Science.gov

Sample records for afferent arteriole af-art

  1. Flow modulates myogenic responses in isolated microperfused rabbit afferent arterioles via endothelium-derived nitric oxide.

    PubMed Central

    Juncos, L A; Garvin, J; Carretero, O A; Ito, S

    1995-01-01

    Flow may be a physiological stimulus of the endothelial release of nitric oxide (NO) and prostaglandins (PGs). We tested the hypothesis that pressure-induced constriction of the glomerular afferent arteriole (Af-Art) is modulated by luminal flow via endothelial production of NO. We microdissected the terminal segment of an interlobular artery together with two Af-Arts, their glomeruli (GL) and efferent arterioles (Ef-Art). The two Af-Arts were perfused simultaneously from the interlobular artery, while one Ef-Art was occluded. Since the arteriolar perfusate contained 5% albumin, oncotic pressure built up in the glomerulus with the occluded Ef-Art and opposed the force of filtration, resulting in little or no flow through the corresponding Af-Art. Thus this preparation allowed us to observe free-flow and no-flow Af-Arts simultaneously during stepwise 30-mmHg increases in intraluminal pressure (from 30 to 120 mmHg). Pressure-induced constriction was weaker in free-flow than no-flow Af-Arts, with the luminal diameter decreasing by 11.1 +/- 1.7 and 25.6 +/- 2.3% (n = 30), respectively, at 120 mmHg. To examine whether flow modulates myogenic constriction through endothelium-derived NO and/or PGs, we examined pressure-induced constriction before and after (a) disruption of the endothelium, (b) inhibition of NO synthesis with NW-nitro-L-arginine methyl ester (L-NAME), or (c) inhibition of cyclooxygenase with indomethacin. Both endothelial disruption and L-NAME augmented pressure-induced constriction in free-flow but not no-flow Af-Arts, abolishing the differences between the two. However, indomethacin had no effect in either free-flow or no-flow Af-Arts. These results suggest that intraluminal flow attenuates pressure-induced constriction in Af-Arts via endothelium-derived NO. Thus flow-stimulated NO release may be important in the fine control of glomerular hemodynamics. Images PMID:7769114

  2. Superoxide modulates myogenic contractions of mouse afferent arterioles.

    PubMed

    Lai, En Yin; Wellstein, Anton; Welch, William J; Wilcox, Christopher S

    2011-10-01

    Reactive oxygen species enhance or impair autoregulation. Because superoxide is a vasoconstrictor, we tested the hypothesis that stretch generates superoxide that mediates myogenic responses. Increasing perfusion pressure of mouse isolated perfused renal afferent arterioles from 40 to 80 mm Hg reduced their diameter by 13.3±1.8% (P<0.001) and increased reactive oxygen species (ethidium: dihydroethidium fluorescence) by 9.8±2.3% (P<0.05). Stretch-induced fluorescence was reduced significantly (P<0.05) by incubation with Tempol (3.7±0.8%), pegylated superoxide dismutase (3.2±1.0%), or apocynin (3.5±0.9%) but not by pegylated catalase, L-nitroarginine methylester, or Ca(2+)-free medium, relating it to Ca(2+)-independent vascular superoxide. Compared with vehicle, basal tone and myogenic contractions were reduced significantly (P<0.05) by pegylated superoxide dismutase (5.4±0.8), Tempol (4.1±1.0%), apocynin (1.0±1.3%), and diphenyleneiodinium (3.9±0.9%) but not by pegylated catalase (10.1±1.6%). L-Nitroarginine methylester enhanced basal tone, but neither it (15.8±3.3%) nor endothelial NO synthase knockout (10.2±1.8%) significantly changed myogenic contractions. Tempol had no further effect after superoxide dismutase but remained effective after catalase. H(2)O(2) >50 μmol/L caused contractions but at 25 μmol/L inhibited myogenic responses (7.4±0.8%; P<0.01). In conclusion, increasing the pressure within afferent arterioles led to Ca(2+)-independent increased vascular superoxide production from nicotinamide adenine dinucleotide phosphate oxidase, which enhanced myogenic contractions largely independent of NO, whereas H(2)O(2) impaired pressure-induced contractions but was not implicated in the normal myogenic response.

  3. Superoxide enhances Ca2+ entry through L-type channels in the renal afferent arteriole.

    PubMed

    Vogel, Paul A; Yang, Xi; Moss, Nicholas G; Arendshorst, William J

    2015-08-01

    Reactive oxygen species regulate cardiovascular and renal function in health and disease. Superoxide participates in acute calcium signaling in afferent arterioles and renal vasoconstriction produced by angiotensin II, endothelin, thromboxane, and pressure-induced myogenic tone. Known mechanisms by which superoxide acts include quenching of nitric oxide and increased ADP ribosyl cyclase/ryanodine-mediated calcium mobilization. The effect(s) of superoxide on other calcium signaling pathways in the renal microcirculation is poorly understood. The present experiments examined the acute effect of superoxide generated by paraquat on calcium entry pathways in isolated rat afferent arterioles. The peak increase in cytosolic calcium concentration caused by KCl (40 mmol/L) was 99±14 nmol/L. The response to this membrane depolarization was mediated exclusively by L-type channels because it was abolished by nifedipine but was unaffected by the T-type channel blocker mibefradil. Paraquat increased superoxide production (dihydroethidium fluorescence), tripled the peak response to KCl to 314±68 nmol/L (P<0.001) and doubled the plateau response. These effects were abolished by tempol and nitroblue tetrazolium, but not by catalase, confirming actions of superoxide and not of hydrogen peroxide. Unaffected by paraquat and superoxide was calcium entry through store-operated calcium channels activated by thapsigargin-induced calcium depletion of sarcoplasmic reticular stores. Also unresponsive to paraquat was ryanodine receptor-mediated calcium-induced calcium release from the sarcoplasmic reticulum. Our results provide new evidence that superoxide enhances calcium entry through L-type channels activated by membrane depolarization in rat cortical afferent arterioles, without affecting calcium entry through store-operated entry or ryanodine receptor-mediated calcium mobilization.

  4. Calcium dynamics underlying the myogenic response of the renal afferent arteriole

    PubMed Central

    Edwards, Aurélie

    2013-01-01

    The renal afferent arteriole reacts to an elevation in blood pressure with an increase in muscle tone and a decrease in luminal diameter. This effect, known as the myogenic response, is believed to stabilize glomerular filtration and to protect the glomerulus from systolic blood pressure increases, especially in hypertension. To study the mechanisms underlying the myogenic response, we developed a mathematical model of intracellular Ca2+ signaling in an afferent arteriole smooth muscle cell. The model represents detailed transmembrane ionic transport, intracellular Ca2+ dynamics, the kinetics of myosin light chain phosphorylation, and the mechanical behavior of the cell. It assumes that the myogenic response is initiated by pressure-induced changes in the activity of nonselective cation channels. Our model predicts spontaneous vasomotion at physiological luminal pressures and KCl- and diltiazem-induced diameter changes comparable to experimental findings. The time-periodic oscillations stem from the dynamic exchange of Ca2+ between the cytosol and the sarcoplasmic reticulum, coupled to the stimulation of Ca2+-activated potassium (KCa) and chloride (ClCa) channels, and the modulation of voltage-activated L-type channels; blocking sarco/endoplasmic reticulum Ca2+ pumps, ryanodine receptors (RyR), KCa, ClCa, or L-type channels abolishes these oscillations. Our results indicate that the profile of the myogenic response is also strongly dependent on the conductance of ClCa and L-type channels, as well as the activity of plasmalemmal Ca2+ pumps. Furthermore, inhibition of KCa is not necessary to induce myogenic contraction. Lastly, our model suggests that the kinetic behavior of L-type channels results in myogenic kinetics that are substantially faster during constriction than during dilation, consistent with in vitro observations (Loutzenhiser R, Bidani A, Chilton L. Circ. Res. 90: 1316–1324, 2002). PMID:24173354

  5. Predicted effects of nitric oxide and superoxide on the vasoactivity of the afferent arteriole.

    PubMed

    Layton, Anita T; Edwards, Aurélie

    2015-10-15

    We expanded a published mathematical model of an afferent arteriole smooth muscle cell in rat kidney (Edwards A, Layton, AT. Am J Physiol Renal Physiol 306: F34-F48, 2014) to understand how nitric oxide (NO) and superoxide (O(2)(-)) modulate the arteriolar diameter and its myogenic response. The present model includes the kinetics of NO and O(2)(-) formation, diffusion, and reaction. Also included are the effects of NO and its second messenger cGMP on cellular Ca²⁺ uptake and efflux, Ca²⁺-activated K⁺ currents, and myosin light chain phosphatase activity. The model considers as well pressure-induced increases in O(2)(-) production, O(2)(-)-mediated regulation of L-type Ca²⁺ channel conductance, and increased O(2)(-) production in spontaneous hypertensive rats (SHR). Our results indicate that elevated O(2)(-) production in SHR is sufficient to account for observed differences between normotensive and hypertensive rats in the response of the afferent arteriole to NO synthase inhibition, Tempol, and angiotensin II at baseline perfusion pressures. In vitro, whether the myogenic response is stronger in SHR remains uncertain. Our model predicts that if mechanosensitive cation channels are not modulated by O(2)(-), then fractional changes in diameter induced by pressure elevations should be smaller in SHR than in normotensive rats. Our results also suggest that most NO diffuses out of the smooth muscle cell without being consumed, whereas most O(2)(-) is scavenged, by NO and superoxide dismutase. Moreover, the predicted effects of superoxide on arteriolar constriction are not predominantly due to its scavenging of NO.

  6. Autoregulation and conduction of vasomotor responses in a mathematical model of the rat afferent arteriole.

    PubMed

    Sgouralis, Ioannis; Layton, Anita T

    2012-07-15

    We have formulated a mathematical model for the rat afferent arteriole (AA). Our model consists of a series of arteriolar smooth muscle cells and endothelial cells, each of which represents ion transport, cell membrane potential, and gap junction coupling. Cellular contraction and wall mechanics are also represented for the smooth muscle cells. Blood flow through the AA lumen is described by Poiseuille flow. The AA model's representation of the myogenic response is based on the hypothesis that changes in hydrostatic pressure induce changes in the activity of nonselective cation channels. The resulting changes in membrane potential then affect calcium influx through changes in the activity of the voltage-gated calcium channels, so that vessel diameter decreases with increasing pressure values. With this configuration, the model AA maintains roughly stable renal blood flow within a physiologic range of blood flow pressure. Model simulation of vasoconstriction initiated from local stimulation also agrees well with findings in the experimental literature, notably those of Steinhausen et al. (Steinhausen M, Endlich K, Nobiling R, Rarekh N, Schütt F. J Physiol 505: 493-501, 1997), which indicated that conduction of vasoconstrictive response decays more rapidly in the upstream flow direction than downstream. The model can be incorporated into models of integrated renal hemodynamic regulation.

  7. Influence of Connexin40 on the renal myogenic response in murine afferent arterioles

    PubMed Central

    Jacobsen, Jens Christian B; Sorensen, Charlotte M

    2015-01-01

    Renal autoregulation consists of two main mechanisms; the myogenic response and the tubuloglomerular feedback mechanism (TGF). Increases in renal perfusion pressure activate both mechanisms causing a reduction in diameter of the afferent arteriole (AA) resulting in stabilization of the glomerular pressure. It has previously been shown that connexin-40 (Cx40) is essential in the renal autoregulation and mediates the TGF mechanism. The aim of this study was to characterize the myogenic properties of the AA in wild-type and connexin-40 knockout (Cx40KO) mice using both in situ diameter measurements and modeling. We hypothesized that absence of Cx40 would not per se affect myogenic properties as Cx40 is expressed primarily in the endothelium and as the myogenic response is known to be present also in isolated, endothelium-denuded vessels. Methods used were the isolated perfused juxtamedullary nephron preparation to allow diameter measurements of the AA. A simple mathematical model of the myogenic response based on experimental parameters was implemented. Our findings show that the myogenic response is completely preserved in the AA of the Cx40KO and if anything, the stress sensitivity of the smooth muscle cell in the vascular wall is increased rather than reduced as compared to the WT. These findings are compatible with the view of the myogenic response being primarily a local response to the local transmural pressure. PMID:26009638

  8. [A case of systemic lupus erythematosus associated with severe fibrinoid necrosis located mainly in the glomerular afferent arteriole].

    PubMed

    Morioka, S; Makino, H; Wada, J; Shikata, K; Yamasaki, Y; Ogura, T; Amano, T; Asaumi, A; Okada, S; Ota, Z

    1995-01-01

    We report here, a patient of systemic lupus erythematosus (SLE) with severe fibrinoid necrosis in the afferent arteriole of the glomerulus, in whom antiphospholipid antibody might have contributed to the pathogenesis. A 24-year-old female who was suffering from severe anemia with fragmented red blood cells, acute renal failure and thrombocytopenia, was admitted to our hospital. Further examinations revealed findings compatible with active lupus nephritis. Moreover, she was found to be positive for antiphospholipid antibody, and anticardiolipin antibody, as well as for lupus anticoagulant and syphilis test. Intensive treatment by methylprednisolone pulse therapy, hemodialysis, and double filtration plasmapheresis were performed. However, 13 days after admission she died suddenly because of intracranial hemorrhage. Pathological investigation of renal tissue revealed severe fibrinoid necrosis of the arterioles mainly in the glomerular afferent arteriole associated with diffuse proliferative lupus nephritis. In this case, hemolytic uremic syndrome (HUS) was associated with SLE. Antiphospholipid antibody was considered to be not only an accelerator in the arterial lesions of HUS, but also an initiator of HUS itself.

  9. Interaction of angiotensin II and nitric oxide in isolated perfused afferent arterioles of mice.

    PubMed

    Patzak, A; Mrowka, R; Storch, E; Hocher, B; Persson, P B

    2001-06-01

    The present study was performed to evaluate angiotensin II (Ang II)-nitric oxide (NO) interaction in afferent arterioles (Af) of wild-type mice and mice that are homozygous (-/-) for disruption of the endothelial NO synthase (eNOS) gene. Af were microperfused, and the dose responses were assessed for the NO precursor L-arginine (n = 4), NO inhibitor NG-nitro-L-arginine methyl ester (L-NAME, n = 5), L-NAME after pretreatment with L-arginine (n = 5), Ang II (n = 8), and Ang II after pretreatment with L-NAME (n = 7). Acute administration of L-arginine and L-NAME (both in doses from 10(-6) to 10(-3) mol/L) did not change arteriolar diameter. Moreover, pretreatment with L-arginine did not change the response to L-NAME. However, Ang II, applied in doses of 10(-12), 10(-10), 10(-8), and 10(-6) mol/L, significantly reduced the lumen to 66.5 +/- 7.0% and 62.2 +/- 8.0% at 10(-8) and 10(-6) mol/L Ang II, respectively. The contraction was augmented after L-NAME pretreatment (19.5 +/- 13.6% and 25.5 +/- 10.2% at 10(-8) and 10(-6) mol/L Ang II, respectively). In eNOS (-/-) mice (n = 8), the response to Ang II also was enhanced (9.1 +/- 6.0% and 11.2 +/- 8.2% at 10(-8) and 10(-6) mol/L Ang II, respectively). Female mice did not differ from male mice in their reactivity to Ang II (n = 9) and Ang II + L-NAME pretreatment (n = 11). The study shows that (1) it is feasible to microperfuse mouse Af, (2) the basal production of endothelial NO is very low and not inducible by L-arginine in Af of mice, and (3) a counteracting effect of NO is initiated by Ang II. High Ang II sensitivity in eNOS (-/-) mice underscores the considerable role of endothelial-derived NO to balance Ang II vasoconstriction in Af.

  10. Redundant signaling mechanisms contribute to the vasodilatory response of the afferent arteriole to proteinase-activated receptor-2.

    PubMed

    Wang, Xuemei; Hollenberg, Morley D; Loutzenhiser, Rodger

    2005-01-01

    We previously demonstrated that stimulation of proteinase-activated receptor-2 (PAR-2) by SLIGRL-NH(2) elicits afferent arteriolar vasodilation, in part, by elaborating nitric oxide (NO), suggesting an endothelium-dependent mechanism (Trottier G, Hollenberg M, Wang X, Gui Y, Loutzenhiser K, and Loutzenhiser R. Am J Physiol Renal Physiol 282: F891-F897, 2002). In the present study, we characterized the NO-independent component of this response, using the in vitro perfused hydronephrotic rat kidney. SLIGRL-NH(2) (10 mumol/l) dilated afferent arterioles preconstricted with ANG II, and the initial transient component of this response was resistant to NO synthase (NOS) and cyclooxygenase inhibition. This NO-independent response was not prevented by treatment with 10 nmol/l charybdotoxin and 1 mumol/l apamin, a manipulation that prevents the endothelium-derived hyperpolarizing factor (EDHF)-like response of the afferent arteriole to acetylcholine, nor was it blocked by the addition of 1 mmol/l tetraethylammonium (TEA) or 50 mumol/l 17-octadecynoic acid, treatments that block the EDHF-like response to bradykinin. To determine whether the PAR-2 response additionally involves the electrogenic Na(+)-K(+)-ATPase, responses were evaluated in the presence of 3 mmol/l ouabain. In this setting, SLIGRL-NH(2) induced a biphasic dilation in control and a transient response after NOS inhibition. The latter was not prevented by charybdotoxin plus apamin or by TEA alone but was abolished by combined treatment with charybdotoxin, apamin, and TEA. This treatment did not prevent the NO-dependent dilation evoked in the absence of NOS inhibition. Our findings indicate a remarkable redundancy in the signaling cascade mediating PAR-2 -induced afferent arteriolar vasodilation, suggesting an importance in settings such as inflamation or ischemia, in which vascular mechanisms might be impaired and the PAR system is thought to be activated.

  11. Angiotensin II-stimulated Ca2+ entry mechanisms in afferent arterioles: role of transient receptor potential canonical channels and reverse Na+/Ca2+ exchange.

    PubMed

    Fellner, Susan K; Arendshorst, William J

    2008-01-01

    In afferent arterioles, the signaling events that lead to an increase in cytosolic Ca(2+) concentration ([Ca(2+)](i)) and initiation of vascular contraction are increasingly being delineated. We have recently studied angiotensin II (ANG II)-mediated effects on sarcoplasmic reticulum (SR) mobilization of Ca(2+) and the role of superoxide and cyclic adenosine diphosphoribose in these processes. In the current study we investigated the participation of transient receptor potential canonical channels (TRPC) and a Na(+)/Ca(2+) exchanger (NCX) in Ca(2+) entry mechanisms. Afferent arterioles, isolated with the magnetized polystyrene bead method, were loaded with fura-2 to measure [Ca(2+)](i) ratiometrically. We observed that the Ca(2+)-dependent chloride channel blocker niflumic acid (10 and 50 microM) affects neither the peak nor plateau [Ca(2+)](i) response to ANG II. Arterioles were pretreated with ryanodine (100 microM) and TMB-8 to block SR mobilization via the ryanodine receptor and inositol trisphosphate receptor, respectively. The peak [Ca(2+)](i) response to ANG II was reduced by 40%. Addition of 2-aminoethoxydiphenyl borane to block TRPC-mediated Ca(2+) entry inhibited the peak [Ca(2+)](i) ANG II response by 80% and the plateau by 74%. Flufenamic acid (FFA; 50 microM), which stimulates TRPC6, caused a sustained increase of [Ca(2+)](i) of 146 nM. This response was unaffected by diltiazem or nifedipine. KB-R7943 (at the low concentration of 10 microM) inhibits reverse (but not forward) mode NCX. KB-R7943 decreased the peak [Ca(2+)](i) response to ANG II by 48% and to FFA by 38%. We conclude that TRPC6 and reverse-mode NCX may be important Ca(2+) entry pathways in afferent arterioles.

  12. Remodeling of Afferent Arterioles From Mice With Oxidative Stress Does Not Account for Increased Contractility but Does Limit Excessive Wall Stress.

    PubMed

    Li, Lingli; Feng, Di; Luo, Zaiming; Welch, William J; Wilcox, Christopher S; Lai, En Yin

    2015-09-01

    Because superoxide dismutase (SOD) knockout enhances arteriolar remodeling and contractility, we hypothesized that remodeling enhances contractility. In the isolated and perfused renal afferent arterioles from SOD wild type (+/+) and gene-deleted mice, contractility was assessed from reductions in luminal diameter with perfusion pressure from 40 to 80 mm Hg (myogenic responses) or angiotensin II (10(-6) mol/L), remodeling from media:lumen area ratio, superoxide (O2 (·-)) and hydrogen peroxide (H2O2) from fluorescence microscopy, and wall stress from wall tension/wall thickness. Compared with +/+ strains, arterioles from SOD1-/-, SOD2+/-, and SOD3-/- mice developed significantly (P<0.05) more O2 (·-) with perfusion pressure and angiotensin II and significantly increased myogenic responses (SOD1-/-: -20.7±2.2% versus -12.7±1.6%; SOD2+/-: -7.4±1.3% versus -12.6±1.4%; and SOD3-/-: -9.1±1.9% versus -15.8±2.2%) and angiotensin II contractions and ≈2-fold increased media:lumen ratios. Media:lumen ratios correlated with myogenic responses (r(2) =0.23; P<0.01), angiotensin II contractions (r(2)=0.57; P<0.0001), and active wall tension (r(2) =0.19; P<0.01), but not with active wall stress (r(2)=0.08; NS). Differences in myogenic responses among SOD3 mice were abolished by bath addition of SOD and were increased 3 days after inducing SOD3 knockout (-26.9±1.7% versus -20.1±0.7%; P<0.05), despite unchanged media:lumen ratios (2.01±0.09 versus 2.02±0.03; NS). We conclude that cytosolic, mitochondrial, or extracellular O2 (·-) enhance afferent arteriolar contractility and remodeling. Although remodeling does not enhance contractility, it does prevent the potentially damaging effects of increased wall stress.

  13. Mechanical buckling of arterioles in collateral development.

    PubMed

    Liu, Qin; Han, Hai-Chao

    2013-01-07

    Collateral arterioles enlarge in both diameter and length, and develop corkscrew-like tortuous patterns during remodeling. Recent studies showed that artery buckling could lead to tortuosity. The objective of this study was to determine arteriole critical buckling pressure and buckling pattern during arteriole remodeling. Arterioles were modeled as elastic cylindrical vessels with an elastic matrix support and underwent axial and radial growth. Our results demonstrated that arteriole critical buckling pressure decreased with increasing axial growth ratio and radius growth ratio, but increased with increasing wall thickness. Arteriole buckling mode number increased (wavelength decreased) with increasing axial growth ratio, but decreased with increasing radius growth ratio and wall thickness. Our study suggests that axial growth in arterioles makes them prone to buckling and that buckling leads to tortuous collaterals. These results shed light on the mechanism of collateral arteriole tortuosity.

  14. Mechanical Buckling of Arterioles in Collateral Development

    PubMed Central

    Liu, Qin; Han, Hai-Chao

    2012-01-01

    Collateral arterioles enlarge in both diameter and length, and develop corkscrew-like tortuous patterns during remodeling. Recent studies showed that artery buckling could lead to tortuosity. The objective of this study was to determine arteriole critical buckling pressure and buckling pattern during arteriole remodeling. Arterioles were modeled as elastic cylindrical vessels with an elastic matrix support and underwent axial and radial growth. Our results demonstrated that arteriole critical buckling pressure decreased with increasing axial growth ratio and radius growth ratio, but increased with increasing wall thickness. Arteriole buckling mode number increased (wave length decreased) with increasing axial growth ratio, but decreased with increasing radius growth ratio and wall thickness. Our study suggests that axial growth in arterioles makes them prone to buckling and that buckling leads to tortuous collaterals. These results shed light on the mechanism of collateral arteriole tortuosity. PMID:23034307

  15. Development of the renal arterioles.

    PubMed

    Sequeira Lopez, Maria Luisa S; Gomez, R Ariel

    2011-12-01

    The kidney is a highly vascularized organ that normally receives a fifth of the cardiac output. The unique spatial arrangement of the kidney vasculature with each nephron is crucial for the regulation of renal blood flow, GFR, urine concentration, and other specialized kidney functions. Thus, the proper and timely assembly of kidney vessels with their respective nephrons is a crucial morphogenetic event leading to the formation of a functioning kidney necessary for independent extrauterine life. Mechanisms that govern the development of the kidney vasculature are poorly understood. In this review, we discuss the anatomical development, embryological origin, lineage relationships, and key regulators of the kidney arterioles and postglomerular circulation. Because renal disease is associated with deterioration of the kidney microvasculature and/or the reenactment of embryonic pathways, understanding the morphogenetic events and processes that maintain the renal vasculature may open new avenues for the preservation of renal structure and function and prevent the progression of renal disease.

  16. Benidipine dilates both pre- and post-glomerular arteriole in the canine kidney.

    PubMed

    Yue, W; Kimura, S; Fujisawa, Y; Tian, R; Li, F; Rahman, M; Nishiyama, A; Fukui, T; Abe, Y

    2001-07-01

    The aim of the present study was to determine the effects of benidipine on renal function and whether benidipine may dilate the efferent arteriole as well as the afferent arteriole of the canine kidney. The effects of benidipine on the renal segmental vascular resistance were estimated using Gomez's formula with some modification. The renal hemodynamic action of benidipine was also compared with that of amlodipine. Intrarenal arterial injection of benidipine at a dose of 3 microg/kg resulted in a significant increase in renal blood flow (RBF), urine flow and urinary excretion of sodium, but not in glomerular filtration rate (GFR). Amlodipine at a dose of 300 microg/kg also increased RBF, urine flow and urinary excretion of sodium to a significant degree equivalent to that by benidipine. However, in contrast to benidipine, amlodipine significantly increased GFR. After the administration of benidipine, autoregulation of RBF and GFR was relatively maintained and the renal perfusion pressure (RPP)-RBF relation shifted upward; that is, RBFs at 75 and 50 mmHg were maintained at a higher level than those of the control. In contrast to benidipine, amlodipine diminished the autoregulation of RBF and GFR. RBFs at 75 and 50 mmHg were not different from those of the control. The afferent and efferent arteriolar resistance (Ra and Re) were calculated based on the RPP-RBF and RPP-GFR relations. Benidipine reduced both Ra and Re, but amlodipine selectively reduced Ra. Benidipine increased RBF but not GFR via the dilation of both afferent and efferent arterioles. Thus, benidipine has unique renal hemodynamic actions which differ from those by most calcium antagonists.

  17. Diaphragm arterioles are less responsive to alpha1- adrenergic constriction than gastrocnemius arterioles.

    PubMed

    Aaker, Aaron; Laughlin, M H

    2002-05-01

    The sympathetic nervous system has greater influence on vascular resistance in low-oxidative, fast-twitch skeletal muscle than in high-oxidative skeletal muscle (17). The purpose of this study was to test the hypothesis that arterioles isolated from low-oxidative, fast-twitch skeletal muscle [the white portion of gastrocnemius (WG)] possess greater responsiveness to adrenergic constriction than arterioles isolated from high-oxidative skeletal muscle [red portion of the gastrocnemius muscle (RG) and diaphragm (Dia)]. Second-order arterioles (2As) were isolated from WG, RG, and Dia of rats and reactivity examined in vitro. Results reveal that Dia 2As constrict less to norepinephrine (NE) (10(-9) to 10 (-4) M) than 2As from RG and WG, which exhibited similar NE-induced constrictions. This difference was not endothelium dependent, because responses of denuded 2As were similar to those of intact arterioles. The blunted NE-induced constrictor response of Dia 2As appears to be the result of differences in alpha1-receptor effects because 1) arterioles from Dia also responded less to selective alpha1-receptor stimulation with phenylephrine than RG and WG arterioles; 2) arterioles from Dia, RG, and WG dilated similarly to isoproterenol (10(-9) to 10(-4) M) and did not respond to selective alpha2-receptor stimulation with UK-14304; and 3) endothelin-1 produced similar constriction in 2As from Dia, RG, and WG. We conclude that differences in oxidative capacity and/or fiber type composition of muscle tissue do not explain different NE responsiveness of Dia 2As compared with 2As from gastrocnemius muscle. Differences in alpha1-adrenergic constrictor responsiveness among arterioles in skeletal muscle may contribute to nonuniform muscle blood flow responses observed during exercise and serve to maintain blood flow to Dia during exercise-induced increases in sympathetic nerve activity.

  18. Stenosis differentially affects subendocardial and subepicardial arterioles in vivo.

    PubMed

    Merkus, D; Vergroesen, I; Hiramatsu, O; Tachibana, H; Nakamoto, H; Toyota, E; Goto, M; Ogasawara, Y; Spaan, J A; Kajiya, F

    2001-04-01

    The presence of a coronary stenosis results primarily in subendocardial ischemia. Apart from the decrease in coronary perfusion pressure, a stenosis also decreases coronary flow pulsations. Applying a coronary perfusion system, we compared the autoregulatory response of subendocardial (n = 10) and subepicardial (n = 12) arterioles (<120 microm) after stepwise decreases in coronary arterial pressure from 100 to 70, 50, and 30 mmHg in vivo in dogs (n = 9). Pressure steps were performed with and without stenosis on the perfusion line. Maximal arteriolar diameter during the cardiac cycle was determined and normalized to its value at 100 mmHg. The initial decrease in diameter during reductions in pressure was significantly larger at the subendocardium. Diameters of subendocardial and subepicardial arterioles were similar 10--15 s after the decrease in pressure without stenosis. However, stenosis decreased the dilatory response of the subendocardial arterioles significantly. This decreased dilatory response was also evidenced by a lower coronary inflow at similar average pressure in the presence of a stenosis. Inhibition of nitric oxide production with N(G)-monomethyl-L-arginine abrogated the effect of the stenosis on flow. We conclude that the decrease in pressure caused by a stenosis in vivo results in a larger decrease in diameter of the subendocardial arterioles than in the subepicardial arterioles, and furthermore stenosis selectively decreases the dilatory response of subendocardial arterioles. These two findings expand our understanding of subendocardial vulnerability to ischemia.

  19. Differential adenosine sensitivity of diaphragm and skeletal muscle arterioles.

    PubMed

    Aaker, Aaron; Laughlin, M H

    2002-09-01

    The hyperemic response in exercising skeletal muscle is dependent on muscle fiber-type composition and fiber recruitment patterns, but the vascular control mechanisms producing exercise hyperemia in skeletal muscle remain poorly understood. The purpose of this study was to test the hypothesis that arterioles from white, low-oxidative skeletal muscle are less responsive to adenosine-induced dilation than are arterioles from diaphragm (Dia) and red, high-oxidative skeletal muscle. Second-order arterioles (2As) were isolated from the white portion of gastrocnemius muscle (WG; low-oxidative, fast-twitch muscle tissue) and two types of high-oxidative skeletal muscle [Dia and red portion of gastrocnemius muscle (RG)] of rats. Results reveal that 2As from all three types of muscle dilated in response to the endothelium-dependent dilator acetylcholine (WG: 48 +/- 3%, Dia: 51 +/- 3%, RG: 74 +/- 3%). In contrast, adenosine dilated only 2As from WG (48 +/- 4%) and Dia (46 +/- 5%) but not those from RG (5 +/- 5%). Thus adenosine-induced dilator responses differed among 2As of these different types of muscle tissue. However, the results do not support our hypothesis because 2As from Dia and WG dilated in response to adenosine, whereas 2As from RG did not. We conclude that the adenosine responsiveness of 2As from rat skeletal muscle cannot be predicted only by the fiber-type composition or oxidative capacity of the skeletal muscle tissue wherein the arteriole lies.

  20. Enhanced vasomotion of cerebral arterioles in spontaneously hypertensive rats

    NASA Technical Reports Server (NTRS)

    Lefer, D. J.; Lynch, C. D.; Lapinski, K. C.; Hutchins, P. M.

    1990-01-01

    Intrinsic rhythmic changes in the diameter of pial cerebral arterioles (30-70 microns) in anesthetized normotensive and hypertensive rats were assessed in vivo to determine if any significant differences exist between the two strains. All diameter measurements were analyzed using a traditional graphic analysis technique and a new frequency spectrum analysis technique known as the Prony Spectral Line Estimator. Graphic analysis of the data revealed that spontaneously hypertensive rats (SHR) possess a significantly greater fundamental frequency (5.57 +/- 0.28 cycles/min) of vasomotion compared to the control Wistar-Kyoto normotensive rats (WKY) (1.95 +/- 0.37 cycles/min). Furthermore, the SHR cerebral arterioles exhibited a significantly greater amplitude of vasomotion (10.07 +/- 0.70 microns) when compared to the WKY cerebral arterioles of the same diameter (8.10 +/- 0.70 microns). Diameter measurements processed with the Prony technique revealed that the fundamental frequency of vasomotion in SHR cerebral arterioles (6.14 +/- 0.39 cycles/min) was also significantly greater than that of the WKY cerebral arterioles (2.99 +/- 0.42 cycles/min). The mean amplitudes of vasomotion in the SHR and WKY strains obtained by the Prony analysis were found not to be statistically significant in contrast to the graphic analysis of the vasomotion amplitude of the arterioles. In addition, the Prony system was able to consistently uncover a very low frequency of vasomotion in both strains of rats that was typically less than 1 cycle/min and was not significantly different between the two strains. The amplitude of this slow frequency was also not significantly different between the two strains. The amplitude of the slow frequency of vasomotion (less than 1 cycle/min) was not different from the amplitude of the higher frequency (2-6 cycles/min) vasomotion by Prony or graphic analysis. These data suggest that a fundamental intrinsic defect exists in the spontaneously hypertensive rat

  1. Sex-dependent expression of TRPV1 in bladder arterioles.

    PubMed

    Phan, Thieu X; Ton, Hoai T; Chen, Yue; Basha, Maureen E; Ahern, Gerard P

    2016-11-01

    Transient receptor potential vanilloid type 1 (TRPV1) is a major nociceptive ion channel implicated in bladder physiology and/or pathophysiology. However, the precise expression of TRPV1 in neuronal vs. nonneuronal bladder cells is uncertain. Here we used reporter mouse lines (TRPV1-Cre:tdTomato and TRPV1(PLAP-nlacZ)) to map expression of TRPV1 in postnatal bladder. TRPV1 was not detected in the urothelium, however, we found marked expression of TRPV1 lineage in sensory nerves, and surprisingly, in arterial/arteriolar smooth muscle (ASM) cells. Tomato fluorescence was prominent in the vesical arteries and in small-diameter (15-40 μm) arterioles located in the suburothelial layer with a near equal distribution in bladder dome and base. Notably, arteriolar TRPV1 expression was greater in females than in males and increased in both sexes after 90 days of age, suggesting sex hormone and age dependency. Analysis of whole bladder and vesical artery TRPV1 mRNA revealed a similar sex and developmental dependence. Pharmacological experiments confirmed functional TRPV1 protein expression; capsaicin increased intracellular Ca(2+) in ∼15% of ASM cells from wild-type female bladders, but we observed no responses to capsaicin in bladder arterioles isolated from TRPV1-null mice. Furthermore, capsaicin triggered arteriole constriction that was rapidly reversed by the TRPV1 antagonist, BCTC. These data show that predominantly in postpubertal female mice, bladder ASM cells express functional TRPV1 channels that may act to constrict arterioles. TRPV1 may therefore play an important role in regulating the microcirculation of the female bladder, and this effect may be of significance during inflammatory conditions.

  2. Mechanisms of magnesium-induced vasodilation in cerebral penetrating arterioles.

    PubMed

    Murata, Takahiro; Dietrich, Hans H; Horiuchi, Tetsuyoshi; Hongo, Kazuhiro; Dacey, Ralph G

    2016-06-01

    We investigated in cerebral penetrating arterioles the signaling mechanisms and dose-dependency of extracellular magnesium-induced vasodilation and also its vasodilatory effects in vessels preconstricted with agonists associated with delayed cerebral vasospasm following SAH. Male rat penetrating arterioles were cannulated. Their internal diameters were monitored. To investigate mechanisms of magnesium-induced vasodilation, inhibitors of endothelial function, potassium channels and endothelial impairment were tested. To simulate cerebral vasospasm we applied several spasmogenic agonists. Increased extracellular magnesium concentration produced concentration-dependent vasodilation, which was partially attenuated by non-specific calcium-sensitive potassium channel inhibitor tetraethylammonium, but not by other potassium channel inhibitors. Neither the nitric oxide synthase inhibitor L-NNA nor endothelial impairment induced by air embolism reduced the dilation. Although the magnesium-induced vasodilation was slightly attenuated by the spasmogen ET-1, neither application of PF2α nor TXA2 analog effect the vasodilation. Magnesium induced a concentration- and smooth muscle cell-dependent dilation in cerebral penetrating arterioles. Calcium-sensitive potassium channels of smooth muscle cells may play a key role in magnesium-induced vasodilation. Magnesium also dilated endothelium-impaired vessels as well as vessels preconstricted with spasmogenic agonists. These results provide a fundamental background for the clinical use of magnesium, especially in treatment against delayed cerebral ischemia or vasospasm following SAH.

  3. p47(phox) is required for afferent arteriolar contractile responses to angiotensin II and perfusion pressure in mice.

    PubMed

    Lai, En Yin; Solis, Glenn; Luo, Zaiming; Carlstrom, Mattias; Sandberg, Kathryn; Holland, Steven; Wellstein, Anton; Welch, William J; Wilcox, Christopher S

    2012-02-01

    Myogenic and angiotensin contractions of afferent arterioles generate reactive oxygen species. Resistance vessels express neutrophil oxidase-2 and -4. Angiotensin II activates p47(phox)/neutrophil oxidase-2, whereas it downregulates NOX-4. Therefore, we tested the hypothesis that p47(phox) enhances afferent arteriolar angiotensin contractions. Angiotensin II infusion in p47(phox) +/+ but not -/- mice increased renal cortical NADPH oxidase activity (7±1-12±1 [P<0.01] versus 5±1-7±1 10(3) · RLU · min(-1) · μg protein(-1) [P value not significant]), mean arterial pressure (77±2-91±2 [P<0.005] versus 74±2-77±1 mm Hg [P value not significant]), and renal vascular resistance (7.5±0.4-10.1±0.7 [P<0.01] versus 7.9±0.4-8.3±0.4 mm Hg/mL · min(-1) · gram kidney weight(-1) [P value not significant]). Afferent arterioles from p47(phox) -/- mice had a lesser myogenic response (3.1±0.4 versus 1.4±0.2 dynes · cm(-1) · mm Hg(-1); P<0.02) and a lesser (P<0.05) contraction to 10(-6) M angiotensin II (diameter change +/+: 9.3±0.2-3.4±0.6 μm versus -/-: 9.9±0.6-7.5±0.4 μm). Angiotensin and increased perfusion pressure generated significantly (P<0.05) more reactive oxygen species in p47(phox) +/+ than -/- arterioles. Angiotensin II infusion increased the maximum responsiveness of afferent arterioles from p47(phox) +/+ mice to 10(-6) M angiotensin II yet decreased the response in p47(phox) -/- mice. The angiotensin infusion increased the sensitivity to angiotensin II only in p47(phox) +/+ mice. We conclude that p47(phox) is required to enhance renal NADPH oxidase activity and basal afferent arteriolar myogenic and angiotensin II contractions and to switch afferent arteriolar tachyphylaxis to sensitization to angiotensin during a prolonged angiotensin infusion. These effects likely contribute to hypertension and renal vasoconstriction during infusion of angiotensin II.

  4. Soluble epoxide hydrolase contamination of specific catalase preparations inhibits epoxyeicosatrienoic acid vasodilation of rat renal arterioles

    PubMed Central

    Olson, Lauren; Harder, Adam; Isbell, Marilyn; Imig, John D.; Gutterman, David D.; Falck, J. R.; Campbell, William B.

    2011-01-01

    Cytochrome P-450 metabolites of arachidonic acid, the epoxyeicosatrienoic acids (EETs) and hydrogen peroxide (H2O2), are important signaling molecules in the kidney. In renal arteries, EETs cause vasodilation whereas H2O2 causes vasoconstriction. To determine the physiological contribution of H2O2, catalase is used to inactivate H2O2. However, the consequence of catalase action on EET vascular activity has not been determined. In rat renal afferent arterioles, 14,15-EET caused concentration-related dilations that were inhibited by Sigma bovine liver (SBL) catalase (1,000 U/ml) but not Calbiochem bovine liver (CBL) catalase (1,000 U/ml). SBL catalase inhibition was reversed by the soluble epoxide hydrolase (sEH) inhibitor tAUCB (1 μM). In 14,15-EET incubations, SBL catalase caused a concentration-related increase in a polar metabolite. Using mass spectrometry, the metabolite was identified as 14,15-dihydroxyeicosatrienoic acid (14,15-DHET), the inactive sEH metabolite. 14,15-EET hydrolysis was not altered by the catalase inhibitor 3-amino-1,2,4-triazole (3-ATZ; 10–50 mM), but was abolished by the sEH inhibitor BIRD-0826 (1–10 μM). SBL catalase EET hydrolysis showed a regioisomer preference with greatest hydrolysis of 14,15-EET followed by 11,12-, 8,9- and 5,6-EET (Vmax = 0.54 ± 0.07, 0.23 ± 0.06, 0.18 ± 0.01 and 0.08 ± 0.02 ng DHET·U catalase−1·min−1, respectively). Of five different catalase preparations assayed, EET hydrolysis was observed with two Sigma liver catalases. These preparations had low specific catalase activity and positive sEH expression. Mass spectrometric analysis of the SBL catalase identified peptide fragments matching bovine sEH. Collectively, these data indicate that catalase does not affect EET-mediated dilation of renal arterioles. However, some commercial catalase preparations are contaminated with sEH, and these contaminated preparations diminish the biological activity of H2O2 and EETs. PMID:21753077

  5. Pharmacology of airway afferent nerve activity

    PubMed Central

    Undem, Bradley J; Carr, Michael J

    2001-01-01

    Afferent nerves in the airways serve to regulate breathing pattern, cough, and airway autonomic neural tone. Pharmacologic agents that influence afferent nerve activity can be subclassified into compounds that modulate activity by indirect means (e.g. bronchial smooth muscle spasmogens) and those that act directly on the nerves. Directly acting agents affect afferent nerve activity by interacting with various ion channels and receptors within the membrane of the afferent terminals. Whether by direct or indirect means, most compounds that enter the airspace will modify afferent nerve activity, and through this action alter airway physiology. PMID:11686889

  6. Direct observations of muscle arterioles and venules following contraction of skeletal muscle fibres in the rat.

    PubMed Central

    Marshall, J M; Tandon, H C

    1984-01-01

    Direct observations have been made of responses of individual arterioles and venules of rat spinotrapezius muscle to contraction of the skeletal muscle fibres. Stimuli of 4-6 V intensity, 0.1 ms duration, delivered via a micro-electrode inserted into the spinotrapezius, evoked contraction of a small bundle of skeletal muscle fibres, followed by vasodilatation which was limited to all those arterioles and venules which crossed or ran alongside activated muscle fibres. Since venules outside the region of contraction, but supplied by dilating arterioles, were not passively distended by the attendant rise in intravascular pressure, it is concluded that both the arterioles and venules dilated actively in response to muscle contraction. All arterioles responded to a single twitch contraction, the terminal arterioles (7-13 micron i.d.) showing the largest increase in diameter. Collecting venules (9-18 micron i.d.) responded to just two twitches in 1 s and larger venules to five twitches in 1 s. When twitch contractions were continuously evoked for 10 s, the responses in individual arterioles and venules were graded with twitch frequency, the fastest and largest response occurring at 6-8 Hz. Tetanic contraction, at 40 Hz for 1 s, produced faster responses in all vessels, a maximum 55% increase from resting internal diameter being attained in only 8 s in some terminal arterioles. In all vessels the responses to tetanic contraction were equal to the maximal dilatation induced by papaverine. These results, in contrast with conclusions drawn from indirect estimates of venous responses, show that venules, like arterioles, dilate actively in response to muscle contraction. Venule dilatation may reduce the rise in capillary hydrostatic pressure, thereby limiting the outward filtration of fluid. PMID:6747856

  7. Arterioles in the swimming muscles of the leatherjacket Parika scaber (Pisces: Balistidae).

    PubMed

    Davison, W

    1987-06-01

    The leatherjacket (Parika scaber) is a balistiform fish which swims using its dorsal and anal median fins. The muscles controlling these fins are well vascularised, with control of blood flow effected by arterioles. These arterioles are long with a single layer of smooth muscle surrounding the endothelium, although the amount of contractile material is sparse, probably a consequence of the low blood pressure. The endothelial cells contain microfilaments, probably contractile, running along the length of the arteriole. The function of this material is unknown.

  8. Functional and Molecular Characterization of the Endothelin System in Retinal Arterioles

    PubMed Central

    Hein, Travis W.; Ren, Yi; Yuan, Zhaoxu; Xu, Wenjuan; Somvanshi, Sonal; Nagaoka, Taiji; Yoshida, Akitoshi; Kuo, Lih

    2009-01-01

    Purpose Activation of the endothelin (ET) system has been implicated in the pathogenesis of retinal ischemic disease. Although ET-1, the predominant endogenous isoform of ET, has been shown to cause constriction of retinal vessels, the expression and functional significance of its synthesis and the involved specific ET receptors in retinal arterioles remain unknown. The authors examined the roles of ETA and ETB receptors and of endothelin-converting enzyme (ECE)-1 in ET-1–induced vasomotor responses of single retinal arterioles. Methods To exclude systemic confounding effects, porcine retinal arterioles were isolated for vasoreactivity and molecular studies. Results Isolated and pressurized retinal arterioles developed basal tone and constricted in a manner dependent on concentration to ET-1. ET-1 precursor big ET-1 elicited time-dependent vasoconstriction over 20 minutes, which was blocked by the ECE-1 inhibitor phosphoramidon. ETA receptor antagonist BQ123 inhibited most (approximately 90%) of vasoconstrictions to ET-1 and big ET-1. ETB receptor agonist sarafotoxin also elicited concentration-dependent constriction of retinal arterioles but with significantly less potency than ET-1. ETB receptor antagonist BQ788 abolished vasoconstriction to sarafotoxin but only slightly reduced responses to ET-1 and big ET-1. Protein and mRNA expressions of ETA, ETB, and ECE-1 were detected in retinal arterioles. Immunohistochemistry revealed ETA and ETB receptors predominantly in smooth muscle and ECE-1 predominantly in endothelium and smooth muscle. Conclusions ET-1 elicits constriction of retinal arterioles predominantly through the activation of smooth muscle ETA receptors. Endogenous production of ET-1 from vascular ECE-1 is sufficient to evoke ETA receptor–dependent constriction in retinal arterioles. PMID:19151386

  9. Effects of aging on vasoconstrictor and mechanical properties of rat skeletal muscle arterioles

    NASA Technical Reports Server (NTRS)

    Muller-Delp, Judy; Spier, Scott A.; Ramsey, Michael W.; Lesniewski, Lisa A.; Papadopoulos, Anthony; Humphrey, J. D.; Delp, Michael D.

    2002-01-01

    Exercise capacity and skeletal muscle blood flow during exercise are reduced with advancing age. This reduction in blood flow capacity may be related to increased reactivity of skeletal muscle resistance vessels to vasoconstrictor stimuli. The purpose of this study was to test the hypothesis that aging results in increased vasoconstrictor responses of skeletal muscle resistance arterioles. First-order (1A) arterioles (90-220 microm) from the gastrocnemius and soleus muscles of young (4 mo) and aged (24 mo) Fischer-344 rats were isolated, cannulated, and pressurized via hydrostatic reservoirs. Vasoconstriction in response to increases in norepinephrine (NE; 1 x 10(-9)-1 x 10(-4) M) and KCl (20-100 mM) concentrations and increases in intraluminal pressure (10-130 cmH(2)O) were evaluated in the absence of flow. Responses to NE and KCl were similar in both soleus and gastrocnemius muscle arterioles from young and aged rats. In contrast, active myogenic responses to changes in intraluminal pressure were diminished in soleus and gastrocnemius arterioles from aged rats. To assess whether alterations in the mechanical properties of resistance arterioles underlie altered myogenic responsiveness, passive diameter responses to pressure and mechanical stiffness were evaluated. There was no effect of age on the structural behavior (passive pressure-diameter relationship) or stiffness of arterioles from either the soleus or gastrocnemius muscles. These results suggest that aging does not result in a nonspecific decrease in vasoconstrictor responsiveness of skeletal muscle arterioles. Rather, aging-induced adaptations of vasoreactivity of resistance arterioles appear to be limited to mechanisms that are uniquely involved in the signaling of the myogenic response.

  10. Complex interactions of NO/cGMP/PKG systems on Ca2+ signaling in afferent arteriolar vascular smooth muscle

    PubMed Central

    Arendshorst, William J.

    2010-01-01

    Little is known about the effects of nitric oxide (NO) and the cyclic GMP (cGMP)/protein kinase G (PKG) system on Ca2+ signaling in vascular smooth muscle cells (VSMC) of resistance vessels in general and afferent arterioles in particular. We tested the hypotheses that cGMP-, Ca2+-dependent big potassium channels (BKCa2+) buffer the Ca2+ response to depolarization by high extracellular KCl and that NO inhibits adenosine diphosphoribose (ADPR) cyclase, thereby reducing the Ca2+-induced Ca2+ release. We isolated rat afferent arterioles, utilizing the magnetized microsphere method, and measured cytosolic Ca2+ concentration ([Ca2+]i) with fura-2, a preparation in which endothelial cells do not participate in [Ca2+]i responses. KCl (50 mM)-induced depolarization causes an immediate increase in [Ca2+]i of 151 nM. The blockers Nω-nitro-l-arginine methyl ester (of nitric oxide synthase), 1,2,4-oxodiazolo-[4,3-a]quinoxalin-1-one (ODQ, of guanylyl cyclase), KT-5823 (of PKG activation), and iberiotoxin (IBX, of BKCa2+ activity) do not alter the [Ca2+]i response to KCl, suggesting no discernible endogenous NO production under basal conditions. The NO donor sodium nitroprusside (SNP) reduces the [Ca2+]i response to 77 nM; IBX restores the response to control values. These data show that activation of BKCa2+ in the presence of NO/cGMP provides a brake on KCl-induced [Ca2+]i responses. Experiments with the inhibitor of cyclic ADPR 8-bromo-cyclic ADPR (8-Br-cADPR) and SNP + downstream inhibitors of PKG and BKCa2+ suggest that NO inhibits ADPR cyclase in intact arterioles. When we pretreat afferent arterioles with 8-bromoguanosine 3′,5′-cyclic monophosphate (8-Br-cGMP; 10 μM), the response to KCl is 143 nM. However, in the presence of both IBX and 8-Br-cGMP, we observe a surprising doubling of the [Ca2+]i response to KCl. In summary, we present evidence for effects of the NO/cGMP/PKG system to reduce [Ca2+]i, via activation of BKCa2+ and possibly by inhibition of ADPR cyclase

  11. Time course of vasodilatory responses in skeletal muscle arterioles: role in hyperemia at onset of exercise

    NASA Technical Reports Server (NTRS)

    Wunsch, S. A.; Muller-Delp, J.; Delp, M. D.

    2000-01-01

    At the onset of dynamic exercise, muscle blood flow increases within 1-2 s. It has been postulated that local vasodilatory agents produced by the vascular endothelium or the muscle itself contribute to this response. We hypothesized that only vasodilators that act directly on the vascular smooth muscle could produce vasodilation of skeletal muscle arterioles in <2 s. To test this hypothesis, we determined the time course of the vasodilatory response of isolated skeletal muscle arterioles to direct application of potassium chloride, adenosine, acetylcholine, and sodium nitroprusside. Soleus and gastrocnemius muscles were dissected from the hindlimbs of male Sprague-Dawley rats. First-order arterioles (100-200 microm) were isolated, cannulated on micropipettes, and pressurized to 60 cmH(2)O in an organ bath. Vasodilatory agents were added directly to the bath, and diameter responses of the arterioles were recorded in real time on a videotape recorder. Frame-by-frame analysis of the diameter responses indicated that none of the vasodilator agents tested produced significant diameter increases in <4 s in either soleus or gastrocnemius muscle arterioles. These results indicate that, although these local vasodilators produce significant vasodilation of skeletal muscle resistance arterioles, these responses are not rapid enough (within 1-2 s) to contribute to the initiation of the exercise hyperemic response at the onset of dynamic exercise.

  12. Effect of Red Blood Cells on Platelet Activation and Thrombus Formation in Tortuous Arterioles.

    PubMed

    Chesnutt, Jennifer K W; Han, Hai-Chao

    2013-01-01

    Thrombosis is a major contributor to cardiovascular disease, which can lead to myocardial infarction and stroke. Thrombosis may form in tortuous microvessels, which are often seen throughout the human body, but the microscale mechanisms and processes are not well understood. In straight vessels, the presence of red blood cells (RBCs) is known to push platelets toward walls, which may affect platelet aggregation and thrombus formation. However in tortuous vessels, the effects of RBC interactions with platelets in thrombosis are largely unknown. Accordingly, the objective of this work was to determine the physical effects of RBCs, platelet size, and vessel tortuosity on platelet activation and thrombus formation in tortuous arterioles. A discrete element computational model was used to simulate the transport, collision, adhesion, aggregation, and shear-induced platelet activation of hundreds of individual platelets and RBCs in thrombus formation in tortuous arterioles. Results showed that high shear stress near the inner sides of curved arteriole walls activated platelets to initiate thrombosis. RBCs initially promoted platelet activation, but then collisions of RBCs with mural thrombi reduced the amount of mural thrombus and the size of emboli. In the absence of RBCs, mural thrombus mass was smaller in a highly tortuous arteriole compared to a less tortuous arteriole. In the presence of RBCs however, mural thrombus mass was larger in the highly tortuous arteriole compared to the less tortuous arteriole. As well, smaller platelet size yielded less mural thrombus mass and smaller emboli, either with or without RBCs. This study shed light on microscopic interactions of RBCs and platelets in tortuous microvessels, which have implications in various pathologies associated with thrombosis and bleeding.

  13. Comparison of membrane electrical activity of cat gastric submucosal arterioles and venules.

    PubMed Central

    Morgan, K G

    1983-01-01

    Intracellular electrical recordings were made from arterioles and venules of the cat gastric submucosa. Spontaneous rhythmic fluctuations of the membrane potential were recorded in 54% of the venular preparations. Arteriolar cells showed no spontaneous activity. Excitatory junction potentials were recorded in arterioles but not venules after single shocks to the perivascular nerves. The amplitude of the excitatory junction potential was decreased in the presence of alpha-blockers. Repetitive stimulation of the perivascular nerve caused a biphasic electrical response of venular smooth muscle cells. The depolarizing component was decreased by alpha-adrenergic blockade and the hyperpolarizing component by beta-blockade. Venules contracted in response to smaller depolarizations than did arterioles. The voltage threshold for contraction of venular cells was similar to that for arteriolar cells but the venular cells were significantly more depolarized at rest than were the arteriolar cells. The difference in resting potential provides an explanation for the difference in sensitivity to electrical input. PMID:6663496

  14. The angiotensin receptor blocker losartan reduces coronary arteriole remodeling in type 2 diabetic mice.

    PubMed

    Husarek, Kathryn E; Katz, Paige S; Trask, Aaron J; Galantowicz, Maarten L; Cismowski, Mary J; Lucchesi, Pamela A

    2016-01-01

    Cardiovascular complications are a leading cause of morbidity and mortality in type 2 diabetes mellitus (T2DM) and are associated with alterations of blood vessel structure and function. Although endothelial dysfunction and aortic stiffness have been documented, little is known about the effects of T2DM on coronary microvascular structural remodeling. The renin-angiotensin-aldosterone system plays an important role in large artery stiffness and mesenteric vessel remodeling in hypertension and T2DM. The goal of this study was to determine whether the blockade of AT1R signaling dictates vascular smooth muscle growth that partially underlies coronary arteriole remodeling in T2DM. Control and db/db mice were given AT1R blocker losartan via drinking water for 4 weeks. Using pressure myography, we found that coronary arterioles from 16-week db/db mice undergo inward hypertrophic remodeling due to increased wall thickness and wall-to-lumen ratio with a decreased lumen diameter. This remodeling was accompanied by decreased elastic modulus (decreased stiffness). Losartan treatment decreased wall thickness, wall-to-lumen ratio, and coronary arteriole cell number in db/db mice. Losartan treatment did not affect incremental elastic modulus. However, losartan improved coronary flow reserve. Our data suggest that Ang II-AT1R signaling mediates, at least in part, coronary arteriole inward hypertrophic remodeling in T2DM without affecting vascular mechanics, further suggesting that targeting the coronary microvasculature in T2DM may help reduce cardiac ischemic events.

  15. Inhibition of heat shock protein 90 improves pulmonary arteriole remodeling in pulmonary arterial hypertension

    PubMed Central

    Zhao, Zhi-Min; Liu, Su-Xuan; Zhang, Guan-Xin; Yang, Fan; Wang, Yang; Wu, Feng; Zhao, Xian-Xian; Xu, Zhi-Yun

    2016-01-01

    While the molecular chaperone heat shock protein 90 (HSP90) is involved in a multitude of physiological and pathological processes, its role relating to pulmonary arterial hypertension (PAH) remains unclear. In the present study, we investigated the effect in which HSP90 improves pulmonary arteriole remodeling, and explored the therapeutic utility of targeting HSP90 as therapeutic drug for PAH. By Elisa and immunohistochemistry, HSP90 was found to be increased in both plasma and membrane walls of pulmonary arterioles from PAH patients. Moreover, plasma HSP90 levels positively correlated with mean pulmonary arterial pressure and C-reactive protein. In a monocrotaline-induced rat model of PH, we found that 17-AAG, a HSP90-inhibitor, alleviated the progress of PH, demonstrated by lower pulmonary arterial pressure and absence of right ventricular hypertrophy. Immunohistochemical staining demonstrated that 17-AAG improved pulmonary arteriole remodeling on the basis of reduced wall thickness and wall area. The inflammatory response attributed to PH could be attenuated by 17-AAG through reduction of NF-κB signaling. Moreover, 17-AAG was found to suppress PDGF-stimulated proliferation and migration of pulmonary artery smooth muscle cells (PASMCs) through induction of cell cycle arrest in the G1 phase. In conclusion, HSP90 inhibitor 17-AAG could improve pulmonary arteriole remodeling via inhibiting the excessive proliferation of PASMCs, and inhibition of HSP90 may represent a therapeutic avenue for the treatment of PAH. PMID:27472464

  16. Contribution of nitric oxide synthase isoforms to cholinergic vasodilation in murine retinal arterioles.

    PubMed

    Gericke, Adrian; Goloborodko, Evgeny; Sniatecki, Jan J; Steege, Andreas; Wojnowski, Leszek; Pfeiffer, Norbert

    2013-04-01

    Nitric oxide synthases (NOSs) are critically involved in regulation of ocular perfusion. However, the contribution of the individual NOS isoforms to vascular responses is unknown in the retina. Because some previous findings suggested an involvement of inducible nitric oxide synthase (iNOS) in the regulation of retinal vascular tone, a major goal of the present study was to examine the hypothesis that iNOS is involved in mediating cholinergic vasodilation responses of murine retinal arterioles. Another subject of this study was to test the contribution of the other two NOS isoforms, neuronal (nNOS) and endothelial NOS (eNOS), to cholinergic retinal arteriole responses. Expression of individual NOS isoforms was determined in murine retinal arterioles using real-time PCR. All three NOS isoforms were expressed in retinal arterioles. However, eNOS mRNA was found to be most, and iNOS mRNA least abundant. To examine the functional relevance of iNOS for mediating vascular responses, retinal vascular preparations from gene-targeted iNOS-deficient mice (iNOS-/-) and wild-type mice were studied in vitro. Changes in luminal vessel diameter in response to the thromboxane mimetic 9,11-dideoxy-9α,11α-methanoepoxy prostaglandin F2α (U-46619), the endothelium-dependent vasodilator acetylcholine, and the nitric oxide donor nitroprusside were measured by video microscopy. To determine the contribution of individual NOS isoforms to cholinergic vasodilation responses, retinas from iNOS-/- and wild-type mice were incubated with Nω-nitro-l-arginine methyl ester (l-NAME), a non-isoform-selective inhibitor of NOS, 7-nitroindazole, a selective nNOS blocker and aminoguanidine, a selective iNOS inhibitor. U-46619 evoked concentration-dependent vasoconstriction that was similar in retinal arterioles from iNOS-/- and wild-type mice. In retinal arterioles preconstricted with U-46619, acetylcholine and nitroprusside produced dose-dependent dilation that did not differ between iNOS-/- and

  17. Ageing and exercise training alter adrenergic vasomotor responses of rat skeletal muscle arterioles

    PubMed Central

    Donato, Anthony J; Lesniewski, Lisa A; Delp, Michael D

    2007-01-01

    Ageing is associated with increased leg vascular resistance and reductions in leg blood flow during rest and exercise, potentially predisposing older adults to a host of functional and cardiovascular complications. The purpose of these studies was to examine the effects and possible mechanisms of ageing and exercise training on arteriolar adrenergic vasoreactivity. Young and old male Fischer 344 rats were divided into young sedentary (YS), old sedentary (OS), young exercise-trained (YT) or old exercise-trained (OT) groups, where training consisted of chronic treadmill exercise. Isolated soleus (SOL) and gastrocnemius (GAS) muscle arterioles were studied in vitro. Responses to noradrenaline in endothelium-intact and endothelium-denuded arterioles, as well as during nitric oxide synthase (NOS) inhibition were determined. Vasodilator responses to isoproterenol and forskolin were also determined. Results: Noradrenaline-mediated vasoconstriction was increased in SOL arterioles with ageing, and exercise training in old rats attenuated α-adrenergic vasoconstriction in arterioles from both muscle types. Removal of the endothelium and NOS inhibition eliminated these ageing and training effects. Isoproterenol-mediated vasodilatation was impaired with ageing in SOL and GAS arterioles, and exercise training had little effect on this response. Forskolin-induced vasodilatation was not affected by age. The data demonstrate that ageing augments α-adrenergic vasoconstriction while exercise training attenuates this response, and both of these alterations are mediated through an endothelial α-receptor-NOS-signalling pathway. In contrast, ageing diminishes β-receptor-mediated vasodilatation, but this impairment is specific to the smooth muscle. These studies indicate that α- and β-adrenergic mechanisms may serve to increase systemic vascular resistance with ageing, and that the effects of exercise training on adrenergic vasomotor properties could contribute to the beneficial

  18. Afferent Connectivity of the Zebrafish Habenulae

    PubMed Central

    Turner, Katherine J.; Hawkins, Thomas A.; Yáñez, Julián; Anadón, Ramón; Wilson, Stephen W.; Folgueira, Mónica

    2016-01-01

    The habenulae are bilateral nuclei located in the dorsal diencephalon that are conserved across vertebrates. Here we describe the main afferents to the habenulae in larval and adult zebrafish. We observe afferents from the subpallium, nucleus rostrolateralis, posterior tuberculum, posterior hypothalamic lobe, median raphe; we also see asymmetric afferents from olfactory bulb to the right habenula, and from the parapineal to the left habenula. In addition, we find afferents from a ventrolateral telencephalic nucleus that neurochemical and hodological data identify as the ventral entopeduncular nucleus (vENT), confirming and extending observations of Amo et al. (2014). Fate map and marker studies suggest that vENT originates from the diencephalic prethalamic eminence and extends into the lateral telencephalon from 48 to 120 hour post-fertilization (hpf). No afferents to the habenula were observed from the dorsal entopeduncular nucleus (dENT). Consequently, we confirm that the vENT (and not the dENT) should be considered as the entopeduncular nucleus “proper” in zebrafish. Furthermore, comparison with data in other vertebrates suggests that the vENT is a conserved basal ganglia nucleus, being homologous to the entopeduncular nucleus of mammals (internal segment of the globus pallidus of primates) by both embryonic origin and projections, as previously suggested by Amo et al. (2014). PMID:27199671

  19. Differentiation of arterioles from venules in mouse histology images using machine learning.

    PubMed

    Elkerton, J Sachi; Xu, Yiwen; Pickering, J Geoffrey; Ward, Aaron D

    2017-04-01

    Analysis and morphological comparison of the arteriolar and venular components of a microvascular network are essential to our understanding of multiple diseases affecting every organ system. We have developed and evaluated the first fully automatic software system for differentiation of arterioles from venules on high-resolution digital histology images of the mouse hind limb immunostained with smooth muscle [Formula: see text]-actin. Classifiers trained on statistical and morphological features by supervised machine learning provided useful classification accuracy for differentiation of arterioles from venules, achieving an area under the receiver operating characteristic curve of 0.89. Feature selection was consistent across cross validation iterations, and a small set of two features was required to achieve the reported performance, suggesting the generalizability of the system. This system eliminates the need for laborious manual classification of the hundreds of microvessels occurring in a typical sample and paves the way for high-throughput analysis of the arteriolar and venular networks in the mouse.

  20. Nanoliposomes protect against human arteriole endothelial dysfunction induced by β-amyloid peptide

    PubMed Central

    Truran, Seth; Weissig, Volkmar; Madine, Jillian; Davies, Hannah A; Guzman-Villanueva, Diana; Franco, Daniel A; Karamanova, Nina; Burciu, Camelia; Serrano, Geidy; Beach, Thomas G

    2015-01-01

    We tested whether nanoliposomes containing phosphatidylcholine, cholesterol and phosphatidic acid (NLPA) prevent β-amyloid 1-42 (Aβ42) fibrillation and Aβ42-induced human arteriole endothelial dysfunction. NLPA abolished Aβ42 fibril formation (thioflavin-T fluorescence/electron microscopy). In ex-vivo human adipose and leptomeningeal arterioles, Aβ42 impaired dilator response to acetylcholine that was reversed by NLPA; this protection was abolished by L-NG-nitroarginine methyl ester. Aβ42 reduced human umbilical vein endothelial cell NO production that was restored by NLPA. Nanoliposomes prevented Aβ42 amyloid formation, reversed Aβ42-induced human microvascular endothelial dysfunction and may be useful in Alzheimer’s disease. PMID:26661197

  1. Electrophysiological characterization of human rectal afferents

    PubMed Central

    Ng, Kheng-Seong; Brookes, Simon J.; Montes-Adrian, Noemi A.; Mahns, David A.

    2016-01-01

    It is presumed that extrinsic afferent nerves link the rectum to the central nervous system. However, the anatomical/functional existence of such nerves has never previously been demonstrated in humans. Therefore, we aimed to identify and make electrophysiological recordings in vitro from extrinsic afferents, comparing human rectum to colon. Sections of normal rectum and colon were procured from anterior resection and right hemicolectomy specimens, respectively. Sections were pinned and extrinsic nerves dissected. Extracellular visceral afferent nerve activity was recorded. Neuronal responses to chemical [capsaicin and “inflammatory soup” (IS)] and mechanical (Von Frey probing) stimuli were recorded and quantified as peak firing rate (range) in 1-s intervals. Twenty-eight separate nerve trunks from eight rectums were studied. Of these, spontaneous multiunit afferent activity was recorded in 24 nerves. Peak firing rates increased significantly following capsaicin [median 6 (range 3–25) spikes/s vs. 2 (1–4), P < 0.001] and IS [median 5 (range 2–18) spikes/s vs. 2 (1–4), P < 0.001]. Mechanosensitive “hot spots” were identified in 16 nerves [median threshold 2.0 g (range 1.4–6.0 g)]. In eight of these, the threshold decreased after IS [1.0 g (0.4–1.4 g)]. By comparison, spontaneous activity was recorded in only 3/30 nerves studied from 10 colons, and only one hot spot (threshold 60 g) was identified. This study confirms the anatomical/functional existence of extrinsic rectal afferent nerves and characterizes their chemo- and mechanosensitivity for the first time in humans. They have different electrophysiological properties to colonic afferents and warrant further investigation in disease states. PMID:27789454

  2. TRPV1 attenuates intracranial arteriole remodeling through inhibiting VSMC phenotypic modulation in hypertension.

    PubMed

    Zhang, Ming-Jie; Liu, Yun; Hu, Zi-Cheng; Zhou, Yi; Pi, Yan; Guo, Lu; Wang, Xu; Chen, Xue; Li, Jing-Cheng; Zhang, Li-Li

    2017-04-01

    The phenotypic modulation of contractile vascular smooth muscle cell (VSMC) is widely accepted as the pivotal process in the arterial remodeling induced by hypertension. This study aimed to investigate the potential role of transient receptor potential vanilloid type 1 (TRPV1) on regulating VSMC plasticity and intracranial arteriole remodeling in hypertension. Spontaneously hypertensive rats (SHR), Wistar-Kyoto (WKY) rats and TRPV1(-/-) mice on a C57BL/6J background were used. By microscopic observation of the histopathological sections of vessels from hypertensive SHR and age-matched normotensive WKY control rats, we found that hypertension induced arterial remodeling. Decreased α-smooth muscle actin (α-SMA) and SM22α while increased osteopontin (OPN) were observed in aorta and VSMCs derived from SHR compared with those in WKY, and VSMCs derived from SHR upregulated inflammatory factors. TRPV1 activation by capsaicin significantly increased expression of α-SMA and SM22α, reduced expression of OPN, retarded proliferative and migratory capacities and inhibited inflammatory status in VSMCs from SHR, which was counteracted by TRPV1 antagonist 5'-iodoresiniferatoxin (iRTX) combined with capsaicin. TRPV1 activation by capsaicin ameliorated intracranial arteriole remodeling in SHR and deoxycorticosterone acetate (DOCA)-salt hypertensive mice. However, the attenuation of arteriole remodeling by capsaicin was not observed in TRPV1(-/-) mice. Furthermore, TRPV1 activation significantly decreased the activity of PI3K and phosphorylation level of Akt in SHR-derived VSMCs. Taken together, we provide evidence that TRPV1 activation by capsaicin attenuates intracranial arteriole remodeling through inhibiting VSMC phenotypic modulation during hypertension, which may be at least partly attributed to the suppression PI3K/Akt signaling pathway. These findings highlight the prospect of TRPV1 in prevention and treatment of hypertension.

  3. Platelet size and density affect shear-induced thrombus formation in tortuous arterioles

    NASA Astrophysics Data System (ADS)

    Chesnutt, Jennifer K. W.; Han, Hai-Chao

    2013-10-01

    Thrombosis accounts for 80% of deaths in patients with diabetes mellitus. Diabetic patients demonstrate tortuous microvessels and larger than normal platelets. Large platelets are associated with increased platelet activation and thrombosis, but the physical effects of large platelets in the microscale processes of thrombus formation are not clear. Therefore, the objective of this study was to determine the physical effects of mean platelet volume (MPV), mean platelet density (MPD) and vessel tortuosity on platelet activation and thrombus formation in tortuous arterioles. A computational model of the transport, shear-induced activation, collision, adhesion and aggregation of individual platelets was used to simulate platelet interactions and thrombus formation in tortuous arterioles. Our results showed that an increase in MPV resulted in a larger number of activated platelets, though MPD and level of tortuosity made little difference on platelet activation. Platelets with normal MPD yielded the lowest amount of mural thrombus. With platelets of normal MPD, the amount of mural thrombus decreased with increasing level of tortuosity but did not have a simple monotonic relationship with MPV. The physical mechanisms associated with MPV, MPD and arteriole tortuosity play important roles in platelet activation and thrombus formation.

  4. Cross-Sectional Shape of Rat Mesenteric Arterioles at Branching Studied by Confocal Laser Microscopy

    NASA Astrophysics Data System (ADS)

    Nakano, Atushi; Minamiyama, Motomu; Niimi, Hideyuki

    This study was aimed to investigate the cross-sectional shape of mesenteric arterioles at branching, using confocal laser microscopy. Wistar rats (8 weeks, male) were anesthetized with thiobutabarbital sodium. Blood flow and microvascular network in the mesentery were observed using video microscopy. The rat intestine with mesentery was extracted and the intestinal vasculature was perfused with Krebs-Ringer and then fixed with paraformaldehyde under a static pressure of 100mmHg. A section of mesentery was isolated from the intestine, and spread up to the in vivo geometry based on the intravital microscopic observation. The mesentery section was stained with tetramethyl rhodamine isothiocyanate (TRITC)-phalloidin. The samples were observed under a confocal laser microscope. The cross-sectional image was re-sliced to measure the cross-sectional area and major/minor axes of the best fitting ellipse. The aspect ratio was defined in terms of the minor/major diameter ratio. The extended focus image of mesenteric arterioles showed that the cross-sectional shape was not circular but elliptic-like. The cross-sectional area of the parent vessel decreased from proximal to distal positions. The mean aspect ratio of the parent vessel was approximately 0.5, while that of the branching vessel was approximately 0.8. The flattened shape and variation of the cross-sectional area of arterioles requires some correction of in vivo data of the two-dimensional mesenteric microvasculature obtained using intravital microscopy.

  5. Reticulospinal actions on primary afferent depolarization of cutaneous and muscle afferents in the isolated frog neuraxis.

    PubMed

    González, H; Jiménez, I; Rudomin, P

    1993-01-01

    The effects of the brainstem reticular formation on the intraspinal excitability of low threshold cutaneous and muscle afferents were studied in the frog neuraxis isolated together with the right hindlimb nerves. Stimulation of low threshold fibers (less than two times threshold) in cutaneous nerves produced short latency, negative field potentials in the ipsilateral dorsal neuropil (200-400 microns depth) that reversed to positivity at deeper regions (500-700 microns). Stimulation of low threshold fibers (less than two times threshold) in muscle nerves produced, instead, negative response that acquired their maximum amplitude in the ventral neuropil (700-900 microns depth). These electrophysiological findings suggest, in agreement with observations in the cat, that low threshold cutaneous and muscle afferents end at different sites in the spinal cord. Intraspinal microstimulation applied within the dorsal neuropil produced antidromic responses in low threshold cutaneous afferents that were increased in size following stimulation of the dorsal or ventral roots, as well as of the brainstem reticular formation. This increase in excitability is interpreted as being due to primary afferent depolarization (PAD) of the intraspinal terminals of cutaneous fibers. Antidromic responses recorded in muscle nerves following intraspinal stimulation within the ventral neuropil were also increased following conditioning stimulation of adjacent dorsal or ventral roots. However, stimulation of the bulbar reticular formation produced practically no changes in the antidromic responses, but was able to inhibit the PAD of low threshold muscle afferents elicited by stimulation of the dorsal or ventral roots. It is suggested that the PAD of low threshold cutaneous and muscle afferents is mediated by independent sets of interneurons. Reticulospinal fibers would have excitatory connections with the interneurons mediating the PAD of cutaneous fibers and inhibitory connections with the

  6. Unmyelinated visceral afferents exhibit frequency dependent action potential broadening while myelinated visceral afferents do not.

    PubMed

    Li, Bai-Yan; Feng, Bin; Tsu, Hwa Y; Schild, John H

    2007-06-21

    Sensory information arising from visceral organ systems is encoded into action potential trains that propagate along afferent fibers to target nuclei in the central nervous system. These information streams range from tight patterns of action potentials that are well synchronized with the sensory transduction event to irregular, patternless discharge with no clear correlation to the sensory input. In general terms these afferent pathways can be divided into unmyelinated and myelinated fiber types. Our laboratory has a long standing interest in the functional differences between these two types of afferents in terms of the preprocessing of sensory information into action potential trains (synchrony, frequency, duration, etc.), the reflexogenic consequences of this sensory input to the central nervous system and the ionic channels that give rise to the electrophysiological properties of these unique cell types. The aim of this study was to determine whether there were any functional differences in the somatic action potential characteristics of unmyelinated and myelinated vagal afferents in response to different rates of sensory nerve stimulation. Our results showed that activity and frequency-dependent widening of the somatic action potential was quite prominent in unmyelinated but not myelinated vagal afferents. Spike broadening often leads to increased influx of Ca(2+) ions that has been associated with a diverse range of modulatory mechanisms both at the cell body and central synaptic terminations (e.g. increased neurotransmitter release.) We conclude that our observations are indicative of fundamentally different mechanisms for neural integration of sensory information arising from unmyelinated and myelinated vagal afferents.

  7. Aging and estrogen alter endothelial reactivity to reactive oxygen species in coronary arterioles.

    PubMed

    Kang, Lori S; Chen, Bei; Reyes, Rafael A; Leblanc, Amanda J; Teng, Bunyen; Mustafa, S Jamal; Muller-Delp, Judy M

    2011-06-01

    Endothelium-dependent, nitric oxide (NO)-mediated vasodilation can be impaired by reactive oxygen species (ROS), and this deleterious effect of ROS on NO availability may increase with aging. Endothelial function declines rapidly after menopause, possibly because of loss of circulating estrogen and its antioxidant effects. The purpose of the current study was to determine the role of O(2)(-) and H(2)O(2) in regulating flow-induced dilation in coronary arterioles of young (6-mo) and aged (24-mo) intact, ovariectomized (OVX), or OVX + estrogen-treated (OVE) female Fischer 344 rats. Both aging and OVX reduced flow-induced NO production, whereas flow-induced H(2)O(2) production was not altered by age or estrogen status. Flow-induced vasodilation was evaluated before and after treatment with the superoxide dismutase (SOD) mimetic Tempol (100 μM) or the H(2)O(2) scavenger catalase (100 U/ml). Removal of H(2)O(2) with catalase reduced flow-induced dilation in all groups, whereas Tempol diminished vasodilation in intact and OVE, but not OVX, rats. Immunoblot analysis revealed elevated nitrotyrosine with aging and OVX. In young rats, OVX reduced SOD protein while OVE increased SOD in aged rats; catalase protein did not differ in any group. Collectively, these studies suggest that O(2)(-) and H(2)O(2) are critical components of flow-induced vasodilation in coronary arterioles from female rats; however, a chronic deficiency of O(2)(-) buffering by SOD contributes to impaired flow-induced dilation with aging and loss of estrogen. Furthermore, these data indicate that estrogen replacement restores O(2)(-) homeostasis and flow-induced dilation of coronary arterioles, even at an advanced age.

  8. Diverse Kir Expression Contributes to Distinct Bimodal Distribution of Resting Potentials and Vasotone Responses of Arterioles

    PubMed Central

    Yang, Yuqin; Chen, Fangyi; Karasawa, Takatoshi; Ma, Ke-Tao; Guan, Bing-Cai; Shi, Xiao-Rui; Li, Hongzhe; Steyger, Peter S.; Nuttall, Alfred L.; Jiang, Zhi-Gen

    2015-01-01

    The resting membrane potential (RP) of vascular smooth muscle cells (VSMCs) is a major determinant of cytosolic calcium concentration and vascular tone. The heterogeneity of RPs and its underlying mechanism among different vascular beds remain poorly understood. We compared the RPs and vasomotion properties between the guinea pig spiral modiolar artery (SMA), brain arterioles (BA) and mesenteric arteries (MA). We found: 1) RPs showed a robust bimodal distribution peaked at -76 and -40 mV evenly in the SMA, unevenly at -77 and -51 mV in the BA and ~-71 and -52 mV in the MA. Ba2+ 0.1 mM eliminated their high RP peaks ~-75 mV. 2) Cells with low RP (~-45 mV) hyperpolarized in response to 10 mM extracellular K+, while cells with a high RP depolarized, and cells with intermediate RP (~-58 mV) displayed an initial hyperpolarization followed by prolonged depolarization. Moderate high K+ typically induced dilation, constriction and a dilation followed by constriction in the SMA, MA and BA, respectively. 3) Boltzmann-fit analysis of the Ba2+-sensitive inward rectifier K+ (Kir) whole-cell current showed that the maximum Kir conductance density significantly differed among the vessels, and the half-activation voltage was significantly more negative in the MA. 4) Corresponding to the whole-cell data, computational modeling simulated the three RP distribution patterns and the dynamics of RP changes obtained experimentally, including the regenerative swift shifts between the two RP levels after reaching a threshold. 5) Molecular works revealed strong Kir2.1 and Kir2.2 transcripts and Kir2.1 immunolabeling in all 3 vessels, while Kir2.3 and Kir2.4 transcript levels varied. We conclude that a dense expression of functional Kir2.X channels underlies the more negative RPs in endothelial cells and a subset of VSMC in these arterioles, and the heterogeneous Kir function is primarily responsible for the distinct bimodal RPs among these arterioles. The fast Kir-based regenerative shifts

  9. Development, plasticity and modulation of visceral afferents

    PubMed Central

    Christianson, Julie A.; Bielefeldt, Klaus; Altier, Christophe; Cenac, Nicolas; Davis, Brian M.; Gebhart, Gerald F.; High, Karin W.; Kollarik, Marian; Randich, Alan; Undem, Brad; Vergnolle, Nathalie

    2010-01-01

    Visceral pain is the most common reason for doctor visits in the US. Like somatic pain, virtually all visceral pain sensations begin with the activation of primary sensory neurons innervating the viscera and/or the blood vessels associated with these structures. Visceral afferents also play a central role in tissue homeostasis. Recent studies show that in addition to monitoring the state of the viscera, they perform efferent functions through the release of small molecules (e.g. peptides like CGRP) that can drive inflammation, thereby contributing to the development of visceral pathologies (e.g. diabetes Razavi, R., Chan, Y., Afifiyan, F.N., Liu, X.J., Wan, X., Yantha, J., Tsui, H., Tang, L., Tsai, S., Santamaria, P., Driver, J.P., Serreze, D., Salter, M.W., Dosch, H.M., 2006. TRPV1+ sensory neurons control beta cell stress and islet inflammation in autoimmune diabetes, Cell 127 1123–1135). Visceral afferents are heterogeneous with respect to their anatomy, neurochemistry and function. They are also highly plastic in that their cellular environment continuously influences their response properties. This plasticity makes them susceptible to long-term changes that may contribute significantly to the development of persistent pain states such as those associated with irritable bowel syndrome, pancreatitis, and visceral cancers. This review examines recent insights into visceral afferent anatomy and neurochemistry and how neonatal insults can affect the function of these neurons in the adult. New approaches to the treatment of visceral pain, which focus on primary afferents, will also be discussed. PMID:19150371

  10. Localized arteriole formation directly adjacent to the site of VEGF-induced angiogenesis in muscle.

    PubMed

    Springer, Matthew L; Ozawa, Clare R; Banfi, Andrea; Kraft, Peggy E; Ip, Tze-Kin; Brazelton, Timothy R; Blau, Helen M

    2003-04-01

    We have shown previously that implantation of myoblasts constitutively expressing the VEGF-A gene into nonischemic mouse skeletal muscle leads to overgrowth of capillary-like blood vessels and hemangioma formation. These aberrant effects occurred directly at the implantation site. We show here that these regions result from angiogenic capillary growth and involve a change in capillary growth pattern and that smooth muscle-coated vessels similar to arterioles form directly adjacent to the implantation site. Myoblasts genetically engineered to produce VEGF were implanted into mouse leg muscles. Implantation sites were surrounded by a zone of dense capillary-sized vessels, around which was a second zone of muscle containing larger, smooth-muscle-covered vessels but few capillaries, and an outer zone of muscle exhibiting normal capillary density. The lack of capillaries in the middle region suggests that the preexisting capillaries adjacent to the implantation site underwent enlargement and/or fusion and recruited a smooth muscle coat. Capillaries at the implantation site were frequently wrapped around VEGF-producing muscle fibers and were continuous with the circulation and were not observed to include bone-marrow-derived endothelial cells. In contrast with the distant arteriogenesis resulting from VEGF delivery described in previous studies, we report here that highly localized arterioles also form adjacent to the site of delivery.

