Sample records for affects zebrafish development

  1. Rearing Conditions Differentially Affect the Locomotor Behavior of Larval Zebrafish, but not their Response to Valproate-Induced Developmental Neurotoxicity

    EPA Science Inventory

    Zebrafish (Dania rerio) are widely used in developmental research, but little is known about the role environment may play in their development. Zebrafish are a highly social organism; thus exposure to or isolation from social environments may have profound effects. Details of re...

  2. Rearing Conditions Differentially Affect the Locomotor Behavior of Larval Zebrafish, but not Their Response to Valproate-Induced Developmental Neurotoxicity*

    EPA Science Inventory

    Zebrafish (Danio rerio) are widely used in developmental research, but still not much is known about the role of the environment in their development. Zebrafish are a highly social organism; thus exposure to, or isolation from, social environments may have profound developmental ...

  3. Transcription factor COUP-TFII is indispensable for venous and lymphatic development in zebrafish and Xenopus laevis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aranguren, Xabier L., E-mail: xabier.lopezaranguren@med.kuleuven.be; Beerens, Manu, E-mail: manu.beerens@med.kuleuven.be; Vandevelde, Wouter, E-mail: woutervandevelde@gmail.com

    Highlights: {yields} COUP-TFII deficiency in zebrafish affects arterio-venous EC specification. {yields} COUP-TFII is indispensable for lymphatic development in zebrafish. {yields} COUP-TFII knockdown in Xenopus disrupts lymphatic EC differentiation and migration. {yields} COUP-TFII's role in EC fate decisions is evolutionary conserved. -- Abstract: Transcription factors play a central role in cell fate determination. Gene targeting in mice revealed that Chicken Ovalbumin Upstream Promoter-Transcription Factor II (COUP-TFII, also known as Nuclear Receptor 2F2 or NR2F2) induces a venous phenotype in endothelial cells (ECs). More recently, NR2F2 was shown to be required for initiating the expression of Prox1, responsible for lymphatic commitment ofmore » venous ECs. Small animal models like zebrafish embryos and Xenopus laevis tadpoles have been very useful to elucidate mechanisms of (lymph) vascular development. Therefore, the role of NR2F2 in (lymph) vascular development was studied by eliminating its expression in these models. Like in mice, absence of NR2F2 in zebrafish resulted in distinct vascular defects including loss of venous marker expression, major trunk vessel fusion and vascular leakage. Both in zebrafish and Xenopus the development of the main lymphatic structures was severely hampered. NR2F2 knockdown significantly decreased prox1 expression in zebrafish ECs and the same manipulation affected lymphatic (L)EC commitment, migration and function in Xenopus tadpoles. Therefore, the role of NR2F2 in EC fate determination is evolutionary conserved.« less

  4. Chitosan nanoparticles and their Tween 80 modified counterparts disrupt the developmental profile of zebrafish embryos.

    PubMed

    Yuan, Zhongyue; Li, Ying; Hu, Yulan; You, Jian; Higashisaka, Kazuma; Nagano, Kazuya; Tsutsumi, Yasuo; Gao, Jianqing

    2016-12-30

    Chitosan nanoparticles (CS-NPs) and their Tween 80 modified counterparts (TmCS-NPs) are among the most commonly used brain-targeted vehicles. However, their potential developmental toxicity is poorly understood. In this study, zebrafish embryos are introduced as an in vivo platform. Both NPs showed a dose-dependent increase in developmental toxicity (decreased hatching rate, increased mortality and incidences of malformation). Neurobehavioral changes included decreased spontaneous movement in TmCS-NP treated embryos and hyperactive effect in CS-NP treated larvae. Both NPs remarkably inhibited axonal development of primary and secondary motor neurons, and affected the muscle structure. Overall, this study demonstrated that CS-NPs and TmCS-NPs could affect embryonic development, disrupt neurobehavior of zebrafish larvae and affect muscle and neuron development, suggesting more attention on biodegradable chitosan nanoparticles. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Understanding behavioral and physiological phenotypes of stress and anxiety in zebrafish.

    PubMed

    Egan, Rupert J; Bergner, Carisa L; Hart, Peter C; Cachat, Jonathan M; Canavello, Peter R; Elegante, Marco F; Elkhayat, Salem I; Bartels, Brett K; Tien, Anna K; Tien, David H; Mohnot, Sopan; Beeson, Esther; Glasgow, Eric; Amri, Hakima; Zukowska, Zofia; Kalueff, Allan V

    2009-12-14

    The zebrafish (Danio rerio) is emerging as a promising model organism for experimental studies of stress and anxiety. Here we further validate zebrafish models of stress by analyzing how environmental and pharmacological manipulations affect their behavioral and physiological phenotypes. Experimental manipulations included exposure to alarm pheromone, chronic exposure to fluoxetine, acute exposure to caffeine, as well as acute and chronic exposure to ethanol. Acute (but not chronic) alarm pheromone and acute caffeine produced robust anxiogenic effects, including reduced exploration, increased erratic movements and freezing behavior in zebrafish tested in the novel tank diving test. In contrast, ethanol and fluoxetine had robust anxiolytic effects, including increased exploration and reduced erratic movements. The behavior of several zebrafish strains was also quantified to ascertain differences in their behavioral profiles, revealing high-anxiety (leopard, albino) and low-anxiety (wild type) strains. We also used LocoScan (CleverSys Inc.) video-tracking tool to quantify anxiety-related behaviors in zebrafish, and dissect anxiety-related phenotypes from locomotor activity. Finally, we developed a simple and effective method of measuring zebrafish physiological stress responses (based on a human salivary cortisol assay), and showed that alterations in whole-body cortisol levels in zebrafish parallel behavioral indices of anxiety. Collectively, our results confirm zebrafish as a valid, reliable, and high-throughput model of stress and affective disorders.

  6. Effects of nitric oxide on neuromuscular properties of developing zebrafish embryos.

    PubMed

    Jay, Michael; Bradley, Sophie; McDearmid, Jonathan Robert

    2014-01-01

    Nitric oxide is a bioactive signalling molecule that is known to affect a wide range of neurodevelopmental processes. However, its functional relevance to neuromuscular development is not fully understood. Here we have examined developmental roles of nitric oxide during formation and maturation of neuromuscular contacts in zebrafish. Using histochemical approaches we show that elevating nitric oxide levels reduces the number of neuromuscular synapses within the axial swimming muscles whilst inhibition of nitric oxide biosynthesis has the opposite effect. We further show that nitric oxide signalling does not change synapse density, suggesting that the observed effects are a consequence of previously reported changes in motor axon branch formation. Moreover, we have used in vivo patch clamp electrophysiology to examine the effects of nitric oxide on physiological maturation of zebrafish neuromuscular junctions. We show that developmental exposure to nitric oxide affects the kinetics of spontaneous miniature end plate currents and impacts the neuromuscular drive for locomotion. Taken together, our findings implicate nitrergic signalling in the regulation of zebrafish neuromuscular development and locomotor maturation.

  7. Zebrafish as a Vertebrate Model System to Evaluate Effects of Environmental Toxicants on Cardiac Development and Function.

    PubMed

    Sarmah, Swapnalee; Marrs, James A

    2016-12-16

    Environmental pollution is a serious problem of the modern world that possesses a major threat to public health. Exposure to environmental pollutants during embryonic development is particularly risky. Although many pollutants have been verified as potential toxicants, there are new chemicals in the environment that need assessment. Heart development is an extremely sensitive process, which can be affected by environmentally toxic molecule exposure during embryonic development. Congenital heart defects are the most common life-threatening global health problems, and the etiology is mostly unknown. The zebrafish has emerged as an invaluable model to examine substance toxicity on vertebrate development, particularly on cardiac development. The zebrafish offers numerous advantages for toxicology research not found in other model systems. Many laboratories have used the zebrafish to study the effects of widespread chemicals in the environment on heart development, including pesticides, nanoparticles, and various organic pollutants. Here, we review the uses of the zebrafish in examining effects of exposure to external molecules during embryonic development in causing cardiac defects, including chemicals ubiquitous in the environment and illicit drugs. Known or potential mechanisms of toxicity and how zebrafish research can be used to provide mechanistic understanding of cardiac defects are discussed.

  8. Screening mosaic F1 females for mutations affecting zebrafish heart induction and patterning.

    PubMed

    Alexander, J; Stainier, D Y; Yelon, D

    1998-01-01

    The genetic pathways underlying the induction and anterior-posterior patterning of the heart are poorly understood. The recent emergence of the zebrafish model system now allows a classical genetic approach to such challenging problems in vertebrate development. Two large-scale screens for mutations affecting zebrafish embryonic development have recently been completed; among the hundreds of mutations identified were several that affect specific aspects of cardiac morphogenesis, differentiation, and function. However, very few mutations affecting induction and/or anterior-posterior patterning of the heart were identified. We hypothesize that a directed approach utilizing molecular markers to examine these particular steps of heart development will uncover additional such mutations. To test this hypothesis, we are conducting two parallel screens for mutations that affect either the induction or the anterior-posterior patterning of the zebrafish heart. As an indicator of cardiac induction, we examine expression of nkx2.5, the earliest known marker of precardiac mesoderm; to assess anterior-posterior patterning, we distinguish ventricle from atrium with antibodies that recognize different myosin heavy chain isoforms. In order to expedite the examination of a large number of mutations, we are screening the haploid progeny of mosaic F1 females. In these ongoing screens, we have identified four mutations that affect nkx2.5 expression as well as 21 that disrupt either ventricular or atrial development and thus far have recovered several of these mutations, demonstrating the value of our approach. Future analysis of these and other cardiac mutations will provide further insight into the processes of induction and anterior-posterior patterning of the heart.

  9. Short- and long-term effects of nicotine and the histone deacetylase inhibitor phenylbutyrate on novel object recognition in zebrafish.

    PubMed

    Faillace, M P; Pisera-Fuster, A; Medrano, M P; Bejarano, A C; Bernabeu, R O

    2017-03-01

    Zebrafish have a sophisticated color- and shape-sensitive visual system, so we examined color cue-based novel object recognition in zebrafish. We evaluated preference in the absence or presence of drugs that affect attention and memory retention in rodents: nicotine and the histone deacetylase inhibitor (HDACi) phenylbutyrate (PhB). The objective of this study was to evaluate whether nicotine and PhB affect innate preferences of zebrafish for familiar and novel objects after short- and long-retention intervals. We developed modified object recognition (OR) tasks using neutral novel and familiar objects in different colors. We also tested objects which differed with respect to the exploratory behavior they elicited from naïve zebrafish. Zebrafish showed an innate preference for exploring red or green objects rather than yellow or blue objects. Zebrafish were better at discriminating color changes than changes in object shape or size. Nicotine significantly enhanced or changed short-term innate novel object preference whereas PhB had similar effects when preference was assessed 24 h after training. Analysis of other zebrafish behaviors corroborated these results. Zebrafish were innately reluctant or prone to explore colored novel objects, so drug effects on innate preference for objects can be evaluated changing the color of objects with a simple geometry. Zebrafish exhibited recognition memory for novel objects with similar innate significance. Interestingly, nicotine and PhB significantly modified innate object preference.

  10. Zebrafish as a Vertebrate Model System to Evaluate Effects of Environmental Toxicants on Cardiac Development and Function

    PubMed Central

    Sarmah, Swapnalee; Marrs, James A.

    2016-01-01

    Environmental pollution is a serious problem of the modern world that possesses a major threat to public health. Exposure to environmental pollutants during embryonic development is particularly risky. Although many pollutants have been verified as potential toxicants, there are new chemicals in the environment that need assessment. Heart development is an extremely sensitive process, which can be affected by environmentally toxic molecule exposure during embryonic development. Congenital heart defects are the most common life-threatening global health problems, and the etiology is mostly unknown. The zebrafish has emerged as an invaluable model to examine substance toxicity on vertebrate development, particularly on cardiac development. The zebrafish offers numerous advantages for toxicology research not found in other model systems. Many laboratories have used the zebrafish to study the effects of widespread chemicals in the environment on heart development, including pesticides, nanoparticles, and various organic pollutants. Here, we review the uses of the zebrafish in examining effects of exposure to external molecules during embryonic development in causing cardiac defects, including chemicals ubiquitous in the environment and illicit drugs. Known or potential mechanisms of toxicity and how zebrafish research can be used to provide mechanistic understanding of cardiac defects are discussed. PMID:27999267

  11. Evaluation in zebrafish model of the toxicity of rhodamine B-conjugated crotamine, a peptide potentially useful for diagnostics and therapeutics.

    PubMed

    Chan, Judy Yuet-Wa; Zhou, Hefeng; Kwan, Yiu Wa; Chan, Shun Wan; Radis-Baptista, Gandhi; Lee, Simon Ming-Yuen

    2017-11-01

    Crotamine is defensin-like cationic peptide from rattlesnake venom that possesses anticancer, antimicrobial, and antifungal properties. Despite these promising biological activities, toxicity is a major concern associated with the development of venom-derived peptides as therapeutic agents. In the present study, we used zebrafish as a system model to evaluate the toxicity of rhodamine B-conjugated (RhoB) crotamine derivative. The lethal toxic concentration of RhoB-crotamine was as low as 4 μM, which effectively kill zebrafish larvae in less than 10 min. With non-lethal concentrations (<1 μM), crotamine caused malformation in zebrafish embryos, delayed or completely halted hatching, adversely affected embryonic developmental programming, decreased the cardiac functions, and attenuated the swimming distance of zebrafish. The RhoB-crotamine translocated across vitelline membrane and accumulated in zebrafish yolk sac. These results demonstrate the sensitive responsivity of zebrafish to trial crotamine analogues for the development of novel therapeutic peptides with improved safety, bioavailability, and efficacy profiles. © 2017 Wiley Periodicals, Inc.

  12. Characterization of behavioral and endocrine effects of LSD on zebrafish.

    PubMed

    Grossman, Leah; Utterback, Eli; Stewart, Adam; Gaikwad, Siddharth; Chung, Kyung Min; Suciu, Christopher; Wong, Keith; Elegante, Marco; Elkhayat, Salem; Tan, Julia; Gilder, Thomas; Wu, Nadine; Dileo, John; Cachat, Jonathan; Kalueff, Allan V

    2010-12-25

    Lysergic acid diethylamide (LSD) is a potent hallucinogenic drug that strongly affects animal and human behavior. Although adult zebrafish (Danio rerio) are emerging as a promising neurobehavioral model, the effects of LSD on zebrafish have not been investigated previously. Several behavioral paradigms (the novel tank, observation cylinder, light-dark box, open field, T-maze, social preference and shoaling tests), as well as modern video-tracking tools and whole-body cortisol assay were used to characterize the effects of acute LSD in zebrafish. While lower doses (5-100 microg/L) did not affect zebrafish behavior, 250 microg/L LSD increased top dwelling and reduced freezing in the novel tank and observation cylinder tests, also affecting spatiotemporal patterns of activity (as assessed by 3D reconstruction of zebrafish traces and ethograms). LSD evoked mild thigmotaxis in the open field test, increased light behavior in the light-dark test, reduced the number of arm entries and freezing in the T-maze and social preference test, without affecting social preference. In contrast, LSD affected zebrafish shoaling (increasing the inter-fish distance in a group), and elevated whole-body cortisol levels. Overall, our findings show sensitivity of zebrafish to LSD action, and support the use of zebrafish models to study hallucinogenic drugs of abuse. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  13. Smoc2 modulates embryonic myelopoiesis during zebrafish development.

    PubMed

    Mommaerts, Hendrik; Esguerra, Camila V; Hartmann, Ursula; Luyten, Frank P; Tylzanowski, Przemko

    2014-11-01

    SMOC2 is a member of the BM-40 (SPARC) family of matricellular proteins, reported to influence signaling in the extracellular compartment. In mice, Smoc2 is expressed in many different tissues and was shown to enhance the response to angiogenic growth factors, mediate cell adhesion, keratinocyte migration, and metastasis. Additionally, SMOC2 is associated with vitiligo and craniofacial and dental defects. The function of Smoc2 during early zebrafish development has not been determined to date. In pregastrula zebrafish embryos, smoc2 is expressed ubiquitously. As development progresses, the expression pattern becomes more anteriorly restricted. At the onset of blood cell circulation, smoc2 morphants presented a mild ventralization of posterior structures. Molecular analysis of the smoc2 morphants indicated myelopoietic defects in the rostral blood islands during segmentation stages. Hemangioblast development and further specification of the myeloid progenitor cells were shown to be impaired. Additional experiments indicated that Bmp target genes were down-regulated in smoc2 morphants. Our findings reveal that Smoc2 is an essential player in the development of myeloid cells of the anterior lateral plate mesoderm during embryonic zebrafish development. Furthermore, our data show that Smoc2 affects the transcription of Bmp target genes without affecting initial dorsoventral patterning or mesoderm development. Copyright © 2014 Wiley Periodicals, Inc.

  14. Egfl6 is involved in zebrafish notochord development.

    PubMed

    Wang, Xueqian; Wang, Xin; Yuan, Wei; Chai, Renjie; Liu, Dong

    2015-08-01

    The epidermal growth factor (EGF) repeat motif defines a superfamily of diverse protein involved in regulating a variety of cellular and physiological processes, such as cell cycle, cell adhesion, proliferation, migration, and neural development. Egfl6, an EGF protein, also named MAGE was first cloned in human tissue. Up to date, the study of zebrafish Egfl6 expression pattern and functional analysis of Egfl6 involved in embryonic development of vertebrate in vivo is thus far lacking. Here we reported that Egfl6 was involved in zebrafish notochord development. It was shown that Egfl6 mRNA was expressed in zebrafish, developing somites, fin epidermis, pharyngeal arches, and hindbrain region. Particularly the secreted Egfl6 protein was significantly accumulated in notochord. Loss of Egfl6 function in zebrafish embryos resulted in curved body with distorted notochord in the posterior trunk. It was observed that expression of all Notch ligand and receptors in notochord of 28 hpf Egfl6 morphants was not affected, except notch2, which was up-regulated. We found that inhibition of Notch signaling by DAPT efficiently rescued notochord developmental defect of Egfl6 deficiency embryos.

  15. Transcriptomic changes in zebrafish embryos and larvae following benzo[a]pyrene exposure

    USDA-ARS?s Scientific Manuscript database

    Benzo[a]pyrene (BaP) is an environmentally relevant carcinogenic and endocrine disrupting compound that causes immediate, long-term, and multigenerational health deficits in mammals and fish. Previously, we found that BaP alters DNA methylation patterns in developing zebrafish, which may affect gene...

  16. Curcumin affects development of zebrafish embryo.

    PubMed

    Wu, Jheng-Yu; Lin, Chin-Yi; Lin, Tien-Wei; Ken, Chuian-Fu; Wen, Yu-Der

    2007-07-01

    Embryotoxic and teratogenic effects of curcumin on the development of zebrafish embryo were investi-gated in this study. The LD(50) values of curcumin (24-h incubation) were estimated at 7.5 microM and 5 microM for embryos and larvae, respectively. The developmental defects caused by curcumin treatments include bent or hook-like tails, spinal column curving, edema in pericardial sac, retarded yolk sac resorption, and shorter body length. In curcumin-treated larvae, fluorescence signals of curcumin were found in edamae sac and some skin cells. Together, these results indicate that zebrafish are suitable model organisms to study the toxic effects of curcumin.

  17. Zebrafish: A Model for the Study of Toxicants Affecting Muscle Development and Function

    PubMed Central

    Dubińska-Magiera, Magda; Daczewska, Małgorzata; Lewicka, Anna; Migocka-Patrzałek, Marta; Niedbalska-Tarnowska, Joanna; Jagla, Krzysztof

    2016-01-01

    The rapid progress in medicine, agriculture, and allied sciences has enabled the development of a large amount of potentially useful bioactive compounds, such as drugs and pesticides. However, there is another side of this phenomenon, which includes side effects and environmental pollution. To avoid or minimize the uncontrollable consequences of using the newly developed compounds, researchers seek a quick and effective means of their evaluation. In achieving this goal, the zebrafish (Danio rerio) has proven to be a highly useful tool, mostly because of its fast growth and development, as well as the ability to absorb the molecules diluted in water through its skin and gills. In this review, we focus on the reports concerning the application of zebrafish as a model for assessing the impact of toxicants on skeletal muscles, which share many structural and functional similarities among vertebrates, including zebrafish and humans. PMID:27869769

  18. Heart-specific expression of laminopathic mutations in transgenic zebrafish.

    PubMed

    Verma, Ajay D; Parnaik, Veena K

    2017-07-01

    Lamins are key determinants of nuclear organization and function in the metazoan nucleus. Mutations in human lamin A cause a spectrum of genetic diseases that affect cardiac muscle and skeletal muscle as well as other tissues. A few laminopathies have been modeled using the mouse. As zebrafish is a well established model for the study of cardiac development and disease, we have investigated the effects of heart-specific lamin A mutations in transgenic zebrafish. We have developed transgenic lines of zebrafish expressing conserved lamin A mutations that cause cardiac dysfunction in humans. Expression of zlamin A mutations Q291P and M368K in the heart was driven by the zebrafish cardiac troponin T2 promoter. Homozygous mutant embryos displayed nuclear abnormalities in cardiomyocyte nuclei. Expression analysis showed the upregulation of genes involved in heart regeneration in transgenic mutant embryos and a cell proliferation marker was increased in adult heart tissue. At the physiological level, there was deviation of up to 20% from normal heart rate in transgenic embryos expressing mutant lamins. Adult homozygous zebrafish were fertile and did not show signs of early mortality. Our results suggest that transgenic zebrafish models of heart-specific laminopathies show cardiac regeneration and moderate deviations in heart rate during embryonic development. © 2017 International Federation for Cell Biology.

  19. Subacute developmental exposure of zebrafish to the organophosphate pesticide metabolite, chlorpyrifos-oxon, results in defects in Rohon-Beard sensory neuron development

    PubMed Central

    Jacobson, Saskia M.; Birkholz, Denise A.; McNamara, Marcy L.; Bharate, Sandip B.; George, Kathleen M.

    2010-01-01

    Organophosphate pesticides (OPs) are environmental toxicants known to inhibit the catalytic activity of acetylcholinesterase (AChE) resulting in hypercholinergic toxicity symptoms. In developing embryos, OPs have been hypothesized to affect both cholinergic and non-cholinergic pathways. In order to understand the neurological pathways affected by OP exposure during embryogenesis, we developed a subacute model of OP developmental exposure in zebrafish by exposing embryos to a dose of the OP metabolite chlorpyrifos oxon (CPO) that is non-lethal and significantly inhibited AChE enzymatic activity compared to control embryos (43% at 1 day post-fertilization (dpf) and 11% at 2 dpf). Phenotypic analysis of CPO-exposed embryos demonstrated that embryonic growth, as analyzed by gross morphology, was normal in 85% of treated embryos. Muscle fiber formation was similar to control embryos as analyzed by birefringence, and nicotinic acetylcholine receptor (nAChR) cluster formation was quantitatively similar to control embryos as analyzed by α-bungarotoxin staining. These results indicate that partial AChE activity during the early days of zebrafish development is sufficient for general development, muscle fiber, and nAChR development. Rohon-Beard (RB) sensory neurons exhibited aberrant peripheral axon extension and gene expression profiling suggests that several genes responsible for RB neurogenesis are down-regulated. Stability of CPO in egg water at 28.5 °C was determined by HPLC-UV-MS analysis which revealed that the CPO concentration used in our studies hydrolyzes in egg water with a half-life of one day. The result that developmental CPO exposure affected RB neurogenesis without affecting muscle fiber or nAChR cluster formation demonstrates that zebrafish are a strong model system for characterizing subtle neurological pathologies resulting from environmental toxicants. PMID:20701988

  20. Cortisol elevation post-hatch affects behavioural performance in zebrafish larvae.

    PubMed

    Best, Carol; Vijayan, Mathilakath M

    2018-02-01

    Maternal cortisol is essential for cortisol stress axis development and de novo production of this steroid commences only after hatch in zebrafish (Danio rerio). However, very little is known about the effect of elevated cortisol levels, during the critical period of stress axis activation, on larval performance. We tested the hypothesis that elevated cortisol levels post-hatch affect behavioural performance and this is mediated by glucocorticoid receptor (GR) activation in zebrafish larvae. The behavioural response included measuring larval activity in response to alternating light and dark cycles, as well as thigmotaxis. Zebrafish larvae at 3days post-fertilization were exposed to waterborne cortisol for 24h to mimic a steroid response to an early-life stressor exposure. Also, larvae were exposed to waterborne RU-486 (a GR antagonist) either in the presence or absence of cortisol to confirm GR activation. Co-treatment with RU-486 completely abolished the upregulation of cortisol-induced 11β-hydroxysteroid dehydrogenase type 2 transcript abundance, confirming GR signalling. Cortisol-exposed larvae displayed increased locomotor activity irrespective of light condition, but showed no changes in thigmotaxis. This cortisol-mediated behavioural response was not affected by co-treatment with RU-486. Cortisol exposure also did not modify the transcript abundances of GR and mineralocorticoid receptor (MR) in zebrafish larvae. Altogether, cortisol stress axis activation post-hatch increases locomotor activity in zebrafish larvae. Our results suggest that GR signalling may not be involved in this behavioural response, leading to the proposal that cortisol action via MR signalling may influence locomotor activity in zebrafish larvae. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Automatic multiple zebrafish larvae tracking in unconstrained microscopic video conditions.

    PubMed

    Wang, Xiaoying; Cheng, Eva; Burnett, Ian S; Huang, Yushi; Wlodkowic, Donald

    2017-12-14

    The accurate tracking of zebrafish larvae movement is fundamental to research in many biomedical, pharmaceutical, and behavioral science applications. However, the locomotive characteristics of zebrafish larvae are significantly different from adult zebrafish, where existing adult zebrafish tracking systems cannot reliably track zebrafish larvae. Further, the far smaller size differentiation between larvae and the container render the detection of water impurities inevitable, which further affects the tracking of zebrafish larvae or require very strict video imaging conditions that typically result in unreliable tracking results for realistic experimental conditions. This paper investigates the adaptation of advanced computer vision segmentation techniques and multiple object tracking algorithms to develop an accurate, efficient and reliable multiple zebrafish larvae tracking system. The proposed system has been tested on a set of single and multiple adult and larvae zebrafish videos in a wide variety of (complex) video conditions, including shadowing, labels, water bubbles and background artifacts. Compared with existing state-of-the-art and commercial multiple organism tracking systems, the proposed system improves the tracking accuracy by up to 31.57% in unconstrained video imaging conditions. To facilitate the evaluation on zebrafish segmentation and tracking research, a dataset with annotated ground truth is also presented. The software is also publicly accessible.

  2. Myotonia congenita-associated mutations in chloride channel-1 affect zebrafish body wave swimming kinematics.

    PubMed

    Cheng, Wei; Tian, Jing; Burgunder, Jean-Marc; Hunziker, Walter; Eng, How-Lung

    2014-01-01

    Myotonia congenita is a human muscle disorder caused by mutations in CLCN1, which encodes human chloride channel 1 (CLCN1). Zebrafish is becoming an increasingly useful model for human diseases, including muscle disorders. In this study, we generated transgenic zebrafish expressing, under the control of a muscle specific promoter, human CLCN1 carrying mutations that have been identified in human patients suffering from myotonia congenita. We developed video analytic tools that are able to provide precise quantitative measurements of movement abnormalities in order to analyse the effect of these CLCN1 mutations on adult transgenic zebrafish swimming. Two new parameters for body-wave kinematics of swimming reveal changes in body curvature and tail offset in transgenic zebrafish expressing the disease-associated CLCN1 mutants, presumably due to their effect on muscle function. The capability of the developed video analytic tool to distinguish wild-type from transgenic zebrafish could provide a useful asset to screen for compounds that reverse the disease phenotype, and may be applicable to other movement disorders besides myotonia congenita.

  3. Myotonia Congenita-Associated Mutations in Chloride Channel-1 Affect Zebrafish Body Wave Swimming Kinematics

    PubMed Central

    Cheng, Wei; Tian, Jing; Burgunder, Jean-Marc; Hunziker, Walter; Eng, How-Lung

    2014-01-01

    Myotonia congenita is a human muscle disorder caused by mutations in CLCN1, which encodes human chloride channel 1 (CLCN1). Zebrafish is becoming an increasingly useful model for human diseases, including muscle disorders. In this study, we generated transgenic zebrafish expressing, under the control of a muscle specific promoter, human CLCN1 carrying mutations that have been identified in human patients suffering from myotonia congenita. We developed video analytic tools that are able to provide precise quantitative measurements of movement abnormalities in order to analyse the effect of these CLCN1 mutations on adult transgenic zebrafish swimming. Two new parameters for body-wave kinematics of swimming reveal changes in body curvature and tail offset in transgenic zebrafish expressing the disease-associated CLCN1 mutants, presumably due to their effect on muscle function. The capability of the developed video analytic tool to distinguish wild-type from transgenic zebrafish could provide a useful asset to screen for compounds that reverse the disease phenotype, and may be applicable to other movement disorders besides myotonia congenita. PMID:25083883

  4. A review of monoaminergic neuropsychopharmacology in zebrafish.

    PubMed

    Maximino, Caio; Herculano, Anderson Manoel

    2010-12-01

    Monoamine neurotransmitters are the major regulatory mechanisms in the vertebrate brain, involved in the adjustment of motivation, emotion, and cognition. The chemical anatomy of these systems is thought to be highly conserved in the brain of all vertebrates, including zebrafish. Recently, the development of behavioral assays in zebrafish allowed the neuropsychopharmacological investigation of these circuits and its functions. Here we review neuroanatomical, genetic, neurochemical, and psychopharmacological evidence regarding the roles of histaminergic, dopaminergic, noradrenergic, serotonergic, and melatonergic systems in this species. We conclude that, in spite of species differences, zebrafish are suitable for the investigation of neuropsychopharmacology of drugs that affect theses systems; nonetheless, more thorough validation of behavioral methods is still needed.

  5. FOREBRAIN AND HINDBRAIN DEVELOPMENT IN ZEBRAFISH IS SENSITIVE TO ETHANOL EXPOSURE INVOLVING AGRIN, FGF AND SONIC HEDGEHOG FUNCTION

    PubMed Central

    Zhang, Chengjin; Ojiaku, Princess; Cole, Gregory J.

    2014-01-01

    BACKGROUND Ethanol is a teratogen that affects numerous developmental processes in the nervous system, which includes development and survival of GABAergic and glutamatergic neurons. Possible molecular mechanisms accounting for ethanol’s effects on nervous system development include perturbed fibroblast growth factor (Fgf) and Sonic hedgehog (Shh) signaling. In zebrafish, forebrain GABAergic neuron development is dependent on Fgf19 and Shh signaling. The present study was conducted to test the hypothesis that ethanol affects GABAergic and glutamatergic neuron development by disrupting Fgf, Shh, and agrin function. METHODS Zebrafish embryos were exposed to varying concentrations of ethanol during a range of developmental stages, in the absence or presence of morpholino oligonucleotides (MOs) that disrupt agrin or Shh function. In situ hybridization was employed to analyze glutamic acid decarboxylase (GAD1) gene expression, as well as markers of glutamatergic neurons. RESULTS Acute ethanol exposure results in marked reduction in GAD1 gene expression in forebrain and hindbrain, and reduction of glutamatergic neuronal markers in hindbrain. Subthreshold ethanol exposure, combined with agrin or Shh MO treatment, produces a similar diminution in expression of markers for GABAergic and glutamatergic neurons. Consistent with the ethanol effects on Fgf and Shh pathways, Fgf19, Fgf8 or Shh mRNA overexpression rescues ethanol-induced decreases in GAD1 and atonal1a gene expression. CONCLUSIONS These studies demonstrate that GABAergic and glutamatergic neuron development in zebrafish forebrain or cerebellum is sensitive to ethanol exposure, and provides additional evidence that a signaling pathway involving agrin, Fgfs and Shh may be a critical target of ethanol exposure during zebrafish embryogenesis. PMID:23184466

  6. Embryological exposure to valproic acid induces social interaction deficits in zebrafish (Danio rerio): A developmental behavior analysis.

    PubMed

    Zimmermann, Fernanda Francine; Gaspary, Karina Vidarte; Leite, Carlos Eduardo; De Paula Cognato, Giana; Bonan, Carla Denise

    2015-01-01

    Changes in social behavior are associated with brain disorders, including mood disorders, stress, schizophrenia, Alzheimer's disease, and autism spectrum disorders (ASD). Autism is a complex neurodevelopmental disorder characterized by deficits in social interaction, impaired communication, anxiety, hyperactivity, and the presence of restricted interests. Zebrafish is one of the most social vertebrates used as a model in biomedical research, contributing to an understanding of the mechanisms that underlie social behavior. Valproic acid (VPA) is used as an anti-epileptic drug and mood stabilizer; however, prenatal VPA exposure in humans has been associated with an increased incidence of autism and it can also affect fetal brain development. Therefore, we conducted a behavioral screening at different periods of zebrafish development at 6, 30, 70, and 120dpf (days postfertilization) after VPA exposure in the early development stage to investigate social behavior, locomotion, aggression, and anxiety. VPA (48μM) exposure during the first 48hpf (hours postfertilization) did not promote changes on survival, morphology, and hatching rate at 24hpf, 48hpf, and 72hpf. The behavioral patterns suggest that VPA exposure induces changes in locomotor activity and anxiety at different developmental periods in zebrafish. Furthermore, a social interaction deficit is present at 70dpf and 120dpf. VPA exposure did not affect aggression in the adult stage at 70dpf and 120dpf. This is the first study that demonstrated zebrafish exposed to VPA during the first 48h of development exhibit deficits in social interaction, anxiety, and hyperactivity at different developmental periods. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Fishing for Nature's Hits: Establishment of the Zebrafish as a Model for Screening Antidiabetic Natural Products.

    PubMed

    Tabassum, Nadia; Tai, Hongmei; Jung, Da-Woon; Williams, Darren R

    2015-01-01

    Diabetes mellitus affects millions of people worldwide and significantly impacts their quality of life. Moreover, life threatening diseases, such as myocardial infarction, blindness, and renal disorders, increase the morbidity rate associated with diabetes. Various natural products from medicinal plants have shown potential as antidiabetes agents in cell-based screening systems. However, many of these potential "hits" fail in mammalian tests, due to issues such as poor pharmacokinetics and/or toxic side effects. To address this problem, the zebrafish (Danio rerio) model has been developed as a "bridge" to provide an experimentally convenient animal-based screening system to identify drug candidates that are active in vivo. In this review, we discuss the application of zebrafish to drug screening technologies for diabetes research. Specifically, the discovery of natural product-based antidiabetes compounds using zebrafish will be described. For example, it has recently been demonstrated that antidiabetic natural compounds can be identified in zebrafish using activity guided fractionation of crude plant extracts. Moreover, the development of fluorescent-tagged glucose bioprobes has allowed the screening of natural product-based modulators of glucose homeostasis in zebrafish. We hope that the discussion of these advances will illustrate the value and simplicity of establishing zebrafish-based assays for antidiabetic compounds in natural products-based laboratories.

  8. A Retrospective Study of the Prevalence and Classification of Intestinal Neoplasia in Zebrafish (Danio Rerio)

    PubMed Central

    Paquette, Colleen E.; Buchner, Cari; Tanguay, Robert L.; Guillemin, Karen; Mason, Timothy J.; Peterson, Tracy S.

    2013-01-01

    Abstract For over a decade, spontaneous intestinal neoplasia has been observed in zebrafish (Danio rerio) submitted to the ZIRC (Zebrafish International Resource Center) diagnostic service. In addition, zebrafish displayed preneoplastic intestinal changes including hyperplasia, dysplasia, and enteritis. A total of 195 zebrafish, representing 2% of the total fish submitted to the service, were diagnosed with these lesions. Neoplastic changes were classified either as adenocarcinoma or small cell carcinoma, with a few exceptions (carcinoma not otherwise specified, tubular adenoma, and tubulovillous adenoma). Tumor prevalence appeared similarly distributed between sexes and generally occurred in zebrafish greater than 1 year of age, although neoplastic changes were observed in fish 6 months of age. Eleven lines displayed these preneoplastic and neoplastic changes, including wild-types and mutants. Affected zebrafish originated from 18 facilities, but the majority of fish were from a single zebrafish research facility (hereafter referred to as the primary facility) that has submitted numerous samples to the ZIRC diagnostic service. Zebrafish from the primary facility submitted as normal sentinel fish demonstrate that these lesions are most often subclinical. Fish fed the diet from the primary facility and held at another location did not develop intestinal lesions, indicating that diet is not the etiologic agent. PMID:23544991

  9. Maternal thyroid hormones are essential for neural development in zebrafish.

    PubMed

    Campinho, Marco A; Saraiva, João; Florindo, Claudia; Power, Deborah M

    2014-07-01

    Teleost eggs contain an abundant store of maternal thyroid hormones (THs), and early in zebrafish embryonic development, all the genes necessary for TH signaling are expressed. Nonetheless the function of THs in embryonic development remains elusive. To test the hypothesis that THs are fundamental for zebrafish embryonic development, an monocarboxilic transporter 8 (Mct8) knockdown strategy was deployed to prevent maternal TH uptake. Absence of maternal THs did not affect early specification of the neural epithelia but profoundly modified later dorsal specification of the brain and spinal cord as well as specific neuron differentiation. Maternal THs acted upstream of pax2a, pax7, and pax8 genes but downstream of shha and fgf8a signaling. The lack of inhibitory spinal cord interneurons and increased motoneurons in the mct8 morphants is consistent with their stiff axial body and impaired mobility. The mct8 mutations are associated with X-linked mental retardation in humans, and the cellular and molecular consequences of MCT8 knockdown during embryonic development in zebrafish provides new insight into the potential role of THs in this condition.

  10. Maternal Thyroid Hormones Are Essential for Neural Development in Zebrafish

    PubMed Central

    Saraiva, João; Florindo, Claudia; Power, Deborah M.

    2014-01-01

    Teleost eggs contain an abundant store of maternal thyroid hormones (THs), and early in zebrafish embryonic development, all the genes necessary for TH signaling are expressed. Nonetheless the function of THs in embryonic development remains elusive. To test the hypothesis that THs are fundamental for zebrafish embryonic development, an monocarboxilic transporter 8 (Mct8) knockdown strategy was deployed to prevent maternal TH uptake. Absence of maternal THs did not affect early specification of the neural epithelia but profoundly modified later dorsal specification of the brain and spinal cord as well as specific neuron differentiation. Maternal THs acted upstream of pax2a, pax7, and pax8 genes but downstream of shha and fgf8a signaling. The lack of inhibitory spinal cord interneurons and increased motoneurons in the mct8 morphants is consistent with their stiff axial body and impaired mobility. The mct8 mutations are associated with X-linked mental retardation in humans, and the cellular and molecular consequences of MCT8 knockdown during embryonic development in zebrafish provides new insight into the potential role of THs in this condition. PMID:24877564

  11. Retinoic Acid Signaling Is Essential for Valvulogenesis by Affecting Endocardial Cushions Formation in Zebrafish Embryos.

    PubMed

    Li, Junbo; Yue, Yunyun; Zhao, Qingshun

    2016-02-01

    Retinoic acid (RA) plays important roles in many stages of heart morphogenesis. Zebrafish embryos treated with exogenous RA display defective atrio-ventricular canal (AVC) specification. However, whether endogenous RA signaling takes part in cardiac valve formation remains unknown. Herein, we investigated the role of RA signaling in cardiac valve development by knocking down aldh1a2, the gene encoding an enzyme that is mainly responsible for RA synthesis during early development, in zebrafish embryos. The results showed that partially knocking down aldh1a2 caused defective formation of primitive cardiac valve leaflets at 108 hpf (hour post-fertilization). Inhibiting endogenous RA signaling by 4-diethylaminobenzal-dehyde revealed that 16-26 hpf was a key time window when RA signaling affects the valvulogenesis. The aldh1a2 morphants had defective formation of endocardial cushion (EC) at 76 hpf though they had almost normal hemodynamics and cardiac chamber specification at early development. Examining the expression patterns of AVC marker genes including bmp4, bmp2b, nppa, notch1b, and has2, we found the morphants displayed abnormal development of endocardial AVC but almost normal development of myocardial AVC at 50 hpf. Being consistent with the reduced expression of notch1b in endocardial AVC, the VE-cadherin gene cdh5, the downstream gene of Notch signaling, was ectopically expressed in AVC of aldh1a2 morphants at 50 hpf, and overexpression of cdh5 greatly affected the formation of EC in the embryos at 76 hpf. Taken together, our results suggest that RA signaling plays essential roles in zebrafish cardiac valvulogenesis.

  12. Pax2.1 is required for the development of thyroid follicles in zebrafish.

    PubMed

    Wendl, Thomas; Lun, Klaus; Mione, Marina; Favor, Jack; Brand, Michael; Wilson, Stephen W; Rohr, Klaus B

    2002-08-01

    The thyroid gland is an organ primarily composed of endoderm-derived follicular cells. Although disturbed embryonic development of the thyroid gland leads to congenital hypothyroidism in humans and mammals, the underlying principles of thyroid organogenesis are largely unknown. In this study, we introduce zebrafish as a model to investigate the molecular and genetic mechanisms that control thyroid development. Marker gene expression suggests that the molecular pathways of early thyroid development are essentially conserved between fish and mammals. However during larval stages, we find both conserved and divergent features of development compared with mammals. A major difference is that in fish, we find evidence for hormone production not only in thyroid follicular cells, but also in an anterior non-follicular group of cells. We show that pax2.1 and pax8, members of the zebrafish pax2/5/8 paralogue group, are expressed in the thyroid primordium. Whereas in mice, only Pax8 has a function during thyroid development, analysis of the zebrafish pax2.1 mutant no isthmus (noi(-/-)) demonstrates that pax2.1 has a role comparable with mouse Pax8 in differentiation of the thyroid follicular cells. Early steps of thyroid development are normal in noi(-/-), but later expression of molecular markers is lost and the formation of follicles fails. Interestingly, the anterior non-follicular site of thyroid hormone production is not affected in noi(-/-). Thus, in zebrafish, some remaining thyroid hormone synthesis takes place independent of the pathway leading to thyroid follicle formation. We suggest that the noi(-/-) mutant serves as a new zebrafish model for hypothyroidism.

  13. Combinatorial Wnt control of zebrafish midbrain-hindbrain boundary formation.

    PubMed

    Buckles, Gerri R; Thorpe, Christopher J; Ramel, Marie-Christine; Lekven, Arne C

    2004-05-01

    Wnt signaling is known to be required for the normal development of the vertebrate midbrain and hindbrain, but genetic loss of function analyses in the mouse and zebrafish yield differing results regarding the relative importance of specific Wnt loci. In the zebrafish, Wnt1 and Wnt10b functionally overlap in their control of gene expression in the ventral midbrain-hindbrain boundary (MHB), but they are not required for the formation of the MHB constriction. Whether other wnt loci are involved in zebrafish MHB development is unclear, although the expression of at least two wnts, wnt3a and wnt8b, is maintained in wnt1/wnt10b mutants. In order to address the role of wnt3a in zebrafish, we have isolated a full length cDNA and examined its expression and function via knockdown by morpholino antisense oligonucleotide (MO)-mediated knockdown. The expression pattern of wnt3a appears to be evolutionarily conserved between zebrafish and mouse, and MO knockdown shows that Wnt3a, while not uniquely required for MHB development, is required in the absence of Wnt1 and Wnt10b for the formation of the MHB constriction. In zebrafish embryos lacking Wnt3a, Wnt1 and Wnt10b, the expression of engrailed orthologs, pax2a and fgf8 is not maintained after mid-somitogenesis. In contrast to acerebellar and no isthmus mutants, in which midbrain and hindbrain cells acquire new fates but cell number is not significantly affected until late in embryogenesis, zebrafish embryos lacking Wnt3a, Wnt1 and Wnt10b undergo extensive apoptosis in the midbrain and cerebellum anlagen beginning in mid-somitogenesis, which results in the absence of a significant portion of the midbrain and cerebellum. Thus, the requirement for Wnt signaling in forming the MHB constriction is evolutionarily conserved in vertebrates and it is possible in zebrafish to dissect the relative impact of multiple Wnt loci in midbrain and hindbrain development.

  14. Regulation of expression of transgenes in developing fish.

    PubMed

    Moav, B; Liu, Z; Caldovic, L D; Gross, M L; Faras, A J; Hackett, P B

    1993-05-01

    The transcriptional regulatory elements of the beta-actin gene of carp (Cyprinus carpio) have been examined in zebrafish and goldfish harbouring transgenes. The high sequence conservation of the putative regulatory elements in the beta-actin genes of animals suggested that their function would be conserved, so that transgenic constructs with the same transcriptional control elements would promote similar levels of transgene expression in different species of transgenic animals. To test this assumption, we analysed the temporal expression of a reporter gene under the control of transcriptional control sequences from the carp beta-actin gene in zebrafish (Brachydanio rerio) and goldfish (Carrasius auratus). Our results indicated that, contrary to expectations, combinations of different transcriptional control elements affected the level, duration, and onset of gene expression differently in developing zebrafish and goldfish. The major differences in expression of beta-actin/CAT (chloramphenicol acetyltransferase) constructs in zebrafish and goldfish were: (1) overall expression was almost 100-fold higher in goldfish than in zebrafish embryos, (2) the first intron had an enhancing effect on gene expression in zebrafish but not in goldfish, and (3) the serum-responsive/CArG-containing regulatory element in the proximal promoter was not always required for maximal CAT activity in goldfish, but was required in zebrafish. These results suggest that in the zebrafish, but not in the goldfish, there may be interactions between motifs in the proximal promoter and the first intron which appear to be required for maximal enhancement of transcription.

  15. In vivo physiological recording from the lateral line of juvenile zebrafish

    PubMed Central

    Olt, Jennifer; Allen, Claire E.

    2016-01-01

    Key points Zebrafish provide a unique opportunity to investigate in vivo sensory transduction in mature hair cells.We have developed a method for studying the biophysical properties of mature hair cells from the lateral line of juvenile zebrafish.The method involves application of the anaesthetic benzocaine and intubation to maintain ventilation and oxygenation through the gills.The same approach could be used for in vivo functional studies in other sensory and non‐sensory systems from juvenile and adult zebrafish. Abstract Hair cells are sensory receptors responsible for transducing auditory and vestibular information into electrical signals, which are then transmitted with remarkable precision to afferent neurons. The zebrafish lateral line is emerging as an excellent in vivo model for genetic and physiological analysis of hair cells and neurons. However, research has been limited to larval stages because zebrafish become protected from the time of independent feeding under European law (from 5.2 days post‐fertilization (dpf) at 28.5°C). In larval zebrafish, the functional properties of most of hair cells, as well as those of other excitable cells, are still immature. We have developed an experimental protocol to record electrophysiological properties from hair cells of the lateral line in juvenile zebrafish. We found that the anaesthetic benzocaine at 50 mg l−1 was an effective and safe anaesthetic to use on juvenile zebrafish. Concentrations up to 300 mg l−1 did not affect the electrical properties or synaptic vesicle release of juvenile hair cells, unlike the commonly used anaesthetic MS‐222, which reduces the size of basolateral membrane K+ currents. Additionally, we implemented a method to maintain gill movement, and as such respiration and blood oxygenation, via the intubation of > 21 dpf zebrafish. The combination of benzocaine and intubation provides an experimental platform to investigate the physiology of mature hair cells from live zebrafish. More generally, this method would allow functional studies involving live imaging and electrophysiology from juvenile and adult zebrafish. PMID:27161862

  16. The transcriptional activator ZNF143 is essential for normal development in zebrafish

    PubMed Central

    2012-01-01

    Background ZNF143 is a sequence-specific DNA-binding protein that stimulates transcription of both small RNA genes by RNA polymerase II or III, or protein-coding genes by RNA polymerase II, using separable activating domains. We describe phenotypic effects following knockdown of this protein in developing Danio rerio (zebrafish) embryos by injection of morpholino antisense oligonucleotides that target znf143 mRNA. Results The loss of function phenotype is pleiotropic and includes a broad array of abnormalities including defects in heart, blood, ear and midbrain hindbrain boundary. Defects are rescued by coinjection of synthetic mRNA encoding full-length ZNF143 protein, but not by protein lacking the amino-terminal activation domains. Accordingly, expression of several marker genes is affected following knockdown, including GATA-binding protein 1 (gata1), cardiac myosin light chain 2 (cmlc2) and paired box gene 2a (pax2a). The zebrafish pax2a gene proximal promoter contains two binding sites for ZNF143, and reporter gene transcription driven by this promoter in transfected cells is activated by this protein. Conclusions Normal development of zebrafish embryos requires ZNF143. Furthermore, the pax2a gene is probably one example of many protein-coding gene targets of ZNF143 during zebrafish development. PMID:22268977

  17. The transcriptional activator ZNF143 is essential for normal development in zebrafish.

    PubMed

    Halbig, Kari M; Lekven, Arne C; Kunkel, Gary R

    2012-01-23

    ZNF143 is a sequence-specific DNA-binding protein that stimulates transcription of both small RNA genes by RNA polymerase II or III, or protein-coding genes by RNA polymerase II, using separable activating domains. We describe phenotypic effects following knockdown of this protein in developing Danio rerio (zebrafish) embryos by injection of morpholino antisense oligonucleotides that target znf143 mRNA. The loss of function phenotype is pleiotropic and includes a broad array of abnormalities including defects in heart, blood, ear and midbrain hindbrain boundary. Defects are rescued by coinjection of synthetic mRNA encoding full-length ZNF143 protein, but not by protein lacking the amino-terminal activation domains. Accordingly, expression of several marker genes is affected following knockdown, including GATA-binding protein 1 (gata1), cardiac myosin light chain 2 (cmlc2) and paired box gene 2a (pax2a). The zebrafish pax2a gene proximal promoter contains two binding sites for ZNF143, and reporter gene transcription driven by this promoter in transfected cells is activated by this protein. Normal development of zebrafish embryos requires ZNF143. Furthermore, the pax2a gene is probably one example of many protein-coding gene targets of ZNF143 during zebrafish development.

  18. Acute exposure to tris (2-butoxyethyl) phosphate (TBOEP) affects growth and development of embryo-larval zebrafish.

    PubMed

    Liu, Yiran; Wu, Ding; Xu, Qinglong; Yu, Liqin; Liu, Chunsheng; Wang, Jianghua

    2017-10-01

    Tris (2-butoxyethyl) phosphate (TBOEP), is used as a flame retardant worldwide. It is an additive in materials and can be easily discharged into the surrounding environment. There is evidence linking TBOEP exposure to abnormal development and growth in zebrafish embryos/larvae. Here, using zebrafish embryo as a model, we investigated toxicological effects on developing zebrafish (Danio rerio) caused by TBOEP at concentrations of 0, 20, 200, 1000, 2000μg/L starting from 2h post-fertilization (hpf). Our findings revealed that TBOEP exposure caused developmental toxicity, such as malformation, growth delay and decreased heart rate in zebrafish larvae. Correlation analysis indicated that inhibition of growth was possibly due to down-regulation of expression of genes related to the growth hormone/insulin-like growth factor (GH/IGF) axis. Furthermore, exposure to TBOEP significantly increased thyroxine (T4) and 3,5,3'-triiodothyronine (T3) in whole larvae. In addition, changed expression of genes involved in the hypothalamic-pituitary-thyroid (HPT) axis was observed, indicating that perturbation of HPT axis might be responsible for the developmental damage and growth delay induced by TBOEP. The present study provides a new set of evidence that exposure of embryo-larval zebrafish to TBOEP can cause perturbation of GH/IGF axis and HPT axis, which could result in developmental impairment and growth inhibition. Copyright © 2017. Published by Elsevier B.V.

  19. Disruption of zebrafish cyclin G-associated kinase (GAK) function impairs the expression of Notch-dependent genes during neurogenesis and causes defects in neuronal development

    PubMed Central

    2010-01-01

    Background The J-domain-containing protein auxilin, a critical regulator in clathrin-mediated transport, has been implicated in Drosophila Notch signaling. To ask if this role of auxilin is conserved and whether auxilin has additional roles in development, we have investigated the functions of auxilin orthologs in zebrafish. Results Like mammals, zebrafish has two distinct auxilin-like molecules, auxilin and cyclin G-associated kinase (GAK), differing in their domain structures and expression patterns. Both zebrafish auxilin and GAK can functionally substitute for the Drosophila auxilin, suggesting that they have overlapping molecular functions. Still, they are not completely redundant, as morpholino-mediated knockdown of the ubiquitously expressed GAK alone can increase the specification of neuronal cells, a known Notch-dependent process, and decrease the expression of Her4, a Notch target gene. Furthermore, inhibition of GAK function caused an elevated level of apoptosis in neural tissues, resulting in severe degeneration of neural structures. Conclusion In support of the notion that endocytosis plays important roles in Notch signaling, inhibition of zebrafish GAK function affects embryonic neuronal cell specification and Her4 expression. In addition, our analysis suggests that zebrafish GAK has at least two functions during the development of neural tissues: an early Notch-dependent role in neuronal patterning and a late role in maintaining the survival of neural cells. PMID:20082716

  20. Zebrafish: an animal model for research in veterinary medicine.

    PubMed

    Nowik, N; Podlasz, P; Jakimiuk, A; Kasica, N; Sienkiewicz, W; Kaleczyc, J

    2015-01-01

    The zebrafish (Danio rerio) has become known as an excellent model organism for studies of vertebrate biology, vertebrate genetics, embryonal development, diseases and drug screening. Nevertheless, there is still lack of detailed reports about usage of the zebrafish as a model in veterinary medicine. Comparing to other vertebrates, they can lay hundreds of eggs at weekly intervals, externally fertilized zebrafish embryos are accessible to observation and manipulation at all stages of their development, which makes possible to simplify the research techniques such as fate mapping, fluorescent tracer time-lapse lineage analysis and single cell transplantation. Although zebrafish are only 2.5 cm long, they are easy to maintain. Intraperitoneal and intracerebroventricular injections, blood sampling and measurement of food intake are possible to be carry out in adult zebrafish. Danio rerio is a useful animal model for neurobiology, developmental biology, drug research, virology, microbiology and genetics. A lot of diseases, for which the zebrafish is a perfect model organism, affect aquatic animals. For a part of them, like those caused by Mycobacterium marinum or Pseudoloma neutrophila, Danio rerio is a natural host, but the zebrafish is also susceptible to the most of fish diseases including Itch, Spring viraemia of carp and Infectious spleen and kidney necrosis. The zebrafish is commonly used in research of bacterial virulence. The zebrafish embryo allows for rapid, non-invasive and real time analysis of bacterial infections in a vertebrate host. Plenty of common pathogens can be examined using zebrafish model: Streptococcus iniae, Vibrio anguillarum or Listeria monocytogenes. The steps are taken to use the zebrafish also in fungal research, especially that dealing with Candida albicans and Cryptococcus neoformans. Although, the zebrafish is used commonly as an animal model to study diseases caused by external agents, it is also useful in studies of metabolic disorders including fatty liver disease and diabetes. The zebrafish is also a valuable tool as a model in behavioral studies connected with feeding, predator evasion, habituation and memory or lateralized control of behavior. The aim of the present article is to familiarize the reader with the possibilities of Danio rerio as an experimental model for veterinary medicine.

  1. Hedgehog signaling is required at multiple stages of zebrafish tooth development.

    PubMed

    Jackman, William R; Yoo, James J; Stock, David W

    2010-11-30

    The accessibility of the developing zebrafish pharyngeal dentition makes it an advantageous system in which to study many aspects of tooth development from early initiation to late morphogenesis. In mammals, hedgehog signaling is known to be essential for multiple stages of odontogenesis; however, potential roles for the pathway during initiation of tooth development or in later morphogenesis are incompletely understood. We have identified mRNA expression of the hedgehog ligands shha and the receptors ptc1 and ptc2 during zebrafish pharyngeal tooth development. We looked for, but did not detect, tooth germ expression of the other known zebrafish hedgehog ligands shhb, dhh, ihha, or ihhb, suggesting that as in mammals, only Shh participates in zebrafish tooth development. Supporting this idea, we found that morphological and gene expression evidence of tooth initiation is eliminated in shha mutant embryos, and that morpholino antisense oligonucleotide knockdown of shha, but not shhb, function prevents mature tooth formation. Hedgehog pathway inhibition with the antagonist compound cyclopamine affected tooth formation at each stage in which we applied it: arresting development at early stages and disrupting mature tooth morphology when applied later. These results suggest that hedgehog signaling is required continuously during odontogenesis. In contrast, over-expression of shha had no effect on the developing dentition, possibly because shha is normally extensively expressed in the zebrafish pharyngeal region. We have identified previously unknown requirements for hedgehog signaling for early tooth initiation and later morphogenesis. The similarity of our results with data from mouse and other vertebrates suggests that despite gene duplication and changes in the location of where teeth form, the roles of hedgehog signaling in tooth development have been largely conserved during evolution.

  2. Teratogenic, bioenergetic, and behavioral effects of exposure to total particulate matter on early development of zebrafish (Danio rerio) are not mimicked by nicotine

    PubMed Central

    Massarsky, Andrey; Jayasundara, Nishad; Bailey, Jordan M.; Oliveri, Anthony N.; Levin, Edward D.; Prasad, G.L.; Di Giulio, Richard T.

    2016-01-01

    Cigarette smoke has been associated with a number of pathologies; however, the mechanisms leading to developmental effects are yet to be fully understood. The zebrafish embryo is regarded as a ‘bridge model’; however, not many studies examined its applicability to cigarette smoke toxicity. This study examined the effects of total particulate matter (TPM) from 3R4F reference cigarettes on the early development of zebrafish (Danio rerio). Zebrafish embryos were exposed to two concentrations of TPM (0.4 and 1.4 μg/mL equi-nicotine units) or nicotine at equivalent doses. The exposures began at 2 h post-fertilization (hpf) and lasted until 96 hpf. Several physiological parameters were assessed during or after the exposure. We show that TPM increased mortality, delayed hatching, and increased the incidence of deformities in zebrafish. TPM exposure also increased the incidence of hemorrhage and disrupted the angiogenesis of the major vessels in the brain. Moreover, TPM exposure reduced the larval body length, decreased the heart rate, and reduced the metabolic rate. Biomarkers of xenobiotic metabolism and oxidative stress were also affected. TPM-exposed zebrafish also differed behaviorally: at 24 hpf the embryos had a higher frequency of spontaneous contractions and at 144 hpf the larvae displayed swimming hyperactivity. This study demonstrates that TPM disrupts several aspects of early development in zebrafish. The effects reported for TPM were not attributable to nicotine, since embryos treated with nicotine alone did not differ significantly from the control group. Collectively, our work illustrates the utility of zebrafish as an alternative model to evaluate the toxic effects of cigarette smoke constituents. PMID:26391568

  3. Teratogenic, bioenergetic, and behavioral effects of exposure to total particulate matter on early development of zebrafish (Danio rerio) are not mimicked by nicotine.

    PubMed

    Massarsky, Andrey; Jayasundara, Nishad; Bailey, Jordan M; Oliveri, Anthony N; Levin, Edward D; Prasad, G L; Di Giulio, Richard T

    2015-01-01

    Cigarette smoke has been associated with a number of pathologies; however, the mechanisms leading to developmental effects are yet to be fully understood. The zebrafish embryo is regarded as a 'bridge model'; however, not many studies examined its applicability to cigarette smoke toxicity. This study examined the effects of total particulate matter (TPM) from 3R4F reference cigarettes on the early development of zebrafish (Danio rerio). Zebrafish embryos were exposed to two concentrations of TPM (0.4 and 1.4 μg/mL equi-nicotine units) or nicotine at equivalent doses. The exposures began at 2h post-fertilization (hpf) and lasted until 96 hpf. Several physiological parameters were assessed during or after the exposure. We show that TPM increased mortality, delayed hatching, and increased the incidence of deformities in zebrafish. TPM exposure also increased the incidence of hemorrhage and disrupted the angiogenesis of the major vessels in the brain. Moreover, TPM exposure reduced the larval body length, decreased the heart rate, and reduced the metabolic rate. Biomarkers of xenobiotic metabolism and oxidative stress were also affected. TPM-exposed zebrafish also differed behaviorally: at 24 hpf the embryos had a higher frequency of spontaneous contractions and at 144 hpf the larvae displayed swimming hyperactivity. This study demonstrates that TPM disrupts several aspects of early development in zebrafish. The effects reported for TPM were not attributable to nicotine, since embryos treated with nicotine alone did not differ significantly from the control group. Collectively, our work illustrates the utility of zebrafish as an alternative model to evaluate the toxic effects of cigarette smoke constituents. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Early exposure to caffeine affects gene expression of adenosine receptors, DARPP-32 and BDNF without affecting sensibility and morphology of developing zebrafish (Danio rerio).

    PubMed

    Capiotti, Katiucia Marques; Menezes, Fabiano Peres; Nazario, Luiza Reali; Pohlmann, Julhana Bianchini; de Oliveira, Giovanna M T; Fazenda, Lidiane; Bogo, Maurício Reis; Bonan, Carla Denise; Da Silva, Rosane Souza

    2011-01-01

    Adenosine receptors are the most important biochemical targets of caffeine, a common trimethylxanthine found in food and beverages. Adenosine plays modulatory action during the development through adenosine receptors and their intracellular pathways activation. In this study, we aimed to evaluate if caffeine gave to zebrafish in the very first steps of development is able to affect its direct targets, through the adenosine receptors mRNA expression evaluation, and latter indirect targets, through evaluation of the pattern of dopamine and cAMP-regulated phosphoprotein and brain-derived neurotrophic factor (BDNF) mRNA expression. Here, we demonstrate that zebrafish express adenosine receptor subtypes (A1, A2A1, A2A2 and A2B) since 24h post-fertilization (hpf) and that caffeine exposure is able to affect the expression of these receptors. Caffeine exposure from 1 hpf is able to increase A1 expression at 72-96 hpf and A2A1 expression at 72 hpf. No alterations occurred in A2A2 and A2B expression after caffeine treatment. DARPP-32, a phosphoprotein involved in adenosine intracellular pathway is also expressed since 24 hpf and early exposure to caffeine increased DARPP-32 expression at 168 hpf. We also evaluate the expression of BDNF as one of the targets of adenosine intracellular pathway activation. BDNF was also expressed since 24 hpf and caffeine treatment increased its expression at 48 and 72 hpf. No morphological alterations induced by caffeine treatment were registered by the check of general body features and total body length. Assessment of tactile sensibility also demonstrated no alterations by caffeine treatment. Altogether, these results suggest that caffeine is able to affect expression of its cellular targets since early phases of development in zebrafish without affect visible features. The up-regulation of direct and indirect targets of caffeine presents as a compensatory mechanism of maintenance of adenosinergic modulation during the developmental phase. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Increased cell proliferation and neural activity by physostigmine in the telencephalon of adult zebrafish.

    PubMed

    Lee, Yunkyoung; Lee, Bongkyu; Jeong, Sumin; Park, Ji-Won; Han, Inn-Oc; Lee, Chang-Joong

    2016-08-26

    Physostigmine, an acetylcholinesterase inhibitor, is known to affect the brain function in various aspects. This study was conducted to test whether physostigmine affects cell proliferation in the telencephalon of zebrafish. BrdU-labeled cells was prominently observed in the ventral zone of the ventral telencephalon of zebrafish. The increased number of BrdU- and proliferating cell nuclear antigen-labeled cells were shown in zebrafish treated with 200μM physostigmine, which was inhibited by pretreatment with 200μM scopolamine. iNOS mRNA expression was increased in the brain of zebrafish treated with 200μM physostigmine. Consistently, aminoguanidine, an iNOS inhibitor, attenuated the increase in the number of BrdU-labeled cells by physostigmine treatment. Zebrafish also showed seizure-like locomotor activity characterized by a rapid and abrupt movement during a 30min treatment with 200μM physostigmine. Neural activity in response to an electrical stimulus was increased in the isolated telencephalon of zebrafish continuously perfused with 200μM physostigmine. None of the number of BrdU-labeled cells, neural activity, or locomotor activity was affected by treatment with 20μM physostigmine. These results suggest that 200μM physostigmine increased neural activity and induced cell proliferation via nitric oxide production in zebrafish. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Zebrafish models flex their muscles to shed light on muscular dystrophies.

    PubMed

    Berger, Joachim; Currie, Peter D

    2012-11-01

    Muscular dystrophies are a group of genetic disorders that specifically affect skeletal muscle and are characterized by progressive muscle degeneration and weakening. To develop therapies and treatments for these diseases, a better understanding of the molecular basis of muscular dystrophies is required. Thus, identification of causative genes mutated in specific disorders and the study of relevant animal models are imperative. Zebrafish genetic models of human muscle disorders often closely resemble disease pathogenesis, and the optical clarity of zebrafish embryos and larvae enables visualization of dynamic molecular processes in vivo. As an adjunct tool, morpholino studies provide insight into the molecular function of genes and allow rapid assessment of candidate genes for human muscular dystrophies. This unique set of attributes makes the zebrafish model system particularly valuable for the study of muscle diseases. This review discusses how recent research using zebrafish has shed light on the pathological basis of muscular dystrophies, with particular focus on the muscle cell membrane and the linkage between the myofibre cytoskeleton and the extracellular matrix.

  7. Zebrafish models of human eye and inner ear diseases.

    PubMed

    Blanco-Sánchez, B; Clément, A; Phillips, J B; Westerfield, M

    2017-01-01

    Eye and inner ear diseases are the most common sensory impairments that greatly impact quality of life. Zebrafish have been intensively employed to understand the fundamental mechanisms underlying eye and inner ear development. The zebrafish visual and vestibulo-acoustic systems are very similar to these in humans, and although not yet mature, they are functional by 5days post-fertilization (dpf). In this chapter, we show how the zebrafish has significantly contributed to the field of biomedical research and how researchers, by establishing disease models and meticulously characterizing their phenotypes, have taken the first steps toward therapies. We review here models for (1) eye diseases, (2) ear diseases, and (3) syndromes affecting eye and/or ear. The use of new genome editing technologies and high-throughput screening systems should increase considerably the speed at which knowledge from zebrafish disease models is acquired, opening avenues for better diagnostics, treatments, and therapies. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Effect of acetochlor on transcription of genes associated with oxidative stress, apoptosis, immunotoxicity and endocrine disruption in the early life stage of zebrafish.

    PubMed

    Jiang, Jinhua; Wu, Shenggan; Liu, Xinju; Wang, Yanhua; An, Xuehua; Cai, Leiming; Zhao, Xueping

    2015-09-01

    The study presented here aimed to characterize the effects of acetochlor on expression of genes related to endocrine disruption, oxidative stress, apoptosis and immune system in zebrafish during its embryo development. Different trends in gene expression were observed after exposure to 50, 100, 200μg/L acetochlor for 96h. Results demonstrated that the transcription patterns of many key genes involved in the hypothalamic-pituitary-gonadal/thyroid (HPG/HPT) axis (e.g., VTG1, ERβ1, CYP19a and TRα), cell apoptosis pathway (e.g., Bcl2, Bax, P53 and Cas8), as well as innate immunity (e.g., CXCL-C1C, IL-1β and TNFα) were affected in newly hatched zebrafish after exposure to acetochlor. In addition, the up-regulation of CAT, GPX, GPX1a, Cu/Zn-SOD and Ogg1 suggested acetochlor might trigger oxidative stress in zebrafish. These finding indicated that acetochlor could simultaneously induce multiple responses during zebrafish embryonic development, and bidirectional interactions among oxidative stress, apoptosis pathway, immune and endocrine systems might be present. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Developmental exposure to methimazole increases anxiety behavior in zebrafish.

    PubMed

    Reider, Masha; Connaughton, Victoria P

    2015-10-01

    The role of thyroid hormones in vertebrate development has been well documented for several decades. As hypothyroidism during critical periods of development can cause defects to the development of every major organ system, including brain, eye, and general morphology, we hypothesized that hypothyroidism would affect specific behaviors. To assess this, we treated zebrafish with the hypothyroid drug methimazole (MMI) and examined changes in anxiety, shoaling, vision, and locomotion. Following low-dose MMI exposure for the first 10 days of life, a time of rapid and significant development, larvae were removed from treatment and allowed to develop until 1 month of age. Comparisons between treated and controls took place between 10 and 30 days postfertilization to examine times both during and after treatment. Using the novel tank and startle response tests, we found that anxiety behaviors are significantly increased following MMI treatment. These effects persisted for several days following removal from treatment and indicate a prolonged effect of early hypothyroidism. However, permanent MMI effects on anxiety were not observed, as anxiety behaviors of early treated zebrafish recovered to control levels following 10 days out of treatment. In contrast to the strong link between MMI treatment and anxiety, shoaling and visual behaviors were not significantly affected within our experimental parameters. This indicates that disruption of thyroid system functioning early in life can differentially affect behavior by specifically altering anxiety responses without producing indiscriminate changes to overall behavioral development. (c) 2015 APA, all rights reserved).

  10. Motoneuron axon pathfinding errors in zebrafish: Differential effects related to concentration and timing of nicotine exposure

    PubMed Central

    Menelaou, Evdokia; Paul, Latoya T.; Perera, Surangi N.; Svoboda, Kurt R.

    2015-01-01

    Nicotine exposure during embryonic stages of development can affect many neurodevelopmental processes. In the developing zebrafish, exposure to nicotine was reported to cause axonal pathfinding errors in the later born secondary motoneurons (SMN). These alterations in SMN axon morphology coincided with muscle degeneration at high nicotine concentrations (15–30µM). Previous work showed that the paralytic mutant zebrafish known as sofa potato, exhibited nicotine-induced effects onto SMN axons at these high concentrations but in the absence of any muscle deficits, indicating that pathfinding errors could occur independent of muscle effects. In this study, we used varying concentrations of nicotine at different developmental windows of exposure to specifically isolate its effects onto subpopulations of motoneuron axons. We found that nicotine exposure can affect SMN axon morphology in a dose-dependent manner. At low concentrations of nicotine, SMN axons exhibited pathfinding errors, in the absence of any nicotine-induced muscle abnormalities. Moreover, the nicotine exposure paradigms used affected the 3 subpopulations of SMN axons differently, but the dorsal projecting SMN axons were primarily affected. We then identified morphologically distinct pathfinding errors that best described the nicotine-induced effects on dorsal projecting SMN axons. To test whether SMN pathfinding was potentially influenced by alterations in the early born primary motoneuron (PMN), we performed dual labeling studies, where both PMN and SMN axons were simultaneously labeled with antibodies. We show that only a subset of the SMN axon pathfinding errors coincided with abnormal PMN axonal targeting in nicotine-exposed zebrafish. We conclude that nicotine exposure can exert differential effects depending on the levels of nicotine and developmental exposure window. PMID:25668718

  11. Model of voluntary ethanol intake in zebrafish: Effect on behavior and hypothalamic orexigenic peptides

    PubMed Central

    Sterling, M.E.; Karatayev, O.; Chang, G.-Q.; Algava, D.B.; Leibowitz, S.F

    2014-01-01

    Recent studies in zebrafish have shown that exposure to ethanol in tank water affects various behaviors, including locomotion, anxiety and aggression, and produces changes in brain neurotransmitters, such as serotonin and dopamine. Building on these investigations, the present study had two goals: first, to develop a method for inducing voluntary ethanol intake in individual zebrafish, which can be used as a model in future studies to examine how this behavior is affected by various manipulations, and second, to characterize the effects of this ethanol intake on different behaviors and the expression of hypothalamic orexigenic peptides, galanin (GAL) and orexin (OX), which are known in rodents to stimulate consumption of ethanol and alter behaviors associated with alcohol abuse. Thus, we first developed a new model of voluntary intake of ethanol in fish by presenting this ethanol mixed with gelatin, which they readily consume. Using this model, we found that individual zebrafish can be trained in a short period of time to consume stable levels of 10% or 20% ethanol (v/v) mixed with gelatin and that their intake of this ethanol-gelatin mixture leads to pharmacologically-relevant blood ethanol concentrations which are strongly, positively correlated with the amount ingested. Intake of this ethanol-gelatin mixture increased locomotion, reduced anxiety, and stimulated aggressive behavior, while increasing expression of GAL and OX in specific hypothalamic areas. These findings, confirming results in rats, provide a method in zebrafish for investigating with forward genetics and pharmacological techniques the role of different brain mechanisms in controlling ethanol intake. PMID:25257106

  12. In vivo physiological recording from the lateral line of juvenile zebrafish.

    PubMed

    Olt, Jennifer; Allen, Claire E; Marcotti, Walter

    2016-10-01

    Zebrafish provide a unique opportunity to investigate in vivo sensory transduction in mature hair cells. We have developed a method for studying the biophysical properties of mature hair cells from the lateral line of juvenile zebrafish. The method involves application of the anaesthetic benzocaine and intubation to maintain ventilation and oxygenation through the gills. The same approach could be used for in vivo functional studies in other sensory and non-sensory systems from juvenile and adult zebrafish. Hair cells are sensory receptors responsible for transducing auditory and vestibular information into electrical signals, which are then transmitted with remarkable precision to afferent neurons. The zebrafish lateral line is emerging as an excellent in vivo model for genetic and physiological analysis of hair cells and neurons. However, research has been limited to larval stages because zebrafish become protected from the time of independent feeding under European law (from 5.2 days post-fertilization (dpf) at 28.5°C). In larval zebrafish, the functional properties of most of hair cells, as well as those of other excitable cells, are still immature. We have developed an experimental protocol to record electrophysiological properties from hair cells of the lateral line in juvenile zebrafish. We found that the anaesthetic benzocaine at 50 mg l(-1) was an effective and safe anaesthetic to use on juvenile zebrafish. Concentrations up to 300 mg l(-1) did not affect the electrical properties or synaptic vesicle release of juvenile hair cells, unlike the commonly used anaesthetic MS-222, which reduces the size of basolateral membrane K(+) currents. Additionally, we implemented a method to maintain gill movement, and as such respiration and blood oxygenation, via the intubation of > 21 dpf zebrafish. The combination of benzocaine and intubation provides an experimental platform to investigate the physiology of mature hair cells from live zebrafish. More generally, this method would allow functional studies involving live imaging and electrophysiology from juvenile and adult zebrafish. © 2016 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.

  13. The zebrafish as a model system to study cardiovascular development.

    PubMed

    Stainier, D Y; Fishman, M C

    1994-01-01

    The zebrafish, Brachydanio rerio, is rapidly becoming a system of choice for vertebrate developmental biologists. It presents unique embryological attributes and is amenable to saturation style mutagenesis, a powerful approach that, in invertebrates, has already led to the identification of a large number of key developmental genes. Since fertilization is external, the zebrafish embryo develops in the dish and is thus accessible for continued observation and manipulation at all stages of development. Furthermore, because the embryo is transparent, the developing heart and vessels can be resolved at the single-cell level. A large number of mutations that affect the development of cardiovascular form and function have recently been isolated from large-scale genetic screens for zygotic embryonic lethals. Our further understanding of the development of the cardiovascular system is important not only because of the high incidence, and familial inheritance, of congenital abnormalities, but also because it should lead to novel, differentiation-based strategies for the analysis and therapy of the diseased state. Copyright © 1994. Published by Elsevier Inc.

  14. A genetic screen for vascular mutants in zebrafish reveals dynamic roles for Vegf/Plcg1 signaling during artery development.

    PubMed

    Covassin, L D; Siekmann, A F; Kacergis, M C; Laver, E; Moore, J C; Villefranc, J A; Weinstein, B M; Lawson, N D

    2009-05-15

    In this work we describe a forward genetic approach to identify mutations that affect blood vessel development in the zebrafish. By applying a haploid screening strategy in a transgenic background that allows direct visualization of blood vessels, it was possible to identify several classes of mutant vascular phenotypes. Subsequent characterization of mutant lines revealed that defects in Vascular endothelial growth factor (Vegf) signaling specifically affected artery development. Comparison of phenotypes associated with different mutations within a functional zebrafish Vegf receptor-2 ortholog (referred to as kdr-like, kdrl) revealed surprisingly varied effects on vascular development. In parallel, we identified an allelic series of mutations in phospholipase c gamma 1 (plcg1). Together with in vivo structure-function analysis, our results suggest a requirement for Plcg1 catalytic activity downstream of receptor tyrosine kinases. We further find that embryos lacking both maternal and zygotic plcg1 display more severe defects in artery differentiation but are otherwise similar to zygotic mutants. Finally, we demonstrate through mosaic analysis that plcg1 functions autonomously in endothelial cells. Together our genetic analyses suggest that Vegf/Plcg1 signaling acts at multiple time points and in different signaling contexts to mediate distinct aspects of artery development.

  15. A genetic screen for vascular mutants in zebrafish reveals dynamic roles for Vegf/Plcg1 signaling during artery development

    PubMed Central

    Covassin, L. D.; Siekmann, A. F.; Kacergis, M. C.; Laver, E.; Moore, J. C.; Villefranc, J. A.; Weinstein, B. M.; Lawson, N. D.

    2009-01-01

    In this work we describe a forward genetic approach to identify mutations that affect blood vessel development in the zebrafish. By applying a haploid screening strategy in a transgenic background that allows direct visualization of blood vessels, it was possible to identify several classes of mutant vascular phenotypes. Subsequent characterization of mutant lines revealed that defects in Vascular endothelial growth factor (Vegf) signaling specifically affected artery development. Comparison of phenotypes associated with different mutations within a functional zebrafish Vegf receptor-2 ortholog (referred to as kdr-like, kdrl) revealed surprisingly varied effects on vascular development. In parallel, we identified an allelic series of mutations in phospholipase c gamma 1 (plcg1). Together with in vivo structure-function analysis, our results suggest a requirement for Plcg1 catalytic activity downstream of receptor tyrosine kinases. We further find that embryos lacking both maternal and zygotic plcg1 display more severe defects in artery differentiation but are otherwise similar to zygotic mutants. Finally, we demonstrate through mosaic analysis that plcg1 functions autonomously in endothelial cells. Together our genetic analyses suggest that Vegf/Plcg1 signaling acts at multiple time points and in different signaling contexts to mediate distinct aspects of artery development. PMID:19269286

  16. Integrated in silico and in vivo approaches to investigate effects of BDE-99 mediated by the nuclear receptors on developing zebrafish.

    PubMed

    Zhang, Li; Jin, Yaru; Han, Zhihua; Liu, Hongling; Shi, Laihao; Hua, Xiaoxue; Doering, Jon A; Tang, Song; Giesy, John P; Yu, Hongxia

    2018-03-01

    One of the most abundant polybrominated diphenyl ethers (PBDEs) is 2,2',4,4',5-pentabromodiphenyl ether (BDE-99), which persists and potentially bioaccumulates in aquatic wildlife. Previous studies in mammals have shown that BDE-99 affects development and disrupts certain endocrine functions through signaling pathways mediated by nuclear receptors. However, fewer studies have investigated the potential of BDE-99 to interact with nuclear receptors in aquatic vertebrates such as fish. In the present study, interactions between BDE-99 and nuclear receptors were investigated by in silico and in vivo approaches. This PBDE was able to dock into the ligand-binding domain of zebrafish aryl hydrocarbon receptor 2 (AhR2) and pregnane X receptor (PXR). It had a significant effect on the transcriptional profiles of genes associated with AhR or PXR. Based on the developed cytoscape of all zebrafish genes, it was also inferred that AhR and PXR could interact via cross-talk. In addition, both the in silico and in vivo approaches found that BDE-99 affected peroxisome proliferator-activated receptor alpha (PPARα), glucocorticoid receptor, and thyroid receptor. Collectively, our results demonstrate for the first time detailed in silico evidence that BDE-99 can bind to and interact with zebrafish AhR and PXR. These findings can be used to elaborate the molecular mechanism of BDE-99 and guide more objective environmental risk assessments. Environ Toxicol Chem 2018;37:780-787. © 2017 SETAC. © 2017 SETAC.

  17. Malformation of certain brain blood vessels caused by TCDD activation of Ahr2/Arnt1 signaling in developing zebrafish.

    PubMed

    Teraoka, Hiroki; Ogawa, Akira; Kubota, Akira; Stegeman, John J; Peterson, Richard E; Hiraga, Takeo

    2010-08-15

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) causes various signs of toxicity in early life stages of vertebrates through activation of the aryl hydrocarbon receptor (AHR). The AHR also plays important roles in normal development in mice, and AHR(-/-) mice show abnormal development of vascular structures in various blood vessels. Our previous studies revealed that Ahr type 2 (Ahr2) activation by TCDD and beta-naphthoflavone (BNF) caused a significant decrease in blood flow in the dorsal midbrain of zebrafish embryos. Here we report effects of TCDD exposure on the morphology of some blood vessels in the head of developing zebrafish. TCDD caused concentration-dependent anatomical rearrangements in the shape of the prosencephalic artery in zebrafish larvae. In contrast, no major vascular defects were recognized in the trunk and tail regions following exposure to TCDD at least at the concentrations used. Essentially, the same observations were also confirmed in BNF-exposed larvae. Knock-down of either Ahr2 or Ahr nuclear translocator type 1 (Arnt1) by morpholino oligonucleotides (MOs) protected larvae against abnormal shape of the prosencephalic artery caused by TCDD and BNF. On the other hand, knock-down of Ahr2 or Arnt1 in vehicle-exposed zebrafish larvae had no clear effect on morphology of the prosencephalic artery or trunk vessels. Ascorbic acid, an antioxidant, protected against the TCDD-induced decrease in blood flow through the prosencephalic artery, but not the abnormal morphological changes in the shape of this artery. These results indicate that activation of Ahr2/Arnt1 pathway by TCDD and BNF affects the shape of certain blood vessels in the brain of developing zebrafish. (c) 2010 Elsevier B.V. All rights reserved.

  18. Lactobacillus rhamnosus Accelerates Zebrafish Backbone Calcification and Gonadal Differentiation through Effects on the GnRH and IGF Systems

    PubMed Central

    Avella, Matteo A.; Place, Allen; Du, Shao-Jun; Williams, Ernest; Silvi, Stefania; Zohar, Yonathan; Carnevali, Oliana

    2012-01-01

    Endogenous microbiota play essential roles in the host’s immune system, physiology, reproduction and nutrient metabolism. We hypothesized that a continuous administration of an exogenous probiotic might also influence the host’s development. Thus, we treated zebrafish from birth to sexual maturation (2-months treatment) with Lactobacillus rhamnosus, a probiotic species intended for human use. We monitored for the presence of L. rhamnosus during the entire treatment. Zebrafish at 6 days post fertilization (dpf) exhibited elevated gene expression levels for Insulin-like growth factors -I and -II, Peroxisome proliferator activated receptors -α and -β, VDR-α and RAR-γ when compared to untreated-10 days old zebrafish. Using a gonadotropin-releasing hormone 3 GFP transgenic zebrafish (GnRH3-GFP), higher GnRH3 expression was found at 6, 8 and 10 dpf upon L. rhamnosus treatment. The same larvae exhibited earlier backbone calcification and gonad maturation. Noteworthy in the gonad development was the presence of first testes differentiation at 3 weeks post fertilization in the treated zebrafish population -which normally occurs at 8 weeks- and a dramatic sex ratio modulation (93% females, 7% males in control vs. 55% females, 45% males in the treated group). We infer that administration of L. rhamnosus stimulated the IGF system, leading to a faster backbone calcification. Moreover we hypothesize a role for administration of L. rhamnosus on GnRH3 modulation during early larval development, which in turn affects gonadal development and sex differentiation. These findings suggest a significant role of the microbiota composition on the host organism development profile and open new perspectives in the study of probiotics usage and application. PMID:23029107

  19. Abnormal cerebellar development and ataxia in CARP VIII morphant zebrafish.

    PubMed

    Aspatwar, Ashok; Tolvanen, Martti E E; Jokitalo, Eija; Parikka, Mataleena; Ortutay, Csaba; Harjula, Sanna-Kaisa E; Rämet, Mika; Vihinen, Mauno; Parkkila, Seppo

    2013-02-01

    Congenital ataxia and mental retardation are mainly caused by variations in the genes that affect brain development. Recent reports have shown that mutations in the CA8 gene are associated with mental retardation and ataxia in humans and ataxia in mice. The gene product, carbonic anhydrase-related protein VIII (CARP VIII), is predominantly present in cerebellar Purkinje cells, where it interacts with the inositol 1,4,5-trisphosphate receptor type 1, a calcium channel. In this study, we investigated the effects of the loss of function of CARP VIII during embryonic development in zebrafish using antisense morpholino oligonucleotides against the CA8 gene. Knockdown of CA8 in zebrafish larvae resulted in a curved body axis, pericardial edema and abnormal movement patterns. Histologic examination revealed gross morphologic defects in the cerebellar region and in the muscle. Electron microscopy studies showed increased neuronal cell death in developing larvae injected with CA8 antisense morpholinos. These data suggest a pivotal role for CARP VIII during embryonic development. Furthermore, suppression of CA8 expression leads to defects in motor and coordination functions, mimicking the ataxic human phenotype. This work reveals an evolutionarily conserved function of CARP VIII in brain development and introduces a novel zebrafish model in which to investigate the mechanisms of CARP VIII-related ataxia and mental retardation in humans.

  20. Genetic Disruption of 21-Hydroxylase in Zebrafish Causes Interrenal Hyperplasia.

    PubMed

    Eachus, Helen; Zaucker, Andreas; Oakes, James A; Griffin, Aliesha; Weger, Meltem; Güran, Tülay; Taylor, Angela; Harris, Abigail; Greenfield, Andy; Quanson, Jonathan L; Storbeck, Karl-Heinz; Cunliffe, Vincent T; Müller, Ferenc; Krone, Nils

    2017-12-01

    Congenital adrenal hyperplasia is a group of common inherited disorders leading to glucocorticoid deficiency. Most cases are caused by 21-hydroxylase deficiency (21OHD). The systemic consequences of imbalanced steroid hormone biosynthesis due to severe 21OHD remains poorly understood. Therefore, we developed a zebrafish model for 21OHD, which focuses on the impairment of glucocorticoid biosynthesis. A single 21-hydroxylase gene (cyp21a2) is annotated in the zebrafish genome based on sequence homology. Our in silico analysis of the 21-hydroxylase (Cyp21a2) protein sequence suggests a sufficient degree of similarity for the usage of zebrafish cyp21a2 to model aspects of human 21OHD in vivo. We determined the spatiotemporal expression patterns of cyp21a2 by whole-mount in situ hybridization and reverse transcription polymerase chain reaction throughout early development. Early cyp21a2 expression is restricted to the interrenal gland (zebrafish adrenal counterpart) and the brain. To further explore the in vivo consequences of 21OHD we created several cyp21a2 null-allele zebrafish lines by using a transcription activator-like effector nuclease genomic engineering strategy. Homozygous mutant zebrafish larvae showed an upregulation of the hypothalamic-pituitary-interrenal (HPI) axis and interrenal hyperplasia. Furthermore, Cyp21a2-deficient larvae had a typical steroid profile, with reduced concentrations of cortisol and increased concentrations of 17-hydroxyprogesterone and 21-deoxycortisol. Affected larvae showed an upregulation of the HPI axis and interrenal hyperplasia. Downregulation of the glucocorticoid-responsive genes pck1 and fkbp5 indicated systemic glucocorticoid deficiency. Our work demonstrates the crucial role of Cyp21a2 in glucocorticoid biosynthesis in zebrafish larvae and establishes an in vivo model allowing studies of systemic consequences of altered steroid hormone synthesis.

  1. The zebrafish world of colors and shapes: preference and discrimination.

    PubMed

    Oliveira, Jessica; Silveira, Mayara; Chacon, Diana; Luchiari, Ana

    2015-04-01

    Natural environment imposes many challenges to animals, which have to use cognitive abilities to cope with and exploit it to enhance their fitness. Since zebrafish is a well-established model for cognitive studies and high-throughput screening for drugs and diseases that affect cognition, we tested their ability for ambient color preference and 3D objects discrimination to establish a protocol for memory evaluation. For the color preference test, zebrafish were observed in a multiple-chamber tank with different environmental color options. Zebrafish showed preference for blue and green, and avoided yellow and red. For the 3D objects discrimination, zebrafish were allowed to explore two equal objects and then observed in a one-trial test in which a new color, size, or shape of the object was presented. Zebrafish showed discrimination for color, shape, and color+shape combined, but not size. These results imply that zebrafish seem to use some categorical system to discriminate items, and distracters affect their ability for discrimination. The type of variables available (color and shape) may favor zebrafish objects perception and facilitate discrimination processing. We suggest that this easy and simple memory test could serve as a useful screening tool for cognitive dysfunction and neurotoxicological studies.

