as problems arising due to practices that degrade the quality of surface water and restricts its value to other user groups. This report presents a general overview of the program, covering the general characteristics of the Island; operations in agriculture, fish and wildlife, forestry, recreation, fisheries, and industry; alterations of natural features of waterways; wetlands; additional watershed activities such as hydrometric stations and subdivision development; and activities affecting surface water resources such as sedimentation sources, pollution point sources and instream obstructions.

  19. Recent (2008-10) water quality in the Barton Springs segment of the Edwards aquifer and its contributing zone, central Texas, with emphasis on factors affecting nutrients and bacteria

    USGS Publications Warehouse

    Mahler, Barbara J.; Musgrove, MaryLynn; Sample, Thomas L.; Wong, Corinne I.

    2011-01-01

    The Barton Springs zone, which comprises the Barton Springs segment of the Edwards aquifer and the watersheds to the west that contribute to its recharge, is in south-central Texas, an area with rapid growth in population and increasing amounts of land area affected by development. During November 2008-March 2010, an investigation of factors affecting the fate and transport of nutrients and bacteria in the Barton Springs zone was conducted by the U.S. Geological Survey (USGS), in cooperation with the Texas Commission on Environmental Quality. The primary objectives of the study were to characterize occurrence of nutrients and bacteria in the Barton Springs zone under a range of flow conditions; to improve understanding of the interaction between surface-water quality and groundwater quality; and to evaluate how factors such as streamflow variability and dilution affect the fate and transport of nutrients and bacteria in the Barton Springs zone. The USGS collected and analyzed water samples from five streams (Barton, Williamson, Slaughter, Bear, and Onion Creeks), two groundwater wells (Marbridge and Buda), and the main orifice of Barton Springs in Austin, Texas. During the period of the study, during which the hydrologic conditions transitioned from exceptional drought to wetter than normal, water samples were collected routinely (every 3 to 4 weeks) from the streams, wells, and spring and, in response to storms, from the streams and spring. All samples were analyzed for major ions, nutrients, the bacterium Escherichia coli, and suspended sediment. During the dry period, the geochemistry of groundwater at the two wells and at Barton Springs was dominated by flow from the aquifer matrix and was relatively similar and unchanging at the three sites. At the onset of the wet period, when the streams began to flow, the geochemistry of groundwater samples from the Marbridge well and Barton Springs changed rapidly, and concentrations of most major ions and nutrients and

  20. Impact of multiple anthropogenic stressors on freshwater: how do glyphosate and the invasive mussel Limnoperna fortunei affect microbial communities and water quality?

    PubMed

    Pizarro, Haydée; Di Fiori, Eugenia; Sinistro, Rodrigo; Ramírez, Marina; Rodríguez, Patricia; Vinocur, Alicia; Cataldo, Daniel

    2016-01-01

    The study of the joint effect of multiple anthropogenic stressors is important because the emerging consequences are often unpredictable on the basis of knowledge of single effects. We explored the joint impact of glyphosate and the invasive golden mussel Limnoperna fortunei on freshwater phytoplankton, bacterioplankton and periphyton, and on the physical and chemical properties of the water. We manipulated both stressors simultaneously in a 25-day experiment using outdoor mesocosms; we assayed technical-grade glyphosate acid at four concentrations: 0, 1, 3 and 6 mg gly L(−1) under scenarios with and without mussels. The addition of the glyphosate significantly increased total phosphorus according to the concentration used; the high clearance rate of L. fortunei significantly decreased phytoplanktonic abundance leading to low values of turbidity. The mussel significantly stimulated the development of filamentous green algae (metaphyton). Interestingly, the combined effect revealed that L. fortunei accelerated the dissipation of glyphosate, which showed a 4-fold decrease in its half-life; this promoted the rapid bioavailability of glyphosate-derived phosphorus in the water. The interaction had a synergistic effect on soluble reactive phosphorus concentrations and was directly dependent on the concentration of glyphosate. A synergistic effect was also observed on bacterioplankton, water turbidity and metaphyton, thus inducing enhanced and rapid eutrophication. The ability of mussels to reduce glyphosate in water may be valued as positive, but our results allow us to predict that the invasion of Limnoperna fortunei in natural freshwater systems contaminated by glyphosate will accelerate the negative impact of the herbicide associated with eutrophication.

  1. [Multi-scale spatial heterogeneity of urban wetland water quality in east suburb of Nanjing City].

    PubMed

    Hao, Jing-feng; Liu, Hong-yu; Hu, Jun-na; An, Jing

    2010-07-01

    An investigation was made on the water quality and plant community in 17 urban wetlands in east suburb of Nanjing City, and the spatial heterogeneity of the water quality was analyzed at ecosystem scale, catchment scale, and functional landscape scale. Wetland type and the characteristics of plant community were the main factors affecting the water quality at ecosystem scale. Primitive wetland had the best water quality, followed by reconstructed wetland, and secondary wetland. The higher plant coverage the wetland had, the better the water quality was. Land use type was the main factor affecting the water quality at catchment scale. Constructive land had greater effects on water nutrients content, while woodland mainly affected water dissolved oxygen. Human activity was the main factor affecting the water quality at functional landscape scale, and the effects differed with different water quality indices.

  2. Using Scientific Inquiry to Teach Students about Water Quality

    ERIC Educational Resources Information Center

    Puche, Helena; Holt, Jame

    2012-01-01

    This semi-guided inquiry activity explores the macroinvertebrate fauna in water sources affected by different levels of pollution. Students develop their ability to identify macroinvertebrates, compare aquatic fauna from different sources of water samples, evaluate water quality using an index, document and analyze data, raise questions and…

  3. DEVELOPMENT OF MARINE WATER QUALITY CRITERIA

    EPA Science Inventory

    The U.S. Environmental Protectional Agency has developed guidelines for deriving numerical national water quality criteria for the protection of aquatic organisms and their uses. These guidelines provide the method for deriving water quality criteria, including minimum data base...

  4. Water Quality Trading Toolkit for Permit Writers

    EPA Pesticide Factsheets

    The Water Quality Trading Toolkit for Permit Writers is EPA’s first “how-to” manual on designing and implementing water quality trading programs. It helps NPDES permitting authorities incorporate trading provisions into permits.

  5. SF Bay Water Quality Improvement Fund

    EPA Pesticide Factsheets

    EPAs grant program to protect and restore San Francisco Bay. The San Francisco Bay Water Quality Improvement Fund (SFBWQIF) has invested in 58 projects along with 70 partners contributing to restore wetlands, water quality, and reduce polluted runoff.,

  6. Characterizing Water Quality in Students' Own Community

    ERIC Educational Resources Information Center

    Lunsford, S. K.; Speelman, Nicole; Yeary, Amber; Slattery, William

    2007-01-01

    The surface water quality studies are developed to help first year college students who are preparing to become high school teachers. These water quality impact studies allow students to correlate geologic conditions and chemistry.

  7. HAWQS (Hydrologic and Water Quality System)

    EPA Pesticide Factsheets

    A water quantity and quality modeling system to evaluate the impacts of management alternatives, pollution control scenarios, and climate change scenarios on the quantity and quality of water at a national scale.

  8. Quantifying The Water Quality Services Of Wetlands

    EPA Science Inventory

    Wetlands are well recognized for their potential for providing a wide range of important ecological services including their ability to provide water quality protection. Watershed-scale water quality trading could create market driven incentives to restore and construct wetlands...

  9. Channel incision and water quality

    NASA Astrophysics Data System (ADS)

    Shields, F. D.

    2009-12-01

    Watershed development often triggers channel incision that leads to radical changes in channel morphology. Although morphologic evolution due to channel incision has been documented and modeled by others, ecological effects, particularly water quality effects, are less well understood. Furthermore, environmental regulatory frameworks for streams frequently focus on stream water quality and underemphasize hydrologic and geomorphic issues. Discharge, basic physical parameters, solids, nutrients (nitrogen and phosphorus), chlorophyll and bacteria were monitored for five years at two sites along a stream in a mixed cover watershed characterized by rapid incision of the entire channel network. Concurrent data were collected from two sites on a nearby stream draining a watershed of similar size and cultivation intensity, but without widespread incision. Data sets describing physical aquatic habitat and fish fauna of each stream were available from other studies. The second stream was impacted by watershed urbanization, but was not incised, so normal channel-floodplain interaction maintained a buffer zone of floodplain wetlands between the study reach and the urban development upstream. The incised stream had mean channel depth and width that were 1.8 and 3.5 times as large as for the nonincised stream, and was characterized by flashier hydrology. The median rise rate for the incised stream was 6.4 times as great as for the nonincised stream. Correlation analyses showed that hydrologic perturbations were associated with water quality degradation, and the incised stream had levels of turbidity and solids that were two to three times higher than the nonincised, urbanizing stream. Total phosphorus, total Kjeldahl N, and chlorophyll a concentrations were significantly higher in the incised stream, while nitrate was significantly greater in the nonincised, urbanizing stream (p < 0.02). Physical aquatic habitat and fish populations in the nonincised urbanizing stream were

  10. WATER QUALITY AND ASSOCIATIONS WITH GASTROINTESTINAL CONDITIONS

    EPA Science Inventory

    Water quality is quantified using several measures, available from various data sources. These can be combined to create a single index of overall water quality which can be used for health research. We developed a water quality index for all United States counties and assessed a...

  11. Factors affecting enhanced video quality preferences

    PubMed Central

    Satgunam, PremNandhini; Woods, Russell L; Bronstad, P Matthew; Peli, Eli

    2013-01-01

    The development of video quality metrics requires methods for measuring perceived video quality. Most such metrics are designed and tested using databases of images degraded by compression and scored using opinion ratings. We studied video quality preferences for enhanced images of normally-sighted participants using the method of paired comparisons with a thorough statistical analysis. Participants (n=40) made pair-wise comparisons of high definition (HD) video clips enhanced at four different levels using a commercially available enhancement device. Perceptual scales were computed with binary logistic regression to estimate preferences for each level and to provide statistical inference of the differences among levels and the impact of other variables. While moderate preference for enhanced videos was found, two unexpected effects were also uncovered: (1) Participants could be broadly classified into two groups: those who preferred enhancement ("Sharp") and those who disliked enhancement ("Smooth"). (2) Enhancement preferences depended on video content, particularly for human faces to be enhanced less. The results suggest that algorithms to evaluate image quality (at least for enhancement) may need to be adjusted or applied differentially based on video content and viewer preferences. The possible impact of similar effects on image quality of compressed video needs to be evaluated. PMID:24107400

  12. Factors Affecting School Quality in Florida

    ERIC Educational Resources Information Center

    Thornton, Barry; Arbogast, Gordon

    2014-01-01

    This paper examines the factors that are theorized to be determinants of school quality in the 67 counties of Florida from 2000 to 2011. The model constructed for this purpose is comprised of a mix of independent variables that include county educational attainment (number of high school graduates and State University System enrollees) and…

  13. 18 CFR 801.7 - Water quality.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Water quality. 801.7 Section 801.7 Conservation of Power and Water Resources SUSQUEHANNA RIVER BASIN COMMISSION GENERAL POLICIES § 801.7 Water quality. (a) The signatory States have the primary responsibility in the basin...

  14. 18 CFR 801.7 - Water quality.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Water quality. 801.7 Section 801.7 Conservation of Power and Water Resources SUSQUEHANNA RIVER BASIN COMMISSION GENERAL POLICIES § 801.7 Water quality. (a) The signatory States have the primary responsibility in the basin...

  15. 18 CFR 801.7 - Water quality.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Water quality. 801.7 Section 801.7 Conservation of Power and Water Resources SUSQUEHANNA RIVER BASIN COMMISSION GENERAL POLICIES § 801.7 Water quality. (a) The signatory States have the primary responsibility in the basin...

  16. 18 CFR 801.7 - Water quality.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Water quality. 801.7 Section 801.7 Conservation of Power and Water Resources SUSQUEHANNA RIVER BASIN COMMISSION GENERAL POLICIES § 801.7 Water quality. (a) The signatory States have the primary responsibility in the basin...

  17. 18 CFR 801.7 - Water quality.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Water quality. 801.7 Section 801.7 Conservation of Power and Water Resources SUSQUEHANNA RIVER BASIN COMMISSION GENERAL POLICIES § 801.7 Water quality. (a) The signatory States have the primary responsibility in the basin...

  18. Automated monitoring of recovered water quality

    NASA Technical Reports Server (NTRS)

    Misselhorn, J. E.; Hartung, W. H.; Witz, S. W.

    1974-01-01

    Laboratory prototype water quality monitoring system provides automatic system for online monitoring of chemical, physical, and bacteriological properties of recovered water and for signaling malfunction in water recovery system. Monitor incorporates whenever possible commercially available sensors suitably modified.

  19. Quality-Assurance Plan for Water-Quality Activities in the USGS Ohio Water Science Center

    USGS Publications Warehouse

    Francy, Donna S.; Shaffer, Kimberly H.

    2008-01-01

    In accordance with guidelines set forth by the Office of Water Quality in the Water Resources Discipline of the U.S. Geological Survey, a quality-assurance plan has been written for use by the Ohio Water Science Center in conducting water-quality activities. This quality-assurance plan documents the standards, policies, and procedures used by the Ohio Water Science Center for activities related to the collection, processing, storage, analysis, and publication of water-quality data. The policies and procedures documented in this quality-assurance plan for water-quality activities are meant to complement the Ohio Water Science Center quality-assurance plans for water-quality monitors, the microbiology laboratory, and surface-water and ground-water activities.

  20. Water Quality of Hills Water, Supply Water and RO Water Machine at Ulu Yam Selangor

    NASA Astrophysics Data System (ADS)

    Ngadiman, N.; ‘I Bahari, N.; Kaamin, M.; Hamid, N. B.; Mokhtar, M.; Sahat, S.

    2016-07-01

    The rapid development resulted in the deterioration of the quality of drinking water in Malaysia. Recognizing the importance of water quality, new alternatives for drinking water such as mineral water processing from reverse osmosis (RO) machine become more popular. Hence, the demand for mineral water, natural spring water or water from the hills or mountains rose lately. More consumers believed the quality of these spring water better than other source of drinking water. However, the quality of all the drinking water sources is to meet the required quality standard. Therefore, this paper aims to measure the quality of the waters from hills, from RO machine and the water supply in Ulu Yam, Selangor Batang Kali, Malaysia. The water quality was determined based on following parameters: ammoniacal nitrogen (NH3), iron (Fe), turbidity (NTU) and pH. The results show that the water from hills has better quality compared to water supply and water from RO machine. The value of NH3 ranged from 0.03 mg/L- 0.67 mg/L; Fe was from 0.03mg/L - 0.12 mg/L, turbidity at 0.42 NTU - 0.88 NTU and pH is at 6.60 - 0.71. Based on the studied parameters, all three types of water are fit for drinking and have met the required national drinking water quality standard.

  1. Mind wandering, sleep quality, affect and chronotype: an exploratory study.

    PubMed

    Carciofo, Richard; Du, Feng; Song, Nan; Zhang, Kan

    2014-01-01

    Poor sleep quality impairs cognition, including executive functions and concentration, but there has been little direct research on the relationships between sleep quality and mind wandering or daydreaming. Evening chronotype is associated with poor sleep quality, more mind wandering and more daydreaming; negative affect is also a mutual correlate. This exploratory study investigated how mind wandering and daydreaming are related to different aspects of sleep quality, and whether sleep quality influences the relationships between mind wandering/daydreaming and negative affect, and mind wandering/daydreaming and chronotype. Three surveys (Ns = 213; 190; 270) were completed with Chinese adults aged 18-50, including measures of sleep quality, daytime sleepiness, mind wandering, daydreaming, chronotype and affect (positive and negative). Higher frequencies of mind wandering and daydreaming were associated with poorer sleep quality, in particular with poor subjective sleep quality and increased sleep latency, night-time disturbance, daytime dysfunction and daytime sleepiness. Poor sleep quality was found to partially mediate the relationships between daydreaming and negative affect, and mind wandering and negative affect. Additionally, low positive affect and poor sleep quality, in conjunction, fully mediated the relationships between chronotype and mind wandering, and chronotype and daydreaming. The relationships between mind wandering/daydreaming and positive affect were also moderated by chronotype, being weaker in those with a morning preference. Finally, while daytime sleepiness was positively correlated with daydream frequency, it was negatively correlated with a measure of problem-solving daydreams, indicating that more refined distinctions between different forms of daydreaming or mind wandering are warranted. Overall, the evidence is suggestive of a bi-directional relationship between poor sleep quality and mind wandering/daydreaming, which may be important in

  2. Overview of the National Water-Quality Assessment Program

    USGS Publications Warehouse

    Leahy, P.P.; Thompson, T.H.

    1994-01-01

    The Nation's water resources are the basis for life and our economic vitality. These resources support a complex web of human activities and fishery and wildlife needs that depend upon clean water. Demands for good-quality water for drinking, recreation, farming, and industry are rising, and as a result, the American public is concerned about the condition and sustainability of our water resources. The American public is asking: Is it safe to swim in and drink water from our rivers or lakes? Can we eat the fish that come from them? Is our ground water polluted? Is water quality degrading with time, and if so, why? Has all the money we've spent to clean up our waters, done any good? The U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program was designed to provide information that will help answer these questions. NAWQA is designed to assess historical, current, and future water-quality conditions in representative river basins and aquifers nationwide. One of the primary objectives of the program is to describe relations between natural factors, human activities, and water-quality conditions and to define those factors that most affect water quality in different parts of the Nation. The linkage of water quality to environmental processes is of fundamental importance to water-resource managers, planners, and policy makers. It provides a strong and unbiased basis for better decisionmaking by those responsible for making decisions that affect our water resources, including the United States Congress, Federal, State, and local agencies, environmental groups, and industry. Information from the NAWQA Program also will be useful for guiding research, monitoring, and regulatory activities in cost effective ways.

  3. Management of water quality for beef cattle.

    PubMed

    Wright, Cody L

    2007-03-01

    Drinking water is the primary source of water for most cattle. Unfortunately, water frequently contains various solutes and suspended particulate matter that can influence its appearance, odor, taste, and physical and chemical properties. Animals often react to such water impurities by decreasing water intake, and therefore feed intake, which diminishes animal performance. Thus, water quality can have a profound impact on animal health and performance. Routine monitoring of water sources and appropriate intervention can provide beef producers with a desirable return on investment. Careful thought should be incorporated into any capital improvements. This article discusses some of the most common factors that impact water quality for beef cattle and the methods of monitoring water quality, and proposes management solutions to address water quality concerns.

  4. Comparison of 2002 Water Year and Historical Water-Quality Data, Upper Gunnison River Basin, Colorado

    USGS Publications Warehouse

    Spahr, N.E.

    2003-01-01

    Introduction: Population growth and changes in land-use practices have the potential to affect water quality and quantity in the upper Gunnison River basin. In 1995, the U.S. Geological Survey (USGS), in cooperation with local sponsors, City of Gunnison, Colorado River Water Conservation District, Crested Butte South Metropolitan District, Gunnison County, Mount Crested Butte Water and Sanitation District, National Park Service, Town of Crested Butte, and Upper Gunnison River Water Conservancy District, established a water-quality monitoring program in the upper Gunnison River basin to characterize current water-quality conditions and to assess the effects of increased urban development and other land-use changes on water quality. The monitoring network has evolved into two groups of stations, stations that are considered as long term and stations that are rotational. The long-term stations are monitored to assist in defining temporal changes in water quality (how conditions have changed over time). The rotational stations are monitored to assist in the spatial definition of water-quality conditions (how conditions differ throughout the basin) and to address local and short term concerns. Another group of stations (rotational group 2) will be chosen and sampled beginning in water year 2004. Annual summaries of the water-quality data from the monitoring network provide a point of reference for discussions regarding water-quality sampling in the upper Gunnison River basin. This summary includes data collected during water year 2002. The introduction provides a map of the sampling locations, definitions of terms, and a one-page summary of selected water-quality conditions at the network stations. The remainder of the summary is organized around the data collected at individual stations. Data collected during water year 2002 are compared to historical data (data collected for this network since 1995), state water-quality standards, and federal water-quality guidelines

  5. Texas Water Quality Board Teachers Workshop Program.

    ERIC Educational Resources Information Center

    Texas Water Quality Board, Austin.

    These materials are designed for teachers participating in an inservice workshop on water quality. Included in the materials are a workshop agenda, a water awareness pretest, and the various parameters and tests that are used to determine and measure water quality. The parameters are discussed from the standpoint of their potential impact to…

  6. Water Quality of a Micronesian Atoll

    ERIC Educational Resources Information Center

    Mabbett, Arthur N.

    1975-01-01

    In 1972, a water quality survey of the eastern end of Majuro Atoll, Marshall Islands was conducted to determine the water quality of selected lagoon and open ocean sites and provide guidance for the construction of a sewerage system. This study revealed that lagoon waters were moderately to severely contaminated. (BT)

  7. 9 CFR 3.106 - Water quality.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Water quality. 3.106 Section 3.106... Mammals Animal Health and Husbandry Standards § 3.106 Water quality. (a) General. The primary enclosure shall not contain water which would be detrimental to the health of the marine mammal contained...

  8. 9 CFR 3.106 - Water quality.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Water quality. 3.106 Section 3.106... Mammals Animal Health and Husbandry Standards § 3.106 Water quality. (a) General. The primary enclosure shall not contain water which would be detrimental to the health of the marine mammal contained...

  9. 9 CFR 3.106 - Water quality.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Water quality. 3.106 Section 3.106... Mammals Animal Health and Husbandry Standards § 3.106 Water quality. (a) General. The primary enclosure shall not contain water which would be detrimental to the health of the marine mammal contained...

  10. 9 CFR 3.106 - Water quality.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Water quality. 3.106 Section 3.106... Mammals Animal Health and Husbandry Standards § 3.106 Water quality. (a) General. The primary enclosure shall not contain water which would be detrimental to the health of the marine mammal contained...

  11. 9 CFR 3.106 - Water quality.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Water quality. 3.106 Section 3.106... Mammals Animal Health and Husbandry Standards § 3.106 Water quality. (a) General. The primary enclosure shall not contain water which would be detrimental to the health of the marine mammal contained...

  12. Soil moisture affects fatty acids and oil quality parameters in peanut

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drought affects yield of peanut, but its effect on oleic and linoleic acids that influence its oil quality of peanut genotypes with different levels of drought resistance has not been clearly investigated. Therefore, the aims of this research were to determine whether soil water levels could affect...

  13. Michigan lakes: An assessment of water quality

    USGS Publications Warehouse

    Minnerick, R.J.

    2004-01-01

    Michigan has more than 11,000 inland lakes, that provide countless recreational opportunities and are an important resource that makes tourism and recreation a $15-billion-dollar per-year industry in the State (Stynes, 2002). Knowledge of the water-quality characteristics of inland lakes is essential for the current and future management of these resources.Historically the U. S. Geological Survey (USGS) and the Michigan Department of Environmental Quality (MDEQ) jointly have monitored water quality in Michigan's lakes and rivers. During the 1990's, however, funding for surface-water-quality monitoring was reduced greatly. In 1998, the citizens of Michigan passed the Clean Michigan Initiative to clean up, protect, and enhance Michigan's environmental infrastructure. Because of expanding water-quality-data needs, the MDEQ and the USGS jointly redesigned and implemented the Lake Water-Quality Assessment (LWQA) Monitoring Program (Michigan Department of Environmental Quality, 1997).

  14. Microbiological evaluation of water quality from urban watersheds for domestic water supply improvement

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural and urban runoffs may be major sources of pollution of water bodies and major sources of bacteria affecting the quality of drinking water. Of the different pathways by which bacterial pathogens can enter drinking water, one has received little attention to date; that is, because soils ...

  15. Protecting water quality in the watershed

    SciTech Connect

    James, C.R.; Johnson, K.E. ); Stewart, E.H. )

    1994-08-01

    This article highlights the water quality component of a watershed management plan being developed for the San Francisco (CA) Water Department. The physical characteristics of the 63,000-acre watersheds were analyzed for source and transport vulnerability for five groups of water quality parameters--particulates, THM precursors, microorganisms (Giardia and cryptosporidium), nutrients (nitrogen and phosphorus), and synthetic organic chemicals--and vulnerability zones were mapped. Mapping was achieved through the use of an extensive geographic information system (GIS) database. Each water quality vulnerability zone map was developed based on five watershed physical characteristics--soils, slope, vegetation, wildlife concentration, and proximity to water bodies--and their relationships to each of the five groups of water quality parameters. An approach to incorporate the watershed physical characteristics information into the five water quality vulnerability zone maps was defined and verified. The composite approach was based in part on information gathered from existing watershed management plans.

  16. Healthy Water Healthy People Water Quality Educators Guide

    ERIC Educational Resources Information Center

    Project WET Foundation, 2003

    2003-01-01

    This 200-page activity guide for educators of students in grades six through university level raises the awareness and understanding of water quality issues and their relationship to personal, public and environmental health. "Healthy Water Healthy People Water Quality Educators Guide" will help educators address science standards through 25…

  17. Deriving Chesapeake Bay Water Quality Standards

    USGS Publications Warehouse

    Tango, Peter J.; Batiuk, Richard A.

    2013-01-01

    Achieving and maintaining the water quality conditions necessary to protect the aquatic living resources of the Chesapeake Bay and its tidal tributaries has required a foundation of quantifiable water quality criteria. Quantitative criteria serve as a critical basis for assessing the attainment of designated uses and measuring progress toward meeting water quality goals of the Chesapeake Bay Program partnership. In 1987, the Chesapeake Bay Program partnership committed to defining the water quality conditions necessary to protect aquatic living resources. Under section 303(c) of the Clean Water Act, States and authorized tribes have the primary responsibility for adopting water quality standards into law or regulation. The Chesapeake Bay Program partnership worked with U.S. Environmental Protection Agency to develop and publish a guidance framework of ambient water quality criteria with designated uses and assessment procedures for dissolved oxygen, water clarity, and chlorophyll a for Chesapeake Bay and its tidal tributaries in 2003. This article reviews the derivation of the water quality criteria, criteria assessment protocols, designated use boundaries, and their refinements published in six addendum documents since 2003 and successfully adopted into each jurisdiction's water quality standards used in developing the Chesapeake Bay Total Maximum Daily Load.

  18. ORD Studies of Water Quality in Hospitals

    EPA Science Inventory

    Presentation descibes results from two studies of water quality and pathogen occurrence in water and biofilm samples from two area hospitals. Includes data on the effectiveness of copper/silver ionization as a disinfectant.

  19. Drinking water quality management: a holistic approach.

    PubMed

    Rizak, S; Cunliffe, D; Sinclair, M; Vulcano, R; Howard, J; Hrudey, S; Callan, P

    2003-01-01

    A growing list of water contaminants has led to some water suppliers relying primarily on compliance monitoring as a mechanism for managing drinking water quality. While such monitoring is a necessary part of drinking water quality management, experiences with waterborne disease threats and outbreaks have shown that compliance monitoring for numerical limits is not, in itself, sufficient to guarantee the safety and quality of drinking water supplies. To address these issues, the Australian National Health and Medical Research Council (NHMRC) has developed a Framework for Management of Drinking Water Quality (the Framework) for incorporation in the Australian Drinking Water Guidelines, the primary reference on drinking water quality in Australia. The Framework was developed specifically for drinking water supplies and provides a comprehensive and preventive risk management approach from catchment to consumer. It includes holistic guidance on a range of issues considered good practice for system management. The Framework addresses four key areas: Commitment to Drinking Water Quality Management, System Analysis and System Management, Supporting Requirements, and Review. The Framework represents a significantly enhanced approach to the management and regulation of drinking water quality and offers a flexible and proactive means of optimising drinking water quality and protecting public health. Rather than the primary reliance on compliance monitoring, the Framework emphasises prevention, the importance of risk assessment, maintaining the integrity of water supply systems and application of multiple barriers to assure protection of public health. Development of the Framework was undertaken in collaboration with the water industry, regulators and other stakeholder, and will promote a common and unified approach to drinking water quality management throughout Australia. The Framework has attracted international interest.

  20. Infectious Disinfection: "Exploring Global Water Quality"

    ERIC Educational Resources Information Center

    Mahaya, Evans; Tippins, Deborah J.; Mueller, Michael P.; Thomson, Norman

    2009-01-01

    Learning about the water situation in other regions of the world and the devastating effects of floods on drinking water helps students study science while learning about global water quality. This article provides science activities focused on developing cultural awareness and understanding how local water resources are integrally linked to the…

  1. A Review of Surface Water Quality Models

    PubMed Central

    Li, Shibei; Jia, Peng; Qi, Changjun; Ding, Feng

    2013-01-01

    Surface water quality models can be useful tools to simulate and predict the levels, distributions, and risks of chemical pollutants in a given water body. The modeling results from these models under different pollution scenarios are very important components of environmental impact assessment and can provide a basis and technique support for environmental management agencies to make right decisions. Whether the model results are right or not can impact the reasonability and scientificity of the authorized construct projects and the availability of pollution control measures. We reviewed the development of surface water quality models at three stages and analyzed the suitability, precisions, and methods among different models. Standardization of water quality models can help environmental management agencies guarantee the consistency in application of water quality models for regulatory purposes. We concluded the status of standardization of these models in developed countries and put forward available measures for the standardization of these surface water quality models, especially in developing countries. PMID:23853533

  2. Quality of ground water in Idaho

    USGS Publications Warehouse

    Yee, Johnson J.; Souza, William R.

    1987-01-01

    The major aquifers in Idaho are categorized under two rock types, sedimentary and volcanic, and are grouped into six hydrologic basins. Areas with adequate, minimally adequate, or deficient data available for groundwater-quality evaluations are described. Wide variations in chemical concentrations in the water occur within individual aquifers, as well as among the aquifers. The existing data base is not sufficient to describe fully the ground-water quality throughout the State; however, it does indicate that the water is generally suitable for most uses. In some aquifers, concentrations of fluoride, cadmium, and iron in the water exceed the U.S. Environmental Protection Agency's drinking-water standards. Dissolved solids, chloride, and sulfate may cause problems in some local areas. Water-quality data are sparse in many areas, and only general statements can be made regarding the areal distribution of chemical constituents. Few data are available to describe temporal variations of water quality in the aquifers. Primary concerns related to special problem areas in Idaho include (1) protection of water quality in the Rathdrum Prairie aquifer, (2) potential degradation of water quality in the Boise-Nampa area, (3) effects of widespread use of drain wells overlying the eastern Snake River Plain basalt aquifer, and (4) disposal of low-level radioactive wastes at the Idaho National Engineering Laboratory. Shortcomings in the ground-water-quality data base are categorized as (1) multiaquifer sample inadequacy, (2) constituent coverage limitations, (3) baseline-data deficiencies, and (4) data-base nonuniformity.

  3. Ground-water quality in Wyoming

    USGS Publications Warehouse

    Larson, L.R.

    1984-01-01

    This report graphically summarizes ground-water quality from selected chemical-quality data for about 2,300 ground-water sites in Wyoming. Dissolved-solids, nitrate, fluoride, arsenic, barium, cadmium, chromium, lead, mercury, selenium, iron, and manganese concentrations are summarized on a statewide basis. The major chemical-quality problem that limits the use of Wyoming ground-water is excessive dissolved-solids concentrations. The aquifers with the best quality water, based on the lowest median dissolved-solids concentration of water in aquifers with 20 or more sampled sites, are Holocene lacustrine deposits, the upper Testiary Ogallala Formation and Arikaree Formation, and the Mississippian Madison Limestone. The counties with the best quality water, based on the lowest median dissolved-solids concentrations are Teton County and Laramie County. Hot Springs County and Natrona County have the highest median dissolved-solids concentrations. About 3 percent of the nitrate concentrations of ground-water samples exceeded the national primary drinking-water standard of 10 milligrams per liter. Fluoride concentrations exceeded the national primary drinking-water standard in 14 percent of the ground-water samples. Except for selenium, toxic trace elements generally have not been found in concentrations in excess of the drinking-water standards. About 19 percent of the iron and about 30 percent of the manganese concentrations in ground-water samples exceeded the national secondary drinking-water standards. (USGS)

  4. Great Lakes Water Quality Agreement (GLWQA)

    EPA Pesticide Factsheets

    The Great Lakes Water Quality Agreement between the U.S. and Canada addresses critical environmental health issues in the Great Lakes region. It's a model of binational cooperation to protect water quality. It was first signed in 1972 and amended in 2012.

  5. 40 CFR 240.204 - Water quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Water quality. 240.204 Section 240.204 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended Procedures § 240.204 Water quality....

  6. 40 CFR 240.204 - Water quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Water quality. 240.204 Section 240.204 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended Procedures § 240.204 Water quality....

  7. 40 CFR 240.204 - Water quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Water quality. 240.204 Section 240.204 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended Procedures § 240.204 Water quality....

  8. 40 CFR 240.204 - Water quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Water quality. 240.204 Section 240.204 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended Procedures § 240.204 Water quality....

  9. 40 CFR 240.204 - Water quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Water quality. 240.204 Section 240.204 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended Procedures § 240.204 Water quality....

  10. Water quality evaluation of Al-Gharraf river by two water quality indices

    NASA Astrophysics Data System (ADS)

    Ewaid, Salam Hussein

    2016-12-01

    Water quality of Al-Gharraf river, the largest branch of Tigris River south of Iraq, was evaluated by the National Sanitation Foundation Water Quality Index (NFS WQI) and the Heavy Metal Pollution Index (HPI) depending on 13 physical, chemical, and biological parameters of water quality measured monthly at ten stations on the river during 2015. The NSF-WQI range obtained for the sampling sites was 61-70 indicating a medium water quality. The HPI value was 98.6 slightly below the critical value for drinking water of 100, and the water quality in the upstream stations is better than downstream due to decrease in water and the accumulation of contaminants along the river. This study explains the significance of applying the water quality indices that show the aggregate impact of ecological factors in charge of water pollution of surface water and which permits translation of the monitoring data to assist the decision makers.

  11. Application of multivariate statistical methods and water-quality index to evaluation of water quality in the Kashkan River.