  11. Microvascular pressure measurement reveals a coronary vascular waterfall in arterioles larger than 110 microm.

    PubMed

    Versluis, J P; Heslinga, J W; Sipkema, P; Westerhof, N

    2001-11-01

    Pressure-flow relationships at the entrance of the coronary circulation in the diastolic myocardium exhibit a zero-flow pressure intercept (P(int)). We tested whether this intercept is the same throughout the vascular bed. Microvascular pressure-flow relationships were therefore measured in vessels of various sizes of the maximally dilated vasculature of perfused unstimulated papillary muscle using the servo-null technique. From these relationships, P(int) were calculated with nonlinear regression. The P(int) at the level of the septal artery (diameter, 150-250 microm) was 23.2 +/- 4.4 cmH2O (n = 12). In arterioles with a diameter range between 24 and 110 microm, P(int) was 1.7 +/- 0.5 cmH2O (n = 6, P < 0.01), significantly lower than in the septal artery but significantly higher than zero, and not dependent on vessel size. In venules with the same diameters, P(int) was 1.1 +/- 1.1 cmH2O (n = 4), which was not different from zero. We conclude that, in the dilated vascular bed of the papillary muscle, two vascular waterfalls are found. The first waterfall is located in arterioles between 150 and 110 microm. The second waterfall is probably located in the small postcapillary venules.

  12. Changes in vascular extracellular matrix composition during decidual spiral arteriole remodeling in early human pregnancy.

    PubMed

    Smith, Samantha D; Choudhury, Ruhul H; Matos, Patricia; Horn, James A; Lye, Stephen J; Dunk, Caroline E; Aplin, John D; Jones, Rebecca L; Harris, Lynda K

    2016-05-01

    Uterine spiral arteriole (SA) remodeling in early pregnancy involves a coordinated series of events including decidual immune cell recruitment, vascular cell disruption and loss, and colonization by placental-derived extravillous trophoblast (EVT). During this process, decidual SA are converted from narrow, muscular vessels into dilated channels lacking vasomotor control. We hypothesized that this extensive alteration in SA architecture must require significant reorganization and/or breakdown of the vascular extracellular matrix (ECM). First trimester decidua basalis (30 specimens) was immunostained to identify spiral arterioles undergoing trophoblast-independent and -dependent phases of remodeling. Serial sections were then immunostained for a panel of ECM markers, to examine changes in vascular ECM during the remodeling process. The initial stages of SA remodeling were characterized by loss of laminin, elastin, fibrillin, collagen types III, IV and VI from the basement membrane, vascular media and/or adventitia, and surrounding decidual stromal cells. Loss of ECM correlated with disruption and disorganization of vascular smooth muscle cells, and the majority of changes occurred prior to extensive colonization of the vessel wall by EVT. The final stages of SA remodeling, characterized by the arrival of EVT, were associated with the increased mural deposition of fibronectin and fibrinoid. This study provides the first detailed analysis of the spatial and temporal loss of ECM from the walls of remodeling decidual SA in early pregnancy.

  13. Differentiation of arterioles from venules in mouse histology images using machine learning

    NASA Astrophysics Data System (ADS)

    Elkerton, J. S.; Xu, Yiwen; Pickering, J. G.; Ward, Aaron D.

    2016-03-01

    Analysis and morphological comparison of arteriolar and venular networks are essential to our understanding of multiple diseases affecting every organ system. We have developed and evaluated the first fully automatic software system for differentiation of arterioles from venules on high-resolution digital histology images of the mouse hind limb immunostained for smooth muscle α-actin. Classifiers trained on texture and morphologic features by supervised machine learning provided excellent classification accuracy for differentiation of arterioles and venules, achieving an area under the receiver operating characteristic curve of 0.90 and balanced false-positive and false-negative rates. Feature selection was consistent across cross-validation iterations, and a small set of three features was required to achieve the reported performance, suggesting potential generalizability of the system. This system eliminates the need for laborious manual classification of the hundreds of microvessels occurring in a typical sample, and paves the way for high-throughput analysis the arteriolar and venular networks in the mouse.

  14. Acute Retinal Ischemia Inhibits Endothelium-Dependent Nitric Oxide–Mediated Dilation of Retinal Arterioles via Enhanced Superoxide Production

    PubMed Central

    Ren, Yi; Potts, Luke B.; Yuan, Zhaoxu; Kuo, Enoch; Rosa, Robert H.; Kuo, Lih

    2012-01-01

    Purpose. Because retinal vascular disease is associated with ischemia and increased oxidative stress, the vasodilator function of retinal arterioles was examined after retinal ischemia induced by elevated intraocular pressure (IOP). The role of superoxide anions in the development of vascular dysfunction was assessed. Methods. IOP was increased and maintained at 80 to 90 mm Hg for 30, 60, or 90 minutes by infusing saline into the anterior chamber of a porcine eye. The fellow eye with normal IOP (10–20 mm Hg) served as control. In some pigs, superoxide dismutase mimetic TEMPOL (1 mM) or vehicle (saline) was injected intravitreally before IOP elevation. After enucleation, retinal arterioles were isolated and pressurized without flow for functional analysis by recording diameter changes using videomicroscopic techniques. Dihydroethidium (DHE) was used to detect superoxide production in isolated retinal arterioles. Results. Isolated retinal arterioles developed stable basal tone and the vasodilations to endothelium-dependent nitric oxide (NO)-mediated agonists bradykinin and L-lactate were significantly reduced only by 90 minutes of ischemia. However, vasodilation to endothelium-independent NO donor sodium nitroprusside was unaffected after all time periods of ischemia. DHE staining showed that 90 minutes of ischemia significantly increased superoxide levels in retinal arterioles. Intravitreal injection of membrane-permeable radical scavenger but not vehicle before ischemia prevented elevation of vascular superoxide and preserved bradykinin-induced dilation. Conclusions. Endothelium-dependent NO-mediated dilation of retinal arterioles is impaired by 90 minutes of ischemia induced by elevated IOP. The inhibitory effect appears to be mediated by the alteration of NO signaling via vascular superoxide. PMID:22110081

  15. Roles of Caveolin-1 in Angiotensin II-Induced Hypertrophy and Inward Remodeling of Cerebral Pial Arterioles.

    PubMed

    Umesalma, Shaikamjad; Houwen, Frederick Keith; Baumbach, Gary L; Chan, Siu-Lung

    2016-03-01

    Angiotensin II (Ang II) is a major determinant of inward remodeling and hypertrophy in pial arterioles that may have an important role in stroke during chronic hypertension. Previously, we found that epidermal growth factor receptor is critical in Ang II-mediated hypertrophy that may involve caveolin-1 (Cav-1). In this study, we examined the effects of Cav-1 and matrix metalloproteinase-9 (MMP9) on Ang II-mediated structural changes in pial arterioles. Cav-1-deficient (Cav-1(-/-)), MMP9-deficient (MMP9(-/-)), and wild-type mice were infused with either Ang II (1000 ng/kg per minute) or saline via osmotic minipumps for 28 days (n=6-8 per group). Systolic arterial pressure was measured by a tail-cuff method. Pressure and diameter of pial arterioles were measured through an open cranial window in anesthetized mice. Cross-sectional area of the wall was determined histologically in pressurized fixed pial arterioles. Expression of Cav-1, MMP9, phosphorylated epidermal growth factor receptor, and Akt was determined by Western blotting and immunohistochemistry. Deficiency of Cav-1 or MMP9 did not affect Ang II-induced hypertension. Ang II increased the expression of Cav-1, phosphorylated epidermal growth factor receptor, and Akt in wild-type mice, which was attenuated in Cav-1(-/-) mice. Ang II-induced hypertrophy, inward remodeling, and increased MMP9 expression in pial arterioles were prevented in Cav-1(-/-) mice. Ang II-mediated increases in MMP9 expression and inward remodeling, but not hypertrophy, were prevented in MMP9(-/-) mice. In conclusion, Cav-1 is essential in Ang II-mediated inward remodeling and hypertrophy in pial arterioles. Cav-1-induced MMP9 is exclusively involved in inward remodeling, not hypertrophy. Further studies are needed to determine the role of Akt in Ang II-mediated hypertrophy.

  16. Hair-Cell Versus Afferent Adaptation in the Semicircular Canals

    PubMed Central

    Rabbitt, R. D.; Boyle, R.; Holstein, G. R.; Highstein, S. M.

    2010-01-01

    The time course and extent of adaptation in semicircular canal hair cells was compared to adaptation in primary afferent neurons for physiological stimuli in vivo to study the origins of the neural code transmitted to the brain. The oyster toadfish, Opsanus tau, was used as the experimental model. Afferent firing-rate adaptation followed a double-exponential time course in response to step cupula displacements. The dominant adaptation time constant varied considerably among afferent fibers and spanned six orders of magnitude for the population (~1 ms to >1,000 s). For sinusoidal stimuli (0.1–20 Hz), the rapidly adapting afferents exhibited a 90° phase lead and frequency-dependent gain, whereas slowly adapting afferents exhibited a flat gain and no phase lead. Hair-cell voltage and current modulations were similar to the slowly adapting afferents and exhibited a relatively flat gain with very little phase lead over the physiological bandwidth and dynamic range tested. Semicircular canal microphonics also showed responses consistent with the slowly adapting subset of afferents and with hair cells. The relatively broad diversity of afferent adaptation time constants and frequency-dependent discharge modulations relative to hair-cell voltage implicate a subsequent site of adaptation that plays a major role in further shaping the temporal characteristics of semicircular canal afferent neural signals. PMID:15306633

  17. Afferent innervation patterns of the saccule in pigeons

    NASA Technical Reports Server (NTRS)

    Zakir, M.; Huss, D.; Dickman, J. D.

    2003-01-01

    The innervation patterns of vestibular saccular afferents were quantitatively investigated in pigeons using biotinylated dextran amine as a neural tracer and three-dimensional computer reconstruction. Type I hair cells were found throughout a large portion of the macula, with the highest density observed in the striola. Type II hair cells were located throughout the macula, with the highest density in the extrastriola. Three classes of afferent innervation patterns were observed, including calyx, dimorph, and bouton units, with 137 afferents being anatomically reconstructed and used for quantitative comparisons. Calyx afferents were located primarily in the striola, innervated a number of type I hair cells, and had small innervation areas. Most calyx afferent terminal fields were oriented parallel to the anterior-posterior axis and the morphological polarization reversal line. Dimorph afferents were located throughout the macula, contained fewer type I hair cells in a calyceal terminal than calyx afferents and had medium sized innervation areas. Bouton afferents were restricted to the extrastriola, with multi-branching fibers and large innervation areas. Most of the dimorph and bouton afferents had innervation fields that were oriented dorso-ventrally but were parallel to the neighboring reversal line. The organizational morphology of the saccule was found to be distinctly different from that of the avian utricle or lagena otolith organs and appears to represent a receptor organ undergoing evolutionary adaptation toward sensing linear motion in terrestrial and aerial species.

  18. Dynamin-related protein 1 mediates low glucose-induced endothelial dysfunction in human arterioles.

    PubMed

    Tanner, Michael J; Wang, Jingli; Ying, Rong; Suboc, Tisha B; Malik, Mobin; Couillard, Allison; Branum, Amberly; Puppala, Venkata; Widlansky, Michael E

    2017-03-01

    Intensive glycemic regulation has resulted in an increased incidence of hypoglycemia. Hypoglycemic burden correlates with adverse cardiovascular complications and contributes acutely and chronically to endothelial dysfunction. Prior data indicate that mitochondrial dysfunction contributes to hypoglycemia-induced endothelial dysfunction, but the mechanisms behind this linkage remain unknown. We attempt to determine whether clinically relevant low-glucose (LG) exposures acutely induce endothelial dysfunction through activation of the mitochondrial fission process. Characterization of mitochondrial morphology was carried out in cultured endothelial cells by using confocal microscopy. Isolated human arterioles were used to explore the effect LG-induced mitochondrial fission has on the formation of detrimental reactive oxygen species (ROS), bioavailability of nitric oxide (NO), and endothelial-dependent vascular relaxation. Fluorescence microscopy was employed to visualize changes in mitochondrial ROS and NO levels and videomicroscopy applied to measure vasodilation response. Pharmacological disruption of the profission protein Drp1 with Mdivi-1 during LG exposure reduced mitochondrial fragmentation among vascular endothelial cells (LG: 0.469; LG+Mdivi-1: 0.276; P = 0.003), prevented formation of vascular ROS (LG: 2.036; LG+Mdivi-1: 1.774; P = 0.005), increased the presence of NO (LG: 1.352; LG+Mdivi-1: 1.502; P = 0.048), and improved vascular dilation response to acetylcholine (LG: 31.6%; LG+Mdivi-1; 78.5% at maximum dose; P < 0.001). Additionally, decreased expression of Drp1 via siRNA knockdown during LG conditions also improved vascular relaxation. Exposure to LG imparts endothelial dysfunction coupled with altered mitochondrial phenotypes among isolated human arterioles. Disruption of Drp1 and subsequent mitochondrial fragmentation events prevents impaired vascular dilation, restores mitochondrial phenotype, and implicates mitochondrial fission as a primary

  19. Pharmacological evidence for capacitative Ca(2+) entry in cannulated and pressurized skeletal muscle arterioles.

    PubMed

    Potocnik, S J; Hill, M A

    2001-09-01

    Arteriolar myogenic tone shows a marked dependency on extracellular Ca(2+). The contribution played by mechanisms such as intracellular Ca(2+) release and capacitative entry, however, are less certain. The present studies aimed to demonstrate functional evidence for involvement of such mechanisms in myogenic tone and reactivity. Single cremaster arterioles were denuded of endothelium, pressurized under no-flow conditions and loaded with fura 2-AM for measurement of changes in intracellular Ca(2+) [Ca(2+)](i). The cell permeable, putative, IP(3) receptor antagonist 2APB (2 aminoethoxydiphenyl borate) was used to determine the possible role of IP(3) receptor-mediated mechanisms in arteriolar myogenic tone and reactivity. Arterioles dilated in response to increasing concentrations of 2APB (1 - 300 microM) without a concomitant change in global [Ca(2+)](i). Also 2APB (50 microM) completely inhibited the myogenic constriction in response to a step change in luminal pressure (50 - 120 mmHg) with no apparent effect on pressure-mediated increases in [Ca(2+)](i). 2APB markedly attenuated the constrictor response and [Ca(2+)](i) increase stimulated by phenylephrine but not KCl. Capacitative Ca(2+) influx in arterioles was demonstrated either by re-addition of extracellular [Ca(2+)] following pre-treatment with 1 or 10 microM nifedipine in Ca(2+) free buffer or exposure of vessels to thapsigargin (1 microM) to induce store depletion. In both cases 2APB inhibited the increase in [Ca(2+)](i). Capacitative Ca(2+) entry showed an inverse relationship with intraluminal pressure over the range 10 - 120 mmHg. Consistent with an effect on a Ca(2+) entry pathway, 2APB had no effect on intracellular (caffeine releasable) Ca(2+) stores while decreasing the rate of Mn(2+) quench of fura 2 fluorescence. The results provide functional evidence for capacitative Ca(2+) entry in intact arteriolar smooth muscle. The effectiveness of 2APB in inhibiting both non-voltage gated Ca(2+) entry and

  20. Three-dimensional mapping of oxygen tension in cortical arterioles before and after occlusion

    PubMed Central

    Kazmi, S. M. Shams; Salvaggio, Anthony J.; Estrada, Arnold D.; Hemati, Michael A.; Shaydyuk, Nazariy K.; Roussakis, Emannuel; Jones, Theresa A.; Vinogradov, Sergei A.; Dunn, Andrew K.

    2013-01-01

    Occlusions in single cortical microvessels lead to a reduction in oxygen supply, but this decrement has not been able to be quantified in three dimensions at the level of individual vessels using a single instrument. We demonstrate a combined optical system using two-photon phosphorescence lifetime and fluorescence microscopy (2PLM) to characterize the partial pressure of oxygen (pO2) in single descending cortical arterioles in the mouse brain before and after generating a targeted photothrombotic occlusion. Integrated real-time Laser Speckle Contrast Imaging (LSCI) provides wide-field perfusion maps that are used to monitor and guide the occlusion process while 2PLM maps changes in intravascular oxygen tension. We present the technique’s utility in highlighting the effects of vascular networking on the residual intravascular oxygen tensions measured after occlusion in three dimensions. PMID:23847732

  1. MACROMOLECULE PERMEABILITY OF IN SITU AND EXCISED RODENT SKELETAL MUSCLE ARTERIOLES AND VENULES.

    PubMed Central

    Sarelius, Ingrid H.; Kuebel, Julia M.; Wang, Jianjie; Huxley., Virginia H.

    2006-01-01

    In microvessels, acute inflammation is typified by an increase in leukocyte-endothelial cell interactions culminating in leukocyte transmigration into the tissue, and increased permeability to water and solutes, resulting in tissue edema. The goal of this study was to establish a method to quantify solute permeability (Ps) changes in microvessels in intact predominantly blood perfused networks in which leukocyte transmigratory behavior could be precisely described using established paradigms. We used intravital confocal microscopy to measure solute (BSA) flux across microvessel walls, hence Ps. The quantitative fluorescence approach of Huxley et al (Am. J. Physiol. 252:H188–H197,1987) was adapted to the imaged confocal tissue slice in which the fluorescent source volume and source surface area of the microvessel were restricted to the region of vessel that was contained within the imaged confocal tissue section. Ps measurements were made in intact cremaster muscle microvasculature of anesthetized mice and compared to measurements of Ps made in isolated rat skeletal muscle microvessels. Mouse arteriolar Ps was 9.9±1.1 × 10−7cm.sec−1 (n=16), which was not different from 8.4±1.3 × 10−7cm.sec−1 (n=6) in rat arterioles. Values in venules were significantly (p<.05) higher: 44.4±7.9 × 10−7cm.sec−1 (n=14) in mice and 25.0±3.7 × 10−7cm.sec−1 in rats. Convective coupling was estimated to contibute <10% to the measured Ps in both microvessel types and both animal models. We conclude that this approach provides an appropriate quantification of Ps in the intact microvasculature, and that arteriolar Ps, while lower than in venules, is nevertheless consistent with arterioles being a significant source of interstitial protein. PMID:16126813

  2. Measurement of hydraulic conductivity in isolated arterioles of rat brain cortex.

    PubMed

    Kimura, M; Dietrich, H H; Huxley, V H; Reichner, D R; Dacey, R G

    1993-06-01

    We have developed a new method for quantification of arteriolar hydraulic conductivity (Lp) from isolated rat brain vessels. The volume flux of water per unit surface area across the arteriole wall (Jv/S) was assessed from measurements of silicon oil drop movement within an occluded vessel at two to three pressures (between 20 and 70 mmHg); the Lp was derived from the slope of the relationship between Jv/S and applied pressure. Lp was measured in isolated cerebral arterioles 1) at room temperature (22 degrees C) without spontaneous vessel tone (control Lp; n = 11), 2) at room temperature with 10(-4) M adenosine (n = 5), and 3) at 37 degrees C with vessels dilated submaximally with 10(-4) M adenosine (n = 6). Lp at 22 degrees C without adenosine was 13.2 +/- 4.2 x 10(-9) (+/- SE) cm.s-1.cmH2O-1 for all vessels studied. Lp values ranged from 1.2 to 44.1 x 10(-9) cm.s-1.cmH2O-1 with a median value that was 5.9 x 10(-9) cm.s-1.cmH2O-1. Lp increased significantly (on average, 2.6-fold) with adenosine at 37 degrees C but not with adenosine at 22 degrees C. Control Lp bore no relationship to either the development of spontaneous tone or the diameter response to pH change, two recognized indicators of vessel viability.

  3. Retinal Arterioles in Hypo-, Normo-, and Hypertensive Subjects Measured Using Adaptive Optics

    PubMed Central

    Hillard, Jacob G.; Gast, Thomas J.; Chui, Toco Y.P.; Sapir, Dan; Burns, Stephen A.

    2016-01-01

    Purpose Small artery and arteriolar walls thicken due to elevated blood pressure. Vascular wall thickness show a correlation with hypertensive subject history and risk for stroke and cardiovascular events. Methods The inner and outer diameter of retinal arterioles from less than 10 to over 150 μm were measured using a multiply scattered light adaptive optics scanning laser ophthalmoscope (AOSLO). These measurements were made on three populations, one with habitual blood pressures less than 100/70 mm Hg, one with normal blood pressures without medication, and one with managed essential hypertension. Results The wall to lumen ratio was largest for the smallest arterioles for all three populations. Data from the hypotensive group had a linear relationship between outer and inner diameters (r2 = 0.99) suggesting a similar wall structure in individuals prior to elevated blood pressures. Hypertensive subjects fell below the 95% confidence limits for the hypotensive relationship and had larger wall to lumen ratios and the normotensive group results fell between the other two groups. Conclusion High-resolution retinal imaging of subjects with essential hypertension showed a significant decrease in vessel inner diameter for a given outer diameter, and increases in wall to lumen ratio and wall cross-sectional areas over the entire range of vessel diameters and suggests that correcting for vessel size may improve the ability to identify significant vascular changes. Translational Relevance High-resolution imaging allows precise measurement of vasculature and by comparing results across risk populations may allow improved identification of individuals undergoing hypertensive arterial wall remodeling. PMID:27617182

  4. Calcium responses induced by acetylcholine in submucosal arterioles of the guinea-pig small intestine

    PubMed Central

    Fukuta, Hiroyasu; Hashitani, Hikaru; Yamamoto, Yoshimichi; Suzuki, Hikaru

    1999-01-01

    Calcium responses induced by brief stimulation with acetylcholine (ACh) were assessed from the fluorescence changes in fura-2 loaded submucosal arterioles of the guinea-pig small intestine. Initially, 1–1.5 h after loading with fura-2 (fresh tissues), ACh increased [Ca2+]i in a concentration-dependent manner. This response diminished with time, and finally disappeared in 2–3 h (old tissues). Ba2+ elevated [Ca2+]i to a similar extent in both fresh and old tissues. ACh further increased the Ba2+-elevated [Ca2+]i in fresh tissues, but reduced it in old tissues. Responses were not affected by either indomethacin or nitroarginine. In fresh mesenteric arteries, mechanical removal of endothelial cells abolished the ACh-induced increase in [Ca2+]i, with no alteration of [Ca2+]i at rest and during elevation with Ba2+. In the presence of indomethacin and nitroarginine, high-K+ solution elevated [Ca2+]i in both fresh and old tissues. Subsequent addition of ACh further increased [Ca2+]i in fresh tissues without changing it in old tissues. Proadifen, an inhibitor of the enzyme cytochrome P450 mono-oxygenase, inhibited the ACh-induced changes in [Ca2+]i in both fresh and Ba2+-stimulated old tissues. It also inhibited the ACh-induced hyperpolarization. In fresh tissues, the ACh-induced Ca2+ response was not changed by apamin, charybdotoxin (CTX), 4-aminopyridine (4-AP) or glibenclamide. In old tissues in which [Ca2+]i had previously been elevated with Ba2+, the ACh-induced Ca2+ response was inhibited by CTX but not by apamin, 4-AP or glibenclamide. It is concluded that in submucosal arterioles, ACh elevates endothelial [Ca2+]i and reduces muscular [Ca2+]i, probably through the hyperpolarization of endothelial or smooth muscle membrane by activating CTX-sensitive K+ channels. PMID:10050015

  5. Aberrant heartworm migration to the abdominal aorta and systemic arteriolitis in a dog presenting with vomiting and hemorrhagic diarrhea

    PubMed Central

    Grimes, Janet A.; Scott, Katherine D.; Edwards, John F.

    2016-01-01

    A 2-year-old Dachshund was presented for vomiting and diarrhea. Abdominal ultrasound revealed Dirofilaria immitis in the abdominal aorta and an avascular segment of small intestine. The dog was euthanized. Necropsy revealed D. immitis in the abdominal aorta and widespread necrotizing arteriolitis. This is a unique presentation of aberrant migration of D. immitis. PMID:26740703

  6. Involvement of matrix metalloproteinase-2 in medial hypertrophy of pulmonary arterioles in broiler chickens with pulmonary arterial hypertension.

    PubMed

    Tan, Xun; Chai, Juan; Bi, Shi-Cheng; Li, Jun-Jun; Li, Wen-Wen; Zhou, Ji-Yong

    2012-08-01

    Medial hypertrophy of pulmonary arterioles during pulmonary arterial hypertension (PAH) in humans is associated with enhanced proliferation of smooth muscle cells (SMCs). Elevated matrix metalloproteinase (MMP)-2 has been found in pulmonary artery SMCs (PA-SMCs) in humans with idiopathic PAH, leading to the hypothesis that MMP-2 contributes to the proliferation and migration of vascular SMCs in the pathogenesis of PAH. Rapidly growing meat-type (broiler) chickens provide a model of spontaneous PAH. The present study was conducted to determine whether MMP-2 is involved in the medial hypertrophy of pulmonary arterioles in this model. Cultured PA-SMCs from normal birds were used to evaluate the effect of MMPs on cell proliferation. Gelatin zymography showed that endothelin (ET)-1-induced proliferation of PA-SMCs was concomitant with increased pro- and active MMP-2 production. Reverse transcription PCR demonstrated upregulation of MMP-2 mRNA. However, PA-SMC proliferation was inhibited by the MMP inhibitors doxycycline and cis-9-octadecenoyl-N-hydroxylamide. In vivo experiments revealed a significant increase of MMP-2 expression in hypertrophied pulmonary arterioles of PAH broiler chickens, which was positively correlated with wall thickness and medial hypertrophy. MMP-2 may contribute to medial hypertrophy in pulmonary arterioles during PAH in broiler chickens by enhancing the proliferation of vascular SMCs.

  7. Increased vascular thromboxane generation impairs dilation of skeletal muscle arterioles of obese Zucker rats with reduced oxygen tension.

    PubMed

    Goodwill, Adam G; James, Milinda E; Frisbee, Jefferson C

    2008-10-01

    This study determined if altered vascular prostacyclin (PGI(2)) and/or thromboxane A(2) (TxA(2)) production with reduced Po(2) contributes to impaired hypoxic dilation of skeletal muscle resistance arterioles of obese Zucker rats (OZRs) versus lean Zucker rats (LZRs). Mechanical responses were assessed in isolated gracilis muscle arterioles following reductions in Po(2) under control conditions and following pharmacological interventions inhibiting arachidonic acid metabolism and nitric oxide synthase and alleviating elevated vascular oxidant stress. The production of arachidonic acid metabolites was assessed using pooled arteries from OZRs and LZRs in response to reduced Po(2). Hypoxic dilation, endothelium-dependent in both strains, was attenuated in OZRs versus LZRs. Nitric oxide synthase inhibition had no significant impact on hypoxic dilation in either strain. Cyclooxygenase inhibition dramatically reduced hypoxic dilation in LZRs and abolished responses in OZRs. Treatment of arterioles from OZRs with polyethylene glycol-superoxide dismutase improved hypoxic dilation, and this improvement was entirely cyclooxygenase dependent. Vascular PGI(2) production with reduced Po(2) was similar between strains, although TxA(2) production was increased in OZRs, a difference that was attenuated by treatment of vessels from OZRs with polyethylene glycol-superoxide dismutase. Both blockade of PGH(2)/TxA(2) receptors and inhibition of thromboxane synthase increased hypoxic dilation in OZR arterioles. These results suggest that a contributing mechanism underlying impaired hypoxic dilation of skeletal muscle arterioles of OZRs may be an increased vascular production of TxA(2), which competes against the vasodilator influences of PGI(2). These results also suggest that the elevated vascular oxidant stress inherent in metabolic syndrome may contribute to the increased vascular TxA(2) production and may blunt vascular sensitivity to PGI(2).

  8. Response properties of pigeon otolith afferents to linear acceleration

    NASA Technical Reports Server (NTRS)

    Si, X.; Angelaki, D. E.; Dickman, J. D.

    1997-01-01

    In the present study, the sensitivity to sinusoidal linear accelerations in the plane of the utricular macula was tested in afferents. The head orientation relative to the translation axis was varied in order to determine the head position that elicited the maximal and minimal responses for each afferent. The response gain and phase values obtained to 0.5-Hz and 2-Hz linear acceleration stimuli were then plotted as a function of head orientation and a modified cosine function was fit to the data. From the best-fit cosine function, the predicted head orientations that would produce the maximal and minimal response gains were estimated. The estimated maximum response gains to linear acceleration in the utricular plane for the afferents varied between 75 and 1420 spikes s-1 g-1. The mean maximal gains for all afferents to 0.5-Hz and 2-Hz sinusoidal linear acceleration stimuli were 282 and 367 spikes s-1 g-1, respectively. The minimal response gains were essentially zero for most units. The response phases always led linear acceleration and remained constant for each afferent, regardless of head orientation. These response characteristics indicate that otolith afferents are cosine tuned and behave as one-dimensional linear accelerometers. The directions of maximal sensitivity to linear acceleration for the afferents varied throughout the plane of the utricle; however, most vectors were directed out of the opposite ear near the interaural axis. The response dynamics of the afferents were tested using stimulus frequencies ranging between 0.25 Hz and 10 Hz (0.1 g peak acceleration). Across stimulus frequencies, most afferents had increasing gains and constant phase values. These dynamic properties for individual afferents were fit with a simple transfer function that included three parameters: a mechanical time constant, a gain constant, and a fractional order distributed adaptation operator.

  9. Intracellular ATP can regulate afferent arteriolar tone via ATP-sensitive K+ channels in the rabbit.

    PubMed Central

    Lorenz, J N; Schnermann, J; Brosius, F C; Briggs, J P; Furspan, P B

    1992-01-01

    Studies were performed to assess whether ATP-sensitive K+ (KATP) channels on rabbit preglomerular vessels can influence afferent arteriolar (AA) tone. K+ channels with a slope conductance of 258 +/- 13 (n = 7) pS and pronounced voltage dependence were demonstrated in excised patches from vascular smooth muscle cells of microdissected preglomerular segments. Channel activity was markedly reduced by 1 mM ATP and in a dose-dependent fashion by glibenclamide (10(-9) M to 10(-6) M), a specific antagonist of KATP channels. 10(-5) M diazoxide, a K+ channel opener, activated these channels in the presence of ATP, and this effect was also blocked by glibenclamide. To determine the role of these KATP channels in the control of vascular tone, diazoxide was tested on isolated perfused AA. After preconstriction from a control diameter of 13.1 +/- 1.1 to 3.5 +/- 2.1 microns with phenylephrine (PE), addition of 10(-5) M diazoxide dilated vessels to 11.2 +/- 0.7 microns, which was not different from control. Further addition of 10(-5) M glibenclamide reconstricted the vessels to 5.8 +/- 1.5 microns (n = 5; P less than 0.03). In support of its specificity for KATP channels, glibenclamide did not reverse verapamil induced dilation in a separate series of experiments. To determine whether intracellular ATP levels can effect AA tone, studies were conducted to test the effect of the glycolytic inhibitor 2-deoxy-D-glucose. After preconstriction from 13.4 +/- 3.2 to 7.7 +/- 1.3 microns with PE, bath glucose was replaced with 6 mM 2-deoxy-D-glucose. Within 10 min, the arteriole dilated to a mean value of 11.8 +/- 1.4 microns (n = 6; NS compared to control). Subsequent addition of 10(-5) M glibenclamide significantly reconstricted the vessels to a diameter of 8.6 +/- 0.5 micron (P less than 0.04). These data demonstrate that KATP channels are present on the preglomerular vasculature and that changes in intracellular ATP can directly influence afferent arteriolar tone via these channels

  10. Effect of Microgravity on Afferent Innervation

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Presentations and publications are: (1) an audiovisual summary web presentation on results from SLM-MIR avian experiments. A color presentation summarizing results from the SLM-MIR and STS-29 avian experiments; (2) color threshold and ratio of S 100B MAP5, NF68/200, GABA and GAD; (3) chicken (Gallus domesticus) inner ear afferents; (4) microgravity in the STS-29 Space Shuttle Discovery affected the vestibular system of chick embryos; (5) expression of S 100B in sensory and secretory cells of the vertebrate inner ear; (6) otoconia biogenesis, phylogeny, composition and functional attributes;(7) the glycan keratin sulfate in inner ear crystals; (8) elliptical-P cells in the avian perilymphatic interface of the tegmentum vasculosum; and (9) LAMP2c and S100B upregulation in brain stem after VIIIth nerve deafferentation.

  11. Chicken (Gallus domesticus) inner ear afferents

    NASA Technical Reports Server (NTRS)

    Hara, H.; Chen, X.; Hartsfield, J. F.; Hara, J.; Martin, D.; Fermin, C. D.

    1998-01-01

    Neurons from the vestibular (VG) and the statoacoustic (SAG) ganglion of the chick (Gallus domesticus) were evaluated histologically and morphometrically. Embryos at stages 34 (E8 days), 39 (E13 days) and 44 (E18 days) were sacrificed and temporal bones microdissected. Specimens were embedded in JB-4 methacrylate plastic, and stained with a mixture of 0.2% toluidine blue (TB) and 0.1% basic Fuschin in 25% ethanol or with a mixture of 2% TB and 1% paraphenylenediamine (PDA) for axon and myelin measurement study. Images of the VIIIth nerve were produced by a V150 (R) color imaging system and the contour of 200-300 neuronal bodies (perikarya) was traced directly on a video screen with a mouse in real time. The cross-sectional area of VG perikarya was 67.29 micrometers2 at stage 34 (E8), 128.46 micrometers2 at stage 39 (E13) and 275.85 micrometers2 at stage 44 (E18). The cross-sectional area of SAG perikarya was 62.44 micrometers2 at stage 34 (E8), 102.05 micrometers2 at stage 39 (E13) and 165.02 micrometers2 at stage 44 (E18). A significant cross-sectional area increase of the VG perikarya between stage 39 (E13) and stage 44 (E18) was determined. We randomly measured the cross-sectional area of myelin and axoplasm of hatchling afferent nerves, and found a correspondence between axoplasmic and myelin cross-sectional area in the utricular, saccular and semicircular canal nerve branches of the nerve. The results suggest that the period between stage 34 (E8) and 39 (E13) is a critical period for afferent neuronal development. Physiological and behavioral vestibular properties of developing and maturing hatchlings may change accordingly. The results compliment previous work by other investigators and provide valuable anatomical measures useful to correlate physiological data obtained from stimulation of the whole nerve or its parts.

  12. Patterns of primary afferent depolarization of segmental and ascending intraspinal collaterals of single joint afferents in the cat.

    PubMed

    Rudomin, P; Lomelí, J

    2007-01-01

    We have examined in the anesthetized cat the threshold changes produced by sensory and supraspinal stimuli on intraspinal collaterals of single afferents from the posterior articular nerve (PAN). Forty-eight fibers were tested in the L3 segment, in or close to Clarke's column, and 70 fibers in the L6-L7 segments within the intermediate zone. Of these, 15 pairs of L3 and L6-L7 collaterals were from the same afferent. Antidromically activated fibers had conduction velocities between 23 and 74 m/s and peripheral thresholds between 1.1 and 4.7 times the threshold of the most excitable fibers (xT), most of them below 3 xT. PAN afferents were strongly depolarized by stimulation of muscle afferents and by cutaneous afferents, as well as by stimulation of the bulbar reticular formation and the midline raphe nuclei. Stimulation of muscle nerves (posterior biceps and semitendinosus, quadriceps) produced a larger PAD (primary afferent depolarization) in the L6-L7 than in the L3 terminations. Group II were more effective than group I muscle afferents. As with group I muscle afferents, the PAD elicited in PAN afferents by stimulation of muscle nerves could be inhibited by conditioning stimulation of cutaneous afferents. Stimulation of the cutaneous sural and superficial peroneal nerves increased the threshold of few terminations (i.e., produced primary afferent hyperpolarization, PAH) and reduced the threshold of many others, particularly of those tested in the L6-L7 segments. Yet, there was a substantial number of terminals where these conditioning stimuli had minor or no effects. Autogenetic stimulation of the PAN with trains of pulses increased the intraspinal threshold in 46% and reduced the threshold in 26% of fibers tested in the L6-L7 segments (no tests were made with trains of pulses on fibers ending in L3). These observations indicate that PAN afferents have a rather small autogenetic PAD, particularly if this is compared with the effects of heterogenetic stimulation

  13. Focal arteriolar insudation. A response of arterioles to chronic nonspecific irritation.

    PubMed Central

    Cuénoud, H. F.; Joris, I.; Langer, R. S.; Majno, G.

    1987-01-01

    The subcutaneous insertion of sterile, inert plastic pellets over the cremaster muscles of rats induces characteristic focal lesions of the arterioles at a distance from the pellets. These lesions appear with a delay of about 6 hours; by light microscopy they are characterized by a focal dilatation accompanied by endothelial damage and increased permeability. They are more severe if the pellets are loaded with histamine and are inhibited if the pellets are loaded with serotonin. Electron microscopy shows interendothelial gaps; the media is massively infiltrated with blood components and fibrin. The medial smooth muscle cells are stretched and at times necrotic; inflammatory cells are scarce. On the basis of these features the lesion was named focal arteriolar insudation (FAI). Although its pathogenesis is not yet clear, the data at hand suggest that it is caused by endogenous mediators affecting the smooth muscle cells and/or the endothelium. FAI appears to be a specific arteriolar response to chronic nonspecific irritation. Images Figure 7 Figure 2 Figure 1 Figure 3 Figure 6 Figure 8 PMID:3296773

  14. Effect of erythrocyte aggregation at pathological levels on NO/O2 transport in small arterioles.

    PubMed

    Cho, Seungkwan; Namgung, Bumseok; Kim, Han Sung; Leo, Hwa Liang; Kim, Sangho

    2015-01-01

    This study examined the effects of red blood cell (RBC) aggregation at pathological levels on NO/O2 transport in small arterioles. Transient gas diffusion simulations were performed with in vivo cell-free layer (CFL) widths data obtained from arteriolar flows in the rat cremaster muscle. The CFL data were measured at physiological and pathological levels of aggregation under reduced flow conditions (pseudoshear rate = 31.4 ± 10.5 s-1). Our results showed that the mean peak NO concentration significantly decreased with increasing the aggregation level from non-aggregating to normal-aggregating (P < 0.05) and to hyper-aggregating (P < 0.01) conditions. In contrast, the partial O2 pressure (PO2) in pathological aggregating conditions significantly increased from those under non-aggregating (P < 0.001) and normal-aggregating (P < 0.05) conditions. Although the NO scavenging by RBCs could be impaired with a thicker CFL at higher levels of aggregation, the overall decrease in NO production due to reduction of wall shear stress with the thicker CFL dominantly limited the NO availability in tissue. On the other hand, the O2 availability in tissue increased due to the relatively high core hematocrit in the blood lumen with the thicker CFL.

  15. Inherent rhythm of smooth muscle cells in rat mesenteric arterioles: An eigensystem formulation

    NASA Astrophysics Data System (ADS)

    Ho, I. Lin; Moshkforoush, Arash; Hong, Kwangseok; Meininger, Gerald A.; Hill, Michael A.; Tsoukias, Nikolaos M.; Kuo, Watson

    2016-04-01

    On the basis of experimental data and mathematical equations in the literature, we remodel the ionic dynamics of smooth muscle cells (SMCs) as an eigensystem formulation, which is valid for investigating finite variations of variables from the equilibrium such as in common experimental operations. This algorithm provides an alternate viewpoint from frequency-domain analysis and enables one to probe functionalities of SMCs' rhythm by means of a resonance-related mechanism. Numerical results show three types of calcium oscillations of SMCs in mesenteric arterioles: spontaneous calcium oscillation, agonist-dependent calcium oscillation, and agonist-dependent calcium spike. For simple single and double SMCs, we demonstrate properties of synchronization among complex signals related to calcium oscillations, and show different correlation relations between calcium and voltage signals for various synchronization and resonance conditions. For practical cell clusters, our analyses indicate that the rhythm of SMCs could (1) benefit enhancements of signal communications among remote cells, (2) respond to a significant calcium peaking against transient stimulations for triggering globally oscillating modes, and (3) characterize the globally oscillating modes via frog-leap (non-molecular-diffusion) calcium waves across inhomogeneous SMCs.

  16. The Effect of Ovariectomy and Estrogen on Penetrating Brain Arterioles and Blood-brain Barrier Permeability

    PubMed Central

    Cipolla, Marilyn J.; Godfrey, Julie A.; Wiegman, Marchien J.

    2009-01-01

    Objective We investigated the effect of estrogen replacement on the structure and function of penetrating brain arterioles (PA) and blood-brain barrier (BBB) permeability. Methods Female ovariectomized Sprague Dawley rats were replaced with estradiol (E2) and estriol (E3) (OVX+E; N=13) and compared to ovariectomized animals without replacement (OVX; N=14) and intact controls (CTL, proestrous; N=13). Passive and active diameters, percent tone and passive distensibility of pressurized PA were compared. In addition, BBB permeability to Lucifer Yellow, a marker of transcellular transport, was compared in cerebral arteries. Results Ovariectomy increased myogenic tone in PA compared to CTL that was not ameliorated by estrogen treatment. Percent tone at 75 mmHg for CTL vs. OVX and OVX+E was 44 ± 3% vs. 51 ± 1% and 54 ± 3% (p<0.01 vs. CTL for both). No differences were found in passive diameters or distensibility between the groups. BBB permeability increased 500% in OVX vs. CTL animals, however, estrogen replacement restored barrier properties: flux of Lucifer Yellow for CTL, OVX and OVX+E was (ng/mL): 3.4 ± 1.2, 20.2 ± 5.3 (p<0.01 vs. CTL) and 6.15 ± 1.2 (n.s.). Conclusions These results suggest that estrogen replacement may not be beneficial for small vessel disease in the brain, but may limit BBB disruption and edema under conditions that cause it. PMID:19905968

  17. Noradrenaline stimulation of the phosphoinositide system: evidence for a novel hydrophobic inositol-containing compound in resistance arterioles.

    PubMed Central

    Ollerenshaw, J. D.; Heagerty, A. M.; Swales, J. D.

    1988-01-01

    1. Five inositol phosphates were extracted from adult rat resistance arterioles and separated by ion-exchange high performance liquid chromatography. 2. By use of this technique, inositol phosphates liberated were identified as inositol 1-phosphate, inositol 1,4-bisphosphate, inositol 1,3,4-trisphosphate, inositol 1,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate. Stimulation of phosphoinositide hydrolysis with noradrenaline produced increases in inositol phosphate production. 3. Three inositol-containing phospholipids extracted from resistance arterioles were measured as their glycerol esters following deacylation, thereby permitting an analysis of both membrane and cytosolic components of the phosphoinositide signalling system. 4. A substantial agonist-sensitive pool of a previously undescribed inositol but not glycerol-containing lipid extract component was also identified in this tissue. 5. These experiments for the first time allow a precise description of phosphoinositide metabolism in resting and agonist-stimulated resistance arterioles and provide data on a novel compound possibly similar to that recently described in other tissues. PMID:2840158

  18. Primary afferent response to signals in the intestinal lumen.

    PubMed

    Raybould, H

    2001-02-01

    The first recordings of vagal afferent nerve fibre activity were performed by Paintal in the early 1950s. In these experiments, he showed that phenyldiguanide (later recognized as a 5-HT3 receptor agonist) stimulated the firing of C-fibres innervating the intestine. In the following years, ample physiological and psychological studies have demonstrated the importance of afferent information arising from the gut in the regulation of gastrointestinal function and behaviour. Many stimuli are capable of eliciting these functional effects and of stimulating afferent fibre discharge, including mechanical, chemical, nutrient- and immune-derived stimuli. Studies in the last 10 years have begun to focus on the precise sensory transduction mechanisms by which these visceral primary afferent nerve terminals are activated and, like the contribution by Zhu et al. in this issue of The Journal of Physiology, are revealing some novel and exciting findings.

  19. Afferent control of human stance and gait: evidence for blocking of group I afferents during gait.

    PubMed

    Dietz, V; Quintern, J; Berger, W

    1985-01-01

    The cerebral potentials (c.p.) evoked by electrical stimulation of the tibial nerve during stance and in the various phases of gait of normal subjects were compared with the c.p. and leg muscle e.m.g. responses evoked by perturbations of stance and gait. Over the whole step cycle of gait the c.p. evoked by an electrical stimulus were of smaller amplitude (3 microV and 9 microV, respectively) than that seen in the stance condition, and appeared with a longer latency (mean times to first positive peak: 63 and 43 ms, respectively). When the electrical stimulus was applied during stance after ischaemic blockade of group I afferents, the c.p. were similar to those evoked during gait. The c.p. evoked by perturbations were larger in amplitude than those produced by the electrical stimulus, but similar in latencies in both gait and stance (mean 26 microV and 40 microV; 65 ms and 42 ms, respectively) and configurations. The large gastrocnemius e.m.g. responses evoked by the stance and gait perturbations arose with a latency of 65 to 70 ms. Only in the stance condition was a smaller, shorter latency (40 ms) response seen. It is concluded that during gait the signals of group I afferents are blocked at both segmental and supraspinal levels which was tested by tibial nerve stimulation. It is suggested that the e.m.g. responses induced in the leg by gait perturbations are evoked by group II afferents and mediated via a spinal pathway. The c.p. evoked during gait most probably reflect the processing of this group II input by supraspinal motor centres for the coordination of widespread arm and trunk muscle activation, necessary to restablish body equilibrium.

  20. Visceral perception: sensory transduction in visceral afferents and nutrients.

    PubMed

    Raybould, H E

    2002-07-01

    The possible mechanisms that may be involved in nutrient detection in the wall of the gastrointestinal tract are reviewed. There is strong functional and electrophysiological evidence that both intrinsic and extrinsic primary afferent neurones mediate mechano- and chemosensitive responses in the gastrointestinal tract. This review focuses on the extrinsic afferent pathways as these are the ones that convey information to the central nervous system which is clearly necessary for perception to occur.

  1. The influence of pain on masseter spindle afferent discharge.

    PubMed

    Capra, Norman F; Hisley, Calvin K; Masri, Radi M

    2007-04-01

    Muscle spindles provide proprioceptive feedback supporting normal patterns of motor activity and kinesthetic sensibility. During mastication, jaw muscle spindles play an important role in monitoring and regulating the chewing cycle and the bite forces generated during mastication. Both acute and chronic orofacial pain disorders are associated with changes in proprioceptive feedback and motor function. Experimental jaw muscle pain also alters the normal response of masseter spindle afferents to ramp and hold jaw movements. It has been proposed that altered motor function and proprioceptive input results from group III muscle afferent modulation of the fusimotor system which alters spindle afferent sensitivity in limb muscles. The response to nociceptive stimuli may enhance or reduce the response of spindle afferents to proprioceptive stimuli. Several experimental observations suggesting the possibility that a similar mechanism also functions in jaw muscles are presented in this report. First, evidence is provided to show that nociceptive stimulation of the masseter muscle primarily influences the amplitude sensitivity of spindle afferents with relatively little effect on the dynamic sensitivity. Second, reversible inactivation of the caudal trigeminal nuclei attenuates the nociceptive modulation of spindle afferents. Finally, functionally identified gamma-motoneurons in the trigeminal motor nucleus are modulated by intramuscular injection with algesic substances. Taken together, these results suggest that pain-induced modulation of spindle afferent responses are mediated by small diameter muscle afferents and that this modulation is dependent, in part, on the relay of muscle nociceptive information from trigeminal subnucleus caudalis onto trigeminal gamma-motoneurons. The implication of these results will be considered in light of current theories on the relationship between jaw muscle pain and oral motor function.

  2. Tyrosine Hydroxylase Expression in Type II Cochlear Afferents in Mice.

    PubMed

    Vyas, Pankhuri; Wu, Jingjing Sherry; Zimmerman, Amanda; Fuchs, Paul; Glowatzki, Elisabeth

    2017-02-01

    Acoustic information propagates from the ear to the brain via spiral ganglion neurons that innervate hair cells in the cochlea. These afferents include unmyelinated type II fibers that constitute 5 % of the total, the majority being myelinated type I neurons. Lack of specific genetic markers of type II afferents in the cochlea has been a roadblock in studying their functional role. Unexpectedly, type II afferents were visualized by reporter proteins induced by tyrosine hydroxylase (TH)-driven Cre recombinase. The present study was designed to determine whether TH-driven Cre recombinase (TH-2A-CreER) provides a selective and reliable tool for identification and genetic manipulation of type II rather than type I cochlear afferents. The "TH-2A-CreER neurons" radiated from the spiral lamina, crossed the tunnel of Corti, turned towards the base of the cochlea, and traveled beneath the rows of outer hair cells. Neither the processes nor the somata of TH-2A-CreER neurons were labeled by antibodies that specifically labeled type I afferents and medial efferents. TH-2A-CreER-positive processes partially co-labeled with antibodies to peripherin, a known marker of type II afferents. Individual TH-2A-CreER neurons gave off short branches contacting 7-25 outer hair cells (OHCs). Only a fraction of TH-2A-CreER boutons were associated with CtBP2-immunopositive ribbons. These results show that TH-2A-CreER provides a selective marker for type II versus type I afferents and can be used to describe the morphology and arborization pattern of type II cochlear afferents in the mouse cochlea.

  3. Cystitis increases colorectal afferent sensitivity in the mouse.

    PubMed

    Brumovsky, Pablo Rodolfo; Feng, Bin; Xu, Linjing; McCarthy, Carly Jane; Gebhart, G F

    2009-12-01

    Studies in humans and rodents suggest that colon inflammation promotes urinary bladder hypersensitivity and, conversely, that cystitis contributes to colon hypersensitivity, events referred to as cross-organ sensitization. To investigate a potential peripheral mechanism, we examined whether cystitis alters the sensitivity of pelvic nerve colorectal afferents. Male C57BL/6 mice were treated with cyclophosphamide (CYP) or saline, and the mechanosensitive properties of single afferent fibers innervating the colorectum were studied with an in vitro preparation. In addition, mechanosensitive receptive endings were exposed to an inflammatory soup (IS) to study sensitization. Urinary bladder mechanosensitive afferents were also tested. We found that baseline responses of stretch-sensitive colorectal afferents did not differ between treatment groups. Whereas IS excited a proportion of colorectal afferents CYP treatment did not alter the magnitude of this response. However, the number of stretch-sensitive fibers excited by IS was increased relative to saline-treated mice. Responses to IS were not altered by CYP treatment, but the proportion of IS-responsive fibers was increased relative to saline-treated mice. In bladder, IS application increased responses of muscular afferents to stretch, although no differences were detected between saline- and CYP-treated mice. In contrast, their chemosensitivity to IS was decreased in the CYP-treated group. Histological examination revealed no changes in colorectum and modest edema and infiltration in the urinary bladder of CYP-treated mice. In conclusion, CYP treatment increased mechanical sensitivity of colorectal muscular afferents and increased the proportion of chemosensitive colorectal afferents. These data support a peripheral contribution to cross-organ sensitization of pelvic organs.

  4. Presynaptic selection of afferent inflow in the spinal cord.

    PubMed

    Rudomin, P

    1999-01-01

    The synaptic effectiveness of sensory fibers ending in the spinal cord of vertebrates can be centrally controlled by means of specific sets of GABAergic interneurons that make axo-axonic synapses with the terminal arborizations of the afferent fibers. In the steady state, the intracellular concentration of chloride ions in these terminals is higher than that predicted from a passive distribution, because of an active transport mechanism. Following the release of GABA by spinal interneurons and activation of GABA(A) receptors in the afferent terminals, there is an outwardly directed efflux of chloride ions that produces primary afferent depolarization (PAD) and reduces transmitter release (presynaptic inhibition). Studies made by intrafiber recording of PAD, or by measuring changes in the intraspinal threshold of single afferent terminals (which is reduced during PAD), have further indicated that muscle and cutaneous afferents have distinctive, but modifiable PAD patterns in response to segmental and descending stimuli. This has suggested that PAD and presynaptic inhibition in the various types of afferents is mediated by separate sets of last-order GABAergic interneurons. Direct activation, by means of intraspinal microstimulation, of single or small groups of last-order PAD-mediating interneurons shows that the monosynaptic PAD elicited in Ia and Ib afferents can remain confined to some sets of the intraspinal collaterals and not spread to nearby collaterals. The local character of PAD allows cutaneous and descending inputs to selectively inhibit the PAD of segmental and ascending intraspinal collaterals of individual muscle spindle afferents. It thus seems that the intraspinal branches of the sensory fibers are not hard wired routes that diverge excitation to spinal neurons, but are instead dynamic pathways that can be centrally controlled to address information to selected neuronal targets. This feature appears to play an important role in the selection of

  5. Differential central projections of vestibular afferents in pigeons

    NASA Technical Reports Server (NTRS)

    Dickman, J. D.; Fang, Q.

    1996-01-01

    The question of whether a differential distribution of vestibular afferent information to central nuclear neurons is present in pigeons was studied using neural tracer compounds. Discrete tracing of afferent fibers innervating the individual semicircular canal and otolith organs was produced by sectioning individual branches of the vestibular nerve that innervate the different receptor organs and applying crystals of horseradish peroxidase, or a horseradish peroxidase/cholera toxin mixture, or a biocytin compound for neuronal uptake and transport. Afferent fibers and their terminal distributions within the brainstem and cerebellum were visualized subsequently. Discrete areas in the pigeon central nervous system that receive primary vestibular input include the superior, dorsal lateral, ventral lateral, medial, descending, and tangential vestibular nuclei; the A and B groups; the intermediate, medial, and lateral cerebellar nuclei; and the nodulus, the uvula, and the paraflocculus. Generally, the vertical canal afferents projected heavily to medial regions in the superior and descending vestibular nuclei as well as the A group. Vertical canal projections to the medial and lateral vestibular nuclei were observed but were less prominent. Horizontal canal projections to the superior and descending vestibular nuclei were much more centrally located than those of the vertical canals. A more substantial projection to the medial and lateral vestibular nuclei was seen with horizontal canal afferents compared to vertical canal fibers. Afferents innervating the utricle and saccule terminated generally in the lateral regions of all vestibular nuclei in areas that were separate from the projections of the semicircular canals. In addition, utricular fibers projected to regions in the vestibular nuclei that overlapped with the horizontal semicircular canal terminal fields, whereas saccular afferents projected to regions that received vertical canal fiber terminations. Lagenar

  6. Exercise training-enhanced, endothelium-dependent dilation mediated by altered regulation of BKCa channels in collateral-dependent porcine coronary arterioles

    PubMed Central

    Xie, Wei; Parker, Janet L.; Heaps, Cristine L.

    2012-01-01

    Objective Test the hypothesis that exercise training increases the contribution of large-conductance, Ca2+-dependent K+ (BKCa) channels to endothelium-mediated dilation in coronary arterioles from collateral-dependent myocardial regions of chronically occluded pig hearts and may function downstream of H2O2. Methods An ameroid constrictor was placed around the proximal left circumflex coronary artery to induce gradual occlusion in Yucatan miniature swine. Eight weeks postoperatively, pigs were randomly assigned to sedentary or exercise training (treadmill; 14 wk) regimens. Results Exercise training significantly enhanced bradykinin-mediated dilation in collateral-dependent arterioles (~125 μm diameter) compared with sedentary pigs. The BKCa-channel blocker, iberiotoxin alone or in combination with the H2O2 scavenger, polyethylene glycol catalase, reversed exercise training-enhanced dilation in collateral-dependent arterioles. Iberiotoxin-sensitive whole-cell K+ currents (i.e., BKCa-channel currents) were not different between smooth muscle cells of nonoccluded and collateral-dependent arterioles of sedentary and exercise trained groups. Conclusions These data provide evidence that BKCa-channel activity contributes to exercise training-enhanced endothelium-dependent dilation in collateral-dependent coronary arterioles despite no change in smooth muscle BKCa-channel current. Taken together, our findings suggest that a component of the bradykinin signaling pathway, which stimulates BKCa channels, is enhanced by exercise training in collateral-dependent arterioles and suggest a potential role for H2O2 as the mediator. PMID:23002811

  7. Flow structures and red blood cell dynamics in arteriole of dilated or constricted cross section.

    PubMed

    Gambaruto, Alberto M

    2016-07-26

    Vessel with 'circular' or 'star-shaped' cross sections are studied, representing respectively dilated or constricted cases where endothelial cells smoothly line or bulge into the lumen. Computational haemodynamics simulations are carried out on idealised periodic arteriole-sized vessels, with red blood cell 'tube' hematocrit value=24%. A further simulation of a single red blood cell serves for comparison purposes. The bulk motion of the red blood cells reproduces well-known effects, including the presence of a cell-free layer and the apparent shear-thinning non-Newtonian rheology. The velocity flow field is analysed in a Lagrangian reference frame, relative to any given red blood cell, hence removing the bulk coaxial motion and highlighting instead the complex secondary flow patterns. An aggregate formation becomes apparent, continuously rearranging and dynamic, brought about by the inter-cellular fluid mechanics interactions and the deformability properties of the cells. The secondary flow field induces a vacillating radial migration of the red blood cells. At different radial locations, the red blood cells express different residence times, orientation and shape. The shear stresses exerted by the flow on the vessel wall are influenced by the motion of red blood cells, despite the presence of the cell-free layer. Spatial (and temporal) variations of wall shear stress patters are observed, especially for the 'circular' vessel. The 'star-shaped' vessel bears considerable stress at the protruding endothelial cell crests, where the stress vectors are coaxially aligned. The bulging endothelial cells hence regularise the transmission of stresses on the vessel wall.

  8. Afferent innervation of the utricular macula in pigeons

    NASA Technical Reports Server (NTRS)

    Si, Xiaohong; Zakir, Mridha Md; Dickman, J. David

    2003-01-01

    Biotinylated dextran amine (BDA) was used to retrogradely label afferents innervating the utricular macula in adult pigeons. The pigeon utriclar macula consists of a large rectangular-shaped neuroepithelium with a dorsally curved anterior edge and an extended medioposterior tail. The macula could be demarcated into several regions based on cytoarchitectural differences. The striola occupied 30% of the macula and contained a large density of type I hair cells with fewer type II hair cells. Medial and lateral extrastriola zones were located outside the striola and contained only type II hair cells. A six- to eight-cell-wide band of type II hair cells existed near the center of the striola. The reversal line marked by the morphological polarization of hair cells coursed throughout the epithelium, near the peripheral margin, and through the center of the type II band. Calyx afferents innervated type I hair cells with calyceal terminals that contained between 2 and 15 receptor cells. Calyx afferents were located only in the striola region, exclusive of the type II band, had small total fiber innervation areas and low innervation densities. Dimorph afferents innervated both type I and type II hair cells with calyceal and bouton terminals and were primarily located in the striola region. Dimorph afferents had smaller calyceal terminals with few type I hair cells, extended fiber branches with bouton terminals and larger innervation areas. Bouton afferents innervated only type II hair cells in the extrastriola and type II band regions. Bouton afferents innervating the type II band had smaller terminal fields with fewer bouton terminals and smaller innervation areas than fibers located in the extrastriolar zones. Bouton afferents had the most bouton terminals on the longest fibers, the largest innervation areas with the highest innervation densities of all afferents. Among all afferents, smaller terminal innervation fields were observed in the striola and large fields were

  9. Mast cells drive mesenteric afferent signalling during acute intestinal ischaemia.

    PubMed

    Jiang, Wen; Kirkup, Anthony J; Grundy, David

    2011-08-01

    Acute intestinal ischaemia stimulates visceral afferent nerves but the mechanisms responsible for this excitation are not fully understood. Mast cells may participate in this process as they are known to signal to mesenteric afferents during intestinal anaphylaxis and contribute to early inflammation and neuronal damage in response to cerebral ischaemia. We therefore hypothesised that mast cells are early responders to acute intestinal ischaemia and their activation initiates rapid signalling to the CNS via the excitation of mesenteric afferents. Primary afferent firing was recorded from a mesenteric nerve bundle supplying a segment of jejunum in anaesthetized adult rats. Acute focal ischaemia was produced by clamping theme senteric vessels for 8 min, and reperfusion followed removal of the vessel clip. Two episodes of ischaemia–reperfusion (I–R) separated by a 30 min interval were performed. Drugs or their vehicles were administered 10 min before the 2nd I–R episode. Ischaemia caused a reproducible, intense and biphasic afferent firing that was temporally dissociated from the concomitantly triggered complex pattern of intestinal motor activity. The L-type calcium channel blocker, nifedipine, significantly attenuated this afferent firing by a mechanism independent of its action on intestinal tone. Ischaemia-induced afferent firing was also abrogated by the mast cell stabilizer, doxantrazole, and the H1 histamine receptor antagonist, pyrilamine. In contrast, the nicotinic receptor antagonist, hexamethonium, and the N-type calcium channel toxin, ω-conotoxin GVIA, each reduced the ischaemia-evoked motor inhibition but not the concurrent afferent discharge. Similarly, the cyclooxygenase inhibitor, naproxen, had no effect on the ischaemic afferent response but reduced the intestinal tone shortly from the onset of ischaemia to the early period of reperfusion. These data support a critical role for mast cell-derived histamine in the direct chemoexcitation of

  10. Patterns of connectivity of spinal interneurons with single muscle afferents.

    PubMed

    Quevedo, J; Eguibar, J R; Lomeli, J; Rudomin, P

    1997-07-01

    A technique was developed to measure, in the anesthetized and paralyzed cat under artificial ventilation, changes of excitability to intraspinal stimulation simultaneously in two different afferent fibers or in two collaterals of the same afferent fiber. Intraspinal stimulation reduced the threshold of single muscle afferent fibers ending in the intermediate nucleus. This effect was seen with strengths below those required to activate the afferent fiber tested (1.5-12 microA), occurred at a short latency (1.5-2.0 ms), reached a maximum between 15 and 30 ms, and lasted up to 100 ms. The effects produced by graded stimulation applied at the shortest conditioning-testing stimulus time intervals increased by fixed steps, suggesting recruitment of discrete elements, most likely of last-order interneurons mediating primary afferent depolarization (PAD). The short-latency increases in excitability produced by the weakest effective intraspinal stimuli were usually detected only in the collateral closest to the stimulating micropipette, indicating that the stimulated interneurons mediating PAD have spatially restricted actions. The short-latency PAD produced by intraspinal stimuli, as well as the PAD produced by stimulation of the posterior biceps and semitendinosus (PBSt) nerve or by stimulation of the bulbar reticular formation (RF), was depressed 19-30 min after the i.v. injection of 0.5 mg/kg of picrotoxin, suggesting that all these effects were mediated by GABAergic mechanisms. The PAD elicited by stimulation of muscle and/or cutaneous nerves was depressed following the i.v. injection of (-)-baclofen, whereas the PAD elicited in the same collateral by stimulation of the RF was baclofen-resistant. The short-latency PAD produced by intraspinal stimulation was not always depressed by i.v. injections of (-)-baclofen. Baclofen-sensitive and baclofen-resistant monosynaptic PADs could be produced in different collaterals of the same afferent fiber. The results suggest that

  11. Gut vagal afferents differentially modulate innate anxiety and learned fear.

    PubMed

    Klarer, Melanie; Arnold, Myrtha; Günther, Lydia; Winter, Christine; Langhans, Wolfgang; Meyer, Urs

    2014-05-21

    Vagal afferents are an important neuronal component of the gut-brain axis allowing bottom-up information flow from the viscera to the CNS. In addition to its role in ingestive behavior, vagal afferent signaling has been implicated modulating mood and affect, including distinct forms of anxiety and fear. Here, we used a rat model of subdiaphragmatic vagal deafferentation (SDA), the most complete and selective vagal deafferentation method existing to date, to study the consequences of complete disconnection of abdominal vagal afferents on innate anxiety, conditioned fear, and neurochemical parameters in the limbic system. We found that compared with Sham controls, SDA rats consistently displayed reduced innate anxiety-like behavior in three procedures commonly used in preclinical rodent models of anxiety, namely the elevated plus maze test, open field test, and food neophobia test. On the other hand, SDA rats exhibited increased expression of auditory-cued fear conditioning, which specifically emerged as attenuated extinction of conditioned fear during the tone re-exposure test. The behavioral manifestations in SDA rats were associated with region-dependent changes in noradrenaline and GABA levels in key areas of the limbic system, but not with functional alterations in the hypothalamus-pituitary-adrenal grand stress. Our study demonstrates that innate anxiety and learned fear are both subjected to visceral modulation through abdominal vagal afferents, possibly via changing limbic neurotransmitter systems. These data add further weight to theories emphasizing an important role of afferent visceral signals in the regulation of emotional behavior.

  12. Heterogeneous function of ryanodine receptors, but not IP3 receptors, in hamster cremaster muscle feed arteries and arterioles

    PubMed Central

    Westcott, Erika B.

    2011-01-01

    The roles played by ryanodine receptors (RyRs) and inositol 1,4,5-trisphosphate receptors (IP3Rs) in vascular smooth muscle in the microcirculation remain unclear. Therefore, the function of both RyRs and IP3Rs in Ca2+ signals and myogenic tone in hamster cremaster muscle feed arteries and downstream arterioles were assessed using confocal imaging and pressure myography. Feed artery vascular smooth muscle displayed Ca2+ sparks and Ca2+ waves, which were inhibited by the RyR antagonists ryanodine (10 μM) or tetracaine (100 μM). Despite the inhibition of sparks and waves, ryanodine or tetracaine increased global intracellular Ca2+ and constricted the arteries. The blockade of IP3Rs with xestospongin D (5 μM) or 2-aminoethoxydiphenyl borate (100 μM) or the inhibition of phospholipase C using U-73122 (10 μM) also attenuated Ca2+ waves without affecting Ca2+ sparks. Importantly, the IP3Rs and phospholipase C antagonists decreased global intracellular Ca2+ and dilated the arteries. In contrast, cremaster arterioles displayed only Ca2+ waves: Ca2+ sparks were not observed, and neither ryanodine (10–50 μM) nor tetracaine (100 μM) affected either Ca2+ signals or arteriolar tone despite the presence of functional RyRs as assessed by responses to the RyR agonist caffeine (10 mM). As in feed arteries, arteriolar Ca2+ waves were attenuated by xestospongin D (5 μM), 2-aminoethoxydiphenyl borate (100 μM), and U-73122 (10 μM), accompanied by decreased global intracellular Ca2+ and vasodilation. These findings highlight the contrasting roles played by RyRs and IP3Rs in Ca2+ signals and myogenic tone in feed arteries and demonstrate important differences in the function of RyRs between feed arteries and downstream arterioles. PMID:21357503

  13. Determinants of Spatial and Temporal Coding by Semicircular Canal Afferents

    PubMed Central

    Highstein, Stephen M.; Rabbitt, Richard D.; Holstein, Gay R.; Boyle, Richard D.

    2010-01-01

    The vestibular semicircular canals are internal sensors that signal the magnitude, direction, and temporal properties of angular head motion. Fluid mechanics within the 3-canal labyrinth code the direction of movement and integrate angular acceleration stimuli over time. Directional coding is accomplished by decomposition of complex angular accelerations into 3 biomechanical components—one component exciting each of the 3 ampullary organs and associated afferent nerve bundles separately. For low-frequency angular motion stimuli, fluid displacement within each canal is proportional to angular acceleration. At higher frequencies, above the lower corner frequency, real-time integration is accomplished by viscous forces arising from the movement of fluid within the slender lumen of each canal. This results in angular velocity sensitive fluid displacements. Reflecting this, a subset of afferent fibers indeed report angular acceleration to the brain for low frequencies of head movement and report angular velocity for higher frequencies. However, a substantial number of afferent fibers also report angular acceleration, or a signal between acceleration and velocity, even at frequencies where the endolymph displacement is known to follow angular head velocity. These non-velocity-sensitive afferent signals cannot be attributed to canal biomechanics alone. The responses of non-velocity-sensitive cells include a mathematical differentiation (first-order or fractional) imparted by hair-cell and/or afferent complexes. This mathematical differentiation from velocity to acceleration cannot be attributed to hair cell ionic currents, but occurs as a result of the dynamics of synaptic transmission between hair cells and their primary afferent fibers. The evidence for this conclusion is reviewed below. PMID:15845995

  14. Nociceptive primary afferents: they have a mind of their own

    PubMed Central

    Carlton, Susan M

    2014-01-01

    Nociceptive primary afferents have three surprising properties: they are highly complex in their expression of neurotransmitters and receptors and most probably participate in autocrine and paracrine interactions; they are capable of exerting tonic and activity-dependent inhibitory control over incoming nociceptive input; they can generate signals in the form of dorsal root reflexes that are transmitted antidromically out to the periphery and these signals can result in neurogenic inflammation in the innervated tissue. Thus, nociceptive primary afferents are highly complicated structures, capable of modifying input before it is ever transmitted to the central nervous system and capable of altering the tissue they innervate. PMID:24879874

  15. Androgen Action via Testicular Arteriole Smooth Muscle Cells Is Important for Leydig Cell Function, Vasomotion and Testicular Fluid Dynamics

    PubMed Central

    Welsh, Michelle; Sharpe, Richard M.; Moffat, Lindsey; Atanassova, Nina; Saunders, Philippa T. K.; Kilter, Sigrid; Bergh, Anders; Smith, Lee B.

    2010-01-01

    Regulation of blood flow through the testicular microvasculature by vasomotion is thought to be important for normal testis function as it regulates interstitial fluid (IF) dynamics which is an important intra-testicular transport medium. Androgens control vasomotion, but how they exert these effects remains unclear. One possibility is by signalling via androgen receptors (AR) expressed in testicular arteriole smooth muscle cells. To investigate this and determine the overall importance of this mechanism in testis function, we generated a blood vessel smooth muscle cell-specific AR knockout mouse (SMARKO). Gross reproductive development was normal in SMARKO mice but testis weight was reduced in adulthood compared to control littermates; this reduction was not due to any changes in germ cell volume or to deficits in testosterone, LH or FSH concentrations and did not cause infertility. However, seminiferous tubule lumen volume was reduced in adult SMARKO males while interstitial volume was increased, perhaps indicating altered fluid dynamics; this was associated with compensated Leydig cell failure. Vasomotion was impaired in adult SMARKO males, though overall testis blood flow was normal and there was an increase in the overall blood vessel volume per testis in adult SMARKOs. In conclusion, these results indicate that ablating arteriole smooth muscle AR does not grossly alter spermatogenesis or affect male fertility but does subtly impair Leydig cell function and testicular fluid exchange, possibly by locally regulating microvascular blood flow within the testis. PMID:21049031

  16. Targeting vascular amyloid in arterioles of Alzheimer disease transgenic mice with amyloid β protein antibody-coated nanoparticles.

    PubMed

    Poduslo, Joseph F; Hultman, Kristi L; Curran, Geoffry L; Preboske, Gregory M; Chamberlain, Ryan; Marjańska, Małgorzata; Garwood, Michael; Jack, Clifford R; Wengenack, Thomas M

    2011-08-01

    The relevance of cerebral amyloid angiopathy (CAA) to the pathogenesis of Alzheimer disease (AD) and dementia in general emphasizes the importance of developing novel targeting approaches for detecting and treating cerebrovascular amyloid (CVA) deposits. We developed a nanoparticle-based technology that uses a monoclonal antibody against fibrillar human amyloid-β42 that is surface coated onto a functionalized phospholipid monolayer. We demonstrate that this conjugated nanoparticle binds to CVA deposits in arterioles of AD transgenic mice (Tg2576) after infusion into the external carotid artery using 3 different approaches. The first 2 approaches use a blood vessel enrichment of homogenized brain and a leptomeningeal vessel preparation from thin tangential brain slices from the surface of the cerebral cortex. Targeting of CVA by the antibody-coated nanoparticle was visualized using fluorescent lissamine rhodamine-labeled phospholipids in the nanoparticles, which were compared with fluorescent staining of the endothelial cells and amyloid deposits using confocal laser scanning microscopy. The third approach used high-field strength magnetic resonance imaging of antibody-coated iron oxide nanoparticles after infusion into the external carotid artery. Dark foci of contrast enhancement in cortical arterioles were observed in T2*-weighted images of ex vivo AD mouse brains that correlated histologically with CVA deposits. The targeting ability of these nanoparticles to CVA provides opportunities for the prevention and treatment of CAA.

  17. Sensations evoked by microstimulation of single mechanoreceptive afferents innervating the human face and mouth.

    PubMed

    Trulsson, M; Essick, G K

    2010-04-01

    Intraneural microneurography and microstimulation were performed on single afferent axons in the inferior alveolar and lingual nerves innervating the face, teeth, labial, or oral mucosa. Using natural mechanical stimuli, 35 single mechanoreceptive afferents were characterized with respect to unit type [fast adapting type I (FA I), FA hair, slowly adapting type I and II (SA I and SA II), periodontal, and deep tongue units] as well as size and shape of the receptive field. All afferents were subsequently microstimulated with pulse trains at 30 Hz lasting 1.0 s. Afferents recordings whose were stable thereafter were also tested with single pulses and pulse trains at 5 and 60 Hz. The results revealed that electrical stimulation of single FA I, FA hair, and SA I afferents from the orofacial region can evoke a percept that is spatially matched to the afferent's receptive field and consistent with the afferent's response properties as observed on natural mechanical stimulation. Stimulation of FA afferents typically evoked sensations that were vibratory in nature; whereas those of SA I afferents were felt as constant pressure. These afferents terminate superficially in the orofacial tissues and seem to have a particularly powerful access to perceptual levels. In contrast, microstimulation of single periodontal, SA II, and deep tongue afferents failed to evoke a sensation that matched the receptive field of the afferent. These afferents terminate more deeply in the tissues, are often active in the absence of external stimulation, and probably access perceptual levels only when multiple afferents are stimulated. It is suggested that the spontaneously active afferents that monitor tension in collagen fibers (SA II and periodontal afferents) may have the role to register the mechanical state of the soft tissues, which has been hypothesized to help maintain the body's representation in the central somatosensory system.

  18. Adaptation of coronary microvascular exchange in arterioles and venules to exercise training and a role for sex in determining permeability responses

    PubMed Central

    Huxley, Virginia H.; Wang, Jian Jie; Sarelius, Ingrid H.

    2007-01-01

    Studies of physical performance and energy metabolism during and following exercise have shown significant sex-specific musculoskeletal adaptations; less is known of vascular adaptations, particularly with respect to exchange capacity. In response to adenosine (ADO), a metabolite produced during exercise, permeability (Ps) of coronary arterioles from female pigs changed acutely; the magnitude and direction of the change (ΔPs) were determined by training status. In the present study Ps to albumin was assessed in arterioles (n = 138) and venules (n = 24) isolated from hearts of male (N = 27) and female (N = 59) pigs in the exercise training group (EX). We evaluated the hypothesis that coronary microvessel exchange adapts to endurance exercise training not by altering basal Ps, per se, but by elevating Ps on exposure to ADO. In contrast, training resulted in a reduction of basal Ps in all arterioles, and in venules from males, with no change in venules from EX females. Exposure to ADO resulted in the predicted increase in Ps except for venules from EX males where Ps was reduced. ΔPs responses of arterioles to mediators of adenylyl cyclase (isoproterenol)- and guanylyl cyclase (atrial natriuretic peptide)-signaling pathways were attenuated in EX pigs relative to pigs in the sedentary group. The adaptation of EX arterioles involves an upregulation of a nitric oxide-dependent pathway since nitric oxide synthase inhibition blocks ΔPs by ADO. Thus adaptation of microvascular exchange capacity to endurance exercise training not only occurs but also involves multiple mechanisms that differ in arterioles and venules with their relative contribution to net flux being a function of sex. PMID:17434979

  19. Function and expression of ryanodine receptors and inositol 1,4,5-trisphosphate receptors in smooth muscle cells of murine feed arteries and arterioles

    PubMed Central

    Westcott, Erika B; Goodwin, Erica L; Segal, Steven S; Jackson, William F

    2012-01-01

    We tested the hypothesis that vasomotor control is differentially regulated between feed arteries and downstream arterioles from the cremaster muscle of C57BL/6 mice. In isolated pressurized arteries, confocal Ca2+ imaging of smooth muscle cells (SMCs) revealed Ca2+ sparks and Ca2+ waves. Ryanodine receptor (RyR) antagonists (ryanodine and tetracaine) inhibited both sparks and waves but increased global Ca2+ and myogenic tone. In arterioles, SMCs exhibited only Ca2+ waves that were insensitive to ryanodine or tetracaine. Pharmacological interventions indicated that RyRs are functionally coupled to large-conductance, Ca2+-activated K+ channels (BKCa) in SMCs of arteries, whereas BKCa appear functionally coupled to voltage-gated Ca2+ channels in SMCs of arterioles. Inositol 1,4,5-trisphosphate receptor (IP3R) antagonists (xestospongin D or 2-aminoethoxydiphenyl borate) or a phospholipase C inhibitor (U73122) attenuated Ca2+ waves, global Ca2+ and myogenic tone in arteries and arterioles but had no effect on arterial sparks. Real-time PCR of isolated SMCs revealed RyR2 as the most abundant isoform transcript; arteries expressed twice the RyR2 but only 65% the RyR3 of arterioles and neither vessel expressed RyR1. Immunofluorescent localisation of RyR protein indicated bright, clustered staining of arterial SMCs in contrast to diffuse staining in arteriolar SMCs. Expression of IP3R transcripts and protein immunofluorescence were similar in SMCs of both vessels with IP3R1>>IP3R2>IP3R3. Despite similar expression of IP3Rs and dependence of Ca2+ waves on IP3Rs, these data illustrate pronounced regional heterogeneity in function and expression of RyRs between SMCs of the same vascular resistance network. We conclude that vasomotor control is differentially regulated in feed arteries vs. downstream arterioles. PMID:22331418

  20. Coronary Arterioles in Type 2 Diabetic (db/db) Mice Undergo a Distinct Pattern of Remodeling Associated with Decreased Vessel Stiffness

    PubMed Central

    Katz, Paige S.; Trask, Aaron J.; Souza-Smith, Flavia M.; Hutchinson, Kirk R.; Galantowicz, Maarten L.; Lord, Kevin C.; Stewart, James A.; Cismowski, Mary J.; Varner, Kurt J.; Lucchesi, Pamela A.

    2011-01-01

    Background Little is known about the impact of type 2 diabetes mellitus (DM) on coronary arteriole remodeling. The aim of this study was to determine the mechanisms that underlie coronary arteriole structural remodeling in type 2 diabetic (db/db) mice. Methods and Results Passive structural properties of septal coronary arterioles isolated from 12- and 16-wk-old diabetic db/db and control mice were assessed by pressure myography. Coronary arterioles from 12-wk-old db/db mice were structurally similar to age-matched controls. By 16-wks of age, coronary wall thickness was increased in db/db arterioles (p < 0.01), while luminal diameter was reduced (Control: 118±5μm; db/db: 102±4μm, p < 0.05), augmenting the wall-to-lumen ratio by 58% (Control: 5.9±0.6; db/db: 9.5±0.4, p < 0.001). Inward hypertrophic remodeling was accompanied by a 56% decrease in elastic modulus (p < 0.05, indicating decreased vessel coronary wall stiffness) and a ~30% reduction in coronary flow reserve in diabetic mice. Interestingly, aortic pulse wave velocity and femoral artery incremental modulus were increased (p < 0.05) in db/db mice, indicating macrovascular stiffness. Molecular tissue analysis revealed increased elastin-to-collagen ratio in diabetic coronaries when compared to control and a decrease in the same ratio in the diabetic aortas. Conclusions These data show that coronary arterioles isolated from type 2 diabetic mice undergo inward hypertrophic remodeling associated with decreased stiffness and increased elastin-to-collagen ratio which results in a decreased coronary flow reserve. This study suggests that coronary microvessels undergo a different pattern of remodeling from macrovessels in type 2 DM. PMID:21744279

  1. Tactile afferents encode grip safety before slip for different frictions.

    PubMed

    Khamis, Heba A; Redmond, Stephen J; Macefield, Vaughan G; Birznieks, Ingvars

    2014-01-01

    Adjustments to frictional forces are crucial to maintain a safe grip during precision object handling in both humans and robotic manipulators. The aim of this work was to investigate whether a population of human tactile afferents can provide information about the current tangential/normal force ratio expressed as the percentage of the critical load capacity - the tangential/normal force ratio at which the object would slip. A smooth stimulation surface was tested on the fingertip under three frictional conditions, with a 4 N normal force and a tangential force generated by motion in the ulnar or distal direction at a fixed speed. During stimulation, the responses of 29 afferents (12 SA-I, 2 SA-II, 12 FA-I, 3 FA-II) were recorded. A multiple regression model was trained and tested using cross-validation to estimate the percentage of the critical load capacity in real-time as the tangential force increased. The features for the model were the number of spikes from each afferent in windows of fixed length (50, 100 or 200 ms) around points spanning the range from 50% to 100% of the critical load capacity, in 5% increments. The mean regression estimate error was less than 1% of the critical load capacity with a standard deviation between 5% and 10%. A larger number of afferents is expected to improve the estimate error. This work is important for understanding human dexterous manipulation and inspiring improvements in robotic grippers and prostheses.

