Science.gov

Sample records for afferent fibers innervating

  1. Afferent innervation patterns of the saccule in pigeons

    NASA Technical Reports Server (NTRS)

    Zakir, M.; Huss, D.; Dickman, J. D.

    2003-01-01

    The innervation patterns of vestibular saccular afferents were quantitatively investigated in pigeons using biotinylated dextran amine as a neural tracer and three-dimensional computer reconstruction. Type I hair cells were found throughout a large portion of the macula, with the highest density observed in the striola. Type II hair cells were located throughout the macula, with the highest density in the extrastriola. Three classes of afferent innervation patterns were observed, including calyx, dimorph, and bouton units, with 137 afferents being anatomically reconstructed and used for quantitative comparisons. Calyx afferents were located primarily in the striola, innervated a number of type I hair cells, and had small innervation areas. Most calyx afferent terminal fields were oriented parallel to the anterior-posterior axis and the morphological polarization reversal line. Dimorph afferents were located throughout the macula, contained fewer type I hair cells in a calyceal terminal than calyx afferents and had medium sized innervation areas. Bouton afferents were restricted to the extrastriola, with multi-branching fibers and large innervation areas. Most of the dimorph and bouton afferents had innervation fields that were oriented dorso-ventrally but were parallel to the neighboring reversal line. The organizational morphology of the saccule was found to be distinctly different from that of the avian utricle or lagena otolith organs and appears to represent a receptor organ undergoing evolutionary adaptation toward sensing linear motion in terrestrial and aerial species.

  2. Afferent innervation of the utricular macula in pigeons

    NASA Technical Reports Server (NTRS)

    Si, Xiaohong; Zakir, Mridha Md; Dickman, J. David

    2003-01-01

    Biotinylated dextran amine (BDA) was used to retrogradely label afferents innervating the utricular macula in adult pigeons. The pigeon utriclar macula consists of a large rectangular-shaped neuroepithelium with a dorsally curved anterior edge and an extended medioposterior tail. The macula could be demarcated into several regions based on cytoarchitectural differences. The striola occupied 30% of the macula and contained a large density of type I hair cells with fewer type II hair cells. Medial and lateral extrastriola zones were located outside the striola and contained only type II hair cells. A six- to eight-cell-wide band of type II hair cells existed near the center of the striola. The reversal line marked by the morphological polarization of hair cells coursed throughout the epithelium, near the peripheral margin, and through the center of the type II band. Calyx afferents innervated type I hair cells with calyceal terminals that contained between 2 and 15 receptor cells. Calyx afferents were located only in the striola region, exclusive of the type II band, had small total fiber innervation areas and low innervation densities. Dimorph afferents innervated both type I and type II hair cells with calyceal and bouton terminals and were primarily located in the striola region. Dimorph afferents had smaller calyceal terminals with few type I hair cells, extended fiber branches with bouton terminals and larger innervation areas. Bouton afferents innervated only type II hair cells in the extrastriola and type II band regions. Bouton afferents innervating the type II band had smaller terminal fields with fewer bouton terminals and smaller innervation areas than fibers located in the extrastriolar zones. Bouton afferents had the most bouton terminals on the longest fibers, the largest innervation areas with the highest innervation densities of all afferents. Among all afferents, smaller terminal innervation fields were observed in the striola and large fields were

  3. Characterization of primary afferent spinal innervation of mouse uterus.

    PubMed

    Herweijer, Geraldine; Kyloh, Melinda; Beckett, Elizabeth A H; Dodds, Kelsi N; Spencer, Nick J

    2014-01-01

    The primary afferent innervation of the uterus is incompletely understood. The aim of this study was to identify the location and characteristics of primary afferent neurons that innervate the uterine horn of mice and correlate the different morphological types of putative primary afferent nerve endings, immunoreactive to the sensory marker, calcitonin gene related peptide (CGRP). Using retrograde tracing, injection of 5-10 μL of 1,1'-didodecyl-3,3,3,3'-tetramethylindocarbocyanine perchlorate (DiI) into discrete single sites in each uterine horn revealed a biomodal distribution of sensory neurons in dorsal root ganglia (DRG) with peak labeling occurring between T13-L3 and a second smaller peak between L6-S1. The mean cross sectional area of labeled cells was 463 μm(2) ± s.e.m. A significantly greater proportion of labeled neurons consisted of small cell bodies (<300 μm(2)) in the sacral spinal cord (S2) compared with peak labeling at the lumbar (L2) region. In both sections and whole mount preparations, immunohistochemical staining for CGRP revealed substantial innervation of the uterus by CGRP-positive nerve fibers located primarily at the border between the circular and longitudinal muscle layers (N = 4). The nerve endings were classified into three distinct types: "single," "branching," or "complex," that often aligned preferentially in either the circular or longitudinal axis of the smooth muscles. Complex endings were often associated with mesenteric vessels. We have identified that the cell bodies of primary afferent neurons innervating the mouse uterus lie primarily in DRG at L2 and S1 spinal levels. Also, the greatest density of CGRP immunoreactivity lies within the myometrium, with at least three different morphological types of nerve endings identified. These findings will facilitate further investigations into the mechanisms underlying sensory transduction in mouse uterus. PMID:25120416

  4. Peripheral innervation patterns of vestibular nerve afferents in the bullfrog utriculus

    NASA Technical Reports Server (NTRS)

    Baird, Richard A.; Schuff, N. R.

    1994-01-01

    Vestibular nerve afferents innervating the bullfrog utriculus differ in their response dynamics and sensitivity to natural stimulation. They also supply hair cells that differ markedly in hair bundle morphology. To examine the peripheral innervation patterns of individual utricular afferents more closely, afferent fibers were labeled by the extracellular injection of horseradish peroxidase (HRP) into the vestibular nerve after sectioning the vestibular nerve medial to Scarpa's ganglion to allow the degeneration of sympathetic and efferent fibers. The peripheral arborizations of individual afferents were then correlated with the diameters of their parent axons, the regions of the macula they innervate, and the number and type of hair cells they supply. The utriculus is divided by the striola, a narrow zone of distinctive morphology, into media and lateral parts. Utiricular afferents were classified as striolar or extrastriolar according to the epithelial entrance of their parent axons and the location of their terminal fields. In general, striolar afferents had thicker parent axons, fewer subepithelial bifurcations, larger terminal fields, and more synaptic endings than afferents in extrstriolar regions. Afferents in a juxtastriolar zone, immediately adjacent to the medial striola, had innervation patterns transitional between those in the striola and more peripheral parts of the medial extrastriola. moast afferents innervated only a single macular zone. The terminal fields of striolar afferents, with the notable exception of a few afferents with thin parent axons, were generally confined to one side of the striola. Hair cells in the bullfrog utriculus have perviously been classified into four types based on hair bundle morphology. Afferents in the extrastriolar and juxtastriolar zones largely or exclusively innervated Type B hair cells, the predominant hair cell type in the utricular macula. Striolar afferents supplied a mixture of four hair cell types, but largely

  5. Patterns of saccular afferent innervation in sciaenids.

    PubMed

    Selckmann, G M; Ramcharitar, J

    2013-09-01

    In this study, saccular afferent arborization patterns in Atlantic croaker Micropogonias undulatus, red drum Sciaenops ocellatus and spot Leiostomus xanthurus were characterized. Leiostomus xanthurus showed the simplest configuration while M. undulatus displayed the most complex. In addition, hair-cell densities at sites sampled along the rostro-caudal axis of the saccular epithelia correlated with the observed patterns of arborization. PMID:23991887

  6. Effect of Microgravity on Afferent Innervation

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Presentations and publications are: (1) an audiovisual summary web presentation on results from SLM-MIR avian experiments. A color presentation summarizing results from the SLM-MIR and STS-29 avian experiments; (2) color threshold and ratio of S 100B MAP5, NF68/200, GABA and GAD; (3) chicken (Gallus domesticus) inner ear afferents; (4) microgravity in the STS-29 Space Shuttle Discovery affected the vestibular system of chick embryos; (5) expression of S 100B in sensory and secretory cells of the vertebrate inner ear; (6) otoconia biogenesis, phylogeny, composition and functional attributes;(7) the glycan keratin sulfate in inner ear crystals; (8) elliptical-P cells in the avian perilymphatic interface of the tegmentum vasculosum; and (9) LAMP2c and S100B upregulation in brain stem after VIIIth nerve deafferentation.