  2. Ethanol affects the development of sensory hair cells in larval zebrafish (Danio rerio).

    PubMed

    Uribe, Phillip M; Asuncion, James D; Matsui, Jonathan I

    2013-01-01

    Children born to mothers with substantial alcohol consumption during pregnancy can present a number of morphological, cognitive, and sensory abnormalities, including hearing deficits, collectively known as fetal alcohol syndrome (FAS). The goal of this study was to determine if the zebrafish lateral line could be used to study sensory hair cell abnormalities caused by exposure to ethanol during embryogenesis. Some lateral line sensory hair cells are present at 2 days post-fertilization (dpf) and are functional by 5 dpf. Zebrafish embryos were raised in fish water supplemented with varying concentrations of ethanol (0.75%-1.75% by volume) from 2 dpf through 5 dpf. Ethanol treatment during development resulted in many physical abnormalities characteristic of FAS in humans. Also, the number of sensory hair cells decreased as the concentration of ethanol increased in a dose-dependent manner. The dye FM 1-43FX was used to detect the presence of functional mechanotransduction channels. The percentage of FM 1-43-labeled hair cells decreased as the concentration of ethanol increased. Methanol treatment did not affect the development of hair cells. The cell cycle markers proliferating cell nuclear antigen (PCNA) and bromodeoxyuridine (BrdU) demonstrated that ethanol reduced the number of sensory hair cells, as a consequence of decreased cellular proliferation. There was also a significant increase in the rate of apoptosis, as determined by TUNEL-labeling, in neuromasts following ethanol treatment during larval development. Therefore, zebrafish are a useful animal model to study the effects of hair cell developmental disorders associated with FAS.

  3. Developmental sub-chronic exposure to chlorpyrifos reduces anxiety-related behavior in zebrafish larvae

    PubMed Central

    Richendrfer, Holly; Pelkowski, Sean D.; Colwill, Ruth M.; Créton, Robbert

    2013-01-01

    Neurobehavioral disorders such as anxiety, autism, and attention deficit hyperactivity disorders are typically influenced by genetic and environmental factors. Although several genetic risk factors have been identified in recent years, little is known about the environmental factors that either cause neurobehavioral disorders or contribute to their progression in genetically predisposed individuals. One environmental factor that has raised concerns is chlorpyrifos, an organophosphate pesticide that is widely used in agriculture and is found ubiquitously in the environment. In the present study, we examined the effects of sub-chronic chlorpyrifos exposure on anxiety-related behavior during development using zebrafish larvae. We found that sub-chronic exposure to 0.01 or 0.1 μM chlorpyrifos during development induces specific behavioral defects in 7-day-old zebrafish larvae. The larvae displayed decreases in swim speed and thigmotaxis, yet no changes in avoidance behavior were seen. Exposure to 0.001 μM chlorpyrifos did not affect swimming, thigmotaxis, or avoidance behavior and exposure to 1 μM chlorpyrifos induced behavioral defects, but also induced defects in larval morphology. Since thigmotaxis, a preference for the edge, is an anxiety-related behavior in zebrafish larvae, we propose that sub-chronic chlorpyrifos exposure interferes with the development of anxiety-related behaviors. The results of this study provide a good starting point for examination of the molecular, cellular, developmental, and neural mechanisms that are affected by environmentally relevant concentrations of organophosphate pesticides. A more detailed understanding of these mechanisms is important for the development of predictive models and refined health policies to prevent toxicant-induced neurobehavioral disorders. PMID:22579535

  4. Cadmium affects muscle type development and axon growth in zebrafish embryonic somitogenesis.

    PubMed

    Hen Chow, Elly Suk; Cheng, Shuk Han

    2003-05-01

    We have previously reported that exposure to cadmium during zebrafish embryonic development caused morphological malformations of organs and ectopic expression of genes involved in regulating developmental process. One of the most common developmental defects observed was altered axial curvature resulting from defects in the myotomes of the somites. In this study, we investigated the mechanisms of cadmium-induced toxicity in zebrafish somitogenesis. We showed that the critical period of exposure was the gastrulation period, which actually preceded the formation of the first morphologically distinct somites. The somites thus formed lost the typical chevron V-shape and are packed disorderly. The myogenic lineage commitment of the axial mesodermal cells was not affected, as the myogenic regulatory transcription factors were expressed normally. There were, however, losses of fast and slow muscle fibers in the myotomes. The innervation of the muscle blocks by spinal motoneurons is an important process of the somitogenesis. Both primary and secondary motoneurons appear to form normally while the axon growth is affected in cadmium-treated embryos. The notochord, which is essential in the patterning of the somites and the central nervous system, showed abnormal morphological features and failed to extend to the tail region. Taken together, it appears that cadmium exposure led to abnormal somite patterning of the muscle fibers and defects in axonogenesis.

  5. Alterations in zebrafish development induced by simvastatin: Comprehensive morphological and physiological study, focusing on muscle

    PubMed Central

    Campos, Laise M; Rios, Eduardo A; Guapyassu, Livia; Midlej, Victor; Atella, Georgia C; Herculano-Houzel, Suzana; Benchimol, Marlene; Mermelstein, Claudia

    2016-01-01

    The cholesterol synthesis inhibitor simvastatin, which is used to treat cardiovascular diseases, has severe collateral effects. We decided to comprehensively study the effects of simvastatin in zebrafish development and in myogenesis, because zebrafish has been used as a model to human diseases, due to its handling easiness, the optical clarity of its embryos, and the availability of physiological and structural methodologies. Furthermore, muscle is an important target of the drug. We used several simvastatin concentrations at different zebrafish developmental stages and studied survival rate, morphology, and physiology of the embryos. Our results show that high levels of simvastatin induce structural damage whereas low doses induce minor structural changes, impaired movements, and reduced heart beating. Morphological alterations include changes in embryo and somite size and septa shape. Physiological changes include movement reduction and slower heartbeat. These effects could be reversed by the addition of exogenous cholesterol. Moreover, we quantified the total cell number during zebrafish development and demonstrated a large reduction in cell number after statin treatment. Since we could classify the alterations induced by simvastatin in three distinct phenotypes, we speculate that simvastatin acts through more than one mechanism and could affect both cell replication and/or cell death and muscle function. Our data can contribute to the understanding of the molecular and cellular basis of the mechanisms of action of simvastatin. PMID:27444151

  6. Alterations in zebrafish development induced by simvastatin: Comprehensive morphological and physiological study, focusing on muscle.

    PubMed

    Campos, Laise M; Rios, Eduardo A; Guapyassu, Livia; Midlej, Victor; Atella, Georgia C; Herculano-Houzel, Suzana; Benchimol, Marlene; Mermelstein, Claudia; Costa, Manoel L

    2016-11-01

    The cholesterol synthesis inhibitor simvastatin, which is used to treat cardiovascular diseases, has severe collateral effects. We decided to comprehensively study the effects of simvastatin in zebrafish development and in myogenesis, because zebrafish has been used as a model to human diseases, due to its handling easiness, the optical clarity of its embryos, and the availability of physiological and structural methodologies. Furthermore, muscle is an important target of the drug. We used several simvastatin concentrations at different zebrafish developmental stages and studied survival rate, morphology, and physiology of the embryos. Our results show that high levels of simvastatin induce structural damage whereas low doses induce minor structural changes, impaired movements, and reduced heart beating. Morphological alterations include changes in embryo and somite size and septa shape. Physiological changes include movement reduction and slower heartbeat. These effects could be reversed by the addition of exogenous cholesterol. Moreover, we quantified the total cell number during zebrafish development and demonstrated a large reduction in cell number after statin treatment. Since we could classify the alterations induced by simvastatin in three distinct phenotypes, we speculate that simvastatin acts through more than one mechanism and could affect both cell replication and/or cell death and muscle function. Our data can contribute to the understanding of the molecular and cellular basis of the mechanisms of action of simvastatin. © 2016 by the Society for Experimental Biology and Medicine.

  7. Using Zebrafish to Implement a Course-Based Undergraduate Research Experience to Study Teratogenesis in Two Biology Laboratory Courses

    PubMed Central

    Chism, Grady W.; Vaughan, Martin A.; Muralidharan, Pooja; Marrs, Jim A.

    2016-01-01

    Abstract A course-based undergraduate research experience (CURE) spanning three semesters was introduced into freshman and sophomore biology classes, with the hypothesis that participation in a CURE affects skills in research, communication, and collaboration, which may help students persist in science. Student research projects were centered on the hypothesis that nicotine and caffeine exposure during early development affects gastrulation and heart development in zebrafish. First, freshmen generated original data showing distinct effects of embryonic nicotine and caffeine exposure on zebrafish heart development and function. Next, Cell Biology laboratory students continued the CURE studies and identified novel teratogenic effects of nicotine and caffeine during gastrulation. Finally, new freshmen continued the CURE research, examining additional toxicant effects on development. Students designed new protocols, made measurements, presented results, and generated high-quality preliminary data that were studied in successive semesters. By implementing this project, the CURE extended faculty research and provided a scalable model to address national goals to involve more undergraduates in authentic scientific research. In addition, student survey results support the hypothesis that CUREs provide significant gains in student ability to (1) design experiments, (2) analyze data, and (3) make scientific presentations, translating into high student satisfaction and enhanced learning. PMID:26829498

  8. Using Zebrafish to Implement a Course-Based Undergraduate Research Experience to Study Teratogenesis in Two Biology Laboratory Courses.

    PubMed

    Sarmah, Swapnalee; Chism, Grady W; Vaughan, Martin A; Muralidharan, Pooja; Marrs, Jim A; Marrs, Kathleen A

    2016-08-01

    A course-based undergraduate research experience (CURE) spanning three semesters was introduced into freshman and sophomore biology classes, with the hypothesis that participation in a CURE affects skills in research, communication, and collaboration, which may help students persist in science. Student research projects were centered on the hypothesis that nicotine and caffeine exposure during early development affects gastrulation and heart development in zebrafish. First, freshmen generated original data showing distinct effects of embryonic nicotine and caffeine exposure on zebrafish heart development and function. Next, Cell Biology laboratory students continued the CURE studies and identified novel teratogenic effects of nicotine and caffeine during gastrulation. Finally, new freshmen continued the CURE research, examining additional toxicant effects on development. Students designed new protocols, made measurements, presented results, and generated high-quality preliminary data that were studied in successive semesters. By implementing this project, the CURE extended faculty research and provided a scalable model to address national goals to involve more undergraduates in authentic scientific research. In addition, student survey results support the hypothesis that CUREs provide significant gains in student ability to (1) design experiments, (2) analyze data, and (3) make scientific presentations, translating into high student satisfaction and enhanced learning.

  9. Brief embryonic cadmium exposure induces a stress response and cell death in the developing olfactory system followed by long-term olfactory deficits in juvenile zebrafish.

    PubMed

    Blechinger, Scott R; Kusch, Robin C; Haugo, Kristine; Matz, Carlyn; Chivers, Douglas P; Krone, Patrick H

    2007-10-01

    The toxic effects of cadmium and other metals have been well established. A primary target of these metals is known to be the olfactory system, and fish exposed to a number of different waterborne metals display deficiencies in olfaction. Importantly, exposure over embryonic/larval development periods can cause deficits in chemosensory function in juvenile fish, but the specific cell types affected are unknown. We have previously characterized a transgenic zebrafish strain expressing the green fluorescent protein (eGFP) gene linked to the hsp70 gene promoter, and shown it to be a useful tool for examining cell-specific toxicity in living embryos and larvae. Here we show that the hsp70/eGFP transgene is strongly and specifically upregulated within the olfactory sensory neurons (OSNs) of transgenic zebrafish larvae following a brief 3-h exposure to water-borne cadmium. This molecular response was closely correlated to an endpoint for tissue damage within the olfactory placode, namely cell death. Furthermore, cadmium-induced olfactory cytotoxicity in zebrafish larvae gives rise to more permanent effects. Juvenile zebrafish briefly exposed to cadmium during early larval development display deficits in olfactory-dependent predator avoidance behaviors 4-6 weeks after a return to clean water. Lateral line neuromasts of exposed zebrafish larvae also activate both the endogenous hsp70 gene and the hsp70/eGFP transgene. The data reveal that even a very brief exposure period that gives rise to cell death within the developing olfactory placode results in long-term deficits in olfaction, and that hsp70/eGFP may serve as an effective indicator of sublethal cadmium exposure in sensory cells.

  10. Brief embryonic cadmium exposure induces a stress response and cell death in the developing olfactory system followed by long-term olfactory deficits in juvenile zebrafish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blechinger, Scott R.; Toxicology Group, University of Saskatchewan, Saskatoon, Saskatchewan; Kusch, Robin C.

    2007-10-01

    The toxic effects of cadmium and other metals have been well established. A primary target of these metals is known to be the olfactory system, and fish exposed to a number of different waterborne metals display deficiencies in olfaction. Importantly, exposure over embryonic/larval development periods can cause deficits in chemosensory function in juvenile fish, but the specific cell types affected are unknown. We have previously characterized a transgenic zebrafish strain expressing the green fluorescent protein (eGFP) gene linked to the hsp70 gene promoter, and shown it to be a useful tool for examining cell-specific toxicity in living embryos and larvae.more » Here we show that the hsp70/eGFP transgene is strongly and specifically upregulated within the olfactory sensory neurons (OSNs) of transgenic zebrafish larvae following a brief 3-h exposure to water-borne cadmium. This molecular response was closely correlated to an endpoint for tissue damage within the olfactory placode, namely cell death. Furthermore, cadmium-induced olfactory cytotoxicity in zebrafish larvae gives rise to more permanent effects. Juvenile zebrafish briefly exposed to cadmium during early larval development display deficits in olfactory-dependent predator avoidance behaviors 4-6 weeks after a return to clean water. Lateral line neuromasts of exposed zebrafish larvae also activate both the endogenous hsp70 gene and the hsp70/eGFP transgene. The data reveal that even a very brief exposure period that gives rise to cell death within the developing olfactory placode results in long-term deficits in olfaction, and that hsp70/eGFP may serve as an effective indicator of sublethal cadmium exposure in sensory cells.« less

  11. Functional behavior and reproduction in androgenic sex reversed zebrafish (Danio rerio).

    PubMed

    Larsen, Mia G; Baatrup, Erik

    2010-08-01

    Endocrine-disrupting chemicals released into natural watercourses may cause biased sex ratios by sex reversal in fish populations. The present study investigated the androgenic sex reversal of zebrafish (Danio rerio) exposed to the androgenic compound 17beta-trenbolone (TB) and whether sex-changed females would revert to the female phenotype after cessation of TB exposure. 17beta-Trenbolone is a metabolite of trenbolone acetate, an anabolic steroid used as a growth promoter in beef cattle. 17beta-Trenbolone in runoff from cattle feedlots may reach concentrations that affect fish sexual development. Zebrafish were exposed to a concentration of 20 ng/L TB in a flow-through system for five months from egg until sexual maturity. This resulted in an all-male population. It was further found that all these phenotypic males displayed normal male courtship behavior and were able to reproduce successfully, implying that the sex reversal was complete and functional. None of the phenotypic males developed into females after six months in clean water, demonstrating that androgenic sex reversal of zebrafish is irreversible. Copyright 2010 SETAC

  12. Exposure to benzidine caused apoptosis and malformation of telencephalon region in zebrafish.

    PubMed

    Chen, Mark Hung-Chih; Hsu, Li-Chi; Wu, Jia-Lun; Yeh, Chi-Wei; Tsai, Jen-Ning; Hseu, You-Cheng; Hsu, Li-Sung

    2014-12-01

    Exposure to benzidine has been known to induce human cancers, particularly bladder carcinomas. In this study, the zebrafish model was used to investigate the developmental toxicity of benzidine. Embryos at 6 h postfertilization (hpf) that were exposed to benzidine exhibited embryonic death in a dose- and time-dependent manner. Benzidine induced malformations in zebrafish, such as small brain development, shorter axes, and a slight pericardial edema. High concentrations (50, 100, and 200 µM) of benzidine triggered widespread apoptosis in the brain and dorsal neurons, as evidenced by acridine orange and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assays. Real-time polymerase chain reaction analysis also showed that benzidine treatment affected p53, bax, and noxa expression. Decreases in specific brain markers, such as emx1 in the telencephalon, ngn1 in differentiated neurons, and otx2 in the midbrain, were observed in benzidine-treated embryos at 24 hpf. Conversely, no overt changes to pax2.1 expression in the midbrain-hindbrain boundary were found. Moreover, the use of Tg(HuC:GFP) zebrafish showed that benzidine caused a malformation of the telencephalon region. Our findings show that benzidine exposure triggers widespread apoptosis in the zebrafish brain and dorsal neurons, resulting in the development of an abnormal telencephalon. © 2013 Wiley Periodicals, Inc.

  13. Zebrafish in Toxicology and Environmental Health

    PubMed Central

    Bambino, Kathryn; Chu, Jaime

    2018-01-01

    As manufacturing processes and development of new synthetic compounds increase to keep pace with the expanding global demand, environmental health, and the effects of toxicant exposure are emerging as critical public health concerns. Additionally, chemicals that naturally occur in the environment, such as metals, have profound effects on human and animal health. Many of these compounds are in the news: lead, arsenic, and endocrine disruptors such as bisphenol A have all been widely publicized as causing disease or damage to humans and wildlife in recent years. Despite the widespread appreciation that environmental toxins can be harmful, there is limited understanding of how many toxins cause disease. Zebrafish are at the forefront of toxicology research; this system has been widely used as a tool to detect toxins in water samples and to investigate the mechanisms of action of environmental toxins and their related diseases. The benefits of zebrafish for studying vertebrate development are equally useful for studying teratogens. Here, we review how zebrafish are being used both to detect the presence of some toxins as well as to identify how environmental exposures affect human health and disease. We focus on areas where zebrafish have been most effectively used in ecotoxicology and in environmental health, including investigation of exposures to endocrine disruptors, industrial waste byproducts, and arsenic. PMID:28335863

  14. Zebrafish in Toxicology and Environmental Health.

    PubMed

    Bambino, Kathryn; Chu, Jaime

    2017-01-01

    As manufacturing processes and development of new synthetic compounds increase to keep pace with the expanding global demand, environmental health, and the effects of toxicant exposure are emerging as critical public health concerns. Additionally, chemicals that naturally occur in the environment, such as metals, have profound effects on human and animal health. Many of these compounds are in the news: lead, arsenic, and endocrine disruptors such as bisphenol A have all been widely publicized as causing disease or damage to humans and wildlife in recent years. Despite the widespread appreciation that environmental toxins can be harmful, there is limited understanding of how many toxins cause disease. Zebrafish are at the forefront of toxicology research; this system has been widely used as a tool to detect toxins in water samples and to investigate the mechanisms of action of environmental toxins and their related diseases. The benefits of zebrafish for studying vertebrate development are equally useful for studying teratogens. Here, we review how zebrafish are being used both to detect the presence of some toxins as well as to identify how environmental exposures affect human health and disease. We focus on areas where zebrafish have been most effectively used in ecotoxicology and in environmental health, including investigation of exposures to endocrine disruptors, industrial waste byproducts, and arsenic. © 2017 Elsevier Inc. All rights reserved.

  15. Fibroblast growth factor (Fgf) signaling pathway regulates liver homeostasis in zebrafish.

    PubMed

    Tsai, Su-Mei; Liu, Da-Wei; Wang, Wen-Pin

    2013-04-01

    In mammals, fibroblast growth factor (FGF) signaling controls liver specification and regulates the metabolism of lipids, cholesterol, and bile acids. FGF signaling also promotes hepatocyte proliferation, and helps detoxify hepatotoxin during liver regeneration after partial hepatectomy. However, the function of Fgf in zebrafish liver is not yet well understood, specifically for postnatal homeostasis. The current study analyzed the expression of fgf receptors (fgfrs) in the liver of zebrafish. We then investigated the function of Fgf signaling in the zebrafish liver by expressing a dominant-negative Fgf receptor in hepatocytes (lfabp:dnfgfr1-egfp, lf:dnfr). Histological analysis showed that our genetic intervention resulted in a small liver size with defected medial expansion of developing livers in transgenic (Tg) larvae. Morphologically, the liver lobe of lf:dnfr adult fish was shorter than that of control. Ballooning degeneration of hepatocytes was observed in fish as young as 3 months. Further examination revealed the development of hepatic steatosis and cholestasis. In adult Tg fish, we unexpectedly observed increased liver-to-body-weight ratios, with higher percentages of proliferating hepatocytes. Considering all these findings, we concluded that as in mammals, in adult zebrafish the metabolism of lipid and bile acids in the liver are regulated by Fgf signaling. Disruption of the Fgf signal-mediated metabolism might indirectly affect hepatocyte proliferation.

  16. Neoplasia and Neoplasm Associated Lesions in Laboratory Colonies of Zebrafish Emphasizing Key Influences of Diet and Aquaculture System Design

    PubMed Central

    Spitsbergen, Jan M.; Buhler, Donald R.; Peterson, Tracy S.

    2014-01-01

    During the past decade the zebrafish has emerged as a leading model for mechanistic cancer research due to its sophisticated genetic and genomic resources, its tractability for tissue targeting of transgene expression, its efficiency for forward genetic approaches to cancer model development, and its cost-effectiveness for enhancer and suppressor screens once a cancer model is established. However, in contrast to other laboratory animal species widely used as cancer models, much basic cancer biology information is lacking in zebrafish. As yet data are not published regarding dietary influences on neoplasm incidences in zebrafish. Little information is available regarding spontaneous tumor incidences or histologic types in wild-type (wt) lines of zebrafish. So far a comprehensive database documenting the full spectrum of neoplasia in various organ systems and tissues in not available for zebrafish as it is for other intensely studied laboratory animal species. This manuscript confirms that as in other species diet and husbandry can profoundly influence tumor incidences and histologic spectra in zebrafish. We show that in many laboratory colonies wt lines of zebrafish exhibit elevated neoplasm incidences and neoplasm associated lesions such as heptocyte megalocytosis. We present experimental evidence showing that certain diet and water management regimens can result in high incidences of neoplasia and neoplasm associated lesions. We document the wide array of benign and malignant neoplasms affecting nearly every organ, tissue and cell type in zebrafish, in some cases as a spontaneous aging change, and in other cases due to carcinogen treatment or genetic manipulation. PMID:23382343

  17. Characterization of neural development in zebrafish embryos using real-time quantitative PCR.

    EPA Science Inventory

    Chemicals adversely affecting the developing nervous system may cause long-term consequences on human health. Little information exists on a large number of environmental compounds to guide developmental neurotoxicity risk assessments. Because developmental neurotoxicity studies ...

  18. Atrogin-1 Deficiency Leads to Myopathy and Heart Failure in Zebrafish.

    PubMed

    Bühler, Anja; Kustermann, Monika; Bummer, Tiziana; Rottbauer, Wolfgang; Sandri, Marco; Just, Steffen

    2016-01-30

    Orchestrated protein synthesis and degradation is fundamental for proper cell function. In muscle, impairment of proteostasis often leads to severe cellular defects finally interfering with contractile function. Here, we analyze for the first time the role of Atrogin-1, a muscle-specific E3 ubiquitin ligase known to be involved in the regulation of protein degradation via the ubiquitin proteasome and the autophagy/lysosome systems, in the in vivo model system zebrafish (Danio rerio). We found that targeted inactivation of zebrafish Atrogin-1 leads to progressive impairment of heart and skeletal muscle function and disruption of muscle structure without affecting early cardiogenesis and skeletal muscle development. Autophagy is severely impaired in Atrogin-1-deficient zebrafish embryos resulting in the disturbance of the cytoarchitecture of cardiomyocytes and skeletal muscle cells. These observations are consistent with molecular and ultrastructural findings in an Atrogin-1 knockout mouse and demonstrate that the zebrafish is a suitable vertebrate model to study the molecular mechanisms of Atrogin-1-mediated autophagic muscle pathologies and to screen for novel therapeutically active substances in high-throughput in vivo small compound screens (SCS).

  19. Fishing for Fetal Alcohol Spectrum Disorders: Zebrafish as a Model for Ethanol Teratogenesis.

    PubMed

    Lovely, Charles Ben; Fernandes, Yohaan; Eberhart, Johann K

    2016-10-01

    Fetal Alcohol Spectrum Disorders (FASD) describes a wide array of ethanol-induced developmental defects, including craniofacial dysmorphology and cognitive impairments. It affects ∼1 in 100 children born in the United States each year. Due to the pleiotropic effects of ethanol, animal models have proven critical in characterizing the mechanisms of ethanol teratogenesis. In this review, we focus on the utility of zebrafish in characterizing ethanol-induced developmental defects. A growing number of laboratories have focused on using zebrafish to examine ethanol-induced defects in craniofacial, cardiac, ocular, and neural development, as well as cognitive and behavioral impairments. Growing evidence supports that genetic predisposition plays a role in these ethanol-induced defects, yet little is understood about these gene-ethanol interactions. With a high degree of genetic amenability, zebrafish is at the forefront of identifying and characterizing the gene-ethanol interactions that underlie FASD. Because of the conservation of gene function between zebrafish and humans, these studies will directly translate to studies of candidate genes in human populations and allow for better diagnosis and treatment of FASD.

  20. Acute ethanol administration affects zebrafish preference for a biologically inspired robot.

    PubMed

    Spinello, Chiara; Macrì, Simone; Porfiri, Maurizio

    2013-08-01

    Preclinical animal models constitute a cornerstone against which the reward processes involved in drug addiction are often studied and dissected. While rodents have traditionally represented the species of choice, a growing body of literature indicates that zebrafish are emerging as a valuable model organism. Specifically, several studies demonstrate that the effects of ethanol at the level of emotional- and cognitive-related domains can be reliably investigated using zebrafish. The rapidly evolving nature of these efforts allows substantial room for the development of novel experimental paradigms suited to this freshwater species. The field of ethorobotics may prove particularly beneficial, due to its ability to convey fully controllable and easily reproducible experimental tools. In this study, we addressed the possibility of using a biologically inspired robot to investigate the emotionally related properties of ethanol in a preference task in zebrafish. To this aim, we evaluated wild-type zebrafish preference toward a robotic stimulus and addressed whether ethanol administration (0.25% and 1.00% ethanol/water concentration) may alter such preferences. In accordance with our previous studies, we observed that zebrafish exhibit a natural attraction toward the robot. Additionally, in agreement with our predictions, we showed that ethanol administration abolishes such preferences. This work is the first to demonstrate that robotic stimuli can be used in zebrafish to investigate the reward-related properties of alcohol. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Strategies to Mitigate a Mycobacterium marinum Outbreak in a Zebrafish Research Facility

    PubMed Central

    Snell, Kathy; Mittge, Erika; Melancon, Ellie; Montgomery, Rebecca; McFadden, Marcie; Camoriano, Javier; Kent, Michael L.; Whipps, Christopher M.; Peirce, Judy

    2016-01-01

    Abstract In 2011, the zebrafish research facility at the University of Oregon experienced an outbreak of Mycobacterium marinum that affected both research fish and facility staff. A thorough review of risks to personnel, the zebrafish veterinary care program, and zebrafish husbandry procedures at the research facility followed. In the years since 2011, changes have been implemented throughout the research facility to protect the personnel, the fish colony, and ultimately the continued success of the zebrafish model research program. In this study, we present the history of the outbreak, the changes we implemented, and recommendations to mitigate pathogen outbreaks in zebrafish research facilities. PMID:27351618

  2. Toward developmental models of psychiatric disorders in zebrafish

    PubMed Central

    Norton, William H. J.

    2013-01-01

    Psychiatric disorders are a diverse set of diseases that affect all aspects of mental function including social interaction, thinking, feeling, and mood. Although psychiatric disorders place a large economic burden on society, the drugs available to treat them are often palliative with variable efficacy and intolerable side-effects. The development of novel drugs has been hindered by a lack of knowledge about the etiology of these diseases. It is thus necessary to further investigate psychiatric disorders using a combination of human molecular genetics, gene-by-environment studies, in vitro pharmacological and biochemistry experiments, animal models, and investigation of the non-biological basis of these diseases, such as environmental effects. Many psychiatric disorders, including autism spectrum disorder, attention-deficit/hyperactivity disorder, mental retardation, and schizophrenia can be triggered by alterations to neural development. The zebrafish is a popular model for developmental biology that is increasingly used to study human disease. Recent work has extended this approach to examine psychiatric disorders as well. However, since psychiatric disorders affect complex mental functions that might be human specific, it is not possible to fully model them in fish. In this review, I will propose that the suitability of zebrafish for developmental studies, and the genetic tools available to manipulate them, provide a powerful model to study the roles of genes that are linked to psychiatric disorders during neural development. The relative speed and ease of conducting experiments in zebrafish can be used to address two areas of future research: the contribution of environmental factors to disease onset, and screening for novel therapeutic compounds. PMID:23637652

  3. The heartstrings mutation in zebrafish causes heart/fin Tbx5 deficiency syndrome.

    PubMed

    Garrity, Deborah M; Childs, Sarah; Fishman, Mark C

    2002-10-01

    Holt-Oram syndrome is one of the autosomal dominant human "heart-hand" disorders, with a combination of upper limb malformations and cardiac defects. Holt-Oram syndrome is caused by mutations in the TBX5 gene, a member of a large family of T-box transcription factors that play important roles in cell-type specification and morphogenesis. In a screen for mutations affecting zebrafish cardiac function, we isolated the recessive lethal mutant heartstrings, which lacks pectoral fins and exhibits severe cardiac dysfunction, beginning with a slow heart rate and progressing to a stretched, non-functional heart. We mapped and cloned the heartstrings mutation and find it to encode the zebrafish ortholog of the TBX5 gene. The heartstrings mutation causes premature termination at amino acid 316. Homozygous mutant embryos never develop pectoral fin buds and do not express several markers of early fin differentiation. The total absence of any fin bud differentiation distinguishes heartstrings from most other mutations that affect zebrafish fin development, suggesting that Tbx5 functions very early in the pectoral fin induction pathway. Moderate reduction of Tbx5 by morpholino causes fin malformations, revealing an additional early requirement for Tbx5 in coordinating the axes of fin outgrowth. The heart of heartstrings mutant embryos appears to form and function normally through the early heart tube stage, manifesting only a slight bradycardia compared with wild-type siblings. However, the heart fails to loop and then progressively deteriorates, a process affecting the ventricle as well as the atrium. Relative to mammals, fish require lower levels of Tbx5 to produce malformed appendages and display whole-heart rather than atrial-predominant cardiac defects. However, the syndromic deficiencies of tbx5 mutation are remarkably well retained between fish and mammals.

  4. Effect of Gabapentin/Memantine on the Infantile Nystagmus Syndrome in the Zebrafish Model: Implications for the Therapy of Ocular Motor Diseases.

    PubMed

    Bögli, Stefan Yu; Afthinos, Maresa; Huang, Melody Ying-Yu

    2017-06-01

    Infantile nystagmus syndrome (INS) is a disorder characterized by typical horizontal eye oscillations. Due to the uncertain etiology of INS, developing specific treatments remains difficult. Single reports demonstrated, on limited measures, alleviating effects of gabapentin and memantine. In the current study, we employed the zebrafish INS model belladonna (bel) to conduct an in-depth study of how gabapentin and memantine interventions alleviate INS signs, which may further restore visual conditions in affected subjects. Moreover, we described the influence of both medications on ocular motor functions in healthy zebrafish, evaluating possible iatrogenic effects. Ocular motor function and INS characteristics were assessed by eliciting optokinetic response, spontaneous nystagmus, and spontaneous saccades in light and in dark, in 5- to 6-day postfertilization bel larvae and heterozygous siblings. Single larvae were recorded before and after a 1-hour drug treatment (200 mM gabapentin/0.2 mM memantine). Both interventions significantly reduced nystagmus intensity (gabapentin: 59.98%, memantine: 39.59%). However, while the application of gabapentin affected all tested ocular motor functions, memantine specifically reduced nystagmus amplitude and intensity, and thus left controls completely unaffected. Finally, both drug treatments resulted in specific changes in nystagmus waveform and velocity. Our study provides deeper insight into gabapentin and memantine treatment effect in the zebrafish INS model. Moreover, this study should establish zebrafish as a pharmacologic animal model for treating nystagmus and ocular motor disease, serving as a basis for future large-scale drug screenings.

  5. Effects of embryonic ethanol exposure at low doses on neuronal development, voluntary ethanol consumption and related behaviors in larval and adult zebrafish: Role of hypothalamic orexigenic peptides

    PubMed Central

    Sterling, M.E.; Chang, G.-Q.; Karatayev, O.; Chang, S.Y.; Leibowitz, S.F.

    2016-01-01

    Embryonic exposure to ethanol is known to affect neurochemical systems in rodents and increase alcohol drinking and related behaviors in humans and rodents. With zebrafish emerging as a powerful tool for uncovering neural mechanisms of numerous diseases and exhibiting similarities to rodents, the present report building on our rat studies examined in zebrafish the effects of embryonic ethanol exposure on hypothalamic neurogenesis, expression of orexigenic neuropeptides, and voluntary ethanol consumption and locomotor behaviors in larval and adult zebrafish, and also effects of central neuropeptide injections on these behaviors affected by ethanol. At 24 h post-fertilization, zebrafish embryos were exposed for 2 h to ethanol, at low concentrations of 0.25% and 0.5%, in the tank water. Embryonic ethanol compared to control dose-dependently increased hypothalamic neurogenesis and the proliferation and expression of the orexigenic peptides, galanin (GAL) and orexin (OX), in the anterior hypothalamus. These changes in hypothalamic peptide neurons were accompanied by an increase in voluntary consumption of 10% ethanol-gelatin and in novelty-induced locomotor and exploratory behavior in adult zebrafish and locomotor activity in larvae. After intracerebroventricular injection, these peptides compared to vehicle had specific effects on these behaviors altered by ethanol, with GAL stimulating consumption of 10% ethanol-gelatin more than plain gelatin food and OX stimulating novelty-induced locomotor behavior while increasing intake of food and ethanol equally. These results, similar to those obtained in rats, suggest that the ethanol-induced increase in genesis and expression of these hypothalamic peptide neurons contribute to the behavioral changes induced by embryonic exposure to ethanol. PMID:26778786

  6. Effects of embryonic ethanol exposure at low doses on neuronal development, voluntary ethanol consumption and related behaviors in larval and adult zebrafish: Role of hypothalamic orexigenic peptides.

    PubMed

    Sterling, M E; Chang, G-Q; Karatayev, O; Chang, S Y; Leibowitz, S F

    2016-05-01

    Embryonic exposure to ethanol is known to affect neurochemical systems in rodents and increase alcohol drinking and related behaviors in humans and rodents. With zebrafish emerging as a powerful tool for uncovering neural mechanisms of numerous diseases and exhibiting similarities to rodents, the present report building on our rat studies examined in zebrafish the effects of embryonic ethanol exposure on hypothalamic neurogenesis, expression of orexigenic neuropeptides, and voluntary ethanol consumption and locomotor behaviors in larval and adult zebrafish, and also effects of central neuropeptide injections on these behaviors affected by ethanol. At 24h post-fertilization, zebrafish embryos were exposed for 2h to ethanol, at low concentrations of 0.25% and 0.5%, in the tank water. Embryonic ethanol compared to control dose-dependently increased hypothalamic neurogenesis and the proliferation and expression of the orexigenic peptides, galanin (GAL) and orexin (OX), in the anterior hypothalamus. These changes in hypothalamic peptide neurons were accompanied by an increase in voluntary consumption of 10% ethanol-gelatin and in novelty-induced locomotor and exploratory behavior in adult zebrafish and locomotor activity in larvae. After intracerebroventricular injection, these peptides compared to vehicle had specific effects on these behaviors altered by ethanol, with GAL stimulating consumption of 10% ethanol-gelatin more than plain gelatin food and OX stimulating novelty-induced locomotor behavior while increasing intake of food and ethanol equally. These results, similar to those obtained in rats, suggest that the ethanol-induced increase in genesis and expression of these hypothalamic peptide neurons contribute to the behavioral changes induced by embryonic exposure to ethanol. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. A Versatile Mounting Method for Long Term Imaging of Zebrafish Development.

    PubMed

    Hirsinger, Estelle; Steventon, Ben

    2017-01-26

    Zebrafish embryos offer an ideal experimental system to study complex morphogenetic processes due to their ease of accessibility and optical transparency. In particular, posterior body elongation is an essential process in embryonic development by which multiple tissue deformations act together to direct the formation of a large part of the body axis. In order to observe this process by long-term time-lapse imaging it is necessary to utilize a mounting technique that allows sufficient support to maintain samples in the correct orientation during transfer to the microscope and acquisition. In addition, the mounting must also provide sufficient freedom of movement for the outgrowth of the posterior body region without affecting its normal development. Finally, there must be a certain degree in versatility of the mounting method to allow imaging on diverse imaging set-ups. Here, we present a mounting technique for imaging the development of posterior body elongation in the zebrafish D. rerio. This technique involves mounting embryos such that the head and yolk sac regions are almost entirely included in agarose, while leaving out the posterior body region to elongate and develop normally. We will show how this can be adapted for upright, inverted and vertical light-sheet microscopy set-ups. While this protocol focuses on mounting embryos for imaging for the posterior body, it could easily be adapted for the live imaging of multiple aspects of zebrafish development.

  8. Developmental effects of simulated microgravity on zebrafish, (Danio rerio)

    NASA Astrophysics Data System (ADS)

    Stoyek, Matthew; Edsall, Sara; Franz-Odendaal, Tamara; Smith, Frank; Croll, Roger

    Zebrafish are widely used model vertebrates in research and recently this species has been used to study the effects of microgravity on fundamental biological processes. In this study we used a NASA-designed rotating wall vessel (RWV) to investigate the effects of simulated microgravity (SMG) on zebrafish development up to 14 days post fertilization (dpf). At developmental stages beyond the 3-4 somite stage we found SMG-exposed embryos reached key developmental stag-ing points more rapidly than fish raised within a non-rotating vessel. By the 21 somite stage, both groups were again synchronized in their developmental staging. However, SMG-exposed embryos eventually exhibited a delay in hatching time compared to controls. Otolith and to-tal body size were observed to be greater in larvae raised in SMG. In addition, pigmentation patterns in SMG exposed fish differed, with larger and differentially aggregated melanocytes . Heart development was slowed in SMG exposed fish, but no change in nervous system de-velopment was detected. Ongoing research will focus on differences in heart and respiration rates. Finally, by developing a method to extend the duration of SMG exposure, we found the swimming behaviour of SMG-exposed animals was altered with time in the RWV. Initially SMG-exposed animals swam in the direction of RWV rotation (5-9dpf) but older (9+dpf) fish swam against rotation and demonstrated righting behaviour with each rotation. These results suggest that vestibular reflexes may develop normally and be maintained in animals exposed to SMG. Together, our data provide insights into how zebrafish may develop when flown in space, permitting better formulation of experiments to test mechanisms by which microgravity may affect ontogeny of this model organism. Keywords: microgravity, zebrafish, growth, development

  9. Large-scale mapping of mutations affecting zebrafish development.

    PubMed

    Geisler, Robert; Rauch, Gerd-Jörg; Geiger-Rudolph, Silke; Albrecht, Andrea; van Bebber, Frauke; Berger, Andrea; Busch-Nentwich, Elisabeth; Dahm, Ralf; Dekens, Marcus P S; Dooley, Christopher; Elli, Alexandra F; Gehring, Ines; Geiger, Horst; Geisler, Maria; Glaser, Stefanie; Holley, Scott; Huber, Matthias; Kerr, Andy; Kirn, Anette; Knirsch, Martina; Konantz, Martina; Küchler, Axel M; Maderspacher, Florian; Neuhauss, Stephan C; Nicolson, Teresa; Ober, Elke A; Praeg, Elke; Ray, Russell; Rentzsch, Brit; Rick, Jens M; Rief, Eva; Schauerte, Heike E; Schepp, Carsten P; Schönberger, Ulrike; Schonthaler, Helia B; Seiler, Christoph; Sidi, Samuel; Söllner, Christian; Wehner, Anja; Weiler, Christian; Nüsslein-Volhard, Christiane

    2007-01-09

    Large-scale mutagenesis screens in the zebrafish employing the mutagen ENU have isolated several hundred mutant loci that represent putative developmental control genes. In order to realize the potential of such screens, systematic genetic mapping of the mutations is necessary. Here we report on a large-scale effort to map the mutations generated in mutagenesis screening at the Max Planck Institute for Developmental Biology by genome scanning with microsatellite markers. We have selected a set of microsatellite markers and developed methods and scoring criteria suitable for efficient, high-throughput genome scanning. We have used these methods to successfully obtain a rough map position for 319 mutant loci from the Tübingen I mutagenesis screen and subsequent screening of the mutant collection. For 277 of these the corresponding gene is not yet identified. Mapping was successful for 80 % of the tested loci. By comparing 21 mutation and gene positions of cloned mutations we have validated the correctness of our linkage group assignments and estimated the standard error of our map positions to be approximately 6 cM. By obtaining rough map positions for over 300 zebrafish loci with developmental phenotypes, we have generated a dataset that will be useful not only for cloning of the affected genes, but also to suggest allelism of mutations with similar phenotypes that will be identified in future screens. Furthermore this work validates the usefulness of our methodology for rapid, systematic and inexpensive microsatellite mapping of zebrafish mutations.

  10. Combined zebrafish-yeast chemical-genetic screens reveal gene-copper-nutrition interactions that modulate melanocyte pigmentation.

    PubMed

    Ishizaki, Hironori; Spitzer, Michaela; Wildenhain, Jan; Anastasaki, Corina; Zeng, Zhiqiang; Dolma, Sonam; Shaw, Michael; Madsen, Erik; Gitlin, Jonathan; Marais, Richard; Tyers, Mike; Patton, E Elizabeth

    2010-01-01

    Hypopigmentation is a feature of copper deficiency in humans, as caused by mutation of the copper (Cu(2+)) transporter ATP7A in Menkes disease, or an inability to absorb copper after gastric surgery. However, many causes of copper deficiency are unknown, and genetic polymorphisms might underlie sensitivity to suboptimal environmental copper conditions. Here, we combined phenotypic screens in zebrafish for compounds that affect copper metabolism with yeast chemical-genetic profiles to identify pathways that are sensitive to copper depletion. Yeast chemical-genetic interactions revealed that defects in intracellular trafficking pathways cause sensitivity to low-copper conditions; partial knockdown of the analogous Ap3s1 and Ap1s1 trafficking components in zebrafish sensitized developing melanocytes to hypopigmentation in low-copper environmental conditions. Because trafficking pathways are essential for copper loading into cuproproteins, our results suggest that hypomorphic alleles of trafficking components might underlie sensitivity to reduced-copper nutrient conditions. In addition, we used zebrafish-yeast screening to identify a novel target pathway in copper metabolism for the small-molecule MEK kinase inhibitor U0126. The zebrafish-yeast screening method combines the power of zebrafish as a disease model with facile genome-scale identification of chemical-genetic interactions in yeast to enable the discovery and dissection of complex multigenic interactions in disease-gene networks.

  11. Motoneuron axon pathfinding errors in zebrafish: Differential effects related to concentration and timing of nicotine exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menelaou, Evdokia; Paul, Latoya T.; Perera, Surangi N.

    Nicotine exposure during embryonic stages of development can affect many neurodevelopmental processes. In the developing zebrafish, exposure to nicotine was reported to cause axonal pathfinding errors in the later born secondary motoneurons (SMNs). These alterations in SMN axon morphology coincided with muscle degeneration at high nicotine concentrations (15–30 μM). Previous work showed that the paralytic mutant zebrafish known as sofa potato exhibited nicotine-induced effects onto SMN axons at these high concentrations but in the absence of any muscle deficits, indicating that pathfinding errors could occur independent of muscle effects. In this study, we used varying concentrations of nicotine at differentmore » developmental windows of exposure to specifically isolate its effects onto subpopulations of motoneuron axons. We found that nicotine exposure can affect SMN axon morphology in a dose-dependent manner. At low concentrations of nicotine, SMN axons exhibited pathfinding errors, in the absence of any nicotine-induced muscle abnormalities. Moreover, the nicotine exposure paradigms used affected the 3 subpopulations of SMN axons differently, but the dorsal projecting SMN axons were primarily affected. We then identified morphologically distinct pathfinding errors that best described the nicotine-induced effects on dorsal projecting SMN axons. To test whether SMN pathfinding was potentially influenced by alterations in the early born primary motoneuron (PMN), we performed dual labeling studies, where both PMN and SMN axons were simultaneously labeled with antibodies. We show that only a subset of the SMN axon pathfinding errors coincided with abnormal PMN axonal targeting in nicotine-exposed zebrafish. We conclude that nicotine exposure can exert differential effects depending on the levels of nicotine and developmental exposure window. - Highlights: • Embryonic nicotine exposure can specifically affect secondary motoneuron axons in a dose-dependent manner. • The nicotine-induced secondary motoneuron axonal pathfinding errors can occur independent of any muscle fiber alterations. • Nicotine exposure primarily affects dorsal projecting secondary motoneurons axons. • Nicotine-induced primary motoneuron axon pathfinding errors can influence secondary motoneuron axon morphology.« less

  12. Effects of probiotic administration on zebrafish development and reproduction.

    PubMed

    Carnevali, O; Avella, M A; Gioacchini, G

    2013-07-01

    As the consumption of probiotics increases worldwide, scientists focus on identifying bacterial strains able to improve human life quality and evidence the biological pathways affected by probiotic treatment. In this review, some recent observations on the effects of changes of microbiota on zebrafish metabolism were discussed. In addition, the effects of Lactobacillus rhamnosus - a component of the human gut microflora - as a diet supplement on Danio rerio were presented. When administered chronically, L. rhamnosus may affect larval development and the physiology of reproductive system in the zebrafish model. It was hypothesized exogenous L. rhamnosus accelerates larval growth and backbone development by acting on insulin-like growth factors-I (igfI) and -II (igfII), peroxisome proliferator activated receptors-α and -β, (pparα,β) vitamin D receptor-α (vdrα) and retinoic acid receptor-γ (rarγ). Gonadal differentiation was anticipated at 6weeks together with a higher expression of gnrh3 at the larval stage when L. rhamnosus was administered throughout development. Moreover, brood stock alimented with a L. rhamnosus-supplemented diet showed better reproductive performances as per follicles development, ovulated oocytes quantification and embryos quality. A plausible involvement of factors such as leptin, and kiss1 and 2 in the improvements was concluded. The observations made on the physiology of female reproduction were correlated with the gene expression of a gigantic number of factors as the aromatase cytochrome p 19 (cyp19a), the vitellogenin (vtg) and the α isoform of the E2 receptor (erα), luteinizing hormone receptor (lhr), 20-β hydroxysteroid dehydrogenase (20β-hsd), membrane progesterone receptors α and β, cyclin B, activinβA1, smad2, transforming growth factor β1 (tgfβ1), growth differentiation factor9 (gdf9) and bone morphogenetic protein15 (bmp15.) A model in which the exogenous L. rhamnosus in the digestive tract of zebrafish from the first days of life through sexual maturation positively influences the physiological performances of zebrafish was evidenced and a number of pathways that might be influenced by the presence of this human probiotic strain were proposed. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Transient Exposure to Ethanol during Zebrafish Embryogenesis Results in Defects in Neuronal Differentiation: An Alternative Model System to Study FASD

    PubMed Central

    Joya, Xavier; Garcia-Algar, Oscar; Vall, Oriol; Pujades, Cristina

    2014-01-01

    Background The exposure of the human embryo to ethanol results in a spectrum of disorders involving multiple organ systems, including the impairment of the development of the central nervous system (CNS). In spite of the importance for human health, the molecular basis of prenatal ethanol exposure remains poorly understood, mainly to the difficulty of sample collection. Zebrafish is now emerging as a powerful organism for the modeling and the study of human diseases. In this work, we have assessed the sensitivity of specific subsets of neurons to ethanol exposure during embryogenesis and we have visualized the sensitive embryonic developmental periods for specific neuronal groups by the use of different transgenic zebrafish lines. Methodology/Principal Findings In order to evaluate the teratogenic effects of acute ethanol exposure, we exposed zebrafish embryos to ethanol in a given time window and analyzed the effects in neurogenesis, neuronal differentiation and brain patterning. Zebrafish larvae exposed to ethanol displayed small eyes and/or a reduction of the body length, phenotypical features similar to the observed in children with prenatal exposure to ethanol. When neuronal populations were analyzed, we observed a clear reduction in the number of differentiated neurons in the spinal cord upon ethanol exposure. There was a decrease in the population of sensory neurons mainly due to a decrease in cell proliferation and subsequent apoptosis during neuronal differentiation, with no effect in motoneuron specification. Conclusion Our investigation highlights that transient exposure to ethanol during early embryonic development affects neuronal differentiation although does not result in defects in early neurogenesis. These results establish the use of zebrafish embryos as an alternative research model to elucidate the molecular mechanism(s) of ethanol-induced developmental toxicity at very early stages of embryonic development. PMID:25383948

  14. Exploratory behaviour in the open field test adapted for larval zebrafish: impact of environmental complexity.

    PubMed

    Ahmad, Farooq; Richardson, Michael K

    2013-01-01

    This study aimed to develop and characterize a novel (standard) open field test adapted for larval zebrafish. We also developed and characterized a variant of the same assay consisting of a colour-enriched open field; this was used to assess the impact of environmental complexity on patterns of exploratory behaviours as well to determine natural colour preference/avoidance. We report the following main findings: (1) zebrafish larvae display characteristic patterns of exploratory behaviours in the standard open field, such as thigmotaxis/centre avoidance; (2) environmental complexity (i.e. presence of colours) differentially affects patterns of exploratory behaviours and greatly attenuates natural zone preference; (3) larvae displayed the ability to discriminate colours. As reported previously in adult zebrafish, larvae showed avoidance towards blue and black; however, in contrast to the reported adult behaviour, larvae displayed avoidance towards red. Avoidance towards yellow and preference for green and orange are shown for the first time, (4) compared to standard open field tests, exposure to the colour-enriched open field resulted in an enhanced expression of anxiety-like behaviours. To conclude, we not only developed and adapted a traditional rodent behavioural assay that serves as a gold standard in preclinical drug screening, but we also provide a version of the same test that affords the possibility to investigate the impact of environmental stress on behaviour in larval zebrafish while representing the first test for assessment of natural colour preference/avoidance in larval zebrafish. In the future, these assays will improve preclinical drug screening methodologies towards the goal to uncover novel drugs. This article is part of a Special Issue entitled: insert SI title. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Cyp1b1 Regulates Ocular Fissure Closure Through a Retinoic Acid–Independent Pathway

    PubMed Central

    Williams, Antionette L.; Eason, Jessica; Chawla, Bahaar; Bohnsack, Brenda L.

    2017-01-01

    Purpose Mutations in the CYP1B1 gene are the most commonly identified genetic causes of primary infantile-onset glaucoma. Despite this disease association, the role of CYP1B1 in eye development and its in vivo substrate remain unknown. In the present study, we used zebrafish to elucidate the mechanism by which cyp1b1 regulates eye development. Methods Zebrafish eye and neural crest development were analyzed using live imaging of transgenic zebrafish embryos, in situ hybridization, immunostaining, TUNEL assay, and methylacrylate sections. Cyp1b1 and retinoic acid (RA) levels were genetically (morpholino oligonucleotide antisense and mRNA) and pharmacologically manipulated to examine gene function. Results Using zebrafish, we observed that cyp1b1 was expressed in a specific spatiotemporal pattern in the ocular fissures of the developing zebrafish retina and regulated fissure patency. Decreased Cyp1b1 resulted in the premature breakdown of laminin in the ventral fissure and altered subsequent neural crest migration into the anterior segment. In contrast, cyp1b1 overexpression inhibited cell survival in the ventral ocular fissure and prevented fissure closure via an RA-independent pathway. Cyp1b1 overexpression also inhibited the ocular expression of vsx2, pax6a, and pax6b and increased the extraocular expression of shha. Importantly, embryos injected with human wild-type but not mutant CYP1B1 mRNA also showed colobomas, demonstrating the evolutionary and functional conservation of gene function between species. Conclusions Cyp1b1 regulation of ocular fissure closure indirectly affects neural crest migration and development through an RA-independent pathway. These studies provide insight into the role of Cyp1b1 in eye development and further elucidate the pathogenesis of primary infantile-onset glaucoma. PMID:28192799

  16. Using the Larval Zebrafish Locomotor Asssay in Functional Neurotoxicity Screening: Light Brightness and the Order of Stimulus Presentation Affect the Outcome

    EPA Science Inventory

    We are evaluating methods to screen/prioritize large numbers of chemicals using 6 day old zebrafish (Danio rerio) as an alternative model for detecting neurotoxic effects. Our behavioral testing paradigm simultaneously tests individual larval zebrafish under sequential light and...

  17. Vitamin D receptor deficiency impairs inner ear development in zebrafish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwon, Hye-Joo; Biology Department, Princess Nourah University, Riyadh 11671

    The biological actions of vitamin D are largely mediated through binding to the vitamin D receptor (VDR), a member of the nuclear hormone receptor family, which regulates gene expression in a wide variety of tissues and cells. Mutations in VDR gene have been implicated in ear disorders (hearing loss and balance disorder) but the mechanisms are not well established. In this study, to investigate the role of VDR in inner ear development, morpholino-mediated gene knockdown approaches were used in zebrafish model system. Two paralogs for VDR, vdra and vdrb, have been identified in zebrafish. Knockdown of vdra had no effectmore » on ear development, whereas knockdown of vdrb displayed morphological ear defects including smaller otic vesicles with malformed semicircular canals and abnormal otoliths. Loss-of-vdrb resulted in down-regulation of pre-otic markers, pax8 and pax2a, indicating impairment of otic induction. Furthermore, zebrafish embryos lacking vdrb produced fewer sensory hair cells in the ears and showed disruption of balance and motor coordination. These data reveal that VDR signaling plays an important role in ear development. - Highlights: • VDR signaling is involved in ear development. • Knockdown of vdrb causes inner ear malformations during embryogenesis. • Knockdown of vdrb affects otic placode induction. • Knockdown of vdrb reduces the number of sensory hair cells in the inner ear. • Knockdown of vdrb disrupts balance and motor coordination.« less

  18. Biosecurity and Health Monitoring at the Zebrafish International Resource Center

    PubMed Central

    Varga, Zoltán M.; Kent, Michael L.

    2016-01-01

    Abstract The Zebrafish International Resource Center (ZIRC) is a repository and distribution center for mutant, transgenic, and wild-type zebrafish. In recent years annual imports of new zebrafish lines to ZIRC have increased tremendously. In addition, after 15 years of research, we have identified some of the most virulent pathogens affecting zebrafish that should be avoided in large production facilities, such as ZIRC. Therefore, while importing a high volume of new lines we prioritize safeguarding the health of our in-house fish colony. Here, we describe the biosecurity and health-monitoring program implemented at ZIRC. This strategy was designed to prevent introduction of new zebrafish pathogens, minimize pathogens already present in the facility, and ensure a healthy zebrafish colony for in-house uses and shipment to customers. PMID:27031282

  19. Expression pattern of cdkl5 during zebrafish early development: implications for use as model for atypical Rett syndrome.

    PubMed

    Vitorino, Marta; Cunha, Nídia; Conceição, Natércia; Cancela, M Leonor

    2018-05-11

    Atypical Rett syndrome is a child neurodevelopmental disorder induced by mutations in CDKL5 gene and characterized by a progressive regression in development with loss of purposeful use of the hands, slowed brain and head growth, problems with walking, seizures, and intellectual disability. At the moment, there is no cure for this pathology and little information is available concerning animal models capable of mimicking its phenotypes, thus the development of additional animal models should be of interest to gain more knowledge about the disease. Zebrafish has been used successfully as model organism for many human genetic diseases; however, no information is available concerning the spatial and temporal expression of cdkl5 orthologous in this organism. In the present study, we identified the developmental expression patterns of cdkl5 in zebrafish by quantitative PCR and whole-mount in situ hybridization. cdkl5 is expressed maternally at low levels during the first 24 h of development. After that the expression of the gene increases significantly and it starts to be expressed mainly in the nervous system and in several brain structures, such as telencephalon, mesencephalon and diencephalon. The expression patterns of cdkl5 in zebrafish is in accordance with the tissues known to be affected in humans and associated to symptoms and deficits observed in Rett syndrome patients thus providing the first evidence that zebrafish could be an alternative model to study the molecular pathways of this disease as well as to test possible therapeutic approaches capable of rescuing the phenotype.

  20. Early embryonic androgen exposure induces transgenerational epigenetic and metabolic changes.

    PubMed

    Xu, Ning; Chua, Angela K; Jiang, Hong; Liu, Ning-Ai; Goodarzi, Mark O

    2014-08-01

    Androgen excess is a central feature of polycystic ovary syndrome (PCOS), which affects 6% to 10% of young women. Mammals exposed to elevated androgens in utero develop PCOS-like phenotypes in adulthood, suggesting fetal origins of PCOS. We hypothesize that excess androgen exposure during early embryonic development may disturb the epigenome and disrupt metabolism in exposed and unexposed subsequent generations. Zebrafish were used to study the underlying mechanism of fetal origins. Embryos were exposed to androgens (testosterone and dihydrotestosterone) early at 26 to 56 hours post fertilization or late at 21 to 28 days post fertilization. Exposed zebrafish (F0) were grown to adults and crossed to generate unexposed offspring (F1). For both generations, global DNA methylation levels were examined in ovaries using a luminometric methylation assay, and fasting and postprandial blood glucose levels were measured. We found that early but not late androgen exposure induced changes in global methylation and glucose homeostasis in both generations. In general, F0 adult zebrafish exhibited altered global methylation levels in the ovary; F1 zebrafish had global hypomethylation. Fasting blood glucose levels were decreased in F0 but increased in F1; postprandial glucose levels were elevated in both F0 and F1. This androgenized zebrafish study suggests that transient excess androgen exposure during early development can result in transgenerational alterations in the ovarian epigenome and glucose homeostasis. Current data cannot establish a causal relationship between epigenetic changes and altered glucose homeostasis. Whether transgenerational epigenetic alteration induced by prenatal androgen exposure plays a role in the development of PCOS in humans deserves study.

  1. Early Embryonic Androgen Exposure Induces Transgenerational Epigenetic and Metabolic Changes

    PubMed Central

    Xu, Ning; Chua, Angela K.; Jiang, Hong; Liu, Ning-Ai

    2014-01-01

    Androgen excess is a central feature of polycystic ovary syndrome (PCOS), which affects 6% to 10% of young women. Mammals exposed to elevated androgens in utero develop PCOS-like phenotypes in adulthood, suggesting fetal origins of PCOS. We hypothesize that excess androgen exposure during early embryonic development may disturb the epigenome and disrupt metabolism in exposed and unexposed subsequent generations. Zebrafish were used to study the underlying mechanism of fetal origins. Embryos were exposed to androgens (testosterone and dihydrotestosterone) early at 26 to 56 hours post fertilization or late at 21 to 28 days post fertilization. Exposed zebrafish (F0) were grown to adults and crossed to generate unexposed offspring (F1). For both generations, global DNA methylation levels were examined in ovaries using a luminometric methylation assay, and fasting and postprandial blood glucose levels were measured. We found that early but not late androgen exposure induced changes in global methylation and glucose homeostasis in both generations. In general, F0 adult zebrafish exhibited altered global methylation levels in the ovary; F1 zebrafish had global hypomethylation. Fasting blood glucose levels were decreased in F0 but increased in F1; postprandial glucose levels were elevated in both F0 and F1. This androgenized zebrafish study suggests that transient excess androgen exposure during early development can result in transgenerational alterations in the ovarian epigenome and glucose homeostasis. Current data cannot establish a causal relationship between epigenetic changes and altered glucose homeostasis. Whether transgenerational epigenetic alteration induced by prenatal androgen exposure plays a role in the development of PCOS in humans deserves study. PMID:24992182

  2. Nrf2 and Nrf2-Related Proteins in Development and Developmental Toxicity: Insights from studies in Zebrafish (Danio rerio)

    PubMed Central

    Hahn, Mark E.; Timme-Laragy, Alicia R.; Karchner, Sibel I.; Stegeman, John J.

    2015-01-01

    Oxidative stress is an important mechanism of chemical toxicity, contributing to developmental toxicity and teratogenesis as well as to cardiovascular and neurodegenerative diseases and diabetic embryopathy. Developing animals are especially sensitive to effects of chemicals that disrupt the balance of processes generating reactive species and oxidative stress, and those anti-oxidant defenses that protect against oxidative stress. The expression and inducibility of anti-oxidant defenses through activation of NFE2-related factor 2 (Nrf2) and related proteins is an essential process affecting the susceptibility to oxidants, but the complex interactions of Nrf2 in determining embryonic response to oxidants and oxidative stress are only beginning to be understood. The zebrafish (Danio rerio) is an established model in developmental biology and now also in developmental toxicology and redox signaling. Here we review the regulation of genes involved in protection against oxidative stress in developing vertebrates, with a focus on Nrf2 and related cap’n’collar (CNC)-basic-leucine zipper (bZIP) transcription factors. Vertebrate animals including zebrafish share Nfe2, Nrf1, Nrf2, and Nrf3 as well as a core set of genes that respond to oxidative stress, contributing to the value of zebrafish as a model system with which to investigate the mechanisms involved in regulation of redox signaling and the response to oxidative stress during embryolarval development. Moreover, studies in zebrafish have revealed nrf and keap1 gene duplications that provide an opportunity to dissect multiple functions of vertebrate NRF genes, including multiple sensing mechanisms involved in chemical-specific effects. PMID:26130508

  3. TSH Receptor Function Is Required for Normal Thyroid Differentiation in Zebrafish

    PubMed Central

    Opitz, Robert; Maquet, Emilie; Zoenen, Maxime; Dadhich, Rajesh

    2011-01-01

    TSH is the primary physiological regulator of thyroid gland function. The effects of TSH on thyroid cells are mediated via activation of its membrane receptor [TSH receptor (TSHR)]. In this study, we examined functional thyroid differentiation in zebrafish and characterized the role of TSHR signaling during thyroid organogenesis. Cloning of a cDNA encoding zebrafish Tshr showed conservation of primary structure and functional properties between zebrafish and mammalian TSHR. In situ hybridization confirmed that the thyroid is the major site of tshr expression during zebrafish development. In addition, we identified tpo, iyd, duox, and duoxa as novel thyroid differentiation markers in zebrafish. Temporal analyses of differentiation marker expression demonstrated the induction of an early thyroid differentiation program along with thyroid budding, followed by a delayed onset of duox and duoxa expression coincident with thyroid hormone synthesis. Furthermore, comparative analyses in mouse and zebrafish revealed for the first time a thyroid-enriched expression of cell death regulators of the B-cell lymphoma 2 family during early thyroid morphogenesis. Knockdown of tshr function by morpholino microinjection into embryos did not affect early thyroid morphogenesis but caused defects in later functional differentiation. The thyroid phenotype observed in tshr morphants at later stages comprised a reduction in number and size of functional follicles, down-regulation of differentiation markers, as well as reduced thyroid transcription factor expression. A comparison of our results with phenotypes observed in mouse models of defective TSHR and cAMP signaling highlights the value of zebrafish as a model to enhance the understanding of functional differentiation in the vertebrate thyroid. PMID:21737742

  4. Long-Term Hyperphagia and Caloric Restriction Caused by Low- or High-Density Husbandry Have Differential Effects on Zebrafish Postembryonic Development, Somatic Growth, Fat Accumulation and Reproduction

    PubMed Central

    Leibold, Sandra; Hammerschmidt, Matthias

    2015-01-01

    In recent years, the zebrafish (Danio rerio) has emerged as an alternative vertebrate model for energy homeostasis and metabolic diseases, including obesity and anorexia. It has been shown that diet-induced obesity (DIO) in zebrafish shares multiple pathophysiological features with obesity in mammals. However, a systematic and comprehensive analysis of the different pathways of energy expenditure in obese and starved fish had been missing thus far. Here, we carry out long-term ad libitum feeding (hyperphagia) and caloric restriction studies induced by low- or high-density husbandry, respectively, to investigate the impact of caloric intake on the timing of scale formation, a crucial step of postembryonic development and metamorphosis, and on somatic growth, body weight, fat storage and female reproduction. We show that all of them are positively affected by increased caloric intake, that middle-aged fish develop severe DIO, and that the body mass index (BMI) displays a strict linear correlation with whole-body triglyceride levels in adult zebrafish. Interestingly, juvenile fish are largely resistant to DIO, while BMI and triglyceride values drop in aged fish, pointing to aging-associated anorexic effects. Histological analyses further indicate that increased fat storage in white adipose tissue involves both hyperplasia and hypertrophy of adipocytes. Furthermore, in ovaries, caloric intake primarily affects the rate of oocyte growth, rather than total oocyte numbers. Finally, comparing the different pathways of energy expenditure with each other, we demonstrate that they are differentially affected by caloric restriction / high-density husbandry. In juvenile fish, scale formation is prioritized over somatic growth, while in sexually mature adults, female reproduction is prioritized over somatic growth, and somatic growth over fat storage. Our data will serve as a template for future functional studies to dissect the neuroendocrine regulators of energy homeostasis mediating differential energy allocation. PMID:25799180

  5. Long-term hyperphagia and caloric restriction caused by low- or high-density husbandry have differential effects on zebrafish postembryonic development, somatic growth, fat accumulation and reproduction.

    PubMed

    Leibold, Sandra; Hammerschmidt, Matthias

    2015-01-01

    In recent years, the zebrafish (Danio rerio) has emerged as an alternative vertebrate model for energy homeostasis and metabolic diseases, including obesity and anorexia. It has been shown that diet-induced obesity (DIO) in zebrafish shares multiple pathophysiological features with obesity in mammals. However, a systematic and comprehensive analysis of the different pathways of energy expenditure in obese and starved fish had been missing thus far. Here, we carry out long-term ad libitum feeding (hyperphagia) and caloric restriction studies induced by low- or high-density husbandry, respectively, to investigate the impact of caloric intake on the timing of scale formation, a crucial step of postembryonic development and metamorphosis, and on somatic growth, body weight, fat storage and female reproduction. We show that all of them are positively affected by increased caloric intake, that middle-aged fish develop severe DIO, and that the body mass index (BMI) displays a strict linear correlation with whole-body triglyceride levels in adult zebrafish. Interestingly, juvenile fish are largely resistant to DIO, while BMI and triglyceride values drop in aged fish, pointing to aging-associated anorexic effects. Histological analyses further indicate that increased fat storage in white adipose tissue involves both hyperplasia and hypertrophy of adipocytes. Furthermore, in ovaries, caloric intake primarily affects the rate of oocyte growth, rather than total oocyte numbers. Finally, comparing the different pathways of energy expenditure with each other, we demonstrate that they are differentially affected by caloric restriction / high-density husbandry. In juvenile fish, scale formation is prioritized over somatic growth, while in sexually mature adults, female reproduction is prioritized over somatic growth, and somatic growth over fat storage. Our data will serve as a template for future functional studies to dissect the neuroendocrine regulators of energy homeostasis mediating differential energy allocation.

  6. A novel zinc finger protein 219-like (ZNF219L) is involved in the regulation of collagen type 2 alpha 1a (col2a1a) gene expression in zebrafish notochord.

    PubMed

    Lien, Huang-Wei; Yang, Chung-Hsiang; Cheng, Chia-Hsiung; Hung, Chin-Chun; Liao, Wei-Hao; Hwang, Pung-Pung; Han, Yu-San; Huang, Chang-Jen

    2013-01-01

    The notochord is required for body plan patterning in vertebrates, and defects in notochord development during embryogenesis can lead to diseases affecting the adult. It is therefore important to elucidate the gene regulatory mechanism underlying notochord formation. In this study, we cloned the zebrafish zinc finger 219-like (ZNF219L) based on mammalian ZNF219, which contains nine C2H2-type zinc finger domains. Through whole-mount in situ hybridization, we found that znf219L mRNA is mainly expressed in the zebrafish midbrain-hindbrain boundary, hindbrain, and notochord during development. The znf219L morpholino knockdown caused partial abnormal notochord phenotype and reduced expression of endogenous col2a1a in the notochord specifically. In addition, ZNF219L could recognize binding sites with GGGGG motifs and trigger augmented activity of the col2a1a promoter in a luciferase assay. Furthermore, in vitro binding experiments revealed that ZNF219L recognizes the GGGGG motifs in the promoter region of the zebrafish col2a1a gene through its sixth and ninth zinc finger domains. Taken together, our results reveal that ZNF219L is involved in regulating the expression of col2a1a in zebrafish notochord specifically.

  7. A Novel Zinc Finger Protein 219-like (ZNF219L) is Involved in the Regulation of Collagen Type 2 Alpha 1a (col2a1a) Gene Expression in Zebrafish Notochord

    PubMed Central

    Lien, Huang-Wei; Yang, Chung-Hsiang; Cheng, Chia-Hsiung; Hung, Chin-Chun; Liao, Wei-Hao; Hwang, Pung-Pung; Han, Yu-San; Huang, Chang-Jen

    2013-01-01

    The notochord is required for body plan patterning in vertebrates, and defects in notochord development during embryogenesis can lead to diseases affecting the adult. It is therefore important to elucidate the gene regulatory mechanism underlying notochord formation. In this study, we cloned the zebrafish zinc finger 219-like (ZNF219L) based on mammalian ZNF219, which contains nine C2H2-type zinc finger domains. Through whole-mount in situ hybridization, we found that znf219L mRNA is mainly expressed in the zebrafish midbrain-hindbrain boundary, hindbrain, and notochord during development. The znf219L morpholino knockdown caused partial abnormal notochord phenotype and reduced expression of endogenous col2a1a in the notochord specifically. In addition, ZNF219L could recognize binding sites with GGGGG motifs and trigger augmented activity of the col2a1a promoter in a luciferase assay. Furthermore, in vitro binding experiments revealed that ZNF219L recognizes the GGGGG motifs in the promoter region of the zebrafish col2a1a gene through its sixth and ninth zinc finger domains. Taken together, our results reveal that ZNF219L is involved in regulating the expression of col2a1a in zebrafish notochord specifically. PMID:24155663

  8. The hypothalamic neuropeptide oxytocin is required for formation of the neurovascular interface of the pituitary.

    PubMed

    Gutnick, Amos; Blechman, Janna; Kaslin, Jan; Herwig, Lukas; Belting, Heinz-Georg; Affolter, Markus; Bonkowsky, Joshua L; Levkowitz, Gil

    2011-10-18

    The hypothalamo-neurohypophyseal system (HNS) is the neurovascular structure through which the hypothalamic neuropeptides oxytocin and arginine-vasopressin exit the brain into the bloodstream, where they go on to affect peripheral physiology. Here, we investigate the molecular cues that regulate the neurovascular contact between hypothalamic axons and neurohypophyseal capillaries of the zebrafish. We developed a transgenic system in which both hypothalamic axons and neurohypophyseal vasculature can be analyzed in vivo. We identified the cellular organization of the zebrafish HNS as well as the dynamic processes that contribute to formation of the HNS neurovascular interface. We show that formation of this interface is regulated during development by local release of oxytocin, which affects endothelial morphogenesis. This cell communication process is essential for the establishment of a tight axovasal interface between the neurons and blood vessels of the HNS. We present a unique example of axons affecting endothelial morphogenesis through secretion of a neuropeptide. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. From inflation to flotation: contribution of the swimbladder to whole-body density and swimming depth during development of the zebrafish (Danio rerio).

    PubMed

    Lindsey, Benjamin W; Smith, Frank M; Croll, Roger P

    2010-03-01

    Teleost fishes have body tissues that are denser than water, causing them to sink. Many teleosts therefore possess a gas-filled swimbladder that provides lift, allowing fish to attain neutral buoyancy. The importance of the swimbladder as a buoyancy aid during changing body sizes over ontogeny and its role in determining the swimming depth of fish remain unclear. In this study, we have used the zebrafish (Danio rerio) to investigate changes in the size and shape of the swimbladder during development and examine whether these changes affect the hydrostatic contribution of the swimbladder during swimming. Our results showed that swim-up behavior is critical for larvae to first inflate their swimbladder, decrease body density, and attain neutral buoyancy. Following inflation, we found a strong linear correlation between fish volume and swimbladder volume over ontogeny. This trend was supported by measures of the density of zebrafish, which was conserved within a narrow range between 1.00 +/- 0.001 and 0.996 +/- 0.001 g/cm(3) despite an increase in the swimming depth of zebrafish, which occurred upon transition to a double-chambered organ. Finally, we demonstrated that the contribution of the swimbladder keeps the fish within 1.7% of neutral buoyancy throughout larval development.

  10. Aspp2 negatively regulates body growth but not developmental timing by modulating IRS signaling in zebrafish embryos.

    PubMed

    Liu, Chengdong; Luan, Jing; Bai, Yan; Li, Yun; Lu, Ling; Liu, Yunzhang; Hakuno, Fumihiko; Takahashi, Shin-Ichiro; Duan, Cunming; Zhou, Jianfeng

    2014-02-01

    The growth and developmental rate of developing embryos and fetus are tightly controlled and coordinated to maintain proper body shape and size. The insulin receptor substrate (IRS) proteins, key intracellular transducers of insulin and insulin-like growth factor signaling, play essential roles in the regulation of growth and development. A short isoform of apoptosis-stimulating protein of p53 2 (ASPP2) was recently identified as a binding partner of IRS-1 and IRS-2 in mammalian cells in vitro. However, it is unclear whether ASPP2 plays any role in vertebrate embryonic growth and development. Here, we show that zebrafish Aspp2a and Aspp2b negatively regulate embryonic growth without affecting developmental rate. Human ASPP2 had similar effects on body growth in zebrafish embryos. Aspp2a and 2b inhibit Akt signaling. This inhibition was reversed by coinjection of myr-Akt1, a constitutively active form of Akt1. Zebrafish Aspp2a and Aspp2b physically bound with Irs-1, and the growth inhibitory effects of ASPP2/Aspp2 depend on the presence of their ankyrin repeats and SH3 domains. These findings uncover a novel role of Aspp2 in regulating vertebrate embryonic growth. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Expression of CALR mutants causes mpl-dependent thrombocytosis in zebrafish.

    PubMed

    Lim, K-H; Chang, Y-C; Chiang, Y-H; Lin, H-C; Chang, C-Y; Lin, C-S; Huang, L; Wang, W-T; Gon-Shen Chen, C; Chou, W-C; Kuo, Y-Y

    2016-10-07

    CALR mutations are identified in about 30% of JAK2/MPL-unmutated myeloproliferative neoplasms (MPNs) including essential thrombocythemia (ET) and primary myelofibrosis. Although the molecular pathogenesis of CALR mutations leading to MPNs has been studied using in vitro cell lines models, how mutant CALR may affect developmental hematopoiesis remains unknown. Here we took advantage of the zebrafish model to examine the effects of mutant CALR on early hematopoiesis and model human CALR-mutated MPNs. We identified three zebrafish genes orthologous to human CALR, referred to as calr, calr3a and calr3b. The expression of CALR-del52 and CALR-ins5 mutants caused an increase in the hematopoietic stem/progenitor cells followed by thrombocytosis without affecting normal angiogenesis. The expression of CALR mutants also perturbed early developmental hematopoiesis in zebrafish. Importantly, morpholino knockdown of mpl but not epor or csf3r could significantly attenuate the effects of mutant CALR. Furthermore, the expression of mutant CALR caused jak-stat signaling activation in zebrafish that could be blocked by JAK inhibitors (ruxolitinib and fedratinib). These findings showed that mutant CALR activates jak-stat signaling through an mpl-dependent mechanism to mediate pathogenic thrombopoiesis in zebrafish, and illustrated that the signaling machinery related to mutant CALR tumorigenesis are conserved between human and zebrafish.

  12. Muscle dysfunction in a zebrafish model of Duchenne muscular dystrophy.

    PubMed

    Widrick, Jeffrey J; Alexander, Matthew S; Sanchez, Benjamin; Gibbs, Devin E; Kawahara, Genri; Beggs, Alan H; Kunkel, Louis M

    2016-11-01

    Sapje zebrafish lack the protein dystrophin and are the smallest vertebrate model of Duchenne muscular dystrophy (DMD). Their small size makes them ideal for large-scale drug discovery screens. However, the extent that sapje mimic the muscle dysfunction of higher vertebrate models of DMD is unclear. We used an optical birefringence assay to differentiate affected dystrophic sapje larvae from their unaffected siblings and then studied trunk muscle contractility at 4-7 days postfertilization. Preparation cross-sectional area (CSA) was similar for affected and unaffected larvae, yet tetanic forces of affected preparations were only 30-60% of normal. ANCOVA indicated that the linear relationship observed between tetanic force and CSA for unaffected preparations was absent in the affected population. Consequently, the average force/CSA of affected larvae was depressed 30-70%. Disproportionate reductions in twitch vs. tetanic force, and a slowing of twitch tension development and relaxation, indicated that the myofibrillar disorganization evident in the birefringence assay could not explain the entire force loss. Single eccentric contractions, in which activated preparations were lengthened 5-10%, resulted in tetanic force deficits in both groups of larvae. However, deficits of affected preparations were three- to fivefold greater at all strains and ages, even after accounting for any recovery. Based on these functional assessments, we conclude that the sapje mutant zebrafish is a phenotypically severe model of DMD. The severe contractile deficits of sapje larvae represent novel physiological endpoints for therapeutic drug screening. Copyright © 2016 the American Physiological Society.

  13. Effects of dietary exposure to brominated flame retardant BDE-47 on thyroid condition, gonadal development and growth of zebrafish.

    PubMed

    Torres, Leticia; Orazio, Carl E; Peterman, Paul H; Patiño, Reynaldo

    2013-10-01

    Little is known about the effects of brominated flame retardants in teleosts and some of the information currently available is inconsistent. This study examined effects of dietary exposure to 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) on thyroid condition, body mass and size, and gonadal development of zebrafish. Pubertal, 49-day-old (posthatch) fish were fed diets without BDE-47 (control) or with 1, 5 or 25 μg/g BDE-47/diet. Treatments were conducted in triplicate 30-L tanks each containing 50 zebrafish, and 15 fish per treatment (5 per tank) were sampled at days 40, 80 and 120 of exposure. Measurements were taken of body mass, standard length, head depth and head length. Sex (at 40-120 days of exposure), germ cell stage (at 40 days) and thyroid condition (at 120 days; follicular cell height, colloid depletion, angiogenesis) were histologically determined. Whole-body BDE-47 levels at study completion were within the high end of levels reported in environmentally exposed (wild) fishes. Analysis of variance was used to determine differences among treatments at each sampling time. No effects were observed on thyroid condition or germ cell stage in either sex. Reduced head length was observed in females exposed to BDE-47 at 80 days but not at 40 or 120 days. In males, no apparent effects of BDE-47 were observed at 40 and 80 days, but fish exposed to 25 μg/g had lower body mass at 120 days compared to control fish. These observations suggest that BDE-47 at environmentally relevant whole-body concentrations does not affect thyroid condition or pubertal development of zebrafish but does affect growth during the juvenile-to-adult transition, especially in males.

  14. SIX2 and BMP4 mutations associate with anomalous kidney development.

    PubMed

    Weber, Stefanie; Taylor, Jaclyn C; Winyard, Paul; Baker, Kari F; Sullivan-Brown, Jessica; Schild, Raphael; Knüppel, Tanja; Zurowska, Aleksandra M; Caldas-Alfonso, Alberto; Litwin, Mieczyslaw; Emre, Sevinc; Ghiggeri, Gian Marco; Bakkaloglu, Aysin; Mehls, Otto; Antignac, Corinne; Network, Escape; Schaefer, Franz; Burdine, Rebecca D

    2008-05-01

    Renal hypodysplasia (RHD) is characterized by reduced kidney size and/or maldevelopment of the renal tissue following abnormal organogenesis. Mutations in renal developmental genes have been identified in a subset of affected individuals. Here, we report the first mutations in BMP4 and SIX2 identified in patients with RHD. We detected 3 BMP4 mutations in 5 RHD patients, and 3 SIX2 mutations in 5 different RHD patients. Overexpression assays in zebrafish demonstrated that these mutations affect the function of Bmp4 and Six2 in vivo. Overexpression of zebrafish six2.1 and bmp4 resulted in dorsalization and ventralization, respectively, suggesting opposing roles in mesendoderm formation. When mutant constructs containing the identified human mutations were overexpressed instead, these effects were attenuated. Morpholino knockdown of bmp4 and six2.1 affected glomerulogenesis, suggesting specific roles for these genes in the formation of the pronephros. In summary, these studies implicate conserved roles for Six2 and Bmp4 in the development of the renal system. Defects in these proteins could affect kidney development at multiple stages, leading to the congenital anomalies observed in patients with RHD.

  15. Early development of the zebrafish pronephros and analysis of mutations affecting pronephric function.

    PubMed

    Drummond, I A; Majumdar, A; Hentschel, H; Elger, M; Solnica-Krezel, L; Schier, A F; Neuhauss, S C; Stemple, D L; Zwartkruis, F; Rangini, Z; Driever, W; Fishman, M C

    1998-12-01

    The zebrafish pronephric kidney provides a simplified model of nephron development and epithelial cell differentiation which is amenable to genetic analysis. The pronephros consists of two nephrons with fused glomeruli and paired pronephric tubules and ducts. Nephron formation occurs after the differentiation of the pronephric duct with both the glomeruli and tubules being derived from a nephron primordium. Fluorescent dextran injection experiments demonstrate that vascularization of the zebrafish pronephros and the onset of glomerular filtration occurs between 40 and 48 hpf. We isolated fifteen recessive mutations that affect development of the pronephros. All have visible cysts in place of the pronephric tubule at 2-2.5 days of development. Mutants were grouped in three classes: (1) a group of twelve mutants with defects in body axis curvature and manifesting the most rapid and severe cyst formation involving the glomerulus, tubule and duct, (2) the fleer mutation with distended glomerular capillary loops and cystic tubules, and (3) the mutation pao pao tang with a normal glomerulus and cysts limited to the pronephric tubules. double bubble was analyzed as a representative of mutations that perturb the entire length of the pronephros and body axis curvature. Cyst formation begins in the glomerulus at 40 hpf at the time when glomerular filtration is established suggesting a defect associated with the onset of pronephric function. Basolateral membrane protein targeting in the pronephric duct epithelial cells is also severely affected, suggesting a failure in terminal epithelial cell differentiation and alterations in electrolyte transport. These studies reveal the similarity of normal pronephric development to kidney organogenesis in all vertebrates and allow for a genetic dissection of genes needed to establish the earliest renal function.

  16. Investigating How the Microbiome Interacts With Environmental Chemicals in Zebrafish

    EPA Pesticide Factsheets

    This internship will use an innovative experimental system comprised of colonized and microbe-free zebrafish to learn how microbial colonization status affects the toxicity of environmental chemicals.

  17. Effects of Simulated Microgravity on Otolith Growth of Larval Zebrafish using a Rotating-Wall Vessel: Appropriate Rotation Speed and Fish Developmental Stage

    NASA Astrophysics Data System (ADS)

    Li, Xiaoyan; Anken, Ralf; Liu, Liyue; Wang, Gaohong; Liu, Yongding

    2017-02-01

    Stimulus dependence is a general feature of developing animal sensory systems. In this respect, it has extensively been shown earlier that fish inner ear otoliths can act as test masses as their growth is strongly affected by altered gravity such as hypergravity obtained using centrifuges, by (real) microgravity achieved during spaceflight or by simulated microgravity using a ground-based facility. Since flight opportunities are scarce, ground-based simulators of microgravity, using a wide variety of physical principles, have been developed to overcome this shortcoming. Not all of them, however, are equally well suited to provide functional weightlessness from the perspective of the biosystem under evaluation. Therefore, the range of applicability of a particular simulator has to be extensively tested. Earlier, we have shown that a Rotating-Wall Vessel (RWV) can be used to provide simulated microgravity for developing Zebrafish regarding the effect of rotation on otolith development. In the present study, we wanted to find the most effective speed of rotation and identify the appropriate developmental stage of Zebrafish, where effects are the largest, in order to provide a methodological basis for future in-depth analyses dedicated to the physiological processes underlying otolith growth at altered gravity. Last not least, we compared data on the effect of simulated microgravity on the size versus the weight of otoliths, since the size usually is measured in related studies due to convenience, but the weight more accurately approximates the physical capacity of an otolith. Maintaining embryos at 10 hours post fertilization for three days in the RWV, we found that 15 revolutions per minute (rpm) yielded the strongest effects on otolith growth. Maintenance of Zebrafish staged at 10 hpf, 1 day post fertilization (dpf), 4 dpf, 7 dpf and 14 dpf for three days at 15 rpm resulted in the most prominent effects in 7 dpf larvae. Weighing versus measuring the size of otoliths yielded basically similar results, but the data gained by weighing were more distinct. Overall, our results clearly support the concept that the environmental gravity vector regulates fish otolith growth in terms of the pendulum model of otolith test masses, and that wall vessel rotation is a valuable means to provide functional weightlessness from the perspective of developing Zebrafish. We recommend that Zebrafish embryos staged 7 dpf (or possibly slightly elder) are rotated at 15 rpm in a Rotating-Wall Vessel as used in the present study for further experiments designed to elucidate the mechanisms underlying (altered gravity affected) otolith growth.

  18. Photoluminescent graphene quantum dots for in vivo imaging of apoptotic cells

    NASA Astrophysics Data System (ADS)

    Roy, Prathik; Periasamy, Arun Prakash; Lin, Chiu-Ya; Her, Guor-Mour; Chiu, Wei-Jane; Li, Chi-Lin; Shu, Chia-Lun; Huang, Chih-Ching; Liang, Chi-Te; Chang, Huan-Tsung

    2015-01-01

    Apoptosis (programmed cell death) is linked to many incurable neurodegenerative, cardiovascular and cancer causing diseases. Numerous methods have been developed for imaging apoptotic cells in vitro; however, there are few methods available for imaging apoptotic cells in live animals (in vivo). Here we report a novel method utilizing the unique photoluminescence properties of plant leaf-derived graphene quantum dots (GQDs) modified with annexin V antibody (AbA5) to form (AbA5)-modified GQDs (AbA5-GQDs) enabling us to label apoptotic cells in live zebrafish (Danio rerio). The key is that zebrafish shows bright red photoluminescence in the presence of apoptotic cells. The toxicity of the GQDs has also been investigated with the GQDs exhibiting high biocompatibility as they were excreted from the zebrafish's body without affecting its growth significantly at a concentration lower than 2 mg mL-1 over a period of 4 to 72 hour post fertilization. The GQDs have further been used to image human breast adenocarcinoma cell line (MCF-7 cells), human cervical cancer cell line (HeLa cells), and normal human mammary epithelial cell line (MCF-10A). These results are indispensable to further the advance of graphene-based nanomaterials for biomedical applications.Apoptosis (programmed cell death) is linked to many incurable neurodegenerative, cardiovascular and cancer causing diseases. Numerous methods have been developed for imaging apoptotic cells in vitro; however, there are few methods available for imaging apoptotic cells in live animals (in vivo). Here we report a novel method utilizing the unique photoluminescence properties of plant leaf-derived graphene quantum dots (GQDs) modified with annexin V antibody (AbA5) to form (AbA5)-modified GQDs (AbA5-GQDs) enabling us to label apoptotic cells in live zebrafish (Danio rerio). The key is that zebrafish shows bright red photoluminescence in the presence of apoptotic cells. The toxicity of the GQDs has also been investigated with the GQDs exhibiting high biocompatibility as they were excreted from the zebrafish's body without affecting its growth significantly at a concentration lower than 2 mg mL-1 over a period of 4 to 72 hour post fertilization. The GQDs have further been used to image human breast adenocarcinoma cell line (MCF-7 cells), human cervical cancer cell line (HeLa cells), and normal human mammary epithelial cell line (MCF-10A). These results are indispensable to further the advance of graphene-based nanomaterials for biomedical applications. Electronic supplementary information (ESI) available: Experimental discussion on synthesis, characterization, cellular imaging, cytotoxicity of GQDs in addition to its effect on zebrafish embryos, preparation of annexin V (A5)-modified GQDs (AbA5-GQDs), staining procedures and imaging are given. Figures for XRD, UV-vis absorption, photoluminescence of GQDs, mortality of zebrafish, time course recording of morphology of zebrafish embryos and morphology of adult zebrafish exposed to GQDs are illustrated. See DOI: 10.1039/c4nr07005d

  19. Textile dyes induce toxicity on zebrafish early life stages.

    PubMed

    de Oliveira, Gisele Augusto Rodrigues; de Lapuente, Joaquín; Teixidó, Elisabet; Porredón, Constança; Borràs, Miquel; de Oliveira, Danielle Palma

    2016-02-01

    Textile manufacturing is one of the most polluting industrial sectors because of the release of potentially toxic compounds, such as synthetic dyes, into the environment. Depending on the class of the dyes, their loss in wastewaters can range from 2% to 50% of the original dye concentration. Consequently, uncontrolled use of such dyes can negatively affect human health and the ecological balance. The present study assessed the toxicity of the textile dyes Direct Black 38 (DB38), Reactive Blue 15 (RB15), Reactive Orange 16 (RO16), and Vat Green 3 (VG3) using zebrafish (Danio rerio) embryos for 144 h postfertilization (hpf). At the tested conditions, none of the dyes caused significant mortality. The highest RO16 dose significantly delayed or inhibited the ability of zebrafish embryos to hatch from the chorion after 96 hpf. From 120 hpf to 144 hpf, all the dyes impaired the gas bladder inflation of zebrafish larvae, DB38 also induced curved tail, and VG3 led to yolk sac edema in zebrafish larvae. Based on these data, DB38, RB15, RO16, and VG3 can induce malformations during embryonic and larval development of zebrafish. Therefore, it is essential to remove these compounds from wastewater or reduce their concentrations to safe levels before discharging textile industry effluents into the aquatic environment. © 2015 SETAC.