    PubMed

    Mostafaei, Abazar

    2014-04-01

    The Kashkan River (KR), located in the west of Iran, is a major source of water supply for residential and agricultural areas as well as livestock. The objective of this study was to assess the spatial and long temporal variations of surface water quality of the KR based on measured chemical ions. The Canadian Council of Ministers of Environment Water Quality Index (CCME WQI) technique was utilized using measurements from 10 sampling stations during a period of 36 years (1974-2009). The measured data included cations (Na⁺, K⁺, Ca²⁺, Mg²⁺), anions (HCO(3)⁻, Cl⁻, SO(4)²⁻), pH, and electrical conductivity. Principal component analysis was performed to identify which of the parameters to be included in the CCME WQI calculations were actually correlated and which ones were responsible for most of the variance observed in the water-quality data. In addition, KR water quality was evaluated for its suitability for drinking and irrigation purposes using conventional methods. Last, trend detection in the WQI time series of the KR showed water-quality degradation at all sampling stations, whereas the Jelhool sub-basin more adversely affects the quality of KR water in the watershed. Nonetheless, on average, the water quality of the KR was rated as fair.

  12. Fraser River watershed, Colorado : assessment of available water-quantity and water-quality data through water year 1997

    USGS Publications Warehouse

    Apodaca, Lori Estelle; Bails, Jeffrey B.

    1999-01-01

    The water-quantity and water-quality data for the Fraser River watershed through water year 1997 were compiled for ground-water and surface-water sites. In order to assess the water-quality data, the data were related to land use/land cover in the watershed. Data from 81 water-quantity and water-quality sites, which consisted of 9 ground-water sites and 72 surface-water sites, were available for analysis. However, the data were limited and frequently contained only one or two water-quality analyses per site.The Fraser River flows about 28 miles from its headwaters at the Continental Divide to the confluence with the Colorado River. Ground-water resources in the watershed are used for residential and municipal drinking-water supplies. Surface water is available for use, but water diversions in the upper parts of the watershed reduce the flow in the river. Land use/land cover in the watershed is predominantly forested land, but increasing urban development has the potential to affect the quantity and quality of the water resources.Analysis of the limited ground-water data in the watershed indicates that changes in the land use/land cover affect the shallow ground-water quality. Water-quality data from eight shallow monitoring wells in the alluvial aquifer show that iron and manganese concentrations exceeded the U.S. Environmental Protection Agency secondary maximum contaminant level. Radon concentrations from these monitoring wells exceeded the U.S. Environmental Protection Agency proposed maximum contaminant level. The proposed radon contaminant level is currently being revised. The presence of volatile organic compounds at two monitoring wells in the watershed indicates that land use affects the shallow ground water. In addition, bacteria detected in three samples are at concentrations that would be a concern for public health if the water was to be used as a drinking supply. Methylene blue active substances were detected in the ground water at some sites and are a

  13. An assessment of drinking-water quality post-Haiyan

    PubMed Central

    Anarna, Maria Sonabel; Fernando, Arturo

    2015-01-01

    Introduction Access to safe drinking-water is one of the most important public health concerns in an emergency setting. This descriptive study reports on an assessment of water quality in drinking-water supply systems in areas affected by Typhoon Haiyan immediately following and 10 months after the typhoon. Methods Water quality testing and risk assessments of the drinking-water systems were conducted three weeks and 10 months post-Haiyan. Portable test kits were used to determine the presence of Escherichia coli and the level of residual chlorine in water samples. The level of risk was fed back to the water operators for their action. Results Of the 121 water samples collected three weeks post-Haiyan, 44% were contaminated, while 65% (244/373) of samples were found positive for E. coli 10 months post-Haiyan. For the three components of drinking-water systems – source, storage and distribution – the proportions of contaminated systems were 70%, 67% and 57%, respectively, 10 months after Haiyan. Discussion Vulnerability to faecal contamination was attributed to weak water safety programmes in the drinking-water supply systems. Poor water quality can be prevented or reduced by developing and implementing a water safety plan for the systems. This, in turn, will help prevent waterborne disease outbreaks caused by contaminated water post-disaster. PMID:26767136

  14. Santa Margarita Lagoon Water Quality Monitoring Data

    DTIC Science & Technology

    2012-08-01

    potential eutrophication impairment. In particular, the Investigative Order directed the Santa Margarita Lagoon Stakeholder Group composed of Marine Corps...provide a long-term water quality dataset that can be used for calibrating a hydrodynamic and eutrophication numeric model of the lagoon. A secondary...objective of this project, to provide a long-term water quality dataset of sufficient quality for calibrating a hydrodynamic and eutrophication

  15. Little Big Horn River Water Quality Project

    SciTech Connect

    Bad Bear, D.J.; Hooker, D.

    1995-10-01

    This report summarizes the accomplishments of the Water Quality Project on the Little Big horn River during the summer of 1995. The majority of the summer was spent collecting data on the Little Big Horn River, then testing the water samples for a number of different tests which was done at the Little Big Horn College in Crow Agency, Montana. The intention of this study is to preform stream quality analysis to gain an understanding of the quality of selected portion of the river, to assess any impact that the existing developments may be causing to the environment and to gather base-line data which will serve to provide information concerning the proposed development. Citizens of the reservation have expressed a concern of the quality of the water on the reservation; surface waters, ground water, and well waters.

  16. Water Quality Indicators Guide [and Teacher's Handbook]: Surface Waters.

    ERIC Educational Resources Information Center

    Terrell, Charles R.; Perfetti, Patricia Bytnar

    This guide aids in finding water quality solutions to problems from sediment, animal wastes, nutrients, pesticides, and salts. The guide allows users to learn the fundamental concepts of water quality assessment by extracting basic tenets from geology, hydrology, biology, ecology, and wastewater treatment. An introduction and eight chapters are…

  17. Water spectral pattern as holistic marker for water quality monitoring.

    PubMed

    Kovacs, Zoltan; Bázár, György; Oshima, Mitsue; Shigeoka, Shogo; Tanaka, Mariko; Furukawa, Akane; Nagai, Airi; Osawa, Manami; Itakura, Yukari; Tsenkova, Roumiana

    2016-01-15

    Online water quality monitoring technologies have been improving continuously. At the moment, water quality is defined by the respective range of few chosen parameters. However, this strategy requires sampling and it cannot provide evaluation of the entire water molecular system including various solutes. As it is nearly impossible to monitor every single molecule dissolved in water, the objective of our research is to introduce a complimentary approach, a new concept for water screening by observing the water molecular system changes using aquaphotomics and Quality Control Chart method. This approach can continuously provide quick information about any qualitative change of water molecular arrangement without taking into account the reason of the alteration of quality. Different species and concentrations of solutes in aqueous systems structure the water solvent differently. Aquaphotomics investigates not the characteristic absorption bands of the solute in question, but the solution absorption at vibrational bands of water's covalent and hydrogen bonds that have been altered by the solute. The applicability of the proposed concept is evaluated by monitoring the water structural changes in different aqueous solutions such as acid, sugar, and salt solutions at millimolar concentration level and in ground water. The results show the potential of the proposed approach to use water spectral pattern monitoring as bio marker of water quality. Our successful results open a new venue in water quality monitoring by offering a quick and cost effective method for continuous screening of water molecular arrangement. Instead of the regular analysis of individual physical or chemical parameters, with our method - as a complementary tool - the structural changes of water molecular system used as a mirror reflecting even small disturbances in water can indicate the necessity of further detailed analysis by conventional methods.

  18. Microbes and Water Quality in Developed Countries

    EPA Science Inventory

    Safe drinking water has been a concern for mankind through out the world for centuries. In the developed world, governments consider access to safe and clean drinking water to be a basic human right. Government regulations generally address the quality of the source water, adequ...

  19. School on Alert over Water Quality

    ERIC Educational Resources Information Center

    Bowman, Darcia Harris

    2004-01-01

    This article examines the issue on the quality of water in Seattle's school districts. Seattle's water woes became public when four little containers of rust-colored water from fountains in the city district's Wedgewood Elementary School, collected by concerned parents, were tested by a certified laboratory and found to exceed federal lead limits.…

  20. Correlation study among water quality parameters an approach to water quality management.

    PubMed

    Sinha, D K; Rastogi, G K; Kumar, R; Kumar, N

    2009-04-01

    To find out an approach to water quality management through correlation studies between various water quality parameters, the statistical regression analysis for six data points of underground drinking water of different hand pumps at J. P. Nagar was carried out. The comparison of estimated values with W.H.O drinking water standards revealed that water of the study area is polluted with reference to a number of physico-chemical parameters studied. Regression analysis suggests that conductivity of underground water is found to be significantly correlated with eight out of twelve water quality parameters studied. It may be suggested that the underground drinking water quality at J. P. Nagar can be checked very effectively by controlling the conductivity of water. The present study may be treated one step forward towards the water quality management.

  1. Quality assessment of plant transpiration water

    NASA Technical Reports Server (NTRS)

    Macler, Bruce A.; Janik, Daniel S.; Benson, Brian L.

    1990-01-01

    It has been proposed to use plants as elements of biologically-based life support systems for long-term space missions. Three roles have been brought forth for plants in this application: recycling of water, regeneration of air and production of food. This report discusses recycling of water and presents data from investigations of plant transpiration water quality. Aqueous nutrient solution was applied to several plant species and transpired water collected. The findings indicated that this water typically contained 0.3-6 ppm of total organic carbon, which meets hygiene water standards for NASA's space applications. It suggests that this method could be developed to achieve potable water standards.

  2. Water Quality Assessment using Satellite Remote Sensing

    NASA Astrophysics Data System (ADS)

    Haque, Saad Ul

    2016-07-01

    The two main global issues related to water are its declining quality and quantity. Population growth, industrialization, increase in agriculture land and urbanization are the main causes upon which the inland water bodies are confronted with the increasing water demand. The quality of surface water has also been degraded in many countries over the past few decades due to the inputs of nutrients and sediments especially in the lakes and reservoirs. Since water is essential for not only meeting the human needs but also to maintain natural ecosystem health and integrity, there are efforts worldwide to assess and restore quality of surface waters. Remote sensing techniques provide a tool for continuous water quality information in order to identify and minimize sources of pollutants that are harmful for human and aquatic life. The proposed methodology is focused on assessing quality of water at selected lakes in Pakistan (Sindh); namely, HUBDAM, KEENJHAR LAKE, HALEEJI and HADEERO. These lakes are drinking water sources for several major cities of Pakistan including Karachi. Satellite imagery of Landsat 7 (ETM+) is used to identify the variation in water quality of these lakes in terms of their optical properties. All bands of Landsat 7 (ETM+) image are analyzed to select only those that may be correlated with some water quality parameters (e.g. suspended solids, chlorophyll a). The Optimum Index Factor (OIF) developed by Chavez et al. (1982) is used for selection of the optimum combination of bands. The OIF is calculated by dividing the sum of standard deviations of any three bands with the sum of their respective correlation coefficients (absolute values). It is assumed that the band with the higher standard deviation contains the higher amount of 'information' than other bands. Therefore, OIF values are ranked and three bands with the highest OIF are selected for the visual interpretation. A color composite image is created using these three bands. The water quality

  3. National Water Quality Laboratory - A Profile

    USGS Publications Warehouse

    Raese, Jon W.

    2001-01-01

    The U.S. Geological Survey (USGS) National Water Quality Laboratory (NWQL) is a full-service laboratory that specializes in environmental analytical chemistry. The NWQL's primary mission is to support USGS programs requiring environmental analyses that provide consistent methodology for national assessment and trends analysis. The NWQL provides the following: high-quality chemical data; consistent, published, state-of-the-art methodology; extremely low-detection levels; high-volume capability; biological unit for identifying benthic invertebrates; quality assurance for determining long-term water-quality trends; and a professional staff.

  4. Principles of Water Quality Control.

    ERIC Educational Resources Information Center

    Tebbutt, T. H. Y.

    This book is designed as a text for undergraduate civil engineering courses and as preliminary reading for postgraduate courses in public health engineering and water resources technology. It is also intended to be of value to workers already in the field and to students preparing for the examinations of the Institute of Water Pollution Control…

  5. A water quality monitoring system for HAWC

    NASA Astrophysics Data System (ADS)

    Garfias, F.; Bernal, A.; Tinoco, S.; Iriarte, A.

    2012-09-01

    HAWC (High Altitude Water Cherenkov), is a gamma ray (γ) large aperture observatory with high sensitivity that will be able to continuously monitor the sky for transient sources of photons with energies between 100 GeV and 100 TeV. HAWC is under construction in Sierra Negra, Puebla, Mexico, which is located at a high altitude of 4100m. HAWC will be an array of 300 Cherenkov detectors each one with 200,000 liters of highly pure water. The sensitivity of the instrument depends strongly on the water quality. We present the design and construction of the HAWC water quality monitoring system. We seek monitor the transparency in violet-blue range to achieve and maintain the required water transparency quality in each detector. The system is robust and user friendly. The measurements are reproducible. Also we present some results from the monitoring the water from the VAMOS detector tanks and of the filtering system.

  6. 40 CFR 130.3 - Water quality standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... QUALITY PLANNING AND MANAGEMENT § 130.3 Water quality standards. A water quality standard (WQS) defines the water quality goals of a water body, or portion thereof, by designating the use or uses to be made... 40 Protection of Environment 22 2014-07-01 2013-07-01 true Water quality standards. 130.3...

  7. Shale gas development impacts on surface water quality in Pennsylvania

    PubMed Central

    Olmstead, Sheila M.; Muehlenbachs, Lucija A.; Shih, Jhih-Shyang; Chu, Ziyan; Krupnick, Alan J.

    2013-01-01

    Concern has been raised in the scientific literature about the environmental implications of extracting natural gas from deep shale formations, and published studies suggest that shale gas development may affect local groundwater quality. The potential for surface water quality degradation has been discussed in prior work, although no empirical analysis of this issue has been published. The potential for large-scale surface water quality degradation has affected regulatory approaches to shale gas development in some US states, despite the dearth of evidence. This paper conducts a large-scale examination of the extent to which shale gas development activities affect surface water quality. Focusing on the Marcellus Shale in Pennsylvania, we estimate the effect of shale gas wells and the release of treated shale gas waste by permitted treatment facilities on observed downstream concentrations of chloride (Cl−) and total suspended solids (TSS), controlling for other factors. Results suggest that (i) the treatment of shale gas waste by treatment plants in a watershed raises downstream Cl− concentrations but not TSS concentrations, and (ii) the presence of shale gas wells in a watershed raises downstream TSS concentrations but not Cl− concentrations. These results can inform future voluntary measures taken by shale gas operators and policy approaches taken by regulators to protect surface water quality as the scale of this economically important activity increases. PMID:23479604

  8. Shale gas development impacts on surface water quality in Pennsylvania.

    PubMed

    Olmstead, Sheila M; Muehlenbachs, Lucija A; Shih, Jhih-Shyang; Chu, Ziyan; Krupnick, Alan J

    2013-03-26

    Concern has been raised in the scientific literature about the environmental implications of extracting natural gas from deep shale formations, and published studies suggest that shale gas development may affect local groundwater quality. The potential for surface water quality degradation has been discussed in prior work, although no empirical analysis of this issue has been published. The potential for large-scale surface water quality degradation has affected regulatory approaches to shale gas development in some US states, despite the dearth of evidence. This paper conducts a large-scale examination of the extent to which shale gas development activities affect surface water quality. Focusing on the Marcellus Shale in Pennsylvania, we estimate the effect of shale gas wells and the release of treated shale gas waste by permitted treatment facilities on observed downstream concentrations of chloride (Cl(-)) and total suspended solids (TSS), controlling for other factors. Results suggest that (i) the treatment of shale gas waste by treatment plants in a watershed raises downstream Cl(-) concentrations but not TSS concentrations, and (ii) the presence of shale gas wells in a watershed raises downstream TSS concentrations but not Cl(-) concentrations. These results can inform future voluntary measures taken by shale gas operators and policy approaches taken by regulators to protect surface water quality as the scale of this economically important activity increases.

  9. Lake Tahoe Water Quality Improvement Programs

    EPA Pesticide Factsheets

    Information on the Lake Tahoe watershed, EPA's protection efforts, water quality issues, effects of climate, change, Lake Tahoe Total Maximum Daily Load TMDL), EPA-sponsored projects, list of partner agencies.

  10. Nonpoint Source: National Water Quality Initiative

    EPA Pesticide Factsheets

    National Water Quality Initiative (NWQI) is a collaborative between EPA and Natural Resource Conservation Service ( NRCS) that began in 2012. NWQI provides a means to accelerate voluntary, private lands conservation practices

  11. How hydrophobic buckminsterfullerene affects surrounding water structure.

    PubMed

    Weiss, Dahlia R; Raschke, Tanya M; Levitt, Michael

    2008-03-13

    The hydrophobic hydration of fullerenes in water is of significant interest as the most common Buckminsterfullerene (C60) is a mesoscale sphere; C60 also has potential in pharmaceutical and nanomaterial applications. We use an all-atom molecular dynamics simulation lasting hundreds of nanoseconds to determine the behavior of a single molecule of C60 in a periodic box of water, and compare this to methane. A C60 molecule does not induce drying at the surface; however, unlike a hard sphere methane, a hard sphere C60 solute does. This is due to a larger number of attractive Lennard-Jones interactions between the carbon atom centers in C60 and the surrounding waters. In these simulations, water is not uniformly arranged but rather adopts a range of orientations in the first hydration shell despite the spherical symmetry of both solutes. There is a clear effect of solute size on the orientation of the first hydration shell waters. There is a large increase in hydrogen-bonding contacts between waters in the C60 first hydration shell. There is also a disruption of hydrogen bonds between waters in the first and second hydration shells. Water molecules in the first hydration shell preferentially create triangular structures that minimize the net water dipole near the surface near both the methane and C60 surface, reducing the total energy of the system. Additionally, in the first and second hydration shells, the water dipoles are ordered to a distance of 8 A from the solute surface. We conclude that, with a diameter of approximately 1 nm, C60 behaves as a large hydrophobic solute.

  12. Neighborhood Perceptions Affect Dietary Behaviors and Diet Quality

    ERIC Educational Resources Information Center

    Keita, Akilah Dulin; Casazza, Krista; Thomas, Olivia; Fernandez, Jose R.

    2011-01-01

    Objective: The primary purpose of this study was to determine if perceived neighborhood disorder affected dietary quality within a multiethnic sample of children. Design: Children were recruited through the use of fliers, wide-distribution mailers, parent magazines, and school presentations from June 2005 to December 2008. Setting:…

  13. Preslaughter factors affecting poultry meat quality chapter 2.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Poultry meat quality is affected by numerous antemortem factors, in particular those occurring during the last 24 hours that the bird is alive. These short term factors influence carcass yield (live shrink), carcass defects (bruising, broken/dislocated bones), carcass microbiological contamination, ...

  14. National Water Quality Laboratory, 1995 services catalog

    USGS Publications Warehouse

    Timme, P.J.

    1995-01-01

    This Services Catalog contains information about field supplies and analytical services available from the National Water Quality Laboratory in Denver, Colo., and field supplies available from the Quality Water Service Unit in Ocala, Fla., to members of the U.S. Geological Survey. To assist personnel in the selection of analytical services, this catalog lists sample volume, required containers, applicable concentration range, detection level, precision of analysis, and preservation requirements for samples.

  15. [Achieving quality goals for bodies of water].

    PubMed

    Cencetti, Corrado; Guidi, Massimo; Martinelli, Angiolo; Patrizi, Giuseppe

    2005-01-01

    Target of this paper is to draw the relationship between environmental factors and some impacts due to human activity, in order to outline environmental quality restoring strategies for water bodies, which include among result indicators also biological parameters expected for Italian regulation and European directives. Morphologic equilibrium and correct knowledge of processes regulating fluvial dynamic, as basic factor of ecosystem functionality condition, are highlighted. Statistic evaluation processes of water quality data and implementation and validation of mathematical models are described.

  16. The Upper Colorado River; National Water-Quality Assessment Program; surface-water-monitoring network

    USGS Publications Warehouse

    Spahr, Norman E.; Driver, Nancy E.; Stephens, Verlin C.

    1996-01-01

    The U.S. Geological Survey began full implementation of the National Water-Quality Assessment (NAWQA) program in 1991. The long-term goals of the NAWQA program are to (1) describe current water-quality conditions for a large part of the Nation's freshwater streams, rivers, and aquifers; (2) describe how water quality is changing over time; and (3) improve understanding of the primary natural and human factors that affect water-quality conditions (Leahy and others, 1990). To meet these goals, 60 study units representing the Nation's most important river basins and aquifers are being investigated. The program design balances the unique assessment requirements of individual study units with a nationally consistent design structure that incorporates a multiscale, interdisciplinary approach for assessment of surface and ground water.

  17. ADDRESSING EMERGING ISSUES IN WATER QUALITY ...

    EPA Pesticide Factsheets

    Public concern over cleanliness and safety of source and recreational waters has prompted researchers to look for indicators of water quality. Giving public water authorities multiple tools to measure and monitor levels of chemical contaminants, as well as chemical markers of contamination, simply and rapidly would enhance public protection. The goals of water quality are outlined in the Water Quality Multi-year Plan [http://intranet.epa.gov/ospintra/Planning/wq.pdf] and the research in this task falls under GPRA Goal 2, 2.3.2, Long Term Goals 1, 2, and 4. The research focused on in the subtasks is the development and application of state-of the-art technologies to meet the needs of the public, Office of Water, and ORD in the area of Water Quality. Located In the subtasks are the various research projects being performed in support of this Task and more in-depth coverage of each project. Briefly, each project's objective is stated below.Subtask 1: To integrate state-of-the-art technologies (polar organic chemical integrative samplers, advanced solid-phase extraction methodologies with liquid chromatography/electrospray/mass spectrometry) and apply them to studying the sources and fate of a select list of PPCPs. Application and improvement of analytical methodologies that can detect non-volatile, polar, water-soluble pharmaceuticals in source waters at levels that could be environmentally significant (at concentrations less than parts per billion, ppb). IAG

  18. Parameters affecting HS emissions removal and re-circulating water quality in a pilot-scale sequential biological treatment system at a wastewater lift station in Brownsville, Texas, USA.

    PubMed

    Karre, Anand K; Bairu, Pavan; Jones, Kim D; Paca, Jan

    2012-01-01

    In this study, a pilot-scale sequential biological treatment system combining a biotrickling filter and biofilter was used to optimize the removal of variable emission H(2)S loadings ranging from 30 to 120 g m(-3) h(-1)at a wastewater lift station in Brownsville, Texas USA. The biotrickling filter recycle water pH remained between 2.0 to 3.0 during the four months of unit operation and the overall removal efficiency for H(2)S was >99%. The biotrickling filter removal efficiency was 70 ± 8%, with an elimination capacity of 10 to 80 g m(-3) h(-1) while the biofilter elimination capacity ranged from 10 to 40 g m(-3) h(-1). The sequential treatment system was operated initially at an Empty Bed Residence Time (EBRT) of 120 s (50 s for the biotrickling filter and 70 s for biofilter) for two months and then at an EBRT of 60 s (25 s for biotrickling filter and 35s for biofilter) for the remainder of the operating period; remarkably, there was only a slight decrease in removal efficiency at 60 s EBRT. In order to qualitatively evaluate the changes in recycle water quality in the system on the performance of the unit in precipitating sulfur species, the equilibrium chemical model, Visual MINTEQ was employed. The model predicted speciation results based on the feed water quality and sulfur loadings, and also forecast some iron-sulfur complexes which have potential to form some complex precipitates. This research demonstrated that low pH re-circulating water quality in the biological treatment of H(2)S was possible without compromising the high removal efficiency, and that an improved understanding of the recycle water chemistry of the trickling unit of a sequential treatment system could be useful in the overall optimization of the process.

  19. Summary of surface-water quality, ground-water quality, and water withdrawals for the Spirit Lake Reservation, North Dakota

    USGS Publications Warehouse

    Vining, Kevin C.; Cates, Steven W.

    2006-01-01

    Available surface-water quality, ground-water quality, and water-withdrawal data for the Spirit Lake Reservation were summarized. The data were collected intermittently from 1948 through 2004 and were compiled from U.S. Geological Survey databases, North Dakota State Water Commission databases, and Spirit Lake Nation tribal agencies. Although the quality of surface water on the reservation generally is satisfactory, no surface-water sources are used for consumable water supplies. Ground water on the reservation is of sufficient quality for most uses. The Tokio and Warwick aquifers have better overall water quality than the Spiritwood aquifer. Water from the Spiritwood aquifer is used mostly for irrigation. The Warwick aquifer provides most of the consumable water for the reservation and for the city of Devils Lake. Annual water withdrawals from the Warwick aquifer by the Spirit Lake Nation ranged from 71 million gallons to 122 million gallons during 2000-04.

  20. Construction of a novel water quality index and quality indicator for reservoir water quality evaluation: A case study in the Amazon region

    NASA Astrophysics Data System (ADS)

    Lobato, T. C.; Hauser-Davis, R. A.; Oliveira, T. F.; Silveira, A. M.; Silva, H. A. N.; Tavares, M. R. M.; Saraiva, A. C. F.

    2015-03-01

    A novel Quality Indicator (QI) and Water Quality Index (WQI) were constructed in the present study for the evaluation of the water quality of a Hydroelectric Plant reservoir in the Amazon area, Brazil, taking into account the specific characteristics of the Amazon area. Factor analyses were applied in order to select the relevant parameters to be included in the construction of both indices. Quality curves for each selected parameter were then created and the constructed QI and WQI were then applied to investigate the water quality at the reservoir. The hydrological cycle was shown by the indices to directly affect reservoir water quality, and the WQI was further useful in identifying anthropogenic impacts in the area, since water sampling stations suffering different anthropogenic impacts were categorized differently, with poorer water quality, than stations near the dam and the environmental preservation area, which suffer significantly less anthropogenic impacts, and were categorized as presenting better water quality. The constructed indices are thus helpful in investigating environmental conditions in areas that show well-defined hydrological cycles, in addition to being valuable tools in the detection of anthropogenic impacts. The statistical techniques applied in the construction of these indices may also be used to construct other indices in different geographical areas, taking into account the specificities for each area.

  1. WATER QUALITY MONITORING OF PHARMACEUTICALS ...

    EPA Pesticide Factsheets

    The demand on freshwater to sustain the needs of the growing population is of worldwide concern. Often this water is used, treated, and released for reuse by other communities. The anthropogenic contaminants present in this water may include complex mixtures of pesticides, prescription and nonprescription drugs, personal care and common consumer products, industrial and domestic-use materials and degradation products of these compounds. Although, the fate of these pharmaceuticals and personal care products (PPCPs) in wastewater treatment facilities is largely unknown, the limited data that does exist suggests that many of these chemicals survive treatment and some others are returned to their biologically active form via deconjugation of metabolites.Traditional water sampling methods (i.e., grab or composite samples) often require the concentration of large amounts of water to detect trace levels of PPCPs. A passive sampler, the polar organic chemical integrative sampler (POCIS), has been developed to integratively concentrate the trace levels of these chemicals, determine the time-weighted average water concentrations, and provide a method of estimating the potential exposure of aquatic organisms to these complex mixtures of waterborne contaminants. The POCIS (U.S. Patent number 6,478,961) consists of a hydrophilic microporous membrane, acting as a semipermeable barrier, enveloping various solid-phase sorbents that retain the sampled chemicals. Sampling rates f

  2. Diatom (Bacillariophyta) community response to water quality and land use

    USGS Publications Warehouse

    Stewart, Paul M.; Butcher, Jason T.; Gerovac, Paul J.

    1999-01-01

    Aquatic algal communities are sensitive to environmental stresses and are used as indicators of water quality. Diatoms were collected from three streams that drain the Great Marsh at Indiana Dunes National Lakeshore. Diatom communities, water chemistry, and land use were measured at each site to test the hypothesis that differences in land use indirectly affect diatom communities, through changes in water quality. Relationships among these variables were examined by correlation, cluster, and detrended correspondence analysis. Several water chemistry variables were correlated to several land-use categories. Diatom species diversity was most variable in disturbed areas with poorer water quality and was correlated with land use and total alkalinity, total hardness, and specific conductance. Sites within each stream were grouped in terms of their diatom assemblage by both cluster and detrended correspondence analysis with but two exceptions in Dunes Creek. Diatom communities in the three streams responded to land use through its effects on water quality. The results of this study demonstrate the use of diatom assemblages as indicators of water quality, which can be linked to land use in a watershed.

  3. STOrage and RETrieval and Water Quality eXchange | Water ...

    EPA Pesticide Factsheets

    2016-04-07

    The STORET (short for STOrage and RETrieval) Data Warehouse is a repository for water quality, biological, and physical data and is used by state environmental agencies, EPA and other federal agencies, universities, private citizens, and many others.

  4. STOrage and RETrieval and Water Quality eXchange | Water ...

    EPA Pesticide Factsheets

    2016-02-17

    The STORET (short for STOrage and RETrieval) Data Warehouse is a repository for water quality, biological, and physical data and is used by state environmental agencies, EPA and other federal agencies, universities, private citizens, and many others.

  5. STOrage and RETrieval and Water Quality eXchange | Water ...

    EPA Pesticide Factsheets

    2016-03-22

    The STORET (short for STOrage and RETrieval) Data Warehouse is a repository for water quality, biological, and physical data and is used by state environmental agencies, EPA and other federal agencies, universities, private citizens, and many others.

  6. Instruments for Water Quality Measurements

    ERIC Educational Resources Information Center

    Phillips, Sidney L.; Mack, Dick A.

    1975-01-01

    This discussion gives a general picture of the instrumentation available or being developed for measuring the four major categories of water pollutants: metals, nutrients, pesticides and oxygen demand. The instruments are classified as follows: manually operated laboratory analyzers, automated laboratory instrumentation, manual field monitors, and…

  7. Water Quality Standards for Coral Reef Protection

    EPA Science Inventory

    The U.S. Clean Water Act provides a legal framework to protect coastal biological resources such as coral reefs, mangrove forests, and seagrass meadows from the damaging effects of human activities. Even though many resources are protected under this authority, water quality stan...

  8. Drinking water quality monitoring using trend analysis.

    PubMed

    Tomperi, Jani; Juuso, Esko; Eteläniemi, Mira; Leiviskä, Kauko

    2014-06-01

    One of the common quality parameters for drinking water is residual aluminium. High doses of residual aluminium in drinking water or water used in the food industry have been proved to be at least a minor health risk or even to increase the risk of more serious health effects, and cause economic losses to the water treatment plant. In this study, the trend index is developed from scaled measurement data to detect a warning of changes in residual aluminium level in drinking water. The scaling is based on monotonously increasing, non-linear functions, which are generated with generalized norms and moments. Triangular episodes are classified with the trend index and its derivative. The severity of the situations is evaluated by deviation indices. The trend episodes and the deviation indices provide good tools for detecting changes in water quality and for process control.

  9. Microbial quality of drinking water from microfiltered water dispensers.

    PubMed

    Sacchetti, R; De Luca, G; Dormi, A; Guberti, E; Zanetti, F

    2014-03-01

    A comparison was made between the microbial quality of drinking water obtained from Microfiltered Water Dispensers (MWDs) and that of municipal tap water. A total of 233 water samples were analyzed. Escherichia coli (EC), enterococci (ENT), total coliforms (TC), Staphylococcus aureus, Pseudomonas aeruginosa and heterotrophic plate count (HPC) at 22 °C and 37 °C were enumerated. In addition, information was collected about the principal structural and functional characteristics of each MWD in order to study the various factors that might influence the microbial quality of the water. EC and ENT were not detected in any of the samples. TC were never detected in the tap water but were found in 5 samples taken from 5 different MWDs. S. aureus was found in a single sample of microfiltered water. P. aeruginosa was found more frequently and at higher concentrations in the samples collected from MWDs. The mean HPCs at 22 °C and 37 °C were significantly higher in microfiltered water samples compared to those of the tap water. In conclusion, the use of MWDs may increase the number of bacteria originally present in tap water. It is therefore important to monitor the quality of the dispensed water over time, especially if it is destined for vulnerable users.

  10. Colored plastic mulch microclimates affect strawberry fruit yield and quality

    NASA Astrophysics Data System (ADS)

    Shiukhy, Saeid; Raeini-Sarjaz, Mahmoud; Chalavi, Vida

    2015-08-01

    Significant reduction of strawberry ( Fragaria × ananassa, Duch.) fruit yield and quality, as a consequence of conventional cultivation method, is common in the Caspian Sea region, Iran. Recently, growers started using plastic mulches to overcome these shortcomings. Plastic mulches have different thermal and radiation properties and could affect strawberry fruit yield and quality. In the present study, the effect of different colored plastic mulches (black, red, and white) along with conventional practice was tested on yield and quality of strawberry Camarosa cultivar, in a completely randomized block design. Colored plastic mulches had highly significant effect on fruit weight, size, and phytochemical contents. In the most harvest times, mean fruit weight was significantly higher in red plastic relative to white and control treatments. Total fruit weight of plastic mulches was not significantly different, while all were statistically higher than that of control. Fruit size significantly increased over red plastic mulch. Total fruit numbers over plastic mulches were significantly higher than that of control treatment. The content of phenolic compounds was similar between treatments, while anthocyanin content, IC50 value, and flavonoid content significantly were affected by colored plastics. In conclusion, colored plastic mulches could affect strawberry fruit weight and quality through altering strawberry thermal and radiation environment.