  7. Physiological identification of morphologically distinct afferent classes innervating the cristae ampullares of the squirrel monkey

    NASA Technical Reports Server (NTRS)

    Lysakowski, A.; Minor, L. B.; Fernandez, C.; Goldberg, J. M.

    1995-01-01

    1. Semicircular-canal afferents in the squirrel monkey were characterized by their resting discharge, discharge regularity, sensitivity to galvanic currents delivered to the ear (beta *), the gain (g2Hz), and phase lead (phi 2Hz) of their response to 2-Hz sinusoidal head rotations, and their antidromic conduction velocity. Discharge regularity was measured by a normalized coefficient of variation (CV*); the higher the CV*, the more irregular the discharge. g2Hz and phi 2Hz were expressed relative to angular head velocity. 2. These physiological measures were used in an attempt to discern the discharge properties of the three morphological classes of afferents innervating the crista. Presumed bouton (B) fibers were identified as slowly conducting afferents. Presumed calyx (C) fibers were recognized by their irregular discharge and low rotational gains. The remaining fibers were considered to be dimorphic (D) units. Single letters (B, C, and D) are used to emphasize that the classification is based on circumstantial evidence and may be wrong for individual fibers. Of the 125 identified fibers, 13 (10%) were B units, 36 (29%) were C units, and 76 (61%) were D units. 3. B units were regularly discharging D units ranged from regularly to irregularly discharging. C units were the most irregularly discharging afferents encountered. The mean resting discharge for the entire sample was 74 spikes/s. Resting rates were similar for regularly discharging B and D units and higher than those for irregularly discharging C and D units. 4. Except for their lower conduction velocities, the discharge properties of B units are indistinguishable from those of regularly discharging D units. Many of the discharge properties of B and D units vary with discharge regularity. There is a strong, positive relation when beta *, g2Hz, or phi 2Hz is plotted against CV*. For beta * or phi 2Hz, C units conform to the relation for B and D units. In contrast, values of g2Hz for C units are three to

  8. Egr3-Dependent Muscle Spindle Stretch Receptor Intrafusal Muscle Fiber Differentiation and Fusimotor Innervation Homeostasis

    PubMed Central

    Oliveira Fernandes, Michelle

    2015-01-01

    Muscle stretch proprioceptors (muscle spindles) are required for stretch reflexes and locomotor control. Proprioception abnormalities are observed in many human neuropathies, but the mechanisms involved in establishing and maintaining muscle spindle innervation and function are still poorly understood. During skeletal muscle development, sensory (Ia-afferent) innervation induces contacted myotubes to transform into intrafusal muscle fibers that form the stretch receptor core. The transcriptional regulator Egr3 is induced in Ia-afferent contacted myotubes by Neuregulin1 (Nrg1)/ErbB receptor signaling and it has an essential role in spindle morphogenesis and function. Because Egr3 is widely expressed during development and has a pleiotropic function, whether Egr3 functions primarily in skeletal muscle, Ia-afferent neurons, or in Schwann cells that myelinate Ia-afferent axons remains unresolved. In the present studies, cell-specific ablation of Egr3 in mice showed that it has a skeletal muscle autonomous function in stretch receptor development. Moreover, using genetic tracing, we found that Ia-afferent contacted Egr3-deficient myotubes were induced in normal numbers, but their development was blocked to generate one to two shortened fibers that failed to express some characteristic myosin heavy chain (MyHC) proteins. These “spindle remnants” persisted into adulthood, remained innervated by Ia-afferents, and expressed neurotrophin3 (NT3), which is required for Ia-afferent neuron survival. However, they were not innervated by fusimotor axons and they did not express glial derived neurotrophic factor (GDNF), which is essential for fusimotor neuron survival. These results demonstrate that Egr3 has an essential role in regulating gene expression that promotes normal intrafusal muscle fiber differentiation and fusimotor innervation homeostasis. PMID:25855173

  9. Hair cell tufts and afferent innervation of the bullfrog crista ampullaris

    NASA Technical Reports Server (NTRS)

    Myers, Steven F.; Lewis, Edwin R.

    1990-01-01

    Within the bullfrog semicircular canal crista, hair cell tuft types were defined and mapped with the aid of scanning electron microscopy. Dye-filled planar afferent axons had mean distal axonal diameters of 1.6-4.9 microns, highly branched arbors, and contacted 11-24 hair cells. Dye-filled isthmus afferent axons had mean distal axonal diameters of 1.8-7.9 microns, with either small or large field arbors contacting 4-9 or 25-31 hair cells. The estimated mean number of contacts per innervated hair cell was 2.2 for planar and 1.3 for isthmus afferent neurons. Data on evoked afferent responses were available only for isthmus units that were observed to respond to our microrotational stimuli. Of 21 such afferent neurons, eight were successfully dye-filled. Within this sample, high-gain units had large field arbors and lower-gain units had small field arbors. The sensitivity of each afferent neuron was analyzed in terms of noise equivalent input (NEI), the stimulus amplitude for which the afferent response amplitude is just equivalent to the rms deviation of the instantaneous spike rate. NEI for isthmus units varied from 0.63 to 8.2 deg/s; the mean was 3.2 deg/s.

  10. Differential roles of stretch-sensitive pelvic nerve afferents innervating mouse distal colon and rectum

    PubMed Central

    Brumovsky, Pablo R.; Gebhart, Gerald F.

    2010-01-01

    Information about colorectal distension (i.e., colorectal dilation by increased intraluminal pressure) is primarily encoded by stretch-sensitive colorectal afferents in the pelvic nerve (PN). Despite anatomic differences between rectum and distal colon, little is known about the functional roles of colonic vs. rectal afferents in the PN pathway or the quantitative nature of mechanosensory encoding. We utilized an in vitro mouse colorectum-PN preparation to investigate pressure-encoding characteristics of colorectal afferents. The colorectum with PN attached was dissected, opened longitudinally, and pinned flat in a Sylgard-lined chamber. Action potentials of afferent fibers evoked by circumferential stretch (servo-controlled force actuator) were recorded from the PN. Stretch-sensitive fibers were categorized into the following four groups: colonic muscular, colonic muscular/mucosal, rectal muscular, and rectal muscular/mucosal. Seventy-nine stretch-sensitive PN afferents evenly distributed into the above four groups were studied. Rectal muscular afferents had significantly greater stretch-responses than the other three groups. Virtually all rectal afferents (98%) had low thresholds for response and encoded stimulus intensity into the noxious range without obvious saturation. Most colonic afferents (72%) also had low thresholds (<14 mmHg), but a significant proportion (28%) had high thresholds (>18 mmHg) for response. These high-threshold colonic afferents were sensitized to stretch by inflammatory soup; response threshold was significantly reduced (from 23 to 12 mmHg), and response magnitude significantly increased. These results suggest that the encoding of mechanosensory information differs between colonic and rectal stretch-sensitive PN afferents. Rectal afferents have a wide response range to stretch, whereas high-threshold colonic afferents likely contribute to visceral nociception. PMID:20075141