  2. Gut chemosensing: interactions between gut endocrine cells and visceral afferents.

    PubMed

    Raybould, Helen E

    2010-02-16

    Chemosensing in the gastrointestinal tract is less well understood than many aspects of gut mechanosensitivity; however, it is important in the overall function of the GI tract and indeed the organism as a whole. Chemosensing in the gut represents a complex interplay between the function of enteroendocrine (EEC) cells and visceral (primarily vagal) afferent neurons. In this brief review, I will concentrate on a new data on endocrine cells in chemosensing in the GI tract, in particular on new findings on glucose-sensing by gut EEC cells and the importance of incretin peptides and vagal afferents in glucose homeostasis, on the role of G protein coupled receptors in gut chemosensing, and on the possibility that gut endocrine cells may be involved in the detection of a luminal constituent other than nutrients, the microbiota. The role of vagal afferent pathways as a downstream target of EEC cell products will be considered and, in particular, exciting new data on the plasticity of the vagal afferent pathway with respect to expression of receptors for GI hormones and how this may play a role in energy homeostasis will also be discussed.

  3. Ventral Tegmental Area Afferents and Drug-Dependent Behaviors

    PubMed Central

    Oliva, Idaira; Wanat, Matthew J.

    2016-01-01

    Drug-related behaviors in both humans and rodents are commonly thought to arise from aberrant learning processes. Preclinical studies demonstrate that the acquisition and expression of many drug-dependent behaviors involves the ventral tegmental area (VTA), a midbrain structure comprised of dopamine, GABA, and glutamate neurons. Drug experience alters the excitatory and inhibitory synaptic input onto VTA dopamine neurons, suggesting a critical role for VTA afferents in mediating the effects of drugs. In this review, we present evidence implicating the VTA in drug-related behaviors, highlight the diversity of neuronal populations in the VTA, and discuss the behavioral effects of selectively manipulating VTA afferents. Future experiments are needed to determine which VTA afferents and what neuronal populations in the VTA mediate specific drug-dependent behaviors. Further studies are also necessary for identifying the afferent-specific synaptic alterations onto dopamine and non-dopamine neurons in the VTA following drug administration. The identification of neural circuits and adaptations involved with drug-dependent behaviors can highlight potential neural targets for pharmacological and deep brain stimulation interventions to treat substance abuse disorders. PMID:27014097

  4. Changes in monkey horizontal semicircular canal afferent responses after spaceflight

    NASA Technical Reports Server (NTRS)

    Correia, M. J.; Perachio, A. A.; Dickman, J. D.; Kozlovskaia, I. B.; Sirota, M. G.; Iakushin, S. B.; Beloozerova, I. N.

    1992-01-01

    Extracellular responses from single horizontal semicircular canal afferents in two rhesus monkeys were studied after recovery from a 14-day biosatellite (Cosmos 2044) orbital spaceflight. On the 1st postflight day, the mean gain for 9 different horizontal canal afferents, tested using one or several different passive yaw rotation waveforms, was nearly twice that for 20 horizontal canal afferents similarly tested during preflight and postflight control studies. Adaptation of the afferent response to passive yaw rotation on the 1st postflight day was also greater. These results suggest that at least one component of the vestibular end organ (the semicircular canals) is transiently modified after exposure to 14 days of microgravity. It is unclear whether the changes are secondary to other effects of microgravity, such as calcium loss, or an adaptive response. If the response is adaptive, then this report is the first evidence that the response of the vestibular end organ may be modified (presumably by the central nervous system via efferent connections) after prolonged unusual vestibular stimulation. If this is the case, the sites of plasticity of vestibular responses may not be exclusively within central nervous system vestibular structures, as previously believed.

  5. Regenerating sprouts of axotomized cat muscle afferents express characteristic firing patterns to mechanical stimulation.

    PubMed

    Johnson, R D; Munson, J B

    1991-12-01

    1. In cats, we studied the physiological properties of regenerating sprouts of muscle afferent fibers and compared them with sprouts from cutaneous afferent fibers. 2. Muscle nerves to the triceps surae and cutaneous sural nerves were axotomized in the popliteal fossa, and the proximal ends were inserted into nerve cuffs. Six days later, we recorded action potentials from single Groups I and II muscle and mostly Group II cutaneous afferents driven by mechanostimulation of the cuff. 3. Most muscle afferent sprouts (91%) had a regular slowly adapting discharge in response to sustained mechanical displacement of the cuff, particularly to sustained stretch stimuli, whereas most cutaneous afferents (92%) did not. Muscle afferents were more likely to have a spontaneous discharge and afterdischarge. 4. Group II muscle afferent sprouts had lower stretch thresholds and a higher incidence of spontaneous discharge compared with Group I fiber sprouts, whereas Group I fibers had a higher incidence of high-frequency afterdischarge to mechanical stimuli. 5. We conclude that, 6 days after axotomy, regenerating sprouts of muscle afferents, particularly Group II afferents, have become mechanosensitive in the absence of a receptor target and exhibit physiological properties similar to those found when innervating their native muscle but significantly different from sprouts of cutaneous afferents. Expression of these native muscle afferent firing patterns after the inappropriate reinnervation of hairy skin may be due to inherent properties of the muscle afferent fiber.

  6. Effects of antidromic discharges in crayfish primary afferents.

    PubMed

    Cattaert, Daniel; Bévengut, Michelle

    2002-10-01

    Contrary to orthodromic spikes that are generated in sensory organs and conveyed to CNS, antidromic spikes are generated in the axon terminals of the sensory neurons within the CNS and are conveyed to the peripheral sensory organ. Antidromic discharges are observed in primary afferent neurons of both vertebrates and invertebrates and seem to be related to the rhythmic activity of central neural networks. In this study, we analyzed the effect of antidromic discharges on the sensory activity of a leg proprioceptor in in vitro preparations of the crayfish CNS. Intracellular microelectrodes were used both to record the orthodromic spikes and to elicit antidromic spikes by injecting squares pulses of depolarizing current at various frequencies. Experiments were performed on the three types of identified sensory afferents (tonic, phasotonic, and phasic). The main results showed a reduction of the firing frequency of the orthodromic activity in 82% of the tested afferents. In tonic afferents, during their occurrences and according to their frequency, antidromic spikes or bursts reduced or suppressed the orthodromic activity. Following their terminations, they also induced a silent period and a gradual recovery of the orthodromic activity, both of which increased as the duration and the frequency of the antidromic bursts increased. In phasotonic and phasic afferents, antidromic bursts reduced or suppressed the phasic responses as their frequency and durations increased. In phasotonic afferents, if elicited prior to the movements, long-duration bursts with increasing frequency reduced more rapidly the tonic background activity than the phasic one whereas short-duration bursts at high frequency produced strong decreases of both. The effect of antidromic bursts accumulated when they are repetitively elicited. Antidromic bursts induced a much larger decrease of the sensory activity than adaptation alone. The occurrences of antidromic spikes or bursts may have a functional role

  7. Neck muscle afferents influence oromotor and cardiorespiratory brainstem neural circuits.

    PubMed

    Edwards, I J; Lall, V K; Paton, J F; Yanagawa, Y; Szabo, G; Deuchars, S A; Deuchars, J

    2015-01-01

    Sensory information arising from the upper neck is important in the reflex control of posture and eye position. It has also been linked to the autonomic control of the cardiovascular and respiratory systems. Whiplash associated disorders (WAD) and cervical dystonia, which involve disturbance to the neck region, can often present with abnormalities to the oromotor, respiratory and cardiovascular systems. We investigated the potential neural pathways underlying such symptoms. Simulating neck afferent activity by electrical stimulation of the second cervical nerve in a working heart brainstem preparation (WHBP) altered the pattern of central respiratory drive and increased perfusion pressure. Tracing central targets of these sensory afferents revealed projections to the intermedius nucleus of the medulla (InM). These anterogradely labelled afferents co-localised with parvalbumin and vesicular glutamate transporter 1 indicating that they are proprioceptive. Anterograde tracing from the InM identified projections to brain regions involved in respiratory, cardiovascular, postural and oro-facial behaviours--the neighbouring hypoglossal nucleus, facial and motor trigeminal nuclei, parabrachial nuclei, rostral and caudal ventrolateral medulla and nucleus ambiguus. In brain slices, electrical stimulation of afferent fibre tracts lateral to the cuneate nucleus monosynaptically excited InM neurones. Direct stimulation of the InM in the WHBP mimicked the response of second cervical nerve stimulation. These results provide evidence of pathways linking upper cervical sensory afferents with CNS areas involved in autonomic and oromotor control, via the InM. Disruption of these neuronal pathways could, therefore, explain the dysphagic and cardiorespiratory abnormalities which may accompany cervical dystonia and WAD.

  8. Short-latency afferent inhibition in chronic spinal cord injury

    PubMed Central

    Bailey, Aaron Z.; Mi, Yiqun P.; Nelson, Aimee J.

    2015-01-01

    Background Short-latency afferent inhibition (SAI) results when somatosensory afferent input inhibits the corticospinal output from primary motor cortex (M1). The present study examined SAI in the flexor carpi radialis (FCR) muscle in individuals with spinal cord injury (SCI) and uninjured controls. Methods Short-latency afferent inhibition (SAI) was evoked by stimulating the median nerve at the elbow at intervals of 15, 20 and 25 ms in advance of a transcranial magnetic stimulation (TMS) pulse over M1. SAI was tested with the FCR at rest and also during ~20% of maximum voluntary contraction. Corticospinal output was assessed through measuring both motor thresholds and motor evoked potential (MEP) recruitment curves. The afferent volley was assessed via the N20–P25 amplitude of the somatosensory evoked potential (SEP) and the amplitude of sensory nerve action potentials (SNAP) recorded over the median nerve at the elbow. Results SAI is reduced in SCI in both the contracted and non-contracted FCR muscle. MEP recruitment curves and thresholds were decreased in SCI only in the active state and not the resting state. N20–P25 amplitude was similar between groups in both the resting and active states although SNAP was significantly reduced in SCI at rest. Conclusions We conclude that reduced SAI in SCI is likely attributed to neuroplasticity altering the intrinsic M1 circuitry mediating SAI and/or reduced afferent input traversing a direct thalamocortical route to M1. These data provide a new avenue of research aimed at identifying therapeutic approaches to alter SAI to improve upper limb function in individuals with SCI. PMID:28123808

  9. Fibrinoid necrosis of small brain arteries and arterioles and miliary aneurysms as causes of hypertensive hemorrhage: a critical reappraisal.

    PubMed

    Rosenblum, William I

    2008-10-01

    Cerebral hemorrhage in hypertensive patients is still an important source of morbidity and death. Understanding its underlying pathological basis is essential for the development of fact-based attempts to prevent the hemorrhage. Fibrinoid necrosis and miliary aneurysms are associated with and are the probable underlying causative lesions. Unfortunately much misunderstanding and confusion surrounds understanding of both lesions. This review clarifies several points. These include the following: the nature of fibrinoid necrosis and the susceptibility of small brain arteries and arterioles to this lesion even in the so-called benign hypertension; the relationship of fibrinoid necrosis to lipohyalinosis and the reasons for preferring the term fibrinoid; the existence of miliary aneurysms; the distinction between these aneurysms and pseudo-aneurysms or fibrin globes; the importance of, and basis for, recognizing healed miliary aneurysms; the relationship of fibrinoid necrosis to these aneurysms.

  10. Ileal bladder substitute: antireflux nipple or afferent tubular segment?

    PubMed

    Studer, U E; Spiegel, T; Casanova, G A; Springer, J; Gerber, E; Ackermann, D K; Gurtner, F; Zingg, E J

    1991-01-01

    Spheroidal bladder substitutes made from double-folded ileal segments, similar to Goodwin's cup-patch technique, are devoid of major coordinated wall contractions. This, together with the reservoir's direct anastomosis to the membranous urethra, prevents major intraluminal pressure peaks and assures a residue-free voiding of sterile urine. In order to determine whether, under these conditions, an afferent tubular isoperistaltic ileal segment of 20-cm length protects the upper urinary tract as efficiently as an antireflux nipple, 60 male patients who were subjected to radical cystectomy were prospectively randomised to groups in which a bladder substitute was formed together with either of these 2 antireflux devices. An analysis of the results obtained in 20 patients from each group who could be followed for more than 1 year (median observation time 30 and 36 months) showed no differences between the groups in metabolic disturbances, kidney size, reservoir capacity, diurnal and nocturnal urinary continence, the incidence of urinary tract infection or episodes of acute pyelonephritis. Later than 1 year postoperatively, intravenous urograms of the renoureteral units of 25% of the patients with antireflux nipples showed persistent but generally slight dilatation of the upper urinary tracts. This observation was significantly more frequent than it was in patients with afferent tubular segments. Urodynamic and radiographic studies showed that the competence of the antireflux nipples was secured by the raised surrounding intravesical pressure. This, however, also resulted in a transient functional obstruction, and a gradual rise of the basal pressure in the upper urinary tracts was recorded. In patients with afferent ileal tubular segments, contrast medium could be forced upwards into the renal pelvis when the bladder substitutes were overfilled. However, despite raised intravesical pressures, peristalsis in the isoperistaltic afferent tubular segment gradually returned

  11. Stimulation of μ-opioid receptors dilates retinal arterioles by neuronal nitric oxide synthase-derived nitric oxide in rats.

    PubMed

    Someya, Eriko; Mori, Asami; Sakamoto, Kenji; Ishii, Kunio; Nakahara, Tsutomu

    2017-03-21

    Opioids contribute to the regulation of cerebral vascular tone. The purpose of this study was to examine the effects of herkinorin, a non-opioid μ-opioid receptor agonist derived from salvinorin A, on blood vessels in the rat retina and to investigate the mechanism underlying the herkinorin-induced retinal vasodilatory response. Ocular fundus images were captured using an original high-resolution digital fundus camera in vivo. The retinal vascular responses were evaluated by measuring the diameter of retinal arterioles in the fundus images. Both systemic blood pressure and heart rate were continuously recorded. Herkinorin increased the retinal arteriolar diameter without significantly changing mean blood pressure and heart rate. The retinal vasodilator response to herkinorin was almost completely prevented following treatment with naloxone, a nonselective opioid receptor antagonist and H-D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 (CTOP), a selective μ-opioid receptor antagonist. N(ω)-nitro-L-arginine methyl ester, a nonselective nitric oxide (NO) synthase inhibitor, or indomethacin, a cyclooxygenase inhibitor, significantly attenuated the herkinorin-induced retinal vasodilator responses. In addition, N(ω)-propyl-L-arginine, an inhibitor of neuronal NO synthase, diminished the herkinorin-induced retinal vasodilator responses. Seven days after an intravitreal injection of N-methyl-d-aspartic acid, loss of inner retinal neurons and abolishment of the retinal vasodilator response to herkinorin were observed. These results suggest that herkinorin dilates rat retinal arterioles through stimulation of retinal μ-opioid receptors. The μ-opioid receptor-mediated retinal vasodilator response is likely mediated by NO generated by neuronal NO synthase. Retinal neurons play an important role in the retinal vasodilator mechanism involving μ-opioid receptors in rats.

  12. Afferent projections to the deep mesencephalic nucleus in the rat

    SciTech Connect

    Veazey, R.B.; Severin, C.M.

    1982-01-10

    Afferent projections to the deep mesencephalic nucleus (DMN) of the rat were demonstrated with axonal transport techniques. Potential sources for projections to the DMN were first identified by injecting the nucleus with HRP and examining the cervical spinal cord, brain stem, and cortex for retrogradely labeled neurons. Areas consistently labeled were then injected with a tritiated radioisotope, the tissue processed for autoradiography, and the DMN examined for anterograde labeling. Afferent projections to the medial and/or lateral parts of the DMN were found to originate from a number of spinal, bulbar, and cortical centers. Rostral brain centers projecting to both medial and lateral parts of the DMN include the ipsilateral motor and somatosensory cortex, the entopeduncular nucleus, and zona incerta. at the level of the midbrain, the ipsilateral substantia nigra and contralateral DMN likewise project to the DMN. Furthermore, the ipsilateral superior colliculus projects to the DMN, involving mainly the lateral part of the nucleus. Afferents from caudal centers include bilateral projections from the sensory nucleus of the trigeminal complex and the nucleus medulla oblongata centralis, as well as from the contralateral dentate nucleus. The projections from the trigeminal complex and nucleus medullae oblongatae centralis terminate in the intermediate and medial parts of the DMN, whereas projections from the contralateral dentate nucleus terminate mainly in its lateral part. In general, the afferent connections of the DMN arise from diverse areas of the brain. Although most of these projections distribute throughout the entire extent of the DMN, some of them project mainly to either medial or lateral parts of the nucleus, thus suggesting that the organization of the DMN is comparable, at least in part, to that of the reticular formation of the pons and medulla, a region in which hodological differences between medial and lateral subdivisions are known to exist.

  13. Afferent connections of the cerebellum in various types of reptiles.

    PubMed

    Bangma, G C; ten Donkelaar, H

    1982-05-20

    The origin of cerebellar afferents was studied in various types of reptiles, viz., the turtles Pseudemys scripta elegans and Testudo hermanni, the lizard Varanus exanthematicus, and the snake Python regius, with retrograde tracers (the enzyme horseradish peroxidase and the fluorescent tracer "Fast Blue"). Projections to the cerebellum were demonstrated from the nucleus of the basal optic root, the interstitial nucleus of the fasciculus longitudinalis medialis, the vestibular ganglion, and the vestibular nuclear complex, two somatosensory nuclei, viz., the descending nucleus of the trigeminal nerve and the nucleus of the dorsal funiculus, the nucleus of the solitary tract, the reticular formation, and throughout the spinal cord. A distinct bilateral projection to the cerebellum was found to arise in a nucleus previously called nucleus parvocellularis medialis (Ebbesson, '67). In the present study this cell mass is termed the perihypoglossal nuclear complex, considering its comparable position and fiber connections to the perihypoglossal nuclei in mammals. In all reptilian species studied a contralateral cerebellar projection of a cell mass located in the caudal brainstem adjacent to the nucleus raphes inferior was observed. It seems likely that this cell mass represents the reptilian homologue of the mammalian inferior olive. Most of the spinocerebellar fibers appeared to arise in neurons located in area VII-VIII of the gray matter. In this respect the origin of the spinocerebellar projection in reptiles resembles the origin of the rostral and ventral spinocerebellar tracts in mammals. No indications for the existence of a column of Clarke or a central cervical nucleus in the reptilian spinal cord were obtained. On comparison of the cerebellum afferents in reptiles with the known connections of the cerebellum in amphibians, birds, and mammals, a basic pattern of cerebellar afferent projections appears to exist in these vertebrate classes, including retinal

  14. Tonic Investigation Concept of Cervico-vestibular Muscle Afferents

    PubMed Central

    Dorn, Linda Josephine; Lappat, Annabelle; Neuhuber, Winfried; Scherer, Hans; Olze, Heidi; Hölzl, Matthias

    2016-01-01

    Introduction Interdisciplinary research has contributed greatly to an improved understanding of the vestibular system. To date, however, very little research has focused on the vestibular system's somatosensory afferents. To ensure the diagnostic quality of vestibular somatosensory afferent data, especially the extra cranial afferents, stimulation of the vestibular balance system has to be precluded. Objective Sophisticated movements require intra- and extra cranial vestibular receptors. The study's objective is to evaluate an investigation concept for cervico-vestibular afferents with respect to clinical feasibility. Methods A dedicated chair was constructed, permitting three-dimensional trunk excursions, during which the volunteer's head remains fixed. Whether or not a cervicotonic provocation nystagmus (c-PN) can be induced with static trunk excursion is to be evaluated and if this can be influenced by cervical monophasic transcutaneous electrical nerve stimulation (c-TENS) with a randomized test group. 3D-video-oculography (VOG) was used to record any change in cervico-ocular examination parameters. The occurring nystagmuses were evaluated visually due to the small caliber of nystagmus amplitudes in healthy volunteers. Results The results demonstrate: no influence of placebo-controlled c-TENS on the spontaneous nystagmus; a significant increase of the vertical nystagmus on the 3D-trunk-excursion chair in static trunk flexion with cervical provocation in all young healthy volunteers (n = 49); and a significant difference between vertical and horizontal nystagmuses during static trunk excursion after placebo-controlled c-TENS, except for the horizontal nystagmus during trunk torsion. Conclusion We hope this cervicotonic investigation concept on the 3D trunk-excursion chair will contribute to new diagnostic and therapeutic perspectives on cervical pathologies in vestibular head-to-trunk alignment. PMID:28050208

  15. Influences of neck afferents on sympathetic and respiratory nerve activity.

    PubMed

    Bolton, P S; Kerman, I A; Woodring, S F; Yates, B J

    1998-11-15

    It is well established that the vestibular system influences the sympathetic nervous system and the respiratory system; presumably, vestibulosympathetic and vestibulorespiratory responses participate in maintaining stable blood pressure and blood oxygenation during movement and changes in posture. Many brainstem neurons that generate vestibulospinal reflexes integrate signals from the labyrinth and neck muscles to distinguish between head movements on a stable body and whole body movements. In the present study, responses were recorded from the splanchnic (sympathetic), hypoglossal (inspiratory) and abdominal (expiratory) nerves during stimulation of the C2 dorsal root ganglion or C2 or C3 nerve branches innervating dorsal neck muscles. Stimulation of neck afferents using low current intensities, in many cases less than twice the threshold for producing an afferent volley recordable from the cord dorsum, elicited changes in sympathetic and respiratory nerve activity. These data suggest that head rotation on a stable body would elicit both cervical and vestibular inputs to respiratory motoneurons and sympathetic preganglionic neurons. The effects of cervical afferent stimulation on abdominal, splanchnic and hypoglossal nerve activity were not abolished by transection of the brainstem caudal to the vestibular nuclei; thus, pathways in addition to those involving the vestibular nuclei are involved in relaying cervical inputs to sympathetic preganglionic neurons and respiratory motoneurons. Transection of the C1-3 dorsal roots enhanced responses of the splanchnic and abdominal nerves to pitch head rotations on a fixed body but diminished responses of the hypoglossal nerve. Thus, neck and vestibular afferent influences on activity of respiratory pump muscles and sympathetic outflow appear to be antagonistic, so that responses will occur during whole body movements but not head movements on a stationary trunk. In contrast, neck and vestibular influences on tongue

  16. Neck afferent involvement in cardiovascular control during movement

    NASA Technical Reports Server (NTRS)

    Bolton, P. S.; Ray, C. A.

    2000-01-01

    It is well established that labyrinth and neck afferent information contributes to the regulation of somatomotor function during movement and changes in posture. There is also convincing evidence that the vestibular system participates in the modulation of sympathetic outflow and cardiovascular function during changes in posture, presumably to prevent orthostatic hypotension. However, the labyrinth organs do not provide any signals concerning body movements with respect to the head. In contrast, the neck receptors, particularly muscle spindles, are well located and suited to provide information about changes in body position with respect to the head and vestibular signals. Studies in the cat suggest that neck afferent information may modulate the vestibulosympathetic reflex responses to head-neck movements. There is some evidence in the cat to suggest involvement of low threshold mechanoreceptors. However, human studies do not indicate that low threshold mechanoreceptors in the neck modulate cardiovascular responses. The human studies are consistent with the studies in the cat in that they demonstrate the importance of otolith activation in mediating cardiovascular and sympathetic responses to changes in posture. This paper briefly reviews the current experimental evidence concerning the involvement of neck afferent information in the modulation of cardiovascular control during movement and changes in posture.

  17. Subcortical afferent connections of the amygdala in the monkey

    NASA Technical Reports Server (NTRS)

    Mehler, W. R.

    1980-01-01

    The cells of origin of the afferent connections of the amygdala in the rhesus and squirrel monkeys are determined according to the retrograde axonal transport of the enzyme horseradish peroxidase injected into various quadrants of the amygdala. Analysis of the distribution of enzyme-labeled cells reveals afferent amygdalar connections with the ipsilateral halves of the midline nucleus paraventricularis thalami and both the parvo- and magnocellular parts of the nucleus subparafascicularis in the dorsal thalamus, all the subdivisions of the midline nucleus centralis complex, the nucleus reuniens ventralis and the nucleus interventralis. The largest populations of enzyme-labeled cells in the hypothalamus are found to lie in the middle and posterior parts of the ipsilateral, lateral hypothalamus and the ventromedial hypothalamic nucleus, with scattered cells in the supramammillary and dorsomedial nuclei and the posterior hypothalamic area, Tsai's ventral tegmental area, the rostral and caudal subdivisions of the nucleus linearis in the midbrain and the dorsal raphe nucleus. The most conspicuous subdiencephalic source of amygdalar afferent connections is observed to be the pars lateralis of the nucleus parabrachialis in the dorsolateral pontine tegmentum, with a few labeled cells differentiated from pigmented cells in the locus coeruleus.

  18. Transfer characteristics of the hair cell's afferent synapse

    NASA Astrophysics Data System (ADS)

    Keen, Erica C.; Hudspeth, A. J.

    2006-04-01

    The sense of hearing depends on fast, finely graded neurotransmission at the ribbon synapses connecting hair cells to afferent nerve fibers. The processing that occurs at this first chemical synapse in the auditory pathway determines the quality and extent of the information conveyed to the central nervous system. Knowledge of the synapse's input-output function is therefore essential for understanding how auditory stimuli are encoded. To investigate the transfer function at the hair cell's synapse, we developed a preparation of the bullfrog's amphibian papilla. In the portion of this receptor organ representing stimuli of 400-800 Hz, each afferent nerve fiber forms several synaptic terminals onto one to three hair cells. By performing simultaneous voltage-clamp recordings from presynaptic hair cells and postsynaptic afferent fibers, we established that the rate of evoked vesicle release, as determined from the average postsynaptic current, depends linearly on the amplitude of the presynaptic Ca2+ current. This result implies that, for receptor potentials in the physiological range, the hair cell's synapse transmits information with high fidelity. auditory system | exocytosis | glutamate | ribbon synapse | synaptic vesicle

  19. Vestibular afferent responses to linear accelerations in the alert squirrel monkey

    NASA Technical Reports Server (NTRS)

    Somps, Christopher J.; Schor, Robert H.; Tomko, David L.

    1994-01-01

    The spontaneous activity of 40 otolith afferents and 44 canal afferents was recorded in 4 alert, intact squirrel monkeys. Polarization vectors and response properties of otolith afferents were determined during static re-orientations relative to gravity and during Earth-horizontal, sinusoidal, linear oscillations. Canal afferents were tested for sensitivity to linear accelerations. For regular otolith afferents, a significant correlation between upright discharge rate and sensitivity to dynamic acceleration in the horizontal plane was observed. This correlation was not present in irregular units. The sensitivity of otolith afferents to both static tilts and dynamic linear acceleration was much greater in irregularly discharging units than in regularly discharging units. The spontaneous activity and static and dynamic response properties of regularly discharging otolith afferents were similar to those reported in barbiturate-anesthetized squirrel monkeys. Irregular afferents also had similar dynamic response properties when compared to anesthetized monkeys. However, this sample of irregular afferents in alert animals had higher resting discharge rates and greater sensitivity to static tilts. The majority of otolith polarization vectors were oriented near the horizontal in the plane of the utricular maculae; however, directions of maximum sensitivity were different during dynamic and static testing. Canal afferents were not sensitive to static tilts or linear oscillations of the head.

  20. Encoding of tangential torque in responses of tactile afferent fibres innervating the fingerpad of the monkey

    PubMed Central

    Birznieks, Ingvars; Wheat, Heather E; Redmond, Stephen J; Salo, Lauren M; Lovell, Nigel H; Goodwin, Antony W

    2010-01-01

    Torsional loads are ubiquitous during everyday dextrous manipulations. We examined how information about torque is provided to the sensorimotor control system by populations of tactile afferents. Torsional loads of different magnitudes were applied in clockwise and anticlockwise directions to a standard central site on the fingertip. Three different background levels of contact (grip) force were used. The median nerve was exposed in anaesthetized monkeys and single unit responses recorded from 66 slowly adapting type-I (SA-I) and 31 fast adapting type-I (FA-I) afferents innervating the distal segments of the fingertips. Most afferents were excited by torque but some were suppressed. Responses of the majority of both afferent types were scaled by torque magnitude applied in one or other direction, with the majority of FA-I afferent responses and about half of SA-I afferent responses scaled in both directions. Torque direction affected responses in both afferent types, but more so for the SA-I afferents. Latencies of the first spike in FA-I afferent responses depended on the parameters of the torque. We used a Parzen window classifier to assess the capacity of the SA-I and FA-I afferent populations to discriminate, concurrently and in real-time, the three stimulus parameters, namely background normal force, torque magnitude and direction. Despite the potentially confounding interactions between stimulus parameters, both the SA-I and the FA-I populations could extract torque magnitude accurately. The FA-I afferents signalled torque magnitude earlier than did the SA-I afferents, but torque direction was extracted more rapidly and more accurately by the SA-I afferent population. PMID:20142274

  1. Trpv1 mediates spontaneous firing and heat sensitization of cutaneous primary afferents after plantar incision.

    PubMed

    Banik, Ratan K; Brennan, Timothy J

    2009-01-01

    TrpV1, the receptor for capsaicin, contributes to nociception in animals but appears to be much more important for signaling increased behavioral sensitivity in the injured state. The current study examined the relationship between the marked reduction in heat hyperalgesia after incision in TrpV1 knockout (KO) mice and the activity of the nociceptors in these same mice. Also, the role of TrpV1 in spontaneous activity (SA) of afferents after incision was examined. Standard teased-fiber techniques were used to record from glabrous skin afferents from incised and control TrpV1 KO and C57Bl6 mice. The loss of TrpV1 had minimal effect on the responses of mechano-heat-sensitive C-fiber afferents in the normal and incised states. However, a different group of heat sensitive afferents, termed unclassified afferents, was sensitized to heat by incision and had markedly reduced sensitization in the TrpV1 KO mice. These unclassified afferents also developed SA after incision, and generally had a lower threshold temperature compared to unclassified afferents without SA. The rate of SA was inversely correlated to the threshold temperature for heat; afferents that exhibited a higher rate of SA had a lower heat threshold. The proportion of unclassified afferents with SA was also reduced in incised TrpV1 KO mice compared to incised C57Bl6 mice. We conclude that a distinct class of afferents outside the mechano-heat-sensitive afferent population likely contributes to heat hypersensitivity after plantar incision. KO of TrpV1 influences SA in these unclassified afferents in incised skin. SA in these afferents is perhaps a manifestation of heat sensitization.

  2. Effect of hypergravity on the development of vestibulocerebellar afferent fibers

    NASA Astrophysics Data System (ADS)

    Bruce, L. L.

    Gravity is a critical factor in the normal development of the vestibular system, as prolonged prenatal exposures to either micro- or hypergravity will alter the pattern of projections from specific vestibular organs to specific targets in the vestibular nuclei. This study addresses the effect of gravity on the development of vestibulocerebellar projections. In adult rats the semicircular canal afferents project mainly to the cerebellar nodulus whereas the otolith maculae project mainly to the ventral uvula of the cerebellum. To determine if the distribution pattern of these afferents is altered by exposures to altered gravity, 10 pregnant rats were exposed to hypergravity (1.5g) from embryonic day 12 (before vestibular ganglion neurons contact vestibular nuclei) to embryonic day 21 (near the time when the vestibular system becomes functional). Controls were exposed to Earth's gravity but otherwise received the same treatment. At the end of the exposure the embryos were deeply anesthetized and fixed by transcardiac perfusion with 4% paraformaldehyde in 0.1 M phosphate buffer (pH7.4). Filter strips coated with DiI and PTIR were implanted into the saccule (gravistatic vestibular receptor) or into the posterior vertical canal (angular acceleration receptor), and allowed to diffuse for 2 weeks at 37°C. Then the brains were dissected and sectioned for fluorescent confocal imaging. Examination of the control cerebella revealed that the canal and otolith afferents have reached the nodulus and uvula, and axons extend into the internal granular, Purkinje, and molecular layers. Projections from the saccule and posterior vertical canal were partially segregated into their respective domains, the uvula and nodulus. In contrast, in hypergravity-exposed rat fetuses the saccule and posterior vertical canal projections were poorly segregated, and both organs contributed labeled fibers to all layers of the nodulus and uvula. This contrasts with the increased afferent segregation

  3. Genetic basis of the impaired renal myogenic response in FHH rats

    PubMed Central

    Burke, Marilyn; Pabbidi, Malikarjuna; Fan, Fan; Ge, Ying; Liu, Ruisheng; Williams, Jan Michael; Sarkis, Allison; Lazar, Jozef; Jacob, Howard J.

    2013-01-01

    This study examined the effect of substitution of a 2.4-megabase pair (Mbp) region of Brown Norway (BN) rat chromosome 1 (RNO1) between 258.8 and 261.2 Mbp onto the genetic background of fawn-hooded hypertensive (FHH) rats on autoregulation of renal blood flow (RBF), myogenic response of renal afferent arterioles (AF-art), K+ channel activity in renal vascular smooth muscle cells (VSMCs), and development of proteinuria and renal injury. FHH rats exhibited poor autoregulation of RBF, while FHH.1BN congenic strains with the 2.4-Mbp BN region exhibited nearly perfect autoregulation of RBF. The diameter of AF-art from FHH rats increased in response to pressure but decreased in congenic strains containing the 2.4-Mbp BN region. Protein excretion and glomerular and interstitial damage were significantly higher in FHH rats than in congenic strains containing the 2.4-Mbp BN region. K+ channel current was fivefold greater in VSMCs from renal arterioles of FHH rats than cells obtained from congenic strains containing the 2.4-Mbp region. Sequence analysis of the known and predicted genes in the 2.4-Mbp region of FHH rats revealed amino acid-altering variants in the exons of three genes: Add3, Rbm20, and Soc-2. Quantitative PCR studies indicated that Mxi1 and Rbm20 were differentially expressed in the renal vasculature of FHH and FHH.1BN congenic strain F. These data indicate that transfer of this 2.4-Mbp region from BN to FHH rats restores the myogenic response of AF-art and autoregulation of RBF, decreases K+ current, and slows the progression of proteinuria and renal injury. PMID:23220727

  4. Primary afferent depolarization of muscle afferents elicited by stimulation of joint afferents in cats with intact neuraxis and during reversible spinalization.

    PubMed

    Quevedo, J; Eguibar, J R; Jiménez, I; Schmidt, R F; Rudomin, P

    1993-11-01

    1. In the anesthetized and artificially ventilated cat, stimulation of the posterior articular nerve (PAN) with low strengths (1.2-1.4 x T) produced a small negative response (N1) in the cord dorsum of the lumbosacral spinal cord with a mean onset latency of 5.2 ms. Stronger stimuli (> 1.4 x T) produced two additional components (N2 and N3) with longer latencies (mean latencies 7.5 and 15.7 ms, respectively), usually followed by a slow positivity lasting 100-150 ms. With stimulus strengths above 10 x T there was in some experiments a delayed response (N4; mean latency 32 ms). 2. Activation of posterior knee joint nerve with single pulses and intensities producing N1 responses only, usually produced no dorsal root potentials (DRPs), or these were rather small. Stimulation with strengths producing N2 and N3 responses produced distinct DRPs. Trains of pulses were clearly more effective than single pulses in producing DRPs, even in the low-intensity range. 3. Cooling the thoracic spinal cord to block impulse conduction, increased the DRPs and the N3 responses produced by PAN stimulation without significantly affecting the N2 responses. Reversible spinalization also increased the DRPs produced by stimulation of cutaneous nerves. In contrast, the DRPs produced by stimulation of group I afferents from flexors were reduced. 4. Conditioning electrical stimulation of intermediate and high-threshold myelinated fibers in the PAN depressed the DRPs produced by stimulation of group I muscle and of cutaneous nerves. 5. Analysis of the intraspinal threshold changes of single Ia and Ib fibers has provided evidence that stimulation of intermediate and high threshold myelinated fibers in the posterior knee joint nerve inhibits the primary afferent depolarization (PAD) of Ia fibers, and may either produce PAD or inhibit the PAD in Ib fibers, in the same manner as stimulation of cutaneous nerves. In 7/16 group I fibers the inhibition of the PAD was increased during reversible

  5. The future of GI and liver research: editorial perspectives. IV. Visceral afferents: an update.

    PubMed

    Raybould, Helen E

    2003-06-01

    The number of articles published in American Journal of Physiology Gastrointestinal and Liver Physiology over the last 15 years on visceral afferents has increased dramatically. This reflects our growing ability to study the characteristics and function of visceral afferents and also the recognition of their importance in the maintenance of homeostasis and also in a number of pathophysiological conditions. However, there are several key unanswered questions concerning the function of visceral afferents that await further investigation.

  6. Mechano- and thermosensitivity of regenerating cutaneous afferent nerve fibers.

    PubMed

    Jänig, Wilfrid; Grossmann, Lydia; Gorodetskaya, Natalia

    2009-06-01

    Crush lesion of a skin nerve is followed by sprouting of myelinated (A) and unmyelinated (C) afferent fibers into the distal nerve stump. Here, we investigate quantitatively both ongoing activity and activity evoked by mechanical or thermal stimulation of the nerve in 43 A- and 135 C-fibers after crush lesion of the sural nerve using neurophysiological recordings in anesthetized rats. The discharge patterns in the injured afferent nerve fibers and in intact (control) afferent nerve fibers were compared. (1) Almost all (98%) A-fibers were mechanosensitive, some of them exhibited additionally weak cold/heat sensitivity; 7% had ongoing activity. (2) Three patterns of physiologically evoked activity were present in the lesioned C-fibers: (a) C-fibers with type 1 cold sensitivity (low cold threshold, inhibition on heating, high level of ongoing and cold-evoked activity; 23%): almost all of them were mechanoinsensitive and 40% of them were additionally heat-sensitive; (b) C-fibers with type 2 cold sensitivity (high cold threshold, low level of ongoing and cold-evoked activity; 23%). All of them were excited by mechanical and/or heat stimuli; (c) cold-insensitive C-fibers (54%), which were heat- and/or mechanosensitive. (3) The proportions of C-fibers exhibiting these three patterns of discharge to physiological stimuli were almost identical in the population of injured C-fibers and in a population of 91 intact cutaneous C-fibers. 4. Ongoing activity was present in 56% of the lesioned C-fibers. Incidence and rate of ongoing activity were the same in the populations of lesioned and intact type 1 cold-sensitive C-fibers. The incidence (but not rate) of ongoing activity was significantly higher in lesioned type 2 cold-sensitive and cold insensitive C-fibers than in the corresponding populations of intact C-fibers (42/93 fibers vs. 11/72 fibers).

  7. Kv1 channels and neural processing in vestibular calyx afferents

    PubMed Central

    Meredith, Frances L.; Kirk, Matthew E.; Rennie, Katherine J.

    2015-01-01

    Potassium-selective ion channels are important for accurate transmission of signals from auditory and vestibular sensory end organs to their targets in the central nervous system. During different gravity conditions, astronauts experience altered input signals from the peripheral vestibular system resulting in sensorimotor dysfunction. Adaptation to altered sensory input occurs, but it is not explicitly known whether this involves synaptic modifications within the vestibular epithelia. Future investigations of such potential plasticity require a better understanding of the electrophysiological mechanisms underlying the known heterogeneity of afferent discharge under normal conditions. This study advances this understanding by examining the role of the Kv1 potassium channel family in mediating action potentials in specialized vestibular afferent calyx endings in the gerbil crista and utricle. Pharmacological agents selective for different sub-types of Kv1 channels were tested on membrane responses in whole cell recordings in the crista. Kv1 channels sensitive to α-dendrotoxin and dendrotoxin-K were found to prevail in the central regions, whereas K+ channels sensitive to margatoxin, which blocks Kv1.3 and 1.6 channels, were more prominent in peripheral regions. Margatoxin-sensitive currents showed voltage-dependent inactivation. Dendrotoxin-sensitive currents showed no inactivation and dampened excitability in calyces in central neuroepithelial regions. The differential distribution of Kv1 potassium channels in vestibular afferents supports their importance in accurately relaying gravitational and head movement signals through specialized lines to the central nervous system. Pharmacological modulation of specific groups of K+ channels could help alleviate vestibular dysfunction on earth and in space. PMID:26082693

  8. Antidromic discharges of dorsal root afferents in the neonatal rat.

    PubMed

    Vinay, L; Brocard, F; Fellippa-Marques, S; Clarac, F

    1999-01-01

    Presynaptic inhibition of primary afferents can be evoked from at least three sources in the adult animal: 1) by stimulation of several supraspinal structures; 2) by spinal reflex action from sensory inputs; or 3) by the activity of spinal locomotor networks. The depolarisation in the intraspinal afferent terminals which is due, at least partly, to the activation of GABA(A) receptors may be large enough to reach firing threshold and evoke action potentials that are antidromically conducted into peripheral nerves. Little is known about the development of presynaptic inhibition and its supraspinal control during ontogeny. This article, reviewing recent experiments performed on the in vitro brainstem/spinal cord preparation of the neonatal rat, demonstrates that a similar organisation is present, to some extent, in the new-born rat. A spontaneous activity consisting of antidromic discharges can be recorded from lumbar dorsal roots. The discharges are generated by the underlying afferent terminal depolarizations reaching firing threshold. The number of antidromic action potentials increases significantly in saline solution with chloride concentration reduced to 50% of control. Bath application of the GABA(A) receptor antagonist, bicuculline (5-10 microM) blocks the antidromic discharges almost completely. Dorsal root discharges are therefore triggered by chloride-dependent GABA(A) receptor-mediated mechanisms; 1) activation of descending pathways by stimulation delivered to the ventral funiculus (VF) of the spinal cord at the C1 level; 2) activation of sensory inputs by stimulation of a neighbouring dorsal root; or 3) pharmacological activation of the central pattern generators for locomotion evokes antidromic discharges in dorsal roots. VF stimulation also inhibited the response to dorsal root stimulation. The time course of this inhibition overlapped with that of the dorsal root discharge suggesting that part of the inhibition of the monosynaptic reflex may be

  9. Tubuloglomerular and connecting tubuloglomerular feedback during inhibition of various Na transporters in the nephron.

    PubMed

    Wang, Hong; D'Ambrosio, Martin A; Ren, YiLin; Monu, Sumit R; Leung, Pablo; Kutskill, Kristopher; Garvin, Jeffrey L; Janic, Branislava; Peterson, Edward L; Carretero, Oscar A

    2015-05-01

    Afferent (Af-Art) and efferent arterioles resistance regulate glomerular capillary pressure. The nephron regulates Af-Art resistance via: 1) vasoconstrictor tubuloglomerular feedback (TGF), initiated in the macula densa via Na-K-2Cl cotransporters (NKCC2) and 2) vasodilator connecting tubuloglomerular feedback (CTGF), initiated in connecting tubules via epithelial Na channels (ENaC). Furosemide inhibits NKCC2 and TGF. Benzamil inhibits ENaC and CTGF. In vitro, CTGF dilates preconstricted Af-Arts. In vivo, benzamil decreases stop-flow pressure (PSF), suggesting that CTGF antagonizes TGF; however, even when TGF is blocked, CTGF does not increase PSF, suggesting there is another mechanism antagonizing CTGF. We hypothesize that in addition to NKCC2, activation of Na/H exchanger (NHE) antagonizes CTGF, and when both are blocked CTGF dilates Af-Arts and this effect is blocked by a CTGF inhibitor benzamil. Using micropuncture, we studied the effects of transport inhibitors on TGF responses by measuring PSF while increasing nephron perfusion from 0 to 40 nl/min. Control TGF response (-7.9 ± 0.2 mmHg) was blocked by furosemide (-0.4 ± 0.2 mmHg; P < 0.001). Benzamil restored TGF in the presence of furosemide (furosemide: -0.2 ± 0.1 vs. furosemide+benzamil: -4.3 ± 0.3 mmHg; P < 0.001). With furosemide and NHE inhibitor, dimethylamiloride (DMA), increase in tubular flow increased PSF (furosemide+DMA: 2.7 ± 0.5 mmHg, n = 6), and benzamil blocked this (furosemide+DMA+benzamil: -1.1 ± 0.2 mmHg; P < 0.01, n = 6). We conclude that NHE in the nephron decreases PSF (Af-Art constriction) when NKCC2 and ENaC are inhibited, suggesting that in the absence of NKCC2, NHE causes a TGF response and that CTGF dilates the Af-Art when TGF is blocked with NKCC2 and NHE inhibitors.

  10. Directional sensitivity of hair cell afferents in the Octopus statocyst.

    PubMed

    Budelmann, B U; Williamson, R

    1994-02-01

    Changes in threshold sensitivity of hair cell afferents of the macula and crista of the Octopus statocyst were analyzed when the hair cells were stimulated with sinusoidal water movements from different directions. The experiments indicate that cephalopod statocyst hair cells are directionally sensitive in a way that is similar to the responses of the hair cells of the vertebrate vestibular and lateral line systems, with the amplitude of the response changing according to the cosine of the angle by which the direction of the stimulus (the deflection of the ciliary bundle) deviates from the direction of the hair cell's morphological polarization.

  11. MMP-2 Is Mainly Expressed in Arterioles and Contributes to Cerebral Vascular Remodeling Associated with TGF-β1 Signaling.

    PubMed

    Hua, Ye; Zhang, Weifeng; Xie, Zhenying; Xu, Nanfei; Lu, Yunnan

    2016-07-01

    There is increasing evidence to suggest that matrix metalloproteinases (MMPs) play a crucial role in vascular remodeling. It has been reported that hypoxia stimulated MMP-9 expression in brain endothelial cells and MMP-9 plays an important role in cerebral vascular remodeling. However, little is known about MMP-2 in the cerebral vessels remodeling. Herein, the aim of this study is to examine the class of vessel and cell type expressing MMP-2 in cerebral vessels and to investigate its potential role in vascular remodeling. In the present study, dual-immunofluorescence assay showed that MMP-2 was mainly expressed in arterioles. In addition, we found that MMP-2 expression in cerebral vessels was derived from endothelial cells, not astrocyte cells. Notably, in the normoxic central nervous system (CNS), there was no effect on vascular development, integrity, or endothelial proliferation when MMP-2 was knocked out, but lack of MMP-2 led to defective arteriolar remodeling and associated with transforming growth factor β1 (TGF-β1) signaling in CNS. Moreover, blocking TGF-β with SB431542, a specific TGF-β inhibitor, significantly reduced the messenger RNA (mRNA) and protein expression levels of MMP-2 in human umbilical vein endothelial cells (HUVECs). Our findings reveal that the level of MMP-2 is high in arteriolar endothelial cells and demonstrate a novel connection between MMP-2 and TGF-β1 signaling in cerebral vascular remodeling.

  12. Numerical simulation of red blood cell behavior in a stenosed arteriole using the immersed boundary-lattice Boltzmann method.

    PubMed

    Vahidkhah, Koohyar; Fatouraee, Nasser

    2012-02-01

    Because of their deformability and tendency to form aggregates, red blood cells (RBCs) immensely affect the hydrodynamic properties of blood flow in microcirculation. In this paper, RBCs' two-dimensional deformation and motion in Poiseuille flow and in a stenosed arteriole is numerically investigated by the immersed boundary-lattice Boltzmann method. The RBCs are modeled as suspended capsules of fluid in plasma flow. A neo-Hookean elastic model with bending resistance is utilized for the RBC membrane. Also, the suspending plasma is modeled as an incompressible Newtonian fluid. To take the effects of aggregation and dissociation of RBCs into account, intercellular interaction is modeled by the Morse potential. The effects of essential parameters namely, mechanical resistance of the RBC membrane, plasma viscous forces, and cell membrane adhesion strength on RBC behavior are presented. Motions and deformations of RBCs in a stenosis and the effects of the stenosed zone on the behavior of cell aggregates were also simulated and analyzed in this study.

  13. Symmetry recovery of cell-free layer after bifurcations of small arterioles in reduced flow conditions: effect of RBC aggregation.

    PubMed

    Ng, Yan Cheng; Namgung, Bumseok; Tien, Sim Leng; Leo, Hwa Liang; Kim, Sangho

    2016-08-01

    Heterogeneous distribution of red blood cells (RBCs) in downstream vessels of arteriolar bifurcations can be promoted by an asymmetric formation of cell-free layer (CFL) in upstream vessels. Consequently, the CFL widths in subsequent downstream vessels become an important determinant for tissue oxygenation (O2) and vascular tone change by varying nitric oxide (NO) availability. To extend our previous understanding on the formation of CFL in arteriolar bifurcations, this study investigated the formation of CFL widths from 2 to 6 vessel-diameter (2D-6D) downstream of arteriolar bifurcations in the rat cremaster muscle (D = 51.5 ± 1.3 μm). As the CFL widths are highly influenced by RBC aggregation, the degree of aggregation was adjusted to simulate levels seen during physiological and pathological states. Our in vivo experimental results showed that the asymmetry of CFL widths persists along downstream vessels up to 6D from the bifurcating point. Moreover, elevated levels of RBC aggregation appeared to retard the recovery of CFL width symmetry. The required length of complete symmetry recovery was estimated to be greater than 11D under reduced flow conditions, which is relatively longer than interbifurcation distances of arterioles for vessel diameter of ∼50 μm. In addition, our numerical prediction showed that the persistent asymmetry of CFL widths could potentially result in a heterogeneous vasoactivity over the entire arteriolar network in such abnormal flow conditions.

  14. Neuropeptide Y-mediated sex- and afferent-specific neurotransmissions contribute to sexual dimorphism of baroreflex afferent function

    PubMed Central

    He, Jian-Li; Yuan, Mei; Zhao, Miao; Wang, Jian-Xin; He, Jian; Wang, Lu-Qi; Guo, Xin-Jing; Zuo, Meng; Zhao, Shu-Yang; Ma, Mei-Na; Li, Jun-Nan; Shou, Weinian; Qiao, Guo-Fen; Li, Bai-Yan

    2016-01-01

    Background Molecular and cellular mechanisms of neuropeptide-Y (NPY)-mediated gender-difference in blood pressure (BP) regulation are largely unknown. Methods Baroreceptor sensitivity (BRS) was evaluated by measuring the response of BP to phenylephrine/nitroprusside. Serum NPY concentration was determined using ELISA. The mRNA and protein expression of NPY receptors were assessed in tissue and single-cell by RT-PCR, immunoblot, and immunohistochemistry. NPY was injected into the nodose while arterial pressure was monitored. Electrophysiological recordings were performed on nodose neurons from rats by patch-clamp technique. Results The BRS was higher in female than male and ovariectomized rats, while serum NPY concentration was similar among groups. The sex-difference was detected in Y1R, not Y2R protein expression, however, both were upregulated upon ovariectomy and canceled by estrogen replacement. Immunostaining confirmed Y1R and Y2R expression in myelinated and unmyelinated afferents. Single-cell PCR demonstrated that Y1R expression/distribution was identical between A- and C-types, whereas, expressed level of Y2R was ∼15 and ∼7 folds higher in Ah- and C-types than A-types despite similar distribution. Activation of Y1R in nodose elevated BP, while activation of Y2R did the opposite. Activation of Y1R did not alter action potential duration (APD) of A-types, but activation of Y2R- and Y1R/Y2R in Ah- and C-types frequency-dependently prolonged APD. N-type ICa was reduced in A-, Ah- and C-types when either Y1R, Y2R, or both were activated. The sex-difference in Y1R expression was also observed in NTS. Conclusions Sex- and afferent-specific expression of Neuropeptide-Y receptors in baroreflex afferent pathway may contribute to sexual-dimorphic neurocontrol of BP regulation. PMID:27623075

  15. Peripheral innervation patterns of vestibular nerve afferents in the bullfrog utriculus

    NASA Technical Reports Server (NTRS)

    Baird, Richard A.; Schuff, N. R.

    1994-01-01

    Vestibular nerve afferents innervating the bullfrog utriculus differ in their response dynamics and sensitivity to natural stimulation. They also supply hair cells that differ markedly in hair bundle morphology. To examine the peripheral innervation patterns of individual utricular afferents more closely, afferent fibers were labeled by the extracellular injection of horseradish peroxidase (HRP) into the vestibular nerve after sectioning the vestibular nerve medial to Scarpa's ganglion to allow the degeneration of sympathetic and efferent fibers. The peripheral arborizations of individual afferents were then correlated with the diameters of their parent axons, the regions of the macula they innervate, and the number and type of hair cells they supply. The utriculus is divided by the striola, a narrow zone of distinctive morphology, into media and lateral parts. Utiricular afferents were classified as striolar or extrastriolar according to the epithelial entrance of their parent axons and the location of their terminal fields. In general, striolar afferents had thicker parent axons, fewer subepithelial bifurcations, larger terminal fields, and more synaptic endings than afferents in extrstriolar regions. Afferents in a juxtastriolar zone, immediately adjacent to the medial striola, had innervation patterns transitional between those in the striola and more peripheral parts of the medial extrastriola. moast afferents innervated only a single macular zone. The terminal fields of striolar afferents, with the notable exception of a few afferents with thin parent axons, were generally confined to one side of the striola. Hair cells in the bullfrog utriculus have perviously been classified into four types based on hair bundle morphology. Afferents in the extrastriolar and juxtastriolar zones largely or exclusively innervated Type B hair cells, the predominant hair cell type in the utricular macula. Striolar afferents supplied a mixture of four hair cell types, but largely

  16. Classification of muscle spindle afferents innervating the masseter muscle in rats.

    PubMed

    Masri, Radi; Ro, Jin Y; Dessem, Dean; Capra, Norman

    2006-09-01

    Taylor et al. [Taylor, A., Durbaba, R., Rodgers, J.F., 1992a. The classification of afferents from muscle spindles of the jaw-closing muscles of the cat. J Physiol 456, 609-628] developed a method to classify muscle spindle afferents using succinylcholine (Sch) and ramp and hold stretches. They demonstrated that cat jaw muscle spindle afferents show high proportion of intermediate responses to ramp and hold jaw stretch. Together with observations on the responses to Sch their data suggests that the majority of jaw muscle spindle afferents are influenced by a combination of nuclear bag(2) and nuclear chain fibres. Relatively few are influenced solely by nuclear bag(1) fibres. The purpose of this study was to categorize jaw muscle spindle afferent in rodents in response to ramp and hold stretches. Several measures were used to classify spindle afferents including (1) conduction velocity, (2) coefficient of variation (C.V.) of the interspike interval during jaw opening, and (3) the dynamic sensitivity and the initial discharge of spindle afferents before and after succinylcholine infusion (Sch, 100mg/kg, i.v.). Consistent with observations in the cat jaw muscles, the distribution of the conduction velocity and the C.V. of Vmes masseter afferents were unimodal. Therefore, these parameters were of little value in functional classification of spindle innervation. Succinylcholine injection either markedly increased the dynamic sensitivity or produced no change in Vmes afferents. Unlike cat jaw muscle spindle afferents, the effect of Sch on the initial discharge was not clearly separable from those responding or not responding to Sch. These results suggest that rat jaw muscle spindle afferents, have physiological properties that are primarily intermediate in nature and are likely to reflect a predominance of influence from nuclear bag(2) and chain fibres. However, the distinction between bag(2) and chain fibres influences is not as clearly defined in the rat compared to

  17. Thresholds of cutaneous afferents related to perceptual threshold across the human foot sole

    PubMed Central

    Strzalkowski, Nicholas D. J.; Mildren, Robyn L.

    2015-01-01

    Perceptual thresholds are known to vary across the foot sole, despite a reported even distribution in cutaneous afferents. Skin mechanical properties have been proposed to account for these differences; however, a direct relationship between foot sole afferent firing, perceptual threshold, and skin mechanical properties has not been previously investigated. Using the technique of microneurography, we recorded the monofilament firing thresholds of cutaneous afferents and associated perceptual thresholds across the foot sole. In addition, receptive field hardness measurements were taken to investigate the influence of skin hardness on these threshold measures. Afferents were identified as fast adapting [FAI (n = 48) or FAII (n = 13)] or slowly adapting [SAI (n = 21) or SAII (n = 20)], and were grouped based on receptive field location (heel, arch, metatarsals, toes). Overall, perceptual thresholds were found to most closely align with firing thresholds of FA afferents. In contrast, SAI and SAII afferent firing thresholds were found to be significantly higher than perceptual thresholds and are not thought to mediate monofilament perceptual threshold across the foot sole. Perceptual thresholds and FAI afferent firing thresholds were significantly lower in the arch compared with other regions, and skin hardness was found to positively correlate with both FAI and FAII afferent firing and perceptual thresholds. These data support a perceptual influence of skin hardness, which is likely the result of elevated FA afferent firing threshold at harder foot sole sites. The close coupling between FA afferent firing and perceptual threshold across foot sole indicates that small changes in FA afferent firing can influence perceptual thresholds. PMID:26289466

  18. Use of tactile afferent information in sequential finger movements.

    PubMed

    Gordon, A M; Soechting, J F

    1995-01-01

    We have investigated how tactile afferent information contributes to the generation of sequences of skilled finger movements by anesthetizing the right index fingers of experienced typists. Subjects were asked to type phrases in which the right index finger was used only once every seven to 12 keypresses. The time at which each key was depressed was recorded with a digital timer, and the translational and rotational motion of the fingers and wrist of the right hand were recorded optoelectronically from the location of reflective markers placed on the fingers. Midway through the experiment, a local anesthetic was injected at the base of the distal phalange of the right index finger. Following digital anesthesia, error rates increased considerably, mainly due to the diminished accuracy of movements of the anesthetized finger. The typing intervals following keypresses with the anesthetized fingertip were unaffected by the removal of tactile information. When errors occurred during control trials, the intervals immediately following the errors were greatly prolonged. However, errors produced with the anesthetized right index finger did not influence the timing of subsequent keypresses, implying that lack of tactile cues affected error recognition. The movement patterns during keypresses were similar before and after digital anesthesia for some subjects, while a less pronounced flexion-extension movement was seen in other subjects. The results suggest that tactile afferent information is not essential for initiating movement segments in a sequence. Rather, they emphasize the importance of this information for ensuring movement accuracy and for detecting errors.

  19. Anatomy and physiology of the afferent visual system.

    PubMed

    Prasad, Sashank; Galetta, Steven L

    2011-01-01

    The efficient organization of the human afferent visual system meets enormous computational challenges. Once visual information is received by the eye, the signal is relayed by the retina, optic nerve, chiasm, tracts, lateral geniculate nucleus, and optic radiations to the striate cortex and extrastriate association cortices for final visual processing. At each stage, the functional organization of these circuits is derived from their anatomical and structural relationships. In the retina, photoreceptors convert photons of light to an electrochemical signal that is relayed to retinal ganglion cells. Ganglion cell axons course through the optic nerve, and their partial decussation in the chiasm brings together corresponding inputs from each eye. Some inputs follow pathways to mediate pupil light reflexes and circadian rhythms. However, the majority of inputs arrive at the lateral geniculate nucleus, which relays visual information via second-order neurons that course through the optic radiations to arrive in striate cortex. Feedback mechanisms from higher cortical areas shape the neuronal responses in early visual areas, supporting coherent visual perception. Detailed knowledge of the anatomy of the afferent visual system, in combination with skilled examination, allows precise localization of neuropathological processes and guides effective diagnosis and management of neuro-ophthalmic disorders.

  20. Interactions between visceral afferent signaling and stimulus processing

    PubMed Central

    Critchley, Hugo D.; Garfinkel, Sarah N.

    2015-01-01

    Visceral afferent signals to the brain influence thoughts, feelings and behavior. Here we highlight the findings of a set of empirical investigations in humans concerning body-mind interaction that focus on how feedback from states of autonomic arousal shapes cognition and emotion. There is a longstanding debate regarding the contribution of the body to mental processes. Recent theoretical models broadly acknowledge the role of (autonomically-mediated) physiological arousal to emotional, social and motivational behaviors, yet the underlying mechanisms are only partially characterized. Neuroimaging is overcoming this shortfall; first, by demonstrating correlations between autonomic change and discrete patterns of evoked, and task-independent, neural activity; second, by mapping the central consequences of clinical perturbations in autonomic response and; third, by probing how dynamic fluctuations in peripheral autonomic state are integrated with perceptual, cognitive and emotional processes. Building on the notion that an important source of the brain's representation of physiological arousal is derived from afferent information from arterial baroreceptors, we have exploited the phasic nature of these signals to show their differential contribution to the processing of emotionally-salient stimuli. This recent work highlights the facilitation at neural and behavioral levels of fear and threat processing that contrasts with the more established observations of the inhibition of central pain processing during baroreceptors activation. The implications of this body-brain-mind axis are discussed. PMID:26379481

  1. Cross-Modal Calibration of Vestibular Afference for Human Balance

    PubMed Central

    Héroux, Martin E; Law, Tammy C. Y.; Fitzpatrick, Richard C.; Blouin, Jean-Sébastien

    2015-01-01

    To determine how the vestibular sense controls balance, we used instantaneous head angular velocity to drive a galvanic vestibular stimulus so that afference would signal that head movement was faster or slower than actual. In effect, this changed vestibular afferent gain. This increased sway 4-fold when subjects (N = 8) stood without vision. However, after a 240 s conditioning period with stable balance achieved through reliable visual or somatosensory cues, sway returned to normal. An equivalent galvanic stimulus unrelated to sway (not driven by head motion) was equally destabilising but in this situation the conditioning period of stable balance did not reduce sway. Reflex muscle responses evoked by an independent, higher bandwidth vestibular stimulus were initially reduced in amplitude by the galvanic stimulus but returned to normal levels after the conditioning period, contrary to predictions that they would decrease after adaptation to increased sensory gain and increase after adaptation to decreased sensory gain. We conclude that an erroneous vestibular signal of head motion during standing has profound effects on balance control. If it is unrelated to current head motion, the CNS has no immediate mechanism of ignoring the vestibular signal to reduce its influence on destabilising balance. This result is inconsistent with sensory reweighting based on disturbances. The increase in sway with increased sensory gain is also inconsistent with a simple feedback model of vestibular reflex action. Thus, we propose that recalibration of a forward sensory model best explains the reinterpretation of an altered reafferent signal of head motion during stable balance. PMID:25894558

  2. Persistence of PAD and presynaptic inhibition of muscle spindle afferents after peripheral nerve crush.

    PubMed

    Enríquez-Denton, M; Manjarrez, E; Rudomin, P

    2004-11-19

    Two to twelve weeks after crushing a muscle nerve, still before the damaged afferents reinnervate the muscle receptors, conditioning stimulation of group I fibers from flexor muscles depolarizes the damaged afferents [M. Enriquez, I. Jimenez, P. Rudomin, Changes in PAD patterns of group I muscle afferents after a peripheral nerve crush. Exp. Brain Res., 107 (1996), 405-420]. It is not known, however, if this primary afferent depolarization (PAD) is indeed related to presynaptic inhibition. We now show in the cat that 2-12 weeks after crushing the medial gastrocnemius nerve (MG), conditioning stimulation of group I fibers from flexors increases the excitability of the intraspinal terminals of both the intact lateral gastrocnemius plus soleus (LGS) and of the previously damaged MG fibers ending in the motor pool, because of PAD. The PAD is associated with the depression of the pre- and postsynaptic components of the extracellular field potentials (EFPs) evoked in the motor pool by stimulation of either the intact LGS or of the previously damaged MG nerves. These observations indicate, in contrast to what has been reported for crushed cutaneous afferents [K.W. Horch, J.W. Lisney, Changes in primary afferent depolarization of sensory neurones during peripheral nerve regeneration in the cat, J. Physiol., 313 (1981), 287-299], that shortly after damaging their peripheral axons, the synaptic efficacy of group I spindle afferents remains under central control. Presynaptic inhibitory mechanisms could be utilized to adjust the central actions of muscle afferents not fully recovered from peripheral lesions.

  3. Primary afferent depolarization and inhibory interactions in spinal cord of the stingray, Dasyatis sabina.

    PubMed

    Rudomín, P; Leonard, R B; Willis, W D

    1978-01-01

    1. Excitability changes in primary afferents and inhibitory interactions in evoked spinal cord activity were investigated in unanesthetized stingrays (Dasyatis subina) with high cervical spinal transections. 2. Primary afferent excitability increases following a conditioning stimulus to an adjacent segmental nerve were demonstrated with the Wall (31) technique. 3. Stimulation of A-alpha,beta and A-delta afferent fibers produced excitability increases in both A-alpha,beta and delta-fibers of the adjacent segment. 4. The excitability increase had a latency of about 10 ms, it peaked around 25 ms, and the change lasted more than 100 ms. 5. The central afferent volley in A-alpha,beta fibers and the N1- and late negative waves due to postsynaptic activity of dorsal horn interneurons were reduced by conditioning volleys in adjacent afferent nerves. The time course of the inhibition paralleled that of the excitability increases in afferent terminal arborizations, suggesting that the depression of postsynaptic activity is, at least in part, due to presynaptic inhibition. 6. Reduction of evoked discharges and excitatory postsynaptic potentials was observed in recordings from interneurons with a time course similar to that of the primary afferent depolarization (PAD). 7. Conditioning volleys in afferents of adjacent peripheral nerves produced facilitation or inhibition of segmental reflexes.

  4. Primary afferent depolarization and flexion reflexes produced by radiant heat stimulation of the skin.

    PubMed

    Burke, R E; Rudomin, P; Vyklický, L; Zajac, F E

    1971-02-01

    1. The reflex effects of pulses of intense radiant heat applied to the skin of the central plantar pad have been studied in unanaesthetized (decerebrate) spinal cats.2. Pad heat pulses produced flexion of the ipsilateral hind limb and increased ipsilateral flexor monosynaptic reflexes, due to post-synaptic excitation of flexor alpha motoneurones. These effects were accompanied by reduction of extensor monosynaptic reflexes and post-synaptic inhibition of extensor motoneurones.3. Ipsilateral (and contralateral) pad heat pulses consistently evoked negative dorsal root potentials (DRPs) as well as increased excitability of both cutaneous and group Ib muscle afferent terminals. The excitability of group Ia afferents was sometimes also increased during pad heat pulses, but to a lesser extent.4. Pad heat pulses produced negative DRPs in preparations in which positive DRP components could be demonstrated following electrical stimulation of both skin and muscle nerves.5. The motor and primary afferent effects of heat pulses always accompanied one another, beginning after the pad surface temperature had reached rather high levels (usually 48-55 degrees C).6. Negative DRPs increased excitability of cutaneous and group Ib afferents, and motoneurone activation produced by pad heat pulses was essentially unmodified when conduction in large myelinated afferents from the central plantar pad was blocked by cooling the posterior tibial nerve trunk.7. It is concluded that adequate noxious activation of cutaneous afferents of small diameter produces primary afferent depolarization in a variety of large diameter afferent fibres, as well as post-synaptic effects in alpha motoneurones.

  5. Primary afferent depolarization and flexion reflexes produced by radiant heat stimulation of the skin

    PubMed Central

    Burke, R. E.; Rudomin, P.; Vyklický, L.; Zajac, F. E.

    1971-01-01

    1. The reflex effects of pulses of intense radiant heat applied to the skin of the central plantar pad have been studied in unanaesthetized (decerebrate) spinal cats. 2. Pad heat pulses produced flexion of the ipsilateral hind limb and increased ipsilateral flexor monosynaptic reflexes, due to post-synaptic excitation of flexor alpha motoneurones. These effects were accompanied by reduction of extensor monosynaptic reflexes and post-synaptic inhibition of extensor motoneurones. 3. Ipsilateral (and contralateral) pad heat pulses consistently evoked negative dorsal root potentials (DRPs) as well as increased excitability of both cutaneous and group Ib muscle afferent terminals. The excitability of group Ia afferents was sometimes also increased during pad heat pulses, but to a lesser extent. 4. Pad heat pulses produced negative DRPs in preparations in which positive DRP components could be demonstrated following electrical stimulation of both skin and muscle nerves. 5. The motor and primary afferent effects of heat pulses always accompanied one another, beginning after the pad surface temperature had reached rather high levels (usually 48-55° C). 6. Negative DRPs increased excitability of cutaneous and group Ib afferents, and motoneurone activation produced by pad heat pulses was essentially unmodified when conduction in large myelinated afferents from the central plantar pad was blocked by cooling the posterior tibial nerve trunk. 7. It is concluded that adequate noxious activation of cutaneous afferents of small diameter produces primary afferent depolarization in a variety of large diameter afferent fibres, as well as post-synaptic effects in alpha motoneurones. PMID:5575337

  6. Early postnatal development of GABAergic presynaptic inhibition of Ia proprioceptive afferent connections in mouse spinal cord.

    PubMed

    Sonner, Patrick M; Ladle, David R

    2013-04-01

    Sensory feedback is critical for normal locomotion and adaptation to external perturbations during movement. Feedback provided by group Ia afferents influences motor output both directly through monosynaptic connections and indirectly through spinal interneuronal circuits. For example, the circuit responsible for reciprocal inhibition, which acts to prevent co-contraction of antagonist flexor and extensor muscles, is driven by Ia afferent feedback. Additionally, circuits mediating presynaptic inhibition can limit Ia afferent synaptic transmission onto central neuronal targets in a task-specific manner. These circuits can also be activated by stimulation of proprioceptive afferents. Rodent locomotion rapidly matures during postnatal development; therefore, we assayed the functional status of reciprocal and presynaptic inhibitory circuits of mice at birth and compared responses with observations made after 1 wk of postnatal development. Using extracellular physiological techniques from isolated and hemisected spinal cord preparations, we demonstrate that Ia afferent-evoked reciprocal inhibition is as effective at blocking antagonist motor neuron activation at birth as at 1 wk postnatally. In contrast, at birth conditioning stimulation of muscle nerve afferents failed to evoke presynaptic inhibition sufficient to block functional transmission at synapses between Ia afferents and motor neurons, even though dorsal root potentials could be evoked by stimulating the neighboring dorsal root. Presynaptic inhibition at this synapse was readily observed, however, at the end of the first postnatal week. These results indicate Ia afferent feedback from the periphery to central spinal circuits is only weakly gated at birth, which may provide enhanced sensitivity to peripheral feedback during early postnatal experiences.

  7. Presynaptic inhibition of muscle spindle and tendon organ afferents in the mammalian spinal cord.

    PubMed

    Rudomin, P

    1990-12-01

    More than 30 years ago, Frank and Fuortes proposed that the synaptic effectiveness of muscle spindle afferents associated with spinal motoneurones could be diminished by the activation of nerves from flexor muscles. Since that time, research has focused on disclosing the mode of operation and the spinal pathways involved in this presynaptic inhibitory control. Initially, it was assumed that the same last-order interneurones mediated presynaptic inhibition of both muscle spindle and tendon organ afferent fibres. More recent evidence indicates that the synaptic effectiveness of these two groups of afferents is controlled by separate sets of GABAergic interneurones synapsing directly with the intraspinal terminals of the afferent fibres. This unique arrangement allows for selective control of the information on muscle length or muscle tension, despite the convergence of muscle spindle and tendon organ afferents on second-order interneurones.

  8. Contractile 5-HT1 receptors in human isolated pial arterioles: correlation with 5-HT1D binding sites.

    PubMed Central

    Hamel, E.; Bouchard, D.

    1991-01-01

    1. The 5-hydroxytryptamine (5-HT) receptor responsible for inducing vasoconstriction in human isolated pial arterioles has been pharmacologically characterized. 2. Of several 5-HT agonists tested, 5-carboxamidotryptamine (5-CT) was the most potent and the rank order of agonist potency can be summarized as: 5-CT greater than 5-HT greater than RU 24969 = alpha-methyl-5-HT = methysergide much greater than MDL 72832 = 2-methyl-5-HT much greater than 2-dipropylamino-8-hydroxy-1,2,3,4-tetrahydro-naphthalene (8-OH-DPAT). With few exceptions, the maximal contractile responses of these agonists were comparable to that induced by 5-HT. 3. A correlation analysis performed between the agonists vascular potency (pD2 values) and their affinities (pKD values) published at various subtypes of 5-HT binding sites showed a positive significant correlation with rat cortical 5-HT1B (r = 0.86; P less than 0.01) and human caudate 5-HT1D (r = 0.98; P less than 0.005) subtypes. 4. Selective antagonists at 5-HT2 (ketanserin, mianserin, MDL 11939) and 5-HT3 (MDL 72222) sites were totally devoid of inhibitory activity on the 5-HT-induced contraction, an observation which agreed with the agonist data and further excluded activation of these receptors. In contrast, the 5-HT1-like/5-HT2 antagonist methiothepin and the non-selective 5-HT1D compound metergoline inhibited with high affinity the contraction induced by 5-HT with respective pA2 values of 8.55 +/- 0.16 and 6.88 +/- 0.05. This contractile response was, however, insensitive to 5-HT1B (propranolol) and 5-HT1C (mesulergine, mianserin) antagonists.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2043924

  9. Increased pressure-induced tone in rat parenchymal arterioles vs. middle cerebral arteries: role of ion channels and calcium sensitivity.

    PubMed

    Cipolla, Marilyn J; Sweet, Julie; Chan, Siu-Lung; Tavares, Matthew J; Gokina, Natalia; Brayden, Joseph E

    2014-07-01

    Brain parenchymal arterioles (PAs) are high-resistance vessels that branch off pial arteries and perfuse the brain parenchyma. PAs are the target of cerebral small vessel disease and have been shown to have greater pressure-induced tone at lower pressures than pial arteries. We investigated mechanisms by which brain PAs have increased myogenic tone compared with middle cerebral arteries (MCAs), focusing on differences in vascular smooth muscle (VSM) calcium and ion channel function. The amount of myogenic tone and VSM calcium was measured using Fura 2 in isolated and pressurized PAs and MCAs. Increases in intraluminal pressure caused larger increases in tone and cytosolic calcium in PAs compared with MCAs. At 50 mmHg, myogenic tone was 37 ± 5% for PAs vs. 6.5 ± 4% for MCAs (P < 0.01), and VSM calcium was 200 ± 20 nmol/l in PAs vs. 104 ± 15 nmol/l in MCAs (P < 0.01). In vessels permeabilized with Staphylococcus aureus α-toxin, PAs were not more sensitive to calcium, suggesting calcium sensitization was not at the level of the contractile apparatus. PAs were 30-fold more sensitive to the voltage-dependent calcium channel (VDCC) inhibitor nifedipine than MCAs (EC50 for PAs was 3.5 ± 0.4 vs. 82.1 ± 2.1 nmol/l for MCAs;P < 0.01); however, electrophysiological properties of the VDCC were not different in VSM. PAs had little to no response to the calcium-activated potassium channel inhibitor iberiotoxin, whereas MCAs constricted ∼15%. Thus increased myogenic tone in PAs appears related to differences in ion channel activity that promotes VSM membrane depolarization but not to a direct sensitization of the contractile apparatus to calcium.

  10. Neutralizing VEGF Decreases Tortuosity and Alters Endothelial Cell Division Orientation in Arterioles and Veins in a Rat Model of ROP

    PubMed Central

    Hartnett, M. Elizabeth; Martiniuk, David; Byfield, Grace; Geisen, Pete; Zeng, Gefei; Bautch, Victoria L.

    2008-01-01

    Purpose To study the effects of vascular endothelial growth factor (VEGF) on endothelial nitric oxide synthetase (eNOS) and retinal vascular tortuosity and cleavage planes in a rat model of retinopathy of prematurity (ROP). Methods Within 4 hours of birth, pups and mothers were cycled between 50% and 10% oxygen daily. At postnatal day (p)12, pups received either intravitreous anti-rat neutralizing antibody to VEGF or control nonimmune rat IgG in one eye and returned to oxygen cycling until p14 when they were placed in room air (RA) for 4 days (50/10 oxygen-induced retinopathy [50/10 OIR]). Tortuosity indices and endothelial cleavage plane angles relative to the long axes of the major retinal vessels during anaphase were calculated from phosphohistone- and Alexa-isolectin-stained retinal flatmounts. Some retinas were processed for eNOS protein or phosphorylated/total eNOS. Results Retinas from 50/10 OIR had increased tortuosity over time with peaks at p12 and p14 (P < 0.001 vs. RA) before the development of intravitreous neovascularization, which peaked at p18. Compared with RA, eNOS/actin in 50/10 OIR retinas was increased at p12 (P = 0.0003) and p14 (P = 0.047). Inhibition of VEGF with a neutralizing antibody decreased tortuosity and caused endothelial mitosis cleavage planes to orient in favor of vessel elongation but did not affect eNOS protein or activation. Conclusions In the 50/10 OIR model, a model with relevance to ROP, arteriolar tortuosity, and venous dilation are increased through VEGF, which influences the orientation of endothelial cell cleavage in major arterioles and veins, independent of eNOS. PMID:18378573

  11. Functional capacities of tactile afferent fibres in neonatal kittens

    PubMed Central

    Ferrington, D. G.; Rowe, Mark J.

    1980-01-01

    1. Responses were recorded from individual tactile afferent fibres isolated by microdissection from the median nerve of pentobarbitone-anaesthetized neonatal kittens (1-5 days post-natal age). Experiments were also conducted on adult cats to permit precise comparisons between neonatal and adult fibres. 2. Neonatal fibres with receptive fields on the glabrous skin of the foot pads were classified into two broad groups, a slowly adapting class (40%) which responded throughout a 1 sec period of steady indentation and a rapidly adapting or dynamically sensitive class comprising 60% of units. Fibres in these two groups had overlapping conduction velocities in the range 4·3 to 7·5 m/sec and were believed to be the developing Group II afferents of the adult. 3. Neonatal slowly adapting fibres qualitatively resembled their adult counter-parts. They displayed graded stimulus-response relations which, over the steepest segment of the curves, had mean slopes of 15·7 impulses/100 μm of indentation. Plateau levels of response were often reached at amplitudes of skin indentation of < 0·5-0·7 mm. 4. Dynamically sensitive fibres with receptive fields on the glabrous skin were studied using sinusoidal cutaneous vibration which in the adult enables them to be divided into two distinct classes. However, in the neonate, they formed a continuum whether criteria of sensitivity or responsiveness were used. 5. In response to vibration neonatal fibres differed from adult ones according to the following quantitative indices: (i) sensitivity as measured by both absolute thresholds and thresholds for a 1: 1 pattern of response, both of which were higher in the neonate than in the adult at all frequencies > 50 Hz and differed by an order of magnitude at frequencies ≥ 200 Hz; (ii) responsiveness based on the mean impulse rate evoked at a fixed amplitude of cutaneous vibration; (iii) band width of vibratory sensitivity which in the neonate was confined to approximately 5-300 Hz whereas

  12. Functional recovery of anterior semicircular canal afferents following hair cell regeneration in birds

    NASA Technical Reports Server (NTRS)

    Boyle, Richard; Highstein, Stephen M.; Carey, John P.; Xu, Jinping

    2002-01-01

    Streptomycin sulfate (1.2 g/kg i.m.) was administered for 5 consecutive days to 5-7-day-old white Leghorn chicks; this causes damage to semicircular canal hair cells that ultimately regenerate to reform the sensory epithelium. During the recovery period, electrophysiological recordings were taken sequentially from anterior semicircular canal primary afferents using an indentation stimulus of the canal that has been shown to mimic rotational stimulation. Chicks were assigned to an early (14-18 days; n = 8), intermediate (28-34 days; n = 5), and late (38-58 days; n = 4) period based on days after treatment. Seven untreated chicks, 15-67 days old, provided control data. An absence of background and indent-induced discharge was the prominent feature of afferents in the early period: only "silent" afferents were encountered in 5/8 experiments. In several of these chicks, fascicles of afferent fibers were seen extending up to the epithelium that was void of hair cells, and intra- and extracellular biocytin labeling revealed afferent processes penetrating into the supporting cell layer of the crista. In 3/8 chicks 74 afferents could be characterized, and they significantly differed from controls (n = 130) by having a lower discharge rate and a negligible response to canal stimulation. In the intermediate period there was considerable variability in discharge properties of 121 afferents, but as a whole the number of "silent" fibers in the canal nerve diminished, the background rate increased, and a response to canal stimulation detected. Individually biocytin-labeled afferents had normal-appearing terminal specializations in the sensory epithelium by 28 days poststreptomycin. In the late period, afferents (n = 58) remained significantly different from controls in background discharge properties and response gain. The evidence suggests that a considerable amount of variability exists between chicks in the return of vestibular afferent function following ototoxic injury and

  13. Electrophysiological property and chemical sensitivity of primary afferent neurons that innervate rat whisker hair follicles

    PubMed Central

    Ikeda, Ryo

    2016-01-01

    Whisker hair follicles are sensory organs that sense touch and perform tactile discrimination in animals, and they are sites where sensory impulses are initiated when whisker hairs touch an object. The sensory signals are then conveyed by whisker afferent fibers to the brain for sensory perception. Electrophysiological property and chemical sensitivity of whisker afferent fibers, important factors affecting whisker sensory processing, are largely not known. In the present study, we performed patch-clamp recordings from pre-identified whisker afferent neurons in whole-mount trigeminal ganglion preparations and characterized their electrophysiological property and sensitivity to ATP, serotonin and glutamate. Of 97 whisker afferent neurons examined, 67% of them are found to be large-sized (diameter ≥45 µm) cells and 33% of them are medium- to small-sized (diameter <45 µm) cells. Almost every large-sized whisker afferent neuron fires a single action potential but many (40%) small/medium-sized whisker afferent neurons fire multiple action potentials in response to prolonged stepwise depolarization. Other electrophysiological properties including resting membrane potential, action potential threshold, and membrane input resistance are also significantly different between large-sized and small/medium-sized whisker afferent neurons. Most large-sized and many small/medium-sized whisker afferent neurons are sensitive to ATP and/or serotonin, and ATP and/or serotonin could evoke strong inward currents in these cells. In contrast, few whisker afferent neurons are sensitive to glutamate. Our results raise a possibility that ATP and/or serotonin may be chemical messengers involving sensory signaling for different types of rat whisker afferent fibers. PMID:27927797

  14. Hydrogen sulfide determines HNO-induced stimulation of trigeminal afferents.

    PubMed

    Wild, Vanessa; Messlinger, Karl; Fischer, Michael J M

    2015-08-18

    Endogenous NO and hydrogen sulfide form HNO, which causes CGRP release via TRPA1 channel activation in sensory nerves. In the present study, stimulation of intact trigeminal afferent neuron preparations with NO donors, Na2S or both was analyzed by measuring CGRP release as an index of mass activation. Combined stimulation was able to activate all parts of the trigeminal system and acted synergistic compared to stimulation with both substances alone. To investigate the contribution of both substances, we varied their ratio and tracked intracellular calcium in isolated neurons. Our results demonstrate that hydrogen sulfide is the rate-limiting factor for HNO formation. CGRP has a key role in migraine pathophysiology and HNO formation at all sites of the trigeminal system should be considered for this novel means of activation.