  20. Neurodevelopmental Low-dose Bisphenol A Exposure Leads to Early Life-stage Hyperactivity and Learning Deficits in Adult Zebrafish

    PubMed Central

    Saili, Katerine S.; Corvi, Margaret M.; Weber, Daniel N.; Patel, Ami U.; Das, Siba R.; Przybyla, Jennifer; Anderson, Kim A.; Tanguay, Robert L.

    2011-01-01

    Developmental bisphenol A (BPA) exposure has been implicated in adverse behavior and learning deficits. The mode of action underlying these effects is unclear. The zebrafish model was employed to investigate the neurobehavioral effects of developmental bisphenol A (BPA) exposure. The objectives of this study were to identify whether low-dose, developmental BPA exposure affects larval zebrafish locomotor behavior and whether learning deficits occur in adults exposed during development. Two control compounds, 17β-estradiol (an estrogen receptor ligand) and GSK4716 (a synthetic estrogen related receptor gamma ligand), were included. Larval toxicity assays were used to determine appropriate BPA, 17β-estradiol, and GSK4716 concentrations for behavior testing. BPA tissue uptake was analyzed using HPLC and lower doses were extrapolated using a linear regression analysis. Larval behavior tests were conducted using a ViewPoint Zebrabox. Adult learning tests were conducted using a custom-built T-maze. BPA exposure to ≤30 μM was nonteratogenic in zebrafish. Neurodevelopmental BPA exposure to 0.01, 0.1, or 1 μM led to larval hyperactivity or learning deficits in adult zebrafish. Exposure to 0.1 μM 17β-estradiol or GSK4716 also led to larval hyperactivity. This study demonstrates the efficacy of using the larval zebrafish model for studying the neurobehavioral effects of low-dose developmental BPA exposure. PMID:22108044

  1. The Morphogenesis of Cranial Sutures in Zebrafish

    PubMed Central

    Topczewska, Jolanta M.; Shoela, Ramy A.; Tomaszewski, Joanna P.; Mirmira, Rupa B.; Gosain, Arun K.

    2016-01-01

    Using morphological, histological, and TEM analyses of the cranium, we provide a detailed description of bone and suture growth in zebrafish. Based on expression patterns and localization, we identified osteoblasts at different degrees of maturation. Our data confirm that, unlike in humans, zebrafish cranial sutures maintain lifelong patency to sustain skull growth. The cranial vault develops in a coordinated manner resulting in a structure that protects the brain. The zebrafish cranial roof parallels that of higher vertebrates and contains five major bones: one pair of frontal bones, one pair of parietal bones, and the supraoccipital bone. Parietal and frontal bones are formed by intramembranous ossification within a layer of mesenchyme positioned between the dermal mesenchyme and meninges surrounding the brain. The supraoccipital bone has an endochondral origin. Cranial bones are separated by connective tissue with a distinctive architecture of osteogenic cells and collagen fibrils. Here we show RNA in situ hybridization for col1a1a, col2a1a, col10a1, bglap/osteocalcin, fgfr1a, fgfr1b, fgfr2, fgfr3, foxq1, twist2, twist3, runx2a, runx2b, sp7/osterix, and spp1/ osteopontin, indicating that the expression of genes involved in suture development in mammals is preserved in zebrafish. We also present methods for examining the cranium and its sutures, which permit the study of the mechanisms involved in suture patency as well as their pathological obliteration. The model we develop has implications for the study of human disorders, including craniosynostosis, which affects 1 in 2,500 live births. PMID:27829009

  2. Changes in gravitational force induce alterations in gene expression that can be monitored in the live, developing zebrafish heart

    NASA Astrophysics Data System (ADS)

    Gillette-Ferguson, I.; Ferguson, D. G.; Poss, K. D.; Moorman, S. J.

    2003-10-01

    Little is known about the effect of microgravity on gene expression, particularly in vivo during embryonic development. Using transgenic zebrafish that express the gfp gene under the influence of a β-actin promoter, we examined the affect of simulated-microgravity on GFP expression in the heart. Zebrafish embryos, at the 18-20 somite-stage, were exposed to simulated-microgravity for 24 hours. The intensity of GFP fluorescence associated with the heart was then determined using fluorescence microscopy. Our measurements indicated that simulated-microgravity induced a 23.9% increase in GFP-associated fluorescence in the heart. In contrast, the caudal notochord showed a 17.5% increase and the embryo as a whole showed only an 8.5% increase in GFP-associated fluorescence. This suggests that there are specific effects on the heart causing the more dramatic increase. These studies indicate that microgravity can influence gene expression and demonstrate the usefulness of this in vivo model of "reporter-gene" expression for studying the effects of microgravity.

  3. The human ARF tumor suppressor senses blastema activity and suppresses epimorphic tissue regeneration

    PubMed Central

    Hesse, Robert G; Kouklis, Gayle K; Ahituv, Nadav; Pomerantz, Jason H

    2015-01-01

    The control of proliferation and differentiation by tumor suppressor genes suggests that evolution of divergent tumor suppressor repertoires could influence species’ regenerative capacity. To directly test that premise, we humanized the zebrafish p53 pathway by introducing regulatory and coding sequences of the human tumor suppressor ARF into the zebrafish genome. ARF was dormant during development, in uninjured adult fins, and during wound healing, but was highly expressed in the blastema during epimorphic fin regeneration after amputation. Regenerative, but not developmental signals resulted in binding of zebrafish E2f to the human ARF promoter and activated conserved ARF-dependent Tp53 functions. The context-dependent activation of ARF did not affect growth and development but inhibited regeneration, an unexpected distinct tumor suppressor response to regenerative versus developmental environments. The antagonistic pleiotropic characteristics of ARF as both tumor and regeneration suppressor imply that inducing epimorphic regeneration clinically would require modulation of ARF –p53 axis activation. DOI: http://dx.doi.org/10.7554/eLife.07702.001 PMID:26575287

  4. Toxicological and behavioral responses as a tool to assess the effects of natural and synthetic dyes on zebrafish early life.

    PubMed

    Abe, Flavia R; Mendonça, Jacqueline N; Moraes, Luiz A B; Oliveira, Gisele A R de; Gravato, Carlos; Soares, Amadeu M V M; Oliveira, Danielle P de

    2017-07-01

    Organic dyes extracted from natural sources have been widely used to develop safety and eco-friendly dyes as an alternative to synthetic ones, since the latter are usually precursors of mutagenic compounds. Thereby, toxicity tests to non-target organisms are critical step to develop harmless dyes to environment and in this context, zebrafish early life stages are becoming an important alternative model. We aimed to assess the toxic effects of the synthetic dye Basic Red 51 (BR51, used in cosmetic industry), the natural dye erythrostominone (ERY, a potential commercial dye extracted from fungi) and its photodegradation product (DERY), using zebrafish early life assays. Developmental malformations on embryos and behavioral impairment on larvae were explored. Our results showed that embryos exposed to BR51 and ERY exhibited a large yolk sac (LOEC = 7.5 mg L -1 ), possibly due to a deformity or delayed resorption. ERY also induced pericardial and yolk sac edemas at high concentrations (LOEC = 15 and 30 mg L -1 , respectively). Moreover, larvae swan less distance and time when exposed to ERY (LOEC = 7.5 mg L -1 ) and BR51 (LOEC = 1.875 mg L -1 ). The lowest larvae locomotion have been associated with impairment of the yolk sac, important tissue of the energy source. Interestingly, DERY did not affect neither development nor behavior of zebrafish, showing that ERY photodegradation is sufficient to prevent its toxic effects. In conclusion, both natural and synthetic dyes impaired development and behavior of zebrafish early life, therefore, a simple treatment of the natural dye can prevent the aquatic life impact. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Nrf2 and Nrf2-related proteins in development and developmental toxicity: Insights from studies in zebrafish (Danio rerio).

    PubMed

    Hahn, Mark E; Timme-Laragy, Alicia R; Karchner, Sibel I; Stegeman, John J

    2015-11-01

    Oxidative stress is an important mechanism of chemical toxicity, contributing to developmental toxicity and teratogenesis as well as to cardiovascular and neurodegenerative diseases and diabetic embryopathy. Developing animals are especially sensitive to effects of chemicals that disrupt the balance of processes generating reactive species and oxidative stress, and those anti-oxidant defenses that protect against oxidative stress. The expression and inducibility of anti-oxidant defenses through activation of NFE2-related factor 2 (Nrf2) and related proteins is an essential process affecting the susceptibility to oxidants, but the complex interactions of Nrf2 in determining embryonic response to oxidants and oxidative stress are only beginning to be understood. The zebrafish (Danio rerio) is an established model in developmental biology and now also in developmental toxicology and redox signaling. Here we review the regulation of genes involved in protection against oxidative stress in developing vertebrates, with a focus on Nrf2 and related cap'n'collar (CNC)-basic-leucine zipper (bZIP) transcription factors. Vertebrate animals including zebrafish share Nfe2, Nrf1, Nrf2, and Nrf3 as well as a core set of genes that respond to oxidative stress, contributing to the value of zebrafish as a model system with which to investigate the mechanisms involved in regulation of redox signaling and the response to oxidative stress during embryolarval development. Moreover, studies in zebrafish have revealed nrf and keap1 gene duplications that provide an opportunity to dissect multiple functions of vertebrate NRF genes, including multiple sensing mechanisms involved in chemical-specific effects. Copyright © 2015. Published by Elsevier Inc.

  6. Ethanol Exposure Causes Muscle Degeneration in Zebrafish

    PubMed Central

    Coffey, Elizabeth C.; Pasquarella, Maggie E.; Goody, Michelle F.

    2018-01-01

    Alcoholic myopathies are characterized by neuromusculoskeletal symptoms such as compromised movement and weakness. Although these symptoms have been attributed to neurological damage, EtOH may also target skeletal muscle. EtOH exposure during zebrafish primary muscle development or adulthood results in smaller muscle fibers. However, the effects of EtOH exposure on skeletal muscle during the growth period that follows primary muscle development are not well understood. We determined the effects of EtOH exposure on muscle during this phase of development. Strikingly, muscle fibers at this stage are acutely sensitive to EtOH treatment: EtOH induces muscle degeneration. The severity of EtOH-induced muscle damage varies but muscle becomes more refractory to EtOH as muscle develops. NF-kB induction in muscle indicates that EtOH triggers a pro-inflammatory response. EtOH-induced muscle damage is p53-independent. Uptake of Evans blue dye shows that EtOH treatment causes sarcolemmal instability before muscle fiber detachment. Dystrophin-null sapje mutant zebrafish also exhibit sarcolemmal instability. We tested whether Trichostatin A (TSA), which reduces muscle degeneration in sapje mutants, would affect EtOH-treated zebrafish. We found that TSA and EtOH are a lethal combination. EtOH does, however, exacerbate muscle degeneration in sapje mutants. EtOH also disrupts adhesion of muscle fibers to their extracellular matrix at the myotendinous junction: some detached muscle fibers retain beta-Dystroglycan indicating failure of muscle end attachments. Overexpression of Paxillin, which reduces muscle degeneration in zebrafish deficient for beta-Dystroglycan, is not sufficient to rescue degeneration. Taken together, our results suggest that EtOH exposure has pleiotropic deleterious effects on skeletal muscle. PMID:29615556

  7. A non-canonical function of telomerase RNA in the regulation of developmental myelopoiesis in zebrafish

    NASA Astrophysics Data System (ADS)

    Alcaraz-Pérez, Francisca; García-Castillo, Jesús; García-Moreno, Diana; López-Muñoz, Azucena; Anchelin, Monique; Angosto, Diego; Zon, Leonard I.; Mulero, Victoriano; Cayuela, María L.

    2014-02-01

    Dyskeratosis congenita (DC) is an inherited disorder with mutations affecting telomerase or telomeric proteins. DC patients usually die of bone marrow failure. Here we show that genetic depletion of the telomerase RNA component (TR) in the zebrafish results in impaired myelopoiesis, despite normal development of haematopoietic stem cells (HSCs). The neutropenia caused by TR depletion is independent of telomere length and telomerase activity. Genetic analysis shows that TR modulates the myeloid-erythroid fate decision by controlling the levels of the master myeloid and erythroid transcription factors spi1 and gata1, respectively. The alteration in spi1 and gata1 levels occurs through stimulation of gcsf and mcsf. Our model of TR deficiency in the zebrafish illuminates the non-canonical roles of TR, and could establish therapeutic targets for DC.

  8. Exposure to tris(1,3-dichloro-2-propyl) phosphate for Two generations decreases fecundity of zebrafish at environmentally relevant concentrations.

    PubMed

    Zhang, Yongkang; Li, Meng; Li, Shuying; Wang, Qiangwei; Zhu, Guonian; Su, Guanyong; Letcher, Robert J; Liu, Chunsheng

    2018-05-14

    Previous studies reported that exposure to environmentally relevant concentrations of TDCIPP significantly decreased the number of cumulative eggs in zebrafish, but effects on the quantity of eggs and sperms remained unknown. Therefore, in this study, effects of TDCIPP on yolk diameter, surface morphology of eggs, sperm density and total motility were evaluated. First generation (F0) zebrafish larvae (Danio rerio) were exposed to 0, 50, 500 or 5000 ng/L tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) from 14 days post fertilization (dpf) to 120 dpf. The F0 generation of zebrafish were paired and F1 generation of embryos were collected and continuously exposed to the same concentrations of TDCIPP until 150 dpf. TDCIPP bioconcentration in the whole body as well as effects on survival and fecundity were evaluated in F1 generation. Exposure to TDCIPP resulted in an accumulation of the chemical and decreased survival of F1 generation of zebrafish. TDCIPP decreased cumulative production and changed surface morphology of eggs in females. In males, TDCIPP decreased total motility of sperm but did not affect sperm density. These effects on quality of egg and sperm might be responsible for the decreased hatching rates observed in cross mating experiments. Furthermore, TDCIPP exposure resulted in down-regulated gene expression related to gonadal development and maturation of germ cells in females or/and males, and the down-regulation was correlated to decreased fecundity. Taken together, the results suggested that exposure to TDCIPP could decrease the quantity of eggs and sperms by down-regulating the expression of genes related to gonadal development and maturation of germ cells in zebrafish. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. TPhP exposure disturbs carbohydrate metabolism, lipid metabolism, and the DNA damage repair system in zebrafish liver

    NASA Astrophysics Data System (ADS)

    Du, Zhongkun; Zhang, Yan; Wang, Guowei; Peng, Jianbiao; Wang, Zunyao; Gao, Shixiang

    2016-02-01

    Triphenyl phosphate is a high production volume organophosphate flame retardant that has been detected in multiple environmental media at increasing concentrations. The environmental and health risks of triphenyl phosphate have drawn attention because of the multiplex toxicity of this chemical compound. However, few studies have paid close attention to the impacts of triphenyl phosphate on liver metabolism. We investigated hepatic histopathological, metabolomic and transcriptomic responses of zebrafish after exposure to 0.050 mg/L and 0.300 mg/L triphenyl phosphate for 7 days. Metabolomic analysis revealed significant changes in the contents of glucose, UDP-glucose, lactate, succinate, fumarate, choline, acetylcarnitine, and several fatty acids. Transcriptomic analysis revealed that related pathways, such as the glycosphingolipid biosynthesis, PPAR signaling pathway and fatty acid elongation, were significantly affected. These results suggest that triphenyl phosphate exposure markedly disturbs hepatic carbohydrate and lipid metabolism in zebrafish. Moreover, DNA replication, the cell cycle, and non-homologous end-joining and base excision repair were strongly affected, thus indicating that triphenyl phosphate hinders the DNA damage repair system in zebrafish liver cells. The present study provides a systematic analysis of the triphenyl phosphate-induced toxic effects in zebrafish liver and demonstrates that low concentrations of triphenyl phosphate affect normal metabolism and cell cycle.

  10. TPhP exposure disturbs carbohydrate metabolism, lipid metabolism, and the DNA damage repair system in zebrafish liver

    PubMed Central

    Du, Zhongkun; Zhang, Yan; Wang, Guowei; Peng, Jianbiao; Wang, Zunyao; Gao, Shixiang

    2016-01-01

    Triphenyl phosphate is a high production volume organophosphate flame retardant that has been detected in multiple environmental media at increasing concentrations. The environmental and health risks of triphenyl phosphate have drawn attention because of the multiplex toxicity of this chemical compound. However, few studies have paid close attention to the impacts of triphenyl phosphate on liver metabolism. We investigated hepatic histopathological, metabolomic and transcriptomic responses of zebrafish after exposure to 0.050 mg/L and 0.300 mg/L triphenyl phosphate for 7 days. Metabolomic analysis revealed significant changes in the contents of glucose, UDP-glucose, lactate, succinate, fumarate, choline, acetylcarnitine, and several fatty acids. Transcriptomic analysis revealed that related pathways, such as the glycosphingolipid biosynthesis, PPAR signaling pathway and fatty acid elongation, were significantly affected. These results suggest that triphenyl phosphate exposure markedly disturbs hepatic carbohydrate and lipid metabolism in zebrafish. Moreover, DNA replication, the cell cycle, and non-homologous end-joining and base excision repair were strongly affected, thus indicating that triphenyl phosphate hinders the DNA damage repair system in zebrafish liver cells. The present study provides a systematic analysis of the triphenyl phosphate-induced toxic effects in zebrafish liver and demonstrates that low concentrations of triphenyl phosphate affect normal metabolism and cell cycle. PMID:26898711

  11. Time-lapse imaging of neural development: zebrafish lead the way into the fourth dimension.

    PubMed

    Rieger, Sandra; Wang, Fang; Sagasti, Alvaro

    2011-07-01

    Time-lapse imaging is often the only way to appreciate fully the many dynamic cell movements critical to neural development. Zebrafish possess many advantages that make them the best vertebrate model organism for live imaging of dynamic development events. This review will discuss technical considerations of time-lapse imaging experiments in zebrafish, describe selected examples of imaging studies in zebrafish that revealed new features or principles of neural development, and consider the promise and challenges of future time-lapse studies of neural development in zebrafish embryos and adults. Copyright © 2011 Wiley-Liss, Inc.

  12. Unique and potent effects of acute ibogaine on zebrafish: the developing utility of novel aquatic models for hallucinogenic drug research.

    PubMed

    Cachat, Jonathan; Kyzar, Evan J; Collins, Christopher; Gaikwad, Siddharth; Green, Jeremy; Roth, Andrew; El-Ounsi, Mohamed; Davis, Ari; Pham, Mimi; Landsman, Samuel; Stewart, Adam Michael; Kalueff, Allan V

    2013-01-01

    An indole alkaloid, ibogaine is the principal psychoactive component of the iboga plant, used by indigenous peoples in West Africa for centuries. Modulating multiple neurotransmitter systems, the drug is a potent hallucinogen in humans, although its psychotropic effects remain poorly understood. Expanding the range of model species is an important strategy for translational neuroscience research. Here we exposed adult zebrafish (Danio rerio) to 10 and 20mg/L of ibogaine, testing them in the novel tank, light-dark box, open field, mirror stimulation, social preference and shoaling tests. In the novel tank test, the zebrafish natural diving response (geotaxis) was reversed by ibogaine, inducing initial top swimming followed by bottom dwelling. Ibogaine also attenuated the innate preference for dark environments (scototaxis) in the light-dark box test. While it did not exert overt locomotor or thigmotaxic responses in the open field test, the drug altered spatiotemporal exploration of novel environment, inducing clear preference of some areas over others. Ibogaine also promoted 'mirror' exploration in the mirror stimulation test, disrupted group cohesion in the shoaling test, and evoked strong coloration responses due to melanophore aggregation, but did not alter brain c-fos expression or whole-body cortisol levels. Overall, our results support the complex pharmacological profile of ibogaine and its high sensitivity in zebrafish models, dose-dependently affecting multiple behavioral domains. While future investigations in zebrafish may help elucidate the mechanisms underlying these unique behavioral effects, our study strongly supports the developing utility of aquatic models in hallucinogenic drug research. High sensitivity of three-dimensional phenotyping approaches applied here to behavioral effects of ibogaine in zebrafish provides further evidence of how 3D reconstructions of zebrafish swimming paths may be useful for high-throughput pharmacological screening. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. The essential role of endogenous ghrelin in growth hormone expression during zebrafish adenohypophysis development.

    PubMed

    Li, Xi; He, Jiangyan; Hu, Wei; Yin, Zhan

    2009-06-01

    Ghrelin, a multifunctional hormone, including potent GH stimulation activity, has been suggested to be important during embryonic development. Expression of ghrelin has been confirmed in the zebrafish pancreas during embryonic stages. Interfering with ghrelin function using two specific antisense morpholino oligonucleotides causes defects during zebrafish embryonic development. In ghrelin morphants the expression of GH was abolished in zebrafish somatotropes, whereas the expression patterns of the other key molecules involved in hypothalamic-pituitary development and distinct pituitary hormones genes remain largely intact at the appropriate time during zebrafish adenohypophysis development. Effective rescue of the ghrelin morphants with exogenous ghrelin mRNA showed that the correct gene had been targeted. Moreover, by analyzing the efficiencies of the ghrelin morphants rescue experiments with various forms of exogenous mutant ghrelin mRNAs, we also demonstrated the essentiality of the form acyl-ghrelin on GH stimulation during zebrafish adenohypophysis development. Our in vivo experiments, for the first time, also provided evidence of the existence of functional obestatin in the C-terminal part of zebrafish proghrelin peptides. Our research here has demonstrated that zebrafish is a unique model for functional studies of endogenous ghrelin, especially during embryonic development.

  14. DND protein functions as a translation repressor during zebrafish embryogenesis.

    PubMed

    Kobayashi, Manami; Tani-Matsuhana, Saori; Ohkawa, Yasuka; Sakamoto, Hiroshi; Inoue, Kunio

    2017-03-04

    Germline and somatic cell distinction is regulated through a combination of microRNA and germ cell-specific RNA-binding proteins in zebrafish. An RNA-binding protein, DND, has been reported to relieve the miR-430-mediated repression of some germ plasm mRNAs such as nanos3 and tdrd7 in primordial germ cells (PGCs). Here, we showed that miR-430-mediated repression is not counteracted by the overexpression of DND protein in somatic cells. Using a λN-box B tethering assay in the embryo, we found that tethering of DND to reporter mRNA results in translation repression without affecting mRNA stability. Translation repression by DND was not dependent on another germline-specific translation repressor, Nanos3, in zebrafish embryos. Moreover, our data suggested that DND represses translation of nanog and dnd mRNAs, whereas an RNA-binding protein DAZ-like (DAZL) promotes dnd mRNA translation. Thus, our study showed that DND protein functions as a translation repressor of specific mRNAs to control PGC development in zebrafish. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Mesodermal Fgf10b cooperates with other Fgfs during induction of otic and epibranchial placodes in zebrafish.

    PubMed Central

    Maulding, Kirstin; Padanad, Mahesh S.; Dong, Jennifer; Riley, Bruce B.

    2015-01-01

    Background Vertebrate otic and epibranchial placodes develop in close proximity in response to localized Fgf signaling. Although less is known about epibranchial induction, the process of otic induction in highly conserved, with important roles for Fgf3 and Fgf8 reported in all species examined. Fgf10 is also critical for otic induction in mouse, but the only zebrafish ortholog examined to date, fgf10a, is not expressed early enough to play such a role. A second zebrafish ortholog, fgf10b, has not been previously examined. Results We find that zebrafish fgf10b is expressed at tailbud stage in paraxial cephalic mesoderm beneath prospective epibranchial tissue, lateral to the developing otic placode. Knockdown of fgf10b does not affect initial otic induction but impairs subsequent accumulation of otic cells. Formation of epibranchial placodes and ganglia are also moderately impaired. Combinatorial disruption of fgf10b and fgf3 exacerbates the deficiency of otic cells and eliminates epibranchial induction entirely. Disruption of fgf10b and fgf24 also strongly reduces, but does not eliminate, epibranchial induction. Conclusions fgf10b participates in a late phase of otic induction and, in combination with fgf3, is especially critical for epibranchial induction. PMID:24677486

  16. Mesodermal Fgf10b cooperates with other fibroblast growth factors during induction of otic and epibranchial placodes in zebrafish.

    PubMed

    Maulding, Kirstin; Padanad, Mahesh S; Dong, Jennifer; Riley, Bruce B

    2014-10-01

    Vertebrate otic and epibranchial placodes develop in close proximity in response to localized fibroblast growth factor (Fgf) signaling. Although less is known about epibranchial induction, the process of otic induction in highly conserved, with important roles for Fgf3 and Fgf8 reported in all species examined. Fgf10 is also critical for otic induction in mouse, but the only zebrafish ortholog examined to date, fgf10a, is not expressed early enough to play such a role. A second zebrafish ortholog, fgf10b, has not been previously examined. We find that zebrafish fgf10b is expressed at tailbud stage in paraxial cephalic mesoderm beneath prospective epibranchial tissue, lateral to the developing otic placode. Knockdown of fgf10b does not affect initial otic induction but impairs subsequent accumulation of otic cells. Formation of epibranchial placodes and ganglia are also moderately impaired. Combinatorial disruption of fgf10b and fgf3 exacerbates the deficiency of otic cells and eliminates epibranchial induction entirely. Disruption of fgf10b and fgf24 also strongly reduces, but does not eliminate, epibranchial induction. fgf10b participates in a late phase of otic induction and, in combination with fgf3, is especially critical for epibranchial induction. Copyright © 2014 Wiley Periodicals, Inc.

  17. The Fanconi anemia/BRCA gene network in zebrafish: embryonic expression and comparative genomics.

    PubMed

    Titus, Tom A; Yan, Yi-Lin; Wilson, Catherine; Starks, Amber M; Frohnmayer, Jonathan D; Bremiller, Ruth A; Cañestro, Cristian; Rodriguez-Mari, Adriana; He, Xinjun; Postlethwait, John H

    2009-07-31

    Fanconi anemia (FA) is a genetic disease resulting in bone marrow failure, high cancer risks, and infertility, and developmental anomalies including microphthalmia, microcephaly, hypoplastic radius and thumb. Here we present cDNA sequences, genetic mapping, and genomic analyses for the four previously undescribed zebrafish FA genes (fanci, fancj, fancm, and fancn), and show that they reverted to single copy after the teleost genome duplication. We tested the hypothesis that FA genes are expressed during embryonic development in tissues that are disrupted in human patients by investigating fanc gene expression patterns. We found fanc gene maternal message, which can provide Fanc proteins to repair DNA damage encountered in rapid cleavage divisions. Zygotic expression was broad but especially strong in eyes, central nervous system and hematopoietic tissues. In the pectoral fin bud at hatching, fanc genes were expressed specifically in the apical ectodermal ridge, a signaling center for fin/limb development that may be relevant to the radius/thumb anomaly of FA patients. Hatching embryos expressed fanc genes strongly in the oral epithelium, a site of squamous cell carcinomas in FA patients. Larval and adult zebrafish expressed fanc genes in proliferative regions of the brain, which may be related to microcephaly in FA. Mature ovaries and testes expressed fanc genes in specific stages of oocyte and spermatocyte development, which may be related to DNA repair during homologous recombination in meiosis and to infertility in human patients. The intestine strongly expressed some fanc genes specifically in proliferative zones. Our results show that zebrafish has a complete complement of fanc genes in single copy and that these genes are expressed in zebrafish embryos and adults in proliferative tissues that are often affected in FA patients. These results support the notion that zebrafish offers an attractive experimental system to help unravel mechanisms relevant not only to FA, but also to breast cancer, given the involvement of fancj (brip1), fancn (palb2) and fancd1 (brca2) in both conditions.

  18. The Fanconi anemia/BRCA gene network in zebrafish: Embryonic expression and comparative genomics

    PubMed Central

    Titus, Tom A.; Yan, Yi-Lin; Wilson, Catherine; Starks, Amber M.; Frohnmayer, Jonathan D.; Canestro, Cristian; Rodriguez-Mari, Adriana; He, Xinjun; Postlethwait, John H.

    2008-01-01

    Fanconi anemia (FA) is a genic disease resulting in bone marrow failure, high cancer risks, and infertility, and developmental anomalies including microphthalmia, microcephaly, hypoplastic radius and thumb. Here we present cDNA sequences, genetic mapping, and genomic analyses for the four previously undescribed zebrafish FA genes (fanci, fancj, fancm, and fancn, and show that they reverted to single copy after the teleost genome duplication. We tested the hypothesis that FA genes are expressed during embryonic development in tissues that are disrupted in human patients by investigating fanc gene expression patterns. We found fanc gene maternal message, which can provide Fanc proteins to repair DNA damage encountered in rapid cleavage divisions. Zygotic expression was broad but especially strong in eyes, central nervous system and hematopoietic tissues. In the pectoral fin bud at hatching, fanc genes were expressed specifically in the apical ectodermal ridge, a signaling center for fin/limb development that may be relevant to the radius/thumb anomaly of FA patients. Hatching embryos expressed fanc genes strongly in the oral epithelium, a site of squamous cell carcinomas in FA patients. Larval and adult zebrafish expressed fanc genes in proliferative regions of the brain, which may be related to microcephaly in FA. Mature ovaries and testes expressed fanc genes in specific stages of oocyte and spermatocyte development, which may be related to DNA repair during homologous recombination in meiosis and to infertility in human patients. The intestine strongly expressed some fanc genes specifically in proliferative zones. Our results show that zebrafish has a complete complement of fanc genes in single copy and that these genes are expressed in zebrafish embryos and adults in proliferative tissues that are often affected in FA patients. These results support the notion that zebrafish offers an attractive experimental system to help unravel mechanisms relevant not only to FA, but also to breast cancer, given the involvement of fancj (brip1), fancn (palb2) and fancd1 (brca2) in both conditions. PMID:19101574

  19. A Zebrafish Heart Failure Model for Assessing Therapeutic Agents.

    PubMed

    Zhu, Xiao-Yu; Wu, Si-Qi; Guo, Sheng-Ya; Yang, Hua; Xia, Bo; Li, Ping; Li, Chun-Qi

    2018-03-20

    Heart failure is a leading cause of death and the development of effective and safe therapeutic agents for heart failure has been proven challenging. In this study, taking advantage of larval zebrafish, we developed a zebrafish heart failure model for drug screening and efficacy assessment. Zebrafish at 2 dpf (days postfertilization) were treated with verapamil at a concentration of 200 μM for 30 min, which were determined as optimum conditions for model development. Tested drugs were administered into zebrafish either by direct soaking or circulation microinjection. After treatment, zebrafish were randomly selected and subjected to either visual observation and image acquisition or record videos under a Zebralab Blood Flow System. The therapeutic effects of drugs on zebrafish heart failure were quantified by calculating the efficiency of heart dilatation, venous congestion, cardiac output, and blood flow dynamics. All 8 human heart failure therapeutic drugs (LCZ696, digoxin, irbesartan, metoprolol, qiliqiangxin capsule, enalapril, shenmai injection, and hydrochlorothiazide) showed significant preventive and therapeutic effects on zebrafish heart failure (p < 0.05, p < 0.01, and p < 0.001) in the zebrafish model. The larval zebrafish heart failure model developed and validated in this study could be used for in vivo heart failure studies and for rapid screening and efficacy assessment of preventive and therapeutic drugs.

  20. Differential expression of neuroligin genes in the nervous system of zebrafish.

    PubMed

    Davey, Crystal; Tallafuss, Alexandra; Washbourne, Philip

    2010-02-01

    The establishment and maturation of appropriate synaptic connections is crucial in the development of neuronal circuits. Cellular adhesion is believed to play a central role in this process. Neuroligins are neuronal cell adhesion molecules that are hypothesized to act in the initial formation and maturation of synaptic connections. In order to establish the zebrafish as a model to investigate the in vivo role of Neuroligin proteins in nervous system development, we identified the zebrafish orthologs of neuroligin family members and characterized their expression. Zebrafish possess seven neuroligin genes. Synteny analysis and sequence comparisons show that NLGN2, NLGN3, and NLGN4X are duplicated in zebrafish, but NLGN1 has a single zebrafish ortholog. All seven zebrafish neuroligins are expressed in complex patterns in the developing nervous system and in the adult brain. The spatial and temporal expression patterns of these genes suggest that they occupy a role in nervous system development and maintenance.

  1. GLUT2-mediated glucose uptake and availability are required for embryonic brain development in zebrafish.

    PubMed

    Marín-Juez, Rubén; Rovira, Mireia; Crespo, Diego; van der Vaart, Michiel; Spaink, Herman P; Planas, Josep V

    2015-01-01

    Glucose transporter 2 (GLUT2; gene name SLC2A2) has a key role in the regulation of glucose dynamics in organs central to metabolism. Although GLUT2 has been studied in the context of its participation in peripheral and central glucose sensing, its role in the brain is not well understood. To decipher the role of GLUT2 in brain development, we knocked down slc2a2 (glut2), the functional ortholog of human GLUT2, in zebrafish. Abrogation of glut2 led to defective brain organogenesis, reduced glucose uptake and increased programmed cell death in the brain. Coinciding with the observed localization of glut2 expression in the zebrafish hindbrain, glut2 deficiency affected the development of neural progenitor cells expressing the proneural genes atoh1b and ptf1a but not those expressing neurod. Specificity of the morphant phenotype was demonstrated by the restoration of brain organogenesis, whole-embryo glucose uptake, brain apoptosis, and expression of proneural markers in rescue experiments. These results indicate that glut2 has an essential role during brain development by facilitating the uptake and availability of glucose and support the involvement of glut2 in brain glucose sensing.

  2. Zebrafish: A marvel of high-throughput biology for 21st century toxicology.

    PubMed

    Bugel, Sean M; Tanguay, Robert L; Planchart, Antonio

    2014-09-07

    The evolutionary conservation of genomic, biochemical and developmental features between zebrafish and humans is gradually coming into focus with the end result that the zebrafish embryo model has emerged as a powerful tool for uncovering the effects of environmental exposures on a multitude of biological processes with direct relevance to human health. In this review, we highlight advances in automation, high-throughput (HT) screening, and analysis that leverage the power of the zebrafish embryo model for unparalleled advances in our understanding of how chemicals in our environment affect our health and wellbeing.

  3. Zebrafish: A marvel of high-throughput biology for 21st century toxicology

    PubMed Central

    Bugel, Sean M.; Tanguay, Robert L.; Planchart, Antonio

    2015-01-01

    The evolutionary conservation of genomic, biochemical and developmental features between zebrafish and humans is gradually coming into focus with the end result that the zebrafish embryo model has emerged as a powerful tool for uncovering the effects of environmental exposures on a multitude of biological processes with direct relevance to human health. In this review, we highlight advances in automation, high-throughput (HT) screening, and analysis that leverage the power of the zebrafish embryo model for unparalleled advances in our understanding of how chemicals in our environment affect our health and wellbeing. PMID:25678986

  4. Sox9b Is Required for Epicardium Formation and Plays a Role in TCDD-Induced Heart Malformation in Zebrafish

    PubMed Central

    Hofsteen, Peter; Plavicki, Jessica; Johnson, Shaina D.; Peterson, Richard E.

    2013-01-01

    Activation of the transcription factor aryl hydrocarbon receptor by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) prevents the formation of the epicardium and leads to severe heart malformations in developing zebrafish (Danio rerio). The downstream genes that cause heart malformation are not known. Because TCDD causes craniofacial malformations in zebrafish by downregulating the sox9b gene, we hypothesized that cardiotoxicity might also result from sox9b downregulation. We found that sox9b is expressed in the developing zebrafish heart ventricle and that TCDD exposure markedly reduces this expression. Furthermore, we found that manipulation of sox9b expression could phenocopy many but not all of the effects of TCDD at the heart. Loss of sox9b prevented the formation of epicardium progenitors comprising the proepicardium on the pericardial wall, and prevented the formation and migration of the epicardial layer around the heart. Zebrafish lacking sox9b showed pericardial edema, an elongated heart, and reduced blood circulation. Fish lacking sox9b failed to form valve cushions and leaflets. Sox9b is one of two mammalian Sox9 homologs, sox9b and sox9a. Knock down of sox9a expression did not cause cardiac malformations, or defects in epicardium development. We conclude that the decrease in sox9b expression in the heart caused by TCDD plays a role in many of the observed signs of cardiotoxicity. We find that while sox9b is expressed in myocardial cells, it is not normally expressed in the affected epicardial cells or progenitors. We therefore speculate that sox9b is involved in signals between the cardiomyocytes and the nascent epicardial cells. PMID:23775563

  5. Quantification of Estradiol Uptake in Zebrafish Embryos and Larvae.

    PubMed

    Souder, Jaclyn Paige; Gorelick, Daniel A

    2017-08-01

    Zebrafish are a powerful model system to assess the molecular and cellular effects of exposure to toxic chemicals during embryonic development. To study the effects of environmental endocrine disruptors, embryos and larvae are commonly exposed to supraphysiologic concentrations of these compounds in the water, but their bioavailability in zebrafish is largely unknown. One hypothesis is that supraphysiologic concentrations of estrogens in the water are required to achieve physiologic levels in vivo; however, this has not been directly tested. To test this hypothesis, we developed an assay using radiolabeled estradiol ([3H]E2) to measure uptake from water at multiple concentrations and exposure durations in developing zebrafish from 0 to 5 days postfertilization (dpf). We found that [3H]E2 uptake increased with increasing concentration, duration, and developmental stage. Percent uptake from the total volume of treatment solution increased with increasing exposure duration and developmental stage, but remained constant with increasing concentration. We also found that the chorion, an acellular envelope surrounding embryos through 3 dpf, did not substantially affect [3H]E2 uptake. Finally, we found that at 1 dpf, E2 was preferentially taken up by the yolk at multiple exposure durations, while at 2 dpf E2 was preferentially taken up into the embryonic body. Our results support the hypothesis that exposing zebrafish embryos and larvae to supraphysiologic concentrations of estrogens is required to achieve physiologically relevant doses in vivo. The isotopic assay reported here will provide a foundation for determining the uptake of other compounds for teratogenicity, toxicology and drug discovery studies. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. Change in Gene Expression in Zebrafish as an Endpoint for Developmental Neurotoxicity Screening

    EPA Science Inventory

    Chemicals that adversely affect the developing nervous system may have long-term consequences on human health. Little information exists on a large number of environmental chemicals to guide the risk assessments for developmental neurotoxicity (DNT). As traditional developmental ...

  7. Developmental social isolation affects adult behavior, social interaction, and dopamine metabolite levels in zebrafish.

    PubMed

    Shams, Soaleha; Amlani, Shahid; Buske, Christine; Chatterjee, Diptendu; Gerlai, Robert

    2018-01-01

    The zebrafish is a social vertebrate and an excellent translational model for a variety of human disorders. Abnormal social behavior is a hallmark of several human brain disorders. Social behavioral problems can arise as a result of adverse early social environment. Little is known about the effects of early social isolation in adult zebrafish. We compared zebrafish that were isolated for either short (7 days) or long duration (180 days) to socially housed zebrafish, testing their behavior across ontogenesis (ages 10, 30, 60, 90, 120, 180 days), and shoal cohesion and whole-brain monoamines and their metabolites in adulthood. Long social isolation increased locomotion and decreased shoal cohesion and anxiety in the open-field in adult. Additionally, both short and long social isolation reduced dopamine metabolite levels in response to social stimuli. Thus, early social isolation has lasting effects in zebrafish, and may be employed to generate zebrafish models of human neuropsychiatric conditions. © 2017 Wiley Periodicals, Inc.

  8. Developmental exposure of zebrafish (Danio rerio) to 17α-ethinylestradiol affects non-reproductive behavior and fertility as adults, and increases anxiety in unexposed progeny.

    PubMed

    Volkova, Kristina; Reyhanian Caspillo, Nasim; Porseryd, Tove; Hallgren, Stefan; Dinnétz, Patrik; Porsch-Hällström, Inger

    2015-07-01

    Exposure to estrogenic endocrine disruptors (EDCs) during development affects fertility, reproductive and non-reproductive behavior in mammals and fish. These effects can also be transferred to coming generations. In fish, the effects of developmental EDC exposure on non-reproductive behavior are less well studied. Here, we analyze the effects of 17α-ethinylestradiol (EE2) on anxiety, shoaling behavior and fertility in zebrafish after developmental treatment and remediation in clean water until adulthood. Zebrafish embryos were exposed from day 1 to day 80 post fertilization to actual concentrations of 1.2 and 1.6ng/L EE2. After remediation for 82days non-reproductive behavior and fertilization success were analyzed in both sexes. Males and females from the 1.2ng/L group, as well as control males and females, were bred, and behavior of the untreated F1 offspring was tested as adults. Developmental treatment with 1.2 and 1.6ng/L EE2 significantly increased anxiety in the novel tank test and increased shoaling intensity in both sexes. Fertilization success was significantly reduced by EE2 in both sexes when mated with untreated fish of opposite sex. Progeny of fish treated with 1.2ng/L EE2 showed increased anxiety in the novel tank test and increased light avoidance in the scototaxis test compared to control offspring. In conclusion, developmental exposure of zebrafish to low doses of EE2 resulted in persistent changes in behavior and fertility. The behavior of unexposed progeny was affected by their parents' exposure, which might suggest transgenerational effects. Copyright © 2015. Published by Elsevier Inc.

  9. Extraction Protocols for Individual Zebrafish's Ventricle Myosin and Skeletal Muscle Actin for In vitro Motility Assays

    PubMed Central

    Scheid, Lisa-Mareike; Weber, Cornelia; Bopp, Nasrin; Mosqueira, Matias; Fink, Rainer H. A.

    2017-01-01

    The in vitro motility assay (IVMA) is a technique that enables the measurement of the interaction between actin and myosin providing a relatively simple model to understand the mechanical muscle function. For actin-myosin IVMA, myosin is immobilized in a measurement chamber, where it converts chemical energy provided by ATP hydrolysis into mechanical energy. The result is the movement of fluorescently labeled actin filaments that can be recorded microscopically and analyzed quantitatively. Resulting sliding speeds and patterns help to characterize the underlying actin-myosin interaction that can be affected by different factors such as mutations or active compounds. Additionally, modulatory actions of the regulatory proteins tropomyosin and troponin in the presence of calcium on actin-myosin interaction can be studied with the IVMA. Zebrafish is considered a suitable model organism for cardiovascular and skeletal muscle research. In this context, straightforward protocols for the isolation and use of zebrafish muscle proteins in the IVMA would provide a useful tool in molecular studies. Currently, there are no protocols available for the mentioned purpose. Therefore, we developed fast and easy protocols for characterization of zebrafish proteins in the IVMA. Our protocols enable the interested researcher to (i) isolate actin from zebrafish skeletal muscle and (ii) extract functionally intact myosin from cardiac and skeletal muscle of individual adult zebrafish. Zebrafish tail muscle actin is isolated after acetone powder preparation, polymerized, and labeled with Rhodamine-Phalloidin. Myosin from ventricles of adult zebrafish is extracted directly into IVMA flow-cells. The same extraction protocol is applicable for comparably small tissue pieces as from zebrafish tail, mouse and frog muscle. After addition of the fluorescently labeled F-actin from zebrafish—or other origin—and ATP, sliding movement can be visualized using a fluorescence microscope and an intensified CCD camera. Taken together, we introduce a method for functional analysis in zebrafish cardiac and skeletal muscle research to study mutations at the molecular level of thick or thin filament proteins. Additionally, preliminary data indicate the usefulness of the presented method to perform the IVMA with myosin extracted from muscles of other animal models. PMID:28620318

  10. Zebrafish Models for the Mechanosensory Hair Cell Dysfunction in Usher Syndrome 3 Reveal That Clarin-1 Is an Essential Hair Bundle Protein.

    PubMed

    Gopal, Suhasini R; Chen, Daniel H-C; Chou, Shih-Wei; Zang, Jingjing; Neuhauss, Stephan C F; Stepanyan, Ruben; McDermott, Brian M; Alagramam, Kumar N

    2015-07-15

    Usher syndrome type III (USH3) is characterized by progressive loss of hearing and vision, and varying degrees of vestibular dysfunction. It is caused by mutations that affect the human clarin-1 protein (hCLRN1), a member of the tetraspanin protein family. The missense mutation CLRN1(N48K), which affects a conserved N-glycosylation site in hCLRN1, is a common causative USH3 mutation among Ashkenazi Jews. The affected individuals hear at birth but lose that function over time. Here, we developed an animal model system using zebrafish transgenesis and gene targeting to provide an explanation for this phenotype. Immunolabeling demonstrated that Clrn1 localized to the hair cell bundles (hair bundles). The clrn1 mutants generated by zinc finger nucleases displayed aberrant hair bundle morphology with diminished function. Two transgenic zebrafish that express either hCLRN1 or hCLRN1(N48K) in hair cells were produced to examine the subcellular localization patterns of wild-type and mutant human proteins. hCLRN1 localized to the hair bundles similarly to zebrafish Clrn1; in contrast, hCLRN1(N48K) largely mislocalized to the cell body with a small amount reaching the hair bundle. We propose that this small amount of hCLRN1(N48K) in the hair bundle provides clarin-1-mediated function during the early stages of life; however, the presence of hCLRN1(N48K) in the hair bundle diminishes over time because of intracellular degradation of the mutant protein, leading to progressive loss of hair bundle integrity and hair cell function. These findings and genetic tools provide an understanding and path forward to identify therapies to mitigate hearing loss linked to the CLRN1 mutation. Mutations in the clarin-1 gene affect eye and ear function in humans. Individuals with the CLRN1(N48K) mutation are born able to hear but lose that function over time. Here, we develop an animal model system using zebrafish transgenesis and gene targeting to provide an explanation for this phenotype. This approach illuminates the role of clarin-1 and the molecular mechanism linked to the CLRN1(N48K) mutation in sensory hair cells of the inner ear. Additionally, the investigation provided an in vivo model to guide future drug discovery to rescue the hCLRN1(N48K) in hair cells. Copyright © 2015 the authors 0270-6474/15/3510188-14$15.00/0.

  11. The basic helix-loop-helix transcription factor, heart and neural crest derivatives expressed transcript 2, marks hepatic stellate cells in zebrafish: analysis of stellate cell entry into the developing liver.

    PubMed

    Yin, Chunyue; Evason, Kimberley J; Maher, Jacquelyn J; Stainier, Didier Y R

    2012-11-01

    Hepatic stellate cells (HSCs) are liver-specific mesenchymal cells that play vital roles in liver development and injury. Our knowledge of HSC biology is limited by the paucity of in vivo data. HSCs and sinusoidal endothelial cells (SECs) reside in close proximity, and interactions between these two cell types are potentially critical for their development and function. Here, we introduce a transgenic zebrafish line, Tg(hand2:EGFP), that labels HSCs. We find that zebrafish HSCs share many similarities with their mammalian counterparts, including morphology, location, lipid storage, gene-expression profile, and increased proliferation and matrix production, in response to an acute hepatic insult. Using the Tg(hand2:EGFP) line, we conducted time-course analyses during development to reveal that HSCs invade the liver after SECs do. However, HSCs still enter the liver in mutants that lack most endothelial cells, including SECs, indicating that SECs are not required for HSC differentiation or their entry into the liver. In the absence of SECs, HSCs become abnormally associated with hepatic biliary cells, suggesting that SECs influence HSC localization during liver development. We analyzed factors that regulate HSC development and show that inhibition of vascular endothelial growth factor signaling significantly reduces the number of HSCs that enter the liver. We also performed a pilot chemical screen and identified two compounds that affect HSC numbers during development. Our work provides the first comprehensive description of HSC development in zebrafish and reveals the requirement of SECs in HSC localization. The Tg(hand2:EGFP) line represents a unique tool for in vivo analysis and molecular dissection of HSC behavior. Copyright © 2012 American Association for the Study of Liver Diseases.

  12. Comparative toxicity of metal oxide nanoparticles (CuO, ZnO and TiO2) to developing zebrafish embryos

    NASA Astrophysics Data System (ADS)

    Vicario-Parés, Unai; Castañaga, Luis; Lacave, Jose Maria; Oron, Miriam; Reip, Paul; Berhanu, Deborah; Valsami-Jones, Eugenia; Cajaraville, Miren P.; Orbea, Amaia

    2014-08-01

    Increasing use of nanomaterials is resulting in their release into the environment, making necessary to determine the toxicity of these materials. With this aim, the effects of CuO, ZnO and TiO2 nanoparticles (NPs) on zebrafish development were assessed in comparison with the effects caused by the ionic forms (for copper and zinc), bulk counterparts and the stabilizer used for rutile TiO2 NPs. None of the NPs caused significant embryo mortality. CuO NPs were the most toxic affecting hatching and increasing malformation prevalence (≥1 mg Cu/L), followed by ZnO NPs that affected hatching at ≥5 mg Zn/L and stabilized TiO2 NPs that caused mortality and decreased hatching at 100 mg Ti/L. Exposure to the stabilizer alone provoked the same effect. Thus, toxicity of the TiO2 NP suspension can be linked to the surfactant. For all the endpoints, the greatest effects were exerted by the ionic forms, followed by the NPs and finally by the bulk compounds. By autometallography, metal-bearing deposits were observed in embryos exposed to CuO and ZnO NPs, being more abundant in the case of embryos exposed to CuO NPs. The largest and most abundant metal-bearing deposits were detected in embryos exposed to ionic copper. In conclusion, metal oxide NPs affected zebrafish development altering hatching and increasing the prevalence of malformations. Thus, the use and release of metal oxide NPs to the environment may pose a risk to aquatic organisms as a result of the toxicity caused by NPs themselves or by the additives used in their production.

  13. Analyses of pancreas development by generation of gfp transgenic zebrafish using an exocrine pancreas-specific elastaseA gene promoter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wan Haiyan; Korzh, Svitlana; Li Zhen

    2006-05-15

    In contrast to what we know on development of endocrine pancreas, the formation of exocrine pancreas remains poorly understood. To create an animal model that allows observation of exocrine cell differentiation, proliferation, and morphogenesis in living animals, we used the zebrafish elastaseA (elaA) regulatory sequence to develop transgenic zebrafish that display highly specific exocrine pancreas expression of GFP in both larvae and adult. By following GFP expression, we found that the pancreas in early development was a relatively compact organ and later extended posterior along the intestine. By transferring the elaA:gfp transgene into slow muscle omitted mutant that is deficientmore » in receiving Hedgehog signals, we further showed that Hedgehog signaling is required for exocrine morphogenesis but not for cell differentiation. We also applied the morpholino knockdown and toxin-mediated cell ablation approaches to this transgenic line. We showed that the development of exocrine pancreas is Islet-1 dependent. Injection of the diphtheria toxin A (DTA) construct under the elastaseA promoter resulted in selective ablation of exocrine cells while the endocrine cells and other endodermal derivatives (liver and intestine) were not affected. Thus, our works demonstrated the new transgenic line provided a useful experimental tool in analyzing exocrine pancreas development.« less

  14. Zebrafish mab21l2 is specifically expressed in the presumptive eye and tectum from early somitogenesis onwards.

    PubMed

    Kudoh, T; Dawid, I B

    2001-11-01

    Random screening for tissue specific genes in zebrafish by in situ hybridization led us to isolate a gene which showed highly restricted expression in the developing eyes and midbrain at somitogenesis stages. This gene was very similar to mouse and human mab21l2. The characteristic expression pattern of mab21l2 facilitates a detailed description of the morphogenesis of the eyes and midbrain in the zebrafish. In the eye field, mab21l2 expression illustrates the transformation of the eye field to form two separate eyes in the anterior neural plate. Mab21l2 staining in the cyclopic mutants, cyc and oep, exhibited incomplete splitting of the eye primodium. In the midbrain, mab21l2 is expressed in the tectum, and its expression follows the expansion of the tectal region. In mutants affecting the mid-hindbrain boundary (MHB), mab21l2 expression is affected differentially. In the noi/pax2.1 mutant, mab21l2 is down-regulated and the size of the tectum remains small, whereas in the ace/fgf8 mutant, mab21l2 expression persists although the shape of the tectum is altered.

  15. Development of an In Vitro Assay to Quantitate Hematopoietic Stem and Progenitor Cells (HSPCs) in Developing Zebrafish Embryos.

    PubMed

    Berrun, A C; Stachura, D L

    2017-11-30

    Hematopoiesis is an essential cellular process in which hematopoietic stem and progenitor cells (HSPCs) differentiate into the multitude of different cell lineages that comprise mature blood. Isolation and identification of these HSPCs is difficult because they are defined ex post facto; they can only be defined after their differentiation into specific cell lineages. Over the past few decades, the zebrafish (Danio rerio) has become a model organism to study hematopoiesis. Zebrafish embryos develop ex utero, and by 48 h post-fertilization (hpf) have generated definitive HSPCs. Assays to assess HSPC differentiation and proliferation capabilities have been developed, utilizing transplantation and subsequent reconstitution of the hematopoietic system in addition to visualizing specialized transgenic lines with confocal microscopy. However, these assays are cost prohibitive, technically difficult, and time consuming for many laboratories. Development of an in vitro model to assess HSPCs would be cost effective, quicker, and present fewer difficulties compared to previously described methods, allowing laboratories to quickly assess mutagenesis and drug screens that affect HSPC biology. This novel in vitro assay to assess HSPCs is performed by plating dissociated whole zebrafish embryos and adding exogenous factors that promote only HSPC differentiation and proliferation. Embryos are dissociated into single cells and plated with HSPC-supportive colony stimulating factors that cause them to generate colony forming units (CFUs) that arise from a single progenitor cell. These assays should allow more careful examination of the molecular pathways responsible for HSPC proliferation, differentiation, and regulation, which will allow researchers to understand the underpinnings of vertebrate hematopoiesis and its dysregulation during disease.

  16. Nestin is essential for zebrafish brain and eye development through control of progenitor cell apoptosis.

    PubMed

    Chen, Hua-Ling; Yuh, Chiou-Hwa; Wu, Kenneth K

    2010-02-19

    Nestin is expressed in neural progenitor cells (NPC) of developing brain. Despite its wide use as an NPC marker, the function of nestin in embryo development is unclear. As nestin is conserved in zebrafish and its predicted sequence is clustered with the mammalian nestin orthologue, we used zebrafish as a model to investigate its role in embryogenesis. Injection of nestin morpholino (MO) into fertilized eggs induced time- and dose-dependent brain and eye developmental defects. Nestin morphants exhibited characteristic morphological changes including small head, small eyes and hydrocephalus. Histological examinations show reduced hind- and mid-brain size, dilated ventricle, poorly organized retina and underdeveloped lens. Injection of control nestin MO did not induce brain or eye changes. Nestin MO injection reduced expression of ascl1b (achaete-scute complex-like 1b), a marker of NPCs, without affecting its distribution. Nestin MO did not influence Elavl3/4 (Embryonic lethal, abnormal vision, Drosophila-like 3/4) (a neuronal marker), or otx2 (a midbrain neuronal marker), but severely perturbed cranial motor nerve development and axon distribution. To determine whether the developmental defects are due to excessive NPC apoptosis and/or reduced NPC proliferation, we analyzed apoptosis by TUNEL assay and acridine orange staining and proliferation by BrdU incorporation, pcna and mcm5 expressions. Excessive apoptosis was noted in hindbrain and midbrain cells. Apoptotic signals were colocalized with ascl1b. Proliferation markers were not significantly altered by nestin MO. These results suggest that nestin is essential for zebrafish brain and eye development probably through control of progenitor cell apoptosis.

  17. Inhibition of endogenous MTF-1 signaling in zebrafish embryos identifies novel roles for MTF-1 in development.

    PubMed

    O'Shields, Britton; McArthur, Andrew G; Holowiecki, Andrew; Kamper, Martin; Tapley, Jeffrey; Jenny, Matthew J

    2014-09-01

    The metal responsive element-binding transcription factor-1 (MTF-1) responds to changes in cellular zinc levels caused by zinc exposure or disruption of endogenous zinc homeostasis by heavy metals or oxygen-related stress. Here we report the functional characterization of a complete zebrafish MTF-1 in comparison with the previously identified isoform lacking the highly conserved cysteine-rich motif (Cys-X-Cys-Cys-X-Cys) found in all other vertebrate MTF-1 orthologs. In an effort to develop novel molecular tools, a constitutively nuclear dominant-negative MTF-1 (dnMTF-1) was generated as tool for inhibiting endogenous MTF-1 signaling. The in vivo efficacy of the dnMTF-1 was determined by microinjecting in vitro transcribed dnMTF-1 mRNA into zebrafish embryos (1-2 cell stage) followed by transcriptomic profiling using an Agilent 4x44K array on 28- and 36-hpf embryos. A total of 594 and 560 probes were identified as differentially expressed at 28hpf and 36hpf, respectively, with interesting overlaps between timepoints. The main categories of genes affected by the inhibition of MTF-1 signaling were: nuclear receptors and genes involved in stress signaling, neurogenesis, muscle development and contraction, eye development, and metal homeostasis, including novel observations in iron and heme homeostasis. Finally, we investigate both the transcriptional activator and transcriptional repressor role of MTF-1 in potential novel target genes identified by transcriptomic profiling during early zebrafish development. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Loss of col8a1a function during zebrafish embryogenesis results in congenital vertebral malformations.

    PubMed

    Gray, Ryan S; Wilm, Thomas P; Smith, Jeff; Bagnat, Michel; Dale, Rodney M; Topczewski, Jacek; Johnson, Stephen L; Solnica-Krezel, Lilianna

    2014-02-01

    Congenital vertebral malformations (CVM) occur in 1 in 1000 live births and in many cases can cause spinal deformities, such as scoliosis, and result in disability and distress of affected individuals. Many severe forms of the disease, such as spondylocostal dystostosis, are recessive monogenic traits affecting somitogenesis, however the etiologies of the majority of CVM cases remain undetermined. Here we demonstrate that morphological defects of the notochord in zebrafish can generate congenital-type spine defects. We characterize three recessive zebrafish leviathan/col8a1a mutant alleles ((m531, vu41, vu105)) that disrupt collagen type VIII alpha1a (col8a1a), and cause folding of the embryonic notochord and consequently adult vertebral column malformations. Furthermore, we provide evidence that a transient loss of col8a1a function or inhibition of Lysyl oxidases with drugs during embryogenesis was sufficient to generate vertebral fusions and scoliosis in the adult spine. Using periodic imaging of individual zebrafish, we correlate focal notochord defects of the embryo with vertebral malformations (VM) in the adult. Finally, we show that bends and kinks in the notochord can lead to aberrant apposition of osteoblasts normally confined to well-segmented areas of the developing vertebral bodies. Our results afford a novel mechanism for the formation of VM, independent of defects of somitogenesis, resulting from aberrant bone deposition at regions of misshapen notochord tissue. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Loss of col8a1a Function during Zebrafish Embryogenesis Results in Congenital Vertebral Malformations

    PubMed Central

    Gray, Ryan S.; Wilm, Thomas; Smith, Jeff; Bagnat, Michel; Dale, Rodney M.; Topczewski, Jacek; Johnson, Stephen L.; Solnica-Krezel, Lilianna

    2014-01-01

    Congenital vertebral malformations (CVM) occur in 1 in 1,000 live births and in many cases can cause spinal deformities, such as scoliosis, and result in disability and distress of affected individuals. Many severe forms of the disease, such as spondylocostal dystostosis, are recessive monogenic traits affecting somitogenesis, however the etiologies of the majority of CVM cases remain undetermined. Here we demonstrate that morphological defects of the notochord in zebrafish can generate congenital-type spine defects. We characterize three recessive zebrafish leviathan/col8a1a mutant alleles (m531, vu41, vu105) that disrupt collagen type VIII alpha1a (col8a1a), and cause folding of the embryonic notochord and consequently adult vertebral column malformations. Furthermore, we provide evidence that a transient loss of col8a1a function or inhibition of Lysyl oxidases with drugs during embryogenesis was sufficient to generate vertebral fusions and scoliosis in the adult spine. Using periodic imaging of individual zebrafish, we correlate focal notochord defects of the embryo with vertebral malformations (VM) in the adult. Finally, we show that bends and kinks in the notochord can lead to aberrant apposition of osteoblasts normally confined to well-segmented areas of the developing vertebral bodies. Our results afford a novel mechanism for the formation of VM, independent of defects of somitogenesis, resulting from aberrant bone deposition at regions of misshapen notochord tissue. PMID:24333517

  20. Developmental exposure to low concentrations of two brominated flame retardants, BDE-47 and BDE-99, causes life-long behavioral alterations in zebrafish.

    PubMed

    Glazer, Lilah; Wells, Corinne N; Drastal, Meghan; Odamah, Kathryn-Ann; Galat, Richard E; Behl, Mamta; Levin, Edward D

    2018-05-01

    Polybrominated diphenyl ethers (PBDEs) were widely used as flame retardants until the early 2000s, mainly in home furnishings and electronics. The persistence of PBDEs in the environment leads to continued ubiquitous exposure to low levels, with infants and children experiencing higher exposures than adults. Accumulating evidence suggest that low-level exposures during early life stages can affect brain development and lead to long-term behavioral impairments. We investigated the effects of zebrafish exposure to low doses of the two prominent PBDEs; 2,2',4,4',5,-Pentabromodiphenyl ether (BDE-99) and 2,2',4,4',-Tetrabromodiphenyl ether (BDE-47), during embryo-development on short- and long-term behavioral endpoints. We included the organophosphate pesticide chlorpyrifos (CPF) due to its well documented neurotoxicity across species from zebrafish to humans. Zebrafish embryos were exposed to the following individual treatments; 0.1% DMSO (vehicle control); 0.3μM CPF; 0.01, 0.03, 0.1, 0.3μM BDE-47; 0.003, 0.03, 0.3, 1, 3, 10, 20μM BDE-99 from 5 until 120h post fertilization (hpf). Low exposure levels were determined as those not causing immediate overt toxicity, and behavior assays were conducted in the low-level range. At 144 hpf the larvae were tested for locomotor activity. At approximately 6 months of age adult zebrafish were tested in a behavioral battery including assays for anxiety-related behavior, sensorimotor response and habituation, social interaction, and predator avoidance. In the short-term, larval locomotor activity was reduced in larvae treated with 0.3μM CPF and 0.1μM BDE-47. BDE-99 treatment caused non-monotonic dose effects, with 0.3μM causing hyperactivity and 1μM or higher causing hypoactivity. In the long-term, adult anxiety-related behavior was reduced in all treatments as measured in both the novel tank dive test and tap test. We show that exposure of zebrafish embryos to low concentrations of the brominated flame retardants BDE-47 and BDE-99, and the organophosphate pesticide CPF, caused both short- and long-term behavioral impairments. Interestingly, we also found that at very low exposure concentrations, where there were no visible effects on larval activity, adult behavior was still strongly affected. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Botulinum Toxin Induces Muscle Paralysis and Inhibits Bone Regeneration in Zebrafish

    PubMed Central

    Recidoro, Anthony M.; Roof, Amanda C.; Schmitt, Michael; Worton, Leah E.; Petrie, Timothy; Strand, Nicholas; Ausk, Brandon J.; Srinivasan, Sundar; Moon, Randall T.; Gardiner, Edith M.; Kaminsky, Werner; Bain, Steven D.; Allan, Christopher H.; Gross, Ted S.; Kwon, Ronald Y.

    2016-01-01

    Intramuscular administration of Botulinum toxin (BTx) has been associated with impaired osteogenesis in diverse conditions of bone formation (e.g., development, growth, and healing), yet the mechanisms of neuromuscular-bone crosstalk underlying these deficits have yet to be identified. Motivated by the emerging utility of zebrafish (Danio rerio) as a rapid, genetically tractable, and optically transparent model for human pathologies (as well as the potential to interrogate neuromuscular-mediated bone disorders in a simple model that bridges in vitro and more complex in vivo model systems), in this study we developed a model of BTx-induced muscle paralysis in adult zebrafish, and examined its effects on intramembranous ossification during tail fin regeneration. BTx administration induced rapid muscle paralysis in adult zebrafish in a manner that was dose-dependent, transient, and focal, mirroring the paralytic phenotype observed in animal and human studies. During fin regeneration, BTx impaired continued bone ray outgrowth, morphology, and patterning, indicating defects in early osteogenesis. Further, BTx significantly decreased mineralizing activity and crystalline mineral accumulation, suggesting delayed late-stage osteoblast differentiation and/or altered secondary bone apposition. Bone ray transection proximal to the amputation site focally inhibited bone outgrowth in the affected ray, implicating intra- and/or inter-ray nerves in this process. Taken together, these studies demonstrate the potential to interrogate pathological features of BTx-induced osteoanabolic dysfunction in the regenerating zebrafish fin, define the technological toolbox for detecting bone growth and mineralization deficits in this process, and suggest that pathways mediating neuromuscular regulation of osteogenesis may be conserved beyond established mammalian models of bone anabolic disorders. PMID:24806738

  2. Swim-Training Changes the Spatio-Temporal Dynamics of Skeletogenesis in Zebrafish Larvae (Danio rerio)

    PubMed Central

    Fiaz, Ansa W.; Léon-Kloosterziel, Karen M.; Gort, Gerrit; Schulte-Merker, Stefan; van Leeuwen, Johan L.; Kranenbarg, Sander

    2012-01-01

    Fish larvae experience many environmental challenges during development such as variation in water velocity, food availability and predation. The rapid development of structures involved in feeding, respiration and swimming increases the chance of survival. It has been hypothesized that mechanical loading induced by muscle forces plays a role in prioritizing the development of these structures. Mechanical loading by muscle forces has been shown to affect larval and embryonic bone development in vertebrates, but these investigations were limited to the appendicular skeleton. To explore the role of mechanical load during chondrogenesis and osteogenesis of the cranial, axial and appendicular skeleton, we subjected zebrafish larvae to swim-training, which increases physical exercise levels and presumably also mechanical loads, from 5 until 14 days post fertilization. Here we show that an increased swimming activity accelerated growth, chondrogenesis and osteogenesis during larval development in zebrafish. Interestingly, swim-training accelerated both perichondral and intramembranous ossification. Furthermore, swim-training prioritized the formation of cartilage and bone structures in the head and tail region as well as the formation of elements in the anal and dorsal fins. This suggests that an increased swimming activity prioritized the development of structures which play an important role in swimming and thereby increasing the chance of survival in an environment where water velocity increases. Our study is the first to show that already during early zebrafish larval development, skeletal tissue in the cranial, axial and appendicular skeleton is competent to respond to swim-training due to increased water velocities. It demonstrates that changes in water flow conditions can result into significant spatio-temporal changes in skeletogenesis. PMID:22529905

  3. Development of sensory systems in zebrafish (Danio rerio)

    NASA Technical Reports Server (NTRS)

    Moorman, S. J.

    2001-01-01

    Zebrafish possess all of the classic sensory modalities: taste, tactile, smell, balance, vision, and hearing. For each sensory system, this article provides a brief overview of the system in the adult zebrafish followed by a more detailed overview of the development of the system. By far the majority of studies performed in each of the sensory systems of the zebrafish have involved some aspect of molecular biology or genetics. Although molecular biology and genetics are not major foci of the paper, brief discussions of some of the mutant strains of zebrafish that have developmental defects in each specific sensory system are included. The development of the sensory systems is only a small sampling of the work being done using zebrafish and provides a mere glimpse of the potential of this model for the study of vertebrate development, physiology, and human disease.

  4. Development of a transgenic zebrafish model expressing GFP in the notochord, somite and liver directed by the hfe2 gene promoter.

    PubMed

    Bian, Yue-Hong; Xu, Cheng; Li, Junling; Xu, Jin; Zhang, Hongwei; Du, Shao Jun

    2011-08-01

    Hemojuvelin, also known as RGMc, is encoded by hfe2 gene that plays an important role in iron homeostasis. hfe2 is specifically expressed in the notochord, developing somite and skeletal muscles during development. The molecular regulation of hfe2 expression is, however, not clear. We reported here the characterization of hfe2 gene expression and the regulation of its tissue-specific expression in zebrafish embryos. We demonstrated that the 6 kb 5'-flanking sequence upstream of the ATG start codon in the zebrafish hfe2 gene could direct GFP specific expression in the notochord, somites, and skeletal muscle of zebrafish embryos, recapitulating the expression pattern of the endogenous gene. However, the Tg(hfe2:gfp) transgene is also expressed in the liver of fish embryos, which did not mimic the expression of the endogenous hfe2 at the early stage. Nevertheless, the Tg(hfe2:gfp) transgenic zebrafish provides a useful model to study liver development. Treating Tg(hfe2:gfp) transgenic zebrafish embryos with valproic acid, a liver development inhibitor, significantly inhibited GFP expression in zebrafish. Together, these data indicate that the tissue specific expression of hfe2 in the notochord, somites and muscles is regulated by regulatory elements within the 6 kb 5'-flanking sequence of the hfe2 gene. Moreover, the Tg(hfe2:gfp) transgenic zebrafish line provides a useful model system for analyzing liver development in zebrafish.

  5. The toxicity potential of pharmaceuticals found in the Douro River estuary (Portugal)--experimental assessment using a zebrafish embryo test.

    PubMed

    Madureira, Tânia Vieira; Cruzeiro, Catarina; Rocha, Maria João; Rocha, Eduardo

    2011-09-01

    Fish embryos are a particularly vulnerable stage of development, so they represent optimal targets for screening toxicological effects of waterborne xenobiotics. Herein, the toxicity potential of two mixtures of pharmaceuticals was evaluated using a zebrafish embryo test. One of the mixtures corresponds to an environmentally realistic scenario and both have carbamazepine, fenofibric acid, propranolol, trimethoprim and sulfamethoxazole. The results evidenced morphological alterations, such as spinal deformities and yolk-sac oedemas. Moreover, heart rates decreased after both mixture exposures, e.g., at 48hpf, highest mixture versus blank control (47.8±4.9 and 55.8±3.7 beats/30s, respectively). The tail lengths also diminished significantly from 3208±145μm in blank control to 3130±126μm in highest mixture. The toxicological effects were concentration dependent. Mortality, hatching rate and the number of spontaneous movements were not affected. However, the low levels of pharmaceuticals did interfere with the normal development of zebrafish, which indicates risks for wild organisms. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Heterochronic shift in Hox-mediated activation of sonic hedgehog leads to morphological changes during fin development.

    PubMed

    Sakamoto, Koji; Onimaru, Koh; Munakata, Keijiro; Suda, Natsuno; Tamura, Mika; Ochi, Haruki; Tanaka, Mikiko

    2009-01-01

    We explored the molecular mechanisms of morphological transformations of vertebrate paired fin/limb evolution by comparative gene expression profiling and functional analyses. In this study, we focused on the temporal differences of the onset of Sonic hedgehog (Shh) expression in paired appendages among different vertebrates. In limb buds of chick and mouse, Shh expression is activated as soon as there is a morphological bud, concomitant with Hoxd10 expression. In dogfish (Scyliorhinus canicula), however, we found that Shh was transcribed late in fin development, concomitant with Hoxd13 expression. We utilized zebrafish as a model to determine whether quantitative changes in hox expression alter the timing of shh expression in pectoral fins of zebrafish embryos. We found that the temporal shift of Shh activity altered the size of endoskeletal elements in paired fins of zebrafish and dogfish. Thus, a threshold level of hox expression determines the onset of shh expression, and the subsequent heterochronic shift of Shh activity can affect the size of the fin endoskeleton. This process may have facilitated major morphological changes in paired appendages during vertebrate limb evolution.

  7. Effects of dietary exposure to brominated flame retardant BDE-47 on thyroid condition, gonadal development and growth of zebrafish

    USGS Publications Warehouse

    Torres, Leticia; Orazio, Carl E.; Peterman, Paul H.; Patino, Reynaldo

    2013-01-01

    Little is known about the effects of brominated flame retardants in teleosts and some of the information currently available is inconsistent. This study examined effects of dietary exposure to 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47) on thyroid condition, body mass and size, and gonadal development of zebrafish. Pubertal, 49-day-old (posthatch) fish were fed diets without BDE-47 (control) or with 1, 5 or 25 μg/g BDE-47/diet. Treatments were conducted in triplicate 30-L tanks each containing 50 zebrafish, and 15 fish per treatment (5 per tank) were sampled at days 40, 80 and 120 of exposure. Measurements were taken of body mass, standard length, head depth and head length. Sex (at 40–120 days of exposure), germ cell stage (at 40 days) and thyroid condition (at 120 days; follicular cell height, colloid depletion, angiogenesis) were histologically determined. Whole-body BDE-47 levels at study completion were within the high end of levels reported in environmentally exposed (wild) fishes. Analysis of variance was used to determine differences among treatments at each sampling time. No effects were observed on thyroid condition or germ cell stage in either sex. Reduced head length was observed in females exposed to BDE-47 at 80 days but not at 40 or 120 days. In males, no apparent effects of BDE-47 were observed at 40 and 80 days, but fish exposed to 25 μg/g had lower body mass at 120 days compared to control fish. These observations suggest that BDE-47 at environmentally relevant whole-body concentrations does not affect thyroid condition or pubertal development of zebrafish but does affect growth during the juvenile-to-adult transition, especially in males.

  8. Cftr controls lumen expansion and function of Kupffer’s vesicle in zebrafish

    PubMed Central

    Navis, Adam; Marjoram, Lindsay; Bagnat, Michel

    2013-01-01

    Regulated fluid secretion is crucial for the function of most organs. In vertebrates, the chloride channel cystic fibrosis transmembrane conductance regulator (CFTR) is a master regulator of fluid secretion. Although the biophysical properties of CFTR have been well characterized in vitro, little is known about its in vivo role during development. Here, we investigated the function of Cftr during zebrafish development by generating several cftr mutant alleles using TAL effector nucleases. We found that loss of cftr function leads to organ laterality defects. In zebrafish, left-right (LR) asymmetry requires cilia-driven fluid flow within the lumen of Kupffer’s vesicle (KV). Using live imaging we found that KV morphogenesis is disrupted in cftr mutants. Loss of Cftr-mediated fluid secretion impairs KV lumen expansion leading to defects in organ laterality. Using bacterial artificial chromosome recombineering, we generated transgenic fish expressing functional Cftr fusion proteins with fluorescent tags under the control of the cftr promoter. The transgenes completely rescued the cftr mutant phenotype. Live imaging of these transgenic lines showed that Cftr is localized to the apical membrane of the epithelial cells in KV during lumen formation. Pharmacological stimulation of Cftr-dependent fluid secretion led to an expansion of the KV lumen. Conversely, inhibition of ion gradient formation impaired KV lumen inflation. Interestingly, cilia formation and motility in KV were not affected, suggesting that fluid secretion and flow are independently controlled in KV. These findings uncover a new role for cftr in KV morphogenesis and function during zebrafish development. PMID:23487313

  9. Using Zebrafish Models of Human Influenza A Virus Infections to Screen Antiviral Drugs and Characterize Host Immune Cell Responses.

    PubMed

    Sullivan, Con; Jurcyzszak, Denise; Goody, Michelle F; Gabor, Kristin A; Longfellow, Jacob R; Millard, Paul J; Kim, Carol H

    2017-01-20

    Each year, seasonal influenza outbreaks profoundly affect societies worldwide. In spite of global efforts, influenza remains an intractable healthcare burden. The principle strategy to curtail infections is yearly vaccination. In individuals who have contracted influenza, antiviral drugs can mitigate symptoms. There is a clear and unmet need to develop alternative strategies to combat influenza. Several animal models have been created to model host-influenza interactions. Here, protocols for generating zebrafish models for systemic and localized human influenza A virus (IAV) infection are described. Using a systemic IAV infection model, small molecules with potential antiviral activity can be screened. As a proof-of-principle, a protocol that demonstrates the efficacy of the antiviral drug Zanamivir in IAV-infected zebrafish is described. It shows how disease phenotypes can be quantified to score the relative efficacy of potential antivirals in IAV-infected zebrafish. In recent years, there has been increased appreciation for the critical role neutrophils play in the human host response to influenza infection. The zebrafish has proven to be an indispensable model for the study of neutrophil biology, with direct impacts on human medicine. A protocol to generate a localized IAV infection in the Tg(mpx:mCherry) zebrafish line to study neutrophil biology in the context of a localized viral infection is described. Neutrophil recruitment to localized infection sites provides an additional quantifiable phenotype for assessing experimental manipulations that may have therapeutic applications. Both zebrafish protocols described faithfully recapitulate aspects of human IAV infection. The zebrafish model possesses numerous inherent advantages, including high fecundity, optical clarity, amenability to drug screening, and availability of transgenic lines, including those in which immune cells such as neutrophils are labeled with fluorescent proteins. The protocols detailed here exploit these advantages and have the potential to reveal critical insights into host-IAV interactions that may ultimately translate into the clinic.

  10. Screening for chemicals that affect hair cell death and survival in the zebrafish lateral line.

    PubMed

    Ou, Henry; Simon, Julian A; Rubel, Edwin W; Raible, David W

    2012-06-01

    The zebrafish lateral line is an efficient model system for the evaluation of chemicals that protect and damage hair cells. Located on the surface of the body, lateral line hair cells are accessible for manipulation and visualization. The zebrafish lateral line system allows rapid screens of large chemical libraries, as well as subsequent thorough evaluation of interesting compounds. In this review, we focus on the results of our previous screens and the evolving methodology of our screens for chemicals that protect hair cells, and chemicals that damage hair cells using the zebrafish lateral line. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Behavioral Changes Over Time Following Ayahuasca Exposure in Zebrafish

    PubMed Central

    Savoldi, Robson; Polari, Daniel; Pinheiro-da-Silva, Jaquelinne; Silva, Priscila F.; Lobao-Soares, Bruno; Yonamine, Mauricio; Freire, Fulvio A. M.; Luchiari, Ana C.

    2017-01-01

    The combined infusion of Banisteriopsis caapi stem and Psychotria viridis leaves, known as ayahuasca, has been used for centuries by indigenous tribes. The infusion is rich in N, N-dimethyltryptamine (DMT) and monoamine oxidase inhibitors, with properties similar to those of serotonin. Despite substantial progress in the development of new drugs to treat anxiety and depression, current treatments have several limitations. Alternative drugs, such as ayahuasca, may shed light on these disorders. Here, we present time-course behavioral changes induced by ayahuasca in zebrafish, as first step toward establishing an ideal concentration for pre-clinical evaluations. We exposed adult zebrafish to five concentrations of the ayahuasca infusion: 0 (control), 0.1, 0.5, 1, and 3 ml/L (n = 14 each group), and behavior was recorded for 60 min. We evaluated swimming speed, distance traveled, freezing and bottom dwelling every min for 60 min. Swimming speed and distance traveled decreased with an increase in ayahuasca concentration while freezing increased with 1 and 3 ml/L. Bottom dwelling increased with 1 and 3 ml/L, but declined with 0.1 ml/L. Our data suggest that small amounts of ayahuasca do not affect locomotion and reduce anxiety-like behavior in zebrafish, while increased doses of the drug lead to crescent anxiogenic effects. We conclude that the temporal analysis of zebrafish behavior is a sensitive method for the study of ayahuasca-induced functional changes in the vertebrate brain. PMID:28804451

  12. Behavioral Changes Over Time Following Ayahuasca Exposure in Zebrafish.

    PubMed

    Savoldi, Robson; Polari, Daniel; Pinheiro-da-Silva, Jaquelinne; Silva, Priscila F; Lobao-Soares, Bruno; Yonamine, Mauricio; Freire, Fulvio A M; Luchiari, Ana C

    2017-01-01

    The combined infusion of Banisteriopsis caapi stem and Psychotria viridis leaves, known as ayahuasca, has been used for centuries by indigenous tribes. The infusion is rich in N , N -dimethyltryptamine (DMT) and monoamine oxidase inhibitors, with properties similar to those of serotonin. Despite substantial progress in the development of new drugs to treat anxiety and depression, current treatments have several limitations. Alternative drugs, such as ayahuasca, may shed light on these disorders. Here, we present time-course behavioral changes induced by ayahuasca in zebrafish, as first step toward establishing an ideal concentration for pre-clinical evaluations. We exposed adult zebrafish to five concentrations of the ayahuasca infusion: 0 (control), 0.1, 0.5, 1, and 3 ml/L ( n = 14 each group), and behavior was recorded for 60 min. We evaluated swimming speed, distance traveled, freezing and bottom dwelling every min for 60 min. Swimming speed and distance traveled decreased with an increase in ayahuasca concentration while freezing increased with 1 and 3 ml/L. Bottom dwelling increased with 1 and 3 ml/L, but declined with 0.1 ml/L. Our data suggest that small amounts of ayahuasca do not affect locomotion and reduce anxiety-like behavior in zebrafish, while increased doses of the drug lead to crescent anxiogenic effects. We conclude that the temporal analysis of zebrafish behavior is a sensitive method for the study of ayahuasca-induced functional changes in the vertebrate brain.

  13. Elucidation of possible molecular mechanisms underlying the estrogen-induced disruption of cartilage development in zebrafish larvae.

    PubMed

    He, Hanliang; Wang, Chunqing; Tang, Qifeng; Yang, Fan; Xu, Youjia

    2018-06-01

    Estrogen can affect the cartilage development of zebrafish; however, the mechanism underlying its effects is not completely understood. Four-day-old zebrafish larvae were treated with 0.8 μM estrogen, the 5 days post fertilization (dpf) zebrafish larvae did not demonstrate obvious abnormalities during development; however, the 6 dpf and 7 dpf larvae exhibited abnormal craniofacial bone development along with craniofacial bone degradation. RNA deep sequencing was performed to elucidate the mechanism involved. Gene Ontology functional and KEGG pathway enrichment analysis of differentially expressed genes (DEGs) showed that the extracellular matrix (ECM), extracellular region, ECM-interaction receptor, focal adhesion, cell cycle, apoptosis, and bone-related signaling pathways were disrupted. In these signaling pathways, the expressions of key genes, such as collagen encoded (col19a1a, col7a1, col7al, col18a1, and col9a3), MAPK signaling pathway (fgf19, fgf6a), TGF-beta signaling pathway (tgfbr1), and cell cycle (cdnk1a) genes were altered. The qRT-PCR results showed that after treatment with 0.8 μM 17-β estradiol (E2), col19a1a, col7a1, col7al, col18a1, col9a3, fgf6a, cdkn1a were downregulated, and fgf19, tgfr1 were upregulated, which were consistent with deep sequencing analysis. Therefore, the effect of estrogen on cartilage development might occur via multiple mechanisms. The study results demonstrate the mechanism underlying the effect of estrogen on cartilage development. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. FAF1, a Gene that Is Disrupted in Cleft Palate and Has Conserved Function in Zebrafish

    PubMed Central

    Ghassibe-Sabbagh, Michella; Desmyter, Laurence; Langenberg, Tobias; Claes, Filip; Boute, Odile; Bayet, Bénédicte; Pellerin, Philippe; Hermans, Karlien; Backx, Liesbeth; Mansilla, Maria Adela; Imoehl, Sandra; Nowak, Stefanie; Ludwig, Kerstin U.; Baluardo, Carlotta; Ferrian, Melissa; Mossey, Peter A.; Noethen, Markus; Dewerchin, Mieke; François, Geneviève; Revencu, Nicole; Vanwijck, Romain; Hecht, Jacqueline; Mangold, Elisabeth; Murray, Jeffrey; Rubini, Michele; Vermeesch, Joris R.; Poirel, Hélène A.; Carmeliet, Peter; Vikkula, Miikka

    2011-01-01

    Cranial neural crest (CNC) is a multipotent migratory cell population that gives rise to most of the craniofacial bones. An intricate network mediates CNC formation, epithelial-mesenchymal transition, migration along distinct paths, and differentiation. Errors in these processes lead to craniofacial abnormalities, including cleft lip and palate. Clefts are the most common congenital craniofacial defects. Patients have complications with feeding, speech, hearing, and dental and psychological development. Affected by both genetic predisposition and environmental factors, the complex etiology of clefts remains largely unknown. Here we show that Fas-associated factor-1 (FAF1) is disrupted and that its expression is decreased in a Pierre Robin family with an inherited translocation. Furthermore, the locus is strongly associated with cleft palate and shows an increased relative risk. Expression studies show that faf1 is highly expressed in zebrafish cartilages during embryogenesis. Knockdown of zebrafish faf1 leads to pharyngeal cartilage defects and jaw abnormality as a result of a failure of CNC to differentiate into and express cartilage-specific markers, such as sox9a and col2a1. Administration of faf1 mRNA rescues this phenotype. Our findings therefore identify FAF1 as a regulator of CNC differentiation and show that it predisposes humans to cleft palate and is necessary for lower jaw development in zebrafish. PMID:21295280

  15. Effect of chilling and cryopreservation on expression of Pax genes in zebrafish (Danio rerio) embryos and blastomeres.

    PubMed

    Lin, C; Spikings, E; Zhang, T; Rawson, D M

    2009-08-01

    Cryopreservation is now common practice in the fields of aquaculture, conservation and biomedicine. However, there is a lack of information on the effect of chilling and cryopreservation at the molecular level. In the present study, we used real-time RT-PCR analysis to determine the effect of chilling and cryopreservation on expression of Pax2a, Pax2b, Pax5 and Pax8 which constitute one subgroup of the Pax gene family. As intact embryos of zebrafish have not yet been successfully cryopreserved, we have used two alternatives: chilling of intact embryos and cryopreservation of isolated blastomeres. Cryopreservation was found to affect the normal pattern of gene expression in zebrafish embryonic blastomeres. The trends, profile changes, in expression of Pax2a and Pax5 occurred to a lesser extent in frozen-thawed blastomeres than in fresh blastomeres whilst the opposite was true for Pax8. The trends in expression of Pax2b were delayed in frozen-thawed blastomeres compared to fresh blastomeres. Cryopreservation can therefore disrupt normal gene expression patterns in zebrafish embryonic blastomeres which could have a detrimental effect on embryo development.

  16. Abnormal photoreceptor outer segment development and early retinal degeneration in kif3a mutant zebrafish.

    PubMed

    Raghupathy, Rakesh K; Zhang, Xun; Alhasani, Reem H; Zhou, Xinzhi; Mullin, Margaret; Reilly, James; Li, Wenchang; Liu, Mugen; Shu, Xinhua

    2016-08-01

    Photoreceptors are highly specialized sensory neurons that possess a modified primary cilium called the outer segment. Photoreceptor outer segment formation and maintenance require highly active protein transport via a process known as intraflagellar transport. Anterograde transport in outer segments is powered by the heterotrimeric kinesin II and coordinated by intraflagellar transport proteins. Here, we describe a new zebrafish model carrying a nonsense mutation in the kinesin II family member 3A (kif3a) gene. Kif3a mutant zebrafish exhibited curved body axes and kidney cysts. Outer segments were not formed in most parts of the mutant retina, and rhodopsin was mislocalized, suggesting KIF3A has a role in rhodopsin trafficking. Both rod and cone photoreceptors degenerated rapidly between 4 and 9 days post fertilization, and electroretinography response was not detected in 7 days post fertilization mutant larvae. Loss of KIF3A in zebrafish also resulted in an intracellular transport defect affecting anterograde but not retrograde transport of organelles. Our results indicate KIF3A plays a conserved role in photoreceptor outer segment formation and intracellular transport. Copyright © 2016 John Wiley & Sons, Ltd.