  11. Differential roles of stretch-sensitive pelvic nerve afferents innervating mouse distal colon and rectum.

    PubMed

    Feng, Bin; Brumovsky, Pablo R; Gebhart, Gerald F

    2010-03-01

    Information about colorectal distension (i.e., colorectal dilation by increased intraluminal pressure) is primarily encoded by stretch-sensitive colorectal afferents in the pelvic nerve (PN). Despite anatomic differences between rectum and distal colon, little is known about the functional roles of colonic vs. rectal afferents in the PN pathway or the quantitative nature of mechanosensory encoding. We utilized an in vitro mouse colorectum-PN preparation to investigate pressure-encoding characteristics of colorectal afferents. The colorectum with PN attached was dissected, opened longitudinally, and pinned flat in a Sylgard-lined chamber. Action potentials of afferent fibers evoked by circumferential stretch (servo-controlled force actuator) were recorded from the PN. Stretch-sensitive fibers were categorized into the following four groups: colonic muscular, colonic muscular/mucosal, rectal muscular, and rectal muscular/mucosal. Seventy-nine stretch-sensitive PN afferents evenly distributed into the above four groups were studied. Rectal muscular afferents had significantly greater stretch-responses than the other three groups. Virtually all rectal afferents (98%) had low thresholds for response and encoded stimulus intensity into the noxious range without obvious saturation. Most colonic afferents (72%) also had low thresholds (<14 mmHg), but a significant proportion (28%) had high thresholds (>18 mmHg) for response. These high-threshold colonic afferents were sensitized to stretch by inflammatory soup; response threshold was significantly reduced (from 23 to 12 mmHg), and response magnitude significantly increased. These results suggest that the encoding of mechanosensory information differs between colonic and rectal stretch-sensitive PN afferents. Rectal afferents have a wide response range to stretch, whereas high-threshold colonic afferents likely contribute to visceral nociception.

  12. Innervation of enteric mast cells by primary spinal afferents in guinea pig and human small intestine.

    PubMed

    Wang, Guo-Du; Wang, Xi-Yu; Liu, Sumei; Qu, Meihua; Xia, Yun; Needleman, Bradley J; Mikami, Dean J; Wood, Jackie D

    2014-10-01

    Mast cells express the substance P (SP) neurokinin 1 receptor and the calcitonin gene-related peptide (CGRP) receptor in guinea pig and human small intestine. Enzyme-linked immunoassay showed that activation of intramural afferents by antidromic electrical stimulation or by capsaicin released SP and CGRP from human and guinea pig intestinal segments. Electrical stimulation of the afferents evoked slow excitatory postsynaptic potentials (EPSPs) in the enteric nervous system. The slow EPSPs were mediated by tachykinin neurokinin 1 and CGRP receptors. Capsaicin evoked slow EPSP-like responses that were suppressed by antagonists for protease-activated receptor 2. Afferent stimulation evoked slow EPSP-like excitation that was suppressed by mast cell-stabilizing drugs. Histamine and mast cell protease II were released by 1) exposure to SP or CGRP, 2) capsaicin, 3) compound 48/80, 4) elevation of mast cell Ca²⁺ by ionophore A23187, and 5) antidromic electrical stimulation of afferents. The mast cell stabilizers cromolyn and doxantrazole suppressed release of protease II and histamine when evoked by SP, CGRP, capsaicin, A23187, electrical stimulation of afferents, or compound 48/80. Neural blockade by tetrodotoxin prevented mast cell protease II release in response to antidromic electrical stimulation of mesenteric afferents. The results support a hypothesis that afferent innervation of enteric mast cells releases histamine and mast cell protease II, both of which are known to act in a diffuse paracrine manner to influence the behavior of enteric nervous system neurons and to elevate the sensitivity of spinal afferent terminals.

  13. Characterization of silent afferents in the pelvic and splanchnic innervations of the mouse colorectum.

    PubMed

    Feng, Bin; Gebhart, G F

    2011-01-01

    Hypersensitivity in inflammatory/irritable bowel syndrome is contributed to in part by changes in the receptive properties of colorectal afferent endings, likely including mechanically insensitive afferents (MIAs; silent afferents) that have the ability to acquire mechanosensitivity. The proportion and attributes of colorectal MIAs, however, have not previously been characterized. The distal ∼3 cm of colorectum with either pelvic (PN) or lumbar splanchnic (LSN) nerve attached was removed, opened longitudinally, pinned flat in a recording chamber, and perfused with oxygenated Krebs solution. Colorectal receptive endings were located by electrical stimulation and characterized as mechanosensitive or not by blunt probing, mucosal stroking, and circumferential stretch. MIA endings were tested for response to and acquisition of mechanosensitivity by localized exposure to an inflammatory soup (IS). Colorectal afferents were also tested with twin-pulse and repetitive electrical stimulation paradigms. PN MIAs represented 23% of 211 afferents studied, 71% (30/42) of which acquired mechanosensitivity after application of IS to their receptive ending. LSN MIAs represented 33% of 156 afferents studied, only 23% (11/48) of which acquired mechanosensitivity after IS exposure. Mechanosensitive PN endings uniformly exhibited significant twin-pulse slowing whereas LSN endings showed no significant twin-pulse difference. PN MIAs displayed significantly greater activity-dependent slowing than LSN MIAs. In conclusion, significant proportions of MIAs are present in the colorectal innervation; significantly more in the PN than LSN acquire mechanosensitivity in an inflammatory environment. This knowledge contributes to our understanding of the possible roles of MIAs in colon-related disorders like inflammatory/irritable bowel syndrome. PMID:21071510

  14. Characterization of silent afferents in the pelvic and splanchnic innervations of the mouse colorectum

    PubMed Central

    Gebhart, G. F.

    2011-01-01

    Hypersensitivity in inflammatory/irritable bowel syndrome is contributed to in part by changes in the receptive properties of colorectal afferent endings, likely including mechanically insensitive afferents (MIAs; silent afferents) that have the ability to acquire mechanosensitivity. The proportion and attributes of colorectal MIAs, however, have not previously been characterized. The distal ∼3 cm of colorectum with either pelvic (PN) or lumbar splanchnic (LSN) nerve attached was removed, opened longitudinally, pinned flat in a recording chamber, and perfused with oxygenated Krebs solution. Colorectal receptive endings were located by electrical stimulation and characterized as mechanosensitive or not by blunt probing, mucosal stroking, and circumferential stretch. MIA endings were tested for response to and acquisition of mechanosensitivity by localized exposure to an inflammatory soup (IS). Colorectal afferents were also tested with twin-pulse and repetitive electrical stimulation paradigms. PN MIAs represented 23% of 211 afferents studied, 71% (30/42) of which acquired mechanosensitivity after application of IS to their receptive ending. LSN MIAs represented 33% of 156 afferents studied, only 23% (11/48) of which acquired mechanosensitivity after IS exposure. Mechanosensitive PN endings uniformly exhibited significant twin-pulse slowing whereas LSN endings showed no significant twin-pulse difference. PN MIAs displayed significantly greater activity-dependent slowing than LSN MIAs. In conclusion, significant proportions of MIAs are present in the colorectal innervation; significantly more in the PN than LSN acquire mechanosensitivity in an inflammatory environment. This knowledge contributes to our understanding of the possible roles of MIAs in colon-related disorders like inflammatory/irritable bowel syndrome. PMID:21071510

  15. Peripheral patterns of terminal innervation of vestibular primary afferent neurons projecting to the vestibulocerebellum in the gerbil.