  15. Treg engage lymphotoxin beta receptor for afferent lymphatic transendothelial migration

    PubMed Central

    Brinkman, C. Colin; Iwami, Daiki; Hritzo, Molly K.; Xiong, Yanbao; Ahmad, Sarwat; Simon, Thomas; Hippen, Keli L.; Blazar, Bruce R.; Bromberg, Jonathan S.

    2016-01-01

    Regulatory T cells (Tregs) are essential to suppress unwanted immunity or inflammation. After islet allo-transplant Tregs must migrate from blood to allograft, then via afferent lymphatics to draining LN to protect allografts. Here we show that Tregs but not non-Treg T cells use lymphotoxin (LT) during migration from allograft to draining LN, and that LT deficiency or blockade prevents normal migration and allograft protection. Treg LTαβ rapidly modulates cytoskeletal and membrane structure of lymphatic endothelial cells; dependent on VCAM-1 and non-canonical NFκB signalling via LTβR. These results demonstrate a form of T-cell migration used only by Treg in tissues that serves an important role in their suppressive function and is a unique therapeutic focus for modulating suppression. PMID:27323847

  16. Cardiac afferent activity modulates the expression of racial stereotypes

    PubMed Central

    Azevedo, Ruben T.; Garfinkel, Sarah N.; Critchley, Hugo D.; Tsakiris, Manos

    2017-01-01

    Negative racial stereotypes tend to associate Black people with threat. This often leads to the misidentification of harmless objects as weapons held by a Black individual. Yet, little is known about how bodily states impact the expression of racial stereotyping. By tapping into the phasic activation of arterial baroreceptors, known to be associated with changes in the neural processing of fearful stimuli, we show activation of race-threat stereotypes synchronized with the cardiovascular cycle. Across two established tasks, stimuli depicting Black or White individuals were presented to coincide with either the cardiac systole or diastole. Results show increased race-driven misidentification of weapons during systole, when baroreceptor afferent firing is maximal, relative to diastole. Importantly, a third study examining the positive Black-athletic stereotypical association fails to demonstrate similar modulations by cardiac cycle. We identify a body–brain interaction wherein interoceptive cues can modulate threat appraisal and racially biased behaviour in context-dependent ways. PMID:28094772

  17. Melittin selectively activates capsaicin-sensitive primary afferent fibers.

    PubMed

    Shin, Hong Kee; Kim, Jin Hyuk

    2004-08-06

    Whole bee venom (WBV)-induced pain model has been reported to be very useful for the study of pain. However, the major constituent responsible for the production of pain by WBV is not apparent. Intraplantar injection of WBV and melittin dramatically reduced mechanical threshold, and increased flinchings and paw thickness. In behavioral experiments, capsaicin pretreatment almost completely prevented WBV- and melittin-induced reduction of mechanical threshold and flinchings. Intraplantar injection of melittin increased discharge rate of dorsal horn neurons only with C fiber input from peripheral receptive field, which was completely blocked by topical application of capsaicin to sciatic nerve. These results suggest that both melittin and WBV induce nociceptive responses by selective activation of capsaicin-sensitive afferent fibers.

  18. Selective cortical and segmental control of primary afferent depolarization of single muscle afferents in the cat spinal cord.

    PubMed

    Eguibar, J R; Quevedo, J; Rudomin, P

    1997-03-01

    This study was primarily aimed at investigating the selectivity of the cortico-spinal actions exerted on the pathways mediating primary afferent depolarization (PAD) of muscle spindle and tendon organ afferents ending within the intermediate nucleus at the L6-L7 segmental level. To this end we analyzed, in the anesthetized cat, the effects produced by electrical stimulation of sensory nerves and of the cerebral cortex on (a) the intraspinal threshold of pairs of single group I afferent fibers belonging to the same or to different hindlimb muscles and (b) the intraspinal threshold of two collaterals of the same muscle afferent fiber. Afferent fibers were classified in three categories, according to the effects produced by stimulation of segmental nerves and of the cerebral cortex. Twenty-five of 40 fibers (62.5%) were depolarized by stimulation of group I posterior biceps and semitendinosus (PBSt) or tibialis (Tib) fibers, but not by stimulation of the cerebral cortex or of cutaneous and joint nerves, which instead inhibited the PBSt- or Tib-induced PAD (type A PAD pattern, usually seen in Ia fibers). The remaining 15 fibers (37.5%) were all depolarized by stimulation of the PBSt or Tib nerves and the cerebral cortex. Stimulation of cutaneous and joint nerves produced PAD in 10 of those 15 fibers (type B PAD pattern) and inhibited the PBSt- or Tib-induced PAD in the 5 remaining fibers (type C PAD pattern). Fibers with a type B or C PAD pattern are likely to be Ib. Not all sites in the cerebral cortex inhibited with the same effectiveness the segmentally induced PAD of group I fibers with a type A PAD pattern. With the weakest stimulation of the cortical surface, the most effective sites that inhibited the PAD of individual fibers were surrounded by less effective sites, scattered all along the motor cortex (area 4gamma and 6) and sensory cortex (areas 3, 2 and 1), far beyond the area of projection of group I fibers from the hindlimb. With higher strengths of

  19. Localization of TRPV1 and P2X3 in unmyelinated and myelinated vagal afferents in the rat

    PubMed Central

    Hermes, Sam M.; Andresen, Michael C.; Aicher, Sue A.

    2016-01-01

    The vagus nerve is dominated by afferent fibers that convey sensory information from the viscera to the brain. Most vagal afferents are unmyelinated, slow-conducting C-fibers, while a smaller portion are myelinated, fast-conducting A-fibers. Vagal afferents terminate in the nucleus tractus solitarius (NTS) in the dorsal brainstem and regulate autonomic and respiratory reflexes, as well as ascending pathways throughout the brain. Vagal afferents form glutamatergic excitatory synapses with postsynaptic NTS neurons that are modulated by a variety of channels. The organization of vagal afferents with regard to fiber type and channels is not well understood. In the present study, we used tract tracing methods to identify distinct populations of vagal afferents to determine if key channels are selectively localized to specific groups of afferent fibers. Vagal afferents were labeled with isolectin B4 (IB4) or cholera toxin B (CTb) to detect unmyelinated and myelinated afferents, respectively. We find that TRPV1 channels are preferentially found in unmyelinated vagal afferents identified with IB4, with almost half of all IB4 fibers showing co-localization with TRPV1. These results agree with prior electrophysiological findings. In contrast, we found that the ATP-sensitive channel P2X3 is found in a subset of both myelinated and unmyelinated vagal afferent fibers. Specifically, 18% of IB4 and 23% of CTb afferents contained P2X3. The majority of CTb-ir vagal afferents contained neither channel. Since neither channel was found in all vagal afferents, there are likely further degrees of heterogeneity in the modulation of vagal afferent sensory input to the NTS beyond fiber type. PMID:26706222

  20. Hair cell tufts and afferent innervation of the bullfrog crista ampullaris

    NASA Technical Reports Server (NTRS)

    Myers, Steven F.; Lewis, Edwin R.

    1990-01-01

    Within the bullfrog semicircular canal crista, hair cell tuft types were defined and mapped with the aid of scanning electron microscopy. Dye-filled planar afferent axons had mean distal axonal diameters of 1.6-4.9 microns, highly branched arbors, and contacted 11-24 hair cells. Dye-filled isthmus afferent axons had mean distal axonal diameters of 1.8-7.9 microns, with either small or large field arbors contacting 4-9 or 25-31 hair cells. The estimated mean number of contacts per innervated hair cell was 2.2 for planar and 1.3 for isthmus afferent neurons. Data on evoked afferent responses were available only for isthmus units that were observed to respond to our microrotational stimuli. Of 21 such afferent neurons, eight were successfully dye-filled. Within this sample, high-gain units had large field arbors and lower-gain units had small field arbors. The sensitivity of each afferent neuron was analyzed in terms of noise equivalent input (NEI), the stimulus amplitude for which the afferent response amplitude is just equivalent to the rms deviation of the instantaneous spike rate. NEI for isthmus units varied from 0.63 to 8.2 deg/s; the mean was 3.2 deg/s.

  1. Age-Related Changes in Vagal Afferents Innervating the Gastrointestinal Tract

    PubMed Central

    Phillips, Robert J.; Walter, Gary C.; Powley, Terry L.

    2009-01-01

    Recent progress in understanding visceral afferents, some of it reviewed in the present issue, serves to underscore how little is known about the aging of the visceral afferents in the gastrointestinal (GI) tract. In spite of the clinical importance of the issue--with age, GI function often becomes severely compromised--only a few initial observations on age-related structural changes of visceral afferents are available. Primary afferent cell bodies in both the nodose ganglia and dorsal root ganglia lose Nissl material and accumulate lipofucsin, inclusions, aggregates, and tangles. Additionally, in changes that we focus on in the present review, vagal visceral afferent terminals in both the muscle wall and the mucosa of the GI tract exhibit age-related structural changes. In aged animals, both of the vagal terminal types examined, namely intraganglionic laminar endings and villus afferents, exhibit dystrophic or regressive morphological changes. These neuropathies are associated with age-related changes in the structural integrity of the target organs of the affected afferents, suggesting that local changes in trophic environment may give rise to the aging of GI innervation. Given the clinical relevance of GI tract aging, a more complete understanding both of how aging alters the innervation of the gut and of how such changes might be mitigated should be made research priorities. PMID:19665435

  2. Vagal afferents sense meal-associated gastrointestinal and pancreatic hormones: mechanism and physiological role.

    PubMed

    Iwasaki, Yusaku; Yada, Toshihiko

    2012-12-01

    Some gastrointestinal and pancreatic hormones are potently secreted by meal intake and reduce food intake, therefore these hormones play a role in the meal-evoked satiety peptides. Previous reports have demonstrated that peripheral administration of these gastrointestinal or pancreatic hormones decrease feeding and the anorectic effects are abolished by lesions of vagal afferent nerves using surgical or chemical protocols, indicative of the involvement of the vagal afferents. Vagal afferent nerves link between several peripheral organs and the nucleus tractus solitarius of the brainstem. The present review focuses on cholecystokinin, peptide YY(3-36), pancreatic polypeptide, and nesfatin-1 released from endocrine cells of the gut and pancreas. These hormonal peptides directly act on and increase cytosolic Ca(2+) in vagal afferent nodose ganglion neurons and finally suppress food intake via vagal afferents. Therefore, peripheral terminals of vagal afferents could sense gastrointestinal and pancreatic hormones and regulate food intake. Here, we review how the vagal afferent neurons sense a variety of gastrointestinal and pancreatic hormones and discuss its physiological significance in regulation of feeding.

  3. Local control of information flow in segmental and ascending collaterals of single afferents.

    PubMed

    Lomelí, J; Quevedo, J; Linares, P; Rudomin, P

    1998-10-08

    In the vertebrate spinal cord, the activation of GABA(gamma-amino-butyric acid)-releasing interneurons that synapse with intraspinal terminals of sensory fibres leading into the central nervous system (afferent fibres) produces primary afferent depolarization and presynaptic inhibition. It is not known to what extent these presynaptic mechanisms allow a selective control of information transmitted through specific sets of intraspinal branches of individual afferents. Here we study the local nature of the presynaptic control by measuring primary afferent depolarization simultaneously in two intraspinal collaterals of the same muscle spindle afferent. One of these collaterals ends at the L6-L7 segmental level in the intermediate nucleus, and the other ascends to segment L3 within Clarke's column, the site of origin of spinocerebellar neurons. Our results indicate that there are central mechanisms that are able to affect independently the synaptic effectiveness of segmental and ascending collaterals of individual muscle spindle afferents. Focal control of presynaptic inhibition thus allows the intraspinal branches of afferent fibres to function as a dynamic assembly that can be fractionated to convey information to selected neuronal targets. This may be a mechanism by which different spinal postsynaptic targets that are coupled by sensory input from a common source could be uncoupled.

  4. Technetium-99m HIDA hepatobiliary scanning in evaluation of afferent loop syndrome

    SciTech Connect

    Sivelli, R.; Farinon, A.M.; Sianesi, M.; Percudani, M.; Ugolotti, G.; Calbiani, B.

    1984-08-01

    A study of 118 patients, operated on with Billroth II gastrectomy for peptic disease and affected by postgastrectomy syndromes, was carried out. Fifty patients were investigated by means of technetium-99m HIDA hepatobiliary scanning. In 18 patients, in whom an afferent loop syndrome was clinically suspected, hepatobiliary scanning demonstrated an altered afferent loop emptying in 8 and atonic distension of the gallbladder without afferent loop motility changes in 10. Among the patients in the first group, four were treated with a biliary diversion surgical procedure and in the second group, two patients underwent cholecystectomy. Our findings indicate that biliary vomiting, right upper abdominal pain pyrosis, and biliary diarrhea in Billroth II gastrectomized patients are not always pathognomonic symptoms of afferent loop syndrome. Technetium-99m HIDA hepatobiliary scanning represents the only diagnostic means of afferent loop syndrome definition. A differential diagnosis of abnormal afferent loop emptying and gallbladder dyskinesia is necessary for the management planning of these patients, and furthermore, when a surgical treatment is required, biliary diversion with Roux-Y anastomosis or Braun's biliary diversion seems the treatment of choice for afferent loop syndrome, whereas cholecystectomy represents the best procedure for atonic distension of the gallbladder.

  5. Novel Afferent Terminal Structure in the Crista Ampullaris of the Goldfish, Carassius auratus

    NASA Technical Reports Server (NTRS)

    Lanford, Pamela J.; Popper, Arthur N.

    1996-01-01

    Using transmission electron microscopy, we have identified a new type of afferent terminal structure in the crista ampullaris of the goldfish Carassius auratus. In addition to the bouton-type afferent terminals previously described in the ear of this species, the crista also contained enlarged afferent terminals that enveloped a portion of the basolateral hair cell membrane. The hair cell membrane was evaginated and protruded into the afferent terminal in a glove-and-finger configuration. The membranes of the two cells were regularly aligned in the protruded region of the contact and had a distinct symmetrical electron density. The electron-dense profiles of these contacts were easily identified and were present in every crista sampled. In some cases, efferent terminals synapsed onto the afferents at a point where the hair cell protruded into the terminal. The ultrastructural similarities of the goldfish crista afferents to calyx afferents found in amniotes (birds, reptiles, and mammals) are discussed. The results of the study support the hypothesis that structural variation in the vertebrate inner ear may have evolved much earlier in evolution than previously supposed.

  6. The effects of antidromic discharges on orthodromic firing of primary afferents in the cat.

    PubMed

    Gossard, J P; Bouyer, L; Rossignol, S

    1999-04-17

    This study investigated the effects of antidromically conducted nerve impulses on the transmission of orthodromic volleys in primary afferents of the hindlimb in decerebrated paralyzed cats. Two protocols were used: (A) Single skin and muscle afferents (N=20) isolated from the distal part of cut dorsal rootlets (L7-S1) were recorded while stimulation was applied more caudally. The results showed that during the trains of three to 20 stimuli, the orthodromic firing frequency decreased or ceased, depending on the frequency of stimulation. Remarkably, subsequent to these trains, the occurrence of orthodromic spikes could be delayed for hundreds of ms (15/20 afferents) and sometimes stopped for several seconds (10/20 afferents). Longer stimulation trains, simulating antidromic bursts reported during locomotion, caused a progressive decrease, and a slow recovery of, orthodromic firing frequency (7/20 afferents), indicating a cumulative long-lasting depressing effect from successive bursts. (B) Identified stretch-sensitive muscle afferents were recorded intra-axonally and antidromic spikes were evoked by the injection of square pulses of current through the micropipette. In this case, one to three antidromic spikes were sufficient to delay the occurrence of the next orthodromic spike by more than one control inter-spike interval. If the control inter-spike interval was decreased by stretching the muscle, the delay evoked by antidromic spikes decreased proportionally. Overall, these findings suggest that antidromic activity could alter the mechanisms underlying spike generation in peripheral sensory receptors and modify the orthodromic discharges of afferents during locomotion.

  7. A novel method of selective ablation of afferent renal nerves by periaxonal application of capsaicin.

    PubMed

    Foss, Jason D; Wainford, Richard D; Engeland, William C; Fink, Gregory D; Osborn, John W

    2015-01-15

    Renal denervation has been shown to lower arterial pressure in some hypertensive patients, yet it remains unclear whether this is due to ablation of afferent or efferent renal nerves. To investigate the role of afferent renal nerves in arterial pressure regulation, previous studies have used methods that disrupt both renal and nonrenal afferent signaling. The present study was conducted to develop and validate a technique for selective ablation of afferent renal nerves that does not disrupt other afferent pathways. To do this, we adapted a technique for sensory denervation of the adrenal gland by topical application of capsaicin and tested the hypothesis that exposure of the renal nerves to capsaicin (renal-CAP) causes ablation of afferent but not efferent renal nerves. Renal-CAP had no effect on renal content of the efferent nerve markers tyrosine hydroxylase and norepinephrine; however, the afferent nerve marker, calcitonin gene-related peptide was largely depleted from the kidney 10 days after intervention, but returned to roughly half of control levels by 7 wk postintervention. Moreover, renal-CAP abolished the cardiovascular responses to acute pharmacological stimulation of afferent renal nerves. Renal-CAP rats showed normal weight gain, as well as cardiovascular and fluid balance regulation during dietary sodium loading. To some extent, renal-CAP did blunt the bradycardic response and increase the dipsogenic response to increased salt intake. Lastly, renal-CAP significantly attenuated the development of deoxycorticosterone acetate-salt hypertension. These results demonstrate that renal-CAP effectively causes selective ablation of afferent renal nerves in rats.

  8. Estradiol alters the chemosensitive cardiac afferent reflex in female rats by augmenting sympathoinhibition and attenuating sympathoexcitation.

    PubMed

    Pinkham, Maximilian I; Barrett, Carolyn J

    2015-06-01

    The chemosensitive cardiac vagal and sympathetic afferent reflexes are implicated in driving pathophysiological changes in sympathetic nerve activity (SNA) in cardiovascular disease states. This study investigated the impact of sex and ovarian hormones on the chemosensitive cardiac afferent reflex. Experiments were performed in anaesthetized, sinoaortic baroreceptor denervated male, female and ovariectomized female (OVX) Wistar rats with either intact cardiac innervation or bilateral vagotomy. To investigate the chemosensitive cardiac afferent reflexes renal SNA, heart rate (HR) and arterial pressure (AP) were recorded before and following application of capsaicin onto the epicardial surface of the left ventricle. Compared to males, ovary-intact females displayed similar cardiac afferent reflex mediated changes in renal SNA albeit with a reduced maximum sympathetic reflex driven increase in renal SNA. In females, ovariectomy significantly attenuated the cardiac vagal afferent reflex mediated inhibition of renal SNA (renal SNA decreased 2 ± 17% in OVX versus -50 ± 4% in ovary-intact females, P < 0.05) and augmented cardiac sympathetic afferent reflex mediated sympathoexcitation (renal SNA increased 91 ± 11% in OVX vs 62 ± 9% in ovary-intact females, P < 0.05) so that overall increases in reflex driven sympathoexcitation were significantly enhanced. Chronic estradiol replacement, but not progesterone replacement, begun at time of ovariectomy restored cardiac afferent reflex responses to be similar as ovary-intact females. Vagal denervation eliminated all group differences. The current findings show ovariectomy in female rats, mimicking menopause in women, results in greater chemosensitive cardiac afferent reflex driven sympathoexcitation and does so, at least partly, via the loss of estradiols actions on the cardiac vagal afferent reflex pathway.

  9. Selective cortical control of information flow through different intraspinal collaterals of the same muscle afferent fiber.

    PubMed

    Eguibar, J R; Quevedo, J; Jiménez, I; Rudomin, P

    1994-04-18

    We have analyzed in the anesthetized cat the effects of electrical stimulation of the cerebral cortex on the intraspinal threshold of two collaterals belonging to the same muscle spindle or tendon organ afferent fiber. The results obtained provide, for the first time, direct evidence showing that the motor cortex is able to modify, in a highly selective manner, the synaptic effectiveness of individual collaterals of the same primary afferent fiber. This presynaptic control could function as a mechanism that allows funneling of information to specific groups of spinal neurons in the presence of extensive intraspinal branching of the afferent fibers.

  10. Enterolith Causing Afferent Loop Obstruction: A Case Report and Literature Review

    SciTech Connect

    Lee, Michael C.; Bui, James T.; Knuttinen, M-Grace; Gaba, Ron C.; Scott Helton, W.; Owens, Charles A.

    2009-09-15

    Enterolith formation is a rare cause of afferent limb obstruction following Billroth II gastrectomy and Roux-en-Y hepaticojejunostomy surgery. A case of ascending cholangitis caused by an enterolith incarcerated in the afferent loop of a 15-year-old Roux-en-Y hepaticojejunostomy was emergently decompressed under direct ultrasound guidance prior to surgery. This is the thirteenth reported case of an enterolith causing afferent loop obstruction. A discussion of our management approach and a review of the relevant literature are presented.

  11. Functional role of unmyelinated tactile afferents in human hairy skin: sympathetic response and perceptual localization.

    PubMed

    Olausson, Håkan; Cole, Jonathan; Rylander, Karin; McGlone, Francis; Lamarre, Yves; Wallin, B Gunnar; Krämer, Heidrun; Wessberg, Johan; Elam, Mikael; Bushnell, M Catherine; Vallbo, Ake

    2008-01-01

    In addition to A-beta fibres the human hairy skin has unmyelinated (C) fibres responsive to light touch. Previous functional magnetic resonance imaging (fMRI) studies in a subject with a neuronopathy who specifically lacks A-beta afferents indicated that tactile C afferents (CT) activate insular cortex, whereas no response was seen in somatosensory areas 1 and 2. Psychophysical tests suggested that CT afferents give rise to an inconsistent perception of weak and pleasant touch. By examining two neuronopathy subjects as well as control subjects we have now demonstrated that CT stimulation can elicit a sympathetic skin response. Further, the neuronopathy subjects' ability to localize stimuli which activate CT afferents was very poor but above chance level. The findings support the interpretation that the CT system is well suited to underpin affective rather than discriminative functions of tactile sensations.

  12. Multiple clusters of release sites formed by individual thalamic afferents onto cortical interneurons ensure reliable transmission.

    PubMed

    Bagnall, Martha W; Hull, Court; Bushong, Eric A; Ellisman, Mark H; Scanziani, Massimo

    2011-07-14

    Thalamic afferents supply the cortex with sensory information by contacting both excitatory neurons and inhibitory interneurons. Interestingly, thalamic contacts with interneurons constitute such a powerful synapse that even one afferent can fire interneurons, thereby driving feedforward inhibition. However, the spatial representation of this potent synapse on interneuron dendrites is poorly understood. Using Ca imaging and electron microscopy we show that an individual thalamic afferent forms multiple contacts with the interneuronal proximal dendritic arbor, preferentially near branch points. More contacts are correlated with larger amplitude synaptic responses. Each contact, consisting of a single bouton, can release up to seven vesicles simultaneously, resulting in graded and reliable Ca transients. Computational modeling indicates that the release of multiple vesicles at each contact minimally reduces the efficiency of the thalamic afferent in exciting the interneuron. This strategy preserves the spatial representation of thalamocortical inputs across the dendritic arbor over a wide range of release conditions.

  13. Vagal afferent neurons in high fat diet-induced obesity; intestinal microflora, gut inflammation and cholecystokinin.

    PubMed

    de Lartigue, Guillaume; de La Serre, Claire Barbier; Raybould, Helen E

    2011-11-30

    The vagal afferent pathway is the major neural pathway by which information about ingested nutrients reaches the CNS and influences both GI function and feeding behavior. Vagal afferent neurons (VAN) express receptors for many of the regulatory peptides and molecules released from the intestinal wall, pancreas, and adipocytes that influence GI function, glucose homeostasis, and regulate food intake and body weight. As such, they play a critical role in both physiology and pathophysiology, such as obesity, where there is evidence that vagal afferent function is altered. This review will summarize recent findings on changes in vagal afferent function in response to ingestion of high fat diets and explore the hypothesis that changes in gut microbiota and integrity of the epithelium may not only be important in inducing these changes but may be the initial events that lead to dysregulation of food intake and body weight in response to high fat, high energy diets.

  14. Response properties of gerbil otolith afferents to small angle pitch and roll tilts

    NASA Technical Reports Server (NTRS)

    Dickman, J. D.; Angelaki, D. E.; Correia, M. J.

    1991-01-01

    The responses from isolated single otolith afferent fibers were obtained to small angle sinusoidal pitch and roll tilts in anesthetized gerbils. The stimulus directions that produced the maximum (response vector) and minimum response sensitivities were determined for each otolith afferent, with response vectors for the units being spread throughout the horizontal plane, similar to those reported for other species. A breadth of tuning measure was derived, with narrowly tuned neurons responding maximally to stimulation in one direction and minimally along an orthogonal ('null') direction. Most (approximately 80%) otolith afferents are narrowly tuned, however, some fibers were broadly tuned responding significantly to stimulations in any direction in the horizontal plane. The number of broadly tuned otolith afferents (approximately 20%) differs significantly from the more substantial number of broadly tuned vestibular nuclei neurons (88%) recently reported in rats.

  15. Changes in PAD patterns of group I muscle afferents after a peripheral nerve crush.

    PubMed

    Enríquez, M; Jiménez, I; Rudomin, P

    1996-01-01

    In the anesthetized cat we have analyzed the changes in primary afferent depolarization (PAD) evoked in single muscle spindle and tendon organ afferents at different times after their axons were crushed in the periphery and allowed to regenerate. Medial gastrocnemius (MG) afferents were depolarized by stimulation of group I fibers in the posterior biceps and semitendinosus nerve (PBSt), as soon as 2 weeks after crushing their axons in the periphery, in some cases before they could be activated by physiological stimulation of muscle receptors. Two to twelve weeks after crushing the MG nerve, stimulation of the PBSt produced PAD in all MG fibers reconnected with presumed muscle spindles and tendon organs. The mean amplitude of the PAD elicited in afferent fibers reconnected with muscle spindles was increased relative to values obtained from Ia fibers in intact (control) preparations, but remained essentially the same in fibers reconnected with tendon organs. Quite unexpectedly, we found that, between 2 and 12 weeks after crushing the MG nerve, stimulation of the bulbar reticular formation (RF) produced PAD in most afferent fibers reconnected with muscle spindle afferents. The mean amplitude of the PAD elicited in these fibers was significantly increased relative to the PAD elicited in muscle spindle afferents from intact preparations (from 0.08 +/- 0.4 to 0.47 +/- 0.34 mV). A substantial recovery was observed between 6 months and 2.5 years after the peripheral nerve injury. Stimulation of the sural (SU) nerve produced practically no PAD in muscle spindles from intact preparations, and this remained so in those afferents reconnected with muscle spindles impaled 2-12 weeks after the nerve crush. The mean amplitude of the PAD produced in afferent fibers reconnected with tendon organs by stimulation of the PBSt nerve and of the bulbar RF remained essentially the same as the PAD elicited in intact afferents. However, SU nerve stimulation produced a larger PAD in afferents

  16. Functional specializations of primary auditory afferents on the Mauthner cells: Interactions between membrane and synaptic properties

    PubMed Central

    Curti, Sebastian; Pereda, Alberto E.

    2009-01-01

    Primary auditory afferents are usually perceived as passive, timing-preserving, lines of communication. Contrasting this view, a special class of auditory afferents to teleost Mauthner cells, a command neuron that organizes tail-flip escape responses, undergoes potentiation of their mixed (electrical and chemical) synapses in response to high frequency cellular activity. This property is likely to represent a mechanism of input sensitization as these neurons provide the Mauthner cell with essential information for the initiation of an escape response. We review here the anatomical and physiological specializations of these identifiable auditory afferents. In particular, we discuss how their membrane and synaptic properties act in concert to more efficaciously activate the Mauthner cells. The striking functional specializations of these neurons suggest that primary auditory afferents might be capable of more sophisticated contributions to auditory processing than has been generally recognized. PMID:19941953

  17. Organization of hindlimb muscle afferent projections to lumbosacral motoneurons in the chick embryo.

    PubMed

    Lee, M T; O'Donovan, M J

    1991-08-01

    We have examined the organization of muscle afferent projections to motoneurons in the lumbosacral spinal cord of chick embryos between stage 37, when muscle afferents first reach the motor nucleus, and stage 44, which is just before hatching. Connectivity between afferents and motoneurons was assessed by stimulating individual muscle nerves and recording the resulting motoneuron synaptic potentials intracellularly or electrotonically from other muscle nerves. Most of the recordings were made in the presence of DL-2-amino-5-phosphonovaleric acid (APV), picrotoxin, and strychnine to block long-latency excitatory and inhibitory pathways. Activation of muscle afferents evoked slow, positive potentials in muscle nerves but not in cutaneous nerves. These potentials were abolished in 0 mM Ca2+, 2mM Mn2+ solutions, indicating that they were generated by the action of chemical synapses. The muscle nerve recordings revealed a wide-spread pattern of excitatory connections between afferents and motoneurons innervating six different thigh muscles, which were not organized according to synergist-antagonist relationships. This pattern of connectivity was confirmed using intracellular recording from identified motoneurons, which allowed the latency of the responses to be determined. Short-latency potentials in motoneurons were produced by activation of homonymous afferents and the heteronymous afferents innervating the hip flexors sartorius and anterior iliotibialis. Stimulation of anterior iliotibialis afferents also resulted in some short-latency excitatory postsynaptic potentials (EPSPs) in motoneurons innervating the knee extensor femorotibialis, though other connections were of longer latency. Afferents from the adductor, a hip extensor, did not evoke short-latency EPSPs in any of these three types of motoneurons. Short-latency, but not long-latency EPSPs, persisted during repetitive stimulation at 5 Hz, suggesting that they were mediated monosynaptically. Long

  18. Pharmacologically Distinct Nicotinic Acetylcholine Receptors Drive Efferent-Mediated Excitation in Calyx-Bearing Vestibular Afferents

    PubMed Central

    Kewin, Kevin; Jordan, Paivi M.; Cameron, Peter; Klapczynski, Marcin; McIntosh, J. Michael; Crooks, Peter A.; Dwoskin, Linda P.; Lysakowski, Anna

    2015-01-01

    Electrical stimulation of vestibular efferent neurons rapidly excites the resting discharge of calyx/dimorphic (CD) afferents. In turtle, this excitation arises when acetylcholine (ACh), released from efferent terminals, directly depolarizes calyceal endings by activating nicotinic ACh receptors (nAChRs). Although molecular biological data from the peripheral vestibular system implicate most of the known nAChR subunits, specific information about those contributing to efferent-mediated excitation of CD afferents is lacking. We sought to identify the nAChR subunits that underlie the rapid excitation of CD afferents and whether they differ from α9α10 nAChRs on type II hair cells that drive efferent-mediated inhibition in adjacent bouton afferents. We recorded from CD and bouton afferents innervating the turtle posterior crista during electrical stimulation of vestibular efferents while applying several subtype-selective nAChR agonists and antagonists. The α9α10 nAChR antagonists, α-bungarotoxin and α-conotoxin RgIA, blocked efferent-mediated inhibition in bouton afferents while leaving efferent-mediated excitation in CD units largely intact. Conversely, 5-iodo-A-85380, sazetidine-A, varenicline, α-conotoxin MII, and bPiDDB (N,N-dodecane-1,12-diyl-bis-3-picolinium dibromide) blocked efferent-mediated excitation in CD afferents without affecting efferent-mediated inhibition in bouton afferents. This pharmacological profile suggested that calyceal nAChRs contain α6 and β2, but not α9, nAChR subunits. Selective blockade of efferent-mediated excitation in CD afferents distinguished dimorphic from calyx afferents by revealing type II hair cell input. Dimorphic afferents differed in having higher mean discharge rates and a mean efferent-mediated excitation that was smaller in amplitude yet longer in duration. Molecular biological data demonstrated the expression of α9 in turtle hair cells and α4 and β2 in associated vestibular ganglia. PMID:25716861

  19. Interneurones in pathways from group II muscle afferents in sacral segments of the feline spinal cord.

    PubMed

    Jankowska, E; Riddell, J S

    1994-03-15

    1. Properties of dorsal horn interneurones that process information from group II muscle afferents in the sacral segments of the spinal cord have been investigated in the cat using both intracellular and extracellular recording. 2. The interneurones were excited by group II muscle afferents and cutaneous afferents but not by group I muscle afferents. They were most effectively excited by group II afferents of the posterior biceps, semitendinosus, triceps surae and quadriceps muscle nerves and by cutaneous afferents running in the cutaneous femoris, pudendal and sural nerves. The earliest synaptic actions were evoked monosynaptically and were very tightly locked to the stimuli. 3. EPSPs evoked monosynaptically by group II muscle afferents and cutaneous afferents of the most effective nerves were often cut short by disynaptic IPSPs. As a consequence of this negative feedback the EPSPs gave rise to single or double spike potentials and only a minority of interneurones responded with repetitive discharges. However, the neurones that did respond repetitively did so at a very high frequency of discharges (0.8-1.2 ms intervals between the first 2-3 spikes). 4. Sacral dorsal horn group II interneurones do not appear to act directly upon motoneurones because: (i) these interneurones are located outside the area within which last order interneurones have previously been found and (ii) the latencies of PSPs evoked in motoneurones by stimulation of the posterior biceps and semitendinosus, cutaneous femoris and pudendal nerves (i.e. the main nerves providing input to sacral interneurones) are compatible with a tri- but not with a disynaptic coupling. Spatial facilitation of EPSPs and IPSPs following synchronous stimulation of group II and cutaneous afferents of these nerves shows, however, that sacral interneurones may induce excitation or inhibition of motoneurones via other interneurones. 5. Comparison of the properties of group II interneurones in the sacral segments with

  20. Innervation of enteric mast cells by primary spinal afferents in guinea pig and human small intestine.

    PubMed

    Wang, Guo-Du; Wang, Xi-Yu; Liu, Sumei; Qu, Meihua; Xia, Yun; Needleman, Bradley J; Mikami, Dean J; Wood, Jackie D

    2014-10-01

    Mast cells express the substance P (SP) neurokinin 1 receptor and the calcitonin gene-related peptide (CGRP) receptor in guinea pig and human small intestine. Enzyme-linked immunoassay showed that activation of intramural afferents by antidromic electrical stimulation or by capsaicin released SP and CGRP from human and guinea pig intestinal segments. Electrical stimulation of the afferents evoked slow excitatory postsynaptic potentials (EPSPs) in the enteric nervous system. The slow EPSPs were mediated by tachykinin neurokinin 1 and CGRP receptors. Capsaicin evoked slow EPSP-like responses that were suppressed by antagonists for protease-activated receptor 2. Afferent stimulation evoked slow EPSP-like excitation that was suppressed by mast cell-stabilizing drugs. Histamine and mast cell protease II were released by 1) exposure to SP or CGRP, 2) capsaicin, 3) compound 48/80, 4) elevation of mast cell Ca²⁺ by ionophore A23187, and 5) antidromic electrical stimulation of afferents. The mast cell stabilizers cromolyn and doxantrazole suppressed release of protease II and histamine when evoked by SP, CGRP, capsaicin, A23187, electrical stimulation of afferents, or compound 48/80. Neural blockade by tetrodotoxin prevented mast cell protease II release in response to antidromic electrical stimulation of mesenteric afferents. The results support a hypothesis that afferent innervation of enteric mast cells releases histamine and mast cell protease II, both of which are known to act in a diffuse paracrine manner to influence the behavior of enteric nervous system neurons and to elevate the sensitivity of spinal afferent terminals.

  1. Fusimotor reflexes in relaxed forearm muscles produced by cutaneous afferents from the human hand.

    PubMed Central

    Gandevia, S C; Wilson, L; Cordo, P J; Burke, D

    1994-01-01

    1. This study was designed to determine whether cutaneous receptors in the hand exert reflex effects on fusimotor neurones innervating relaxed muscles. Recordings were made from fifty-four muscle spindle afferents in the radial nerve while the arm was held relaxed in a supporting frame. Cutaneous afferents were activated by trains of stimuli at non-noxious levels to the superficial radial nerve or to the palmar surface of the fingers. 2. For the population of muscle spindle afferents, the mean discharge rate was 7.1 +/- 6.4 Hz (range 0-24 Hz). Thirty-three per cent had no background discharge, and this occurred significantly more often in finger extensors than wrist extensors. 3. Trains of cutaneous stimuli produced no change in the discharge rates of the majority of spindle endings irrespective of whether the spindle afferent had a background discharge or was given one by muscle stretch. However, with two of forty afferents, the stimuli produced an increase in discharge at latencies of 135 and 155 ms. 4. With a further fourteen muscle spindle endings, the dynamic responses to stretch were measured 100-400 ms after the trains of cutaneous stimuli. For four spindle afferents there was a statistically significant change in the dynamic response to stretch occurring at conditioned-stretch intervals of 100-200 ms. For two afferents the dynamic response decreased by 17 and 26% and for two others it increased by about 24 and 37%. 5. While these results support the view that the level of background fusimotor drive is low in the relaxed state, they suggest that there is some dynamic fusimotor drive to completely relaxed muscles operating on the human hand, and that this drive can be altered reflexly by cutaneous afferent inputs from the hand. Images Figure 4 PMID:7837105

  2. Innervation of enteric mast cells by primary spinal afferents in guinea pig and human small intestine

    PubMed Central

    Wang, Guo-Du; Wang, Xi-Yu; Liu, Sumei; Qu, Meihua; Xia, Yun; Needleman, Bradley J.; Mikami, Dean J.

    2014-01-01

    Mast cells express the substance P (SP) neurokinin 1 receptor and the calcitonin gene-related peptide (CGRP) receptor in guinea pig and human small intestine. Enzyme-linked immunoassay showed that activation of intramural afferents by antidromic electrical stimulation or by capsaicin released SP and CGRP from human and guinea pig intestinal segments. Electrical stimulation of the afferents evoked slow excitatory postsynaptic potentials (EPSPs) in the enteric nervous system. The slow EPSPs were mediated by tachykinin neurokinin 1 and CGRP receptors. Capsaicin evoked slow EPSP-like responses that were suppressed by antagonists for protease-activated receptor 2. Afferent stimulation evoked slow EPSP-like excitation that was suppressed by mast cell-stabilizing drugs. Histamine and mast cell protease II were released by 1) exposure to SP or CGRP, 2) capsaicin, 3) compound 48/80, 4) elevation of mast cell Ca2+ by ionophore A23187, and 5) antidromic electrical stimulation of afferents. The mast cell stabilizers cromolyn and doxantrazole suppressed release of protease II and histamine when evoked by SP, CGRP, capsaicin, A23187, electrical stimulation of afferents, or compound 48/80. Neural blockade by tetrodotoxin prevented mast cell protease II release in response to antidromic electrical stimulation of mesenteric afferents. The results support a hypothesis that afferent innervation of enteric mast cells releases histamine and mast cell protease II, both of which are known to act in a diffuse paracrine manner to influence the behavior of enteric nervous system neurons and to elevate the sensitivity of spinal afferent terminals. PMID:25147231

  3. Afference copy as a quantitative neurophysiological model for consciousness.

    PubMed

    Cornelis, Hugo; Coop, Allan D

    2014-06-01

    Consciousness is a topic of considerable human curiosity with a long history of philosophical analysis and debate. We consider there is nothing particularly complicated about consciousness when viewed as a necessary process of the vertebrate nervous system. Here, we propose a physiological "explanatory gap" is created during each present moment by the temporal requirements of neuronal activity. The gap extends from the time exteroceptive and proprioceptive stimuli activate the nervous system until they emerge into consciousness. During this "moment", it is impossible for an organism to have any conscious knowledge of the ongoing evolution of its environment. In our schematic model, a mechanism of "afference copy" is employed to bridge the explanatory gap with consciously experienced percepts. These percepts are fabricated from the conjunction of the cumulative memory of previous relevant experience and the given stimuli. They are structured to provide the best possible prediction of the expected content of subjective conscious experience likely to occur during the period of the gap. The model is based on the proposition that the neural circuitry necessary to support consciousness is a product of sub/preconscious reflexive learning and recall processes. Based on a review of various psychological and neurophysiological findings, we develop a framework which contextualizes the model and briefly discuss further implications.

  4. Hemispheric asymmetry and somatotopy of afferent inhibition in healthy humans.

    PubMed

    Helmich, R C G; Bäumer, T; Siebner, H R; Bloem, B R; Münchau, A

    2005-11-01

    A conditioning electrical stimulus to a digital nerve can inhibit the motor-evoked potentials (MEPs) in adjacent hand muscles elicited by transcranial magnetic stimulation (TMS) to the contralateral primary motor cortex (M1) when given 25-50 ms before the TMS pulse. This is referred to as short-latency afferent inhibition (SAI). We studied inter-hemispheric differences (Experiment 1) and within-limb somatotopy (Experiment 2) of SAI in healthy right-handers. In Experiment 1, conditioning electrical pulses were applied to the right or left index finger (D2) and MEPs were recorded from relaxed first dorsal interosseus (FDI) and abductor digiti minimi (ADM) muscles ipsilateral to the conditioning stimulus. We found that SAI was more pronounced in right hand muscles. In Experiment 2, electrical stimulation was applied to the right D2 and MEPs were recorded from ipsilateral FDI, extensor digitorum communis (EDC) and biceps brachii (BB) muscles. The amount of SAI did not differ between FDI, EDC and BB muscles. These data demonstrate inter-hemispheric differences in the processing of cutaneous input from the hand, with stronger SAI in the dominant left hemisphere. We also found that SAI occurred not only in hand muscles adjacent to electrical digital stimulation, but also in distant hand and forearm and also proximal arm muscles. This suggests that SAI induced by electrical D2 stimulation is not focal and somatotopically specific, but a more widespread inhibitory phenomenon.

  5. Afferent input regulates the formation of distal dendritic branches.

    PubMed

    Mizrahi, Adi; Libersat, Frederic

    2002-10-07

    During postembryonic development, the dendritic arbors of neurons grow to accommodate new incoming synaptic inputs. Our goal was to examine which features of dendritic architecture of postsynaptic interneurons are regulated by these synaptic inputs. To address this question, we took advantage of the cockroach cercal system where the morphology of the sensory giant interneurons (GIs) is uniquely identified and, therefore, amenable to quantitative analysis. We analyzed the three-dimensional architecture of chronically deafferented vs. normally developed dendritic trees of a specific identified GI, namely GI2. GI2 shows five prominent dendrites, four of which were significantly altered after deafferentation. De-afferentation induced an average of 55% decrease in metric measures (number of branch points, total length, and total surface area) on the entire dendritic tree. Sholl and branch order analysis showed a decrease in the most distal and higher order branches. We suggest that afferent input plays a specific role in shaping the morphology of dendritic trees by regulating the formation or maintenance of high-order distal branches.

  6. Dynamic GABAergic afferent modulation of AgRP neurons

    PubMed Central

    Garfield, Alastair S; Shah, Bhavik P; Burgess, Christian R; Li, Monica M; Li, Chia; Steger, Jennifer S; Madara, Joseph C; Campbell, John N; Kroeger, Daniel; Scammell, Thomas E; Tannous, Bakhos A; Myers, Martin G; Andermann, Mark L; Krashes, Michael J; Lowell, Bradford B

    2017-01-01

    Agouti-related peptide (AgRP) neurons of the arcuate nucleus of the hypothalamus (ARC) promote homeostatic feeding at times of caloric insufficiency, yet they are rapidly suppressed by food-related sensory cues prior to ingestion. Here we identify a highly selective inhibitory afferent to AgRP neurons that serves as a neural determinant of this rapid modulation. Specifically, GABAergic projections arising from the ventral compartment of the dorsomedial nucleus of the hypothalamus (vDMH) contribute to the pre-consummatory modulation of ARCAgRP neurons. In a manner reciprocal to ARCAgRP neurons, ARC-projecting leptin receptor (LepR)-expressing GABAergic DMH neurons exhibit rapid activation upon availability of food that additionally reflects the relative value of the food. Thus, DMHLepR neurons form part of the sensory network that relays real-time information about the nature and availability of food to dynamically modulate ARCAgRP neuron activity and feeding behavior. PMID:27643429

  7. Permanent reorganization of Ia afferent synapses on motoneurons after peripheral nerve injuries

    PubMed Central

    Alvarez, Francisco J.; Bullinger, Katie L.; Titus, Haley E.; Nardelli, Paul; Cope, Timothy C.

    2010-01-01

    After peripheral nerve injuries to a motor nerve the axons of motoneurons and proprioceptors are disconnected from the periphery and monosynaptic connections from group I afferents and motoneurons become diminished in the spinal cord. Following successful reinnervation in the periphery, motor strength, proprioceptive sensory encoding, and Ia afferent synaptic transmission on motoneurons partially recover. Muscle stretch reflexes, however, never recover and motor behaviors remain uncoordinated. In this review, we summarize recent findings that suggest that lingering motor dysfunction might be in part related to decreased connectivity of Ia afferents centrally. First, sensory afferent synapses retract from lamina IX causing a permanent relocation of the inputs to more distal locations and significant disconnection from motoneurons. Second, peripheral reconnection between proprioceptive afferents and muscle spindles is imperfect. As a result, a proportion of sensory afferents that retain central connections with motoneurons might not reconnect appropriately in the periphery. A hypothetical model is proposed in which the combined effect of peripheral and central reconnection deficits might explain the failure of muscle stretch to initiate or modulate firing of many homonymous motoneurons. PMID:20536938

  8. Classification of longissimus lumborum muscle spindle afferents in the anaesthetized cat.

    PubMed

    Durbaba, R; Taylor, A; Ellaway, P H; Rawlinson, S

    2006-03-01

    Recordings have been made from 127 single muscle spindle afferents from the longissimus lumborum muscles of anaesthetized cats. They have been characterized by their responses to passive muscle stretch and the effects of succinylcholine (SCh) and by their sensitivity to vibration. The use of SCh permitted the assessment for each afferent of the influence of bag1 (b1) and bag2 (b2) intrafusal muscle fibres. From this, on the assumption that all afferents were affected by chain (c) fibres, they were classified in four groups: b1b2c (41.9%), b2c (51.4%), b1c (1.3%) and c (5.4%). All the afferents with b1 influence were able to respond one to one to vibration at frequencies above 100 Hz and were considered to belong to primary endings. On the basis of the vibration test, 64% of the b2c type afferents appeared to be primaries and 36% secondaries. Of the units classified as primaries, 41% were designated as b2c and would not therefore be able to respond to dynamic fusimotor activity. The significance of this relatively high proportion of b2c-type spindle primary afferents is discussed in relation to the specialized postural function of the back muscles.

  9. The role of the renal afferent and efferent nerve fibers in heart failure

    PubMed Central

    Booth, Lindsea C.; May, Clive N.; Yao, Song T.

    2015-01-01

    Renal nerves contain afferent, sensory and efferent, sympathetic nerve fibers. In heart failure (HF) there is an increase in renal sympathetic nerve activity (RSNA), which can lead to renal vasoconstriction, increased renin release and sodium retention. These changes are thought to contribute to renal dysfunction, which is predictive of poor outcome in patients with HF. In contrast, the role of the renal afferent nerves remains largely unexplored in HF. This is somewhat surprising as there are multiple triggers in HF that have the potential to increase afferent nerve activity, including increased venous pressure and reduced kidney perfusion. Some of the few studies investigating renal afferents in HF have suggested that at least the sympatho-inhibitory reno-renal reflex is blunted. In experimentally induced HF, renal denervation, both surgical and catheter-based, has been associated with some improvements in renal and cardiac function. It remains unknown whether the effects are due to removal of the efferent renal nerve fibers or afferent renal nerve fibers, or a combination of both. Here, we review the effects of HF on renal efferent and afferent nerve function and critically assess the latest evidence supporting renal denervation as a potential treatment in HF. PMID:26483699

  10. The role of the renal afferent and efferent nerve fibers in heart failure.

    PubMed

    Booth, Lindsea C; May, Clive N; Yao, Song T

    2015-01-01

    Renal nerves contain afferent, sensory and efferent, sympathetic nerve fibers. In heart failure (HF) there is an increase in renal sympathetic nerve activity (RSNA), which can lead to renal vasoconstriction, increased renin release and sodium retention. These changes are thought to contribute to renal dysfunction, which is predictive of poor outcome in patients with HF. In contrast, the role of the renal afferent nerves remains largely unexplored in HF. This is somewhat surprising as there are multiple triggers in HF that have the potential to increase afferent nerve activity, including increased venous pressure and reduced kidney perfusion. Some of the few studies investigating renal afferents in HF have suggested that at least the sympatho-inhibitory reno-renal reflex is blunted. In experimentally induced HF, renal denervation, both surgical and catheter-based, has been associated with some improvements in renal and cardiac function. It remains unknown whether the effects are due to removal of the efferent renal nerve fibers or afferent renal nerve fibers, or a combination of both. Here, we review the effects of HF on renal efferent and afferent nerve function and critically assess the latest evidence supporting renal denervation as a potential treatment in HF.

  11. Coarse topographic organization of pheromone-sensitive afferents from different antennal surfaces in the American cockroach.

    PubMed

    Nishino, Hiroshi; Watanabe, Hidehiro; Kamimura, Itsuro; Yokohari, Fumio; Mizunami, Makoto

    2015-05-19

    In contrast to visual, auditory, taste, and mechanosensory neuropils, in which sensory afferents are topographically organized on the basis of their peripheral soma locations, axons of cognate sensory neurons from different locations of the olfactory sense organ converge onto a small spherical neuropil (glomerulus) in the first-order olfactory center. In the cockroach Periplaneta americana, sex pheromone-sensitive afferents with somata in the antero-dorsal and postero-ventral surfaces of a long whip-like antenna are biased toward the anterior and posterior regions of a macroglomerulus, respectively. In each region, afferents with somata in the more proximal antenna project to more proximal region, relative to the axonal entry points. However, precise topography of afferents in the macroglomerulus has remained unknown. Using single and multiple neuronal stainings, we showed that afferents arising from anterior, dorsal, ventral and posterior surfaces of the proximal regions of an antenna were biased progressively from the anterior to posterior region of the macroglomerulus, reflecting chiasmatic axonal re-arrangements that occur immediately before entering the antennal lobe. Morphologies of individual afferents originating from the proximal antenna matched results of mass neuronal stainings, but their three-dimensional origins in the antenna were hardly predictable on the basis of the projection patterns. Such projection biases made by neuronal populations differ from strict somatotopic projections of antennal mechanosensory neurons in the same species, suggesting a unique sensory mechanism to process information about odor location and direction on a single antenna.

  12. FMRFamide-related peptide expression in the vestibular-afferent neurons.

    PubMed

    Mercado, Francisco; López, Iván; Ortega, Aida; Almanza, Angélica; Soto, Enrique; Vega, Rosario

    2012-03-28

    Vestibular-afferent neurons innervate hair cells from the sensory epithelia of vestibular end-organs and their action-potential discharge dynamics are driven by linear and angular accelerations of the head. The electrical activity of the vestibular-afferent neurons depends on their intrinsic properties and on the synaptic input from hair cells and from the terminals of the efferent system. Here we report that vestibular-afferent neurons of the rat are immunoreactive to RFamide-related peptides, and that the stronger signal comes from calyx-shaped neuron dendrites, with no signal detected in hair cells or supporting cells. The whole-cell voltage clamp recording of isolated afferent neurons showed that they express robust acid-sensing ionic currents (ASICs). Extracellular multiunit recordings of the vestibular nerve in a preparation in vitro of the rat inner ear showed that the perfusion of FMRFamide (a snail ortholog of this family of neuropeptides) exerts an excitatory effect on the afferent-neurons spike-discharge rate. Because the FMRFamide cannot activate the ASIC but reduces its desensitization generating a more robust current, its effect indicates that the ASIC are tonically active in the vestibular-afferent neurons and modulated by RFamide-like peptides.

  13. Activation of vagal afferents in the rat duodenum by protein digests requires PepT1.

    PubMed

    Darcel, N P; Liou, A P; Tomé, D; Raybould, H E

    2005-06-01

    Intestinal infusion of protein digests activates a vago-vagal reflex inhibition of gastric motility. Protein digests release cholecystokinin (CCK) from enteroendocrine cells; however, the precise cellular mechanisms leading to vagal afferent activation is unclear. The hypothesis that the oligopeptide transporter PepT1 plays a major role in the initiation of this vago-vagal reflex was tested by recording activation of duodenal vagal afferent activity and inhibition of gastric motility in response to protein hydrolysates in the presence of 4-aminomethylbenzoic acid (4-AMBA), a competitive inhibitor of PepT1, or 4-aminophenylacetic acid (4-APAA), an inactive 4-AMBA analog. Duodenal infusion of the protein hydrolysate increased vagal afferent discharge and inhibited gastric motility; these responses were abolished by concomitant infusion of 4-AMBA, but not 4-APAA. Duodenal infusion with Cefaclor, a substrate of PepT1, increased duodenal vagal afferent activity; Cefaclor and protein hydrolysates selectively activated CCK-responsive vagal afferents. This study demonstrates that products of protein digestion increase spontaneous activity of CCK-sensitive duodenal vagal afferents via a mechanism involving the oligopeptide transporter PepT1.

  14. Role of TRPV1 in high-threshold rat colonic splanchnic afferents is revealed by inflammation.

    PubMed

    Phillis, Benjamin D; Martin, Chris M; Kang, Daiwu; Larsson, Håkan; Lindström, Erik A; Martinez, Vicente; Blackshaw, L Ashley

    2009-08-07

    The vanilloid-1 receptor TRPV1 is known to play a role in extrinsic gastrointestinal afferent function. We investigated the role of TRPV1 in mechanosensitivity in afferents from normal and inflamed tissue. Colonic mechanosensitivity was determined in an in vitro rat colon preparation by recording from attached splanchnic nerves. Recordings were made from serosal/mesenteric afferents responding only at high thresholds to graded mechanical stimulation with von Frey probes. Colonic inflammation was induced by adding 5% dextran sulphate sodium (DSS) to the drinking water for 5 days, and was confirmed by histopathology. The selective TRPV1 antagonist, SB-750364 (10(-8) to 10(-6)M), was tested on mechanosensory stimulus response functions of afferents from normal and inflamed preparations (N=7 each). Mechanosensory responses had thresholds of 1-2g, and maximal responses were observed at 12 g. The stimulus response function was not affected by DSS-induced colitis. SB-750364 had no effect on stimulus response functions in normal preparations, but reduced (up to 60%) in a concentration-dependent manner those in inflammation (2-way ANOVA, p<0.05). Moreover, in inflamed tissue, spontaneous afferent activity showed a dose-dependent trend toward reduction with SB-750364. We conclude that mechanosensitivity of high-threshold serosal colonic splanchnic afferents to graded stimuli is unaffected during DSS colitis. However, there is a positive influence of TRPV1 in mechanosensitivity in inflammation, suggesting up-regulation of excitatory TRPV1-mediated mechanisms.

  15. Sensitizing effects of lafutidine on CGRP-containing afferent nerves in the rat stomach

    PubMed Central

    Nishihara, Katsushi; Nozawa, Yoshihisa; Nakano, Motoko; Ajioka, Hirofusa; Matsuura, Naosuke

    2002-01-01

    Capsaicin sensitive afferent nerves play an important role in gastric mucosal defensive mechanisms. Capsaicin stimulates afferent nerves and enhances the release of calcitonin gene-related peptide (CGRP), which seems to be the predominant neurotransmitter of spinal afferents in the rat stomach, exerting many pharmacological effects by a direct mechanism or indirectly through second messengers such as nitric oxide (NO). Lafutidine is a new type of anti-ulcer drug, possessing both an antisecretory effect, exerted via histamine H2 receptor blockade, and gastroprotective activities. Studies with certain antagonists or chemical deafferentation techniques suggest the gastroprotective actions of lafutidine to be mediated by capsaicin sensitive afferent nerves, but this is an assumption based on indirect techniques. In order to explain the direct relation of lafutidine to afferent nerves, we conducted the following studies. We determined CGRP and NO release from rat stomach and specific [3H]-resiniferatoxin (RTX) binding to gastric vanilloid receptor subtype 1 (VR1), which binds capsaicin, using EIA, a microdialysis system and a radioreceptor assay, respectively. Lafutidine enhanced both CGRP and NO release from the rat stomach induced by a submaximal dose of capsaicin, but had no effect on specific [3H]-RTX and capsaicin binding to VR1. In conclusion, our findings demonstrate that lafutidine modulates the activity of capsaicin sensitive afferent nerves in the rat stomach, which may be a key mechanism involved in its gastroprotective action. PMID:11906962

  16. Raphe magnus and reticulospinal actions on primary afferent depolarization of group I muscle afferents in the cat.

    PubMed

    Quevedo, J; Eguibar, J R; Jiménez, I; Rudomin, P

    1995-02-01

    1. In the anaesthetized cat, electrical stimulation of the bulbar reticular formation produced a short latency (2.1 +/- 0.3 ms) positive potential in the cord dorsum. In contrast, stimulation of the nucleus raphe magnus with strengths below 50 microA evoked a slow negative potential with a mean latency of 5.5 +/- 0.6 ms that persisted after sectioning the contralateral pyramid and was abolished by sectioning the ipsilateral dorsolateral funiculus. 2. The field potentials evoked by stimulation of the bulbar reticular formation and of the nucleus raphe magnus had a different intraspinal distribution, suggesting activation of different sets of segmental interneurones. 3. Stimulation of these two supraspinal nuclei produced primary afferent depolarization (PAD) in single Ib fibres and inhibited the PAD elicited by group I volleys in single Ia fibres. The inhibition of the PAD of Ia fibres produced by reticulospinal and raphespinal inputs appears to be exerted on different interneurones along the PAD pathway. 4. It is concluded that, although reticulospinal and raphespinal pathways have similar inhibitory effects on PAD of Ia fibres, and similar excitatory effects on the PAD of Ib fibres, their actions are conveyed by partly independent pathways. This would allow their separate involvement in the control of posture and movement.

  17. Raphe magnus and reticulospinal actions on primary afferent depolarization of group I muscle afferents in the cat.

    PubMed Central

    Quevedo, J; Eguibar, J R; Jiménez, I; Rudomin, P

    1995-01-01

    1. In the anaesthetized cat, electrical stimulation of the bulbar reticular formation produced a short latency (2.1 +/- 0.3 ms) positive potential in the cord dorsum. In contrast, stimulation of the nucleus raphe magnus with strengths below 50 microA evoked a slow negative potential with a mean latency of 5.5 +/- 0.6 ms that persisted after sectioning the contralateral pyramid and was abolished by sectioning the ipsilateral dorsolateral funiculus. 2. The field potentials evoked by stimulation of the bulbar reticular formation and of the nucleus raphe magnus had a different intraspinal distribution, suggesting activation of different sets of segmental interneurones. 3. Stimulation of these two supraspinal nuclei produced primary afferent depolarization (PAD) in single Ib fibres and inhibited the PAD elicited by group I volleys in single Ia fibres. The inhibition of the PAD of Ia fibres produced by reticulospinal and raphespinal inputs appears to be exerted on different interneurones along the PAD pathway. 4. It is concluded that, although reticulospinal and raphespinal pathways have similar inhibitory effects on PAD of Ia fibres, and similar excitatory effects on the PAD of Ib fibres, their actions are conveyed by partly independent pathways. This would allow their separate involvement in the control of posture and movement. Images Figure 6 PMID:7738852

  18. Discharges in human muscle spindle afferents during a key-pressing task.

    PubMed

    Dimitriou, Michael; Edin, Benoni B

    2008-11-15

    Most manual tasks demand a delicate control of the wrist. Sensory information for this control, e.g. about the position and movement velocity of the hand, is assumed to be primarily provided by muscle spindle afferents. It is known that human muscle spindles in relaxed muscles behave as stretch receptors but it is unclear how they discharge during 'natural' hand movements, since their discharges can also be affected by extrafusal contractions and fusimotor activity. We therefore let subjects perform a centre-out-centre key-pressing task on buttons laid out in a 3 x 3 pattern, a task that allowed unconstrained hand and finger movements and required precise control of the wrist. Microneurography recordings from muscle spindle afferents of the wrist extensor muscles were obtained along with wrist kinematics and electromyographic signals. The discharge rates of afferents were more phase advanced than expected on the length of the radial wrist extensor, which acted as an anti-gravity muscle in the key-pressing task. As such, both acceleration and velocity had significant impacts on the discharge rate of primary afferents, velocity on that of secondary afferents, and length had no impact on either afferent type. The response patterns were different for the two types of muscle spindle afferents from the predominantly eccentrically contracting ulnar wrist extensor: muscle length and velocity had significant impacts on the ensemble response of secondary afferents whereas the primary afferents showed highly variable responses. Accordingly, good predictions of the radial ulnar angular velocity were possible from spindle ensemble responses (R(2) = 0.85) whereas length could be predicted only for phases with lengthening of the ulnar wrist extensor. There are several possible explanations for the unexpectedly large phase advance of spindle afferents in the radial wrist extensor. Given the compliance of tendons, for instance, the phase relationship between the muscle fascicle

  19. Segmental and supraspinal control of synaptic effectiveness of functionally identified muscle afferents in the cat.

    PubMed

    Enríquez, M; Jiménez, I; Rudomin, P

    1996-01-01

    The present investigation documents the patterns of primary afferent depolarization (PAD) of single, functionally identified muscle afferents from the medial gastrocnemius nerve in the intact, anesthetized cat. Classification of the impaled muscle afferents as from muscle spindles or from tendon organs was made according to several criteria, which comprised measurement of conduction velocity and electrical threshold of the peripheral axons, and the maximal frequency followed by the afferent fibers during vibration, as well as the changes in discharge frequency during longitudinal stretch, the projection of the afferent fiber to the motor pool, and, in unparalyzed preparations, the changes in afferent activity during a muscle twitch. In confirmation of a previous study, we found that most muscle spindle afferents (46.1-66.6%, depending on the combination of criteria utilized for receptor classification) had a type A PAD pattern. That is, they were depolarized by stimulation of group I fibers of the posterior biceps and semitendinosus (PBSt) nerve, but not by stimulation of cutaneous nerves (sural and superficial peroneus) or the bulbar reticular formation (RF), which in many cases inhibited the PBSt-induced PAD. In addition, we found a significant fraction of muscle spindle primaries that were depolarized by stimulation of group I PBSt fibers and also by stimulation of the bulbar RF. Stimulation of cutaneous nerves produced PAD in 9.1-31.2% of these fibers (type B PAD pattern) and no PAD in 8.2-15.4% (type C PAD pattern). In contrast to muscle spindle afferents, only the 7.7-15.4% of fibers from tendon organs had a type A PAD pattern, 23-46.1% had a type B and 50-61.5% a type C PAD pattern. These observations suggest that the neuronal circuitry involved in the control of the synaptic effectiveness of muscle spindles and tendon organs is subjected to excitatory as well as to inhibitory influences from cutaneous and reticulospinal fibers. As shown in the accompanying

  20. The action of knee joint afferents and the concomitant influence of cutaneous (sural) afferents on the discharge of triceps surae gamma-motoneurones in the cat.

    PubMed

    Ellaway, P H; Davey, N J; Ferrell, W R; Baxendale, R H

    1996-01-01

    Electrical stimulation of group II joint afferents of the posterior articular nerve (PAN) to the knee evoked short-latency facilitation and/or inhibition of the background discharge of gastrocnemius-soleus (GS) gamma-motoneurones in decerebrated spinal cats. The latencies of these responses were consistent with mediation via segmental oligosynaptic spinal pathways. In addition, a longer-latency facilitation was frequently observed. Mechanical non-noxious stimulation of the skin within the field of innervation of the sural nerve, on the lateral aspect of the heel, suppressed the short-latency facilitation, but not the inhibition or long-latency facilitation. Brief mechanical indentation of the posterior aspect of the knee joint capsule could elicit facilitation or inhibition of gamma-motoneurones. Facilitation, but not inhibition, was blocked by anaesthesia or section of the PAN. Both actions could be suppressed by mechanical stimulation of the heel. We conclude that GS gamma-motoneurones receive both facilitatory and inhibitory segmental inputs from group II articular afferents arising in the knee joint. Cutaneous afferents from the sural field exert a selective inhibitory influence over the facilitation of fusimotor discharge by articular afferents.

  1. Angiotensin II Enhances Connecting Tubule Glomerular Feedback (CTGF)

    PubMed Central

    Ren, YiLin; D’Ambrosio, Martin A.; Garvin, Jeffrey L.; Carretero, Oscar A.

    2011-01-01

    Increasing Na delivery to epithelial Na channels (ENaC) in the connecting tubule (CNT) causes dilation of the afferent arteriole (Af-Art), a process we call CNT glomerular feedback (CTGF). Angiotensin II (Ang II) stimulates ENaC in the collecting duct via AT1 receptors. We hypothesized that Ang II in the CNT lumen enhances CTGF by activation of AT1 receptors, protein kinase C (PKC) and ENaC. Rabbit Af-Arts and their adherent CNT were microperfused and preconstricted with norepinephrine. Each experiment involved generating two consecutive concentration-response curves by increasing NaCl in the CNT lumen. During the control period, the maximum dilation of the Af-Art was 7.9 ± 0.4 μm, and the concentration of NaCl in the CNT needed to achieve half maximal response (EC50) was 34.7 ± 5.2 mmol/L. After adding Ang II (10−9 mol/L) to the CNT lumen, the maximal response was 9.5 ± 0.7 μm and the EC50 was 11.6 ± 1.3 mmol/L (P=0.01 vs. control). Losartan, an AT1 antagonist (10−6 mol/L) blocked the stimulatory effect of Ang II, PD123319, an AT2 antagonist (10−6 mol/L) did not. The PKC inhibitor staurosporine (10−8 mol/L) added to the CNT inhibited the stimulatory effect of Ang II. The ENaC inhibitor benzamil (10−6 mol/L) prevented both CTGF and its stimulation by Ang II. We concluded that Ang II in the CNT lumen enhances CTGF via activation of AT1, and that this effect requires activation of PKC and ENaC. Potentiation of CTGF by Ang II could help preserve glomerular filtration rate in the presence of renal vasoconstriction. PMID:20696981

  2. Targeting primary afferent nerves for novel antitussive therapy.

    PubMed

    Undem, Bradley J; Carr, Michael J

    2010-01-01

    The best available data support the hypothesis that there are at least two types of vagal nerves responsible for initiating coughing reflexes. One type of nerve conducts action potentials in the A-range and is characterized by rapidly adapting responses to mechanical probing or acidification of the large airway epithelium. Stimulation of these nerves can evoke cough in unconscious experimental animals and humans. These nerves are important in immediate cough evoked by aspiration and as such perform a critical role in airway defense. The other type of primary afferent nerve involved in cough is the vagal C-fiber. Inhalation of selective C-fiber stimulants leads to cough only in conscious animals. In clinical studies, inhalation of a low concentration of a C-fiber stimulant causes an irritating, itchy urge-to-cough sensation that mimics the urge-to-cough sensations associated with respiratory tract infection, post-infection, gastroesophageal reflux disorders, and inflammatory airway diseases. Here we discuss the recent advances in sensory neurobiology that allow for the targeting of vagal C-fibers for novel antitussive therapy. No attempts are made to be all-inclusive with respect to the numerous possible molecular targets being considered to accomplish this goal. Rather, two general strategies are discussed: decreasing generator potential amplitude and decreasing the efficiency by which a generator potential evokes action-potential discharge. For the first category we focus on two targets, transient receptor potential vanilloid 1 and transient receptor potential A1. For the latter category we focus on recent advances in voltage-gated sodium (Na(V)) channel biology.

  3. Potentiation of mouse vagal afferent mechanosensitivity by ionotropic and metabotropic glutamate receptors

    PubMed Central

    Slattery, James A; Page, Amanda J; Dorian, Camilla L; Brierley, Stuart M; Blackshaw, L Ashley

    2006-01-01

    Glutamate acts at central synapses via ionotropic (iGluR – NMDA, AMPA and kainate) and metabotropic glutamate receptors (mGluRs). Group I mGluRs are excitatory whilst group II and III are inhibitory. Inhibitory mGluRs also modulate peripherally the mechanosensitivity of gastro-oesophageal vagal afferents. Here we determined the potential of excitatory GluRs to play an opposing role in modulating vagal afferent mechanosensitivity, and investigated expression of receptor subunit mRNA within the nodose ganglion. The responses of mouse gastro-oesophageal vagal afferents to graded mechanical stimuli were investigated before and during application of selective GluR ligands to their peripheral endings. Two types of vagal afferents were tested: tension receptors, which respond to circumferential tension, and mucosal receptors, which respond only to mucosal stroking. The selective iGluR agonists NMDA and AMPA concentration-dependently potentiated afferent responses. Their corresponding antagonists AP-5 and NBQX alone attenuated mechanosensory responses as did the non-selective antagonist kynurenate. The kainate selective agonist SYM-2081 had minor effects on mechanosensitivity, and the antagonist UBP 302 was ineffective. The mGluR5 antagonist MTEP concentration-dependently inhibited mechanosensitivity. Efficacy of agonists and antagonists differed on mucosal and tension receptors. We conclude that excitatory modulation of afferent mechanosensitivity occurs mainly via NMDA, AMPA and mGlu5 receptors, and the role of each differs according to afferent subtypes. PCR data indicated that all NMDA, kainate and AMPA receptor subunits plus mGluR5 are expressed, and are therefore candidates for the neuromodulation we observed. PMID:16945965

  4. Functional expression of α7-nicotinic acetylcholine receptors by muscle afferent neurons

    PubMed Central

    Baxter, James C.; Ramachandra, Renuka; Mayne, Dustin R.

    2014-01-01

    The exercise pressor reflex (EPR) is generated by group III and IV muscle afferents during exercise to increase cardiovascular function. Muscle contraction is triggered by ACh, which is metabolized into choline that could serve as a signal of exercise-induced activity. We demonstrate that ACh can induce current in muscle afferents neurons isolated from male Sprague-Dawley rats. The nicotinic ACh receptors (nAChRs) appear to be expressed by some group III-IV neurons since capsaicin (TRPV1) and/or ATP (P2X) induced current in 56% of ACh-responsive neurons. α7- And α4β2-nAChRs have been shown to be expressed in sensory neurons. An α7-nAChR antibody stained 83% of muscle afferent neurons. Functional expression was demonstrated by using the specific α7-nAChR blockers α-conotoxin ImI (IMI) and methyllycaconitine (MLA). MLA inhibited ACh responses in 100% of muscle afferent neurons, whereas IMI inhibited ACh responses in 54% of neurons. Dihydro-β-erythroidine, an α4β2-nAChR blocker, inhibited ACh responses in 50% of muscle afferent neurons, but recovery from block was not observed. Choline, an α7-nAChR agonist, elicited a response in 60% of ACh-responsive neurons. Finally, we demonstrated the expression of α7-nAChR by peripherin labeled (group IV) afferent fibers within gastrocnemius muscles. Some of these α7-nAChR-positive fibers were also positive for P2X3 receptors. Thus choline could serve as an activator of the EPR by opening α7-nAChR expressed by group IV (and possible group III) afferents. nAChRs could become pharmacological targets for suppressing the excessive EPR activation in patients with peripheral vascular disease. PMID:24966300

  5. Spinal projection of spindle afferents of the longissimus lumborum muscles of the cat.

    PubMed

    Durbaba, R; Taylor, A; Ellaway, P H; Rawlinson, S

    2007-04-15

    The connections and monosynaptic projections of muscle spindle afferents of individual heads of the longissimus lumborum have been studied in cats by natural stimulation, by electrical stimulation and by spike-triggered averaging from single identified afferents. The spindle afferents were classified by sensitivity to vibration and by the effect of succinylcholine on their response to ramp-and-hold muscle stretches. Axonal conduction and synaptic effects were recorded as field potentials and focal synaptic potentials during systematic exploration of the spinal cord in segments L1 to L4 with extracellular metal microelectrodes, singly and in linear arrays. Ascending branches of afferent axons within the cord had a significantly higher mean conduction velocity (CV: 56.5 m s(-1)) than descending branches (40.8 m s(-1)). The CV of ascending branches was significantly positively correlated with a measure of the strength of intrafusal bag(2) muscle fibre contacts, but not to a measure of bag(1) contacts. Two sites of monosynaptic excitatory projection in the cord were identified, namely to the intermediate region (laminae V, VI and VII) and to ventral horn region (laminae VIII and IX). In tests of 154 single afferents, signs of central projection were detected for 60, providing 122 regions of maximum negative focal synaptic potentials (FSPs) of mean amplitude 7.51 microV. Their longitudinal spacing indicated that axons gave off descending collaterals at intervals of 1.5-3.5 mm. Based on the amplitude of FSPs, the projection of secondary afferents is stronger than that of primaries in the intermediate region and possibly also in the ventral horn region. Evidence is also presented that spindle afferent input from different heads of the longissimus converges into any given spinal segment and that input in one spinal root projects to adjacent segments. It is concluded that the organization of the longissimus monosynaptic spindle input favours relatively tonic and diffuse

  6. Comparison of baroreceptive to other afferent synaptic transmission to the medial solitary tract nucleus.

    PubMed

    Andresen, Michael C; Peters, James H

    2008-11-01

    Cranial nerve visceral afferents enter the brain stem to synapse on neurons within the solitary tract nucleus (NTS). The broad heterogeneity of both visceral afferents and NTS neurons makes understanding afferent synaptic transmission particularly challenging. To study a specific subgroup of second-order neurons in medial NTS, we anterogradely labeled arterial baroreceptor afferents of the aortic depressor nerve (ADN) with lipophilic fluorescent tracer (i.e., ADN+) and measured synaptic responses to solitary tract (ST) activation recorded from dye-identified neurons in medial NTS in horizontal brain stem slices. Every ADN+ NTS neuron received constant-latency ST-evoked excitatory postsynaptic currents (EPSCs) (jitter < 192 micros, SD of latency). Stimulus-recruitment profiles showed single thresholds and no suprathreshold recruitment, findings consistent with EPSCs arising from a single, branched afferent axon. Frequency-dependent depression of ADN+ EPSCs averaged approximately 70% for five shocks at 50 Hz, but single-shock failure rates did not exceed 4%. Whether adjacent ADN- or those from unlabeled animals, other second-order NTS neurons (jitters < 200 micros) had ST transmission properties indistinguishable from ADN+. Capsaicin (CAP; 100 nM) blocked ST transmission in some neurons. CAP-sensitive ST-EPSCs were smaller and failed over five times more frequently than CAP-resistant responses, whether ADN+ or from unlabeled animals. Variance-mean analysis of ST-EPSCs suggested uniformly high probabilities for quantal glutamate release across second-order neurons. While amplitude differences may reflect different numbers of contacts, higher frequency-dependent failure rates in CAP-sensitive ST-EPSCs may arise from subtype-specific differences in afferent axon properties. Thus afferent transmission within medial NTS differed by axon class (e.g., CAP sensitive) but was indistinguishable by source of axon (e.g., baroreceptor vs. nonbaroreceptor).

  7. The unsilent majority-TRPV1 drives "spontaneous" transmission of unmyelinated primary afferents within cardiorespiratory NTS.

    PubMed

    Andresen, Michael C; Hofmann, Mackenzie E; Fawley, Jessica A

    2012-12-15

    Cranial primary afferent sensory neurons figure importantly in homeostatic control of visceral organ systems. Of the two broad classes of visceral afferents, the role of unmyelinated or C-type class remains poorly understood. This review contrasts key aspects of peripheral discharge properties of C-fiber afferents and their glutamate transmission mechanisms within the solitary tract nucleus (NTS). During normal prevailing conditions, most information arrives at the NTS through myelinated A-type nerves. However, most of visceral afferent axons (75-90%) in NTS are unmyelinated, C-type axons. Centrally, C-type solitary tract (ST) afferent terminals have presynaptic transient receptor potential vanilloid type 1 (TRPV1) receptors. Capsaicin activation of TRPV1 blocks phasic or synchronous release of glutamate but facilitates release of glutamate from a separate pool of vesicles. This TRPV1-operated pool of vesicles is active at normal temperatures and is responsible for actively driving a 10-fold higher release of glutamate at TRPV1 compared with TRPV1- terminals even in the absence of afferent action potentials. This novel TRPV1 mechanism is responsible for an additional asynchronous release of glutamate that is not present in myelinated terminals. The NTS is rich with presynaptic G protein-coupled receptors, and the implications of TRPV1-operated glutamate offer unique targets for signaling in C-type sensory afferent terminals from neuropeptides, inflammatory mediators, lipid metabolites, cytokines, and cannabinoids. From a homeostatic view, this combination could have broad implications for integration in chronic pathological disturbances in which the numeric dominance of C-type endings and TRPV1 would broadly disturb multisystem control mechanisms.

  8. Differential modulation of primary afferent depolarization of segmental and ascending intraspinal collaterals of single muscle afferents in the cat spinal cord.

    PubMed

    Rudomin, P; Lomelí, J; Quevedo, J

    2004-06-01

    We examined primary afferent depolarization (PAD) in the anesthetized cat elicited in 109 pairs of intraspinal collaterals of single group I afferents from the gastrocnemius nerve, one of the pair ending in the L3 segment, around the Clarke's column nuclei, and the other in the L6 segment within the intermediate zone. Tests for refractoriness were made to assess whether the responses produced by intraspinal stimulation in the L3 and L6 segments were due to activation of collaterals of the same afferent fiber. PAD in each collateral was estimated by independent computer-controlled measurement of the intraspinal current required to maintain a constant probability of antidromic firing. In most fibers, stimulation of the ipsilateral posterior biceps and semitendinosus (PBSt) nerve with trains of pulses maximal for group I afferents had a qualitatively similar effect but produced a larger PAD in the L6 than in the L3 collaterals. Stimulation of cutaneous nerves (sural and superficial peroneus) with single pulses and of the posterior articular nerve, the ipsilateral reticular formation, nucleus raphe magnus and contralateral motor cortex with trains of pulses often had qualitatively different effects. They could produce PAD and/or facilitate the PBSt-induced PAD in one collateral, and produce PAH and/or inhibit the PAD in the other collateral. These patterns could be changed in a differential manner by sensory or supraspinal conditioning stimulation. In summary, the present investigation suggests that the segmental and ascending collaterals of individual afferents are not fixed routes for information transmission, but parts of dynamic systems in which information transmitted to segmental reflex pathways and to Clarke's column neurons by common sources can be decoupled by sensory and descending inputs and funneled to specific targets according to the motor tasks to be performed.

  9. Tonic and phasic differential GABAergic inhibition of synaptic actions of joint afferents in the cat.

    PubMed

    Rudomin, P; Hernández, E; Lomelí, J

    2007-01-01

    The aim of this study was to examine the functional organization of the spinal neuronal networks activated by myelinated afferent fibers in the posterior articular nerve (PAN) of the anesthetized cat. Particular attention was given to the tonic and phasic GABAa inhibitory modulation of these networks. Changes in the synaptic effectiveness of the joint afferents were inferred from changes in the intraspinal focal potentials produced by electrical stimulation of the PAN. We found that conditioning stimulation of cutaneous nerves (sural, superficial peroneus and saphenous) and of the nucleus raphe magnus often inhibited, in a differential manner, the early and late components of the intraspinal focal potentials produced by stimulation of low and high threshold myelinated PAN afferents, respectively. The degree of the inhibition depended on the strength of both the conditioning and test stimuli and on the segmental level of recording. Conditioning stimulation of group I muscle afferents was less effective, but marked depression of the early and late focal potentials was produced by stimuli exceeding 5 xT. The i.v. injection of 1-2.5 mg/kg of picrotoxin, a GABAa blocker, had relatively minor effects on the early components of the PAN focal potentials, but was able to induce a significant increase of the late components. It also reduced the inhibitory effects of cutaneous and joint nerve conditioning on PAN focal responses. Conditioning autogenetic stimulation with high-frequency trains depressed the PAN focal potentials. The late components of the PAN responses remained depressed several minutes after discontinuing the conditioning train, even after picrotoxin administration. The present observations indicate that the neuronal networks activated by the low threshold PAN afferents show a relatively small post-activation depression and appear to be subjected to a minor tonic inhibitory GABAa control. In contrast, the pathways activated by stimulation of high threshold

  10. Afferent fibers involved in the bradykinin-induced cardiovascular reflexes from the ovary in rats.

    PubMed

    Uchida, Sae; Kagitani, Fusako; Hotta, Harumi

    2015-12-01

    Bleeding or rupture of the ovary often accompanies ovarian cysts and causes severe pain and autonomic responses such as hypotension. It would be expected that ovarian afferents contribute to cardiovascular responses induced by ovarian failure. The present study examined cardiovascular responses to noxious chemical stimulation of the ovary by bradykinin, an algesic substance released by tissue damage, and explored the role of ovarian afferents in the ovarian-cardiovascular responses in anesthetized rats. Non-pregnant adult rats were anesthetized with pentobarbital and artificially ventilated. The carotid artery was cannulated to monitor blood pressure and heart rate. Noxious chemical stimulation was achieved by applying a small piece of cotton soaked with bradykinin to the surface of the ovary for 30s. Application of bradykinin (10(-4) M) to the ovary decreased heart rate and blood pressure. These cardiovascular responses were not significantly influenced by severance of the vagal nerves or the superior ovarian nerve, but were abolished by severance of the ovarian nerve plexus (ONP). Application of bradykinin (10(-4) M) to the ovary evoked afferent activity of the ONP both in vivo and in vitro preparations. These results indicate that the decreases in heart rate and blood pressure following chemical noxious stimulation of the ovary with bradykinin are reflex responses, whose afferent nerve pathway is mainly through afferent fibers in the ONP.