  17. Tris (2-butoxyethyl) phosphate affects motor behavior and axonal growth in zebrafish (Danio rerio) larvae.

    PubMed

    Jiang, Fan; Liu, Jue; Zeng, Xinyue; Yu, Liqin; Liu, Chunsheng; Wang, Jianghua

    2018-05-01

    Tris (2-butoxyethyl) phosphate (TBOEP) is an environmental contaminant that poses serious risks to aquatic organisms and their associated ecosystem. Recently, the reproductive and developmental toxicology of TBOEP has been reported. However, fewer studies have assessed the neurotoxic effects in zebrafish (Danio rerio) larvae. In this study, zebrafish embryos were subjected to waterborne exposure of TBOEP at 0, 50, 500, 1500 and 2500 μg/L from 2 to 144-h post-fertilization (hpf). Behavioral measurements showed that TBOEP exposure reduced embryonic spontaneous movement and decreased swimming speed of larvae in response to dark stimulation. In accordance with these motor effects, TBOEP treatment reduced neuron-specific GFP expression in transgenic Tg (HuC-GFP) zebrafish larvae and inhibited the growth of secondary motoneurons, as well as decreased expression of marker genes related to central nervous system development in TBOEP treated group. Furthermore, increased concentrations of reactive oxygen species (ROS) and malondialdehyde (MDA), as well as reduction of SOD activity were detected in TBOEP exposure group. The present results showed that the alteration in motor neuron and oxidative stress could together lead to the motor behavior alterations induced by TBOEP. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Comprehensive analysis of coding-lncRNA gene co-expression network uncovers conserved functional lncRNAs in zebrafish.

    PubMed

    Chen, Wen; Zhang, Xuan; Li, Jing; Huang, Shulan; Xiang, Shuanglin; Hu, Xiang; Liu, Changning

    2018-05-09

    Zebrafish is a full-developed model system for studying development processes and human disease. Recent studies of deep sequencing had discovered a large number of long non-coding RNAs (lncRNAs) in zebrafish. However, only few of them had been functionally characterized. Therefore, how to take advantage of the mature zebrafish system to deeply investigate the lncRNAs' function and conservation is really intriguing. We systematically collected and analyzed a series of zebrafish RNA-seq data, then combined them with resources from known database and literatures. As a result, we obtained by far the most complete dataset of zebrafish lncRNAs, containing 13,604 lncRNA genes (21,128 transcripts) in total. Based on that, a co-expression network upon zebrafish coding and lncRNA genes was constructed and analyzed, and used to predict the Gene Ontology (GO) and the KEGG annotation of lncRNA. Meanwhile, we made a conservation analysis on zebrafish lncRNA, identifying 1828 conserved zebrafish lncRNA genes (1890 transcripts) that have their putative mammalian orthologs. We also found that zebrafish lncRNAs play important roles in regulation of the development and function of nervous system; these conserved lncRNAs present a significant sequential and functional conservation, with their mammalian counterparts. By integrative data analysis and construction of coding-lncRNA gene co-expression network, we gained the most comprehensive dataset of zebrafish lncRNAs up to present, as well as their systematic annotations and comprehensive analyses on function and conservation. Our study provides a reliable zebrafish-based platform to deeply explore lncRNA function and mechanism, as well as the lncRNA commonality between zebrafish and human.

  19. Studies of the Variables Affecting Behavior of Larval Zebrafish for Developmental Neurotoxicity Testing

    EPA Science Inventory

    The U.S. Environmental Protection Agency is evaluating methods to screen and prioritize large numbers of chemicals for developmental toxicity. We are exploring methods to detect developmentally neurotoxic chemicals using zebrafish behavior at 6 days of age. The behavioral paradig...

  20. Mechanistic insights into the effect of nanoparticles on zebrafish hatch.

    PubMed

    Ong, Kimberly Jessica; Zhao, Xinxin; Thistle, Maria E; Maccormack, Tyson J; Clark, Rhett J; Ma, Guibin; Martinez-Rubi, Yadienka; Simard, Benoit; Loo, Joachim Say Chye; Veinot, Jonathan G C; Goss, Greg G

    2014-05-01

    Aquatic organisms are susceptible to waterborne nanoparticles (NP) and there is only limited understanding of the mechanisms by which these emerging contaminants may affect biological processes. This study used silicon (nSi), cadmium selenide (nCdSe), silver (nAg) and zinc NPs (nZnO) as well as single-walled carbon nanotubes (SWCNT) to assess NP effects on zebrafish (Danio rerio) hatch. Exposure of 10 mg/L nAg and nCdSe delayed zebrafish hatch and 100 mg/L of nCdSe as well as 10 and 100 mg/L of uncoated nZnO completely inhibited hatch and the embryos died within the chorion. Both the morphology and the movement of the embryos were not affected, and it was determined that the main mechanism of hatch inhibition by NPs is likely through the interaction of NPs with the zebrafish hatching enzyme. Furthermore, it was concluded that the observed effects arose from the NPs themselves and not their dissolved metal components.

  1. Variants in EXOSC9 Disrupt the RNA Exosome and Result in Cerebellar Atrophy with Spinal Motor Neuronopathy.

    PubMed

    Burns, David T; Donkervoort, Sandra; Müller, Juliane S; Knierim, Ellen; Bharucha-Goebel, Diana; Faqeih, Eissa Ali; Bell, Stephanie K; AlFaifi, Abdullah Y; Monies, Dorota; Millan, Francisca; Retterer, Kyle; Dyack, Sarah; MacKay, Sara; Morales-Gonzalez, Susanne; Giunta, Michele; Munro, Benjamin; Hudson, Gavin; Scavina, Mena; Baker, Laura; Massini, Tara C; Lek, Monkol; Hu, Ying; Ezzo, Daniel; AlKuraya, Fowzan S; Kang, Peter B; Griffin, Helen; Foley, A Reghan; Schuelke, Markus; Horvath, Rita; Bönnemann, Carsten G

    2018-05-03

    The exosome is a conserved multi-protein complex that is essential for correct RNA processing. Recessive variants in exosome components EXOSC3, EXOSC8, and RBM7 cause various constellations of pontocerebellar hypoplasia (PCH), spinal muscular atrophy (SMA), and central nervous system demyelination. Here, we report on four unrelated affected individuals with recessive variants in EXOSC9 and the effect of the variants on the function of the RNA exosome in vitro in affected individuals' fibroblasts and skeletal muscle and in vivo in zebrafish. The clinical presentation was severe, early-onset, progressive SMA-like motor neuronopathy, cerebellar atrophy, and in one affected individual, congenital fractures of the long bones. Three affected individuals of different ethnicity carried the homozygous c.41T>C (p.Leu14Pro) variant, whereas one affected individual was compound heterozygous for c.41T>C (p.Leu14Pro) and c.481C>T (p.Arg161 ∗ ). We detected reduced EXOSC9 in fibroblasts and skeletal muscle and observed a reduction of the whole multi-subunit exosome complex on blue-native polyacrylamide gel electrophoresis. RNA sequencing of fibroblasts and skeletal muscle detected significant >2-fold changes in genes involved in neuronal development and cerebellar and motor neuron degeneration, demonstrating the widespread effect of the variants. Morpholino oligonucleotide knockdown and CRISPR/Cas9-mediated mutagenesis of exosc9 in zebrafish recapitulated aspects of the human phenotype, as they have in other zebrafish models of exosomal disease. Specifically, portions of the cerebellum and hindbrain were absent, and motor neurons failed to develop and migrate properly. In summary, we show that variants in EXOSC9 result in a neurological syndrome combining cerebellar atrophy and spinal motoneuronopathy, thus expanding the list of human exosomopathies. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  2. The Influence of Hydroxyapatite Nanoparticle Morphology on Embryonic Development in a Zebrafish Exposure Model

    PubMed Central

    Pujari-Palmer, Shiuli; Lu, Xi; Karlsson Ott, Marjam

    2017-01-01

    Nanomaterials are used in many different industries such as cosmetics, food, clothing, and electronics. There is increasing concern that exposure to nanoparticles (NPs) during pregnancy can adversely affect fetal development. It is well known that the size, charge, and chemistry of a nanoparticle can modulate embryological development. The role that particle morphology plays on early development, however, is still widely unknown. The present study aims to investigate the effect of hydroxyapatite nanoparticle (HANP) morphology on embryological development in a zebrafish exposure model. Four distinct HANP morphologies (dots, long rods, sheets, and fibers) were fabricated and characterized. Zebrafish embryos were exposed to HANPs (0–100 mg/L), and viability and developmental deformities were evaluated for up to 5 days post-fertilization (dpf). Malformations such as pericardial edema and axial curvature were apparent in embryos as early as 1 dpf, following exposure to the dot and fiber particles, and developed in embryos by 3 dpf in the sheet and long rod particle groups. Minimal death was observed in response to dot, long rod, and sheet particles (≤25%), while fiber particles induced overwhelming toxicity (≤60%) after 1 dpf, and complete toxicity during all subsequent time points. Collectively, these results suggest that nanoparticle morphology can significantly impact embryological development and should be a required consideration when designing nanomaterials for commercial use. PMID:28441729

  3. Zebrafish as model organisms for studying drug-induced liver injury

    PubMed Central

    Vliegenthart, A D Bastiaan; Tucker, Carl S; Del Pozo, Jorge; Dear, James W

    2014-01-01

    Drug-induced liver injury (DILI) is a major challenge in clinical medicine and drug development. New models are needed for predicting which potential therapeutic compounds will cause DILI in humans, and new markers and mediators of DILI still need to be identified. This review highlights the strengths and weaknesses of using zebrafish as a high-throughput in vivo model for studying DILI. Although the zebrafish liver architecture is different from that of the mammalian liver, the main physiological processes remain similar. Zebrafish metabolize drugs using similar pathways to those in humans; they possess a wide range of cytochrome P450 enzymes that enable metabolic reactions including hydroxylation, conjugation, oxidation, demethylation and de-ethylation. Following exposure to a range of hepatotoxic drugs, the zebrafish liver develops histological patterns of injury comparable to those of mammalian liver, and biomarkers for liver injury can be quantified in the zebrafish circulation. The zebrafish immune system is similar to that of mammals, but the zebrafish inflammatory response to DILI is not yet defined. In order to quantify DILI in zebrafish, a wide variety of methods can be used, including visual assessment, quantification of serum enzymes and experimental serum biomarkers and scoring of histopathology. With further development, the zebrafish may be a model that complements rodents and may have value for the discovery of new disease pathways and translational biomarkers. PMID:24773296

  4. Identification of Estrogen Target Genes during Zebrafish Embryonic Development through Transcriptomic Analysis

    EPA Science Inventory

    Estrogen signaling is important for vertebrate embryonic development. Here we have used zebrafish (Danio rerio) as a vertebrate model to analyze estrogen signaling during development. Zebrafish embryos were exposed to 1 μM 17β-estradiol (E2) or vehicle from 3 hours to 4 days post...

  5. GLUT2-mediated glucose uptake and availability are required for embryonic brain development in zebrafish

    PubMed Central

    Marín-Juez, Rubén; Rovira, Mireia; Crespo, Diego; van der Vaart, Michiel; Spaink, Herman P; Planas, Josep V

    2015-01-01

    Glucose transporter 2 (GLUT2; gene name SLC2A2) has a key role in the regulation of glucose dynamics in organs central to metabolism. Although GLUT2 has been studied in the context of its participation in peripheral and central glucose sensing, its role in the brain is not well understood. To decipher the role of GLUT2 in brain development, we knocked down slc2a2 (glut2), the functional ortholog of human GLUT2, in zebrafish. Abrogation of glut2 led to defective brain organogenesis, reduced glucose uptake and increased programmed cell death in the brain. Coinciding with the observed localization of glut2 expression in the zebrafish hindbrain, glut2 deficiency affected the development of neural progenitor cells expressing the proneural genes atoh1b and ptf1a but not those expressing neurod. Specificity of the morphant phenotype was demonstrated by the restoration of brain organogenesis, whole-embryo glucose uptake, brain apoptosis, and expression of proneural markers in rescue experiments. These results indicate that glut2 has an essential role during brain development by facilitating the uptake and availability of glucose and support the involvement of glut2 in brain glucose sensing. PMID:25294126

  6. The effect of silver nanoparticles on zebrafish embryonic development and toxicology.

    PubMed

    Xia, Guangqing; Liu, Tiantian; Wang, Zhenwei; Hou, Yi; Dong, Lihong; Zhu, Junyi; Qi, Jie

    2016-06-01

    The unique physical and chemical characteristics of nanomaterials, such as the effects of their small size, surface effects, very high rates of reaction, and quantum tunnel effect, have aroused great interest among scholars. However, improper usage has led to an increasing number of nanomaterials entering the environment through various channels, greatly threatening the security of the ecological environment and human health. The urgent need for a scientific assessment of their biosafety can enable nanomaterials to truly benefit humanity. However, the current research in this field is extremely limited with regard to safety standards and waste disposal. In this study, we used silver nanoparticles (nano-Ag) and zebrafish embryos as experimental subjects, and we have reported the deleterious effect on zebrafish embryos treated with different concentrations of nano-Ag, with respect to morphological features (mortality, deformity rate, and heartbeat) and the analysis of expression of relevant genes (sox17, gsc, ntl, otx2); we found a dose-dependent increase in mortality and hatching delay. The results of in situ hybridization indicated that nano-Ag causes a dose-dependent toxicity in embryonic development, and would affect their development and lead to deformity, delayed development, and even death. The safety limit for the concentration of nano-Ag was found to be less than 5 mg/L.

  7. Macrophage–Microbe Interactions: Lessons from the Zebrafish Model

    PubMed Central

    Yoshida, Nagisa; Frickel, Eva-Maria; Mostowy, Serge

    2017-01-01

    Macrophages provide front line defense against infections. The study of macrophage–microbe interplay is thus crucial for understanding pathogenesis and infection control. Zebrafish (Danio rerio) larvae provide a unique platform to study macrophage–microbe interactions in vivo, from the level of the single cell to the whole organism. Studies using zebrafish allow non-invasive, real-time visualization of macrophage recruitment and phagocytosis. Furthermore, the chemical and genetic tractability of zebrafish has been central to decipher the complex role of macrophages during infection. Here, we discuss the latest developments using zebrafish models of bacterial and fungal infection. We also review novel aspects of macrophage biology revealed by zebrafish, which can potentiate development of new therapeutic strategies for humans. PMID:29250076

  8. The zebrafish eye—a paradigm for investigating human ocular genetics

    PubMed Central

    Richardson, R; Tracey-White, D; Webster, A; Moosajee, M

    2017-01-01

    Although human epidemiological and genetic studies are essential to elucidate the aetiology of normal and aberrant ocular development, animal models have provided us with an understanding of the pathogenesis of multiple developmental ocular malformations. Zebrafish eye development displays in depth molecular complexity and stringent spatiotemporal regulation that incorporates developmental contributions of the surface ectoderm, neuroectoderm and head mesenchyme, similar to that seen in humans. For this reason, and due to its genetic tractability, external fertilisation, and early optical clarity, the zebrafish has become an invaluable vertebrate system to investigate human ocular development and disease. Recently, zebrafish have been at the leading edge of preclinical therapy development, with their amenability to genetic manipulation facilitating the generation of robust ocular disease models required for large-scale genetic and drug screening programmes. This review presents an overview of human and zebrafish ocular development, genetic methodologies employed for zebrafish mutagenesis, relevant models of ocular disease, and finally therapeutic approaches, which may have translational leads in the future. PMID:27612182

  9. Studies of the Variables Affecting Behavior of Larval Zebrafish for Developmental Neurotoxicity Testing*

    EPA Science Inventory

    The U.S. Environmental Protection Agency is evaluating methods to screen and prioritize large numbers of chemicals for developmental toxicity. We are exploring methods to screen for developmentally neurotoxic chemicals using zebrafish behavior at 6 days of age. The behavioral par...

  10. CHANGES IN GENE AND PROTEIN EXPRESSION IN ZEBRAFISH (DANIO RERIO) FOLLOWING EXPOSURE TO ENVIRONMENTALLY-RELEVANT ENDOCRINE DISRUPTING COMPOUNDS (EDCS)

    EPA Science Inventory

    Endocrine-disrupting chemicals (EDCs) are increasingly being reported in waterways worldwide and have been shown to affect fish species by disrupting numerous aspects of development, behavior, reproduction, and survival. Furthermore, new data have suggested that the reduced repr...

  11. Analysis of Lethality and Malformations During Zebrafish (Danio rerio) Development.

    PubMed

    Raghunath, Azhwar; Perumal, Ekambaram

    2018-01-01

    The versatility offered by zebrafish (Danio rerio) makes it a powerful and an attractive vertebrate model in developmental toxicity and teratogenicity assays. Apart from the newly introduced chemicals as drugs, xenobiotics also induce abnormal developmental abnormalities and congenital malformations in living organisms. Over the recent decades, zebrafish embryo/larva has emerged as a potential tool to test teratogenicity potential of these chemicals. Zebrafish responds to compounds as mammals do as they share similarities in their development, metabolism, physiology, and signaling pathways with that of mammals. The methodology used by the different scientists varies enormously in the zebrafish embryotoxicity test. In this chapter, we present methods to assess lethality and malformations during zebrafish development. We propose two major malformations scoring systems: binomial and relative morphological scoring systems to assess the malformations in zebrafish embryos/larvae. Based on the scoring of the malformations, the test compound can be classified as a teratogen or a nonteratogen and its teratogenic potential is evaluated.

  12. The effects of triclosan on pluripotency factors and development of mouse embryonic stem cells and zebrafish.

    PubMed

    Chen, Xiaojiao; Xu, Bo; Han, Xiumei; Mao, Zhilei; Chen, Minjian; Du, Guizhen; Talbot, Prue; Wang, Xinru; Xia, Yankai

    2015-04-01

    Triclosan (TCS) poses potential risks to reproduction and development due to its endocrine-disrupting properties. However, the mechanism of TCS's effects on early embryonic development is little known. Embryonic stem cells (ESC) and zebrafish embryos provide valuable models for testing the toxic effects of environmental chemicals on early embryogenesis. In this study, mouse embryonic stem cells (mESC) were acutely exposed to TCS for 24 h, and general cytotoxicity and the effect of TCS on pluripotency were then evaluated. In addition, zebrafish embryos were exposed to TCS from 2- to 24-h post-fertilization (hpf), and their morphology was evaluated. In mESC, alkaline phosphatase staining was significantly decreased after treatment with the highest concentration of TCS (50 μM). Although the expression levels of Sox2 mRNA were not changed, the mRNA levels of Oct4 and Nanog in TCS-treated groups were significantly decreased compared to controls. In addition, the protein levels of Oct4, Sox2 and Nanog were significantly reduced in response to TCS treatment. MicroRNA (miR)-134, an expression inhibitor of pluripotency markers, was significantly increased in TCS-treated mESC. In zebrafish experiments, after 24 hpf of treatment, the controls had developed to the late stage of somitogenesis, while embryos exposed to 300 μg/L of TCS were still at the early stage of somitogenesis, and three genes (Oct4, Sox2 and Nanog) were upregulated in treated groups when compared with the controls. The two models demonstrated that TCS may affect early embryonic development by disturbing the expression of the pluripotency markers (Oct4, Sox2 and Nanog).

  13. Sema4d is required for the development of the hindbrain boundary and skeletal muscle in zebrafish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Jie; Zeng, Zhen; Wei, Juncheng

    2013-04-05

    Highlights: ► Sema4d was expressed at all developmental stages of zebrafish. ► Knockdown of sema4d in embryos resulted in defects in the hindbrain and the trunk structure. ► Knockdown of sema4d in embryos upregulated the expression of three hindbrain rhombomere markers. ► Knockdown of sema4d in embryos increased the expression of myogenic regulatory factors. ► Knockdown of sema4d in embryos resulted in an obvious increase of cell apoptosis. -- Abstract: Semaphorin4d (SEMA4D), also known as CD100, an oligodendrocyte secreted R-Ras GTPase-activating protein (GAP), affecting axonal growth is involved in a range of processes including cell adhesion, motility, angiogenesis, immune responsesmore » and tumour progression. However, its actual physiological mechanisms and its role in development remain unclear. This study has focused on the role of sema4d in the development and expression patterns in zebrafish embryos and the effect of its suppression on development using sema4d-specific antisense morpholino-oligonucleotides. In this study the knockdown of sema4d, expressed at all developmental stages, lead to defects in the hindbrain and trunk structure of zebrafish embryos. In addition, these phenotypes appeared to be associated with the abnormal expression of three hindbrain rhombomere boundary markers, wnt1, epha4a and foxb1.2, and two myogenic regulatory factors, myod and myog. Further, a notable increase of cell apoptosis appeared in the sema4d knockdown embryos, while no obvious reduction in cell proliferation was observed. Collectively, these data suggest that sema4d plays an important role in the development of the hindbrain and skeletal muscle.« less

  14. Live imaging reveals a conserved role of fatty acid β-oxidation in early lymphatic development in zebrafish.

    PubMed

    Zecchin, Annalisa; Wong, Brian W; Tembuyser, Bieke; Souffreau, Joris; Van Nuffelen, An; Wyns, Sabine; Vinckier, Stefan; Carmeliet, Peter; Dewerchin, Mieke

    2018-06-18

    During embryonic development, lymphatic endothelial cells (LECs) differentiate from venous endothelial cells (VECs), a process that is tightly regulated by several genetic signals. While the aquatic zebrafish model is regularly used for studying lymphangiogenesis and offers the unique advantage of time-lapse video-imaging of lymphatic development, some aspects of lymphatic development in this model differ from those in the mouse. It therefore remained to be determined whether fatty acid β-oxidation (FAO), which we showed to regulate lymphatic formation in the mouse, also co-determines lymphatic development in this aquatic model. Here, we took advantage of the power of the zebrafish embryo model to visualize the earliest steps of lymphatic development through time-lapse video-imaging. By targeting zebrafish isoforms of carnitine palmitoyltransferase 1a (cpt1a), a rate controlling enzyme of FAO, with multiple morpholinos, we demonstrate that reducing CPT1A levels and FAO flux during zebrafish development impairs lymphangiogenic secondary sprouting, the initiation of lymphatic development in the zebrafish trunk, and the formation of the first lymphatic structures. These findings not only show evolutionary conservation of the importance of FAO for lymphatic development, but also suggest a role for FAO in co-regulating the process of VEC-to-LEC differentiation in zebrafish in vivo. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Zebrafish Development: High-throughput Test Systems to Assess Developmental Toxicity

    EPA Science Inventory

    Abstract Because of its developmental concordance, ease of handling and rapid development, the small teleost, zebrafish (Danio rerio), is frequently promoted as a vertebrate model for medium-throughput developmental screens. This present chapter discusses zebrafish as an altern...

  16. Zebrafish model systems for developmental neurobehavioral toxicology.

    PubMed

    Bailey, Jordan; Oliveri, Anthony; Levin, Edward D

    2013-03-01

    Zebrafish offer many advantages that complement classic mammalian models for the study of normal development as well as for the teratogenic effects of exposure to hazardous compounds. The clear chorion and embryo of the zebrafish allow for continuous visualization of the anatomical changes associated with development, which, along with short maturation times and the capability of complex behavior, makes this model particularly useful for measuring changes to the developing nervous system. Moreover, the rich array of developmental, behavioral, and molecular benefits offered by the zebrafish have contributed to an increasing demand for the use of zebrafish in behavioral teratology. Essential for this endeavor has been the development of a battery of tests to evaluate a spectrum of behavior in zebrafish. Measures of sensorimotor plasticity, emotional function, cognition and social interaction have been used to characterize the persisting adverse effects of developmental exposure to a variety of chemicals including therapeutic drugs, drugs of abuse and environmental toxicants. In this review, we present and discuss such tests and data from a range of developmental neurobehavioral toxicology studies using zebrafish as a model. Zebrafish provide a key intermediate model between high throughput in vitro screens and the classic mammalian models as they have the accessibility of in vitro models and the complex functional capabilities of mammalian models. Copyright © 2013 Wiley Periodicals, Inc.

  17. Zebrafish Model Systems for Developmental Neurobehavioral Toxicology

    PubMed Central

    Bailey, Jordan; Oliveri, Anthony; Levin, Edward D.

    2014-01-01

    Zebrafish offer many advantages that complement classic mammalian models for the study of normal development as well as for the teratogenic effects of exposure to hazardous compounds. The clear chorion and embryo of the zebrafish allow for continuous visualization of the anatomical changes associated with development, which, along with short maturation times and the capability of complex behavior, makes this model particularly useful for measuring changes to the developing nervous system. Moreover, the rich array of developmental, behavioral, and molecular benefits offered by the zebrafish have contributed to an increasing demand for the use of zebrafish in behavioral teratology. Essential for this endeavor has been the development of a battery of tests to evaluate a spectrum of behavior in zebrafish. Measures of sensorimotor plasticity, emotional function, cognition and social interaction have been used to characterize the persisting adverse effects of developmental exposure to a variety of chemicals including therapeutic drugs, drugs of abuse and environmental toxicants. In this review, we present and discuss such tests and data from a range of developmental neurobehavioral toxicology studies using zebrafish as a model. Zebrafish provide a key intermediate model between high throughput in vitro screens and the classic mammalian models as they have the accessibility of in vitro models and the complex functional capabilities of mammalian models. PMID:23723169

  18. The State of the Art of the Zebrafish Model for Toxicology and Toxicologic Pathology Research—Advantages and Current Limitations

    PubMed Central

    Spitsbergen, Jan M.; Kent, Michael L.

    2007-01-01

    The zebrafish (Danio rerio) is now the pre-eminent vertebrate model system for clarification of the roles of specific genes and signaling pathways in development. The zebrafish genome will be completely sequenced within the next 1–2 years. Together with the substantial historical database regarding basic developmental biology, toxicology, and gene transfer, the rich foundation of molecular genetic and genomic data makes zebrafish a powerful model system for clarifying mechanisms in toxicity. In contrast to the highly advanced knowledge base on molecular developmental genetics in zebrafish, our database regarding infectious and noninfectious diseases and pathologic lesions in zebrafish lags far behind the information available on most other domestic mammalian and avian species, particularly rodents. Currently, minimal data are available regarding spontaneous neoplasm rates or spontaneous aging lesions in any of the commonly used wild-type or mutant lines of zebrafish. Therefore, to fully utilize the potential of zebrafish as an animal model for understanding human development, disease, and toxicology we must greatly advance our knowledge on zebrafish diseases and pathology. PMID:12597434

  19. Angiopoietin-like 3 regulates hepatocyte proliferation and lipid metabolism in zebrafish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, So-Hyun; Department of Biology, Chungnam National University, Daejeon; So, Ju-Hoon

    2014-04-18

    Highlights: • angptl3 is specifically expressed in the liver of developing zebrafish. • Knockdown of Angptl3 decreases liver size in developing zebrafish. • Knockdown of zebrafish Angptl3 elicits a hypocholesterolemia phenotype. - Abstract: Loss-of-function mutations in angiopoietin-like 3 (ANGPTL3) cause familial hypobetalipoproteinemia type 2 (FHBL2) in humans. ANGPTL3 belongs to the angiopoietin-like family, the vascular endothelial growth factor family that is structurally similar to angiopoietins and is known for a regulator of lipid and glucose metabolism, although it is unclear how mutations in ANGPTL3 lead to defect in liver development in the vertebrates. We report here that angptl3 is primarilymore » expressed in the zebrafish developing liver and that morpholino (MO) knockdown of Angptl3 reduces the size of the developing liver, which is caused by suppression of cell proliferation, but not by enhancement of apoptosis. However, MO knockdown of Angptl3 did not alter angiogenesis in the developing liver. Additionally, disruption of zebrafish Angptl3 elicits the hypocholesterolemia phenotype that is characteristic of FHBL2 in humans. Together, our findings propose a novel role for Angptl3 in liver cell proliferation and maintenance during zebrafish embryogenesis. Finally, angptl3 morphants will serve as a good model for understanding the pathophysiology of FHBL2.« less

  20. Quantum dot interactions and flow effects in angiogenic zebrafish (Danio rerio) vessels and human endothelial cells.

    PubMed

    Jiang, Xiao-Yu; Sarsons, Christopher D; Gomez-Garcia, M Juliana; Cramb, David T; Rinker, Kristina D; Childs, Sarah J

    2017-04-01

    Nanoparticle (NP) interactions with biological tissues are affected by the size, shape and surface chemistry of the NPs. Here we use in vivo (zebrafish) and in vitro (HUVEC) models to investigate association of quantum dots (QDs) with endothelial cells and the effect of fluid flow. After injection into the developing zebrafish, circulating QDs associate with endothelium and penetrate surrounding tissue parenchyma over time. Amino-functionalized QDs cluster, interact with cells, and clear more rapidly than carboxy-functionalized QDs in vivo, highlighting charge influences. QDs show stronger accumulation in slow-flowing, small caliber venous vessels than in fast-flowing high caliber arterial vessels. Parallel-plate flow experiments with HUVEC support these findings, showing reduced QD-EC association with increasing flow. In vivo, flow arrest after nanoparticle injection still results in venous accumulation at 18 h. Overall our results suggest that both QD charge and blood flow modulate particle-endothelial cell interactions. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Quantitative assessment of cypermethrin induced behavioural and biochemical anomalies in adult zebrafish.

    PubMed

    Nema, Shubham; Bhargava, Yogesh

    2018-05-23

    Cypermethrin is one of the top five pesticides used globally. Although the effect of cypermethrin on the embryonic stages of zebrafish is well characterized, its toxic effect on the behaviour of adult zebrafish is largely unknown. Here we used videogram and automated tracking approach to quantitatively assess behavioural toxicity induced by the short exposure of cypermethrin to adult zebrafish. We observed that cypermethrin at 25 ppb level induced behavioural toxicity in adult zebrafish. Motor activity of the treated group was significantly retarded which affected their overall exploratory behaviour including their visit to the central arena of the open-field test. Furthermore, the treated group showed erratic movements (covered less distance per unit time) without affecting their angle based behavioural endpoints. In contrast to the control group, the cypermethrin exposed group showed frequent freezing behaviour. However, their freezing episodes were characterized by constant drift-like movement caused by the loss of their voluntary control over the motor coordination. These behavioural changes are similar to typical anxiety-like behaviour. Though, cypermethrin exposure at ppb level for just half an hour was sufficient to induce behavioural toxicity, it failed to alter brain superoxide dismutase and acetylcholine esterase enzyme activity. Our data indicates that acute short-term exposure of cypermethrin induces behavioural anomalies in adult zebrafish through a mechanism distinct from alteration of brain superoxide dismutase and the acetylcholine esterase activity. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Translating Discovery in Zebrafish Pancreatic Development to Human Pancreatic Cancer: Biomarkers, Targets, Pathogenesis, and Therapeutics

    PubMed Central

    Kazi, Abid A.; Yee, Rosemary K.

    2013-01-01

    Abstract Experimental studies in the zebrafish have greatly facilitated understanding of genetic regulation of the early developmental events in the pancreas. Various approaches using forward and reverse genetics, chemical genetics, and transgenesis in zebrafish have demonstrated generally conserved regulatory roles of mammalian genes and discovered novel genetic pathways in exocrine pancreatic development. Accumulating evidence has supported the use of zebrafish as a model of human malignant diseases, including pancreatic cancer. Studies have shown that the genetic regulators of exocrine pancreatic development in zebrafish can be translated into potential clinical biomarkers and therapeutic targets in human pancreatic adenocarcinoma. Transgenic zebrafish expressing oncogenic K-ras and zebrafish tumor xenograft model have emerged as valuable tools for dissecting the pathogenetic mechanisms of pancreatic cancer and for drug discovery and toxicology. Future analysis of the pancreas in zebrafish will continue to advance understanding of the genetic regulation and biological mechanisms during organogenesis. Results of those studies are expected to provide new insights into how aberrant developmental pathways contribute to formation and growth of pancreatic neoplasia, and hopefully generate valid biomarkers and targets as well as effective and safe therapeutics in pancreatic cancer. PMID:23682805

  3. Translating discovery in zebrafish pancreatic development to human pancreatic cancer: biomarkers, targets, pathogenesis, and therapeutics.

    PubMed

    Yee, Nelson S; Kazi, Abid A; Yee, Rosemary K

    2013-06-01

    Abstract Experimental studies in the zebrafish have greatly facilitated understanding of genetic regulation of the early developmental events in the pancreas. Various approaches using forward and reverse genetics, chemical genetics, and transgenesis in zebrafish have demonstrated generally conserved regulatory roles of mammalian genes and discovered novel genetic pathways in exocrine pancreatic development. Accumulating evidence has supported the use of zebrafish as a model of human malignant diseases, including pancreatic cancer. Studies have shown that the genetic regulators of exocrine pancreatic development in zebrafish can be translated into potential clinical biomarkers and therapeutic targets in human pancreatic adenocarcinoma. Transgenic zebrafish expressing oncogenic K-ras and zebrafish tumor xenograft model have emerged as valuable tools for dissecting the pathogenetic mechanisms of pancreatic cancer and for drug discovery and toxicology. Future analysis of the pancreas in zebrafish will continue to advance understanding of the genetic regulation and biological mechanisms during organogenesis. Results of those studies are expected to provide new insights into how aberrant developmental pathways contribute to formation and growth of pancreatic neoplasia, and hopefully generate valid biomarkers and targets as well as effective and safe therapeutics in pancreatic cancer.

  4. BMP signaling modulates hepcidin expression in zebrafish embryos independent of hemojuvelin.

    PubMed

    Gibert, Yann; Lattanzi, Victoria J; Zhen, Aileen W; Vedder, Lea; Brunet, Frédéric; Faasse, Sarah A; Babitt, Jodie L; Lin, Herbert Y; Hammerschmidt, Matthias; Fraenkel, Paula G

    2011-01-21

    Hemojuvelin (Hjv), a member of the repulsive-guidance molecule (RGM) family, upregulates transcription of the iron regulatory hormone hepcidin by activating the bone morphogenetic protein (BMP) signaling pathway in mammalian cells. Mammalian models have identified furin, neogenin, and matriptase-2 as modifiers of Hjv's function. Using the zebrafish model, we evaluated the effects of hjv and its interacting proteins on hepcidin expression during embryonic development. We found that hjv is strongly expressed in the notochord and somites of the zebrafish embryo and that morpholino knockdown of hjv impaired the development of these structures. Knockdown of hjv or other hjv-related genes, including zebrafish orthologs of furin or neogenin, however, failed to decrease hepcidin expression relative to liver size. In contrast, overexpression of bmp2b or knockdown of matriptase-2 enhanced the intensity and extent of hepcidin expression in zebrafish embryos, but this occurred in an hjv-independent manner. Furthermore, we demonstrated that zebrafish hjv can activate the human hepcidin promoter and enhance BMP responsive gene expression in vitro, but is expressed at low levels in the zebrafish embryonic liver. Taken together, these data support an alternative mechanism for hepcidin regulation during zebrafish embryonic development, which is independent of hjv.

  5. The importance of Zebrafish in biomedical research.

    PubMed

    Tavares, Bárbara; Santos Lopes, Susana

    2013-01-01

    Zebrafish (Danio rerio) is an ideal model organism for the study of vertebrate development. This is due to the large clutches that each couple produces, with up to 200 embryos every 7 days, and to the fact that the embryos and larvae are small, transparent and undergo rapid external development. Using scientific literature research tools available online and the keywords Zebrafish, biomedical research, human disease, and drug screening, we reviewed original studies and reviews indexed in PubMed. In this review we summarized work conducted with this model for the advancement of our knowledge related to several human diseases. We also focused on the biomedical research being performed in Portugal with the zebrafish model. Powerful live imaging and genetic tools are currently available for zebrafish making it a valuable model in biomedical research. The combination of these properties with the optimization of automated systems for drug screening has transformed the zebrafish into "a top model" in biomedical research, drug discovery and toxicity testing. Furthermore, with the optimization of xenografts technology it will be possible to use zebrafish to aide in the choice of the best therapy for each patient. Zebrafish is an excellent model organism in biomedical research, drug development and in clinical therapy.

  6. The PBDE metabolite 6-OH-BDE 47 affects melanin pigmentation and THRβ MRNA expression in the eye of zebrafish embryos

    PubMed Central

    Dong, Wu; Macaulay, Laura J; Kwok, Kevin WH; Hinton, David E; Ferguson, P Lee; Stapleton, Heather M

    2015-01-01

    Polybrominated diphenyl ethers and their hydroxyl-metabolites (OH-BDEs) are commonly detected contaminants in human serum in the US population. They are also considered to be endocrine disruptors, and are specifically known to affect thyroid hormone regulation. In this study, we investigated and compared the effects of a PBDE and its OH-BDE metabolite on developmental pathways regulated by thyroid hormones using zebrafish as a model. Exposure to 6-OHBDE 47 (10–100 nM), but not BDE 47 (1–50 μM), led to decreased melanin pigmentation and increased apoptosis in the retina of zebrafish embryos in a concentration-dependent manner in short-term exposures (4 – 30 hours). Six-OH-BDE 47 exposure also significantly decreased thyroid hormone receptor β (THRβ) mRNA expression, which was confirmed using both RT-PCR and in situ hybridization (whole mount and paraffin- section). Interestingly, exposure to the native thyroid hormone, triiodothyronine (T3) also led to similar responses: decreased THRβ mRNA expression, decreased melanin pigmentation and increased apoptosis, suggesting that 6-OH-BDE 47 may be acting as a T3 mimic. To further investigate short-term effects that may be regulated by THRβ, experiments using a morpholino gene knock down and THRβ mRNA over expression were conducted. Knock down of THRβ led to decreases in melanin pigmentation and increases in apoptotic cells in the eye of zebrafish embryos, similar to exposure to T3 and 6-OH-BDE 47, but THRβ mRNA overexpression rescued these effects. Histological analysis of eyes at 22 hpf from each group revealed that exposure to T3 or to 6-OH-BDE 47 was associated with a decrease of melanin and diminished proliferation of cells in layers of retina near the choroid. This study suggests that 6-OH-BDE 47 disrupts the activity of THRβ in early life stages of zebrafish, and warrants further studies on effects in developing humans. PMID:25767823

  7. A novel TRIM family member, Trim69, regulates zebrafish development through p53-mediated apoptosis.

    PubMed

    Han, Ruiqin; Zhao, Qing; Zong, Shudong; Miao, Shiying; Song, Wei; Wang, Linfang

    2016-05-01

    Trim69 contains the hallmark domains of a tripartite motif (TRIM) protein, including a Ring-finger domain, B-box domain, and coiled-coil domain. Trim69 is structurally and evolutionarily conserved in zebrafish, mouse, rat, human, and chimpanzee. The role of this protein is unclear, however, so we investigated its function in zebrafish development. Trim69 is extensively expressed in zebrafish adults and developing embryos-particularly in the testis, brain, ovary, and heart-and its expression decreases in a time- and stage-dependent manner. Loss of trim69 in zebrafish induces apoptosis and activates apoptosis-related processes; indeed, the tp53 pathway was up-regulated in response to the knockdown. Expression of human trim69 rescued the apoptotic phenotype, while overexpression of trim69 does not increase cellular apoptosis. Taken together, our results suggest that trim69 participates in tp53-mediated apoptosis during zebrafish development. Mol. Reprod. Dev. 83: 442-454, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. Mutagenesis and phenotyping resources in zebrafish for studying development and human disease

    PubMed Central

    Varshney, Gaurav Kumar

    2014-01-01

    The zebrafish (Danio rerio) is an important model organism for studying development and human disease. The zebrafish has an excellent reference genome and the functions of hundreds of genes have been tested using both forward and reverse genetic approaches. Recent years have seen an increasing number of large-scale mutagenesis projects and the number of mutants or gene knockouts in zebrafish has increased rapidly, including for the first time conditional knockout technologies. In addition, targeted mutagenesis techniques such as zinc finger nucleases, transcription activator-like effector nucleases and clustered regularly interspaced short sequences (CRISPR) or CRISPR-associated (Cas), have all been shown to effectively target zebrafish genes as well as the first reported germline homologous recombination, further expanding the utility and power of zebrafish genetics. Given this explosion of mutagenesis resources, it is now possible to perform systematic, high-throughput phenotype analysis of all zebrafish gene knockouts. PMID:24162064

  9. The utility of zebrafish to study the mechanisms by which ethanol affects social behavior and anxiety during early brain development.

    PubMed

    Parker, Matthew O; Annan, Leonette V; Kanellopoulos, Alexandros H; Brock, Alistair J; Combe, Fraser J; Baiamonte, Matteo; Teh, Muy-Teck; Brennan, Caroline H

    2014-12-03

    Exposure to moderate levels of ethanol during brain development has a number of effects on social behavior but the molecular mechanisms that mediate this are not well understood. Gaining a better understanding of these factors may help to develop therapeutic interventions in the future. Zebrafish offer a potentially useful model in this regard. Here, we introduce a zebrafish model of moderate prenatal ethanol exposure. Embryos were exposed to 20mM ethanol for seven days (48hpf-9dpf) and tested as adults for individual social behavior and shoaling. We also tested their basal anxiety with the novel tank diving test. We found that the ethanol-exposed fish displayed reductions in social approach and shoaling, and an increase in anxiety in the novel tank test. These behavioral differences corresponded to differences in hrt1aa, slc6a4 and oxtr expression. Namely, acute ethanol caused a spike in oxtr and ht1aa mRNA expression, which was followed by down-regulation at 7dpf, and an up-regulation in slc6a4 at 72hpf. This study confirms the utility of zebrafish as a model system for studying the molecular basis of developmental ethanol exposure. Furthermore, it proposes a putative developmental mechanism characterized by ethanol-induced OT inhibition leading to suppression of 5-HT and up-regulation of 5-HT1A, which leads, in turn, to possible homeostatic up-regulation of 5-HTT at 72hpf and subsequent imbalance of the 5-HT system. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Chronic reduction in cardiac output induces hypoxic signaling in larval zebrafish even at a time when convective oxygen transport is not required.

    PubMed

    Kopp, Renate; Schwerte, Thorsten; Egg, Margit; Sandbichler, Adolf Michael; Egger, Bernhard; Pelster, Bernd

    2010-09-01

    In the present study, the zebrafish breakdance mutant (bre) was used to assess the role of blood flow in development because it has been previously shown that bre larvae have a chronically reduced cardiac output as a result of ventricular contraction following only every second atrial contraction in addition to an atrial bradycardia. We confirmed a 50% reduction compared with control fish and further showed that blood flow in the caudal part of the dorsal aorta decreased by 80%. Associated with these reductions in blood flow were indications of developmental retardation in bre mutants, specifically delayed hatching, reduced cell proliferation, and a transiently decreased growth rate. Surprisingly, an increased red blood cell concentration and an earlier appearance of trunk vessels in bre larvae indicated some compensation to convective oxygen transport, although in previous studies it has been shown that zebrafish larvae at this stage obtain oxygen by bulk diffusion. In bre animals immunohistochemical analyses showed a significant increase in hypoxia inducible factor 1 (HIF)-α protein expression, comparable with wild-type larvae that were raised under hypoxic conditions. Accordingly, the expression of some hif downstream genes was affected. Furthermore, Affymetrix microarray analyses revealed a large number of genes that were differently expressed comparing control and bre larvae, and the number even increased with proceeding development. The results showed that a chronic reduction in blood flow generated hypoxic molecular signals despite partial compensation by increased oxygen carrying capacity and transiently slowed the overall development of zebrafish bre larvae.

  11. Novel microcephalic primordial dwarfism disorder associated with variants in the centrosomal protein ninein.

    PubMed

    Dauber, Andrew; Lafranchi, Stephen H; Maliga, Zoltan; Lui, Julian C; Moon, Jennifer E; McDeed, Cailin; Henke, Katrin; Zonana, Jonathan; Kingman, Garrett A; Pers, Tune H; Baron, Jeffrey; Rosenfeld, Ron G; Hirschhorn, Joel N; Harris, Matthew P; Hwa, Vivian

    2012-11-01

    Microcephalic primordial dwarfism (MPD) is a rare, severe form of human growth failure in which growth restriction is evident in utero and continues into postnatal life. Single causative gene defects have been identified in a number of patients with MPD, and all involve genes fundamental to cellular processes including centrosome functions. The objective of the study was to find the genetic etiology of a novel presentation of MPD. The design of the study was whole-exome sequencing performed on two affected sisters in a single family. Molecular and functional studies of a candidate gene were performed using patient-derived primary fibroblasts and a zebrafish morpholino oligonucleotides knockdown model. Two sisters presented with a novel subtype of MPD, including severe intellectual disabilities. NIN, encoding Ninein, a centrosomal protein critically involved in asymmetric cell division, was identified as a candidate gene, and functional impacts in fibroblasts and zebrafish were studied. From 34,606 genomic variants, two very rare missense variants in NIN were identified. Both probands were compound heterozygotes. In the zebrafish, ninein knockdown led to specific and novel defects in the specification and morphogenesis of the anterior neuroectoderm, resulting in a deformity of the developing cranium with a small, squared skull highly reminiscent of the human phenotype. We identified a novel clinical subtype of MPD in two sisters who have rare variants in NIN. We show, for the first time, that reduction of ninein function in the developing zebrafish leads to specific deficiencies of brain and skull development, offering a developmental basis for the myriad phenotypes in our patients.

  12. Embryonic exposure to sodium arsenite perturbs vascular development in zebrafish.

    PubMed

    McCollum, Catherine W; Hans, Charu; Shah, Shishir; Merchant, Fatima A; Gustafsson, Jan-Åke; Bondesson, Maria

    2014-07-01

    Exposure to arsenic in its inorganic form, arsenite, causes adverse effects to many different organs and tissues. Here, we have investigated arsenite-induced adverse effects on vascular tissues in the model organism zebrafish, Danio rerio. Zebrafish embryos were exposed to arsenite at different exposure windows and the susceptibility to vascular tissue damage was recorded at 72hours post fertilization (hpf). Intersegmental vessel sprouting and growth was most perturbed by exposure to arsenite during the 24-48hpf window, while disruption in the condensation of the caudal vein plexus was more often observed at the 48-72hpf exposure window, reflecting when these structures develop during normal embryogenesis. The vascular growth rate was decreased by arsenite exposure, and deviated from that of control embryos at around 24-26.5hpf. We further mapped changes in expression of key regulators of angiogenesis and vasculogenesis. Downregulation of vascular endothelial growth factor receptor 1/fms-related tyrosine kinase 1 (vegfr1/flt1) expression was evident already at 24hpf, coinciding with the decreased vascular growth rate. At later time points, matrix metalloproteinase 9 (mmp9) expression was upregulated, suggesting that arsenite affects the composition of the extracellular matrix. In total, the expression of eight key factors involved in different aspects of vascularization was significantly altered by arsenic exposure. In conclusion, our results show that arsenite is a potent vascular disruptor in the developing zebrafish embryo, a finding that calls for an evaluation of arsenite as a developmental vascular toxicant in mammalian model systems. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Abcb4 acts as multixenobiotic transporter and active barrier against chemical uptake in zebrafish (Danio rerio) embryos

    PubMed Central

    2013-01-01

    Background In mammals, ABCB1 constitutes a cellular “first line of defense” against a wide array of chemicals and drugs conferring cellular multidrug or multixenobiotic resistance (MDR/MXR). We tested the hypothesis that an ABCB1 ortholog serves as protection for the sensitive developmental processes in zebrafish embryos against adverse compounds dissolved in the water. Results Indication for ABCB1-type efflux counteracting the accumulation of chemicals in zebrafish embryos comes from experiments with fluorescent and toxic transporter substrates and inhibitors. With inhibitors present, levels of fluorescent dyes in embryo tissue and sensitivity of embryos to toxic substrates were generally elevated. We verified two predicted sequences from zebrafish, previously annotated as abcb1, by cloning; our synteny analyses, however, identified them as abcb4 and abcb5, respectively. The abcb1 gene is absent in the zebrafish genome and we explored whether instead Abcb4 and/or Abcb5 show toxicant defense properties. Quantitative real-time polymerase chain reaction (qPCR) analyses showed the presence of transcripts of both genes throughout the first 48 hours of zebrafish development. Similar to transporter inhibitors, morpholino knock-down of Abcb4 increased accumulation of fluorescent substrates in embryo tissue and sensitivity of embryos toward toxic compounds. In contrast, morpholino knock-down of Abcb5 did not exert this effect. ATPase assays with recombinant protein obtained with the baculovirus expression system confirmed that dye and toxic compounds act as substrates of zebrafish Abcb4 and inhibitors block its function. The compounds tested comprised model substrates of human ABCB1, namely the fluorescent dyes rhodamine B and calcein-am and the toxic compounds vinblastine, vincristine and doxorubicin; cyclosporin A, PSC833, MK571 and verapamil were applied as inhibitors. Additionally, tests were performed with ecotoxicologically relevant compounds: phenanthrene (a polycyclic aromatic hydrocarbon) and galaxolide and tonalide (two polycyclic musks). Conclusions We show that zebrafish Abcb4 is a cellular toxicant transporter and provides protection of embryos against toxic chemicals dissolved in the water. Zebrafish Abcb4 thus is functionally similar to mammalian ABCB1, but differs from mammalian ABCB4, which is not involved in cellular resistance to chemicals but specifically transports phospholipids in the liver. Our data have important implications: Abcb4 could affect bioavailability - and thus toxicologic and pharmacologic potency - of chemicals to zebrafish embryos and inhibition of Abcb4 therefore causes chemosensitization, that is, enhanced sensitivity of embryos to toxicants. These aspects should be considered in (eco)toxicologic and pharmacologic chemical screens with the zebrafish embryo, a major vertebrate model. PMID:23773777

  14. Using Zebrafish to Study Podocyte Genesis During Kidney Development and Regeneration

    PubMed Central

    Kroeger, Paul T.; Wingert, Rebecca A.

    2014-01-01

    SUMMARY During development, vertebrates form a progression of up to three different kidneys that are comprised of functional units termed nephrons. Nephron composition is highly conserved across species, and an increasing appreciation of the similarities between zebrafish and mammalian nephron cell types has positioned the zebrafish as a relevant genetic system for nephrogenesis studies. A key component of the nephron blood filter is a specialized epithelial cell known as the podocyte. Podocyte research is of the utmost importance as a vast majority of renal diseases initiate with the dysfunction or loss of podocytes, resulting in a condition known as proteinuria that causes nephron degeneration and eventually leads to kidney failure. Understanding how podocytes develop during organogenesis may elucidate new ways to promote nephron health by stimulating podocyte replacement in kidney disease patients. In this review, we discuss how the zebrafish model can be used to study kidney development, and how zebrafish research has provided new insights into podocyte lineage specification and differentiation. Further, we discuss the recent discovery of podocyte regeneration in adult zebrafish, and explore how continued basic research using zebrafish can provide important knowledge about podocyte genesis in embryonic and adult environments. PMID:24920186

  15. Chronic Unpredictable Stress (CUS)-Induced Anxiety and Related Mood Disorders in a Zebrafish Model: Altered Brain Proteome Profile Implicates Mitochondrial Dysfunction

    PubMed Central

    Chakravarty, Sumana; Reddy, Bommana R.; Sudhakar, Sreesha R.; Saxena, Sandeep; Das, Tapatee; Meghah, Vuppalapaty; Brahmendra Swamy, Cherukuvada V.; Kumar, Arvind; Idris, Mohammed M.

    2013-01-01

    Anxiety and depression are major chronic mood disorders, and the etiopathology for each appears to be repeated exposure to diverse unpredictable stress factors. Most of the studies on anxiety and related mood disorders are performed in rodents, and a good model is chronic unpredictable stress (CUS). In this study, we have attempted to understand the molecular basis of the neuroglial and behavioral changes underlying CUS-induced mood disorders in the simplest vertebrate model, the zebrafish, Danio rerio. Zebrafish were subjected to a CUS paradigm in which two different stressors were used daily for 15 days, and thorough behavioral analyses were performed to assess anxiety and related mood disorder phenotypes using the novel tank test, shoal cohesion and scototaxis. Fifteen days of exposure to chronic stressors appears to induce an anxiety and related mood disorder phenotype. Decreased neurogenesis, another hallmark of anxiety and related disorders in rodents, was also observed in this zebrafish model. The common molecular markers of rodent anxiety and related disorders, corticotropin-releasing factor (CRF), calcineurin (ppp3r1a) and phospho cyclic AMP response element binding protein (pCREB), were also replicated in the fish model. Finally, using 2DE FTMS/ITMSMS proteomics analyses, 18 proteins were found to be deregulated in zebrafish anxiety and related disorders. The most affected process was mitochondrial function, 4 of the 18 differentially regulated proteins were mitochondrial proteins: PHB2, SLC25A5, VDAC3 and IDH2, as reported in rodent and clinical samples. Thus, the zebrafish CUS model and proteomics can facilitate not only uncovering new molecular targets of anxiety and related mood disorders but also the routine screening of compounds for drug development. PMID:23691016

  16. Optimal Anesthetic Regime for Motionless Three-Dimensional Image Acquisition During Longitudinal Studies of Adult Nonpigmented Zebrafish.

    PubMed

    Lockwood, Nicola; Parker, Jennifer; Wilson, Carole; Frankel, Paul

    2017-04-01

    With many live imaging techniques, it is crucial that a deep level of anesthesia is reached and maintained throughout image acquisition without reducing zebrafish viability. This is particularly true for three-dimensional tomographic imaging modalities. Currently, the most commonly used anesthetic in the zebrafish community, MS-222 (tricaine methanesulfonate), does not allow this. We show, using a combination of both MS-222 and isoflurane, that we can significantly improve the anesthetic regime required for motionless image acquisition of live adult zebrafish. We have benchmarked this against the requirements of our novel quantitative imaging platform, compressive sensing optical projection tomography. Using nonpigmented transgenic zebrafish, we show that a combination of 175 ppm of both anesthetics improves the maintenance of deep anesthesia for prolonged periods of time and it can be used repeatedly to enable longitudinal imaging. Importantly, it does not affect the health or viability of the adult zebrafish. We also show that nonpigmented fish, with a mutated form of the gene transparent, took significantly longer to reach deep anesthesia. The anesthetic regime presented in this study should lead to significant improvements in accuracy and information achievable from imaging live adult zebrafish and in its application to longitudinal studies.

  17. Physiological roles of glucocorticoids during early embryonic development of the zebrafish (Danio rerio)

    PubMed Central

    Wilson, K S; Matrone, G; Livingstone, D E W; Al-Dujaili, E A S; Mullins, J J; Tucker, C S; Hadoke, P W F; Kenyon, C J; Denvir, M A

    2013-01-01

    While glucocorticoids (GCs) are known to be present in the zebrafish embryo, little is known about their physiological roles at this stage. We hypothesised that GCs play key roles in stress response, hatching and swim activity during early development. To test this, whole embryo cortisol (WEC) and corticosteroid-related genes were measured in embryos from 6 to 120 h post fertilisation (hpf) by enzyme linked immunosorbent assay (ELISA) and quantitative real-time polymerase chain reaction (qRT-PCR). Stress response was assessed by change in WEC following stirring, hypoxia or brief electrical impulses applied to the bathing water. The impact of pharmacological and molecular GC manipulation on the stress response, spontaneous hatching and swim activity at different stages of development was also assessed. WEC levels demonstrated a biphasic pattern during development with a decrease from 0 to 36 hpf followed by a progressive increase towards 120 hpf. This was accompanied by a significant and sustained increase in the expression of genes encoding cyp11b1 (GC biosynthesis), hsd11b2 (GC metabolism) and gr (GC receptor) from 48 to 120 hpf. Metyrapone (Met), an inhibitor of 11β-hydroxylase (encoded by cyp11b1), and cyp11b1 morpholino (Mo) knockdown significantly reduced basal and stress-induced WEC levels at 72 and 120 hpf but not at 24 hpf. Spontaneous hatching and swim activity were significantly affected by manipulation of GC action from approximately 48 hpf onwards. We have identified a number of key roles of GCs in zebrafish embryos contributing to adaptive physiological responses under adverse conditions. The ability to alter GC action in the zebrafish embryo also highlights its potential value for GC research. PMID:24167225

  18. Developmental and reproductive toxicity of PVP/PEI-coated silver nanoparticles to zebrafish.

    PubMed

    Orbea, Amaia; González-Soto, Nagore; Lacave, José María; Barrio, Irantzu; Cajaraville, Miren P

    2017-09-01

    Cellular and molecular mechanisms of toxicity of silver nanoparticles (NPs) and their toxicity to fish embryos after waterborne exposure have been widely investigated, but much less information is available regarding the effect of Ag NPs on physiological functions such as growth or reproduction. In this work, the effects of waterborne exposure of adult zebrafish (Danio rerio) to PVP/PEI coated Ag NPs (~5nm) on reproduction (fecundity) were investigated. Moreover, the development of the embryos after parental exposure was compared with the development of embryos after direct waterborne exposure to the NPs. For this, two experiments were run: 1) embryos from unexposed parents were treated for 5days with Ag NPs (10μgAgL -1 -10mgAgL -1 ) and development was monitored, and 2) selected breeding zebrafish were exposed for 3weeks to 100ngAgL -1 (environmentally relevant concentration) or to 10μgAgL -1 of Ag NPs, fecundity was scored and development of resulting embryos was monitored up to 5days. Waterborne exposure of embryos to Ag NPs resulted in being highly toxic (LC50 at 120h=50μgAgL -1 ), causing 100% mortality during the first 24h of exposure at 0.1mgAgL -1 . Exposure of adults, even at the environmentally relevant silver concentration, caused a significant reduction of fecundity by the second week of treatment and resulting embryos showed a higher prevalence of malformations than control embryos. Exposed adult females presented higher prevalence of vacuolization in the liver. These results show that Ag NPs at an environmentally relevant concentration are able to affect population level parameters in zebrafish. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. High-Content Screening in Zebrafish Embryos Identifies Butafenacil as a Potent Inducer of Anemia

    PubMed Central

    Leet, Jessica K.; Lindberg, Casey D.; Bassett, Luke A.; Isales, Gregory M.; Yozzo, Krystle L.; Raftery, Tara D.; Volz, David C.

    2014-01-01

    Using transgenic zebrafish (fli1:egfp) that stably express enhanced green fluorescent protein (eGFP) within vascular endothelial cells, we recently developed and optimized a 384-well high-content screening (HCS) assay that enables us to screen and identify chemicals affecting cardiovascular development and function at non-teratogenic concentrations. Within this assay, automated image acquisition procedures and custom image analysis protocols are used to quantify body length, heart rate, circulation, pericardial area, and intersegmental vessel area within individual live embryos exposed from 5 to 72 hours post-fertilization. After ranking developmental toxicity data generated from the U.S. Environmental Protection Agency's (EPA's) zebrafish teratogenesis assay, we screened 26 of the most acutely toxic chemicals within EPA's ToxCast Phase-I library in concentration-response format (0.05–50 µM) using this HCS assay. Based on this screen, we identified butafenacil as a potent inducer of anemia, as exposure from 0.39 to 3.125 µM butafenacil completely abolished arterial circulation in the absence of effects on all other endpoints evaluated. Butafenacil is an herbicide that inhibits protoporphyrinogen oxidase (PPO) – an enzyme necessary for heme production in vertebrates. Using o-dianisidine staining, we then revealed that severe butafenacil-induced anemia in zebrafish was due to a complete loss of hemoglobin following exposure during early development. Therefore, six additional PPO inhibitors within the ToxCast Phase-I library were screened to determine whether anemia represents a common adverse outcome for these herbicides. Embryonic exposure to only one of these PPO inhibitors – flumioxazin – resulted in a similar phenotype as butafenacil, albeit not as severe as butafenacil. Overall, this study highlights the potential utility of this assay for (1) screening chemicals for cardiovascular toxicity and (2) prioritizing chemicals for future hypothesis-driven and mechanism-focused investigations within zebrafish and mammalian models. PMID:25090246

  20. Assessment of toxicity and genotoxicity of low doses of 5-fluorouracil in zebrafish (Danio rerio) two-generation study.

    PubMed

    Kovács, Róbert; Csenki, Zsolt; Bakos, Katalin; Urbányi, Béla; Horváth, Ákos; Garaj-Vrhovac, Vera; Gajski, Goran; Gerić, Marko; Negreira, Noelia; López de Alda, Miren; Barceló, Damià; Heath, Ester; Kosjek, Tina; Žegura, Bojana; Novak, Matjaž; Zajc, Irena; Baebler, Špela; Rotter, Ana; Ramšak, Živa; Filipič, Metka

    2015-06-15

    Residues of anti-neoplastic drugs represent new and emerging pollutants in aquatic environments. Many of these drugs are genotoxic, and it has been postulated that they can cause adverse effects in aquatic ecosystems. 5-Fluorouracil (5-FU) is one of the most extensively used anti-neoplastic drugs in cancer therapy, and this article describes the results of the first investigation using a two-generation toxicity study design with zebrafish (Danio rerio). Exposure of zebrafish to 5-FU (0.01, 1.0 and 100 μg/L) was initiated with adult zebrafish (F0 generation) and continued through the hatchings and adults of the F1 generation, and the hatchings of the F2 generation, to day 33 post-fertilisation. The exposure did not affect survival, growth and reproduction of the zebrafish; however, histopathological changes were observed in the liver and kidney, along with genotoxic effects, at all 5-FU concentrations. Increases in DNA damage determined using the comet assay were significant in the liver and blood cells, but not in the gills and gonads. In erythrocytes, a significant, dose-dependent increase in frequency of micronuclei was observed at all 5-FU concentrations. Whole genome transcriptomic analysis of liver samples of F1 generation zebrafish exposed to 0.01 μg/L and 1 μg/L 5-FU revealed dose-dependent increases in the number of differentially expressed genes, including up-regulation of several DNA-damage-responsive genes and oncogenes (i.e., jun, myca). Although this chronic exposure to environmentally relevant concentrations of 5-FU did not affect the reproduction of the exposed zebrafish, it cannot be excluded that 5-FU can lead to degenerative changes, including cancers, which over long-term exposure of several generations might affect fish populations. The data from this study contribute to a better understanding of the potential consequences of chronic exposure of fish to low concentrations of anti-neoplastic drugs, and they demonstrate that further studies into multi-generation toxicity are needed. Copyright © 2015. Published by Elsevier Ltd.

  1. Functional Development of the Circadian Clock in the Zebrafish Pineal Gland

    PubMed Central

    Ben-Moshe, Zohar; Foulkes, Nicholas S.

    2014-01-01

    The zebrafish constitutes a powerful model organism with unique advantages for investigating the vertebrate circadian timing system and its regulation by light. In particular, the remarkably early and rapid development of the zebrafish circadian system has facilitated exploring the factors that control the onset of circadian clock function during embryogenesis. Here, we review our understanding of the molecular basis underlying functional development of the central clock in the zebrafish pineal gland. Furthermore, we examine how the directly light-entrainable clocks in zebrafish cell lines have facilitated unravelling the general mechanisms underlying light-induced clock gene expression. Finally, we summarize how analysis of the light-induced transcriptome and miRNome of the zebrafish pineal gland has provided insight into the regulation of the circadian system by light, including the involvement of microRNAs in shaping the kinetics of light- and clock-regulated mRNA expression. The relative contributions of the pineal gland central clock and the distributed peripheral oscillators to the synchronization of circadian rhythms at the whole animal level are a crucial question that still remains to be elucidated in the zebrafish model. PMID:24839600

  2. Mixtures, Metabolites, and Mechanisms: Understanding Toxicology Using Zebrafish.

    PubMed

    Gamse, Joshua T; Gorelick, Daniel A

    2016-10-01

    For more than 60 years, zebrafish have been used in toxicological studies. Due to their transparency, genetic tractability, and compatibility with high-throughput screens, zebrafish embryos are uniquely suited to study the effects of pharmaceuticals and environmental insults on embryonic development, organ formation and function, and reproductive success. This special issue of Zebrafish highlights the ways zebrafish are used to investigate the toxic effects of endocrine disruptors, pesticides, and heavy metals.

  3. An assay for lateral line regeneration in adult zebrafish.

    PubMed

    Pisano, Gina C; Mason, Samantha M; Dhliwayo, Nyembezi; Intine, Robert V; Sarras, Michael P

    2014-04-08

    Due to the clinical importance of hearing and balance disorders in man, model organisms such as the zebrafish have been used to study lateral line development and regeneration. The zebrafish is particularly attractive for such studies because of its rapid development time and its high regenerative capacity. To date, zebrafish studies of lateral line regeneration have mainly utilized fish of the embryonic and larval stages because of the lower number of neuromasts at these stages. This has made quantitative analysis of lateral line regeneration/and or development easier in the earlier developmental stages. Because many zebrafish models of neurological and non-neurological diseases are studied in the adult fish and not in the embryo/larvae, we focused on developing a quantitative lateral line regenerative assay in adult zebrafish so that an assay was available that could be applied to current adult zebrafish disease models. Building on previous studies by Van Trump et al. that described procedures for ablation of hair cells in adult Mexican blind cave fish and zebrafish (Danio rerio), our assay was designed to allow quantitative comparison between control and experimental groups. This was accomplished by developing a regenerative neuromast standard curve based on the percent of neuromast reappearance over a 24 hr time period following gentamicin-induced necrosis of hair cells in a defined region of the lateral line. The assay was also designed to allow extension of the analysis to the individual hair cell level when a higher level of resolution is required.

  4. Efficient mutation identification in zebrafish by microarray capturing and next generation sequencing.

    PubMed

    Bontems, Franck; Baerlocher, Loic; Mehenni, Sabrina; Bahechar, Ilham; Farinelli, Laurent; Dosch, Roland

    2011-02-18

    Fish models like medaka, stickleback or zebrafish provide a valuable resource to study vertebrate genes. However, finding genetic variants e.g. mutations in the genome is still arduous. Here we used a combination of microarray capturing and next generation sequencing to identify the affected gene in the mozartkugelp11cv (mzlp11cv) mutant zebrafish. We discovered a 31-bp deletion in macf1 demonstrating the potential of this technique to efficiently isolate mutations in a vertebrate genome. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Making a Difference: Education at the 10th International Conference on Zebrafish Development and Genetics

    PubMed Central

    Liang, Jennifer O.; Pickart, Michael A.; Pierret, Chris; Tomasciewicz, Henry G.

    2012-01-01

    Abstract Scientists, educators, and students met at the 10th International Conference on Zebrafish Development and Genetics during the 2-day Education Workshop, chaired by Dr. Jennifer Liang and supported in part by the Genetics Society of America. The goal of the workshop was to share expertise, to discuss the challenges faced when using zebrafish in the classroom, and to articulate goals for expanding the impact of zebrafish in education. PMID:23244686

  6. Longitudinal Effects of Embryonic Exposure to Cocaine on Morphology, Cardiovascular Physiology, and Behavior in Zebrafish.

    PubMed

    Mersereau, Eric J; Boyle, Cody A; Poitra, Shelby; Espinoza, Ana; Seiler, Joclyn; Longie, Robert; Delvo, Lisa; Szarkowski, Megan; Maliske, Joshua; Chalmers, Sarah; Darland, Diane C; Darland, Tristan

    2016-05-31

    A sizeable portion of the societal drain from cocaine abuse results from the complications of in utero drug exposure. Because of challenges in using humans and mammalian model organisms as test subjects, much debate remains about the impact of in utero cocaine exposure. Zebrafish offer a number of advantages as a model in longitudinal toxicology studies and are quite sensitive physiologically and behaviorally to cocaine. In this study, we have used zebrafish to model the effects of embryonic pre-exposure to cocaine on development and on subsequent cardiovascular physiology and cocaine-induced conditioned place preference (CPP) in longitudinal adults. Larval fish showed a progressive decrease in telencephalic size with increased doses of cocaine. These treated larvae also showed a dose dependent response in heart rate that persisted 24 h after drug cessation. Embryonic cocaine exposure had little effect on overall health of longitudinal adults, but subtle changes in cardiovascular physiology were seen including decreased sensitivity to isoproterenol and increased sensitivity to cocaine. These longitudinal adult fish also showed an embryonic dose-dependent change in CPP behavior, suggesting an increased sensitivity. These studies clearly show that pre-exposure during embryonic development affects subsequent cocaine sensitivity in longitudinal adults.

  7. Morphologic analysis of the zebrafish digestive system.

    PubMed

    Trotter, Andrew J; Parslow, Adam C; Heath, Joan K

    2009-01-01

    The zebrafish provides an ideal model for the study of vertebrate organogenesis, including the formation of the digestive tract and its associated organs. Despite optical transparency of embryos, the internal position of the developing digestive system and its close juxtaposition with the yolk initially made morphological analysis relatively challenging, particularly during the first 3 d of development. However, methodologies have been successfully developed to address these problems and comprehensive morphologic analysis of the developing digestive system has now been achieved using a combination of light and fluorescence microscope approaches-including confocal analysis-to visualize wholemount and histological preparations of zebrafish embryos. Furthermore, the expanding number of antibodies that cross-react with zebrafish proteins and the generation of tissue-specific transgenic green fluorescent protein reporter lines that mark specific cell and tissue compartments have greatly enhanced our ability to successfully image the developing zebrafish digestive system.

  8. Comparison of molecular marker expression in early zebrafish brain development following chronic ethanol or morpholino treatment.

    PubMed

    Zhang, Chengjin; Boa-Amponsem, Oswald; Cole, Gregory J

    2017-08-01

    This study was undertaken to ascertain whether defined markers of early zebrafish brain development are affected by chronic ethanol exposure or morpholino knockdown of agrin, sonic hedgehog, retinoic acid, and fibroblast growth factors, four signaling molecules that are suggested to be ethanol sensitive. Zebrafish embryos were exposed to 2% ethanol from 6 to 24 hpf or injected with agrin, shha, aldh1a3, or fgf8a morpholinos. In situ hybridization was employed to analyze otx2, pax6a, epha4a, krx20, pax2a, fgf8a, wnt1, and eng2b expression during early brain development. Our results showed that pax6a mRNA expression was decreased in eye, forebrain, and hindbrain of both chronic ethanol exposed and select MO treatments. Epha4a expression in rhombomere R1 boundary was decreased in chronic ethanol exposure and aldh1a3 morphants, lost in fgf8a morphants, but largely unaffected in agrin and shha morphants. Ectopic pax6a and epha4a expression in midbrain was only found in fgf8a morphants. These results suggest that while chronic ethanol induces obvious morphological change in brain architecture, many molecular markers of these brain structures are relatively unaffected by ethanol exposure.

  9. Cornelia de Lange Syndrome: NIPBL haploinsufficiency downregulates canonical Wnt pathway in zebrafish embryos and patients fibroblasts.

    PubMed

    Pistocchi, A; Fazio, G; Cereda, A; Ferrari, L; Bettini, L R; Messina, G; Cotelli, F; Biondi, A; Selicorni, A; Massa, V

    2013-10-17

    Cornelia de Lange Syndrome is a severe genetic disorder characterized by malformations affecting multiple systems, with a common feature of severe mental retardation. Genetic variants within four genes (NIPBL (Nipped-B-like), SMC1A, SMC3, and HDAC8) are believed to be responsible for the majority of cases; all these genes encode proteins that are part of the 'cohesin complex'. Cohesins exhibit two temporally separated major roles in cells: one controlling the cell cycle and the other involved in regulating the gene expression. The present study focuses on the role of the zebrafish nipblb paralog during neural development, examining its expression in the central nervous system, and analyzing the consequences of nipblb loss of function. Neural development was impaired by the knockdown of nipblb in zebrafish. nipblb-loss-of-function embryos presented with increased apoptosis in the developing neural tissues, downregulation of canonical Wnt pathway genes, and subsequent decreased Cyclin D1 (Ccnd1) levels. Importantly, the same pattern of canonical WNT pathway and CCND1 downregulation was observed in NIPBL-mutated patient-specific fibroblasts. Finally, chemical activation of the pathway in nipblb-loss-of-function embryos rescued the adverse phenotype and restored the physiological levels of cell death.

  10. 1H-NMR METABOLOMICS ANALYIS OF ZEBRAFISH (DANIO RERIO) EXPOSED TO THE ENVIRONMENTALLY-RELEVANT EDC 17 ALPHA-ETHINYLESTRADIOL (EE2)

    EPA Science Inventory

    Elevated levels of endocrine-disrupting chemicals (EDCs) have been reported in waterways worldwide and have been shown to affect numerous aspects of development, behavior, reproduction, and survival in various fish species. We have examined the effects of the synthetic steroid 1...

  11. Combining Zebrafish and Mouse Models to Test the Function of Deubiquitinating Enzyme (Dubs) Genes in Development: Role of USP45 in the Retina.

    PubMed

    Toulis, Vasileios; Garanto, Alejandro; Marfany, Gemma

    2016-01-01

    Ubiquitination is a dynamic and reversible posttranslational modification. Much effort has been devoted to characterize the function of ubiquitin pathway genes in the cell context, but much less is known on their functional role in the development and maintenance of organs and tissues in the organism. In fact, several ubiquitin ligases and deubiquitinating enzymes (DUBs) are implicated in human pathological disorders, from cancer to neurodegeneration. The aim of our work is to explore the relevance of DUBs in retinal function in health and disease, particularly since some genes related to the ubiquitin or SUMO pathways cause retinal dystrophies, a group of rare diseases that affect 1:3000 individuals worldwide. We propose zebrafish as an extremely useful and informative genetic model to characterize the function of any particular gene in the retina, and thus complement the expression data from mouse. A preliminary characterization of gene expression in mouse retinas (RT-PCR and in situ hybridization) was performed to select particularly interesting genes, and we later replicated the experiments in zebrafish. As a proof of concept, we selected ups45 to be knocked down by morpholino injection in zebrafish embryos. Morphant phenotypic analysis showed moderate to severe eye morphological defects, with a defective formation of the retinal structures, therefore supporting the relevance of DUBs in the formation and differentiation of the vertebrate retina, and suggesting that genes encoding ubiquitin pathway enzymes are good candidates for causing hereditary retinal dystrophies.

  12. TRNA mutations that affect decoding fidelity deregulate development and the proteostasis network in zebrafish

    PubMed Central

    Reverendo, Marisa; Soares, Ana R; Pereira, Patrícia M; Carreto, Laura; Ferreira, Violeta; Gatti, Evelina; Pierre, Philippe; Moura, Gabriela R; Santos, Manuel A

    2014-01-01

    Mutations in genes that encode tRNAs, aminoacyl-tRNA syntheases, tRNA modifying enzymes and other tRNA interacting partners are associated with neuropathies, cancer, type-II diabetes and hearing loss, but how these mutations cause disease is unclear. We have hypothesized that levels of tRNA decoding error (mistranslation) that do not fully impair embryonic development can accelerate cell degeneration through proteome instability and saturation of the proteostasis network. To test this hypothesis we have induced mistranslation in zebrafish embryos using mutant tRNAs that misincorporate Serine (Ser) at various non-cognate codon sites. Embryo viability was affected and malformations were observed, but a significant proportion of embryos survived by activating the unfolded protein response (UPR), the ubiquitin proteasome pathway (UPP) and downregulating protein biosynthesis. Accumulation of reactive oxygen species (ROS), mitochondrial and nuclear DNA damage and disruption of the mitochondrial network, were also observed, suggesting that mistranslation had a strong negative impact on protein synthesis rate, ER and mitochondrial homeostasis. We postulate that mistranslation promotes gradual cellular degeneration and disease through protein aggregation, mitochondrial dysfunction and genome instability. PMID:25483040

  13. Larval Behavioral Toxicity Screening: Light Intensity and the Order of Stimulus Presentation Affect the Outcome

    EPA Science Inventory

    The U.S. Environmental Protection Agency is screening large numbers of chemicals using 6 day old zebrafish (Danio rerio). We use a behavioral testing paradigm that simultaneously tests individual zebrafish under both light and dark conditions in a 96-well plate using a video tr...

  14. Using the Larval Zebrafish Locomotor Assay in Functional Neurotoxicity Screening: Light Intensity and the Order of Stimulus Presentation Affect the Outcome

    EPA Science Inventory

    The U.S. Environmental Protection Agency is evaluating methods to screen and prioritize large numbers of chemicals using 6 day old zebrafish (Danio rerio) as an alternative test model for detecting neurotoxic chemicals. We use a behavioral testing paradigm that simultaneously tes...

  15. Chiral PCB 91 and 149 Toxicity Testing in Embryo and Larvae (Danio rerio): Application of Targeted Metabolomics via UPLC-MS/MS

    NASA Astrophysics Data System (ADS)

    Chai, Tingting; Cui, Feng; Yin, Zhiqiang; Yang, Yang; Qiu, Jing; Wang, Chengju

    2016-09-01

    In this study, we aimed to investigate the dysfunction of zebrafish embryos and larvae induced by rac-/(+)-/(-)- PCB91 and rac-/(-)-/(+)- PCB149. UPLC-MS/MS (Ultra-performance liquid chromatography coupled with mass spectrometry) was employed to perform targeted metabolomics analysis, including the quantification of 22 amino acids and the semi-quantitation of 22 other metabolites. Stereoselective changes in target metabolites were observed in embryos and larvae after exposure to chiral PCB91 and PCB149, respectively. In addition, statistical analyses, including PCA and PLS-DA, combined with targeted metabolomics were conducted to identify the characteristic metabolites and the affected pathways. Most of the unique metabolites in embryos and larvae after PCB91/149 exposure were amino acids, and the affected pathways for zebrafish in the developmental stage were metabolic pathways. The stereoselective effects of PCB91/149 on the metabolic pathways of zebrafish embryos and larvae suggest that chiral PCB91/149 exposure has stereoselective toxicity on the developmental stages of zebrafish.

  16. Zebrafish as tools for drug discovery.

    PubMed

    MacRae, Calum A; Peterson, Randall T

    2015-10-01

    The zebrafish has become a prominent vertebrate model for disease and has already contributed to several examples of successful phenotype-based drug discovery. For the zebrafish to become useful in drug development more broadly, key hurdles must be overcome, including a more comprehensive elucidation of the similarities and differences between human and zebrafish biology. Recent studies have begun to establish the capabilities and limitations of zebrafish for disease modelling, drug screening, target identification, pharmacology, and toxicology. As our understanding increases and as the technologies for manipulating zebrafish improve, it is hoped that the zebrafish will have a key role in accelerating the emergence of precision medicine.

  17. Mixtures, Metabolites, and Mechanisms: Understanding Toxicology Using Zebrafish

    PubMed Central

    Gamse, Joshua T.

    2016-01-01

    Abstract For more than 60 years, zebrafish have been used in toxicological studies. Due to their transparency, genetic tractability, and compatibility with high-throughput screens, zebrafish embryos are uniquely suited to study the effects of pharmaceuticals and environmental insults on embryonic development, organ formation and function, and reproductive success. This special issue of Zebrafish highlights the ways zebrafish are used to investigate the toxic effects of endocrine disruptors, pesticides, and heavy metals. PMID:27618129

  18. Fluoride caused thyroid endocrine disruption in male zebrafish (Danio rerio).

    PubMed

    Jianjie, Chen; Wenjuan, Xue; Jinling, Cao; Jie, Song; Ruhui, Jia; Meiyan, Li

    2016-02-01

    Excessive fluoride in natural water ecosystem has the potential to detrimentally affect thyroid endocrine system, but little is known of such effects or underlying mechanisms in fish. In the present study, we evaluated the effects of fluoride on growth performance, thyroid histopathology, thyroid hormone levels, and gene expressions in the HPT axis in male zebrafish (Danio rerio) exposed to different determined concentrations of 0.1, 0.9, 2.0 and 4.1 M of fluoride to investigate the effects of fluoride on thyroid endocrine system and the potential toxic mechanisms caused by fluoride. The results indicated that the growth of the male zebrafish used in the experiments was significantly inhibited, the thyroid microtrastructure was changed, and the levels of T3 and T4 were disturbed in fluoride-exposed male fish. In addition, the expressional profiles of genes in HPT axis displayed alteration. The expressions of all studied genes were significantly increased in all fluoride-exposed male fish after exposure for 45 days. The transcriptional levels of corticotrophin-releasing hormone (CRH), thyroid-stimulating hormone (TSH), thyroglobulin (TG), sodium iodide symporter (NIS), iodothyronine I (DIO1), and thyroid hormone receptor alpha (TRα) were also elevated in all fluoride-exposed male fish after 90 days of exposure, while the inconsistent expressions were found in the mRNA of iodothyronineⅡ (DIO2), UDP glucuronosyltransferase 1 family a, b (UGT1ab), transthyretin (TTR), and thyroid hormone receptor beta (TRβ). These results demonstrated that fluoride could notably inhibit the growth of zebrafish, and significantly affect thyroid endocrine system by changing the microtrastructure of thyroid, altering thyroid hormone levels and endocrine-related gene expressions in male zebrafish. All above indicated that fluoride could pose a great threat to thyroid endocrine system, thus detrimentally affected the normal function of thyroid of male zebrafish. Copyright © 2015. Published by Elsevier B.V.

  19. Cadherin-17 is required to maintain pronephric duct integrity during zebrafish development.

    PubMed

    Horsfield, Julia; Ramachandran, Anassuya; Reuter, Katja; LaVallie, Edward; Collins-Racie, Lisa; Crosier, Kathryn; Crosier, Philip

    2002-07-01

    We have isolated a zebrafish cadherin that is orthologous to human LI-cadherin (CDH17). Zebrafish cdh17 is expressed exclusively in the pronephric ducts during embryogenesis, and in the mesonephros during larval development and adulthood. Like its mammalian ortholog, cdh17 is also expressed in liver and intestine in adult zebrafish. We show that cdh17-positive mesodermal cells do not contribute to the hematopoietic system. Consistent with a cell adhesion role for Cdh17, depletion of Cdh17 function using antisense morpholino oligonucleotides compromised cell cohesion during pronephric duct formation. Our results indicate that Cdh17 is necessary for maintaining the integrity of the pronephric ducts during zebrafish embryogenesis. This finding contrasts with the role of mammalian CDH17, which does not appear to be involved in nephric development.

  20. Effects of acoustic levitation on the development of zebrafish, Danio rerio, embryos

    PubMed Central

    Sundvik, Maria; Nieminen, Heikki J.; Salmi, Ari; Panula, Pertti; Hæggström, Edward

    2015-01-01

    Acoustic levitation provides potential to characterize and manipulate material such as solid particles and fluid in a wall-less environment. While attempts to levitate small animals have been made, the biological effects of such levitation have been scarcely documented. Here, our goal was to explore if zebrafish embryos can be levitated (peak pressures at the pressure node and anti-node: 135 dB and 144 dB, respectively) with no effects on early development. We levitated the embryos (n = 94) at 2–14 hours post fertilization (hpf) for 1000 (n = 47) or 2000 seconds (n = 47). We compared the size and number of trunk neuromasts and otoliths in sonicated samples to controls (n = 94), and found no statistically significant differences (p > 0.05). While mortality rate was lower in the control group (22.3%) compared to that in the 1000 s (34.0%) and 2000 s (42.6%) levitation groups, the differences were statistically insignificant (p > 0.05). The results suggest that acoustic levitation for less than 2000 sec does not interfere with the development of zebrafish embryos, but may affect mortality rate. Acoustic levitation could potentially be used as a non-contacting wall-less platform for characterizing and manipulating vertebrae embryos without causing major adverse effects to their development. PMID:26337364

  1. Effects of acoustic levitation on the development of zebrafish, Danio rerio, embryos.

    PubMed

    Sundvik, Maria; Nieminen, Heikki J; Salmi, Ari; Panula, Pertti; Hæggström, Edward

    2015-09-04

    Acoustic levitation provides potential to characterize and manipulate material such as solid particles and fluid in a wall-less environment. While attempts to levitate small animals have been made, the biological effects of such levitation have been scarcely documented. Here, our goal was to explore if zebrafish embryos can be levitated (peak pressures at the pressure node and anti-node: 135 dB and 144 dB, respectively) with no effects on early development. We levitated the embryos (n = 94) at 2-14 hours post fertilization (hpf) for 1000 (n = 47) or 2000 seconds (n = 47). We compared the size and number of trunk neuromasts and otoliths in sonicated samples to controls (n = 94), and found no statistically significant differences (p > 0.05). While mortality rate was lower in the control group (22.3%) compared to that in the 1000 s (34.0%) and 2000 s (42.6%) levitation groups, the differences were statistically insignificant (p > 0.05). The results suggest that acoustic levitation for less than 2000 sec does not interfere with the development of zebrafish embryos, but may affect mortality rate. Acoustic levitation could potentially be used as a non-contacting wall-less platform for characterizing and manipulating vertebrae embryos without causing major adverse effects to their development.

  2. Knock-Down of Cathepsin D Affects the Retinal Pigment Epithelium, Impairs Swim-Bladder Ontogenesis and Causes Premature Death in Zebrafish

    PubMed Central

    Follo, Carlo; Ozzano, Matteo; Mugoni, Vera; Castino, Roberta; Santoro, Massimo; Isidoro, Ciro

    2011-01-01

    The lysosomal aspartic protease Cathepsin D (CD) is ubiquitously expressed in eukaryotic organisms. CD activity is essential to accomplish the acid-dependent extensive or partial proteolysis of protein substrates within endosomal and lysosomal compartments therein delivered via endocytosis, phagocytosis or autophagocytosis. CD may also act at physiological pH on small-size substrates in the cytosol and in the extracellular milieu. Mouse and fruit fly CD knock-out models have highlighted the multi-pathophysiological roles of CD in tissue homeostasis and organ development. Here we report the first phenotypic description of the lack of CD expression during zebrafish (Danio rerio) development obtained by morpholino-mediated knock-down of CD mRNA. Since the un-fertilized eggs were shown to be supplied with maternal CD mRNA, only a morpholino targeting a sequence containing the starting ATG codon was effective. The main phenotypic alterations produced by CD knock-down in zebrafish were: 1. abnormal development of the eye and of retinal pigment epithelium; 2. absence of the swim-bladder; 3. skin hyper-pigmentation; 4. reduced growth and premature death. Rescue experiments confirmed the involvement of CD in the developmental processes leading to these phenotypic alterations. Our findings add to the list of CD functions in organ development and patho-physiology in vertebrates. PMID:21747967

  3. In vivo cell biology in zebrafish - providing insights into vertebrate development and disease.

    PubMed

    Vacaru, Ana M; Unlu, Gokhan; Spitzner, Marie; Mione, Marina; Knapik, Ela W; Sadler, Kirsten C

    2014-02-01

    Over the past decades, studies using zebrafish have significantly advanced our understanding of the cellular basis for development and human diseases. Zebrafish have rapidly developing transparent embryos that allow comprehensive imaging of embryogenesis combined with powerful genetic approaches. However, forward genetic screens in zebrafish have generated unanticipated findings that are mirrored by human genetic studies: disruption of genes implicated in basic cellular processes, such as protein secretion or cytoskeletal dynamics, causes discrete developmental or disease phenotypes. This is surprising because many processes that were assumed to be fundamental to the function and survival of all cell types appear instead to be regulated by cell-specific mechanisms. Such discoveries are facilitated by experiments in whole animals, where zebrafish provides an ideal model for visualization and manipulation of organelles and cellular processes in a live vertebrate. Here, we review well-characterized mutants and newly developed tools that underscore this notion. We focus on the secretory pathway and microtubule-based trafficking as illustrative examples of how studying cell biology in vivo using zebrafish has broadened our understanding of the role fundamental cellular processes play in embryogenesis and disease.

  4. Microcystin-LR affects the hypothalamic-pituitary-inter-renal (HPI) axis in early life stages (embryos and larvae) of zebrafish.