    PubMed

    Purcell, I M; Perachio, A A

    2001-04-23

    Retrograde transganglionic labeling techniques with biotinylated dextran amine (BDA) were used to examine the terminal field structure and topographical patterns of innervation within the vestibular sensory end organs of vestibular primary afferent neurons projecting to the cerebellar uvula/nodulus and flocculus lobules in the gerbil. Robust, dark labeling in the cristae ampullares suggested that the vast majority of the terminals of afferent neurons were of the dimorphic type. The majority (94% to the uvula/nodulus and 100% to the flocculus) innervates the peripheral zones of each of the three semicircular canal cristae. Comparison of the type and distribution of terminals across the canalicular sensory neuroepithelium with morphophysiological studies in chinchilla suggests that the labeled population consists predominantly of peripheral terminal fields of lower-to-intermediate gain, more regularly firing, tonic afferents. For otolith organ-related afferents, the uvula/nodulus receives strong inputs from primary otolith afferent neurons identified as dimorphic in type that predominately innervate the peristriolar zones of the utricular and saccular maculae. No direct otolith organ-related inputs to the flocculus were observed. In contrast to the canal afferents, the types and locations of labeled otolith afferent terminals suggest that they largely consist of irregularly firing, high-gain, phasic neurons. PMID:11283948

  16. Hair-cell counts and afferent innervation patterns in the cristae ampullares of the squirrel monkey with a comparison to the chinchilla

    NASA Technical Reports Server (NTRS)

    Fernandez, C.; Lysakowski, A.; Goldberg, J. M.

    1995-01-01

    1. The numbers of type I and type II hair cells were estimated by dissector techniques applied to semithin, stained sections of the horizontal, superior, and posterior cristae in the squirrel monkey and the chinchilla. 2. The crista in each species was divided into concentrically arranged central, intermediate, and peripheral zones of equal areas. The three zones can be distinguished by the sizes of individual hair cells and calyx endings, by the density of hair cells, and by the relative frequency of calyx endings innervating single or multiple type I hair cells. 3. In the monkey crista, type I hair cells outnumber type II hair cells by a ratio of almost 3:1. The ratio decreases from 4-5:1 in the central and intermediate zones to under 2:1 in the peripheral zone. For the chinchilla, the ratio is near 1:1 for the entire crista and decreases only slightly between the central and peripheral zones. 4. Nerve fibers supplying the cristae in the squirrel monkey were labeled by extracellular injections of horseradish peroxidase (HRP) into the vestibular nerve. Peripheral terminations of individual fibers were reconstructed and related to the zones of the cristae they innervated and to the sizes of their parent axons. Results were similar for the horizontal, superior, and posterior cristae. 5. Axons seldom bifurcate below the neuroepithelium. Most fibers begin branching shortly after crossing the basement membrane. Their terminal arbors are compact, usually extending no more than 50-100 microns from the parent exon. A small number of long intraepithelial fibers enter the intermediate and peripheral zones of the cristae near its base, then run unbranched for long distances through the neuroepithelium to reach the central zone. 6. There are three classes of afferent fibers innervating the monkey crista. Calyx fibers terminate exclusively on type I hair cells, and bouton fibers end only on type II hair cells. Dimorphic fibers provide a mixed innervation, including calyx

  17. Single low-threshold afferents innervating the skin of the human foot modulate ongoing muscle activity in the upper limbs.

    PubMed

    Bent, Leah R; Lowrey, Catherine R

    2013-03-01

    We have shown for the first time that single cutaneous afferents in the foot dorsum have significant reflex coupling to motoneurons supplying muscles in the upper limb, particularly posterior deltoid and triceps brachii. These observations strengthen what we know from whole nerve stimulation, that skin on the foot and ankle can contribute to the modulation of interlimb muscles in distant innervation territories. The current work provides evidence of the mechanism behind the reflex, where one single skin afferent can evoke a reflex response, rather than a population. Nineteen of forty-one (46%) single cutaneous afferents isolated in the dorsum or plantar surface of the foot elicited a significant modulation of muscle activity in the upper limb. Identification of single afferents in this reflex indicates the strength of the connection and, ultimately, the importance of foot skin in interlimb coordination. The median response magnitude was 2.29% of background EMG, and the size of the evoked response did not significantly differ among the four mechanoreceptor classes (P > 0.1). Interestingly, although the distribution of afferents types did not differ across the foot dorsum, there was a significantly greater coupling response from receptors located on the medial aspect of the foot dorsum (P < 0.01). Furthermore, the most consistent coupling with upper limb muscles was demonstrated by type I afferents (fast and slowly adapting). This work contributes to the current literature on receptor specificity, supporting the view that individual classes of cutaneous afferents may subserve specific roles in kinesthesia, reflexes, and tactile perception.

  18. TRPM8 function and expression in vagal sensory neurons and afferent nerves innervating guinea pig esophagus.

    PubMed

    Yu, Xiaoyun; Hu, Youtian; Ru, Fei; Kollarik, Marian; Undem, Bradley J; Yu, Shaoyong

    2015-03-15

    Sensory transduction in esophageal afferents requires specific ion channels and receptors. TRPM8 is a new member of the transient receptor potential (TRP) channel family and participates in cold- and menthol-induced sensory transduction, but its role in visceral sensory transduction is still less clear. This study aims to determine TRPM8 function and expression in esophageal vagal afferent subtypes. TRPM8 agonist WS-12-induced responses were first determined in nodose and jugular neurons by calcium imaging and then investigated by whole cell patch-clamp recordings in Dil-labeled esophageal nodose and jugular neurons. Extracellular single-unit recordings were performed in nodose and jugular C fiber neurons using ex vivo esophageal-vagal preparations with intact nerve endings in the esophagus. TRPM8 mRNA expression was determined by single neuron RT-PCR in Dil-labeled esophageal nodose and jugular neurons. The TRPM8 agonist WS-12 elicited calcium influx in a subpopulation of jugular but not nodose neurons. WS-12 activated outwardly rectifying currents in esophageal Dil-labeled jugular but not nodose neurons in a dose-dependent manner, which could be inhibited by the TRPM8 inhibitor AMTB. WS-12 selectively evoked action potential discharges in esophageal jugular but not nodose C fibers. Consistently, TRPM8 transcripts were highly expressed in esophageal Dil-labeled TRPV1-positive jugular neurons. In summary, the present study demonstrated a preferential expression and function of TRPM8 in esophageal vagal jugular but not nodose neurons and C fiber subtypes. This provides a distinctive role of TRPM8 in esophageal sensory transduction and may lead to a better understanding of the mechanisms of esophageal sensation and nociception.