  11. Modelling spinal circuitry involved in locomotor pattern generation: insights from the effects of afferent stimulation

    PubMed Central

    Rybak, Ilya A; Stecina, Katinka; Shevtsova, Natalia A; McCrea, David A

    2006-01-01

    A computational model of the mammalian spinal cord circuitry incorporating a two-level central pattern generator (CPG) with separate half-centre rhythm generator (RG) and pattern formation (PF) networks has been developed from observations obtained during fictive locomotion in decerebrate cats. Sensory afferents have been incorporated in the model to study the effects of afferent stimulation on locomotor phase switching and step cycle period and on the firing patterns of flexor and extensor motoneurones. Here we show that this CPG structure can be integrated with reflex circuits to reproduce the reorganization of group I reflex pathways occurring during locomotion. During the extensor phase of fictive locomotion, activation of extensor muscle group I afferents increases extensor motoneurone activity and prolongs the extensor phase. This extensor phase prolongation may occur with or without a resetting of the locomotor cycle, which (according to the model) depends on the degree to which sensory input affects the RG and PF circuits, respectively. The same stimulation delivered during flexion produces a temporary resetting to extension without changing the timing of following locomotor cycles. The model reproduces this behaviour by suggesting that this sensory input influences the PF network without affecting the RG. The model also suggests that the different effects of flexor muscle nerve afferent stimulation observed experimentally (phase prolongation versus resetting) result from opposing influences of flexor group I and II afferents on the PF and RG circuits controlling the activity of flexor and extensor motoneurones. The results of modelling provide insights into proprioceptive control of locomotion. PMID:17008375

  12. A role for chloride in the suppressive effect of acetylcholine on afferent vestibular activity.

    PubMed

    Pantoja, A M; Holt, J C; Guth, P S

    1997-10-01

    Afferents of the frog semicircular canal (SCC) respond to acetylcholine (ACh) application (0.3-1.0 mM) with a facilitation of their activity while frog saccular afferents respond with suppression (Guth et al., 1994). All recordings are of resting (i.e., non-stimulated) multiunit activity as previously reported (Guth et al., 1994). Substitution of 80% of external chloride (Cl-) by large, poorly permeant anions of different structures (isethionate, methanesulfonate, methylsulfate, and gluconate) reduced the suppressive effect of ACh in the frog saccular afferents. This substitution did not affect the facilitatory response of SCC afferents to ACh. Chloride channel blockers were also used to test further whether Cl- is involved in the ACh suppressive effect. These included: niflumic and flufenamic acids, picrotoxin, 5-nitro-2-(-3-phenylpropylamino)benzoic acid (NPPB), and 4,4'-dinitrostilbene-2,2'-disulfonic acid (DNDS). As with the Cl- substitutions, all of these agents reduced the suppressive response to ACh in the saccule, but not the facilitatory response seen in the SCC. The suppressive effect of ACh on saccular afferents is considered to be due to activation of a nicotinic-like receptor (Guth et al., 1994; Guth and Norris, 1996). Taking into account the effects of both Cl- substitutions and Cl- channel blockers, we conclude that changes in Cl- availability influence the suppressive effect of ACh and that therefore Cl- may be involved in this effect.

  13. Vagal innervation of intestines: afferent pathways mapped with new en bloc horseradish peroxidase adaptation.

    PubMed

    Wang, Feng-Bin; Powley, Terry L

    2007-08-01

    Neural tracers have not typically been employed to determine the pathways followed by axons between their perikarya and target tissues. We have adapted the tetramethylbenzidine method for horseradish peroxidase (HRP) to stain fibers en bloc in organs and thus to delineate axonal trajectories. We have also applied this protocol to characterize the pathways that vagal afferents follow to the intestines. The protocol confirms that the proximal segment of the duodenum receives afferents carried in the vagal hepatic branch and demonstrates that vagal afferents innervating the remainder of the small and large intestines course through multiple fascicles derived from the celiac branches of the abdominal vagus. These fascicles divide, intermingle, and reorganize along the abdominal aorta and superior mesenteric artery (SMA), but not along the inferior mesenteric artery, and then project to the intestines with secondary arteries that branch from the SMA. The inferior pancreaticoduodenal, jejunal, middle colic, right colic, and ileocecocolic arteries all carry vagal afferents to segments of the intestines. As the arteries derived from the SMA divide repeatedly into successively finer branches and course to the intestines, the vagal afferent fascicles (typically a pair) running with each arterial branch also divide. These divisions generate sets/pairs of finer fascicles coursing with even the highest order arterial radicles. The vagal fascicles enter the intestinal wall with the vessels and appear to innervate the organ near the point of entry. The results verify the practicality and sensitivity of the en bloc HRP technique and suggest that the protocol could delineate other peripheral pathways.

  14. Maternal care effects on SNB motoneuron development: the mediating role of sensory afferent distribution and activity.

    PubMed

    Lenz, Kathryn M; Sengelaub, Dale R

    2009-08-01

    Maternal licking in rats affects the development of the spinal nucleus of the bulbocavernosus (SNB), a sexually dimorphic motor nucleus that controls penile reflexes involved with copulation. Reduced maternal licking produces decreased motoneuron number, size, and dendritic length in the rostral portion of the adult SNB as well as deficits in adult male copulatory behavior. Previous research suggests that decreases in perineal tactile stimulation may be responsible for these effects. To determine whether the regional effects of maternal licking on SNB morphology are driven by sensory afferent innervation of the lumbosacral spinal cord, we used WGA-HRP to reconstruct the location of sensory afferent fibers from the perineal skin. We found that these fibers are caudally concentrated relative to the area of the SNB dendritic field, with the rostral dendritic arbor receiving little perineal afferent innervation. We also assessed Fos expression following perineal tactile stimulation to determine whether it increased local spinal cord activity in the SNB dendritic field. Sixty seconds of licking-like perineal stimulation produced a transient 115% increase in Fos expression in the area of the SNB dendritic field. This effect was driven by a significant increase in Fos in the caudal portion of the SNB dendritic field, matching the pattern of perineal afferent fiber labeling. Perineal tactile stimulation also produced significantly greater Fos expression in male pups than in female pups. Together, these results suggest that perineal sensory afferent activity mediates the effects of early maternal care on the masculinization of the SNB and resultant male copulatory behavior.

  15. Ventral hippocampal afferents to the nucleus accumbens regulate susceptibility to depression

    PubMed Central

    Bagot, Rosemary C.; Parise, Eric M.; Peña, Catherine J.; Zhang, Hong-Xing; Maze, Ian; Chaudhury, Dipesh; Persaud, Brianna; Cachope, Roger; Bolaños-Guzmán, Carlos A.; Cheer, Joseph; Deisseroth, Karl; Han, Ming-Hu; Nestler, Eric J.

    2015-01-01

    Enhanced glutamatergic transmission in the nucleus accumbens (NAc), a region critical for reward and motivation, has been implicated in the pathophysiology of depression; however, the afferent source of this increased glutamate tone is not known. The NAc receives glutamatergic inputs from the medial prefrontal cortex (mPFC), ventral hippocampus (vHIP) and basolateral amygdala (AMY). Here, we demonstrate that glutamatergic vHIP afferents to NAc regulate susceptibility to chronic social defeat stress (CSDS). We observe reduced activity in vHIP in mice resilient to CSDS. Furthermore, attenuation of vHIP-NAc transmission by optogenetic induction of long-term depression is pro-resilient, whereas acute enhancement of this input is pro-susceptible. This effect is specific to vHIP afferents to the NAc, as optogenetic stimulation of either mPFC or AMY afferents to the NAc is pro-resilient. These data indicate that vHIP afferents to NAc uniquely regulate susceptibility to CSDS, highlighting an important, novel circuit-specific mechanism in depression. PMID:25952660

  16. Distribution of primary afferent fibres in the cochlear nuclei. A silver and horseradish peroxidase (HRP) study.

    PubMed Central

    Merchan, M A; Collia, F P; Merchan, J A; Saldana, E

    1985-01-01

    Horseradish peroxidase, when injected intracochlearly, is transported transganglionically to the brain stem cochlear nuclei, thus providing an excellent method for tracing the central projection of the spiral ganglion neurons. Silver impregnation using the Cajal-de Castro method, which stains axons even when inside the bone, was used as a reference technique. The combination of both procedures led to the following conclusions. Primary cochlear afferents are found only in the ventral zone of the dorsal cochlear nucleus. In this area they cover the deep and fusiform cell layers. The molecular layer shows no HRP label. The higher concentration of primary cochlear afferents in the ventral cochlear nucleus appears in its central zone; wide areas in this nucleus are not labelled at all. A thin bundle of primary cochlear afferents runs parallel to, and beneath, the granular region. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:4077711

  17. Management of afferent loop obstruction from recurrent metastatic pancreatic cancer using a venting gastrojejunostomy.

    PubMed

    Bakes, Debbie; Cain, Christian; King, Michael; Dong, Xiang Da Eric

    2013-12-15

    Pancreatic cancer is an aggressive malignancy potentially curable with surgical intervention. Following pancreaticoduodenectomy for suspected pancreatic head malignancy, patients have a high risk for both immediate and delayed problems due to surgical complications and recurrent disease. We report here a patient with pancreatic cancer treated with pancreaticoduodenectomy who developed recurrent disease resulting in obstruction of the afferent limb. The patient developed biliary obstruction and cholangitis at presentation. Her biliary tree failed to dilate which precluded safe percutaneous biliary decompression. During surgical exploration, she was found to have a dilated afferent limb at the level of the transverse mesocolon. The patient underwent decompression of the afferent limb as well as the biliary tree using a venting gastrojejunostomy to the blind loop. This represents a novel surgical approach for management of this complicated and difficult problem.

  18. Differential action of (-)-baclofen on the primary afferent depolarization produced by segmental and descending inputs.

    PubMed

    Quevedo, J; Eguibar, J R; Jiménez, I; Rudomin, P

    1992-01-01

    The purpose of the present series of experiments was to analyze, in anesthetized and paralyzed cats, the effects of (-)-baclofen and picrotoxin on the primary afferent depolarization (PAD) generated in single Ib afferent fibers by either intraspinal microstimulation or stimulation of the segmental and descending pathways. PAD was estimated by recording dorsal root potentials and by measuring the changes in the intraspinal activation threshold of single Ib muscle afferent fibers. The PAD elicited by stimulation of group I muscle or cutaneous afferents was readily depressed and often abolished 20-40 min after the intravenous injection of 1-2 mg/kg (-)-baclofen. In contrast, the same amounts of (-)-baclofen produced a relatively small depression of the PAD elicited by stimulation of the brainstem reticular formation (RF). The monosynaptic PAD produced in single Ib fibers by intraspinal microstimulation within the intermediate nucleus was depressed and sometimes abolished following the i.v. injections of 1-2 mg/kg (-)-baclofen. Twenty to forty minutes after the i.v. injection of picrotoxin (0.5-1 mg/kg), there was a strong depression of the PAD elicited by stimulation of muscle and cutaneous afferents as well as of the PAD produced by stimulation of the RF and the PAD produced by intraspinal microstimulation. The results obtained suggest that, in addition to its action on primary afferents, (-)-baclofen may depress impulse activity and/or transmitter release in a population of last-order GABAergic interneurons that mediate the PAD of Ib fibers. The existence of GABAb autoreceptors in last-order interneurons mediating the PAD may function as a self-limiting mechanism controlling the synaptic efficacy of these interneurons.

  19. Direct and Indirect Regulation of Spinal Cord Ia Afferent Terminal Formation by the γ-Protocadherins.

    PubMed

    Prasad, Tuhina; Weiner, Joshua A

    2011-01-01

    The Pcdh-γ gene cluster encodes 22 protocadherin adhesion molecules that interact as homophilic multimers and critically regulate synaptogenesis and apoptosis of interneurons in the developing spinal cord. Unlike interneurons, the two primary components of the monosynaptic stretch reflex circuit, dorsal root ganglion sensory neurons and ventral motor neurons (MNs), do not undergo excessive apoptosis in Pcdh-γ(del/del) null mutants, which die shortly after birth. However, as we show here, mutants exhibit severely disorganized Ia proprioceptive afferent terminals in the ventral horn. In contrast to the fine net-like pattern observed in wild-type mice, central Ia terminals in Pcdh-γ mutants appear clumped, and fill the space between individual MNs; quantitative analysis shows a ~2.5-fold increase in the area of terminals. Concomitant with this, there is a 70% loss of the collaterals that Ia afferents extend to ventral interneurons (vINs), many of which undergo apoptosis in the mutants. The Ia afferent phenotype is ameliorated, though not entirely rescued, when apoptosis is blocked in Pcdh-γ null mice by introduction of a Bax null allele. This indicates that loss of vINs, which act as collateral Ia afferent targets, contributes to the disorganization of terminals on motor pools. Restricted mutation of the Pcdh-γ cluster using conditional mutants and multiple Cre transgenic lines (Wnt1-Cre for sensory neurons; Pax2-Cre for vINs; Hb9-Cre for MNs) also revealed a direct requirement for the γ-Pcdhs in Ia neurons and vINs, but not in MNs themselves. Together, these genetic manipulations indicate that the γ-Pcdhs are required for the formation of the Ia afferent circuit in two ways: First, they control the survival of vINs that act as collateral Ia targets; and second, they provide a homophilic molecular cue between Ia afferents and target vINs.

  20. Botulinum toxin in Migraine: Role of transport in trigemino-somatic and trigemino-vascular afferents

    PubMed Central

    Roshni, Ramachandran; Carmen, Lam; Yaksh Tony, L

    2015-01-01

    Migraine secondary to meningeal input is referred to extracranial regions innervated by somatic afferents that project to homologous regions in the trigeminal nucleus caudalis (TNC). Reported efficacy of extracranial botulinum toxin (BoNT) in treating migraine is surprising since a local extracranial effect of BoNT cannot account for its effect upon meningeal input. We hypothesize that intradermal BoNT acts through central transport in somatic afferents. Anesthetized C57Bl/6 mice (male) received unilateral supraorbital (SO) injections of BoNT-B (1.5 U/40 μl) or saline. 3 days later, mice received ipsilateral (ipsi) -SO capsaicin (2.5 μg/30 μl) or meningeal capsaicin (4 μl of 1mg/ml). Pre-treatment with ipsi-SO BONT-B i) decreased nocicsponsive ipsilateral wiping behavior following ipsi-SO capsaicin; ii) produced cleavage of VAMP in the V1 region of ipsi-TG and in TG neurons showing WGA after SO injection; iii) reduced expression of c-fos in ipsi-TNC following ipsi-SO capsaicin; iv) reduced c-fos activation and NK-1 internalization in ipsi-TNC secondary to ipsi-meningeal capsaicin; vi) SO WGA did not label dural afferents. We conclude that BoNT-B is taken up by peripheral afferents and transported to central terminals where it inhibits transmitter release resulting in decreased activation of second order neurons. Further, this study supports the hypothesis that SO BoNT exerts a trans-synaptic action on either the second order neuron (which receives convergent input from the meningeal afferent) or the terminal/TG of the converging meningeal afferent. PMID:25958249

  1. Interactions between cutaneous and muscle afferent projections to cerebral cortex in man.

    PubMed

    Burke, D; Gandevia, S C; McKeon, B; Skuse, N F

    1982-04-01

    In order to demonstrate interactions between cutaneous and muscle afferent volleys in the ascending somatosensory pathways, different nerves of the lower limb were stimulated together in a conditioning-test paradigm, the changes in the earliest component of the cerebral potential evoked by the test stimulus being taken to indicate such an interaction. It was first confirmed that the cerebral potential evoked by stimulation of the posterior tibial nerve at the ankle is derived from muscle afferents in the mixed nerve and has shorter latencies than the cerebral potential evoked by purely cutaneous volleys in the sural nerve (see Burke et al. 1981). Complete suppression of the cerebral potential evoked by stimulation of muscle or cutaneous afferents was produced by conditioning volleys in a different nerve or in a different fascicle of the same nerve. The major factors determining the degree of suppression were found to be the relative sizes of the conditioning and test volleys and their timing, rather than whether the volleys were of cutaneous or muscular origin. It is concluded that the transmission of cutaneous or muscle afferent volleys to cortex can be profoundly altered in normal subjects by conditioning activity. The possibility that normal background afferent activity can similarly modify afferent transmission has implications for diagnostic studies, particularly when they are performed under non-standard conditions, such as in the operating theatre or intensive care unit. It is also concluded that, although a subject may perceive cutaneous paraesthesiae when the posterior tibial nerve is stimulated at the ankle, there may be no cutaneous component to the evoked cerebral potential.

  2. Botulinum toxin in migraine: Role of transport in trigemino-somatic and trigemino-vascular afferents.

    PubMed

    Ramachandran, Roshni; Lam, Carmen; Yaksh, Tony L

    2015-07-01

    Migraine secondary to meningeal input is referred to extracranial regions innervated by somatic afferents that project to homologous regions in the trigeminal nucleus caudalis (TNC). Reported efficacy of extracranial botulinum toxin (BoNT) in treating migraine is surprising since a local extracranial effect of BoNT cannot account for its effect upon meningeal input. We hypothesize that intradermal BoNT acts through central transport in somatic afferents. Anesthetized C57Bl/6 mice (male) received unilateral supraorbital (SO) injections of BoNT-B (1.5 U/40 μl) or saline. 3 days later, mice received ipsilateral (ipsi)-SO capsaicin (20 μl of 0.5mM solution) or meningeal capsaicin (4 μl of 0.35 μM). Pre-treatment with ipsi-SO BoNT-B i) decreased nocicsponsive ipsilateral wiping behavior following ipsi-SO capsaicin; ii) produced cleavage of VAMP in the V1 region of ipsi-TG and in TG neurons showing WGA after SO injection; iii) reduced expression of c-fos in ipsi-TNC following ipsi-SO capsaicin; iv) reduced c-fos activation and NK-1 internalization in ipsi-TNC secondary to ipsi-meningeal capsaicin; and vi) SO WGA did not label dural afferents. We conclude that BoNT-B is taken up by peripheral afferents and transported to central terminals where it inhibits transmitter release resulting in decreased activation of second order neurons. Further, this study supports the hypothesis that SO BoNT exerts a trans-synaptic action on either the second order neuron (which receives convergent input from the meningeal afferent) or the terminal/TG of the converging meningeal afferent.

  3. Afferent lymphatic cannulation as a model system to study innate immune responses to infection and vaccination.

    PubMed

    Neeland, Melanie R; Meeusen, Els N T; de Veer, Michael J

    2014-03-15

    The afferent lymphatics consist of the cells and immunomodulatory signals that are involved in the early response to peripheral stimuli. Examination of this compartment in both homeostatic and stimulatory conditions permits the analysis of the innate biological pathways responsible for the generation of an adaptive immune response in the lymph node. Afferent lymphatic cannulation is therefore an ideal model system to study cellular migration and antigen dispersal kinetics during infection and vaccination. Utilisation of these lymphatic cannulation models has demonstrated the ability to both increase current understanding of infectious diseases, vaccine delivery systems and has the potential to target effector cells and molecules that may be used as novel therapeutic or vaccine targets.

  4. Central distribution of nociceptive intradental afferent nerve fibers in the rat.

    PubMed

    Bombardi, C; Chiocchetti, R; Brunetti, O; Grandis, A; Lucchi, M L; Bortolami, R

    2006-08-01

    The central distribution of intradental afferent nerve fibers was investigated by combining electron microscopic observations with a selective method for inducing degeneration of the A delta- and C-type afferent fibers. Degenerating terminals were found on the proprioceptive mesencephalic trigeminal neurons and on dendrites in the neuropil of the trigeminal motor nucleus after application of capsaicin to the rat's lower incisor tooth pulp. The results give anatomical evidence of new sites of central projection of intradental A delta- and C-type fibers whereby the nociceptive information from the tooth pulp can affect jaw muscle activity.

  5. The organization of primary afferent depolarization in the isolated spinal cord of the frog

    PubMed Central

    Carpenter, D. O.; Rudomin, P.

    1973-01-01

    1. The organization of primary afferent depolarization (PAD) produced by excitation of peripheral sensory and motor nerves was studied in the frog cord isolated with hind limb nerves. 2. Dorsal root potentials from sensory fibres (DR-DRPs) were evoked on stimulation of most sensory nerves, but were largest from cutaneous, joint and flexor muscle afferents. With single shock stimulation the largest cutaneous and joint afferent fibres gave DR-DRPs, but potentials from muscle nerves resulted from activation of sensory fibres with thresholds to electrical stimulation higher than 1·2-1·5 times the threshold of the most excitable fibres in the nerve. This suggests that PAD from muscle afferents is probably due to excitation of extrafusal receptors. 3. Dorsal root potentials produced by antidromic activation of motor fibres (VR-DRPs) were larger from extensor muscles and smaller or absent from flexor muscles. The VR-DRPs were produced by activation of the lowest threshold motor fibres. 4. Three types of interactions were found between test and conditioning DRPs from the same or different nerves. With maximal responses occlusion was usually pronounced. At submaximal levels linear summation occurred. Near threshold the conditioning stimulus frequently resulted in a large facilitation of the test DRP. All three types of interactions were found with two DR-DRPs, two VR-DRPs or one DR-DRP and one VR-DRP. 5. The excitability of sensory nerve terminals from most peripheral nerves was increased during the DR-DRP. The magnitude of the excitability increase varied roughly with the magnitude of the DR-DRP evoked by the conditioning stimulus. 6. There was a marked excitability increase of cutaneous and extensor muscle afferent terminals during the VR-DRP. Flexor muscle afferent terminals often showed no excitability changes to ventral root stimulation. In those experiments where afferent terminals from flexor muscles did show an excitability increase, the effects were smaller than

  6. Spatial orientation of semicircular canals and afferent sensitivity vectors in pigeons

    NASA Technical Reports Server (NTRS)

    Dickman, J. D.

    1996-01-01

    Rotational head motion in vertebrates is detected by the semicircular canal system, whose innervating primary afferent fibers carry information about movement in specific head planes. The semicircular canals have been qualitatively examined over a number of years, and the canal planes have been quantitatively characterized in several animal species. The present study first determined the geometric relationship between individual semicircular canals and between the canals and the stereotactic head planes in pigeons. Stereotactic measurements of multiple points along the circumference of the bony canals were taken, and the measured points fitted with a three-dimensional planar surface. Direction normals to the plane's surface were calculated and used to define angles between semicircular canal pairs. Because of the unusual shape of the anterior semicircular canals in pigeons, two planes, a major and a minor, were fitted to the canal's course. Calculated angle values for all canals indicated that the horizontal and posterior semicircular canals are nearly orthogonal, but the anterior canals have substantial deviations from orthogonality with other canal planes. Next, the responses of the afferent fibers that innervate each of the semicircular canals to 0.5 Hz sinusoidal rotation about an earth-vertical axis were obtained. The head orientation relative to the rotation axis was systematically varied so that directions of maximum sensitivity for each canal afferent could be determined. These sensitivity vectors were then compared with the canal plane direction normals. The afferents that innervated specific semicircular canals formed homogeneous clusters of sensitivity vectors in different head planes. The horizontal and posterior afferents had average sensitivity vectors that were largely co-incident with the innervated canal plane direction normals. Anterior canal afferents, however, appeared to synthesize contributions from the major and minor plane components of the

  7. Allodynia mediated by C-tactile afferents in human hairy skin

    PubMed Central

    Nagi, Saad S; Rubin, Troy K; Chelvanayagam, David K; Macefield, Vaughan G; Mahns, David A

    2011-01-01

    Abstract We recently showed a contribution of low-threshold cutaneous mechanoreceptors to vibration-evoked changes in the perception of muscle pain. Neutral-touch stimulation (vibration) of the hairy skin during underlying muscle pain evoked an overall increase in pain intensity, i.e. allodynia. This effect appeared to be dependent upon cutaneous afferents, as allodynia was abolished by intradermal anaesthesia. However, it remains unclear whether allodynia results from activation of a single class of cutaneous afferents or the convergence of inputs from multiple classes. Intriguingly, no existing human study has examined the contribution of C-tactile (CT) afferents to allodynia. Detailed psychophysical observations were made in 29 healthy subjects (18 males and 11 females). Sustained muscle pain was induced by infusing hypertonic saline (HS: 5%) into tibialis anterior muscle (TA). Sinusoidal vibration (200 Hz–200 μm) was applied to the hairy skin overlying TA. Pain ratings were recorded using a visual analogue scale (VAS). In order to evaluate the role of myelinated and unmyelinated cutaneous afferents in the expression of vibration-evoked allodynia, compression block of the sciatic nerve, and low-dose intradermal anaesthesia (Xylocaine 0.25%) were used, respectively. In addition, the modulation of muscle pain by gentle brushing (1.0 and 3.0 cm s−1) – known to excite CT fibres – was examined. Brushing stimuli were applied to the hairy skin with all fibres intact and following the blockade of myelinated afferents. During tonic muscle pain (VAS 4–6), vibration evoked a significant and reproducible increase in muscle pain (allodynia) that persisted following compression of myelinated afferents. During compression block, the sense of vibration was abolished, but the vibration-evoked allodynia persisted. In contrast, selective anaesthesia of unmyelinated cutaneous afferents abolished the allodynia, whereas the percept of vibration remained unaffected

  8. Glutamate and capsaicin effects on trigeminal nociception I: Activation and peripheral sensitization of deep craniofacial nociceptive afferents.

    PubMed

    Lam, David K; Sessle, Barry J; Hu, James W

    2009-01-28

    We have examined the effect of the peripheral application of glutamate and capsaicin to deep craniofacial tissues in influencing the activation and peripheral sensitization of deep craniofacial nociceptive afferents. The activity of single trigeminal nociceptive afferents with receptive fields in deep craniofacial tissues were recorded extracellularly in 55 halothane-anesthetized rats. The mechanical activation threshold (MAT) of each afferent was assessed before and after injection of 0.5 M glutamate (or vehicle) and 1% capsaicin (or vehicle) into the receptive field. A total of 68 afferents that could be activated by blunt noxious mechanical stimulation of the deep craniofacial tissues (23 masseter, 5 temporalis, 40 temporomandibular joint) were studied. When injected alone, glutamate and capsaicin activated and induced peripheral sensitization reflected as MAT reduction in many afferents. Following glutamate injection, capsaicin-evoked activity was greater than that evoked by capsaicin alone, whereas following capsaicin injection, glutamate-evoked responses were similar to glutamate alone. These findings indicate that peripheral application of glutamate or capsaicin may activate or induce peripheral sensitization in a subpopulation of trigeminal nociceptive afferents innervating deep craniofacial tissues, as reflected in changes in MAT and other afferent response properties. The data further suggest that peripheral glutamate and capsaicin receptor mechanisms may interact to modulate the activation and peripheral sensitization in some deep craniofacial nociceptive afferents.

  9. Somatostatin inhibits activation of dorsal cutaneous primary afferents induced by antidromic stimulation of primary afferents from an adjacent thoracic segment in the rat.

    PubMed

    Guo, Yuan; Yao, Fan-Rong; Cao, Dong-Yuan; Pickar, Joel G; Zhang, Qi; Wang, Hui-Sheng; Zhao, Yan

    2008-09-10

    To investigate the effect of somatostatin on the cross-excitation between adjacent primary afferent terminals in the rats, we recorded single unit activity from distal cut ends of dorsal cutaneous branches of the T10 and T12 spinal nerves in response to antidromic stimulation of the distal cut end of the T11 dorsal root in the presence and absence of somatostatin and its receptor antagonist applied to the receptive field of the recorded nerve. Afferent fibers were classified based upon their conduction velocity. Mean mechanical thresholds decreased and spontaneous discharge rates increased significantly in C and Adelta but not Abeta fibers of the T10 and T12 spinal nerves in both male and female rats following antidromic electrical stimulation (ADES) of the dorsal root from adjacent spinal segment (DRASS) indicating cross-excitation of thin fiber afferents. The cross-excitation was not significantly different between male and female rats. Microinjection of somatostatin into the receptive field of recorded units inhibited the cross-excitation. This inhibitory effect, in turn, was reversed by the somatostation receptor antagonist cyclo-somatostatin (c-SOM). Application of c-SOM alone followed by ADES of DRASS significantly decreased the mechanical thresholds and increased the discharge rates of C and Adelta fibers, indicating that endogenous release of somatostatin plays a tonic inhibitory role on the cross-excitation between peripheral nerves. These results suggest that somatostatin could inhibit the cross-excitation involved in peripheral hyperalgesia and have a peripheral analgesic effect.

  10. Neurones in the brain stem of the cat excited by vagal afferent fibres from the heart and lungs.

    PubMed Central

    Bennett, J A; Goodchild, C S; Kidd, C; McWilliam, P N

    1985-01-01

    Extracellular recordings were made from 164 neurones in the nucleus tractus solitarius and dorsal motor vagal nucleus of the chloralose-anaesthetized cat. 139 neurones were excited synaptically and 25 non-synaptically by electrical stimulation of cardiac and pulmonary vagal branches. Synaptically excited neurones fall into two populations, one activated solely by myelinated afferent fibres and a second activated solely by non-myelinated afferent fibres. 94 neurones were synaptically excited by afferent fibres in a single vagal branch while 45 were excited by stimulation of two or three branches. Neurones responding to volleys in myelinated afferent fibres were located in both medial and lateral regions of the nucleus tractus solitarius whilst those excited by non-myelinated afferent fibres were restricted to the medial region. Consistent differences in the locations of neurones excited by stimulation of either cardiac or pulmonary or by single or several branches could not be distinguished. PMID:4093876

  11. Nesfatin-1 modulates murine gastric vagal afferent mechanosensitivity in a nutritional state dependent manner.

    PubMed

    Kentish, Stephen J; Li, Hui; Frisby, Claudine L; Page, Amanda J

    2017-03-01

    Food intake is regulated by vagal afferent signals from the stomach. Nesfatin-1 is an anorexigenic peptide produced within the gastrointestinal tract and has well defined central effects. We aimed to determine if nesfatin-1 can modulate gastric vagal afferent signals in the periphery and further whether this is altered in different nutritional states. Female C57BL/6J mice were fed either a standard laboratory diet (SLD) or a high fat diet (HFD) for 12 weeks or fasted overnight. Plasma nucleobindin-2 (NUCB2; nesfatin-1 precursor)/nesfatin-1 levels were assayed, the expression of NUCB2 in the gastric mucosa and adipose tissue was assessed using real-time quantitative reverse-transcription polymerase chain reaction. An in vitro preparation was used to determine the effect of nesfatin-1 on gastric vagal afferent mechanosensitivity. HFD mice exhibited an increased body weight and adiposity. Plasma NUCB2/nesfatin-1 levels were unchanged between any of the groups of mice. NUCB2 mRNA was detected in the gastric mucosa and gonadal fat of SLD, HFD and fasted mice with no difference in mRNA abundance between groups in either tissue. In SLD and fasted mice nesfatin-1 potentiated mucosal receptor mechanosensitivity, an effect not observed in HFD mice. Tension receptor mechanosensitivity was unaffected by nesfatin-1 in SLD and fasted mice, but was inhibited in HFD mice. In conclusion, Nesfatin-1 modulates gastric vagal afferent mechanosensitivity in a nutritional state dependent manner.

  12. Chronic exposure to low dose bacterial lipopolysaccharide inhibits leptin signaling in vagal afferent neurons.

    PubMed

    de La Serre, Claire B; de Lartigue, Guillaume; Raybould, Helen E

    2015-02-01

    Bacterially derived factors are implicated in the causation and persistence of obesity. Ingestion of a high fat diet in rodents and obesity in human subjects is associated with chronic elevation of low plasma levels of lipopolysaccharide (LPS), a breakdown product of Gram-negative bacteria. The terminals of vagal afferent neurons are positioned within the gut mucosa to convey information from the gut to the brain to regulate food intake and are responsive to LPS. We hypothesized that chronic elevation of LPS could alter vagal afferent signaling. We surgically implanted osmotic mini-pumps that delivered a constant, low-dose of LPS into the intraperitoneal cavity of rats (12.5 μg/kg/hr for 6 weeks). LPS-treated rats developed hyperphagia and showed marked changes in vagal afferent neuron function. Chronic LPS treatment reduced vagal afferent leptin signaling, characterized by a decrease in leptin-induced STAT3 phosphorylation. In addition, LPS treatment decreased cholecystokinin-induced satiety. There was no alteration in leptin signaling in the hypothalamus. These findings offer a mechanism by which a change in gut microflora can promote hyperphagia, possibly leading to obesity.

  13. Single tactile afferents outperform human subjects in a vibrotactile intensity discrimination task.

    PubMed

    Arabzadeh, Ehsan; Clifford, Colin W G; Harris, Justin A; Mahns, David A; Macefield, Vaughan G; Birznieks, Ingvars

    2014-11-15

    We simultaneously compared the sensitivity of single primary afferent neurons supplying the glabrous skin of the hand and the psychophysical amplitude discrimination thresholds in human subjects for a set of vibrotactile stimuli delivered to the receptive field. All recorded afferents had a dynamic range narrower than the range of amplitudes across which the subjects could discriminate. However, when the vibration amplitude was chosen to be within the steepest part of the afferent's stimulus-response function the response of single afferents, defined as the spike count over the vibration duration (500 ms), was often more sensitive in discriminating vibration amplitude than the perceptual judgment of the participants. We quantified how the neuronal performance depended on the integration window: for short windows the neuronal performance was inferior to the performance of the subject. The neuronal performance progressively improved with increasing spike count duration and reached a level significantly above that of the subjects when the integration window was 250 ms or longer. The superiority in performance of individual neurons over observers could reflect a nonoptimal integration window or be due to the presence of noise between the sensory periphery and the cortical decision stage. Additionally, it could indicate that the range of perceptual sensitivity comes at the cost of discrimination through pooling across neurons with different response functions.

  14. Laryngeal reflex mechanism during deglutition--observation of subglottal pressure and afferent discharge.

    PubMed

    Shin, T; Maeyama, T; Morikawa, I; Umezaki, T

    1988-11-01

    In this investigation, particular attention was paid to elucidate the laryngeal reflex mechanism of protective closure and the sensory function of the larynx during deglutition. For this purpose, three different experimental procedures were adopted: (1) subglottal pressure of felines was measured during deglutition using a pressure transducer; (2) subglottal pressure of human beings was measured during deglutition using a pressure transducer; and (3) afferent discharges from superior and recurrent laryngeal nerves of felines were recorded. The following conclusions appear justified. (1) Feline and human subglottal pressure during deglutition showed the following pattern. The pressure rises with onset of deglutition, temporarily drops during laryngeal elevation, rises again during the downward movement of the larynx, and drops again at the end of the glutition. This pattern was not affected by the resection of the unilateral recurrent laryngeal nerve. (2) The superior laryngeal nerve is involved in the sensory function of the pharynx, larynx, and trachea. At least two types of afferent discharges from superficial and internal sensory nerves are suspected. Afferent discharges from the recurrent laryngeal nerves in the larynx and trachea are not as distinct as those of the superior laryngeal nerve, and this seems to correspond with various changes in the thorax. During deglutition, afferent discharges were recorded from superior to recurrent laryngeal nerves.

  15. Human C-tactile afferents are tuned to the temperature of a skin-stroking caress.

    PubMed

    Ackerley, Rochelle; Backlund Wasling, Helena; Liljencrantz, Jaquette; Olausson, Håkan; Johnson, Richard D; Wessberg, Johan

    2014-02-19

    Human C-tactile (CT) afferents respond vigorously to gentle skin stroking and have gained attention for their importance in social touch. Pharmacogenetic activation of the mouse CT equivalent has positively reinforcing, anxiolytic effects, suggesting a role in grooming and affiliative behavior. We recorded from single CT axons in human participants, using the technique of microneurography, and stimulated a unit's receptive field using a novel, computer-controlled moving probe, which stroked the skin of the forearm over five velocities (0.3, 1, 3, 10, and 30 cm s(-1)) at three temperatures (cool, 18 °C; neutral, 32 °C; warm, 42 °C). We show that CTs are unique among mechanoreceptive afferents: they discharged preferentially to slowly moving stimuli at a neutral (typical skin) temperature, rather than at the cooler or warmer stimulus temperatures. In contrast, myelinated hair mechanoreceptive afferents proportionally increased their firing frequency with stroking velocity and showed no temperature modulation. Furthermore, the CT firing frequency correlated with hedonic ratings to the same mechano-thermal stimulus only at the neutral stimulus temperature, where the stimuli were felt as pleasant at higher firing rates. We conclude that CT afferents are tuned to respond to tactile stimuli with the specific characteristics of a gentle caress delivered at typical skin temperature. This provides a peripheral mechanism for signaling pleasant skin-to-skin contact in humans, which promotes interpersonal touch and affiliative behavior.

  16. Stochastic resonance in the synaptic transmission between hair cells and vestibular primary afferents in development.

    PubMed

    Flores, A; Manilla, S; Huidobro, N; De la Torre-Valdovinos, B; Kristeva, R; Mendez-Balbuena, I; Galindo, F; Treviño, M; Manjarrez, E

    2016-05-13

    The stochastic resonance (SR) is a phenomenon of nonlinear systems in which the addition of an intermediate level of noise improves the response of such system. Although SR has been studied in isolated hair cells and in the bullfrog sacculus, the occurrence of this phenomenon in the vestibular system in development is unknown. The purpose of the present study was to explore for the existence of SR via natural mechanical-stimulation in the hair cell-vestibular primary afferent transmission. In vitro experiments were performed on the posterior semicircular canal of the chicken inner ear during development. Our experiments showed that the signal-to-noise ratio of the afferent multiunit activity from E15 to P5 stages of development exhibited the SR phenomenon, which was characterized by an inverted U-like response as a function of the input noise level. The inverted U-like graphs of SR acquired their higher amplitude after the post-hatching stage of development. Blockage of the synaptic transmission with selective antagonists of the NMDA and AMPA/Kainate receptors abolished the SR of the afferent multiunit activity. Furthermore, computer simulations on a model of the hair cell - primary afferent synapse qualitatively reproduced this SR behavior and provided a possible explanation of how and where the SR could occur. These results demonstrate that a particular level of mechanical noise on the semicircular canals can improve the performance of the vestibular system in their peripheral sensory processing even during embryonic stages of development.

  17. Characterization of the primary spinal afferent innervation of the mouse colon using retrograde labelling.

    PubMed

    Robinson, D R; McNaughton, P A; Evans, M L; Hicks, G A

    2004-02-01

    Visceral pain is the most common form of pain produced by disease and is thus of interest in the study of gastrointestinal (GI) complaints such as irritable bowel syndrome, in which sensory signals perceived as GI pain travel in extrinsic afferent neurones with cell bodies in the dorsal root ganglia (DRG). The DRG from which the primary spinal afferent innervation of the mouse descending colon arises are not well defined. This study has combined retrograde labelling and immunohistochemistry to identify and characterize these neurones. Small to medium-sized retrogradely labelled cell bodies were found in the DRG at levels T8-L1 and L6-S1. Calcitonin gene-related peptide (CGRP)- and P2X3-like immunoreactivity (LI) was seen in 81 and 32%, respectively, of retrogradely labelled cells, and 20% bound the Griffonia simplicifolia-derived isolectin IB4. CGRP-LI and IB4 were co-localized in 22% of retrogradely labelled cells, whilst P2X3-LI and IB4 were co-localized in 7% (vs 34% seen in the whole DRG population). Eighty-two per cent of retrogradely labelled cells exhibited vanilloid receptor 1-like immunoreactivity (VR1-LI). These data suggest that mouse colonic spinal primary afferent neurones are mostly peptidergic CGRP-containing, VR1-LI, C fibre afferents. In contrast to the general DRG population, a subset of neurones exist that are P2X3 receptor-LI but do not bind IB4.

  18. Mechanisms regulating the specificity and strength of muscle afferent inputs in the spinal cord

    PubMed Central

    Mentis, George Z.; Alvarez, Francisco J.; Shneider, Neil A.; Siembab, Valerie C.; O'Donovan, Michael J.

    2010-01-01

    We investigated factors controlling the development of connections between muscle spindle afferents, spinal motor neurons and inhibitory Renshaw cells. Several mutants were examined to establish the role of muscle spindles, muscle spindle-derived NT3 and excess NT3 in determining the specificity and strength of these connections. The findings suggest that although spindle-derived factors are not necessary for the initial formation and specificity of the synapses, spindle-derived NT3 seems necessary for strengthening homonymous connections between Ia afferents and motor neurons during the second postnatal week. We also found evidence for functional monosynaptic connections between sensory afferents and neonatal Renshaw cells although the density of these synapses decreases at P15. We conclude that muscle spindle synapses are weakened on Renshaw cells while they are strengthened on motor neurons. Interestingly, the loss of sensory synapses on Renshaw cells was reversed in mice over-expresssing NT3 in the periphery, suggesting that different levels of NT3 are required for functional maintenance and strengthening of spindle afferent inputs on motor neurons and Renshaw cells. PMID:20536937

  19. Mechanisms regulating the specificity and strength of muscle afferent inputs in the spinal cord.

    PubMed

    Mentis, George Z; Alvarez, Francisco J; Shneider, Neil A; Siembab, Valerie C; O'Donovan, Michael J

    2010-06-01

    We investigated factors controlling the development of connections between muscle spindle afferents, spinal motor neurons, and inhibitory Renshaw cells. Several mutants were examined to establish the role of muscle spindles, muscle spindle-derived NT3, and excess NT3 in determining the specificity and strength of these connections. The findings suggest that although spindle-derived factors are not necessary for the initial formation and specificity of the synapses, spindle-derived NT3 seems necessary for strengthening homonymous connections between Ia afferents and motor neurons during the second postnatal week. We also found evidence for functional monosynaptic connections between sensory afferents and neonatal Renshaw cells although the density of these synapses decreases at P15. We conclude that muscle spindle synapses are weakened on Renshaw cells while they are strengthened on motor neurons. Interestingly, the loss of sensory synapses on Renshaw cells was reversed in mice overexpressing NT3 in the periphery, suggesting that different levels of NT3 are required for functional maintenance and strengthening of spindle afferent inputs on motor neurons and Renshaw cells.

  20. A dynamical systems analysis of afferent control in a neuromechanical model of locomotion: I. Rhythm generation

    NASA Astrophysics Data System (ADS)

    Spardy, Lucy E.; Markin, Sergey N.; Shevtsova, Natalia A.; Prilutsky, Boris I.; Rybak, Ilya A.; Rubin, Jonathan E.

    2011-10-01

    Locomotion in mammals is controlled by a spinal central pattern generator (CPG) coupled to a biomechanical limb system, with afferent feedback to the spinal circuits and CPG closing the control loop. We have considered a simplified model of this system, in which the CPG establishes a rhythm when a supra-spinal activating drive is present and afferent signals from a single-joint limb feed back to affect CPG operation. Using dynamical system methods, in a series of two papers we analyze the mechanisms by which this model produces oscillations, and the characteristics of these oscillations, in the closed- and open-loop regimes. In this first paper, we analyze the phase transition mechanisms operating within the CPG and use the results to explain how afferent feedback allows oscillations to occur at a wider range of drive values to the CPG than the range over which oscillations occur in the CPG without feedback, and then to comment on why stronger feedback leads to faster oscillations. Linking these transitions to structures in the phase plane associated with the limb segment clarifies how increased weights of afferent feedback to the CPG can restore locomotion after removal of supra-spinal drive to simulate spinal cord injury.

  1. Role of primary afferents in the developmental regulation of motor axon synapse numbers on Renshaw cells.

    PubMed

    Siembab, Valerie C; Gomez-Perez, Laura; Rotterman, Travis M; Shneider, Neil A; Alvarez, Francisco J

    2016-06-15

    Motor function in mammalian species depends on the maturation of spinal circuits formed by a large variety of interneurons that regulate motoneuron firing and motor output. Interneuron activity is in turn modulated by the organization of their synaptic inputs, but the principles governing the development of specific synaptic architectures unique to each premotor interneuron are unknown. For example, Renshaw cells receive, at least in the neonate, convergent inputs from sensory afferents (likely Ia) and motor axons, raising the question of whether they interact during Renshaw cell development. In other well-studied neurons, such as Purkinje cells, heterosynaptic competition between inputs from different sources shapes synaptic organization. To examine the possibility that sensory afferents modulate synaptic maturation on developing Renshaw cells, we used three animal models in which afferent inputs in the ventral horn are dramatically reduced (ER81(-/-) knockout), weakened (Egr3(-/-) knockout), or strengthened (mlcNT3(+/-) transgenic). We demonstrate that increasing the strength of sensory inputs on Renshaw cells prevents their deselection and reduces motor axon synaptic density, and, in contrast, absent or diminished sensory afferent inputs correlate with increased densities of motor axons synapses. No effects were observed on other glutamatergic inputs. We conclude that the early strength of Ia synapses influences their maintenance or weakening during later development and that heterosynaptic influences from sensory synapses during early development regulates the density and organization of motor inputs on mature Renshaw cells.

  2. Differential Role of Inhibition in Habituation of Two Independent Afferent Pathways to a Common Motor Output

    ERIC Educational Resources Information Center

    Bristol, Adam S.; Carew, Thomas J.

    2005-01-01

    Many studies of the neural mechanisms of learning have focused on habituation, a simple form of learning in which a response decrements with repeated stimulation. In the siphon-elicited siphon withdrawal reflex (S-SWR) of the marine mollusk "Aplysia," the prevailing view is that homosynaptic depression of primary sensory afferents underlies…

  3. Afferent and efferent activity control in the design of brain computer interfaces for motor rehabilitation.

    PubMed

    Cho, Woosang; Vidaurre, Carmen; Hoffmann, Ulrich; Birbaumer, Niels; Ramos-Murguialday, Ander

    2011-01-01

    Stroke is a cardiovascular accident within the brain resulting in motor and sensory impairment in most of the survivors. A stroke can produce complete paralysis of the limb although sensory abilities are normally preserved. Functional electrical stimulation (FES), robotics and brain computer interfaces (BCIs) have been used to induce motor rehabilitation. In this work we measured the brain activity of healthy volunteers using electroencephalography (EEG) during FES, passive movements, active movements, motor imagery of the hand and resting to compare afferent and efferent brain signals produced during these motor related activities and to define possible features for an online FES-BCI. In the conditions in which the hand was moved we limited the movement range in order to control the afferent flow. Although we observed that there is a subject dependent frequency and spatial distribution of efferent and afferent signals, common patterns between conditions and subjects were present mainly in the low beta frequency range. When averaging all the subjects together the most significant frequency bin comparing each condition versus rest was exactly the same for all conditions but motor imagery. These results suggest that to implement an on-line FES-BCI, afferent brain signals resulting from FES have to be filtered and time-frequency-spatial features need to be used.

  4. Group I extensor afferents evoke disynaptic EPSPs in cat hindlimb extensor motorneurones during fictive locomotion.

    PubMed Central

    Angel, M J; Guertin, P; Jiménez, T; McCrea, D A

    1996-01-01

    1. Intracellular recording from extensor motoneurones in paralysed decerebrate cats was used to examine the distribution of short-latency non-monosynaptic excitation by group I afferents during fictive locomotion produced by stimulation of the mesencephalic locomotor region (MLR). 2. During the extension but not the flexion phase of fictive locomotion, stimulation of ankle extensor nerves at 1.2-2.0 times threshold evoked excitatory postsynaptic potentials (EPSPs) in motoneurones innervating hip, knee and ankle extensors. Disynaptic EPSPs were also evoked by selective activation of group Ia muscle spindle afferents by muscle stretch. 3. The central latencies of these group I-evoked EPSPs (mean, 1.55 ms) suggest their mediation by a disynaptic pathway with a single interneurone interposed between extensor group I afferents and extensor motoneurones. Disynaptic EPSPs were also evoked during periods of spontaneous locomotion following the cessation of MLR stimulation. 4. Hip extensor motoneurones received disynaptic EPSPs during extension following stimulation of both homonymous and ankle extensor nerves. Stimulation of hip extensor nerves did not evoke disynaptic EPSPs in ankle extensor motoneurones. 5. The appearance of disynaptic EPSPs during extension appears to result from cyclic disinhibition of an unidentified population of excitatory spinal interneurones and not postsynaptic voltage-dependent conductances in motoneurones or phasic presynaptic inhibition of group I afferents during flexion. 6. The reorganization of group I reflexes during fictive locomotion includes the appearance of disynaptic excitation of hip, knee and ankle extensor motoneurones. This excitatory reflex is one of the mechanisms by which group I afferents can enhance extensor activity and increase force production during stance. PMID:8865080

  5. Activation of intestinal spinal afferent endings by changes in intra-mesenteric arterial pressure

    PubMed Central

    Humenick, A; Chen, B N; Wiklendt, L; Spencer, N J; Zagorodnyuk, V P; Dinning, P G; Costa, M; Brookes, S J H

    2015-01-01

    Spinal sensory neurons innervate many large blood vessels throughout the body. Their activation causes the hallmarks of neurogenic inflammation: vasodilatation through the release of the neuropeptide calcitonin gene-related peptide and plasma extravasation via tachykinins. The same vasodilator afferent neurons show mechanical sensitivity, responding to crushing, compression or axial stretch of blood vessels – responses which activate pain pathways and which can be modified by cell damage and inflammation. In the present study, we tested whether spinal afferent axons ending on branching mesenteric arteries (‘vascular afferents’) are sensitive to increased intravascular pressure. From a holding pressure of 5 mmHg, distension to 20, 40, 60 or 80 mmHg caused graded, slowly adapting increases in firing of vascular afferents. Many of the same afferent units showed responses to axial stretch, which summed with responses evoked by raised pressure. Many vascular afferents were also sensitive to raised temperature, capsaicin and/or local compression with von Frey hairs. However, responses to raised pressure in single, isolated vessels were negligible, suggesting that the adequate stimulus is distortion of the arterial arcade rather than distension per se. Increasing arterial pressure often triggered peristaltic contractions in the neighbouring segment of intestine, an effect that was mimicked by acute exposure to capsaicin (1 μm) and which was reduced after desensitisation to capsaicin. These results indicate that sensory fibres with perivascular endings are sensitive to pressure-induced distortion of branched arteries, in addition to compression and axial stretch, and that they contribute functional inputs to enteric motor circuits. PMID:26010893

  6. Identification of multisegmental nociceptive afferents that modulate locomotor circuits in the neonatal mouse spinal cord.

    PubMed

    Mandadi, Sravan; Hong, Peter; Tran, Michelle A; Bráz, Joao M; Colarusso, Pina; Basbaum, Allan I; Whelan, Patrick J

    2013-08-15

    Compared to proprioceptive afferent collateral projections, less is known about the anatomical, neurochemical, and functional basis of nociceptive collateral projections modulating lumbar central pattern generators (CPG). Quick response times are critical to ensure rapid escape from aversive stimuli. Furthermore, sensitization of nociceptive afferent pathways can contribute to a pathological activation of motor circuits. We investigated the extent and role of collaterals of capsaicin-sensitive nociceptive sacrocaudal afferent (nSCA) nerves that directly ascend several spinal segments in Lissauer's tract and the dorsal column and regulate motor activity. Anterograde tracing demonstrated direct multisegmental projections of the sacral dorsal root 4 (S4) afferent collaterals in Lissauer's tract and in the dorsal column. Subsets of the traced S4 afferent collaterals expressed transient receptor potential vanilloid 1 (TRPV1), which transduces a nociceptive response to capsaicin. Electrophysiological data revealed that S4 dorsal root stimulation could evoke regular rhythmic bursting activity, and our data suggested that capsaicin-sensitive collaterals contribute to CPG activation across multiple segments. Capsaicin's effect on S4-evoked locomotor activity was potent until the lumbar 5 (L5) segments, and diminished in rostral segments. Using calcium imaging we found elevated calcium transients within Lissauer's tract and dorsal column at L5 segments when compared to the calcium transients only within the dorsal column at the lumbar 2 (L2) segments, which were desensitized by capsaicin. We conclude that lumbar locomotor networks in the neonatal mouse spinal cord are targets for modulation by direct multisegmental nSCA, subsets of which express TRPV1 in Lissauer's tract and the dorsal column. J. Comp. Neurol. 521:2870-2887, 2013. © 2013 Wiley Periodicals, Inc.

  7. Afferent discharges from coronary arterial and ventricular receptors in anaesthetized dogs.

    PubMed Central

    Drinkhill, M J; Moore, J; Hainsworth, R

    1993-01-01

    1. Previous work has shown that increases in aortic root pressure result in reflex vasodilation, and that this response is likely to result mainly from stimulation of receptors in the coronary arteries, although contribution from left ventricular receptors was not excluded. This investigation was undertaken to resolve this question and to determine the afferent nerve fibres likely to be involved in this reflex. 2. In chloralose-anaesthetized dogs a perfusion circuit was used which allowed us to change the pressures in: (a) the aortic root, coronary arteries and the left ventricle; (b) aortic root and coronary arteries at constant ventricular pressure; and (c) the left ventricle with mean (although not pulse) aortic pressure constant. Electrophysiological recordings were made from slips dissected from the vagus nerve which responded with an increase in discharge to either combined increases in the pressures, or to aortic root injections of veratridine. 3. Recordings were made from twenty-one vagal afferents. On the basis of their conduction velocities, eleven were classified as non-myelinated and ten as myelinated. 4. Three non-myelinated afferents responded to veratridine injections only, three to both veratridine and combined aortic root and ventricular pressure changes, and five to pressure changes only. Responses to pressure occurred only when ventricular systolic pressure exceeded 30 kPa. 5. None of the myelinated afferents responded to veratridine. All showed increases in discharge to combined increases in mean aortic root, coronary arterial and left ventricular systolic pressures, which would be graded over a range similar to that which caused reflex changes. All were more sensitive to changes in mean coronary pressure than to changes in ventricular systolic pressure. 6. We conclude that myelinated vagal afferent nerve fibres, which respond predominantly to changes in mean coronary arterial pressure, are likely to be responsible for the vasodilation to the

  8. Cortical Presynaptic Control of Dorsal Horn C–Afferents in the Rat

    PubMed Central

    Martínez-Lorenzana, Guadalupe; Condés-Lara, Miguel; Rojas-Piloni, Gerardo

    2013-01-01

    Lamina 5 sensorimotor cortex pyramidal neurons project to the spinal cord, participating in the modulation of several modalities of information transmission. A well-studied mechanism by which the corticospinal projection modulates sensory information is primary afferent depolarization, which has been characterized in fast muscular and cutaneous, but not in slow-conducting nociceptive skin afferents. Here we investigated whether the inhibition of nociceptive sensory information, produced by activation of the sensorimotor cortex, involves a direct presynaptic modulation of C primary afferents. In anaesthetized male Wistar rats, we analyzed the effects of sensorimotor cortex activation on post tetanic potentiation (PTP) and the paired pulse ratio (PPR) of dorsal horn field potentials evoked by C–fiber stimulation in the sural (SU) and sciatic (SC) nerves. We also explored the time course of the excitability changes in nociceptive afferents produced by cortical stimulation. We observed that the development of PTP was completely blocked when C-fiber tetanic stimulation was paired with cortex stimulation. In addition, sensorimotor cortex activation by topical administration of bicuculline (BIC) produced a reduction in the amplitude of C–fiber responses, as well as an increase in the PPR. Furthermore, increases in the intraspinal excitability of slow-conducting fiber terminals, produced by sensorimotor cortex stimulation, were indicative of primary afferent depolarization. Topical administration of BIC in the spinal cord blocked the inhibition of C–fiber neuronal responses produced by cortical stimulation. Dorsal horn neurons responding to sensorimotor cortex stimulation also exhibited a peripheral receptive field and responded to stimulation of fast cutaneous myelinated fibers. Our results suggest that corticospinal inhibition of nociceptive responses is due in part to a modulation of the excitability of primary C–fibers by means of GABAergic inhibitory

  9. Excitatory actions of mushroom poison (acromelic acid) on unmyelinated muscular afferents in the rat.

    PubMed

    Taguchi, Toru; Tomotoshi, Kimihiko; Mizumura, Kazue

    2009-06-05

    Ingestion of a poisonous mushroom, Clitocybe acromelalga, results in strong and long-lasting allodynia, burning pain, redness and swelling in the periphery of the body. Acromelic acid (ACRO), a kainate analogue isolated from the mushroom, is assumed to be involved in the poisoning. ACRO has two isomers, ACRO-A and ACRO-B. The potency of ACRO-A is a million times higher than that of ACRO-B for induction of allodynia when intrathecally administered in mice. The effect of ACRO on the primary afferents of somatic tissues remains largely unknown. The aim of the present study was to examine the effect of ACRO-A on the response behavior of unmyelinated afferents in the skeletal muscle. For this purpose single fiber recordings of C-afferents were made from rat extensor digitorum longus (EDL) muscle-common peroneal nerve preparations in vitro. Intramuscular injections of ACRO-A at three different concentrations (10(-12), 10(-10) and 10(-8)M, 5 microl over 5s) near the receptive field in the EDL muscle elicited excitation of C-afferents (12%, 50% and 44%, respectively). ACRO-A at the concentration of 10(-10)M induced the strongest excitation. The incidence of ACRO-A responsive fibers at the concentration of 10(-10) and 10(-8)M was significantly higher than that at 10(-12)M. The responses to mechanical and heat stimulations did not differ between ACRO-A sensitive and insensitive fibers. These results clearly demonstrated the powerful excitatory action of ACRO-A on mechanosensitive unmyelinated afferents in the rat skeletal muscle.

  10. Loss of neurotrophin-3 from smooth muscle disrupts vagal gastrointestinal afferent signaling and satiation.

    PubMed

    Fox, Edward A; Biddinger, Jessica E; Baquet, Zachary C; Jones, Kevin R; McAdams, Jennifer

    2013-12-01

    A large proportion of vagal afferents are dependent on neurotrophin-3 (NT-3) for survival. NT-3 is expressed in developing gastrointestinal (GI) smooth muscle, a tissue densely innervated by vagal mechanoreceptors, and thus could regulate their survival. We genetically ablated NT-3 from developing GI smooth muscle and examined the pattern of loss of NT-3 expression in the GI tract and whether this loss altered vagal afferent signaling or feeding behavior. Meal-induced c-Fos activation was reduced in the solitary tract nucleus and area postrema in mice with a smooth muscle-specific NT-3 knockout (SM-NT-3(KO)) compared with controls, suggesting a decrease in vagal afferent signaling. Daily food intake and body weight of SM-NT-3(KO) mice and controls were similar. Meal pattern analysis revealed that mutants, however, had increases in average and total daily meal duration compared with controls. Mutants maintained normal meal size by decreasing eating rate compared with controls. Although microstructural analysis did not reveal a decrease in the rate of decay of eating in SM-NT-3(KO) mice, they ate continuously during the 30-min meal, whereas controls terminated feeding after 22 min. This led to a 74% increase in first daily meal size of SM-NT-3(KO) mice compared with controls. The increases in meal duration and first meal size of SM-NT-3(KO) mice are consistent with reduced satiation signaling by vagal afferents. This is the first demonstration of a role for GI NT-3 in short-term controls of feeding, most likely involving effects on development of vagal GI afferents that regulate satiation.

  11. Autonomic responses to exercise: group III/IV muscle afferents and fatigue.

    PubMed

    Amann, Markus; Sidhu, Simranjit K; Weavil, Joshua C; Mangum, Tyler S; Venturelli, Massimo

    2015-03-01

    Group III and IV muscle afferents originating in exercising limb muscle play a significant role in the development of fatigue during exercise in humans. Feedback from these sensory neurons to the central nervous system (CNS) reflexively increases ventilation and central (cardiac output) and peripheral (limb blood flow) hemodynamic responses during exercise and thereby assures adequate muscle blood flow and O2 delivery. This response depicts a key factor in minimizing the rate of development of peripheral fatigue and in optimizing aerobic exercise capacity. On the other hand, the central projection of group III/IV muscle afferents impairs performance and limits the exercising human via its diminishing effect on the output from spinal motoneurons which decreases voluntary muscle activation (i.e. facilitates central fatigue). Accumulating evidence from recent animal studies suggests the existence of two subtypes of group III/IV muscle afferents. While one subtype only responds to physiological and innocuous levels of endogenous intramuscular metabolites (lactate, ATP, protons) associated with 'normal', predominantly aerobic exercise, the other subtype only responds to higher and concurrently noxious levels of metabolites present in muscle during ischemic contractions or following, for example, hypertonic saline infusions. This review discusses the mechanisms through which group III/IV muscle afferent feedback mediates both central and peripheral fatigue in exercising humans. We also briefly summarize the accumulating evidence from recent animal and human studies documenting the existence of two subtypes of group III/IV muscle afferents and the relevance of this discovery to the interpretation of previous work and the design of future studies.

  12. Innocuous, Not Noxious, Input Activates PKCγ Interneurons of the Spinal Dorsal Horn via Myelinated Afferent Fibers

    PubMed Central

    Braz, Joao M.; Skinner, Kate; Llewellyn-Smith, Ida J.; Basbaum, Allan I.

    2008-01-01

    Protein kinase C γ (PKCγ), which is concentrated in interneurons of the inner part of lamina II of the dorsal horn, has been implicated in injury-induced allodynia, a condition wherein pain is produced by innocuous stimuli. Although it is generally assumed that these interneurons receive input from the nonpeptidergic, IB4-positive subset of nociceptors, the fact that PKCγ cells do not express Fos in response to noxious stimulation suggests otherwise. Here, we demonstrate that the terminal field of the nonpeptidergic population of nociceptors, in fact, lies dorsal to that of PKCγ interneurons. There was also no overlap between the PKCγ-expressing interneurons and the transganglionic tracer wheat germ agglutinin which, after sciatic nerve injection, labels all unmyelinated nociceptors. However, transganglionic transport of the β-subunit of cholera toxin, which marks the medium-diameter and large-diameter myelinated afferents that transmit non-noxious information, revealed extensive overlap with the layer of PKCγ interneurons. Furthermore, expression of a transneuronal tracer in myelinated afferents resulted in labeling of PKCγ interneurons. Light and electron microscopic double labeling further showed that the VGLUT1 subtype of vesicular glutamate transmitter, which is expressed in myelinated afferents, marks synapses that are presynaptic to the PKCγ interneurons. Finally, we demonstrate that a continuous non-noxious input, generated by walking on a rotarod, induces Fos in the PKCγ interneurons. These results establish that PKCγ interneurons are activated by myelinated afferents that respond to innocuous stimuli, which suggests that injury-induced mechanical allodynia is transmitted through a circuit that involves PKCγ interneurons and non-nociceptive, VGLUT1-expressing myelinated primary afferents. PMID:18685019

  13. Isolation of TRPV1 independent mechanisms of spontaneous and asynchronous glutamate release at primary afferent to NTS synapses.

    PubMed

    Fenwick, Axel J; Wu, Shaw-Wen; Peters, James H

    2014-01-01

    Cranial visceral afferents contained within the solitary tract (ST) contact second-order neurons in the nucleus of the solitary tract (NTS) and release the excitatory amino acid glutamate via three distinct exocytosis pathways; synchronous, asynchronous, and spontaneous release. The presence of TRPV1 in the central terminals of a majority of ST afferents conveys activity-dependent asynchronous glutamate release and provides a temperature sensitive calcium conductance which largely determines the rate of spontaneous vesicle fusion. TRPV1 is present in unmyelinated C-fiber afferents and these facilitated forms of glutamate release may underlie the relative strength of C-fibers in activating autonomic reflex pathways. However, pharmacological blockade of TRPV1 signaling eliminates only ~50% of the asynchronous profile and attenuates the temperature sensitivity of spontaneous release indicating additional thermosensitive calcium influx pathways may exist which mediate these forms of vesicle release. In the present study we isolate the contribution of TRPV1 independent forms of glutamate release at ST-NTS synapses. We found ST afferent innervation at NTS neurons and synchronous vesicle release from TRPV1 KO mice was not different to control animals; however, only half of TRPV1 KO ST afferents completely lacked asynchronous glutamate release. Further, temperature driven spontaneous rates of vesicle release were not different from 33 to 37°C between control and TRPV1 KO afferents. These findings suggest additional temperature dependent mechanisms controlling asynchronous and thermosensitive spontaneous release at physiological temperatures, possibly mediated by additional thermosensitive TRP channels in primary afferent terminals.

  14. Electrophysiological and pharmacological validation of vagal afferent fiber type of neurons enzymatically isolated from rat nodose ganglia

    PubMed Central

    Li, Bai-Yan; Schild, John H

    2007-01-01

    An unavoidable consequence of enzymatic dispersion of sensory neurons from intact ganglia is loss of the axon and thus the ability to classify afferent fiber type based upon conduction velocity (CV). An intact rat nodose ganglion preparation was used to randomly sample neurons (n = 76) using the patch clamp technique. Reliable electrophysiological and chemophysiological correlates of afferent fiber type were established for use with isolated neuron preparations. Myelinated afferents (~25%) formed two groups exhibiting strikingly different functional profiles. One group (n = 10) exhibited CVs in excess of 10 m/s and narrow (< 1 ms) action potentials (APs) while the other (n = 9) had CVs as low as 4 m/s and broad (> 2 ms) APs that closely approximated those identified as unmyelinated afferents (n = 57) with CVs less than 1 m/s. A cluster analysis of select measures from the AP waveforms strongly correlated with CV, producing three statistically unique populations (p < 0.05). These groupings aligned with our earlier hypothesis (Jin et al., 2004) that a differential sensitivity to the selective purinergic and vanilloid receptor agonists can be used as reliable pharmacological indicators of vagal afferent fiber type. These metrics were further validated using an even larger population of isolated (n = 240) nodose neurons. Collectively, these indicators of afferent fiber type can be used to provide valuable insight concerning the relavence of isolated cellular observations to integrated afferent function of visceral organ systems. PMID:17512602

  15. Single low-threshold afferents innervating the skin of the human foot modulate ongoing muscle activity in the upper limbs.

    PubMed

    Bent, Leah R; Lowrey, Catherine R

    2013-03-01

    We have shown for the first time that single cutaneous afferents in the foot dorsum have significant reflex coupling to motoneurons supplying muscles in the upper limb, particularly posterior deltoid and triceps brachii. These observations strengthen what we know from whole nerve stimulation, that skin on the foot and ankle can contribute to the modulation of interlimb muscles in distant innervation territories. The current work provides evidence of the mechanism behind the reflex, where one single skin afferent can evoke a reflex response, rather than a population. Nineteen of forty-one (46%) single cutaneous afferents isolated in the dorsum or plantar surface of the foot elicited a significant modulation of muscle activity in the upper limb. Identification of single afferents in this reflex indicates the strength of the connection and, ultimately, the importance of foot skin in interlimb coordination. The median response magnitude was 2.29% of background EMG, and the size of the evoked response did not significantly differ among the four mechanoreceptor classes (P > 0.1). Interestingly, although the distribution of afferents types did not differ across the foot dorsum, there was a significantly greater coupling response from receptors located on the medial aspect of the foot dorsum (P < 0.01). Furthermore, the most consistent coupling with upper limb muscles was demonstrated by type I afferents (fast and slowly adapting). This work contributes to the current literature on receptor specificity, supporting the view that individual classes of cutaneous afferents may subserve specific roles in kinesthesia, reflexes, and tactile perception.

  16. Expression of 5-HT3 receptors by extrinsic duodenal afferents contribute to intestinal inhibition of gastric emptying.

    PubMed

    Raybould, Helen E; Glatzle, Jorg; Robin, Carla; Meyer, James H; Phan, Thomas; Wong, Helen; Sternini, Catia

    2003-03-01

    Intestinal perfusion with carbohydrates inhibits gastric emptying via vagal and spinal capsaicin-sensitive afferent pathways. The aim of the present study was to determine the role of 1) 5-hydroxytryptamine (5-HT)(3) receptors (5-HT(3)R) in mediating glucose-induced inhibition of gastric emptying and 2) 5-HT(3)R expression in vagal and spinal afferents in innervating the duodenum. In awake rats fitted with gastric and duodenal cannulas, perfusion of the duodenum with glucose (50 and 100 mg) inhibited gastric emptying. Intestinal perfusion of mannitol inhibited gastric emptying only at the highest concentration (990 mosm/kgH(2)O). Pretreatment with the 5-HT(3)R antagonist tropisetron abolished both glucose- and mannitol-induced inhibition of gastric emptying. Retrograde labeling of visceral afferents by injection of dextran-conjugated Texas Red into the duodenal wall was used to identify extrinsic primary afferents. Immunoreactivity for 5-HT(3)R, visualized with an antibody directed to the COOH terminus of the rat 5-HT(3)R, was found in >80% of duodenal vagal and spinal afferents. These results show that duodenal extrinsic afferents express 5-HT(3)R and that the receptor mediates specific glucose-induced inhibition of gastric emptying. These findings support the hypothesis that enterochromaffin cells in the intestinal mucosa release 5-HT in response to glucose, which activates 5-HT(3)R on afferent nerve terminals to evoke reflex changes in gastric motility. The primary glucose sensors of the intestine may be mucosal enterochromaffin cells.

  17. Cerebral, subcortical, and cerebellar activation evoked by selective stimulation of muscle and cutaneous afferents: an fMRI study.

    PubMed

    Wardman, Daniel L; Gandevia, Simon C; Colebatch, James G

    2014-01-01

    Abstract We compared the brain areas that showed significant flow changes induced by selective stimulation of muscle and cutaneous afferents using fMRI BOLD imaging. Afferents arising from the right hand were studied in eight volunteers with electrical stimulation of the digital nerve of the index finger and over the motor point of the FDI muscle. Both methods evoked areas of significant activation cortically, subcortically, and in the cerebellum. Selective muscle afferent stimulation caused significant activation in motor-related areas. It also caused significantly greater activation within the contralateral precentral gyrus, insula, and within the ipsilateral cerebellum as well as greater areas of reduced blood flow when compared to the cutaneous stimuli. We demonstrated separate precentral and postcentral foci of excitation with muscle afferent stimulation. We conclude, contrary to the findings with evoked potentials, that muscle afferents evoke more widespread cortical, subcortical, and cerebellar activation than do cutaneous afferents. This emphasizes the importance, for studies of movement, of matching the kinematic aspects in order to avoid the results being confounded by alterations in muscle afferent activation. The findings are consistent with clinical observations of the movement consequences of sensory loss and may also be the basis for the contribution of disturbed sensorimotor processing to disorders of movement.

  18. Cerebral, subcortical, and cerebellar activation evoked by selective stimulation of muscle and cutaneous afferents: an fMRI study

    PubMed Central

    Wardman, Daniel L.; Gandevia, Simon C.; Colebatch, James G.

    2014-01-01

    Abstract We compared the brain areas that showed significant flow changes induced by selective stimulation of muscle and cutaneous afferents using fMRI BOLD imaging. Afferents arising from the right hand were studied in eight volunteers with electrical stimulation of the digital nerve of the index finger and over the motor point of the FDI muscle. Both methods evoked areas of significant activation cortically, subcortically, and in the cerebellum. Selective muscle afferent stimulation caused significant activation in motor‐related areas. It also caused significantly greater activation within the contralateral precentral gyrus, insula, and within the ipsilateral cerebellum as well as greater areas of reduced blood flow when compared to the cutaneous stimuli. We demonstrated separate precentral and postcentral foci of excitation with muscle afferent stimulation. We conclude, contrary to the findings with evoked potentials, that muscle afferents evoke more widespread cortical, subcortical, and cerebellar activation than do cutaneous afferents. This emphasizes the importance, for studies of movement, of matching the kinematic aspects in order to avoid the results being confounded by alterations in muscle afferent activation. The findings are consistent with clinical observations of the movement consequences of sensory loss and may also be the basis for the contribution of disturbed sensorimotor processing to disorders of movement. PMID:24771687

  19. Cholinergic afferents to the locus coeruleus and noradrenergic afferents to the medial septum mediate LTP-reinforcement in the dentate gyrus by stimulation of the amygdala.

    PubMed

    Bergado, Jorge A; Frey, Sabine; López, Jeffrey; Almaguer-Melian, William; Frey, Julietta U

    2007-10-01

    Transient long-term potentiation (E-LTP) can be transformed into a long-lasting LTP (L-LTP) in the dentate gyrus (DG) by behavioral stimuli with high motivational content. Previous research from our group has identified several brain structures, such as the basolateral amygdala (BLA), the locus coeruleus (LC), the medial septum (MS) and transmitters as noradrenaline (NA) and acetylcholine (ACh) that are involved in these processes. Here we have investigated the functional interplay among brain structures and systems which result in the conversion of a E-LTP into a L-LTP (reinforcement) by stimulation of the BLA (BLA-R). We used topical application of specific drugs into DG, and other targets, while following the time course of LTP induced by stimulation of the perforant pathway (PP) to study their specific contribution to BLA-R. One injection cannula, a recording electrode in the DG and stimulating electrodes in the PP and the BLA were stereotactically implanted one week before electrophysiological experiments. Topical application of atropine or propranolol into the DG blocked BLA-R in both cases, but the effect of propranolol occurred earlier, suggesting a role of NA within the DG during an intermediate stage of LTP maintenance. The injection of lidocaine into the LC abolished BLA-R indicating that the LC is part of the functional neural reinforcing system. The effect on the LC is mediated by cholinergic afferents because application of atropine into the LC produced the same effect. Injection of lidocaine inactivating the MS also abolished BLA-R. This effect was mediated by noradrenergic afferents (probably from the LC) because the application of propranolol into the MS prevented BLA-R. These findings suggest a functional loop for BLA-R involving cholinergic afferents to the LC, a noradrenergic projection from the LC to the DG and the MS, and finally, the cholinergic projection from the MS to the DG.

  20. Percutaneous Transhepatic Duodenal Drainage as an Alternative Approach in Afferent Loop Obstruction with Secondary Obstructive Jaundice in Recurrent Gastric Cancer

    SciTech Connect

    Yao, N.-S.; Wu, C.-W.; Tiu, Chui-Mei; Liu, Jacqueline M.; Whang-Peng, Jacqueline; Chen, L.-T.

    1998-07-15

    Two cases are reported of chronic, partial afferent loop obstruction with resultant obstructive jaundice in recurrent gastric cancer. The diagnosis was made by characteristic clinical presentations, abdominal computed tomography, and cholescintigraphy. Percutaneous transhepatic duodenal drainage (PTDD) provided effective palliation for both afferent loop obstruction and biliary stasis. We conclude that cholescintigraphy is of value in making the diagnosis of partial afferent loop obstruction and in differentiating the cause of obstructive jaundice in such patients, and PTDD provides palliation for those patients in whom surgical intervention is not feasible.

  1. Specific and potassium components in the depolarization of the la afferents in the spinal cord of the cat.

    PubMed

    Jiménez, I; Rudomin, P; Solodkin, M; Vyklicky, L

    1983-08-01

    In the cat spinal cord, primary afferent depolarization (PAD) of group Ia fibers of extensor muscles is produced by high-frequency stimulation (100 Hz) of group I muscle flexor afferents without significant increases in extracellular potassium. On the other hand, the PAD produced by stimulation of mixed and pure cutaneous nerves correlates well with increases in potassium ions. We conclude that the PAD produced by group I muscle afferents results from the activation of specific pathways making axo-axonic synapses with the Ia fiber terminals. The PAD of Ia fibers resulting from activation of cutaneous nerves involves instead unspecific accumulation of potassium ions.

  2. GluA2-Containing AMPA Receptors Distinguish Ribbon-Associated from Ribbonless Afferent Contacts on Rat Cochlear Hair Cells123

    PubMed Central

    Martinez-Monedero, Rodrigo

    2016-01-01

    Abstract Mechanosensory hair cells release glutamate at ribbon synapses to excite postsynaptic afferent neurons, via AMPA-type ionotropic glutamate receptors (AMPARs). However, type II afferent neurons contacting outer hair cells in the mammalian cochlea were thought to differ in this respect, failing to show GluA immunolabeling and with many “ribbonless” afferent contacts. Here it is shown that antibodies to the AMPAR subunit GluA2 labeled afferent contacts below inner and outer hair cells in the rat cochlea, and that synaptic currents in type II afferents had AMPAR-specific pharmacology. Only half the postsynaptic densities of type II afferents that labeled for PSD-95, Shank, or Homer were associated with GluA2 immunopuncta or presynaptic ribbons, the “empty slots” corresponding to ribbonless contacts described previously. These results extend the universality of AMPAergic transmission by hair cells, and support the existence of silent afferent contacts. PMID:27257620

  3. Rescue of neuronal function by cross-regeneration of cutaneous afferents into muscle in cats.

    PubMed

    Nishimura, H; Johnson, R D; Munson, J B

    1993-07-01

    1. This study investigates the relation between the peripheral innervation of low-threshold cutaneous afferents and the postsynaptic potentials elicited by electrical stimulation of those afferents. 2. In cats deeply anesthetized with pentobarbital sodium, cord dorsum potentials (CDPs) and postsynaptic potentials (PSPs) in spinal motoneurons were elicited by stimulation of the caudal cutaneous sural nerve (CCS), the lateral cutaneous sural nerve (LCS), and the medial gastrocnemius (MG) muscle nerve. We tested 1) unoperated cats, and cats in which CCS has been 2) chronically axotomized and ligated, 3) cut and self-reunited, 4) cut and cross-united with LCS, or 5) cut and cross-united with the MG. Terminal experiments were performed 3-36 mo after initial surgery. 3. In cats in which the CCS had been self-reunited or cross-united distally with LCS, tactile stimulation of the hairy skin normally innervated by the distal nerve activated afferents in the CCS central to the coaptation, indicating that former CCS afferents had regenerated into native or foreign skin, respectively. 4. In cats in which the CCS had been cross-united distally with the MG, both stretch and contraction of the MG muscle activated the former CCS afferents. 5. In unoperated cats, CDPs elicited by stimulation of CCS and of LCS exhibited a low-threshold N1 wave and a higher-threshold N2 wave. These waves were greatly delayed and appeared to merge after chronic axotomy of CCS. Regeneration of CCS into itself, into LCS, or into MG restored the normal latencies and configurations of these potentials. 6. In unoperated cats, stimulation of CCS, of LCS, and of MG each produced PSPs of characteristic configurations in the various subpopulations of motoneurons of the triceps surae. CDPs and PSPs elicited by the CCS cross-regenerated into LCS or MG were typical of those generated by the normal CCS, i.e., there was no evidence of respecification of central synaptic connections to bring accord between center

  4. Projection of cat jaw muscle spindle afferents related to intrafusal fibre influence.

    PubMed Central

    Taylor, A; Durbaba, R; Rodgers, J F

    1993-01-01

    1. A method of classification of muscle spindle afferents using succinylcholine (SCh) and ramp stretches has recently been described, which appears to estimate separately the strength of influence of bag1 (b1) and of bag2 (b2) intrafusal fibres. Increase in dynamic difference (delta DD) indicates b1 influence whilst increase in initial frequency (delta IF) indicates b2 influence. The significance of this classification has now been examined by correlation with the strength of synaptic projection of jaw muscle spindle afferents to the fifth motor nucleus (MotV) and the supratrigeminal region (STR) in anaesthetized cats. 2. Projection strength was estimated by computing the extracellular focal synaptic potential (FSP) from spike-triggered averages of 1024 sweeps at 100 microns intervals along tracks through STR and MotV. Trigger pulses were derived from spindle afferent cell bodies of the jaw-closer muscles recorded in the mesencephalic trigeminal nucleus, and characterized by the effect of SCh on their responses to ramp-and-hold stretches. 3. The maximum size of FSPs in tracks traversing STR and MotV ranged from 2.08 to 36.99 microV with a mean of 7.55 microV. The amplitudes were bimodally distributed into roughly equal-sized groups with high and low amplitude FSPs. 4. Mean values of delta IF were significantly greater for the group with large FSPs than for those with small FSPs. There were no significant differences in delta DD. FSP amplitude was significantly positively correlated with delta IF, but not with delta DD. 5. Spindle afferents with high values of FSP amplitude in MotV had a wide range of values of delta DD (b1b2c and b2c groups), while units with large FSPs in STR were all in the b2c category. Some evidence is presented to indicate that this reflects a preferential projection of secondary afferents to the STR. 6. For those units with projection to both STR and to MotV, there was a significant positive correlation between FSP amplitude in the two nuclei

  5. Opioids inhibit visceral afferent activation of catecholamine neurons in the solitary tract nucleus.

    PubMed

    Cui, R J; Roberts, B L; Zhao, H; Andresen, M C; Appleyard, S M

    2012-10-11

    Brainstem A2/C2 catecholamine (CA) neurons within the solitary tract nucleus (NTS) influence many homeostatic functions, including food intake, stress, respiratory and cardiovascular reflexes. They also play a role in both opioid reward and withdrawal. Injections of opioids into the NTS modulate many autonomic functions influenced by catecholamine neurons including food intake and cardiac function. We recently showed that NTS-CA neurons are directly activated by incoming visceral afferent inputs. Here we determined whether opioid agonists modulate afferent activation of NTS-CA neurons using transgenic mice with EGFP expressed under the control of the tyrosine hydroxylase promoter (TH-EGFP) to identify catecholamine neurons. The opioid agonist Met-enkephalin (Met-Enk) significantly attenuated solitary tract-evoked excitatory postsynaptic currents (ST-EPSCs) in NTS TH-EGFP neurons by 80%, an effect reversed by wash or the mu opioid receptor-specific antagonist D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH(2) (CTOP). Met-Enk had a significantly greater effect to inhibit afferent inputs onto TH-EGFP-positive neurons than EGFP-negative neurons, which were only inhibited by 50%. The mu agonist, DAMGO, also inhibited the ST-EPSC in TH-EGFP neurons in a dose-dependent manner. In contrast, neither the delta agonist DPDPE, nor the kappa agonist, U69,593, consistently inhibited the ST-EPSC amplitude. Met-Enk and DAMGO increased the paired pulse ratio, decreased the frequency, but not amplitude, of mini-EPSCs and had no effect on holding current, input resistance or current-voltage relationships in TH-EGFP neurons, suggesting a presynaptic mechanism of action on afferent terminals. Met-Enk significantly reduced both the basal firing rate of NTS TH-EGFP neurons and the ability of afferent stimulation to evoke an action potential. These results suggest that opioids inhibit NTS-CA neurons by reducing an excitatory afferent drive onto these neurons through presynaptic inhibition of

  6. Activation of kinetically distinct synaptic conductances on inhibitory interneurons by electrotonically overlapping afferents.