    PubMed

    Chen, Liang; Wang, Yeke; Giesy, John P; Chen, Feng; Shi, Ting; Chen, Jun; Xie, Ping

    2018-05-22

    Frequencies and durations of blooms of cyanobacteria are increasing. Some cyanobacteria can produce cyanotoxins including microcystins (MCs). MCs are the most common toxic products of hazardous algal blooms (HABs), with the greatest potential for exposure and to cause toxicity. Recently, MCs have been shown to disrupt endocrine functions. In this study, for the first time, effects of MC-LR on the hypothalamic-pituitary-inter-renal (HPI) axis during early embryonic development (embryos/larvae) of zebrafish (Danio rerio), were investigated. Embryos/larvae of zebrafish were exposed to 1, 10, 100, or 300 μg MC-LR/L during the period of 4-168 h post-fertilization (hpf). Exposure to 300 μg MC-LR/L resulted in significantly greater concentrations of whole-body cortisol than those in controls. Expressions of genes along the HPI axis and mineralocorticoid receptor (MR-) and glucocorticoid receptor (GR-) centered gene networks were evaluated by use of quantitative real-time PCR. Expression of mRNA for crh was significantly down-regulated by exposure to 300 μg MC-LR/L, while expressions of crhbp, crhr1, and crhr2 were significantly up-regulated, relative to controls. MC-LR caused significantly lesser levels of mRNA for steroidogenic genes including hmgra, star, and cyp17, but expression of mRNA for hsd20b was significantly greater than that of controls. Treatment with MC-LR also altered profiles of transcription of MR- and GR-centered gene networks, which might result in multiple responses. Taken together, these results demonstrated that MC-LR affected the corticosteroid-endocrine system of larvae of zebrafish. This study provided valuable insights into molecular mechanisms behind potential toxicity and endocrine disruption of MCs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Growth and recovery of zebrafish embryos after developmental exposure to raw and ozonated oil sands process-affected water.

    PubMed

    Lyons, Danielle D; Morrison, Christie; Philibert, Danielle A; Gamal El-Din, Mohamed; Tierney, Keith B

    2018-05-07

    Due to the increasing volume of oil sands process-affect water (OSPW) and its toxicity to aquatic organisms, it is important to fully understand its effects and study remediation processes that will enable its release to the environment. Ozone treatment is currently being considered as a tool to expedite remediation, as it is known to degrade toxic organic compounds present in OSPW. In this study, we aimed to measure the effects of OSPW exposure on the growth, development and recovery of zebrafish (Danio rerio) embryos. We also used ozone-treated OSPW to determine whether ozonation negated any effects of raw OSPW exposure. As biomarkers of exposure, we assessed the expression of genes involved in neurodevelopment (ngn1, neuroD), estrogenicity (vtg), oxidative stress (sod1), and biotransformation (cyp1a, cyp1b). Our study found that exposure to both raw and ozonated OSPW did not impair growth of zebrafish embryos, however, otoliths of exposed embryos were smaller than those of control embryos. The expression levels of both cyp1a and cyp1b were induced by raw OSPW exposure. However, after the exposure period, expression levels of these genes returned to control levels within two days of residence in clean water. We found no changes in the expression levels of ngn1, neuroD and vtg genes with exposure to treated or untreated OSPW. Overall, our study found that raw OSPW exposure did not have many negative effects on zebrafish embryos and embryos appeared to recover relatively quickly after exposure ended. Furthermore, ozone treatment decreased the induction of cyp1a and cyp1b. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Advances in the Study of Heart Development and Disease Using Zebrafish

    PubMed Central

    Brown, Daniel R.; Samsa, Leigh Ann; Qian, Li; Liu, Jiandong

    2016-01-01

    Animal models of cardiovascular disease are key players in the translational medicine pipeline used to define the conserved genetic and molecular basis of disease. Congenital heart diseases (CHDs) are the most common type of human birth defect and feature structural abnormalities that arise during cardiac development and maturation. The zebrafish, Danio rerio, is a valuable vertebrate model organism, offering advantages over traditional mammalian models. These advantages include the rapid, stereotyped and external development of transparent embryos produced in large numbers from inexpensively housed adults, vast capacity for genetic manipulation, and amenability to high-throughput screening. With the help of modern genetics and a sequenced genome, zebrafish have led to insights in cardiovascular diseases ranging from CHDs to arrhythmia and cardiomyopathy. Here, we discuss the utility of zebrafish as a model system and summarize zebrafish cardiac morphogenesis with emphasis on parallels to human heart diseases. Additionally, we discuss the specific tools and experimental platforms utilized in the zebrafish model including forward screens, functional characterization of candidate genes, and high throughput applications. PMID:27335817

  7. Zebrafish for the Study of the Biological Effects of Nicotine

    PubMed Central

    Klee, Eric W.; Schneider, Henning; Hurt, Richard D.; Ekker, Stephen C.

    2011-01-01

    Introduction: Zebrafish are emerging as a powerful animal model for studying the molecular and physiological effects of nicotine exposure. The zebrafish have many advantageous physical characteristics, including small size, high fecundity rates, and externally developing transparent embryos. When combined with a battery of molecular–genetic tools and behavioral assays, these attributes enable studies to be conducted that are not practical using traditional animal models. Methods: We reviewed the literature on the application of the zebrafish model as a preclinical model to study the biological effects of nicotine exposure. Results: The identified studies used zebrafish to examine the effects of nicotine exposure on early development, addiction, anxiety, and learning. The methods used included green fluorescent protein–labeled proteins to track in vivo nicotine-altered neuron development, nicotine-conditioned place preference, and locomotive sensitization linked with high-throughput molecular and genetic screens and behavioral models of learning and stress response to nicotine. Data are presented on the complete homology of all known human neural nicotinic acetylcholine receptors in zebrafish and on the biological similarity of human and zebrafish dopaminergic signaling. Conclusions: Tobacco dependence remains a major health problem worldwide. Further understanding of the molecular effects of nicotine exposure and genetic contributions to dependence may lead to improvement in patient treatment strategies. While there are limitations to the use of zebrafish as a preclinical model, it should provide a valuable tool to complement existing model systems. The reviewed studies demonstrate the enormous opportunity zebrafish have to advance the science of nicotine and tobacco research. PMID:21385906

  8. Quercetin, a natural product supplement, impairs mitochondrial bioenergetics and locomotor behavior in larval zebrafish (Danio rerio).

    PubMed

    Zhang, Ji-Liang; Laurence Souders, Christopher; Denslow, Nancy D; Martyniuk, Christopher J

    2017-07-15

    Quercetin is a natural product that is sold as a supplement in health food stores. While there are reported benefits for this flavonoid as a dietary supplement due to antioxidant properties, the full scope of its biological interactions has not been fully addressed. To learn more about the mechanisms of action related to quercetin, we exposed zebrafish (Danio rerio) embryos to 1 and 10μg/L quercetin for 96h starting at 3h post fertilization. Quercetin up to 10μg/L did not induce significant mortality in developing fish, but did increase prevalence of an upward-curved dorsal plane in hatched larvae. To determine whether this developmental defect was potentially related to mitochondrial bioenergetics during development, we measured oxygen consumption rate in whole embryos following a 24-hour exposure to quercetin. Basal mitochondrial and ATP-linked respiration were decreased at 1 and 10μg/L quercetin, and maximal respiration was decreased at 10μg/L quercetin, suggesting that quercetin impairs mitochondrial bioenergetics. This is proposed to be related to the deformities observed during development. Due to the fact that ATP production was affected by quercetin, larval behaviors related to locomotion were investigated, as well as transcriptional responses of six myogenesis transcripts. Quercetin at 10μg/L significantly reduced the swimming velocity of zebrafish larvae. The expression levels of both myostatin A (mstna) and myogenic differentiation (myoD) were also altered by quercetin. Mstna, an inhibitory factor for myogenesis, was significantly increased at 1μg/L quercetin exposure, while myoD, a stimulatory factor for myogenesis, was significantly increased at 10μg/L quercetin exposure. There were no changes in transcripts related to apoptosis (bcl2, bax, casp3, casp7), but we did observe a decrease in mRNA levels for catalase (cat) in fish exposed to each dose, supporting an oxidative stress response. Our data support the hypothesis that quercetin may affect locomotion and induce deformities in zebrafish larvae by diminishing ATP production and by altering the expression of transcripts related to muscle formation and activity. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Lxr regulates lipid metabolic and visual perception pathways during zebrafish development.

    PubMed

    Pinto, Caroline Lucia; Kalasekar, Sharanya Maanasi; McCollum, Catherine W; Riu, Anne; Jonsson, Philip; Lopez, Justin; Swindell, Eric C; Bouhlatouf, Abdel; Balaguer, Patrick; Bondesson, Maria; Gustafsson, Jan-Åke

    2016-01-05

    The Liver X Receptors (LXRs) play important roles in multiple metabolic pathways, including fatty acid, cholesterol, carbohydrate and energy metabolism. To expand the knowledge of the functions of LXR signaling during embryonic development, we performed a whole-genome microarray analysis of Lxr target genes in zebrafish larvae treated with either one of the synthetic LXR ligands T0901317 or GW3965. Assessment of the biological processes enriched by differentially expressed genes revealed a prime role for Lxr in regulating lipid metabolic processes, similarly to the function of LXR in mammals. In addition, exposure to the Lxr ligands induced changes in expression of genes in the neural retina and lens of the zebrafish eye, including the photoreceptor guanylate cyclase activators and lens gamma crystallins, suggesting a potential novel role for Lxr in modulating the transcription of genes associated with visual function in zebrafish. The regulation of expression of metabolic genes was phenotypically reflected in an increased absorption of yolk in the zebrafish larvae, and changes in the expression of genes involved in visual perception were associated with morphological alterations in the retina and lens of the developing zebrafish eye. The regulation of expression of both lipid metabolic and eye specific genes was sustained in 1 month old fish. The transcriptional networks demonstrated several conserved effects of LXR activation between zebrafish and mammals, and also identified potential novel functions of Lxr, supporting zebrafish as a promising model for investigating the role of Lxr during development. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. Lxr regulates lipid metabolic and visual perception pathways during zebrafish development

    PubMed Central

    Pinto, Caroline Lucia; Kalasekar, Sharanya Maanasi; McCollum, Catherine W.; Riu, Anne; Jonsson, Philip; Lopez, Justin; Swindell, Eric; Bouhlatouf, Abdel; Balaguer, Patrick; Bondesson, Maria; Gustafsson, Jan-Åke

    2015-01-01

    The Liver X Receptors (LXRs) play important roles in multiple metabolic pathways, including fatty acid, cholesterol, carbohydrate and energy metabolism. To expand the knowledge of the functions of LXR signaling during embryonic development, we performed a whole-genome microarray analysis of Lxr target genes in zebrafish larvae treated with either one of the synthetic LXR ligands T0901317 or GW3965. Assessment of the biological processes enriched by differentially expressed genes revealed a prime role for Lxr in regulating lipid metabolic processes, similarly to the function of LXR in mammals. In addition, exposure to the Lxr ligands induced changes in expression of genes in the neural retina and lens of the zebrafish eye, including the photoreceptor guanylate cyclase activators and lens gamma crystallins, suggesting a potential novel role for Lxr in modulating the transcription of genes associated with visual function in zebrafish. The regulation of expression of metabolic genes was phenotypically reflected in an increased absorption of yolk in the zebrafish larvae, and changes in the expression of genes involved in visual perception were associated with morphological alterations in the retina and lens of the developing zebrafish eye. The regulation of expression of both lipid metabolic and eye specific genes was sustained in 1 month old fish. The transcriptional networks demonstrated several conserved effects of LXR activation between zebrafish and mammals, and also identified potential novel functions of Lxr, supporting zebrafish as a promising model for investigating the role of Lxr during development. PMID:26427652

  11. Perturbation of cytosolic calcium by 2-aminoethoxydiphenyl borate and caffeine affects zebrafish myofibril alignment.

    PubMed

    Wu, Hsin-Ju; Fong, Tsorng-Harn; Chen, Shen-Liang; Wei, Jen-Cheng; Wang, I-Jong; Wen, Chi-Chung; Chang, Chao-Yuan; Chen, Xing-Guang; Chen, Wei-Yu; Chen, Hui-Min; Horng, Juin-Lin; Wang, Yun-Hsin; Chen, Yau-Hung

    2015-03-01

    The objective of the current study was to investigate the effects of Ca(2+) levels on myofibril alignment during zebrafish embryogenesis. To investigate how altered cytoplasmic Ca(2+) levels affect myofibril alignment, we exposed zebrafish embryos to 2-aminothoxyldiphenyl borate (2-APB; an inositol 1,4,5-trisphosphate receptor inhibitor that reduces cytosolic Ca(2+) levels) and caffeine (a ryanodine receptor activator that enhances cytosolic Ca(2+) levels). The results demonstrated that the most evident changes in zebrafish embryos treated with 2-APB were shorter body length, curved trunk and malformed somite boundary. In contrast, such malformed phenotypes were evident neither in untreated controls nor in caffeine-treated embryos. Subtle morphological changes, including changes in muscle fibers, F-actin and ultrastructures were easily observed by staining with specific monoclonal antibodies (F59 and α-laminin), fluorescent probes (phalloidin) and by transmission electron microscopy. Our data suggested that: (1) the exposure to 2-APB and/or caffeine led to myofibril misalignment; (2) 2-APB-treated embryos displayed split and short myofibril phenotypes, whereas muscle fibers from caffeine-treated embryos were twisted and wavy; and (3) zebrafish embryos co-exposed to 2-APB and caffeine resulted in normal myofibril alignment. In conclusion, we proposed that cytosolic Ca(2+) is important for myogenesis, particularly for myofibril alignment. Copyright © 2014 John Wiley & Sons, Ltd.

  12. Identification and characterization of the zebrafish glutathione S-transferase Pi-1.

    PubMed

    Abunnaja, Maryam S; Kurogi, Katsuhisa; Mohammed, Yasir I; Sakakibara, Yoichi; Suiko, Masahito; Hassoun, Ezdihar A; Liu, Ming-Cheh

    2017-10-01

    Zebrafish has in recent years emerged as a popular vertebrate model for use in pharmacological and toxicological studies. While there have been sporadic studies on the zebrafish glutathione S-transferases (GSTs), the zebrafish GST gene superfamily still awaits to be fully elucidated. We report here the identification of 15 zebrafish cytosolic GST genes in NCBI GenBank database and the expression, purification, and enzymatic characterization of the zebrafish cytosolic GST Pi-1 (GSTP1). The cDNA encoding the zebrafish GSTP1 was cloned from a 3-month-old female zebrafish, expressed in Eschelichia coli host cells, and purified. Purified GSTP1 displayed glutathione-conjugating activity toward 1-chloro-2,4-dinitrobenzene as a representative substrate. The enzymatic characteristics of the zebrafish GSTP1, including pH-dependency, effects of metal cations, and kinetic parameters, were studied. Moreover, the expression of zebrafish GSTP1 at different developmental stages during embryogenesis, throughout larval development, onto maturity was examined. © 2017 Wiley Periodicals, Inc.

  13. Dihydroartemisinin promotes angiogenesis during the early embryonic development of zebrafish

    PubMed Central

    Ba, Qian; Duan, Juan; Tian, Jia-qiang; Wang, Zi-liang; Chen, Tao; Li, Xiao-guang; Chen, Pei-zhan; Wu, Song-jie; Xiang, Li; Li, Jing-quan; Chu, Rui-ai; Wang, Hui

    2013-01-01

    Aim: To investigate the embryotoxicity of dihydroartemisinin (DHA), the main active metabolite of artemisinin, in zebrafish, and explore the corresponding mechanisms. Methods: The embryos of wild type and TG (flk1:GFP) transgenic zebrafish were exposed to DHA. Developmental phenotypes of the embryos were observed. Development of blood vessels was directly observed in living embryos of TG (flk1:GFP) transgenic zebrafish under fluorescence microscope. The expression of angiogenesis marker genes vegfa, flk1, and flt1 in the embryos was detected using real-time PCR and RNA in situ hybridization assays. Results: Exposure to DHA (1–10 mg/L) dose-dependently caused abnormal zebrafish embryonic phenotypes in the early developmental stage. Furthermore, exposure to DHA (10 mg/L) resulted in more pronounced embryonic angiogenesis in TG (flk1:GFP) zebrafish line. Exposure to DHA (10 mg/L) significantly increased the mRNA expression of vegfa, flk1, and flt1 in the embryos. Knockdown of the flk1 protein partially blocked the effects of DHA on embryogenesis. Conclusion: DHA causes abnormal embryonic phenotypes and promotes angiogenesis in zebrafish early embryonic development, demonstrating the potential embryotoxicity of DHA. PMID:23708556

  14. Several synthetic progestins disrupt the glial cell specific-brain aromatase expression in developing zebra fish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cano-Nicolau, Joel

    The effects of some progestins on fish reproduction have been recently reported revealing the hazard of this class of steroidal pharmaceuticals. However, their effects at the central nervous system level have been poorly studied until now. Notwithstanding, progesterone, although still widely considered primarily a sex hormone, is an important agent affecting many central nervous system functions. Herein, we investigated the effects of a large set of synthetic ligands of the nuclear progesterone receptor on the glial-specific expression of the zebrafish brain aromatase (cyp19a1b) using zebrafish mechanism-based assays. Progesterone and 24 progestins were first screened on transgenic cyp19a1b-GFP zebrafish embryos. Wemore » showed that progesterone, dydrogesterone, drospirenone and all the progesterone-derived progestins had no effect on GFP expression. Conversely, all progestins derived from 19-nortesterone induced GFP in a concentration-dependent manner with EC{sub 50} ranging from the low nM range to hundreds nM. The 19-nortestosterone derived progestins levonorgestrel (LNG) and norethindrone (NET) were further tested in a radial glial cell context using U251-MG cells co-transfected with zebrafish ER subtypes (zfERα, zfERβ1 or zfERβ2) and cyp19a1b promoter linked to luciferase. Progesterone had no effect on luciferase activity while NET and LNG induced luciferase activity that was blocked by ICI 182,780. Zebrafish-ERs competition assays showed that NET and LNG were unable to bind to ERs, suggesting that the effects of these compounds on cyp19a1b require metabolic activation prior to elicit estrogenic activity. Overall, we demonstrate that 19-nortestosterone derived progestins elicit estrogenic activity by inducing cyp19a1b expression in radial glial cells. Given the crucial role of radial glial cells and neuro-estrogens in early development of brain, the consequences of exposure of fish to these compounds require further investigation. - Highlights: • P4 + 24 progestins were tested on embryonic brain aromatase expression in zebrafish. • 19 nor-testosterone derivatives induced cyp19a1b expression. • cyp19a1b up-regulation involved functional zfERs. • 19 nor-testosterone derivatives are pro-estrogenic compounds. • Effect of progestins should be further investigated at the brain level.« less

  15. Interaction of infectious spleen and kidney necrosis virus ORF119L with PINCH leads to dominant-negative inhibition of integrin-linked kinase and cardiovascular defects in zebrafish.

    PubMed

    Yuan, Ji-Min; He, Bai-Liang; Yang, Lu-Yun; Guo, Chang-Jun; Weng, Shao-Ping; Li, Shengwen Calvin; He, Jian-Guo

    2015-01-01

    Infectious spleen and kidney necrosis virus (ISKNV) is the type species of the Megalocytivirus genus, Iridoviridae family, causing a severe systemic disease with high mortality in mandarin fish (Siniperca chuatsi) in China and Southeast Asia. At present, the pathogenesis of ISKNV infection is still not fully understood. Based on a genome-wide bioinformatics analysis of ISKNV-encoded proteins, we found that ISKNV open reading frame 119L (ORF119L) is predicted to encode a three-ankyrin-repeat (3ANK)-domain-containing protein, which shows high similarity to the dominant negative form of integrin-linked kinase (ILK); i.e., viral ORF119L lacks the ILK kinase domain. Thus, we speculated that viral ORF119L might affect the host ILK complex. Here, we demonstrated that viral ORF119L directly interacts with particularly interesting Cys-His-rich protein (PINCH) and affects the host ILK-PINCH interaction in vitro in fathead minnow (FHM) cells. In vivo ORF119L overexpression in zebrafish (Danio rerio) embryos resulted in myocardial dysfunctions with disintegration of the sarcomeric Z disk. Importantly, ORF119L overexpression in zebrafish highly resembles the phenotype of endogenous ILK inhibition, either by overexpressing a dominant negative form of ILK or by injecting an ILK antisense morpholino oligonucleotide. Intriguingly, ISKNV-infected mandarin fish develop disorganized sarcomeric Z disks in cardiomyocytes. Furthermore, phosphorylation of AKT, a downstream effector of ILK, was remarkably decreased in ORF119L-overexpressing zebrafish embryos. With these results, we show that ISKNV ORF119L acts as a domain-negative inhibitor of the host ILK, providing a novel mechanism for the megalocytivirus pathogenesis. Our work is the first to show the role of a dominant negative inhibitor of the host ILK from ISKNV (an iridovirus). Mechanistically, the viral ORF119L directly binds to the host PINCH, attenuates the host PINCH-ILK interaction, and thus impairs ILK signaling. Intriguingly, ORF119L-overexpressing zebrafish embryos and ISKNV-infected mandarin fish develop similar disordered sarcomeric Z disks in cardiomyocytes. These findings provide a novel mechanism for megalocytivirus pathogenesis. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  16. When aging meets microgravity: whole genome promoters and enchancers transcription landscape in zebrafish onboard ISS

    NASA Astrophysics Data System (ADS)

    Arshanovskii, Kirill; Gusev, Oleg; Sychev, Vladimir; Poddubko, Svetlana; Deviatiiarov, Ruslan

    2016-07-01

    In order to gen new insights of gene regulation changes under conditions of real spaceflight, we have conducted whole-genome analysis of dynamic of promotes and enhancers transcriptional changes in zebrafish during prolonged exposure to real spaceflight. In the frame of Russia-Japan joint experiments "Aquatic Habitat"-"Aquarium" we have conducted Cap Analysis of Gene Expression (CAGE) assay of zebrafish in the rage from 7 to 40 days of real spaceflight onboard ISS. The analysis showed that both gene expression patterns and architecture of shapes and types of the promoters are affected by spaceflight environment.

  17. USING 1H-NMR METABOLOMICS TO CHARACTERIZE ALTERED METABOLIC PROFILES IN ZEBRAFISH (DANIO RERIO) EXPOSED TO THE MODEL EDCS 17 ALPHA-ETHINYLESTRADIOL (EE2) AND FADROZOLE

    EPA Science Inventory

    Elevated levels of endocrine-disrupting chemicals (EDCs) have been reported in waterways worldwide and have been shown to affect numerous aspects of development, behavior, reproduction, and survival in various fish species. We have examined the effects of the synthetic steroid 17...

  18. Progress Towards the Development of a Fathead Minnow Embryo Test and Comparison to the Zebrafish Embryo Test for Assessing Acute Fish Toxicity

    EPA Science Inventory

    The Zebrafish Embryo Test (ZFET) for acute fish toxicity is a well developed method nearing adoption as an OECD Test Guideline. Early drafts of the test guideline (TG) envisioned a suite of potential test species to be covered including zebrafish, fathead minnow, Japanese Medaka...

  19. Novel Microcephalic Primordial Dwarfism Disorder Associated with Variants in the Centrosomal Protein Ninein

    PubMed Central

    LaFranchi, Stephen H.; Maliga, Zoltan; Lui, Julian C.; Moon, Jennifer E.; McDeed, Cailin; Henke, Katrin; Zonana, Jonathan; Kingman, Garrett A.; Pers, Tune H.; Baron, Jeffrey; Rosenfeld, Ron G.; Hirschhorn, Joel N.; Harris, Matthew P.; Hwa, Vivian

    2012-01-01

    Context: Microcephalic primordial dwarfism (MPD) is a rare, severe form of human growth failure in which growth restriction is evident in utero and continues into postnatal life. Single causative gene defects have been identified in a number of patients with MPD, and all involve genes fundamental to cellular processes including centrosome functions. Objective: The objective of the study was to find the genetic etiology of a novel presentation of MPD. Design: The design of the study was whole-exome sequencing performed on two affected sisters in a single family. Molecular and functional studies of a candidate gene were performed using patient-derived primary fibroblasts and a zebrafish morpholino oligonucleotides knockdown model. Patients: Two sisters presented with a novel subtype of MPD, including severe intellectual disabilities. Main Outcome Measures: NIN, encoding Ninein, a centrosomal protein critically involved in asymmetric cell division, was identified as a candidate gene, and functional impacts in fibroblasts and zebrafish were studied. Results: From 34,606 genomic variants, two very rare missense variants in NIN were identified. Both probands were compound heterozygotes. In the zebrafish, ninein knockdown led to specific and novel defects in the specification and morphogenesis of the anterior neuroectoderm, resulting in a deformity of the developing cranium with a small, squared skull highly reminiscent of the human phenotype. Conclusion: We identified a novel clinical subtype of MPD in two sisters who have rare variants in NIN. We show, for the first time, that reduction of ninein function in the developing zebrafish leads to specific deficiencies of brain and skull development, offering a developmental basis for the myriad phenotypes in our patients. PMID:22933543

  20. Prolactin-dependent modulation of organogenesis in the vertebrate: Recent discoveries in zebrafish.

    PubMed

    Nguyen, Nhu; Stellwag, Edmund J; Zhu, Yong

    2008-11-01

    The scientific literature is replete with evidence of the multifarious functions of the prolactin (PRL)/growth hormone (GH) superfamily in adult vertebrates. However, little information is available on the roles of PRL and related hormones prior to the adult stage of development. A limited number of studies suggest that GH functions to stimulate glucose transport and protein synthesis in mouse blastocytes and may be involved during mammalian embryogenesis. In contrast, the evidence for a role of PRL during vertebrate embryogenesis is limited and controversial. Genes encoding GH/PRL hormones and their respective receptors are actively transcribed and translated in various animal models at different time points, particularly during tissue remodeling. We have addressed the potential function of GH/PRL hormones during embryonic development in zebrafish by the temporary inhibition of in vivo PRL translation. This treatment caused multiple morphological defects consistent with a role of PRL in embryonic-stage organogenesis. The affected organs and tissues are known targets of PRL activity in fish and homologous structures in mammalian species. Traditionally, the GH/PRL hormones are viewed as classical endocrine hormones, mediating functions through the circulatory system. More recent evidence points to cytokine-like actions of these hormones through either an autocrine or a paracrine mechanism. In some situations they could mimic actions of developmentally regulated genes as suggested by experiments in multiple organisms. In this review, we present similarities and disparities between zebrafish and mammalian models in relation to PRL and PRLR activity. We conclude that the zebrafish could serve as a suitable alternative to the rodent model to study PRL functions in development, especially in relation to organogenesis.

  1. A shifted repertoire of endocannabinoid genes in the zebrafish (Danio rerio).

    PubMed

    McPartland, J M; Glass, Michelle; Matias, Isabel; Norris, Ryan W; Kilpatrick, C William

    2007-05-01

    The zebrafish has served as a model organism for developmental biology. Sequencing its genome has expanded zebrafish research into physiology and drug-development testing. Several cannabinoid pharmaceuticals are in development, but expression of endocannabinoid receptors and enzymes remains unknown in this species. We conducted a bioinformatics analysis of the zebrafish genome using 17 human endocannabinoid genes as a reference set. Putative zebrafish orthologs were identified in filtered BLAST searches as reciprocal best hits. Orthology was confirmed by three in silico methods: phylogenetic testing, synteny analysis, and functional mapping. Zebrafish expressed orthologs of cannabinoid receptor 1, transient receptor potential channel vanilloid receptor 4, GPR55 receptor, fatty acid amide hydrolase 1, monoacylglycerol lipase, NAPE-selective phospholipase D, abhydrolase domain-containing protein 4, and diacylglycerol lipase alpha and beta; and paired paralogs of cannabinoid receptor 2, fatty acid amide hydrolase 2, peroxisome proliferator-activated receptor alpha, prostaglandin-endoperoxide synthase 2, and transient receptor potential cation channel subtype A1. Functional mapping suggested the orthologs of transient receptor potential vanilloid receptor 1 and peroxisome proliferator-activated receptor gamma lack specific amino acids critical for cannabinoid ligand binding. No orthologs of N-acylethanolamine acid amidase or protein tyrosine phosphatase, non-receptor type 22 were identified. In conclusion, the zebrafish genome expresses a shifted repertoire of endocannabinoid genes. In vitro analyses are warranted before using zebrafish for cannabinoid development testing.

  2. Whole plant based treatment of hypercholesterolemia with Crataegus laevigata in a zebrafish model.

    PubMed

    Littleton, Robert M; Miller, Matthew; Hove, Jay R

    2012-07-23

    Consumers are increasingly turning to plant-based complementary and alternative medicines to treat hypercholesterolemia. Many of these treatments are untested and their efficacy is unknown. This multitude of potential remedies necessitates a model system amenable to testing large numbers of organisms that maintains similarity to humans in both mode of drug administration and overall physiology. Here we develop the larval zebrafish (4-30 days post fertilization) as a vertebrate model of dietary plant-based treatment of hypercholesterolemia and test the effects of Crataegus laevigata in this model. Larval zebrafish were fed high cholesterol diets infused with fluorescent sterols and phytomedicines. Plants were ground with mortar and pestle into a fine powder before addition to food. Fluorescent sterols were utilized to optically quantify relative difference in intravascular cholesterol levels between groups of fish. We utilized the Zeiss 7-Live Duo high-speed confocal platform in order to both quantify intravascular sterol fluorescence and to capture video of the heart beat for determination of cardiac output. In this investigation we developed and utilized a larval zebrafish model to investigate dietary plant-based intervention of the pathophysiology of hypercholesterolemia. We found BODIPY-cholesterol effectively labels diet-introduced intravascular cholesterol levels (P < 0.05, Student's t-test). We also established that zebrafish cardiac output declines as cholesterol dose increases (difference between 0.1% and 8% (w/w) high cholesterol diet-treated cardiac output significant at P < 0.05, 1-way ANOVA). Using this model, we found hawthorn leaves and flowers significantly reduce intravascular cholesterol levels (P < 0.05, 1-way ANOVA) and interact with cholesterol to impact cardiac output in hypercholesterolemic fish (2-way ANOVA, P < 0.05 for interaction effect). The results of this study demonstrate that the larval zebrafish has the potential to become a powerful model to test plant based dietary intervention of hypercholesterolemia. Using this model we have shown that hawthorn leaves and flowers have the potential to affect cardiac output as well as intravascular cholesterol levels. Further, our observation that hawthorn leaves and flowers interact with cholesterol to impact cardiac output indicates that the physiological effects of hawthorn may depend on diet.

  3. A temperature-sensitive mutation in the nodal-related gene cyclops reveals that the floor plate is induced during gastrulation in zebrafish.

    PubMed

    Tian, Jing; Yam, Caleb; Balasundaram, Gayathri; Wang, Hui; Gore, Aniket; Sampath, Karuna

    2003-07-01

    The floor plate, a specialized group of cells in the ventral midline of the neural tube of vertebrates, plays crucial roles in patterning the central nervous system. Recent work from zebrafish, chick, chick-quail chimeras and mice to investigate the development of the floor plate have led to several models of floor-plate induction. One model suggests that the floor plate is formed by inductive signalling from the notochord to the overlying neural tube. The induction is thought to be mediated by notochord-derived Sonic hedgehog (Shh), a secreted protein, and requires direct cellular contact between the notochord and the neural tube. Another model proposes a role for the organizer in generating midline precursor cells that produce floor plate cells independent of notochord specification, and proposes that floor plate specification occurs early, during gastrulation. We describe a temperature-sensitive mutation that affects the zebrafish Nodal-related secreted signalling factor, Cyclops, and use it to address the issue of when the floor plate is induced in zebrafish. Zebrafish cyclops regulates the expression of shh in the ventral neural tube. Although null mutations in cyclops result in the lack of the medial floor plate, embryos homozygous for the temperature-sensitive mutation have floor plate cells at the permissive temperature and lack floor plate cells at the restrictive temperature. We use this mutant allele in temperature shift-up and shift-down experiments to answer a central question pertaining to the timing of vertebrate floor plate induction. Abrogation of Cyc/Nodal signalling in the temperature-sensitive mutant embryos at various stages indicates that the floor plate in zebrafish is induced early in development, during gastrulation. In addition, continuous Cyclops signalling is required through gastrulation for a complete ventral neural tube throughout the length of the neuraxis. Finally, by modulation of Nodal signalling levels in mutants and in ectopic overexpression experiments, we show that, similar to the requirements for prechordal plate mesendoderm fates, uninterrupted and high levels of Cyclops signalling are required for induction and specification of a complete ventral neural tube.

  4. Viral Diseases in Zebrafish: What Is Known and Unknown

    PubMed Central

    Crim, Marcus J.; Riley, Lela K.

    2013-01-01

    Naturally occurring viral infections have the potential to introduce confounding variability that leads to invalid and misinterpreted data. Whereas the viral diseases of research rodents are well characterized and closely monitored, no naturally occurring viral infections have been characterized for the laboratory zebrafish (Danio rerio), an increasingly important biomedical research model. Despite the ignorance about naturally occurring zebrafish viruses, zebrafish models are rapidly expanding in areas of biomedical research where the confounding effects of unknown infectious agents present a serious concern. In addition, many zebrafish research colonies remain linked to the ornamental (pet) zebrafish trade, which can contribute to the introduction of new pathogens into research colonies, whereas mice used for research are purpose bred, with no introduction of new mice from the pet industry. Identification, characterization, and monitoring of naturally occurring viruses in zebrafish are crucial to the improvement of zebrafish health, the reduction of unwanted variability, and the continued development of the zebrafish as a model organism. This article addresses the importance of identifying and characterizing the viral diseases of zebrafish as the scope of zebrafish models expands into new research areas and also briefly addresses zebrafish susceptibility to experimental viral infection and the utility of the zebrafish as an infection and immunology model. PMID:23382345

  5. Competition between histone and transcription factor binding regulates the onset of transcription in zebrafish embryos

    PubMed Central

    Joseph, Shai R; Pálfy, Máté; Hilbert, Lennart; Kumar, Mukesh; Karschau, Jens; Zaburdaev, Vasily; Shevchenko, Andrej; Vastenhouw, Nadine L

    2017-01-01

    Upon fertilization, the genome of animal embryos remains transcriptionally inactive until the maternal-to-zygotic transition. At this time, the embryo takes control of its development and transcription begins. How the onset of zygotic transcription is regulated remains unclear. Here, we show that a dynamic competition for DNA binding between nucleosome-forming histones and transcription factors regulates zebrafish genome activation. Taking a quantitative approach, we found that the concentration of non-DNA-bound core histones sets the time for the onset of transcription. The reduction in nuclear histone concentration that coincides with genome activation does not affect nucleosome density on DNA, but allows transcription factors to compete successfully for DNA binding. In agreement with this, transcription factor binding is sensitive to histone levels and the concentration of transcription factors also affects the time of transcription. Our results demonstrate that the relative levels of histones and transcription factors regulate the onset of transcription in the embryo. DOI: http://dx.doi.org/10.7554/eLife.23326.001 PMID:28425915

  6. Competition between histone and transcription factor binding regulates the onset of transcription in zebrafish embryos.

    PubMed

    Joseph, Shai R; Pálfy, Máté; Hilbert, Lennart; Kumar, Mukesh; Karschau, Jens; Zaburdaev, Vasily; Shevchenko, Andrej; Vastenhouw, Nadine L

    2017-04-20

    Upon fertilization, the genome of animal embryos remains transcriptionally inactive until the maternal-to-zygotic transition. At this time, the embryo takes control of its development and transcription begins. How the onset of zygotic transcription is regulated remains unclear. Here, we show that a dynamic competition for DNA binding between nucleosome-forming histones and transcription factors regulates zebrafish genome activation. Taking a quantitative approach, we found that the concentration of non-DNA-bound core histones sets the time for the onset of transcription. The reduction in nuclear histone concentration that coincides with genome activation does not affect nucleosome density on DNA, but allows transcription factors to compete successfully for DNA binding. In agreement with this, transcription factor binding is sensitive to histone levels and the concentration of transcription factors also affects the time of transcription. Our results demonstrate that the relative levels of histones and transcription factors regulate the onset of transcription in the embryo.

  7. Behavioral performance altering effects of MK-801 in zebrafish (Danio rerio)

    PubMed Central

    Sison, Margarette; Gerlai, Robert

    2011-01-01

    MK-801, a non-competitive NMDA-R antagonist, has been utilized in the analysis of mammalian learning and memory. The zebrafish is a novel vertebrate study species that has been proposed for the analysis of the mechanisms of learning and memory. Although learning paradigms have been developed for this species, psychopharmacological characterization of its behavioral responses is rudimentary. Before one attempts the analysis of the effects of MK-801 on learning and memory in zebrafish, one needs to know whether this drug affects motor function, perception and/or motivation, factors that may influence performance in learning tasks. Here we conduct dose response analyses investigating the effects of 0, 2, 20 and 100 µM MK-801 administered 24 hours or 30 minutes before the behavioral test, or during the test. We analyze responses in the open tank to measure motor and posture patterns, in the light dark paradigm to evaluate visual perception, and in a group preference task to attempt to quantify motivation. Our results show a significant performance alteration only in the highest (100 µM) dose groups. These fish spent more time on the bottom of their tank, showed elevated erratic movement, increased their clockwise and counterclockwise turning frequency, and reduced the time spent near a shoal stimulus, behavioral alterations that also depended upon the timing of drug administration. Thus, using the current delivery procedures and outbred zebrafish population, the highest dose that may not lead to significant performance deficits is 20 µM, a concentration we propose to use in a future learning study in zebrafish. PMID:21333690

  8. Computerized image analysis for quantitative neuronal phenotyping in zebrafish.

    PubMed

    Liu, Tianming; Lu, Jianfeng; Wang, Ye; Campbell, William A; Huang, Ling; Zhu, Jinmin; Xia, Weiming; Wong, Stephen T C

    2006-06-15

    An integrated microscope image analysis pipeline is developed for automatic analysis and quantification of phenotypes in zebrafish with altered expression of Alzheimer's disease (AD)-linked genes. We hypothesize that a slight impairment of neuronal integrity in a large number of zebrafish carrying the mutant genotype can be detected through the computerized image analysis method. Key functionalities of our zebrafish image processing pipeline include quantification of neuron loss in zebrafish embryos due to knockdown of AD-linked genes, automatic detection of defective somites, and quantitative measurement of gene expression levels in zebrafish with altered expression of AD-linked genes or treatment with a chemical compound. These quantitative measurements enable the archival of analyzed results and relevant meta-data. The structured database is organized for statistical analysis and data modeling to better understand neuronal integrity and phenotypic changes of zebrafish under different perturbations. Our results show that the computerized analysis is comparable to manual counting with equivalent accuracy and improved efficacy and consistency. Development of such an automated data analysis pipeline represents a significant step forward to achieve accurate and reproducible quantification of neuronal phenotypes in large scale or high-throughput zebrafish imaging studies.

  9. Characterization of three novel members of the zebrafish Pax2/5/8 family: dependency of Pax5 and Pax8 expression on the Pax2.1 (noi) function.

    PubMed

    Pfeffer, P L; Gerster, T; Lun, K; Brand, M; Busslinger, M

    1998-08-01

    The mammalian Pax2, Pax5 and Pax8 genes code for highly related transcription factors, which play important roles in embryonic development and organogenesis. Here we report the characterization of all members of the zebrafish Pax2/5/8 family. These genes have arisen by duplications before or at the onset of vertebrate evolution. Due to an additional genome amplification in the fish lineage, the zebrafish contains two Pax2 genes, the previously known Pax[b] gene (here renamed as Pax2.1) and a novel Pax2.2 gene. The zebrafish Pax2.1 gene most closely resembles the mammalian Pax2 gene in its expression pattern, as it is transcribed first in the midbrain-hindbrain boundary region, then in the optic stalk, otic system, pronephros and nephric ducts, and lastly in specific interneurons of the hindbrain and spinal cord. Pax2.2 differs from Pax2.1 by the absence of expression in the nephric system and by a delayed onset of transcription in other Pax2.1 expession domains. Pax8 is also expressed in the same domains as Pax2.1, but its transcription is already initiated during gastrulation in the primordia of the otic placode and pronephric anlage, thus identifying Pax8 as the earliest developmental marker of these structures. The zebrafish Pax5 gene, in contrast to its mouse orthologue, is transcribed in the otic system in addition to its prominent expression at the midbrain-hindbrain boundary. The no isthmus (noi) mutation is known to inactivate the Pax2.1 gene, thereby affecting the development of the midbrain-hindbrain boundary region, pronephric system, optic stalk and otic region. Although the different members of the Pax2/5/8 family may potentially compensate for the loss of Pax2.1 function, we demonstrate here that only the expression of the Pax2.2 gene remains unaffected in noi mutant embryos. The expression of Pax5 and Pax8 is either not initiated at the midbrain-hindbrain boundary or is later not maintained in other expression domains. Consequently, the noi mutation of zebrafish is equivalent to combined inactivation of the mouse Pax2 and Pax5 genes with regard to the loss of midbrain-hindbrain boundary development.

  10. Kctd10 regulates heart morphogenesis by repressing the transcriptional activity of Tbx5a in zebrafish

    NASA Astrophysics Data System (ADS)

    Tong, Xiangjun; Zu, Yao; Li, Zengpeng; Li, Wenyuan; Ying, Lingxiao; Yang, Jing; Wang, Xin; He, Shuonan; Liu, Da; Zhu, Zuoyan; Chen, Jianming; Lin, Shuo; Zhang, Bo

    2014-01-01

    The T-box transcription factor Tbx5 (Tbx5a in zebrafish) plays a crucial role in the formation of cardiac chambers in a dose-dependent manner. Its deregulation leads to congenital heart disease. However, little is known regarding its regulation. Here we isolate a zebrafish mutant with heart malformations, called 34c. The affected gene is identified as kctd10, a member of the potassium channel tetramerization domain (KCTD)-containing family. In the mutant, the expressions of the atrioventricular canal marker genes, such as tbx2b, hyaluronan synthase 2 (has2), notch1b and bmp4, are changed. The knockdown of tbx5 rescues the ectopic expression of has2, and knockdown of either tbx5a or has2 alleviates the heart defects. We show that Kctd10 directly binds to Tbx5 to repress its transcriptional activity. Our results reveal a new essential factor for cardiac development and suggest that KCTD10 could be considered as a new causative gene of congenital heart disease.

  11. Methods for studying the zebrafish brain: past, present and future.

    PubMed

    Wyatt, Cameron; Bartoszek, Ewelina M; Yaksi, Emre

    2015-07-01

    The zebrafish (Danio rerio) is one of the most promising new model organisms. The increasing popularity of this amazing small vertebrate is evident from the exponentially growing numbers of research articles, funded projects and new discoveries associated with the use of zebrafish for studying development, brain function, human diseases and screening for new drugs. Thanks to the development of novel technologies, the range of zebrafish research is constantly expanding with new tools synergistically enhancing traditional techniques. In this review we will highlight the past and present techniques which have made, and continue to make, zebrafish an attractive model organism for various fields of biology, with a specific focus on neuroscience. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  12. Maternal topoisomerase II alpha, not topoisomerase II beta, enables embryonic development of zebrafish top2a-/- mutants

    PubMed Central

    2011-01-01

    Background Genetic alterations in human topoisomerase II alpha (TOP2A) are linked to cancer susceptibility. TOP2A decatenates chromosomes and thus is necessary for multiple aspects of cell division including DNA replication, chromosome condensation and segregation. Topoisomerase II alpha is also required for embryonic development in mammals, as mouse Top2a knockouts result in embryonic lethality as early as the 4-8 cell stage. The purpose of this study was to determine whether the extended developmental capability of zebrafish top2a mutants arises from maternal expression of top2a or compensation from its top2b paralogue. Results Here, we describe bloody minded (blm), a novel mutant of zebrafish top2a. In contrast to mouse Top2a nulls, zebrafish top2a mutants survive to larval stages (4-5 day post fertilization). Developmental analyses demonstrate abundant expression of maternal top2a but not top2b. Inhibition or poisoning of maternal topoisomerase II delays embryonic development by extending the cell cycle M-phase. Zygotic top2a and top2b are co-expressed in the zebrafish CNS, but endogenous or ectopic top2b RNA appear unable to prevent the blm phenotype. Conclusions We conclude that maternal top2a enables zebrafish development before the mid-zygotic transition (MZT) and that zebrafish top2a and top2b are not functionally redundant during development after activation of the zygotic genome. PMID:22111588

  13. Opportunities for CRISPR/Cas9 Gene Editing in Retinal Regeneration Research

    PubMed Central

    Campbell, Leah J.; Hyde, David R.

    2017-01-01

    While retinal degeneration and disease results in permanent damage and vision loss in humans, the severely damaged zebrafish retina has a high capacity to regenerate lost neurons and restore visual behaviors. Advancements in understanding the molecular and cellular basis of this regeneration response give hope that strategies and therapeutics may be developed to restore sight to blind and visually-impaired individuals. Our current understanding has been facilitated by the amenability of zebrafish to molecular tools, imaging techniques, and forward and reverse genetic approaches. Accordingly, the zebrafish research community has developed a diverse array of research tools for use in developing and adult animals, including toolkits for facilitating the generation of transgenic animals, systems for inducible, cell-specific transgene expression, and the creation of knockout alleles for nearly every protein coding gene. As CRISPR/Cas9 genome editing has begun to revolutionize molecular biology research, the zebrafish community has responded in stride by developing CRISPR/Cas9 techniques for the zebrafish as well as incorporating CRISPR/Cas9 into available toolsets. The application of CRISPR/Cas9 to retinal regeneration research will undoubtedly bring us closer to understanding the mechanisms underlying retinal repair and vision restoration in the zebrafish, as well as developing therapeutic approaches that will restore vision to blind and visually-impaired individuals. This review focuses on how CRISPR/Cas9 has been integrated into zebrafish research toolsets and how this new tool will revolutionize the field of retinal regeneration research. PMID:29218308

  14. In vivo cell biology in zebrafish – providing insights into vertebrate development and disease

    PubMed Central

    Vacaru, Ana M.; Unlu, Gokhan; Spitzner, Marie; Mione, Marina; Knapik, Ela W.; Sadler, Kirsten C.

    2014-01-01

    ABSTRACT Over the past decades, studies using zebrafish have significantly advanced our understanding of the cellular basis for development and human diseases. Zebrafish have rapidly developing transparent embryos that allow comprehensive imaging of embryogenesis combined with powerful genetic approaches. However, forward genetic screens in zebrafish have generated unanticipated findings that are mirrored by human genetic studies: disruption of genes implicated in basic cellular processes, such as protein secretion or cytoskeletal dynamics, causes discrete developmental or disease phenotypes. This is surprising because many processes that were assumed to be fundamental to the function and survival of all cell types appear instead to be regulated by cell-specific mechanisms. Such discoveries are facilitated by experiments in whole animals, where zebrafish provides an ideal model for visualization and manipulation of organelles and cellular processes in a live vertebrate. Here, we review well-characterized mutants and newly developed tools that underscore this notion. We focus on the secretory pathway and microtubule-based trafficking as illustrative examples of how studying cell biology in vivo using zebrafish has broadened our understanding of the role fundamental cellular processes play in embryogenesis and disease. PMID:24481493

  15. Guided inquiry lab exercises in development and oxygen consumption using zebrafish.

    PubMed

    Bagatto, Brian

    2009-06-01

    Zebrafish have become a model organism in many areas of research and are now being used with more frequency in the classroom to teach important biological concepts. The two guided inquiry exercises in this article are each aimed at a different level of instruction, but each can be modified to fit the needs of many high school or college-level courses. The "Zebrafish Development and Environment" exercise teaches high school students about zebrafish development by presenting a series of embryos at different ages. Without access to visual references, students are asked to rank developing zebrafish by age and explain their choices. The students also learn about the heart and circulatory system and the effects of temperature on physiological processes. The second exercise, "Oxygen Consumption," is a 2-week laboratory designed for introductory college biology majors and involves the concept of oxygen consumption as a predictor of metabolic rate. During the first week of lab, students are introduced to the concept and learn how to measure oxygen consumption in zebrafish. In the second week, they perform an instructor-approved experiment of their own design, analyze the results using statistics, and write a report.

  16. Behavioral and biochemical adjustments of the zebrafish Danio rerio exposed to the β-blocker propranolol.

    PubMed

    Mitchell, Kimberly M; Moon, Thomas W

    2016-09-01

    Propranolol (PROP) is a β-blocker prescribed mainly to treat human cardiovascular diseases and as a result of its wide usage and persistence, it is reported in aquatic environments. This study examined whether PROP alters developmental patterns and catecholamine (CA)-regulated processes in the zebrafish (Danio rerio) and if exposure during early life alters the stress response and behaviors of adults. The calculated 48h larva LC50 was 21.6mg/L, well above reported environmental levels (0.01-0.59μg/L). Stressed and PROP-exposed adult zebrafish had reduced testosterone and estradiol levels and exhibited behaviors indicating less anxiety than control fish. Furthermore, adults previously PROP-exposed as embryos/larvae had decreased growth in terms of body length and mass. Finally, these adults showed increased cholesterol and a dose-dependent decrease in testosterone levels compared with unexposed zebrafish. Thus PROP-exposure of zebrafish embryos/larvae alters developmental patterns and CA-regulated processes that may affect normal behaviors and responses to stressors, and at least some of these changes persist in the adult zebrafish. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. [Generation and phenotype analysis of zebrafish mutations of obesity-related genes lepr and mc4r].

    PubMed

    Fei, Fei; Sun, Shao-Yang; Yao, Yu-Xiao; Wang, Xu

    2017-02-25

    Obesity has become a severe public health problem across the world, and seriously affects the health and life quality of human beings. Here we generated lepr and mc4r mutant zebrafish via the CRISPR/Cas9 technique, and performed morphological and functional characterizations of those mutants. We observed that there was no significant phenotypic difference between homozygous mutants and wild-type controls before 2.5 months post-fertilization (mpf). However, the adult lepr -/- and mc4r -/- individuals displayed increased food intake, heavier weight, and higher body fat percentage, the characteristics of obesity phenotypes. Blood glucose test showed that overfeeding induced significantly impaired glucose tolerance in adult lepr -/- and mc4r -/- zebrafish. Furthermore, we analyzed 76 energy metabolism-related transcripts in lepr -/- and mc4r -/- zebrafish livers by using real-time RT-PCR, and compared the results with the published microarray data of Lep ob/ob mouse livers, and found that the changes in the expression of insulin/IGF signaling (IIS) pathway genes in lepr -/- zebrafish and Lep ob/ob mouse were positively correlated, suggesting that the IIS pathway maintains functional conservation between zebrafish and mammals during the evolution of the obesity-regulating molecule network.

  18. Short-term exposure of arsenite disrupted thyroid endocrine system and altered gene transcription in the HPT axis in zebrafish.

    PubMed

    Sun, Hong-Jie; Li, Hong-Bo; Xiang, Ping; Zhang, Xiaowei; Ma, Lena Q

    2015-10-01

    Arsenic (As) pollution in aquatic environment may adversely impact fish health by disrupting their thyroid hormone homeostasis. In this study, we explored the effect of short-term exposure of arsenite (AsIII) on thyroid endocrine system in zebrafish. We measured As concentrations, As speciation, and thyroid hormone thyroxine levels in whole zebrafish, oxidative stress (H2O2) and damage (MDA) in the liver, and gene transcription in hypothalamic-pituitary-thyroid (HPT) axis in the brain and liver tissues of zebrafish after exposing to different AsIII concentrations for 48 h. Result indicated that exposure to AsIII increased inorganic As in zebrafish to 0.46-0.72 mg kg(-1), induced oxidative stress with H2O2 being increased by 1.4-2.5 times and caused oxidative damage with MDA being augmented by 1.6 times. AsIII exposure increased thyroxine levels by 1.3-1.4 times and modulated gene transcription in HPT axis. Our study showed AsIII caused oxidative damage, affected thyroid endocrine system and altered gene transcription in HPT axis in zebrafish. Published by Elsevier Ltd.

  19. Zebrafish Craniofacial Development: A Window into Early Patterning

    PubMed Central

    Mork, Lindsey; Crump, Gage

    2016-01-01

    The formation of the face and skull involves a complex series of developmental events mediated by cells derived from the neural crest, endoderm, mesoderm, and ectoderm. Although vertebrates boast an enormous diversity of adult facial morphologies, the fundamental signaling pathways and cellular events that sculpt the nascent craniofacial skeleton in the embryo have proven to be highly conserved from fish to man. The zebrafish Danio rerio, a small freshwater cyprinid fish from eastern India, has served as a popular model of craniofacial development since the 1990s. Unique strengths of the zebrafish model include a simplified skeleton during larval stages, access to rapidly developing embryos for live imaging, and amenability to transgenesis and complex genetics. In this chapter, we describe the anatomy of the zebrafish craniofacial skeleton; its applications as models for the mammalian jaw, middle ear, palate, and cranial sutures; the superior imaging technology available in fish that has provided unprecedented insights into the dynamics of facial morphogenesis; the use of the zebrafish to decipher the genetic underpinnings of craniofacial biology; and finally a glimpse into the most promising future applications of zebrafish craniofacial research. PMID:26589928

  20. Normal anatomy and histology of the adult zebrafish.

    PubMed

    Menke, Aswin L; Spitsbergen, Jan M; Wolterbeek, Andre P M; Woutersen, Ruud A

    2011-08-01

    The zebrafish has been shown to be an excellent vertebrate model for studying the roles of specific genes and signaling pathways. The sequencing of its genome and the relative ease with which gene modifications can be performed have led to the creation of numerous human disease models that can be used for testing the potential and the toxicity of new pharmaceutical compounds. Many pharmaceutical companies already use the zebrafish for prescreening purposes. So far, the focus has been on ecotoxicity and the effects on embryonic development, but there is a trend to expand the use of the zebrafish with acute, subchronic, and chronic toxicity studies that are currently still carried out with the more conventional test animals such as rodents. However, before we can fully realize the potential of the zebrafish as an animal model for understanding human development, disease, and toxicology, we must first greatly advance our knowledge of normal zebrafish physiology, anatomy, and histology. To further this knowledge, we describe, in the present article, location and histology of the major zebrafish organ systems with a brief description of their function.

  1. High-throughput imaging of adult fluorescent zebrafish with an LED fluorescence macroscope

    PubMed Central

    Blackburn, Jessica S; Liu, Sali; Raimondi, Aubrey R; Ignatius, Myron S; Salthouse, Christopher D; Langenau, David M

    2011-01-01

    Zebrafish are a useful vertebrate model for the study of development, behavior, disease and cancer. A major advantage of zebrafish is that large numbers of animals can be economically used for experimentation; however, high-throughput methods for imaging live adult zebrafish had not been developed. Here, we describe protocols for building a light-emitting diode (LED) fluorescence macroscope and for using it to simultaneously image up to 30 adult animals that transgenically express a fluorescent protein, are transplanted with fluorescently labeled tumor cells or are tagged with fluorescent elastomers. These protocols show that the LED fluorescence macroscope is capable of distinguishing five fluorescent proteins and can image unanesthetized swimming adult zebrafish in multiple fluorescent channels simultaneously. The macroscope can be built and used for imaging within 1 day, whereas creating fluorescently labeled adult zebrafish requires 1 hour to several months, depending on the method chosen. The LED fluorescence macroscope provides a low-cost, high-throughput method to rapidly screen adult fluorescent zebrafish and it will be useful for imaging transgenic animals, screening for tumor engraftment, and tagging individual fish for long-term analysis. PMID:21293462

  2. Teratogenic responses of zebrafish embryos to decabromodiphenyl ether (BDE-209) in the presence of nano-SiO2 particles.

    PubMed

    Chao, Shu-Ju; Huang, Chin Pao; Chen, Pei-Chung; Huang, Chihpin

    2017-07-01

    This study investigated the influence of nano-SiO 2 particles (nSiO 2 ) on the teratogenic responses of zebrafish embryos to decabromodiphenyl ether (BDE-209). Zebrafish embryos were exposed to BDE-209 in the absence and presence of nSiO 2 for 96 h post fertilization (hpf). Results showed that formation of nSiO 2 -BDE-209 associates promoted both extracellular and intracellular uptake of BDE-209 by zebrafish embryos, thereby increasing the bioconcentration of BDE-209 on the chorion surface and the embryos. Results also showed embryos delay hatching temporarily when co-exposure to BDE-209 and nSiO 2 at 60 hpf. Furthermore, there was heartbeat decline (28.3 beats/10s) and increase in irregular heartbeat (45.8%) in zebrafish larvae at 96 hpf, compared to the sole exposure to BDE-209 (32.7 beats/10s and 0%). Malformation in terms of spinal curvature (SC), pericardial edema (PE) and yolk sac edema (YSE) were observed on zebrafish larvae at 33.9, 23.4, and 18%, respectively. Overall, abnormal development of zebrafish was apparent when co-exposure to BDE-209 and nSiO 2 . All relevant evidence considered, nSiO 2 could facilitate the transport of BDE-209 towards zebrafish embryos and negatively impact the development of zebrafish. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. G-quadruplexes as novel cis-elements controlling transcription during embryonic development.

    PubMed

    David, Aldana P; Margarit, Ezequiel; Domizi, Pablo; Banchio, Claudia; Armas, Pablo; Calcaterra, Nora B

    2016-05-19

    G-quadruplexes are dynamic structures folded in G-rich single-stranded DNA regions. These structures have been recognized as a potential nucleic acid based mechanism for regulating multiple cellular processes such as replication, transcription and genomic maintenance. So far, their transcriptional role in vivo during vertebrate embryonic development has not yet been addressed. Here, we performed an in silico search to find conserved putative G-quadruplex sequences (PQSs) within proximal promoter regions of human, mouse and zebrafish developmental genes. Among the PQSs able to fold in vitro as G-quadruplex, those present in nog3, col2a1 and fzd5 promoters were selected for further studies. In cellulo studies revealed that the selected G-quadruplexes affected the transcription of luciferase controlled by the SV40 nonrelated promoter. G-quadruplex disruption in vivo by microinjection in zebrafish embryos of either small ligands or DNA oligonucleotides complementary to the selected PQSs resulted in lower transcription of the targeted genes. Moreover, zebrafish embryos and larvae phenotypes caused by the presence of complementary oligonucleotides fully resembled those ones reported for nog3, col2a1 and fzd5 morphants. To our knowledge, this is the first work revealing in vivo the role of conserved G-quadruplexes in the embryonic development, one of the most regulated processes of the vertebrates biology. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. G-quadruplexes as novel cis-elements controlling transcription during embryonic development

    PubMed Central

    David, Aldana P.; Margarit, Ezequiel; Domizi, Pablo; Banchio, Claudia; Armas, Pablo; Calcaterra, Nora B.

    2016-01-01

    G-quadruplexes are dynamic structures folded in G-rich single-stranded DNA regions. These structures have been recognized as a potential nucleic acid based mechanism for regulating multiple cellular processes such as replication, transcription and genomic maintenance. So far, their transcriptional role in vivo during vertebrate embryonic development has not yet been addressed. Here, we performed an in silico search to find conserved putative G-quadruplex sequences (PQSs) within proximal promoter regions of human, mouse and zebrafish developmental genes. Among the PQSs able to fold in vitro as G-quadruplex, those present in nog3, col2a1 and fzd5 promoters were selected for further studies. In cellulo studies revealed that the selected G-quadruplexes affected the transcription of luciferase controlled by the SV40 nonrelated promoter. G-quadruplex disruption in vivo by microinjection in zebrafish embryos of either small ligands or DNA oligonucleotides complementary to the selected PQSs resulted in lower transcription of the targeted genes. Moreover, zebrafish embryos and larvae phenotypes caused by the presence of complementary oligonucleotides fully resembled those ones reported for nog3, col2a1 and fzd5 morphants. To our knowledge, this is the first work revealing in vivo the role of conserved G-quadruplexes in the embryonic development, one of the most regulated processes of the vertebrates biology. PMID:26773060

  5. Zebrafish zic2 controls formation of periocular neural crest and choroid fissure morphogenesis.

    PubMed

    Sedykh, Irina; Yoon, Baul; Roberson, Laura; Moskvin, Oleg; Dewey, Colin N; Grinblat, Yevgenya

    2017-09-01

    The vertebrate retina develops in close proximity to the forebrain and neural crest-derived cartilages of the face and jaw. Coloboma, a congenital eye malformation, is associated with aberrant forebrain development (holoprosencephaly) and with craniofacial defects (frontonasal dysplasia) in humans, suggesting a critical role for cross-lineage interactions during retinal morphogenesis. ZIC2, a zinc-finger transcription factor, is linked to human holoprosencephaly. We have previously used morpholino assays to show zebrafish zic2 functions in the developing forebrain, retina and craniofacial cartilage. We now report that zebrafish with genetic lesions in zebrafish zic2 orthologs, zic2a and zic2b, develop with retinal coloboma and craniofacial anomalies. We demonstrate a requirement for zic2 in restricting pax2a expression and show evidence that zic2 function limits Hh signaling. RNA-seq transcriptome analysis identified an early requirement for zic2 in periocular neural crest as an activator of alx1, a transcription factor with essential roles in craniofacial and ocular morphogenesis in human and zebrafish. Collectively, these data establish zic2 mutant zebrafish as a powerful new genetic model for in-depth dissection of cell interactions and genetic controls during craniofacial complex development. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Knockdown of prothrombin in zebrafish.

    PubMed

    Day, Kenneth; Krishnegowda, Naveen; Jagadeeswaran, Pudur

    2004-01-01

    Thrombin is a serine protease generated from its zymogen, prothrombin, and plays a central role in the coagulation cascade. It is also important for mammalian development. The zebrafish has now been established as an excellent genetic model for studies on mammalian hemostasis and development. In this report, we used prothrombin-specific antisense morpholinos to knock down the levels of prothrombin to characterize the effects of prothrombin deficiency in the zebrafish embryo. Prothrombin morpholino-injected zebrafish embryos yielded an early phenotype exhibiting severe abnormalities that later showed occasional bleeding. In a second late phenotype, the embryos had no observable morphological abnormalities in early stages, but showed occasional bleeding at later stages. These phenotypes resembled characteristics shown by prothrombin knockout mice. Laser-induced vascular injury on some of the normal appearing phenotypic larvae showed a prolonged time to occlusion, and recombinant zebrafish prothrombin injected into these larvae restored a normal time to occlusion thus showing the specificity of the morpholino effect. The system developed here should be useful for investigation of the role of thrombin in vertebrate development.

  7. Alternative Splicing of sept9a and sept9b in Zebrafish Produces Multiple mRNA Transcripts Expressed Throughout Development

    PubMed Central

    Hannibal, Mark C.; Kimelman, David

    2010-01-01

    Background Septins are involved in a number of cellular processes including cytokinesis and organization of the cytoskeleton. Alterations in human septin-9 (SEPT9) levels have been linked to multiple cancers, whereas mutations in SEPT9 cause the episodic neuropathy, hereditary neuralgic amyotrophy (HNA). Despite its important function in human health, the in vivo role of SEPT9 is unknown. Methodology/Principal Findings Here we utilize zebrafish to study the role of SEPT9 in early development. We show that zebrafish possess two genes, sept9a and sept9b that, like humans, express multiple transcripts. Knockdown or overexpression of sept9a transcripts results in specific developmental alterations including circulation defects and aberrant epidermal development. Conclusions/Significance Our work demonstrates that sept9 plays an important role in zebrafish development, and establishes zebrafish as a valuable model organism for the study of SEPT9. PMID:20502708

  8. Systematic developmental neurotoxicity assessment of a representative PAH Superfund mixture using zebrafish

    DOE PAGES

    Geier, Mitra C.; James Minick, D.; Truong, Lisa; ...

    2018-04-01

    Superfund sites often consist of complex mixtures of polycyclic aromatic hydrocarbons (PAHs). It is widely recognized that PAHs pose risks to human and environmental health, but the risks posed by exposure to PAH mixtures are unclear. Here, we constructed an environmentally relevant PAH mixture with the top 10 most prevalent PAHs (SM10) from a Superfund site derived from environmental passive sampling data. Using the zebrafish model, we measured body burden at 48 hours post fertilization (hpf) and evaluated the developmental and neurotoxicity of SM10 and the 10 individual constituents at 24 hours post fertilization (hpf) and 5 days post fertilizationmore » (dpf). Zebrafish embryos were exposed from 6 to 120 hpf to (1) the SM10 mixture, (2) a variety of individual PAHs: pyrene, fluoranthene, retene, benzo[a]anthracene, chrysene, naphthalene, acenaphthene, phenanthrene, fluorene, and 2-methylnaphthalene. We demonstrated that SM10 and only 3 of the individual PAHs were developmentally toxic. Subsequently, we constructed and exposed developing zebrafish to two sub-mixtures: SM3 (comprised of 3 of the developmentally toxicity PAHs) and SM7 (7 non-developmentally toxic PAHs). We found that the SM3 toxicity profile was similar to SM10, and SM7 unexpectedly elicited developmental toxicity unlike that seen with its individual components. The results demonstrated that the overall developmental toxicity in the mixtures could be explained using the general concentration addition model. To determine if exposures activated the AHR pathway, spatial expression of CYP1A was evaluated in the 10 individual PAHs and the 3 mixtures at 5 dpf. Results showed activation of AHR in the liver and vasculature for the mixtures and some individual PAHs. Embryos exposed to SM10 during development and raised in chemical-free water into adulthood exhibited decreased learning and responses to startle stimulus indicating that developmental SM10 exposures affect neurobehavior. Collectively, these results exemplify the utility of zebrafish to investigate the developmental and neurotoxicity of complex mixtures.« less

  9. Zebrafish embryos as a screen for DNA methylation modifications after compound exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bouwmeester, Manon C.; Ruiter, Sander; Lommelaars, Tobias

    Modified epigenetic programming early in life is proposed to underlie the development of an adverse adult phenotype, known as the Developmental Origins of Health and Disease (DOHaD) concept. Several environmental contaminants have been implicated as modifying factors of the developing epigenome. This underlines the need to investigate this newly recognized toxicological risk and systematically screen for the epigenome modifying potential of compounds. In this study, we examined the applicability of the zebrafish embryo as a screening model for DNA methylation modifications. Embryos were exposed from 0 to 72 h post fertilization (hpf) to bisphenol-A (BPA), diethylstilbestrol, 17α-ethynylestradiol, nickel, cadmium, tributyltin,more » arsenite, perfluoroctanoic acid, valproic acid, flusilazole, 5-azacytidine (5AC) in subtoxic concentrations. Both global and site-specific methylation was examined. Global methylation was only affected by 5AC. Genome wide locus-specific analysis was performed for BPA exposed embryos using Digital Restriction Enzyme Analysis of Methylation (DREAM), which showed minimal wide scale effects on the genome, whereas potential informative markers were not confirmed by pyrosequencing. Site-specific methylation was examined in the promoter regions of three selected genes vasa, vtg1 and cyp19a2, of which vasa (ddx4) was the most responsive. This analysis distinguished estrogenic compounds from metals by direction and sensitivity of the effect compared to embryotoxicity. In conclusion, the zebrafish embryo is a potential screening tool to examine DNA methylation modifications after xenobiotic exposure. The next step is to examine the adult phenotype of exposed embryos and to analyze molecular mechanisms that potentially link epigenetic effects and altered phenotypes, to support the DOHaD hypothesis. - Highlights: • Compound induced effects on DNA methylation in zebrafish embryos • Global methylation not an informative biomarker • Minimal genome wide site specific changes as detected with DREAM • Compound/class specific effects suggested by pyrosequence of specific targets • Zebrafish embryo may be a screening model for epigenetic effects.« less

  10. Systematic developmental neurotoxicity assessment of a representative PAH Superfund mixture using zebrafish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geier, Mitra C.; James Minick, D.; Truong, Lisa

    Superfund sites often consist of complex mixtures of polycyclic aromatic hydrocarbons (PAHs). It is widely recognized that PAHs pose risks to human and environmental health, but the risks posed by exposure to PAH mixtures are unclear. Here, we constructed an environmentally relevant PAH mixture with the top 10 most prevalent PAHs (SM10) from a Superfund site derived from environmental passive sampling data. Using the zebrafish model, we measured body burden at 48 hours post fertilization (hpf) and evaluated the developmental and neurotoxicity of SM10 and the 10 individual constituents at 24 hours post fertilization (hpf) and 5 days post fertilizationmore » (dpf). Zebrafish embryos were exposed from 6 to 120 hpf to (1) the SM10 mixture, (2) a variety of individual PAHs: pyrene, fluoranthene, retene, benzo[a]anthracene, chrysene, naphthalene, acenaphthene, phenanthrene, fluorene, and 2-methylnaphthalene. We demonstrated that SM10 and only 3 of the individual PAHs were developmentally toxic. Subsequently, we constructed and exposed developing zebrafish to two sub-mixtures: SM3 (comprised of 3 of the developmentally toxicity PAHs) and SM7 (7 non-developmentally toxic PAHs). We found that the SM3 toxicity profile was similar to SM10, and SM7 unexpectedly elicited developmental toxicity unlike that seen with its individual components. The results demonstrated that the overall developmental toxicity in the mixtures could be explained using the general concentration addition model. To determine if exposures activated the AHR pathway, spatial expression of CYP1A was evaluated in the 10 individual PAHs and the 3 mixtures at 5 dpf. Results showed activation of AHR in the liver and vasculature for the mixtures and some individual PAHs. Embryos exposed to SM10 during development and raised in chemical-free water into adulthood exhibited decreased learning and responses to startle stimulus indicating that developmental SM10 exposures affect neurobehavior. Collectively, these results exemplify the utility of zebrafish to investigate the developmental and neurotoxicity of complex mixtures.« less

  11. Zebrafish embryos exposed to alcohol undergo abnormal development of motor neurons and muscle fibers.

    PubMed

    Sylvain, Nicole J; Brewster, Daniel L; Ali, Declan W

    2010-01-01

    Children exposed to alcohol in utero have significantly delayed gross and fine motor skills, as well as deficiencies in reflex development. The reasons that underlie the motor deficits caused by ethanol (EtOH) exposure remain to be fully elucidated. The present study was undertaken to investigate the effects of embryonic alcohol exposure (1.5%, 2% and 2.5% EtOH) on motor neuron and muscle fiber morphology in 3 days post fertilization (dpf) larval zebrafish. EtOH treated fish exhibited morphological deformities and fewer bouts of swimming in response to touch, compared with untreated fish. Immunolabelling with anti-acetylated tubulin indicated that fish exposed to 2.5% EtOH had significantly higher rates of motor neuron axon defects. Immunolabelling of primary and secondary motor neurons, using znp-1 and zn-8, revealed that fish exposed to 2% and 2.5% EtOH exhibited significantly higher rates of primary and secondary motor neuron axon defects compared to controls. Examination of red and white muscle fibers revealed that fish exposed to EtOH had significantly smaller fibers compared with controls. These findings indicate that motor neuron and muscle fiber morphology is affected by early alcohol exposure in zebrafish embryos, and that this may be related to deficits in locomotion. Copyright 2010 Elsevier Inc. All rights reserved.

  12. Effects of GABA, Neural Regulation, and Intrinsic Cardiac Factors on Heart Rate Variability in Zebrafish Larvae.

    PubMed

    Vargas, Rafael Antonio

    2017-04-01

    Heart rate (HR) is a periodic activity that is variable over time due to intrinsic cardiac factors and extrinsic neural control, largely by the autonomic nervous system. Heart rate variability (HRV) is analyzed by measuring consecutive beat-to-beat intervals. This variability can contain information about the factors regulating cardiac activity under normal and pathological conditions, but the information obtained from such analyses is not yet fully understood. In this article, HRV in zebrafish larvae was evaluated under normal conditions and under the effect of substances that modify intrinsic cardiac activity and cardiac activity modulated by the nervous system. We found that the factors affecting intrinsic activity have negative chronotropic and arrhythmogenic effects at this stage of development, whereas neural modulatory factors have a lesser impact. The results suggest that cardiac activity largely depends on the intrinsic properties of the heart tissue in the early stages of development and, to a lesser extent, in the maturing nervous system. We also report, for the first time, the influence of the neurotransmitter gamma amino butyric acid on HRV. The results demonstrate the larval zebrafish model as a useful tool in the study of intrinsic cardiac activity and its role in heart diseases.

  13. A Mixture of Persistent Organic Pollutants and Perfluorooctanesulfonic Acid Induces Similar Behavioural Responses, but Different Gene Expression Profiles in Zebrafish Larvae

    PubMed Central

    Khezri, Abdolrahman; Fraser, Thomas W. K.; Nourizadeh-Lillabadi, Rasoul; Kamstra, Jorke H.; Berg, Vidar; Zimmer, Karin E.; Ropstad, Erik

    2017-01-01

    Persistent organic pollutants (POPs) are widespread in the environment and some may be neurotoxic. As we are exposed to complex mixtures of POPs, we aimed to investigate how a POP mixture based on Scandinavian human blood data affects behaviour and neurodevelopment during early life in zebrafish. Embryos/larvae were exposed to a series of sub-lethal doses and behaviour was examined at 96 h post fertilization (hpf). In order to determine the sensitivity window to the POP mixture, exposure models of 6 to 48 and 48 to 96 hpf were used. The expression of genes related to neurological development was also assessed. Results indicate that the POP mixture increases the swimming speed of larval zebrafish following exposure between 48 to 96 hpf. This behavioural effect was associated with the perfluorinated compounds, and more specifically with perfluorooctanesulfonic acid (PFOS). The expression of genes related to the stress response, GABAergic, dopaminergic, histaminergic, serotoninergic, cholinergic systems and neuronal maintenance, were altered. However, there was little overlap in those genes that were significantly altered by the POP mixture and PFOS. Our findings show that the POP mixture and PFOS can have a similar effect on behaviour, yet alter the expression of genes relevant to neurological development differently. PMID:28146072

  14. Reduced synaptic density and deficient locomotor response in neuronal activity-regulated pentraxin 2a mutant zebrafish.

    PubMed

    Elbaz, Idan; Lerer-Goldshtein, Tali; Okamoto, Hitoshi; Appelbaum, Lior

    2015-04-01

    Neuronal-activity-regulated pentraxin (NARP/NPTX2/NP2) is a secreted synaptic protein that regulates the trafficking of glutamate receptors and mediates learning, memory, and drug addiction. The role of NPTX2 in regulating structural synaptic plasticity and behavior in a developing vertebrate is indefinite. We characterized the expression of nptx2a in larvae and adult zebrafish and established a transcription activator-like effector nuclease (TALEN)-mediated nptx2a mutant (nptx2a(-/-)) to study the role of Nptx2a in regulating structural synaptic plasticity and behavior. Similar to mammals, the zebrafish nptx2a was expressed in excitatory neurons in the brain and spinal cord. Its expression was induced in response to a mechanosensory stimulus but did not change during day and night. Behavioral assays showed that loss of Nptx2a results in reduced locomotor response to light-to-dark transition states and to a sound stimulus. Live imaging of synapses using the transgenic nptx2a:GAL4VP16 zebrafish and a fluorescent presynaptic synaptophysin (SYP) marker revealed reduced synaptic density in the axons of the spinal motor neurons and the anterodorsal lateral-line ganglion (gAD), which regulate locomotor activity and locomotor response to mechanosensory stimuli, respectively. These results suggest that Nptx2a affects locomotor response to external stimuli by mediating structural synaptic plasticity in excitatory neuronal circuits. © FASEB.

  15. Labeling single cell for in-vivo study of cell fate mapping and lineage tracing

    NASA Astrophysics Data System (ADS)

    He, Sicong; Xu, Jin; Wu, Yi; Tian, Ye; Sun, Qiqi; Wen, Zilong; Qu, Jianan Y.

    2018-02-01

    Cell fate mapping and lineage tracing are significant ways to understanding the developmental origins of biological tissues. It requires labeling individual cells and tracing the development of their progeny. We develop an infrared laser-evoked gene operator heat-shock microscope system to achieve single-cell labeling in zebrafish. With a fluorescent thermometry technique, we measure the temperature increase in zebrafish tissues induced by infrared laser and identify the optimal heat shock conditions for single-cell gene induction in different types of zebrafish cells. We use this technique to study the fate mapping of T lymphocytes and discover the distinct waves of lymphopoiesis during the zebrafish development.

  16. fgfr3 and regionalization of anterior neural tube in zebrafish.

    PubMed

    Sleptsova-Friedrich, I; Li, Y; Emelyanov, A; Ekker, M; Korzh, V; Ge, R

    2001-04-01

    Here we describe the isolation of the zebrafish fgfr3 gene, its structure and chromosomal location. Expression in wild type embryos occurs in the axial mesoderm, the diencephalon, the anterior hindbrain and the anterior spinal cord. In the hindbrain, a differential expression of fgfr3 was detected at several levels of intensity, with the highest expression in the posterior rhombomere 1 that is morphologically distinct from the anterior part, which develops into the cerebellum. Further, analysis of fgfr3 expression in mutants deficient in the formation of the midbrain-hindbrain boundary (MHB), noi(-/-) and ace(-/-), demonstrated that in the absence of Pax2.1 and FGF8 activity, the expression domains of FGFR3 expand into the MHB, tegmentum, cerebellum and optic tectum, which are the affected structures in these mutants.

  17. Orthosiphon stamineus Leaf Extract Affects TNF-α and Seizures in a Zebrafish Model

    PubMed Central

    Choo, Brandon Kar Meng; Kundap, Uday P.; Kumari, Yatinesh; Hue, Seow-Mun; Othman, Iekhsan; Shaikh, Mohd Farooq

    2018-01-01

    Epileptic seizures result from abnormal brain activity and can affect motor, autonomic and sensory function; as well as, memory, cognition, behavior, or emotional state. Effective anti-epileptic drugs (AEDs) are available but have tolerability issues due to their side effects. The Malaysian herb Orthosiphon stamineus, is a traditional epilepsy remedy and possesses anti-inflammatory, anti-oxidant and free-radical scavenging abilities, all of which are known to protect against seizures. This experiment thus aimed to explore if an ethanolic leaf extract of O. stamineus has the potential to be a novel symptomatic treatment for epileptic seizures in a zebrafish model; and the effects of the extract on the expression levels of several genes in the zebrafish brain which are associated with seizures. The results of this study indicate that O. stamineus has the potential to be a novel symptomatic treatment for epileptic seizures as it is pharmacologically active against seizures in a zebrafish model. The anti-convulsive effect of this extract is also comparable to that of diazepam at higher doses and can surpass diazepam in certain cases. Treatment with the extract also counteracts the upregulation of NF-κB, NPY and TNF-α as a result of a Pentylenetetrazol (PTZ) treated seizure. The anti-convulsive action for this extract could be at least partially due to its downregulation of TNF-α. Future work could include the discovery of the active anti-convulsive compound, as well as determine if the extract does not cause cognitive impairment in zebrafish. PMID:29527169

  18. Zebrafish (Danio rerio): A Potential Model for Toxinological Studies.

    PubMed

    Vargas, Rafael Antonio; Sarmiento, Karen; Vásquez, Isabel Cristina

    2015-10-01

    Zebrafish are an emerging basic biomedical research model that has multiple advantages compared with other research models. Given that biotoxins, such as toxins, poisons, and venoms, represent health hazards to animals and humans, a low-cost biological model that is highly sensitive to biotoxins is useful to understand the damage caused by such agents and to develop biological tests to prevent and reduce the risk of poisoning in potential cases of bioterrorism or food contamination. In this article, a narrative review of the general aspects of zebrafish as a model in basic biomedical research and various studies in the field of toxinology that have used zebrafish as a biological model are presented. This information will provide useful material to beginner students and researchers who are interested in developing toxinological studies with the zebrafish model.

  19. Distinct structure and activity of monoamine oxidase in the brain of zebrafish (Danio rerio).

    PubMed

    Anichtchik, Oleg; Sallinen, Ville; Peitsaro, Nina; Panula, Pertti

    2006-10-10

    Monoamine oxidase (MAO) is a mitochondrial flavoprotein involved in the metabolism of, e.g., aminergic neurotransmitters and the parkinsonism-inducing neurotoxin 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP). We have reported earlier MPTP-related alterations of brain catecholaminergic system in zebrafish (Danio rerio) brain. Here we describe the structural and functional properties of zebrafish MAO and the distribution of MAO mRNA and activity in zebrafish brain. The gene is located in chromosome 9 and consists of 15 exons. The amino acid composition of the active center resembles both human MAO-A and MAO-B. The enzyme displayed the highest substrate specificity for tyramine, followed by serotonin, phenylethylamine, MPTP, and dopamine; isoform-specific antagonists blocked the activity of the enzyme with equal potency. Zebrafish MAO mRNA, which was present in several tissues, and enzyme displayed differential distribution in the brain; dopaminergic cell clusters had low to moderate levels of MAO activity, whereas the highest levels of MAO activity were detected in noradrenergic and serotonergic cell groups and the habenulointerpeduncular pathway, including its caudal projection to the medial ventral rhombencephalon. The results of this study confirm the presence of functionally active MAO in zebrafish brain and other tissues and characterize the neural systems that express MAO and areas of intense activity in the brain. They also suggest that MPTP toxicity not related to MAO may affect the zebrafish brain.

  20. Effectiveness of recommended euthanasia methods in larval zebrafish (Danio rerio).

    PubMed

    Strykowski, Jennifer L; Schech, Joseph M

    2015-01-01

    The popularity of zebrafish and its use as a model organism in biomedical research including genetics, development, and toxicology, has increased over the past 20 y and continues to grow. However, guidelines for euthanasia remain vague, and the responsibility of creating appropriate euthanasia protocols essentially falls on individual facilities. To reduce variation in experimental results among labs, a standard method of euthanasia for zebrafish would be useful. Although various euthanasia methods have been compared, few studies focus on the effectiveness of euthanasia methods for larval zebrafish. In this study, we exposed larval zebrafish to each of 3 euthanasia agents (MS222, eugenol, and hypothermic shock) and assessed the recovery rate. Hypothermic shock appeared to be the most effective method for euthanizing zebrafish at 14 d after fertilization; however, this method may not be considered an efficient method for large numbers of larval zebrafish. Exposure to chemicals, such as MS222 and eugenol, were ineffective methods for euthanasia at this stage of development. When these agents are used, secondary measures should be taken to ensure death. Choosing a euthanasia method that is effective, efficient, and humane can be challenging. Determining a method of euthanasia that is suitable for fish of all stages will bring the zebrafish community closer to meeting this challenge.

  1. Effectiveness of Recommended Euthanasia Methods in Larval Zebrafish (Danio rerio)

    PubMed Central

    Strykowski, Jennifer L; Schech, Joseph M

    2015-01-01

    The popularity of zebrafish and its use as a model organism in biomedical research including genetics, development, and toxicology, has increased over the past 20 y and continues to grow. However, guidelines for euthanasia remain vague, and the responsibility of creating appropriate euthanasia protocols essentially falls on individual facilities. To reduce variation in experimental results among labs, a standard method of euthanasia for zebrafish would be useful. Although various euthanasia methods have been compared, few studies focus on the effectiveness of euthanasia methods for larval zebrafish. In this study, we exposed larval zebrafish to each of 3 euthanasia agents (MS222, eugenol, and hypothermic shock) and assessed the recovery rate. Hypothermic shock appeared to be the most effective method for euthanizing zebrafish at 14 d after fertilization; however, this method may not be considered an efficient method for large numbers of larval zebrafish. Exposure to chemicals, such as MS222 and eugenol, were ineffective methods for euthanasia at this stage of development. When these agents are used, secondary measures should be taken to ensure death. Choosing a euthanasia method that is effective, efficient, and humane can be challenging. Determining a method of euthanasia that is suitable for fish of all stages will bring the zebrafish community closer to meeting this challenge. PMID:25651096

  2. An integrated approach with the zebrafish model for biomonitoring of municipal wastewater effluent and receiving waters.

    PubMed

    Li, Caixia; Chen, Qiyu; Zhang, Xiaoyan; Snyder, Shane A; Gong, Zhiyuan; Lam, Siew Hong

    2017-12-11

    Comprehensive monitoring of water pollution is challenging. With the increasing amount and types of anthropogenic compounds being released into water, there are rising concerns of undetected toxicity. This is especially true for municipal wastewater effluents that are discharged to surface waters. This study was designed to integrate zebrafish toxicogenomics, targeted gene expression, and morphological analyses, for toxicity evaluation of effluent discharged from two previously characterized wastewater treatment plants (WWTPs) in Pima County, Arizona, and their receiving surface water. Zebrafish embryos were exposed to organic extracts from the WWTP1 effluent that were reconstituted to represent 1× and 0.5× of the original concentration. Microarray analyses identified deregulated gene probes that mapped to 1666, 779, and 631 unique human homologs in the 1×, 0.5×, and the intersection of both groups, respectively. These were associated with 18 cellular and molecular functions ranging from cell cycle to metabolism and are involved in the development and function of 10 organ systems including nervous, cardiovascular, haematological, reproductive, and hepatic systems. Superpathway of cholesterol biosynthesis, retinoic acid receptor activation, glucocorticoid receptor and prolactin signaling were among the top 11 perturbed canonical pathways. Real-time quantitative PCR validated the expression changes of 12 selected genes. These genes were then tested on zebrafish embryos exposed to the reconstituted extract of water sampled downstream of WWTP1 and another nearby WWTP2. The expression of several targeted genes were significantly affected by the WWTP effluents and some of the downstream receiving waters. Morphological analyses using four transgenic zebrafish lines revealed potential toxicity associated with nervous, hepatic, endothelial-vascular and myeloid systems. This study demonstrated how information can be obtained using adverse outcome pathway framework to derive biological effect-based monitoring tools. This integrated approach using zebrafish can supplement analytical chemistry to provide more comprehensive monitoring of discharged effluents and their receiving waters. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Effects of two strobilurins (azoxystrobin and picoxystrobin) on embryonic development and enzyme activities in juveniles and adult fish livers of zebrafish (Danio rerio).

    PubMed

    Jia, Wei; Mao, Liangang; Zhang, Lan; Zhang, Yanning; Jiang, Hongyun

    2018-09-01

    Azoxystrobin and picoxystrobin are two primary strobilurin fungicides used worldwide. This study was conducted to test their effects on embryonic development and the activity of several enzyme in the zebrafish (Danio rerio). After fish eggs were separately exposed to azoxystrobin and picoxystrobin from 24 to 144 h post fertilization (hpf), the mortality, hatching, and teratogenetic rates were measured. Additionally, effects of azoxystrobin and picoxystrobin on activities of three important antioxidant enzymes [catalase (CAT), superoxide dismutase (SOD) and peroxidase (POD)] and two primary detoxification enzymes [carboxylesterase (CarE) and glutathione S-transferase (GST)] and malondialdehyde (MDA) content in zebrafish larvae (96 h) and livers of adult zebrafish of both sexes were also assessed for potential toxicity mechanisms. Based on the embryonic development test results, the mortality, hatching, and teratogenetic rates of eggs treated with azoxystrobin and picoxystrobin all showed significant dose- and time-dependent effects, and the 144-h LC 50 values of azoxystrobin and picoxystrobin were 1174.9 and 213.8 μg L -1 , respectively. In the larval zebrafish (96 h) test, activities of CAT, POD, CarE, and GST and MDA content in azoxystrobin and picoxystrobin-treated zebrafish larvae increased significantly with concentrations of the pesticides compared with those in the control. We further revealed that azoxystrobin and picoxystrobin exposure both caused significant oxidative stress in adult fish livers and the changes differed between the sexes. Our results indicated that picoxystrobin led to higher embryonic development toxicity and oxidative stress than azoxystrobin in zebrafish and the male zebrafish liver had stronger ability to detoxify than that of the females. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Methods to study maternal regulation of germ cell specification in zebrafish

    PubMed Central

    Kaufman, O.H.; Marlow, F.L.