  11. Colored plastic mulch microclimates affect strawberry fruit yield and quality.

    PubMed

    Shiukhy, Saeid; Raeini-Sarjaz, Mahmoud; Chalavi, Vida

    2015-08-01

    Significant reduction of strawberry (Fragaria × ananassa, Duch.) fruit yield and quality, as a consequence of conventional cultivation method, is common in the Caspian Sea region, Iran. Recently, growers started using plastic mulches to overcome these shortcomings. Plastic mulches have different thermal and radiation properties and could affect strawberry fruit yield and quality. In the present study, the effect of different colored plastic mulches (black, red, and white) along with conventional practice was tested on yield and quality of strawberry Camarosa cultivar, in a completely randomized block design. Colored plastic mulches had highly significant effect on fruit weight, size, and phytochemical contents. In the most harvest times, mean fruit weight was significantly higher in red plastic relative to white and control treatments. Total fruit weight of plastic mulches was not significantly different, while all were statistically higher than that of control. Fruit size significantly increased over red plastic mulch. Total fruit numbers over plastic mulches were significantly higher than that of control treatment. The content of phenolic compounds was similar between treatments, while anthocyanin content, IC(50) value, and flavonoid content significantly were affected by colored plastics. In conclusion, colored plastic mulches could affect strawberry fruit weight and quality through altering strawberry thermal and radiation environment.

  12. 40 CFR 130.6 - Water quality management plans.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 22 2014-07-01 2013-07-01 true Water quality management plans. 130.6... QUALITY PLANNING AND MANAGEMENT § 130.6 Water quality management plans. (a) Water quality management (WQM... and certified and approved updates to those plans. Continuing water quality planning shall be...

  13. Climate-water quality relationships in Texas reservoirs

    USGS Publications Warehouse

    Gelca, Rodica; Hayhoe, Katharine; Scott-Fleming, Ian; Crow, Caleb; Dawson, D.; Patino, Reynaldo

    2015-01-01

    Water temperature, dissolved oxygen, and concentrations of salts in surface water bodies can be affected by the natural environment, local human activities such as surface and ground water withdrawals, land use, and energy extraction, and variability and long-term trends in atmospheric conditions including temperature and precipitation. Here, we quantify the relationship between 121 indicators of mean and extreme temperature and precipitation and 24 water quality parameters in 57 Texas reservoirs using observational data records covering the period 1960 to 2010. We find that water temperature, dissolved oxygen, pH, specific conductance, chloride, sulfate, and phosphorus all show consistent correlations with atmospheric predictors, including high and low temperature extremes, dry days, heavy precipitation events, and mean temperature and precipitation over time scales ranging from one week to two years. Based on this analysis and published future projections for this region, we expect climate change to increase water temperatures, decrease dissolved oxygen levels, decrease pH, increase specific conductance, and increase levels of sulfate, chloride in Texas reservoirs. Over decadal time scales, this may affect aquatic ecosystems in the reservoirs, including altering the risk of conditions conducive to algae occurrence, as well as affecting the quality of water available for human consumption and recreation.

  14. Development of reclaimed potable water quality criteria

    NASA Technical Reports Server (NTRS)

    Flory, D. A.; Weir, F. W.

    1979-01-01

    In order to minimize launch requirements necessary to meet the demands of long-term spaceflight, NASA will reuse water reclaimed from various on-board sources including urine, feces, wash water and humidity condensate. Development of reclamation systems requires the promulgation of water quality standards for potable reuse of the reclaimed water. Existing standards for domestic U.S. potable water consumption were developed, but do not consider the peculiar problems associated with the potable reuse of recycled water. An effort was made to: (1) define a protocol by which comprehensive reclaimed water potability/palatability criteria can be established and updated; and (2) continue the effort to characterize the organic content of reclaimed water in the Regenerative Life Support Evaluation.

  15. National Water-Quality Assessment Program: The Sacramento River Basin

    USGS Publications Warehouse

    Domagalski, Joseph L.; Brown, Larry R.

    1994-01-01

    In 1991, the U.S. Geological Survey (USGS) began to implement a full-scale National Water-Quality Assessment (NAWQA) program. The long-term goals of the NAWQA program are to describe the status of and trends in the quality of a large, representative part of the Nation's surface- and ground-water resources and to identify the major natural and human factors that affect the quality of those resources. In addressing these goals, the program will provide a wealth of water- quality information that will be useful to policy makers and managers at the national, State, and local levels. A major asset of the NAWQA program is that it will allow for the integration of water-quality information collected at several scales. A major component of the program is the study-unit investigation-the foundation of national- level assessment. The 60 study units of the NAWQA program are hydrologic systems that include parts of most major river basins and aquifer systems of the conterminous United States. These study units cover areas of 1,000 to more than 60,000 square miles and represent 60 to 70 percent of the Nation's water use and population served by public water supplies. Investigations of the first 20 study units began in 1991. In 1994, the Sacramento River Basin was among the second set of 20 NAWQA study units selected for investigation.

  16. Early warning of changing drinking water quality by trend analysis.

    PubMed

    Tomperi, Jani; Juuso, Esko; Leiviskä, Kauko

    2016-06-01

    Monitoring and control of water treatment plants play an essential role in ensuring high quality drinking water and avoiding health-related problems or economic losses. The most common quality variables, which can be used also for assessing the efficiency of the water treatment process, are turbidity and residual levels of coagulation and disinfection chemicals. In the present study, the trend indices are developed from scaled measurements to detect warning signs of changes in the quality variables of drinking water and some operating condition variables that strongly affect water quality. The scaling is based on monotonically increasing nonlinear functions, which are generated with generalized norms and moments. Triangular episodes are classified with the trend index and its derivative. Deviation indices are used to assess the severity of situations. The study shows the potential of the described trend analysis as a predictive monitoring tool, as it provides an advantage over the traditional manual inspection of variables by detecting changes in water quality and giving early warnings.

  17. Human impact on the microbiological water quality of the rivers

    PubMed Central

    Niculae, Mihaela; Kiss, Timea; Şandru, Carmen Dana; Spînu, Marina

    2013-01-01

    Microbiological contamination is an important water-quality problem worldwide. Human impact on this category of contamination is significant and several human-related activities, and also the population explosion, have affected and are still affecting dramatically the aquatic environment. Extensive industrialization and agriculture have led to increased pollution and hydromorphological changes in many river basins. The Danube river is one of the most affected by these changes where human involvement is undeniable, and subsequently, the Danube Delta Biosphere Reserve became one of the most vulnerable ecosystems. This review is an attempt to analyse the microbiological contamination and to identify the major role human activities play in altering the water quality of the rivers. PMID:23813274

  18. 40 CFR 130.6 - Water quality management plans.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 21 2010-07-01 2010-07-01 false Water quality management plans. 130.6 Section 130.6 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.6 Water quality management plans. (a) Water quality management...

  19. 40 CFR 130.3 - Water quality standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 21 2010-07-01 2010-07-01 false Water quality standards. 130.3 Section 130.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.3 Water quality standards. A water quality standard (WQS)...

  20. 40 CFR 130.3 - Water quality standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 23 2012-07-01 2012-07-01 false Water quality standards. 130.3 Section 130.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.3 Water quality standards. A water quality standard (WQS)...

  1. 40 CFR 130.6 - Water quality management plans.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 23 2013-07-01 2013-07-01 false Water quality management plans. 130.6 Section 130.6 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.6 Water quality management plans. (a) Water quality management...

  2. 40 CFR 130.3 - Water quality standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 23 2013-07-01 2013-07-01 false Water quality standards. 130.3 Section 130.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.3 Water quality standards. A water quality standard (WQS)...

  3. 40 CFR 130.6 - Water quality management plans.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 23 2012-07-01 2012-07-01 false Water quality management plans. 130.6 Section 130.6 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.6 Water quality management plans. (a) Water quality management...

  4. 40 CFR 130.6 - Water quality management plans.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 22 2011-07-01 2011-07-01 false Water quality management plans. 130.6 Section 130.6 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.6 Water quality management plans. (a) Water quality management...

  5. 40 CFR 130.3 - Water quality standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 22 2011-07-01 2011-07-01 false Water quality standards. 130.3 Section 130.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.3 Water quality standards. A water quality standard (WQS)...

  6. Drainage water management effects on tile dicharge and water quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drainage water management (DWM) has received considerable attention as a potential best management practice for improving water quality in tile drained landscapes. However, only a limited number of studies have documented the effectiveness of DWM in mitigating nitrogen (N) and phosphorus (P) loads. ...

  7. Water quality assessment in Ecuador

    SciTech Connect

    Chudy, J.P.; Arniella, E.; Gil, E.

    1993-02-01

    The El Tor cholera pandemic arrived in Ecuador in March 1991, and through the course of the year caused 46,320 cases, of which 692 resulted in death. Most of the cases were confined to cities along Ecuador's coast. The Water and Sanitation for Health Project (WASH), which was asked to participate in the review of this request, suggested that a more comprehensive approach should be taken to cholera control and prevention. The approach was accepted, and a multidisciplinary team consisting of a sanitary engineer, a hygiene education specialist, and an institutional specialist was scheduled to carry out the assessment in late 1992 following the national elections.

  8. Private drinking water quality in rural Wisconsin.

    PubMed

    Knobeloch, Lynda; Gorski, Patrick; Christenson, Megan; Anderson, Henry

    2013-03-01

    Between July 1, 2007, and December 31, 2010, Wisconsin health departments tested nearly 4,000 rural drinking water supplies for coliform bacteria, nitrate, fluoride, and 13 metals as part of a state-funded program that provides assistance to low-income families. The authors' review of laboratory findings found that 47% of these wells had an exceedance of one or more health-based water quality standards. Test results for iron and coliform bacteria exceeded safe limits in 21% and 18% of these wells, respectively. In addition, 10% of the water samples from these wells were high in nitrate and 11% had an elevated result for aluminum, arsenic, lead, manganese, or strontium. The high percentage of unsafe test results emphasizes the importance of water quality monitoring to the health of nearly one million families including 300,000 Wisconsin children whose drinking water comes from a privately owned well.

  9. Improved water quality retrieval by identifying optically unique water classes

    NASA Astrophysics Data System (ADS)

    Nazeer, Majid; Nichol, Janet E.

    2016-10-01

    Accurate remote sensing retrieval of water quality parameters in complex coastal environments is challenging due to variability of the coastal environment. For example, in the coastal waters of Hong Kong water quality varies from east to west. The currently existing water zones, defined by the Hong Kong Environmental Protection Department (EPD) are based on ease of access to sampling locations rather than on water quality alone. In this study an archive of fifty-seven Landsat Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+) and HJ-1 A/B Charged Couple Device (CCD) images over a 13-year period (January 2000-December 2012) was used to define optically distinct water classes by Fuzzy c-Means (FCM) clustering. The clustering was applied by combining the Surface Reflectance (SR) derived from the first four bands of Landsat and HJ-1 scenes with 240 insitu samples of Chlorophyll-a (Chl-a) and Suspended Solid (SS) concentrations collected within 2 h of image acquisition. The FCM clustering suggested the existence of five optically different water classes in the region. The significance of the defined water classes was tested in terms of the water SR behaviour in each band. The SR for Classes 1 and 2 in bands 1-3 was lower than in other classes, and band 4 showed the lowest reflectance, indicating that these classes represent a clearer type of water. Class 3 showed intermediate reflectance in all bands, while Classes 4 and 5 showed overall higher reflectance indicating high sediment contribution from the Pearl River Delta. Application of water quality retrievals within individual classes showed much greater confidence with Root Mean Square Error (RMSE) of 1.32 μg/l (1.21 mg/l) for Chl-a (SS) concentrations, compared with 5.97 μg/l (2.98 mg/l) when applied to the whole spectrum of different water types across the region.

  10. National water-quality assessment program : the Albemarle- Pamlico drainage

    USGS Publications Warehouse

    Lloyd, O.B.; Barnes, C.R.; Woodside, M.D.

    1991-01-01

    In 1991, the U.S. Geological Survey (USGS) began to implement a full-scale National Water-Quality Assessment (NAWQA) program. Long-term goals of the NAWQA program are to describe the status and trends in the quality of a large, representative part of the Nation's surface- and ground-water resources and to provide a sound, scientific understanding of the primary natural and human factors affecting the quality of these resources. In meeting these goals, the program will produce a wealth of water quality information that will be useful to policy makers and managers at the national, State, and local levels. Study-unit investigations constitute a major component of the NAWQA program, forming the principal building blocks on which national-level assessment activities are based. The 60 study-unit investigations that make up the program are hydrologic systems that include parts of most major river basins and aquifer systems. These study units cover areas of 1,200 to more than 65,000 square miles and incorporate about 60 to 70 percent of the Nation's water use and population served by public water supply. In 1991, the Albemarle-Pamlico drainage was among the first 20 NAWQA study units selected for study under the full-scale implementation plan. The Albemarle-Pamlico drainage study will examine the physical, chemical, and biological aspects of water quality issues in a coordinated investigation of surface water and ground water in the Albemarle-Pamlico drainage basin. The quantity and quality of discharge from the Albemarle-Pamlico drainage basin contribute to some water quality problems in the biologically sensitive waters of Albemarle and Pamlico Sounds. A retrospective analysis of existing water quality data will precede a 3-year period of intensive data-collection and analysis activities. The data resulting from this study and the improved understanding of important processes and issues in the upstream part of the study unit will enhance understanding of the quality of

  11. Impacts of Water Quality on Residential Water Heating Equipment

    SciTech Connect

    Widder, Sarah H.; Baechler, Michael C.

    2013-11-01

    Water heating is a ubiquitous energy use in all residential housing, accounting for 17.7% of residential energy use (EIA 2012). Today, there are many efficient water heating options available for every fuel type, from electric and gas to more unconventional fuel types like propane, solar, and fuel oil. Which water heating option is the best choice for a given household will depend on a number of factors, including average daily hot water use (total gallons per day), hot water draw patterns (close together or spread out), the hot water distribution system (compact or distributed), installation constraints (such as space, electrical service, or venting accommodations) and fuel-type availability and cost. While in general more efficient water heaters are more expensive than conventional water heating technologies, the savings in energy use and, thus, utility bills can recoup the additional upfront investment and make an efficient water heater a good investment over time in most situations, although the specific payback period for a given installation will vary widely. However, the expected lifetime of a water heater in a given installation can dramatically influence the cost effectiveness and savings potential of a water heater and should be considered, along with water use characteristics, fuel availability and cost, and specific home characteristics when selecting the optimum water heating equipment for a particular installation. This report provides recommendations for selecting and maintaining water heating equipment based on local water quality characteristics.

  12. Water quality in sugar catchments of Queensland.

    PubMed

    Rayment, G E

    2003-01-01

    Water quality condition and trend are important indicators of the impact of land use on the environment, as degraded water quality causes unwelcome changes to ecosystem composition and health. These concerns extend to the sea, where discharges of nutrients, sediments and toxicants above natural levels are unwelcome, particularly when they drain to the Great Barrier Reef World Heritage Area and other coastal waters of Queensland. Sugarcane is grown in 26 major river catchments in Queensland, most in environmentally sensitive areas. This puts pressure on the Queensland Sugar Industry to manage the land in ways that have minimum adverse off-site impacts. Sugar researchers including CRC Sugar have been associated with water quality studies in North Queensland. These include investigations and reviews to assess the role of groundwater as a pathway for nitrate loss from canelands in the Herbert Catchment, to find causes of oxygen depletion in water (including irrigation runoff) from Ingham to Mackay, to use residues of superseded pesticides as indicators of sediment loss to the sea, and to assemble information on water quality pressure and status in sugar catchments. Key findings, plus information on input pressures are described in this paper, and areas of concern and opportunities discussed.

  13. In Brief: Improving Mississippi River water quality

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2007-10-01

    If water quality in the Mississippi River and the northern Gulf of Mexico is to improve, the U.S. Environmental Protection Agency (EPA) needs to take a stronger leadership role in implementing the federal Clean Water Act, according to a 16 October report from the U.S. National Research Council. The report notes that EPA has failed to use its authority to coordinate and oversee activities along the river. In addition, river states need to be more proactive and cooperative in efforts to monitor and improve water quality, and the river should be monitored and evaluated as a single system, the report indicates. Currently, the 10 states along the river conduct separate and widely varying water quality monitoring programs. ``The limited attention being given to monitoring and managing the Mississippi's water quality does not match the river's significant economic, ecological, and cultural importance,'' said committee chair David A. Dzombak, director of the Steinbrenner Institute for Environmental Education and Research at Carnegie Mellon University, Pittsburgh, Pa. The report notes that while measures taken under the Clean Water Act have successfully reduced much point source pollution, nutrient and sediment loads from nonpoint sources continue to be significant problems. For more information, visit the Web site: http://books.nap.edu/catalog.php?record_id=12051.

  14. Poor sleep quality affects spatial orientation in virtual environments.

    PubMed

    Valera, Silvana; Guadagni, Veronica; Slone, Edward; Burles, Ford; Ferrara, Michele; Campbell, Tavis; Iaria, Giuseppe

    2016-01-01

    Sleep is well known to have a significant impact on learning and memory. Specifically, studies adopting an experimentally induced sleep loss protocol in healthy individuals have provided evidence that the consolidation of spatial memories, as acquired through navigating and orienteering in spatial surroundings, is negatively affected by total sleep loss. Here, we used both objective and subjective measures to characterize individuals' quality of sleep, and grouped participants into either a poor (insomnia-like) or normal (control) sleep quality group. We asked participants to solve a wayfinding task in a virtual environment, and scored their performance by measuring the time spent to reach a target location and the number of wayfinding errors made while navigating. We found that participants with poor sleep quality were slower and more error-prone than controls in solving the task. These findings provide novel evidence that pre-existing sleep deficiencies in otherwise healthy individuals affects negatively the ability to learn novel routes, and suggest that sleep quality should be accounted for among healthy individuals performing experimental spatial orientation tasks in virtual environments.

  15. Water quality monitor (EMPAX instrument)

    NASA Technical Reports Server (NTRS)

    Kelliher, Warren C.; Clark, Ben; Thornton, Mike

    1991-01-01

    The impetus of the Viking Mission to Mars led to the first miniaturization of a X-ray Fluorescence Spectrometer (XRFS). Two units were flown on the Viking Mission and successfully operated for two years analyzing the elemental composition of the Martian soil. Under a Bureau of Mines/NASA Technology Utilization project, this XRFS design was utilized to produce a battery powered, portable unit for elemental analysis of geological samples. This paper will detail design improvements and additional sampling capabilities that were incorporated into a second generation portable XRFS that was funded by the EPA/NASA Technology Utilization project. The unit, Environment Monitoring with Portable Analysis by X-ray (EMPAX), was developed specifically for quantitative determination of the need of EPA and and any industry affected by environmental concerns, the EMPAX fulfills a critical need to provide on-site, real-time analysis of toxic metal contamination. A patent was issued on EMPAX, but a commercial manufacturer is still being sought.

  16. Real-time water quality monitoring and providing water quality information to the Baltimore Community

    EPA Science Inventory

    EPA and the U.S. Geological Survey (USGS) have initiated the “Village Blue” research project to provide real-time water quality monitoring data to the Baltimore community and increase public awareness about local water quality in Baltimore Harbor and the Chesapeake Ba...

  17. Observations on a Montana water quality proposal.

    SciTech Connect

    Veil, J. A.; Puder, M. G.

    2006-01-12

    In May 2005, a group of petitioners led by the Northern Plains Resource Council (NPRC) submitted a petition to revise water quality requirements to the Montana Board of Environmental Review (BER). Under Montana law, the BER had to consider the petition and either reject it or propose it as a new regulation. In September 2005, the BER announced proposed changes to the Montana water quality regulations. The proposal, which included almost the exact language found in the petition, was directed toward discharges of water from coal bed natural gas (CBNG) production. The key elements of the proposal included: (1) No discharges of CBNG water are allowed to Montana surface waters unless operators can demonstrate that injection to aquifers with the potential for later recovery of the water is not feasible. (2) When operators can demonstrate the injection is not feasible, the CBNG water to be discharged must meet very strict technology-based limits for multiple parameters. (3) The Montana water quality standards for the sodium adsorption ratio (SAR) and electrical conductivity (EC) would be evaluated using the 7Q10 flow (lowest 7-consecutive-day flow in a 10-year period) rather than a monthly flow that is currently used. (4) SAR and EC would be reclassified as ''harmful parameters'', thereby greatly restricting the ability for CBNG discharges to be allowed under Montana's nondegradation regulations. The proposed regulations, if adopted in their current form, are likely to substantially reduce the amount of CBNG production in Montana. The impact also extends to Wyoming CBNG production through much greater restrictions on water quality that must be met at the interstate border.

  18. Water quality trends in the Blackwater River watershed, West Virginia

    USGS Publications Warehouse

    Smith, Jessica; Welsh, Stuart; Anderson, James T.; Fortney, Ronald H.

    2015-01-01

    An understanding of historic and current water quality is needed to manage and improve aquatic communities within the Blackwater River watershed, WV. The Blackwater River, which historically offered an excellent Salvelinus fontinalis (Brook Trout) fishery, has been affected by logging, coal mining, use of off-road vehicles, and land development. Using information-theoretic methods, we examined trends in water quality at 12 sites in the watershed for the 14 years of 1980–1993. Except for Beaver Creek, downward trends in acidity and upward trends in alkalinity, conductivity, and hardness were consistent with decreases in hydrogen ion concentration. Water-quality trends for Beaver Creek were inconsistent with the other sites and reflect ongoing coal-mining influences. Dissolved oxygen trended downward, possibly due to natural conditions, but remained above thresholds that would be detrimental to aquatic life. Water quality changed only slightly within the watershed from 1980–1993, possibly reflecting few changes in development and land uses during this time. These data serve as a baseline for future water-quality studies and may help to inform management planning.

  19. Spatio-temporal evaluation of Yamchi Dam basin water quality using Canadian water quality index.

    PubMed

    Farzadkia, Mahdi; Djahed, Babak; Shahsavani, Esmaeel; Poureshg, Yousef

    2015-04-01

    In recent years, the growth of population and increase of the industries around the tributaries of Yamchi Dam basin have led to deterioration of dam water quality. This study aimed to evaluate the quality of the Yamchi Dam basin water, which is used for drinking and irrigation consumptions using Canadian Water Quality Index (CWQI) model, and to determine the main water pollution sources of this basin. Initially, nine sampling stations were selected in the sensitive locations of the mentioned basin's tributaries, and 12 physico-chemical parameters and 2 biological parameters were measured. The CWQI for drinking consumptions was under 40 at all the stations indicating a poor water quality for drinking consumptions. On the other hand, the CWQI was 62-100 for irrigation at different stations; thus, the water had an excellent to fair quality for irrigation consumptions. Almost in all the stations, the quality of irrigation and drinking water in cold season was better. Besides, for drinking use, total coliform and fecal coliform had the highest frequency of failure, and total coliform had the maximum deviation from the specified objective. For irrigation use, total suspended solids had the highest frequency of failure and deviation from the objective in most of the stations. The pisciculture center, aquaculture center, and the Nir City wastewater discharge were determined as the main pollution sources of the Yamchi Dam basin. Therefore, to improve the water quality in this important surface water resource, urban and industrial wastewater treatment prior to disposal and more stringent environmental legislations are recommended.

  20. Water Quality and Sustainable Environmental Health

    NASA Astrophysics Data System (ADS)

    Setegn, S. G.

    2014-12-01

    Lack of adequate safe water, the pollution of the aquatic environment and the mismanagement of resources are major causes of ill-health and mortality, particularly in the developing countries. In order to accommodate more growth, sustainable fresh water resource management will need to be included in future development plans. One of the major environmental issues of concern to policy-makers is the increased vulnerability of ground water quality. The main challenge for the sustainability of water resources is the control of water pollution. To understand the sustainability of the water resources, one needs to understand the impact of future land use and climate changes on the natural resources. Providing safe water and basic sanitation to meet the Millennium Development Goals will require substantial economic resources, sustainable technological solutions and courageous political will. A balanced approach to water resources exploitation for development, on the one hand, and controls for the protection of health, on the other, is required if the benefits of both are to be realized without avoidable detrimental effects manifesting themselves. Meeting the millennium development goals for water and sanitation in the next decade will require substantial economic resources, sustainable technological solutions and courageous political will. In addition to providing "improved" water and "basic" sanitation services, we must ensure that these services provide: safe drinking water, adequate quantities of water for health, hygiene, agriculture and development and sustainable sanitation approaches to protect health and the environment.

  1. Monitoring water quality by remote sensing

    NASA Technical Reports Server (NTRS)

    Brown, R. L. (Principal Investigator)

    1977-01-01

    The author has identified the following significant results. A limited study was conducted to determine the applicability of remote sensing for evaluating water quality conditions in the San Francisco Bay and delta. Considerable supporting data were available for the study area from other than overflight sources, but short-term temporal and spatial variability precluded their use. The study results were not sufficient to shed much light on the subject, but it did appear that, with the present state of the art in image analysis and the large amount of ground truth needed, remote sensing has only limited application in monitoring water quality.

  2. Arsenic in Drinking Water in Bangladesh: Factors Affecting Child Health

    PubMed Central

    Aziz, Sonia N.; Aziz, Khwaja M. S.; Boyle, Kevin J.

    2014-01-01

    The focus of this paper is to present an empirical model of factors affecting child health by observing actions households take to avoid exposure to arsenic in drinking water. Millions of Bangladeshis face multiple health hazards from high levels of arsenic in drinking water. Safe water sources are either expensive or difficult to access, affecting people’s individuals’ time available for work and ultimately affecting the health of household members. Since children are particularly susceptible and live with parents who are primary decision makers for sustenance, parental actions linking child health outcomes is used in the empirical model. Empirical results suggest that child health is significantly affected by the age and gender of the household water procurer. Adults with a high degree of concern for children’s health risk from arsenic contamination, and who actively mitigate their arsenic contaminated water have a positive effect on child health. PMID:24982854

  3. A national look at water quality

    USGS Publications Warehouse

    Gilliom, Robert J.; Mueller, David K.; Zogorski, John S.; Ryker, Sarah J.

    2002-01-01

    Most water-quality problems we face today result from diffuse "nonpoint" sources of pollution from agricultural land, urban development, forest harvesting and the atmosphere (U.S. Army Corps of Engineers et al., 1999). It is difficult to quantify nonpoint sources because the contaminants they deliver vary in composition and concentrations from hour to hour and season to season. Moreover, the nature of the contamination is complex and varied. When Congress enacted the Clean Water Act 30 years ago, attention was focused on water-quality issues related to the sanitation of rivers and streams - bacteria counts, oxygen in the water for fish, nutrients, temperature, and salinity. Now, attention is turning to the hundreds of synthetic organic compounds like pesticides used in agricultural and residential areas, volatile organics in solvents and gasoline, microbial and viral contamination, and pharmaceuticals and hormones.

  4. QSARs in Netherlands water quality management policies.

    PubMed

    van der Gaag, M A

    1991-12-01

    QSARs are a useful tool for predicting the potential toxic effects of compounds for which no data are available. Within strictly defined limits, QSARs can be applied to assess the potential impact of a spill, to evaluate ecotoxicological effects and environmental fate of organics in waste water and to set priorities for water quality criteria. For a wider application, there is a need for 'worst case' SARs providing a 'safer' estimate of toxicity than QSARs with an optimum fit, which might underestimate toxicity.

  5. 40 CFR 227.31 - Applicable marine water quality criteria.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Applicable marine water quality... § 227.31 Applicable marine water quality criteria. Applicable marine water quality criteria means the criteria given for marine waters in the EPA publication “Quality Criteria for Water” as published in...

  6. 40 CFR 227.31 - Applicable marine water quality criteria.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Applicable marine water quality... § 227.31 Applicable marine water quality criteria. Applicable marine water quality criteria means the criteria given for marine waters in the EPA publication “Quality Criteria for Water” as published in...

  7. 40 CFR 227.31 - Applicable marine water quality criteria.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Applicable marine water quality... § 227.31 Applicable marine water quality criteria. Applicable marine water quality criteria means the criteria given for marine waters in the EPA publication “Quality Criteria for Water” as published in...

  8. 40 CFR 227.31 - Applicable marine water quality criteria.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Applicable marine water quality... § 227.31 Applicable marine water quality criteria. Applicable marine water quality criteria means the criteria given for marine waters in the EPA publication “Quality Criteria for Water” as published in...

  9. 40 CFR 227.31 - Applicable marine water quality criteria.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Applicable marine water quality... § 227.31 Applicable marine water quality criteria. Applicable marine water quality criteria means the criteria given for marine waters in the EPA publication “Quality Criteria for Water” as published in...

  10. Quality requirements for reclaimed/recycled water

    NASA Technical Reports Server (NTRS)

    Janik, Daniel S.; Sauer, Richard L.; Pierson, Duane L.; Thorstenson, Yvonne R.

    1987-01-01

    Water used during current and previous space missions has been either carried or made aloft. Future human space endeavors will require some form of water reclamation and recycling. There is little experience in the U.S. space program with this technology. Water reclamation and recycling constitute engineering challenges of the broadest nature that will require an intensive research and development effort if this technology is to mature in time for practical use on the proposed U.S. Space Station. In order for this to happen, reclaimed/recycled water specifications will need to be devised to guide engineering development. Present NASA Potable Water Specifications are not applicable to reclaimed or recycled water. Adequate specifications for ensuring the quality of the reclaimed or recycled potable water system is reviewed, limitations of present water specifications are examined, world experience with potable water reclamation/recycling systems and systems analogs is reviewed, and an approach to developing pertinent biomedical water specifications for spacecraft is presented. Space Station water specifications should be designed to ensure the health of all likely spacecraft inhabitants including man, animals, and plants.

  11. Climate change influence on drinking water quality

    NASA Astrophysics Data System (ADS)

    Kovacs, Melinda Haydee; Ristoiu, Dumitru; Voica, Cezara; Moldovan, Zaharie

    2013-11-01

    Although it are quite well known the possible effects of climate changes on surface waters availability and their hydrological risks, their consequences on drinking water quality is not well defined yet. Disinfection agents (as Cl2, O3, etc.) or multiple combinations of them for water treatment and disinfection purposes are applied by water treatment plants at worldwide level. Unfortunately, besides the benefits of these processes were also highlighted some undesirable effects such as formation of several disinfection by-products (DBPs) after reaction of disinfection agent with natural organic matter (NOM) from water body. DBPs formation in drinking water, suspected to posses adverse health effects to humans are strongly regulated in our days. Thus, throughout this study kinetics experiments both the main physicochemical factors that influencing the quality of drinking waters were evaluated as well how they act through possible warming or the consequences of extreme events. Increasing water temperatures with 1 - 5 °C above its normal value has showed that NOMs are presented in higher amount which led to the need for greater amount of disinfectant agent (5 - 15 %). Increasing the amount of disinfecting agent resulted in the formation of DBPs in significantly higher concentrations (between 5 - 30 %).

  12. Social Perception of Public Water Supply Network and Groundwater Quality in an Urban Setting Facing Saltwater Intrusion and Water Shortages

    NASA Astrophysics Data System (ADS)

    Alameddine, Ibrahim; Jawhari, Gheeda; El-Fadel, Mutasem

    2017-04-01

    Perceptions developed by consumers regarding the quality of water reaching their household can affect the ultimate use of the water. This study identified key factors influencing consumers' perception of water quality in a highly urbanized coastal city, experiencing chronic water shortages, overexploitation of groundwater, and accelerated saltwater intrusion. Household surveys were administered to residents to capture views and perceptions of consumed water. Concomitantly, groundwater and tap water samples were collected and analyzed at each residence for comparison with perceptions. People's rating of groundwater quality was found to correlate to the measured water quality both in the dry and wet seasons. In contrast, perceptions regarding the water quality of the public water supply network did not show any correlation with the measured tap water quality indicators. Logistic regression models developed to predict perception based on salient variables indicated that age, apartment ownership, and levels of total dissolved solids play a significant role in shaping perceptions regarding groundwater quality. Perceptions concerning the water quality of the public water supply network appeared to be independent of the measured total dissolved solids levels at the tap but correlated to those measured in the wells. The study highlights misconceptions that can arise as a result of uncontrolled cross-connections of groundwater to the public supply network water and the development of misaligned perceptions based on prior consumption patterns, water shortages, and a rapidly salinizing groundwater aquifer.

  13. Social Perception of Public Water Supply Network and Groundwater Quality in an Urban Setting Facing Saltwater Intrusion and Water Shortages.

    PubMed

    Alameddine, Ibrahim; Jawhari, Gheeda; El-Fadel, Mutasem

    2017-04-01

    Perceptions developed by consumers regarding the quality of water reaching their household can affect the ultimate use of the water. This study identified key factors influencing consumers' perception of water quality in a highly urbanized coastal city, experiencing chronic water shortages, overexploitation of groundwater, and accelerated saltwater intrusion. Household surveys were administered to residents to capture views and perceptions of consumed water. Concomitantly, groundwater and tap water samples were collected and analyzed at each residence for comparison with perceptions. People's rating of groundwater quality was found to correlate to the measured water quality both in the dry and wet seasons. In contrast, perceptions regarding the water quality of the public water supply network did not show any correlation with the measured tap water quality indicators. Logistic regression models developed to predict perception based on salient variables indicated that age, apartment ownership, and levels of total dissolved solids play a significant role in shaping perceptions regarding groundwater quality. Perceptions concerning the water quality of the public water supply network appeared to be independent of the measured total dissolved solids levels at the tap but correlated to those measured in the wells. The study highlights misconceptions that can arise as a result of uncontrolled cross-connections of groundwater to the public supply network water and the development of misaligned perceptions based on prior consumption patterns, water shortages, and a rapidly salinizing groundwater aquifer.

  14. Evaluating Water Supply and Water Quality Management Options for Las Vegas Valley

    NASA Astrophysics Data System (ADS)

    Ahmad, S.