    PubMed

    Walker, Harrison C; Lawrence, J Josh; McBain, Chris J

    2002-07-03

    Mossy fiber (MF) and CA3 collateral (CL) axons activate common interneurons via synapses comprised of different AMPA receptors to provide feedforward and feedback inhibitory control of the CA3 hippocampal network. Because synapses potentially occur over variable electrotonic distances that distort somatically recorded synaptic currents, it is not known whether the underlying afferent-specific synaptic conductances are associated with different time courses. Using a somatic voltage jump technique to alter the driving force at the site of the synapse, we demonstrate that MF and CL synapses overlap in electrotonic location yet differ in conductance time course. Thus, afferent-specific conductance time courses allow single interneurons to differentially integrate feedforward and feedback information without the need to segregate distinct AMPA receptor subunits to different electrotonic domains.

  7. Spike sorting of muscle spindle afferent nerve activity recorded with thin-film intrafascicular electrodes.

    PubMed

    Djilas, Milan; Azevedo-Coste, Christine; Guiraud, David; Yoshida, Ken

    2010-01-01

    Afferent muscle spindle activity in response to passive muscle stretch was recorded in vivo using thin-film longitudinal intrafascicular electrodes. A neural spike detection and classification scheme was developed for the purpose of separating activity of primary and secondary muscle spindle afferents. The algorithm is based on the multiscale continuous wavelet transform using complex wavelets. The detection scheme outperforms the commonly used threshold detection, especially with recordings having low signal-to-noise ratio. Results of classification of units indicate that the developed classifier is able to isolate activity having linear relationship with muscle length, which is a step towards online model-based estimation of muscle length that can be used in a closed-loop functional electrical stimulation system with natural sensory feedback.

  8. Control of genioglossal muscle activity in the anesthetized piglet: the role of vagal afferents.

    PubMed

    Watchko, J F; O'Day, T L; Brozanski, B S; Vazquez, R L; Guthrie, R D

    1992-01-01

    We examined genioglossal muscle electromyogram activity during room air breathing and hyperoxic hypercapnia in 10 anesthetized (halothane) newborn piglets before and after bilateral midcervical vagotomy. With vagal afferents intact, genioglossal activity was absent during room air breathing in 10/10 study animals and was recruited in only 4/10 piglets during carbon dioxide breathing. After vagotomy, genioglossal activity remained absent in 9/10 study animals during room air breathing but was recruited in 10/10 piglets during the hypercapnic gas exposure at arterial CO2 tensions comparable to prevagotomy levels. We conclude that vagal afferent feedback modulates genioglossal activity in anesthetized newborn piglets and exerts an inhibitory influence on the activity of this muscle during hyperpnea induced by carbon dioxide breathing.

  9. Contribution of hind limb flexor muscle afferents to the timing of phase transitions in the cat step cycle.

    PubMed

    Hiebert, G W; Whelan, P J; Prochazka, A; Pearson, K G

    1996-03-01

    1. In this investigation, we tested the hypothesis that muscle spindle afferents signaling the length of hind-leg flexor muscles are involved in terminating extensor activity and initiating flexion during walking. The hip flexor muscle iliopsoas (IP) and the ankle flexors tibialis anterior (TA) and extensor digitorum longus (EDL) were stretched or vibrated at various phases of the step cycle in spontaneously walking decerebrate cats. Changes in electromyogram amplitude, duration, and timing were then examined. The effects of electrically stimulating group I and II afferents in the nerves to TA and EDL also were examined. 2. Stretch of the individual flexor muscles (IP, TA, or EDL) during the stance phase reduced the duration of extensor activity and promoted the onset of flexor burst activity. The contralateral step cycle also was affected by the stretch, the duration of flexor activity being shortened and extensor activity occurring earlier. Therefore, stretch of the flexor muscles during the stance phase reset the locomotor rhythm to flexion ipsilaterally and extension contralaterally. 3. Results of electrically stimulating the afferents from the TA and EDL muscles suggested that different groups of afferents were responsible for the resetting of the step cycle. Stimulation of the TA nerve reset the locomotor step cycle when the stimulus intensity was in the group II range (2-5 xT). By contrast, stimulation of the EDL nerve generated strong resetting of the step cycle in the range of 1.2-1.4 xT, where primarily the group Ia afferents from the muscle spindles would be activated. 4. Vibration of IP or EDL during stance reduced the duration of the extensor activity by similar amounts to that produced by muscle stretch or by electrical stimulation of EDL at group Ia strengths. This suggests that the group Ia afferents from IP and EDL are capable of resetting the locomotor pattern generator. Vibration of TA did not affect the locomotor rhythm. 5. Stretch of IP or

  10. ACTIVATION OF TRPA1 ON DURAL AFFERENTS: A POTENTIAL MECHANISM OF HEADACHE PAIN

    PubMed Central

    Edelmayer, Rebecca M.; Le, Larry N.; Yan, Jin; Wei, Xiaomei; Nassini, Romina; Materazzi, Serena; Preti, Delia; Appendino, Giovanni; Geppetti, Pierangelo; Dodick, David W.; Vanderah, Todd W.; Porreca, Frank; Dussor, Gregory

    2012-01-01

    Activation of transient receptor potential ankyrin-1 (TRPA1) on meningeal nerve endings has been suggested to contribute to environmental irritant-induced headache but this channel may also contribute to other forms of headache such as migraine. The preclinical studies described here examined functional expression of TRPA1 on dural afferents and investigated whether activation of TRPA1 contributes to headache-like behaviors. Whole-cell patch-clamp recordings were performed in vitro using two TRPA1 agonists, mustard oil (MO) and the environmental irritant umbellulone (UMB), on dural-projecting trigeminal ganglion neurons. Application of MO and UMB to dural afferents produced TRPA1-like currents in approximately 42% and 38% of cells, respectively. Using an established in vivo behavioral model of migraine-related allodynia, dural application of MO and UMB produced robust time-related tactile facial and hindpaw allodynia that was attenuated by pretreatment with the TRPA1 antagonist HC-030031. Additionally, MO or UMB were applied to the dura and exploratory activity was monitored for 30 minutes using an automated open-field activity chamber. Dural MO and UMB decreased the number of vertical rearing episodes and the time spent rearing in comparison to vehicle treated animals. This change in activity was prevented in rats pretreated with HC-030031 as well as sumatriptan, a clinically effective anti-migraine agent. These data indicate that TRPA1 is expressed on a substantial fraction of dural afferents and activation of meningeal TRPA1 produces behaviors consistent with those seen in patients during migraine attacks. Further, they suggest that activation of meningeal TRPA1 via endogenous or exogenous mechanisms can lead to afferent signaling and headache. PMID:22809691

  11. What Is the Contribution of Ia-Afference for Regulating Motor Output Variability during Standing?

    PubMed

    König, Niklas; Ferraro, Matteo G; Baur, Heiner; Taylor, William R; Singh, Navrag B

    2017-01-01

    Motor variability is an inherent feature of all human movements, and describes the system's stability and rigidity during the performance of functional motor tasks such as balancing. In order to ensure successful task execution, the nervous system is thought to be able to flexibly select the appropriate level of variability. However, it remains unknown which neurophysiological pathways are utilized for the control of motor output variability. In responding to natural variability (in this example sway), it is plausible that the neuro-physiological response to muscular elongation contributes to restoring a balanced upright posture. In this study, the postural sway of 18 healthy subjects was observed while their visual and mechano-sensory system was perturbed. Simultaneously, the contribution of Ia-afferent information for controlling the motor task was assessed by means of H-reflex. There was no association between postural sway and Ia-afference in the eyes open condition, however up to 4% of the effects of eye closure on the magnitude of sway can be compensated by increased reliance on Ia-afference. Increasing the biomechanical demands by adding up to 40% bodyweight around the trunk induced a specific sway response, such that the magnitude of sway remained unchanged but its dynamic structure became more regular and stable (by up to 18%). Such regular sway patterns have been associated with enhanced cognitive involvement in controlling motor tasks. It therefore appears that the nervous system applies different control strategies in response to the perturbations: The loss of visual information is compensated by increased reliance on other receptors; while the specific regular sway pattern associated with additional weight-bearing was independent of Ia-afferent information, suggesting the fundamental involvement of supraspinal centers for the control of motor output variability.

  12. Electron microscopic observations of terminals of functionally identified afferent fibers in cat spinal cord.

    PubMed

    Egger, M D; Freeman, N C; Malamed, S; Masarachia, P; Proshansky, E

    1981-02-23

    Using the method of intra-axonal injection of horseradish peroxidase, functionally identified afferent fibers from three slowly adapting (Type I) receptors and one Pacinian corpuscle in the glabrous skin of the hind paw of the cat were stained. Electron microscopic observation of the terminals of these fibers revealed predominantly axodendritic asymmetric synapses containing round, clear vesicles. Multiple synapses on a single dendrite were observed, separated by as little as 900 mm from one another.

  13. Cholinergic modulation of primary afferent glutamatergic transmission in rat medullary dorsal horn neurons.

    PubMed

    Jeong, Seok-Gwon; Choi, In-Sun; Cho, Jin-Hwa; Jang, Il-Sung

    2013-12-01

    Although muscarinic acetylcholine (mACh) receptors are expressed in trigeminal ganglia, it is still unknown whether mACh receptors modulate glutamatergic transmission from primary afferents onto medullary dorsal horn neurons. In this study, we have addressed the cholinergic modulation of primary afferent glutamatergic transmission using a conventional whole cell patch clamp technique. Glutamatergic excitatory postsynaptic currents (EPSCs) were evoked from primary afferents by electrical stimulation of trigeminal tract and monosynaptic EPSCs were recorded from medullary dorsal horn neurons of rat horizontal brain stem slices. Muscarine and ACh reversibly and concentration-dependently decreased the amplitude of glutamatergic EPSCs and increased the paired-pulse ratio. In addition, muscarine reduced the frequency of miniature EPSCs without affecting the current amplitude, suggesting that muscarine acts presynaptically to decrease the probability of glutamate release onto medullary dorsal horn neurons. The muscarine-induced decrease of glutamatergic EPSCs was significantly occluded by methoctramine or AF-DX116, M2 receptor antagonists, but not pirenzepine, J104129 and MT-3, selective M1, M3 and M4 receptor antagonists. The muscarine-induced decrease of glutamatergic EPSCs was highly dependent on the extracellular Ca2+ concentration. Physostigmine and clinically available acetylcholinesterase inhibitors, such as rivastigmine and donepezil, significantly shifted the concentration-inhibition relationship of ACh for glutamatergic EPSCs. These results suggest that muscarine acts on presynaptic M2 receptors to inhibit glutamatergic transmission by reducing the Ca2+ influx into primary afferent terminals, and that M2 receptor agonists and acetylcholinesterase inhibitors could be, at least, potential targets to reduce nociceptive transmission from orofacial tissues.

  14. Differences in spinal distribution and neurochemical phenotype of colonic afferents in mouse and rat.

    PubMed

    Christianson, Julie A; Traub, Richard J; Davis, Brian M

    2006-01-10

    Visceral pain is a prevalent clinical problem and one of the most common ailments for which patients seek medical attention. Recent studies have described many of the physiological properties of visceral afferents, but not much is known regarding their anatomical characteristics. To determine the spinal distribution and neurochemical phenotype of colonic afferents in rodents, Alexa Fluor-conjugated cholera toxin-beta (CTB) was injected subserosally into the proximal and distal portions of the descending colon in Sprague Dawley rats and C57Bl/6 mice. Dorsal root ganglia (T10-S2) were processed for fluorescent immunohistochemistry and visualized by confocal microscopy. In the mouse, CTB-positive neurons were most numerous in the lumbosacral region (LS; L6-S1), with a smaller contribution in the thoracolumbar ganglia (TL; T13-L1). In contrast, CTB-positive neurons in the rat were most numerous in the TL ganglia, with a smaller contribution in the LS ganglia. The vast majority of CTB-positive neurons in both mouse and rat were positive for TRPV1 and CGRP and most likely unmyelinated, in that most colonic afferents were not positive for neurofilament heavy chain. In the mouse, the TL ganglia had a significantly higher percentage of TRPV1- and CGRP-positive neurons than did the LS ganglia, whereas no differences were observed in the rat. The high incidence of TRPV1-positive colonic afferents in rodents suggests that hypersensitivity from the viscera may be partially a TRPV1-mediated event, thereby providing a suitable target for the treatment of visceral pain.

  15. What Is the Contribution of Ia-Afference for Regulating Motor Output Variability during Standing?

    PubMed Central

    König, Niklas; Ferraro, Matteo G.; Baur, Heiner; Taylor, William R.; Singh, Navrag B.

    2017-01-01

    Motor variability is an inherent feature of all human movements, and describes the system‘s stability and rigidity during the performance of functional motor tasks such as balancing. In order to ensure successful task execution, the nervous system is thought to be able to flexibly select the appropriate level of variability. However, it remains unknown which neurophysiological pathways are utilized for the control of motor output variability. In responding to natural variability (in this example sway), it is plausible that the neuro-physiological response to muscular elongation contributes to restoring a balanced upright posture. In this study, the postural sway of 18 healthy subjects was observed while their visual and mechano-sensory system was perturbed. Simultaneously, the contribution of Ia-afferent information for controlling the motor task was assessed by means of H-reflex. There was no association between postural sway and Ia-afference in the eyes open condition, however up to 4% of the effects of eye closure on the magnitude of sway can be compensated by increased reliance on Ia-afference. Increasing the biomechanical demands by adding up to 40% bodyweight around the trunk induced a specific sway response, such that the magnitude of sway remained unchanged but its dynamic structure became more regular and stable (by up to 18%). Such regular sway patterns have been associated with enhanced cognitive involvement in controlling motor tasks. It therefore appears that the nervous system applies different control strategies in response to the perturbations: The loss of visual information is compensated by increased reliance on other receptors; while the specific regular sway pattern associated with additional weight-bearing was independent of Ia-afferent information, suggesting the fundamental involvement of supraspinal centers for the control of motor output variability. PMID:28303096

  16. The influence of afferent lymphatic vessel interruption on vascular addressin expression

    PubMed Central

    1991-01-01

    Tissue-selective lymphocyte homing is directed in part by specialized vessels that define sites of lymphocyte exit from the blood. These vessels, the post capillary high endothelial venules (HEV), are found in organized lymphoid tissues, and at sites of chronic inflammation. Lymphocytes bearing specific receptors, called homing receptors, recognize and adhere to their putative ligands on high endothelial cells, the vascular addressins. After adhesion, lymphocytes enter organized lymphoid tissues by migrating through the endothelial cell wall. Cells and/or soluble factors arriving in lymph nodes by way of the afferent lymph supply have been implicated in the maintenance of HEV morphology and efficient lymphocyte homing. In the study reported here, we assessed the influence of afferent lymphatic vessel interruption on lymph node composition, organization of cellular elements; and on expression of vascular addressins. At 1 wk after occlusion of afferent lymphatic vessels, HEV became flat walled and expression of the peripheral lymph node addressin disappeared from the luminal aspect of most vessels, while being retained on the abluminal side. In addition, an HEV-specific differentiation marker, defined by mAb MECA-325, was undetectable at 7-d postocclusion. In vivo homing studies revealed that these modified vessels support minimal lymphocyte traffic from the blood. After occlusion, we observed dramatic changes in lymphocyte populations and at 7-d postsurgery, lymph nodes were populated predominantly by cells lacking the peripheral lymph node homing receptor LECAM-1. In addition, effects on nonlymphoid cells were observed: subcapsular sinus macrophages, defined by mAb MOMA-1, disappeared; and interdigitating dendritic cells, defined by mAb NLDC- 145, were dramatically reduced. These data reveal that functioning afferent lymphatics are centrally involved in maintaining normal lymph node homeostasis. PMID:1918141

  17. Laparoscopic radical cystectomy with novel orthotopic neobladder with bilateral isoperistaltic afferent limbs: initial experience

    PubMed Central

    Xing, Nian-Zeng; Kang, Ning; Song, Li-Mming; Niu, Yi-Nong; Wang, Ming-Shuai; Zhang, Jun-Hui

    2017-01-01

    ABSTRACT Purpose To introduce a new method of constructing an orthotopic ileal neobladder with bilateral isoperistaltic afferent limbs, and to describe its clinical outcomes. Materials and Methods From January 2012 to December 2013, 16 patients underwent a new method of orthotopic ileal neobladder after laparoscopic radical cystectomy for bladder cancer. To construct the neobladder, an ileal segment 60cm long was isolated approximately 25cm proximally to the ileocecum. The proximal 20cm of the ileal segment was divided into two parts for bilateral isoperistaltic afferent limbs. The proximal 10cm of the ileal segment was moved to the distal end of the ileal segment for the right isoperistaltic afferent limb, and the remaining proximal 10cm ileal segment was reserved for the left isoperistaltic afferent limb. The remaining length of the 40cm ileal segment was detubularized along its antimesenteric border to form a reservoir. The neobladder was sutured to achieve a spherical configuration. Results All procedures were carried out successfully. The mean operative time was 330 min, mean blood loss was 328mL, and mean hospital stay was 12.5 days. The mean neobladder capacity 6 and 12 months after surgery was 300mL and 401mL, respectively. With a mean follow-up of 22.8 months, all patients achieved daytime continence and 15 achieved nighttime continence. The mean peak urinary flow rate was 11.9mL/s and 12.8mL/s at 6 and 12 months postoperatively, respectively. Conclusions This novel procedure is feasible, safe, simple to perform, and provides encouraging functional outcomes. However, comparative studies with long-term follow-up are required to prove its superiority. PMID:28124527

  18. Unmyelinated afferents constitute a second system coding tactile stimuli of the human hairy skin.

    PubMed

    Vallbo, A B; Olausson, H; Wessberg, J

    1999-06-01

    Impulses were recorded from unmyelinated afferents innervating the forearm skin of human subjects using the technique of microneurography. Units responding to innocuous skin deformation were selected. The sample (n = 38) was split into low-threshold units (n = 27) and high-threshold units (n = 11) on the basis of three distinctive features, i.e., thresholds to skin deformation, size of response to innocuous skin deformation, and differential response to sharp and blunt stimuli. The low-threshold units provisionally were denoted tactile afferents on the basis of their response properties, which strongly suggest that they are coding some feature of tactile stimuli. They exhibited, in many respects, similar functional properties as described for low-threshold C-mechanoreceptive units in other mammals. However, a delayed acceleration, not previously demonstrated, was observed in response to long-lasting innocuous indentations. It was concluded that human hairy skin is innervated by a system of highly sensitive mechanoreceptive units with unmyelinated afferents akin to the system previously described in other mammals. The confirmation that the system is present in the forearm skin and not only in the face area where it first was identified suggests a largely general distribution although there are indications that the tactile C afferents may be lacking in the very distal parts of the limbs. The functional role of the system remains to be assessed although physiological properties of the sense organs invite to speculations that the slow tactile system might have closer relations to limbic functions than to cognitive and motor functions.

  19. Afferent and Efferent Connections of the Cortex-Amygdala Transition Zone in Mice.

    PubMed

    Cádiz-Moretti, Bernardita; Abellán-Álvaro, María; Pardo-Bellver, Cecília; Martínez-García, Fernando; Lanuza, Enrique

    2016-01-01

    The transitional zone between the ventral part of the piriform cortex and the anterior cortical nucleus of the amygdala, named the cortex-amygdala transition zone (CxA), shows two differential features that allow its identification as a particular structure. First, it receives dense cholinergic and dopaminergic innervations as compared to the adjacent piriform cortex and amygdala, and second, it receives projections from the main and accessory olfactory bulbs. In this work we have studied the pattern of afferent and efferent projections of the CxA, which are mainly unknown, by using the retrograde tracer Fluorogold and the anterograde tracer biotinylated dextranamine. The results show that the CxA receives a relatively restricted set of intratelencephalic connections, originated mainly by the olfactory system and basal forebrain, with minor afferents from the amygdala. The only relevant extratelencephalic afference originates in the ventral tegmental area (VTA). The efferent projections of the CxA reciprocate the inputs from the piriform cortex and olfactory amygdala. In addition, the CxA projects densely to the basolateral amygdaloid nucleus and the olfactory tubercle. The extratelencephalic projections of the CxA are very scarce, and target mainly hypothalamic structures. The pattern of connections of the CxA suggests that it is indeed a transitional area between the piriform cortex and the cortical amygdala. Double labeling with choline acetyltransferase indicates that the afferent projection from the basal forebrain is the origin of its distinctive cholinergic innervation, and double labeling with dopamine transporter shows that the projection from the VTA is the source of dopaminergic innervation. These connectivity and neurochemical features, together with the fact that it receives vomeronasal in addition to olfactory information, suggest that the CxA may be involved in processing olfactory information endowed with relevant biological meaning, such as odors

  20. Afferent projections to the different medial amygdala subdivisions: a retrograde tracing study in the mouse.

    PubMed

    Cádiz-Moretti, Bernardita; Otero-García, Marcos; Martínez-García, Fernando; Lanuza, Enrique

    2016-03-01

    The medial amygdaloid nucleus (Me) is a key node in the socio-sexual brain, composed of anterior (MeA), posteroventral (MePV) and posterodorsal (MePD) subdivisions. These subdivisions have been suggested to play a different role in reproductive and defensive behaviours. In the present work we analyse the afferents of the three Me subdivisions using restricted injections of fluorogold in female outbred CD1 mice. The results reveal that the MeA, MePV and MePD share a common pattern of afferents, with some differences in the density of retrograde labelling in several nuclei. Common afferents to Me subdivisions include: the accessory olfactory bulbs, piriform cortex and endopiriform nucleus, chemosensory amygdala (receiving direct inputs from the olfactory bulbs), posterior part of the medial bed nucleus of the stria terminalis (BSTM), CA1 in the ventral hippocampus and posterior intralaminar thalamus. Minor projections originate from the basolateral amygdala and amygdalo-hippocampal area, septum, ventral striatum, several allocortical and periallocortical areas, claustrum, several hypothalamic structures, raphe and parabrachial complex. MeA and MePV share minor inputs from the frontal cortex (medial orbital, prelimbic, infralimbic and dorsal peduncular cortices), but differ in the lack of main olfactory projections to the MePV. By contrast, the MePD receives preferential projections from the rostral accessory olfactory bulb, the posteromedial BSTM and the ventral premammillary nucleus. In summary, the common pattern of afferents to the Me subdivisions and their interconnections suggest that they play cooperative instead of differential roles in the various behaviours (e.g., sociosexual, defensive) in which the Me has been shown to be involved.

  1. Presynaptic modulation of Ia afferents in young and old adults when performing force and position control.

    PubMed

    Baudry, Stéphane; Maerz, Adam H; Enoka, Roger M

    2010-02-01

    The present work investigated presynaptic modulation of Ia afferents in the extensor carpi radialis (ECR) when young and old adults exerted a wrist extension force either to support an inertial load (position control) or to achieve an equivalent constant torque against a rigid restraint (force control) at 5, 10, and 15% of the maximal force. H reflexes were evoked in the ECR by stimulating the radial nerve above the elbow. A conditioning stimulus was applied to the median nerve above the elbow to assess presynaptic inhibition of homonymous Ia afferents (D1 inhibition) or at the wrist (palmar branch) to assess the ongoing presynaptic inhibition of heteronymous Ia afferents that converge onto the ECR motor neuron pool (heteronymous Ia facilitation). The young adults had less D1 inhibition and greater heteronymous Ia facilitation during the position task (79 and 132.1%, respectively) compared with the force task (69.1 and 115.1%, respectively, P < 0.05). In contrast, the old adults exhibited no difference between the two tasks for either D1 inhibition ( approximately 72%) or heteronymous Ia facilitation ( approximately 114%). Contraction intensity did not influence the amount of D1 inhibition or heteronymous Ia facilitation for either group of subjects. The amount of antagonist coactivation was similar between tasks for young adults, whereas it was greater in the position task for old adults (P = 0.02). These data indicate that in contrast to young adults, old adults did not modulate presynaptic inhibition of Ia afferents when controlling the position of a compliant load but rather increased coactivation of the antagonist muscle.

  2. Afferent and Efferent Connections of the Cortex-Amygdala Transition Zone in Mice

    PubMed Central

    Cádiz-Moretti, Bernardita; Abellán-Álvaro, María; Pardo-Bellver, Cecília; Martínez-García, Fernando; Lanuza, Enrique

    2016-01-01

    The transitional zone between the ventral part of the piriform cortex and the anterior cortical nucleus of the amygdala, named the cortex-amygdala transition zone (CxA), shows two differential features that allow its identification as a particular structure. First, it receives dense cholinergic and dopaminergic innervations as compared to the adjacent piriform cortex and amygdala, and second, it receives projections from the main and accessory olfactory bulbs. In this work we have studied the pattern of afferent and efferent projections of the CxA, which are mainly unknown, by using the retrograde tracer Fluorogold and the anterograde tracer biotinylated dextranamine. The results show that the CxA receives a relatively restricted set of intratelencephalic connections, originated mainly by the olfactory system and basal forebrain, with minor afferents from the amygdala. The only relevant extratelencephalic afference originates in the ventral tegmental area (VTA). The efferent projections of the CxA reciprocate the inputs from the piriform cortex and olfactory amygdala. In addition, the CxA projects densely to the basolateral amygdaloid nucleus and the olfactory tubercle. The extratelencephalic projections of the CxA are very scarce, and target mainly hypothalamic structures. The pattern of connections of the CxA suggests that it is indeed a transitional area between the piriform cortex and the cortical amygdala. Double labeling with choline acetyltransferase indicates that the afferent projection from the basal forebrain is the origin of its distinctive cholinergic innervation, and double labeling with dopamine transporter shows that the projection from the VTA is the source of dopaminergic innervation. These connectivity and neurochemical features, together with the fact that it receives vomeronasal in addition to olfactory information, suggest that the CxA may be involved in processing olfactory information endowed with relevant biological meaning, such as odors

  3. Intercostal muscles and purring in the cat: the influence of afferent inputs.

    PubMed

    Kirkwood, P A; Sears, T A; Stagg, D; Westgaard, R H

    1987-03-03

    Feline purring has previously been reported as originating in a central oscillator, independent of afferent inputs, and also as not involving expiratory muscles. Here we show, via electromyographic recordings from intercostal muscles, quantified by cross-correlation, that expiratory muscles can be involved and that even if the oscillator is central, reflex components nevertheless play a considerable part in the production of the periodic pattern of muscle activation seen during purring.

  4. The auriculo-vagal afferent pathway and its role in seizure suppression in rats

    PubMed Central

    2013-01-01

    Background The afferent projections from the auricular branch of the vagus nerve (ABVN) to the nucleus tractus solitaries (NTS) have been proposed as the anatomical basis for the increased parasympathetic tone seen in auriculo-vagal reflexes. As the afferent center of the vagus nerve, the NTS has been considered to play roles in the anticonvulsant effect of cervical vagus nerve stimulation (VNS). Here we proposed an “auriculo-vagal afferent pathway” (AVAP), by which transcutaneous auricular vagus nerve stimulation (ta-VNS) suppresses pentylenetetrazol (PTZ)-induced epileptic seizures by activating the NTS neurons in rats. Results The afferent projections from the ABVN to the NTS were firstly observed in rats. ta-VNS increased the first grand mal latency of the epileptic seizure and decreased the seizure scores in awake rats. Furthermore, when the firing rates of the NTS neurons decreased, epileptiform activity manifested as electroencephalogram (EEG) synchronization increased with 0.37±0.12 s delay in anaesthetized rats. The change of instantaneous frequency, mean frequency of the NTS neurons was negative correlated with the amplitude of the epileptic activity in EEG traces. ta-VNS significantly suppressed epileptiform activity in EEG traces via increasing the firing rates of the neurons of the NTS. In comparison with tan-VNS, the anticonvulsant durations of VNS and ta-VNS were significantly longer (P<0.01). There was no significant difference between the anticonvulsant durations of VNS and ta-VNS (P>0.05). The anticonvulsant effect of ta-VNS was weakened by reversible cold block of the NTS. Conclusions There existed an anatomical relationship between the ABVN and the NTS, which strongly supports the concept that ta-VNS has the potential for suppressing epileptiform activity via the AVAP in rats. ta-VNS will provide alternative treatments for neurological disorders, which can avoid the disadvantage of VNS. PMID:23927528

  5. Activation of TRPA1 on dural afferents: a potential mechanism of headache pain.

    PubMed

    Edelmayer, Rebecca M; Le, Larry N; Yan, Jin; Wei, Xiaomei; Nassini, Romina; Materazzi, Serena; Preti, Delia; Appendino, Giovanni; Geppetti, Pierangelo; Dodick, David W; Vanderah, Todd W; Porreca, Frank; Dussor, Gregory

    2012-09-01

    Activation of transient receptor potential ankyrin-1 (TRPA1) on meningeal nerve endings has been suggested to contribute to environmental irritant-induced headache, but this channel may also contribute to other forms of headache, such as migraine. The preclinical studies described here examined functional expression of TRPA1 on dural afferents and investigated whether activation of TRPA1 contributes to headache-like behaviors. Whole-cell patch-clamp recordings were performed in vitro with 2 TRPA1 agonists, mustard oil (MO), and the environmental irritant umbellulone (UMB) on dural-projecting trigeminal ganglion neurons. Application of MO and UMB to dural afferents produced TRPA1-like currents in approximately 42% and 38% of cells, respectively. By means of an established in vivo behavioral model of migraine-related allodynia, dural application of MO and UMB produced robust time-related tactile facial and hind paw allodynia that was attenuated by pretreatment with the TRPA1 antagonist HC-030031. Additionally, MO or UMB were applied to the dura, and exploratory activity was monitored for 30min with an automated open-field activity chamber. Dural MO and UMB decreased the number of vertical rearing episodes and the time spent rearing in comparison to vehicle-treated animals. This change in activity was prevented in rats pretreated with HC-030031 as well as sumatriptan, a clinically effective antimigraine agent. These data indicate that TRPA1 is expressed on a substantial fraction of dural afferents, and activation of meningeal TRPA1 produces behaviors consistent with those observed in patients during migraine attacks. Further, they suggest that activation of meningeal TRPA1 via endogenous or exogenous mechanisms can lead to afferent signaling and headache.

  6. An electron microscopic study of terminals of rapidly adapting mechanoreceptive afferent fibers in the cat spinal cord.

    PubMed

    Semba, K; Masarachia, P; Malamed, S; Jacquin, M; Harris, S; Yang, G; Egger, M D

    1985-02-08

    The intra-axonal horseradish peroxidase technique was used to examine the central terminals of 7 A beta primary afferent fibers from rapidly adapting (RA) mechanoreceptors in the glabrous skin of the cat's hindpaw. At the light microscopic level, labelled collaterals were seen to bear occasional boutonlike swellings, mostly (75-82%) of the en passant type. These swellings were distributed more or less uniformly from lamina III to a dorsal part of lamina VI in the dorsal horn, over a maximum longitudinal extent of about 4 mm. At the electron microscopic level, we observed that labelled boutons of RA afferent fibers were 1.0 to 3.3 micrometers in longest sectional dimension, and contained clear, round synaptic vesicles. They frequently formed asymmetric axospinous and axodendritic synapses and commonly appeared to receive contacts from unlabelled structures containing flattened or pleomorphic vesicles plus occasional large dense-cored vesicles. The examination of synaptic connectivity over the entire surface of individual boutons indicated that RA afferent boutons each made contacts with an average of one spine and one dendrite and, in addition, appeared to be postsynaptic to an average of two unlabelled vesicle-containing structures. This synaptic organization was, in general, more complex than that we had seen previously in Pacinian corpuscle (PC) and slowly adapting (SA) type I mechanoreceptive afferent fibers. Our findings indicate that RA, SA, and PC afferent terminals, while displaying some differential synaptic organizations, have many morphological and synaptological characteristics in common. These afferent terminals, in turn, seem to be generally distinguishable from the terminals of muscle spindle Ia afferents or unmyelinated primary afferents.

  7. Modulation of synaptic transmission from segmental afferents by spontaneous activity of dorsal horn spinal neurones in the cat.

    PubMed

    Manjarrez, E; Rojas-Piloni, J G; Jimenez, I; Rudomin, P

    2000-12-01

    We examined, in the anaesthetised cat, the influence of the neuronal ensembles producing spontaneous negative cord dorsum potentials (nCDPs) on segmental pathways mediating primary afferent depolarisation (PAD) of cutaneous and group I muscle afferents and on Ia monosynaptic activation of spinal motoneurones. The intraspinal distribution of the field potentials associated with the spontaneous nCDPs indicated that the neuronal ensembles involved in the generation of these potentials were located in the dorsal horn of lumbar segments, in the same region of termination of low-threshold cutaneous afferents. During the occurrence of spontaneous nCDPs, transmission from low-threshold cutaneous afferents to second order neurones in laminae III-VI, as well as transmission along pathways mediating PAD of cutaneous and Ib afferents, was facilitated. PAD of Ia afferents was instead inhibited. Monosynaptic reflexes of flexors and extensors were facilitated during the spontaneous nCDPs. The magnitude of the facilitation was proportional to the amplitude of the 'conditioning' spontaneous nCDPs. This led to a high positive correlation between amplitude fluctuations of spontaneous nCDPs and fluctuations of monosynaptic reflexes. Stimulation of low-threshold cutaneous afferents transiently reduced the probability of occurrence of spontaneous nCDPs as well as the fluctuations of monosynaptic reflexes. It is concluded that the spontaneous nCDPs were produced by the activation of a population of dorsal horn neurones that shared the same functional pathways and involved the same set of neurones as those responding monosynaptically to stimulation of large cutaneous afferents. The spontaneous activity of these neurones was probably the main cause of the fluctuations of the monosynaptic reflexes observed under anaesthesia and could provide a dynamic linkage between segmental sensory and motor pathways.

  8. Modulation of synaptic transmission from segmental afferents by spontaneous activity of dorsal horn spinal neurones in the cat

    PubMed Central

    Manjarrez, E; Rojas-Piloni, J G; Jiménez, I; Rudomin, P

    2000-01-01

    We examined, in the anaesthetised cat, the influence of the neuronal ensembles producing spontaneous negative cord dorsum potentials (nCDPs) on segmental pathways mediating primary afferent depolarisation (PAD) of cutaneous and group I muscle afferents and on Ia monosynaptic activation of spinal motoneurones. The intraspinal distribution of the field potentials associated with the spontaneous nCDPs indicated that the neuronal ensembles involved in the generation of these potentials were located in the dorsal horn of lumbar segments, in the same region of termination of low-threshold cutaneous afferents. During the occurrence of spontaneous nCDPs, transmission from low-threshold cutaneous afferents to second order neurones in laminae III-VI, as well as transmission along pathways mediating PAD of cutaneous and Ib afferents, was facilitated. PAD of Ia afferents was instead inhibited. Monosynaptic reflexes of flexors and extensors were facilitated during the spontaneous nCDPs. The magnitude of the facilitation was proportional to the amplitude of the ‘conditioning’ spontaneous nCDPs. This led to a high positive correlation between amplitude fluctuations of spontaneous nCDPs and fluctuations of monosynaptic reflexes. Stimulation of low-threshold cutaneous afferents transiently reduced the probability of occurrence of spontaneous nCDPs as well as the fluctuations of monosynaptic reflexes. It is concluded that the spontaneous nCDPs were produced by the activation of a population of dorsal horn neurones that shared the same functional pathways and involved the same set of neurones as those responding monosynaptically to stimulation of large cutaneous afferents. The spontaneous activity of these neurones was probably the main cause of the fluctuations of the monosynaptic reflexes observed under anaesthesia and could provide a dynamic linkage between segmental sensory and motor pathways. PMID:11101653

  9. Social Stress Engages Neurochemically-Distinct Afferents to the Rat Locus Coeruleus Depending on Coping Strategy123

    PubMed Central

    Reyes, Beverly A. S.; Zitnik, Gerard; Foster, Celia; Van Bockstaele, Elisabeth J.

    2015-01-01

    Abstract Stress increases vulnerability to psychiatric disorders, partly by affecting brain monoamine systems, such as the locus coeruleus (LC)-norepinephrine system. During stress, LC activity is coregulated by corticotropin-releasing factor (CRF) and endogenous opioids. This study identified neural circuitry that regulates LC activity of intruder rats during the resident–intruder model of social stress. LC afferents were retrogradely labeled with Fluorogold (FG) and rats were subjected to one or five daily exposures to an aggressive resident. Sections through the nucleus paragigantocellularis (PGi) and central amygdalar nucleus (CNA), major sources of enkephalin (ENK) and CRF LC afferents, respectively, were immunocytochemically processed to detect c-fos, FG, and CRF or ENK. In response to a single exposure, intruder rats assumed defeat with a relatively short latency (SL). LC neurons, PGI-ENK LC afferents, and CNA-CRF LC afferents were activated in these rats as indicated by increased c-fos expression. With repeated stress, rats exhibited either a SL or long latency (LL) to defeat and these strategies were associated with distinct patterns of neuronal activation. In SL rats, LC neurons were activated, as were CNA-CRF LC afferents but not PGI-ENK LC afferents. LL rats had an opposite pattern, maintaining activation of PGi-ENK LC afferents but not CNA-CRF LC afferents or LC neurons. Together, these results indicate that the establishment of different coping strategies to social stress is associated with changes in the circuitry that regulates activity of the brain norepinephrine system. This may underlie differential vulnerability to the consequences of social stress that characterize these different coping strategies. PMID:26634226

  10. Profound alteration in cutaneous primary afferent activity produced by inflammatory mediators

    PubMed Central

    Smith-Edwards, Kristen M; DeBerry, Jennifer J; Saloman, Jami L; Davis, Brian M; Woodbury, C Jeffery

    2016-01-01

    Inflammatory pain is thought to arise from increased transmission from nociceptors and recruitment of 'silent' afferents. To evaluate inflammation-induced changes, mice expressing GCaMP3 in cutaneous sensory neurons were generated and neuronal responses to mechanical stimulation in vivo before and after subcutaneous infusion of an 'inflammatory soup' (IS) were imaged in an unanesthetized preparation. Infusion of IS rapidly altered mechanical responsiveness in the majority of neurons. Surprisingly, more cells lost, rather than gained, sensitivity and 'silent' afferents that were mechanically insensitive and gained mechanosensitivity after IS exposure were rare. However, the number of formerly 'silent' afferents that became mechanosensitive was increased five fold when the skin was heated briefly prior to infusion of IS. These findings suggest that pain arising from inflamed skin reflects a dramatic shift in the balance of sensory input, where gains and losses in neuronal populations results in novel output that is ultimately interpreted by the CNS as pain. DOI: http://dx.doi.org/10.7554/eLife.20527.001 PMID:27805567

  11. Plasticity in vagal afferent neurones during feeding and fasting: mechanisms and significance.

    PubMed

    Dockray, G J; Burdyga, G

    2011-03-01

    The ingestion of food activates mechanisms leading to inhibition of food intake and gastric emptying mediated by the release of regulatory peptides, for example cholecystokinin (CCK), and lipid amides, e.g. oleylethanolamide from the gut. In addition, there are both peptides (e.g. ghrelin) and lipid amides (e.g. anandamide) that appear to signal the absence of food in the gut and that are associated with the stimulation of food intake. Vagal afferent neurones are a common target for both types of signal. Remarkably, the neurochemical phenotype of these neurones itself depends on nutritional status. CCK acting at CCK1 receptors on vagal afferent neurones stimulates expression in these neurones of Y2-receptors and the neuropeptide CART, both of which are associated with the inhibition of food intake. Conversely, in fasted rats when plasma CCK is low, these neurones express cannabinoid (CB)-1 and melanin concentrating hormone (MCH)-1 receptors, and MCH, and this is inhibited by exogenous CCK or endogenous CCK released by refeeding. The stimulation of CART expression by CCK is mediated by the activation of CREB and EGR1; ghrelin inhibits the action of CCK by promoting nuclear exclusion of CREB and leptin potentiates the action of CCK by the stimulation of EGR1 expression. Vagal afferent neurones therefore constitute a level of integration outside the CNS for nutrient-derived signals that control energy intake and that are capable of encoding recent nutrient ingestion.

  12. Long-range projections of Adelta primary afferents in the Lissauer tract of the rat.

    PubMed

    Lidierth, Malcolm

    2007-09-25

    Electrical microstimulation has been used to activate fine myelinated primary afferents running within the Lissauer tract. Stimulation of the tract at the L2/L3 border produced antidromic volleys which were recorded on the dorsal roots of more caudal spinal segments. Antidromic volleys were present in all cases for roots as far caudal as the S2 segment (L3, n=12; L4, n=6; L5, n=6; L6, n=9; S1, n=3; S2, n=6; observations in a total of 15 rats). These fibres were collaterals of primary afferents with conduction velocities in the dorsal root of up to 17.3+/-2.3 ms(-1) (mean+/-S.D., n=6; range 14-20 ms(-1)). Conduction velocities within the Lissauer tract were slower; the fastest contributing fibres had conduction velocities of 9.2+/-2.2 ms(-1) (range 6-12 ms(-1)). Lesions of the Lissauer tract caudal to the stimulation site abolished the volleys on roots lying caudal to the lesion. Most previous works have suggested that primary afferents project in the Lissauer tract for only one or two spinal segments. The present study shows that some fibres project rostrally for up to seven spinal segments (L2-S2).

  13. The renal nerves in chronic heart failure: efferent and afferent mechanisms.

    PubMed

    Schiller, Alicia M; Pellegrino, Peter R; Zucker, Irving H

    2015-01-01

    The function of the renal nerves has been an area of scientific and medical interest for many years. The recent advent of a minimally invasive catheter-based method of renal denervation has renewed excitement in understanding the afferent and efferent actions of the renal nerves in multiple diseases. While hypertension has been the focus of much this work, less attention has been given to the role of the renal nerves in the development of chronic heart failure (CHF). Recent studies from our laboratory and those of others implicate an essential role for the renal nerves in the development and progression of CHF. Using a rabbit tachycardia model of CHF and surgical unilateral renal denervation, we provide evidence for both renal efferent and afferent mechanisms in the pathogenesis of CHF. Renal denervation prevented the decrease in renal blood flow observed in CHF while also preventing increases in Angiotensin-II receptor protein in the microvasculature of the renal cortex. Renal denervation in CHF also reduced physiological markers of autonomic dysfunction including an improvement in arterial baroreflex function, heart rate variability, and decreased resting cardiac sympathetic tone. Taken together, the renal sympathetic nerves are necessary in the pathogenesis of CHF via both efferent and afferent mechanisms. Additional investigation is warranted to fully understand the role of these nerves and their role as a therapeutic target in CHF.

  14. Contribution of vagal afferents to respiratory reflexes evoked by acute inhalation of ozone in dogs

    SciTech Connect

    Schelegle, E.S.; Carl, M.L.; Coleridge, H.M.; Coleridge, J.C.; Green, J.F. )

    1993-05-01

    Acute inhalation of ozone induces vagally mediated rapid shallow breathing and bronchoconstriction. In spontaneously breathing anesthetized dogs, we attempted to determine whether afferent vagal C-fibers in the lower airways contributed to these responses. Dogs inhaled 3 ppm ozone for 40-70 min into the lower trachea while cervical vagal temperature was maintained successively at 37, 7, and 0 degrees C. At 37 degrees C, addition of ozone to the inspired air decreased tidal volume and dynamic lung compliance and increased breathing frequency, total lung resistance, and tracheal smooth muscle tension. Ozone still evoked significant effects when conduction in myelinated vagal axons was blocked selectively by cooling the nerves to 7 degrees C. Ozone-induced effects were largely abolished when nonmyelinated vagal axons were blocked by cooling to 0 degree C, breathing during ozone inhalation at 0 degree C being generally similar to that during air breathing at 0 degree C, except that minute volume and inspiratory flow were higher. We conclude that afferent vagal C-fibers in the lower airways make a major contribution to the acute respiratory effects of ozone and that nonvagal afferents contribute to the effects that survive vagal blockade.

  15. Merkel cells transduce and encode tactile stimuli to drive Aβ-afferent impulses.

    PubMed

    Ikeda, Ryo; Cha, Myeounghoon; Ling, Jennifer; Jia, Zhanfeng; Coyle, Dennis; Gu, Jianguo G

    2014-04-24

    Sensory systems for detecting tactile stimuli have evolved from touch-sensing nerves in invertebrates to complicated tactile end organs in mammals. Merkel discs are tactile end organs consisting of Merkel cells and Aβ-afferent nerve endings and are localized in fingertips, whisker hair follicles, and other touch-sensitive spots. Merkel discs transduce touch into slowly adapting impulses to enable tactile discrimination, but their transduction and encoding mechanisms remain unknown. Using rat whisker hair follicles, we show that Merkel cells rather than Aβ-afferent nerve endings are primary sites of tactile transduction and identify the Piezo2 ion channel as the Merkel cell mechanical transducer. Piezo2 transduces tactile stimuli into Ca(2+)-action potentials in Merkel cells, which drive Aβ-afferent nerve endings to fire slowly adapting impulses. We further demonstrate that Piezo2 and Ca(2+)-action potentials in Merkel cells are required for behavioral tactile responses. Our findings provide insights into how tactile end-organs function and have clinical implications for tactile dysfunctions.

  16. Vagal afferent activation decreases brown adipose tissue (BAT) sympathetic nerve activity and BAT thermogenesis

    PubMed Central

    Madden, Christopher J.; Santos da Conceicao, Ellen Paula; Morrison, Shaun F.

    2017-01-01

    ABSTRACT In urethane/α-chloralose anesthetized rats, electrical stimulation of cervical vagal afferent fibers inhibited the increases in brown adipose tissue sympathetic nerve activity and brown adipose tissue thermogenesis evoked by cold exposure, by nanoinjection of the GABAA receptor antagonist, bicuculline, in the dorsomedial hypothalamus, and by nanoinjection of N-methyl-D-aspartate in the rostral raphe pallidus. Vagus nerve stimulation-evoked inhibition of brown adipose tissue sympathetic nerve activity was prevented by blockade of ionotropic glutamate receptors in the termination site of vagal afferents in the nucleus of the solitary tract, and by nanoinjection of GABAA receptor antagonists in the rostral raphe pallidus. In conclusion, the brown adipose tissue sympathoinhibitory effect of cervical afferent vagal nerve stimulation is mediated by glutamatergic activation of second-order sensory neurons in the nucleus of the solitary tract and by a GABAergic inhibition of brown adipose tissue sympathetic premotor neurons in the rostral raphe pallidus, but does not require GABAergic inhibition of the brown adipose tissue sympathoexcitatory neurons in the dorsomedial hypothalamus. PMID:28349097

  17. Characterization of spinal afferent neurons projecting to different chambers of the rat heart.

    PubMed

    Guić, Maja Marinović; Kosta, Vana; Aljinović, Jure; Sapunar, Damir; Grković, Ivica

    2010-01-29

    The pattern of distribution of spinal afferent neurons (among dorsal root ganglia-DRGs) that project to anatomically and functionally different chambers of the rat heart, as well as their morphological and neurochemical characteristics were investigated. Retrograde tracing using a patch loaded with Fast blue (FB) was applied to all four chambers of the rat heart and labeled cardiac spinal afferents were characterized by using three neurochemical markers. The majority of cardiac projecting neurons were found from T1 to T4 DRGs, whereas the peak was at T2 DRG. There was no difference in the total number of FB-labeled neurons located in ipsilateral and contralateral DRGs regardless of the chambers marked with the patch. However, significantly more FB-labeled neurons projected to the ventricles compared to the atria (859 vs. 715). The proportion of isolectin B(4) binding in FB-labeled neurons was equal among all neurons projecting to different heart chambers (2.4%). Neurofilament 200 positivity was found in greater proportions in DRG neurons projecting to the left side of the heart, whereas calretinin-immunoreactivity was mostly represented in neurons projecting to the left atrium. Spinal afferent neurons projecting to different chambers of the rat heart exhibit a variety of neurochemical phenotypes depending on binding capacity for isolectin B(4) and immunoreactivity for neurofilament 200 and calretinin, and thus represent important baseline data for future studies.

  18. Afferent and efferent connections of the nucleus rotundus demonstrated by WGA-HRP in the chick.

    PubMed

    Hu, M; Naito, J; Chen, Y; Ohmori, Y; Fukuta, K

    2003-12-01

    Organization of the fibre connections in the chick nucleus rotundus (Rt) was investigated by an axonal tracing method using wheat germ agglutinin conjugated to horseradish peroxidase (WGA-HRP). After an injection of WGA-HRP into the Rt, labelled neurones were observed in the striatum griseum centrale (SGC) in both sides of the tectum (TO) and in the ipsilateral nucleus subpretectalis/nucleus interstito-pretecto-subpretectalis (SP/IPS). Labelled fibres and terminals were also found in the ipsilateral ectostriatum (Ect). These fibre connections were topographically organized rostrocaudally. In the TO-Rt projection, the rostral and the dorsocaudal parts of the Rt received afferents from the superficial part of the SGC, the middle part of the Rt received afferents from the intermediate part of the SGC, and the ventrocaudal part of the Rt received mainly fibres from the deep part of the SGC. These topographic projections were accompanied by a considerable number of diffuse projections to the thalamic regions surrounding the Rt. In addition, the rostral and middle caudal parts of the Rt received afferents from the lateral and medial parts of the SP/IPS, respectively, and respective parts of the Rt sent efferents to the lateral and medial parts of the Ect.

  19. SA1 and RA afferent responses to static and vibrating gratings.

    PubMed

    Bensmaïa, S J; Craig, J C; Yoshioka, T; Johnson, K O

    2006-03-01

    SA1 and RA afferent fibers differ both in their ability to convey information about the fine spatial structure of tactile stimuli and in their frequency sensitivity profiles. In the present study, we investigated the extent to which the spatial resolution of the signal conveyed by SA1 and RA fibers depends on the temporal properties of the stimulus. To that end, we recorded the responses evoked in SA1 and RA fibers of macaques by static and vibrating gratings that varied in spatial period, vibratory frequency, and amplitude. Gratings were oriented either parallel to the long axis of the finger (vertical) or perpendicular to it (horizontal). We examined the degree to which afferent responses were dependent on the spatial period, vibratory frequency, amplitude, and orientation of the gratings. We found that the spatial modulation of the afferent responses increased as the spatial period of the gratings increased; the spatial modulation was the same for static and vibrating gratings, despite large differences in evoked spike rates; the spatial modulation in SA1 responses was independent of stimulus amplitude over the range of amplitudes tested, whereas RA modulation decreased slightly as the stimulus amplitude increased; vertical gratings evoked stronger and more highly modulated responses than horizontal gratings; the modulation in SA1 responses was higher than that in RA responses at all frequencies and amplitudes. The behavioral consequences of these neurophysiological findings are examined in a companion paper.

  20. The renal nerves in chronic heart failure: efferent and afferent mechanisms

    PubMed Central

    Schiller, Alicia M.; Pellegrino, Peter R.; Zucker, Irving H.

    2015-01-01

    The function of the renal nerves has been an area of scientific and medical interest for many years. The recent advent of a minimally invasive catheter-based method of renal denervation has renewed excitement in understanding the afferent and efferent actions of the renal nerves in multiple diseases. While hypertension has been the focus of much this work, less attention has been given to the role of the renal nerves in the development of chronic heart failure (CHF). Recent studies from our laboratory and those of others implicate an essential role for the renal nerves in the development and progression of CHF. Using a rabbit tachycardia model of CHF and surgical unilateral renal denervation, we provide evidence for both renal efferent and afferent mechanisms in the pathogenesis of CHF. Renal denervation prevented the decrease in renal blood flow observed in CHF while also preventing increases in Angiotensin-II receptor protein in the microvasculature of the renal cortex. Renal denervation in CHF also reduced physiological markers of autonomic dysfunction including an improvement in arterial baroreflex function, heart rate variability, and decreased resting cardiac sympathetic tone. Taken together, the renal sympathetic nerves are necessary in the pathogenesis of CHF via both efferent and afferent mechanisms. Additional investigation is warranted to fully understand the role of these nerves and their role as a therapeutic target in CHF. PMID:26300788

  1. A DSP for sensing the bladder volume through afferent neural pathways.

    PubMed

    Mendez, Arnaldo; Belghith, Abrar; Sawan, Mohamad

    2014-08-01

    In this paper, we present a digital signal processor (DSP) capable of monitoring the urinary bladder volume through afferent neural pathways. The DSP carries out real-time detection and can discriminate extracellular action potentials, also known as on-the-fly spike sorting. Next, the DSP performs a decoding method to estimate either three qualitative levels of fullness or the bladder volume value, depending on the selected output mode. The proposed DSP was tested using both realistic synthetic signals with a known ground-truth, and real signals from bladder afferent nerves recorded during acute experiments with animal models. The spike sorting processing circuit yielded an average accuracy of 92% using signals with highly correlated spike waveforms and low signal-to-noise ratios. The volume estimation circuits, tested with real signals, reproduced accuracies achieved by offline simulations in Matlab, i.e., 94% and 97% for quantitative and qualitative estimations, respectively. To assess feasibility, the DSP was deployed in the Actel FPGA Igloo AGL1000V2, which showed a power consumption of 0.5 mW and a latency of 2.1 ms at a 333 kHz core frequency. These performance results demonstrate that an implantable bladder sensor that perform the detection, discrimination and decoding of afferent neural activity is feasible.

  2. Comparison of the inhibitory response to tendon and cutaneous afferent stimulation in the human lower limb.

    PubMed

    Rogasch, Nigel C; Burne, John A; Türker, Kemal S

    2012-01-01

    A powerful early inhibition is seen in triceps surae after transcutaneous electrical stimulation of the Achilles tendon [tendon electrical stimulation (TES)]. The aim of the present study was to confirm results from surface electromyogram (SEMG) recordings that the inhibition is not wholly or partly due to stimulation of cutaneous afferents that may lie within range of the tendon electrodes. Because of methodological limitations, SEMG does not reliably identify the time course of inhibitory and excitatory reflex components. This issue was revisited here with an analysis of changes in single motor unit (SMU) firing rate [peristimulus frequencygram (PSF)] and probability [peristimulus time histogram (PSTH)] to reexamine the time course of inhibitory SMU events that follow purely cutaneous (superficial sural) nerve stimulation. Results were then compared with similar data from TES. When compared with the reflex response to TES, sural nerve stimulation resulted in a longer onset latency of the primary inhibition and a weaker effect on SMU firing probability and rate. PSF also revealed that decreased SMU firing rates persisted during the excitation phase in SEMG, suggesting that the initial inhibition was more prolonged than previously reported. In a further study, the transcutaneous SEMG Achilles tendon response was compared with that from direct intratendon stimulation with insulated needle electrodes. This method should attenuate the SEMG response if it is wholly or partly dependent on cutaneous afferents. However, subcutaneous stimulation of the tendon produced similar components in the SEMG, confirming that cutaneous afferents made little or no contribution to the initial inhibition following TES.

  3. Reflex control of locomotion as revealed by stimulation of cutaneous afferents in spontaneously walking premammillary cats.

    PubMed

    Duysens, J

    1977-07-01

    1. Stimulation of different hindlimb nerves in spontaneously walking premammillary cats was used in order to examine the effects of sensory input on the rhythmic motor output. 2. Stimulation of the tibial or sural nerve at low intensities caused the burst of activity in the triceps surae or semimembranosus to be prolonged if stimuli were given during the extension phase. When applied during the flexion phase, the same stimuli shortened the burst of activity in the pretibial flexors and induced an early onset of the extensor activity, except if stimuli were given at the very beginning of the flexion phase, when flexor burst prolongations or rebounds were observed instead. 3. These effects were related to activation of large cutaneous afferents in these nerves since the results could be duplicated by low-intensity stimulation of the tibial nerve at the ankle or by direct stimulation of the pad. 4. In contrast, activation of smaller afferents by high-intensity stimulation resulted prolongations of the flexor burst and/or shortenings of the extensor burst for stimuli applied before or during these bursts, respectively. 5. It was concluded that the large and small cutaneous afferents make, respectively, inhibitory and excitatory connections with the central structure involved in the generation of flexion during walking.

  4. Neuronal pathways from foot pad afferents to hindlimb motoneurons in the low spinalized cats.

    PubMed

    Wada, N; Kanda, Y; Takayama, R

    1998-07-01

    Experiments were performed on 16 adult spinalized (L2) cats. Postsynaptic potentials (PSPs) produced by electrical stimulation of afferent nerves innervating foot pads were recorded from hindlimb motoneurons innervating the following hindlimb muscles: the posterior biceps and semitendinosus (PBSt), anterior biceps and semimembranosus (ABSm), lateral gastrocnemius and soleus (LGS), medial gastrocnemius (MG), plantaris (P1), tibialis anterior (TA), popliteus (Pop), flexor digitorum longus and flexor hallucis longus (FDHL) and peroneus longus (Per.l). The rate of occurrence of different types of PSPs (EPSPs, IPSPs and mixed PSPs), the size of the PSPs and their central latencies were analyzed for each group of motoneurons to identify the neural pathways from the afferents innervating foot pads to hindlimb motoneurons. The rates of occurrence of different types of PSPs did not depend on the foot pad stimulated in PBSt, ABSm and LGS motoneurons, but for other groups of motoneurons their rates of occurrence depended on the foot pad stimulated. It was often noted that the size of PSPs in the same motoneurons differed according to the foot pad stimulated. Measurements of the central latencies of the PSPs indicated that the shortest neural pathways for EPSPs and IPSPs were disynaptic (central latencies < 1.8 ms). The functional role of neuronal pathways from afferent nerves innervating foot pads to hindlimb motoneurons could be to maintain stability of the foot during different postural and motor activities.

  5. Intensity and frequency dependence of laryngeal afferent inputs to respiratory hypoglossal motoneurons.

    PubMed

    Mifflin, S W

    1997-12-01

    Inspiratory hypoglossal motoneurons (IHMs) mediate contraction of the genioglossus muscle and contribute to the regulation of upper airway patency. Intracellular recordings were obtained from antidromically identified IHMs in anesthetized, vagotomized cats, and IHM responses to electrical activation of superior laryngeal nerve (SLN) afferent fibers at various frequencies and intensities were examined. SLN stimulus frequencies <2 Hz evoked an excitatory-inhibitory postsynaptic potential (EPSP-IPSP) sequence or only an IPSP in most IHMs that did not change in amplitude as the stimulus was maintained. During sustained stimulus frequencies of 5-10 Hz, there was a reduction in the amplitude of SLN-evoked IPSPs with time with variable changes in the EPSP. At stimulus frequencies >25 Hz, the amplitude of EPSPs and IPSPs was reduced over time. At a given stimulus frequency, increasing stimulus intensity enhanced the decay of the SLN-evoked postsynaptic potentials (PSPs). Frequency-dependent attenuation of SLN inputs to IHMs also occurred in newborn kittens. These results suggest that activation of SLN afferents evokes different PSP responses in IHMs depending on the stimulus frequency. At intermediate frequencies, inhibitory inputs are selectively filtered so that excitatory inputs predominate. At higher frequencies there was no discernible SLN-evoked PSP temporally locked to the SLN stimuli. Alterations in SLN-evoked PSPs could play a role in the coordination of genioglossal contraction during respiration, swallowing, and other complex motor acts where laryngeal afferents are activated.

  6. [Effects of pulpal inflammation on the activities of periodontal mechanoreceptive afferent fibers].

    PubMed

    Matsumoto, Hiroyuki

    2010-06-01

    Response properties of periodontal single afferents were investigated in cats with inflammatory irritant-induced pulpitis. A deep dentin cavity was prepared on the right mandibular canine in order to apply an inflammatory agent and small fiber excitant, allyl-isothiocyanate (mustard oil: MO), and single afferents innervating the canine periodontal mechanoreceptor were dissected from the mandibular nerve bundle by examining impulse responses while applying mechanical stimuli to the tip of the crown. Evoked impulses by mechanical stimuli were increased in number for 15 minutes with MO application to the pulp when compared with those with mineral oil. The mechanoreceptive thresholds of single nerve fibers were decreased after the MO application to the pulp when compared with those with mineral oil. These results suggest that the alteration of responses in the periodontal afferent fiber, or the peripheral sensitization, can be produced by MO-induced pulpal inflammation probably due to the axon reflex mechanism in the furcating branches of nerve fibers innervating both the tooth pulp and periodontal ligament.

  7. Skeletal muscle afferent regulation of bioassayable growth hormone in the rat pituitary

    NASA Technical Reports Server (NTRS)

    Gosselink, K. L.; Grindeland, R. E.; Roy, R. R.; Zhong, H.; Bigbee, A. J.; Grossman, E. J.; Edgerton, V. R.

    1998-01-01

    There are forms of growth hormone (GH) in the plasma and pituitary of the rat and in the plasma of humans that are undetected by presently available immunoassays (iGH) but can be measured by bioassay (bGH). Although the regulation of iGH release is well documented, the mechanism(s) of bGH release is unclear. On the basis of changes in bGH and iGH secretion in rats that had been exposed to microgravity conditions, we hypothesized that neural afferents play a role in regulating the release of these hormones. To examine whether bGH secretion can be modulated by afferent input from skeletal muscle, the proximal or distal ends of severed hindlimb fast muscle nerves were stimulated ( approximately 2 times threshold) in anesthetized rats. Plasma bGH increased approximately 250%, and pituitary bGH decreased approximately 60% after proximal nerve trunk stimulation. The bGH response was independent of muscle mass or whether the muscles were flexors or extensors. Distal nerve stimulation had little or no effect on plasma or pituitary bGH. Plasma iGH concentrations were unchanged after proximal nerve stimulation. Although there may be multiple regulatory mechanisms of bGH, the present results demonstrate that the activation of low-threshold afferents from fast skeletal muscles can play a regulatory role in the release of bGH, but not iGH, from the pituitary in anesthetized rats.

  8. Concurrent recordings of bladder afferents from multiple nerves using a microfabricated PDMS microchannel electrode array.

    PubMed

    Delivopoulos, Evangelos; Chew, Daniel J; Minev, Ivan R; Fawcett, James W; Lacour, Stéphanie P

    2012-07-21

    In this paper we present a compliant neural interface designed to record bladder afferent activity. We developed the implant's microfabrication process using multiple layers of silicone rubber and thin metal so that a gold microelectrode array is embedded within four parallel polydimethylsiloxane (PDMS) microchannels (5 mm long, 100 μm wide, 100 μm deep). Electrode impedance at 1 kHz was optimized using a reactive ion etching (RIE) step, which increased the porosity of the electrode surface. The electrodes did not deteriorate after a 3 month immersion in phosphate buffered saline (PBS) at 37 °C. Due to the unique microscopic topography of the metal film on PDMS, the electrodes are extremely compliant and can withstand handling during implantation (twisting and bending) without electrical failure. The device was transplanted acutely to anaesthetized rats, and strands of the dorsal branch of roots L6 and S1 were surgically teased and inserted in three microchannels under saline immersion to allow for simultaneous in vivo recordings in an acute setting. We utilized a tripole electrode configuration to maintain background noise low and improve the signal to noise ratio. The device could distinguish two types of afferent nerve activity related to increasing bladder filling and contraction. To our knowledge, this is the first report of multichannel recordings of bladder afferent activity.

  9. Social stress in mice induces urinary bladder overactivity and increases TRPV1 channel-dependent afferent nerve activity.

    PubMed

    Mingin, Gerald C; Heppner, Thomas J; Tykocki, Nathan R; Erickson, Cuixia Shi; Vizzard, Margaret A; Nelson, Mark T

    2015-09-15

    Social stress has been implicated as a cause of urinary bladder hypertrophy and dysfunction in humans. Using a murine model of social stress, we and others have shown that social stress leads to bladder overactivity. Here, we show that social stress leads to bladder overactivity, increased bladder compliance, and increased afferent nerve activity. In the social stress paradigm, 6-wk-old male C57BL/6 mice were exposed for a total of 2 wk, via barrier cage, to a C57BL/6 retired breeder aggressor mouse. We performed conscious cystometry with and without intravesical infusion of the TRPV1 inhibitor capsazepine, and measured pressure-volume relationships and afferent nerve activity during bladder filling using an ex vivo bladder model. Stress leads to a decrease in intermicturition interval and void volume in vivo, which was restored by capsazepine. Ex vivo studies demonstrated that at low pressures, bladder compliance and afferent activity were elevated in stressed bladders compared with unstressed bladders. Capsazepine did not significantly change afferent activity in unstressed mice, but significantly decreased afferent activity at all pressures in stressed bladders. Immunohistochemistry revealed that TRPV1 colocalizes with CGRP to stain nerve fibers in unstressed bladders. Colocalization significantly increased along the same nerve fibers in the stressed bladders. Our results support the concept that social stress induces TRPV1-dependent afferent nerve activity, ultimately leading to the development of overactive bladder symptoms.

  10. Retinal Afferent Ingrowth to Neocortical Transplants in the Adult Rat Superior Colliculus is due to the Regeneration of Damaged Axons

    PubMed Central

    Ross, D. T.; Das, G. D.

    1994-01-01

    Retinal afferent ingrowth to embryonic neural transplants in the adult rat superior colliculus may represent either sprouting of intact axons or the regeneration of transected axons. If ingrowth represents regeneration of damaged retinofugai axons, then lesions that axotomize more retinofugal axons at the transplantation site should induce greater retinal afferent ingrowth. Alternately, if ingrowth represents terminal or collateral sprouting of intact retinofugal axons at or near the transplant/host optic layer interface, then the magnitude of retinal afferent ingrowth should be directly related to the total area of this interface. To test between these two hypotheses surgical knife wounds were made either parallel (in the sagittal plane) or perpendicular (in the transverse plane) to the course of axons in the stratum opticum, embryonic neocortical tissue was transplanted at the coordinates of these tectal slits, and retinal afferent ingrowth visualized 1-90 days after surgery using anterogradely transported HRP. A zone of traumatic reaction (ztr) in the optic layers was seen in every case, characterized by hypertrophied axons and swollen terminal clubs at 1 day. Between 30 and 90 days the damaged retinofugal axons in the zone formed dense fascicles and neuroma-like tangles. Retinal afferent ingrowth occurred only across transplant interface regions with the ztr. The magnitude of ingrowth was directly related to the area of the ztr interface and not the total optic layer interface area. Retinal afferent ingrowth appears to reflect the intrinsic regenerative capacity of adult mammalian retinal ganglion cells and not sprouting of undamaged axons. PMID:7703292

  11. Capsaicin-responsive corneal afferents do not contain TRPV1 at their central terminals in trigeminal nucleus caudalis in rats.

    PubMed

    Hegarty, Deborah M; Hermes, Sam M; Largent-Milnes, Tally M; Aicher, Sue A

    2014-11-01

    We examined the substrates for ocular nociception in adult male Sprague-Dawley rats. Capsaicin application to the ocular surface in awake rats evoked nocifensive responses and suppressed spontaneous grooming responses. Thus, peripheral capsaicin was able to activate the central pathways encoding ocular nociception. Our capsaicin stimulus evoked c-Fos expression in a select population of neurons within rostral trigeminal nucleus caudalis in anesthetized rats. These activated neurons also received direct contacts from corneal afferent fibers traced with cholera toxin B from the corneal surface. However, the central terminals of the corneal afferents that contacted capsaicin-activated trigeminal neurons did not contain TRPV1. To determine if TRPV1 expression had been altered by capsaicin stimulation, we examined TRPV1 content of corneal afferents in animals that did not receive capsaicin stimulation. These studies confirmed that while TRPV1 was present in 30% of CTb-labeled corneal afferent neurons within the trigeminal ganglion, TRPV1 was only detected in 2% of the central terminals of these corneal afferents within the trigeminal nucleus caudalis. Other TRP channels were also present in low proportions of central corneal afferent terminals in unstimulated animals (TRPM8, 2%; TRPA1, 10%). These findings indicate that a pathway from the cornea to rostral trigeminal nucleus caudalis is involved in corneal nociceptive transmission, but that central TRP channel expression is unrelated to the type of stimulus transduced by the peripheral nociceptive endings.

  12. Social stress in mice induces urinary bladder overactivity and increases TRPV1 channel-dependent afferent nerve activity

    PubMed Central

    Heppner, Thomas J.; Tykocki, Nathan R.; Erickson, Cuixia Shi; Vizzard, Margaret A.; Nelson, Mark T.

    2015-01-01

    Social stress has been implicated as a cause of urinary bladder hypertrophy and dysfunction in humans. Using a murine model of social stress, we and others have shown that social stress leads to bladder overactivity. Here, we show that social stress leads to bladder overactivity, increased bladder compliance, and increased afferent nerve activity. In the social stress paradigm, 6-wk-old male C57BL/6 mice were exposed for a total of 2 wk, via barrier cage, to a C57BL/6 retired breeder aggressor mouse. We performed conscious cystometry with and without intravesical infusion of the TRPV1 inhibitor capsazepine, and measured pressure-volume relationships and afferent nerve activity during bladder filling using an ex vivo bladder model. Stress leads to a decrease in intermicturition interval and void volume in vivo, which was restored by capsazepine. Ex vivo studies demonstrated that at low pressures, bladder compliance and afferent activity were elevated in stressed bladders compared with unstressed bladders. Capsazepine did not significantly change afferent activity in unstressed mice, but significantly decreased afferent activity at all pressures in stressed bladders. Immunohistochemistry revealed that TRPV1 colocalizes with CGRP to stain nerve fibers in unstressed bladders. Colocalization significantly increased along the same nerve fibers in the stressed bladders. Our results support the concept that social stress induces TRPV1-dependent afferent nerve activity, ultimately leading to the development of overactive bladder symptoms. PMID:26224686

  13. Spatiotemporal processing of linear acceleration: primary afferent and central vestibular neuron responses

    NASA Technical Reports Server (NTRS)

    Angelaki, D. E.; Dickman, J. D.

    2000-01-01

    Spatiotemporal convergence and two-dimensional (2-D) neural tuning have been proposed as a major neural mechanism in the signal processing of linear acceleration. To examine this hypothesis, we studied the firing properties of primary otolith afferents and central otolith neurons that respond exclusively to horizontal linear accelerations of the head (0.16-10 Hz) in alert rhesus monkeys. Unlike primary afferents, the majority of central otolith neurons exhibited 2-D spatial tuning to linear acceleration. As a result, central otolith dynamics vary as a function of movement direction. During movement along the maximum sensitivity direction, the dynamics of all central otolith neurons differed significantly from those observed for the primary afferent population. Specifically at low frequencies (afferents that peaked in phase with linear acceleration. At least three different groups of central response dynamics were described according to the properties observed for motion along the maximum sensitivity direction. "High-pass" neurons exhibited increasing gains and phase values as a function of frequency. "Flat" neurons were characterized by relatively flat gains and constant phase lags (approximately 20-55 degrees ). A few neurons ("low-pass") were characterized by decreasing gain and phase as a function of frequency. The response dynamics of central otolith neurons suggest that the approximately 90 degrees phase lags observed at low frequencies are not the result of a neural integration but rather the effect of nonminimum phase behavior, which could arise at least partly through spatiotemporal convergence. Neither afferent nor central otolith neurons discriminated between gravitational and inertial components of linear acceleration. Thus response sensitivity was indistinguishable during 0.5-Hz pitch oscillations and fore-aft movements

  14. Cortical Spreading Depression Promotes Persistent Mechanical Sensitization of Intracranial Meningeal Afferents: Implications for the Intracranial Mechanosensitivity of Migraine

    PubMed Central

    Zhao, Jun

    2016-01-01

    Abstract Migraine is one of the most common and disabling diseases in the world. A major feature of migraine headache is its aggravation by maneuvers that momentarily increase intracranial pressure. A key hypothesis implicates mechanical sensitization of trigeminal afferents that innervate the intracranial meninges in mediating this feature of migraine. However, whether such pain-related neural response actually develops under endogenous conditions that are linked specifically to migraine remains to be established. Single-unit recordings in the trigeminal ganglion of anesthetized male rats were combined with quantitative mechanical stimulation of the cranial dura mater to determine whether cortical spreading depression (CSD), an endogenous migraine-triggering event, affects the mechanosensitivity of meningeal afferents. CSD gave rise to an almost threefold increase in the magnitude of the responses to mechanical stimuli in 17 of 23 of the afferents tested. CSD-evoked meningeal afferent mechanosensitization occurred with a delay of 23.1 ± 2.2 min and lasted 64.1 ± 6.8 min in recording sessions that lasted for 90 min and for 177.5 ± 22.1 min in recording sessions that were extended for 240 min. Some of the sensitized afferents also developed a shorter-lasting increase in their ongoing discharge rate that was not correlated with the increase in their mechanosensitivity, suggesting that CSD-evoked meningeal afferent sensitization and increase in ongoing activity are independent phenomena. These novel findings support the notion that mechanical sensitization of meningeal afferents serves as a key nociceptive process that underlies the worsening of migraine headache during conditions that momentarily increase intracranial pressure. PMID:28127585

  15. Field potentials generated by group II muscle afferents in the lower-lumbar segments of the feline spinal cord

    PubMed Central

    Riddell, J S; Hadian, M

    2000-01-01

    The actions of group II muscle afferents projecting to the lower-lumbar (L6 and L7) segments of the cat spinal cord were investigated by recording the cord dorsum and focal synaptic field potentials evoked by electrical stimulation of hindlimb muscle nerves. Cord dorsum potentials recorded over the lower-lumbar segments were generally much smaller than those produced by group II afferents terminating within the midlumbar and sacral segments. Only group II afferents of tibialis posterior produced potentials with an amplitude (mean maximal amplitude 39 μV, n = 7) approaching that of potentials over other segments. Focal synaptic potentials (mean maximal amplitudes 135–200 μV) were evoked by group II afferents of the following muscle nerves, listed in order of effectiveness: quadriceps, tibialis posterior (throughout L6 and L7), gastrocnemius soleus, flexor digitorum longus, posterior biceps-semitendinosus and popliteus (mainly within L7). Field potentials were recorded in the dorsal horn (laminae IV–V) and also more ventrally in a region which included the lateral part of the intermediate zone (lateral to the large group I intermediate field potentials) and often extended into the ventral horn (laminae V–VII). The latencies of the group II potentials are considered compatible with the monosynaptic actions of the fastest conducting group II muscle afferents. The results are compared with morphological evidence on the pattern of termination of group II muscle afferents in the lower-lumbar segments and with previous descriptions of the actions of group II muscle afferents in midlumbar and sacral segments. PMID:10618155

  16. Firing patterns and functional roles of different classes of spinal afferents in rectal nerves during colonic migrating motor complexes in mouse colon.

    PubMed

    Zagorodnyuk, Vladimir P; Kyloh, Melinda; Brookes, Simon J; Nicholas, Sarah J; Spencer, Nick J

    2012-08-01

    The functional role of the different classes of visceral afferents that innervate the large intestine is poorly understood. Recent evidence suggests that low-threshold, wide-dynamic-range rectal afferents play an important role in the detection and transmission of visceral pain induced by noxious colorectal distension in mice. However, it is not clear which classes of spinal afferents are activated during naturally occurring colonic motor patterns or during intense contractions of the gut smooth muscle. We developed an in vitro colorectum preparation to test how the major classes of rectal afferents are activated during spontaneous colonic migrating motor complex (CMMC) or pharmacologically induced contraction. During CMMCs, circular muscle contractions increased firing in low-threshold, wide-dynamic-range muscular afferents and muscular-mucosal afferents, which generated a mean firing rate of 1.53 ± 0.23 Hz (n = 8) under isotonic conditions and 2.52 ± 0.36 Hz (n = 17) under isometric conditions. These low-threshold rectal afferents were reliably activated by low levels of circumferential stretch induced by increases in length (1-2 mm) or load (1-3 g). In a small proportion of cases (5 of 34 units), some low-threshold muscular and muscular-mucosal afferents decreased their firing rate during the peak of the CMMC contractions. High-threshold afferents were never activated during spontaneous CMMC contractions or tonic contractions induced by bethanechol (100 μM). High-threshold rectal afferents were only activated by intense levels of circumferential stretch (10-20 g). These results show that, in the rectal nerves of mice, low-threshold, wide-dynamic-range muscular and muscular-mucosal afferents are excited during contraction of the circular muscle that occurs during spontaneous CMMCs. No activation of high-threshold rectal afferents was detected during CMMCs or intense contractile activity in naïve mouse colorectum.

  17. Afferent roles in hindlimb wipe-reflex trajectories: free-limb kinematics and motor patterns.

    PubMed

    Kargo, W J; Giszter, S F

    2000-03-01

    The hindlimb wiping reflex of the frog is an example of a targeted trajectory that is organized at the spinal level. In this paper, we examine this reflex in 45 spinal frogs to test the importance of proprioceptive afferents in trajectory formation at the spinal level. We tested hindlimb to hindlimb wiping, in which the wiping or effector limb and the target limb move together. Loss of afferent feedback from the wiping limb was produced by cutting dorsal roots 7-9. This caused altered initial trajectory direction, increased ankle path curvature, knee-joint velocity reversals, and overshooting misses of the target limb. We established that these kinematic and motor-pattern changes were due mainly to the loss of ipsilateral muscular and joint afferents. Loss of cutaneous afferents alone did not alter the initial trajectory up to target limb contact. However, there were cutaneous effects in later motor-pattern phases after the wiping and target limb had made contact: The knee extension or whisk phase of wiping was often lost. Finally, there was a minor and nonspecific excitatory effect of phasic contralateral feedback in the motor-pattern changes after deafferentation. Specific muscle groups were altered as a result of proprioceptive loss. These muscles also showed configuration-based regulation during wiping. Biceps, semitendinosus, and sartorius (all contributing knee flexor torques) all were regulated in amplitude based on the initial position of the limb. These muscles contributed to an initial electromyographic (EMG) burst in the motor pattern. Rectus internus and semimembranosus (contributing hip extensor torques) were regulated in onset but not in the time of peak EMG or in termination of EMG based on initial position. These two muscles contributed to a second EMG burst in the motor pattern. After deafferentation the initial burst was reduced and more synchronous with the second burst, and the second burst often was broadened in duration. Ankle path curvature

  18. Voltage-dependent sodium (NaV) channels in group IV sensory afferents

    PubMed Central

    Elmslie, Keith S

    2016-01-01

    Patients with intermittent claudication suffer from both muscle pain and an exacerbated exercise pressor reflex. Excitability of the group III and group IV afferent fibers mediating these functions is controlled in part by voltage-dependent sodium (NaV) channels. We previously found tetrodotoxin-resistant NaV1.8 channels to be the primary type in muscle afferent somata. However, action potentials in group III and IV afferent axons are blocked by TTX, supporting a minimal role of NaV1.8 channels. To address these apparent differences in NaV channel expression between axon and soma, we used immunohistochemistry to identify the NaV channels expressed in group IV axons within the gastrocnemius muscle and the dorsal root ganglia sections. Positive labeling by an antibody against the neurofilament protein peripherin was used to identify group IV neurons and axons. We show that >67% of group IV fibers express NaV1.8, NaV1.6, or NaV1.7. Interestingly, expression of NaV1.8 channels in group IV somata was significantly higher than in the fibers, whereas there were no significant differences for either NaV1.6 or NaV1.7. When combined with previous work, our results suggest that NaV1.8 channels are expressed in most group IV axons, but that, under normal conditions, NaV1.6 and/or NaV1.7 play a more important role in action potential generation to signal muscle pain and the exercise pressor reflex. PMID:27385723

  19. Ectopic activity in cutaneous regenerating afferent nerve fibers following nerve lesion in the rat.

    PubMed

    Gorodetskaya, Natalia; Constantin, Cristina; Jänig, Wilfrid

    2003-11-01

    Spontaneous activity, and mechanical and thermal sensitivity were investigated in regenerating afferent nerve fibers within 4-21 days post sural nerve lesion (crush or transection and resuturing) in anaesthetized rats. About 33-40% of the myelinated (A) and 22-27% of the unmyelinated (C) fibers excited by electrical nerve stimulation exhibited at least one of these ectopic discharge properties. In total 177 A- and 169 C-fibers with ectopic activity were analysed. Most A-fibers (161/177) were mechanosensitive. Spontaneous activity (median 1 imp/s) was present in 23/177 and thermosensitivity in 14/177 A-fibers (13 of them being activated by heat stimuli). Almost all A-fibers (159/177) exhibited only one type of ectopic discharge property. Most C-fibers (94/169) were thermosensitive responding either to cold (n = 45) or to heat stimuli (n = 33) or to both (n = 16). Eighty-four of 169 C-fibers were spontaneously active (median 0.3 imp/s) and 75/169 C-fibers were mechanosensitive. Both the proportion and the discharge rate of spontaneously active C-fibers were significantly higher after crush than after section and resuturing of the nerve. About 60% of the C-fibers (101/169) had only one ectopic discharge property and 40% two or three. In conclusion, regenerating cutaneous afferent A- and C-fibers may develop mechano- and/or thermosensitivity as well as spontaneous activity. We suggest that spontaneous and evoked ectopic activity in regenerating cutaneous afferents are a function of the intrinsic functional properties of these neurons and of the interaction between the regenerating nerve fibers and non-neural cells during Wallerian degeneration in the nerve distal to the nerve lesion.