    2016-01-01

    The process by which the germ line is specified in the zebrafish embryo is under the control of maternal gene products that were produced during oogenesis. Zebrafish are highly amenable to microscopic observation of the processes governing maternal germ cell specification because early embryos are transparent, and the germ line is specified rapidly (within 4–5 h post fertilization). Advantages of zebrafish over other models used to study vertebrate germ cell formation include their genetic tractability, the large numbers of progeny, and the easily manipulable genome, all of which make zebrafish an ideal system for studying the genetic regulators and cellular basis of germ cell formation and maintenance. Classical molecular biology techniques, including expression analysis through in situ hybridization and forward genetic screens, have laid the foundation for our understanding of germ cell development in zebrafish. In this chapter, we discuss some of these classic techniques, as well as recent cutting-edge methodologies that have improved our ability to visualize the process of germ cell specification and differentiation, and the tracking of specific molecules involved in these processes. Additionally, we discuss traditional and novel technologies for manipulating the zebrafish genome to identify new components through loss-of-function studies of putative germ cell regulators. Together with the numerous aforementioned advantages of zebrafish as a genetic model for studying development, we believe these new techniques will continue to advance zebrafish to the forefront for investigation of the molecular regulators of germ cell specification and germ line biology. PMID:27312489

  5. Transcriptomic characterization of cold acclimation in larval zebrafish

    PubMed Central

    2013-01-01

    Background Temperature is one of key environmental parameters that affect the whole life of fishes and an increasing number of studies have been directed towards understanding the mechanisms of cold acclimation in fish. However, the adaptation of larvae to cold stress and the cold-specific transcriptional alterations in fish larvae remain largely unknown. In this study, we characterized the development of cold-tolerance in zebrafish larvae and investigated the transcriptional profiles under cold stress using RNA-seq. Results Pre-exposure of 96 hpf zebrafish larvae to cold stress (16°C) for 24 h significantly increased their survival rates under severe cold stress (12°C). RNA-seq generated 272 million raw reads from six sequencing libraries and about 92% of the processed reads were mapped to the reference genome of zebrafish. Differential expression analysis identified 1,431 up- and 399 down-regulated genes. Gene ontology enrichment analysis of cold-induced genes revealed that RNA splicing, ribosome biogenesis and protein catabolic process were the most highly overrepresented biological processes. Spliceosome, proteasome, eukaryotic ribosome biogenesis and RNA transport were the most highly enriched pathways for genes up-regulated by cold stress. Moreover, alternative splicing of 197 genes and promoter switching of 64 genes were found to be regulated by cold stress. A shorter isoform of stk16 that lacks 67 amino acids at the N-terminus was specifically generated by skipping the second exon in cold-treated larvae. Alternative promoter usage was detected for per3 gene under cold stress, which leading to a highly up-regulated transcript encoding a truncated protein lacking the C-terminal domains. Conclusions These findings indicate that zebrafish larvae possess the ability to build cold-tolerance under mild low temperature and transcriptional and post-transcriptional regulations are extensively involved in this acclimation process. PMID:24024969

  6. A MULTIFACETED, MEDIUM-THROUGHPUT APPROACH FOR DETECTING AND CHARACTERIZING DEVELOPMENTAL NEUROTOXICITY USING ZEBRAFISH.

    EPA Science Inventory

    To address the EPA's need to prioritize hundreds to thousands of chemicals for testing, we are developing a rapid, cost-effective in vivo screen for developmental neurotoxicity using zebrafish (Danio rerio), a small freshwater fish with external fertilization. Zebrafish embryos d...

  7. Zebrafish Models of Prader-Willi Syndrome: Fast Track to Pharmacotherapeutics

    PubMed Central

    Spikol, Emma D.; Laverriere, Caroline E.; Robnett, Maya; Carter, Gabriela; Wolfe, Erin; Glasgow, Eric

    2016-01-01

    Prader-Willi syndrome (PWS) is a rare genetic neurodevelopmental disorder characterized by an insatiable appetite, leading to chronic overeating and obesity. Additional features include short stature, intellectual disability, behavioral problems and incomplete sexual development. Although significant progress has been made in understanding the genetic basis of PWS, the mechanisms underlying the pathogenesis of the disorder remain poorly understood. Treatment for PWS consists mainly of palliative therapies; curative therapies are sorely needed. Zebrafish, Danio rerio, represent a promising way forward for elucidating physiological problems such as obesity and identifying new pharmacotherapeutic options for PWS. Over the last decade, an increased appreciation for the highly conserved biology among vertebrates and the ability to perform high-throughput drug screening has seen an explosion in the use of zebrafish for disease modeling and drug discovery. Here, we review recent advances in developing zebrafish models of human disease. Aspects of zebrafish genetics and physiology that are relevant to PWS will be discussed, and the advantages and disadvantages of zebrafish models will be contrasted with current animal models for this syndrome. Finally, we will present a paradigm for drug screening in zebrafish that is potentially the fastest route for identifying and delivering curative pharmacotherapies to PWS patients. PMID:27857842

  8. Urban stormwater runoff negatively impacts lateral line development in larval zebrafish and salmon embryos.

    PubMed

    Young, Alexander; Kochenkov, Valentin; McIntyre, Jenifer K; Stark, John D; Coffin, Allison B

    2018-02-12

    After a storm, water often runs off of impervious urban surfaces directly into aquatic ecosystems. This stormwater runoff is a cocktail of toxicants that have serious effects on the ecological integrity of aquatic habitats. Zebrafish that develop in stormwater runoff suffer from cardiovascular toxicity and impaired growth, but the effects of stormwater on fish sensory systems are not understood. Our study investigated the effect of stormwater on hair cells of the lateral line in larval zebrafish and coho salmon. Our results showed that although toxicants in stormwater did not kill zebrafish hair cells, these cells did experience damage. Zebrafish developing in stormwater also experienced impaired growth, fewer neuromasts in the lateral line, and fewer hair cells per neuromast. A similar reduction in neuromast number was observed in coho salmon reared in stormwater. Bioretention treatment, intended to filter out harmful constituents of stormwater, rescued the lateral line defects in zebrafish but not in coho salmon, suggesting that not all of the harmful constituents were removed by the filtration media and that salmonids are particularly sensitive to aquatic toxicants. Collectively, these data demonstrate that sub-lethal exposure to stormwater runoff negatively impacts a fish sensory system, which may have consequences for organismal fitness.

  9. Zebrafish: An Important Tool for Liver Disease Research

    PubMed Central

    Goessling, Wolfram; Sadler, Kirsten C.

    2016-01-01

    As the incidence of hepatobiliary diseases increases, we must improve our understanding of the molecular, cellular, and physiological factors that contribute to the pathogenesis of liver disease. Animal models help us identify disease mechanisms that might be targeted therapeutically. Zebrafish (Danio rerio) have traditionally been used to study embryonic development but are also important to the study of liver disease. Zebrafish embryos develop rapidly; all of their digestive organs are mature in larvae by 5 days of age. At this stage, they can develop hepatobiliary diseases caused by developmental defects or toxin- or ethanol-induced injury and manifest premalignant changes within weeks. Zebrafish are similar to humans in hepatic cellular composition, function, signaling, and response to injury as well as the cellular processes that mediate liver diseases. Genes are highly conserved between humans and zebrafish, making them a useful system to study the basic mechanisms of liver disease. We can perform genetic screens to identify novel genes involved in specific disease processes and chemical screens to identify pathways and compounds that act on specific processes. We review how studies of zebrafish have advanced our understanding of inherited and acquired liver diseases as well as liver cancer and regeneration. PMID:26319012

  10. Apoptosis-related genes induced in response to ketamine during early life stages of zebrafish.

    PubMed

    Félix, Luís M; Serafim, Cindy; Valentim, Ana M; Antunes, Luís M; Matos, Manuela; Coimbra, Ana M

    2017-09-05

    Increasing evidence supports that ketamine, a widely used anaesthetic, potentiates apoptosis during development through the mitochondrial pathway of apoptosis. Defects in the apoptotic machinery can cause or contribute to the developmental abnormalities previously described in ketamine-exposed zebrafish. The involvement of the apoptotic machinery in ketamine-induced teratogenicity was addressed by assessing the apoptotic signals at 8 and 24 hpf following 20min exposure to ketamine at three stages of early zebrafish embryo development (256 cell, 50% epiboly and 1-4 somites stages). Exposure at the 256-cell stage to ketamine induced an up-regulation of casp8 and pcna at 8 hpf while changes in pcna at the mRNA level were observed at 24 hpf. After the 50% epiboly stage exposure, the mRNA levels of casp9 were increased at 8 and 24 hpf while aifm1 was affected at 24 hpf. Both tp53 and pcna expressions were increased at 8 hpf. After exposure during the 1-4 somites stage, no meaningful changes on transcript levels were observed. The distribution of apoptotic cells and the caspase-like enzymatic activities of caspase-3 and -9 were not affected by ketamine exposure. It is proposed that ketamine exposure at the 256-cell stage induced a cooperative mechanism between proliferation and cellular death while following exposure at the 50% epiboly, a p53-dependent and -independent caspase activation may occur. Finally, at the 1-4 somites stage, the defence mechanisms are already fully in place to protect against ketamine-insult. Thus, ketamine teratogenicity seems to be dependent on the functional mechanisms present in each developmental stage. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Trade-offs in ecosystem impacts from nanomaterial versus organic chemical ultraviolet filters in sunscreens.

    PubMed

    Hanigan, David; Truong, Lisa; Schoepf, Jared; Nosaka, Takayuki; Mulchandani, Anjali; Tanguay, Robert L; Westerhoff, Paul

    2018-08-01

    Both nanoparticulate (nZnO and nTiO 2 ) and organic chemical ultraviolet (UV) filters are active ingredients in sunscreen and protect against skin cancer, but limited research exists on the environmental effects of sunscreen release into aquatic systems. To examine the trade-offs of incorporating nanoparticles (NPs) into sunscreens over the past two decades, we targeted endpoints sensitive to the potential risks of different UV filters: solar reactive oxygen production in water and disruption of zebrafish embryo development. First, we developed methodology to extract nanoparticles from sunscreens with organic solvents. Zebrafish embryos exposed to parts-per-million NPs used in sunscreens displayed limited toxicological effects; nZnO particles appeared to be slightly more toxic than nTiO 2 at the highest concentrations. In contrast, seven organic UV filters did not affect zebrafish embryogenesis at or near aqueous solubility. Second, to simulate potent photo-initiated reactions upon release into water, we examined methylene blue (MB) degradation under UV light. nTiO 2 from sunscreen caused 10 times faster MB loss than nZnO and approached the photocatalytic degradation rate of a commercial nTiO 2 photocatalysts (P25). Organic UV filters did not cause measurable MB degradation. Finally, we estimated that between 1 and 10 ppm of sunscreen NPs in surface waters could produce similar steady state hydroxyl radical concentrations as naturally occurring fluvic acids under sunlight irradiation. Incorporation of NPs into sunscreen may increase environmental concentrations of reactive oxygen, albeit to a limited extent, which can influence transformation of dissolved substances and potentially affect ecosystem processes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Developmental age strengthens barriers to ethanol accumulation in zebrafish.

    PubMed

    Lovely, C Ben; Nobles, Regina D; Eberhart, Johann K

    2014-09-01

    Fetal Alcohol Spectrum Disorders (FASD) describes a wide range of phenotypic defects affecting facial and neurological development associated with ethanol teratogenicity. It affects approximately 1 in 100 children born in the United States each year. Genetic predisposition along with timing and dosage of ethanol exposure are critical in understanding the prevalence and variability of FASD. The zebrafish attributes of external fertilization, genetic tractability, and high fecundity make it a powerful tool for FASD studies. However, a lack of consensus of ethanol treatment paradigms has limited the interpretation of these various studies. Here we address this concern by examining ethanol tissue concentrations across timing and genetic background. We utilize headspace gas chromatography to determine ethanol concentration in the AB, fli1:EGFP, and Tu backgrounds. In addition, we treated these embryos with ethanol over two different developmental time windows, 6-24 h post fertilization (hpf) and 24-48 hpf. Our analysis demonstrates that embryos rapidly equilibrate to a sub-media level of ethanol. Embryos then maintain this level of ethanol for the duration of exposure. The ethanol tissue concentration level is independent of genetic background, but is timing-dependent. Embryos exposed from 6 to 24 hpf were 2.7-4.2-fold lower than media levels, while embryos were 5.7-6.2-fold lower at 48 hpf. This suggests that embryos strengthen one or more barriers to ethanol as they develop. In addition, both the embryo and, to a lesser extent, the chorion, surrounding the embryo are barriers to ethanol. Overall, this work will help tighten ethanol treatment regimens and strengthen zebrafish as a model of FASD. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Preparing for a Semiannual IACUC Inspection of a Satellite Zebrafish (Danio rerio) Facility

    PubMed Central

    Koerber, Amy S; Kalishman, Jennifer

    2009-01-01

    Institutions worldwide have experienced a rapid growth in the use of zebrafish as a research model for a variety of molecular and genetic studies of vertebrate development. This expansion in zebrafish research essentially has outpaced the establishment of specific recommendations for the care and use of fish in research. In some cases, this situation has created a dilemma where an Institutional Animal Care and Use Committee, which is responsible for oversight of vertebrate animal research, is not fully prepared to undertake this role for a decentralized zebrafish facility. IACUC inspectors will be more equipped to ask pertinent questions by understanding the basic principles of zebrafish health and facility management. Concurrently, zebrafish facility managers can contribute to the progress of a semiannual facility inspection by maintaining fully accessible operating records. In the context of presenting a well-established and useful model of zebrafish management and recordkeeping to the zebrafish facility operator, the information we present here also prepares a potential IACUC inspector to conduct a constructive and positive inspection. PMID:19245754

  14. Making Waves: New Developments in Toxicology With the Zebrafish.

    PubMed

    Horzmann, Katharine A; Freeman, Jennifer L

    2018-05-01

    The laboratory zebrafish (Danio rerio) is now an accepted model in toxicologic research. The zebrafish model fills a niche between in vitro models and mammalian biomedical models. The developmental characteristics of the small fish are strategically being used by scientists to study topics ranging from high-throughput toxicity screens to toxicity in multi- and transgenerational studies. High-throughput technology has increased the utility of zebrafish embryonic toxicity assays in screening of chemicals and drugs for toxicity or effect. Additionally, advances in behavioral characterization and experimental methodology allow for observation of recognizable phenotypic changes after xenobiotic exposure. Future directions in zebrafish research are predicted to take advantage of CRISPR-Cas9 genome editing methods in creating models of disease and interrogating mechanisms of action with fluorescent reporters or tagged proteins. Zebrafish can also model developmental origins of health and disease and multi- and transgenerational toxicity. The zebrafish has many advantages as a toxicologic model and new methodologies and areas of study continue to expand the usefulness and application of the zebrafish.

  15. A zebrafish (Danio rerio) model of infectious spleen and kidney necrosis virus (ISKNV) infection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu Xiaopeng; Zhang Lichun; Weng Shaoping

    2008-06-20

    Zebrafish is a model animal for studies of genetics, development, toxicology, oncology, and immunology. In this study, infectious spleen and kidney necrosis virus (ISKNV) was used to establish an infection in zebrafish, and the experimental conditions were established and characterized. Mortality of adult zebrafish infected with ISKNV by intraperitoneal (i.p.) injection exceeded 60%. ISKNV can be passed stably in zebrafish for over ten passages. The ailing zebrafish displayed petechial hemorrhaging and scale protrusion. Histological analysis of moribund fish revealed necrosis of tissue and enlarged cells in kidney and spleen. The real-time RT-PCR analysis of mRNA level confirmed that ISKNV wasmore » replicated in zebrafish. Immunohistochemistry and immunofluorescence analyses further confirmed the presence of ISKNV-infected cells in almost all organs of the infected fish. Electron microscope analyses showed that the ISKNV particle was present in the infected tissues. The establishment of zebrafish infection model of ISKNV can offer a valuable tool for studying the interactions between ISKNV and its host.« less

  16. The Visual System of Zebrafish and its Use to Model Human Ocular Diseases

    PubMed Central

    Gestri, Gaia; Link, Brian A; Neuhauss, Stephan CF

    2011-01-01

    Free swimming zebrafish larvae depend mainly on their sense of vision to evade predation and to catch prey. Hence there is strong selective pressure on the fast maturation of visual function and indeed the visual system already supports a number of visually-driven behaviors in the newly hatched larvae. The ability to exploit the genetic and embryonic accessibility of the zebrafish in combination with a behavioral assessment of visual system function has made the zebrafish a popular model to study vision and its diseases. Here, we review the anatomy, physiology and development of the zebrafish eye as the basis to relate the contributions of the zebrafish to our understanding of human ocular diseases. PMID:21595048

  17. The Prx1 limb enhancers: targeted gene expression in developing zebrafish pectoral fins.

    PubMed

    Hernández-Vega, Amayra; Minguillón, Carolina

    2011-08-01

    Limbs represent an excellent model to study the induction, growth, and patterning of several organs. A breakthrough to study gene function in various tissues has been the characterization of regulatory elements that allow tissue-specific interference of gene function. The mouse Prx1 promoter has been used to generate limb-specific mutants and overexpress genes in tetrapod limbs. Although zebrafish possess advantages that favor their use to study limb morphogenesis, there is no driver described suitable for specifically interfering with gene function in developing fins. We report the generation of zebrafish lines that express enhanced green fluorescent protein (EGFP) driven by the mouse Prx1 enhancer in developing pectoral fins. We also describe the expression pattern of the zebrafish prrx1 genes and identify three conserved non-coding elements (CNEs) that we use to generate fin-specific EGFP reporter lines. Finally, we show that the mouse and zebrafish regulatory elements may be used to modify gene function in pectoral fins. Copyright © 2011 Wiley-Liss, Inc.

  18. Dissection and lateral mounting of zebrafish embryos: analysis of spinal cord development.

    PubMed

    Beck, Aaron P; Watt, Roland M; Bonner, Jennifer

    2014-02-28

    The zebrafish spinal cord is an effective investigative model for nervous system research for several reasons. First, genetic, transgenic and gene knockdown approaches can be utilized to examine the molecular mechanisms underlying nervous system development. Second, large clutches of developmentally synchronized embryos provide large experimental sample sizes. Third, the optical clarity of the zebrafish embryo permits researchers to visualize progenitor, glial, and neuronal populations. Although zebrafish embryos are transparent, specimen thickness can impede effective microscopic visualization. One reason for this is the tandem development of the spinal cord and overlying somite tissue. Another reason is the large yolk ball, which is still present during periods of early neurogenesis. In this article, we demonstrate microdissection and removal of the yolk in fixed embryos, which allows microscopic visualization while preserving surrounding somite tissue. We also demonstrate semipermanent mounting of zebrafish embryos. This permits observation of neurodevelopment in the dorso-ventral and anterior-posterior axes, as it preserves the three-dimensionality of the tissue.

  19. Dissection and Lateral Mounting of Zebrafish Embryos: Analysis of Spinal Cord Development

    PubMed Central

    Beck, Aaron P.; Watt, Roland M.; Bonner, Jennifer

    2014-01-01

    The zebrafish spinal cord is an effective investigative model for nervous system research for several reasons. First, genetic, transgenic and gene knockdown approaches can be utilized to examine the molecular mechanisms underlying nervous system development. Second, large clutches of developmentally synchronized embryos provide large experimental sample sizes. Third, the optical clarity of the zebrafish embryo permits researchers to visualize progenitor, glial, and neuronal populations. Although zebrafish embryos are transparent, specimen thickness can impede effective microscopic visualization. One reason for this is the tandem development of the spinal cord and overlying somite tissue. Another reason is the large yolk ball, which is still present during periods of early neurogenesis. In this article, we demonstrate microdissection and removal of the yolk in fixed embryos, which allows microscopic visualization while preserving surrounding somite tissue. We also demonstrate semipermanent mounting of zebrafish embryos. This permits observation of neurodevelopment in the dorso-ventral and anterior-posterior axes, as it preserves the three-dimensionality of the tissue. PMID:24637734

  20. DRUG EFFECTS ON THE LOCOMOTOR ACTIVITY OF LARVAL ZEBRAFISH.

    EPA Science Inventory

    As part of an effort to develop a rapid in vivo screen for EPA’s prioritization of toxic chemicals, we have begun to characterize the locomotor activity of zebrafish (Danio rerio) larvae and the effects of prototype drugs. Zebrafish larvae (6-7 days post-fertilization) were indiv...

  1. Knock-down of pantothenate kinase 2 severely affects the development of the nervous and vascular system in zebrafish, providing new insights into PKAN disease

    PubMed Central

    Zizioli, Daniela; Tiso, Natascia; Guglielmi, Adele; Saraceno, Claudia; Busolin, Giorgia; Giuliani, Roberta; Khatri, Deepak; Monti, Eugenio; Borsani, Giuseppe; Argenton, Francesco; Finazzi, Dario

    2016-01-01

    Pantothenate Kinase Associated Neurodegeneration (PKAN) is an autosomal recessive disorder with mutations in the pantothenate kinase 2 gene (PANK2), encoding an essential enzyme for Coenzyme A (CoA) biosynthesis. The molecular connection between defects in this enzyme and the neurodegenerative phenotype observed in PKAN patients is still poorly understood. We exploited the zebrafish model to study the role played by the pank2 gene during embryonic development and get new insight into PKAN pathogenesis. The zebrafish orthologue of hPANK2 lies on chromosome 13, is a maternal gene expressed in all development stages and, in adult animals, is highly abundant in CNS, dorsal aorta and caudal vein. The injection of a splice-inhibiting morpholino induced a clear phenotype with perturbed brain morphology and hydrocephalus; edema was present in the heart region and caudal plexus, where hemorrhages with reduction of blood circulation velocity were detected. We characterized the CNS phenotype by studying the expression pattern of wnt1 and neurog1 neural markers and by use of the Tg(neurod:EGFP/sox10:dsRed) transgenic line. The results evidenced that downregulation of pank2 severely impairs neuronal development, particularly in the anterior part of CNS (telencephalon). Whole-mount in situ hybridization analysis of the endothelial markers cadherin-5 and fli1a, and use of Tg(fli1a:EGFP/gata1a:dsRed) transgenic line, confirmed the essential role of pank2 in the formation of the vascular system. The specificity of the morpholino-induced phenotype was proved by the restoration of a normal development in a high percentage of embryos co-injected with pank2 mRNA. Also, addition of pantethine or CoA, but not of vitamin B5, to pank2 morpholino-injected embryos rescued the phenotype with high efficiency. The zebrafish model indicates the relevance of pank2 activity and CoA homeostasis for normal neuronal development and functioning and provides evidence of an unsuspected role for this enzyme and its product in vascular development. PMID:26476142

  2. An individual-based model of zebrafish population dynamics accounting for energy dynamics.

    PubMed

    Beaudouin, Rémy; Goussen, Benoit; Piccini, Benjamin; Augustine, Starrlight; Devillers, James; Brion, François; Péry, Alexandre R R

    2015-01-01

    Developing population dynamics models for zebrafish is crucial in order to extrapolate from toxicity data measured at the organism level to biological levels relevant to support and enhance ecological risk assessment. To achieve this, a dynamic energy budget for individual zebrafish (DEB model) was coupled to an individual based model of zebrafish population dynamics (IBM model). Next, we fitted the DEB model to new experimental data on zebrafish growth and reproduction thus improving existing models. We further analysed the DEB-model and DEB-IBM using a sensitivity analysis. Finally, the predictions of the DEB-IBM were compared to existing observations on natural zebrafish populations and the predicted population dynamics are realistic. While our zebrafish DEB-IBM model can still be improved by acquiring new experimental data on the most uncertain processes (e.g. survival or feeding), it can already serve to predict the impact of compounds at the population level.

  3. An Individual-Based Model of Zebrafish Population Dynamics Accounting for Energy Dynamics

    PubMed Central

    Beaudouin, Rémy; Goussen, Benoit; Piccini, Benjamin; Augustine, Starrlight; Devillers, James; Brion, François; Péry, Alexandre R. R.

    2015-01-01

    Developing population dynamics models for zebrafish is crucial in order to extrapolate from toxicity data measured at the organism level to biological levels relevant to support and enhance ecological risk assessment. To achieve this, a dynamic energy budget for individual zebrafish (DEB model) was coupled to an individual based model of zebrafish population dynamics (IBM model). Next, we fitted the DEB model to new experimental data on zebrafish growth and reproduction thus improving existing models. We further analysed the DEB-model and DEB-IBM using a sensitivity analysis. Finally, the predictions of the DEB-IBM were compared to existing observations on natural zebrafish populations and the predicted population dynamics are realistic. While our zebrafish DEB-IBM model can still be improved by acquiring new experimental data on the most uncertain processes (e.g. survival or feeding), it can already serve to predict the impact of compounds at the population level. PMID:25938409

  4. Genetically Blocking the Zebrafish Pineal Clock Affects Circadian Behavior.

    PubMed

    Ben-Moshe Livne, Zohar; Alon, Shahar; Vallone, Daniela; Bayleyen, Yared; Tovin, Adi; Shainer, Inbal; Nisembaum, Laura G; Aviram, Idit; Smadja-Storz, Sima; Fuentes, Michael; Falcón, Jack; Eisenberg, Eli; Klein, David C; Burgess, Harold A; Foulkes, Nicholas S; Gothilf, Yoav

    2016-11-01

    The master circadian clock in fish has been considered to reside in the pineal gland. This dogma is challenged, however, by the finding that most zebrafish tissues contain molecular clocks that are directly reset by light. To further examine the role of the pineal gland oscillator in the zebrafish circadian system, we generated a transgenic line in which the molecular clock is selectively blocked in the melatonin-producing cells of the pineal gland by a dominant-negative strategy. As a result, clock-controlled rhythms of melatonin production in the adult pineal gland were disrupted. Moreover, transcriptome analysis revealed that the circadian expression pattern of the majority of clock-controlled genes in the adult pineal gland is abolished. Importantly, circadian rhythms of behavior in zebrafish larvae were affected: rhythms of place preference under constant darkness were eliminated, and rhythms of locomotor activity under constant dark and constant dim light conditions were markedly attenuated. On the other hand, global peripheral molecular oscillators, as measured in whole larvae, were unaffected in this model. In conclusion, characterization of this novel transgenic model provides evidence that the molecular clock in the melatonin-producing cells of the pineal gland plays a key role, possibly as part of a multiple pacemaker system, in modulating circadian rhythms of behavior.

  5. Genetically Blocking the Zebrafish Pineal Clock Affects Circadian Behavior

    PubMed Central

    Alon, Shahar; Vallone, Daniela; Tovin, Adi; Shainer, Inbal; Nisembaum, Laura G.; Aviram, Idit; Smadja-Storz, Sima; Fuentes, Michael; Falcón, Jack; Eisenberg, Eli; Klein, David C.; Burgess, Harold A.; Foulkes, Nicholas S.; Gothilf, Yoav

    2016-01-01

    The master circadian clock in fish has been considered to reside in the pineal gland. This dogma is challenged, however, by the finding that most zebrafish tissues contain molecular clocks that are directly reset by light. To further examine the role of the pineal gland oscillator in the zebrafish circadian system, we generated a transgenic line in which the molecular clock is selectively blocked in the melatonin-producing cells of the pineal gland by a dominant-negative strategy. As a result, clock-controlled rhythms of melatonin production in the adult pineal gland were disrupted. Moreover, transcriptome analysis revealed that the circadian expression pattern of the majority of clock-controlled genes in the adult pineal gland is abolished. Importantly, circadian rhythms of behavior in zebrafish larvae were affected: rhythms of place preference under constant darkness were eliminated, and rhythms of locomotor activity under constant dark and constant dim light conditions were markedly attenuated. On the other hand, global peripheral molecular oscillators, as measured in whole larvae, were unaffected in this model. In conclusion, characterization of this novel transgenic model provides evidence that the molecular clock in the melatonin-producing cells of the pineal gland plays a key role, possibly as part of a multiple pacemaker system, in modulating circadian rhythms of behavior. PMID:27870848

  6. Pegasus, the 'atypical' Ikaros family member, influences left-right asymmetry and regulates pitx2 expression.

    PubMed

    John, Liza B; Trengove, Monique C; Fraser, Fiona W; Yoong, Simon H; Ward, Alister C

    2013-05-01

    Members of the Ikaros family of zinc-finger transcription factors have been shown to be critical for immune and blood cell development. However, the role of the most divergent family member, Pegasus, has remained elusive, although it shows conservation to invertebrate Hunchback proteins that influence embryonic patterning through regulation of homeodomain genes. Zebrafish was employed as a relevant model to investigate the function of Pegasus since it possesses a single pegasus orthologue with high homology to its mammalian counterparts. During zebrafish embryogenesis pegasus transcripts were initially maternally-derived and later replaced by zygotic expression in the diencephalon, tectum, hindbrain, thymus, eye, and ultimately the exocrine pancreas and intestine. Morpholino-mediated knockdown of the zebrafish pegasus gene resulted in disrupted left-right asymmetry of the gut and pancreas. Molecular analysis indicated that zebrafish Pegasus localised to the nucleus in discrete non-nucleolar structures and bound the 'atypical' DNA sequence GN3GN2G, confirming its presumed role as a transcriptional regulator. In vivo transcriptome analysis identified candidate target genes, several of which encoded homeodomain transcription factors. One of these, pitx2, implicated in left-right asymmetry, possessed appropriate 'atypical' Pegasus binding sites in its promoter. Knockdown of Pegasus affected both the level and asymmetry of pitx2 expression, as well as disrupting the asymmetry of the lefty2 and spaw genes, explaining the perturbed left-right patterning in pegasus morphants. Collectively these results provide the first definitive insights into the in vivo role of Pegasus, supporting the notion that it acts as a broader regulator of development, with potential parallels to the related invertebrate Hunchback proteins. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Electrochemical remediation of amoxicillin: Detoxification and reduction of antimicrobial activity.

    PubMed

    Brito, Lara Barroso; Garcia, Luane Ferreira; Caetano, Marcos Pereira; Lobón, Germán Sanz; Teles de Oliveira, Mayk; de Oliveira, Rhaul; Sapateiro Torres, Ieda Maria; Yepez, Alfonso; Vaz, Boniek Gontijo; Luque, Rafael; Grisolia, Cesar Koppe; Valadares, Marize Campos; de Souza Gil, Eric; Rodrigues de Oliveira, Gisele Augusto

    2018-06-16

    Amoxicillin (AMX) is one of the most commonly prescribed antibiotics around the world to treat and prevent several diseases in both human and veterinary medicine. Incomplete removal of AMX during wastewater treatment contributes to its presence in water bodies and drinking water. AMX is an emerging contaminant since its impact on the environment and human health remains uncertain. This contribution was aimed to evaluate the electrochemical oxidation (EO) of AMX using different anodes in tap water, NaCl or Na 2 SO 4 solutions and to evaluate the potential toxicity of remaining AMX and its by-products on zebrafish early-life stages. Chemical intermediates generated after EO were determined by mass spectrometry and their resulting antimicrobial activity was evaluated. AMX did not induce significant mortality in zebrafish during extended exposure but affected zebrafish development (increased body length) from 6.25 mg/L to 25 mg/L and inhibited enzymatic biomarkers. Carbon modified with titanium oxide (TiO 2 @C) anode achieved complete AMX removal in just a few minutes and efficiency of the supported electrolytes occurred in the following order: 0.1 M NaCl > 0.1 M Na 2 SO 4  > 0.01 M NaCl > tap water. The order of potential toxicity to zebrafish early life-stages related to lethal and sublethal effects was as follows: 0.1 M Na 2 SO 4 > 0.1 M NaCl >0.01 M NaCl = tap water. Additionally, the EO of AMX using TiO 2 @C electrode with 0.01 M NaCl was able to inhibit the antimicrobial activity of AMX, reducing the possibility of developing bacterial resistance. Copyright © 2018. Published by Elsevier B.V.

  8. Immunostaining of dissected zebrafish embryonic heart.

    PubMed

    Yang, Jingchun; Xu, Xiaolei

    2012-01-10

    Zebrafish embryo becomes a popular in vivo vertebrate model for studying cardiac development and human heart diseases due to its advantageous embryology and genetics. About 100-200 embryos are readily available every week from a single pair of adult fish. The transparent embryos that develop ex utero make them ideal for assessing cardiac defects. The expression of any gene can be manipulated via morpholino technology or RNA injection. Moreover, forward genetic screens have already generated a list of mutants that affect different perspectives of cardiogenesis. Whole mount immunostaining is an important technique in this animal model to reveal the expression pattern of the targeted protein to a particular tissue. However, high resolution images that can reveal cellular or subcellular structures have been difficult, mainly due to the physical location of the heart and the poor penetration of the antibodies. Here, we present a method to address these bottlenecks by dissecting heart first and then conducting the staining process on the surface of a microscope slide. To prevent the loss of small heart samples and to facilitate solution handling, we restricted the heart samples within a circle on the surface of the microscope slides drawn by an immEdge pen. After the staining, the fluorescence signals can be directly observed by a compound microscope. Our new method significantly improves the penetration for antibodies, since a heart from an embryonic fish only consists of few cell layers. High quality images from intact hearts can be obtained within a much reduced procession time for zebrafish embryos aged from day 2 to day 6. Our method can be potentially extended to stain other organs dissected from either zebrafish or other small animals. Copyright © 2012 Journal of Visualized Experiments

  9. Toxicity of Vascular Disrupting Chemicals to Developing Zebrafish

    EPA Science Inventory

    Vascular development is integral to proper embryonic development and disruption of that process can have serious developmental consequences. We performed static 48-hr exposures of transgenic TG(kdr:EGFP)s843 zebrafish (Danio rerio) embryos with the known vascular inhibitors Vatal...

  10. Mutations in MAB21L2 result in ocular Coloboma, microcornea and cataracts.

    PubMed

    Deml, Brett; Kariminejad, Ariana; Borujerdi, Razieh H R; Muheisen, Sanaa; Reis, Linda M; Semina, Elena V

    2015-01-01

    Ocular coloboma results from abnormal embryonic development and is often associated with additional ocular and systemic features. Coloboma is a highly heterogeneous disorder with many cases remaining unexplained. Whole exome sequencing from two cousins affected with dominant coloboma with microcornea, cataracts, and skeletal dysplasia identified a novel heterozygous allele in MAB21L2, c.151 C>G, p.(Arg51Gly); the mutation was present in all five family members with the disease and appeared de novo in the first affected generation of the three-generational pedigree. MAB21L2 encodes a protein similar to C. elegans mab-21 cell fate-determining factor; the molecular function of MAB21L2 is largely unknown. To further evaluate the role of MAB21L2, zebrafish mutants carrying a p.(Gln48Serfs*5) frameshift truncation (mab21l2Q48Sfs*5) and a p.(Arg51_Phe52del) in-frame deletion (mab21l2R51_F52del) were developed with TALEN technology. Homozygous zebrafish embryos from both lines developed variable lens and coloboma phenotypes: mab21l2Q48Sfs*5 embryos demonstrated severe lens and retinal defects with complete lethality while mab21l2R51_F52del mutants displayed a milder lens phenotype and severe coloboma with a small number of fish surviving to adulthood. Protein studies showed decreased stability for the human p.(Arg51Gly) and zebrafish p.(Arg51_Phe52del) mutant proteins and predicted a complete loss-of-function for the zebrafish p.(Gln48Serfs*5) frameshift truncation. Additionally, in contrast to wild-type human MAB21L2 transcript, mutant p.(Arg51Gly) mRNA failed to efficiently rescue the ocular phenotype when injected into mab21l2Q48Sfs*5 embryos, suggesting this allele is functionally deficient. Histology, immunohistochemistry, and in situ hybridization experiments identified retinal invagination defects, an increase in cell death, abnormal proliferation patterns, and altered expression of several ocular markers in the mab21l2 mutants. These findings support the identification of MAB21L2 as a novel factor involved in human coloboma and highlight the power of genome editing manipulation in model organisms for analysis of the effects of whole exome variation in humans.

  11. Fluoride exposure abates pro-inflammatory response and induces in vivo apoptosis rendering zebrafish (Danio rerio) susceptible to bacterial infections.

    PubMed

    Singh, Rashmi; Khatri, Preeti; Srivastava, Nidhi; Jain, Shruti; Brahmachari, Vani; Mukhopadhyay, Asish; Mazumder, Shibnath

    2017-04-01

    The present study describes the immunotoxic effect of chronic fluoride exposure on adult zebrafish (Danio rerio). Zebrafish were exposed to fluoride (71.12 mg/L; 1/10 LC 50 ) for 30 d and the expression of selected genes studied. We observed significant elevation in the detoxification pathway gene cyp1a suggesting chronic exposure to non-lethal concentration of fluoride is indeed toxic to fish. Fluoride mediated pro-oxidative stress is implicated with the downregulation in superoxide dismutase 1 and 2 (sod1/2) genes. Fluoride affected DNA repair machinery by abrogating the expression of the DNA repair gene rad51 and growth arrest and DNA damage inducible beta a gene gadd45ba. The upregulated expression of casp3a coupled with altered Bcl-2 associated X protein/B-cell lymphoma 2 ratio (baxa/bcl2a) clearly suggested chronic fluoride exposure induced the apoptotic cascade in zebrafish. Fluoride-exposed zebrafish when challenged with non-lethal dose of fish pathogen A. hydrophila revealed gross histopathology in spleen, bacterial persistence and significant mortality. We report that fluoride interferes with system-level output of pro-inflammatory cytokines tumour necrosis factor-α, interleukin-1β and interferon-γ, as a consequence, bacteria replicate efficiently causing significant fish mortality. We conclude, chronic fluoride exposure impairs the redox balance, affects DNA repair machinery with pro-apoptotic implications and suppresses pro-inflammatory cytokines expression abrogating host immunity to bacterial infections. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Biologically inspired robots elicit a robust fear response in zebrafish

    NASA Astrophysics Data System (ADS)

    Ladu, Fabrizio; Bartolini, Tiziana; Panitz, Sarah G.; Butail, Sachit; Macrı, Simone; Porfiri, Maurizio

    2015-03-01

    We investigate the behavioral response of zebrafish to three fear-evoking stimuli. In a binary choice test, zebrafish are exposed to a live allopatric predator, a biologically-inspired robot, and a computer-animated image of the live predator. A target tracking algorithm is developed to score zebrafish behavior. Unlike computer-animated images, the robotic and live predator elicit a robust avoidance response. Importantly, the robotic stimulus elicits more consistent inter-individual responses than the live predator. Results from this effort are expected to aid in hypothesis-driven studies on zebrafish fear response, by offering a valuable approach to maximize data-throughput and minimize animal subjects.

  13. What is the Thalamus in Zebrafish?

    PubMed Central

    Mueller, Thomas

    2012-01-01

    Current research on the thalamus and related structures in the zebrafish diencephalon identifies an increasing number of both neurological structures and ontogenetic processes as evolutionary conserved between teleosts and mammals. The patterning processes, for example, which during the embryonic development of zebrafish form the thalamus proper appear largely conserved. Yet also striking differences between zebrafish and other vertebrates have been observed, particularly when we look at mature and histologically differentiated brains. A case in point is the migrated preglomerular complex of zebrafish which evolved only within the lineage of ray-finned fish and has no counterpart in mammals or tetrapod vertebrates. Based on its function as a sensory relay station with projections to pallial zones, the preglomerular complex has been compared to specific thalamic nuclei in mammals. However, no thalamic projections to the zebrafish dorsal pallium, which corresponds topologically to the mammalian isocortex, have been identified. Merely one teleostean thalamic nucleus proper, the auditory nucleus, projects to a part of the dorsal telencephalon, the pallial amygdala. Studies on patterning mechanisms identify a rostral and caudal domain in the embryonic thalamus proper. In both, teleosts and mammals, the rostral domain gives rise to GABAergic neurons, whereas glutamatergic neurons originate in the caudal domain of the zebrafish thalamus. The distribution of GABAergic derivatives in the adult zebrafish brain, furthermore, revealed previously overlooked thalamic nuclei and redefined already established ones. These findings require some reconsideration regarding the topological origin of these adult structures. In what follows, I discuss how evolutionary conserved and newly acquired features of the developing and adult zebrafish thalamus can be compared to the mammalian situation. PMID:22586363

  14. Combinatorial effects of zinc deficiency and arsenic exposure on zebrafish (Danio rerio) development

    PubMed Central

    Truong, Lisa; Barton, Carrie L.; Chase, Tyler T.; Gonnerman, Greg D.; Wong, Carmen P.; Tanguay, Robert L.; Ho, Emily

    2017-01-01

    Zinc deficiency and chronic low level exposures to inorganic arsenic in drinking water are both significant public health concerns that affect millions of people including pregnant women. These two conditions can co-exist in the human population but little is known about their interaction, and in particular, whether zinc deficiency sensitizes individuals to arsenic exposure and toxicity, especially during critical windows of development. To address this, we utilized the Danio rerio (zebrafish) model to test the hypothesis that parental zinc deficiency sensitizes the developing embryo to low-concentration arsenic toxicity, leading to altered developmental outcomes. Adult zebrafish were fed defined zinc deficient and zinc adequate diets and were spawned resulting in zinc adequate and zinc deficient embryos. The embryos were treated with environmentally relevant concentrations of 0, 50, and 500 ppb arsenic. Arsenic exposure significantly reduced the amount of zinc in the developing embryo by ~7%. The combination of zinc deficiency and low-level arsenic exposures did not sensitize the developing embryo to increased developmental malformations or mortality. The combination did cause a 40% decline in physical activity of the embryos, and this decline was significantly greater than what was observed with zinc deficiency or arsenic exposure alone. Significant changes in RNA expression of genes that regulate zinc homeostasis, response to oxidative stress and insulin production (including zip1, znt7, nrf2, ogg1, pax4, and insa) were found in zinc deficient, or zinc deficiency and arsenic exposed embryos. Overall, the data suggests that the combination of zinc deficiency and arsenic exposure has harmful effects on the developing embryo and may increase the risk for developing chronic diseases like diabetes. PMID:28837703

  15. Haploinsufficiency of the genes encoding the tumor suppressor Pten predisposes zebrafish to hemangiosarcoma.

    PubMed

    Choorapoikayil, Suma; Kuiper, Raoul V; de Bruin, Alain; den Hertog, Jeroen

    2012-03-01

    PTEN is an essential tumor suppressor that antagonizes Akt/PKB signaling. The zebrafish genome encodes two Pten genes, ptena and ptenb. Here, we report that zebrafish mutants that retain a single wild-type copy of ptena or ptenb (ptena(+/-)ptenb(-/-) or ptena(-/-)ptenb(+/-)) are viable and fertile. ptena(+/-)ptenb(-/-) fish develop tumors at a relatively high incidence (10.2%) and most tumors developed close to the eye (26/30). Histopathologically, the tumor masses were associated with the retrobulbar vascular network and diagnosed as hemangiosarcomas. A single tumor was identified in 42 ptena(-/-)ptenb(+/-) fish and was also diagnosed as hemangiosarcoma. Immunohistochemistry indicated that the tumor cells in ptena(+/-)ptenb(-/-) and ptena(-/-)ptenb(+/-) fish proliferated rapidly and were of endothelial origin. Akt/PKB signaling was activated in the tumors, whereas Ptena was still detected in tumor tissue from ptena(+/-)ptenb(-/-) zebrafish. We conclude that haploinsufficiency of the genes encoding Pten predisposes to hemangiosarcoma in zebrafish.

  16. The Vital Relationship Between Nutrition and Health in Zebrafish.

    PubMed

    Watts, Stephen A; Lawrence, Christian; Powell, Mickie; D'Abramo, Louis R

    2016-07-01

    In the relatively short span of four decades, the zebrafish (Danio rerio) has emerged as an increasingly important model organism for biomedicine and other scientific disciplines. As the scale and sophistication of zebrafish research expands, so too does the need to develop standards that promote the production and maintenance of healthy animals for experiments. A major, but long overlooked, contributor to fish health is nutrition. Historically, feeding practices for laboratory zebrafish have been designed to promote growth and reproductive function. However, as the field matures, it is becoming increasingly clear that the nutritional goals for these animals should evolve beyond basic production to the maintenance of clinically healthy research subjects. This review outlines weaknesses and limitations of current approaches and provides a justification for the development of defined standardized diets that will strengthen and facilitate the continued growth of the zebrafish model system.

  17. Zebrafish models of cardiovascular diseases and their applications in herbal medicine research.

    PubMed

    Seto, Sai-Wang; Kiat, Hosen; Lee, Simon M Y; Bensoussan, Alan; Sun, Yu-Ting; Hoi, Maggie P M; Chang, Dennis

    2015-12-05

    The zebrafish (Danio rerio) has recently become a powerful animal model for cardiovascular research and drug discovery due to its ease of maintenance, genetic manipulability and ability for high-throughput screening. Recent advances in imaging techniques and generation of transgenic zebrafish have greatly facilitated in vivo analysis of cellular events of cardiovascular development and pathogenesis. More importantly, recent studies have demonstrated the functional similarity of drug metabolism systems between zebrafish and humans, highlighting the clinical relevance of employing zebrafish in identifying lead compounds in Chinese herbal medicine with potential beneficial cardiovascular effects. This paper seeks to summarise the scope of zebrafish models employed in cardiovascular studies and the application of these research models in Chinese herbal medicine to date. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  18. Expression of a Mutant kcnj2 Gene Transcript in Zebrafish

    PubMed Central

    Leong, Ivone U. S.; Skinner, Jonathan R.; Shelling, Andrew N.; Love, Donald R.

    2013-01-01

    Long QT 7 syndrome (LQT7, also known as Andersen-Tawil syndrome) is a rare autosomal-dominant disorder that causes cardiac arrhythmias, periodic paralysis, and dysmorphic features. Mutations in the human KCNJ2 gene, which encodes for the subunit of the potassium inwardly-rectifying channel (IK1), have been associated with the disorder. The majority of mutations are considered to be dominant-negative as mutant proteins interact to limit the function of wild type KCNJ2 proteins. Several LQT7 syndrome mouse models have been created that vary in the physiological similarity to the human disease. To complement the LQT7 mouse models, we investigated the usefulness of the zebrafish as an alternative model via a transient approach. Initial bioinformatic analysis identified the zebrafish orthologue of the human KCNJ2 gene, together with a spatial expression profile that was similar to that of human. The expression of a kcnj2-12 transcript carrying an in-frame deletion of critical amino acids identified in human studies resulted in embryos that exhibited defects in muscle development, thereby affecting movement, a decrease in jaw size, pupil-pupil distance, and signs of scoliosis. These defects correspond to some phenotypes expressed by human LQT7 patients. PMID:27335675

  19. A forward chemical screen in zebrafish identifies a retinoic acid derivative with receptor specificity.

    PubMed

    Das, Bhaskar C; McCartin, Kellie; Liu, Ting-Chun; Peterson, Randall T; Evans, Todd

    2010-04-02

    Retinoids regulate key developmental pathways throughout life, and have potential uses for differentiation therapy. It should be possible to identify novel retinoids by coupling new chemical reactions with screens using the zebrafish embryonic model. We synthesized novel retinoid analogues and derivatives by amide coupling, obtaining 80-92% yields. A small library of these compounds was screened for bioactivity in living zebrafish embryos. We found that several structurally related compounds significantly affect development. Distinct phenotypes are generated depending on time of exposure, and we characterize one compound (BT10) that produces specific cardiovascular defects when added 1 day post fertilization. When compared to retinoic acid (ATRA), BT10 shows similar but not identical changes in the expression pattern of embryonic genes that are known targets of the retinoid pathway. Reporter assays determined that BT10 interacts with all three RAR receptor sub-types, but has no activity for RXR receptors, at all concentrations tested. Our screen has identified a novel retinoid with specificity for retinoid receptors. This lead compound may be useful for manipulating components of retinoid signaling networks, and may be further derivatized for enhanced activity.

  20. Whole plant based treatment of hypercholesterolemia with Crataegus laevigata in a zebrafish model

    PubMed Central

    2012-01-01

    Background Consumers are increasingly turning to plant-based complementary and alternative medicines to treat hypercholesterolemia. Many of these treatments are untested and their efficacy is unknown. This multitude of potential remedies necessitates a model system amenable to testing large numbers of organisms that maintains similarity to humans in both mode of drug administration and overall physiology. Here we develop the larval zebrafish (4–30 days post fertilization) as a vertebrate model of dietary plant-based treatment of hypercholesterolemia and test the effects of Crataegus laevigata in this model. Methods Larval zebrafish were fed high cholesterol diets infused with fluorescent sterols and phytomedicines. Plants were ground with mortar and pestle into a fine powder before addition to food. Fluorescent sterols were utilized to optically quantify relative difference in intravascular cholesterol levels between groups of fish. We utilized the Zeiss 7-Live Duo high-speed confocal platform in order to both quantify intravascular sterol fluorescence and to capture video of the heart beat for determination of cardiac output. Results In this investigation we developed and utilized a larval zebrafish model to investigate dietary plant-based intervention of the pathophysiology of hypercholesterolemia. We found BODIPY-cholesterol effectively labels diet-introduced intravascular cholesterol levels (P < 0.05, Student’s t-test). We also established that zebrafish cardiac output declines as cholesterol dose increases (difference between 0.1% and 8% (w/w) high cholesterol diet-treated cardiac output significant at P < 0.05, 1-way ANOVA). Using this model, we found hawthorn leaves and flowers significantly reduce intravascular cholesterol levels (P < 0.05, 1-way ANOVA) and interact with cholesterol to impact cardiac output in hypercholesterolemic fish (2-way ANOVA, P < 0.05 for interaction effect). Conclusions The results of this study demonstrate that the larval zebrafish has the potential to become a powerful model to test plant based dietary intervention of hypercholesterolemia. Using this model we have shown that hawthorn leaves and flowers have the potential to affect cardiac output as well as intravascular cholesterol levels. Further, our observation that hawthorn leaves and flowers interact with cholesterol to impact cardiac output indicates that the physiological effects of hawthorn may depend on diet. PMID:22824306

  1. Exposure to gemfibrozil and atorvastatin affects cholesterol metabolism and steroid production in zebrafish (Danio rerio).

    PubMed

    Al-Habsi, Aziz A; Massarsky, Andrey; Moon, Thomas W

    2016-09-01

    The commonly used lipid-lowering pharmaceuticals gemfibrozil (GEM) and atorvastatin (ATV) are detected in the aquatic environment; however, their potential effects on non-target fish species are yet to be fully understood. This study examined the effects of GEM and/or ATV on female and male adult zebrafish after a 30d dietary exposure. The exposure led to changes in several biochemical parameters, including reduction in cholesterol, triglycerides, cortisol, testosterone, and estradiol. Changes in cholesterol and triglycerides were also associated with changes in transcript levels of key genes involved with cholesterol and lipid regulation, including SREBP2, HMGCR1, PPARα, and SREBP1. We also noted higher CYP3A65 and atrogin1 mRNA levels in drug-treated male fish. Sex differences were apparent in some of the examined parameters at both biochemical and molecular levels. This study supports these drugs affecting cholesterol metabolism and steroid production in adult zebrafish. We conclude that the reduction in cortisol may impair the ability of these fish to mount a suitable stress response, whereas the reduction of sex steroids may negatively affect reproduction. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. An in vivo requirement for the mediator subunit med14 in the maintenance of stem cell populations.

    PubMed

    Burrows, Jeffrey T A; Pearson, Bret J; Scott, Ian C

    2015-04-14

    The Mediator complex has recently been shown to be a key player in the maintenance of embryonic and induced pluripotent stem cells. However, the in vivo consequences of loss of many Mediator subunits are unknown. We identified med14 as the gene affected in the zebrafish logelei (log) mutant, which displayed a morphological arrest by 2 days of development. Surprisingly, microarray analysis showed that transcription was not broadly affected in log mutants. Indeed, log cells transplanted into a wild-type environment were able to survive into adulthood. In planarians, RNAi knockdown demonstrated a requirement for med14 and many other Mediator components in adult stem cell maintenance and regeneration. Multiple stem/progenitor cell populations were observed to be reduced or absent in zebrafish med14 mutant embryos. Taken together, our results show a critical, evolutionarily conserved, in vivo function for Med14 (and Mediator) in stem cell maintenance, distinct from a general role in transcription. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  3. [Application of zebrafish model organism in the research of Chinese materia medica].

    PubMed

    Chen, Lei; Liu, Yi; Liang, Sheng-Wang

    2012-04-01

    Zebrafish has become an important model organism in many fields of biomedical studies and been increasingly used in Chinese materia medica studies in recent years. This article summarized the achievements and prospect for zebrafish as a pharmacological and toxicological tool in the study and development of Chinese materia medica.

  4. Colonizing the embryonic zebrafish gut with anaerobic bacteria derived from the human gastrointestinal tract.

    PubMed

    Toh, Michael C; Goodyear, Mara; Daigneault, Michelle; Allen-Vercoe, Emma; Van Raay, Terence J

    2013-06-01

    The zebrafish has become increasingly popular for microbiological research. It has been used as an infection model for a variety of pathogens, and is also emerging as a tool for studying interactions between a host and its resident microbial communities. The mouse microbiota has been transplanted into the zebrafish gut, but to our knowledge, there has been no attempt to introduce a bacterial community derived from the human gut. We explored two methods for colonizing the developing gut of 5-day-old germ-free zebrafish larvae with a defined anaerobic microbial community derived from a single human fecal sample. Both environmental exposure (static immersion) and direct microinjection into the gut resulted in the establishment of two species-Lactobacillus paracasei and Eubacterium limosum-from a community of 30 strains consisting of 22 anaerobic species. Of particular interest is E. limosum, which, as a strict anaerobe, represents a group of bacteria which until now have not been shown to colonize the developing zebrafish gut. Our success here indicates that further investigation of zebrafish as a tool for studying human gut microbial communities is warranted.

  5. Susceptibility of zebrafish (Danio rerio) to a model pathogen, spring viremia of carp virus

    USGS Publications Warehouse

    Sanders, George E.; Batts, William N.; Winton, James R.

    2003-01-01

    To improve our understanding of the genetic basis of fish disease, we developed a pathogen model, using zebrafish (Danio rerio) and spring virema of carp virus (SVCV). Replicate groups of 10 fish were acclimated to 20 or 24°C, then were exposed to SVCV concentrations of 103 to 105 plaque-forming units per milliliter (PFU/ml) of water and observed daily. In a second trial, fish were acclimated to 15°C, and replicate groups of 10 fish were exposed to SVCV at a concentration of 105 PFU/ml; however, the temperature was raised 1°C/wk. Moribund fish were collected for histologic examination, and dead fish were assayed for virus by use of cell culture and reverse transcriptase-polymerase chain reaction (RT-PCR) analysis. Mortality exceeded 50% in fish exposed to 105 PFU of SVCV/ml at the lower temperatures. Clinical signs of disease became evident seven days after viral exposure and were observed most consistently in fish of the 105 PFU/ml groups. Affected zebrafish were anorectic and listless, with epidermal petechial hemorrhages followed by death. Use of plaque assays and RT-PCR analysis confirmed presence of SVCV at titers ≥ 104 PFU/g of tissue. Histologic lesions included multifocal brachial necrosis and melanomacrophage proliferation in gills, liver, and kidneys. These results indicate that zebrafish are susceptible to infection by SVCV under conditions that mimic a natural route of exposure.

  6. The ontogeny of sleep-wake cycles in zebrafish: a comparison to humans

    PubMed Central

    Sorribes, Amanda; Þorsteinsson, Haraldur; Arnardóttir, Hrönn; Jóhannesdóttir, Ingibjörg Þ.; Sigurgeirsson, Benjamín; de Polavieja, Gonzalo G.; Karlsson, Karl Æ.

    2013-01-01

    Zebrafish (Danio rerio) are used extensively in sleep research; both to further understanding of sleep in general and also as a model of human sleep. To date, sleep studies have been performed in larval and adult zebrafish but no efforts have been made to document the ontogeny of zebrafish sleep–wake cycles. Because sleep differs across phylogeny and ontogeny it is important to validate the use of zebrafish in elucidating the neural substrates of sleep. Here we describe the development of sleep and wake across the zebrafish lifespan and how it compares to humans. We find power-law distributions to best fit wake bout data but demonstrate that exponential distributions, previously used to describe sleep bout distributions, fail to adequately account for the data in either species. Regardless, the data reveal remarkable similarities in the ontogeny of sleep cycles in zebrafish and humans. Moreover, as seen in other organisms, zebrafish sleep levels are highest early in ontogeny and sleep and wake bouts gradually consolidate to form the adult sleep pattern. Finally, sleep percentage, bout duration, bout number, and sleep fragmentation are shown to allow for meaningful comparisons between zebrafish and human sleep. PMID:24312015

  7. The Presence or Absence of Intestinal Microbiota Affects Lipid Deposition and Related Genes Expression in Zebrafish (Danio rerio).

    PubMed

    Sheng, Yi; Ren, Hui; Limbu, Samwel M; Sun, Yuhong; Qiao, Fang; Zhai, Wanying; Du, Zhen-Yu; Zhang, Meiling

    2018-01-01

    Understanding how intestinal microbiota alters energy homeostasis and lipid metabolism is a critical process in energy balance and health. However, the exact role of intestinal microbiota in the regulation of lipid metabolism in fish remains unclear. Here, we used two zebrafish models (germ-free and antibiotics-treated zebrafish) to identify the role of intestinal microbiota in lipid metabolism. Conventional and germ-free zebrafish larvae were fed with egg yolk. Transmission electron microscopy was used to detect the presence of lipid droplets in the intestinal epithelium. The results showed that, microbiota increased lipid accumulation in the intestinal epithelium. The mRNA sequencing technology was used to assess genes expression level. We found majority of the differentially expressed genes were related to lipid metabolism. Due to the limitation of germ-free zebrafish larvae, antibiotics-treated zebrafish were also used to identify the relationship between the gut microbiota and the host lipid metabolism. Oil-red staining showed antibiotics-treated zebrafish had less intestinal lipid accumulation than control group. The mRNA expression of genes related to lipid metabolism in liver and intestine was also quantified by using real-time PCR. The results indicated that apoa4 , hsl , cox15 , slc2a1a , and lss were more related to intestinal bacteria in fish, while the influence of intestinal microbiota on the activity of fabp6 , acsl5 , cd36 , and gpat2 was different between the liver and intestine. This study identified several genes regulated by intestinal microbiota. Furthermore, the advantages and disadvantages of each model have been discussed. This study provides valuable information for exploring host-microbiota interactions in zebrafish in future.

  8. Phylogeny of zebrafish, a "model species," within Danio, a "model genus".

    PubMed

    McCluskey, Braedan M; Postlethwait, John H

    2015-03-01

    Zebrafish (Danio rerio) is an important model for vertebrate development, genomics, physiology, behavior, toxicology, and disease. Additionally, work on numerous Danio species is elucidating evolutionary mechanisms for morphological development. Yet, the relationships of zebrafish and its closest relatives remain unclear possibly due to incomplete lineage sorting, speciation with gene flow, and interspecies hybridization. To clarify these relationships, we first constructed phylogenomic data sets from 30,801 restriction-associated DNA (RAD)-tag loci (483,026 variable positions) with clear orthology to a single location in the sequenced zebrafish genome. We then inferred a well-supported species tree for Danio and tested for gene flow during the diversification of the genus. An approach independent of the sequenced zebrafish genome verified all inferred relationships. Although identification of the sister taxon to zebrafish has been contentious, multiple RAD-tag data sets and several analytical methods provided strong evidence for Danio aesculapii as the most closely related extant zebrafish relative studied to date. Data also displayed patterns consistent with gene flow during speciation and postspeciation introgression in the lineage leading to zebrafish. The incorporation of biogeographic data with phylogenomic analyses put these relationships in a phylogeographic context and supplied additional support for D. aesculapii as the sister species to D. rerio. The clear resolution of this study establishes a framework for investigating the evolutionary biology of Danio and the heterogeneity of genome evolution in the recent history of a model organism within an emerging model genus for genetics, development, and evolution. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Expression profiling identifies novel Hh/Gli regulated genes in developing zebrafish embryos.

    PubMed Central

    Bergeron, Sadie A.; Milla, Luis A.; Villegas, Rosario; Shen, Meng-Chieh; Burgess, Shawn M.; Allende, Miguel L.; Karlstrom, Rolf O.; Palma, Verónica

    2008-01-01

    The Hedgehog (Hh) signaling pathway plays critical instructional roles during embryonic development. Mis-regulation of Hh/Gli signaling is a major causative factor in human congenital disorders and in a variety of cancers. The zebrafish is a powerful genetic model for the study of Hh signaling during embryogenesis, as a large number of mutants have been identified affecting different components of the Hh/Gli signaling system. By performing global profiling of gene expression in different Hh/Gli gain- and loss-of-function scenarios we identified several known (e.g. ptc1 and nkx2.2a) as well as a large number of novel Hh regulated genes that are differentially expressed in embryos with altered Hh/Gli signaling function. By uncovering changes in tissue specific gene expression, we revealed new embryological processes that are influenced by Hh signaling. We thus provide a comprehensive survey of Hh/Gli regulated genes during embryogenesis and we identify new Hh-regulated genes that may be targets of mis-regulation during tumorogenesis. PMID:18055165

  10. Steroid androgen 17α-methyltestosterone induces malformations and biochemical alterations in zebrafish embryos.

    PubMed

    Rivero-Wendt, Carla Letícia Gediel; Oliveira, Rhaul; Monteiro, Marta Sofia; Domingues, Inês; Soares, Amadeu Mortágua Velho Maia; Grisolia, Cesar Koppe

    2016-06-01

    The synthetic androgen 17α-methyltestosterone is widely used in fish aquaculture for sex reversion of female individuals. Little is known about the amount of MT residues reaching the aquatic environment and further impacts in non-target organisms, including fish early-life stages. Thus, in this work, zebrafish embryos were exposed to two forms of 17α-methyltestosterone: the pure compound (MT) and a formulation commonly used in Brazil (cMT). For MT, a 96h-LC50 of 10.09mg/l was calculated. MT also affected embryo development inducing tail malformations, edemas, abnormal development of the head, and hatching delay. At biochemical level MT inhibited vitellogenin (VTG) and inhibited cholinesterase and lactate dehydrogenase. cMT elicited similar patterns of toxicity as the pure compound (MT). Effects reported in this study suggest a potential environmental risk of MT, especially since the VTG effects occurred at environmental relevant concentrations (0.004mg/l). Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Using the zebrafish to understand tendon development and repair

    PubMed Central

    Chen, Jessica W.; Galloway, Jenna L.

    2017-01-01

    Tendons are important components of our musculoskeletal system. Injuries to these tissues are very common, resulting from occupational-related injuries, sports-related trauma, and age-related degeneration. Unfortunately, there are few treatment options, and current therapies rarely restore injured tendons to their original function. An improved understanding of the pathways regulating their development and repair would have significant impact in stimulating the formulation of regenerative-based approaches for tendon injury. The zebrafish provides an ideal system in which to perform genetic and chemical screens to identify new pathways involved in tendon biology. Until recently, there had been few descriptions of tendons and ligaments in the zebrafish and their similarity to mammalian tendon tissues. In this chapter, we describe the development of the zebrafish tendon and ligament tissues in the context of their gene expression, structure, and interactions with neighboring musculoskeletal tissues. We highlight the similarities with tendon development in higher vertebrates, showing that the craniofacial tendons and ligaments in zebrafish morphologically, molecularly, and structurally resemble mammalian tendons and ligaments from embryonic to adult stages. We detail methods for fluorescent in situ hybridization and immunohistochemistry as an assay to examine morphological changes in the zebrafish musculoskeleton. Staining assays such as these could provide the foundation for screen-based approaches to identify new regulators of tendon development, morphogenesis, and repair. These discoveries would provide new targets and pathways to study in the context of regenerative medicine-based approaches to improve tendon healing. PMID:28129848

  12. Reticular dysgenesis–associated AK2 protects hematopoietic stem and progenitor cell development from oxidative stress

    PubMed Central

    Rissone, Alberto; Weinacht, Katja Gabriele; la Marca, Giancarlo; Bishop, Kevin; Giocaliere, Elisa; Jagadeesh, Jayashree; Felgentreff, Kerstin; Dobbs, Kerry; Al-Herz, Waleed; Jones, Marypat; Chandrasekharappa, Settara; Kirby, Martha; Wincovitch, Stephen; Simon, Karen Lyn; Itan, Yuval; DeVine, Alex; Schlaeger, Thorsten; Schambach, Axel; Sood, Raman

    2015-01-01

    Adenylate kinases (AKs) are phosphotransferases that regulate the cellular adenine nucleotide composition and play a critical role in the energy homeostasis of all tissues. The AK2 isoenzyme is expressed in the mitochondrial intermembrane space and is mutated in reticular dysgenesis (RD), a rare form of severe combined immunodeficiency (SCID) in humans. RD is characterized by a maturation arrest in the myeloid and lymphoid lineages, leading to early onset, recurrent, and overwhelming infections. To gain insight into the pathophysiology of RD, we studied the effects of AK2 deficiency using the zebrafish model and induced pluripotent stem cells (iPSCs) derived from fibroblasts of an RD patient. In zebrafish, Ak2 deficiency affected hematopoietic stem and progenitor cell (HSPC) development with increased oxidative stress and apoptosis. AK2-deficient iPSCs recapitulated the characteristic myeloid maturation arrest at the promyelocyte stage and demonstrated an increased AMP/ADP ratio, indicative of an energy-depleted adenine nucleotide profile. Antioxidant treatment rescued the hematopoietic phenotypes in vivo in ak2 mutant zebrafish and restored differentiation of AK2-deficient iPSCs into mature granulocytes. Our results link hematopoietic cell fate in AK2 deficiency to cellular energy depletion and increased oxidative stress. This points to the potential use of antioxidants as a supportive therapeutic modality for patients with RD. PMID:26150473

  13. Fetal Origins of Life Stage Disease: A Zebrafish Model for the ...

    EPA Pesticide Factsheets

    In the U.S., childhood obesity has more than doubled in children and quadrupled in adolescents in the past 30 years, affects 35% of adults, and costs the U.S. healthcare industry >$200 billion annually. The chemical environment in the womb may cause susceptibility to different life-stage and life-long metabolic diseases including obesity. The challenge is to understand if exposures during developmentally sensitive windows impact life-stage disease, such as obesity, by increasing adipose tissue mass. In vitro models lack the integrated systems approach needed to assess adipose development, while mammalian models are impractical in a screen of thousands of chemicals. Therefore, an obesogen screening method was developed to interrogate bioactivity using a full systems approach, in a vertebrate zebrafish model with complete metabolic activity, at a time when the full signaling repertoire is expressed and active, to optimally examine how chemical dose and duration impact life-stage adipose mass. A time-line for adipose depot formation was mapped in zebrafish 6−14 days post fertilization (dpf) using the lipophilic dye, Nile Red, in combination with fluorescent microscopy. Those time points were then used to investigate the impact of embryonic tributyltin chloride (TBT, a known obesogen) exposure (10nM daily renewal, 0−5dpf) on adipose mass. Fluorescent microscopy revealed adipose depots that were larger and appeared 2 days earlier in TBT treated compared to contro

  14. Zebrafish: an important tool for liver disease research.

    PubMed

    Goessling, Wolfram; Sadler, Kirsten C

    2015-11-01

    As the incidence of hepatobiliary diseases increases, we must improve our understanding of the molecular, cellular, and physiological factors that contribute to the pathogenesis of liver disease. Animal models help us identify disease mechanisms that might be targeted therapeutically. Zebrafish (Danio rerio) have traditionally been used to study embryonic development but are also important to the study of liver disease. Zebrafish embryos develop rapidly; all of their digestive organs are mature in larvae by 5 days of age. At this stage, they can develop hepatobiliary diseases caused by developmental defects or toxin- or ethanol-induced injury and manifest premalignant changes within weeks. Zebrafish are similar to humans in hepatic cellular composition, function, signaling, and response to injury as well as the cellular processes that mediate liver diseases. Genes are highly conserved between humans and zebrafish, making them a useful system to study the basic mechanisms of liver disease. We can perform genetic screens to identify novel genes involved in specific disease processes and chemical screens to identify pathways and compounds that act on specific processes. We review how studies of zebrafish have advanced our understanding of inherited and acquired liver diseases as well as liver cancer and regeneration. Copyright © 2015 AGA Institute. Published by Elsevier Inc. All rights reserved.

  15. FishFace: interactive atlas of zebrafish craniofacial development at cellular resolution

    PubMed Central

    2013-01-01

    Background The vertebrate craniofacial skeleton may exhibit anatomical complexity and diversity, but its genesis and evolution can be understood through careful dissection of developmental programs at cellular resolution. Resources are lacking that include introductory overviews of skeletal anatomy coupled with descriptions of craniofacial development at cellular resolution. In addition to providing analytical guidelines for other studies, such an atlas would suggest cellular mechanisms underlying development. Description We present the Fish Face Atlas, an online, 3D-interactive atlas of craniofacial development in the zebrafish Danio rerio. Alizarin red-stained skulls scanned by fluorescent optical projection tomography and segmented into individual elements provide a resource for understanding the 3D structure of the zebrafish craniofacial skeleton. These data provide the user an anatomical entry point to confocal images of Alizarin red-stained zebrafish with transgenically-labelled pharyngeal arch ectomesenchyme, chondrocytes, and osteoblasts, which illustrate the appearance, morphogenesis, and growth of the mandibular and hyoid cartilages and bones, as viewed in live, anesthetized zebrafish during embryonic and larval development. Confocal image stacks at high magnification during the same stages provide cellular detail and suggest developmental and evolutionary hypotheses. Conclusion The FishFace Atlas is a novel learning tool for understanding craniofacial skeletal development, and can serve as a reference for a variety of studies, including comparative and mutational analyses. PMID:23714426

  16. Effects of ammonium perchlorate on the reproductive performance and thyroid follicle histology of zebrafish

    USGS Publications Warehouse

    Patino, R.; Wainscott, M.R.; Cruz-Li, E. I.; Balakrishnan, S.; McMurry, C.; Blazer, V.S.; Anderson, T.A.

    2003-01-01

    Adult zebrafish were reared up to eight weeks in control water or in water containing ammonium perchlorate (AP) at measured perchlorate concentrations of 18 (environmentally relevant, high) and 677 ppm. Groups of eight females were paired with four males on a weekly basis to assess AP effects on spawned egg volume, an index of reproductive performance. All treatments were applied to four to five spawning replicates. At 677 ppm, spawn volume was reduced within one week and became negligible after four weeks. At 18 ppm, spawn volume was unaffected even after eight weeks. Also, perchlorate at 18 ppm did not affect percentage egg fertilization. Fish were collected at the end of the exposures (677 ppm, four weeks; control and 18 ppm, eight weeks) for whole-body perchlorate content and thyroid histopathological analysis. Fish perchlorate levels were about one-hundredth of those of treatment water levels, indicating that waterborne perchlorate does not accumulate in whole fish. At 677 ppm for four weeks, perchlorate caused thyroid follicle cell (nuclear) hypertrophy and angiogenesis, whereas at 18 ppm for eight weeks, its effects were more pronounced and included hypertrophy, angiogenesis, hyperplasia, and colloid depletion. In conclusion, an eight-week exposure of adult zebrafish to 18 ppm perchlorate (high environmentally relevant concentrations) affected the histological condition of their thyroid follicles but not their reproductive performance. The effect of 677 ppm perchlorate on reproduction may be due to extrathyroidal toxicity. Further research is needed to determine if AP at lower environmentally relevant concentrations also affects the thyroid follicles of zebrafish.

  17. The effects of cobalt on the development, oxidative stress, and apoptosis in zebrafish embryos.

    PubMed

    Cai, Guiquan; Zhu, Junfeng; Shen, Chao; Cui, Yimin; Du, Jiulin; Chen, Xiaodong

    2012-12-01

    Metal-on-metal hip arthroplasty has been performed with increasing frequency throughout the world, particularly in younger and more active patients, including women of childbearing age. The potential toxicity of cobalt exposure on fetus is concerned since cobalt ions generated by metal-on-metal bearings can traverse the placenta and be detected in fetal blood and amniotic fluid. This study examined the effects of cobalt exposure on early embryonic development and the mechanisms underlying its toxicity. Zebrafish embryos were exposed to a range of cobalt concentrations (0-100 mg/L) between 1 and 144 h postfertilization. The survival and early development of embryos were not significantly affected by cobalt at concentrations <100 μg/L. However, embryos exposed to higher concentrations (>100 μg/L) displayed reduced survival rates and abnormal development, including delayed hatching, aberrant morphology, retarded growth, and bradycardia. Furthermore, this study examined oxidative stress and apoptosis in embryos exposed to cobalt at concentrations of 0-500 μg/L. Lipid peroxidation levels were increased in cobalt-treated embryos at concentrations of 100 and 500 μg/L. The mRNA levels of catalase, superoxide dismutase 2, p53, caspase-3, and caspase-9 genes were upregulated in a dose-dependent manner. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assays also revealed abnormal apoptotic signals in the brain, trunk, and tail when treated with 500 μg/L cobalt. These data suggest that oxidative stress and apoptosis are associated with cobalt toxicity in zebrafish embryos.

  18. Temporal cohesion of the structural, functional and molecular characteristics of the developing zebrafish heart.

    PubMed

    Matrone, Gianfranco; Wilson, Kathryn S; Mullins, John J; Tucker, Carl S; Denvir, Martin A

    2015-06-01

    Heart formation is a complex, dynamic and highly coordinated process of molecular, morphogenetic and functional factors with each interacting and contributing to formation of the mature organ. Cardiac abnormalities in early life can be lethal in mammals but not in the zebrafish embryo which has been widely used to study the developing heart. While early cardiac development in the zebrafish has been well characterized, functional changes during development and how these relate to architectural, cellular and molecular aspects of development have not been well described previously. To address this we have carefully characterised cardiac structure, function, cardiomyocyte proliferation and cardiac-specific gene expression between 48 and 120 hpf in the zebrafish. We show that the zebrafish heart increases in volume and changes shape significantly between 48 and 72 hpf accompanied by a 40% increase in cardiomyocyte number. Between 96 and 120 hpf, while external heart expansion slows, there is rapid formation of a mature and extensive trabecular network within the ventricle chamber. While ejection fraction does not change during the course of development other determinants of contractile function increase significantly particularly between 72 and 96 hpf leading to an increase in cardinal vein blood flow. This study has revealed a number of novel aspects of cardiac developmental dynamics with striking temporal orchestration of structure and function within the first few days of development. These changes are associated with changes in expression of developmental and maturational genes. This study provides important insights into the complex temporal relationship between structure and function of the developing zebrafish heart. Copyright © 2015 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  19. Toxicity and cardiac effects of carbaryl in early developing zebrafish (Danio rerio) embryos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, C.C.; Hui, Michelle N.Y.; Cheng, S.H. E-mail: bhcheng@cityu.edu.hk

    2007-07-15

    Carbaryl, an acetylcholinesterase inhibitor, is known to be moderately toxic to adult zebrafish and has been reported to cause heart malformations and irregular heartbeat in medaka. We performed experiments to study the toxicity of carbaryl, specifically its effects on the heart, in early developing zebrafish embryos. LC50 and EC50 values for carbaryl at 28 h post-fertilization were 44.66 {mu}g/ml and 7.52 {mu}g/ml, respectively, and 10 {mu}g/ml carbaryl was used in subsequent experiments. After confirming acetylcholinesterase inhibition by carbaryl using an enzymatic method, we observed red blood cell accumulation, delayed hatching and pericardial edema, but not heart malformation as described inmore » some previous reports. Our chronic exposure data also demonstrated carbaryl-induced bradycardia, which is a common effect of acetylcholinesterase inhibitors due to the accumulation of acetylcholine, in embryos from 1 day post-fertilization (dpf) to 5 dpf. The distance between the sinus venosus, the point where blood enters the atrium, and the bulbus arteriosus, the point where blood leaves the ventricle, indicated normal looping of the heart tube. Immunostaining of myosin heavy chains with the ventricle-specific antibody MF20 and the atrium-specific antibody S46 showed normal development of heart chambers. At the same time, acute exposure resulted in carbaryl-induced bradycardia. Heart rate dropped significantly after a 10-min exposure to 100 {mu}g/ml carbaryl but recovered when carbaryl was removed. The novel observation of carbaryl-induced bradycardia in 1- and 2-dpf embryos suggested that carbaryl affected cardiac function possibly through an alternative mechanism other than acetylcholinesterase inhibition such as inhibition of calcium ion channels, since acetylcholine receptors in zebrafish are not functional until 3 dpf. However, the exact nature of this mechanism is currently unknown, and thus further studies are required.« less

  20. Zebrafish aussicht mutant embryos exhibit widespread overexpression of ace (fgf8) and coincident defects in CNS development.

    PubMed

    Heisenberg, C P; Brennan, C; Wilson, S W

    1999-05-01

    During the development of the zebrafish nervous system both noi, a zebrafish pax2 homolog, and ace, a zebrafish fgf8 homolog, are required for development of the midbrain and cerebellum. Here we describe a dominant mutation, aussicht (aus), in which the expression of noi and ace is upregulated. In aus mutant embryos, ace is upregulated at many sites in the embryo, while noi expression is only upregulated in regions of the forebrain and midbrain which also express ace. Subsequent to the alterations in noi and ace expression, aus mutants exhibit defects in the differentiation of the forebrain, midbrain and eyes. Within the forebrain, the formation of the anterior and postoptic commissures is delayed and the expression of markers within the pretectal area is reduced. Within the midbrain, En and wnt1 expression is expanded. In heterozygous aus embryos, there is ectopic outgrowth of neural retina in the temporal half of the eyes, whereas in putative homozygous aus embryos, the ventral retina is reduced and the pigmented retinal epithelium is expanded towards the midline. The observation that aus mutant embryos exhibit widespread upregulation of ace raised the possibility that aus might represent an allele of the ace gene itself. However, by crossing carriers for both aus and ace, we were able to generate homozygous ace mutant embryos that also exhibited the aus phenotype. This indicated that aus is not tightly linked to ace and is unlikely to be a mutation directly affecting the ace locus. However, increased Ace activity may underly many aspects of the aus phenotype and we show that the upregulation of noi in the forebrain of aus mutants is partially dependent upon functional Ace activity. Conversely, increased ace expression in the forebrain of aus mutants is not dependent upon functional Noi activity. We conclude that aus represents a mutation involving a locus normally required for the regulation of ace expression during embryogenesis.

  1. Identification of tissues and patterning events required for distinct steps in early migration of zebrafish primordial germ cells.

    PubMed

    Weidinger, G; Wolke, U; Köprunner, M; Klinger, M; Raz, E

    1999-12-01

    In many organisms, the primordial germ cells have to migrate from the position where they are specified towards the developing gonad where they generate gametes. Extensive studies of the migration of primordial germ cells in Drosophila, mouse, chick and Xenopus have identified somatic tissues important for this process and demonstrated a role for specific molecules in directing the cells towards their target. In zebrafish, a unique situation is found in that the primordial germ cells, as marked by expression of vasa mRNA, are specified in random positions relative to the future embryonic axis. Hence, the migrating cells have to navigate towards their destination from various starting positions that differ among individual embryos. Here, we present a detailed description of the migration of the primordial germ cells during the first 24 hours of wild-type zebrafish embryonic development. We define six distinct steps of migration bringing the primordial germ cells from their random positions before gastrulation to form two cell clusters on either side of the midline by the end of the first day of development. To obtain information on the origin of the positional cues provided to the germ cells by somatic tissues during their migration, we analyzed the migration pattern in mutants, including spadetail, swirl, chordino, floating head, cloche, knypek and no isthmus. In mutants with defects in axial structures, paraxial mesoderm or dorsoventral patterning, we find that certain steps of the migration process are specifically affected. We show that the paraxial mesoderm is important for providing proper anteroposterior information to the migrating primordial germ cells and that these cells can respond to changes in the global dorsoventral coordinates. In certain mutants, we observe accumulation of ectopic cells in different regions of the embryo. These ectopic cells can retain both morphological and molecular characteristics of primordial germ cells, suggesting that, in zebrafish at the early stages tested, the vasa-expressing cells are committed to the germ cell lineage.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Ting; Zhao, Jing; Hu, Ping

    Pentachlorophenol (PCP) is a prevalent pollutant in the environment and has been demonstrated to be a serious toxicant to humans and animals. However, little is known regarding the molecular mechanism underlying its toxic effects on vertebrate early development. To explore the impacts and underlying mechanisms of PCP on early development, zebrafish (Danio rerio) embryos were exposed to PCP at concentrations of 0, 20 and 50 μg/L, and microscopic observation and cDNA microarray analysis were subsequently conducted at gastrulation stage. The morphological observations revealed that PCP caused a developmental delay of zebrafish embryos in a concentration-dependent manner. Transcriptomic data showed thatmore » 50 μg/L PCP treatment resulted in significant changes in gene expression level, and the genes involved in energy metabolism and cell behavior were identified based on gene functional enrichment analysis. The energy production of embryos was influenced by PCP via the activation of glycolysis along with the inhibition of oxidative phosphorylation (OXPHOS). The results suggested that PCP acts as an inhibitor of OXPHOS at 8 hpf (hours postfertilization). Consistent with the activated glycolysis, the cell cycle activity of PCP-treated embryos was higher than the controls. These characteristics are similar to the Warburg effect, which occurs in human tumors. The microinjection of exogenous ATP confirmed that an additional energy supply could rescue PCP-treated embryos from the developmental delay due to the energy deficit. Taken together, our results demonstrated that PCP causes a Warburg-like effect on zebrafish embryos during gastrulation, and the affected embryos had the phenotype of developmental delay. - Highlights: • We treat zebrafish embryos with PCP at gastrula stage. • PCP acts as an oxidative phosphorylation inhibitor, not an uncoupler, in gastrulation. • Exogenous ATP injection will rescue the development of effected embryos. • The transcriptome of PCP-treated embryo exhibits a Warburg-like effect in tumor cell.« less

  3. Can zebrafish be used as animal model to study Alzheimer's disease?

    PubMed Central

    Santana, Soraya; Rico, Eduardo P; Burgos, Javier S

    2012-01-01

    Zebrafish is rapidly emerging as a promising model organism to study various central nervous system (CNS) disorders, including Alzheimer’s disease (AD). AD is the main cause of dementia in the human population and there is an urgency to understand the causes of this neurodegenerative disease. In this respect, the development of new animal models to study the underlying neurodegenerative mechanisms of AD is an urgent need. In this review we analyze the current situation in the use of zebrafish as a model for AD, discussing the reasons to use this experimental paradigm in CNS investigation and analyzing the several strategies adopted to induce an AD-like pathology in zebrafish. We discuss the strategies of performing interventions to cause damage in the zebrafish brain by altering the major neurotransmitter systems (such as cholinergic, glutamatergic or GABAergic circuits). We also analyze the several transgenic zebrafish constructed for the AD study, discussing both the familial-AD models based on APP processing pathway (APP and presenilins) and in the TAU hyperphosphorylation, together with the genes involved in sporadic-AD, as apolipoprotein E. We conclude that zebrafish is in a preliminary stage of development in the AD field, and that the transgenic animals must be improved to use this fish as an optimal model for AD research. Furthermore, a deeper knowledge of the zebrafish brain and a better characterization of the injury caused by alterations in the major neurotransmitter systems are needed. PMID:23383380

  4. Rapid quantification of neutral lipids and triglycerides during zebrafish embryogenesis.

    PubMed

    Yoganantharjah, Prusothman; Byreddy, Avinesh R; Fraher, Daniel; Puri, Munish; Gibert, Yann

    2017-01-01

    The zebrafish is a useful vertebrate model to study lipid metabolism. Oil Red-O (ORO) staining of zebrafish embryos, though sufficient for visualizing the localization of triglycerides, was previously inadequate to quantify neutral lipid abundance. For metabolic studies, it is crucial to be able to quantify lipids during embryogenesis. Currently no cost effective, rapid and reliable method exists to quantify the deposition of neutral lipids and triglycerides. Thin layer chromatography (TLC), gas chromatography and mass spectrometry can be used to accurately measure lipid levels, but are time consuming and costly in their use. Hence, we developed a rapid and reliable method to quantify neutral lipids and triglycerides. Zebrafish embryos were exposed to Rimonabant (Rimo) or WIN 55,212-2 mesylate (WIN), compounds previously shown to modify lipid content during zebrafish embryogenesis. Following this, ORO stain was extracted out of both the zebrafish body and yolk sac and optical density was measured to give an indication of neutral lipid and triglyceride accumulation. Embryos treated with 0.3 microM WIN resulted in increased lipid accumulation, whereas 3 microM Rimo caused a decrease in lipid accumulation during embryogenesis. TLC was performed on zebrafish bodies to validate the developed method. In addition, BODIPY free fatty acids were injected into zebrafish embryos to confirm quantification of changes in lipid content in the embryo. Previously, ORO was limited to qualitative assessment; now ORO can be used as a quantitative tool to directly determine changes in the levels of neutral lipids and triglycerides.

  5. Study on acute toxicity of amoxicillin wastewater to Zebrafish

    NASA Astrophysics Data System (ADS)

    Xie, Weifang; Shen, Hongyan

    2017-12-01

    The main research in this paper is to obtain the effect of pharmaceutical wastewater on the acute toxicity of Zebrafish. The experimental method of exposure is used in this research. Experiments were carried out with different groups of pharmaceutical wastewater. Zebrafish was cultivated in a five liter fish tank. In the experiment, according to mortality, initially a 96h preliminary test was carried out at exposure concentrations to determine if the amoxicillin wastewater was toxic and to define the concentration range (24h LC100, 96h LC0) to be employed in the definitive tests. Based on the half lethal concentration of Zebrafish, the acute toxicity of amoxicillin wastewater to Zebrafish was calculated and the toxicity grade of wastewater was determined. In the experiment, the Zebrafish was exposed with amoxicillin wastewater during 96h. The 24h, 48h, 72h and 96h LC50 of amoxicillin wastewater on the Zebrafish were 63.10%, 53.70%, 41.69% and 40.74%, respectively. At 96h, the test time is the longest, and the value of LC50 is the smallest. In the observation period of 96 hours, the LC50 of amoxicillin wastewater were in the range of 40% ~ 60% and the value of Tua is 1 ~ 2. It indicates amoxicillin wastewater is low toxic wastewater when the experimental time is shorter than 48h, amoxicillin wastewater is moderate toxicity wastewater when the experimental time is higher than 48h. According to the experimental data, with the exposure time and the volume percentage of amoxicillin wastewater increases, the mortality rate of Zebrafish is gradually increased and the toxicity of amoxicillin wastewater increases. It indicates that the toxicity of amoxicillin wastewater is the biggest and the effect of wastewater on Zebrafish is greatest. In some ways, the toxicity of amoxicillin wastewater can be affected by the test time.

  6. Stab wound injury of the zebrafish adult telencephalon: a method to investigate vertebrate brain neurogenesis and regeneration.

    PubMed

    Schmidt, Rebecca; Beil, Tanja; Strähle, Uwe; Rastegar, Sepand

    2014-08-04

    Adult zebrafish have an amazing capacity to regenerate their central nervous system after injury. To investigate the cellular response and the molecular mechanisms involved in zebrafish adult central nervous system (CNS) regeneration and repair, we developed a zebrafish model of adult telencephalic injury. In this approach, we manually generate an injury by pushing an insulin syringe needle into the zebrafish adult telencephalon. At different post injury days, fish are sacrificed, their brains are dissected out and stained by immunohistochemistry and/or in situ hybridization (ISH) with appropriate markers to observe cell proliferation, gliogenesis, and neurogenesis. The contralateral unlesioned hemisphere serves as an internal control. This method combined for example with RNA deep sequencing can help to screen for new genes with a role in zebrafish adult telencephalon neurogenesis, regeneration, and repair.

  7. A novel model for development, organization, and function of gonadotropes in fish pituitary.

    PubMed

    Golan, Matan; Biran, Jakob; Levavi-Sivan, Berta

    2014-01-01

    The gonadotropins follicle-stimulating hormone (FSH) and luteinizing hormone (LH) are key regulators of the reproductive axis in vertebrates. Despite the high popularity of zebrafish as a model organism for studying reproductive functions, to date no transgenic zebrafish with labeled gonadotropes have been introduced. Using gonadotropin regulatory elements from tilapia, we generated two transgenic zebrafish lines with labeled gonadotropes. The tilapia and zebrafish regulatory sequences were highly divergent but several conserved elements allowed the tilapia promoters to correctly drive the transgenes in zebrafish pituitaries. FSH cells reacted to stimulation with gonadotropin releasing hormone by proliferating and showing increased transgene fluorescence, whereas estrogen exposure caused a decrease in cell number and transgene fluorescence. Transgene fluorescence reflected the expression pattern of the endogenous fshb gene. Ontogenetic expression of the transgenes followed typical patterns, with FSH cells appearing early in development, and LH cells appearing later and increasing dramatically in number with the onset of puberty. Our transgenic lines provide a powerful tool for investigating the development, anatomy, and function of the reproductive axis in lower vertebrates.