    2007-05-01

    The ever increasing population in Las Vegas is generating huge demand for water supply on one hand and need for infrastructure to collect and treat the wastewater on the other hand. Current plans to address water demand include importing water from Muddy and Virgin Rivers and northern counties, desalination of seawater with trade- payoff in California, water banking in Arizona and California, and more intense water conservation efforts in the Las Vegas Valley (LVV). Water and wastewater in the LVV are intrinsically related because treated wastewater effluent is returned back to Lake Mead, the drinking water source for the Valley, to get a return credit thereby augmenting Nevada's water allocation from the Colorado River. The return of treated wastewater however, is a major contributor of nutrients and other yet unregulated pollutants to Lake Mead. Parameters that influence the quantity of water include growth of permanent and transient population (i.e., tourists), indoor and outdoor water use, wastewater generation, wastewater reuse, water conservation, and return flow credits. The water quality of Lake Mead and the Colorado River is affected by the level of treatment of wastewater, urban runoff, groundwater seepage, and a few industrial inputs. We developed an integrated simulation model, using system dynamics modeling approach, to account for both water quantity and quality in the LVV. The model captures the interrelationships among many variables that influence both, water quantity and water quality. The model provides a valuable tool for understanding past, present and future pathways of water and its constituents in the LVV. The model is calibrated and validated using the available data on water quantity (flows at water and wastewater treatment facilities and return water credit flow rates) and water quality parameters (TDS and phosphorus concentrations). We used the model to explore important questions: a)What would be the effect of the water transported from

  15. Product design enhancement using apparent usability and affective quality.

    PubMed

    Seva, Rosemary R; Gosiaco, Katherine Grace T; Santos, Ma Crea Eurice D; Pangilinan, Denise Mae L

    2011-03-01

    In this study, apparent usability and affective quality were integrated in a design framework called the Usability Perception and Emotion Enhancement Model (UPEEM). The UPEEM was validated using structural equation modeling (SEM). The methodology consists of four phases namely product selection, attribute identification, design alternative generation, and design alternative evaluation. The first stage involved the selection of a product that highly involves the consumer. In the attribute identification stage, design elements of the product were identified. The possible values of these elements were also determined for use in the experimentation process. Design of experiments was used to identify how the attributes will be varied in the design alternative stage and which of the attributes significantly contribute to affective quality, apparent usability, and desirability in the design evaluation stage. Results suggest that product attributes related to form are relevant in eliciting intense affect and perception of usability in mobile phones especially those directly related to functionality and aesthetics. This study considered only four product attributes among so many due to the constraints of the research design employed. Attributes related to aesthetic perception of a product enhance apparent usability such as those related to dimensional ratios.

  16. Hydrogeology, ground-water quality, and source of ground water causing water-quality changes in the Davis well field at Memphis, Tennessee

    USGS Publications Warehouse

    Parks, William S.; Mirecki, June E.; Kingsbury, James A.

    1995-01-01

    NETPATH geochemical model code was used to mix waters from the alluvial aquifer with water from the Memphis aquifer using chloride as a conservative tracer. The resulting models indicated that a mixture containing 3 percent alluvial aquifer water mixed with 97 percent unaffected Memphis aquifer water would produce the chloride concentration measured in water from the Memphis aquifer well most affected by water-quality changes. NETPATH also was used to calculate mixing percentages of alluvial and Memphis aquifer Abstract waters based on changes in the concentrations of selected dissolved major inorganic and trace element constituents that define the dominant reactions that occur during mixing. These models indicated that a mixture containing 18 percent alluvial aquifer water and 82 percent unaffected Memphis aquifer water would produce the major constituent and trace element concentrations measured in water from the Memphis aquifer well most affected by water-quality changes. However, these model simulations predicted higher dissolved methane concentrations than were measured in water samples from the Memphis aquifer wells.

  17. Developing an Integrated Modeling Tool for River Water Quality Index Assessment.

    PubMed

    Lai, Y C; Chien, C C; Yang, Z H; Surampalli, Rao Y; Kao, C M

    2017-03-01

      The goal of this study was to establish a modeling tool for river water quality with a direct linkage to the water quality index (WQI5) calculation and the river water quality model, the Water Quality Analysis Simulation Program (WASP), for pollutant transport modeling. The integrated WASP and WQI5 tool was field-tested to assess pollutant loadings and their impacts on river environment. Suspended solid (SS) and electric conductivity (EC) correlation equations and the WQI5 calculation tool were included in the water quality model and direct WQI5 calculation. The SS concentration, which was influenced by river flows, had crucial effects on river water quality and WQI5 values. EC value was controlled by dissolution of soil minerals, which was affected by the watershed drainage area and surface runoff. The integrated system could establish a direct correlation for river water quality, river flow, and WQI5.

  18. Quality of surface water in Missouri, water year 2012

    USGS Publications Warehouse

    Barr, Miya N.

    2014-01-01

    The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, designed and operates a series of monitoring stations on streams and springs throughout Missouri known as the Ambient Water-Quality Monitoring Network. During the 2012 water year (October 1, 2011, through September 30, 2012), data were collected at 81 stations—73 Ambient Water-Quality Monitoring Network stations, 6 alternate Ambient Water-Quality Monitoring Network stations, and 2 U.S. Geological Survey National Stream Quality Accounting Network stations. Dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, fecal coliform bacteria, Escherichia coli bacteria, dissolved nitrate plus nitrite as nitrogen, total phosphorus, dissolved and total recoverable lead and zinc, and select pesticide compound summaries are presented for 78 of these stations. The stations primarily have been classified into groups corresponding to the physiography of the State, primary land use, or unique station types. In addition, a summary of hydrologic conditions in the State including peak discharges, monthly mean discharges, and 7-day low flow is presented.

  19. Quality of surface water in Missouri, water year 2013

    USGS Publications Warehouse

    Barr, Miya N.; Schneider, Rachel E.

    2014-01-01

    The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, designed and operates a series of monitoring stations on streams and springs throughout Missouri known as the Ambient Water-Quality Monitoring Network. During the 2013 water year (October 1, 2012, through September 30, 2013), data were collected at 79 stations—73 Ambient Water-Quality Monitoring Network stations, 4 alternate Ambient Water-Quality Monitoring Network stations, and 2 U.S. Geological Survey National Stream Quality Accounting Network stations. Dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, Escherichia coli bacteria, fecal coliform bacteria, dissolved nitrate plus nitrite as nitrogen, total phosphorus, dissolved and total recoverable lead and zinc, and select pesticide compound summaries are presented for 76 of these stations. The stations primarily have been classified into groups corresponding to the physiography of the State, primary land use, or unique station types. In addition, a summary of hydrologic conditions in the State including peak discharges, monthly mean discharges, and 7-day low flow is presented.

  20. Quality of Surface Water in Missouri, Water Year 2007

    USGS Publications Warehouse

    Otero-Benitez, William; Davis, Jerri V.

    2009-01-01

    The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, designed and operates a series of monitoring stations on streams throughout Missouri known as the Ambient Water-Quality Monitoring Network. During the 2007 water year (October 1, 2006 through September 30, 2007), data were collected at 67 stations including two U.S. Geological Survey National Stream Quality Accounting Network stations and one spring sampled in cooperation with the U.S. Forest Service. Dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, fecal coliform bacteria, dissolved nitrite plus nitrte, total phosphorus, dissolved and total recoverable lead and zinc, and selected pesticide data summaries are presented for 64 of these stations, which primarily have been classified in groups corresponding to the physiography of the State, main land use, or unique station types. In addition, a summary of hydrologic conditions in the State during water year 2007 is presented.

  1. Evaluating Water Quality in a Suburban Environment

    NASA Astrophysics Data System (ADS)

    Thomas, S. M.; Garza, N.

    2008-12-01

    A water quality analysis and modeling study is currently being conducted on the Martinez Creek, a small catchment within Cibolo watershed, a sub-basin of the San Antonio River, Texas. Several other major creeks, such as Salatrillo, Escondido, and Woman Hollering merge with Martinez Creek. Land use and land cover analysis shows that the major portion of the watershed is dominated by residential development with average impervious cover percentage of approximately 40% along with a some of agricultural areas and brushlands. This catchment is characterized by the presence of three small wastewater treatment plants. Previous site visits and sampling of water quality indicate the presence of algae and fecal coliform bacteria at levels well above state standards at several locations in the catchment throughout the year. Due to the presence of livestock, residential development and wastewater treatment plants, a comprehensive understanding of water quality is important to evaluate the sources and find means to control pollution. As part of the study, a spatial and temporal water quality analyses of conventional parameters as well as emerging contaminants, such as veterinary pharmaceuticals and microbial pathogens is being conducted to identify critical locations and sources. Additionally, the Hydrologic Simulation Program FORTRAN (HSPF) will be used to identify best management practices that can be incorporated given the projected growth and development and feasibility.

  2. Compost improves urban soil and water quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Construction in urban zones compacts the soil, which hinders root growth and infiltration and may increase erosion, which may degrade water quality. The purpose of our study was to determine the whether planting prairie grasses and adding compost to urban soils can mitigate these concerns. We simula...

  3. FISH PHYSIOLOGY, TOXICOLOGY, AND WATER QUALITY

    EPA Science Inventory

    Scientists from ten countries presented papers at the Fifth International Symposium on Fish Physiology, Toxicology, and Water Quality, which was held on the campus of the city University of Hong Kong on November 10-13, 1998. These Proceedings include 23 papers presented in sessi...

  4. FISH PHYSIOLOGY, TOXICOLOGY, AND WATER QUALITY:

    EPA Science Inventory

    Twenty-one participants from Europe, North America and China convened in Chongqing, China, October 12-14, 2005, for the Eighth International Symposium in Fish Physiology, Toxicology and Water Quality. The subject of the meeting was "Hypoxia in vertebrates: Comparisons of terrestr...

  5. Examining issues with water quality model configuration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Complex watershed–scale, water quality models require a considerable amount of data in order to be properly configured, especially in view of the scarcity of data in many regions due to temporal and economic constraints. In this study, we examined two different input issues incurred while building ...

  6. NONPOINT SOURCES AND WATER QUALITY TRADING

    EPA Science Inventory

    Management of nonpoint sources (NPS) of nutrients may reduce discharge levels more cost effectively than can additional controls on point sources (PS); water quality trading (WQT), where a PS buys nutrient or sediment reductions from an NPS, may be an alternative means for the PS...

  7. Water quality issues and energy assessments

    SciTech Connect

    Davis, M.J.; Chiu, S.

    1980-11-01

    This report identifies and evaluates the significant water quality issues related to regional and national energy development. In addition, it recommends improvements in the Office assessment capability. Handbook-style formating, which includes a system of cross-references and prioritization, is designed to help the reader use the material.

  8. Water Quality Considerations and Related Dishwashing Problems.

    ERIC Educational Resources Information Center

    McClelland, Nina I.

    A number of the chemical and physical factors which cause dishwashing problems are presented in a series of charts. Water quality considerations are vital, but the importance of good housekeeping and proper operating practices cannot and must not be minimized. Topics discussed include--(1) dissolved minerals, (2) dissolved gases, (3) detergents,…

  9. Integration of air and water quality issues

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The environmental sustainability of dairy farms is dependent upon a number of air and water quality issues. Atmospheric emissions include hazardous compounds such as ammonia and hydrogen sulfide along with greenhouse gases and their implications with global climate change. Runoff of sediment, phosph...

  10. Rotation of Boar Semen Doses During Storage Affects Sperm Quality.

    PubMed

    Schulze, M; Rüdiger, K; Waberski, D

    2015-08-01

    It is common practice to rotate boar semen doses during storage for prevention of sperm sedimentation. In this study, the effect of rotation of boar semen doses during storage on sperm quality was investigated. Manual turning twice daily and automatic rotation five times per hour resulted in the following effects: alkalinization of the BTS-extender, loss of membrane integrity at day 3, and loss of motility and changes in sperm kinematics during a thermoresistance test at day 5. Using a pH-stabilized variant of BTS extender, sperm motility and velocity decreased in continuously rotated samples, whereas membrane integrity and mitochondrial activity remain unaffected. It is concluded that rotation of semen samples adversely affects sperm quality and, therefore, should no longer be recommended for AI practice.

  11. Analysis of aerial multispectral imagery to assess water quality parameters of Mississippi water bodies

    NASA Astrophysics Data System (ADS)

    Irvin, Shane Adison

    The goal of this study was to demonstrate the application of aerial imagery as a tool in detecting water quality indicators in a three mile segment of Tibbee Creek in, Clay County, Mississippi. Water samples from 10 transects were collected per sampling date over two periods in 2010 and 2011. Temperature and dissolved oxygen (DO) were measured at each point, and water samples were tested for turbidity and total suspended solids (TSS). Relative reflectance was extracted from high resolution (0.5 meter) multispectral aerial images. A regression model was developed for turbidity and TSS as a function of values for specific sampling dates. The best model was used to predict turbidity and TSS using datasets outside the original model date. The development of an appropriate predictive model for water quality assessment based on the relative reflectance of aerial imagery is affected by the quality of imagery and time of sampling.

  12. Water Quality Criteria for White Phosphorus

    DTIC Science & Technology

    1987-08-01

    dissolved oxygen, reduction in pH ( acidification ), and increased deposition of fine particulates. White phosphorus is pri- marily transformed in air...that apparently control the distribution and abundance of some biota in the lake , low pH and low dissolved oxygen, are associated with decaying...water, and soil by oxidation. In water, the oxidation rate can be affected by dissolved oxygen concentration, temp- erature, pH , salinity, and the

  13. Modeling and Managing Water Resource Systems for Water Quality.

    DTIC Science & Technology

    1987-02-01

    results are very encouraging. Applications are in progress on the Umpqua River in Oregon for analysis of a proposed reservoir system and the Columbia...industrial, irrigation, water supply, fish habitat) and water quality requirements. The HEC-5Q program was first applied to the Sacramento River system...in California and a report was published in July 1985 [8]. Two other applications are in progress, the Kanawha and Monongahela River systems have

  14. Using water-quality profiles to characterize seasonal water quality and loading in the upper Animas River basin, southwestern Colorado

    USGS Publications Warehouse

    Leib, Kenneth J.; Mast, M. Alisa; Wright, Winfield G.

    2003-01-01

    One of the important types of information needed to characterize water quality in streams affected by historical mining is the seasonal pattern of toxic trace-metal concentrations and loads. Seasonal patterns in water quality are estimated in this report using a technique called water-quality profiling. Water-quality profiling allows land managers and scientists to assess priority areas to be targeted for characterization and(or) remediation by quantifying the timing and magnitude of contaminant occurrence. Streamflow and water-quality data collected at 15 sites in the upper Animas River Basin during water years 1991?99 were used to develop water-quality profiles. Data collected at each sampling site were used to develop ordinary least-squares regression models for streamflow and constituent concentrations. Streamflow was estimated by correlating instantaneous streamflow measured at ungaged sites with continuous streamflow records from streamflow-gaging stations in the subbasin. Water-quality regression models were developed to estimate hardness and dissolved cadmium, copper, and zinc concentrations based on streamflow and seasonal terms. Results from the regression models were used to calculate water-quality profiles for streamflow, constituent concentrations, and loads. Quantification of cadmium, copper, and zinc loads in a stream segment in Mineral Creek (sites M27 to M34) was presented as an example application of water-quality profiling. The application used a method of mass accounting to quantify the portion of metal loading in the segment derived from uncharacterized sources during different seasonal periods. During May, uncharacterized sources contributed nearly 95 percent of the cadmium load, 0 percent of the copper load (or uncharacterized sources also are attenuated), and about 85 percent of the zinc load at M34. During September, uncharacterized sources contributed about 86 percent of the cadmium load, 0 percent of the copper load (or uncharacterized

  15. SF Bay Water Quality Improvement Fund: Projects and Accomplishments

    EPA Pesticide Factsheets

    San Francisco Bay Water Quality Improvement Fund (SFBWQIF) projects listed here are part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resources.

  16. Water Bouncing Balls: how material stiffness affects water entry

    NASA Astrophysics Data System (ADS)

    Truscott, Tadd

    2014-03-01

    It is well known that one can skip a stone across the water surface, but less well known that a ball can also be skipped on water. Even though 17th century ship gunners were aware that cannonballs could be skipped on the water surface, they did not know that using elastic spheres rather than rigid ones could greatly improve skipping performance (yet would have made for more peaceful volleys). The water bouncing ball (Waboba®) is an elastic ball used in a game of aquatic keep away in which players pass the ball by skipping it along the water surface. The ball skips easily along the surface creating a sense that breaking the world record for number of skips could easily be achieved (51 rock skips Russell Byers 2007). We investigate the physics of skipping elastic balls to elucidate the mechanisms by which they bounce off of the water. High-speed video reveals that, upon impact with the water, the balls create a cavity and deform significantly due to the extreme elasticity; the flattened spheres resemble skipping stones. With an increased wetted surface area, a large hydrodynamic lift force is generated causing the ball to launch back into the air. Unlike stone skipping, the elasticity of the ball plays an important roll in determining the success of the skip. Through experimentation, we demonstrate that the deformation timescale during impact must be longer than the collision time in order to achieve a successful skip. Further, several material deformation modes can be excited upon free surface impact. The effect of impact velocity and angle on the two governing timescales and material wave modes are also experimentally investigated. Scaling for the deformation and collision times are derived and used to establish criteria for skipping in terms of relevant physical parameters.

  17. Monitoring and assessment of water quality of Tasik Cempaka, Bangi

    NASA Astrophysics Data System (ADS)

    Sabri, Nurul Ain Syahirah Mohamad; Abdullah, Md Pauzi; Mat, Sohif

    2014-09-01

    A study was carried out to determine the status of water quality of Tasik Cempaka which is a part of Sg. Air Itam, located near the Bangi industrial area. The study was carried out for eight months from May and to December 2013. Eight sampling stations were selected from upstream to downstream of Sg. Air Itam which represent the entire body of the lake water. There are 8 parameters measured and Water Quality Indices (WQI) was calculated and classified according to the National Water Quality Standard (NWQS). The physical and chemical parameters were temperature, pH, conductivity, dissolve oxygen (DO), total suspended solid (TSS), ammoniacal nitrogen (AN), chemical oxygen demand (COD) and biochemical oxygen demand (BOD). Among parameters that are affected by pollution is AN, COD and BOD. Classification by WQI shows that the average for all sampling was 54 (dry) and 52 (wet). Both are of class III according to National Water Quality Standard (NWQS) indicating slightly polluted. This is mainly due to drainage from Bangi Golf Resort and Bangi-Putrajaya Hotel. Other factors are activities around Sg. Air Itam such as municipal activities, settlements and manufacturing industries.

  18. Assessment of groundwater quality near the landfill site using the modified water quality index.

    PubMed

    Talalaj, Izabela A

    2014-06-01

    The purpose of this paper is to assess the groundwater quality near a landfill site using the modified water quality index. A total of 128 groundwater samples were analyzed for pH, electrical conductivity (EC), total organic carbon (TOC), polycyclic aromatic hydrocarbon (PAH), Cd, Pb, Zn, Cu, Cr, and Hg. The analytical results have showed a decreasing trend in concentration for TOC, Cd, Pb, Hg, and Cu and an increasing one for pH, EC, and PAH. The modified water quality index, which was called landfill water pollution index (LWPI), was calculated to quantify the overall water quality near the landfill site. The analysis reveals that groundwater in piezometers close to the landfill is under a strong landfill impact. The LWPI in piezometers ranged from 0.52 to 98.25 with a mean value of 7.99. The LWPI in groundwater from the nearest house wells varied from 0.59 to 0.92. A LWPI value below 1 proves that analyzed water is not affected by the landfill. Results have shown that LWPI is an efficient method for assessing and communicating the information on the groundwater quality near the landfill.

  19. Tsukamoto fuzzy implementation to identify the pond water quality of koi

    NASA Astrophysics Data System (ADS)

    Qur’ania, A.; Verananda, D. I.

    2017-01-01

    The colour quality of koi was affected by the water quality in the pond. Koi fish have a diversity of types differentiated based on the body colour groups, such as one colour pattern, two colour patterns, three colours patterns and even more. Each colour characteristic of the koi have different handling, particularly in the handling of water quality, this is because the colour pigments in the body was affected by the composition of water quality include temperature, pH, TDS, do and salinity. The data of koi fish used were sanke, sowa, kohaku, shiro, yamabuki, ogon and chagoi. The aim of this study is to make an application to inform the condition of the pool water quality that can help breeders to know the water quality that will improve the handling strategies through water media. Tsukamoto Fuzzy method used to produce the three outputs namely water quality, water grade, and water conditions. The output of water quality consists of four categories, namely optimal, moderate, poor, and very poor. The output of water grade consists of grade A to D, while the output of water conditions consist of an excellent, good, bad, and very bad. Input to the application consists of five parameters, namely water temperature, pH, TDS, do and salinity.

  20. Comparison of Water Years 2004-05 and Historical Water-Quality Data, Upper Gunnison River Basin, Colorado

    USGS Publications Warehouse

    Spahr, Norman E.; Hartle, David M.; Diaz, Paul

    2008-01-01

    Population growth and changes in land use have the potential to affect water quality and quantity in the upper Gunnison River Basin. In 1995, the U.S. Geological Survey (USGS), in cooperation with the Bureau of Land Management, City of Gunnison, Colorado River Water Conservation District, Crested Butte South Metropolitan District, Gunnison County, Hinsdale County, Mount Crested Butte Water and Sanitation District, National Park Service, Town of Crested Butte, Upper Gunnison River Water Conservancy District, and Western State College, established a water-quality monitoring program in the upper Gunnison River Basin to characterize current water-quality conditions and to assess the effects of increased urban development and other land-use changes on water quality. The monitoring network has evolved into two groups of stations - stations that are considered long term and stations that are considered rotational. The long-term stations are monitored to assist in defining temporal changes in water quality (how conditions may change over time). The rotational stations are monitored to assist in the spatial definition of water-quality conditions (how conditions differ throughout the basin) and to address local and short-term concerns. Some stations in the rotational group were changed beginning in water year 2007. Annual summaries of the water-quality data from the monitoring network provide a point of reference for discussions regarding water-quality monitoring in the upper Gunnison River Basin. This summary includes data collected during water years 2004 and 2005. The introduction provides a map of the sampling sites, definitions of terms, and a one-page summary of selected water-quality conditions at the network stations. The remainder of the summary is organized around the data collected at individual stations. Data collected during water years 2004 and 2005 are compared to historical data, State water-quality standards, and Federal water-quality guidelines. Data were

  1. Comparison of 2006-2007 Water Years and Historical Water-Quality Data, Upper Gunnison River Basin, Colorado

    USGS Publications Warehouse

    Solberg, P.A.; Moore, Bryan; Smits, Dennis

    2009-01-01

    Population growth and changes in land use have the potential to affect water quality and quantity in the upper Gunnison River basin. In 1995, the U.S. Geological Survey (USGS), in cooperation with the Bureau of Land Management, City of Gunnison, Colorado River Water Conservation District, Crested Butte South Metropolitan District, Gunnison County, Hinsdale County, Mount Crested Butte Water and Sanitation District, National Park Service, Town of Crested Butte, Upper Gunnison River Water Conservancy District, and Western State College established a water-quality monitoring program in the upper Gunnison River basin to characterize current water-quality conditions and to assess the effects of increased urban development and other land-use changes on water quality. The monitoring network has evolved into two groups of stations - stations that are considered long term and stations that are considered rotational. The long-term stations are monitored to assist in defining temporal changes in water quality (how conditions may change over time). The rotational stations are monitored to assist in the spatial definition of water-quality conditions (how conditions differ throughout the basin) and to address local and short-term concerns. Some stations in the rotational group were changed beginning in water year 2007. Annual summaries of the water-quality data from the monitoring network provide a point of reference for discussions regarding water-quality monitoring in the upper Gunnison River basin. This summary includes data collected during water years 2006 and 2007. The introduction provides a map of the sampling sites, definitions of terms, and a one-page summary of selected water-quality conditions at the network stations. The remainder of the summary is organized around the data collected at individual stations. Data collected during water years 2006 and 2007 are compared to historical data, State water-quality standards, and Federal water-quality guidelines. Data were

  2. Quantitative water quality with ERTS-1. [Kansas water resources

    NASA Technical Reports Server (NTRS)

    Yarger, H. L.; Mccauley, J. R.; James, G. W.; Magnuson, L. M.; Marzolf, G. R.

    1974-01-01

    Analyses of ERTS-1 MSS computer compatible tapes of reservoir scenes in Kansas along with ground truth show that MSS bands and band ratios can be used for reliable prediction of suspended loads up to at least 900 ppm. The major reservoirs in Kansas, as well as in other Great Plains states, are playing increasingly important roles in flood control, recreation, agriculture, and urban water supply. Satellite imagery is proving useful for acquiring timely low cost water quality data required for optimum management of these fresh water resources.

  3. Drainage water management effects on tile discharge and water quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrogen (N) fluxes from tile drained watersheds have been implicated in water quality studies of the Mississippi River Basin, but the contribution of tile drains to N export in headwater watersheds is not well understood. The objective of this study was to ascertain seasonal and annual contribution...

  4. Water quality analysis of River Yamuna using water quality index in the national capital territory, India (2000-2009)

    NASA Astrophysics Data System (ADS)

    Sharma, Deepshikha; Kansal, Arun

    2011-12-01

    River Yamuna, in the national capital territory (NCT), commonly called Delhi (India), has been subjected to immense degradation and pollution due to the huge amount of domestic wastewater entering the river. Despite the persistent efforts in the form of the Yamuna Action Plan phase I and II (YAP) (since 1993 to date), the river quality in NCT has not improved. The restoration of river water quality has been a major challenge to the environmental managers. In the present paper, water quality index (WQI) was estimated for the River Yamuna within the NCT to study the aftereffects of the projects implemented during YAP I and II. The study was directed toward the use of WQI to describe the level of pollution in the river for a period of 10 years (2000-2009). The study also identifies the critical pollutants affecting the river water quality during its course through the city. The indices have been computed for pre-monsoon, monsoon and post-monsoon season at four locations, namely Palla, ODRB, Nizamuddin and Okhla in the river. It was found that the water quality ranged from good to marginal category at Palla and fell under poor category at all other locations. BOD, DO, total and fecal coliforms and free ammonia were found to be critical parameters for the stretch.

  5. Water Resources Data - New Jersey, Water Year 1999, Volume 3, Water-Quality Data

    USGS Publications Warehouse

    DeLuca, M.J.; Romanok, K.M.; Riskin, M.L.; Mattes, G.L.; Thomas, A.M.; Gray, B.J.

    2000-01-01

    Water-resources data for the 1999 water year for New Jersey are presented in three volumes, and consists of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality of ground water. Volume 3 contains a summary of surface and ground water hydrologic conditions for the 1999 water year, a listing of current water-resource projects in New Jersey, a bibliography of water-related reports, articles, and fact sheets for New Jersey completed by the Geological Survey in recent years, water-quality records of chemical analyses from 133 surface-water stations, 46 miscellaneous surface-water sites, 30 ground-water stations, 41 miscellaneous ground-water sites, and records of daily statistics of temperature and other physical measurements from 17 continuous-monitoring stations. Locations of water-quality stations are shown in figures 11 and 17-20. Locations of miscellaneous water-quality sites are shown in figures 29-32 and 34. These data represent the part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in New Jersey.

  6. Relationship of regional water quality to aquifer thermal energy storage

    SciTech Connect

    Allen, R.D.

    1983-11-01

    Ground-water quality and associated geologic characteristics may affect the feasibility of aquifer thermal energy storage (ATES) system development in any hydrologic region. This study sought to determine the relationship between ground-water quality parameters and the regional potential for ATES system development. Information was collected from available literature to identify chemical and physical mechanisms that could adversely affect an ATES system. Appropriate beneficiation techniques to counter these potential geochemical and lithologic problems were also identified through the literature search. Regional hydrology summaries and other sources were used in reviewing aquifers of 19 drainage regions in the US to determine generic geochemical characteristics for analysis. Numerical modeling techniques were used to perform geochemical analyses of water quality from 67 selected aquifers. Candidate water resources regions were then identified for exploration and development of ATES. This study identified six principal mechanisms by which ATES reservoir permeability may be impaired: (1) particulate plugging, (2) chemical precipitation, (3) liquid-solid reactions, (4) formation disaggregation, (5) oxidation reactions, and (6) biological activity. Specific proven countermeasures to reduce or eliminate these effects were found. Of the hydrologic regions reviewed, 10 were identified as having the characteristics necessary for ATES development: (1) Mid-Atlantic, (2) South-Atlantic Gulf, (3) Ohio, (4) Upper Mississippi, (5) Lower Mississippi, (6) Souris-Red-Rainy, (7) Missouri Basin, (8) Arkansas-White-Red, (9) Texas-Gulf, and (10) California.

  7. Chesapeake Bay Program Water Quality Database

    EPA Pesticide Factsheets

    The Chesapeake Information Management System (CIMS), designed in 1996, is an integrated, accessible information management system for the Chesapeake Bay Region. CIMS is an organized, distributed library of information and software tools designed to increase basin-wide public access to Chesapeake Bay information. The information delivered by CIMS includes technical and public information, educational material, environmental indicators, policy documents, and scientific data. Through the use of relational databases, web-based programming, and web-based GIS a large number of Internet resources have been established. These resources include multiple distributed on-line databases, on-demand graphing and mapping of environmental data, and geographic searching tools for environmental information. Baseline monitoring data, summarized data and environmental indicators that document ecosystem status and trends, confirm linkages between water quality, habitat quality and abundance, and the distribution and integrity of biological populations are also available. One of the major features of the CIMS network is the Chesapeake Bay Program's Data Hub, providing users access to a suite of long- term water quality and living resources databases. Chesapeake Bay mainstem and tidal tributary water quality, benthic macroinvertebrates, toxics, plankton, and fluorescence data can be obtained for a network of over 800 monitoring stations.

  8. Quality and Control of Water Vapor Winds

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary J.; Atkinson, Robert J.

    1996-01-01

    Water vapor imagery from the geostationary satellites such as GOES, Meteosat, and GMS provides synoptic views of dynamical events on a continual basis. Because the imagery represents a non-linear combination of mid- and upper-tropospheric thermodynamic parameters (three-dimensional variations in temperature and humidity), video loops of these image products provide enlightening views of regional flow fields, the movement of tropical and extratropical storm systems, the transfer of moisture between hemispheres and from the tropics to the mid- latitudes, and the dominance of high pressure systems over particular regions of the Earth. Despite the obvious larger scale features, the water vapor imagery contains significant image variability down to the single 8 km GOES pixel. These features can be quantitatively identified and tracked from one time to the next using various image processing techniques. Merrill et al. (1991), Hayden and Schmidt (1992), and Laurent (1993) have documented the operational procedures and capabilities of NOAA and ESOC to produce cloud and water vapor winds. These techniques employ standard correlation and template matching approaches to wind tracking and use qualitative and quantitative procedures to eliminate bad wind vectors from the wind data set. Techniques have also been developed to improve the quality of the operational winds though robust editing procedures (Hayden and Veldon 1991). These quality and control approaches have limitations, are often subjective, and constrain wind variability to be consistent with model derived wind fields. This paper describes research focused on the refinement of objective quality and control parameters for water vapor wind vector data sets. New quality and control measures are developed and employed to provide a more robust wind data set for climate analysis, data assimilation studies, as well as operational weather forecasting. The parameters are applicable to cloud-tracked winds as well with minor

  9. Impact of water quality change on corrosion scales in full and partially replaced lead service lines

    EPA Science Inventory

    BackgroundChanges in water qualities have been associated with an increase in lead release from full and partial lead service lines (LSLs), such as the cases of Washington D.C. or more recently of Flint (Mi). Water qualities affect the mineralogy of the scales. Furthermore, follo...

  10. The impact of agricultural activities on water quality in oxbow lakes in the Mississippi Delta

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the Mississippi Delta, agricultural activity is a major source of nonpoint source (NPS) pollutants. Sediment, nutrients and pesticides have been considered as priority NPS pollutants and greatly affect the water quality in this area. The impacts of agricultural activities on water quality in oxbo...

  11. Ground-water flow and water quality in the sand aquifer of Long Beach Peninsula, Washington

    USGS Publications Warehouse

    Thomas, B.E.

    1995-01-01

    This report describes a study that was undertaken to improve the understanding of ground-water flow and water quality in the coastal sand aquifer of the Long Beach Peninsula of southwestern Washington. Data collected for the study include monthly water levels at 103 wells and 28 surface-water sites during 1992, and water-quality samples from about 40 wells and 13 surface-water sites in February and July 1992. Ground water generally flows at right angles to a ground-water divide along the spine of the low-lying peninsula. Historical water-level data indicate that there was no long-term decline in the water table from 1974 to 1992. The water quality of shallow ground water was generally good with a few local problems. Natural concentrations of dissolved iron were higher than 0.3 milligrams per liter in about one-third of the samples. The dissolved-solids concentrations were generally low, with a range of 56 to 218 milligrams per liter. No appreciable amount of seawater has intruded into the sand aquifer, chloride concentrations were low, with a maximum of 52 milligrams per liter. Agricultural activities do not appear to have significantly affected the quality of ground water. Concentrations of nutrients were low in the cranberry-growing areas, and selected pesticides were not found above the analytical detection limits. Septic systems probably caused an increase in the concentration of nitrate from medians of less than 0.05 milligrams per liter in areas of low population density to 0.74 milligrams per liter in areas of high density.

  12. Water Operations Technical Support Program. Water Quality Management for Reservoirs and Tailwaters. Report 1. In-Reservoir Water Quality Management Techniques

    DTIC Science & Technology

    1989-01-01

    Biological Control of Water Hyacinth with the Weevils Neochetina eichhorniae and N. bruchi," Proc., 18th Ann. Mtg., Aquatic Plant Control Research Program...Plant Manage., 22:57-61. Haag, K. H. 1985. "Does Herbicide Application Affect Water Hyacinth Weevils ?" Aquatics, 7:13-15. Haag, K. H. 1986. "Effective... WATER OPERATIONS TECHNICAL SUPPORT PROGRAM TECHNICAL REPORT E-89-1 IF ILE Wei 0 W 11 WATER QUALITY MANAGEMENT FOR A-A208’ 942 RESERVOIRS AND

  13. 40 CFR 130.8 - Water quality report.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... PLANNING AND MANAGEMENT § 130.8 Water quality report. (a) Each State shall prepare and submit biennially to... quality data and problems identified in the 305(b) report, States develop water quality management (WQM... the 305(b) report should be analyzed through water quality management planning leading to...

  14. 40 CFR 130.4 - Water quality monitoring.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 22 2014-07-01 2013-07-01 true Water quality monitoring. 130.4 Section... QUALITY PLANNING AND MANAGEMENT § 130.4 Water quality monitoring. (a) In accordance with section 106(e)(1.../quality control guidance. (b) The State's water monitoring program shall include collection and...