  19. Mechano- and thermosensitivity of regenerating cutaneous afferent nerve fibers.

    PubMed

    Jänig, Wilfrid; Grossmann, Lydia; Gorodetskaya, Natalia

    2009-06-01

    Crush lesion of a skin nerve is followed by sprouting of myelinated (A) and unmyelinated (C) afferent fibers into the distal nerve stump. Here, we investigate quantitatively both ongoing activity and activity evoked by mechanical or thermal stimulation of the nerve in 43 A- and 135 C-fibers after crush lesion of the sural nerve using neurophysiological recordings in anesthetized rats. The discharge patterns in the injured afferent nerve fibers and in intact (control) afferent nerve fibers were compared. (1) Almost all (98%) A-fibers were mechanosensitive, some of them exhibited additionally weak cold/heat sensitivity; 7% had ongoing activity. (2) Three patterns of physiologically evoked activity were present in the lesioned C-fibers: (a) C-fibers with type 1 cold sensitivity (low cold threshold, inhibition on heating, high level of ongoing and cold-evoked activity; 23%): almost all of them were mechanoinsensitive and 40% of them were additionally heat-sensitive; (b) C-fibers with type 2 cold sensitivity (high cold threshold, low level of ongoing and cold-evoked activity; 23%). All of them were excited by mechanical and/or heat stimuli; (c) cold-insensitive C-fibers (54%), which were heat- and/or mechanosensitive. (3) The proportions of C-fibers exhibiting these three patterns of discharge to physiological stimuli were almost identical in the population of injured C-fibers and in a population of 91 intact cutaneous C-fibers. 4. Ongoing activity was present in 56% of the lesioned C-fibers. Incidence and rate of ongoing activity were the same in the populations of lesioned and intact type 1 cold-sensitive C-fibers. The incidence (but not rate) of ongoing activity was significantly higher in lesioned type 2 cold-sensitive and cold insensitive C-fibers than in the corresponding populations of intact C-fibers (42/93 fibers vs. 11/72 fibers). PMID:19139872

  20. Silent damage of noise on cochlear afferent innervation in guinea pigs and the impact on temporal processing.

    PubMed

    Liu, Lijie; Wang, Hui; Shi, Lijuan; Almuklass, Awad; He, Tingting; Aiken, Steve; Bance, Manohar; Yin, Shankai; Wang, Jian

    2012-01-01

    Noise-exposure at levels low enough to avoid a permanent threshold shift has been found to cause a massive, delayed degeneration of spiral ganglion neurons (SGNs) in mouse cochleae. Damage to the afferent innervation was initiated by a loss of synaptic ribbons, which is largely irreversible in mice. A similar delayed loss of SGNs has been found in guinea pig cochleae, but at a reduced level, suggesting a cross-species difference in SGN sensitivity to noise. Ribbon synapse damage occurs "silently" in that it does not affect hearing thresholds as conventionally measured, and the functional consequence of this damage is not clear. In the present study, we further explored the effect of noise on cochlear afferent innervation in guinea pigs by focusing on the dynamic changes in ribbon counts over time, and resultant changes in temporal processing. It was found that (1) contrary to reports in mice, the initial loss of ribbons largely recovered within a month after the noise exposure, although a significant amount of residual damage existed; (2) while the response threshold fully recovered in a month, the temporal processing continued to be deteriorated during this period. PMID:23185359

  1. Auditory hair cell innervational patterns in lizards.

    PubMed

    Miller, M R; Beck, J

    1988-05-22

    The pattern of afferent and efferent innervation of two to four unidirectional (UHC) and two to nine bidirectional (BHC) hair cells of five different types of lizard auditory papillae was determined by reconstruction of serial TEM sections. The species studies were Crotaphytus wislizeni (iguanid), Podarcis (Lacerta) sicula and P. muralis (lacertids), Ameiva ameiva (teiid), Coleonyx variegatus (gekkonid), and Mabuya multifasciata (scincid). The main object was to determine in which species and in which hair cell types the nerve fibers were innervating only one (exclusive innervation), or two or more hair cells (nonexclusive innervation); how many nerve fibers were supplying each hair cell; how many synapses were made by the innervating fibers; and the total number of synapses on each hair cell. In the species studies, efferent innervation was limited to the UHC, and except for the iguanid, C. wislizeni, it was nonexclusive, each fiber supplying two or more hair cells. Afferent innervation varied both with the species and the hair cell types. In Crotaphytus, both the UHC and the BHC were exclusively innervated. In Podarcis and Ameiva, the UHC were innervated exclusively by some fibers but nonexclusively by others (mixed pattern). In Coleonyx, the UHC were exclusively innervated but the BHC were nonexclusively innervated. In Mabuya, both the UHC and BHC were nonexclusively innervated. The number of afferent nerve fibers and the number of afferent synapses were always larger in the UHC than in the BHC. In Ameiva, Podarcis, and Mabuya, groups of bidirectionally oriented hair cells occur in regions of cytologically distinct UHC, and in Ameiva, unidirectionally oriented hair cells occur in cytologically distinct BHC regions. PMID:3385019

  2. Analysis of afferent responses from isolated semicircular canal of the guitarfish using rotational acceleration white-noise inputs. I. Correlation of response dynamics with receptor innervation.

    PubMed

    O'Leary, D P; Dunn, R F

    1976-05-01

    The small-signal linear characteristics of afferent responses from the isolated semicircular canal were described by the use of white-noise rotational acceleration inputs. The results, based on cross-correlation analysis, showed a striking and systematic variation in linear system impulse response characteristics from afferents which innervated different regions of the receptor. Afferents from centrally located nerve bundles innervating the crest region of the crista exhibited an initial maximum response amplitude followed by a rapid decay. In contrast, afferents from extreme rostral and caudal nerve bundles innervating the crista slopes exhibited an initial rise up to a low-amplitude maximum followed by a slower decay. These results imply that the afferents innervating a single canal do not merely carry redundant information concerning current head acceleration, but could be considered an ensemble of specific classes of filters that are tuned individually to specific classes of head movements. On the basis of these considerations, a new hypothesis of matched filter detection was proposed as relevant to information processing and dynamic control in central vestibular pathways. PMID:948010

  3. Identification of motoneurons supplying multiply- or singly-innervated extraocular muscle fibers in the rat.

    PubMed

    Eberhorn, A C; Büttner-Ennever, J A; Horn, A K E

    2006-02-01

    In mammals, the extraocular muscle fibers can be categorized in singly-innervated and multiply-innervated muscle fibers. In the monkey oculomotor, trochlear and abducens nucleus the motoneurons of multiply-innervated muscle fibers lie separated from those innervating singly-innervated muscle fibers and show different histochemical properties. In order to discover, if this organization is a general feature of the oculomotor system, we investigated the location of singly-innervated muscle fiber and multiply-innervated muscle fiber motoneurons in the rat using combined tract-tracing and immunohistochemical techniques. The singly-innervated muscle fiber and multiply-innervated muscle fiber motoneurons of the medial and lateral rectus muscle were identified by retrograde tracer injections into the muscle belly or the distal myotendinous junction. The belly injections labeled the medial rectus muscle subgroup of the oculomotor nucleus or the greatest part of abducens nucleus, including some cells outside the medial border of abducens nucleus. In contrast, the distal injections labeled only a subset of the medial rectus muscle motoneurons and exclusively cells outside the medial border of abducens nucleus. The tracer detection was combined with immunolabeling using antibodies for perineuronal nets (chondroitin sulfate proteoglycan) and non-phosphorylated neurofilaments. In monkeys both antibodies permit a distinction between singly-innervated muscle fiber and multiply-innervated muscle fiber motoneurons. The experiments revealed that neurons labeled from a distal injection lack both markers and are assumed to represent multiply-innervated muscle fiber motoneurons, whereas those labeled from a belly injection are chondroitin sulfate proteoglycan- and non-phosphorylated neurofilament-immunopositive and assumed to represent singly-innervated muscle fiber motoneurons. The overall identification of multiply-innervated muscle fiber and singly-innervated muscle fiber motoneurons

  4. Impaired excitability of renal afferent innervation after exposure to the inflammatory chemokine CXCL1.

    PubMed

    Ditting, Tilmann; Freisinger, Wolfgang; Rodionova, Kristina; Schatz, Johannes; Lale, Nena; Heinlein, Sonja; Linz, Peter; Ott, Christian; Schmieder, Roland E; Scrogin, Karie E; Veelken, Roland