  8. Nasal embryonic LHRH factor plays a role in the developmental migration and projection of gonadotropin-releasing hormone 3 neurons in zebrafish.

    PubMed

    Palevitch, Ori; Abraham, Eytan; Borodovsky, Natalya; Levkowitz, Gil; Zohar, Yonathan; Gothilf, Yoav

    2009-01-01

    The initiation of puberty and the functioning of the reproductive system depend on proper development of the hypophysiotropic gonadotropin-releasing hormone (GnRH) system. One critical step in this process is the embryonic migration of GnRH neurons from the olfactory area to the hypothalamus. Using a transgenic zebrafish model, Tg(gnrh3:EGFP), in which GnRH3 neurons and axons are fluorescently labeled, we investigated whether zebrafish NELF is essential for the development of GnRH3 neurons. The zebrafish nelf cDNA was cloned and characterized. During embryonic development, nelf is expressed in GnRH3 neurons and in target sites of GnRH3 projections and perikarya, before the initiation of their migration. Nelf knockdown resulted in a disruption of the GnRH3 system which included absence or misguiding of GnRH3 axonal outgrowth and incorrect or arrested migration of GnRH3 perikarya. These results suggest that Nelf is an important factor in the developmental migration and projection of GnRH3 neurons in zebrafish. Copyright (c) 2008 Wiley-Liss, Inc.

  9. Digestive enzymatic activity during ontogenetic development in zebrafish (Danio rerio).

    PubMed

    Guerrera, Maria Cristina; De Pasquale, Francesca; Muglia, Ugo; Caruso, Gabriella

    2015-12-01

    Despite the growing importance of zebrafish (Danio rerio) as an experimental model in biomedical research, some aspect of physiological and related morphological age dependent changes in digestive system during larval development are still unknown. In this paper, a biochemical and morphological study of the digestive tract of zebrafish was undertaken to record the functional changes occurring in this species during its ontogenetic development, particularly from 24 hr to 47 days post fertilization (dpf). Endo- and exo-proteases, as well as α-amylase enzymes, were quantified in zebrafish larvae before first feeding (7 dpf). The most morphologically significant events during the ontogenesis of the gut occurred between 3 dpf (mouth opening) and 7 dpf (end of exocrine pancreas differentiation). The presence of a wide range of digestive enzymes, already active at earlier zebrafish larval stages, closely related with the omnivorous diet of this species. Increasing enzyme activities were found with increasing age, probably in relation with intestinal mucosa folding and consequent absorption surface increase. J. Exp. Zool. (Mol. Dev. Evol.) 324B: 699-706, 2015. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  10. PAX3-FOXO1 transgenic zebrafish models identify HES3 as a mediator of rhabdomyosarcoma tumorigenesis.

    PubMed

    Kendall, Genevieve C; Watson, Sarah; Xu, Lin; LaVigne, Collette A; Murchison, Whitney; Rakheja, Dinesh; Skapek, Stephen X; Tirode, Franck; Delattre, Olivier; Amatruda, James F

    2018-06-05

    Alveolar rhabdomyosarcoma is a pediatric soft-tissue sarcoma caused by PAX3/7-FOXO1 fusion oncogenes and is characterized by impaired skeletal muscle development. We developed human PAX3-FOXO1 -driven zebrafish models of tumorigenesis and found that PAX3-FOXO1 exhibits discrete cell lineage susceptibility and transformation. Tumors developed by 1.6-19 months and were primitive neuroectodermal tumors or rhabdomyosarcoma. We applied this PAX3-FOXO1 transgenic zebrafish model to study how PAX3-FOXO1 leverages early developmental pathways for oncogenesis and found that her3 is a unique target. Ectopic expression of the her3 human ortholog, HES3 , inhibits myogenesis in zebrafish and mammalian cells, recapitulating the arrested muscle development characteristic of rhabdomyosarcoma. In patients, HES3 is overexpressed in fusion-positive versus fusion-negative tumors. Finally, HES3 overexpression is associated with reduced survival in patients in the context of the fusion. Our novel zebrafish rhabdomyosarcoma model identifies a new PAX3-FOXO1 target, her3 / HES3 , that contributes to impaired myogenic differentiation and has prognostic significance in human disease. © 2018, Kendall et al.

  11. Zebrafish models in neuropsychopharmacology and CNS drug discovery.

    PubMed

    Khan, Kanza M; Collier, Adam D; Meshalkina, Darya A; Kysil, Elana V; Khatsko, Sergey L; Kolesnikova, Tatyana; Morzherin, Yury Yu; Warnick, Jason E; Kalueff, Allan V; Echevarria, David J

    2017-07-01

    Despite the high prevalence of neuropsychiatric disorders, their aetiology and molecular mechanisms remain poorly understood. The zebrafish (Danio rerio) is increasingly utilized as a powerful animal model in neuropharmacology research and in vivo drug screening. Collectively, this makes zebrafish a useful tool for drug discovery and the identification of disordered molecular pathways. Here, we discuss zebrafish models of selected human neuropsychiatric disorders and drug-induced phenotypes. As well as covering a broad range of brain disorders (from anxiety and psychoses to neurodegeneration), we also summarize recent developments in zebrafish genetics and small molecule screening, which markedly enhance the disease modelling and the discovery of novel drug targets. © 2017 The British Pharmacological Society.

  12. Development of molecular markers for zebrafish (Danio rerio) ovarian follicle growth assessment following in-vitro culture in cryopreservation studies.

    PubMed

    Anil, Siji; Rawson, David; Zhang, Tiantian

    2018-05-29

    Development of in vitro culture protocol for early stage ovarian follicles of zebrafish is important since cryopreserved early stage ovarian follicles would need to be matured in vitro following cryopreservation before they can be fertilised. Development of molecular markers for zebrafish (Danio rerio) ovarian follicle growth assessment following in vitro culture of early stage zebrafish ovarian follicles in ovarian tissue fragments is reported here for the first time although some work has been reported for in vitro culture of isolated early stage zebrafish ovarian follicles. The main aim of the present study was to develop molecular markers in an optimised in vitro culture protocol for stage I and stage II zebrafish ovarian follicles in ovarian tissue fragments. The effect of concentration of the hormones human chorionic gonadotropin and follicle stimulating hormones, and additives such as Foetal Bovine Serum and Bovine Serum Albumin were studied. The results showed that early stage zebrafish ovarian fragments containing stage I and stage II follicles which are cultured in vitro for 24 h in 20% FBS and 100mIU/ml FSH in 90% L-15 medium at 28 °C can grow to the size of stage II and stage III ovarian follicles respectively. More importantly the follicle growth from stage I to stage II and from stage II to stage III were confirmed using molecular markers such as cyp19a1a (also known as P450aromA) and vtg1 genes respectively. However, no follicle growth was observed following cryopreservation and in vitro culture. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Zebrafish—on the move towards ophthalmological research

    PubMed Central

    Chhetri, J; Jacobson, G; Gueven, N

    2014-01-01

    Millions of people are affected by visual impairment and blindness globally, and the prevalence of vision loss is likely to increase as we are living longer. However, many ocular diseases remain poorly controlled due to lack of proper understanding of the pathogenesis and the corresponding lack of effective therapies. Consequently, there is a major need for animal models that closely mirror the human eye pathology and at the same time allow higher-throughput drug screening approaches. In this context, zebrafish as an animal model organism not only address these needs but can in many respects reflect the human situation better than the current rodent models. Over the past decade, zebrafish have become an established model to study a variety of human diseases and are more recently becoming a valuable tool for the study of human ophthalmological disorders. Many human ocular diseases such as cataract, glaucoma, diabetic retinopathy, and age-related macular degeneration have already been modelled in zebrafish. In addition, zebrafish have become an attractive model for pre-clinical drug toxicity testing and are now increasingly used by scientists worldwide for the discovery of novel treatment approaches. This review presents the advantages and uses of zebrafish for ophthalmological research. PMID:24503724

  14. ZebraBeat: a flexible platform for the analysis of the cardiac rate in zebrafish embryos

    NASA Astrophysics Data System (ADS)

    de Luca, Elisa; Zaccaria, Gian Maria; Hadhoud, Marwa; Rizzo, Giovanna; Ponzini, Raffaele; Morbiducci, Umberto; Santoro, Massimo Mattia

    2014-05-01

    Heartbeat measurement is important in assesssing cardiac function because variations in heart rhythm can be the cause as well as an effect of hidden pathological heart conditions. Zebrafish (Danio rerio) has emerged as one of the most useful model organisms for cardiac research. Indeed, the zebrafish heart is easily accessible for optical analyses without conducting invasive procedures and shows anatomical similarity to the human heart. In this study, we present a non-invasive, simple, cost-effective process to quantify the heartbeat in embryonic zebrafish. To achieve reproducibility, high throughput and flexibility (i.e., adaptability to any existing confocal microscope system and with a user-friendly interface that can be easily used by researchers), we implemented this method within a software program. We show here that this platform, called ZebraBeat, can successfully detect heart rate variations in embryonic zebrafish at various developmental stages, and it can record cardiac rate fluctuations induced by factors such as temperature and genetic- and chemical-induced alterations. Applications of this methodology may include the screening of chemical libraries affecting heart rhythm and the identification of heart rhythm variations in mutants from large-scale forward genetic screens.

  15. Effects of abnormal light-rearing conditions on retinal physiology in larvae zebrafish.

    PubMed

    Saszik, S; Bilotta, J

    1999-11-01

    Anatomic studies have found that zebrafish retinal neurons develop in a sequential fashion. In addition, exposure to abnormal light-rearing conditions produces deficits in visual behavior of larvae zebrafish, even though there appears to be little effect of the light-rearing conditions on the gross morphology of the retina. The purpose of this study was to assess the effects of abnormal light-rearing conditions on larvae zebrafish retinal physiology. Larvae zebrafish (Danio rerio) were exposed to constant light (LL), constant dark (DD), or normal cyclic light (LD) from fertilization to 6 days postfertilization (dpf). After 6 days, the animals were placed into normal cyclic light and tested at 6 to 8, 13 to 15, and 21 to 24 dpf. Electroretinogram (ERG) responses to visual stimuli, consisting of various wavelengths and irradiances, were recorded. Comparisons were made across the three age groups and the three light-rearing conditions. Deficits from the light-rearing conditions were seen immediately after exposure (6 8 dpf). The LL-condition subjects showed the greatest deficit in the UV and short-wavelength areas and the DD-condition subjects showed a slight deficit across the entire spectrum. At 13 to 15 dpf, the LL and DD groups showed an increase in sensitivity and by 21 to 24 dpf, the groups no longer differed from controls. Abnormal lighting environments can adversely influence the physiological development of the larvae zebrafish retina. The pattern of damage that was seen in zebrafish is similar to that found in other vertebrates, including higher vertebrates. However, unlike higher vertebrates, the zebrafish appears to be capable of regeneration. This suggests that the zebrafish would be a viable model for light environment effects and neural regeneration.

  16. Development of an Automated Imaging Pipeline for the Analysis of the Zebrafish Larval Kidney

    PubMed Central

    Westhoff, Jens H.; Giselbrecht, Stefan; Schmidts, Miriam; Schindler, Sebastian; Beales, Philip L.; Tönshoff, Burkhard; Liebel, Urban; Gehrig, Jochen

    2013-01-01

    The analysis of kidney malformation caused by environmental influences during nephrogenesis or by hereditary nephropathies requires animal models allowing the in vivo observation of developmental processes. The zebrafish has emerged as a useful model system for the analysis of vertebrate organ development and function, and it is suitable for the identification of organotoxic or disease-modulating compounds on a larger scale. However, to fully exploit its potential in high content screening applications, dedicated protocols are required allowing the consistent visualization of inner organs such as the embryonic kidney. To this end, we developed a high content screening compatible pipeline for the automated imaging of standardized views of the developing pronephros in zebrafish larvae. Using a custom designed tool, cavities were generated in agarose coated microtiter plates allowing for accurate positioning and orientation of zebrafish larvae. This enabled the subsequent automated acquisition of stable and consistent dorsal views of pronephric kidneys. The established pipeline was applied in a pilot screen for the analysis of the impact of potentially nephrotoxic drugs on zebrafish pronephros development in the Tg(wt1b:EGFP) transgenic line in which the developing pronephros is highlighted by GFP expression. The consistent image data that was acquired allowed for quantification of gross morphological pronephric phenotypes, revealing concentration dependent effects of several compounds on nephrogenesis. In addition, applicability of the imaging pipeline was further confirmed in a morpholino based model for cilia-associated human genetic disorders associated with different intraflagellar transport genes. The developed tools and pipeline can be used to study various aspects in zebrafish kidney research, and can be readily adapted for the analysis of other organ systems. PMID:24324758

  17. Development of an automated imaging pipeline for the analysis of the zebrafish larval kidney.

    PubMed

    Westhoff, Jens H; Giselbrecht, Stefan; Schmidts, Miriam; Schindler, Sebastian; Beales, Philip L; Tönshoff, Burkhard; Liebel, Urban; Gehrig, Jochen

    2013-01-01

    The analysis of kidney malformation caused by environmental influences during nephrogenesis or by hereditary nephropathies requires animal models allowing the in vivo observation of developmental processes. The zebrafish has emerged as a useful model system for the analysis of vertebrate organ development and function, and it is suitable for the identification of organotoxic or disease-modulating compounds on a larger scale. However, to fully exploit its potential in high content screening applications, dedicated protocols are required allowing the consistent visualization of inner organs such as the embryonic kidney. To this end, we developed a high content screening compatible pipeline for the automated imaging of standardized views of the developing pronephros in zebrafish larvae. Using a custom designed tool, cavities were generated in agarose coated microtiter plates allowing for accurate positioning and orientation of zebrafish larvae. This enabled the subsequent automated acquisition of stable and consistent dorsal views of pronephric kidneys. The established pipeline was applied in a pilot screen for the analysis of the impact of potentially nephrotoxic drugs on zebrafish pronephros development in the Tg(wt1b:EGFP) transgenic line in which the developing pronephros is highlighted by GFP expression. The consistent image data that was acquired allowed for quantification of gross morphological pronephric phenotypes, revealing concentration dependent effects of several compounds on nephrogenesis. In addition, applicability of the imaging pipeline was further confirmed in a morpholino based model for cilia-associated human genetic disorders associated with different intraflagellar transport genes. The developed tools and pipeline can be used to study various aspects in zebrafish kidney research, and can be readily adapted for the analysis of other organ systems.

  18. Dietary sodium propionate affects mucosal immune parameters, growth and appetite related genes expression: Insights from zebrafish model.

    PubMed

    Hoseinifar, Seyed Hossein; Safari, Roghieh; Dadar, Maryam

    2017-03-01

    Propionate is a short-chain fatty acid (SCFA) that improves physiological and pathophysiological properties. However, there is limited information available about the effects of SCFAs on mucosal immune parameters as well as growth and appetite related genes expression. The aim of the present study was to evaluate the effect of sodium propionate (SP) intake on the mucosal immune parameters, growth and appetite related genes expression using zebrafish (Danio rerio) as model organism. Zebrafish fed control or diet supplemented with different levels (0.5, 1 and 2%) of SP for 8weeks. At the end of feeding trial, the expression of the key genes related to growth and appetite (GH, IGF1, MYSTN and Ghrl) was evaluated. Also, mucosal immune parameters (Total Ig, lysozyme and protease activity) were studied in skin mucus of zebrafish. The results showed that dietary administration of SP significantly (P<0.05) up-regulated the expression of GH, IGF1 and down-regulated MYSTN gene. Also, feeding zebrafish with SP supplemented diet significantly increased appetite related gene expression (P<0.05) with a more pronounced effect in higher inclusion levels. Compared with control group, the expression of appetite related gene (Ghrl) was remarkably (P<0.05) higher in SP fed zebrafish. Also, elevated mucosal immune parameters was observed in zebrafish fed SP supplemented diet. The present results revealed beneficial effects of dietary SP on mucosal immune response and growth and appetite related genes expression. These results also highlighted the potential use of SP as additive in human diets. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Modeling consequences of prolonged strong unpredictable stress in zebrafish: Complex effects on behavior and physiology.

    PubMed

    Song, Cai; Liu, Bai-Ping; Zhang, Yong-Ping; Peng, Zhilan; Wang, JiaJia; Collier, Adam D; Echevarria, David J; Savelieva, Katerina V; Lawrence, Robert F; Rex, Christopher S; Meshalkina, Darya A; Kalueff, Allan V

    2018-02-02

    Chronic stress is the major pathogenetic factor of human anxiety and depression. Zebrafish (Danio rerio) have become a novel popular model species for neuroscience research and CNS drug discovery. The utility of zebrafish for mimicking human affective disorders is also rapidly growing. Here, we present a new zebrafish model of clinically relevant, prolonged unpredictable strong chronic stress (PUCS). The 5-week PUCS induced overt anxiety-like and motor retardation-like behaviors in adult zebrafish, also elevating whole-body cortisol and proinflammatory cytokines - interleukins IL-1β and IL-6. PUCS also elevated whole-body levels of the anti-inflammatory cytokine IL-10 and increased the density of dendritic spines in zebrafish telencephalic neurons. Chronic treatment of fish with an antidepressant fluoxetine (0.1mg/L for 8days) normalized their behavioral and endocrine phenotypes, as well as corrected stress-elevated IL-1β and IL-6 levels, similar to clinical and rodent data. The CNS expression of the bdnf gene, the two genes of its receptors (trkB, p75), and the gfap gene of glia biomarker, the glial fibrillary acidic protein, was unaltered in all three groups. However, PUCS elevated whole-body BDNF levels and the telencephalic dendritic spine density (which were corrected by fluoxetine), thereby somewhat differing from the effects of chronic stress in rodents. Together, these findings support zebrafish as a useful in-vivo model of chronic stress, also calling for further cross-species studies of both shared/overlapping and distinct neurobiological responses to chronic stress. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Silver nanoparticles induce endoplasmatic reticulum stress response in zebrafish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christen, Verena; Capelle, Martinus; Fent, Karl, E-mail: karl.fent@fhnw.ch

    2013-10-15

    Silver nanoparticles (AgNPs) find increasing applications, and therefore humans and the environment are increasingly exposed to them. However, potential toxicological implications are not sufficiently known. Here we investigate effects of AgNPs (average size 120 nm) on zebrafish in vitro and in vivo, and compare them to human hepatoma cells (Huh7). AgNPs are incorporated in zebrafish liver cells (ZFL) and Huh7, and in zebrafish embryos. In ZFL cells AgNPs lead to induction of reactive oxygen species (ROS), endoplasmatic reticulum (ER) stress response, and TNF-α. Transcriptional alterations also occur in pro-apoptotic genes p53 and Bax. The transcriptional profile differed in ZFL andmore » Huh7 cells. In ZFL cells, the ER stress marker BiP is induced, concomitant with the ER stress marker ATF-6 and spliced XBP-1 after 6 h and 24 h exposure to 0.5 g/L and 0.05 g/L AgNPs, respectively. This indicates the induction of different pathways of the ER stress response. Moreover, AgNPs induce TNF-α. In zebrafish embryos exposed to 0.01, 0.1, 1 and 5 mg/L AgNPs hatching was affected and morphological defects occurred at high concentrations. ER stress related gene transcripts BiP and Synv are significantly up-regulated after 24 h at 0.1 and 5 mg/L AgNPs. Furthermore, transcriptional alterations occurred in the pro-apoptotic genes Noxa and p21. The ER stress response was strong in ZFL cells and occurred in zebrafish embryos as well. Our data demonstrate for the first time that AgNPs lead to induction of ER stress in zebrafish. The induction of ER stress can have several consequences including the activation of apoptotic and inflammatory pathways. - Highlights: • Effects of silver nanoparticles (120 nm AgNPs) are investigated in zebrafish. • AgNPs induce all ER stress reponses in vitro in zebrafish liver cells. • AgNPs induce weak ER stress in zebrafish embryos. • AgNPs induce oxidative stress and transcripts of pro-apoptosis genes.« less

  1. Systematic approaches to toxicology in the zebrafish.

    PubMed

    Peterson, Randall T; Macrae, Calum A

    2012-01-01

    As the current paradigms of drug discovery evolve, it has become clear that a more comprehensive understanding of the interactions between small molecules and organismal biology will be vital. The zebrafish is emerging as a complement to existing in vitro technologies and established preclinical in vivo models that can be scaled for high-throughput. In this review, we highlight the current status of zebrafish toxicology studies, identify potential future niches for the model in the drug development pipeline, and define the hurdles that must be overcome as zebrafish technologies are refined for systematic toxicology.

  2. Zebrafish larvae require specific strains of bacteria for neurobehavioral development

    EPA Science Inventory

    There is an increasing appreciation of the relationship between gut microbiota and nervous system development and function. We previously showed that axenic (microbe-free) larvae are hyperactive at 10 days post fertilization (dpf) relative to colonized zebrafish larvae. Interesti...

  3. Next generation mothers: Maternal control of germline development in zebrafish.

    PubMed

    Dosch, Roland

    2015-01-01

    In many animals, factors deposited by the mother into the egg control the earliest events in development of the zygote. These maternal RNAs and proteins play critical roles in oocyte development and the earliest steps of embryogenesis such as fertilization, cell division and embryonic patterning. Here, this article summarizes recent discoveries made on the maternal control of germline specification in zebrafish. Moreover, this review will discuss the major gaps remaining in our understanding of this process and highlight recent technical innovations in zebrafish, which allow tackling some of these questions in the near future.

  4. Shoaling develops with age in Zebrafish (Danio rerio)

    PubMed Central

    Buske, Christine; Gerlai, Robert

    2010-01-01

    The biological mechanisms of human social behavior are complex. Animal models may facilitate the understanding of these mechanisms and may help one to develop treatment strategies for abnormal human social behavior, a core symptom in numerous clinical conditions. The zebrafish is perhaps the most social vertebrate among commonly used laboratory species. Given its practical features and the numerous genetic tools developed for it, it should be a promising tool. Zebrafish shoal, i.e. form tight multimember groups, but the ontogenesis of this behavior has not been described. Analyzing the development of shoaling is a step towards discovering the mechanisms of this behavior. Here we study age-dependent changes of shoaling in zebrafish from day 7 post fertilization to over 5 months of age by measuring the distance between all pairs of fish in freely swimming groups of ten subjects. Our longitudinal (repeated measure within subject) and cross sectional (non-repeated measure between subject) analyses both demonstrated a significant increase of shoaling with age (decreased distance between shoal members). Given the sophisticated genetic and developmental biology methods already available for zebrafish, we argue that our behavioral results open a new avenue towards the understanding of the development of vertebrate social behavior and of its mechanisms and abnormalities. PMID:20837077

  5. Long-term in vivo harmonics imaging of zebrafish embryonic development based on a femtosecond Cr:forsterite laser

    NASA Astrophysics Data System (ADS)

    Chen, S.-Y.; Tsai, T.-H.; Hsieh, C.-S.; Tai, S.-P.; Lin, C.-Y.; Ko, C.-Y.; Chen, Y.-C.; Tsai, H.-J.; Hu, C.-H.; Sun, C.-K.

    2005-03-01

    Based on a femtosecond Cr:forsterite laser, harmonics optical microscopy (HOM) provides a truly "noninvasive" tool for in vivo and long-term study of vertebrate embryonic development. Based on optical nonlinearity, HOM provides sub-micrometer 3D spatial resolution and high 3D optical-sectioning power without using invasive and toxic fluorophores. Since only virtual-level-transition is involved, HOM is known to leave no energy deposition and no photodamage. Combined with second harmonic generation, which is sensitive to specific structure such as nerve and muscle fibers, HOM can perform functional studies of early developmental dynamics of many vertebrate physiological systems. Recently, zebrafish has become a standard model for many biological and medical studies of vertebrates, due to the similarity between embryonic development of zebrafish and human being. Here we demonstrate in vivo HOM studies of developmental dynamics of several important embryonic physiological systems in live zebrafish embryos, with focuses on the developments of brains, eyes, ears, and hearts. Based on a femtosecond Cr:forsterite laser, which provides the deepest penetration (~1.5mm) and least photodamage in the zebrafish embryo, complete developing processes of different physiological systems within a period of time longer than 20 hours can be non-invasively observed inside the same embryo.

  6. Using whole mount in situ hybridization to examine thyroid hormone deiodinase expression in embryonic and larval zebrafish: a tool for examining OH-BDE toxicity to early life stages.

    PubMed

    Dong, Wu; Macaulay, Laura J; Kwok, Kevin W H; Hinton, David E; Stapleton, Heather M

    2013-05-15

    Polybrominated diphenyl ethers (PBDEs) and their oxidative metabolites (hydroxylated PBDEs; OH-BDEs) are known endocrine disrupting contaminants that have been shown to disrupt thyroid hormone regulation both in mammals and in fish. The purpose of this study was to determine the precise organ and tissue locations that express genes critical to thyroid hormone regulation in developing zebrafish (Danio rerio), and to determine the effects of an OH-BDE on their expression. While RT-PCR can provide quantitative data on gene expression, it lacks spatial sensitivity to examine localized gene expression; and, isolation of organs from zebrafish embryos is technically difficult, if not impossible. For this reason, the present study used whole mount in situ hybridization to simultaneously localize and quantify gene expression in vivo. While PBDEs and OH-BDEs have been shown to inhibit the activity and expression of deiodionases, a family of enzymes that regulate thyroid hormone concentrations intracellularly, it is unclear whether or not they can affect regional expression of the different isoforms during early development. In this study we investigated deiodinase 1 (Dio1), deiodinase 2 (Dio2), and deiodinase 3 (Dio3) mRNA expression at the following life stages (2, 8, and 1k-cells; 50%-epiboly, 6 and 18-somites, 22, 24, 48, 72 hpf and/or 10 dpf) in zebrafish and found life stage specific expression of these genes that were highly localized. To demonstrate the use of this technique for investigating potential endocrine disrupting effects, zebrafish embryos were exposed to 1, 10 and 100nM 6-OH-BDE-47. Significant increases in mean intensity of Dio1 and Dio3 expression in the periventricular zone of brain and pronephric duct, respectively (quantified by measuring intensity of coloration using ImageJ analysis software) were observed, suggesting localized response at the HPT axis with the possibility of impacting neurodevelopment. Our results demonstrate effects of OH-BDEs on thyroid regulating gene expression and provide more insight into potential sites of injury during early life stages. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Using Whole mount In Situ Hybridization to Examine Thyroid Hormone Deiodinase Expression in Embryonic and Larval Zebrafish: a Tool for examining OH-BDE toxicity to early life stages

    PubMed Central

    Dong, Wu; Macaulay, Laura; Kwok, Kevin WH; Hinton, David E; Stapleton, Heather M.

    2013-01-01

    Polybrominated diphenyl ethers (PBDEs) and their oxidative metabolites (hydroxylated PBDEs; OH-BDEs) are known endocrine disrupting contaminants that have been shown to disrupt thyroid hormone regulation both in mammals and in fish. The purpose of this study was to determine the precise organ and tissue locations that express genes critical to thyroid hormone regulation in developing zebrafish (Danio rerio), and to determine the effects of an OH-BDE on their expression. While RT-PCR can provide quantitative data on gene expression, it lacks spatial sensitivity to examine localized gene expression; and, isolation of organs from zebrafish embryos is technically difficult, if not impossible. For this reason, the present study used whole mount in situ hybridization to simultaneously localize and quantify gene expression in vivo. While PBDEs and OH-BDEs have been shown to inhibit the activity and expression of deiodionases, a family of enzymes that regulate thyroid hormone concentrations intracellularly, it is unclear whether or not they can affect regional expression of the different isoforms during early development. In this study we investigated deiodinase 1 (Dio1), deiodinase 2 (Dio2), and deiodinase 3 (Dio3) mRNA expression at the following life stages (2, 8, and 1k-cells; 50%-epiboly, 6 and 18-somites, 22, 24, 48, 72 hpf and/or 10 dpf) in zebrafish and found life stage specific expression of these genes that were highly localized. To demonstrate the use of this technique for investigating potential endocrine disrupting effects, zebrafish embryos were exposed to 1, 10 and 100 nM 6-OH-BDE-47. Significant increases in mean intensity of Dio1 and Dio3 expression in the periventricular zone of brain and pronephric duct, respectively (quantified by measuring intensity of coloration using ImageJ analysis software) were observed, suggesting localized response at the HPT axis with the possibility of impacting neurodevelopment. Our results demonstrate effects of OH-BDEs on thyroid regulating gene expression and provide more insight into potential sites of injury during early life stages. PMID:23531416

  8. Systematic developmental neurotoxicity assessment of a representative PAH Superfund mixture using zebrafish.

    PubMed

    Geier, Mitra C; James Minick, D; Truong, Lisa; Tilton, Susan; Pande, Paritosh; Anderson, Kim A; Teeguardan, Justin; Tanguay, Robert L

    2018-04-06

    Superfund sites often consist of complex mixtures of polycyclic aromatic hydrocarbons (PAHs). It is widely recognized that PAHs pose risks to human and environmental health, but the risks posed by exposure to PAH mixtures are unclear. We constructed an environmentally relevant PAH mixture with the top 10 most prevalent PAHs (SM10) from a Superfund site derived from environmental passive sampling data. Using the zebrafish model, we measured body burden at 48 hours post fertilization (hpf) and evaluated the developmental and neurotoxicity of SM10 and the 10 individual constituents at 24 hours post fertilization (hpf) and 5 days post fertilization (dpf). Zebrafish embryos were exposed from 6 to 120 hpf to (1) the SM10 mixture, (2) a variety of individual PAHs: pyrene, fluoranthene, retene, benzo[a]anthracene, chrysene, naphthalene, acenaphthene, phenanthrene, fluorene, and 2-methylnaphthalene. We demonstrated that SM10 and only 3 of the individual PAHs were developmentally toxic. Subsequently, we constructed and exposed developing zebrafish to two sub-mixtures: SM3 (comprised of 3 of the developmentally toxicity PAHs) and SM7 (7 non-developmentally toxic PAHs). We found that the SM3 toxicity profile was similar to SM10, and SM7 unexpectedly elicited developmental toxicity unlike that seen with its individual components. The results demonstrated that the overall developmental toxicity in the mixtures could be explained using the general concentration addition model. To determine if exposures activated the AHR pathway, spatial expression of CYP1A was evaluated in the 10 individual PAHs and the 3 mixtures at 5 dpf. Results showed activation of AHR in the liver and vasculature for the mixtures and some individual PAHs. Embryos exposed to SM10 during development and raised in chemical-free water into adulthood exhibited decreased learning and responses to startle stimulus indicating that developmental SM10 exposures affect neurobehavior. Collectively, these results exemplify the utility of zebrafish to investigate the developmental and neurotoxicity of complex mixtures. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. AHR2 morpholino knockdown reduces the toxicity of total particulate matter to zebrafish embryos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Massarsky, Andrey, E-mail: andrey.massarsky@duke.e

    The zebrafish embryo has been proposed as a ‘bridge model’ to study the effects of cigarette smoke on early development. Previous studies showed that exposure to total particulate matter (TPM) led to adverse effects in developing zebrafish, and suggested that the antioxidant and aryl hydrocarbon receptor (AHR) pathways play important roles. This study investigated the roles of these two pathways in mediating TPM toxicity. The study consisted of four experiments. In experiment I, zebrafish embryos were exposed from 6 h post fertilization (hpf) until 96 hpf to TPM{sub 0.5} and TPM{sub 1.0} (corresponding to 0.5 and 1.0 μg/mL equi-nicotine units)more » in the presence or absence of an antioxidant (N-acetyl cysteine/NAC) or a pro-oxidant (buthionine sulfoximine/BSO). In experiment II, TPM exposures were performed in embryos that were microinjected with nuclear factor erythroid 2-related factor 2 (Nrf2), AHR2, cytochrome P450 1A (CYP1A), or CYP1B1 morpholinos, and deformities were assessed. In experiment III, embryos were exposed to TPM, and embryos/larvae were collected at 24, 48, 72, and 96 hpf to assess several genes associated with the antioxidant and AHR pathways. Lastly, experiment IV assessed the activity and protein levels of CYP1A and CYP1B1 after exposure to TPM. We demonstrate that the incidence of TPM-induced deformities was generally not affected by NAC/BSO treatments or Nrf2 knockdown. In contrast, AHR2 knockdown reduced, while CYP1A or CYP1B1 knockdowns elevated the incidence of some deformities. Moreover, as shown by gene expression the AHR pathway, but not the antioxidant pathway, was induced in response to TPM exposure, providing further evidence for its importance in mediating TPM toxicity. - Highlights: • Total particulate matter (TPM) is the particulate phase of cigarette smoke. • Zebrafish is proposed as a ‘bridge model’ to study the effects of TPM. • We investigate the roles of antioxidant and aryl hydrocarbon receptor (AHR) pathways. • We demonstrate that the AHR pathway mediates TPM toxicity.« less

  10. Identification of Chemical Vascular Disruptors During Development Using An Integrative Predictive Toxicity Model and Zebrafish and in Vitro Functional Angiogenesis Assays.

    EPA Science Inventory

    Identification of chemical vascular disruptors during development using an integrative predictive toxicity model and zebrafish and in vitro functional angiogenesis assays Chemically-induced vascular toxicity during embryonic development can result in a wide range of adverse pre...

  11. Perspectives on zebrafish models of hallucinogenic drugs and related psychotropic compounds.

    PubMed

    Neelkantan, Nikhil; Mikhaylova, Alina; Stewart, Adam Michael; Arnold, Raymond; Gjeloshi, Visar; Kondaveeti, Divya; Poudel, Manoj K; Kalueff, Allan V

    2013-08-21

    Among different classes of psychotropic drugs, hallucinogenic agents exert one of the most prominent effects on human and animal behaviors, markedly altering sensory, motor, affective, and cognitive responses. The growing clinical and preclinical interest in psychedelic, dissociative, and deliriant hallucinogens necessitates novel translational, sensitive, and high-throughput in vivo models and screens. Primate and rodent models have been traditionally used to study cellular mechanisms and neural circuits of hallucinogenic drugs' action. The utility of zebrafish ( Danio rerio ) in neuroscience research is rapidly growing due to their high physiological and genetic homology to humans, ease of genetic manipulation, robust behaviors, and cost effectiveness. Possessing a fully characterized genome, both adult and larval zebrafish are currently widely used for in vivo screening of various psychotropic compounds, including hallucinogens and related drugs. Recognizing the growing importance of hallucinogens in biological psychiatry, here we discuss hallucinogenic-induced phenotypes in zebrafish and evaluate their potential as efficient preclinical models of drug-induced states in humans.

  12. Perspectives on Zebrafish Models of Hallucinogenic Drugs and Related Psychotropic Compounds

    PubMed Central

    2013-01-01

    Among different classes of psychotropic drugs, hallucinogenic agents exert one of the most prominent effects on human and animal behaviors, markedly altering sensory, motor, affective, and cognitive responses. The growing clinical and preclinical interest in psychedelic, dissociative, and deliriant hallucinogens necessitates novel translational, sensitive, and high-throughput in vivo models and screens. Primate and rodent models have been traditionally used to study cellular mechanisms and neural circuits of hallucinogenic drugs’ action. The utility of zebrafish (Danio rerio) in neuroscience research is rapidly growing due to their high physiological and genetic homology to humans, ease of genetic manipulation, robust behaviors, and cost effectiveness. Possessing a fully characterized genome, both adult and larval zebrafish are currently widely used for in vivo screening of various psychotropic compounds, including hallucinogens and related drugs. Recognizing the growing importance of hallucinogens in biological psychiatry, here we discuss hallucinogenic-induced phenotypes in zebrafish and evaluate their potential as efficient preclinical models of drug-induced states in humans. PMID:23883191

  13. Toxic effects of brominated indoles and phenols on zebrafish embryos.

    PubMed

    Kammann, U; Vobach, M; Wosniok, W

    2006-07-01

    Organobromine compounds in the marine environment have been the focus of growing attention in past years. In contrast to anthropogenic brominated flame retardants, other brominated compounds are produced naturally, e.g., by common polychaete worms and algae. Brominated phenols and indoles assumed to be of biogenic origin have been detected in water and sediment extracts from the German Bight. These substances as well as some of their isomers have been tested with the zebrafish embryo test and were found to cause lethal as well as nonlethal malformations. The zebrafish test was able to detect a log K(OW)-related toxicity for bromophenols, suggesting nonpolar narcosis as a major mode of action. Different effect patterns could be observed for brominated indoles and bromophenols. The comparison of effective concentrations in the zebrafish embryo test with the concentrations determined in water samples suggests the possibility that brominated indoles may affect early life stages of marine fish species in the North Sea.

  14. Effects of piracetam on behavior and memory in adult zebrafish.

    PubMed

    Grossman, Leah; Stewart, Adam; Gaikwad, Siddharth; Utterback, Eli; Wu, Nadine; Dileo, John; Frank, Kevin; Hart, Peter; Howard, Harry; Kalueff, Allan V

    2011-04-25

    Piracetam, a derivative of γ-aminobutyric acid, exerts memory-enhancing and mild anxiolytic effects in human and rodent studies. To examine the drug's behavioral profile further, we assessed its effects on behavioral and endocrine (cortisol) responses of adult zebrafish (Danio rerio)--a novel model species rapidly gaining popularity in neurobehavioral research. Overall, acute piracetam did not affect zebrafish novel tank and light-dark box behavior at mild doses (25-400mg/L), but produced nonspecific behavioral inhibition at 700mg/L. No effects on cortisol levels or inter-/intra-session habituation in the novel tank test were observed for acute or chronic mild non-sedative dose of 200mg/L. In contrast, fish exposed to chronic piracetam at this dose performed significantly better in the cued learning plus-maze test. This observation parallels clinical and rodent literature on the behavioral profile of piracetam, supporting the utility of zebrafish paradigms for testing nootropic agents. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Long-Chain Perfluoroalkyl acids (PFAAs) Affect the Bioconcentration and Tissue Distribution of Short-Chain PFAAs in Zebrafish (Danio rerio).

    PubMed

    Wen, Wu; Xia, Xinghui; Hu, Diexuan; Zhou, Dong; Wang, Haotian; Zhai, Yawei; Lin, Hui

    2017-11-07

    Short- and long-chain perfluoroalkyl acids (PFAAs), ubiquitously coexisting in the environment, can be accumulated in organisms by binding with proteins and their binding affinities generally increase with their chain length. Therefore, we hypothesized that long-chain PFAAs will affect the bioconcentration of short-chain PFAAs in organisms. To testify this hypothesis, the bioconcentration and tissue distribution of five short-chain PFAAs (linear C-F = 3-6) were investigated in zebrafish in the absence and presence of six long-chain PFAAs (linear C-F = 7-11). The results showed that the concentrations of the short-chain PFAAs in zebrafish tissues increased with exposure time until steady states reached in the absence of long-chain PFAAs. However, in the presence of long-chain PFAAs, these short-chain PFAAs in tissues increased until peak values reached and then decreased until steady states, and the uptake and elimination rate constants of short-chain PFAAs declined in all tissues and their BCF ss decreased by 24-89%. The inhibitive effect of long-chain PFAAs may be attributed to their competition for transporters and binding sites of proteins in zebrafish with short-chain PFAAs. These results suggest that the effect of long-chain PFAAs on the bioconcentration of short-chain PFAAs should be taken into account in assessing the ecological and environmental effects of short-chain PFAAs.

  16. Use of a highly transparent zebrafish mutant for investigations in the development of the vertebrate auditory system (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wisniowiecki, Anna M.; Mattison, Scott P.; Kim, Sangmin; Riley, Bruce; Applegate, Brian E.

    2016-03-01

    Zebrafish, an auditory specialist among fish, offer analogous auditory structures to vertebrates and is a model for hearing and deafness in vertebrates, including humans. Nevertheless, many questions remain on the basic mechanics of the auditory pathway. Phase-sensitive Optical Coherence Tomography has been proven as valuable technique for functional vibrometric measurements in the murine ear. Such measurements are key to building a complete understanding of auditory mechanics. The application of such techniques in the zebrafish is impeded by the high level of pigmentation, which develops superior to the transverse plane and envelops the auditory system superficially. A zebrafish double mutant for nacre and roy (mitfa-/- ;roya-/- [casper]), which exhibits defects for neural-crest derived melanocytes and iridophores, at all stages of development, is pursued to improve image quality and sensitivity for functional imaging. So far our investigations with the casper mutants have enabled the identification of the specialized hearing organs, fluid-filled canal connecting the ears, and sub-structures of the semicircular canals. In our previous work with wild-type zebrafish, we were only able to identify and observe stimulated vibration of the largest structures, specifically the anterior swim bladder and tripus ossicle, even among small, larval specimen, with fully developed inner ears. In conclusion, this genetic mutant will enable the study of the dynamics of the zebrafish ear from the early larval stages all the way into adulthood.

  17. Developmental and metabolic responses of zebrafish (Danio rerio) embryos and larvae to short-chain chlorinated paraffins (SCCPs) exposure.

    PubMed

    Ren, Xiaoqian; Zhang, Haijun; Geng, Ningbo; Xing, Liguo; Zhao, Yu; Wang, Feidi; Chen, Jiping

    2018-05-01

    Short-chain chlorinated paraffins (SCCPs) are highly toxic to aquatic organisms, but their toxicity is yet not well characterized. In this study, the developmental toxicity of SCCPs to zebrafish embryos/larvae was evaluated, and a metabolomics approach was adopted to explore the impact of SCCPs exposure on the metabolism in zebrafish embryos. Exposure to SCCPs at concentrations of 1-200μg/L did not produce an observable effect on the hatching rate and morphological deformities of zebrafish embryos/larvae. However, the survival rate of zebrafish larvae in SCCPs exposure groups decreased in a concentration-dependent manner. The 13-day 50% lethal concentration (LC 50 ) value of SCCPs was calculated to be 34.4μg/L. Exposure to SCCPs induced a significant change of overall metabolism, even at environmentally relevant concentrations (1-5μg/L). The most relevant pathways affected by SCCPs exposure were glycerophospholipid metabolism, fatty acid metabolism and purine metabolism. Exposure to SCCPs at concentrations of 1-5μg/L had begun to accelerate the β-oxidation of unsaturated fatty acids and very long chain fatty acids, and affect the transformation of guanine to xanthine in the pathway of purine metabolism. Furthermore, when the exposure concentrations of SCCPs were increased to 50-200μg/L, the levels of phospholipids and amino acids were significantly raised; whereas the levels of fatty acids, carnitines and inosine were significantly decreased. In view of the significant effect on metabolism, the sub-chronic and chronic toxicity of SCCPs to fish should be concerned. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. A bioenergetic model for zebrafish Danio rerio (Hamilton)

    USGS Publications Warehouse

    Chizinski, C.J.; Sharma, Bibek; Pope, K.L.; Patino, R.

    2008-01-01

    A bioenergetics model was developed from observed consumption, respiration and growth rates for zebrafish Danio rerio across a range (18-32?? C) of water temperatures, and evaluated with a 50 day laboratory trial at 28?? C. No significant bias in variable estimates was found during the validation trial; namely, predicted zebrafish mass generally agreed with observed mass. ?? 2008 The Authors.

  19. An automated device for appetitive conditioning in zebrafish (Danio rerio).

    PubMed

    Manabe, Kazuchika; Dooling, R J; Takaku, Shinichi

    2013-12-01

    An automated device and a procedure for the operant conditioning individual zebrafish were developed. The key feature of this procedure was the construction of a simple, inexpensive feeder that can deliver extremely small amounts of food, thus preventing rapid satiation. This allows the experimenter to run multiple trails in a single test session and multiple sessions in one day. In addition, small response keys made from acryl rods and fiber sensors were developed that were sufficiently sensitive to detect fish contact. To illustrate the efficiency and utility of the device for traditional learning paradigms, we trained zebrafish in a fixed ratio schedule where subjects were reinforced with food after 10 responses. Zebrafish reliably responded on the response key for sessions that lasted as long 80-reinforcements. They also showed the traditional "break and run" response pattern that has been found in many species. These results show that this system will be valuable for behavioral studies with zebrafish, especially for experiments that need many repeated trials using food reinforcer in a session. The present system can be used for sensory and learning investigations, as well applications in behavioral pharmacology, behavioral genetics, and toxicology where the zebrafish is becoming the vertebrate model of choice.

  20. Impact of CdSe/ZnS quantum dots on the development of zebrafish embryos

    NASA Astrophysics Data System (ADS)

    Lei, Yong; Xiao, Qi; Huang, Shan; Xu, Wansu; Zhang, Zhe; He, Zhike; Liu, Yi; Deng, Fengjiao

    2011-12-01

    Due to their unique fluorescent characteristics, quantum dots (QDs) have been successfully applied in the fields of biotechnology and medicine, but there is very limited information regarding their biodistribution and chronic toxicity in vivo. In this article, the biological behavior and toxic effects of mercaptoacetic acid-CdSe/ZnS QDs (MAA-QDs) in developing zebrafish embryos were investigated by in vivo tests. The MAA-QDs were introduced into zebrafish through microinjection at early stage. The results showed that the MAA-QDs at certain concentrations influenced the survival of zebrafish embryos, but treated embryos without developmental defects were also observed. MAA-QDs injected into the cytoplasm at the one-cell stage were allocated to progeny blastoderm cells during proliferation and almost never entered the yolk. The formation of notochord and primordial germ cells with normal morphologies was detected in the treated embryos by whole-mount in situ hybridization. Furthermore, traces of the element cadmium were mainly discovered in the tissue of liver and kidney of 3-month-old-treated zebrafish by quantitative assessment with inductively coupled plasma mass spectrometry. Thus, we hypothesized that low concentration MAA-QDs have chronic toxicities when they were delivered into zebrafish organs.

  1. Development of Cre-loxP technology in zebrafish to study the regulation of fish reproduction.

    PubMed

    Lin, Heng-Ju; Lee, Shu-Hua; Wu, Jen-Leih; Duann, Yeh-Fang; Chen, Jyh-Yih

    2013-12-01

    One cannot seek permission to market transgenic fish mainly because there is no field test or any basic research on technological developments for evaluating their biosafety. Infertility is a necessary adjunct to exploiting transgenic fish unless completely secure land-locked facilities are available. In this study, we report the generation of a Cre transgenic zebrafish line using a cytomegalovirus promoter. We also produced fish carrying the Bax1 and Bax2 plasmids; these genes were separated by two loxP sites under a zona pellucida C promoter or were driven by an anti-Müllerian hormone promoter. We inserted a red fluorescent protein gene between the two loxP sites. After obtaining transgenic lines with the two transgenic fish crossed with each other (Cre transgenic zebrafish x loxP transgenic zebrafish), the floxed DNA was found to be specifically eliminated from the female or male zebrafish, and apoptosis gene expressions caused ovarian and testicular growth cessation and degeneration. Overexpression of the Bax1 and Bax2 genes caused various expression levels of apoptosis-related genes. Accordingly, this transgenic zebrafish model system provides a method to produce infertile fish and may be useful for application to genetically modified fish.

  2. Homozygosity Mapping and Candidate Prioritization Identify Mutations, Missed by Whole-Exome Sequencing, in SMOC2, Causing Major Dental Developmental Defects

    PubMed Central

    Bloch-Zupan, Agnès; Jamet, Xavier; Etard, Christelle; Laugel, Virginie; Muller, Jean; Geoffroy, Véronique; Strauss, Jean-Pierre; Pelletier, Valérie; Marion, Vincent; Poch, Olivier; Strahle, Uwe; Stoetzel, Corinne; Dollfus, Hélène

    2011-01-01

    Inherited dental malformations constitute a clinically and genetically heterogeneous group of disorders. Here, we report on a severe developmental dental defect that results in a dentin dysplasia phenotype with major microdontia, oligodontia, and shape abnormalities in a highly consanguineous family. Homozygosity mapping revealed a unique zone on 6q27-ter. The two affected children were found to carry a homozygous mutation in SMOC2. Knockdown of smoc2 in zebrafish showed pharyngeal teeth that had abnormalities reminiscent of the human phenotype. Moreover, smoc2 depletion in zebrafish affected the expression of three major odontogenesis genes: dlx2, bmp2, and pitx2. PMID:22152679

  3. Zebrafish on a chip: a novel platform for real-time monitoring of drug-induced developmental toxicity.

    PubMed

    Li, Yinbao; Yang, Fan; Chen, Zuanguang; Shi, Lijuan; Zhang, Beibei; Pan, Jianbin; Li, Xinchun; Sun, Duanping; Yang, Hongzhi

    2014-01-01

    Pharmaceutical safety testing requires a cheap, fast and highly efficient platform for real-time evaluation of drug toxicity and secondary effects. In this study, we have developed a microfluidic system for phenotype-based evaluation of toxic and teratogenic effects of drugs using zebrafish (Danio rerio) embryos and larvae as the model organism. The microfluidic chip is composed of two independent functional units, enabling the assessment of zebrafish embryos and larvae. Each unit consists of a fluidic concentration gradient generator and a row of seven culture chambers to accommodate zebrafish. To test the accuracy of this new chip platform, we examined the toxicity and teratogenicity of an anti-asthmatic agent-aminophylline (Apl) on 210 embryos and 210 larvae (10 individuals per chamber). The effect of Apl on zebrafish embryonic development was quantitatively assessed by recording a series of physiological indicators such as heart rate, survival rate, body length and hatch rate. Most importantly, a new index called clonic convulsion rate, combined with mortality was used to evaluate the toxicities of Apl on zebrafish larvae. We found that Apl can induce deformity and cardiovascular toxicity in both zebrafish embryos and larvae. This microdevice is a multiplexed testing apparatus that allows for the examination of indexes beyond toxicity and teratogenicity at the sub-organ and cellular levels and provides a potentially cost-effective and rapid pharmaceutical safety assessment tool.

  4. Examination of a Palatogenic Gene Program in Zebrafish

    PubMed Central

    Swartz, Mary E.; Sheehan-Rooney, Kelly; Dixon, Michael J.; Eberhart, Johann K.

    2011-01-01

    Human palatal clefting is debilitating and difficult to rectify surgically. Animal models enhance our understanding of palatogenesis and are essential in strategies designed to ameliorate palatal malformations in humans. Recent studies have shown that the zebrafish palate, or anterior neurocranium, is under similar genetic control to the amniote palatal skeleton. We extensively analyzed palatogenesis in zebrafish to determine the similarity of gene expression and function across vertebrates. By 36 hpf palatogenic cranial neural crest cells reside in homologous regions of the developing face compared to amniote species. Transcription factors and signaling molecules regulating mouse palatogenesis are expressed in similar domains during palatogenesis in zebrafish. Functional investigation of a subset of these genes, fgf10a, tgfb2, pax9 and smad5 revealed their necessity in zebrafish palatogenesis. Collectively, these results suggest that the gene regulatory networks regulating palatogenesis may be conserved across vertebrate species, demonstrating the utility of zebrafish as a model for palatogenesis. PMID:22016187

  5. Intracellular uptake of macromolecules by brain lymphatic endothelial cells during zebrafish embryonic development.

    PubMed

    van Lessen, Max; Shibata-Germanos, Shannon; van Impel, Andreas; Hawkins, Thomas A; Rihel, Jason; Schulte-Merker, Stefan

    2017-05-12

    The lymphatic system controls fluid homeostasis and the clearance of macromolecules from interstitial compartments. In mammals brain lymphatics were only recently discovered, with significant implications for physiology and disease. We examined zebrafish for the presence of brain lymphatics and found loosely connected endothelial cells with lymphatic molecular signature covering parts of the brain without forming endothelial tubular structures. These brain lymphatic endothelial cells (BLECs) derive from venous endothelium, are distinct from macrophages, and are sensitive to loss of Vegfc. BLECs endocytose macromolecules in a selective manner, which can be blocked by injection of mannose receptor ligands. This first report on brain lymphatic endothelial cells in a vertebrate embryo identifies cells with unique features, including the uptake of macromolecules at a single cell level. Future studies will address whether this represents an uptake mechanism that is conserved in mammals and how these cells affect functions of the embryonic and adult brain.

  6. Automated image-based phenotypic analysis in zebrafish embryos

    PubMed Central

    Vogt, Andreas; Cholewinski, Andrzej; Shen, Xiaoqiang; Nelson, Scott; Lazo, John S.; Tsang, Michael; Hukriede, Neil A.

    2009-01-01

    Presently, the zebrafish is the only vertebrate model compatible with contemporary paradigms of drug discovery. Zebrafish embryos are amenable to automation necessary for high-throughput chemical screens, and optical transparency makes them potentially suited for image-based screening. However, the lack of tools for automated analysis of complex images presents an obstacle to utilizing the zebrafish as a high-throughput screening model. We have developed an automated system for imaging and analyzing zebrafish embryos in multi-well plates regardless of embryo orientation and without user intervention. Images of fluorescent embryos were acquired on a high-content reader and analyzed using an artificial intelligence-based image analysis method termed Cognition Network Technology (CNT). CNT reliably detected transgenic fluorescent embryos (Tg(fli1:EGFP)y1) arrayed in 96-well plates and quantified intersegmental blood vessel development in embryos treated with small molecule inhibitors of anigiogenesis. The results demonstrate it is feasible to adapt image-based high-content screening methodology to measure complex whole organism phenotypes. PMID:19235725

  7. Assessing social engagement in heterogeneous groups of zebrafish: a new paradigm for autism-like behavioral responses.

    PubMed

    Maaswinkel, Hans; Zhu, Liqun; Weng, Wei

    2013-01-01

    Because of its highly developed social character, zebrafish is a promising model system for the study of the genetic and neurochemical basis of altered social engagement such as is common in autism and schizophrenia. The traditional shoaling paradigm investigates social cohesion in homogeneous groups of zebrafish. However, the social dynamics of mixed groups is gaining interest from a therapeutic point of view and thus warrants animal modeling. Furthermore, mutant zebrafish are not always available in large numbers. Therefore, we developed a new paradigm that allows exploring shoaling in heterogeneous groups. The effects of MK-801, a non-competitive antagonist of the glutamate N-methyl-D-aspartate (NMDA) receptor, on social cohesion were studied to evaluate the paradigm. The drug has previously been shown to mimic aspects of autism and schizophrenia. Our results show that a single MK-801-treated zebrafish reduced social cohesion of the entire shoal drastically. Preliminary observations suggest that the social dynamics of the shoal as a whole was altered.

  8. Chemokine guided angiogenesis directs coronary vasculature formation in zebrafish

    PubMed Central

    Harrison, Michael R.M.; Bussmann, Jeroen; Huang, Ying; Zhao, Long; Osorio, Arthela; Burns, C. Geoffrey; Burns, Caroline E.; Sucov, Henry M.; Siekmann, Arndt F.; Lien, Ching-Ling

    2015-01-01

    SUMMARY Interruption of coronary blood supply severely impairs heart function with often-fatal consequences for heart disease patients. However the formation and maturation of these coronary vessels is not fully understood. Here we provide a detailed analysis of coronary vessel development in zebrafish. We observe that coronary vessels form in zebrafish by angiogenic sprouting of arterial cells derived from the endocardium at the atrioventricular canal. Endothelial cells express the CXC-motif chemokine receptor Cxcr4a and migrate to vascularize the ventricle under the guidance of the myocardium-expressed ligand Cxcl12b. cxcr4a mutant zebrafish fail to form a vascular network, whereas ectopic expression of Cxcl12b ligand induces coronary vessel formation. Importantly, cxcr4a mutant zebrafish fail to undergo heart regeneration following injury. Our results suggest that chemokine-signaling has an essential role in coronary vessel formation by directing migration of endocardium-derived endothelial cells. Poorly developed vasculature in cxcr4a mutants likely underlies decreased regenerative potential in adults. PMID:26017769

  9. Knockdown of zebrafish Fancd2 causes developmental abnormalities via p53-dependent apoptosis.

    PubMed

    Liu, Ting Xi; Howlett, Niall G; Deng, Min; Langenau, David M; Hsu, Karl; Rhodes, Jennifer; Kanki, John P; D'Andrea, Alan D; Look, A Thomas

    2003-12-01

    Mechanisms underlying the multiple developmental defects observed in Fanconi anemia (FA) patients are not well defined. We have identified the zebrafish homolog of human FANCD2, which encodes a nuclear effector protein that is monoubiquitinated in response to DNA damage, targeting it to nuclear foci where it preserves chromosomal integrity. Fancd2-deficient zebrafish embryos develop defects similar to those found in children with FA, including shortened body length, microcephaly, and microophthalmia, which are due to extensive cellular apoptosis. Developmental defects and increased apoptosis in Fancd2-deficient zebrafish were corrected by injection of human FANCD2 or zebrafish bcl2 mRNA, or by knockdown of p53, indicating that in the absence of Fancd2, developing tissues spontaneously undergo p53-dependent apoptosis. Thus, Fancd2 is essential during embryogenesis to prevent inappropriate apoptosis in neural cells and other tissues undergoing high levels of proliferative expansion, implicating this mechanism in the congenital abnormalities observed in human infants with FA.

  10. Assessing Social Engagement in Heterogeneous Groups of Zebrafish: A New Paradigm for Autism-Like Behavioral Responses

    PubMed Central

    Maaswinkel, Hans; Zhu, Liqun; Weng, Wei

    2013-01-01

    Because of its highly developed social character, zebrafish is a promising model system for the study of the genetic and neurochemical basis of altered social engagement such as is common in autism and schizophrenia. The traditional shoaling paradigm investigates social cohesion in homogeneous groups of zebrafish. However, the social dynamics of mixed groups is gaining interest from a therapeutic point of view and thus warrants animal modeling. Furthermore, mutant zebrafish are not always available in large numbers. Therefore, we developed a new paradigm that allows exploring shoaling in heterogeneous groups. The effects of MK-801, a non-competitive antagonist of the glutamate N-methyl-D-aspartate (NMDA) receptor, on social cohesion were studied to evaluate the paradigm. The drug has previously been shown to mimic aspects of autism and schizophrenia. Our results show that a single MK-801-treated zebrafish reduced social cohesion of the entire shoal drastically. Preliminary observations suggest that the social dynamics of the shoal as a whole was altered. PMID:24116082

  11. Expression and activity profiling of the steroidogenic enzymes of glucocorticoid biosynthesis and the fdx1 co-factors in zebrafish.

    PubMed

    Weger, M; Diotel, N; Weger, B D; Beil, T; Zaucker, A; Eachus, H L; Oakes, J A; do Rego, J L; Storbeck, K-H; Gut, P; Strähle, U; Rastegar, S; Müller, F; Krone, N

    2018-04-01

    The spatial and temporal expression of steroidogenic genes in zebrafish has not been fully characterised. Because zebrafish are increasingly employed in endocrine and stress research, a better characterisation of steroidogenic pathways is required to target specific steps in the biosynthetic pathways. In the present study, we have systematically defined the temporal and spatial expression of steroidogenic enzymes involved in glucocorticoid biosynthesis (cyp21a2, cyp11c1, cyp11a1, cyp11a2, cyp17a1, cyp17a2, hsd3b1, hsd3b2), as well as the mitochondrial electron-providing ferredoxin co-factors (fdx1, fdx1b), during zebrafish development. Our studies showed an early expression of all these genes during embryogenesis. In larvae, expression of cyp11a2, cyp11c1, cyp17a2, cyp21a2, hsd3b1 and fdx1b can be detected in the interrenal gland, which is the zebrafish counterpart of the mammalian adrenal gland, whereas the fdx1 transcript is mainly found in the digestive system. Gene expression studies using quantitative reverse transcriptase-PCR and whole-mount in situ hybridisation in the adult zebrafish brain revealed a wide expression of these genes throughout the encephalon, including neurogenic regions. Using ultra-high-performance liquid chromatography tandem mass spectrometry, we were able to demonstrate the presence of the glucocorticoid cortisol in the adult zebrafish brain. Moreover, we demonstrate de novo biosynthesis of cortisol and the neurosteroid tetrahydrodeoxycorticosterone in the adult zebrafish brain from radiolabelled pregnenolone. Taken together, the present study comprises a comprehensive characterisation of the steroidogenic genes and the fdx co-factors facilitating glucocorticoid biosynthesis in zebrafish. Furthermore, we provide additional evidence of de novo neurosteroid biosynthesising in the brain of adult zebrafish facilitated by enzymes involved in glucocorticoid biosynthesis. Our study provides a valuable source for establishing the zebrafish as a translational model with respect to understanding the roles of the genes for glucocorticoid biosynthesis and fdx co-factors during embryonic development and stress, as well as in brain homeostasis and function. © 2018 British Society for Neuroendocrinology.

  12. Breaking symmetry: the zebrafish as a model for understanding left-right asymmetry in the developing brain.

    PubMed

    Roussigne, Myriam; Blader, Patrick; Wilson, Stephen W

    2012-03-01

    How does left-right asymmetry develop in the brain and how does the resultant asymmetric circuitry impact on brain function and lateralized behaviors? By enabling scientists to address these questions at the levels of genes, neurons, circuitry and behavior,the zebrafish model system provides a route to resolve the complexity of brain lateralization. In this review, we present the progress made towards characterizing the nature of the gene networks and the sequence of morphogenetic events involved in the asymmetric development of zebrafish epithalamus. In an attempt to integrate the recent extensive knowledge into a working model and to identify the future challenges,we discuss how insights gained at a cellular/developmental level can be linked to the data obtained at a molecular/genetic level. Finally, we present some evolutionary thoughts and discuss how significant discoveries made in zebrafish should provide entry points to better understand the evolutionary origins of brain lateralization.

  13. Development and Validation of an Automated High-Throughput System for Zebrafish In Vivo Screenings

    PubMed Central

    Virto, Juan M.; Holgado, Olaia; Diez, Maria; Izpisua Belmonte, Juan Carlos; Callol-Massot, Carles

    2012-01-01

    The zebrafish is a vertebrate model compatible with the paradigms of drug discovery. The small size and transparency of zebrafish embryos make them amenable for the automation necessary in high-throughput screenings. We have developed an automated high-throughput platform for in vivo chemical screenings on zebrafish embryos that includes automated methods for embryo dispensation, compound delivery, incubation, imaging and analysis of the results. At present, two different assays to detect cardiotoxic compounds and angiogenesis inhibitors can be automatically run in the platform, showing the versatility of the system. A validation of these two assays with known positive and negative compounds, as well as a screening for the detection of unknown anti-angiogenic compounds, have been successfully carried out in the system developed. We present a totally automated platform that allows for high-throughput screenings in a vertebrate organism. PMID:22615792

  14. Stable multilineage xenogeneic replacement of definitive hematopoiesis in adult zebrafish.

    PubMed

    Hess, Isabell; Boehm, Thomas

    2016-01-18

    Bony fishes are the most numerous and phenotypically diverse group of vertebrates inhabiting our planet, making them an ideal target for identifying general principles of tissue development and function. However, lack of suitable experimental platforms prevents the exploitation of this rich source of natural phenotypic variation. Here, we use a zebrafish strain lacking definitive hematopoiesis for interspecific analysis of hematopoietic cell development. Without conditioning prior to transplantation, hematopoietic progenitor cells from goldfish stably engraft in adult zebrafish homozygous for the c-myb(I181N) mutation. However, in competitive repopulation experiments, zebrafish hematopoietic cells exhibit an advantage over their goldfish counterparts, possibly owing to subtle species-specific functional differences in hematopoietic microenvironments resulting from over 100 million years of independent evolution. Thus, our unique animal model provides an unprecedented opportunity to genetically and functionally disentangle universal and species-specific contributions of the microenvironment to hematopoietic progenitor cell maintenance and development.

  15. Zebrafish: A Versatile Animal Model for Fertility Research.

    PubMed

    Hoo, Jing Ying; Kumari, Yatinesh; Shaikh, Mohd Farooq; Hue, Seow Mun; Goh, Bey Hing

    2016-01-01

    The utilization of zebrafish in biomedical research is very common in the research world nowadays. Today, it has emerged as a favored vertebrate organism for the research in science of reproduction. There is a significant growth in amount numbers of scientific literature pertaining to research discoveries in reproductive sciences in zebrafish. It has implied the importance of zebrafish in this particular field of research. In essence, the current available literature has covered from the very specific brain region or neurons of zebrafish, which are responsible for reproductive regulation, until the gonadal level of the animal. The discoveries and findings have proven that this small animal is sharing a very close/similar reproductive system with mammals. More interestingly, the behavioral characteristics and along with the establishment of animal courtship behavior categorization in zebrafish have laid an even stronger foundation and firmer reason on the suitability of zebrafish utilization in research of reproductive sciences. In view of the immense importance of this small animal for the development of reproductive sciences, this review aimed at compiling and describing the proximate close similarity of reproductive regulation on zebrafish and human along with factors contributing to the infertility, showing its versatility and its potential usage for fertility research.

  16. Humanizing the zebrafish liver shifts drug metabolic profiles and improves pharmacokinetics of CYP3A4 substrates.

    PubMed

    Poon, Kar Lai; Wang, Xingang; Ng, Ashley S; Goh, Wei Huang; McGinnis, Claudia; Fowler, Stephen; Carney, Tom J; Wang, Haishan; Ingham, Phillip W

    2017-03-01

    Understanding and predicting whether new drug candidates will be safe in the clinic is a critical hurdle in pharmaceutical development, that relies in part on absorption, distribution, metabolism, excretion and toxicology studies in vivo. Zebrafish is a relatively new model system for drug metabolism and toxicity studies, offering whole organism screening coupled with small size and potential for high-throughput screening. Through toxicity and absorption analyses of a number of drugs, we find that zebrafish is generally predictive of drug toxicity, although assay outcomes are influenced by drug lipophilicity which alters drug uptake. In addition, liver microsome assays reveal specific differences in metabolism of compounds between human and zebrafish livers, likely resulting from the divergence of the cytochrome P450 superfamily between species. To reflect human metabolism more accurately, we generated a transgenic "humanized" zebrafish line that expresses the major human phase I detoxifying enzyme, CYP3A4, in the liver. Here, we show that this humanized line shows an elevated metabolism of CYP3A4-specific substrates compared to wild-type zebrafish. The generation of this first described humanized zebrafish liver suggests such approaches can enhance the accuracy of the zebrafish model for toxicity prediction.

  17. Zebrafish: A Versatile Animal Model for Fertility Research

    PubMed Central

    Hoo, Jing Ying; Kumari, Yatinesh; Shaikh, Mohd Farooq; Hue, Seow Mun

    2016-01-01

    The utilization of zebrafish in biomedical research is very common in the research world nowadays. Today, it has emerged as a favored vertebrate organism for the research in science of reproduction. There is a significant growth in amount numbers of scientific literature pertaining to research discoveries in reproductive sciences in zebrafish. It has implied the importance of zebrafish in this particular field of research. In essence, the current available literature has covered from the very specific brain region or neurons of zebrafish, which are responsible for reproductive regulation, until the gonadal level of the animal. The discoveries and findings have proven that this small animal is sharing a very close/similar reproductive system with mammals. More interestingly, the behavioral characteristics and along with the establishment of animal courtship behavior categorization in zebrafish have laid an even stronger foundation and firmer reason on the suitability of zebrafish utilization in research of reproductive sciences. In view of the immense importance of this small animal for the development of reproductive sciences, this review aimed at compiling and describing the proximate close similarity of reproductive regulation on zebrafish and human along with factors contributing to the infertility, showing its versatility and its potential usage for fertility research. PMID:27556045

  18. Development of an opioid self-administration assay to study drug seeking in zebrafish.

    PubMed

    Bossé, Gabriel D; Peterson, Randall T

    2017-09-29

    The zebrafish (Danio rerio) has become an excellent tool to study mental health disorders, due to its physiological and genetic similarity to humans, ease of genetic manipulation, and feasibility of small molecule screening. Zebrafish have been shown to exhibit characteristics of addiction to drugs of abuse in non-contingent assays, including conditioned place preference, but contingent assays have been limited to a single assay for alcohol consumption. Using inexpensive electronic, mechanical, and optical components, we developed an automated opioid self-administration assay for zebrafish, enabling us to measure drug seeking and gain insight into the underlying biological pathways. Zebrafish trained in the assay for five days exhibited robust self-administration, which was dependent on the function of the μ-opioid receptor. In addition, a progressive ratio protocol was used to test conditioned animals for motivation. Furthermore, conditioned fish continued to seek the drug despite an adverse consequence and showed signs of stress and anxiety upon withdrawal of the drug. Finally, we validated our assay by confirming that self-administration in zebrafish is dependent on several of the same molecular pathways as in other animal models. Given the ease and throughput of this assay, it will enable identification of important biological pathways regulating drug seeking and could lead to the development of new therapeutic molecules to treat addiction. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Report of the Second European Zebrafish Principal Investigator Meeting in Karlsruhe, Germany, March 21-24, 2012.

    PubMed

    Cavodeassi, Florencia; Del Bene, Filippo; Fürthauer, Maximilian; Grabher, Clemens; Herzog, Wiebke; Lehtonen, Sanna; Linker, Claudia; Mercader, Nadia; Mikut, Ralf; Norton, William; Strähle, Uwe; Tiso, Natascia; Foulkes, Nicholas S

    2013-03-01

    The second European Zebrafish Principal Investigator (PI) Meeting was held in March, 2012, in Karlsruhe, Germany. It brought together PIs from all over Europe who work with fish models such as zebrafish and medaka to discuss their latest results, as well as to resolve strategic issues faced by this research community. Scientific discussion ranged from the development of new technologies for working with fish models to progress in various fields of research such as injury and repair, disease models, and cell polarity and dynamics. This meeting also marked the establishment of the European Zebrafish Resource Centre (EZRC) at Karlsruhe that in the future will serve as an important focus and community resource for zebrafish- and medaka-based research.

  20. Thymol and Carvacrol Affect Hybrid Tilapia through the Combination of Direct Stimulation and an Intestinal Microbiota-Mediated Effect: Insights from a Germ-Free Zebrafish Model.

    PubMed

    Ran, Chao; Hu, Jun; Liu, Wenshu; Liu, Zhi; He, Suxu; Dan, Bui Chau Truc; Diem, Nguyen Ngoc; Ooi, Ei Lin; Zhou, Zhigang

    2016-05-01

    Essential oils (EOs) are commonly used as animal feed additives. Information is lacking on the mechanisms driving the beneficial effects of EOs in animals, especially the role played by the intestinal microbiota of the host. The purpose of this study was to clarify the relative contribution of direct effects of EOs on the physiology and immune system of tilapia and indirect effects mediated by the intestinal microbiota by using a germ-free zebrafish model. Juvenile hybrid tilapia were fed a control diet or 1 of 4 treatment diets containing 60-800 mg Next Enhance 150 (NE) (an EO product containing equal levels of thymol and carvacrol)/kg for 6 wk. The key humoral and cellular innate immune parameters were evaluated after the feeding period. In another experiment, the gut microbiota of tilapia fed a control or an NE diet (200 mg/kg) for 2 wk were transferred to 3-d postfertilization (dpf) germ-free (GF) zebrafish, and the expression of genes involved in innate immunity and tight junctions was evaluated in zebrafish at 6 dpf. Lastly, NE was directly applied to 3-dpf GF zebrafish at 3 doses ranging from 0.2 to 20 mg/L, and the direct effect of NE on zebrafish was evaluated after 1 and 3 d. NE supplementation at 200 mg/kg enhanced phagocytosis activity of head kidney macrophages (×1.36) (P < 0.05) and plasma lysozyme activity (×1.69) of tilapia compared with the control (P < 0.001), indicating an immunostimulatory effect. Compared with those colonized with control microbiota, GF zebrafish colonized with NE microbiota showed attenuated induction of immune response marker genes serum amyloid a (Saa; ×0.62), interleukin 1β (Il1β; ×0.29), and interleukin 8 (Il8; ×0.62) (P < 0.05). NE treatment of GF zebrafish at 2 and 20 mg/L for 1 d upregulated the expression of Il1β (×2.44) and Claudin1 (×1.38), respectively (P < 0.05), whereas at day 3 the expression of Occludin2 was higher (×3.30) in the 0.2-mg NE/L group compared with the GF control (P < 0.05). NE may affect the immunity of tilapia through a combination of factors, i.e., primarily through a direct effect on host tissue (immune-stimulating) but also an indirect effect mediated by microbial changes (immune-relieving). © 2016 American Society for Nutrition.

  1. Mutations in cadherin 23 affect tip links in zebrafish sensory hair cells.

    PubMed

    Söllner, Christian; Rauch, Gerd-Jörg; Siemens, Jan; Geisler, Robert; Schuster, Stephan C; Müller, Ulrich; Nicolson, Teresa

    2004-04-29

    Hair cells have highly organized bundles of apical projections, or stereocilia, that are deflected by sound and movement. Displacement of stereocilia stretches linkages at the tips of stereocilia that are thought to gate mechanosensory channels. To identify the molecular machinery that mediates mechanotransduction in hair cells, zebrafish mutants were identified with defects in balance and hearing. In sputnik mutants, stereociliary bundles are splayed to various degrees, with individuals displaying reduced or absent mechanotransduction. Here we show that the defects in sputnik mutants are caused by mutations in cadherin 23 (cdh23). Mutations in Cdh23 also cause deafness and vestibular defects in mice and humans, and the protein is present in hair bundles. We show that zebrafish Cdh23 protein is concentrated near the tips of hair bundles, and that tip links are absent in homozygous sputnik(tc317e) larvae. Moreover, tip links are absent in larvae carrying weak alleles of cdh23 that affect mechanotransduction but not hair bundle integrity. We conclude that Cdh23 is an essential tip link component required for hair-cell mechanotransduction.

  2. Using Model Organisms in an Undergraduate Laboratory to Link Genotype, Phenotype, and the Environment

    ERIC Educational Resources Information Center

    Jacobs-McDaniels, Nicole L.; Maine, Eleanor M.; Albertson, R. Craig; Wiles, Jason R.

    2013-01-01

    We developed laboratory exercises using zebrafish ("Danio rerio") and nematodes ("Caenorhabditis elegans") for a sophomore-level Integrative Biology Laboratory course. Students examined live wildtype zebrafish at different stages of development and noted shifts occurring in response to "fgf8a" deficiency. Students were introduced to development in…

  3. EFFECT OF METHYLENE BLUE ON DEVELOPING ZEBRAFISH EMBRYOS Danio rerio

    EPA Science Inventory

    EFFECT OF METHYLENE BLUE ON DEVELOPING ZEBRAFISH EMBRYOS Danio rerioJoan M. Hedge*, Erik Sanders, Kimberly A. Jarema, Deborah Hunter, and Stephanie PadillaIntegrated Systems Toxicology Division, NHEERL, US EPA, Research Triangle Park, NC 27709hedge.joan@epa.govOur laboratory rout...

  4. Developing an Experimental Model of Vascular Toxicity in Embryonic Zebrafish

    EPA Science Inventory

    Developing an Experimental Model of Vascular Toxicity in Embryonic Zebrafish Tamara Tal, Integrated Systems Toxicology Division, U.S. EPA Background: There are tens of thousands of chemicals that have yet to be fully evaluated for their toxicity by validated in vivo testing ...

  5. Development of the zebrafish mesonephros

    PubMed Central

    Diep, Cuong Q.; Peng, Zhenzhen; Ukah, Tobechukwu K.; Kelly, Paul M.; Daigle, Renee V.; Davidson, Alan J.

    2015-01-01

    The vertebrate kidney plays an essential role in removing metabolic waste and balancing water and salt. This is carried out by nephrons, which comprise a blood filter attached to an epithelial tubule with proximal and distal segments. In zebrafish, two nephrons are first formed as part of the embryonic kidney (pronephros) and hundreds are formed later to make up the adult kidney (mesonephros). Previous studies have focused on the development of the pronephros while considerably less is known about how the mesonephros is formed. Here, we characterize mesonephros development in zebrafish and examine the nephrons that form during larval metamorphosis. These nephrons, arising from proliferating progenitor cells that express the renal transcription factor genes wt1b, pax2a, and lhx1a, form on top of the pronephric tubules and develop a segmentation pattern similar to pronephric nephrons. We find that the pronephros acts as a scaffold for the mesonephros, where new nephrons fuse with the distal segments of the pronephric tubules to form the final branching network that characterizes the adult zebrafish kidney. PMID:25677367

  6. The effect of MRN complex and ATM kinase inhibitors on Zebrafish embryonic development

    NASA Astrophysics Data System (ADS)

    Kumaran, Malina; Fazry, Shazrul

    2018-04-01

    Zebrafish is an ideal animal model to study developmental biology due to its transparent embryos and rapid development stages of embryogenesis. Here we investigate the role of DNA damage proteins, specifically Mre11/Rad50/NBN (MRN) complex and ataxia-telangiectasia mutated (ATM) kinase during embryogenesis by inhibiting its function using specific MRN complex (Mirin) and ATM Kinase inhibitors (Ku60019 and Ku55933). Zebrafish embryos at midblastula transition (MBT) stage are treated with Mirin, Ku60019 and Ku55933. The embryonic development of the embryos was monitored at 24 hours-post fertilisation (hpf), 48 hpf and 72 hpf. We observed that at the lowest concentrations (3 µM of Mirin, 1.5 nM of Ku60019 and 3 nM of Ku55933), the inhibitors treated embryos have 100% survivability. However, with increasing inhibitor concentration, the survivability drops. Control or mock treatment of all embryos shows 100 % survivability rate. This study suggests that DNA damage repair proteins may be crucial for normal zebrafish embryo development and survival.

  7. Effects of acute changes in salinity and temperature on routine metabolism and nitrogen excretion in gambusia (Gambusia affinis) and zebrafish (Danio rerio).

    PubMed

    Uliano, E; Cataldi, M; Carella, F; Migliaccio, O; Iaccarino, D; Agnisola, C

    2010-11-01

    Acute stress may affect metabolism and nitrogen excretion as part of the adaptive response that allows animals to face adverse environmental changes. In the present paper the acute effects of different salinities and temperatures on routine metabolism, spontaneous activity and excretion of ammonia and urea were studied in two freshwater fish: gambusia, Gambusia affinis and zebrafish, Danio rerio, acclimated to 27 degrees C. The effects on gill morphology were also evaluated. Five salinities (0 per thousand, 10 per thousand, 20 per thousand, 30 per thousand and 35 per thousand) were tested in gambusia, while four salinities were used in zebrafish (0 per thousand, 10 per thousand, 20 per thousand and 25 per thousand). Each salinity acute stress was tested alone or in combination with an acute temperature reduction to 20 degrees C. In gambusia, both salinity and temperature acute stress strongly stimulated urea excretion. Routine oxygen consumption was barely affected by acute salinity or temperature stress, and was reduced by the combined effects of temperature and high salinity. Gills maintained their structural integrity in all stressing conditions; hyperplasia and hypertrophy of mitochondria-rich cells were observed. In zebrafish, temperature and salinity acute changes, both alone and in combination, scarcely affected any parameter tested. The major effect observed was a reduction of nitrogen excretion at 20 degrees C-25 per thousand; under these extreme conditions a significant structural disruption of gills was observed. These results confirm the high tolerance to acute salinity and temperature stress in gambusia, and demonstrate the involvement of urea excretion modulation in the stress response in this species. Copyright 2010 Elsevier Inc. All rights reserved.

  8. Development of mandibular, hyoid and hypobranchial muscles in the zebrafish: homologies and evolution of these muscles within bony fishes and tetrapods

    PubMed Central

    Diogo, Rui; Hinits, Yaniv; Hughes, Simon M

    2008-01-01

    Background During vertebrate head evolution, muscle changes accompanied radical modification of the skeleton. Recent studies have suggested that muscles and their innervation evolve less rapidly than cartilage. The freshwater teleostean zebrafish (Danio rerio) is the most studied actinopterygian model organism, and is sometimes taken to represent osteichthyans as a whole, which include bony fishes and tetrapods. Most work concerning zebrafish cranial muscles has focused on larval stages. We set out to describe the later development of zebrafish head muscles and compare muscle homologies across the Osteichthyes. Results We describe one new muscle and show that the number of mandibular, hyoid and hypobranchial muscles found in four day-old zebrafish larvae is similar to that found in the adult. However, the overall configuration and/or the number of divisions of these muscles change during development. For example, the undivided adductor mandibulae of early larvae gives rise to the adductor mandibulae sections A0, A1-OST, A2 and Aω, and the protractor hyoideus becomes divided into dorsal and ventral portions in adults. There is not always a correspondence between the ontogeny of these muscles in the zebrafish and their evolution within the Osteichthyes. All of the 13 mandibular, hyoid and hypobranchial muscles present in the adult zebrafish are found in at least some other living teleosts, and all except the protractor hyoideus are found in at least some extant non-teleost actinopterygians. Of these muscles, about a quarter (intermandibularis anterior, adductor mandibulae, sternohyoideus) are found in at least some living tetrapods, and a further quarter (levator arcus palatini, adductor arcus palatini, adductor operculi) in at least some extant sarcopterygian fish. Conclusion Although the zebrafish occupies a rather derived phylogenetic position within actinopterygians and even within teleosts, with respect to the mandibular, hyoid and hypobranchial muscles it seems justified to consider it an appropriate representative of these two groups. Among these muscles, the three with clear homologues in tetrapods and the further three identified in sarcopterygian fish are particularly appropriate for comparisons of results between the actinopterygian zebrafish and the sarcopterygians. PMID:18307809

  9. Effects of simulated microgravity on the development of the swimbladder and buoyancy control in larval zebrafish (Danio rerio).

    PubMed

    Lindsey, Benjamin W; Dumbarton, Tristan C; Moorman, Stephen J; Smith, Frank M; Croll, Roger P

    2011-06-01

    The gas-filled swimbladder of teleost fishes provides hydrodynamic lift which counteracts the high density of other body tissues, and thereby allows the fish to achieve neutral buoyancy with minimal energy expenditure. In this study, we examined whether the absence of a constant direction gravitational vector affects the ontogeny of the swimbladder and buoyancy control in zebrafish (Danio rerio). We exposed fertilized eggs to simulated microgravity (SMG) in a closed rotating wall vessel with control eggs placed in a similar but nonrotating container. All eggs hatched in both groups. At 96 hr of postfertilization (hpf), all larvae were removed from the experimental and control vessels. At this point, 62% of the control larvae, but only 14% of SMG-exposed larvae, were observed to have inflated their swimbladder. In addition, the mean volume of the inflated swimbladders was significantly greater in the control larvae compared with larvae raised in SMG. After transfer to open stationary observation tanks, larvae with uninflated swimbladders in both groups swam to the surface to complete inflation, but this process was significantly delayed in larvae exposed to SMG. Initial differences in swimbladder inflation and volume between groups disappeared by 144 hpf. Furthermore, there were no apparent changes in patterns of development and maturation of swimbladder musculature, vasculature, or innervation resulting from SMG exposure at later stages of ontogeny. These data indicate that, despite a transient delay in swimbladder inflation in zebrafish larvae exposed to SMG, subsequent swimbladder development in these animals proceeded similarly to that in normal larvae. Copyright © 2011 Wiley-Liss, Inc., A Wiley Company.

  10. Nom1 Mediates Pancreas Development by Regulating Ribosome Biogenesis in Zebrafish

    PubMed Central

    Qin, Wei; Chen, Zelin; Zhang, Yihan; Yan, Ruibin; Yan, Guanrong; Li, Song; Zhong, Hanbing; Lin, Shuo

    2014-01-01

    Ribosome biogenesis is an important biological process for proper cellular function and development. Defects leading to improper ribosome biogenesis can cause diseases such as Diamond-Blackfan anemia and Shwachman-Bodian-Diamond syndrome. Nucleolar proteins are a large family of proteins and are involved in many cellular processes, including the regulation of ribosome biogenesis. Through a forward genetic screen and positional cloning, we identified and characterized a zebrafish line carrying mutation in nucleolar protein with MIF4G domain 1 (nom1), which encodes a conserved nulceolar protein with a role in pre-rRNA processing. Zebrafish nom1 mutants exhibit major defects in endoderm development, especially in exocrine pancreas. Further studies revealed that impaired proliferation of ptf1a-expressing pancreatic progenitor cells mainly contributed to the phenotype. RNA-seq and molecular analysis showed that ribosome biogenesis and pre-mRNA splicing were both affected in the mutant embryos. Several defects of ribosome assembly have been shown to have a p53-dependent mechanism. In the nom1 mutant, loss of p53 did not rescue the pancreatic defect, suggesting a p53-independent role. Further studies indicate that protein phosphatase 1 alpha, an interacting protein to Nom1, could partially rescue the pancreatic defect in nom1 morphants if a human nucleolar localization signal sequence was artificially added. This suggests that targeting Pp1α into the nucleolus by Nom1 is important for pancreatic proliferation. Altogether, our studies revealed a new mechanism involving Nom1 in controlling vertebrate exocrine pancreas formation. PMID:24967912

  11. Effect of hunger level and time of day on boldness and aggression in the zebrafish Danio rerio.

    PubMed

    Ariyomo, T O; Watt, P J

    2015-06-01

    The effect of two environmental variables, hunger level (fed or not fed before behavioural assays) and time of day (morning or afternoon), on the boldness and aggressiveness of male and female zebrafish Danio rerio, was tested. The results showed that neither hunger level nor time of testing influenced boldness in males and females, but hunger level significantly affected aggression in females when compared with males. © 2015 The Fisheries Society of the British Isles.