  15. Water quality of North Carolina streams

    USGS Publications Warehouse

    Harned, Douglas; Meyer, Dann

    1983-01-01

    Interpretation of water quality data collected by the U.S. Geological Survey and the North Carolina Department of Natural Resources and Community Development, for the Yadkin-Pee Dee River system, has identified water quality variations, characterized the current condition of the river in reference to water quality standards, estimated the degree of pollution caused by man, and evaluated long-term trends in concentrations of major dissolved constituents. Three stations, Yadkin River at Yadkin College (02116500), Rocky River near Norwood (02126000), and Pee Dee River near Rockingham (02129000) have been sampled over different periods of time beginning in 1906. Overall, the ambient water quality of the Yadkin-Pee Dee River system is satisfactory for most water uses. Iron and manganese concentrations are often above desirable levels, but they are not unusually high in comparison to other North Carolina streams. Lead concentrations also periodically rise above the recommended criterion for domestic water use. Mercury concentrations frequently exceed, and pH levels fall below, the recommended criteria for protection of aquatic life. Dissolved oxygen levels, while generally good, are lowest at the Pee Dee near Rockingham, due to the station 's location not far downstream from a lake. Suspended sediment is the most significant water quality problem of the Yadkin-Pee Dee River. The major cation in the river is sodium and the major anions are bicarbonate and carbonate. Eutrophication is currently a problem in the Yadkin-Pee Dee, particularly in High Rock Lake. An estimated nutrient and sediment balance of the system indicates that lakes along the Yadkin-Pee Dee River serve as a sink for sediment, ammonia, and phosphorus. Pollution makes up approximately 59% of the total dissolved solids load of the Yadkin River at Yadkin College, 43% for the Rocky River near Norwood, and 29% for the Pee Dee River near Rockingham. Statistically significant trends show a pattern of increasing

  16. Water Quality Vocabulary Development and Deployment

    NASA Astrophysics Data System (ADS)

    Simons, B. A.; Yu, J.; Cox, S. J.

    2013-12-01

    Semantic descriptions of observed properties and associated units of measure are fundamental to understanding of environmental observations, including groundwater, surface water and marine water quality. Semantic descriptions can be captured in machine-readable ontologies and vocabularies, thus providing support for the annotation of observation values from the disparate data sources with appropriate and accurate metadata, which is critical for achieving semantic interoperability. However, current stand-alone water quality vocabularies provide limited support for cross-system comparisons or data fusion. To enhance semantic interoperability, the alignment of water-quality properties with definitions of chemical entities and units of measure in existing widely-used vocabularies is required. Modern ontologies and vocabularies are expressed, organized and deployed using Semantic Web technologies. We developed an ontology for observed properties (i.e. a model for expressing appropriate controlled vocabularies) which extends the NASA/TopQuadrant QUDT ontology for Unit and QuantityKind with two additional classes and two properties (see accompanying paper by Cox, Simons and Yu). We use our ontology to populate the Water Quality vocabulary with a set of individuals of each of the four key classes (and their subclasses), and add appropriate relationships between these individuals. This ontology is aligned with other relevant stand-alone Water Quality vocabularies and domain ontologies. Developing the Water Quality vocabulary involved two main steps. First, the Water Quality vocabulary was populated with individuals of the ObservedProperty class, which was determined from a census of existing datasets and services. Each ObservedProperty individual relates to other individuals of Unit and QuantityKind (taken from QUDT where possible), and to IdentifiedObject individuals. As a large fraction of observed water quality data are classified by the chemical substance involved, the

  17. The quality of our Nation's waters: water quality in the Denver Basin aquifer system, Colorado, 2003-05

    USGS Publications Warehouse

    Bauch, Nancy J.; Musgrove, Marylynn; Mahler, Barbara J.; Paschke, Suzanne

    2015-01-01

    Availability and sustainability of groundwater in the Denver Basin aquifer system depend on water quantity and water quality. The Denver Basin aquifer system underlies about 7,000 square miles of the Great Plains in eastern Colorado and is the primary or sole source of water for domestic and public supply in many areas of the basin. Use of groundwater from the Denver Basin sandstone aquifers has been instrumental for development of the south Denver metropolitan area and other areas, but has resulted in a decline in water levels in some parts of the system. Human activities in many areas have adversely affected the quality of water in the aquifer system, especially the shallow parts. Groundwater in deeper parts of the system used for drinking water, once considered isolated from the effects of overlying land use, is increasingly vulnerable to contamination from human activities and geologic materials. Availability and sustainability of high-quality groundwater are vital to the economic health of the Denver Basin area.

  18. Water quality improvement plan for Greater Vancouver

    SciTech Connect

    Foellmi, S.N. . Environmental Div.); Neden, D.G. ); Dawson, R.N. )

    1993-10-01

    The Greater Vancouver Regional District commissioned an 18-month planning and predesign study to define the components in a comprehensive water and predesign study to define the components in a comprehensive water quality improvement plan for its 2,500-ML/d (660-mgd) system. The study included three primary tasks: (1) predesign of disinfection and corrosion control facilities, (2) a 12-month pilot testing program using parallel pilot plants at the Seymour and Capilano water supply reservoirs, and (3) planning for future filtration plants. The results of the study identified chlorine, ammonia, sulfur dioxide, soda ash, and carbon dioxide in a two-stage treatment approach as the recommended disinfection and corrosion control scheme for the low-pH, low-alkalinity water supplies. The pilot-plant studies confirmed that direct filtration using deep-bed monomedium filters operating at a loading rate of 22.5 m/h provided excellent treatment performance and productivity over a wide range of raw-water quality. Ozonation was studied extensively and found not to be beneficial in the overall treatment performance. The phased improvement plan for the disinfection, corrosion control, and filtration facilities has an estimated capital cost of about Can$459 million.

  19. Overview of water quality and water resource research in the Water Quality and Ecology Research Unit, Oxford, MS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Water Quality and Ecology Research Unit (WQERU) is part of the United States Department of Agriculture - Agricultural Research Service (USDA-ARS) National Sedimentation Laboratory located in Oxford, Mississippi. The stated research mission of the WQERU is to “address issues of water quality/quan...

  20. Water quality in Illinois, 1990-1991. Biennial report

    SciTech Connect

    Northrop, C.

    1993-01-01

    The report is a summary of the 305(b) Illinois Water Quality Report. It highlights the 1990 - 1991 water quality conditions of Illinois rivers, streams, inland lakes, Lake Michigan, and groundwater. The report also outlines current water quality issues and the IEPA's water pollution control programs.

  1. 9 CFR 108.11 - Water quality requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Water quality requirements. 108.11... LICENSED ESTABLISHMENTS § 108.11 Water quality requirements. A certification from the appropriate water pollution control agency, that the establishment is in compliance with applicable water quality...

  2. 9 CFR 108.11 - Water quality requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Water quality requirements. 108.11... LICENSED ESTABLISHMENTS § 108.11 Water quality requirements. A certification from the appropriate water pollution control agency, that the establishment is in compliance with applicable water quality...

  3. 7 CFR 634.23 - Water quality plan.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Water quality plan. 634.23 Section 634.23 Agriculture... AGRICULTURE LONG TERM CONTRACTING RURAL CLEAN WATER PROGRAM Participant RCWP Contracts § 634.23 Water quality plan. (a) The participant's water quality plan, developed with technical assistance by the NRCS or...

  4. 9 CFR 108.11 - Water quality requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Water quality requirements. 108.11... LICENSED ESTABLISHMENTS § 108.11 Water quality requirements. A certification from the appropriate water pollution control agency, that the establishment is in compliance with applicable water quality...

  5. 40 CFR 130.8 - Water quality report.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 23 2012-07-01 2012-07-01 false Water quality report. 130.8 Section 130.8 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.8 Water quality report. (a) Each State shall prepare and...

  6. 40 CFR 130.8 - Water quality report.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 22 2011-07-01 2011-07-01 false Water quality report. 130.8 Section 130.8 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.8 Water quality report. (a) Each State shall prepare and...

  7. 77 FR 46298 - Phosphorus Water Quality Standards for Florida Everglades

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-03

    ... AGENCY 40 CFR Part 131 RIN 2040-AF38 Phosphorus Water Quality Standards for Florida Everglades AGENCY... provisions of Florida's Water Quality Standards for Phosphorus in the Everglades Protection Area (Phosphorus... are not applicable water quality standards for purposes of the Clean Water Act. EPA is...

  8. 76 FR 38592 - Phosphorus Water Quality Standards for Florida Everglades

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-01

    ... AGENCY 40 CFR Part 131 Phosphorus Water Quality Standards for Florida Everglades AGENCY: Environmental... provisions of Florida's Water Quality Standards for Phosphorus in the Everglades Protection Area (Phosphorus... are not applicable water quality standards for purposes of the Clean Water Act. EPA is proposing...

  9. 40 CFR 130.4 - Water quality monitoring.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 23 2013-07-01 2013-07-01 false Water quality monitoring. 130.4 Section 130.4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.4 Water quality monitoring. (a) In accordance with section...

  10. 40 CFR 130.8 - Water quality report.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 23 2013-07-01 2013-07-01 false Water quality report. 130.8 Section 130.8 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.8 Water quality report. (a) Each State shall prepare and...

  11. 40 CFR 130.8 - Water quality report.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 21 2010-07-01 2010-07-01 false Water quality report. 130.8 Section 130.8 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.8 Water quality report. (a) Each State shall prepare and...

  12. 40 CFR 130.4 - Water quality monitoring.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 23 2012-07-01 2012-07-01 false Water quality monitoring. 130.4 Section 130.4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.4 Water quality monitoring. (a) In accordance with section...

  13. 40 CFR 130.4 - Water quality monitoring.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 22 2011-07-01 2011-07-01 false Water quality monitoring. 130.4 Section 130.4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.4 Water quality monitoring. (a) In accordance with section...

  14. 7 CFR 634.23 - Water quality plan.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Water quality plan. 634.23 Section 634.23 Agriculture... AGRICULTURE LONG TERM CONTRACTING RURAL CLEAN WATER PROGRAM Participant RCWP Contracts § 634.23 Water quality plan. (a) The participant's water quality plan, developed with technical assistance by the NRCS or...

  15. 7 CFR 634.23 - Water quality plan.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Water quality plan. 634.23 Section 634.23 Agriculture... AGRICULTURE LONG TERM CONTRACTING RURAL CLEAN WATER PROGRAM Participant RCWP Contracts § 634.23 Water quality plan. (a) The participant's water quality plan, developed with technical assistance by the NRCS or...

  16. 40 CFR 130.4 - Water quality monitoring.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 21 2010-07-01 2010-07-01 false Water quality monitoring. 130.4 Section 130.4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.4 Water quality monitoring. (a) In accordance with section...

  17. 7 CFR 634.23 - Water quality plan.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Water quality plan. 634.23 Section 634.23 Agriculture... AGRICULTURE LONG TERM CONTRACTING RURAL CLEAN WATER PROGRAM Participant RCWP Contracts § 634.23 Water quality plan. (a) The participant's water quality plan, developed with technical assistance by the NRCS or...

  18. 9 CFR 108.11 - Water quality requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Water quality requirements. 108.11... LICENSED ESTABLISHMENTS § 108.11 Water quality requirements. A certification from the appropriate water pollution control agency, that the establishment is in compliance with applicable water quality...

  19. Hydrogeology and water quality of the Chakari Basin, Afghanistan

    USGS Publications Warehouse

    Mack, Thomas J.; Chornack, Michael P.; Flanagan, Sarah M.; Chalmers, Ann T.

    2014-01-01

    resources are likely to be limited. Groundwater use in the villages of the basin is generally supplied by hand-pumped wells, whereas agricultural needs are met by surface-water flows. New or increased water uses in the basin, or activities that may affect water quality, should be carefully evaluated to avoid affecting existing uses.

  20. REGIONAL GROUND-WATER-QUALITY NETWORK DESIGN.

    USGS Publications Warehouse

    Templin, William E.; ,

    1985-01-01

    This paper describes the approach used in designing a regional network to monitor the complex ground-water-quality conditions in the San Joaquin Valley, California. The actual network approximates the ideal network with the constraint of primarily using wells that are already being monitored by someone for some purpose. Further inventories of monitoring networks and installation of some specialized monitoring wells will be needed. Use of statistical network analysis techniques is also needed to make network improvements. Following these actions, the actual network will more closely approximate the ideal network in providing information on ground-water-quality trends, contaminant sources, prevention of future sources of contamination, monitoring well distributions, sampling frequencies, and constituents to be monitored.

  1. Water quality and surfactant effects on the water repellency of a sandy soil

    NASA Astrophysics Data System (ADS)

    Lehrsch, G. A.; Sojka, R. E.

    2011-06-01

    SummaryDifferences in irrigation water quality may affect the water repellency of soils treated or untreated with surfactants. Using simulated irrigations, we evaluated water quality and surfactant application rate effects upon the water repellency of a Quincy sand (Xeric Torripsamment). We used a split plot design with two irrigation water qualities, three surfactant application rates, two irrigations, and 12 sampling depths as fixed effects, with four replications. Each water quality × rate × irrigation combination was a main plot and depth was a repeated-measures subplot. A slightly water repellent Quincy soil (average water drop penetration time, WDPT, of 2.5 s) was packed in 25-mm lifts (or layers) to a bulk density of 1.6 Mg m -3 into 0.15-m-high × 0.105-m-diameter plastic columns. We studied a nonionic surfactant, a blend of an ethylene oxide/propylene oxide block copolymer and an alkyl polyglycoside. We sprayed the surfactant at rates of 0, 9.4, and 46.8 L ha -1, diluted with reverse osmosis water (RW) to apply 187 L ha -1 of solution, onto the soil surface of each packed column. About 1 and 5 days after surfactant application, columns were sprinkler irrigated with either RW or well water (WW). The WDPT was then measured with depth on soil air-dried after the first and after the second irrigation. After the first irrigation, WDPT at depths from 97 to 117 mm averaged across surfactant rates reached a maximum of 28 s, regardless of irrigation water quality. WDPT was greatest at 117 mm with RW but only at 97 mm with WW. After the second irrigation, maximum WDPT was 1202 s at 139 mm with RW but only 161 s at 117 mm with WW, nearly 7.5 fold less than with RW. WDPT was greatest near the wetting front, irrespective of water quality. We conclude that irrigation water containing modest amounts of electrolytes or salts, in this case mostly salts of Ca 2+, reduces water repellency in the presence or absence of surfactant. Our experimental results may also help

  2. Global surface water quality hotspots under climate change and anthropogenic developments

    NASA Astrophysics Data System (ADS)

    van Vliet, Michelle T. H.; Yearsley, John R.

    2016-04-01

    In recent decades, freshwater usage for various sectors (e.g. agriculture, industry, energy and domestic) has more than doubled. A growing global population will place further demands on water supplies, whereas the availability and quality of water resources will be affected by climate change and human impacts. These developments will increase imbalances between fresh water demand and supply in terms of both water quantity and water quality. Here we discuss a methodology to identify regions of the world where surface water quality is expected to deteriorate under climate change and anthropogenic developments. Our approach integrates global hydrological-water quality modelling, climate and socio-economic scenarios and relations of water quality with physical and socio-economic drivers.

  3. Quality of surface water in Missouri, water year 2010

    USGS Publications Warehouse

    Barr, Miya N.

    2011-01-01

    The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, designs and operates a series of monitoring stations on streams throughout Missouri known as the Ambient Water-Quality Monitoring Network. During the 2010 water year (October 1, 2009 through September 30, 2010), data were collected at 75 stations-72 Ambient Water-Quality Monitoring Network stations, 2 U.S. Geological Survey National Stream Quality Accounting Network stations, and 1 spring sampled in cooperation with the U.S. Forest Service. Dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, fecal coliform bacteria, Escherichia coli bacteria, dissolved nitrate plus nitrite, total phosphorus, dissolved and total recoverable lead and zinc, and select pesticide compound summaries are presented for 72 of these stations. The stations primarily have been classified into groups corresponding to the physiography of the State, primary land use, or unique station types. In addition, a summary of hydrologic conditions in the State including peak discharges, monthly mean discharges, and 7-day low flow is presented.

  4. Quality of surface water in Missouri, water year 2009

    USGS Publications Warehouse

    Barr, Miya N.

    2010-01-01

    The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, designs and operates a series of monitoring stations on streams throughout Missouri known as the Ambient Water-Quality Monitoring Network. During the 2009 water year (October 1, 2008, through September 30, 2009), data were collected at 75 stations-69 Ambient Water-Quality Monitoring Network stations, 2 U.S. Geological Survey National Stream Quality Accounting Network stations, 1 spring sampled in cooperation with the U.S. Forest Service, and 3 stations sampled in cooperation with the Elk River Watershed Improvement Association. Dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, fecal coliform bacteria, Escherichia coli bacteria, dissolved nitrate plus nitrite, total phosphorus, dissolved and total recoverable lead and zinc, and select pesticide compound summaries are presented for 72 of these stations. The stations primarily have been classified into groups corresponding to the physiography of the State, primary land use, or unique station types. In addition, a summary of hydrologic conditions in the State including peak discharges, monthly mean discharges, and seven-day low flow is presented.

  5. Quality of surface water in Missouri, water year 2011

    USGS Publications Warehouse

    Barr, Miya N.

    2012-01-01

    The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, designed and operates a series of monitoring stations on streams throughout Missouri known as the Ambient Water-Quality Monitoring Network. During the 2011 water year (October 1, 2010, through September 30, 2011), data were collected at 75 stations—72 Ambient Water-Quality Monitoring Network stations, 2 U.S. Geological Survey National Stream Quality Accounting Network stations, and 1 spring sampled in cooperation with the U.S. Forest Service. Dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, fecal coliform bacteria, Escherichia coli bacteria, dissolved nitrate plus nitrite, total phosphorus, dissolved and total recoverable lead and zinc, and select pesticide compound summaries are presented for 72 of these stations. The stations primarily have been classified into groups corresponding to the physiography of the State, primary land use, or unique station types. In addition, a summary of hydrologic conditions in the State including peak discharges, monthly mean discharges, and 7-day low flow is presented.

  6. Quality of surface water in Missouri, water year 2014

    USGS Publications Warehouse

    Barr, Miya N.

    2015-12-18

    The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, designed and operates a series of monitoring stations on streams and springs throughout Missouri known as the Ambient Water-Quality Monitoring Network. During the 2014 water year (October 1, 2013, through September 30, 2014), data were collected at 74 stations—72 Ambient Water-Quality Monitoring Network stations and 2 U.S. Geological Survey National Stream Quality Assessment Network stations. Dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, Escherichia coli bacteria, fecal coliform bacteria, dissolved nitrate plus nitrite as nitrogen, total phosphorus, dissolved and total recoverable lead and zinc, and select pesticide compound summaries are presented for 71 of these stations. The stations primarily have been classified into groups corresponding to the physiography of the State, primary land use, or unique station types. In addition, a summary of hydrologic conditions in the State including peak discharges, monthly mean discharges, and 7-day low flow is presented.

  7. Quality of surface water in Missouri, water year 2015

    USGS Publications Warehouse

    Barr, Miya N.; Heimann, David C.

    2016-11-14

    The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, designed and operates a series of monitoring stations on streams and springs throughout Missouri known as the Ambient Water-Quality Monitoring Network. During water year 2015 (October 1, 2014, through September 30, 2015), data were collected at 74 stations—72 Ambient Water-Quality Monitoring Network stations and 2 U.S. Geological Survey National Stream Quality Assessment Network stations. Dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, Escherichia coli bacteria, fecal coliform bacteria, dissolved nitrate plus nitrite as nitrogen, total phosphorus, dissolved and total recoverable lead and zinc, and select pesticide compound summaries are presented for 71 of these stations. The stations primarily have been classified into groups corresponding to the physiography of the State, primary land use, or unique station types. In addition, a summary of hydrologic conditions in the State including peak streamflows, monthly mean streamflows, and 7-day low flows is presented.

  8. Petroleum coke adsorption as a water management option for oil sands process-affected water.

    PubMed

    Zubot, Warren; MacKinnon, Michael D; Chelme-Ayala, Pamela; Smith, Daniel W; Gamal El-Din, Mohamed

    2012-06-15

    Water is integral to both operational and environmental aspects of the oil sands industry. A water treatment option based on the use of petroleum coke (PC), a by-product of bitumen upgrading, was examined as an opportunity to reduce site oil sands process-affected water (OSPW) inventories and net raw water demand. Changes in OSPW quality when treated with PC included increments in pH levels and concentrations of vanadium, molybdenum, and sulphate. Constituents that decreased in concentration after PC adsorption included total acid-extractable organics (TAO), bicarbonate, calcium, barium, magnesium, and strontium. Changes in naphthenic acids (NAs) speciation were observed after PC adsorption. A battery of bioassays was used to measure the OSPW toxicity. The results indicated that untreated OSPW was toxic towards Vibrio fischeri and rainbow trout. However, OSPW treated with PC at appropriate dosages was not acutely toxic towards these test organisms. Removal of TAO was found to be an adsorption process, fitting the Langmuir and Langmuir-Freundlich isotherm models. For TAO concentrations of 60 mg/L, adsorption capacities ranged between 0.1 and 0.46 mg/g. This study demonstrates that freshly produced PC from fluid cokers provides an effective treatment of OSPW in terms of key constituents' removal and toxicity reduction.

  9. Modeling Water Quality of Reservoir Tailwaters

    DTIC Science & Technology

    1992-05-01

    ammonium (NH4+) to nitrate (N03-) where the overall reaction is described as follows (Wetzel 1975) NH* + 202 -> NO3 + HO + 2H* (19) thus requiring... ammonium nitrogen to nitrate nitrogen. d. Oxidation of reduced manganese sorbed onto the bed. jt. Oxidation of reduced (i.e., dissolved) iron...Water quality constituents modeled during each application were DO, CBOD, ammonium nitrogen, organic nitrogen, nitrate nitro- gen, dissolved iron

  10. Quality assessment of Romanian bottled mineral water and tap water.

    PubMed

    M Carstea, Elfrida; Levei, Erika A; Hoaghia, Maria-Alexandra; Savastru, Roxana

    2016-09-01

    This study reports the evaluation of bottled mineral water characteristics using fluorescence spectroscopy (synchronous fluorescence scans and emission spectra) and physico-chemical analyses. Samples from 14 still mineral water brands were compared to 11 tap waters collected from two Romanian cities. Correlation and factor analyses were undertaken to understand the relationships between the individual components. The concentration of major and minor ions showed great variation between the bottled mineral water samples highlighting the diversity of the water intakes, while in the case of tap water the chemical composition was relatively similar for samples collected in the same city. Fluorescence data showed that the mineral water contained low quantities of organic matter. The humic fraction was dominant in all samples, while the microbial fraction was low in most samples. Synchronous fluorescence scans provided more information, regarding the composition of organic matter, compared to emission spectra. The study evidenced the correlation between fluorescence parameters and major elements and highlighted the potential of using fluorescence for qualitative evaluation of the bottled mineral water quality, as a screening method before undertaking complex analyses.

  11. Analysis of River Water Quality and its influencing factors for the Effective Management of Water Environment

    NASA Astrophysics Data System (ADS)

    Shrestha, G.; Sadohara, S.; Yoshida, S.; Yuichi, S.

    2011-12-01

    In Japan, remarkable improvements in water quality have been observed over recent years because of regulations imposed on industrial wastewater and development of sewerage system. However, pollution loads from agricultural lands are still high and coverage ratio of sewerage system is still low in small and medium cities. In present context, nonpoint source pollution such as runoff from unsewered developments, urban and agricultural runoffs could be main water quality impacting factors. Further, atmospheric nitrogen (N) is the complex nonpoint source than can seriously affect river water environment. This study was undertaken to spatially investigate the present status of river water quality of Hadano Basin located in Kanagawa Prefecture, Japan. Water quality of six rivers was investigated and its relationship with nonpoint pollution sources was analyzed. This study, with inclusion of ground water circulation and atmospheric N, can be effectively employed for water quality management of other watersheds also, both with and without influence of ground water circulation. Hence, as a research area of this study, it is significant in terms of water quality management. Total nitrogen (TN) was found consistently higher in urbanized basins indicating that atmospheric N might be influencing TN of river water. Ground water circulation influenced both water quality and quantity. In downstream basins of Muro and Kuzuha rivers, Chemical oxygen demand (COD) and total phosphorus (TP) were diluted by ground water inflow. In Mizunashi River and the upstream of Kuzuha River, surface water infiltrated to the subsurface due to higher river bed permeability. Influencing factors considered in the analysis were unsewered population, agricultural land, urban area, forest and atmospheric N. COD and TP showed good correlation with unsewered population and agricultural land. While TN had good correlation with atmospheric N deposition. Multiple regression analysis between water quality

  12. Water quality and macroinvertebrate communities of Emigration and Red Butte Creeks, Salt Lake County, Utah

    USGS Publications Warehouse

    Giddings, Elise

    2000-01-01

    Residential development in the canyons and foothills surrounding Salt Lake City, Utah, is growing at a rapid pace. Urban development typically degrades the water quality when formerly natural lands are developed. In Emigration Canyon, however, residential development is replacing land formerly used for grazing and recreation. It is not clear how this land use change has affected the water quality and biotic communities in this watershed. The water quality and macroinvertebrate communities of Emigration Creek and neighboring Red Butte Creek were examined by the U.S. Geological Survey (USGS) as part of the National Water-Quality Assessment Program (NAWQA) during summer 1999.

  13. 76 FR 6727 - Proposed Amendments to the Water Quality Regulations, Water Code and Comprehensive Plan To...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-08

    ... COMMISSION 18 CFR Part 410 Proposed Amendments to the Water Quality Regulations, Water Code and Comprehensive... and locations for public hearings on proposed amendments to its Water Quality Regulations, Water Code... amendments to the Commission's Water Quality Regulations, Water Code and Comprehensive Plan relating to...

  14. Kansas environmental and resource study: A Great Plains model. Monitoring fresh water resources. [water quality of reservoirs

    NASA Technical Reports Server (NTRS)

    Yarger, H. L. (Principal Investigator); Mccauley, J. R.

    1974-01-01

    The author has identified the following significant results. Processing and analysis of CCT's for numerous ground truth supported passes over Kansas reservoirs has demonstrated that sun angle and atmospheric conditions are strong influences on water reflectance levels as detected by ERTS-1 and can suppress the contributions of true water quality factors. Band ratios, on the other hand, exhibit very little dependence on sun angle and sky conditions and thus are more directly related to water quality. Band ratio levels can be used to reliably determine suspended load. Other water quality indicators appear to have little or no affect on reflectance levels.

  15. Water quality data for national-scale aquatic research: The Water Quality Portal

    USGS Publications Warehouse

    Read, Emily K.; Carr, Lindsay; DeCicco, Laura; Dugan, Hilary; Hanson, Paul C.; Hart, Julia A.; Kreft, James; Read, Jordan S.; Winslow, Luke

    2017-01-01

    Aquatic systems are critical to food, security, and society. But, water data are collected by hundreds of research groups and organizations, many of which use nonstandard or inconsistent data descriptions and dissemination, and disparities across different types of water observation systems represent a major challenge for freshwater research. To address this issue, the Water Quality Portal (WQP) was developed by the U.S. Environmental Protection Agency, the U.S. Geological Survey, and the National Water Quality Monitoring Council to be a single point of access for water quality data dating back more than a century. The WQP is the largest standardized water quality data set available at the time of this writing, with more than 290 million records from more than 2.7 million sites in groundwater, inland, and coastal waters. The number of data contributors, data consumers, and third-party application developers making use of the WQP is growing rapidly. Here we introduce the WQP, including an overview of data, the standardized data model, and data access and services; and we describe challenges and opportunities associated with using WQP data. We also demonstrate through an example the value of the WQP data by characterizing seasonal variation in lake water clarity for regions of the continental U.S. The code used to access, download, analyze, and display these WQP data as shown in the figures is included as supporting information.

  16. CADDIS Volume 2. Sources, Stressors and Responses: Urbanization - Water and Sediment Quality

    EPA Pesticide Factsheets

    Introduction to water and sediment quality issues associated with urbanization, overview of conductivity as an indicator or urbanization, overview of how urbanization affects nitrogen loading, overview of pavement sealants and their effects on stream biota

  17. Statewide water-quality network for Massachusetts

    USGS Publications Warehouse

    DeSimone, Leslie A.; Steeves, Peter A.; Zimmerman, Marc James

    2001-01-01

    A water-quality monitoring program is proposed that would provide data to meet multiple information needs of Massachusetts agencies and other users concerned with the condition of the State's water resources. The program was designed by the U.S. Geological Survey and the Massachusetts Department of Environmental Protection, Division of Watershed Management, with input from many organizations involved in water-quality monitoring in the State, and focuses on inland surface waters (streams and lakes). The proposed monitoring program consists of several components, or tiers, which are defined in terms of specific monitoring objectives, and is intended to complement the Massachusetts Watershed Initiative (MWI) basin assessments. Several components were developed using the Neponset River Basin in eastern Massachusetts as a pilot area, or otherwise make use of data from and sampling approaches used in that basin as part of a MWI pilot assessment in 1994. To guide development of the monitoring program, reviews were conducted of general principles of network design, including monitoring objectives and approaches, and of ongoing monitoring activities of Massachusetts State agencies.Network tiers described in this report are primarily (1) a statewide, basin-based assessment of existing surface-water-quality conditions, and (2) a fixed-station network for determining contaminant loads carried by major rivers. Other components, including (3) targeted programs for hot-spot monitoring and other objectives, and (4) compliance monitoring, also are discussed. Monitoring programs for the development of Total Maximum Daily Loads for specific water bodies, which would constitute another tier of the network, are being developed separately and are not described in this report. The basin-based assessment of existing conditions is designed to provide information on the status of surface waters with respect to State water-quality standards and designated uses in accordance with the

  18. Water quality and bed sediment quality in the Albemarle Sound, North Carolina, 2012–14

    USGS Publications Warehouse

    Moorman, Michelle C.; Fitzgerald, Sharon A.; Gurley, Laura N.; Rhoni-Aref, Ahmed; Loftin, Keith A.

    2017-01-23

    , 12 metals in surficial bed sediments were detected at levels above a published sediment-quality threshold. These metals included chromium, mercury, copper, lead, arsenic, nickel, and cadmium. Sites with several metal concentrations above the respective thresholds had relatively high concentrations of organic carbon or fine sediment (silt plus clay), or both and were predominantly located in the western and northwestern parts of the Albemarle Sound.Results from the second phase were generally similar to those of the first in that relatively few constituents exceeded a water-quality threshold, both pH and chlorophyll a were detected above the respective water-quality thresholds, and many of these elevated concentrations occurred in the northern embayments and in Currituck Sound. In contrast to the results from phase one, the cyanotoxin, microcystin was detected at more than 10 times the water-quality threshold during a phytoplankton bloom on the Chowan River at Mount Gould, North Carolina in August of 2013. This was the only cyanotoxin concentration measured during the entire study that exceeded a respective water-quality threshold.The information presented in this report can be used to improve understanding of water-quality conditions in the Albemarle Sound, particularly when evaluating causal and response variables that are indicators of eutrophication. In particular, this information can be used by State agencies to help develop water-quality criteria for nutrients, and to understand factors like cyanotoxins that may affect fisheries and recreation in the Albemarle Sound region.

  19. Storm water contamination and its effect on the quality of urban surface waters.

    PubMed

    Barałkiewicz, Danuta; Chudzińska, Maria; Szpakowska, Barbara; Świerk, Dariusz; Gołdyn, Ryszard; Dondajewska, Renata

    2014-10-01

    We studied the effect of storm water drained by the sewerage system and discharged into a river and a small reservoir, on the example of five catchments located within the boundaries of the city of Poznań (Poland). These catchments differed both in terms of their surface area and land use (single- and multi-family housing, industrial areas). The aim of the analyses was to explain to what extent pollutants found in storm water runoff from the studied catchments affected the quality of surface waters and whether it threatened the aquatic organisms. Only some of the 14 studied variables and 22 chemical elements were important for the water quality of the river, i.e., pH, TSS, rain intensity, temperature, conductivity, dissolved oxygen, organic matter content, Al, Cu, Pb, Zn, Fe, Cd, Ni, Se, and Tl. The most serious threat to biota in the receiver came from the copper contamination of storm water runoff. Of all samples below the sewerage outflow, 74% exceeded the mean acute value for Daphnia species. Some of them exceeded safe concentrations for other aquatic organisms. Only the outlet from the industrial area with the highest impervious surface had a substantial influence on the water quality of the river. A reservoir situated in the river course had an important influence on the elimination of storm water pollution, despite the very short residence time of its water.

  20. Weakly electric fish for biomonitoring water quality.

    PubMed

    Clausen, Juergen; van Wijk, Roeland; Albrecht, Henning

    2012-06-01

    Environmental pollution is a major issue that calls for suitable monitoring systems. The number of possible pollutants of municipal and industrial water grows annually as new chemicals are developed. Technical devices for pollutant detection are constructed in a way to detect a specific and known array of pollutants. Biological systems react to lethal or non-lethal environmental changes without pre-adjustment, and a wide variety have been employed as broad-range monitors for water quality. Weakly electric fish have proven particularly useful for the purpose of biomonitoring municipal and industrial waters. The frequency of their electric organ discharges directly correlates with the quality of the surrounding water and, in this way, concentrations of toxicants down to the nanomolar range have been successfully detected by these organisms. We have reviewed the literature on biomonitoring studies to date, comparing advantages and disadvantages of this test system and summarizing the lowest concentrations of various toxicants tested. Eighteen publications were identified investigating 35 different chemical substances and using six different species of weakly electric fish.