  20. BDNF released during neuropathic pain potentiates NMDA receptors in primary afferent terminals

    PubMed Central

    Chen, Wenling; Walwyn, Wendy; Ennes, Helena S.; Kim, Hyeyoung; McRoberts, James A.; Marvizón, Juan Carlos G.

    2014-01-01

    NMDA receptors in primary afferent terminals can contribute to hyperalgesia by increasing neurotransmitter release. In rats and mice, we found that the ability of intrathecal NMDA to induce neurokinin 1 receptor (NK1R) internalization (a measure of substance P release) required a previous injection of BDNF. Selective knock-down of NMDA receptors in primary afferents decreased NMDA-induced NK1R internalization, confirming the presynaptic location of these receptors. The effect of BDNF was mediated by tropomyosin-related kinase B (trkB) receptors and not p75 neurotrophin receptors (p75NTR), because it was not produced by proBDNF and was inhibited by the trkB antagonist ANA-12 but not by the p75NTR inhibitor TAT-Pep5. These effects are probably mediated through the truncated form of the trkB receptor as there is little expression of full-length trkB in dorsal root ganglion (DRG) neurons. Src family kinase inhibitors blocked the effect of BDNF, suggesting that trkB receptors promote the activation of these NMDA receptors by Src family kinase phosphorylation. Western blots of cultured DRG neurons revealed that BDNF increased Tyr1472 phosphorylation of the NR2B subunit of the NMDA receptor, known to have a potentiating effect. Patch-clamp recordings showed that BDNF, but not proBDNF, increased NMDA receptor currents in cultured DRG neurons. NMDA-induced NK1R internalization was also enabled in a neuropathic pain model or by activating dorsal horn microglia with lipopolysaccharide. These effects were decreased by a BDNF scavenger, a trkB receptor antagonist and an Src family kinase inhibitor, indicating that BDNF released by microglia potentiates NMDA receptors in primary afferents during neuropathic pain. PMID:24611998

  1. Contributions of skin and muscle afferent input to movement sense in the human hand.

    PubMed

    Cordo, Paul J; Horn, Jean-Louis; Künster, Daniela; Cherry, Anne; Bratt, Alex; Gurfinkel, Victor

    2011-04-01

    In the stationary hand, static joint-position sense originates from multimodal somatosensory input (e.g., joint, skin, and muscle). In the moving hand, however, it is uncertain how movement sense arises from these different submodalities of proprioceptors. In contrast to static-position sense, movement sense includes multiple parameters such as motion detection, direction, joint angle, and velocity. Because movement sense is both multimodal and multiparametric, it is not known how different movement parameters are represented by different afferent submodalities. In theory, each submodality could redundantly represent all movement parameters, or, alternatively, different afferent submodalities could be tuned to distinctly different movement parameters. The study described in this paper investigated how skin input and muscle input each contributes to movement sense of the hand, in particular, to the movement parameters dynamic position and velocity. Healthy adult subjects were instructed to indicate with the left hand when they sensed the unseen fingers of the right hand being passively flexed at the metacarpophalangeal (MCP) joint through a previously learned target angle. The experimental approach was to suppress input from skin and/or muscle: skin input by anesthetizing the hand, and muscle input by unexpectedly extending the wrist to prevent MCP flexion from stretching the finger extensor muscle. Input from joint afferents was assumed not to play a significant role because the task was carried out with the MCP joints near their neutral positions. We found that, during passive finger movement near the neutral position in healthy adult humans, both skin and muscle receptors contribute to movement sense but qualitatively differently. Whereas skin input contributes to both dynamic position and velocity sense, muscle input may contribute only to velocity sense.

  2. Endocannabinoids and prostaglandins both contribute to GnRH neuron-GABAergic afferent local feedback circuits

    PubMed Central

    Glanowska, Katarzyna M.

    2011-01-01

    Gonadotropin-releasing hormone (GnRH) neurons form the final common pathway for central control of fertility. Regulation of GnRH neurons by long-loop gonadal steroid feedback through steroid receptor-expressing afferents such as GABAergic neurons is well studied. Recently, local central feedback circuits regulating GnRH neurons were identified. GnRH neuronal depolarization induces short-term inhibition of their GABAergic afferents via a mechanism dependent on metabotropic glutamate receptor (mGluR) activation. GnRH neurons are enveloped in astrocytes, which express mGluRs. GnRH neurons also produce endocannabinoids, which can be induced by mGluR activation. We hypothesized the local GnRH-GABA circuit utilizes glia-derived and/or cannabinoid mechanisms and is altered by steroid milieu. Whole cell voltage-clamp was used to record GABAergic postsynaptic currents (PSCs) from GnRH neurons before and after action potential-like depolarizations were mimicked. In GnRH neurons from ovariectomized (OVX) mice, this depolarization reduced PSC frequency. This suppression was blocked by inhibition of prostaglandin synthesis with indomethacin, by a prostaglandin receptor antagonist, or by a specific glial metabolic poison, together suggesting the postulate that prostaglandins, potentially glia-derived, play a role in this circuit. This circuit was also inhibited by a CB1 receptor antagonist or by blockade of endocannabinoid synthesis in GnRH neurons, suggesting an endocannabinoid element, as well. In females, local circuit inhibition persisted in androgen-treated mice but not in estradiol-treated mice or young ovary-intact mice. In contrast, local circuit inhibition was present in gonad-intact males. These data suggest GnRH neurons interact with their afferent neurons using multiple mechanisms and that these local circuits can be modified by both sex and steroid feedback. PMID:21917995

  3. Characterization of sacral interneurons that mediate activation of locomotor pattern generators by sacrocaudal afferent input.

    PubMed

    Etlin, Alex; Finkel, Eran; Mor, Yoav; O'Donovan, Michael J; Anglister, Lili; Lev-Tov, Aharon

    2013-01-09

    Identification of the neural pathways involved in retraining the spinal central pattern generators (CPGs) by afferent input in the absence of descending supraspinal control is feasible in isolated rodent spinal cords where the locomotor CPGs are potently activated by sacrocaudal afferent (SCA) input. Here we study the involvement of sacral neurons projecting rostrally through the ventral funiculi (VF) in activation of the CPGs by sensory stimulation. Fluorescent labeling and immunostaining showed that VF neurons are innervated by primary afferents immunoreactive for vesicular glutamate transporters 1 and 2 and by intraspinal neurons. Calcium imaging revealed that 55% of the VF neurons were activated by SCA stimulation. The activity of VF neurons and the sacral and lumbar CPGs was abolished when non-NMDA receptors in the sacral segments were blocked by the antagonist CNQX. When sacral NMDA receptors were blocked by APV, the sacral CPGs were suppressed, VF neurons with nonrhythmic activity were recruited and a moderate-drive locomotor rhythm developed during SCA stimulation. In contrast, when the sacral CPGs were activated by SCA stimulation, rhythmic and nonrhythmic VF neurons were recruited and the locomotor rhythm was most powerful. The activity of 73 and 27% of the rhythmic VF neurons was in-phase with the ipsilateral and contralateral motor output, respectively. Collectively, our studies indicate that sacral VF neurons serve as a major link between SCA and the hindlimb CPGs and that the ability of SCA to induce stepping can be enhanced by the sacral CPGs. The nature of the ascending drive to lumbar CPGs, the identity of subpopulations of VF neurons, and their potential role in activating the locomotor rhythm are discussed.

  4. Electrophysiological characterization of vagal afferents relevant to mucosal nociception in the rat upper oesophagus

    PubMed Central

    Lennerz, J K M; Dentsch, C; Bernardini, N; Hummel, T; Neuhuber, W L; Reeh, P W

    2007-01-01

    Emerging evidence indicates a nociceptive role of vagal afferents. A distinct oesophageal innervation in the rat, with muscular and mucosal afferents travelling predominantly in the recurrent (RLN) and superior laryngeal nerve (SLN), respectively, enabled characterization of mucosal afferents with nociceptive properties, using novel isolated oesophagus–nerve preparations. SLN and RLN single-fibre recordings identified 55 and 14 units, respectively, with none conducting faster than 8.7 m s−1. Mucosal response characteristics in the SLN distinguished mechanosensors (n= 13), mechanosensors with heat sensitivity (18) from those with cold sensitivity (19) and a mechanoinsensitive group (5). The mechanosensitive fibres, all slowly adapting, showed a unimodal distribution of mechanical thresholds (1.4–128 mN, peak ∼5.7 mN). No difference in response characteristics of C and Aδ fibres was encountered. Mucosal proton stimulation (pH 5.4 for 3 min), mimicking gastro-oesophageal reflux disease (GORD), revealed in 31% of units a desensitizing response that peaked around 20 s and faded within 60 s. Cold stimulation (15°C) was proportionally encoded but the response showed slow adaptation. In contrast, the noxious heat (48°C) response showed no obvious adaptation with discharge rates reflecting the temperature's time course. Polymodal (69%) mucosal units, > 30% proton sensitive, were found in each fibre category and were considered nociceptors; they are tentatively attributed to vagal nerve endings type I, IV and V, previously morphologically described. All receptive fields were mapped and the distribution indicates that the posterior upper oesophagus may serve as a ‘cutbank’, detecting noxious matters, ingested or regurgitated, and triggering nocifensive reflexes such as bronchoconstriction in GORD. PMID:17478536

  5. Botulinum toxin B in the sensory afferent: transmitter release, spinal activation, and pain behavior.

    PubMed

    Marino, Marc J; Terashima, Tetsuji; Steinauer, Joanne J; Eddinger, Kelly A; Yaksh, Tony L; Xu, Qinghao

    2014-04-01

    We addressed the hypothesis that intraplantar botulinum toxin B (rimabotulinumtoxin B: BoNT-B) has an early local effect upon peripheral afferent terminal releasing function and, over time, will be transported to the central terminals of the primary afferent. Once in the terminals it will cleave synaptic protein, block spinal afferent transmitter release, and thereby prevent spinal nociceptive excitation and behavior. In mice, C57Bl/6 males, intraplantar BoNT-B (1 U) given unilaterally into the hind paw had no effect upon survival or motor function, but ipsilaterally decreased: (1) intraplantar formalin-evoked flinching; (2) intraplantar capsaicin-evoked plasma extravasation in the hind paw measured by Evans blue in the paw; (3) intraplantar formalin-evoked dorsal horn substance P (SP) release (neurokinin 1 [NK1] receptor internalization); (4) intraplantar formalin-evoked dorsal horn neuronal activation (c-fos); (5) ipsilateral dorsal root ganglion (DRG) vesicle-associated membrane protein (VAMP); (6) ipsilateral SP release otherwise evoked bilaterally by intrathecal capsaicin; (7) ipsilateral activation of c-fos otherwise evoked bilaterally by intrathecal SP. These results indicate that BoNT-B, after unilateral intraplantar delivery, is taken up by the peripheral terminal, is locally active (blocking plasma extravasation), is transported to the ipsilateral DRG to cleave VAMP, and is acting presynaptically to block release from the spinal peptidergic terminal. The observations following intrathecal SP offer evidence for a possible transsynaptic effect of intraplantar BoNT. These results provide robust evidence that peripheral BoNT-B can alter peripheral and central terminal release from a nociceptor and attenuate downstream nociceptive processing via a presynaptic effect, with further evidence suggesting a possible postsynaptic effect.

  6. Channeling satiation: a primer on the role of TRP channels in the control of glutamate release from vagal afferent neurons.

    PubMed

    Wu, Shaw-wen; Fenwick, Axel J; Peters, James H

    2014-09-01

    Obesity results from the chronic imbalance between food intake and energy expenditure. To maintain homeostasis, the brainstem nucleus of the solitary tract (NTS) integrates peripheral information from visceral organs and initiates reflex pathways that control food intake and other autonomic functions. This peripheral-to-central neural communication occurs through activation of vagal afferent neurons which converge to form the solitary tract (ST) and synapse with strong glutamatergic contacts onto NTS neurons. Vagal afferents release glutamate containing vesicles via three distinct pathways (synchronous, asynchronous, and spontaneous) providing multiple levels of control through fast synaptic neurotransmission at ST-NTS synapses. While temperature at the NTS is relatively constant, vagal afferent neurons express an array of thermosensitive ion channels named transient receptor potential (TRP) channels. Here we review the evidence that TRP channels pre-synaptically control quantal glutamate release and examine the potential roles of TRP channels in vagally mediated satiety signaling. We summarize the current literature that TRP channels contribute to asynchronous and spontaneous release of glutamate which can distinctly influence the transfer of information across the ST-NTS synapse. In other words, multiple glutamate vesicle release pathways, guided by afferent TRP channels, provide for robust while adaptive neurotransmission and expand our understanding of vagal afferent signaling.

  7. Thyroid hormone is required for pruning, functioning and long-term maintenance of afferent inner hair cell synapses.

    PubMed

    Sundaresan, Srividya; Kong, Jee-Hyun; Fang, Qing; Salles, Felipe T; Wangsawihardja, Felix; Ricci, Anthony J; Mustapha, Mirna

    2016-01-01

    Functional maturation of afferent synaptic connections to inner hair cells (IHCs) involves pruning of excess synapses formed during development, as well as the strengthening and survival of the retained synapses. These events take place during the thyroid hormone (TH)-critical period of cochlear development, which is in the perinatal period for mice and in the third trimester for humans. Here, we used the hypothyroid Snell dwarf mouse (Pit1(dw)) as a model to study the role of TH in afferent type I synaptic refinement and functional maturation. We observed defects in afferent synaptic pruning and delays in calcium channel clustering in the IHCs of Pit1(dw) mice. Nevertheless, calcium currents and capacitance reached near normal levels in Pit1(dw) IHCs by the age of onset of hearing, despite the excess number of retained synapses. We restored normal synaptic pruning in Pit1(dw) IHCs by supplementing with TH from postnatal day (P)3 to P8, establishing this window as being critical for TH action on this process. Afferent terminals of older Pit1(dw) IHCs showed evidence of excitotoxic damage accompanied by a concomitant reduction in the levels of the glial glutamate transporter, GLAST. Our results indicate that a lack of TH during a critical period of inner ear development causes defects in pruning and long-term homeostatic maintenance of afferent synapses.

  8. Excitatory actions of GABA in developing chick vestibular afferents: effects on resting electrical activity.

    PubMed

    Cortes, Celso; Galindo, Fabian; Galicia, Salvador; Cebada, Jorge; Flores, Amira

    2013-07-01

    The aim of this study was to characterize the effect of γ-aminobutyric acid (GABA) in the resting multiunit activity of the vestibular afferents during development using the isolated inner ear of embryonic and postnatal chickens (E15-E21 and P5). GABA (10(-3) to 10(-5) M; n = 133) and muscimol (10(-3) M) elicited an increase in the frequency of the basal discharge of the vestibular afferents. We found that GABA action was dose-dependent and inversely related to animal age. Thus, the largest effect was observed in embryonic ages such as E15 and E17 and decreases in E21 and P5. The GABAA receptor antagonists, bicuculline (10(-5) M; n = 10) and picrotoxin (10(-4) M; n = 10), significantly decreased the excitatory action of GABA and muscimol (10(-3) M). Additionally, CNQX 10(-6) M, MCPG 10(-5) M and 7ClKyn 10(-5) M (n = 5) were co-applied by bath substitution (n = 5). Both the basal discharge and the GABA action significantly decreased in these experimental conditions. The chloride channel blocker 9-AC 0.5 mM produced an important reduction in the effect of GABA 10(-3) (n = 5) and 10(-4) M (n = 5). Thus, our results suggest an excitatory role of GABA in the resting activity of the vestibular afferents that can be explained by changes in the gradient of concentration of Cl(-) during development. We show for the first time that the magnitude of this GABA effect decreases at later stages of embryonic and early postnatal development. Taking into account the results with glutamatergic antagonists, we conclude that GABA has a presynaptic action but is not the neurotransmitter in the vestibular afferent synapses, although it could act as a facilitator of the spontaneous activity and may regulate glutamate release.

  9. Physiological evidence for a slow K+ conductance in human cutaneous afferents.

    PubMed Central

    Taylor, J L; Burke, D; Heywood, J

    1992-01-01

    1. The depression in axonal excitability that follows short trains of impulses (H1) may lead to spike frequency adaptation to a sustained stimulus, and has been attributed to a slow K+ conductance. The present experiments sought indirect evidence for slow K+ channels at the node of Ranvier of human cutaneous afferents based on the demonstration of post-tetanic changes in excitability typical of H1. 2. The excitability changes in low-threshold cutaneous afferents in the digital nerves of the index finger were explored using a submaximal test pulse conditioned by trains of supramaximal stimuli, containing up to 100 impulses. Changes in the amplitude of the compound sensory action potential set up by a constant test stimulus were used as a measure of the changes in excitability. These changes in amplitude were paralleled by inverse changes in latency. 3. When the conditioning stimulus was a single supramaximal pulse, excitability was enhanced at conditioning-test intervals of 4-40 ms, with a peak at 6-8 ms. When the conditioning stimulus consisted of a train of ten pulses delivered at 200 Hz, the recovery cycle was dominated by subnormality that was maximal at 20 ms and subsided gradually over 50 ms. 4. The post-train depression in excitability increased as the number of pulses in the conditioning train increased to ten but changed little with further increases in train duration. The degree of depression increased with the pulse frequency within the train. Cooling the hand from a skin temperature of 35 to 25 degrees C slowed the recovery processes but did not alter the magnitude of the post-train depression. 5. These characteristics are typical of the H1 phase of post-tetanic depression in axonal excitability. The extent of the depression in excitability suggests, first, that there may be a significant K+ conductance at the nodes of human cutaneous afferents and, secondly, that H1 may play a significant role in limiting repetitive discharge in normal and pathological

  10. Acute effect of an incision on mechanosensitive afferents in the plantar rat hindpaw.

    PubMed

    Hämäläinen, Minna M; Gebhart, G F; Brennan, Timothy J

    2002-02-01

    The purpose of this study was to examine which primary afferent fibers are sensitized to mechanical stimuli after an experimental surgical incision to the glabrous skin of the rat hindpaw. Afferent fibers teased from the L(5) dorsal root or the tibial nerve were recorded in anesthetized rats. The mechanical response properties of each fiber were characterized before and 45 min after an incision (or sham procedure) within the mechanical receptive field. Sensitization is characterized by an expansion of the mechanical receptive field, an increase in background activity, an increase in response magnitude, or a decrease in response threshold. After incision, the background activity and response properties of Abeta-fibers (n = 9) to mechanical stimuli were unchanged. Four of 13 mechanosensitive Adelta-fibers exhibited sensitization after the incision; response threshold decreased, response magnitude increased, or receptive field size increased. Background activity of Adelta-fibers was not increased by the incision. Sensitization was observed in 4 of 18 mechanosensitive C-fibers 45 min after the incision. Background activity of C-fibers was not increased by the incision. In a group of mechanically insensitive afferent fibers (MIAs), 3 of 7 Adelta-fibers and 4 of 10 C-fibers sensitized 45 min after incision. Response threshold was decreased in only 2 of 17 MIAs; receptive field size increased in 7 of 17 MIAs. Abeta-fibers did not sensitize after the incision, and only 8 of 31 (26%) mechanosensitive Adelta- and C-fibers gave evidence of sensitization. In a group of MIA Adelta- and C-fibers, a greater percentage of 17 fibers studied (41%) were sensitized after incision. In this model, the principal effect of an incision, when examined 45 min after the insult, is an increase in receptive field size of the afferents, particularly those characterized as MIAs. To the extent that the mechanical hyperalgesia characterized in the same model is initiated in the periphery, it would

  11. Physiological identification of morphologically distinct afferent classes innervating the cristae ampullares of the squirrel monkey

    NASA Technical Reports Server (NTRS)

    Lysakowski, A.; Minor, L. B.; Fernandez, C.; Goldberg, J. M.

    1995-01-01

    1. Semicircular-canal afferents in the squirrel monkey were characterized by their resting discharge, discharge regularity, sensitivity to galvanic currents delivered to the ear (beta *), the gain (g2Hz), and phase lead (phi 2Hz) of their response to 2-Hz sinusoidal head rotations, and their antidromic conduction velocity. Discharge regularity was measured by a normalized coefficient of variation (CV*); the higher the CV*, the more irregular the discharge. g2Hz and phi 2Hz were expressed relative to angular head velocity. 2. These physiological measures were used in an attempt to discern the discharge properties of the three morphological classes of afferents innervating the crista. Presumed bouton (B) fibers were identified as slowly conducting afferents. Presumed calyx (C) fibers were recognized by their irregular discharge and low rotational gains. The remaining fibers were considered to be dimorphic (D) units. Single letters (B, C, and D) are used to emphasize that the classification is based on circumstantial evidence and may be wrong for individual fibers. Of the 125 identified fibers, 13 (10%) were B units, 36 (29%) were C units, and 76 (61%) were D units. 3. B units were regularly discharging D units ranged from regularly to irregularly discharging. C units were the most irregularly discharging afferents encountered. The mean resting discharge for the entire sample was 74 spikes/s. Resting rates were similar for regularly discharging B and D units and higher than those for irregularly discharging C and D units. 4. Except for their lower conduction velocities, the discharge properties of B units are indistinguishable from those of regularly discharging D units. Many of the discharge properties of B and D units vary with discharge regularity. There is a strong, positive relation when beta *, g2Hz, or phi 2Hz is plotted against CV*. For beta * or phi 2Hz, C units conform to the relation for B and D units. In contrast, values of g2Hz for C units are three to

  12. Cytoarchitecture, neuronal composition, and entorhinal afferents of the flying fox hippocampus.

    PubMed

    Buhl, E H; Dann, J F

    1991-04-01

    In a comparative approach, the anatomical organization of the hippocampus was investigated in two species of megachiropteran bats, the grey-headed flying fox, Pteropus poliocephalus, and the little red flying fox, Pteropus scapulatus. In general, the cytoarchitectonic appearance of the flying fox hippocampus corresponded well with that of other mammals, revealing all major subdivisions. While the dentate fascia was trilaminated with a molecular layer, a granule cell layer, and a distinct polymorphic layer, the ammonic subfields were subdivided into stratum lacunosum molecular, stratum radiatum, stratum lucidum or mossy fiber layer (restricted to the CA3 region), pyramidal cell layer, and stratum oriens. In Ammon's horn, only subfields CA1, CA3, and CA3c were clearly discernible, whereas the CA2 region remained indistinct. In some cytoarchitectonic features, such as the dispersion of the pyramidal layer in CA1, the megachiropteran hippocampus resembled the corresponding region in primates. Five characteristic neuronal cell types of the megachiropteran hippocampus were studied in fixed slice preparations after intracellular injection with Lucifer Yellow. While the morphological appearance of CA3 pyramidal cells, horizontal stratum oriens cells, aspiny stellate cells, and mossy cells strongly resembled their counterparts in rodents, primates, and carnivores, granule cells showed an interesting variation from the nonprimate pattern. Like a subset of granule cells in the primate dentate gyrus, 75% of flying fox granule cells revealed 1-2 basal dendrites that ramified in the polymorphic layer. These processes are presumed to form the morphological substrate for recurrent excitation. Entorhinal afferents to Ammon's horn and the dentate fascia were revealed by employing the method of tract tracing in fixed tissue with the carbocyanine dye DiI. Similar to the rat and cat, but unlike the monkey, the entorhino-dentate projection in the flying fox is bilaminate, with medial

  13. The morphology of hair follicle afferent fibre collaterals in the spinal cord of the cat.

    PubMed

    Brown, A G; Rose, P K; Snow, P J

    1977-11-01

    1. The enzyme horseradish peroxidase (HRP) was injected into single axons that innervated hair follicle receptors to study the morphology of their collaterals in the dorsal horn of the cord. The axons were impaled near the dorsal root entrance zone in the lumbosacral spinal cord of anaesthetized cats and HRP injected by passing current through the intra-axonal micro-electrode. The morphology was revealed by subsequent histochemistry.2. Thirteen hair-follicle afferent fibres were stained including six that innervated tylotrichs (type T hair follicle afferent units) and one that innervated guard hairs (type G unit). The remaining six axons were not classified according to hair type, but, on the basis of their axonal conduction velocities, would have been either type G or T.3. Eleven axons could be traced back into the dorsal roots. Eight of these, upon entering the cord, turned and ran towards the brain. They did not divide into rostral and caudal branches. Three of the eleven did divide and gave rise to both rostral and caudal branches.4. Sixty-three collaterals were given off the thirteen stained axons. All well-filled collaterals had a strikingly similar morphology. They descended through laminae I-III of the dorsal horn into the deeper parts of lamina IV or into lamina V, before turning and ascending back into superficial lamina IV and lamina III where they branched profusely to give rise to their terminal arborizations. Terminal boutons, most commonly of the ;en passant' type, were numerous in lamina III, but were also seen in the dorsal part of lamina IV and in ventral lamina II. None were observed in dorsal lamina II or near the junction of the grey and white matter (lamina I) or in lamina V.5. The terminal arborizations of collaterals from a single hair follicle afferent fibre were in line with one another in the longitudinal axis of the cord. In the better-stained preparations the terminal arborizations of adjacent collaterals from a single axon formed a

  14. PAD patterns of physiologically identified afferent fibres from the medial gastrocnemius muscle.

    PubMed

    Jiménez, I; Rudomin, P; Solodkin, M

    1988-01-01

    Intracellular recordings were made in the barbiturate-anesthetized cat from single afferent fibres left in continuity with the medial gastrocnemius muscle to document the transmembrane potential changes produced in functionally identified fibres by stimulation of sensory nerves and of the contralateral red nucleus (RN). Fifty five fibres from muscle spindles had conduction velocities above 70 m/s and were considered as from group Ia. Stimulation of group I afferent fibres of the posterior biceps and semitendinosus nerve (PBSt) produced primary afferent depolarization (PAD) in 30 (54%) Ia fibres. Stimulation of the sural (SU) nerve produced no transmembrane potential changes in 39 (71%) group Ia fibres and dorsal root reflex-like activity (DRRs) in 16 (29%) fibres. In 17 out of 28 group Ia fibres (60.7%) SU conditioning inhibited the PAD generated by stimulation of the PBSt nerve. Facilitation of the PBSt-induced PAD by SU conditioning was not seen. Repetitive stimulation of the RN had mixed effects: it produced PAD in 1 out of 8 fibres and inhibited the PAD induced by PBSt stimulation in 2 other fibres. Nine fibres connected to muscle spindles had conduction velocities below 70 m/s and were considered to be group II afferents. No PAD was produced in these fibres by SU stimulation but DRRs were generated in 5 of them. In 23 out of 31 fibres identified as from tendon organs group I PBSt volleys produced PAD. However, stimulation of the SU nerve produced PAD only in 3 out of 34 fibres, no transmembrane potential changes in 30 fibres and DRRs in 1 fibre. The effects of SU conditioning on the PAD produced by PBSt stimulation were tested in 19 Ib fibres and were inhibitory in 12 of them. In 9 of these fibres SU alone produced no transmembrane potential changes. Repetitive stimulation of the RN produced PAD in 3 out of 9 Ib fibres. SU conditioning inhibited the RN-induced PAD. The present findings support the existence of an alternative inhibitory pathway from cutaneous

  15. Evidence that antidromically stimulated vagal afferents activate inhibitory neurones innervating guinea-pig trachealis.

    PubMed Central

    Canning, B J; Undem, B J

    1994-01-01

    1. We recently described a capsaicin-sensitive vagal pathway mediating non-adrenergic, non-cholinergic (NANC) relaxations of an isolated, innervated rostral guinea-pig tracheal preparation. These afferent fibres are carried by the superior laryngeal nerves and relaxations elicited by their activation are insensitive to autonomic ganglion blockers such as hexamethonium. In the present study this vagal relaxant pathway was further characterized. 2. Relaxations of the trachealis elicited by electrical stimulation of capsaicin-sensitive vagal afferents were mimicked by bath application of capsaicin. Relaxations elicited by both methods were abolished when the tissue between the trachea and the adjacent oesophagus was disrupted. Indeed, separating the trachea from the oesophagus uncovered a contractile effect of capsaicin administration on the trachealis. 3. Capsaicin-induced, oesophagus-dependent relaxations of the trachealis were blocked by pretreatment with the fast sodium channel blocker tetrodotoxin (TTX). By contrast, capsaicin-induced contractions of the trachealis (obtained in the absence of the oesophagus) were unaffected by tetrodotoxin. 4. Substance P, neurokinin A (NKA) and neurokinin B (NKB) also elicited NANC relaxations of precontracted trachealis that were abolished by separating the trachea from the oesophagus or by TTX pretreatment. Like capsaicin, the tachykinins elicited only contractions of the trachealis following TTX pretreatment or separation of the trachea from the adjacent oesophagus. 5. Relaxations elicited by stimulation of the capsaicin-sensitive nerves were unaffected by a concentration of the tachykinin NK2 receptor-selective antagonist, SR 48968, that is selective for NK2 receptor blockade and were not mimicked by the NK2 receptor-selective agonist [beta-Ala8]-NKA(4-10). This suggests that NK2 receptors are not responsible for these relaxations. By contrast, the NK3 receptor-selective agonist, senktide analogue, and the NK1 receptor

  16. Cutaneous neurturin overexpression alters mechanical, thermal, and cold responsiveness in physiologically identified primary afferents.

    PubMed

    Jankowski, Michael P; Baumbauer, Kyle M; Wang, Ting; Albers, Kathryn M; Davis, Brian M; Koerber, H Richard

    2017-03-01

    Neurotrophic factors play an important role in the regulation of functional properties of sensory neurons under normal and pathological conditions. The GDNF family member neurturin is one such factor that has been linked to modulating responsiveness to peripheral stimuli. Neurturin binds to the GFRα2 receptor, a receptor found primarily in isolectin B4-expressing polymodal cutaneous nociceptors. Previous work has shown that knockout of GFRα2 alters heat, but not mechanical, responses in dissociated sensory neurons and reduces pain-related behaviors during the second phase of the formalin test. Research has also shown that overexpression of neurturin in basal keratinocytes increases behavioral responsiveness to mechanical stimulation and innocuous cooling of the skin without affecting noxious heat responses. Here we directly examined the impact of neurturin overexpression on cutaneous afferent function. We compared physiological responses of individual sensory neurons to mechanical and thermal stimulation of the skin, using an ex vivo skin-nerve-dorsal root ganglion-spinal cord preparation produced from neurturin-overexpressing (NRTN/OE) mice and wild-type littermate controls. We found that neurturin overexpression increases responsiveness to innocuous mechanical stimuli in A-fiber nociceptors, alters thermal responses in the polymodal subpopulation of C-fiber sensory neurons, and changes the relative numbers of mechanically sensitive but thermally insensitive C-fiber afferents. These results demonstrate the potential roles of different functional groups of sensory neurons in the behavioral changes observed in mice overexpressing cutaneous neurturin and highlight the importance of neurturin in regulating cutaneous afferent response properties.NEW & NOTEWORTHY GDNF family neurotrophic factors regulate the development and function of primary sensory neurons. Of these, neurturin has been shown to modulate mechanical and cooling sensitivity behaviorally. Here we show

  17. Transhepatic Insertion of a Metallic Stent for the Relief of Malignant Afferent Loop Obstruction

    SciTech Connect

    Caldicott, David G.E.; Ziprin, Paul; Morgan, Robert

    2000-03-15

    A 65-year-old man with a polya gastrectomy presented with biliary obstruction. Percutaneous cholangiography indicated strictures of the distal common bile duct and afferent duodenal loop due to an inoperable carcinoma of the head of the pancreas. The patient was unfit for bypass surgery, and a previous gastrectomy precluded endoscopic intervention. Successful palliation of the biliary obstruction was achieved by placing metallic stents across the duodenal and biliary strictures via the transhepatic route. The use of stents for gastrointestinal stricture is reviewed.

  18. Contribution of irregular semicircular canal afferents to the horizontal vestibuloocular response during constant velocity rotation

    NASA Technical Reports Server (NTRS)

    Angelaki, D. E.; Perachio, A. A.

    1993-01-01

    1. The effects of constant anodal currents (100 microA) delivered bilaterally to both labyrinths on the horizontal vestibuloocular response (VOR) were studied in squirrel monkeys during steps of angular velocity in the dark. We report that bilateral anodal currents decreased eye velocity approximately 30-50% during the period of galvanic stimulation without a change in the time constant of VOR. The decrease in eye velocity, present during steps of angular velocity, was not observed during sinusoidal head rotation at 0.2, 0.5, and 1 Hz. The results suggest that responses from irregular vestibular afferents influence VOR amplitude during constant velocity rotation.

  19. Prostaglandin potentiates 5-HT responses in stomach and ileum innervating visceral afferent sensory neurons

    SciTech Connect

    Kim, Sojin; Jin, Zhenhua; Lee, Goeun; Park, Yong Seek; Park, Cheung-Seog; Jin, Young-Ho

    2015-01-02

    Highlights: • Prostaglandin E2 (PGE{sub 2}) effect was tested on visceral afferent neurons. • PGE{sub 2} did not evoke response but potentiated serotonin (5-HT) currents up to 167%. • PGE{sub 2}-induced potentiation was blocked by E-prostanoid type 4 receptors antagonist. • PGE{sub 2} effect on 5-HT response was also blocked by protein kinase A inhibitor KT5720. • Thus, PGE{sub 2} modulate visceral afferent neurons via synergistic signaling with 5-HT. - Abstract: Gastrointestinal disorder is a common symptom induced by diverse pathophysiological conditions that include food tolerance, chemotherapy, and irradiation for therapy. Prostaglandin E{sub 2} (PGE{sub 2}) level increase was often reported during gastrointestinal disorder and prostaglandin synthetase inhibitors has been used for ameliorate the symptoms. Exogenous administration of PGE{sub 2} induces gastrointestinal disorder, however, the mechanism of action is not known. Therefore, we tested PGE{sub 2} effect on visceral afferent sensory neurons of the rat. Interestingly, PGE{sub 2} itself did not evoked any response but enhanced serotonin (5-HT)-evoked currents up to 167% of the control level. The augmented 5-HT responses were completely inhibited by a 5-HT type 3 receptor antagonist, ondansetron. The PGE{sub 2}-induced potentiation were blocked by a selective E-prostanoid type4 (EP{sub 4}) receptors antagonist, L-161,982, but type1 and 2 receptor antagonist AH6809 has no effect. A membrane permeable protein kinase A (PKA) inhibitor, KT5720 also inhibited PGE{sub 2} effects. PGE{sub 2} induced 5-HT current augmentation was observed on 15% and 21% of the stomach and ileum projecting neurons, respectively. Current results suggest a synergistic signaling in visceral afferent neurons underlying gastrointestinal disorder involving PGE{sub 2} potentiation of 5-HT currents. Our findings may open a possibility for screen a new type drugs with lower side effects than currently using steroidal prostaglandin

  20. Interpretation of muscle spindle afferent nerve response to passive muscle stretch recorded with thin-film longitudinal intrafascicular electrodes.

    PubMed

    Djilas, Milan; Azevedo-Coste, Christine; Guiraud, David; Yoshida, Ken

    2009-10-01

    In this study, we explored the feasibility of estimating muscle length in passive conditions by interpreting nerve responses from muscle spindle afferents recorded with thin-film longitudinal intrafascicular electrodes. Afferent muscle spindle response to passive stretch was recorded in ten acute rabbit experiments. A newly proposed first-order model of muscle spindle response to passive sinusoidal muscle stretch manages to capture the relationship between afferent neural firing rate and muscle length. We demonstrate that the model can be used to track random motion trajectories with bandwidth from 0.1 to 1 Hz over a range of 4 mm with a muscle length estimation error of 0.3 mm (1.4 degrees of joint angle). When estimation is performed using four-channel ENG there is a 50% reduction in estimate variation, compared to using single-channel recordings.

  1. Primary afferent neurons of the electrosensory system of paddlefish respond to the electrical signal of paddlefish moving prey.*

    NASA Astrophysics Data System (ADS)

    Wojtenek, Winfried; Neiman, Alexander; Moss, Frank; Wilkens, Lon

    2000-03-01

    The elongated rostrum and ampullae of Lorenzini of paddlefish (Polyodon spathula) function as an antenna for detecting electrical signals from planktonic prey (1,2). We characterize the weak electric field of the water flea (Daphnia), the natural prey of paddlefish, and the response of the electroreceptor primary afferents to the live plankton. Daphnia generate a steady DC electric field with a low-frequency AC component. The DC field is dipolar, with low-frequency AC modulations (5-10 Hz) of 10-20peak-to-peak amplitude of the steady DC electric field. Primary afferents discharge rate are briefly increased or decreased when Daphnia swept over their receptive fields. Cathodal stimulation increases the primary afferent spike rate, whereas anodal stimuli decrease neuronal activity. The pattern of neuronal discharge depend on dipole orientation and, in general, neuronal discharges follow the characteristic of moving Daphnia’s electric potentials.

  2. Limb venous distension evokes sympathetic activation via stimulation of the limb afferents in humans.

    PubMed

    Cui, Jian; McQuillan, Patrick M; Blaha, Cheryl; Kunselman, Allen R; Sinoway, Lawrence I

    2012-08-15

    We have recently shown that a saline infusion in the veins of an arterially occluded human forearm evokes a systemic response with increases in muscle sympathetic nerve activity (MSNA) and blood pressure. In this report, we examined whether this response was a reflex that was due to venous distension. Blood pressure (Finometer), heart rate, and MSNA (microneurography) were assessed in 14 young healthy subjects. In the saline trial (n = 14), 5% forearm volume normal saline was infused in an arterially occluded arm. To block afferents in the limb, 90 mg of lidocaine were added to the same volume of saline in six subjects during a separate visit. To examine whether interstitial perfusion of normal saline alone induced the responses, the same volume of albumin solution (5% concentration) was infused in 11 subjects in separate studies. Lidocaine abolished the MSNA and blood pressure responses seen with saline infusion. Moreover, compared with the saline infusion, an albumin infusion induced a larger (MSNA: Δ14.3 ± 2.7 vs. Δ8.5 ± 1.3 bursts/min, P < 0.01) and more sustained MSNA and blood pressure responses. These data suggest that venous distension activates afferent nerves and evokes a powerful systemic sympathoexcitatory reflex. We posit that the venous distension plays an important role in evoking the autonomic adjustments seen with postural stress in human subjects.

  3. Influence of visual and proprioceptive afferences on upper limb ataxia in patients with multiple sclerosis.

    PubMed

    Quintern, J; Immisch, I; Albrecht, H; Pöllmann, W; Glasauer, S; Straube, A

    1999-02-01

    Our objective was to investigate how cooling of the arm and vision influence pointing movements in healthy subjects and patients with cerebellar limb ataxia due to clinically proven multiple sclerosis. An infrared video motion analysis system was used to record the unrestricted, horizontal pointing movements toward a target under three different conditions involving a moving, stationary, or imaginary target; a visual, or acoustic trigger; and vision or memory guidance. All three tasks were performed before and after cooling the arm in ice water. Patients had more hypermetric and slower pointing movements than controls under all tested conditions. Patients also had significantly larger three-dimensional finger sway paths during the postural phase and larger movement angles of the wrist joint. Memory-guided movements were the most hypermetric recorded in both groups. Cooling of the limb had no effect on amplitude or peak velocity of the pointing movement in either group under all tested conditions, but significantly reduced the three-dimensional finger sway path during the postural phase in patients with limb ataxia. Cooling-induced reduction of the finger sway was largest in those patients with the largest finger sway before cooling. In conclusion, the cooling-induced reduction of the proprioceptive afferent inflow, most probably of group I spindle afferents, reduces postural tremor of patients with cerebellar dysfunction.

  4. Primary afferent plasticity following deafferentation of the trigeminal brainstem nuclei in the adult rat.

    PubMed

    De Riu, Pier Luigi; Russo, Antonella; Pellitteri, Rosalia; Stanzani, Stefania; Tringali, Giovanni; Roccazzello, Anna Maria; De Riu, Giacomo; Marongiu, Patrizia; Mameli, Ombretta

    2008-09-01

    Alpha-tyrosinated tubulin is a cytoskeletal protein that is involved in axonal growth and is considered a marker of neuronal plasticity in adult mammals. In adult rats, unilateral ablation of the left facial sensorimotor cortical areas induces degeneration of corticotrigeminal projections and marked denervation of the contralateral sensory trigeminal nuclei. Western blotting and real-time-PCR of homogenates of the contralateral trigeminal ganglion (TG) revealed consistent overexpression of growth proteins 15 days after left decortication in comparison with the ipsilateral side. Immunohistochemical analyses indicated marked overexpression of alpha-tyrosinated tubulin in the cells of the ganglion on the right side. Cytoskeletal changes were primarily observed in the small ganglionic neurons. Application of HRP-CT, WGA-HRP, and HRP to infraorbital nerves on both sides 15 days after left decortication showed a significant degree of terminal sprouting and neosynaptogenesis from right primary afferents at the level of the right caudalis and interpolaris trigeminal subnuclei. These observations suggest that the adaptive response of TG neurons to central deafferentation, leading to overcrowding and rearrangement of the trigeminal primary afferent terminals on V spinal subnuclei neurons, could represent the anatomical basis for distortion of facial modalities, perceived as allodynia and hyperalgesia, despite nerve integrity.

  5. Metallic stent insertion with double-balloon endoscopy for malignant afferent loop obstruction

    PubMed Central

    Fujii, Masakuni; Ishiyama, Shuhei; Saito, Hiroaki; Ito, Mamoru; Fujiwara, Akiko; Niguma, Takefumi; Yoshioka, Masao; Shiode, Junji

    2015-01-01

    Progress in double-balloon endoscopy (DBE) has allowed for the diagnosis and treatment of disease in the postoperative bowel. For example, a short DBE, which has a 2.8 mm working channel and 152 cm working length, is useful for endoscopic retrograde cholangiopancreatography in bowel disease patients. However, afferent loop and Roux-limb obstruction, though rare, is caused by postoperative recurrence of biliary tract cancer with intractable complications. Most of the clinical findings involving these complications are relatively nonspecific and include abdominal pain, nausea, vomiting, fever, and obstructive jaundice. Treatments by surgery, percutaneous transhepatic biliary drainage, percutaneous enteral stent insertion, and endoscopic therapy have been reported. The general conditions of patients with these complications are poor due to cancer progression; therefore, a less invasive treatment is better. We report on the usefulness of metallic stent insertion using an overtube for afferent loop and Roux-limb obstruction caused by postoperative recurrence of biliary tract cancer under short DBE in two patients with complexly reconstructed intestines. PMID:26078835

  6. N-acetylcysteine alters apoptotic gene expression in axotomised primary sensory afferent subpopulations.

    PubMed

    Reid, Adam J; Shawcross, Susan G; Hamilton, Alex E; Wiberg, Mikael; Terenghi, Giorgio

    2009-10-01

    Novel approaches are required in peripheral nerve injury management because current surgical techniques, which do not address axotomy-induced neuronal death, lead to deficient sensory recovery. Sensory neuronal death has functional preference with cutaneous neurons dying in great numbers whilst muscle afferents survive axotomy. This offers the potential of comparing similar cell types that suffer distinct fates upon nerve injury. Here, a novel approach, combining in vivo rat nerve injury model with laser microdissection and quantitative real-time polymerase chain reaction, identifies crucial disparities in apoptotic gene expression attributable to subpopulations of differing sensory modalities and examines the response to N-acetylcysteine (NAC) therapy. We show that axotomised muscle afferent neurons survive injury due to a neuroprotective response which markedly downregulates Bax and caspase-3 mRNA. In contrast, axotomised cutaneous sensory neurons significantly upregulate caspase-3 and alter both Bcl-2 and Bax expression such that pro-apoptotic Bax predominates. N-Acetylcysteine (NAC) intervention promotes neuroprotection of cutaneous sensory neurons through considerable upregulation of Bcl-2 and downregulation of both Bax and caspase-3 mRNA. The data presented identifies differential activation of apoptotic genes in axotomised neuronal subpopulations. Furthermore, NAC therapy instigates apoptotic gene expression changes in axotomised neurons, thereby offering pharmacotherapeutic potential in the clinical treatment of nerve injury.

  7. Deletion of leptin signaling in vagal afferent neurons results in hyperphagia and obesity.

    PubMed

    de Lartigue, Guillaume; Ronveaux, Charlotte C; Raybould, Helen E

    2014-09-01

    The vagal afferent pathway senses hormones released from the gut in response to nutritional cues and relays these signals to the brain. We tested the hypothesis that leptin resistance in vagal afferent neurons (VAN) is responsible for the onset of hyperphagia by developing a novel conditional knockout mouse to delete leptin receptor selectively in sensory neurons (Nav1.8/LepR (fl/fl) mice). Chow fed Nav1.8/LepR (fl/fl) mice weighed significantly more and had increased adiposity compared with wildtype mice. Cumulative food intake, meal size, and meal duration in the dark phase were increased in Nav1.8/LepR (fl/fl) mice; energy expenditure was unaltered. Reduced satiation in Nav1.8/LepR (fl/fl) mice is in part due to reduced sensitivity of VAN to CCK and the subsequent loss of VAN plasticity. Crucially Nav1.8/LepR (l/fl) mice did not gain further weight in response to a high fat diet. We conclude that disruption of leptin signaling in VAN is sufficient and necessary to promote hyperphagia and obesity.

  8. The sympathetic skin response: normal values, elucidation of afferent components and application limits.

    PubMed

    Uncini, A; Pullman, S L; Lovelace, R E; Gambi, D

    1988-11-01

    The sympathetic skin response (SSR), recorded at the hand and foot, was elicited using different classes of stimuli in 20 normal controls and 10 patients with peripheral neuropathy. We found that SSR latencies changed significantly with different recording sites, but not with different stimulation sites. Additionally, after ischemic conduction block of the arm in 3 normal controls, the previously obtainable SSR recorded at the hand became unobtainable with median nerve stimulation. Also, in one patient with subacute ganglionitis and 3 patients with demyelinating neuropathies, the SSR could not be elicited by electrical stimulation, but it could with deep inspiration. These results suggest that large diameter myelinated fibers may serve as afferents for the SSR. Furthermore, these findings imply that an unobtainable SSR by electrical stimulation may be due not only to dysfunction of the autonomic efferent nerve fibers, but also to abnormalities of the sensory afferents of the reflex. Therefore, investigations of autonomic dysfunction utilizing the SSR must be interpreted with caution in patients with peripheral neuropathies.

  9. Peripheral Afferent Mechanisms Underlying Acupuncture Inhibition of Cocaine Behavioral Effects in Rats

    PubMed Central

    Lee, Bong Hyo; Bae, Jong Han; Kim, Kwang Joong; Steffensen, Scott C.; Leem, Joong Woo; Yang, Chae Ha; Kim, Hee Young

    2013-01-01

    Administration of cocaine increases locomotor activity by enhancing dopamine transmission. To explore the peripheral mechanisms underlying acupuncture treatment for drug addiction, we developed a novel mechanical acupuncture instrument (MAI) for objective mechanical stimulation. The aim of this study was to evaluate whether acupuncture inhibition of cocaine-induced locomotor activity is mediated through specific peripheral nerves, the afferents from superficial or deep tissues, or specific groups of nerve fibers. Mechanical stimulation of acupuncture point HT7 with MAI suppressed cocaine-induced locomotor activity in a stimulus time-dependent manner, which was blocked by severing the ulnar nerve or by local anesthesia. Suppression of cocaine-induced locomotor activity was elicited after HT7 stimulation at frequencies of either 50 (for Meissner corpuscles) or 200 (for Pacinian corpuscles) Hz and was not affected by block of C/Aδ-fibers in the ulnar nerve with resiniferatoxin, nor generated by direct stimulation of C/Aδ-fiber afferents with capsaicin. These findings suggest that HT7 inhibition of cocaine-induced locomotor activity is mediated by A-fiber activation of ulnar nerve that originates in superficial and deep tissue. PMID:24260531

  10. Effect of extracellular calcium on excitability of guinea pig airway vagal afferent nerves.

    PubMed

    Undem, Bradley J; Oh, Eun Joo; Lancaster, Eric; Weinreich, Daniel

    2003-03-01

    The effect of reducing extracellular calcium concentration ([Ca(2+)](o)) on vagal afferent excitability was analyzed in a guinea pig isolated vagally innervated trachea-bronchus preparation. Afferent fibers were characterized as either having low-threshold, rapidly adapting mechanosensors (Adelta fibers) or nociceptive-like phenotypes (Adelta and C fibers). The nociceptors were derived from neurons within the jugular ganglia, whereas the low-threshold mechanosensors were derived from neurons within the nodose ganglia. Reducing [Ca(2+)](o) did not affect the excitability of the low-threshold mechanosensors in the airway. By contrast, reducing [Ca(2+)](o) selectively increased the excitability of airway nociceptors as manifested by a substantive increase in action potential discharge in response to mechanical stimulation, and in a subset of fibers, by overtly evoking action potential discharge. This increase in the excitability of nociceptors was not mimicked by a combination of omega-conotoxin and nifedipine or tetraethylammonium. Whole cell patch recordings from airway-labeled and unlabeled neurons in the vagal jugular ganglia support the hypothesis that [Ca(2+)](o) inhibits a nonselective cation conductance in vagal nociceptors that may serve to regulate excitability of the nerve terminals within the airways.

  11. Prostaglandin potentiates 5-HT responses in stomach and ileum innervating visceral afferent sensory neurons.

    PubMed

    Kim, Sojin; Jin, Zhenhua; Lee, Goeun; Park, Yong Seek; Park, Cheung-Seog; Jin, Young-Ho

    2015-01-02

    Gastrointestinal disorder is a common symptom induced by diverse pathophysiological conditions that include food tolerance, chemotherapy, and irradiation for therapy. Prostaglandin E2 (PGE2) level increase was often reported during gastrointestinal disorder and prostaglandin synthetase inhibitors has been used for ameliorate the symptoms. Exogenous administration of PGE2 induces gastrointestinal disorder, however, the mechanism of action is not known. Therefore, we tested PGE2 effect on visceral afferent sensory neurons of the rat. Interestingly, PGE2 itself did not evoked any response but enhanced serotonin (5-HT)-evoked currents up to 167% of the control level. The augmented 5-HT responses were completely inhibited by a 5-HT type 3 receptor antagonist, ondansetron. The PGE2-induced potentiation were blocked by a selective E-prostanoid type 4 (EP4) receptors antagonist, L-161,982, but type 1 and 2 receptor antagonist AH6809 has no effect. A membrane permeable protein kinase A (PKA) inhibitor, KT5720 also inhibited PGE2 effects. PGE2 induced 5-HT current augmentation was observed on 15% and 21% of the stomach and ileum projecting neurons, respectively. Current results suggest a synergistic signaling in visceral afferent neurons underlying gastrointestinal disorder involving PGE2 potentiation of 5-HT currents. Our findings may open a possibility for screen a new type drugs with lower side effects than currently using steroidal prostaglandin synthetase inhibitors by selectively targeting EP4 receptor/PKA pathway without interrupt prostaglandin synthesis.

  12. Afferents from vocal motor and respiratory effectors are recruited during vocal production in juvenile songbirds.

    PubMed

    Bottjer, Sarah W; To, Michelle

    2012-08-08

    Learned behaviors require coordination of diverse sensory inputs with motivational and motor systems. Although mechanisms underlying vocal learning in songbirds have focused primarily on auditory inputs, it is likely that sensory inputs from vocal effectors also provide essential feedback. We investigated the role of somatosensory and respiratory inputs from vocal effectors of juvenile zebra finches (Taeniopygia guttata) during the stage of sensorimotor integration when they are learning to imitate a previously memorized tutor song. We report that song production induced expression of the immediate early gene product Fos in trigeminal regions that receive hypoglossal afferents from the tongue and syrinx (the main vocal organ). Furthermore, unilateral lesion of hypoglossal afferents greatly diminished singing-induced Fos expression on the side ipsilateral to the lesion, but not on the intact control side. In addition, unilateral lesion of the vagus reduced Fos expression in the ipsilateral nucleus of the solitary tract in singing birds. Lesion of the hypoglossal nerve to the syrinx greatly disrupted vocal behavior, whereas lesion of the hypoglossal nerve to the tongue exerted no obvious disruption and lesions of the vagus caused some alterations to song behavior. These results provide the first functional evidence that somatosensory and respiratory feedback from peripheral effectors is activated during vocal production and conveyed to brainstem regions. Such feedback is likely to play an important role in vocal learning during sensorimotor integration in juvenile birds and in maintaining stereotyped vocal behavior in adults.

  13. The projection of jaw elevator muscle spindle afferents to fifth nerve motoneurones in the cat.

    PubMed Central

    Appenteng, K; O'Donovan, M J; Somjen, G; Stephens, J A; Taylor, A

    1978-01-01

    1. By spike-triggered averaging of intracellular synaptic noise it has been shown in pentobarbitone anaesthetized cats that jaw elevator muscle spindle afferents with their cell bodies in the mid-brain have a relatively weak monosynaptic projection to masseter and temporalis motoneurones. 2. Extending the spike-triggered averaging method to recording extracellular excitatory field potentials it has been shown that virtually all the spindles do project monosynaptically to the motoneurone pool. It is concluded that the general weakness of the projection is due to its restriction to a small proportion of the motoneurones, possibly those concerned most with tonic postural functions. 3. The shape of individual intracellular e.p.s.p.s together with the spatial distribution of extracellular excitatory potential fields provide some evidence for a dentrically weighted distribution of the synapses. 4. Evidence is presented that both primary- and secondary-type spindle afferents project monosynaptically, the secondary effects being some 71% of the strength of the primary ones. PMID:149860

  14. Transformation of spatiotemporal dynamics in the macaque vestibular system from otolith afferents to cortex

    PubMed Central

    Laurens, Jean; Liu, Sheng; Yu, Xiong-Jie; Chan, Raymond; Dickman, David; DeAngelis, Gregory C; Angelaki, Dora E

    2017-01-01

    Sensory signals undergo substantial recoding when neural activity is relayed from sensors through pre-thalamic and thalamic nuclei to cortex. To explore how temporal dynamics and directional tuning are sculpted in hierarchical vestibular circuits, we compared responses of macaque otolith afferents with neurons in the vestibular and cerebellar nuclei, as well as five cortical areas, to identical three-dimensional translational motion. We demonstrate a remarkable spatio-temporal transformation: otolith afferents carry spatially aligned cosine-tuned translational acceleration and jerk signals. In contrast, brainstem and cerebellar neurons exhibit non-linear, mixed selectivity for translational velocity, acceleration, jerk and position. Furthermore, these components often show dissimilar spatial tuning. Moderate further transformation of translation signals occurs in the cortex, such that similar spatio-temporal properties are found in multiple cortical areas. These results suggest that the first synapse represents a key processing element in vestibular pathways, robustly shaping how self-motion is represented in central vestibular circuits and cortical areas. DOI: http://dx.doi.org/10.7554/eLife.20787.001 PMID:28075326

  15. Effect of Experimental Cutaneous Hand Pain on Corticospinal Excitability and Short Afferent Inhibition

    PubMed Central

    Mercier, Catherine; Gagné, Martin; Reilly, Karen T.; Bouyer, Laurent J.

    2016-01-01

    Sensorimotor integration is altered in people with chronic pain. While there is substantial evidence that pain interferes with neural activity in primary sensory and motor cortices, much less is known about its impact on integrative sensorimotor processes. Here, the short latency afferent inhibition (SAI) paradigm was used to assess sensorimotor integration in the presence and absence of experimental cutaneous heat pain applied to the hand. Ulnar nerve stimulation was combined with transcranial magnetic stimulation to condition motor evoked potentials (MEPs) in the first dorsal interosseous muscle. Four interstimulus intervals (ISI) were tested, based on the latency of the N20 component of the afferent sensory volley (N20−5 ms, N20+2 ms, N20+4 ms, N20+10 ms). In the PAIN condition, MEPs were smaller compared to the NEUTRAL condition (p = 0.005), and were modulated as a function of the ISI (p = 0.012). Post-hoc planned comparisons revealed that MEPs at N20+2 and N20+4 were inhibited compared to unconditioned MEPs. However, the level of inhibition (SAI) was similar in the PAIN and NEUTRAL conditions. This suggests that the interplay between pain and sensorimotor integration is not mediated through direct and rapid pathways as assessed by SAI, but rather might involve higher-order integrative areas. PMID:27690117

  16. Physiological recruitment of motor units by high-frequency electrical stimulation of afferent pathways.

    PubMed

    Dideriksen, Jakob L; Muceli, Silvia; Dosen, Strahinja; Laine, Christopher M; Farina, Dario

    2015-02-01

    Neuromuscular electrical stimulation (NMES) is commonly used in rehabilitation, but electrically evoked muscle activation is in several ways different from voluntary muscle contractions. These differences lead to challenges in the use of NMES for restoring muscle function. We investigated the use of low-current, high-frequency nerve stimulation to activate the muscle via the spinal motoneuron (MN) pool to achieve more natural activation patterns. Using a novel stimulation protocol, the H-reflex responses to individual stimuli in a train of stimulation pulses at 100 Hz were reliably estimated with surface EMG during low-level contractions. Furthermore, single motor unit recruitment by afferent stimulation was analyzed with intramuscular EMG. The results showed that substantially elevated H-reflex responses were obtained during 100-Hz stimulation with respect to a lower stimulation frequency. Furthermore, motor unit recruitment using 100-Hz stimulation was not fully synchronized, as it occurs in classic NMES, and the discharge rates differed among motor units because each unit was activated only after a specific number of stimuli. The most likely mechanism behind these observations is the temporal summation of subthreshold excitatory postsynaptic potentials from Ia fibers to the MNs. These findings and their interpretation were also verified by a realistic simulation model of afferent stimulation of a MN population. These results suggest that the proposed stimulation strategy may allow generation of considerable levels of muscle activation by motor unit recruitment that resembles the physiological conditions.

  17. The projection of jaw elevator muscle spindle afferents to fifth nerve motoneurones in the cat.

    PubMed

    Appenteng, K; O'Donovan, M J; Somjen, G; Stephens, J A; Taylor, A

    1978-06-01

    1. By spike-triggered averaging of intracellular synaptic noise it has been shown in pentobarbitone anaesthetized cats that jaw elevator muscle spindle afferents with their cell bodies in the mid-brain have a relatively weak monosynaptic projection to masseter and temporalis motoneurones. 2. Extending the spike-triggered averaging method to recording extracellular excitatory field potentials it has been shown that virtually all the spindles do project monosynaptically to the motoneurone pool. It is concluded that the general weakness of the projection is due to its restriction to a small proportion of the motoneurones, possibly those concerned most with tonic postural functions. 3. The shape of individual intracellular e.p.s.p.s together with the spatial distribution of extracellular excitatory potential fields provide some evidence for a dentrically weighted distribution of the synapses. 4. Evidence is presented that both primary- and secondary-type spindle afferents project monosynaptically, the secondary effects being some 71% of the strength of the primary ones.

  18. Presynaptic inhibition and antidromic spikes in primary afferents of the crayfish: a computational and experimental analysis.

    PubMed

    Cattaert, D; Libersat, F; El Manira A, A

    2001-02-01

    Primary afferent depolarizations (PADs) are associated with presynaptic inhibition and antidromic discharges in both vertebrates and invertebrates. In the present study, we have elaborated a realistic compartment model of a primary afferent from the coxobasipodite chordotonal organ of the crayfish based on anatomical and electrophysiological data. The model was used to test the validity of shunting and sodium channel inactivation hypotheses to account for presynaptic inhibition. Previous studies had demonstrated that GABA activates chloride channels located on the main branch close to the first branching point. We therefore focused the analysis on the effect of GABA synapses on the propagation of action potentials in the first axonal branch. Given the large diameters of the sensory axons in the region in which PADs were likely to be produced and recorded, the model indicates that a relatively large increase in chloride conductance (up to 300 nS) is needed to significantly reduce the amplitude of sensory spikes. The role of the spatial organization of GABA synapses in the sensory arborization was analyzed, demonstrating that the most effective location for GABA synapses is in the area of transition from active to passive conduction. This transition is likely to occur on the main branch a few hundred micrometers distal to the first branching point. As a result of this spatial organization, antidromic spikes generated by large-amplitude PADs are prevented from propagating distally.

  19. Frequency dependent changes in mechanosensitivity of rat knee joint afferents after antidromic saphenous nerve stimulation.

    PubMed

    Just, S; Heppelmann, B

    2002-01-01

    The aim of the present study was to examine the effect of electrical saphenous nerve stimulation (14 V, 1-10 Hz) on the mechanosensitivity of rat knee joint afferents. The responses to passive joint rotations at defined torque were recorded from slowly conducting knee joint afferent nerve fibres (0.6-20.0 m/s). After repeated nerve stimulation with 1 Hz, the mechanosensitivity of about 79% of the units was significantly affected. The effects were most prominent at a torque close to the mechanical threshold. In about 46% of the examined nerve fibres a significant increase was obtained, whereas about 33% reduced their mechanosensitivity. The sensitisation was prevented by an application of 5 microM phentolamine, an alpha-adrenergic receptor blocker, together with a neuropeptide Y receptor blocker. An inhibition of N-type Ca(2+) channels by an application of 1 microM omega-conotoxin GVIA caused comparable changes of the mechanosensitivity during the electrical stimulation. Electrical nerve stimulation with higher frequencies resulted in a further reduction of the mean response to joint rotations. After stimulation with 10 Hz, there was a nearly complete loss of mechanosensitivity.In conclusion, antidromic electrical nerve stimulation leads to a frequency dependent transient decrease of the mechanosensitivity. A sensitisation was only obtained at 1 Hz, but this effect may be based on the influence of sympathetic nerve fibres.

  20. Influence of vagal afferents on diphasic ventilatory response to hypoxia in newborn lambs.

    PubMed

    Delacourt, C; Canet, E; Praud, J P; Bureau, M A

    1995-01-01

    The effect of vagal afferents on the ventilatory response to hypoxia was studied in eleven awake newborn lambs. Tests were repeated before and after vagotomy in the same lambs in two conditions: with intact upper airways and after intubation. During hypoxia, a diphasic pattern of ventilatory response was observed in both vagotomized and intact lambs. However, face mask-breathing vagotomized lambs had a blunted increase in ventilation (VI) to hypoxia as compared with intact lambs (P = 0.0001) and they showed an expiratory braking during all hypoxic time. Furthermore, the normal increase in frequency (f) to hypoxia was abolished after vagotomy. After intubation, expiratory braking disappeared and, consequently, magnitude of the VI response to hypoxia was similar in intact and vagotomized lambs. These changes were due to improved tidal volume response in vagotomized intubated lambs (P < 0.002) with no significant change in f response. We concluded that, in awake newborn lambs, vagal afferents are essential for maintaining the pattern and the magnitude of the ventilatory response to hypoxia, the latter by controlling the motor output to the larynx.

  1. Physiological regulation of magnocellular neurosecretory cell activity: Integration of intrinsic, local and afferent mechanisms

    PubMed Central

    Brown, Colin H.; Bains, Jaideep S.; Ludwig, Mike; Stern, Javier E.

    2013-01-01

    The hypothalamic supraoptic and paraventricular nucleus contain magnocellular neurosecretory cells (MNCs) that project to the posterior pituitary gland where they secrete either oxytocin or vasopressin (the anti-diuretic hormone) into the circulation. Oxytocin is important for delivery at birth and is essential for milk ejection during suckling. Vasopressin primarily promotes water reabsorption in the kidney to maintain body fluid balance, but also increases vasoconstriction. The profile of oxytocin and vasopressin secretion is principally determined by the pattern of action potentials initiated at the cell bodies. While it has long been known that the activity of MNCs depends upon afferent inputs that relay information on reproductive, osmotic and cardiovascular status, it has recently become clear that activity depends critically on local regulation by glial cells, as well as intrinsic regulation by the MNCs themselves. Here, we provide an overview of recent advances in our understanding of how intrinsic and local extrinsic mechanisms integrate with afferent inputs to generate appropriate physiological regulation of oxytocin and vasopressin MNC activity. PMID:23701531

  2. Local opioid-sensitive afferent sensory neurones in the modulation of gastric damage induced by Paf.

    PubMed Central

    Esplugues, J. V.; Whittle, B. J.; Moncada, S.

    1989-01-01

    1. The role of local sensory neurones in modulating the extent of gastric mucosal damage induced by close-arterial infusion of platelet-activating factor (Paf 50 ng kg-1 min-1 for 10 min) has been investigated in the anaesthetized rat. 2. Local intra-arterial infusion of the neurotoxin, tetrodotoxin (TTX), substantially augmented the mucosal damage induced by Paf, as assessed by both macroscopic and histological techniques. 3. In rats pretreated with capsaicin 2 weeks prior to study, to induce a functional ablation of primary afferent neurones, gastric damage induced by Paf was significantly augmented. 4. Administration of morphine (0.75-3 mg kg-1 i.v.) or its peripherally acting quaternary analogue, N-methyl morphine (15 mg kg-1 i.v.), also significantly enhanced the gastric damage induced by Paf. 5. The potentiation by morphine of Paf-induced gastric damage was inhibited by administration of the opioid antagonists, naloxone (1 mg kg-1 i.v.) or the peripherally acting N-methyl nalorphine (3 mg kg-1 i.v.). 6. Administration of TTX or morphine alone, or pretreatment with capsaicin did not induce any detectable mucosal damage, suggesting that interference with local sensory neuronal activity itself does not directly induce mucosal disruption. 7. These results indicate that peripheral opiate-sensitive afferent sensory neurones play a physiological defensive role in the mucosa, attenuating the extent of gastric damage induced by Paf. PMID:2758231

  3. Mechanistic relationship between the vagal afferent pathway, central nervous system and peripheral organs in appetite regulation.

    PubMed

    Ueno, Hiroaki; Nakazato, Masamitsu

    2016-11-01

    The hypothalamus is a center of food intake and energy metabolism regulation. Information signals from peripheral organs are mediated through the circulation or the vagal afferent pathway and input into the hypothalamus, where signals are integrated to determine various behaviors, such as eating. Numerous appetite-regulating peptides are expressed in the central nervous system and the peripheral organs, and interact in a complex manner. Of such peptides, gut peptides are known to bind to receptors at the vagal afferent pathway terminal that extend into the mucosal layer of the digestive tract, modulate the electrical activity of the vagus nerve, and subsequently send signals to the solitary nucleus and furthermore to the hypothalamus. All peripheral peptides other than ghrelin suppress appetite, and they synergistically suppress appetite through the vagus nerve. In contrast, the appetite-enhancing peptide, ghrelin, antagonizes the actions of appetite-suppressing peptides through the vagus nerve, and appetite-suppressing peptides have attenuated effects in obesity as a result of inflammation in the vagus nerve. With greater understanding of the mechanism for food intake and energy metabolism regulation, medications that apply the effects of appetite-regulating peptides or implantable devices that electrically stimulate the vagus nerve are being investigated as novel treatments for obesity in basic and clinical studies.

  4. Transcriptional changes in sensory ganglia associated with primary afferent axon collateral sprouting in spared dermatome model

    PubMed Central

    Harrison, Benjamin J.; Venkat, Gayathri; Hutson, Thomas; Rau, Kristofer K.; Bunge, Mary Bartlett; Mendell, Lorne M.; Gage, Fred H.; Johnson, Richard D.; Hill, Caitlin; Rouchka, Eric C.; Moon, Lawrence; Petruska, Jeffrey C.

    2015-01-01

    Primary afferent collateral sprouting is a process whereby non-injured primary afferent neurons respond to some stimulus and extend new branches from existing axons. Neurons of both the central and peripheral nervous systems undergo this process, which contributes to both adaptive and maladaptive plasticity (e.g., [1], [2], [3], [4], [5], [6], [7], [8], [9]). In the model used here (the “spared dermatome” model), the intact sensory neurons respond to the denervation of adjacent areas of skin by sprouting new axon branches into that adjacent denervated territory. Investigations of gene expression changes associated with collateral sprouting can provide a better understanding of the molecular mechanisms controlling this process. Consequently, it can be used to develop treatments to promote functional recovery for spinal cord injury and other similar conditions. This report includes raw gene expression data files from microarray experiments in order to study the gene regulation in spared sensory ganglia in the initiation (7 days) and maintenance (14 days) phases of the spared dermatome model relative to intact (“naïve”) sensory ganglia. Data has been deposited into GEO (GSE72551). PMID:26697387

  5. The effect of experimental muscle pain on the amplitude and velocity sensitivity of jaw closing muscle spindle afferents.

    PubMed

    Masri, Radi; Ro, Jin Y; Capra, Norman

    2005-07-19

    The effect of experimental muscle pain on the amplitude and velocity sensitivity of muscle spindle primary afferent neurons in the trigeminal mesencephalic nucleus (Vmes) was examined. Extracellular recordings were made from 45 neurons designated as spindle primary- or secondary-like on the basis of their response to ramp-and-hold jaw movements. Velocity sensitivity was assessed in spindle primary-like afferents by calculating the mean dynamic index of each unit in response to three different velocities of jaw opening before and after intramuscular injection with hypertonic saline (HS, 5%, 100 microl). The amplitude sensitivity of all jaw muscle spindle afferents was assessed by calculating the mean firing rate of each unit in response to three different amplitudes of jaw openings during both the open and hold phases of the movement and with best-fit lines obtained, using linear regression analysis, before and after HS injection. The variance of the two regression lines obtained for each unit before and after the injection was compared using the coincidence test, and changes in intercept and slope were determined. Seventy-five percent of the primary-like units and 80% of the secondary-like units presented with changes in static behavior after HS injection. Thirty-six percent of the primary-like units showed changes in dynamic behavior. Injection of isotonic saline (control) did not alter the responses of the spindle afferent to jaw opening. Thus, our results demonstrate that the predominant effect of noxious stimulation was a shift in the amplitude sensitivity of both spindle primary-like and secondary-like afferents and, to a lesser extent, the velocity sensitivity of the spindle primary-like unit. In accordance with earlier studies in the cat hindlimb and neck muscles, these results suggest that the activation of masseter muscle nociceptor alters spindle afferent responses to stretch acting primarily through static gamma motor neurons.

  6. Parallel reflex pathways from flexor muscle afferents evoking resetting and flexion enhancement during fictive locomotion and scratch in the cat.

    PubMed

    Stecina, Katinka; Quevedo, Jorge; McCrea, David A

    2005-11-15

    Reflex actions of muscle afferents in hindlimb flexor nerves were examined on ipsilateral motoneurone activity recorded in peripheral nerves during midbrain stimulation-evoked fictive locomotion and during fictive scratch in decerebrate cats. Trains of stimuli (15-30 shocks at 200 Hz) were delivered during the flexion phase at intensities sufficient to activate both group I and II afferents (5 times threshold, T). In many preparations tibialis anterior (TA) nerve stimulation terminated ongoing flexion and reset the locomotor cycle to extension (19/31 experiments) while extensor digitorum longus (EDL) stimulation increased and prolonged the ongoing flexor phase activity (20/33 preparations). The effects of sartorius, iliopsoas and peroneus longus muscle afferent stimulation were qualitatively similar to those of EDL nerve. Resetting to extension was seen only with higher intensity stimulation (5T) while ongoing flexor activity was often enhanced at group I intensity (2T) stimulation. The effects of flexor nerve stimulation were qualitatively similar during fictive scratch. Reflex reversals were consistently observed in some fictive locomotor preparations. In those cases, EDL stimulation produced a resetting to extension and TA stimulation prolonged the ongoing flexion phase. Occasionally reflex reversals occurred spontaneously during only one of several stimulus presentations. The variable and opposite actions of flexor afferents on the locomotor step cycle indicate the existence of parallel spinal reflex pathways. A hypothetical organization of reflex pathways from flexor muscle afferents to the spinal pattern generator networks with competing actions of group I and group II afferents on the flexor and extensor portions of this central circuitry is proposed.

  7. Primary sensory afferent innervation of the developing superficial dorsal horn in the South American opossum Monodelphis domestica.

    PubMed

    Kitchener, Peter D; Hutton, Elspeth J; Knott, Graham W

    2006-03-01

    The development of the primary sensory innervation of the superficial dorsal horn (SDH) was studied in postnatal opossums Monodelphis domestica by using DiI labelling of primary afferents and with GSA-IB(4) lectin binding and calcitonin gene-related peptide (CGRP) immunoreactivity to label primary afferent subpopulations. We also compared the timing of SDH innervation in the cervical and lumbar regions of the spinal cord. The first primary afferent projections to SDH emerge from the most lateral part of the dorsal root entry zone at postnatal day 5 and project around the lateral edge of the SDH toward lamina V. Innervation of the SDH occurs slowly over the second and third postnatal weeks, with the most dorsal aspect becoming populated by mediolaterally oriented varicose fibers before the rest of the dorsoventral thickness of the SDH becomes innervated by fine branching varicose fibers. Labelling with GSA-IB(4) lectin also labelled fibers at the lateral edge of the dorsal horn and SDH at P5, indicating that the GSA-IB(4) is expressed on SDH/lamina V primary afferents at the time when they are making their projections into the spinal cord. In contrast, CGRP-immunoreactive afferents were not evident until postnatal day 7, when a few short projections into the lateral dorsal horn were observed. These afferents then followed a pattern similar to the development of GSA-IB(4) projects but with a latency of several days. The adult pattern of labelling by GSA-IB(4) is achieved by about postnatal day 20, whereas the adult pattern of CGRP labelling was not seen until postnatal day 30. Electron microscopy revealed a few immature synapses in the region of the developing SDH at postnatal day 10, and processes considered to be precursors of glomerular synapses (and thus of primary afferent origin) were first seen at postnatal day 16 and adopted their definitive appearance between postnatal days 28 and 55. Although structural and functional development of forelimbs of neonatal

  8. Effects of electrical and natural stimulation of skin afferents on the gamma-spindle system of the triceps surae muscle.

    PubMed

    Johansson, H; Sjölander, P; Sojka, P; Wadell, I

    1989-08-01

    The aim of the present study was to investigate the extent to which skin receptors might influence the responses of primary muscle spindle afferents via reflex actions on the fusimotor system. The experiments were performed on 43 cats anaesthetized with alpha-chloralose. The alterations in fusimotor activity were assessed from changes in the responses of the muscle spindle afferents to sinusoidal stretching of their parent muscles (triceps surae and plantaris). The mean rate of firing and the modulation of the afferent response were determined. Control measurements were made in absence of any cutaneous stimulation. Tests were made (a) during physiological stimulation of skin afferents of the ipsilateral pad or of the contralateral hindlimb, or (b) during repetitive electrical stimulation of the sural nerve in the ipsilateral hindlimb, or of sural or superficial peroneal nerve in the contralateral hindlimb. Of the total number of 113 units tested with repetitive electrical stimulation of the ipsilateral sural nerve (at 20 Hz), 24.8% exhibited predominantly dynamic fusimotor reflexes, 5.3% mixed or predominantly static fusimotor reflexes. One unit studied in a preparation with intact spinal cord exhibited static reflexes at low stimulation intensities and dynamic ones at higher stimulation strengths. The remaining units (69%) were uninfluenced. When the receptor-bearing muscle was held at constant length and a train of stimuli (at 20 Hz) was applied to the ipsilateral sural nerve, the action potentials in the primary muscle spindle afferent could be stimulus-locked to the 3rd or 4th pulse in the train (and to the pulses following thereafter), with a latency of about 24 ms from the effective pulse. This 1:1 pattern of driving seemed to be mediated via static and/or dynamic fusimotor neurons. Natural stimulation influenced comparatively few units (3 of 65 units tested from the ipsilateral pad and 10 of 98 tested from the contralateral hindlimb), but when the effects

  9. The optimal neural strategy for a stable motor task requires a compromise between level of muscle cocontraction and synaptic gain of afferent feedback

    PubMed Central

    Dideriksen, Jakob L.; Negro, Francesco

    2015-01-01

    Increasing joint stiffness by cocontraction of antagonist muscles and compensatory reflexes are neural strategies to minimize the impact of unexpected perturbations on movement. Combining these strategies, however, may compromise steadiness, as elements of the afferent input to motor pools innervating antagonist muscles are inherently negatively correlated. Consequently, a high afferent gain and active contractions of both muscles may imply negatively correlated neural drives to the muscles and thus an unstable limb position. This hypothesis was systematically explored with a novel computational model of the peripheral nervous system and the mechanics of one limb. Two populations of motor neurons received synaptic input from descending drive, spinal interneurons, and afferent feedback. Muscle force, simulated based on motor unit activity, determined limb movement that gave rise to afferent feedback from muscle spindles and Golgi tendon organs. The results indicated that optimal steadiness was achieved with low synaptic gain of the afferent feedback. High afferent gains during cocontraction implied increased levels of common drive in the motor neuron outputs, which were negatively correlated across the two populations, constraining instability of the limb. Increasing the force acting on the joint and the afferent gain both effectively minimized the impact of an external perturbation, and suboptimal adjustment of the afferent gain could be compensated by muscle cocontraction. These observations show that selection of the strategy for a given contraction implies a compromise between steadiness and effectiveness of compensations to perturbations. This indicates that a task-dependent selection of neural strategy for steadiness is necessary when acting in different environments. PMID:26203102

  10. Cationic influences upon synaptic transmission at the hair cell-afferent fiber synapse of the frog

    NASA Technical Reports Server (NTRS)

    Cochran, S. L.

    1995-01-01

    The concentrations of inorganic cations (K+, Na+, and Ca2+) bathing the isolated frog labyrinth were varied in order to assess their role in influencing and mediating synaptic transmission at the hair cell-afferent fiber synapse. Experiments employed intracellular recordings of synaptic activity from VIIIth nerve afferents. Recordings were digitized continuously at 50 kHz, and excitatory postsynaptic potentials were detected and parameters quantified by computer algorithms. Particular attention was focused on cationic effects upon excitatory postsynaptic potential frequency of occurrence and excitatory postsynaptic potential amplitude, in order to discriminate between pre- and postsynaptic actions. Because the small size of afferents preclude long term stable recordings, alterations in cationic concentrations were applied transiently and their peak effects on synaptic activity were assessed. Increases in extracellular K+ concentration of a few millimolar produced a large increase in the frequency of occurrence of excitatory postsynaptic potentials with little change in amplitude, indicating that release of transmitter from the hair cell is tightly coupled to its membrane potential. Increasing extracellular Na+ concentration resulted in an increase in excitatory postsynaptic potential amplitude with no significant change in excitatory postsynaptic potential frequency of occurrence, suggesting that the transmitter-gated subsynaptic channel conducts Na+ ions. Decreases in extracellular Ca2+ concentration had little effect upon excitatory postsynaptic potential frequency, but increased excitatory postsynaptic potential frequency and amplitude. These findings suggest that at higher concentrations Ca2+ act presynaptically to prevent transmitter release and postsynaptically to prevent Na+ influx during the generation of the excitatory postsynaptic potential. The influences of these ions on synaptic activity at this synapse are remarkably similar to those reported at the

  11. Competition with Primary Sensory Afferents Drives Remodeling of Corticospinal Axons in Mature Spinal Motor Circuits

    PubMed Central

    Jiang, Yu-Qiu; Zaaimi, Boubker

    2016-01-01

    Injury to the mature motor system drives significant spontaneous axonal sprouting instead of axon regeneration. Knowing the circuit-level determinants of axonal sprouting is important for repairing motor circuits after injury to achieve functional rehabilitation. Competitive interactions are known to shape corticospinal tract axon outgrowth and withdrawal during development. Whether and how competition contributes to reorganization of mature spinal motor circuits is unclear. To study this question, we examined plastic changes in corticospinal axons in response to two complementary proprioceptive afferent manipulations: (1) enhancing proprioceptive afferents activity by electrical stimulation; or (2) diminishing their input by dorsal rootlet rhizotomy. Experiments were conducted in adult rats. Electrical stimulation produced proprioceptive afferent sprouting that was accompanied by significant corticospinal axon withdrawal and a decrease in corticospinal connections on cholinergic interneurons in the medial intermediate zone and C boutons on motoneurons. In contrast, dorsal rootlet rhizotomy led to a significant increase in corticospinal connections, including those on cholinergic interneurons; C bouton density increased correspondingly. Motor cortex-evoked muscle potentials showed parallel changes to those of corticospinal axons, suggesting that reciprocal corticospinal axon changes are functional. Using the two complementary models, we showed that competitive interactions between proprioceptive and corticospinal axons are an important determinant in the organization of mature corticospinal axons and spinal motor circuits. The activity- and synaptic space-dependent properties of the competition enables prediction of the remodeling of spared corticospinal connection and spinal motor circuits after injury and informs the target-specific control of corticospinal connections to promote functional recovery. SIGNIFICANCE STATEMENT Neuroplasticity is limited in maturity

  12. Chronic recruitment of primary afferent neurons by microstimulation in the feline dorsal root ganglia

    NASA Astrophysics Data System (ADS)

    Fisher, Lee E.; Ayers, Christopher A.; Ciollaro, Mattia; Ventura, Valérie; Weber, Douglas J.; Gaunt, Robert A.