    2016-03-01

    Recently, we showed that renal afferent neurons exhibit a unique firing pattern, i.e., predominantly sustained firing, upon stimulation. Pathological conditions such as renal inflammation likely alter excitability of renal afferent neurons. Here, we tested whether the proinflammatory chemokine CXCL1 alters the firing pattern of renal afferent neurons. Rat dorsal root ganglion neurons (Th11-L2), retrogradely labeled with dicarbocyanine dye, were incubated with CXCL1 (20 h) or vehicle before patch-clamp recording. The firing pattern of neurons was characterized as tonic, i.e., sustained action potential (AP) firing, or phasic, i.e., <5 APs following current injection. Of the labeled renal afferents treated with vehicle, 58.9% exhibited a tonic firing pattern vs. 7.8%, in unlabeled, nonrenal neurons (P < 0.05). However, after exposure to CXCL1, significantly more phasic neurons were found among labeled renal neurons; hence the occurrence of tonic neurons with sustained firing upon electrical stimulation decreased (35.6 vs. 58.9%, P < 0.05). The firing frequency among tonic neurons was not statistically different between control and CXCL1-treated neurons. However, the lower firing frequency of phasic neurons was even further decreased with CXCL1 exposure [control: 1 AP/600 ms (1-2) vs. CXCL1: 1 AP/600 ms (1-1); P < 0.05; median (25th-75th percentile)]. Hence, CXCL1 shifted the firing pattern of renal afferents from a predominantly tonic to a more phasic firing pattern, suggesting that CXCL1 reduced the sensitivity of renal afferent units upon stimulation.

  5. Tendon Innervation.

    PubMed

    Ackermann, Paul W; Salo, Paul; Hart, David A

    2016-01-01

    The regulation of tendon metabolism including the responses to loading is far from being well understood. During the last decade, however, accumulating data show that tendon innervation in addition to afferent functions, via efferent pathways has a regulatory role in tendon homeostasis via a wide range of neuromediators, which coordinate metabolic and neuro-inflammatory pathways.Innervation of intact healthy tendons is localized in the surrounding structures, i.e paratenon, endotenon and epitenon, whereas the tendon proper is practically devoid of neuronal supply. This anatomical finding reflects that the tendon metabolism is regulated from the tendon envelope, i.e. interfascicular matrix (see Chap. 1 ).Tendon innervation after injury and during repair, however, is found as extensive nerve ingrowth into the tendon proper, followed by a time-dependent emergence of different neuronal mediators, which amplify and fine-tune inflammatory and metabolic pathways in tendon regeneration. After healing nerve fibers retract to the tendon envelope.In tendinopathy innervation has been identified to consist of excessive and protracted nerve ingrowth in the tendon proper, suggesting pro-inflammatory, nociceptive and hypertrophic (degenerative) tissue responses.In metabolic disorders such as eg. diabetes impaired tendon healing has been established to be related to dysregulation of neuronal growth factors.Targeted approaches to the peripheral nervous system including neuronal mediators and their receptors may prove to be effective therapies for painful, degenerative and traumatic tendon disorders. PMID:27535247

  6. Reconstruction of atonic bladder innervation after spinal cord injury: A bladder reflex arc with afferent and efferent pathways.

    PubMed

    He, Jun; Li, Guitao; Luo, Dixin; Sun, Hongtao; Qi, Yong; Li, Yiyi; Jin, Xunjie

    2015-11-01

    Background Establishing bladder reflex arcs only with the efferent pathway to induce micturition after spinal cord injury (SCI) has been successful. However, the absence of sensory function and micturition desires can lead to serious complications. Objectives To reconstruct a bladder reflex arc with both afferent and efferent pathways to achieve atonic bladder innervation after SCI. Methods A reflex arc was established by microanastomosis of the S2 dorsal root to the peripheral process of the L5 dorsal ganglion and the L5 ventral root to the S2 ventral root. The functions of the reflex arc were evaluated using electrophysiology, wheat germ agglutinin-horseradish peroxidase (WGA-HRP) tracing, and calcitonin gene-related peptide (CGRP) immunocytochemistry analysis. Hind-paw motion was evaluated by CatWalk gait. Results Compound action potentials and compound muscle action potentials were recorded at the right L5 dorsal root following electrical stimulation of right S2 dorsal root. Similar to the control side, these were not significantly different before or after the spinal cord destruction between L6 and S4. WGA-HRP tracing and CGRP immunocytochemistry showed that construction of the afferent and efferent pathways of the bladder reflex arc encouraged axonal regeneration of motor and sensory nerves, which then made contact with the anterior and posterior horns of the spinal cord, ultimately reestablishing axoplasmic transportation. Gait analysis showed that at 3 months following the operation, only the regularity index was significantly different as compared with 1 day before the operation, other parameters showing no difference. Conclusion Bladder reflex arc with the afferent and efferent pathways reconstructs the micturition function without great influence on the motion of leg.

  7. Prostaglandin potentiates 5-HT responses in stomach and ileum innervating visceral afferent sensory neurons

    SciTech Connect

    Kim, Sojin; Jin, Zhenhua; Lee, Goeun; Park, Yong Seek; Park, Cheung-Seog; Jin, Young-Ho

    2015-01-02

    Highlights: • Prostaglandin E2 (PGE{sub 2}) effect was tested on visceral afferent neurons. • PGE{sub 2} did not evoke response but potentiated serotonin (5-HT) currents up to 167%. • PGE{sub 2}-induced potentiation was blocked by E-prostanoid type 4 receptors antagonist. • PGE{sub 2} effect on 5-HT response was also blocked by protein kinase A inhibitor KT5720. • Thus, PGE{sub 2} modulate visceral afferent neurons via synergistic signaling with 5-HT. - Abstract: Gastrointestinal disorder is a common symptom induced by diverse pathophysiological conditions that include food tolerance, chemotherapy, and irradiation for therapy. Prostaglandin E{sub 2} (PGE{sub 2}) level increase was often reported during gastrointestinal disorder and prostaglandin synthetase inhibitors has been used for ameliorate the symptoms. Exogenous administration of PGE{sub 2} induces gastrointestinal disorder, however, the mechanism of action is not known. Therefore, we tested PGE{sub 2} effect on visceral afferent sensory neurons of the rat. Interestingly, PGE{sub 2} itself did not evoked any response but enhanced serotonin (5-HT)-evoked currents up to 167% of the control level. The augmented 5-HT responses were completely inhibited by a 5-HT type 3 receptor antagonist, ondansetron. The PGE{sub 2}-induced potentiation were blocked by a selective E-prostanoid type4 (EP{sub 4}) receptors antagonist, L-161,982, but type1 and 2 receptor antagonist AH6809 has no effect. A membrane permeable protein kinase A (PKA) inhibitor, KT5720 also inhibited PGE{sub 2} effects. PGE{sub 2} induced 5-HT current augmentation was observed on 15% and 21% of the stomach and ileum projecting neurons, respectively. Current results suggest a synergistic signaling in visceral afferent neurons underlying gastrointestinal disorder involving PGE{sub 2} potentiation of 5-HT currents. Our findings may open a possibility for screen a new type drugs with lower side effects than currently using steroidal prostaglandin