  1. Parameters affecting greywater quality and its safety for reuse.

    PubMed

    Maimon, Adi; Friedler, Eran; Gross, Amit

    2014-07-15

    Reusing greywater (GW) for on-site irrigation is becoming a common practice worldwide. Alongside its benefits, GW reuse might pose health and environmental risks. The current study assesses the risks associated with on-site GW reuse and the main factors affecting them. GW from 34 households in Israel was analyzed for physicochemical parameters, Escherichia coli (as an indicator for rotavirus), Pseudomonas aeruginosa and Staphylococcus aureus. Each participating household filled out a questionnaire about their GW sources, treatment and usages. Quantitative microbial risk assessment (QMRA) was performed based on the measured microbial quality, and on exposure scenarios derived from the questionnaires and literature data. The type of treatment was found to have a significant effect on the quality of the treated GW. The average E. coli counts in GW (which exclude kitchen effluent) treated by professionally-designed system resulted in acceptable risk under all exposure scenarios while the risk from inadequately-treated GW was above the accepted level as set by the WHO. In conclusion, safe GW reuse requires a suitable and well-designed treatment system. A risk-assessment approach should be used to adjust the current regulations/guidelines and to assess the performance of GW treatment and reuse systems.

  2. Determination of characteristics and drinking water quality index in Mzuzu City, Northern Malawi

    NASA Astrophysics Data System (ADS)

    Wanda, Elijah M. M.; Gulula, Lewis C.; Phiri, Gift

    An assessment of characteristics and chemical water quality index (WQI) of water supplied by the Northern Region water Board (NRWB) in Mzuzu City was carried out in order to ascertain the quality of water for domestic purposes. The WQI offers a single number that expresses overall water quality for a water sample based on several water quality parameters. In this study raw water and 72 tap water samples were collected monthly between March and September, 2011 and analyzed for major ions, pH, total dissolved solids (TDSs), electrical conductivity (EC), turbidity, total hardness (TH), suspended solids (SSs) and alkalinity using standard methods. The quality and accuracy of the chemical data was assessed by checking electrical balances. The calculated electrical balance errors were found to be less than ±10%, which meant the results were reliable. Based on the Sawyer and McCarty TH classification, 100% of the samples were soft waters (TH < 150 mg/L). Nitrates, which registered medium or average WQ-rating of 69.77 and WQ-rating range of 52.06-86.94, were observed to have significantly affected the overall water quality index of the treated water since the rest of the parameters registered good-excellent WQ-ratings (average WQ-rating: 80.21-97.87). The pH, which is used to determine suitability of water for various purposes, ranged between 6.40 and 6.90 and registered a good water quality rating (WQ rating range: 72.73-87.02) for both raw and treated water. Raw water registered an overall medium water quality rating of 62.67%. Overall, 91.67% of the samples registered a good water quality rating (WQI range: 80.28-88.80%) and 8.33% registered a very good water quality rating (WQI = 90.07%). The results suggested substantial water treatment by the NRWB since the treated water is protected with some negligible degree of impairment that rarely departs from desirable levels of domestic water quality. It is recommended that the WQI should be adopted as a tool to monitor and

  3. Canadian water quality guidelines. Appendix 22: Interim marine and estuarine water quality guidelines for general variables

    SciTech Connect

    1996-12-31

    This document has been prepared in response to the need for marine water quality guidelines for general water quality variables. It presents interim guidelines, summaries of existing guidelines if any, the rationale for the guidelines, and variable-specific background information, and notes gaps in data, for the following variables: Debris, including floating or submerged litter, and settleable matter; dissolved oxygen; pH; salinity; temperature; and suspended solids and turbidity. For the purpose of this document, the marine environment includes shorelines, estuaries up to the freshwater limit, and nearshore and offshore waters.

  4. Water quality problems in Nogales, Sonora.

    PubMed Central

    Sanchez, R A

    1995-01-01

    This article presents the results of a transboundary water quality monitoring program at the two Nogales area in the Arizona-Sonora border region. The program was carried out jointly in 1990 by U.S. and Mexican institutions. The results show pollution problems due to deficiencies in Nogales, Sonora municipal sewerage system, causing not only sewage spills in several parts of the city but also creating occasional transboundary problems. The results also showed potential illegal dumping of industrial hazardous waste (VOCs) into Nogales' municipal sewerage system. All of the organic compounds found in the sewage samples are solvents frequently used by the border industry. Occasional brakes of pipes spill the pollutants into the Nogales Wash, a water stream that runs parallel to Nogales' main sewerage line. Samples of the municipal water system showed no traces of pollutants. However, two rounds of samples detected concentrations of VOCs in wells used to supply water by trucks to low income neighborhoods in Nogales, Sonora. Ironically, the pollution detected in these wells has a greater impact in low income groups of the city that pay three to four times more per liter of water they consume, than the rest of the inhabitants with clean water from the municipal system. PMID:7621811

  5. 30 CFR 71.601 - Drinking water; quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drinking water; quality. 71.601 Section 71.601... Water § 71.601 Drinking water; quality. (a) Potable water provided in accordance with the provisions of § 71.600 shall meet the applicable minimum health requirements for drinking water established by...

  6. 30 CFR 71.601 - Drinking water; quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Drinking water; quality. 71.601 Section 71.601... Water § 71.601 Drinking water; quality. (a) Potable water provided in accordance with the provisions of § 71.600 shall meet the applicable minimum health requirements for drinking water established by...

  7. 30 CFR 71.601 - Drinking water; quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Drinking water; quality. 71.601 Section 71.601... Water § 71.601 Drinking water; quality. (a) Potable water provided in accordance with the provisions of § 71.600 shall meet the applicable minimum health requirements for drinking water established by...

  8. 30 CFR 71.601 - Drinking water; quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Drinking water; quality. 71.601 Section 71.601... Water § 71.601 Drinking water; quality. (a) Potable water provided in accordance with the provisions of § 71.600 shall meet the applicable minimum health requirements for drinking water established by...

  9. 30 CFR 71.601 - Drinking water; quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Drinking water; quality. 71.601 Section 71.601... Water § 71.601 Drinking water; quality. (a) Potable water provided in accordance with the provisions of § 71.600 shall meet the applicable minimum health requirements for drinking water established by...

  10. Water Resources Data, New Jersey, Water Year 2000. Volume 3. Water-Quality Data

    USGS Publications Warehouse

    DeLuca, M.J.; Mattes, G.L.; Burns, H.L.; Thomas, A.M.; Gray, B.J.; Doyle, H.A.

    2001-01-01

    Water-resources data for the 2000 water year for New Jersey are presented in three volumes, and consist of records of stage, discharage, and quality of streams; stage and contents of lakes and reservoirs; and levels and quality of ground water. Volume 3 contains a summary of surface and ground water hydrologic conditions for the 2000 water year, a listing of current water-resource projects in New Jersey, a bibliography of water-related reports, articles, and fact sheets for New Jersey completed by the Geological Survey in recent years, water-quality records of chemical analyses from 125 continuing-record surface-water stations, 62 miscellaneous surface-water sites, 73 ground-water sites, and records of daily statistics of temperature and other physical measurements from 45 continuous-recording stations. Locations of water-quality stations are shown in figures 18-20. Locations of miscellaneous water-quality sites are shown in figures 11 and 42-49. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in New Jersey.

  11. Quality-assurance and data-management plan for water-quality activities in the Kansas Water Science Center, 2014

    USGS Publications Warehouse

    Rasmussen, Teresa J.; Bennett, Trudy J.; Foster, Guy M.; Graham, Jennifer L.; Putnam, James E.

    2014-01-01

    As the Nation’s largest water, earth, and biological science and civilian mapping information agency, the U.S. Geological Survey is relied on to collect high-quality data, and produce factual and impartial interpretive reports. This quality-assurance and data-management plan provides guidance for water-quality activities conducted by the Kansas Water Science Center. Policies and procedures are documented for activities related to planning, collecting, storing, documenting, tracking, verifying, approving, archiving, and disseminating water-quality data. The policies and procedures described in this plan complement quality-assurance plans for continuous water-quality monitoring, surface-water, and groundwater activities in Kansas.

  12. Water Resources Data, New Jersey, Water Year 2003; Volume 3. Water-Quality Data

    USGS Publications Warehouse

    DeLuca, Michael J.; Hoppe, Heidi L.; Heckathorn, Heather A.; Riskin, Melissa L.; Gray, Bonnie J.; Melvin, Emma-Lynn; Liu, Nicholas A.

    2004-01-01

    Water-resources data for the 2003 water year for New Jersey are presented in three volumes, and consists of records of stage, discharge, and water-quality of streams; stage and contents of lakes and reservoirs; and water levels and water-quality of ground water. Volume 3 contains a summary of surface- and ground-water hydrologic conditions for the 2003 water year, a listing of current water-resources projects in New Jersey, a bibliography of water-related reports, articles, and fact sheets for New Jersey completed by the Geological Survey in recent years, water-quality records of chemical analyses from 123 continuing-record surface-water stations, 35 ground-water sites, records of daily statistics of temperature and other physical measurements from 20 continuous-recording stations, and 5 special-study sites consisting of 2 surface-water sites, 1 spring site, and 240 groundwater sites. Locations of water-quality stations are shown in figures 21-25. Locations of special-study sites are shown in figures 49-53. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating federal, state, and local agencies in New Jersey.

  13. Water Resources Data, New Jersey, Water Year 2005Volume 3 - Water-Quality Data

    USGS Publications Warehouse

    DeLuca, Michael J.; Heckathorn, Heather A.; Lewis, Jason M.; Gray, Bonnie J.; Feinson, Lawrence S.

    2006-01-01

    Water-resources data for the 2005 water year for New Jersey are presented in three volumes, and consists of records of stage, discharge, and water-quality of streams; stage and contents of lakes and reservoirs; and water levels and water-quality of ground water. Volume 3 contains a summary of surface- and ground-water hydrologic conditions for the 2005 water year, a listing of current water-resources projects in New Jersey, a bibliography of water-related reports, articles, and fact sheets for New Jersey completed by the Geological Survey in recent years, water-quality records of chemical analyses from 118 continuing-record surface-water stations, 30 ground-water sites, records of daily statistics of temperature and other physical measurements from 9 continuous-recording stations, and 5 special studies that included 89 stream, 11 lake, and 29 ground-water sites. Locations of water-quality stations are shown in figures 23-25. Locations of special-study sites are shown in figures 41-46. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating federal, state, and local agencies in New Jersey.

  14. Drivers of water quality variability in northern coastal Ecuador.

    PubMed

    Levy, Karen; Hubbard, Alan E; Nelson, Kara L; Eisenberg, Joseph N S

    2009-03-15

    Microbiological safety of water is commonly measured using indicator organisms, but the spatiotemporal variability of these indicators can make interpretation of data difficult. Here, we systematically explore the variability in Escherichia coil concentrations in surface source and household drinking water in a rural Ecuadorian village over one year. We observed more variability in water quality on an hourly basis (up to 2.4 log difference) than on a daily (2.2 log difference) or weekly basis (up to 1.8 log difference). E. coli counts were higher in the wet season than in the dry season for source (0.42 log difference, p < 0.0001) and household (0.11 log difference, p = 0.077) samples. In the wet season, a 1 cm increase in weekly rainfall was associated with a 3% decrease (p = 0.006) in E. coli counts in source samples and a 6% decrease (p = 0.012) in household samples. Each additional person in the river when source samples were collected was associated with a 4% increase (p = 0.026) in E. coil counts in the wet season. Factors affecting household water quality included rainfall, water source, and covering the container. The variability can be understood as a combination of environmental (e.g., seasonal and soil processes) and other drivers (e.g., human river use, water practices, and sanitation), each working at different time scales.

  15. Monitoring of soil water content and quality inside and outside the water curtain cultivation facility

    NASA Astrophysics Data System (ADS)

    Ha, K.; Kim, Y.

    2014-12-01

    Water curtain cultivation system is an energy saving technique for winter season by splashing groundwater on the inner roof of green house. Artificial groundwater recharge application to the water curtain cultivation facilities was adopted and tested to use groundwater sustainably in a rural region of Korea. The groundwater level in the test site shows natural trend corresponding rainfall pattern except during mid-November to early April when groundwater levels decline sharply due to groundwater abstraction for water curtain cultivation. Groundwater levels are also affected by surface water such as stream, small dams in the stream and agricultural ditches. Infiltration data were collected from lysimeter installation and monitoring inside and outside water cultivation facility and compared with each other. The infiltration data were well correlated with rainfall outside the facility, but the data in the facility showed very different from the other. The missing infiltration data were attributed to groundwater level rise and level sensor location below water table. Soil water contents in the unsaturated zone indicated rainfall infiltration propagation at depth and with time outside the facility. According to rainfall amount and water condition at the initial stage of a rainfall event, the variation of soil water content was shown differently. Soil water contents and electrical conductivities were closely correlated with each other, and they reflected rainfall infiltration through the soil and water quality changes. The monitoring results are useful to reveal the hydrological processes from the infiltration to groundwater recharge, and water management planning in the water cultivation areas.

  16. 1990 National Water Quality Laboratory Services Catalog

    USGS Publications Warehouse

    Pritt, Jeffrey; Jones, Berwyn E.

    1989-01-01

    PREFACE This catalog provides information about analytical services available from the National Water Quality Laboratory (NWQL) to support programs of the Water Resources Division of the U.S. Geological Survey. To assist personnel in the selection of analytical services, the catalog lists cost, sample volume, applicable concentration range, detection level, precision of analysis, and preservation techniques for samples to be submitted for analysis. Prices for services reflect operationa1 costs, the complexity of each analytical procedure, and the costs to ensure analytical quality control. The catalog consists of five parts. Part 1 is a glossary of terminology; Part 2 lists the bottles, containers, solutions, and other materials that are available through the NWQL; Part 3 describes the field processing of samples to be submitted for analysis; Part 4 describes analytical services that are available; and Part 5 contains indices of analytical methodology and Chemical Abstract Services (CAS) numbers. Nomenclature used in the catalog is consistent with WATSTORE and STORET. The user is provided with laboratory codes and schedules that consist of groupings of parameters which are measured together in the NWQL. In cases where more than one analytical range is offered for a single element or compound, different laboratory codes are given. Book 5 of the series 'Techniques of Water Resources Investigations of the U.S. Geological Survey' should be consulted for more information about the analytical procedures included in the tabulations. This catalog supersedes U.S. Geological Survey Open-File Report 86-232 '1986-87-88 National Water Quality Laboratory Services Catalog', October 1985.

  17. Quality-Assurance Plan for Water-Quality Activities of the U.S. Geological Survey Montana Water Science Center

    USGS Publications Warehouse

    Lambing, John H.

    2006-01-01

    In accordance with guidelines set forth by the Office of Water Quality in the Water Resources Discipline of the U.S. Geological Survey (USGS), a quality-assurance plan has been created for use by the USGS Montana Water Science Center in conducting water-quality activities. This quality-assurance plan documents the standards, policies, and procedures used by the USGS Montana Water Science Center for activities related to the collection, processing, storage, analysis, and publication of water-quality data. The policies and procedures presented in this quality-assurance plan for water-quality activities complement the quality-assurance plans for surface-water and ground-water activities and suspended-sediment analysis.

  18. MATERIALS SUPPORTING THE NEW RECREATIONAL WATER QUALITY CRITERIA FOR PATHOGENS

    EPA Science Inventory

    EPA is developing new, rapid methods for monitoring water quality at beaches to determine adequacy of water quality for swimming. The methods being developed rely upon quantitive polymerase chain reaction technology. They will permit real time decisions regarding beach closures...

  19. Barriers to adopting satellite remote sensing for water quality management

    EPA Science Inventory

    Satellite technology can provide a robust and synoptic approach for measuring water quality parameters. Water quality measures typically include chlorophyll-a, suspended material, light attenuation, and colored dissolved organic matter. The Hyperspectral Imager for the Coastal ...

  20. Developing Water Quality Criteria for Suspended and Bedded Sediments (SABs)

    EPA Pesticide Factsheets

    This paper provides an introduction to SABS and water quality criteria and discusses the types and status of water quality criteria that have been or are currently being used by the States, Canada and elsewhere.

  1. Relating watershed nutrient loads to satellite derived estuarine water quality

    EPA Science Inventory

    Nutrient enhanced phytoplankton production is a cause of degraded estuarine water quality. Yet, relationships between watershed nutrient loads and the spatial and temporal scales of phytoplankton blooms and subsequent water quality impairments remain unquantified for most systems...

  2. Survey of state water laws affecting coal slurry pipeline development

    SciTech Connect

    Rogozen, M.B.

    1980-11-01

    This report summarizes state water laws likely to affect the development of coal slurry pipelines. It was prepared as part of a project to analyze environmental issues related to energy transportation systems. Coal slurry pipelines have been proposed as a means to expand the existing transportation system to handle the increasing coal shipments that will be required in the future. The availability of water for use in coal slurry systems in the coal-producing states is an issue of major concern.

  3. Urban areas impact on surface water quality during rainfall events

    NASA Astrophysics Data System (ADS)

    Ferreira, C. S. S.; Soares, D.; Ferreira, A. J. D.; Costa, M. L.; Steenhuis, T. S.; Coelho, C. O. A.; Walsh, R. P. D.

    2012-04-01

    Increasing population and welfare puts water management under stress, especially in what concerns water quality. Surface water properties are strongly linked with hydrological processes and are affected by stream flow variability. Changes in some chemical substances concentrations can be ascribed to different water sources. Runoff generated in urban areas is considered the main responsible for water quality degradation inside catchments. This poster presents the methodology and first results of a study that is being developed to assess the impact of urbanization on surface water quality, during rainfall events. It focuses on the Ribeira dos Covões catchment (620 ha) located in central Portugal. Due to its proximity to the Coimbra city in central region, the urban areas sprawled during the last decades. In 2008, urban areas represented 32% of the area. Recently a highway was constructed crossing the catchment and a technological industrial park is being build-up in the headwaters. Several water samples were collected at four different locations: the catchment outlet and in three sub-catchments with distinct urbanization patterns - Espírito Santo that represents a highly urbanized area (45%) located over sandstone, Porto do Bordalo with 30% of urbanized area located over limestone, and IParque, mainly forest and just downstream the disturbed technological industrial park construction area. The samples were collected at different times during rainfall events to monitor the variability along the hydrograph. Six monitoring campaigns were performed: two in April 2011, at the end of the winter period, and the others between October and November 2011, after the dry summer. The number of samples collected per monitoring campaign is variable according with rainfall pattern. Parameters such as pH, conductivity, turbidity and total suspended sediments were immediately analyzed. The samples were then preserved, after filtered (0.45µm), and later analyzed for dissolved

  4. Water Resources Data, New Jersey, Water Year 2002--Volume 3. Water-Quality Data

    USGS Publications Warehouse

    DeLuca, M.J.; Hoppe, H.L.; Heckathorn, H.A.; Gray, B.J.; Riskin, M.L.

    2003-01-01

    Water-resources data for the 2002 water year for New Jersey are presented in three volumes, and consists of records of stage, discharge, and quality of streams; stage and contents of lakes and reservoirs; and levels and quality of ground water. Volume 3 contains a summary of surface- and ground-water hydrologic conditions for the 2002 water year, a listing of current water-resources projects in New Jersey, a bibliography of water-related reports, articles, and fact sheets for New Jersey completed by the Geological Survey in recent years, water-quality records of chemical analyses from 118 continuing-record surface-water stations, 15 miscellaneous ground-water sites, and records of daily statistics of temperature and other physical measurements from 6 continuous-recording stations. Locations of water-quality stations are shown in figures 12-14. Locations of miscellaneous water-quality sites are shown in figures 40-41. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating federal, state, and local agencies in New Jersey.

  5. How subaerial salt extrusions influence water quality in adjacent aquifers

    NASA Astrophysics Data System (ADS)

    Mehdizadeh, Razieh; Zarei, Mehdi; Raeisi, Ezzat

    2015-12-01

    Brines supplied from salt extrusions cause significant groundwater salinization in arid and semi-arid regions where salt rock is exposed to dissolution by episodic rainfalls. Here we focus on 62 of the 122 diapirs of Hormuz salt emergent in the southern Iran. To consider managing the degradation effect that salt extrusions have on the quality of adjoining aquifers, it is first necessary to understand how they influence adjacent water resources. We evaluate here the impacts that these diapirs have on adjacent aquifers based on investigating their geomorphologies, geologies, hydrologies and hydrogeologies. The results indicate that 28/62 (45%) of our sample of salt diapirs have no significant impact on the quality of groundwater in adjoining aquifers (namely Type N), while the remaining 34/62 (55%) degrade nearby groundwater quality. We offer simple conceptual models that account for how brines flowing from each of these types of salt extrusions contaminate adjacent aquifers. We identify three main mechanisms that lead to contamination: surface impact (Type A), subsurface intrusion (Type B) and indirect infiltration (Type C). A combination of all these mechanisms degrades the water quality in nearby aquifers in 19/62 (31%) of the salt diapirs studied. Having characterized the mechanism(s) by which each diapir affects the adjacent aquifer, we suggest a few possible remediation strategies to be considered. For instance, engineering the surface runoff of diapirs Types A and C into nearby evaporation basins would improve groundwater quality.

  6. Multidimensional Measurement of Household Water Poverty in a Mumbai Slum: Looking Beyond Water Quality

    PubMed Central

    Subbaraman, Ramnath; Nolan, Laura; Sawant, Kiran; Shitole, Shrutika; Shitole, Tejal; Nanarkar, Mahesh; Patil-Deshmukh, Anita; Bloom, David E.

    2015-01-01

    Objective A focus on bacterial contamination has limited many studies of water service delivery in slums, with diarrheal illness being the presumed outcome of interest. We conducted a mixed methods study in a slum of 12,000 people in Mumbai, India to measure deficiencies in a broader array of water service delivery indicators and their adverse life impacts on the slum’s residents. Methods Six focus group discussions and 40 individual qualitative interviews were conducted using purposeful sampling. Quantitative data on water indicators—quantity, access, price, reliability, and equity—were collected via a structured survey of 521 households selected using population-based random sampling. Results In addition to negatively affecting health, the qualitative findings reveal that water service delivery failures have a constellation of other adverse life impacts—on household economy, employment, education, quality of life, social cohesion, and people’s sense of political inclusion. In a multivariate logistic regression analysis, price of water is the factor most strongly associated with use of inadequate water quantity (≤20 liters per capita per day). Water service delivery failures and their adverse impacts vary based on whether households fetch water or have informal water vendors deliver it to their homes. Conclusions Deficiencies in water service delivery are associated with many non-health-related adverse impacts on slum households. Failure to evaluate non-health outcomes may underestimate the deprivation resulting from inadequate water service delivery. Based on these findings, we outline a multidimensional definition of household “water poverty” that encourages policymakers and researchers to look beyond evaluation of water quality and health. Use of multidimensional water metrics by governments, slum communities, and researchers may help to ensure that water supplies are designed to advance a broad array of health, economic, and social outcomes for

  7. Standardised survey method for identifying catchment risks to water quality.

    PubMed

    Baker, D L; Ferguson, C M; Chier, P; Warnecke, M; Watkinson, A

    2016-06-01

    This paper describes the development and application of a systematic methodology to identify and quantify risks in drinking water and recreational catchments. The methodology assesses microbial and chemical contaminants from both diffuse and point sources within a catchment using Escherichia coli, protozoan pathogens and chemicals (including fuel and pesticides) as index contaminants. Hazard source information is gathered by a defined sanitary survey process involving use of a software tool which groups hazards into six types: sewage infrastructure, on-site sewage systems, industrial, stormwater, agriculture and recreational sites. The survey estimates the likelihood of the site affecting catchment water quality, and the potential consequences, enabling the calculation of risk for individual sites. These risks are integrated to calculate a cumulative risk for each sub-catchment and the whole catchment. The cumulative risks process accounts for the proportion of potential input sources surveyed and for transfer of contaminants from upstream to downstream sub-catchments. The output risk matrices show the relative risk sources for each of the index contaminants, highlighting those with the greatest impact on water quality at a sub-catchment and catchment level. Verification of the sanitary survey assessments and prioritisation is achieved by comparison with water quality data and microbial source tracking.

  8. Robust principal component analysis in water quality index development

    NASA Astrophysics Data System (ADS)

    Ali, Zalina Mohd; Ibrahim, Noor Akma; Mengersen, Kerrie; Shitan, Mahendran; Juahir, Hafizan

    2014-06-01

    Some statistical procedures already available in literature are employed in developing the water quality index, WQI. The nature of complexity and interdependency that occur in physical and chemical processes of water could be easier explained if statistical approaches were applied to water quality indexing. The most popular statistical method used in developing WQI is the principal component analysis (PCA). In literature, the WQI development based on the classical PCA mostly used water quality data that have been transformed and normalized. Outliers may be considered in or eliminated from the analysis. However, the classical mean and sample covariance matrix used in classical PCA methodology is not reliable if the outliers exist in the data. Since the presence of outliers may affect the computation of the principal component, robust principal component analysis, RPCA should be used. Focusing in Langat River, the RPCA-WQI was introduced for the first time in this study to re-calculate the DOE-WQI. Results show that the RPCA-WQI is capable to capture similar distribution in the existing DOE-WQI.

  9. Connecting Water Quality With Air Quality Through Microbial Aerosols

    NASA Astrophysics Data System (ADS)

    Dueker, M. Elias

    air by increasing microbial aerosol settling rates and enhancing viability of aerosolized marine microbes. Using methods developed for the non-urban site, the role of local environment and winds in mediating water-air connections was further investigated in the urban environment. The local environment, including water surfaces, was an important source of microbial aerosols at urban sites. Large portions of the urban waterfront microbial aerosol communities were aquatic and, at a highly polluted Superfund waterfront, were closely related to bacteria previously described in environments contaminated with hydrocarbons, heavy metals, sewage and other industrial waste. Culturable urban aerosols and surface waters contained bacterial genera known to include human pathogens and asthma agents. High onshore winds strengthened this water-air connection by playing both a transport and production role. The microbial connection between water and air quality outlined by this dissertation highlights the need for information on the mechanisms that deliver surface water materials to terrestrial systems on a much larger scale. Moving from point measurements to landscape-level analyses will allow for the quantitative assessment of implications for this microbial water-air-land transfer in both urban and non-urban arenas.

  10. Ground-water availability and water quality, Farmington, Connecticut

    USGS Publications Warehouse

    Mazzaferro, David L.

    1980-01-01

    The strataified-drift aquifer in Farmington, Conn., is capable of yielding large amounts of water to individual wells. About 14 square miles of Farmington is underlain by stratified-drift deposits which, in places, are more than 450 feet thick. The most productive deposits are found in the Farmington River valley, from Unionville to River Glen, and along Scott Swamp Brook. In these areas, saturated, coarse-grained, stratified-drift deosits exceed 80 feet in thickness and estimated yields to individual wells ranged from 250 to 1,000 gallons per minute. Results of mathematical model analysis of three of the most favorable ground-water areas indicate that long-term yields range from 1.2 to 2.5 million gallons per day. Water in the Framington and Pequabuck Rivers meets the Connecticut Drinking Water Standards, assuming complete conventional treatment, for coliform orgaisms, color, trubidity, chloride, copper, and nitrate. Coliform bacteria concentrations in the Pequabuck river (12-month geometric mean of about 6,800 colonies per 100 milliliters of water) indicate a potential problem. Water in the stratified-drift aquifer is of good quality with the exception of manganese; 10 of 11 wells sampled had maganese concentrations above 0.05 milligram per liter. (USGS)

  11. U.S. Geological Survey Catskill/Delaware Water-Quality Network: Water-Quality Report Water Year 2006

    USGS Publications Warehouse

    McHale, Michael R.; Siemion, Jason

    2010-01-01

    The U.S. Geological Survey operates a 60-station streamgaging network in the New York City Catskill/Delaware Water Supply System. Water-quality samples were collected at 13 of the stations in the Catskill/Delaware streamgaging network to provide resource managers with water-quality and water-quantity data from the water-supply system that supplies about 85 percent of the water needed by the more than 9 million residents of New York City. This report summarizes water-quality data collected at those 13 stations plus one additional station operated as a part of the U.S. Environmental Protection Agency's Regional Long-Term Monitoring Network for the 2006 water year (October 1, 2005 to September 30, 2006). An average of 62 water-quality samples were collected at each station during the 2006 water year, including grab samples collected every other week and storm samples collected with automated samplers. On average, 8 storms were sampled at each station during the 2006 water year. The 2006 calendar year was the second warmest on record and the summer of 2006 was the wettest on record for the northeastern United States. A large storm on June 26-28, 2006, caused extensive flooding in the western part of the network where record peak flows were measured at several watersheds.

  12. Reading Water Quality Variables with a Smartphone

    NASA Astrophysics Data System (ADS)

    van Overloop, Peter-Jules; Minkman, Ellen

    2015-04-01

    Many relevant water quality variables can be measured cost-effectively with standard indicator strips. These are local measurements, although usually done within a larger water network. Only if these measurements can be made available in a central database, the entire network can benefit from the extra data point. This requires an analog data source to be converted to a digital data point. A tool that is equipped to do that and also communicate the value to a central system, is a smartphone. A water quality monitoring method is introduced that requires standard indicator strips attached to a reference card and an app with which a picture can be taken from this card. The color or other indication is automatically read with dedicated pattern recognition algorithms and, by using the gps-localization of the smartphone, is stored in the right location in the central database. The method is low-cost and very user-friendly, which makes it suitable for crowd sourcing.

  13. A Water Quality Monitoring Programme for Schools and Communities

    ERIC Educational Resources Information Center

    Spellerberg, Ian; Ward, Jonet; Smith, Fiona

    2004-01-01

    A water quality monitoring programme for schools is described. The purpose of the programme is to introduce school children to the concept of reporting on the "state of the environment" by raising the awareness of water quality issues and providing skills to monitor water quality. The programme is assessed and its relevance in the…

  14. ANIMATION AND VISUALIZATION OF WATER QUALITY IN DISTRIBUTION SYSTEMS

    EPA Science Inventory

    Water may undergo a number of changes in the distribution system, making the quality of the water at the customer's tap different from the quality of the water that leaves the treatment plant. Such changes in quality may be caused by chemical or biological variations or by a loss...

  15. 40 CFR 35.2102 - Water quality management planning.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Water quality management planning. 35... Administrator shall first determine that the project is: (a) Included in any water quality management plan being implemented for the area under section 208 of the Act or will be included in any water quality management...

  16. 40 CFR 35.2102 - Water quality management planning.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 1 2014-07-01 2014-07-01 false Water quality management planning. 35... Administrator shall first determine that the project is: (a) Included in any water quality management plan being implemented for the area under section 208 of the Act or will be included in any water quality management...

  17. 40 CFR 35.2102 - Water quality management planning.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Water quality management planning. 35... Administrator shall first determine that the project is: (a) Included in any water quality management plan being implemented for the area under section 208 of the Act or will be included in any water quality management...

  18. 40 CFR 35.2111 - Revised water quality standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Revised water quality standards. 35... stream segments which have not, at least once since December 29, 1981, had their water quality standards...) The State has in good faith submitted such water quality standards and the Regional Administrator...

  19. 40 CFR 35.2111 - Revised water quality standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 1 2014-07-01 2014-07-01 false Revised water quality standards. 35... stream segments which have not, at least once since December 29, 1981, had their water quality standards...) The State has in good faith submitted such water quality standards and the Regional Administrator...

  20. 40 CFR 35.2111 - Revised water quality standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Revised water quality standards. 35... stream segments which have not, at least once since December 29, 1981, had their water quality standards...) The State has in good faith submitted such water quality standards and the Regional Administrator...

  1. Toward a Global Water Quality Observing and Forecasting System

    EPA Science Inventory

    The Group on Earth Observations (GEO) Coastal and Inland Water Quality Working Group held a Water Quality Summit at the World Meteorological Organization (WMO) in Geneva, Switzerland April 20 to 22, 2015. The goal was to define specific water quality component requirements and de...

  2. 78 FR 54517 - Water Quality Standards Regulatory Clarifications

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-04

    ... September 4, 2013 Part II Environmental Protection Agency 40 CFR Part 131 Water Quality Standards Regulatory... Rules#0;#0; ] ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 131 RIN 2040-AF 16 Water Quality Standards... Environmental Protection Agency (EPA) is proposing changes to the federal water quality standards...

  3. 40 CFR 35.2102 - Water quality management planning.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 1 2012-07-01 2012-07-01 false Water quality management planning. 35... ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works § 35.2102 Water quality... Administrator shall first determine that the project is: (a) Included in any water quality management plan...

  4. 40 CFR 35.2023 - Water quality management planning.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 1 2012-07-01 2012-07-01 false Water quality management planning. 35... ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works § 35.2023 Water quality... to the States to carry out water quality management planning including but not limited to:...

  5. 40 CFR 35.2102 - Water quality management planning.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 1 2013-07-01 2013-07-01 false Water quality management planning. 35... ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works § 35.2102 Water quality... Administrator shall first determine that the project is: (a) Included in any water quality management plan...

  6. 40 CFR 35.2023 - Water quality management planning.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 1 2013-07-01 2013-07-01 false Water quality management planning. 35... ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works § 35.2023 Water quality... to the States to carry out water quality management planning including but not limited to:...

  7. Navy Shipbuilding: Opportunities Exist to Improve Practices Affecting Quality

    DTIC Science & Technology

    2013-11-01

    Organization for Standardization’s ISO 9001 ( quality ), 14001 (environmental), and 18001 (occupational health and safety) series of management systems... ISO 9000 quality management standards. Page 52 GAO-14-122 Navy Shipbuilding commercial shipbuilders we visited did not report having...leading commercial shipbuilders have strong quality management processes that track quality problems to the worker or supervisor level. Navy

  8. The chemistry of salt-affected soils and waters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Knowledge of the chemistry of salt affected soils and waters is necessary for management of irrigation in arid and semi-arid regions. In this chapter we review the origin of salts in the landscape, the major chemical reactions necessary for prediction of the soil solution composition, and the use of...