    2014-06-01

    Objective. This study describes results of primary afferent neural microstimulation experiments using microelectrode arrays implanted chronically in the lumbar dorsal root ganglia (DRG) of four cats. The goal was to test the stability and selectivity of these microelectrode arrays as a potential interface for restoration of somatosensory feedback after damage to the nervous system such as amputation. Approach. A five-contact nerve-cuff electrode implanted on the sciatic nerve was used to record the antidromic compound action potential response to DRG microstimulation (2-15 µA biphasic pulses, 200 µs cathodal pulse width), and the threshold for eliciting a response was tracked over time. Recorded responses were segregated based on conduction velocity to determine thresholds for recruiting Group I and Group II/Aβ primary afferent fibers. Main results. Thresholds were initially low (5.1 ± 2.3 µA for Group I and 6.3 ± 2.0 µA for Group II/Aβ) and increased over time. Additionally the number of electrodes with thresholds less than or equal to 15 µA decreased over time. Approximately 12% of tested electrodes continued to elicit responses at 15 µA up to 26 weeks after implantation. Higher stimulation intensities (up to 30 µA) were tested in one cat at 23 weeks post-implantation yielding responses on over 20 additional electrodes. Within the first six weeks after implantation, approximately equal numbers of electrodes elicited only Group I or Group II/Aβ responses at threshold, but the relative proportion of Group II/Aβ responses decreased over time. Significance. These results suggest that it is possible to activate Group I or Group II/Aβ primary afferent fibers in isolation with penetrating microelectrode arrays implanted in the DRG, and that those responses can be elicited up to 26 weeks after implantation, although it may be difficult to achieve a consistent response day-to-day with currently available electrode technology. The DRG are compelling targets

  13. Detection of tactile stimuli. Thresholds of afferent units related to psychophysical thresholds in the human hand.

    PubMed Central

    Johansson, R S; Vallbo, A B

    1979-01-01

    1. Psychophysical thresholds were determined at 162 points in the glabrous skin area of the human hand when slowly rising, triangular indentations of controlled amplitudes were delivered with a small probe. The method of constant stimuli was used with either the two alternative forced choice or the yes-no procedure. It was found that the distribution of the psychophysical thresholds varied with the skin region. Thresholds from the volar aspect of the fingers and the peripheral parts of the palm were low and their distribution was unimodal with a median of 11.2 micrometers. In contrast, there was an over-representation of high thresholds when observations from the centre of the palm, the lateral aspects of the fingers and the regions of the creases were pooled, and the distribution was slightly bimodal with a median of 36.0 micrometers. 2. Nerve impulses were recorded from single fibres in the median nerve of human subjects with percutaneously inserted tungsten needle electrodes. The thresholds of 128 mechanosensitive afferent units in the glabrous skin area of the hand were determined when stimuli were delivered to partly the same points as stimulated for the assessment of the psychophysical thresholds. Of the four types of units present in this area the Pacinian corpuscle (PC) and rapidly adapting (RA) units had the lowest thresholds with medians of 9.2 and 13.8 micrometers, followed by the slowly adapting type I and slowly adapting type II units with medians of 56.5 and 33.1 micrometers. There was no indication of a difference between thresholds of units located in different skin areas. 3. In the region of low psychophysical thresholds there was good agreement between the thresholds of the rapidly adapting and Pacinian corpuscle units and the psychophysical thresholds, particularly at the lower ends of the samples. In the skin regions of high thresholds, on the other hand, practically all psychophysical thresholds were higher than the thresholds of the most

  14. Electrical interaction between antidromically stimulated frog motoneurones and dorsal root afferents: enhancement by gallamine and TEA

    PubMed Central

    Grinnell, Alan D.

    1970-01-01

    1. Electrical interactions have been studied in the isolated frog spinal cord preparation. It is found that gallamine and tetraethylammonium chloride (TEA) markedly enhance all non-cholinergic synaptic interactions, including the electrical interaction between motoneurones (VR-VRP). In addition, in the presence of either of these drugs, a short-latency interaction is seen to exist between antidromically stimulated motoneurones and dorsal root afferents (early VR-DRP). The early VR-DRP is rarely seen in the absence of gallamine or TEA. 2. The early VR-DRP is of the same short latency as the VR-VRP and fulfils the same criteria for electrical interaction: it increases in amplitude with cooling from 17-10° C, it is not blocked by a wide variety of pharmacological blocking agents, and it is suppressed by both Mg2+ and Ca2+, with no antagonism of action between the two. 3. The early VR-DRP appears as a cluster of unitary events: all-or-none spikes conducted out the dorsal root fibres. No initial graded slow potentials are seen. Often there are two peaks in the response. 4. The early VR-DRP is facilitated by a dorsal root volley, with a time course normally intermediate between that of the orthodromic ventral root potential (DR-VRP) and the dorsal root potential (DR-DRP). This orthodromic facilitation apparently is achieved by increasing invasion of motoneurone dendritic trees and depolarization of dorsal root afferents toward threshold. 5. If the same ventral root is stimulated twice, or adjacent roots stimulated at different intervals, the second early VR-DRP, like the VR-VRP, is seen to be occluded for 10-20 msec, then facilitated to supranormal amplitudes. It is concluded that motoneurone dendrites are presynaptic to both interactions. 6. Evidence is presented that gallamine and TEA act by increasing the duration of activity both in axon terminals and in antidromically invaded motoneurones. Often second or multiple spikes result. The increased duration of

  15. Variation in response dynamics of regular and irregular vestibular-nerve afferents during sinusoidal head rotations and currents in the chinchilla.

    PubMed

    Kim, Kyu-Sung; Minor, Lloyd B; Della Santina, Charles C; Lasker, David M

    2011-05-01

    In mammals, vestibular-nerve afferents that innervate only type I hair cells (calyx-only afferents) respond nearly in phase with head acceleration for high-frequency motion, whereas afferents that innervate both type I and type II (dimorphic) or only type II (bouton-only) hair cells respond more in phase with head velocity. Afferents that exhibit irregular background discharge rates have a larger phase lead re-head velocity than those that fire more regularly. The goal of this study was to investigate the cause of the variation in phase lead between regular and irregular afferents at high-frequency head rotations. Under the assumption that externally applied galvanic currents act directly on the nerve, we derived a transfer function describing the dynamics of a semicircular canal and its hair cells through comparison of responses to sinusoidally modulated head velocity and currents. Responses of all afferents were fit well with a transfer function with one zero (lead term). Best-fit lead terms describing responses to current for each group of afferents were similar to the lead term describing responses to head velocity for regular afferents (0.006 s + 1). This finding indicated that the pre-synaptic and synaptic inputs to regular afferents were likely to be pure velocity transducers. However, the variation in phase lead between regular and irregular afferents could not be explained solely by the ratio of type I to II hair cells (Baird et al 1988), suggesting that the variation was caused by a combination of pre- (type of hair cell) and post-synaptic properties.

  16. Are type III-IV muscle afferents required for a normal steady-state exercise hyperpnoea in humans?

    PubMed

    Dempsey, Jerome A; Blain, Grégory M; Amann, Markus

    2014-02-01

    When tested in isolation, stimuli associated with respiratory CO2 exchange, feedforward central command and type III-IV muscle afferent feedback have each been shown to be capable of eliciting exercise-like cardio-ventilatory responses, but their relative contributions in a setting of physiological exercise remains controversial. We reasoned that in order to determine whether any of these regulators are obligatory to the exercise hyperpnoea each needs to be removed or significantly diminished in a setting of physiological steady-state exercise, during which all recognized stimuli (and other potential modulators) are normally operative. In the past few years we and others have used intrathecal fentanyl, a μ-opiate receptor agonist, in humans to reduce the input from type III-IV opiate-sensitive muscle afferents. During various types of intensities and durations of exercise a sustained hypoventilation, as well as reduced systemic pressure and cardioacceleration, were consistently observed with this blockade. These data provide the basis for the hypothesis that type III-IV muscle afferents are obligatory to the hyperpnoea of mild to moderate intensity rhythmic, large muscle, steady-state exercise. We discuss the limitations of these studies, the reasons for their disagreement with previous negative findings, the nature of the muscle afferent feedback stimulus and the need for future investigations.

  17. Sensory Feedback in Interlimb Coordination: Contralateral Afferent Contribution to the Short-Latency Crossed Response during Human Walking

    PubMed Central

    Gervasio, Sabata; Voigt, Michael; Kersting, Uwe G.; Farina, Dario; Sinkjær, Thomas

    2017-01-01

    A constant coordination between the left and right leg is required to maintain stability during human locomotion, especially in a variable environment. The neural mechanisms underlying this interlimb coordination are not yet known. In animals, interneurons located within the spinal cord allow direct communication between the two sides without the need for the involvement of higher centers. These may also exist in humans since sensory feedback elicited by tibial nerve stimulation on one side (ipsilateral) can affect the muscles activation in the opposite side (contralateral), provoking short-latency crossed responses (SLCRs). The current study investigated whether contralateral afferent feedback contributes to the mechanism controlling the SLCR in human gastrocnemius muscle. Surface electromyogram, kinematic and kinetic data were recorded from subjects during normal walking and hybrid walking (with the legs moving in opposite directions). An inverse dynamics model was applied to estimate the gastrocnemius muscle proprioceptors’ firing rate. During normal walking, a significant correlation was observed between the magnitude of SLCRs and the estimated muscle spindle secondary afferent activity (P = 0.04). Moreover, estimated spindle secondary afferent and Golgi tendon organ activity were significantly different (P ≤ 0.01) when opposite responses have been observed, that is during normal (facilitation) and hybrid walking (inhibition) conditions. Contralateral sensory feedback, specifically spindle secondary afferents, likely plays a significant role in generating the SLCR. This observation has important implications for our understanding of what future research should be focusing on to optimize locomotor recovery in patient populations. PMID:28060839

  18. TRPA1 mediates amplified sympathetic responsiveness to activation of metabolically sensitive muscle afferents in rats with femoral artery occlusion.

    PubMed

    Xing, Jihong; Lu, Jian; Li, Jianhua

    2015-01-01

    Autonomic responses to activation of mechanically and metabolically sensitive muscle afferent nerves during static contraction are augmented in rats with femoral artery occlusion. Moreover, metabolically sensitive transient receptor potential cation channel subfamily A, member 1 (TRPA1) has been reported to contribute to sympathetic nerve activity (SNA) and arterial blood pressure (BP) responses evoked by static muscle contraction. Thus, in the present study, we examined the mechanisms by which afferent nerves' TRPA1 plays a role in regulating amplified sympathetic responsiveness due to a restriction of blood flow directed to the hindlimb muscles. Our data show that 24-72 h of femoral artery occlusion (1) upregulates the protein levels of TRPA1 in dorsal root ganglion (DRG) tissues; (2) selectively increases expression of TRPA1 in DRG neurons supplying metabolically sensitive afferent nerves of C-fiber (group IV); and (3) enhances renal SNA and BP responses to AITC (a TRPA1 agonist) injected into the hindlimb muscles. In addition, our data demonstrate that blocking TRPA1 attenuates SNA and BP responses during muscle contraction to a greater degree in ligated rats than those responses in control rats. In contrast, blocking TRPA1 fails to attenuate SNA and BP responses during passive tendon stretch in both groups. Overall, results of this study indicate that alternations in muscle afferent nerves' TRPA1 likely contribute to enhanced sympathetically mediated autonomic responses via the metabolic component of the muscle reflex under circumstances of chronic muscle ischemia.

  19. TRPA1 mediates amplified sympathetic responsiveness to activation of metabolically sensitive muscle afferents in rats with femoral artery occlusion

    PubMed Central

    Xing, Jihong; Lu, Jian; Li, Jianhua

    2015-01-01

    Autonomic responses to activation of mechanically and metabolically sensitive muscle afferent nerves during static contraction are augmented in rats with femoral artery occlusion. Moreover, metabolically sensitive transient receptor potential cation channel subfamily A, member 1 (TRPA1) has been reported to contribute to sympathetic nerve activity (SNA) and arterial blood pressure (BP) responses evoked by static muscle contraction. Thus, in the present study, we examined the mechanisms by which afferent nerves' TRPA1 plays a role in regulating amplified sympathetic responsiveness due to a restriction of blood flow directed to the hindlimb muscles. Our data show that 24–72 h of femoral artery occlusion (1) upregulates the protein levels of TRPA1 in dorsal root ganglion (DRG) tissues; (2) selectively increases expression of TRPA1 in DRG neurons supplying metabolically sensitive afferent nerves of C-fiber (group IV); and (3) enhances renal SNA and BP responses to AITC (a TRPA1 agonist) injected into the hindlimb muscles. In addition, our data demonstrate that blocking TRPA1 attenuates SNA and BP responses during muscle contraction to a greater degree in ligated rats than those responses in control rats. In contrast, blocking TRPA1 fails to attenuate SNA and BP responses during passive tendon stretch in both groups. Overall, results of this study indicate that alternations in muscle afferent nerves' TRPA1 likely contribute to enhanced sympathetically mediated autonomic responses via the metabolic component of the muscle reflex under circumstances of chronic muscle ischemia. PMID:26441669

  20. Sensory afferent segregation in three-eared frogs resemble the dominance columns observed in three-eyed frogs

    PubMed Central

    Elliott, Karen L.; Houston, Douglas W.; Fritzsch, Bernd

    2015-01-01

    The formation of proper sensory afferent connections during development is essential for brain function. Activity-based competition is believed to drive ocular dominance columns (ODC) in mammals and in experimentally-generated three-eyed frogs. ODC formation is thus a compromise of activity differences between two eyes and similar molecular cues. To gauge the generality of graphical map formation in the brain, we investigated the inner ear projection, known for its well-defined and early segregation of afferents from vestibular and auditory endorgans. In analogy to three eyed-frogs, we generated three-eared frogs to assess to what extent vestibular afferents from two adjacent ears could segregate. Donor ears were transplanted either in the native orientation or rotated by 90 degrees. These manipulations should result in either similar or different induced activity between both ears, respectively. Three-eared frogs with normal orientation showed normal swimming whereas those with a rotated third ear showed aberrant behaviors. Projection studies revealed that only afferents from the rotated ears segregated from those from the native ear within the vestibular nucleus, resembling the ocular dominance columns formed in three-eyed frogs. Vestibular segregation suggests that mechanisms comparable to those operating in the ODC formation of the visual system may act on vestibular projection refinements. PMID:25661240

  1. Differential role of afferent and efferent renal nerves in the maintenance of early- and late-phase Dahl S hypertension

    PubMed Central

    Foss, Jason D.; Fink, Gregory D.

    2015-01-01

    Clinical data suggest that renal denervation (RDNX) may be an effective treatment for human hypertension; however, it is unclear whether this therapeutic effect is due to ablation of afferent or efferent renal nerves. We have previously shown that RDNX lowers arterial pressure in hypertensive Dahl salt-sensitive (S) rats to a similar degree observed in clinical trials. In addition, we have recently developed a method for selective ablation of afferent renal nerves (renal-CAP). In the present study, we tested the hypothesis that the antihypertensive effect of RDNX in the Dahl S rat is due to ablation of afferent renal nerves by comparing the effect of complete RDNX to renal-CAP during two phases of hypertension in the Dahl S rat. In the early phase, rats underwent treatment after 3 wk of high-NaCl feeding when mean arterial pressure (MAP) was ∼140 mmHg. In the late phase, rats underwent treatment after 9 wk of high NaCl feeding, when MAP was ∼170 mmHg. RDNX reduced MAP ∼10 mmHg compared with sham surgery in both the early and late phase, whereas renal-CAP had no antihypertensive effect. These results suggest that, in the Dahl S rat, the antihypertensive effect of RDNX is not dependent on pretreatment arterial pressure, nor is it due to ablation of afferent renal nerves. PMID:26661098

  2. Ephrin-A5/EphA4 signalling controls specific afferent targeting to cochlear hair cells.

    PubMed

    Defourny, Jean; Poirrier, Anne-Lise; Lallemend, François; Mateo Sánchez, Susana; Neef, Jakob; Vanderhaeghen, Pierre; Soriano, Eduardo; Peuckert, Christiane; Kullander, Klas; Fritzsch, Bernd; Nguyen, Laurent; Moonen, Gustave; Moser, Tobias; Malgrange, Brigitte

    2013-01-01

    Hearing requires an optimal afferent innervation of sensory hair cells by spiral ganglion neurons in the cochlea. Here we report that complementary expression of ephrin-A5 in hair cells and EphA4 receptor among spiral ganglion neuron populations controls the targeting of type I and type II afferent fibres to inner and outer hair cells, respectively. In the absence of ephrin-A5 or EphA4 forward signalling, a subset of type I projections aberrantly overshoot the inner hair cell layer and invade the outer hair cell area. Lack of type I afferent synapses impairs neurotransmission from inner hair cells to the auditory nerve. By contrast, radial shift of type I projections coincides with a gain of presynaptic ribbons that could enhance the afferent signalling from outer hair cells. Ephexin-1, cofilin and myosin light chain kinase act downstream of EphA4 to induce type I spiral ganglion neuron growth cone collapse. Our findings constitute the first identification of an Eph/ephrin-mediated mutual repulsion mechanism responsible for specific sorting of auditory projections in the cochlea.

  3. Differential presynaptic control of the synaptic effectiveness of cutaneous afferents evidenced by effects produced by acute nerve section

    PubMed Central

    Rudomin, P; Jiménez, I; Chávez, D

    2013-01-01

    In the anaesthetized cat, the acute section of the saphenous (Saph) and/or the superficial peroneal (SP) nerves was found to produce a long-lasting increase of the field potentials generated in the dorsal horn by stimulation of the medial branch of the sural (mSU) nerve. This facilitation was associated with changes in the level of the tonic primary afferent depolarization (PAD) of the mSU intraspinal terminals. The mSU afferent fibres projecting into Rexed's laminae III–IV were subjected to a tonic PAD that was reduced by the acute section of the SP and/or the Saph nerves. The mSU afferents projecting deeper into the dorsal horn (Rexed's laminae V–VI) were instead subjected to a tonic PAD that was increased after Saph and SP acute nerve section. A differential control of the synaptic effectiveness of the low-threshold cutaneous afferents according to their sites of termination within the dorsal horn is envisaged as a mechanism that allows selective processing of sensory information in response to tactile and nociceptive stimulation or during the execution of different motor tasks. PMID:23478136

  4. Differential presynaptic control of the synaptic effectiveness of cutaneous afferents evidenced by effects produced by acute nerve section.

    PubMed

    Rudomin, P; Jiménez, I; Chávez, D

    2013-05-15

    In the anaesthetized cat, the acute section of the saphenous (Saph) and/or the superficial peroneal (SP) nerves was found to produce a long-lasting increase of the field potentials generated in the dorsal horn by stimulation of the medial branch of the sural (mSU) nerve. This facilitation was associated with changes in the level of the tonic primary afferent depolarization (PAD) of the mSU intraspinal terminals. The mSU afferent fibres projecting into Rexed's laminae III-IV were subjected to a tonic PAD that was reduced by the acute section of the SP and/or the Saph nerves. The mSU afferents projecting deeper into the dorsal horn (Rexed's laminae V-VI) were instead subjected to a tonic PAD that was increased after Saph and SP acute nerve section. A differential control of the synaptic effectiveness of the low-threshold cutaneous afferents according to their sites of termination within the dorsal horn is envisaged as a mechanism that allows selective processing of sensory information in response to tactile and nociceptive stimulation or during the execution of different motor tasks.

  5. Afferent-specific innervation of two distinct AMPA receptor subtypes on single hippocampal interneurons.

    PubMed

    Tóth, K; McBain, C J

    1998-11-01

    Using the polyamine toxin philanthotoxin, which selectively blocks calcium-permeable AMPA receptors, we show that synaptic transmission onto single hippocampal interneurons occurs by afferent-specific activation of philanthotoxin-sensitive and -insensitive AMPA receptors. Calcium-permeable AMPA receptors are found exclusively at synapses from mossy fibers. In contrast, synaptic responses evoked by stimulation of CA3 pyramidal neurons are mediated by calcium-impermeable AMPA receptors. Both pathways converge onto single interneurons and can be discriminated with Group II mGluR agonists. Thus, single interneurons target AMPA receptors of different subunit composition to specific postsynaptic sites, providing a mechanism to increase the synapse-specific computational properties of hippocampal interneurons.

  6. Type II spiral ganglion afferent neurons drive medial olivocochlear reflex suppression of the cochlear amplifier

    PubMed Central

    Froud, Kristina E.; Wong, Ann Chi Yan; Cederholm, Jennie M. E.; Klugmann, Matthias; Sandow, Shaun L.; Julien, Jean-Pierre; Ryan, Allen F.; Housley, Gary D.

    2015-01-01

    The dynamic adjustment of hearing sensitivity and frequency selectivity is mediated by the medial olivocochlear efferent reflex, which suppresses the gain of the ‘cochlear amplifier' in each ear. Such efferent feedback is important for promoting discrimination of sounds in background noise, sound localization and protecting the cochleae from acoustic overstimulation. However, the sensory driver for the olivocochlear reflex is unknown. Here, we resolve this longstanding question using a mouse model null for the gene encoding the type III intermediate filament peripherin (Prph). Prph(−/−) mice lacked type II spiral ganglion neuron innervation of the outer hair cells, whereas innervation of the inner hair cells by type I spiral ganglion neurons was normal. Compared with Prph(+/+) controls, both contralateral and ipsilateral olivocochlear efferent-mediated suppression of the cochlear amplifier were absent in Prph(−/−) mice, demonstrating that outer hair cells and their type II afferents constitute the sensory drive for the olivocochlear efferent reflex. PMID:25965946

  7. Whole-Brain Monosynaptic Afferent Inputs to Basal Forebrain Cholinergic System

    PubMed Central

    Hu, Rongfeng; Jin, Sen; He, Xiaobin; Xu, Fuqiang; Hu, Ji

    2016-01-01

    The basal forebrain cholinergic system (BFCS) robustly modulates many important behaviors, such as arousal, attention, learning and memory, through heavy projections to cortex and hippocampus. However, the presynaptic partners governing BFCS activity still remain poorly understood. Here, we utilized a recently developed rabies virus-based cell-type-specific retrograde tracing system to map the whole-brain afferent inputs of the BFCS. We found that the BFCS receives inputs from multiple cortical areas, such as orbital frontal cortex, motor cortex, and insular cortex, and that the BFCS also receives dense inputs from several subcortical nuclei related to motivation and stress, including lateral septum, central amygdala, paraventricular nucleus of hypothalamus, dorsal raphe, and parabrachial nucleus. Interestingly, we found that the BFCS receives inputs from the olfactory areas and the entorhinal–hippocampal system. These results greatly expand our knowledge about the connectivity of the mouse BFCS and provided important preliminary indications for future exploration of circuit function. PMID:27777554

  8. [Pharmacotherapy for neuropathic pain caused by injury to the afferent nerve fibers].

    PubMed

    Weber, W E

    2001-04-28

    Phantom pain, a form of neuropathic pain, is caused by damage to somatosensible afferent nerve fibres in the peripheral or central nervous system. Often, the pain cannot be satisfactorily treated with nonsteroidal anti-inflammatory drugs. Dependent on the underlying mechanism the pain is treated with either antidepressants (for more or less continuous pain) or anti-epileptics (for paroxysmal pain). Of the antidepressants, the tricyclic antidepressants are the best studied and most prescribed. The activity of new drugs, such as the selective serotonin reuptake inhibitor paroxetine as well as venlafaxine, has yet to be clearly shown. Of the anti-epileptics, carbamazepine and phenytoin are the most prescribed. New drugs which provide greater pain relief than the placebo are oxcarbazepine, gabapentine and lamotrigine. Other effective drugs for phantom pain are: gamma-butyric acid agonists (baclofen), opiates (morphine preparations with a regulated release; phentanyl patch), the N-methyl-D-aspartate receptor antagonist amantadine, transdermally administered clonidine and locally applied lidocaine.

  9. Afferent Inputs to Neurotransmitter-Defined Cell Types in the Ventral Tegmental Area.

    PubMed

    Faget, Lauren; Osakada, Fumitaka; Duan, Jinyi; Ressler, Reed; Johnson, Alexander B; Proudfoot, James A; Yoo, Ji Hoon; Callaway, Edward M; Hnasko, Thomas S

    2016-06-21

    The ventral tegmental area (VTA) plays a central role in the neural circuit control of behavioral reinforcement. Though considered a dopaminergic nucleus, the VTA contains substantial heterogeneity in neurotransmitter type, containing also GABA and glutamate neurons. Here, we used a combinatorial viral approach to transsynaptically label afferents to defined VTA dopamine, GABA, or glutamate neurons. Surprisingly, we find that these populations received qualitatively similar inputs, with dominant and comparable projections from the lateral hypothalamus, raphe, and ventral pallidum. However, notable differences were observed, with striatal regions and globus pallidus providing a greater share of input to VTA dopamine neurons, cortical input preferentially on to glutamate neurons, and GABA neurons receiving proportionally more input from the lateral habenula and laterodorsal tegmental nucleus. By comparing inputs to each of the transmitter-defined VTA cell types, this study sheds important light on the systems-level organization of diverse inputs to VTA.

  10. Breadth of tuning in taste afferent neurons varies with stimulus strength.

    PubMed

    Wu, An; Dvoryanchikov, Gennady; Pereira, Elizabeth; Chaudhari, Nirupa; Roper, Stephen D

    2015-09-16

    Gustatory stimuli are detected by taste buds and transmitted to the hindbrain via sensory afferent neurons. Whether each taste quality (sweet, bitter and so on) is encoded by separate neurons ('labelled lines') remains controversial. We used mice expressing GCaMP3 in geniculate ganglion sensory neurons to investigate taste-evoked activity. Using confocal calcium imaging, we recorded responses to oral stimulation with prototypic taste stimuli. Up to 69% of neurons respond to multiple tastants. Moreover, neurons tuned to a single taste quality at low concentration become more broadly tuned when stimuli are presented at higher concentration. Responses to sucrose and monosodium glutamate are most related. Although mice prefer dilute NaCl solutions and avoid concentrated NaCl, we found no evidence for two separate populations of sensory neurons that encode this distinction. Altogether, our data suggest that taste is encoded by activity in patterns of peripheral sensory neurons and challenge the notion of strict labelled line coding.

  11. [Functional properties of taste bud cells. Mechanisms of afferent neurotransmission in Type II taste receptor cells].

    PubMed

    Romanov, R A

    2013-01-01

    Taste Bud cells are heterogeneous in their morphology and functionality. These cells are responsible for sensing a wide variety of substances and for associating detected compounds with a different taste: bitter, sweet, salty, sour and umami. Today we know that each of the five basic tastes corresponds to distinct cell populations organized into three basic morpho-functional cell types. In addition, some receptor cells of the taste bud demonstrate glia-related functions. In this article we expand on some properties of these three morphological receptor cell types. Main focus is devoted to the Type II cells and unusual mechanism for afferent neurotransmission in these cells. Taste cells of the Type II consist of three populations detecting bitter, sweet and umami tastes, and, thus, evoke a serious scientific interest.

  12. The Afferent Visual Pathway: Designing a Structural-Functional Paradigm of Multiple Sclerosis

    PubMed Central

    Costello, Fiona

    2013-01-01

    Multiple sclerosis (MS) is a disease of the central nervous system (CNS) believed to arise from a dysfunctional immune-mediated response in a genetically susceptible host. The actual cause of MS is not known, and there is ongoing debate about whether this CNS disorder is predominantly an inflammatory versus a degenerative condition. The afferent visual pathway (AVP) is frequently involved in MS, such that one in every five individuals affected presents with acute optic neuritis (ON). As a functionally eloquent system, the AVP is amenable to interrogation with highly reliable and reproducible tests that can be used to define a structural-functional paradigm of CNS injury. The AVP has numerous unique advantages as a clinical model of MS. In this review, the parameters and merits of the AVP model are highlighted. Moreover, the roles the AVP model may play in elucidating mechanisms of brain injury and repair in MS are described. PMID:24288622

  13. Endomorphins decrease heart rate and blood pressure possibly by activating vagal afferents in anesthetized rats.

    PubMed

    Kwok, E H; Dun, N J

    1998-08-24

    Endomorphin 1 (10, 30, 100 nmol/kg) administered intravenously (i.v. ) to urethane-anesthetized rats consistently and dose-dependently lowered heart rate (HR) and mean arterial pressure (MAP); the decrease in blood pressure recovered faster as compared to the HR. The effects of endomorphin 2 were qualitatively similar. Naloxone (2 mg/kg, i.v.) completely antagonized the bradycardia and hypotension caused by endomorphin 1. Pretreatment of the rats with atropine methylnitrate, atropine sulfate (2 mg/kg, i.v.) or bilateral vagotomy nearly abolished the bradycardia and attenuated the hypotensive effect of endomorphin 1. Our studies suggest that the bradycardia effect following systemic administration of the new opioid peptide may be explained by activation of vagal afferents and the hypotensive effect may be secondary to a reduction of cardiac output and/or a direct vasodilation.

  14. State-space receptive fields of semicircular canal afferent neurons in the bullfrog

    NASA Technical Reports Server (NTRS)

    Paulin, M. G.; Hoffman, L. F.

    2001-01-01

    Receptive fields are commonly used to describe spatial characteristics of sensory neuron responses. They can be extended to characterize temporal or dynamical aspects by mapping neural responses in dynamical state spaces. The state-space receptive field of a neuron is the probability distribution of the dynamical state of the stimulus-generating system conditioned upon the occurrence of a spike. We have computed state-space receptive fields for semicircular canal afferent neurons in the bullfrog (Rana catesbeiana). We recorded spike times during broad-band Gaussian noise rotational velocity stimuli, computed the frequency distribution of head states at spike times, and normalized these to obtain conditional pdfs for the state. These state-space receptive fields quantify what the brain can deduce about the dynamical state of the head when a single spike arrives from the periphery. c2001 Elsevier Science B.V. All rights reserved.

  15. Coexistence of GABAA and GABAB receptors on A delta and C primary afferents.

    PubMed Central

    Désarmenien, M.; Feltz, P.; Occhipinti, G.; Santangelo, F.; Schlichter, R.

    1984-01-01

    Intracellular recordings from adult rat dorsal root ganglion neurones were performed in vitro and the coexistence of two gamma-aminobutyric acid (GABA) receptors on the membrane of identified A delta and C primary afferents was demonstrated. Transient applications of GABA (10(-6)-10(-2) M) evoked dose-dependent depolarizations and increased membrane conductance. The responses were mimicked by muscimol, isoguvacine, THIP and 3 amino propane sulphonic acid (3 APS); they were blocked by bicuculline and picrotoxin. Pentobarbitone induced an increase of GABA-induced depolarizations. Perfusion of tetraethylammonium (TEA, 7.5 mM) and intracellular injection of Cs+ ions unmasked the Ca2+ component of action potentials, which appeared as long-lasting plateau depolarizations. Such action potentials were shortened in the presence of methoxyverapamil (D600, 5 X 10(-6)-10(-5) M) and in a medium without Ca+ ions. Prolonged (5-10 min) perfusion of GABA (10(-9)-10(-5) M) shortened the Ca2+ component of action potentials. This effect was mimicked by baclofen (10(-7)-5 X 10(-6) M) and muscimol (5 X 10(-7)-10(-5) M) and was not affected by bicuculline perfusion (5 X 10(-6)-10(-5) M). Isoguvacine (2.5 X 10(-5) M) did not affect action potential duration. It is concluded that two GABA receptors coexist on the membrane of slow conducting primary afferents: the bicuculline-sensitive GABAA receptor mediates depolarizations and the bicuculline-insensitive GABAB receptor shortens the calcium component of action potentials. PMID:6322896

  16. Thalamic territories innervated by cerebellar nuclear afferents in the hedgehog tenrec, Echinops telfairi.

    PubMed

    Künzle, H

    1998-12-21

    To gain more insight into the evolution and functional significance of cerebrocerebellar circuits, the cerebellothalamic projections were studied with anterograde tracer substances in the Madagascan lesser hedgehog, tenrec. This insectivore shows one of the lowest size indices among mammals for both the cerebellar nuclei and the neocortex. Almost all cerebellodiencephalic target areas found in the tenrec have been described in other mammals. The intensity and extent of particular projections, however, vary considerably in the tenrec compared with the other mammals investigated so far. The most remarkable finding may be the tenrec's cerebellar projection to the nucleus ventralis medialis. This projection is the most prominent cerebellothalamic projection and originates in predominantly the lateral portion of the cerebellar nuclear complex. The projection to the caudolateral portion of the ventralis anterior complex (VAC) is located immediately rostral to the area receiving ascending somatosensory afferents and appears to originate, in particular, from the intermediate cerebellar nuclear complex. Another cerebellothalamic focus of terminations lies in the paralamellar region of the VAC, whereas the proper intralaminar nuclei, at best, receive a sparse cerebellar input. A faint-to-moderate projection, on the other hand, has been traced consistently to the ventral portion of the lateralis posterior-pulvinar complex and the adjacent dorsal geniculate nucleus. In addition, there are prominent cerebellosubthalamic projections to the zona incerta and the ventral geniculate nucleus. The latter projection is confined mainly to the ventralmost subdivision, which has been shown previously to receive ascending somatosensory, but not retinal, afferents. With the exception of the nucleus ventralis medialis, the projections were essentially confined to the contralateral side.

  17. Vagal and splanchnic afferent nerves are not essential for anorexia associated with abomasal parasitism in sheep.

    PubMed

    Fox, M T; Reynolds, G W; Scott, I; Simcock, D C; Simpson, H V

    2006-02-18

    Heavy burdens of the abomasal nematode, Ostertagia (Telodorsagia) circumcincta, in growing lambs result in a reduction in liveweight gain due largely to a drop in voluntary feed intake. The present study investigated: (1) the role of subdiaphragmatic vagal and non-vagal visceral afferent nerves in mediating a reduction in voluntary feed intake, using subdiaphragmatic vagal deafferentation (vagotomy) either alone or in combination with coeliac-superior mesenteric ganglionectomy (vagotomy and sympathectomy); and (2) the association between appetite, abomasal pH, selected blood values (amidated gastrin (G-17-amide), glycine-extended gastrin (G-17-Gly), pepsinogen and leptin) and worm burden, in sheep experimentally infected with 100,000 O. circumcincta infective larvae per os. Neither vagotomy alone nor vagotomy and sympathectomy in combination adversely affected the establishment or course of development of the parasite burden, when compared with a control group subject to sham surgery. Furthermore, neither surgical procedure prevented the drop in appetite seen 5-10 days post-infection, although combined vagotomy and sympathectomy did reduce voluntary feed intake prior to the start of the study. Ostertagia infection resulted in a significant increase in abomasal pH in all three groups, which was accompanied by an increase in blood G-17-amide and in G-17-Gly, the latter reported for the first time in parasitized ruminants. There were no significant differences in blood leptin, also reported for the first time in parasitized sheep, either between groups or in comparison with pre-infection levels, though weak negative correlations were established between blood leptin and appetite from day 5 to the end of the study in all three groups and a positive correlation with blood G-17-amide in the control group over the same period. These data suggest that neither intact subdiaphragmatic vagal afferent nerves or coeliac-superior mesenteric ganglion fibres, nor changes in

  18. Improved bladder emptying in urinary retention by electrical stimulation of pudendal afferents

    NASA Astrophysics Data System (ADS)

    Peng, Chih-Wei; Chen, Jia-Jin Jason; Cheng, Chen-Li; Grill, Warren M.

    2008-06-01

    Urinary retention is the inability to empty the bladder completely, and may result from bladder hypocontractility, increases in outlet resistance or both. Chronic urinary retention can lead to several urological complications and is often refractory to pharmacologic, behavioral and surgical treatments. We sought to determine whether electrical stimulation of sensory fibers in the pudendal nerve could engage an augmenting reflex and thereby improve bladder emptying in an animal model of urinary retention. We measured the efficiency of bladder emptying with and without concomitant electrical stimulation of pudendal nerve afferents in urethane-anesthetized rats. Voiding efficiency (VE = voided volume/initial volume) was reduced from 72 ± 7% to 29 ± 7% following unilateral transection of the sensory branch of the pudendal nerve (UST) and from 70 ± 5% to 18 ± 4% following bilateral transection (BST). Unilateral electrical stimulation of the proximal transected sensory pudendal nerve during distention-evoked voiding contractions significantly improved VE. Low-intensity stimulation at frequencies of 1-50 Hz increased VE to 40-51% following UST and to 39-49% following BST, while high-intensity stimulation was ineffective at increasing VE. The increase in VE was mediated by increases in the duration of distention-evoked voiding bladder contractions, rather than increases in contraction amplitude. These results are consistent with an essential role for pudendal sensory feedback in efficient bladder emptying, and raise the possibility that electrical activation of pudendal nerve afferents may provide a new approach to restore efficient bladder emptying in persons with urinary retention.

  19. Expression and function of the ion channel TRPA1 in vagal afferent nerves innervating mouse lungs.

    PubMed

    Nassenstein, Christina; Kwong, Kevin; Taylor-Clark, Thomas; Kollarik, Marian; Macglashan, Donald M; Braun, Armin; Undem, Bradley J

    2008-03-15

    Transient receptor potential (TRP) A1 and TRPM8 are ion channels that have been localized to afferent nociceptive nerves. These TRP channels may be of particular relevance to respiratory nociceptors in that they can be activated by various inhaled irritants and/or cold air. We addressed the hypothesis that mouse vagal sensory nerves projecting to the airways express TRPA1 and TRPM8 and that they can be activated via these receptors. Single cell RT-PCR analysis revealed that TRPA1 mRNA, but not TRPM8, is uniformly expressed in lung-labelled TRPV1-expressing vagal sensory neurons. Neither TRPA1 nor TRPM8 mRNA was expressed in TRPV1-negative neurons. Capsaicin-sensitive, but not capsaicin-insensitive, lung-specific neurons responded to cinnamaldehyde, a TRPA1 agonist, with increases in intracellular calcium. Menthol, a TRPM8 agonist, was ineffective at increasing cellular calcium in lung-specific vagal sensory neurons. Cinnamaldehyde also induced TRPA1-like inward currents (as measured by means of whole cell patch clamp recordings) in capsaicin-sensitive neurons. In an ex vivo vagal innervated mouse lung preparation, cinnamaldehyde evoked action potential discharge in mouse vagal C-fibres with a peak frequency similar to that observed with capsaicin. Cinnamaldehyde inhalation in vivo mimicked capsaicin in eliciting strong central-reflex changes in breathing pattern. Taken together, our results support the hypothesis that TRPA1, but not TRPM8, is expressed in vagal sensory nerves innervating the airways. TRPA1 activation provides a mechanism by which certain environmental stimuli may elicit action potential discharge in airway afferent C-fibres and the consequent nocifensor reflexes.

  20. Nerve injury induces a new profile of tactile and mechanical nociceptor input from undamaged peripheral afferents.

    PubMed

    Boada, M Danilo; Gutierrez, Silvia; Aschenbrenner, Carol A; Houle, Timothy T; Hayashida, Ken-Ichiro; Ririe, Douglas G; Eisenach, James C

    2015-01-01

    Chronic pain after nerve injury is often accompanied by hypersensitivity to mechanical stimuli, yet whether this reflects altered input, altered processing, or both remains unclear. Spinal nerve ligation or transection results in hypersensitivity to mechanical stimuli in skin innervated by adjacent dorsal root ganglia, but no previous study has quantified the changes in receptive field properties of these neurons in vivo. To address this, we recorded intracellularly from L4 dorsal root ganglion neurons of anesthetized young adult rats, 1 wk after L5 partial spinal nerve ligation (pSNL) or sham surgery. One week after pSNL, hindpaw mechanical withdrawal threshold in awake, freely behaving animals was decreased in the L4 distribution on the nerve-injured side compared with sham controls. Electrophysiology revealed that high-threshold mechanoreceptive cells of A-fiber conduction velocity in L4 were sensitized, with a seven-fold reduction in mechanical threshold, a seven-fold increase in receptive field area, and doubling of maximum instantaneous frequency in response to peripheral stimuli, accompanied by reductions in after-hyperpolarization amplitude and duration. Only a reduction in mechanical threshold (minimum von Frey hair producing neuronal activity) was observed in C-fiber conduction velocity high-threshold mechanoreceptive cells. In contrast, low-threshold mechanoreceptive cells were desensitized, with a 13-fold increase in mechanical threshold, a 60% reduction in receptive field area, and a 40% reduction in instantaneous frequency to stimulation. No spontaneous activity was observed in L4 ganglia, and the likelihood of recording from neurons without a mechanical receptive field was increased after pSNL. These data suggest massively altered input from undamaged sensory afferents innervating areas of hypersensitivity after nerve injury, with reduced tactile and increased nociceptive afferent response. These findings differ importantly from previous preclinical

  1. Nerve injury induces a new profile of tactile and mechanical nociceptor input from undamaged peripheral afferents

    PubMed Central

    Gutierrez, Silvia; Aschenbrenner, Carol A.; Houle, Timothy T.; Hayashida, Ken-ichiro; Ririe, Douglas G.; Eisenach, James C.

    2014-01-01

    Chronic pain after nerve injury is often accompanied by hypersensitivity to mechanical stimuli, yet whether this reflects altered input, altered processing, or both remains unclear. Spinal nerve ligation or transection results in hypersensitivity to mechanical stimuli in skin innervated by adjacent dorsal root ganglia, but no previous study has quantified the changes in receptive field properties of these neurons in vivo. To address this, we recorded intracellularly from L4 dorsal root ganglion neurons of anesthetized young adult rats, 1 wk after L5 partial spinal nerve ligation (pSNL) or sham surgery. One week after pSNL, hindpaw mechanical withdrawal threshold in awake, freely behaving animals was decreased in the L4 distribution on the nerve-injured side compared with sham controls. Electrophysiology revealed that high-threshold mechanoreceptive cells of A-fiber conduction velocity in L4 were sensitized, with a seven-fold reduction in mechanical threshold, a seven-fold increase in receptive field area, and doubling of maximum instantaneous frequency in response to peripheral stimuli, accompanied by reductions in after-hyperpolarization amplitude and duration. Only a reduction in mechanical threshold (minimum von Frey hair producing neuronal activity) was observed in C-fiber conduction velocity high-threshold mechanoreceptive cells. In contrast, low-threshold mechanoreceptive cells were desensitized, with a 13-fold increase in mechanical threshold, a 60% reduction in receptive field area, and a 40% reduction in instantaneous frequency to stimulation. No spontaneous activity was observed in L4 ganglia, and the likelihood of recording from neurons without a mechanical receptive field was increased after pSNL. These data suggest massively altered input from undamaged sensory afferents innervating areas of hypersensitivity after nerve injury, with reduced tactile and increased nociceptive afferent response. These findings differ importantly from previous preclinical

  2. Decoding of the spike timing of primary afferents during voluntary arm movements in monkeys

    PubMed Central

    Umeda, Tatsuya; Watanabe, Hidenori; Sato, Masa-aki; Kawato, Mitsuo; Isa, Tadashi; Nishimura, Yukio

    2014-01-01

    Understanding the mechanisms of encoding forelimb kinematics in the activity of peripheral afferents is essential for developing a somatosensory neuroprosthesis. To investigate whether the spike timing of dorsal root ganglion (DRG) neurons could be estimated from the forelimb kinematics of behaving monkeys, we implanted two multi-electrode arrays chronically in the DRGs at the level of the cervical segments in two monkeys. Neuronal activity during voluntary reach-to-grasp movements were recorded simultaneously with the trajectories of hand/arm movements, which were tracked in three-dimensional space using a motion capture system. Sixteen and 13 neurons, including muscle spindles, skin receptors, and tendon organ afferents, were recorded in the two monkeys, respectively. We were able to reconstruct forelimb joint kinematics from the temporal firing pattern of a subset of DRG neurons using sparse linear regression (SLiR) analysis, suggesting that DRG neuronal ensembles encoded information about joint kinematics. Furthermore, we estimated the spike timing of the DRG neuronal ensembles from joint kinematics using an integrate-and-fire model (IF) incorporating the SLiR algorithm. The temporal change of firing frequency of a subpopulation of neurons was reconstructed precisely from forelimb kinematics using the SLiR. The estimated firing pattern of the DRG neuronal ensembles encoded forelimb joint angles and velocities as precisely as the originally recorded neuronal activity. These results suggest that a simple model can be used to generate an accurate estimate of the spike timing of DRG neuronal ensembles from forelimb joint kinematics, and is useful for designing a proprioceptive decoder in a brain machine interface. PMID:24860416

  3. Can loss of muscle spindle afferents explain the ataxic gait in Riley-Day syndrome?

    PubMed

    Macefield, Vaughan G; Norcliffe-Kaufmann, Lucy; Gutiérrez, Joel; Axelrod, Felicia B; Kaufmann, Horacio

    2011-11-01

    The Riley-Day syndrome is the most common of the hereditary sensory and autonomic neuropathies (Type III). Among the well-recognized clinical features are reduced pain and temperature sensation, absent deep tendon reflexes and a progressively ataxic gait. To explain the latter we tested the hypothesis that muscle spindles, or their afferents, are absent in hereditary sensory and autonomic neuropathy III by attempting to record from muscle spindle afferents from a nerve supplying the leg in 10 patients. For comparison we also recorded muscle spindles from 15 healthy subjects and from two patients with hereditary sensory and autonomic neuropathy IV, who have profound sensory disturbances but no ataxia. Tungsten microelectrodes were inserted percutaneously into fascicles of the common peroneal nerve at the fibular head. Intraneural stimulation within muscle fascicles evoked twitches at normal stimulus currents (10-30 µA), and deep pain (which often referred) at high intensities (1 mA). Microneurographic recordings from muscle fascicles revealed a complete absence of spontaneously active muscle spindles in patients with hereditary sensory and autonomic neuropathy III; moreover, responses to passive muscle stretch could not be observed. Conversely, muscle spindles appeared normal in patients with hereditary sensory and autonomic neuropathy IV, with mean firing rates of spontaneously active endings being similar to those recorded from healthy controls. Intraneural stimulation within cutaneous fascicles evoked paraesthesiae in the fascicular innervation territory at normal stimulus intensities, but cutaneous pain was never reported during high-intensity stimulation in any of the patients. Microneurographic recordings from cutaneous fascicles revealed the presence of normal large-diameter cutaneous mechanoreceptors in hereditary sensory and autonomic neuropathy III. Our results suggest that the complete absence of functional muscle spindles in these patients explains

  4. IMPROVED BLADDER EMPTYING IN URINARY RETENTION BY ELECTRICAL STIMULATION OF PUDENDAL AFFERENTS

    PubMed Central

    Peng, Chih-Wei; Chen, Jia-Jin Jason; Cheng, Chen-Li; Grill, Warren M.

    2013-01-01

    Urinary retention is the inability to empty the bladder completely, and may result from bladder hypocontractility, increases in outlet resistance, or both. Chronic urinary retention can lead to several urological complications and is often refractory to pharmacologic, behavioral, and surgical treatments. We sought to determine whether electrical stimulation of sensory fibers in the pudendal nerve could engage an augmenting reflex and thereby improve bladder emptying in an animal model of urinary retention. We measured the efficiency of bladder emptying with and without concomitant electrical stimulation of pudendal nerve afferents in urethane anesthetized rats. Voiding efficiency (VE=voided volume/initial volume) was reduced from 72±7% to 29±7% following unilateral transection of the sensory branch of the pudendal nerve (UST) and from 70±5% to 18±4% following bilateral transection (BST). Unilateral electrical stimulation of the proximal transected sensory pudendal nerve during distention-evoked voiding contractions significantly improved VE. Low intensity stimulation at frequencies of 1–50 Hz increased VE to 40–51% following UST and to 39–49% following BST, while high intensity stimulation was ineffective at increasing VE. The increase in VE was mediated by increases in the duration of distention-evoked voiding bladder contractions, rather than increases in contraction amplitude. These results are consistent with an essential role for pudendal sensory feedback in efficient bladder emptying, and raise the possibility that electrical activation of pudendal nerve afferents may provide a new approach to restore efficient bladder emptying in persons with urinary retention. PMID:18430976

  5. Disinhibition of rat hippocampal pyramidal cells by GABAergic afferents from the septum.

    PubMed Central

    Tóth, K; Freund, T F; Miles, R

    1997-01-01

    1. Slices were prepared from rat forebrain to include both the septum and the hippocampus in order to examine the effects of septal stimulation on hippocampal inhibitory circuits. 2. Repetitive stimulation of septo-hippocampal fibres caused a maintained decrease in the frequency of spontaneous IPSPs recorded from CA3 pyramidal cells in the presence of antagonists of excitatory amino acid receptors and of muscarine receptors. 3. In records made from pyramidal cells with CsCl-filled electrodes, IPSPs were examined at potentials both more positive and more negative than their reversal potential. Single septal stimuli hyperpolarized pyramidal cells when IPSPs were depolarizing events and depolarized them when IPSPs were hyperpolarizing. The GABAA receptor antagonist picrotoxin abolished the effects of septal stimulation. 4. Activation of septal afferents initiated an IPSP in hippocampal inhibitory cells but not in pyramidal cells. Septal IPSPs had similar kinetics to those initiated by local hippocampal stimulation and could suppress inhibitory cell discharge. 5. In pyramidal cells recorded with potassium acetate-filled electrodes, septal stimuli initiated a depolarization that increased with the driving force for Cl- and that could cause firing. 6. Rhythmic stimulation of septo-hippocampal fibres at 5 Hz initiated, in the hippocampus, a maintained out-of-phase oscillation of pyramidal cell discharge and inhibitory cell firing, as detected by the occurrence of spontaneous IPSPs. 7. These results suggest that GABAergic septo-hippocampal afferents selectively inhibit hippocampal inhibitory cells and so disinhibit pyramidal cells. This disinhibition could contribute to the transmission of the theta rhythm from the septum to the hippocampus. Images Figure 1 PMID:9147330

  6. Vagal nerve stimulation activates vagal afferent fibers that reduce cardiac efferent parasympathetic effects

    PubMed Central

    Yamakawa, Kentaro; Rajendran, Pradeep S.; Takamiya, Tatsuo; Yagishita, Daigo; So, Eileen L.; Mahajan, Aman; Shivkumar, Kalyanam

    2015-01-01

    Vagal nerve stimulation (VNS) has been shown to have antiarrhythmic effects, but many of these benefits were demonstrated in the setting of vagal nerve decentralization. The purpose of this study was to evaluate the role of afferent fiber activation during VNS on efferent control of cardiac hemodynamic and electrophysiological parameters. In 37 pigs a 56-electrode sock was placed over the ventricles to record local activation recovery intervals (ARIs), a surrogate of action potential duration. In 12 of 37 animals atropine was given systemically. Right and left VNS were performed under six conditions: both vagal trunks intact (n = 25), ipsilateral right (n = 11), ipsilateral left (n = 14), contralateral right (n = 7), contralateral left (n = 10), and bilateral (n = 25) vagal nerve transection (VNTx). Unilateral VNTx significantly affected heart rate, PR interval, Tau, and global ARIs. Right VNS after ipsilateral VNTx had augmented effects on hemodynamic parameters and increase in ARI, while subsequent bilateral VNTx did not significantly modify this effect (%change in ARI in intact condition 2.2 ± 0.9% vs. ipsilateral VNTx 5.3 ± 1.7% and bilateral VNTx 5.3 ± 0.8%, P < 0.05). Left VNS after left VNTx tended to increase its effects on hemodynamics and ARI response (P = 0.07), but only after bilateral VNTx did these changes reach significance (intact 1.1 ± 0.5% vs. ipsilateral VNTx 3.6 ± 0.7% and bilateral VNTx 6.6 ± 1.6%, P < 0.05 vs. intact). Contralateral VNTx did not modify VNS response. The effect of atropine on ventricular ARI was similar to bilateral VNTx. We found that VNS activates afferent fibers in the ipsilateral vagal nerve, which reflexively inhibit cardiac parasympathetic efferent electrophysiological and hemodynamic effects. PMID:26371172

  7. Afferents contributing to autogenic inhibition of gastrocnemius following electrical stimulation of its tendon.

    PubMed

    Khan, Serajul I; Burne, John A

    2009-07-28

    Electrical stimulation of the Achilles tendon produced strong reflex inhibition of the ongoing voluntary EMG activity in the two heads of the gastrocnemius (GA) muscle in all tested subjects. The inhibition was seen clearly in both averaged and single sweep surface EMG records. The inhibitory response was produced without electrical (M wave) or mechanical, (muscle twitch) signs of direct muscle stimulation. The onset latency and duration for the first period of inhibition (I(1)) were 47-49 ms and 67 ms, respectively. A second inhibition (I(2)) had an onset latency of 187-193 ms and duration under 40 ms. Non-noxious stimuli in the range of 2.6-7.6 x mean perceptual threshold, when delivered to four locations over the GA tendon, all produced clear inhibition of the voluntary muscle activity. The inhibition was maximal when the cathode was a large metal plate located near the musculotendinous junction and decreased approximately linearly with distances more distal to that site. The effect of passive muscle stretch on the electrically induced tendon reflex inhibition (TRE) was tested at ankle joint angles incremented in steps of 20 degrees. It was found that TRE is strongly dependent on joint angle, being maximal in the fully stretched muscle. TRE was lost completely after partial tibial nerve block. In comparison, GA inhibition produced by cutaneous (sural) nerve stimulation was of a higher threshold, longer latency and persisted after partial tibial nerve block. We thus demonstrated a powerful autogenic inhibition in the lower limb arising from tendon afferents in conscious subjects that is increased by passive muscle stretch and likely to originate from group I tendon afferents.

  8. Intestinal Epithelial Stem/Progenitor Cells Are Controlled by Mucosal Afferent Nerves

    PubMed Central

    Lundgren, Ove; Jodal, Mats; Jansson, Madeleine; Ryberg, Anders T.; Svensson, Lennart

    2011-01-01

    Background The maintenance of the intestinal epithelium is of great importance for the survival of the organism. A possible nervous control of epithelial cell renewal was studied in rats and mice. Methods Mucosal afferent nerves were stimulated by exposing the intestinal mucosa to capsaicin (1.6 mM), which stimulates intestinal external axons. Epithelial cell renewal was investigated in the jejunum by measuring intestinal thymidine kinase (TK) activity, intestinal 3H-thymidine incorporation into DNA, and the number of crypt cells labeled with BrdU. The influence of the external gut innervation was minimized by severing the periarterial nerves. Principal Findings Luminal capsaicin increased all the studied variables, an effect nervously mediated to judge from inhibitory effects on TK activity or 3H-thymidine incorporation into DNA by exposing the mucosa to lidocaine (a local anesthetic) or by giving four different neurotransmitter receptor antagonists i.v. (muscarinic, nicotinic, neurokinin1 (NK1) or calcitonin gene related peptide (CGRP) receptors). After degeneration of the intestinal external nerves capsaicin did not increase TK activity, suggesting the involvement of an axon reflex. Intra-arterial infusion of Substance P (SP) or CGRP increased intestinal TK activity, a response abolished by muscarinic receptor blockade. Immunohistochemistry suggested presence of M3 and M5 muscarinic receptors on the intestinal stem/progenitor cells. We propose that the stem/progenitor cells are controlled by cholinergic nerves, which, in turn, are influenced by mucosal afferent neuron(s) releasing acetylcholine and/or SP and/or CGRP. In mice lacking the capsaicin receptor, thymidine incorporation into DNA and number of crypt cells labeled with BrdU was lower than in wild type animals suggesting that nerves are important also in the absence of luminal capsaicin, a conclusion also supported by the observation that atropine lowered thymidine incorporation into DNA by 60% in control

  9. Role of afferent input in load-dependent plasticity of rat muscle

    NASA Astrophysics Data System (ADS)

    Kawano, F.; Umemoto, S.; Higo, Y.; Kawabe, N.; Wang, X. D.; Lan, Y. B.; Ohira, Y.

    We have been studying the role of afferent input in the plasticity of skeletal muscles. The present study was performed to investigate the mechanisms responsible for the deafferentation-related inhibition of the compensatory hypertrophy in rat soleus muscle. Adult male Wistar rats were randomly separated into the control, functionally overloaded (FO), and functionally overloaded + deafferentation (FO+DA) group. The tendons of plantaris and gastrocnemius muscles were transected in the FO rats. The dorsal roots of the spinal cord at the L4-5 segmental levels were additionally transected in the FO+DA rats. The sampling of the soleus was performed 2 weeks after the surgery and ambulation recovery. The single muscle fibers were isolated in low-calcium relaxing solution. Further, the myonuclei or argyrophilic nucleolar organizer regions (AgNORs) were stained. Significant increase of the fiber cross-sectional area (CSA) was seen in the FO, but not in the FO+DA, rats. The myonuclear number in fiber was significantly decreased by FO. Addition of DA to FO further promoted the reduction of myonuclear number. The mean nucleus size and DNA content in single nucleus in all groups were identical. Although a single or double AgNORs were seen in ~90% of myonuclei in the control rats, their distributions were 72 and 76% in the FO and FO+DA rats, respectively (p<0.05). More myonuclei containing 3-5 AgNORs were noted in the FO and FO+DA rats. The mean number of the AgNORs per myonucleus was 1.7 in the control, 2.1 in both FO and FO+DA rats (p<0.05). It was suggested that the FO-related increase of the number of AgNORs may be responsible for the induction of compensatory hypertrophy. It was also indicated that intact afferent input plays an essential role in these phenomena.

  10. Evolution of a new sense for wind in flying phasmids? Afferents and interneurons

    NASA Astrophysics Data System (ADS)

    Hustert, Reinhold; Klug, Rebecca

    2009-12-01

    The evolution of winged stick insects (phasmids) from secondarily wingless ancestors was proposed in recent studies. We explored the cuticle of flying phasmids for wind sensors that could be involved in their flight control, comparable to those known for locusts. Surprisingly, wind-sensitive hairs (wsH) occur on the palps of mouthparts and on the antennae of the winged phasmid Sipyloidea sipylus which can fly in tethered position only when air currents blow over the mouthparts. The present study describes the morphology and major functional properties of these “new” wsH with soft and bulging hair bases which are different from the beaker-like hair bases of the wsH on the cerci of phasmids and the wsH described in other insects. The most sensitive wsH of antennae and palps respond with phasic-tonic afferents to air currents exceeding 0.2 ms-1. The fields of wsH on one side of the animal respond mainly to ventral, lateral, and frontal wind on the ipsilateral side of the head. Afferent inputs from the wsH converge but also diverge to a group of specific interneurons at their branches in the suboesophageal ganglion and can send their integrated input from wsH fields of the palps and antennae to the thoracic central nervous system. Response types of individual wsH-interneurons are either phasic or phasic-tonic to air puffs or constant air currents and also, the receptive fields of individual interneurons differ. We conclude that the “new” wsH system and its interneurons mainly serve to maintain flight activity in airborne phasmids and also, the “new” wsH must have emerged together with the integrating interneurons during the evolution from wingless to the recent winged forms of phasmids.

  11. Cortico-muscular synchronization by proprioceptive afferents from the tongue muscles during isometric tongue protrusion.

    PubMed

    Maezawa, Hitoshi; Mima, Tatsuya; Yazawa, Shogo; Matsuhashi, Masao; Shiraishi, Hideaki; Funahashi, Makoto

    2016-03-01

    Tongue movements contribute to oral functions including swallowing, vocalizing, and breathing. Fine tongue movements are regulated through efferent and afferent connections between the cortex and tongue. It has been demonstrated that cortico-muscular coherence (CMC) is reflected at two frequency bands during isometric tongue protrusions: the beta (β) band at 15-35Hz and the low-frequency band at 2-10Hz. The CMC at the β band (β-CMC) reflects motor commands from the primary motor cortex (M1) to the tongue muscles through hypoglossal motoneuron pools. However, the generator mechanism of the CMC at the low-frequency band (low-CMC) remains unknown. Here, we evaluated the mechanism of low-CMC during isometric tongue protrusion using magnetoencephalography (MEG). Somatosensory evoked fields (SEFs) were also recorded following electrical tongue stimulation. Significant low-CMC and β-CMC were observed over both hemispheres for each side of the tongue. Time-domain analysis showed that the MEG signal followed the electromyography signal for low-CMC, which was contrary to the finding that the MEG signal preceded the electromyography signal for β-CMC. The mean conduction time from the tongue to the cortex was not significantly different between the low-CMC (mean, 80.9ms) and SEFs (mean, 71.1ms). The cortical sources of low-CMC were located significantly posterior (mean, 10.1mm) to the sources of β-CMC in M1, but were in the same area as tongue SEFs in the primary somatosensory cortex (S1). These results reveal that the low-CMC may be driven by proprioceptive afferents from the tongue muscles to S1, and that the oscillatory interaction was derived from each side of the tongue to both hemispheres. Oscillatory proprioceptive feedback from the tongue muscles may aid in the coordination of sophisticated tongue movements in humans.

  12. Re-utilization of Schwann cells during ingrowth of ventral root afferents in perinatal kittens.

    PubMed

    Nilsson Remahl, A Ingela M; Masterman, Thomas; Risling, Mårten

    2008-08-01

    Ventral roots in all mammalian species, including humans, contain significant numbers of unmyelinated axons, many of them afferents transmitting nociceptive signals from receptive fields in skin, viscera, muscles and joints. Observations in cats indicate that these afferents do not enter the spinal cord via the ventral root, but rather turn distally and enter the dorsal root. Some unmyelinated axons are postganglionic autonomic efferents that innervate blood vessels of the root and the pia mater. In the feline L7 segment, a substantial proportion of unmyelinated axons are not detectable until late in perinatal development. The mechanisms inducing this late ingrowth, and the recruitment of Schwann cells (indispensable, at this stage, for axonal survival and sustenance), are unknown. We have counted axons and Schwann cells in both ends of the L7 ventral root in young kittens and made the following observations. (1) The total number of axons detectable in the root increased throughout the range of investigated ages. (2) The number of myelinated axons was similar in the root's proximal and distal ends. The increased number of unmyelinated axons with age is thus due to increased numbers of small unmyelinated axons. (3) The number of separated large probably promyelin axons was about the same in the proximal and distal ends of the root. (4) Schwann cells appeared to undergo redistribution, from myelinated to unmyelinated axons. (5) During redistribution of Schwann cells they first appear as aberrant Schwann cells and then become endoneurial X-cells temporarily free of axonal contact. We hypothesize that unmyelinated axons invade the ventral root from its distal end, that this ingrowth is particularly intense during the first postnatal month and that disengaged Schwann cells, eliminated from myelinated motoneuron axons, provide the ingrowing axons with structural and trophic support.

  13. Vanilloids selectively sensitize thermal glutamate release from TRPV1 expressing solitary tract afferents.

    PubMed

    Hofmann, Mackenzie E; Andresen, Michael C

    2016-02-01

    Vanilloids, high temperature, and low pH activate the transient receptor potential vanilloid type 1 (TRPV1) receptor. In spinal dorsal root ganglia, co-activation of one of these gating sites on TRPV1 sensitized receptor gating by other modes. Here in rat brainstem slices, we examined glutamate synaptic transmission in nucleus of the solitary tract (NTS) neurons where most cranial primary afferents express TRPV1, but TRPV1 sensitization is unknown. Electrical shocks to the solitary tract (ST) evoked EPSCs (ST-EPSCs). Activation of TRPV1 with capsaicin (100 nM) increased spontaneous EPSCs (sEPSCs) but inhibited ST-EPSCs. High concentrations of the ultra-potent vanilloid resiniferatoxin (RTX, 1 nM) similarly increased sEPSC rates but blocked ST-EPSCs. Lowering the RTX concentration to 150 pM modestly increased the frequency of the sEPSCs without causing failures in the evoked ST-EPSCs. The sEPSC rate increased with raising bath temperature to 36 °C. Such thermal responses were larger in 150 pM RTX, while the ST-EPSCs remained unaffected. Vanilloid sensitization of thermal responses persisted in TTX but was blocked by the TRPV1 antagonist capsazepine. Our results demonstrate that multimodal activation of TRPV1 facilitates sEPSC responses in more than the arithmetic sum of the two activators, i.e. co-activation sensitizes TRPV1 control of spontaneous glutamate release. Since action potential evoked glutamate release is unaltered, the work provides evidence for cooperativity in gating TRPV1 plus a remarkable separation of calcium mechanisms governing the independent vesicle pools responsible for spontaneous and evoked release at primary afferents in the NTS.

  14. Activation of afferent renal nerves modulates RVLM-projecting PVN neurons.

    PubMed

    Xu, Bo; Zheng, Hong; Liu, Xuefei; Patel, Kaushik P

    2015-05-01

    Renal denervation for the treatment of hypertension has proven to be successful; however, the underlying mechanism/s are not entirely clear. To determine if preautonomic neurons in the paraventricular nucleus (PVN) respond to afferent renal nerve (ARN) stimulation, extracellular single-unit recording was used to investigate the contribution of the rostral ventrolateral medulla (RVLM)-projecting PVN (PVN-RVLM) neurons to the response elicited during stimulation of ARN. In 109 spontaneously active neurons recorded in the PVN of anesthetized rats, 25 units were antidromically activated from the RVLM. Among these PVN-RVLM neurons, 84% (21/25) were activated by ARN stimulation. The baseline discharge rate was significantly higher in these neurons than those PVN-RVLM neurons not activated by ARN stimulation (16%, 4/25). The responsiveness of these neurons to baroreflex activation induced by phenylephrine and activation of cardiac sympathetic afferent reflex (CSAR) was also examined. Almost all of the PVN neurons that responded to ARN stimulation were sensitive to baroreflex (95%) and CSAR (100%). The discharge characteristics for nonevoked neurons (not activated by RVLM antidromic stimulation) showed that 23% of these PVN neurons responded to ARN stimulation. All the PVN neurons that responded to ARN stimulation were activated by N-methyl-D-aspartate, and these responses were attenuated by the glutamate receptor blocker AP5. These experiments demonstrated that sensory information originating in the kidney is integrated at the level of preautonomic neurons within the PVN, providing a novel mechanistic insight for use of renal denervation in the modulation of sympathetic outflow in disease states such as hypertension and heart failure.

  15. Trafficking of Na+/Ca2+ Exchanger to the Site of Persistent Inflammation in Nociceptive Afferents

    PubMed Central

    Scheff, Nicole N.

    2015-01-01

    Persistent inflammation results in an increase in the amplitude and duration of depolarization-evoked Ca2+ transients in putative nociceptive afferents. Previous data indicated that these changes were the result of neither increased neuronal excitability nor an increase in the amplitude of depolarization. Subsequent data also ruled out an increase in voltage-gated Ca2+ currents and recruitment of Ca2+-induced Ca2+ release. Parametric studies indicated that the inflammation-induced increase in the duration of the evoked Ca2+ transient required a relatively large and long-lasting increase in the concentration of intracellular Ca2+ implicating the Na+/Ca2+ exchanger (NCX), a major Ca2+ extrusion mechanism activated with high intracellular Ca2+ loads. The contribution of NCX to the inflammation-induced increase in the evoked Ca2+ transient in rat sensory neurons was tested using fura-2 AM imaging and electrophysiological recordings. Changes in NCX expression and protein were assessed with real-time PCR and Western blot analysis, respectively. An inflammation-induced decrease in NCX activity was observed in a subpopulation of putative nociceptive neurons innervating the site of inflammation. The time course of the decrease in NCX activity paralleled that of the inflammation-induced changes in nociceptive behavior. The change in NCX3 in the cell body was associated with a decrease in NCX3 protein in the ganglia, an increase in the peripheral nerve (sciatic) yet no change in the central root. This single response to inflammation is associated with changes in at least three different segments of the primary afferent, all of which are likely to contribute to the dynamic response to persistent inflammation. PMID:26041911

  16. Trafficking of Na+/Ca2+ exchanger to the site of persistent inflammation in nociceptive afferents.

    PubMed

    Scheff, Nicole N; Gold, Michael S

    2015-06-03

    Persistent inflammation results in an increase in the amplitude and duration of depolarization-evoked Ca(2+) transients in putative nociceptive afferents. Previous data indicated that these changes were the result of neither increased neuronal excitability nor an increase in the amplitude of depolarization. Subsequent data also ruled out an increase in voltage-gated Ca(2+) currents and recruitment of Ca(2+)-induced Ca(2+) release. Parametric studies indicated that the inflammation-induced increase in the duration of the evoked Ca(2+) transient required a relatively large and long-lasting increase in the concentration of intracellular Ca(2+) implicating the Na(+)/Ca(2+) exchanger (NCX), a major Ca(2+) extrusion mechanism activated with high intracellular Ca(2+) loads. The contribution of NCX to the inflammation-induced increase in the evoked Ca(2+) transient in rat sensory neurons was tested using fura-2 AM imaging and electrophysiological recordings. Changes in NCX expression and protein were assessed with real-time PCR and Western blot analysis, respectively. An inflammation-induced decrease in NCX activity was observed in a subpopulation of putative nociceptive neurons innervating the site of inflammation. The time course of the decrease in NCX activity paralleled that of the inflammation-induced changes in nociceptive behavior. The change in NCX3 in the cell body was associated with a decrease in NCX3 protein in the ganglia, an increase in the peripheral nerve (sciatic) yet no change in the central root. This single response to inflammation is associated with changes in at least three different segments of the primary afferent, all of which are likely to contribute to the dynamic response to persistent inflammation.

  17. Bradykinin decreases K+ and increases Cl− conductances in vagal afferent neurones of the guinea pig

    PubMed Central

    Oh, Eun Joo; Weinreich, Daniel

    2004-01-01

    Bradykinin (BK) is an inflammatory mediator that can excite and sensitize primary afferent neurones. The nature of the ionic channels underlying the excitatory actions of BK is still incompletely understood. Using whole-cell patch-clamp recording from acutely dissociated nodose ganglion neurones (NGNs) we have examined the ionic mechanism responsible for BK's excitatory effect. Bath-applied BK (0.1 μm) depolarized the membrane potential (29 ± 3.1 mV, n = 7), evoked action potentials, and induced an inward ionic current (IBK) with two distinctive membrane conductances (gm). Initially, gm decreased; the ionic current associated with this gm had a reversal potential (Erev) value of −87 ± 1.1 mV (n = 26), a value close to EK (−89 mV). Subsequently, gm increased; the ionic current associated with this gm had an estimated Erev of 49 ± 4.3 mV (n = 23). When the second component was isolated from the first component, by replacing [K+]o with Cs+, Erev was 20 ± 4.7 mV (n = 10). Replacing external NaCl with NMDG-Cl or choline-Cl, or reducing [Ca2+]o did not significantly diminish IBK. After replacing external NaCl with sodium isethionate, Erev for the second component shifted to 56 ± 8.8 mV (n = 4), a value close to the ECl (66 mV). The second component was inhibited by intracellular BAPTA or by bath application of niflumic acid (100 μm), a Ca2+-activated Cl− channel blocker. These results suggest that the first and second components of IBK are produced by a decrease in K+ conductance and an increase in Ca2+-activated Cl− conductance, respectively. The BK-evoked Cl− conductance in NGNs may be the first demonstration of an inflammatory mediator exciting primary afferents via an anion channel. PMID:15169850

  18. Decoding of the spike timing of primary afferents during voluntary arm movements in monkeys.

    PubMed

    Umeda, Tatsuya; Watanabe, Hidenori; Sato, Masa-Aki; Kawato, Mitsuo; Isa, Tadashi; Nishimura, Yukio

    2014-01-01

    Understanding the mechanisms of encoding forelimb kinematics in the activity of peripheral afferents is essential for developing a somatosensory neuroprosthesis. To investigate whether the spike timing of dorsal root ganglion (DRG) neurons could be estimated from the forelimb kinematics of behaving monkeys, we implanted two multi-electrode arrays chronically in the DRGs at the level of the cervical segments in two monkeys. Neuronal activity during voluntary reach-to-grasp movements were recorded simultaneously with the trajectories of hand/arm movements, which were tracked in three-dimensional space using a motion capture system. Sixteen and 13 neurons, including muscle spindles, skin receptors, and tendon organ afferents, were recorded in the two monkeys, respectively. We were able to reconstruct forelimb joint kinematics from the temporal firing pattern of a subset of DRG neurons using sparse linear regression (SLiR) analysis, suggesting that DRG neuronal ensembles encoded information about joint kinematics. Furthermore, we estimated the spike timing of the DRG neuronal ensembles from joint kinematics using an integrate-and-fire model (IF) incorporating the SLiR algorithm. The temporal change of firing frequency of a subpopulation of neurons was reconstructed precisely from forelimb kinematics using the SLiR. The estimated firing pattern of the DRG neuronal ensembles encoded forelimb joint angles and velocities as precisely as the originally recorded neuronal activity. These results suggest that a simple model can be used to generate an accurate estimate of the spike timing of DRG neuronal ensembles from forelimb joint kinematics, and is useful for designing a proprioceptive decoder in a brain machine interface.

  19. Dendritic HCN channels shape excitatory postsynaptic potentials at the inner hair cell afferent synapse in the mammalian cochlea.

    PubMed

    Yi, Eunyoung; Roux, Isabelle; Glowatzki, Elisabeth

    2010-05-01

    Synaptic transmission at the inner hair cell (IHC) afferent synapse, the first synapse in the auditory pathway, is specialized for rapid and reliable signaling. Here we investigated the properties of a hyperpolarization-activated current (I(h)), expressed in the afferent dendrite of auditory nerve fibers, and its role in shaping postsynaptic activity. We used whole cell patch-clamp recordings from afferent dendrites directly where they contact the IHC in excised postnatal rat cochlear turns. Excitatory postsynaptic potentials (EPSPs) of variable amplitude (1-35 mV) were found with 10-90% rise times of about 1 ms and time constants of decay of about 5 ms at room temperature. Current-voltage relations recorded in afferent dendrites revealed I(h). The pharmacological profile and reversal potential (-45 mV) indicated that I(h) is mediated by hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channels. The HCN channel subunits HCN1, HCN2, and HCN4 were found to be expressed in afferent dendrites using immunolabeling. Raising intracellular cAMP levels sped up the activation kinetics, increased the magnitude of I(h) and shifted the half activation voltage (V(half)) to more positive values (-104 +/- 3 to -91 +/- 2 mV). Blocking I(h) with 50 microM ZD7288 resulted in hyperpolarization of the resting membrane potential (approximately 4 mV) and slowing the decay of the EPSP by 47%, suggesting that I(h) is active at rest and shortens EPSPs, thereby potentially improving rapid and reliable signaling at this first synapse in the auditory pathway.

  20. Decoding tactile afferent activity to obtain an estimate of instantaneous force and torque applied to the fingerpad.

    PubMed

    Khamis, Heba; Birznieks, Ingvars; Redmond, Stephen J

    2015-07-01

    Dexterous manipulation is not possible without sensory information about object properties and manipulative forces. Fundamental neuroscience has been unable to demonstrate how information about multiple stimulus parameters may be continuously extracted, concurrently, from a population of tactile afferents. This is the first study to demonstrate this, using spike trains recorded from tactile afferents innervating the monkey fingerpad. A multiple-regression model, requiring no a priori knowledge of stimulus-onset times or stimulus combination, was developed to obtain continuous estimates of instantaneous force and torque. The stimuli consisted of a normal-force ramp (to a plateau of 1.8, 2.2, or 2.5 N), on top of which -3.5, -2.0, 0, +2.0, or +3.5 mNm torque was applied about the normal to the skin surface. The model inputs were sliding windows of binned spike counts recorded from each afferent. Models were trained and tested by 15-fold cross-validation to estimate instantaneous normal force and torque over the entire stimulation period. With the use of the spike trains from 58 slow-adapting type I and 25 fast-adapting type I afferents, the instantaneous normal force and torque could be estimated with small error. This study demonstrated that instantaneous force and torque parameters could be reliably extracted from a small number of tactile afferent responses in a real-time fashion with stimulus combinations that the model had not been exposed to during training. Analysis of the model weights may reveal how interactions between stimulus parameters could be disentangled for complex population responses and could be used to test neurophysiologically relevant hypotheses about encoding mechanisms.

  1. Dopaminergic Modulation of the Voltage-Gated Sodium Current in the Cochlear Afferent Neurons of the Rat

    PubMed Central

    Valdés-Baizabal, Catalina; Soto, Enrique; Vega, Rosario

    2015-01-01

    The cochlear inner hair cells synapse onto type I afferent terminal dendrites, constituting the main afferent pathway for auditory information flow. This pathway receives central control input from the lateral olivocochlear efferent neurons that release various neurotransmitters, among which dopamine (DA) plays a salient role. DA receptors activation exert a protective role in the over activation of the afferent glutamatergic synapses, which occurs when an animal is exposed to intense sound stimuli or during hypoxic events. However, the mechanism of action of DA at the cellular level is still not completely understood. In this work, we studied the actions of DA and its receptor agonists and antagonists on the voltage-gated sodium current (INa) in isolated cochlear afferent neurons of the rat to define the mechanisms of dopaminergic control of the afferent input in the cochlear pathway. Experiments were performed using the voltage and current clamp techniques in the whole-cell configuration in primary cultures of cochlear spiral ganglion neurons (SGNs). Recordings of the INa showed that DA receptor activation induced a significant inhibition of the peak current amplitude, leading to a significant decrease in cell excitability. Inhibition of the INa was produced by a phosphorylation of the sodium channels as shown by the use of phosphatase inhibitor that produced an inhibition analogous to that caused by DA receptor activation. Use of specific agonists and antagonists showed that inhibitory action of DA was mediated both by activation of D1- and D2-like DA receptors. The action of the D1- and D2-like receptors was shown to be mediated by a Gαs/AC/cAMP/PKA and Gαq/PLC/PKC pathways respectively. These results showed that DA receptor activation constitutes a significant modulatory input to SGNs, effectively modulating their excitability and information flow in the auditory pathway. PMID:25768433

  2. The Role of the Paratrigeminal Nucleus in Vagal Afferent Evoked Respiratory Reflexes: A Neuroanatomical and Functional Study in Guinea Pigs

    PubMed Central

    Driessen, Alexandria K.; Farrell, Michael J.; Mazzone, Stuart B.; McGovern, Alice E.

    2015-01-01

    The respiratory tree receives sensory innervation from the jugular and nodose vagal sensory ganglia. Neurons of these ganglia are derived from embryologically distinct origins and as such demonstrate differing molecular, neurochemical and physiological phenotypes. Furthermore, whereas nodose afferent neurons project to the nucleus of the solitary tract (nTS), recent neuroanatomical studies in rats suggest that jugular neurons have their central terminations in the paratrigeminal nucleus (Pa5). In the present study we confirm that guinea pigs demonstrate a comparable distinction between the brainstem terminations of nodose and jugular ganglia afferents. Thus, microinjection of fluorescently conjugated cholera toxin B (CT-B) neural tracers into the caudal nTS and Pa5 resulted in highly specific retrograde labeling of neurons in the nodose and jugular ganglia, respectively. Whereas, nodose neurons more often expressed 160 KD neurofilament proteins and the alpha3 subunit of Na+/K+ ATPase, significantly more jugular neurons expressed the neuropeptides substance P (SP) and, especially, Calcitonin Gene-Related Peptide (CGRP). Indeed, terminal fibers in the Pa5 compared to the nTS were characterized by their significantly greater expression of CGRP, further supporting the notion that jugular afferents project to trigeminal-related brainstem regions. Electrical stimulation of the guinea pig larynx following selective surgical denervation of the nodose afferent innervation to the larynx (leaving intact the jugular innervation) resulted in stimulus dependent respiratory slowing and eventual apnea. This jugular ganglia neuron mediated response was unaffected by bilateral microinjections of the GABAA agonist muscimol into the nTS, but was abolished by muscimol injected into the Pa5. Taken together these data confirm that jugular and nodose vagal ganglia afferent neurons innervate distinct central circuits and support the notion that multiple peripheral and central pathways

  3. Effects of changing skin mechanics on the differential sensitivity to surface compliance by tactile afferents in the human finger pad.

    PubMed

    Hudson, Kathryn M; Condon, Melia; Ackerley, Rochelle; McGlone, Francis; Olausson, Håkan; Macefield, Vaughan G; Birznieks, Ingvars

    2015-10-01

    It is not known how changes in skin mechanics affect the responses of cutaneous mechanoreceptors in the finger pads to compression forces. We used venous occlusion to change the stiffness of the fingers and investigated whether this influenced the firing of low-threshold mechanoreceptors to surfaces of differing stiffness. Unitary recordings were made from 10 slowly adapting type I (SAI), 10 fast adapting type I (FAI) and 9 slowly adapting type II (SAII) units via tungsten microelectrodes inserted into the median nerve at the wrist. A servo-controlled stimulator applied ramp-and-hold forces (1, 2, and 4 N) at a constant loading and unloading rate (2 N/s) via a flat 2.5-cm-diameter silicone disk over the center of the finger pad. Nine silicone disks (objects), varying in compliance, were used. Venous occlusion, produced by inflating a sphygmomanometer cuff around the upper arm to 40 ± 5 mmHg, was used to induce swelling of the fingers and increase the compliance of the finger pulp. Venous occlusion had no effect on the firing rates of the SAI afferents, nor on the slopes of the relationship between mean firing rate and object compliance at each amplitude, but did significantly reduce the slopes for the FAI afferents. Although the SAII afferents possess a poor capacity to encode changes in object compliance, mean firing rates were significantly lower during venous occlusion. The finding that venous occlusion had no effect on the firing properties of SAI afferents indicates that these afferents preserve their capacity to encode changes in object compliance, despite changes in skin mechanics.

  4. Characterization of muscle spindle afferents in the adult mouse using an in vitro muscle-nerve preparation.

    PubMed

    Wilkinson, Katherine A; Kloefkorn, Heidi E; Hochman, Shawn

    2012-01-01

    We utilized an in vitro adult mouse extensor digitorum longus (EDL) nerve-attached preparation to characterize the responses of muscle spindle afferents to ramp-and-hold stretch and sinusoidal vibratory stimuli. Responses were measured at both room (24°C) and muscle body temperature (34°C). Muscle spindle afferent static firing frequen