  8. Thalamic territories innervated by cerebellar nuclear afferents in the hedgehog tenrec, Echinops telfairi.

    PubMed

    Künzle, H

    1998-12-21

    To gain more insight into the evolution and functional significance of cerebrocerebellar circuits, the cerebellothalamic projections were studied with anterograde tracer substances in the Madagascan lesser hedgehog, tenrec. This insectivore shows one of the lowest size indices among mammals for both the cerebellar nuclei and the neocortex. Almost all cerebellodiencephalic target areas found in the tenrec have been described in other mammals. The intensity and extent of particular projections, however, vary considerably in the tenrec compared with the other mammals investigated so far. The most remarkable finding may be the tenrec's cerebellar projection to the nucleus ventralis medialis. This projection is the most prominent cerebellothalamic projection and originates in predominantly the lateral portion of the cerebellar nuclear complex. The projection to the caudolateral portion of the ventralis anterior complex (VAC) is located immediately rostral to the area receiving ascending somatosensory afferents and appears to originate, in particular, from the intermediate cerebellar nuclear complex. Another cerebellothalamic focus of terminations lies in the paralamellar region of the VAC, whereas the proper intralaminar nuclei, at best, receive a sparse cerebellar input. A faint-to-moderate projection, on the other hand, has been traced consistently to the ventral portion of the lateralis posterior-pulvinar complex and the adjacent dorsal geniculate nucleus. In addition, there are prominent cerebellosubthalamic projections to the zona incerta and the ventral geniculate nucleus. The latter projection is confined mainly to the ventralmost subdivision, which has been shown previously to receive ascending somatosensory, but not retinal, afferents. With the exception of the nucleus ventralis medialis, the projections were essentially confined to the contralateral side.

  9. How many hair follicles are innervated by one afferent axon? A confocal microscopic analysis of palisade endings in the auricular skin of thy1-YFP transgenic mouse.

    PubMed

    Suzuki, Maasa; Ebara, Satomi; Koike, Taro; Tonomura, Sotatsu; Kumamoto, Kenzo

    2012-01-01

    Hairs are known as a sensory apparatus for touch. Their follicles are innervated predominantly by palisade endings composed of longitudinal and circumferential lanceolate endings. However, little is known as to how their original primary neurons make up a part of the ending. In this study, innervation of the palisade endings was investigated in the auricular skin of thy1-YFP transgenic mouse. Major observations were 1) Only a small portion of PGP9.5-immunopositive axons showed YFP-positivity, 2) All of thy1-YFP-positive sensory axons were thick and myelinated, 3) Individual thy1-YFP-positive trunk axons innervated 4-54 hair follicles, 4) Most palisade endings had a gap of lanceolate ending arrangement, 5) PGP9.5-immunopositive 10-32 longitudinal lanceolate endings were closely arranged. Only a part of them were thy1-YFP-positive axons that originated from 1-3 afferents, and 6) Single nerve bundles of the dermal nerve network included both bidirectional afferents. Palisade endings innervated by multiple sensory neurons might be highly sensitive to hair movement.

  10. Electrophysiology of the afferent innervation of the penis of the domestic ram.

    PubMed Central

    Cottrell, D F; Iggo, A; Kitchell, R L

    1978-01-01

    1. The discharge of impulses in afferent fibres dissected from the dorsal nerve of the penis of chloralose-anaesthetized rams was recorded electrophysiologically during controlled natural stimulation of the surgically exposed penis maintained at body temperature and mechanically stabilized in a plaster of Paris mould. 2. Fifty-eight slowly adapting mechanorecptor units were examined and their pressure, velocity and displacement thresholds were determined. Units often responded best to integumental stretch. Few had resting discharges. During a sustained perpendicularly applied displacement most units adapted to silence within 1.5 min. The units were classified into types from an analysis of their adapted impulse trains in response to a sustained mechanical stimulus. 3. Twenty-five mechanoreceptive units had rapidly adapting responses. Most units had typical rapid adapting characteristics and discharged impulses only during the dynamic phase of the application of the displacement. A subgroup had intermediate adapting characteristics, and discharged intermittently during steady displacement of the integument. 4. The mechanical sensitivity of most receptors altered when the temperature of the receptive field was changed with a positive correlation in eleven units, a negative correlation in six. Six slowly adapting units were thermally insensitive. Twelve rapidly adapting units were tested. Six had a positive thermal correlation and four a negative correlation. 5. The conduction velocities of axons of mechanoreceptor units in the dorsal nerve of the penis were in the Aalpha range (12--77 msec-1). 6. Two specific warm and five specific cold units were found. The conduction velocities of the axons supplying warm receptors were 45.4 msec-1 (one unit) and those for cold receptors were 7.5, 7.8, 30, 45.5, 48.7 msec-1. 7. No correlation could be found between the receptor submodality and the profuse receptor end bulb population demonstrated histologically. PMID:722579

  11. Neurophysiological evaluation of convergent afferents innervating the human esophagus and area of referred pain on the anterior chest wall.

    PubMed

    Hobson, Anthony R; Chizh, Boris; Hicks, Kirsty; Aziz, Qasim; Worthen, Sian; Lawrence, Philip; Dewit, Odile; Boyle, Yvonne; Dukes, George

    2010-01-01

    Noxious stimuli in the esophagus cause pain that is referred to the anterior chest wall because of convergence of visceral and somatic afferents within the spinal cord. We sought to characterize the neurophysiological responses of these convergent spinal pain pathways in humans by studying 12 healthy subjects over three visits (V1, V2, and V3). Esophageal pain thresholds (Eso-PT) were assessed by electrical stimulation and anterior chest wall pain thresholds (ACW-PT) by use of a contact heat thermode. Esophageal evoked potentials (EEP) were recorded from the vertex following 200 electrical stimuli, and anterior chest wall evoked potentials (ACWEP) were recorded following 40 heat pulses. The fear of pain questionnaire (FPQ) was administered on V1. Statistical data are shown as point estimates of difference +/- 95% confidence interval. Pain thresholds increased between V1 and V3 [Eso-PT: V1-V3 = -17.9 mA (-27.9, -7.9) P < 0.001; ACW-PT: V1-V3 = -3.38 degrees C (-5.33, -1.42) P = 0.001]. The morphology of cortical responses from both sites was consistent and equivalent [P1, N1, P2, N2 complex, where P1 and P2 are is the first and second positive (downward) components of the CEP waveform, respectively, and N1 and N2 are the first and second negative (upward) components, respectively], indicating activation of similar cortical networks. For EEP, N1 and P2 latencies decreased between V1 and V3 [N1: V1-V3 = 13.7 (1.8, 25.4) P = 0.02; P2: V1-V3 = 32.5 (11.7, 53.2) P = 0.003], whereas amplitudes did not differ. For ACWEP, P2 latency increased between V1 and V3 [-35.9 (-60, -11.8) P = 0.005] and amplitudes decreased [P1-N1: V1-V3 = 5.4 (2.4, 8.4) P = 0.01; P2-N2: 6.8 (3.4, 10.3) P < 0.001]. The mean P1 latency of EEP over three visits was 126.6 ms and that of ACWEP was 101.6 ms, reflecting afferent transmission via Adelta fibers. There was a significant negative correlation between FPQ scores and Eso-PT on V1 (r = -0.57, P = 0.05). These data provide the first

  12. Primary afferent fibers establish dye-coupled connections in the frog central nervous system.

    PubMed

    Bácskai, Timea; Matesz, Clara

    Neurobiotin and Lucifer yellow, indicators of gap junctional coupling, were applied to primary afferent fibers of the frog. Following application of tracers to cervical or lumbar dorsal root fibers, a large number of labeled granule cells were detected in the corpus cerebelli, the brainstem, and the spinal cord. The vestibular nerve was found to be in dye-coupled connection with the granule cells of the auricular lobe of the cerebellum. After application of the tracers to the trigeminal nerve, elicited dye-coupled neurons located mainly in the termination area of the descending limb of the mesencephalic trigeminal nucleus. In control experiments with biotinylated dextrane amine, only primary afferent fibers were labeled. Our results suggest that gap junctional coupling exists between primary afferent fibers and their postsynaptic targets in the frog.