  9. Extreme weather events: Should drinking water quality management systems adapt to changing risk profiles?

    PubMed

    Khan, Stuart J; Deere, Daniel; Leusch, Frederic D L; Humpage, Andrew; Jenkins, Madeleine; Cunliffe, David

    2015-11-15

    Among the most widely predicted and accepted consequences of global climate change are increases in both the frequency and severity of a variety of extreme weather events. Such weather events include heavy rainfall and floods, cyclones, droughts, heatwaves, extreme cold, and wildfires, each of which can potentially impact drinking water quality by affecting water catchments, storage reservoirs, the performance of water treatment processes or the integrity of distribution systems. Drinking water guidelines, such as the Australian Drinking Water Guidelines and the World Health Organization Guidelines for Drinking-water Quality, provide guidance for the safe management of drinking water. These documents present principles and strategies for managing risks that may be posed to drinking water quality. While these principles and strategies are applicable to all types of water quality risks, very little specific attention has been paid to the management of extreme weather events. We present a review of recent literature on water quality impacts of extreme weather events and consider practical opportunities for improved guidance for water managers. We conclude that there is a case for an enhanced focus on the management of water quality impacts from extreme weather events in future revisions of water quality guidance documents.

  10. Lake water quality mapping from Landsat

    NASA Technical Reports Server (NTRS)

    Scherz, J. P.

    1977-01-01

    In the project described remote sensing was used to check the quality of lake waters. The lakes of three Landsat scenes were mapped with the Bendix MDAS multispectral analysis system. From the MDAS color coded maps, the lake with the worst algae problem was easily located. The lake was closely checked, and the presence of 100 cows in the springs which fed the lake could be identified as the pollution source. The laboratory and field work involved in the lake classification project is described.

  11. Pennypack Creek-Water Quality Study.

    DTIC Science & Technology

    1979-11-01

    8 Light Industry 9 Heavy Industry 10 Transportation 11 Comunication and Utility 12 Comercial, high value 13 Comercial, low value 14 Community Services...would be used to simulate water quality in the stream network . That is, the land surface runoff from the runoff module would be input to the receiving...high value 15 Comunity Services, low value 16 Military 17 Recreation and Cultural 12 upIM 4 ww 9LL z 00 p9. a IL) U) MOU) w -it~ laa Ic- z a- IL- 1

  12. Spatial-Temporal Variations of Water Quality and Its Relationship to Land Use and Land Cover in Beijing, China

    PubMed Central

    Chen, Xiang; Zhou, Weiqi; Pickett, Steward T. A.; Li, Weifeng; Han, Lijian

    2016-01-01

    Rapid urbanization with intense land use and land cover (LULC) change and explosive population growth has a great impact on water quality. The relationship between LULC characteristics and water quality provides important information for non-point sources (NPS) pollution management. In this study, we first quantified the spatial-temporal patterns of five water quality variables in four watersheds with different levels of urbanization in Beijing, China. We then examined the effects of LULC on water quality across different scales, using Pearson correlation analysis, redundancy analysis, and multiple regressions. The results showed that water quality was improved over the sampled years but with no significant difference (p > 0.05). However, water quality was significantly different among nonurban and both exurban and urban sites (p < 0.05). Forest land was positively correlated with water quality and affected water quality significantly (p < 0.05) within a 200 m buffer zone. Impervious surfaces, water, and crop land were negatively correlated with water quality. Crop land and impervious surfaces, however, affected water quality significantly (p < 0.05) for buffer sizes greater than 800 m. Grass land had different effects on water quality with the scales. The results provide important insights into the relationship between LULC and water quality, and thus for controlling NPS pollution in urban areas. PMID:27128934

  13. Spatial-Temporal Variations of Water Quality and Its Relationship to Land Use and Land Cover in Beijing, China.

    PubMed

    Chen, Xiang; Zhou, Weiqi; Pickett, Steward T A; Li, Weifeng; Han, Lijian

    2016-04-27

    Rapid urbanization with intense land use and land cover (LULC) change and explosive population growth has a great impact on water quality. The relationship between LULC characteristics and water quality provides important information for non-point sources (NPS) pollution management. In this study, we first quantified the spatial-temporal patterns of five water quality variables in four watersheds with different levels of urbanization in Beijing, China. We then examined the effects of LULC on water quality across different scales, using Pearson correlation analysis, redundancy analysis, and multiple regressions. The results showed that water quality was improved over the sampled years but with no significant difference (p > 0.05). However, water quality was significantly different among nonurban and both exurban and urban sites (p < 0.05). Forest land was positively correlated with water quality and affected water quality significantly (p < 0.05) within a 200 m buffer zone. Impervious surfaces, water, and crop land were negatively correlated with water quality. Crop land and impervious surfaces, however, affected water quality significantly (p < 0.05) for buffer sizes greater than 800 m. Grass land had different effects on water quality with the scales. The results provide important insights into the relationship between LULC and water quality, and thus for controlling NPS pollution in urban areas.

  14. Recreational water quality in the Caspian Sea.

    PubMed

    Pond, Katherine R; Cronin, Aidan A; Pedley, Steve

    2005-06-01

    Health-based monitoring of the Caspian Sea in Turkmenistan and Iran suggests that bathers are intermittently subject to increased levels of faecal pollution which may lead to gastrointestinal illness. This is the first co-ordinated monitoring programme of recreational waters in the Caspian region and highlights the need to extend such a programme to all countries bordering the Caspian Sea. The novel approach of monitoring that combines risk assessment (water quality monitoring plus a sanitary survey) and risk management, as applied here, allows the identification of possible sources of pollution and the levels of microbiological risk that bathers are subject to. Hence, this allows suitable management interventions to be identified and implemented in the long-term.

  15. Water quality management library. 2. edition

    SciTech Connect

    Eckenfelder, W.W.; Malina, J.F.; Patterson, J.W.

    1998-12-31

    A series of ten books offered in conjunction with Water Quality International, the Biennial Conference and Exposition of the International Association on Water Pollution Research and Control (IAWPRC). Volume 1, Activated Sludge Process, Design and Control, 2nd edition, 1998: Volume 2, Upgrading Wastewater Treatment Plants, 2nd edition, 1998: Volume 3, Toxicity Reduction, 2nd edition, 1998: Volume 4, Municipal Sewage Sludge Management, 2nd edition, 1998: Volume 5, Design and Retrofit of Wastewater Treatment Plants for Biological Nutrient Removal, 1st edition, 1992: Volume 6, Dynamics and Control of the Activated Sludge Process, 2nd edition, 1998: Volume 7: Design of Anaerobic Processes for the Treatment of Industrial and Municipal Wastes, 1st edition, 1992: Volume 8, Groundwater Remediation, 1st edition, 1992: Volume 9, Nonpoint Pollution and Urban Stormwater Management, 1st edition, 1995: Volume 10, Wastewater Reclamation and Reuse, 1st edition, 1998.

  16. The quality of our Nation's waters: water quality in Principal Aquifers of the United States, 1991-2010

    USGS Publications Warehouse

    DeSimone, Leslie A.; McMahon, Peter B.; Rosen, Michael R.

    2015-01-01

    About 130 million people in the United States rely on groundwater for drinking water, and the need for high-quality drinking-water supplies becomes more urgent as our population grows. Although groundwater is a safe, reliable source of drinking water for millions of people nationwide, high concentrations of some chemical constituents can pose potential human-health concerns. Some of these contaminants come from the rocks and sediments of the aquifers themselves, and others are chemicals that we use in agriculture, industry, and day-to-day life. When groundwater supplies are contaminated, millions of dollars can be required for treatment so that the supplies can be usable. Contaminants in groundwater can also affect the health of our streams and valuable coastal waters. By knowing where contaminants occur in groundwater, what factors control contaminant concentrations, and what kinds of changes in groundwater quality might be expected in the future, we can ensure the availability and quality of this vital natural resource in the future.

  17. Water quality in drinking water reservoirs of a megacity, istanbul.

    PubMed

    Baykal, B B; Tanik, A; Gonenc, I E

    2000-12-01

    Providing clean water at relevant quality and quantity is a challenge that regulatory authorities have to face in metropolitan cities that seem to develop at their limits of sustainability. Istanbul strives to face such a challenge for its population of over 10 million, through six surface water resources. Two approaches of classification for the reservoirs are presented, one based on current regulations and an alternative based on a more detailed classification. The results have shown that nutrient control is the primary issue, and one of the reservoirs has already exceeded the limits of being eutrophic, one is at mesotrophic conditions, and the remaining four are at the limit of being eutrophic, indicating the significance of making the correct decision and taking pertinent measures for management and control. It has been observed that the only mesotrophic resource, which also has the best general quality class, has no industry and a very low population density, whereas the one that is already eutrophic is also the one with the lowest quality class, has the highest population density, and has the greatest percentage of urban land use within its watershed.

  18. Global water resources affected by human interventions and climate change.

    PubMed

    Haddeland, Ingjerd; Heinke, Jens; Biemans, Hester; Eisner, Stephanie; Flörke, Martina; Hanasaki, Naota; Konzmann, Markus; Ludwig, Fulco; Masaki, Yoshimitsu; Schewe, Jacob; Stacke, Tobias; Tessler, Zachary D; Wada, Yoshihide; Wisser, Dominik

    2014-03-04

    Humans directly change the dynamics of the water cycle through dams constructed for water storage, and through water withdrawals for industrial, agricultural, or domestic purposes. Climate change is expected to additionally affect water supply and demand. Here, analyses of climate change and direct human impacts on the terrestrial water cycle are presented and compared using a multimodel approach. Seven global hydrological models have been forced with multiple climate projections, and with and without taking into account impacts of human interventions such as dams and water withdrawals on the hydrological cycle. Model results are analyzed for different levels of global warming, allowing for analyses in line with temperature targets for climate change mitigation. The results indicate that direct human impacts on the water cycle in some regions, e.g., parts of Asia and in the western United States, are of the same order of magnitude, or even exceed impacts to be expected for moderate levels of global warming (+2 K). Despite some spread in model projections, irrigation water consumption is generally projected to increase with higher global mean temperatures. Irrigation water scarcity is particularly large in parts of southern and eastern Asia, and is expected to become even larger in the future.

  19. Global water resources affected by human interventions and climate change

    PubMed Central

    Haddeland, Ingjerd; Heinke, Jens; Biemans, Hester; Eisner, Stephanie; Flörke, Martina; Hanasaki, Naota; Konzmann, Markus; Ludwig, Fulco; Masaki, Yoshimitsu; Schewe, Jacob; Stacke, Tobias; Tessler, Zachary D.; Wada, Yoshihide; Wisser, Dominik

    2014-01-01

    Humans directly change the dynamics of the water cycle through dams constructed for water storage, and through water withdrawals for industrial, agricultural, or domestic purposes. Climate change is expected to additionally affect water supply and demand. Here, analyses of climate change and direct human impacts on the terrestrial water cycle are presented and compared using a multimodel approach. Seven global hydrological models have been forced with multiple climate projections, and with and without taking into account impacts of human interventions such as dams and water withdrawals on the hydrological cycle. Model results are analyzed for different levels of global warming, allowing for analyses in line with temperature targets for climate change mitigation. The results indicate that direct human impacts on the water cycle in some regions, e.g., parts of Asia and in the western United States, are of the same order of magnitude, or even exceed impacts to be expected for moderate levels of global warming (+2 K). Despite some spread in model projections, irrigation water consumption is generally projected to increase with higher global mean temperatures. Irrigation water scarcity is particularly large in parts of southern and eastern Asia, and is expected to become even larger in the future. PMID:24344275

  20. Climate change will affect the Asian water towers.

    PubMed

    Immerzeel, Walter W; van Beek, Ludovicus P H; Bierkens, Marc F P

    2010-06-11

    More than 1.4 billion people depend on water from the Indus, Ganges, Brahmaputra, Yangtze, and Yellow rivers. Upstream snow and ice reserves of these basins, important in sustaining seasonal water availability, are likely to be affected substantially by climate change, but to what extent is yet unclear. Here, we show that meltwater is extremely important in the Indus basin and important for the Brahmaputra basin, but plays only a modest role for the Ganges, Yangtze, and Yellow rivers. A huge difference also exists between basins in the extent to which climate change is predicted to affect water availability and food security. The Brahmaputra and Indus basins are most susceptible to reductions of flow, threatening the food security of an estimated 60 million people.

  1. Water Resources Data, Georgia, 2003, Volume 1: Continuous water-level, streamflow, water-quality data, and periodic water-quality data, Water Year 2003

    USGS Publications Warehouse

    Hickey, Andrew C.; Kerestes, John F.; McCallum, Brian E.

    2004-01-01

    Water resources data for the 2003 water year for Georgia consists of records of stage, discharge, and water quality of streams; and the stage and contents of lakes and reservoirs published in two volumes in a digital format on a CD-ROM. Volume one of this report contains water resources data for Georgia collected during water year 2003, including: discharge records of 163 gaging stations; stage for 187 gaging stations; precipitation for 140 gaging stations; information for 19 lakes and reservoirs; continuous water-quality records for 40 stations; the annual peak stage and annual peak discharge for 65 crest-stage partial-record stations; and miscellaneous streamflow measurements at 36 stations, and miscellaneous water-quality data at 162 stations in Georgia. Volume two of this report contains water resources data for Georgia collected during calendar year 2003, including continuous water-level records of 156 ground-water wells and periodic records at 130 water-quality stations. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Georgia.

  2. Quality of Surface Water in Missouri, Water Year 2008

    USGS Publications Warehouse

    Otero-Benitez, William; Davis, Jerri V.

    2009-01-01

    The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, designed and operates a series of monitoring stations on streams throughout Missouri known as the Ambient Water-Quality Monitoring Network. During the 2008 water year (October 1, 2007, through September 30, 2008), data were collected at 67 stations, including two U.S. Geological Survey National Stream Quality Accounting Network stations and one spring sampled in cooperation with the U.S. Forest Service. Dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, fecal coliform bacteria, Escherichia coli bacteria, dissolved nitrate plus nitrite, total phosphorus, dissolved and total recoverable lead and zinc, and selected pesticide data summaries are presented for 64 of these stations. The stations primarily have been classified into groups corresponding to the physiography of the State, primary land use, or unique station types. In addition, a summary of hydrologic conditions in the State including peak discharges, monthly mean discharges, and seven-day low flow is presented.

  3. Interim results of quality-control sampling of surface water for the Upper Colorado River National Water-Quality Assessment Study Unit, water years 1995-96

    USGS Publications Warehouse

    Spahr, N.E.; Boulger, R.W.

    1997-01-01

    Quality-control samples provide part of the information needed to estimate the bias and variability that result from sample collection, processing, and analysis. Quality-control samples of surface water collected for the Upper Colorado River National Water-Quality Assessment study unit for water years 1995?96 are presented and analyzed in this report. The types of quality-control samples collected include pre-processing split replicates, concurrent replicates, sequential replicates, post-processing split replicates, and field blanks. Analysis of the pre-processing split replicates, concurrent replicates, sequential replicates, and post-processing split replicates is based on differences between analytical results of the environmental samples and analytical results of the quality-control samples. Results of these comparisons indicate that variability introduced by sample collection, processing, and handling is low and will not affect interpretation of the environmental data. The differences for most water-quality constituents is on the order of plus or minus 1 or 2 lowest rounding units. A lowest rounding unit is equivalent to the magnitude of the least significant figure reported for analytical results. The use of lowest rounding units avoids some of the difficulty in comparing differences between pairs of samples when concentrations span orders of magnitude and provides a measure of the practical significance of the effect of variability. Analysis of field-blank quality-control samples indicates that with the exception of chloride and silica, no systematic contamination of samples is apparent. Chloride contamination probably was the result of incomplete rinsing of the dilute cleaning solution from the outlet ports of the decaport sample splitter. Silica contamination seems to have been introduced by the blank water. Sampling and processing procedures for water year 1997 have been modified as a result of these analyses.

  4. Hyperspectral remote sensing for water quality applications in Guatemala

    NASA Astrophysics Data System (ADS)

    Flores Cordova, A. I.; Christopher, S. A.; Irwin, D.

    2013-12-01

    Water quality measurements are relevant to control and prevent the pollution of surface water essential for human use. Previous studies have used standard methods of water sampling to estimate water quality parameters. Nevertheless those methods are extremely expensive and time-consuming and do not provide information for an entire water body. Hence it is important to implement techniques that allow for the monitoring of water quality parameters in a timely and cost-effective manner, and remote sensing represents a feasible alternative. This study focuses on the largest algal bloom affecting Lake Atitlan, located in Guatemala, by using the hyperspectral sensor Hyperion on board the EO-1 satellite. This algal bloom had a life span that extended for a little more than a month and had a maximum coverage of approximately 40% of the lake's 137 square kilometer surface. This algal bloom occurred at the end of the year 2009, with November being the most critical month. Different satellite sensors were used to monitor the extent of the algal bloom, including Landsat Enhanced Thematic Mapper Plus (ETM+), the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and the Advanced Land Imager (ALI). However, Hyperion images were used to distinguish the characteristics of the vegetation populating the algal bloom. Hyperion satellite images provided a more complete spectral profile of the algal bloom affecting the lake due to its high spectral resolution characteristics. This enabled the identification of unique peaks of reflectance and absorption features of the spectral signature obtained from the algal bloom. The algal bloom was formed mainly by the cyanobacteria Lyngbya robusta. Hyperion satellite images were used to characterize the algal bloom and the unique pigments of cyanobacteria such as phycocyanin. Atmospheric correction was critical to obtain the pure reflectance of the algal bloom and differentiate the spectral features unique to the cyanobacteria

  5. Environmental and Water Quality Operational Studies. Statistical Methods for Reservoir Water Quality Investigations.

    DTIC Science & Technology

    1986-06-01

    X). In some cases the ".’. relationship is obvious and direct. For example, the salinity of water is often measured as conductivity because...increased salinity results in increased conductivity. In other cases the relationship is not as . obvious. There are many relationships between water quality...relationship between a linear function of the acidity- salinity variables and a linear function of the trophic state variables. This was done using the

  6. The Spokane aquifer, Washington: its geologic origin and water-bearing and water-quality characteristics

    USGS Publications Warehouse

    Molenaar, Dee

    1988-01-01

    fields, and municipal and industrial waste-disposal sites. In general, the high rate of ground-water movement through the highly permeable aquifer materials has resulted in the ground-water quality being little affected by the overlying land use activities. Some local degradation of water quality has occurred due to industrial waste-disposal practices, however. During the water-quality study period of May 1977 to May 1978, average specific conductance of the ground water ranged from less than 100 to about 500 micromhos per centimeter at 25 degrees Celsius, average chloride concentration ranged from less than 2 to about 12 milligrams per liter (equivalent to parts per million}, and average nitrate nitrogen concentrations ranged from less than 1 to about 8 milligrams per liter. The streamflow and water quality of the Spokane River, which are related to the flow and quality of water in the Spokane aquifer, indicate that, during the period 1913 to 1978 inclusive, the river at Post Falls, Idaho, had an average annual discharge of 6,307 cubic feet per second, a maximum discharge of 50,100 cubic feet per second, and a minimum discharge of 65 cubic feet per second. The quality of the river water along its course through the study area is affected to some extent by inflows of industrial wastewater and treated municipal sewered water. In the 30-mile reach between the State line and Riverside State Park, during the 1975 to 1978 water years inclusive, concentrations of nearly all the constituents analyzed increased, and concentrations of dissolved oxygen correspondingly decreased from 1968 to 1977 inclusive; coliform bacteria also showed notable increases in the downstream direction.

  7. 76 FR 16285 - Amendments to the Water Quality Regulations, Water Code and Comprehensive Plan To Update Water...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-23

    ... CFR Part 410 Incorporation by reference, Water audit, Water pollution control, Water reservoirs, Water... COMMISSION 18 CFR Part 410 Amendments to the Water Quality Regulations, Water Code and Comprehensive Plan To Update Water Quality Criteria for Toxic Pollutants in the Delaware Estuary and Extend These Criteria...

  8. Application of artificial intelligence models in water quality forecasting.

    PubMed

    Yeon, I S; Kim, J H; Jun, K W

    2008-06-01

    The real-time data of the continuous water quality monitoring station at the Pyeongchang river was analyzed separately during the rainy period and non-rainy period. Total organic carbon data observed during the rainy period showed a greater mean value, maximum value and standard deviation than the data observed during the non-rainy period. Dissolved oxygen values during the rainy period were lower than those observed during the non-rainy period. It was analyzed that the discharge due to rain fall from the basin affects the change of the water quality. A model for the forecasting of water quality was constructed and applied using the neural network model and the adaptive neuro-fuzzy inference system. Regarding the models of levenberg-marquardt neural network, modular neural network and adaptive neuro-fuzzy inference system, all three models showed good results for the simulation of total organic carbon. The levenberg-marquardt neural network and modular neural network models showed better results than the adaptive neuro-fuzzy inference system model in the forecasting of dissolved oxygen. The modular neural network model, which was applied with the qualitative data of time in addition to quantitative data, showed the least error.

  9. Factors affecting sustainability of rural water schemes in Swaziland

    NASA Astrophysics Data System (ADS)

    Peter, Graciana; Nkambule, Sizwe E.

    The Millennium Development Goal (MDG) target to reduce the proportion of people without sustainable access to safe drinking water by the year 2015 has been met as of 2010, but huge disparities exist. Some regions, particularly Sub-Saharan Africa are lagging behind it is also in this region where up to 30% of the rural schemes are not functional at any given time. There is need for more studies on factors affecting sustainability and necessary measures which when implemented will improve the sustainability of rural water schemes. The main objective of this study was to assess the main factors affecting the sustainability of rural water schemes in Swaziland using a Multi-Criteria Analysis Approach. The main factors considered were: financial, social, technical, environmental and institutional. The study was done in Lubombo region. Fifteen functional water schemes in 11 communities were studied. Data was collected using questionnaires, checklist and focused group discussion guide. A total of 174 heads of households were interviewed. Statistical Package for Social Sciences (SPSS) was used to analyse the data and to calculate sustainability scores for water schemes. SPSS was also used to classify sustainability scores according to sustainability categories: sustainable, partially sustainable and non-sustainable. The averages of the ratings for the different sub-factors studied and the results on the sustainability scores for the sustainable, partially sustainable and non-sustainable schemes were then computed and compared to establish the main factors influencing sustainability of the water schemes. The results indicated technical and social factors as most critical while financial and institutional, although important, played a lesser role. Factors which contributed to the sustainability of water schemes were: functionality; design flow; water fetching time; ability to meet additional demand; use by population; equity; participation in decision making on operation and

  10. Water quality success stories: Integrated assessments from the IOOS regional associations and national water quality monitoring network

    USGS Publications Warehouse

    Ragsdale, Rob; Vowinkel, Eric; Porter, Dwayne; Hamilton, Pixie; Morrison, Ru; Kohut, Josh; Connell, Bob; Kelsey, Heath; Trowbridge, Phil

    2011-01-01

    The Integrated Ocean Observing System (IOOS®) Regional Associations and Interagency Partners hosted a water quality workshop in January 2010 to discuss issues of nutrient enrichment and dissolved oxygen depletion (hypoxia), harmful algal blooms (HABs), and beach water quality. In 2007, the National Water Quality Monitoring Council piloted demonstration projects as part of the National Water Quality Monitoring Network (Network) for U.S. Coastal Waters and their Tributaries in three IOOS Regional Associations, and these projects are ongoing. Examples of integrated science-based solutions to water quality issues of major concern from the IOOS regions and Network demonstration projects are explored in this article. These examples illustrate instances where management decisions have benefited from decision-support tools that make use of interoperable data. Gaps, challenges, and outcomes are identified, and a proposal is made for future work toward a multiregional water quality project for beach water quality.

  11. Literature relevant to remote sensing of water quality

    NASA Technical Reports Server (NTRS)

    Middleton, E. M.; Marcell, R. F.

    1983-01-01

    References relevant to remote sensing of water quality were compiled, organized, and cross-referenced. The following general categories were included: (1) optical properties and measurement of water characteristics; (2) interpretation of water characteristics by remote sensing, including color, transparency, suspended or dissolved inorganic matter, biological materials, and temperature; (3) application of remote sensing for water quality monitoring; (4) application of remote sensing according to water body type; and (5) manipulation, processing and interpretation of remote sensing digital water data.

  12. How processing digital elevation models can affect simulated water budgets.

    PubMed

    Kuniansky, Eve L; Lowery, Mark A; Campbell, Bruce G

    2009-01-01

    For regional models, the shallow water table surface is often used as a source/sink boundary condition, as model grid scale precludes simulation of the water table aquifer. This approach is appropriate when the water table surface is relatively stationary. Since water table surface maps are not readily available, the elevation of the water table used in model cells is estimated via a two-step process. First, a regression equation is developed using existing land and water table elevations from wells in the area. This equation is then used to predict the water table surface for each model cell using land surface elevation available from digital elevation models (DEM). Two methods of processing DEM for estimating the land surface for each cell are commonly used (value nearest the cell centroid or mean value in the cell). This article demonstrates how these two methods of DEM processing can affect the simulated water budget. For the example presented, approximately 20% more total flow through the aquifer system is simulated if the centroid value rather than the mean value is used. This is due to the one-third greater average ground water gradients associated with the centroid value than the mean value. The results will vary depending on the particular model area topography and cell size. The use of the mean DEM value in each model cell will result in a more conservative water budget and is more appropriate because the model cell water table value should be representative of the entire cell area, not the centroid of the model cell.

  13. How Does Premarital Cohabitation Affect Trajectories of Marital Quality?

    ERIC Educational Resources Information Center

    Tach, Laura; Halpern-Meekin, Sarah

    2009-01-01

    We investigate the link between premarital cohabitation and trajectories of subsequent marital quality using random effects growth curve models and repeated measures of marital quality from married women in the NLSY-79 (N = 3,598). We find that premarital cohabitors experience lower quality marital relationships on average, but this is driven by…

  14. Financial Health of Child Care Facilities Affects Quality of Care.

    ERIC Educational Resources Information Center

    Brower, Mary R.; Sull, Theresa M.

    2003-01-01

    Contends that child care facility owners, boards of directors, staff, and parents need to focus on financial management, as poor financial health compromises the quality of care for children. Specifically addresses the issues of: (1) concern for providing high quality child care; (2) the connection between quality and money; and (3) strengthening…

  15. Nutrients, Water Temperature, and Dissolved Oxygen: Are Water Quality Standards Achievable for Forest Streams?

    NASA Astrophysics Data System (ADS)

    Ice, G. G.

    2002-12-01

    Water quality standards provide a performance measure for watershed managers. Three of the most important standards for rivers and streams are the key nutrients, nitrogen and phosphorus; water temperature; and dissolved oxygen. The concentration of nitrogen and phosphorus in waterbodies affects primary production and productivity. Too little nutrients and streams are sterile and unproductive. Too much and they are eutrophic. Water temperature is important because it influences chemical reaction rates in streams and metabolic rates in fish. Dissolved oxygen is necessary for respiration. Salmon, the focus of much of the conservation efforts in the Northwest, are known as organisms that require cool, highly oxygenated water to thrive. Still, it is important when setting a performance standard to determine if those standards are achievable. A survey of nutrient data for small forested streams has found that the ecoregion guidelines proposed by EPA are often unachievable, sometimes even for small, unmanaged reference watersheds. A pilot survey of water temperatures in Oregon wilderness areas and least impaired watersheds has found temperatures frequently exceed the state standards. While natural temperature exceedances are addressed in the water quality standards for Oregon for unmanaged watersheds, these temperatures for managed watersheds might be presumed to result from management activities, precipitating an expensive Total Maximum Daily Load (TMDL) assessment. Less is known about dissolved oxygen for small forest streams because work 20 years ago showed little risk of significant dissolved oxygen concentrations where shade was maintained near the stream and fine slash was kept out of the stream. However, work from the 1970's on intergravel dissolved oxygen also shows that stream with greater large woody debris (LWD) can have lower intergravel dissolved oxygen concentrations, presumably due to trapping of fine organic and inorganic materials. Efforts to add LWD to

  16. Ground-water quality in the western Snake River basin, Swan Falls to Glenns Ferry, Idaho

    USGS Publications Warehouse

    Parliman, D.J.

    1983-01-01

    Water-quality data were collected from 92 wells in the western Snake River basin, Swan Falls to Glenns Ferry, Idaho. Current data were compiled with pre-1980 data from 116 wells to define water-quality conditions in major aquifers. Factors affecting water quality are composition of aquifer materials, water temperature, and source of recharge. Mixing of water by interaquifer flow, from confined, hot water aquifers (40 degrees Celsius or greater) with water from cold water aquifers (less than 20 degrees Celsius) occurs along regional complex fault systems, and through partially cased boreholes. Cold water generally contains calcium, magnesium, and bicarbonate plus carbonate ions; hot water generally contains sodium, potassium, and bicarbonate plus carbonate ions. Warm water (between 20 degrees and 40 degrees Celsius) has an intermediate chemical composition resulting from mixing. Ground-water quality is acceptable for most uses, although it locally contains chemical constituents or physical properties that may restrict its use. Effects of thermal water used for irrigation on quality of shallow ground water are inconclusive. Long-term increase in concentrations of several constituents in parts of the study area may be due to effects of land- and water-use activities, such as infiltration of septic-tank effluent. (USGS)

  17. Water quality assessment in Qu River based on fuzzy water pollution index method.

    PubMed

    Li, Ranran; Zou, Zhihong; An, Yan

    2016-12-01

    A fuzzy improved water pollution index was proposed based on fuzzy inference system and water pollution index. This method can not only give a comprehensive water quality rank, but also describe the water quality situation with a quantitative value, which is convenient for the water quality comparison between the same ranks. This proposed method is used to assess water quality of Qu River in Sichuan, China. Data used in the assessment were collected from four monitoring stations from 2006 to 2010. The assessment results show that Qu River water quality presents a downward trend and the overall water quality in 2010 is the worst. The spatial variation indicates that water quality of Nanbashequ section is the pessimal. For the sake of comparison, fuzzy comprehensive evaluation and grey relational method were also employed to assess water quality of Qu River. The comparisons of these three approaches' assessment results show that the proposed method is reliable.

  18. Drinking water in Michigan: source, quality, and contaminants.

    PubMed

    Nathan, Vincent R

    2006-01-01

    The Michigan Safe Drinking Water Act (Act 399) was enacted in 1976 and enables the Michigan Department of Environmental Quality (DEQ) to maintain the state's authority over drinking water in the state. The DEQ also contracts with local health departments to maintain non-community programs in each county. Private water wells throughout the state are clearly the most troublesome for users and regulators. An abundant array of contaminants (e.g., pesticides, metals, etc.) may impact wells without the user's knowledge. Most private wells are only inspected when they are installed and have no further regulatory requirements. With regards to contaminants in public systems, lead is problematic. Irregardless of the source or treatment, the piping infrastructure leading to and inside the home can be a source affecting the quality. Thus, the problem of lead in drinking water can be from the service lines, the pipes inside the home, the solder connecting the pipes, or in some case the treatment chemicals used for disinfection.

  19. Water quality in the Santee River basin and coastal drainages, North and South Carolina, 1995-98

    USGS Publications Warehouse

    Hughes, W. Brian; Abrahamsen, Thomas A.; Maluk, Terry L.; Reuber, Eric J.; Wilhelm, Lance J.

    2000-01-01

    Surface water sampled in the Santee River basin and coastal drainages generally meets existing Federal and State guidelines for drinking-water quality and protection of aquatic life. However, urban and agricultural land uses have affected water quality, as indicated by elevated concentrations of bacteria, pesticides, and nutrients in basins dominated by these land uses.

  20. Water Use and Quality Footprints of Biofuel Crops in Florida

    NASA Astrophysics Data System (ADS)

    Shukla, S.; Hendricks, G.; Helsel, Z.; Knowles, J.

    2013-12-01

    The use of biofuel crops for future energy needs will require considerable amounts of water inputs. Favorable growing conditions for large scale biofuel production exist in the sub-tropical environment of South Florida. However, large-scale land use change associated with biofuel crops is likely to affect the quantity and quality of water within the region. South Florida's surface and ground water resources are already stressed by current allocations. Limited data exists to allocate water for growing the energy crops as well as evaluate the accompanying hydrologic and water quality impacts of large-scale land use changes. A three-year study was conducted to evaluate the water supply and quality impacts of three energy crops: sugarcane, switchgrass, and sweet sorghum (with a winter crop). Six lysimeters were used to collect the data needed to quantify crop evapotranspiration (ETc), and nitrogen (N) and phosphorus (P) levels in groundwater and discharge (drainage and runoff). Each lysimeter (4.85 x 3.65 x 1.35 m) was equipped to measure water input, output, and storage. The irrigation, runoff, and drainage volumes were measured using flow meters. Groundwater samples were collected bi-weekly and drainage/runoff sampling was event based; samples were analyzed for nitrogen (N) and phosphorous (P) species. Data collected over the three years revealed that the average annual ETc was highest for sugarcane (1464 mm) followed by switchgrass and sweet sorghum. Sweet sorghum had the highest total N (TN) concentration (7.6 mg/L) in groundwater and TN load (36 kg/ha) in discharge. However, sweet sorghum had the lowest total P (TP) concentration (1.2 mg/L) in groundwater and TP load (9 kg/ha) in discharge. Water use footprint for ethanol (liter of water used per liter of ethanol produced) was lowest for sugarcane and highest for switchgrass. Switchgrass had the highest P-load footprint for ethanol. No differences were observed for the TN load footprint for ethanol. This is the

  1. Questa baseline and pre-mining ground-water-quality investigation. 16. Quality assurance and quality control for water analyses

    USGS Publications Warehouse

    McCleskey, R. Blaine; Nordstrom, D. Kirk; Naus, Cheryl A.