  12. The role of apoptosis in MCLR-induced developmental toxicity in zebrafish embryos.

    PubMed

    Zeng, Cheng; Sun, Hong; Xie, Ping; Wang, Jianghua; Zhang, Guirong; Chen, Nan; Yan, Wei; Li, Guangyu

    2014-04-01

    We previously demonstrated that cyanobacteria-derived microcystin-leucine-arginine (MCLR) is able to induce developing toxicity, such as malformation, growth delay and also decreased heart rates in zebrafish embryos. However, the molecular mechanisms by which MCLR induces its toxicity during the development of zebrafish remain largely unknown. Here, we evaluate the role of apoptosis in MCLR-induced developmental toxicity. Zebrafish embryos were exposed to various concentrations of MCLR (0, 0.2, 0.5, 2, and 5.0 mg L(-1)) for 96 h, at which time reactive oxygen species (ROS) was significantly induced in the 2 and 5.0 mg L(-1) MCLR exposure groups. Acridine orange (AO) staining and terminal deoxynucleotide transferase-mediated deoxy-UTP nick end labelling (TUNEL) assay showed that MCLR exposure resulted in cell apoptosis. To test the apoptotic pathway, the expression pattern of several apoptotic-related genes was examined for the level of enzyme activity, gene and protein expression, respectively. The overall results demonstrate that MCLR induced ROS which consequently triggered apoptosis in the heart of developing zebrafish embryos. Our results also indicate that the p53-Bax-Bcl-2 pathway and the caspase-dependent apoptotic pathway play major roles in MCLR-induced apoptosis in the developing embryos. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. The Ndst Gene Family in Zebrafish: Role of Ndst1b in Pharyngeal Arch Formation

    PubMed Central

    Haitina, Tatjana; Habicher, Judith; Ledin, Johan; Kjellén, Lena

    2015-01-01

    Heparan sulfate (HS) proteoglycans are ubiquitous components of the extracellular matrix and plasma membrane of metazoans. The sulfation pattern of the HS glycosaminoglycan chain is characteristic for each tissue and changes during development. The glucosaminyl N-deacetylase/N-sulfotransferase (NDST) enzymes catalyze N-deacetylation and N-sulfation during HS biosynthesis and have a key role in designing the sulfation pattern. We here report on the presence of five NDST genes in zebrafish. Zebrafish ndst1a, ndst1b, ndst2a and ndst2b represent duplicated mammalian orthologues of NDST1 and NDST2 that arose through teleost specific genome duplication. Interestingly, the single zebrafish orthologue ndst3, is equally similar to tetrapod Ndst3 and Ndst4. It is likely that a local duplication in the common ancestor of lobe-finned fish and tetrapods gave rise to these two genes. All zebrafish Ndst genes showed distinct but partially overlapping expression patterns during embryonic development. Morpholino knockdown of ndst1b resulted in delayed development, craniofacial cartilage abnormalities, shortened body and pectoral fin length, resembling some of the features of the Ndst1 mouse knockout. PMID:25767878

  14. Developmental exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin alters DNA methyltransferase (dnmt) expression in zebrafish (Danio rerio)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aluru, Neelakanteswar, E-mail: naluru@whoi.edu; Kuo, Elaine; Stanford University, 450 Serra Mall, Stanford, CA 94305

    2015-04-15

    DNA methylation is one of the most important epigenetic modifications involved in the regulation of gene expression. The DNA methylation reaction is catalyzed by DNA methyltransferases (DNMTs). Recent studies have demonstrated that toxicants can affect normal development by altering DNA methylation patterns, but the mechanisms of action are poorly understood. Hence, we tested the hypothesis that developmental exposure to TCDD affects dnmt gene expression patterns. Zebrafish embryos were exposed to 5 nM TCDD for 1 h from 4 to 5 h post-fertilization (hpf) and sampled at 12, 24, 48, 72, and 96 hpf to determine dnmt gene expression and DNAmore » methylation patterns. We performed a detailed analysis of zebrafish dnmt gene expression during development and in adult tissues. Our results demonstrate that dnmt3b genes are highly expressed in early stages of development, and dnmt3a genes are more abundant in later stages. TCDD exposure upregulated dnmt1 and dnmt3b2 expression, whereas dnmt3a1, 3b1, and 3b4 are downregulated following exposure. We did not observe any TCDD-induced differences in global methylation or hydroxymethylation levels, but the promoter methylation of aryl hydrocarbon receptor (AHR) target genes was altered. In TCDD-exposed embryos, AHR repressor a (ahrra) and c-fos promoters were differentially methylated. To characterize the TCDD effects on DNMTs, we cloned the dnmt promoters with xenobiotic response elements and conducted AHR transactivation assays using a luciferase reporter system. Our results suggest that ahr2 can regulate dnmt3a1, dnmt3a2, and dnmt3b2 expression. Overall, we demonstrate that developmental exposure to TCDD alters dnmt expression and DNA methylation patterns. - Highlights: • TCDD altered the dnmt expression in a gene and developmental time-specific manner. • TCDD hypermethylated ahrra and hypomethylated c-fos proximal promoter regions. • Functional analysis suggests that ahr2 can regulate dnmt3a1, 3a2, and 3b2 expression. • Dnmt3b genes are expressed early whereas dnmt3a are abundant later in development.« less

  15. Augmenter of Liver Regeneration (alr) Promotes Liver Outgrowth during Zebrafish Hepatogenesis

    PubMed Central

    Li, Yan; Farooq, Muhammad; Sheng, Donglai; Chandramouli, Chanchal; Lan, Tian; Mahajan, Nilesh K.; Kini, R. Manjunatha; Hong, Yunhan; Lisowsky, Thomas; Ge, Ruowen

    2012-01-01

    Augmenter of Liver Regeneration (ALR) is a sulfhydryl oxidase carrying out fundamental functions facilitating protein disulfide bond formation. In mammals, it also functions as a hepatotrophic growth factor that specifically stimulates hepatocyte proliferation and promotes liver regeneration after liver damage or partial hepatectomy. Whether ALR also plays a role during vertebrate hepatogenesis is unknown. In this work, we investigated the function of alr in liver organogenesis in zebrafish model. We showed that alr is expressed in liver throughout hepatogenesis. Knockdown of alr through morpholino antisense oligonucleotide (MO) leads to suppression of liver outgrowth while overexpression of alr promotes liver growth. The small-liver phenotype in alr morphants results from a reduction of hepatocyte proliferation without affecting apoptosis. When expressed in cultured cells, zebrafish Alr exists as dimer and is localized in mitochondria as well as cytosol but not in nucleus or secreted outside of the cell. Similar to mammalian ALR, zebrafish Alr is a flavin-linked sulfhydryl oxidase and mutation of the conserved cysteine in the CxxC motif abolishes its enzymatic activity. Interestingly, overexpression of either wild type Alr or enzyme-inactive AlrC131S mutant promoted liver growth and rescued the liver growth defect of alr morphants. Nevertheless, alr C131S is less efficacious in both functions. Meantime, high doses of alr MOs lead to widespread developmental defects and early embryonic death in an alr sequence-dependent manner. These results suggest that alr promotes zebrafish liver outgrowth using mechanisms that are dependent as well as independent of its sulfhydryl oxidase activity. This is the first demonstration of a developmental role of alr in vertebrate. It exemplifies that a low-level sulfhydryl oxidase activity of Alr is essential for embryonic development and cellular survival. The dose-dependent and partial suppression of alr expression through MO-mediated knockdown allows the identification of its late developmental role in vertebrate liver organogenesis. PMID:22292055

  16. Labelling and targeted ablation of specific bipolar cell types in the zebrafish retina

    PubMed Central

    2009-01-01

    Background Development of a functional retina depends on regulated differentiation of several types of neurons and generation of a highly complex network between the different types of neurons. In addition, each type of retinal neuron includes several distinct morphological types. Very little is known about the mechanisms responsible for generating this diversity of retinal neurons, which may also display specific patterns of regional distribution. Results In a screen in zebrafish, using a trapping vector carrying an engineered yeast Gal4 transcription activator and a UAS:eGFP reporter cassette, we have identified two transgenic lines of zebrafish co-expressing eGFP and Gal4 in specific subsets of retinal bipolar cells. The eGFP-labelling facilitated analysis of axon terminals within the inner plexiform layer of the adult retina and showed that the fluorescent bipolar cells correspond to previously defined morphological types. Strong regional restriction of eGFP-positive bipolar cells to the central part of the retina surrounding the optic nerve was observed in adult zebrafish. Furthermore, we achieved specific ablation of the labelled bipolar cells in 5 days old larvae, using a bacterial nitroreductase gene under Gal4-UAS control in combination with the prodrug metronidazole. Following prodrug treatment, nitroreductase expressing bipolar cells were efficiently ablated without affecting surrounding retina architecture, and recovery occurred within a few days due to increased generation of new bipolar cells. Conclusion This report shows that enhancer trapping can be applied to label distinct morphological types of bipolar cells in the zebrafish retina. The genetic labelling of these cells yielded co-expression of a modified Gal4 transcription activator and the fluorescent marker eGFP. Our work also demonstrates the potential utility of the Gal4-UAS system for induction of other transgenes, including a bacterial nitroreductase fusion gene, which can facilitate analysis of bipolar cell differentiation and how the retina recovers from specific ablation of these cells. PMID:19712466

  17. Embryonic exposure to carbendazim induces the transcription of genes related to apoptosis, immunotoxicity and endocrine disruption in zebrafish (Danio rerio).

    PubMed

    Jiang, Jinhua; Wu, Shenggan; Wu, Changxing; An, Xuehua; Cai, Leiming; Zhao, Xueping

    2014-12-01

    Carbendazim is one of the most widespread environmental contaminant that can cause major concern to human and animal reproductive system. To date, very few studies have been conducted on the toxic effect of carbendazim in the non-target organism zebrafish (Danio rerio). The study presented here aimed to assess how carbendazim triggers apoptosis, immunotoxicity and endocrine disruption pathways in zebrafish during its embryo development. Our results demonstrated that the expression patterns of many key genes involved in cell apoptosis pathway (e.g. P53, Mdm2, Bbc3 and Cas8) were significantly up-regulated upon the exposure to carbendazim at the concentration of 500 μg/L, while the Bcl2 and Cas3 were down-regulated at the same concentration, interestingly, the expression level of Ogg1 decreased at all the exposure concentrations. It was also observed that the mRNA levels of CXCL-C1C, CCL1, IL-1b and TNFα which were closely related to the innate immune system, were affected in newly hatched zebrafish after exposed to different concentrations of carbendazim. Moreover, the expression of genes that are involved in the hypothalamic-pituitary-gonadal/thyroid (HPG/HPT) axis including VTG, ERα, ERβ2, Dio1, Dio2, Thraa and Thrb were all down-regulated significantly after the exposure to carbendazim. The expression levels of two cytochrome P450 aromatases CYP19a and CYP19b were increased significantly after 20 and 100 μg/L carbendazim exposure, respectively. Taken together, our results indicated that carbendazim had the potential to induce cell apoptosis and cause immune toxicity as well as endocrine disruption in zebrafish during the embryo developmental stage. The information presented here also help to elucidate the environmental risks caused by the carbendazim-induced toxicity in aquatic organisms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Developmental Toxicity of Zinc Oxide Nanoparticles to Zebrafish (Danio rerio): A Transcriptomic Analysis

    PubMed Central

    Choi, Jin Soo; Kim, Ryeo-Ok; Yoon, Seokjoo

    2016-01-01

    Zinc oxide nanoparticles (ZnO NPs) are being utilized in an increasing number of fields and commercial applications. While their general toxicity and associated oxidative stress have been extensively studied, the toxicological pathways that they induce in developmental stages are still largely unknown. In this study, the developmental toxicity of ZnO NPs to embryonic/larval zebrafish was investigated. The transcriptional expression profiles induced by ZnO NPs were also investigated to ascertain novel genomic responses related to their specific toxicity pathway. Zebrafish embryos were exposed to 0.01, 0.1, 1, and 10 mg/L ZnO NPs for 96 h post-fertilization. The toxicity of ZnO NPs, based on their Zn concentration, was quite similar to that in embryonic/larval zebrafish exposed to corresponding ZnSO4 concentrations. Pericardial edema and yolk-sac edema were the principal malformations induced by ZnO NPs. Gene-expression profiling using microarrays demonstrated 689 genes that were differentially regulated (fold change >1.5) following exposure to ZnO NPs (498 upregulated, 191 downregulated). Several genes that were differentially regulated following ZnO NP exposure shared similar biological pathways with those observed with ZnSO4 exposure, but six genes (aicda, cyb5d1, edar, intl2, ogfrl2 and tnfsf13b) associated with inflammation and the immune system responded specifically to ZnO NPs (either in the opposite direction or were unchanged in ZnSO4 exposure). Real-time reverse-transcription quantitative polymerase chain reaction confirmed that the responses of these genes to ZnO NPs were significantly different from their response to ZnSO4 exposure. ZnO NPs may affect genes related to inflammation and the immune system, resulting in yolk-sac edema and pericardia edema in embryonic/larval developmental stages. These results will assist in elucidating the mechanisms of toxicity of ZnO NPs during development of zebrafish. PMID:27504894

  19. Effect of X-ray Contrast Media, Chlorination, and Chloramination on Zebrafish Development

    EPA Science Inventory

    Effect of X-ray Contrast Media, Chlorination, and Chloramination on Zebrafish Development Little is known about the vertebrate developmental toxicity of chlorinated or chloraminated drinking water (DW), iodinated X-ray contrast media (ICM, a common contaminate of DW) or how the c...

  20. Nanomaterial Toxicity Screening in Developing Zebrafish Embryos

    EPA Science Inventory

    To assess nanomaterial vertebrate toxicity, a high-content screening assay was created using developing zebrafish, Danio rerio. This included a diverse group of nanomaterials (n=42 total) ranging from metallic (Ag, Au) and metal oxide (CeO2, CuO, TiO2, ZnO) nanoparticles, to non...

  1. Behavorial Screens for Detecting Developmental Neurotoxicity in Larval Zebrafish

    EPA Science Inventory

    As part of the EPA's effort to develop an in vivo, vertebrate screen for toxic chemicals, we have characterized basic behaviors of 6-day post-fertilization (dpf) zebrafish (Danio rerio) larvae in a microtiter plate format. Our main goal is to develop a convenient, reproducible me...

  2. Effect of social isolation on anxiety-related behaviors, cortisol, and monoamines in adult zebrafish.

    PubMed

    Shams, Soaleha; Seguin, Diane; Facciol, Amanda; Chatterjee, Diptendu; Gerlai, Robert

    2017-12-01

    Social isolation can be used to study behavioral, neural, and hormonal mechanisms that regulate interactions in social animals. Although isolation effects have been reported in social mammals and various fish species, systematic studies with isolated zebrafish are rare. Here, the authors examined behavior (social and nonsocial), physiological stress (whole-body cortisol levels), and neurochemicals (serotonin, dopamine, and their metabolites), following acute and chronic social isolation in adult zebrafish. To observe how isolated fish respond behaviorally to social stimuli, they exposed zebrafish to live conspecifics or animated images after acute (24 hr) or chronic (6 months) social isolation. The authors observed that isolation did not affect locomotor activity, but acute isolation had weak nonsignificant anxiogenic effects in adult zebrafish. They also found that all isolated fish responded to both live and animated social stimuli, and the stress hormone, cortisol was lower in chronically isolated fish. Finally, neurochemical analyses showed that serotonin levels increased when fish were exposed to social stimulus after acute isolation, but its metabolite 5HIAA decreased in response to social stimulus following both acute and chronic isolation. Levels of both dopamine and its metabolite DOPAC were also reduced in fish exposed to social stimulus after acute and chronic isolation. Overall, these results show that isolation in zebrafish is an effective tool to study fundamental mechanisms controlling social interaction at behavioral and physiological levels. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  3. Waterborne fluoride exposure changed the structure and the expressions of steroidogenic-related genes in gonads of adult zebrafish (Danio rerio).

    PubMed

    Li, MeiYan; Cao, Jinling; Chen, Jianjie; Song, Jie; Zhou, Bingrui; Feng, Cuiping; Wang, Jundong

    2016-02-01

    Excessive fluoride in natural water ecosystem has been demonstrated to have adverse effects on reproductive system in humans and mammals, while the most vulnerable aquatic organisms were ignored. In this study, the effects of waterborne fluoride on growth performance, sex steroid hormone, histological structure, and the transcriptional profiles of sex steroid related genes were examined in both female and male zebrafish exposed to different concentrations of 0.79, 18.60, 36.83 mg L(-1) of fluoride for 30 and 60 d to investigate the effects of fluoride on reproductive system and the underlying toxic mechanisms caused by fluoride. The results showed that the body weight was remarkably decreased, the structure of ovary and testis were serious injured, and the T and E2 levels were significantly reduced in male zebrafish. The transcriptional profiles of steroidogenic related genes displayed phenomenal alterations, the expressions of pgr and cyp19a1a were significantly up-regulated, while the transcriptional levels of er, ar and hsd3β were decreased both in the ovary and testis, and hsd17β8 were down-regulated just in males. Taken together, these results demonstrated that fluoride could significantly inhibit the growth of zebrafish, and notably affect the reproductive system in both sex zebrafish by impairing the structure of ovary and testis, altering steroid hormone levels and steroidogenic genes expression related to the synthesis of sex hormones in zebrafish. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Morphometric analysis and neuroanatomical mapping of the zebrafish brain.

    PubMed

    Gupta, Tripti; Marquart, Gregory D; Horstick, Eric J; Tabor, Kathryn M; Pajevic, Sinisa; Burgess, Harold A

    2018-06-21

    Large-scale genomic studies have recently identified genetic variants causative for major neurodevelopmental disorders, such as intellectual disability and autism. However, determining how underlying developmental processes are affected by these mutations remains a significant challenge in the field. Zebrafish is an established model system in developmental neurogenetics that may be useful in uncovering the mechanisms of these mutations. Here we describe the use of voxel-intensity, deformation field, and volume-based morphometric techniques for the systematic and unbiased analysis of gene knock-down and environmental exposure-induced phenotypes in zebrafish. We first present a computational method for brain segmentation based on transgene expression patterns to create a comprehensive neuroanatomical map. This map allowed us to disclose statistically significant changes in brain microstructure and composition in neurodevelopmental models. We demonstrate the effectiveness of morphometric techniques in measuring changes in the relative size of neuroanatomical subdivisions in atoh7 morphant larvae and in identifying phenotypes in larvae treated with valproic acid, a chemical demonstrated to increase the risk of autism in humans. These tools enable rigorous evaluation of the effects of gene mutations and environmental exposures on neural development, providing an entry point for cellular and molecular analysis of basic developmental processes as well as neurodevelopmental and neurodegenerative disorders. Published by Elsevier Inc.

  5. Muscle contraction controls skeletal morphogenesis through regulation of chondrocyte convergent extension.

    PubMed

    Shwartz, Yulia; Farkas, Zsuzsanna; Stern, Tomer; Aszódi, Attila; Zelzer, Elazar

    2012-10-01

    Convergent extension driven by mediolateral intercalation of chondrocytes is a key process that contributes to skeletal growth and morphogenesis. While progress has been made in deciphering the molecular mechanism that underlies this process, the involvement of mechanical load exerted by muscle contraction in its regulation has not been studied. Using the zebrafish as a model system, we found abnormal pharyngeal cartilage morphology in both chemically and genetically paralyzed embryos, demonstrating the importance of muscle contraction for zebrafish skeletal development. The shortening of skeletal elements was accompanied by prominent changes in cell morphology and organization. While in control the cells were elongated, chondrocytes in paralyzed zebrafish were smaller and exhibited a more rounded shape, confirmed by a reduction in their length-to-width ratio. The typical columnar organization of cells was affected too, as chondrocytes in various skeletal elements exhibited abnormal stacking patterns, indicating aberrant intercalation. Finally, we demonstrate impaired chondrocyte intercalation in growth plates of muscle-less Sp(d) mouse embryos, implying the evolutionary conservation of muscle force regulation of this essential morphogenetic process.Our findings provide a new perspective on the regulatory interaction between muscle contraction and skeletal morphogenesis by uncovering the role of muscle-induced mechanical loads in regulating chondrocyte intercalation in two different vertebrate models. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. In vivo and in vitro biophysical properties of hair cells from the lateral line and inner ear of developing and adult zebrafish.

    PubMed

    Olt, Jennifer; Johnson, Stuart L; Marcotti, Walter

    2014-05-15

    Hair cells detect and process sound and movement information, and transmit this with remarkable precision and efficiency to afferent neurons via specialized ribbon synapses. The zebrafish is emerging as a powerful model for genetic analysis of hair cell development and function both in vitro and in vivo. However, the full exploitation of the zebrafish is currently limited by the difficulty in obtaining systematic electrophysiological recordings from hair cells under physiological recording conditions. Thus, the biophysical properties of developing and adult zebrafish hair cells are largely unknown. We investigated potassium and calcium currents, voltage responses and synaptic activity in hair cells from the lateral line and inner ear in vivo and using near-physiological in vitro recordings. We found that the basolateral current profile of hair cells from the lateral line becomes more segregated with age, and that cells positioned in the centre of the neuromast show more mature characteristics and those towards the edge retain a more immature phenotype. The proportion of mature-like hair cells within a given neuromast increased with zebrafish development. Hair cells from the inner ear showed a developmental change in current profile between the juvenile and adult stages. In lateral line hair cells from juvenile zebrafish, exocytosis also became more efficient and required less calcium for vesicle fusion. In hair cells from mature zebrafish, the biophysical characteristics of ion channels and exocytosis resembled those of hair cells from other lower vertebrates and, to some extent, those in the immature mammalian vestibular and auditory systems. We show that although the zebrafish provides a suitable animal model for studies on hair cell physiology, it is advisable to consider that the age at which the majority of hair cells acquire a mature-type configuration is reached only in the juvenile lateral line and in the inner ear from >2 months after hatching. © 2014 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.

  7. Oceans of opportunity: exploring vertebrate hematopoiesis in zebrafish.

    PubMed

    Carroll, Kelli J; North, Trista E

    2014-08-01

    Exploitation of the zebrafish model in hematology research has surged in recent years, becoming one of the most useful and tractable systems for understanding regulation of hematopoietic development, homeostasis, and malignancy. Despite the evolutionary distance between zebrafish and humans, remarkable genetic and phenotypic conservation in the hematopoietic system has enabled significant advancements in our understanding of blood stem and progenitor cell biology. The strengths of zebrafish in hematology research lie in the ability to perform real-time in vivo observations of hematopoietic stem, progenitor, and effector cell emergence, expansion, and function, as well as the ease with which novel genetic and chemical modifiers of specific hematopoietic processes or cell types can be identified and characterized. Further, myriad transgenic lines have been developed including fluorescent reporter systems to aid in the visualization and quantification of specified cell types of interest and cell-lineage relationships, as well as effector lines that can be used to implement a wide range of experimental manipulations. As our understanding of the complex nature of blood stem and progenitor cell biology during development, in response to infection or injury, or in the setting of hematologic malignancy continues to deepen, zebrafish will remain essential for exploring the spatiotemporal organization and integration of these fundamental processes, as well as the identification of efficacious small molecule modifiers of hematopoietic activity. In this review, we discuss the biology of the zebrafish hematopoietic system, including similarities and differences from mammals, and highlight important tools currently utilized in zebrafish embryos and adults to enhance our understanding of vertebrate hematology, with emphasis on findings that have impacted our understanding of the onset or treatment of human hematologic disorders and disease. Copyright © 2014 ISEH - International Society for Experimental Hematology. Published by Elsevier Inc. All rights reserved.

  8. Oceans of Opportunity: Exploring Vertebrate Hematopoiesis in Zebrafish

    PubMed Central

    Carroll, Kelli J.; North, Trista E.

    2015-01-01

    Exploitation of the zebrafish model in hematology research has surged in recent years, becoming one of the most useful and tractable systems for understanding regulation of hematopoietic development, homeostasis, and malignancy. Despite the evolutionary distance between zebrafish and humans, remarkable genetic and phenotypic conservation in the hematopoietic system has enabled significant advancements in our understanding of blood stem and progenitor cell (HSPC) biology. The strengths of zebrafish in hematology research lie in the ability to perform real-time in vivo observations of hematopoietic stem, progenitor and effector cell emergence, expansion and function, as well as the ease with which novel genetic and chemical modifiers of specific hematopoietic processes or cell-types can be identified and characterized. Further, a myriad of transgenic lines have been developed including fluorescent reporter systems to aid in the visualization and quantification of specified cell types of interest and cell-lineage relationships, as well as effector lines that can be used to implement a wide range of experimental manipulations. As our understanding of the complex nature of HSPC biology during development, in response to infection or injury, or in the setting of hematological malignancy, continues to deepen, zebrafish will remain essential for exploring the spatio-temporal organization and integration of these fundamental processes, as well as the identification of efficacious small molecule modifiers of hematopoietic activity. In this review, we discuss the biology of the zebrafish hematopoietic system, including similarities and differences from mammals, and highlight important tools currently utilized in zebrafish embryos and adults to enhance our understanding of vertebrate hematology, with emphasis on findings that have impacted our understanding of the onset or treatment of human hematologic disorders and disease. PMID:24816275

  9. Long-term in vivo study of vertebrate embryonic development using noninvasive harmonics optical microscopy

    NASA Astrophysics Data System (ADS)

    Chen, Szu-Yu; Hsieh, C.-S.; Chu, S.-W.; Lin, Cheng-Yung; Ko, C.-Y.; Chen, Y.-C.; Tsai, Huai-Jen; Hu, C.-H.; Sun, Chi-Kuang

    2005-03-01

    Harmonics optical microscopy (HOM) provides a truly "noninvasive" tool for in vivo and long-term study of vertebrate embryonic development. Based on the nonlinear natures, it provides sub-micrometer 3D spatial resolution and high 3D optical-sectioning power (~1μm axial resolution) without using invasive and toxic fluorophores. Since only virtual-level-transition is involved, HOM is known to leave no energy deposition and no photodamages. Combined with second harmonic generation, which is sensitive to specific structure such as nerve and muscle fibers, HOM can be used to do functional studies of early developmental dynamics of many vertebrate physiological systems. Recently, zebrafish has become a standard model for many biological and medical studies of vertebrates, due to the similarity between embryonic development of zebrafish and human being. Zebrafish embryos now have been used to study many vertebrate physiological systems. We have demonstrated an in vivo HOM study of developmental dynamics of several embryonic physiological systems in live zebrafish embryos, with focuses on the developments of brains, eyes, ears, and hearts. Based on a femtosecond Cr:forsterite laser, which provides the deepest penetration (~1.5mm) and least photodamage in the zebrafish embryo, complete developing processes of different physiological systems within a period of time longer than 20 hours can be non-invasively observed inside the same embryo.

  10. Effects of ibuprofen, diclofenac and paracetamol on hatch and motor behavior in developing zebrafish (Danio rerio).

    PubMed

    Xia, Liang; Zheng, Liang; Zhou, Jun Liang

    2017-09-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) which are widely used as pain relief medicines are causing increasing environmental concern due to their incomplete removal in wastewater treatment plant and potential toxicity on endocrine, kidney and reproduction in teleost fish. This study focused on the effects of widely used ibuprofen, diclofenac and paracetamol on the hatch and motor ability of early-stage zebrafish, by exposing embryos to the target chemicals at 5, 50 and 500 μg/L starting from 6 h postfertilization (hpf). A significant reduction in hatch rate at 55 hpf was caused by both ibuprofen (-63%) and diclofenac (-58%) at 500 μg/L. Exposure to high concentration of ibuprofen significantly decreased the spontaneous movement by 25%, and reduced the free swimming distance, duration and speed under dark condition by 41%, 29% and 30%, respectively. High concentration of diclofenac also caused 23% decrease in spontaneous movement, and reduced the swimming distance as well as active duration by 17% and 13% under light stimulation. In comparison, the exposure to paracetamol did not cause any notable effect. Among neuron related genes tested, the expression of neurog1 was down-regulated from ibuprofen and diclofenac exposure by 19% and 26%, while the expression of neurod1 was up-regulated only by ibuprofen (31%). These findings indicated that ibuprofen and diclofenac significantly affected embryo locomotivity and were potentially neurotoxic, thus posing threats to zebrafish development. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Persistent Oxytetracycline Exposure Induces an Inflammatory Process That Improves Regenerative Capacity in Zebrafish Larvae

    PubMed Central

    Barros-Becker, Francisco; Romero, Jaime; Pulgar, Alvaro; Feijóo, Carmen G.

    2012-01-01

    Background The excessive use of antibiotics in aquaculture can adversely affect not only the environment, but also fish themselves. In this regard, there is evidence that some antibiotics can activate the immune system and reduce their effectiveness. None of those studies consider in detail the adverse inflammatory effect that the antibiotic remaining in the water may cause to the fish. In this work, we use the zebrafish to analyze quantitatively the effects of persistent exposure to oxytetracycline, the most common antibiotic used in fish farming. Methodology We developed a quantitative assay in which we exposed zebrafish larvae to oxytetracycline for a period of 24 to 96 hrs. In order to determinate if the exposure causes any inflammation reaction, we evaluated neutrophils infiltration and quantified their total number analyzing the Tg(mpx:GFP)i114 transgenic line by fluorescence stereoscope, microscope and flow cytometry respectively. On the other hand, we characterized the process at a molecular level by analyzing several immune markers (il-1β, il-10, lysC, mpx, cyp1a) at different time points by qPCR. Finally, we evaluated the influence of the inflammation triggered by oxytetracycline on the regeneration capacity in the lateral line. Conclusions Our results suggest that after 48 hours of exposure, the oxytetracycline triggered a widespread inflammation process that persisted until 96 hours of exposure. Interestingly, larvae that developed an inflammation process showed an improved regeneration capacity in the mechanosensory system lateral line. PMID:22590621

  12. Zebrafish as a model system to study toxicology.

    PubMed

    Dai, Yu-Jie; Jia, Yong-Fang; Chen, Na; Bian, Wan-Ping; Li, Qin-Kai; Ma, Yan-Bo; Chen, Yan-Ling; Pei, De-Sheng

    2014-01-01

    Monitoring and assessing the effects of contaminants in the aquatic eco-environment is critical in protecting human health and the environment. The zebrafish has been widely used as a prominent model organism in different fields because of its small size, low cost, diverse adaptability, short breeding cycle, high fecundity, and transparent embryos. Recent studies have demonstrated that zebrafish sensitivity can aid in monitoring environmental contaminants, especially with the application of transgenic technology in this area. The present review provides a brief overview of recent studies on wild-type and transgenic zebrafish as a model system to monitor toxic heavy metals, endocrine disruptors, and organic pollutants for toxicology. The authors address the new direction of developing high-throughput detection of genetically modified transparent zebrafish to open a new window for monitoring environmental pollutants. © 2013 SETAC.

  13. Satellite-like cells contribute to pax7-dependent skeletal muscle repair in adult zebrafish

    PubMed Central

    Berberoglu, Michael A.; Gallagher, Thomas L.; Morrow, Zachary T.; Talbot, Jared C.; Hromowyk, Kimberly J.; Tenente, Inês M.; Langenau, David M.; Amacher, Sharon L.

    2017-01-01

    Satellite cells, also known as muscle stem cells, are responsible for skeletal muscle growth and repair in mammals. Pax7 and Pax3 transcription factors are established satellite cell markers required for muscle development and regeneration, and there is great interest in identifying additional factors that regulate satellite cell proliferation, differentiation, and/or skeletal muscle regeneration. Due to the powerful regenerative capacity of many zebrafish tissues, even in adults, we are exploring the regenerative potential of adult zebrafish skeletal muscle. Here, we show that adult zebrafish skeletal muscle contains cells similar to mammalian satellite cells. Adult zebrafish satellite-like cells have dense heterochromatin, express Pax7 and Pax3, proliferate in response to injury, and show peak myogenic responses 4–5 days post-injury (dpi). Furthermore, using a pax7a-driven GFP reporter, we present evidence implicating satellite-like cells as a possible source of new muscle. In lieu of central nucleation, which distinguishes regenerating myofibers in mammals, we describe several characteristics that robustly identify newly-forming myofibers from surrounding fibers in injured adult zebrafish muscle. These characteristics include partially overlapping expression in satellite cells and regenerating myofibers of two RNA-binding proteins Rbfox2 and Rbfoxl1, known to regulate embryonic muscle development and function. Finally, by analyzing pax7a; pax7b double mutant zebrafish, we show that Pax7 is required for adult skeletal muscle repair, as it is in the mouse. PMID:28279710

  14. Expression and functional characterization of Smyd1a in myofibril organization of skeletal muscles.

    PubMed

    Gao, Jie; Li, Junling; Li, Bao-Jun; Yagil, Ezra; Zhang, Jianshe; Du, Shao Jun

    2014-01-01

    Smyd1, the founding member of the Smyd family including Smyd-1, 2, 3, 4 and 5, is a SET and MYND domain containing protein that plays a key role in myofibril assembly in skeletal and cardiac muscles. Bioinformatic analysis revealed that zebrafish genome contains two highly related smyd1 genes, smyd1a and smyd1b. Although Smyd1b function is well characterized in skeletal and cardiac muscles, the function of Smyd1a is, however, unknown. To investigate the function of Smyd1a in muscle development, we isolated smyd1a from zebrafish, and characterized its expression and function during muscle development via gene knockdown and transgenic expression approaches. The results showed that smyd1a was strongly expressed in skeletal muscles of zebrafish embryos. Functional analysis revealed that knockdown of smyd1a alone had no significant effect on myofibril assembly in zebrafish skeletal muscles. However, knockdown of smyd1a and smyd1b together resulted in a complete disruption of myofibril organization in skeletal muscles, a phenotype stronger than knockdown of smyd1a or smyd1b alone. Moreover, ectopic expression of zebrafish smyd1a or mouse Smyd1 transgene could rescue the myofibril defects from the smyd1b knockdown in zebrafish embryos. Collectively, these data indicate that Smyd1a and Smyd1b share similar biological activity in myofibril assembly in zebrafish embryos. However, Smyd1b appears to play a major role in this process.

  15. Auditory sensitivity of larval zebrafish (Danio rerio) measured using a behavioral prepulse inhibition assay

    PubMed Central

    Bhandiwad, Ashwin A.; Zeddies, David G.; Raible, David W.; Rubel, Edwin W.; Sisneros, Joseph A.

    2013-01-01

    SUMMARY Zebrafish (Danio rerio) have become a valuable model for investigating the molecular genetics and development of the inner ear in vertebrates. In this study, we employed a prepulse inhibition (PPI) paradigm to assess hearing in larval wild-type (AB) zebrafish during early development at 5–6 days post-fertilization (d.p.f.). We measured the PPI of the acoustic startle response in zebrafish using a 1-dimensional shaker that simulated the particle motion component of sound along the fish's dorsoventral axis. The thresholds to startle-inducing stimuli were determined in 5–6 d.p.f. zebrafish, and their hearing sensitivity was then characterized using the thresholds of prepulse tone stimuli (90–1200 Hz) that inhibited the acoustic startle response to a reliable startle stimulus (820 Hz at 20 dB re. 1 m s−2). Hearing thresholds were defined as the minimum prepulse tone level required to significantly reduce the startle response probability compared with the baseline (no-prepulse) condition. Larval zebrafish showed greatest auditory sensitivity from 90 to 310 Hz with corresponding mean thresholds of −19 to −10 dB re. 1 m s−2, respectively. Hearing thresholds of prepulse tones were considerably lower than previously predicted by startle response assays. The PPI assay was also used to investigate the relative contribution of the lateral line to the detection of acoustic stimuli. After aminoglycoside-induced neuromast hair-cell ablation, we found no difference in PPI thresholds between treated and control fish. We propose that this PPI assay can be used to screen for novel zebrafish hearing mutants and to investigate the ontogeny of hearing in zebrafish and other fishes. PMID:23966590

  16. Reversibility of endocrine disruption in zebrafish (Danio rerio) after discontinued exposure to the estrogen 17α-ethinylestradiol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baumann, Lisa, E-mail: lisa.baumann@vetsuisse.unibe.ch; Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 230, D-69120 Heidelberg; Knörr, Susanne, E-mail: susanne.knoerr@gmx.de

    The aim of the present study was to investigate the persistence of the feminizing effects of discontinued 17α-ethinylestradiol (EE2) exposure on zebrafish (Danio rerio). An exposure scenario covering the sensitive phase of sexual differentiation, as well as final gonad maturation was chosen to examine the estrogenic effects on sexual development of zebrafish. Two exposure scenarios were compared: continuous exposure to environmentally relevant concentrations (0.1–10 ng/L EE2) up to 100 days post-hatch (dph) and developmental exposure up to 60 dph, followed by 40 days of depuration in clean water. The persistence of effects was investigated at different biological organization levels frommore » mRNA to population-relevant endpoints to cover a broad range of important parameters. EE2 had a strong feminizing and inhibiting effect on the sexual development of zebrafish. Brain aromatase (cyp19b) mRNA expression showed no clear response, but vitellogenin levels were significantly elevated, gonad maturation and body growth were inhibited in both genders, and sex ratios were skewed towards females and undifferentiated individuals. To a large extent, all of these effects were reversed after 40 days of recovery, leading to the conclusion that exposure to the estrogen EE2 results in very strong, but reversible underdevelopment and feminization of zebrafish. The present study is the first to show this reversibility at different levels of organization, which gives better insight into the mechanistic basis of estrogenic effects in zebrafish. - Highlights: • Zebrafish were exposed to 17α-ethinylestradiol during their sexual differentiation. • Reversibility of effects was investigated after depuration of 40 days. • Morphological and physiological parameters were compared. • Zebrafish were able to recover at all different levels from mRNA to population.« less

  17. Protein PSMD8 may mediate microgravity-induced cell cycle arrest

    NASA Astrophysics Data System (ADS)

    Hang, Xiaoming; Sun, Yeqing; Xu, Dan; Wu, Di; Chen, Xiaoning

    Microgravity environment of space can induce a serial of changes in cells, such as morphology alterations, cytoskeleton disorder and cell cycle disturbance. Our previous study of simulated-microgravity on zebrafish (Danio rerio) embryos demonstrated 26s proteasome non-ATPase regulatory subunit 8 (PSMD8) might be a microgravity sensitive gene. However, functional study on PSMD8 is very limited and it has not been cloned in zebrafish till now. In this study, we tried to clone PSMD8 gene in zebrafish, quantify its protein expression level in zebrafish embryos after simulated microgravity and identify its possible function in cell cycle regulation. A rotary cell culture system (RCCS) designed by national aeronautics and apace administration (NASA) of America was used to simulate microgravity. The full-length of psmd8 gene in zebrafish was cloned. Preliminary analysis on its sequence and phylogenetic tree construction were carried out subsequently. Quantitative analysis by western blot showed that PSMD8 protein expression levels were significantly increased 1.18 and 1.22 times after 24-48hpf and 24-72hpf simulated microgravity, respectively. Moreover, a significant delay on zebrafish embryo development was found in simulated-microgravity exposed group. Inhibition of PSMD8 protein in zebrafish embryonic cell lines ZF4 could block cell cycle in G1 phase, which indicated that PSMD8 may play a role in cell cycle regulation. Interestingly, simulated-microgravity could also block ZF4 cell in G1 phase. Whether it is PSMD8 mediated cell cycle regulation result in the zebrafish embryo development delay after simulated microgravity exposure still needs further study. Key Words: PSMD8; Simulated-microgravity; Cell cycle; ZF4 cell line

  18. DEVELOPMENT OF AN OBJECTIVE AND QUANTIFIABLE TERATOLOGICAL SCREEN FOR USE IN ZEBRAFISH LARVAE.

    EPA Science Inventory

    To address EPA’s need to prioritize large numbers of chemicals for testing, a rapid, cost-effective in vivo screen for potential developmental toxicity using an alternative vertebrate species (zebrafish;Danio rerio) has been developed. A component of that screen is the observatio...

  19. Ontogeny of Classical and Operant Learning Behaviors in Zebrafish

    ERIC Educational Resources Information Center

    Valente, Andre; Huang, Kuo-Hua; Portugues, Ruben; Engert, Florian

    2012-01-01

    The performance of developing zebrafish in both classical and operant conditioning assays was tested with a particular focus on the emergence of these learning behaviors during development. Strategically positioned visual cues paired with electroshocks were used in two fully automated assays to investigate both learning paradigms. These allow the…

  20. simUfish: An Interactive Application to Teach K-12 Students About Zebrafish Behavior.

    PubMed

    Mwaffo, Violet; Korneyeva, Veronika; Porfiri, Maurizio

    2017-10-01

    As the zebrafish is rapidly becoming a species of choice in preclinical research, several efforts are being placed toward creating educational programs for K-12 students based on this promising model organism. However, as any other model organisms, the use of zebrafish in classroom settings requires additional experimental resources and poses ethical challenges related to animal use. To mitigate these factors, we have developed an application (app), simUfish, which implements a mathematical model of zebrafish behavior for generating multiple fish trajectories and animating their body undulations. simUfish is developed using a multiplatform game engine and is expected to promote the knowledge of zebrafish behavior to both K-12 students and the general public. Specifically, it demonstrates basic principles of fish individual and social behaviors, including environment interaction; fear response toward a predator; shoaling; and attraction toward a stimulus, which can be a food source or simply a finger placed on the touch screen. The effectiveness of the app as an accessible experimental tool for learning was tested in an outreach activity on middle school students from the New York City school system. The results from this activity show an immediate, tangible improvement of students' satisfaction and willingness to learn about key concepts on zebrafish behavior, accompanied by high level of interest in life sciences.

  1. Differential Lectin Binding Patterns Identify Distinct Heart Regions in Giant Danio (Devario aequipinnatus) and Zebrafish (Danio rerio) Hearts

    PubMed Central

    Manalo, Trina; May, Adam; Quinn, Joshua; Lafontant, Dominique S.; Shifatu, Olubusola; He, Wei; Gonzalez-Rosa, Juan M.; Burns, Geoffrey C.; Burns, Caroline E.; Burns, Alan R.; Lafontant, Pascal J.

    2016-01-01

    Lectins are carbohydrate-binding proteins commonly used as biochemical and histochemical tools to study glycoconjugate (glycoproteins, glycolipids) expression patterns in cells, tissues, including mammalian hearts. However, lectins have received little attention in zebrafish (Danio rerio) and giant danio (Devario aequipinnatus) heart studies. Here, we sought to determine the binding patterns of six commonly used lectins—wheat germ agglutinin (WGA), Ulex europaeus agglutinin, Bandeiraea simplicifolia lectin (BS lectin), concanavalin A (Con A), Ricinus communis agglutinin I (RCA I), and Lycopersicon esculentum agglutinin (tomato lectin)—in these hearts. Con A showed broad staining in the myocardium. WGA stained cardiac myocyte borders, with binding markedly stronger in the compact heart and bulbus. BS lectin, which stained giant danio coronaries, was used to measure vascular reconstruction during regeneration. However, BS lectin reacted poorly in zebrafish. RCA I stained the compact heart of both fish. Tomato lectin stained the giant danio, and while low reactivity was seen in the zebrafish ventricle, staining was observed in their transitional cardiac myocytes. In addition, we observed unique staining patterns in the developing zebrafish heart. Lectins’ ability to reveal differential glycoconjugate expression in giant danio and zebrafish hearts suggests they can serve as simple but important tools in studies of developing, adult, and regenerating fish hearts. PMID:27680670

  2. Screening of Toxic Effects of Bisphenol A and Products of Its Degradation: Zebrafish (Danio rerio) Embryo Test and Molecular Docking.

    PubMed

    Makarova, Katerina; Siudem, Pawel; Zawada, Katarzyna; Kurkowiak, Justyna

    2016-10-01

    Bisphenol A (BPA) acts as an endocrine-disrupting compound even at a low concentration. Degradation of BPA could lead to the formation of toxic products. In this study, we compare the toxicity of BPA and seven intermediate products of its degradation. The accuracy of three molecular docking programs (Surflex, Autodock, and Autodock Vina) in predicting the binding affinities of selected compounds to human (ERα, ERβ, and ERRγ) and zebrafish (ERα, ERRγA, and ERRγB) estrogen and estrogen-related receptors was evaluated. The docking experiments showed that 4-isopropylphenol could have similar toxicity to that of BPA due to its high affinity to ERRγ and ERRγB and high octanol-water partitioning coefficient. The least toxic compounds were hydroquinone and phenol. Those compounds as well as BPA were screened in the zebrafish (Danio rerio) embryo test. 4-isopropylphenol had the strongest toxic effect on zebrafish embryos and caused 100% lethality shortly after exposure. BPA caused the delay in development, multiple deformations, and low heartbeats (30 bps), whereas hydroquinone had no impact on the development of the zebrafish embryo. Thus, the results of zebrafish screening are in good agreement with our docking experiment. The molecular docking could be used to screen the toxicity of other xenoestrogens and their products of degradation.

  3. The Plasticizer Bisphenol A Perturbs the Hepatic Epigenome: A Systems Level Analysis of the miRNome

    PubMed Central

    Renaud, Ludivine; da Silveira, Willian A.; Hazard, E. Starr; Simpson, Jonathan; Falcinelli, Silvia; Carnevali, Oliana; Hardiman, Gary

    2017-01-01

    Ubiquitous exposure to bisphenol A (BPA), an endocrine disruptor (ED), has raised concerns for both human and ecosystem health. Epigenetic factors, including microRNAs (miRNAs), are key regulators of gene expression during cancer. The effect of BPA exposure on the zebrafish epigenome remains poorly characterized. Zebrafish represents an excellent model to study cancer as the organism develops a disease that resembles human cancer. Using zebrafish as a systems toxicology model, we hypothesized that chronic BPA-exposure impacts the miRNome in adult zebrafish and establishes an epigenome more susceptible to cancer development. After a 3 week exposure to 100 nM BPA, RNA from the liver was extracted to perform high throughput mRNA and miRNA sequencing. Differential expression (DE) analyses comparing BPA-exposed to control specimens were performed using established bioinformatics pipelines. In the BPA-exposed liver, 6188 mRNAs and 15 miRNAs were differently expressed (q ≤ 0.1). By analyzing human orthologs of the DE zebrafish genes, signatures associated with non-alcoholic fatty liver disease (NAFLD), oxidative phosphorylation, mitochondrial dysfunction and cell cycle were uncovered. Chronic exposure to BPA has a significant impact on the liver miRNome and transcriptome in adult zebrafish with the potential to cause adverse health outcomes including cancer. PMID:29027980

  4. cDNA nucleotide sequence coding for stearoyl-CoA desaturase and its expression in the zebrafish (Danio rerio) embryo.

    PubMed

    Hsieh, S L; Liu, R W; Wu, C H; Cheng, W T; Kuo, Ching-Ming

    2003-12-01

    A cDNA sequence of stearoyl-CoA desaturase (SCD) was determined from zebrafish (Danio rerio) and compared to the corresponding genes in several teleosts. Zebrafish SCD cDNA has a size of 1,061 bp, encodes a polypeptide of 325 amino acids, and shares 88, 85, 84, and 83% similarities with tilapia (Oreochromis mossambicus), grass carp (Ctenopharyngodon idella), common carp (Cyprinus carpio), and milkfish (Chanos chanos), respectively. This 1,061 bp sequence specifies a protein that, in common with other fatty acid desaturases, contains three histidine boxes, believed to be involved in catalysis. These observations suggested that SCD genes are highly conserved. In addition, an oligonucleotide probe complementary to zebrafish SCD mRNA was hybridized to mRNA of approximately 396 bases with Northern blot analysis. The Northern blot and RT-PCR analyses showed that the SCD mRNA was expressed predominantly in the liver, intestine, gill, and muscle, while a lower level was found in the brain. Furthermore, we utilized whole-mount in situ hybridization and real-time quantitative RT-PCR to identify expression of the zebrafish SCD gene at five different stages of development. This revealed that very high levels of transcripts were found in zebrafish at all stages during embryogenesis and early development. Copyright 2003 Wiley-Liss, Inc.

  5. Behavioral and Molecular Analysis of Nicotine-Conditioned Place Preference in Zebrafish

    PubMed Central

    Kedikian, Ximena; Faillace, Maria Paula; Bernabeu, Ramón

    2013-01-01

    Studies using mice and rats have demonstrated that nicotine induces a conditioned place preference (CPP), with more effective results obtained by using biased procedures. Zebrafish have also been used as a model system to identify factors influencing nicotine-associated reward by using an unbiased design. Here, we report that zebrafish exhibited putative nicotine biased CPP to an initially aversive compartment (nicotine-paired group). A counterbalanced nicotine-exposed control group did not show a significant preference shift, providing evidence that the preference shift in the nicotine-paired group was not due to a reduction of aversion for this compartment. Zebrafish preference was corroborated by behavioral analysis of several indicators of drug preference, such as time spent in the drug-paired side, number of entries to the drug-paired side, and distance traveled. These results provided strong evidence that zebrafish may actually develop a preference for nicotine, although the drug was administrated in an aversive place for the fish, which was further supported by molecular studies. Reverse transcription-quantitative real-time PCR analysis depicted a significant increase in the expression of α7 and α6 but not α4 and β2 subunits of the nicotinic receptor in nicotine-paired zebrafish brains. In contrast, zebrafish brains from the counterbalanced nicotine group showed no significant changes. Moreover, CREB phosphorylation, an indicator of neural activity, accompanied the acquisition of nicotine-CPP. Our studies offered an incremental value to the drug addiction field, because they further describe behavioral features of CPP to nicotine in zebrafish. The results suggested that zebrafish exposed to nicotine in an unfriendly environment can develop a preference for that initially aversive place, which is likely due to the rewarding effect of nicotine. Therefore, this model can be used to screen exogenous and endogenous molecules involved in nicotine-associated reward in vertebrates. PMID:23894483

  6. Label-free imaging of developing vasculature in zebrafish with phase variance optical coherence microscopy

    NASA Astrophysics Data System (ADS)

    Chen, Yu; Fingler, Jeff; Trinh, Le A.; Fraser, Scott E.

    2016-03-01

    A phase variance optical coherence microscope (pvOCM) has been created to visualize blood flow in the vasculature of zebrafish embryos, without using exogenous labels. The pvOCM imaging system has axial and lateral resolutions of 2 μm in tissue, and imaging depth of more than 100 μm. Imaging of 2-5 days post-fertilization zebrafish embryos identified the detailed structures of somites, spinal cord, gut and notochord based on intensity contrast. Visualization of the blood flow in the aorta, veins and intersegmental vessels was achieved with phase variance contrast. The pvOCM vasculature images were confirmed with corresponding fluorescence microscopy of a zebrafish transgene that labels the vasculature with green fluorescent protein. The pvOCM images also revealed functional information of the blood flow activities that is crucial for the study of vascular development.

  7. Insights from zebrafish on human pigment cell disease and treatment.

    PubMed

    Cooper, Cynthia D

    2017-11-01

    Black pigment cells, melanocytes, arise early during development from multipotent neural crest cells. Melanocytes protect human skin from DNA damaging sunrays and provide color for hair, eyes, and skin. Several disorders and diseases originate from these cells, including the deadliest skin cell cancer, melanoma. Thus, melanocytes are critical for a healthy life and for protecting humans from disease. Due to the ease of visualizing pigment cells through transparent larvae skin and conserved roles for zebrafish melanophore genes to mammalian melanocyte genes, zebrafish larvae offer a biologically relevant model for understanding pigment cell development and disease in humans. This review discusses our current knowledge of melanophore biology and how zebrafish are contributing to improving how diseases of melanocytes are understood and treated in humans. Developmental Dynamics 246:889-896, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  8. Cell Fate and Differentiation of the Developing Ocular Lens

    PubMed Central

    Greiling, Teri M. S.; Aose, Masamoto

    2010-01-01

    Purpose. Even though zebrafish development does not include the formation of a lens vesicle, the authors' hypothesis is that the processes of cell differentiation are similar in zebrafish and mammals and determine cell fates in the lens. Methods. Two-photon live embryo imaging was used to follow individual fluorescently labeled cells in real-time from the placode stage at 16 hours postfertilization (hpf) until obvious morphologic differentiation into epithelium or fiber cells had occurred at approximately 28 hpf. Immunohistochemistry was used to label proliferating, differentiating, and apoptotic cells. Results. Similar to the mammal, cells in the teleost peripheral lens placode migrated to the anterior lens mass and differentiated into an anterior epithelium. Cells in the central lens placode migrated to the posterior lens mass and differentiated into primary fiber cells. Anterior and posterior polarization in the zebrafish lens mass was similar to mammalian lens vesicle polarization. Primary fiber cell differentiation was apparent at approximately 21 hpf, before separation of the lens from the surface ectoderm, as evidenced by cell elongation, exit from the cell cycle, and expression of Zl-1, a marker for fiber differentiation. TUNEL labeling demonstrated that apoptosis was not a primary mechanism for lens separation from the surface ectoderm. Conclusions. Despite the absence of a lens vesicle in the zebrafish embryo, lens organogenesis appears to be well conserved among vertebrates. Results using three-dimensional live embryo imaging of zebrafish development showed minimal differences and strong similarities in the fate of cells in the zebrafish and mammalian lens placode. PMID:19834024

  9. An integrative analysis of ethanol tolerance and withdrawal in zebrafish (Danio rerio)

    PubMed Central

    Tran, Steven; Chatterjee, Diptendu; Gerlai, Robert

    2014-01-01

    The zebrafish is emerging as a popular animal model for alcohol (ethanol or EtOH) addiction due to its simplicity and practical advantages. Two phenomena associated with ethanol addiction are the development of tolerance and withdrawal. Using a multi-level approach in the current study, we characterize ethanol tolerance and withdrawal in zebrafish. We first investigate the temporal trajectory of ethanol concentration in the zebrafish brain in response to an acute exposure and during withdrawal. We report that ethanol concentrations approach a steady state within 60 minutes of exposure to 0.50% and 1.00% v/v ethanol and rapidly decline and return to zero within 60 minutes following withdrawal from chronic ethanol exposure (0.50% v/v). We characterize the changes associated with ethanol tolerance and withdrawal in zebrafish by focusing on 3 domains relevant to ethanol addiction: motor patterns, physiological responses (i.e. cortisol levels), and neurochemical alterations. The use of multiple domains of investigation allowed an in-depth analysis of ethanol induced changes in zebrafish. PMID:24598276

  10. Myomaker mediates fusion of fast myocytes in zebrafish embryos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landemaine, Aurélie; Rescan, Pierre-Yves; Gabillard, Jean-Charles, E-mail: Jean-charles.gabillard@rennes.inra.fr

    2014-09-05

    Highlights: • Myomaker is transiently expressed in fast myocytes during embryonic myogenesis. • Myomaker is essential for fast myocyte fusion in zebrafish. • The function of myomaker is conserved among Teleostomi. - Abstract: Myomaker (also called Tmem8c), a new membrane activator of myocyte fusion was recently discovered in mice. Using whole mount in situ hybridization on zebrafish embryos at different stages of embryonic development, we show that myomaker is transiently expressed in fast myocytes forming the bulk of zebrafish myotome. Zebrafish embryos injected with morpholino targeted against myomaker were alive after yolk resorption and appeared morphologically normal, but they weremore » unable to swim, even under effect of a tactile stimulation. Confocal observations showed a marked phenotype characterized by the persistence of mononucleated muscle cells in the fast myotome at developmental stages where these cells normally fuse to form multinucleated myotubes. This indicates that myomaker is essential for myocyte fusion in zebrafish. Thus, there is an evolutionary conservation of myomaker expression and function among Teleostomi.« less

  11. Haploinsufficiency of the genes encoding the tumor suppressor Pten predisposes zebrafish to hemangiosarcoma

    PubMed Central

    Choorapoikayil, Suma; Kuiper, Raoul V.; de Bruin, Alain; den Hertog, Jeroen

    2012-01-01

    SUMMARY PTEN is an essential tumor suppressor that antagonizes Akt/PKB signaling. The zebrafish genome encodes two Pten genes, ptena and ptenb. Here, we report that zebrafish mutants that retain a single wild-type copy of ptena or ptenb (ptena+/−ptenb−/− or ptena−/−ptenb+/−) are viable and fertile. ptena+/−ptenb−/− fish develop tumors at a relatively high incidence (10.2%) and most tumors developed close to the eye (26/30). Histopathologically, the tumor masses were associated with the retrobulbar vascular network and diagnosed as hemangiosarcomas. A single tumor was identified in 42 ptena−/−ptenb+/− fish and was also diagnosed as hemangiosarcoma. Immunohistochemistry indicated that the tumor cells in ptena+/−ptenb−/− and ptena−/−ptenb+/− fish proliferated rapidly and were of endothelial origin. Akt/PKB signaling was activated in the tumors, whereas Ptena was still detected in tumor tissue from ptena+/−ptenb−/− zebrafish. We conclude that haploinsufficiency of the genes encoding Pten predisposes to hemangiosarcoma in zebrafish. PMID:22071262

  12. Netting Novel Regulators of Hematopoiesis and Hematologic Malignancies in Zebrafish.

    PubMed

    Kwan, Wanda; North, Trista E

    2017-01-01

    Zebrafish are one of the preeminent model systems for the study of blood development (hematopoiesis), hematopoietic stem and progenitor cell (HSPC) biology, and hematopathology. The zebrafish hematopoietic system shares strong similarities in functional populations, genetic regulators, and niche interactions with its mammalian counterparts. These evolutionarily conserved characteristics, together with emerging technologies in live imaging, compound screening, and genetic manipulation, have been employed to successfully identify and interrogate novel regulatory mechanisms and molecular pathways that guide hematopoiesis. Significantly, perturbations in many of the key developmental signals controlling hematopoiesis are associated with hematological disorders and disease, including anemia, bone marrow failure syndromes, and leukemia. Thus, understanding the regulatory pathways controlling HSPC production and function has important clinical implications. In this review, we describe how the blood system forms and is maintained in zebrafish, with particular focus on new insights into vertebrate hematological regulation gained using this model. The interplay of factors controlling development and disease in the hematopoietic system combined with the unique attributes of the zebrafish make this a powerful platform to discover novel targets for the treatment of hematological disease. © 2017 Elsevier Inc. All rights reserved.

  13. It's time to swim! Zebrafish and the circadian clock.

    PubMed

    Vatine, Gad; Vallone, Daniela; Gothilf, Yoav; Foulkes, Nicholas S

    2011-05-20

    The zebrafish represents a fascinating model for studying key aspects of the vertebrate circadian timing system. Easy access to early embryonic development has made this species ideal for investigating how the clock is first established during embryogenesis. In particular, the molecular basis for the functional development of the zebrafish pineal gland has received much attention. In addition to this dedicated clock and photoreceptor organ, and unlike the situation in mammals, the clocks in zebrafish peripheral tissues and even cell lines are entrainable by direct exposure to light thus providing unique insight into the function and evolution of the light input pathway. Finally, the small size, low maintenance costs and high fecundity of this fish together with the availability of genetic tools make this an attractive model for forward genetic analysis of the circadian clock. Here, we review the work that has established the zebrafish as a valuable clock model organism and highlight the key questions that will shape the future direction of research. Copyright © 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  14. Fgf20b is required for the ectomesenchymal fate establishment of cranial neural crest cells in zebrafish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamauchi, Hajime; Goto, Mami; Katayama, Mika

    2011-06-17

    Highlights: {yields} The establishment of the ectomesenchymal lineage within the cranial neural crest is of great significance. {yields} Fgf20b knockdown zebrafish embryos showed dysplasticneurocranial and pharyngeal cartilages. {yields} Fgf20b is required for ectomesenchymal fate establishment via the activation of Fgfr1 in zebrafish. -- Abstract: In cranial skeletal development, the establishment of the ectomesenchymal lineage within the cranial neural crest is of great significance. Fgfs are polypeptide growth factors with diverse functions in development and metabolism. Fgf20b knockdown zebrafish embryos showed dysplastic neurocranial and pharyngeal cartilages. Ectomesenchymal cells from cranial neural crest cells were significantly decreased in Fgf20b knockdown embryos, butmore » cranial neural crest cells with a non-ectomesnchymal fate were increased. However, the proliferation and apoptosis of cranial neural crest cells were essentially unchanged. Fgfr1 knockdown embryos also showed dysplastic neurocranial and pharyngeal cartilages. The present findings indicate that Fgf20b is required for ectomesenchymal fate establishment via the activation of Fgfr1 in zebrafish.« less

  15. Strategies for Analyzing Cardiac Phenotypes in the Zebrafish Embryo

    PubMed Central

    Houk, Andrew R.; Yelon, Deborah

    2017-01-01

    The molecular mechanisms underlying cardiogenesis are of critical biomedical importance due to the high prevalence of cardiac birth defects. Over the past two decades, the zebrafish has served as a powerful model organism for investigating heart development, facilitated by its powerful combination of optical access to the embryonic heart and plentiful opportunities for genetic analysis. Work in zebrafish has identified numerous factors that are required for various aspects of heart formation, including the specification and differentiation of cardiac progenitor cells, the morphogenesis of the heart tube, cardiac chambers, and atrioventricular canal, and the establishment of proper cardiac function. However, our current roster of regulators of cardiogenesis is by no means complete. It is therefore valuable for ongoing studies to continue pursuit of additional genes and pathways that control the size, shape, and function of the zebrafish heart. An extensive arsenal of techniques is available to distinguish whether particular mutations, morpholinos, or small molecules disrupt specific processes during heart development. In this chapter, we provide a guide to the experimental strategies that are especially effective for the characterization of cardiac phenotypes in the zebrafish embryo. PMID:27312497

  16. Ontogeny of classical and operant learning behaviors in zebrafish.

    PubMed

    Valente, André; Huang, Kuo-Hua; Portugues, Ruben; Engert, Florian

    2012-03-20

    The performance of developing zebrafish in both classical and operant conditioning assays was tested with a particular focus on the emergence of these learning behaviors during development. Strategically positioned visual cues paired with electroshocks were used in two fully automated assays to investigate both learning paradigms. These allow the evaluation of the behavioral performance of zebrafish continuously throughout development, from larva to adult. We found that learning improves throughout development, starts reliably around week 3, and reaches adult performance levels at week 6. Adult fish quickly learned to perform perfectly, and the expression of the learned behavior is manifestly controlled by vision. The memory is behaviorally expressed in adults for at least 6 h and retrievable for at least 12 h.

  17. Ontogeny of classical and operant learning behaviors in zebrafish

    PubMed Central

    Valente, André; Huang, Kuo-Hua; Portugues, Ruben; Engert, Florian

    2012-01-01

    The performance of developing zebrafish in both classical and operant conditioning assays was tested with a particular focus on the emergence of these learning behaviors during development. Strategically positioned visual cues paired with electroshocks were used in two fully automated assays to investigate both learning paradigms. These allow the evaluation of the behavioral performance of zebrafish continuously throughout development, from larva to adult. We found that learning improves throughout development, starts reliably around week 3, and reaches adult performance levels at week 6. Adult fish quickly learned to perform perfectly, and the expression of the learned behavior is manifestly controlled by vision. The memory is behaviorally expressed in adults for at least 6 h and retrievable for at least 12 h. PMID:22434824

  18. Thyroid hormone regulates muscle function during cold acclimation in zebrafish (Danio rerio).

    PubMed

    Little, Alexander G; Seebacher, Frank

    2013-09-15

    Thyroid hormone (TH) is a universal regulator of growth, development and metabolism during cold exposure in mammals. In zebrafish (Danio rerio), TH regulates locomotor performance and metabolism during cold acclimation. The influence of TH on locomotor performance may be via its effect on metabolism or, as has been shown in mammals, by modulating muscle phenotypes. Our aim was to determine whether TH influences muscle phenotypes in zebrafish, and whether this could explain changes in swimming capacity in response to thermal acclimation. We used propylthiouracil and iopanoic acid to induce hypothyroidism in zebrafish over a 3-week acclimation period to either 18 or 28°C. To verify that physiological changes following hypothyroid treatment were in fact due to the action of TH, we supplemented hypothyroid fish with 3,5-diiodothryronine (T2) or 3,5,3'-triiodothyronine (T3). Cold-acclimated fish had significantly greater sustained swimming performance (Ucrit) but not burst speed. Greater Ucrit was accompanied by increased tail beat frequency, but there was no change in tail beat amplitude. Hypothyroidism significantly decreased Ucrit and burst performance, as well as tail beat frequency and SERCA activity in cold-acclimated fish. However, myofibrillar ATPase activity increased in cold-acclimated hypothyroid fish. Hypothyroid treatment also decreased mRNA concentrations of myosin heavy chain fast isoforms and SERCA 1 isoform in cold-acclimated fish. SERCA 1 mRNA increased in warm-acclimated hypothyroid fish, and SERCA 3 mRNA decreased in both cold- and warm-acclimated hypothyroid fish. Supplementation with either T2 or T3 restored Ucrit, burst speed, tail beat frequency, SERCA activity and myosin heavy chain and SERCA 1 and 3 mRNA levels of hypothyroid fish back to control levels. We show that in addition to regulating development and metabolism in vertebrates, TH also regulates muscle physiology in ways that affect locomotor performance in fish. We suggest that the role of TH in modulating SERCA1 expression during cold exposure may have predisposed it to regulate endothermic thermogenesis.

  19. Zebrafish (Danio rerio) androgen receptor: sequence homology and up-regulation by the fungicide vinclozolin.

    PubMed

    Smolinsky, Amanda N; Doughman, Jennifer M; Kratzke, Liên-Thành C; Lassiter, Christopher S

    2010-03-01

    Steroid hormones regulate gene expression in organisms by binding to receptor proteins. These hormones include the androgens, which signal through androgen receptors (ARs). Endocrine disrupters (EDCs) are chemicals in the environment that adversely affect organisms by binding to nuclear receptors, including ARs. Vinclozolin, a fungicide used on fruit and vegetable crops, is a known anti-androgen, a type of EDC that blocks signals from testosterone and its derivatives. In order to better understand the effects of EDCs, further research on androgen receptors and other hormone signaling pathways is necessary. In this study, we demonstrate the evolutionary conservation between the genomic structure of the human and zebrafish ar genes and find that ar mRNA expression increases in zebrafish embryos exposed to vinclozolin, which may be evolutionarily conserved as well. At 48 and 72 h post-fertilization, vinclozolin-treated embryos express ar mRNA 8-fold higher than the control level. These findings suggest that zebrafish embryos attempt to compensate for the presence of an anti-androgen by increasing the number of androgen receptors available.

  20. Zebrafish atoh1 genes: classic proneural activity in the inner ear and regulation by Fgf and Notch.

    PubMed

    Millimaki, Bonny B; Sweet, Elly M; Dhason, Mary S; Riley, Bruce B

    2007-01-01

    Hair cells of the inner ear develop from an equivalence group marked by expression of the proneural gene Atoh1. In mouse, Atoh1 is necessary for hair cell differentiation, but its role in specifying the equivalence group (proneural function) has been questioned and little is known about its upstream activators. We have addressed these issues in zebrafish. Two zebrafish homologs, atoh1a and atoh1b, are together necessary for hair cell development. These genes crossregulate each other but are differentially required during distinct developmental periods, first in the preotic placode and later in the otic vesicle. Interactions with the Notch pathway confirm that atoh1 genes have early proneural function. Fgf3 and Fgf8 are upstream activators of atoh1 genes during both phases, and foxi1, pax8 and dlx genes regulate atoh1b in the preplacode. A model is presented in which zebrafish atoh1 genes operate in a complex network leading to hair cell development.

  1. Development and automation of a test of impulse control in zebrafish

    PubMed Central

    Parker, Matthew O.; Ife, Dennis; Ma, Jun; Pancholi, Mahesh; Smeraldi, Fabrizio; Straw, Chris; Brennan, Caroline H.

    2013-01-01

    Deficits in impulse control (difficulties in inhibition of a pre-potent response) are fundamental to a number of psychiatric disorders, but the molecular and cellular basis is poorly understood. Zebrafish offer a very useful model for exploring these mechanisms, but there is currently a lack of validated procedures for measuring impulsivity in fish. In mammals, impulsivity can be measured by examining rates of anticipatory responding in the 5-choice serial reaction time task (5-CSRTT), a continuous performance task where the subject is reinforced upon accurate detection of a briefly presented light in one of five distinct spatial locations. This paper describes the development of a fully-integrated automated system for testing impulsivity in adult zebrafish. We outline the development of our image analysis software and its integration with National Instruments drivers and actuators to produce the system. We also describe an initial validation of the system through a one-generation screen of chemically mutagenized zebrafish, where the testing parameters were optimized. PMID:24133417

  2. Defining the Regulation of Telomerase Through Identification of Mammary-Specific Telomerase Interacting Proteins

    DTIC Science & Technology

    2007-06-01

    Pharmacology and Toxicology , Virginia Commonwealth University, Richmond, VA 2002-present Member, Molecular Biology and Genetics Program, Virginia...Studying Telomeres and Telomerase. Zebrafish , 1:349-355. Jones,K.R., L.W.Elmore, L.Povirk, S.E.Holt, and D.A.Gewirtz. 2005. Reciprocal regulation... Zebrafish Blastula Cell Line on Rainbow Trout Stromal Cells and Subsequent Development under Feeder-Free Conditions into a Cell Line, ZEB2J. Zebrafish 5: 49

  3. Zebrafish skeleton development: High resolution micro-CT and FIB-SEM block surface serial imaging for phenotype identification

    PubMed Central

    Silvent, Jeremie; Akiva, Anat; Brumfeld, Vlad; Reznikov, Natalie; Rechav, Katya; Yaniv, Karina; Addadi, Lia; Weiner, Steve

    2017-01-01

    Although bone is one of the most studied living materials, many questions about the manner in which bones form remain unresolved, including fine details of the skeletal structure during development. In this study, we monitored skeleton development of zebrafish larvae, using calcein fluorescence, high-resolution micro-CT 3D images and FIB-SEM in the block surface serial imaging mode. We compared calcein staining of the skeletons of the wild type and nacre mutants, which are transparent zebrafish, with micro-CT for the first 30 days post fertilization embryos, and identified significant differences. We quantified the bone volumes and mineral contents of bones, including otoliths, during development, and showed that such developmental differences, including otolith development, could be helpful in identifying phenotypes. In addition, high-resolution imaging revealed the presence of mineralized aggregates in the notochord, before the formation of the first bone in the axial skeleton. These structures might play a role in the storage of the mineral. Our results highlight the potential of these high-resolution 3D approaches to characterize the zebrafish skeleton, which in turn could prove invaluable information for better understanding the development and the characterization of skeletal phenotypes. PMID:29220379

  4. Fish from Head to Tail: The 9th European Zebrafish Meeting in Oslo.

    PubMed

    Griffiths, Gareth; Müller, Ferenc; Ledin, Johan; Patton, E Elizabeth; Gjøen, Tor; Lobert, Viola Hélène; Winther-Larsen, Hanne Cecilie; Mullins, Mary; Joly, Jean-Stephane; Weltzien, Finn-Arne; Press, Charles McLean; Aleström, Peter

    2016-04-01

    The 9th European Zebrafish Meeting took place recently in Oslo (June 28-July 2, 2015). A total of 650 participants came to hear the latest research news focused on the zebrafish, Danio rerio, and to its distant evolutionary relative medaka, Oryzias latipes. The packed program included keynote and plenary talks, short oral presentations and poster sessions, workshops, and strategic discussions. The meeting was a great success and revealed dramatically how important the zebrafish in particular has become as a model system for topics, such as developmental biology, functional genomics, biomedicine, toxicology, and drug development. A new emphasis was given to its potential as a model for aquaculture, a topic of great economic interest to the host country Norway and for the future global food supply in general. Zebrafish husbandry as well as its use in teaching were also covered in separate workshops. As has become a tradition in these meetings, there was a well-attended Wellcome Trust Sanger Institute and ZFIN workshop focused on Zebrafish Genome Resources on the first day. The full EZM 2015 program with abstracts can be read and downloaded from the EZM 2015 Web site zebrafish2015.org .

  5. Anxiogenic-like effects of chronic nicotine exposure in zebrafish.

    PubMed

    Stewart, Adam Michael; Grossman, Leah; Collier, Adam D; Echevarria, David J; Kalueff, Allan V

    2015-12-01

    Nicotine is one of the most widely used and abused legal drugs. Although its pharmacological profile has been extensively investigated in humans and rodents, nicotine CNS action remains poorly understood. The importance of finding evolutionarily conserved signaling pathways, and the need to apply high-throughput in vivo screens for CNS drug discovery, necessitate novel efficient experimental models for nicotine research. Zebrafish (Danio rerio) are rapidly emerging as an excellent organism for studying drug abuse, neuropharmacology and toxicology and have recently been applied to testing nicotine. Anxiolytic, rewarding and memory-modulating effects of acute nicotine treatment in zebrafish are consistently reported in the literature. However, while nicotine abuse is more relevant to long-term exposure models, little is known about chronic effects of nicotine on zebrafish behavior. In the present study, chronic 4-day exposure to 1-2mg/L nicotine mildly increased adult zebrafish shoaling but did not alter baseline cortisol levels. We also found that chronic exposure to nicotine evokes robust anxiogenic behavioral responses in zebrafish tested in the novel tank test paradigm. Generally paralleling clinical and rodent data on anxiogenic effects of chronic nicotine, our study supports the developing utility of zebrafish for nicotine research. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Fishing the Molecular Bases of Treacher Collins Syndrome

    PubMed Central

    Weiner, Andrea M. J.; Scampoli, Nadia L.; Calcaterra, Nora B.

    2012-01-01

    Treacher Collins syndrome (TCS) is an autosomal dominant disorder of craniofacial development, and mutations in the TCOF1 gene are responsible for over 90% of TCS cases. The knowledge about the molecular mechanisms responsible for this syndrome is relatively scant, probably due to the difficulty of reproducing the pathology in experimental animals. Zebrafish is an emerging model for human disease studies, and we therefore assessed it as a model for studying TCS. We identified in silico the putative zebrafish TCOF1 ortholog and cloned the corresponding cDNA. The derived polypeptide shares the main structural domains found in mammals and amphibians. Tcof1 expression is restricted to the anterior-most regions of zebrafish developing embryos, similar to what happens in mouse embryos. Tcof1 loss-of-function resulted in fish showing phenotypes similar to those observed in TCS patients, and enabled a further characterization of the mechanisms underlying craniofacial malformation. Besides, we initiated the identification of potential molecular targets of treacle in zebrafish. We found that Tcof1 loss-of-function led to a decrease in the expression of cellular proliferation and craniofacial development. Together, results presented here strongly suggest that it is possible to achieve fish with TCS-like phenotype by knocking down the expression of the TCOF1 ortholog in zebrafish. This experimental condition may facilitate the study of the disease etiology during embryonic development. PMID:22295061

  7. Fishing the molecular bases of Treacher Collins syndrome.

    PubMed

    Weiner, Andrea M J; Scampoli, Nadia L; Calcaterra, Nora B

    2012-01-01

    Treacher Collins syndrome (TCS) is an autosomal dominant disorder of craniofacial development, and mutations in the TCOF1 gene are responsible for over 90% of TCS cases. The knowledge about the molecular mechanisms responsible for this syndrome is relatively scant, probably due to the difficulty of reproducing the pathology in experimental animals. Zebrafish is an emerging model for human disease studies, and we therefore assessed it as a model for studying TCS. We identified in silico the putative zebrafish TCOF1 ortholog and cloned the corresponding cDNA. The derived polypeptide shares the main structural domains found in mammals and amphibians. Tcof1 expression is restricted to the anterior-most regions of zebrafish developing embryos, similar to what happens in mouse embryos. Tcof1 loss-of-function resulted in fish showing phenotypes similar to those observed in TCS patients, and enabled a further characterization of the mechanisms underlying craniofacial malformation. Besides, we initiated the identification of potential molecular targets of treacle in zebrafish. We found that Tcof1 loss-of-function led to a decrease in the expression of cellular proliferation and craniofacial development. Together, results presented here strongly suggest that it is possible to achieve fish with TCS-like phenotype by knocking down the expression of the TCOF1 ortholog in zebrafish. This experimental condition may facilitate the study of the disease etiology during embryonic development.

  8. Quantitative in vivo optical tomography of cancer progression & vasculature development in adult zebrafish

    PubMed Central

    Kumar, Sunil; Lockwood, Nicola; Ramel, Marie-Christine; Correia, Teresa; Ellis, Matthew; Alexandrov, Yuriy; Andrews, Natalie; Patel, Rachel; Bugeon, Laurence; Dallman, Margaret J.; Brandner, Sebastian; Arridge, Simon; Katan, Matilda; McGinty, James; Frankel, Paul; French, Paul M.W.

    2016-01-01

    We describe a novel approach to study tumour progression and vasculature development in vivo via global 3-D fluorescence imaging of live non-pigmented adult zebrafish utilising angularly multiplexed optical projection tomography with compressive sensing (CS-OPT). This “mesoscopic” imaging method bridges a gap between established ~μm resolution 3-D fluorescence microscopy techniques and ~mm-resolved whole body planar imaging and diffuse tomography. Implementing angular multiplexing with CS-OPT, we demonstrate the in vivo global imaging of an inducible fluorescently labelled genetic model of liver cancer in adult non-pigmented zebrafish that also present fluorescently labelled vasculature. In this disease model, addition of a chemical inducer (doxycycline) drives expression of eGFP tagged oncogenic K-RASV12 in the liver of immune competent animals. We show that our novel in vivo global imaging methodology enables non-invasive quantitative imaging of the development of tumour and vasculature throughout the progression of the disease, which we have validated against established methods of pathology including immunohistochemistry. We have also demonstrated its potential for longitudinal imaging through a study of vascular development in the same zebrafish from early embryo to adulthood. We believe that this instrument, together with its associated analysis and data management tools, constitute a new platform for in vivo cancer studies and drug discovery in zebrafish disease models. PMID:27259259

  9. The Loss of Vacuolar Protein Sorting 11 (vps11) Causes Retinal Pathogenesis in a Vertebrate Model of Syndromic Albinism

    PubMed Central

    Thomas, Jennifer L.; Vihtelic, Thomas S.; denDekker, Aaron D.; Willer, Gregory; Luo, Xixia; Murphy, Taylor R.; Gregg, Ronald G.; Hyde, David R.

    2011-01-01

    Purpose. To establish the zebrafish platinum mutant as a model for studying vision defects caused by syndromic albinism diseases such as Chediak-Higashi syndrome, Griscelli syndrome, and Hermansky-Pudlak syndrome (HPS). Methods. Bulked segregant analysis and candidate gene sequencing revealed that the zebrafish platinum mutation is a single-nucleotide insertion in the vps11 (vacuolar protein sorting 11) gene. Expression of vps11 was determined by RT-PCR and in situ hybridization. Mutants were analyzed for pigmentation defects and retinal disease by histology, immunohistochemistry, and transmission electron microscopy. Results. Phenocopy and rescue experiments determined that a loss of Vps11 results in the platinum phenotype. Expression of vps11 appeared ubiquitous during zebrafish development, with stronger expression in the developing retina and retinal pigmented epithelium (RPE). Zebrafish platinum mutants exhibited reduced pigmentation in the body and RPE; however, melanophore development, migration, and dispersion occurred normally. RPE, photoreceptors, and inner retinal neurons formed normally in zebrafish platinum mutants. However, a gradual loss of RPE, an absence of mature melanosomes, and the subsequent degradation of RPE/photoreceptor interdigitation was observed. Conclusions. These data show that Vps11 is not necessary for normal retinal development or initiation of melanin biosynthesis, but is essential for melanosome maturation and healthy maintenance of the RPE and photoreceptors. PMID:21330665

  10. Histological and transcriptomic effects of 17α-methyltestosterone on zebrafish gonad development.

    PubMed

    Lee, Stephanie Ling Jie; Horsfield, Julia A; Black, Michael A; Rutherford, Kim; Fisher, Amanda; Gemmell, Neil J

    2017-07-24

    Sex hormones play important roles in teleost ovarian and testicular development. In zebrafish, ovarian differentiation appears to be dictated by an oocyte-derived signal via Cyp19a1a aromatase-mediated estrogen production. Androgens and aromatase inhibitors can induce female-to-male sex reversal, however, the mechanisms underlying gonadal masculinisation are poorly understood. We used histological analyses together with RNA sequencing to characterise zebrafish gonadal transcriptomes and investigate the effects of 17α-methyltestosterone on gonadal differentiation. At a morphological level, 17α-methyltestosterone (MT) masculinised gonads and accelerated spermatogenesis, and these changes were paralleled in masculinisation and de-feminisation of gonadal transcriptomes. MT treatment upregulated expression of genes involved in male sex determination and differentiation (amh, dmrt1, gsdf and wt1a) and those involved in 11-oxygenated androgen production (cyp11c1 and hsd11b2). It also repressed expression of ovarian development and folliculogenesis genes (bmp15, gdf9, figla, zp2.1 and zp3b). Furthermore, MT treatment altered epigenetic modification of histones in zebrafish gonads. Contrary to expectations, higher levels of cyp19a1a or foxl2 expression in control ovaries compared to MT-treated testes and control testes were not statistically significant during early gonad development (40 dpf). Our study suggests that both androgen production and aromatase inhibition are important for androgen-induced gonadal masculinisation and natural testicular differentiation in zebrafish.

  11. Muscular contractions in the zebrafish embryo are necessary to reveal thiuram-induced notochord distortions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teraoka, Hiroki; Urakawa, Satsuki; Nanba, Satomi

    2006-04-01

    Dithiocarbamates form a large group of chemicals that have numerous uses in agriculture and medicine. It has been reported that dithiocarbamates, including thiuram (tetramethylthiuram disulfide), cause wavy distortions of the notochord in zebrafish and other fish embryos. In the present study, we investigated the mechanism underlying the toxicity of thiuram in zebrafish embryos. When embryos were exposed to thiuram (2-1000 nM: 0.48-240 {mu}g/L) from 3 h post fertilization (hpf) (30% epiboly) until 24 hpf (Prim-5), all embryos develop wavy notochords, disorganized somites, and have shortened yolk sac extensions. The thiuram response was specific and did not cause growth retardation ormore » mortality at 24 hpf. The thiuram-dependent responses showed the same concentration dependence with a waterborne EC{sub 5} values of approximately 7 nM. Morphometric measurements revealed that thiuram does not affect the rate of notochord lengthening. However, the rate of overall body lengthening was significantly reduced in thiuram-exposed animals. Other dithiocarbamates, such as ziram, caused similar malformations to thiuram. While expression of genes involved in somitogenesis was not affected, the levels of notochord-specific transcripts were altered after the onset of malformations. Distortion of the notochord started precisely at 18 hpf, which is concomitant with onset of spontaneous rhythmic trunk contractions. Abolishment of spontaneous contractions using tricaine, {alpha}-bungarotoxin, and a paralytic mutant sofa potato, resulted in normal notochord morphology in the presence of thiuram. These results indicate that muscle activity is necessary to reveal the underlying functional deficit and suggest that the developmental target of dithiocarbamates impairs trunk plasticity through an unknown mechanism.« less

  12. Post-Larval Developmental Trajectory of Zebrafish Fry is Altered by Exposure to T3 or T4 Analogues

    EPA Science Inventory

    The thyroid axis plays a key role in development. While the impacts of perturbing thyroid axis development and/or function are documented in embryonic and larval zebrafish, the effects on developmental milestones at later life stages are not well-delineated. To assess potential l...

  13. Behavioral repertoire of larval zebrafish: Baseline activity and response to drug treatment.

    EPA Science Inventory

    As part of the EPA’s effort to develop an in vivo, vertebrate screen for toxic chemicals, we have begun to characterize basic behaviors of 6-day post-fertilization (dpf) zebrafish (Danio rerio) larvae in a microtiter plate format. Our main goal is to develop a method for rapidly ...

  14. Vitamin D receptor deficiency impairs inner ear development in zebrafish.

    PubMed

    Kwon, Hye-Joo

    2016-09-16

    The biological actions of vitamin D are largely mediated through binding to the vitamin D receptor (VDR), a member of the nuclear hormone receptor family, which regulates gene expression in a wide variety of tissues and cells. Mutations in VDR gene have been implicated in ear disorders (hearing loss and balance disorder) but the mechanisms are not well established. In this study, to investigate the role of VDR in inner ear development, morpholino-mediated gene knockdown approaches were used in zebrafish model system. Two paralogs for VDR, vdra and vdrb, have been identified in zebrafish. Knockdown of vdra had no effect on ear development, whereas knockdown of vdrb displayed morphological ear defects including smaller otic vesicles with malformed semicircular canals and abnormal otoliths. Loss-of-vdrb resulted in down-regulation of pre-otic markers, pax8 and pax2a, indicating impairment of otic induction. Furthermore, zebrafish embryos lacking vdrb produced fewer sensory hair cells in the ears and showed disruption of balance and motor coordination. These data reveal that VDR signaling plays an important role in ear development. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Development of the zebrafish mesonephros.

    PubMed

    Diep, Cuong Q; Peng, Zhenzhen; Ukah, Tobechukwu K; Kelly, Paul M; Daigle, Renee V; Davidson, Alan J

    2015-01-01

    The vertebrate kidney plays an essential role in removing metabolic waste and balancing water and salt. This is carried out by nephrons, which comprise a blood filter attached to an epithelial tubule with proximal and distal segments. In zebrafish, two nephrons are first formed as part of the embryonic kidney (pronephros) and hundreds are formed later to make up the adult kidney (mesonephros). Previous studies have focused on the development of the pronephros while considerably less is known about how the mesonephros is formed. Here, we characterize mesonephros development in zebrafish and examine the nephrons that form during larval metamorphosis. These nephrons, arising from proliferating progenitor cells that express the renal transcription factor genes wt1b, pax2a, and lhx1a, form on top of the pronephric tubules and develop a segmentation pattern similar to pronephric nephrons. We find that the pronephros acts as a scaffold for the mesonephros, where new nephrons fuse with the distal segments of the pronephric tubules to form the final branching network that characterizes the adult zebrafish kidney. © 2015 Wiley Periodicals, Inc.

  16. Important role of endocannabinoid signaling in the development of functional vision and locomotion in zebrafish.

    PubMed

    Martella, Andrea; Sepe, Rosa M; Silvestri, Cristoforo; Zang, Jingjing; Fasano, Giulia; Carnevali, Oliana; De Girolamo, Paolo; Neuhauss, Stephan C F; Sordino, Paolo; Di Marzo, Vincenzo

    2016-12-01

    The developmental role of the endocannabinoid system still remains to be fully understood. Here, we report the presence of a complete endocannabinoid system during zebrafish development and show that the genes that code for enzymes that catalyze the anabolism and catabolism (mgll and dagla) of the endocannabinoid, 2-AG (2-arachidonoylglycerol), as well as 2-AG main receptor in the brain, cannabinoid receptor type 1, are coexpressed in defined regions of axonal growth. By using morpholino-induced transient knockdown of the zebrafish Daglα homolog and its pharmacologic rescue, we suggest that synthesis of 2-AG is implicated in the control of axon formation in the midbrain-hindbrain region and that animals that lack Daglα display abnormal physiological behaviors in tests that measure stereotyped movement and motion perception. Our results suggest that the well-established role for 2-AG in axonal outgrowth has implications for the control of vision and movement in zebrafish and, thus, is likely common to all vertebrates.-Martella, A., Sepe, R. M., Silvestri, C., Zang, J., Fasano, G., Carnevali, O., De Girolamo, P., Neuhauss, S. C. F., Sordino, P., Di Marzo, V. Important role of endocannabinoid signaling in the development of functional vision and locomotion in zebrafish. © FASEB.

  17. Stimulus-triggered enhancement of chilling tolerance in zebrafish embryos

    PubMed Central

    Szabó, Katalin; Budai, Csilla; Losonczi, Eszter; Bernáth, Gergely; Csenki-Bakos, Zsolt; Urbányi, Béla; Pribenszky, Csaba; Horváth, Ákos; Cserepes, Judit

    2017-01-01

    Background Cryopreservation of zebrafish embryos is still an unsolved problem despite market demand and massive efforts to preserve genetic variation among numerous existing lines. Chilled storage of embryos might be a step towards developing successful cryopreservation, but no methods to date have worked. Methods In the present study, we applied a novel strategy to improve the chilling tolerance of zebrafish embryos by introducing a preconditioning hydrostatic pressure treatment to the embryos. In our experiments, 26-somites and Prim-5 stage zebrafish embryos were chilled at 0°C for 24 hours after preconditioning. Embryo survival rate, ability to reach maturation and fertilizing capacity were tested. Results Our results indicate that applied preconditioning technology made it possible for the chilled embryos to develop normally until maturity, and to produce healthy offspring as normal, thus passing on their genetic material successfully. Treated embryos had a significantly higher survival and better developmental rate, moreover the treated group had a higher ratio of normal morphology during continued development. While all controls from chilled embryos died by 30 day-post-fertilization, the treated group reached maturity (~90–120 days) and were able to reproduce, resulting in offspring in expected quantity and quality. Conclusions Based on our results, we conclude that the preconditioning technology represents a significant improvement in zebrafish embryo chilling tolerance, thus enabling a long-time survival. Furthermore, as embryonic development is arrested during chilled storage this technology also provides a solution to synchronize or delay the development. PMID:28166301

  18. Zebrafish (Danio rerio) Models To Assess Acute, Developmental, And Neurodevelopmental Toxicity

    EPA Science Inventory

    Zebrafish (Danio rerio) acute, developmental, and neurodevelopmental model systems have been developed to assess both known and unknown environmental contaminants. Developmental toxicity is assessed using death and dysmorphology as endpoints, whereas neurodevelopmental toxicity ...

  19. The Nordic Countries Meeting on the Zebrafish as a Model for Development and Disease 2012

    PubMed Central

    Zetterberg, Henrik

    2013-01-01

    Abstract The first Nordic Countries Meeting on the Zebrafish as a Model for Development and Disease took place at Karolinska Institutet in Stockholm, November 21–23, 2012. The meeting gathered 130 scientists, students, and company representatives from Iceland, Finland, Norway, Denmark, and Sweden, as well as invited guests and keynote speakers from England, Scotland, Germany, Poland, The Netherlands, Singapore, Japan, and the United States. Presentations covered a wide range of topics, including developmental biology, genetics, evolutionary biology, toxicology, behavioral studies, and disease mechanisms. The need for formal guidance and training in zebrafish housing, husbandry, and health monitoring was recognized, and the meeting expressed its support for the joint working group of the FELASA/COST action BM0804 EuFishBioMed. The decision was made to turn the Nordic meeting into an annual event and create a Nordic network of zebrafish researchers. PMID:23590403

  20. The Nordic countries meeting on the zebrafish as a model for development and disease 2012.

    PubMed

    Andersson Lendahl, Monika; Zetterberg, Henrik

    2013-03-01

    The first Nordic Countries Meeting on the Zebrafish as a Model for Development and Disease took place at Karolinska Institutet in Stockholm, November 21-23, 2012. The meeting gathered 130 scientists, students, and company representatives from Iceland, Finland, Norway, Denmark, and Sweden, as well as invited guests and keynote speakers from England, Scotland, Germany, Poland, The Netherlands, Singapore, Japan, and the United States. Presentations covered a wide range of topics, including developmental biology, genetics, evolutionary biology, toxicology, behavioral studies, and disease mechanisms. The need for formal guidance and training in zebrafish housing, husbandry, and health monitoring was recognized, and the meeting expressed its support for the joint working group of the FELASA/COST action BM0804 EuFishBioMed. The decision was made to turn the Nordic meeting into an annual event and create a Nordic network of zebrafish researchers.

Top