    2004-01-01

    The Questa baseline and pre-mining ground-water quality investigation has the main objective of inferring the ground-water chemistry at an active mine site. Hence, existing ground-water chemistry and its quality assurance and quality control is of crucial importance to this study and a substantial effort was spent on this activity. Analyses of seventy-two blanks demonstrated that contamination from processing, handling, and analyses were minimal. Blanks collected using water deionized with anion and cation exchange resins contained elevated concentrations of boron (0.17 milligrams per liter (mg/L)) and silica (3.90 mg/L), whereas double-distilled water did not. Boron and silica were not completely retained by the resins because they can exist as uncharged species in water. Chloride was detected in ten blanks, the highest being 3.9 mg/L, probably as the result of washing bottles, filter apparatuses, and tubing with hydrochloric acid. Sulfate was detected in seven blanks; the highest value was 3.0 mg/L, most likely because of carryover from the high sulfate waters sampled. With only a few exceptions, the remaining blank analyses were near or below method detection limits. Analyses of standard reference water samples by cold-vapor atomic fluorescence spectrometry, ion chromatography, inductively coupled plasma-optical emission spectrometry, inductively coupled plasma-mass spectrometry, FerroZine, graphite furnace atomic absorption spectrometry, hydride generation atomic spectrometry, and titration provided an accuracy check. For constituents greater than 10 times the detection limit, 95 percent of the samples had a percent error of less than 8.5. For constituents within 10 percent of the detection limit, the percent error often increased as a result of measurement imprecision. Charge imbalance was calculated using WATEQ4F and 251 out of 257 samples had a charge imbalance less than 11.8 percent. The charge imbalance for all samples ranged from -16 to 16 percent. Spike

  2. Retrospective evaluation of shoreline water quality along Santa Monica Bay beaches.

    PubMed

    Schiff, Kenneth C; Morton, Jessica; Weisberg, Stephen B

    2003-01-01

    Santa Monica Bay (SMB) beaches are the most heavily used in the U.S.A., despite an increased number of water quality postings over the last several years. To assess whether water quality problems are concentrated at a small number of chronically affected sites or whether the problems are widely distributed, we compiled 5 years of monitoring data collected at 59 sites, 22 of which are sampled daily. Other locally available rainfall and sewage spill monitoring information data were added to this data set to assess whether sewage spills, dry-weather runoff, or wet-weather runoff contribute the most to exceedences of water quality thresholds. Approximately 13% of the shoreline mile-days along monitored beaches in SMB exceeded the State of California's beach water quality standards during the 5-year study period. Most of the water quality exceedences occurred near urban runoff drains even though areas affected by drains represent only a small portion of the total shoreline. Although storms are relatively infrequent in southern California, the extent of water quality exceedences resulting from storm water runoff was similar to the extent of water quality exceedences found during dry weather. Sewage spills, while potentially more serious because they lead to beach closures rather than to the more limited posting of warning signs, represented less than 0.1% of the shoreline mile-days that exceeded water quality thresholds. During dry weather conditions, most of the water quality problems occurred near five of the largest drains and at two beach areas that have unique physical characteristics, which limited mixing, dispersion, and dilution. During wet weather conditions, water quality problems were more widespread.

  3. Chemical quality of ground water on Cape Cod, Massachusetts

    USGS Publications Warehouse

    Frimpter, M.H.; Gay, F.B.

    1979-01-01

    Cape Cod is a 440 square mile hook-shaped peninsula which extends 40 miles into the Atlantic. Freshwater in Pleistocene sand and gravel deposits is the source of supply for nearly 100 municipal and thousands of private domestic wells. Most ground water on Cape Cod is of good chemical quality for drinking and other uses. It is characteristically low in dissolved solids and is soft. In 90 percent of the samples analyzed, dissolved solids were less than 100 mg/l (milligrams per liter) and pH was less than 7.0. Highway deicing salt, sea-water flooding due to storms , and saltwater intrusion due to ground-water withdrawal are sources of sodium chloride contamination. Chloride concentrations have increased from 20 to 140 mg/l, owing to saltwater intrusion at Provincetown 's wells in Truro. In Yarmouth, contaminated ground water near a salt-storage area contained as much as 1,800 mg/l chloride. Heavy metals, insecticides, and herbicides were not found at concentrations above the U.S. Environmental Protection Agency 's recommended limits for public drinking-water supplies, but iron and manganese in some samples exceeded those limits. Ninety percent of 84 samples analyzed for nitrate reported as nitrogen contained less than 1.3 mg/l and 80 percent contained 0.5 mg/l or less of nitrate as nitrogen. Water containing nitrogen in excess of 0.5 mg/l has probably been affected by municipal or domestic sewage or fertilizer, and water with less than this amount may have been affected by them. (Woodard-USGS)

  4. River water quality modelling under drought situations - the Turia River case

    NASA Astrophysics Data System (ADS)

    Paredes-Arquiola, Javier; Macián, Javier; Pedro-Monzonís, María; Belda, Edgar; Momblanch, Andrea; Andreu, Joaquín

    2016-10-01

    Drought and water shortage effects are normally exacerbated due to collateral impacts on water quality, since low streamflow affects water quality in rivers and water uses depend on it. One of the most common problems during drought conditions is maintaining a good water quality while securing the water supply to demands. This research analyses the case of the Turia River Water Resource System located in Eastern Spain. Its main water demand comes as urban demand from Valencia City, which intake is located in the final stretch of the river, where streamflow may become very low during droughts. As a result, during drought conditions concentrations of pathogens and other contaminants increase, compromising the water supply to Valencia City. In order to define possible solutions for the above-mentioned problem, we have developed an integrated model for simulating water management and water quality in the Turia River Basin to propose solutions for water quality problems under water scarcity. For this purpose, the Decision Support System Shell AQUATOOL has been used. The results demonstrate the importance of applying environmental flows as a measure of reducing pollutant's concentration depending on the evolution of a drought event and the state of the water resources system.

  5. Water quality and water contamination in the Harlem River

    NASA Astrophysics Data System (ADS)

    Wang, J.

    2015-12-01

    Combined sewer overflows (CSOs) discharge untreated sewage into the Harlem River during rainstorms; which elevated nutrient and bacteria/pathogen levels, degraded water quality, reduced dissolved oxygen levels, impact on fish consumption safety and threatening public health. Swimming, boating, fishing was not safe especially during rainstorms. Harlem River, a 9 miles natural straight connects the Hudson River and the East River, was used for water recreation in the past. Phosphate, ammonia, turbidity, dissolved oxygen (DO), and pathogens levels in CSOs collected during storms were significantly higher than EPA/DEP's standards (phosphate <0.033mg/L; ammonia<0.23mg/L; turbidity<5.25FAU; DO>=4mg/L; fecal coliform<200MPN/100ml; E.Coli.<126MPN/100ml; enterococcus < 104MPN /100ml). The maximum values are: phosphate: 0.181mg/L; ammonia: 2.864mg/L; turbidity: 245 FAU& 882 FAU; fecal coliform>millions MPN/100ml; E.coli > 5000MPN /100ml; enterococcus>10,000MPN/100ml; DO<2.9 mg/L. Data showed that pathogen levels are higher than published data from riverkeepers (enterococcus) and USGS (fecal coliform). PCB 11 (3,3'-dichlorobiphenyl, C12H8Cl2), an indicator of raw sewage and stormwater runoff, is analyzed. Fish caught from the Harlem River is banned from commercial. New York State Department of Health (NYS DOH) suggests that not to eat the fish because concerns of PCBs, dioxin and cadmium. How to reduce CSOs is critical on water quality improvement. Green wall/roof and wetland has been planned to use along the river to reduce stormwater runoff consequently to reduce CSOs volume.

  6. Groundwater quality data from the National Water-Quality Assessment Project, May 2012 through December 2013

    USGS Publications Warehouse

    Arnold, Terri L.; DeSimone, Leslie A.; Bexfield, Laura M.; Lindsey, Bruce D.; Barlow, Jeannie R.; Kulongoski, Justin T.; Musgrove, Marylynn; Kingsbury, James A.; Belitz, Kenneth

    2016-06-20

    Groundwater-quality data were collected from 748 wells as part of the National Water-Quality Assessment Project of the U.S. Geological Survey National Water-Quality Program from May 2012 through December 2013. The data were collected from four types of well networks: principal aquifer study networks, which assess the quality of groundwater used for public water supply; land-use study networks, which assess land-use effects on shallow groundwater quality; major aquifer study networks, which assess the quality of groundwater used for domestic supply; and enhanced trends networks, which evaluate the time scales during which groundwater quality changes. Groundwater samples were analyzed for a large number of water-quality indicators and constituents, including major ions, nutrients, trace elements, volatile organic compounds, pesticides, and radionuclides. These groundwater quality data are tabulated in this report. Quality-control samples also were collected; data from blank and replicate quality-control samples are included in this report.

  7. Analysis of water quality in the Blue River watershed, Colorado, 1984 through 2007

    USGS Publications Warehouse

    Bauch, Nancy J.; Miller, Lisa D.; Yacob, Sharon

    2014-01-01

    Water quality of streams, reservoirs, and groundwater in the Blue River watershed in the central Rocky Mountains of Colorado has been affected by local geologic conditions, historical hard-rock metal mining, and recent urban development. With these considerations, the U.S. Geological Survey, in cooperation with the Summit Water Quality Committee, conducted a study to compile historical water-quality data and assess water-quality conditions in the watershed. To assess water-quality conditions, stream data were primarily analyzed from October 1995 through December 2006, groundwater data from May 1996 through September 2004, and reservoir data from May 1984 through November 2007. Stream data for the Snake River, upper Blue River, and Tenmile Creek subwatersheds upstream from Dillon Reservoir and the lower Blue River watershed downstream from Dillon Reservoir were analyzed separately. (The complete abstract is provided in the report)

  8. Water Resources Data, Georgia, 2001, Volume 1: Continuous water-level, streamflow, water-quality data, and periodic water-quality data, Water Year 2001

    USGS Publications Warehouse

    McCallum, Brian E.; Kerestes, John F.; Hickey, Andrew C.

    2001-01-01

    Water resources data for the 2001 water year for Georgia consists of records of stage, discharge, and water quality of streams; and the stage and contents of lakes and reservoirs published in two volumes in a digital format on a CD-ROM. Volume one of this report contains water resources data for Georgia collected during water year 2001, including: discharge records of 133 gaging stations; stage for 144 gaging stations; precipitation for 58 gaging stations; information for 19 lakes and reservoirs; continuous water-quality records for 17 stations; the annual peak stage and annual peak discharge for 76 crest-stage partial-record stations; and miscellaneous streamflow measurements at 27 stations, and miscellaneous water-quality data recorded by the NAWQA program in Georgia. Volume two of this report contains water resources data for Georgia collected during calendar year 2001, including continuous water-level records of 159 ground-water wells and periodic records at 138 water-quality stations. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Georgia. Note: Historically, this report was published as a paper report. For the 1999 and subsequent water-year reports, the Water Resources Data for Georgia changed to a new, more informative and functional format on CD-ROM. The format is based on a geographic information system (GIS) user interface that allows the user to view map locations of the hydrologic monitoring stations and networks within respective river basins.

  9. Hydroeconomic optimization of reservoir management under downstream water quality constraints

    NASA Astrophysics Data System (ADS)

    Davidsen, Claus; Liu, Suxia; Mo, Xingguo; Holm, Peter E.; Trapp, Stefan; Rosbjerg, Dan; Bauer-Gottwein, Peter

    2015-10-01

    A hydroeconomic optimization approach is used to guide water management in a Chinese river basin with the objectives of meeting water quantity and water quality constraints, in line with the China 2011 No. 1 Policy Document and 2015 Ten-point Water Plan. The proposed modeling framework couples water quantity and water quality management and minimizes the total costs over a planning period assuming stochastic future runoff. The outcome includes cost-optimal reservoir releases, groundwater pumping, water allocation, wastewater treatments and water curtailments. The optimization model uses a variant of stochastic dynamic programming known as the water value method. Nonlinearity arising from the water quality constraints is handled with an effective hybrid method combining genetic algorithms and linear programming. Untreated pollutant loads are represented by biochemical oxygen demand (BOD), and the resulting minimum dissolved oxygen (DO) concentration is computed with the Streeter-Phelps equation and constrained to match Chinese water quality targets. The baseline water scarcity and operational costs are estimated to 15.6 billion CNY/year. Compliance to water quality grade III causes a relatively low increase to 16.4 billion CNY/year. Dilution plays an important role and increases the share of surface water allocations to users situated furthest downstream in the system. The modeling framework generates decision rules that result in the economically efficient strategy for complying with both water quantity and water quality constraints.

  10. Landsat Thematic Mapper monitoring of turbid inland water quality

    NASA Technical Reports Server (NTRS)

    Lathrop, Richard G., Jr.

    1992-01-01

    This study reports on an investigation of water quality calibration algorithms under turbid inland water conditions using Landsat Thematic Mapper (TM) multispectral digital data. TM data and water quality observations (total suspended solids and Secchi disk depth) were obtained near-simultaneously and related using linear regression techniques. The relationships between reflectance and water quality for Green Bay and Lake Michigan were compared with results for Yellowstone and Jackson Lakes, Wyoming. Results show similarities in the water quality-reflectance relationships, however, the algorithms derived for Green Bay - Lake Michigan cannot be extrapolated to Yellowstone and Jackson Lake conditions.

  11. Predicting stream water quality using artificial neural networks (ANN)

    SciTech Connect

    Bowers, J.A.

    2000-05-17

    Predicting point and nonpoint source runoff of dissolved and suspended materials into their receiving streams is important to protecting water quality and traditionally has been modeled using deterministic or statistical methods. The purpose of this study was to predict water quality in small streams using an Artificial Neural Network (ANN). The selected input variables were local precipitation, stream flow rates and turbidity for the initial prediction of suspended solids in the stream. A single hidden-layer feedforward neural network using backpropagation learning algorithms was developed with a detailed analysis of model design of those factors affecting successful implementation of the model. All features of a feedforward neural model were investigated including training set creation, number and layers of neurons, neural activation functions, and backpropagation algorithms. Least-squares regression was used to compare model predictions with test data sets. Most of the model configurations offered excellent predictive capabilities. Using either the logistic or the hyperbolic tangent neural activation function did not significantly affect predicted results. This was also true for the two learning algorithms tested, the Levenberg-Marquardt and Polak-Ribiere conjugate-gradient descent methods. The most important step during model development and training was the representative selection of data records for training of the model.

  12. Quality-control results for ground-water and surface-water data, Sacramento River Basin, California, National Water-Quality Assessment, 1996-1998

    USGS Publications Warehouse

    Munday, Cathy; Domagalski, Joseph L.

    2003-01-01

    Evaluating the extent that bias and variability affect the interpretation of ground- and surface-water data is necessary to meet the objectives of the National Water-Quality Assessment (NAWQA) Program. Quality-control samples used to evaluate the bias and variability include annual equipment blanks, field blanks, field matrix spikes, surrogates, and replicates. This report contains quality-control results for the constituents critical to the ground- and surface-water components of the Sacramento River Basin study unit of the NAWQA Program. A critical constituent is one that was detected frequently (more than 50 percent of the time in blank samples), was detected at amounts exceeding water-quality standards or goals, or was important for the interpretation of water-quality data. Quality-control samples were collected along with ground- and surface-water samples during the high intensity phase (cycle 1) of the Sacramento River Basin NAWQA beginning early in 1996 and ending in 1998. Ground-water field blanks indicated contamination of varying levels of significance when compared with concentrations detected in environmental ground-water samples for ammonia, dissolved organic carbon, aluminum, and copper. Concentrations of aluminum in surface-water field blanks were significant when compared with environmental samples. Field blank samples collected for pesticide and volatile organic compound analyses revealed no contamination in either ground- or surface-water samples that would effect the interpretation of environmental data, with the possible exception of the volatile organic compound trichloromethane (chloroform) in ground water. Replicate samples for ground water and surface water indicate that variability resulting from sample collection, processing, and analysis was generally low. Some of the larger maximum relative percentage differences calculated for replicate samples occurred between samples having lowest absolute concentration differences and(or) values near

  13. FIRESTORM: Modelling the water quality risk of wildfire.

    NASA Astrophysics Data System (ADS)

    Mason, C. I.; Sheridan, G. J.; Smith, H. G.; Jones, O.; Chong, D.; Tolhurst, K.

    2012-04-01

    Following wildfire, loss of vegetation and changes to soil properties may result in decreases in infiltration rates, less rainfall interception, and higher overland flow velocities. Rainfall events affecting burn areas before vegetation recovers can cause high magnitude erosion events that impact on downstream water quality. For cities and towns that rely upon fire-prone forest catchments for water supply, wildfire impacts on water quality represent a credible risk to water supply security. Quantifying the risk associated with the occurrence of wildfires and the magnitude of water quality impacts has important implications for managing water supplies. At present, no suitable integrative model exists that considers the probabilistic nature of system inputs as well as the range of processes and scales involved in this problem. We present FIRESTORM, a new model currently in development that aims to determine the range of sediment and associated contaminant loads that may be delivered to water supply reservoirs from the combination of wildfire and subsequent rainfall events. This Monte Carlo model incorporates the probabilistic nature of fire ignition, fire weather and rainfall, and includes deterministic models for fire behaviour and locally dominant erosion processes. FIRESTORM calculates the magnitude and associated annual risk of catchment-scale sediment loads associated with the occurrence of wildfire and rainfall generated by two rain event types. The two event types are localised, high intensity, short-duration convective storms, and widespread, longer duration synoptic-scale rainfall events. Initial application and testing of the model will focus on the two main reservoirs supplying water to Melbourne, Australia, both of which are situated in forest catchments vulnerable to wildfire. Probabilistic fire ignition and weather scenarios have been combined using 40 years of fire records and weather observations. These are used to select from a dataset of over 80

  14. Water quality improvement through bioretention media: nitrogen and phosphorus removal.

    PubMed

    Davis, Allen P; Shokouhian, Mohammad; Sharma, Himanshu; Minami, Christie

    2006-03-01

    High nutrient inputs and eutrophication continue to be one of the highest priority water quality problems. Bioretention is a low-impact development technology that has been advocated for use in urban and other developed areas. This work provides an in-depth analysis on removal of nutrients from a synthetic stormwater runoff by bioretention. Results have indicated good removal of phosphorus (70 to 85%) and total Kjeldahl nitrogen (55 to 65%). Nitrate reduction was poor (< 20%) and, in several cases, nitrate production was noted. Variations in flowrate (intensity) and duration had a moderate affect on nutrient removal. Mass balances demonstrate the importance of water attenuation in the facility in reducing mass nutrient loads. Captured nitrogen can be converted to nitrate between storm events and subsequently washed from the system. Analysis on the fate of nutrients in bioretention suggests that accumulation of phosphorus and nitrogen may be controlled by carefully managing growing and harvesting of vegetation.

  15. Water-quality assessment of the New England Coastal Basins in Maine, Massachusetts, New Hampshire, and Rhode Island : environmental settings and implications for water quality and aquatic biota

    USGS Publications Warehouse

    Flanagan, Sarah M.; Nielsen, Martha G.; Robinson, Keith W.; Coles, James F.

    1999-01-01

    The New England Coastal Basins in Maine, Massachusetts, New Hampshire, and Rhode Island constitute one of 59 study units selected for water-quality assessment as part of the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) program. England Coastal Basins study unit encompasses the fresh surface waters and ground waters in a 23,000 square-mile area that drains to the Atlantic Ocean. Major basins include those of the Kennebec, Androscoggin, Saco, Merrimack, Charles, Blackstone, Taunton, and Pawcatuck Rivers. Defining the environmental setting of the study unit is the first step in designing and conducting a multi-disciplinary regional water-quality assessment. The report describes the natural and human factors that affect water quality in the basins and includes descriptions of the physiography, climate, geology, soils, surface- and ground-water hydrology, land use, and the aquatic ecosystem. Although surface-water quality has greatly improved over the past 30 years as a result of improved wastewater treatment at municipal and industrial wastewater facilities, a number of water-quality problems remain. Industrial and municipal wastewater discharges, combined sewer overflows, hydrologic modifications from dams and water diversions, and runoff from urban land use are the major causes of water-quality degradation in 1998. The most frequently detected contaminants in ground water in the study area are volatile organic compounds, petroleum-related products, nitrates, and chloride and sodium. Sources of these contaminants include leaking storage tanks, accidental spills, landfills, road salting, and septic systems and lagoons. Elevated concentrations of mercury are found in fish tissue from streams and lakes throughout the study area.

  16. Surface-water quality-assurance plan for the USGS Georgia Water Science Center, 2010

    USGS Publications Warehouse

    Gotvald, Anthony J.

    2010-01-01

    The U.S. Geological Survey requires that each Water Science Center prepare a surface-water quality-assurance plan to describe policies and procedures that ensure high quality surface-water data collection, processing, analysis, computer storage, and publication. The Georgia Water Science Center's standards, policies, and procedures for activities related to the collection, processing, analysis, computer storage, and publication of surface-water data are documented in this Surface-Water Quality-Assurance Plan for 2010.

  17. Hydrologic and water quality modeling: spatial and temporal considerations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hydrologic and water quality models are used to help manage water resources by investigating the effects of climate, land use, land management, and water management on water resources. Each water-related issue is better investigated at a specific scale, which can vary spatially from point to watersh...

  18. Elevated atmospheric carbon dioxide in agroecosystems affects groundwater quality

    SciTech Connect

    Torbert, H.A.; Prior, S.A.; Rogers, H.H.; Schlesinger, W.H.; Mullins, G.L.; Runion, G.B.

    1996-07-01

    Increasing atmospheric carbon dioxide (CO{sub 2}) concentration has led to concerns about global changes to the environment. One area of global change that has not been addressed is the effect of elevated atmospheric CO{sub 2} on groundwater quality below agroecosystems. Elevated CO{sub 2} concentration alterations of plant growth and C/N ratios may modify C and N cycling in soil and affect nitrate (NO{sub 3}{sup {minus}}) leaching to groundwater. This study was conducted to examine the effects of a legume (soybean [Glycine max (L.) Merr.]) and a nonlegume (grain sorghum [Sorghum bicolor (L.) Moench]) CO{sub 2}-enriched agroecosystems on NO{sub 3}{sup {minus}} movement below the root zone in a Blanton loamy sand (loamy siliceous, thermic, Grossarenic Paleudults). The study was a split-plot design replicated three times with plant species (soybean and grain sorghum) as the main plots and CO{sub 2} concentration ({approximately}360 and {approximately}720 {mu}L L{sup {minus}1} CO{sub 2}) as subplots using open-top field chambers. Fertilizer application was made with {sup 15}N-depleted NH{sub 4}NO{sub 3} to act as a fertilizer tracer. Soil solution samples were collected weekly at 90-cm depth for a 2-yr period and monitored for NO{sub 3}{sup {minus}}-N concentrations. Isotope analysis of soil solution indicated that the decomposition of organic matter was the primary source of No{sub 3}{sup {minus}}-N in soil solution below the root zone through most of the monitoring period. Significant differences were observed for NO{sub 3}{sup {minus}}-N concentrations between soybean and grain sorghum, with soybean having the higher NO{sub 3}{sup {minus}}-N concentration. Elevated CO{sub 2} increased total dry weight, total N content, and C/N ratio of residue returned to soil in both years. Elevated CO{sub 2} significantly decreased NO{sub 3}{sup {minus}}-N concentrations below the root zone in both soybean and grain sorghum. 37 refs., 2 figs., 2 tabs.

  19. The effect of land use change on water quality: A case study in Ciliwung Watershed

    NASA Astrophysics Data System (ADS)

    Ayu Permatasari, Prita; Setiawan, Yudi; Nur Khairiah, Rahmi; Effendi, Hefni

    2017-01-01

    Ciliwung is the biggest river in Jakarta. It is 119 km long with a catchment area of 476 km2. It flows from Bogor Regency and crosses Bogor City, Depok City, and Jakarta before finally flowing into Java Sea through Jakarta Bay. The water quality in Ciliwung River has degraded. Many factors affect water quality. Understanding the relationship between land use and surface water quality is necessary for effective water management. It has been widely accepted that there is a close relationship between the land use type and water quality. This study aims to analyze the influence of various land use types on the water quality within the Ciliwung Watershed based on the water quality monitoring data and remote sensing data in 2010 and 2014. Water quality parameters exhibited significant variations between the urban-dominated and forest-dominated sites. The proportion of urban land was strongly positively associated with total nitrogen and ammonia nitrogen concentrations. The result can provide scientific reference for the local land use optimization and water pollution control and guidance for the formulation of policies to coordinate the exploitation and protection of the water resource.

  20. Water-quality assessment of Cache Creek, Yolo, Lake, and Colusa counties, California

    USGS Publications Warehouse

    Sorenson, Stephen K.; Elliott, Ann L.

    1981-01-01

    Cache Creek and its tributaries from Clear Lake to Yolo Bypass have been the subject of quality and quantity of water studies by several governmental agencies since the early 1900's. Water-quality data from these studies showed that water in the basin is of good quality for most of the beneficial uses defined by the California State Water Resources Control Board. Concentrations of dissolved constituents are substantially higher in the water in the two largest tributaries than in Cache Creek. Seasonal variations in dissolved constituents are also greater in the tributaries than in Cache Creek. Clear Lake has a major effect on water quality, resulting in little seasonal fluctuation in water quality in Cache Creek. Excessive voron and suspended-sediment concentrations are the greatest water-quality problems, according to existing data. Both of these problems are from natural sources. Water-quality monitoring is presently being conducted monthly at four sites by the California Department of Water Resurces and at several other sites by other agencies. Modifications in current monitoring are proposed to gain further information on diel dissolved-oxygen cycles, pesticides, and biological constituents that may adversely affect beneficial uses. (USGS)

  1. National Water Quality Inventory, 1975 Report to Congress.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC. Office of Water Programs.

    This document summarizes state submissions and provides a national overview of water quality as requested in Section 305(b) of the 1972 Federal Water Pollution Control Act Amendments (P.L. 92-500). This report provides the first opportunity for states to summarize their water quality and to report to EPA and Congress. Chapters of this report deal…

  2. Applications of spectroscopy to remote determination of water quality

    NASA Technical Reports Server (NTRS)

    Goldberg, M. C.; Weiner, E. R.

    1972-01-01

    The use of remote laser Raman and molecular spectroscopic techniques to measure water quality is examined. Measurements cover biological, chemical, and physical properties of the water. Experimental results show chemical properties are harder to obtain remotely than biological or physical properties and that molecular spectroscopy seems to be the best method for obtaining water quality data.

  3. 7 CFR 634.23 - Water quality plan.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... quality management plan. Such BMP's must reduce the amount of pollutants that enter a stream or lake by... 7 Agriculture 6 2012-01-01 2012-01-01 false Water quality plan. 634.23 Section 634.23 Agriculture... AGRICULTURE LONG TERM CONTRACTING RURAL CLEAN WATER PROGRAM Participant RCWP Contracts § 634.23 Water...

  4. 40 CFR 35.2023 - Water quality management planning.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 1 2014-07-01 2014-07-01 false Water quality management planning. 35... to the States to carry out water quality management planning including but not limited to: (1... ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works § 35.2023 Water...

  5. 40 CFR 35.2023 - Water quality management planning.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Water quality management planning. 35... to the States to carry out water quality management planning including but not limited to: (1... ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works § 35.2023 Water...

  6. 40 CFR 35.2023 - Water quality management planning.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Water quality management planning. 35... to the States to carry out water quality management planning including but not limited to: (1... ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works § 35.2023 Water...

  7. 30 CFR 75.1718-1 - Drinking water; quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drinking water; quality. 75.1718-1 Section 75... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1718-1 Drinking water; quality. (a) Potable water provided in accordance with the provisions of § 75.1718 shall meet...

  8. 30 CFR 75.1718-1 - Drinking water; quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Drinking water; quality. 75.1718-1 Section 75... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1718-1 Drinking water; quality. (a) Potable water provided in accordance with the provisions of § 75.1718 shall meet...

  9. 30 CFR 75.1718-1 - Drinking water; quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Drinking water; quality. 75.1718-1 Section 75... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1718-1 Drinking water; quality. (a) Potable water provided in accordance with the provisions of § 75.1718 shall meet...

  10. WATER QUALITY EFFECTS OF HYPORHEIC PROCESSING IN A LARGE RIVER

    EPA Science Inventory

    Water quality changes along hyporheic flow paths may have
    important effects on river water quality and aquatic habitat. Previous
    studies on the Willamette River, Oregon, showed that river water follows
    hyporheic flow paths through highly porous deposits created by river...

  11. 77 FR 71191 - 2012 Recreational Water Quality Criteria

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-29

    ... AGENCY 2012 Recreational Water Quality Criteria AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of availability of the 2012 Recreational Water Quality Criteria. SUMMARY: Pursuant to section 304(a) of the Clean Water Act (CWA), the Environmental Protection Agency (EPA) is announcing...

  12. 30 CFR 75.1718-1 - Drinking water; quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Drinking water; quality. 75.1718-1 Section 75... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1718-1 Drinking water; quality. (a) Potable water provided in accordance with the provisions of § 75.1718 shall meet...

  13. 30 CFR 75.1718-1 - Drinking water; quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Drinking water; quality. 75.1718-1 Section 75... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1718-1 Drinking water; quality. (a) Potable water provided in accordance with the provisions of § 75.1718 shall meet...

  14. 40 CFR 35.2111 - Revised water quality standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 1 2013-07-01 2013-07-01 false Revised water quality standards. 35... ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works § 35.2111 Revised water... stream segments which have not, at least once since December 29, 1981, had their water quality...

  15. 40 CFR 35.2111 - Revised water quality standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 1 2012-07-01 2012-07-01 false Revised water quality standards. 35... ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works § 35.2111 Revised water... stream segments which have not, at least once since December 29, 1981, had their water quality...

  16. Improving Water Quality With Conservation Buffers

    NASA Astrophysics Data System (ADS)

    Lowrance, R.; Dabney, S.; Schultz, R.

    2003-12-01

    Conservation buffer technologies are new approaches that need wider application. In-field buffer practices work best when used in combination with other buffer types and other conservation practices. Vegetative barriers may be used in combination with edge-of-field buffers to protect and improve their function and longevity by dispersing runoff and encouraging sediment deposition upslope of the buffer. It's important to understand how buffers can be managed to help reduce nutrient transport potential for high loading of nutrients from manure land application sites, A restored riparian wetland buffer retained or removed at least 59 percent of the nitrogen and 66 percent of the phosphorus that entered from an adjacent manure land application site. The Bear Creek National Restoration Demonstration Watershed project in Iowa has been the site of riparian forest buffers and filter strips creation; constructed wetlands to capture tile flow; stream-bank bioengineering; in-stream structures; and controlling livestock grazing. We need field studies that test various widths of buffers of different plant community compositions for their efficacy in trapping surface runoff, reducing nonpoint source pollutants in subsurface waters, and enhancing the aquatic ecosystem. Research is needed to evaluate the impact of different riparian grazing strategies on channel morphology, water quality, and the fate of livestock-associated pathogens and antibiotics. Integrating riparian buffers and other conservation buffers into these models is a key objective in future model development.

  17. Skylab study of water quality. [Kansas reservoirs

    NASA Technical Reports Server (NTRS)

    Yarger, H. L. (Principal Investigator); Mccauley, J. R.

    1974-01-01

    The author has identified the following significant results. Analysis of S-190A imagery from 1 EREP pass over 3 reservoirs in Kansas establishes a strong linear correlation between the red/green radiance ratio and suspended solids. This result compares quite favorably to ERTS MSS CCT results. The linear fits RMS for Skylab is 6 ppm as compared to 12 ppm for ERTS. All of the ERTS satellite passes yielded fairly linear results with typical RMS values of 12 ppm. However, a few of the individual passes did yield RMS values of 5 or 6 ppm which is comparable to the one Skylab pass analyzed. In view of the cloudy conditions in the Skylab photos, yet good results, the indications are that S-190A may do somewhat better than the ERTS MSS in determining suspended load. More S-190A data is needed to confirm this. As was the case with the ERTS MSS, the Skylab S-190A showed no strong correlation with other water quality parameters. S-190B photos because of their high resolution can provide much first look information regarding relative degrees of turbidity within various parts of large lakes and among smaller bodies of water.

  18. Chemical and biological quality of water in part of the Everglades, southeastern Florida

    USGS Publications Warehouse

    Waller, Bradley G.; Earle, James E.

    1975-01-01

    The quality of surface water in the agricultural area between Lake Okeechobee and the water conservation areas is markedly different from that of other surface water in southeastern Florida. Man has engaged in cultural activities, both agricultural and urban, which have affected the water quality in the northern and eastern segments of the area of investigation. The quality of the water improves, however, as it flows to the south and east because there is minimal input from man 's activities and many of the constituents are assimilated by plants, sorbed on organic material and clay in the bottom sediments, and entrapped within the sediments. Because of these processes, the water entering Everglades National Park is of better quality than that entering the conservation areas in the north. (Woodard-USGS)

  19. Organisational factors affecting the quality of hospital clinical coding.

    PubMed

    Santos, Suong; Murphy, Gregory; Baxter, Kathryn; Robinson, Kerin M

    2008-01-01

    The influence of organisational factors on the quality of hospital coding using the International Statistical Classification of Diseases and Health Related Problems, 10th Revision, Australian Modification (ICD-10-AM) was investigated using a mixed quantitative-qualitative approach. The organisational variables studied were: hospital specialty; geographical locality; structural characteristics of the coding unit; education, training and resource supports for Clinical Coders; and quality control mechanisms. Baseline data on the hospitals' coding quality, measured by the Performance Indicators for Coding Quality tool, were used as an independent index measure. No differences were found in error rates between rural and metropolitan hospitals, or general and specialist hospitals. Clinical Coder allocation to "general" rather than "specialist" unit coding resulted in fewer errors. Coding Managers reported that coding quality can be improved by: Coders engaging in a variety of role behaviours; improved Coder career opportunities; higher staffing levels; reduced throughput; fewer time constraints on coding outputs and associated work; and increased Coder interactions with medical staff.

  20. The Maladies of Water and War: Addressing Poor Water Quality in Iraq

    PubMed Central

    2013-01-01

    Water is essential in providing nutrients, but contaminated water contributes to poor population health. Water quality and availability can change in unstructured situations, such as war. To develop a practical strategy to address poor water quality resulting from intermittent wars in Iraq, I reviewed information from academic sources regarding waterborne diseases, conflict and war, water quality treatment, and malnutrition. The prevalence of disease was high in impoverished, malnourished populations exposed to contaminated water sources. The data aided in developing a strategy to improve water quality in Iraq, which encompasses remineralized water from desalination plants, health care reform, monitoring and evaluation systems, and educational public health interventions. PMID:23597360