  13. An in vitro method for recording single unit afferent activity from mesenteric nerves innervating isolated segments of rat ileum.

    PubMed

    Sharkey, K A; Cervero, F

    1986-04-01

    A technique has been developed for recording single unit afferent activity from mesenteric nerves in isolated segments of rat distal ileum in vitro. The preparation consists of a 3-cm segment of ileum, containing a single neurovascular bundle, held horizontally in an organ bath. One end of the segment is attached to a tension transducer to record changes in longitudinal tension of the gut muscle and the other is connected to a pressure transducer to record changes in intra-luminal pressure. Electromyographic activity of the smooth muscle is recorded using glass-insulated tungsten microelectrodes inserted in the wall of the gut. Afferent nerve activity is recorded with a monopolar platinum wire electrode from filaments of the mesenteric nerves that run between the artery and vein supplying the segment. This preparation permits the detailed analysis of the electrical activity of intestinal afferent nerve fibres correlated with mechanical and chemical events occurring naturally in the gut or imposed experimentally on it.

  14. Is fast fiber innervation responsible for increased acetylcholinesterase activity in reinnervating soleus muscles?

    NASA Technical Reports Server (NTRS)

    Misulis, K. E.; Dettbarn, W. D.

    1985-01-01

    An investigation was conducted as to whether the predominantly slow SOL, which is low in AChE activity, is initially reinnervated by axons that originally innervated fast muscle fibers with high AChE activity, such as those of the EDL. Local denervation of the SOL in the guinea pig was performed because this muscle is composed solely of slow (type I) fibers; thereby virtually eliminating the possibility of homologous muscle fast fiber innervation. The overshoot in this preparation was qualitatively similar to that seen with distal denervation in the guinea pig and local and distal denervation in the rat. Thus, initial fast fiber innvervation is not responsible for the patterns of change in AChE activity seen with reinnervation in the SOL. It is concluded that the neural control of AChe is different in these two muscles and may reflect specific differences in the characteristics of AChE regulation in fast and slow muscle.

  15. The role of the renal afferent and efferent nerve fibers in heart failure

    PubMed Central

    Booth, Lindsea C.; May, Clive N.; Yao, Song T.

    2015-01-01

    Renal nerves contain afferent, sensory and efferent, sympathetic nerve fibers. In heart failure (HF) there is an increase in renal sympathetic nerve activity (RSNA), which can lead to renal vasoconstriction, increased renin release and sodium retention. These changes are thought to contribute to renal dysfunction, which is predictive of poor outcome in patients with HF. In contrast, the role of the renal afferent nerves remains largely unexplored in HF. This is somewhat surprising as there are multiple triggers in HF that have the potential to increase afferent nerve activity, including increased venous pressure and reduced kidney perfusion. Some of the few studies investigating renal afferents in HF have suggested that at least the sympatho-inhibitory reno-renal reflex is blunted. In experimentally induced HF, renal denervation, both surgical and catheter-based, has been associated with some improvements in renal and cardiac function. It remains unknown whether the effects are due to removal of the efferent renal nerve fibers or afferent renal nerve fibers, or a combination of both. Here, we review the effects of HF on renal efferent and afferent nerve function and critically assess the latest evidence supporting renal denervation as a potential treatment in HF. PMID:26483699

  16. Morphology of central terminations of intra-axonally stained, large, myelinated primary afferent fibers from facial skin in the rat.

    PubMed

    Hayashi, H

    1985-07-01

    Horseradish peroxidase was intra-axonally injected into functionally identified primary afferent fibers within the rat spinal trigeminal tract in order to study the morphology of their central terminations. They were physiologically determined to be large, myelinated, cutaneous primary afferents by means of electrical and mechanical stimulation of their receptive fields. Ninety-three axons that innervated vibrissa follicles, guard hair follicles, and slowly adapting receptors were stained for distances of 4-12 mm at the levels of the main sensory nucleus, spinal trigeminal nucleus, and rostral cervical spinal cord. The collaterals of single axons from these receptors formed terminal arbors in the outer part of the spinal trigeminal nucleus rostral to and near the level of the obex (rostral type collaterals). In the rostral part of the subnucleus caudalis (Vc) they were confined to lamina V (caudalis type collaterals) and in the caudal part of Vc and in cervical segments they were confined to lamina III/IV (spinal-dorsal-horn-type collaterals). There were no transitional forms between the rostral and caudalis types, but there was a transitional form between the caudalis and spinal dorsal horn types. This transitional form was distributed in laminae III/IV and V. The terminal arbors of the rostral type of collaterals formed an interrupted, rostrocaudally oriented column like those seen in the lumbar dorsal horn, but the column shifted down to lamina V near the obex, and more caudally, gradually shifted upward to lamina III. Major morphological differences were not observed among the three different functional types of collaterals with respect to the rostrocaudal distribution of collaterals, and the shape and location of collaterals. The differential laminar distribution of collateral arbors of single axons along the rostrocaudal axis distinguishes the spinal trigeminal nucleus from the spinal dorsal horn where functional types of mechanoreceptive afferents form

  17. ATP decreases mechanical sensitivity of muscle thin-fiber afferents in rats.

    PubMed

    Matsuda, Teru; Kubo, Asako; Taguchi, Toru; Mizumura, Kazue

    2015-08-01

    ATP is an energy rich substance contained in cells in the order of mM. It is released when cells are damaged and when muscle is compressed or contracted. Subcutaneous injection of ATP induces pain-related behavior and hyperalgesia to mechanical and heat stimulation in rats. However, the effects of ATP in muscle have not been fully studied. In the present study we examined the effects of ATP on muscle C-fiber afferent activities using single fiber recordings, and on nociceptive behavior. Muscle C-fiber activities were recorded in vitro using extensor digitorum longus muscle-common peroneal nerve preparations excised from rats deeply anesthetized with pentobarbital. ATP (100 μM and 1 mM, but not 1 μM) superfused for 5 min before the mechanical stimulation suppressed the mechanical responses of muscle thin fibers irrespective of whether they excited the fiber. This suppressive effect was reversed by P2X receptor antagonists PPADS (100 μM) and suramin (300 μM). We also found that subcutaneous injection of ATP (10 mM) induced nociceptive behavior, whereas intramuscular injection had no effect. These findings showed that effects of ATP on muscle afferents differ from those on cutaneous afferents.

  18. Tetrodotoxin-resistant sodium channels Na(v)1.8/SNS and Na(v)1.9/NaN in afferent neurons innervating urinary bladder in control and spinal cord injured rats.

    PubMed

    Black, Joel A; Cummins, Theodore R; Yoshimura, Naoki; de Groat, William C; Waxman, Stephen G

    2003-02-14

    Tetrodotoxin-resistant (TTX-R) sodium channels Na(v)1.8/SNS and Na(v)1.9/NaN are preferentially expressed in small diameter dorsal root ganglia (DRG) neurons. The urinary bladder is innervated by small afferent neurons from L6/S1 DRG, of which approximately 75% exhibit high-threshold action potentials that are mediated by TTX-R sodium channels. Following transection of the spinal cord at T8, the bladder becomes areflexic and then gradually hyper-reflexic, and there is an attenuation of the TTX-R sodium currents in bladder afferent neurons. In the present study, we demonstrate that Na(v)1.8 is expressed in both bladder and non-bladder afferent neurons, while Na(v)1.9 is expressed in non-bladder afferent neurons but is rarely observed in bladder afferent neurons. In spinal cord transected rats 28-32 days following transection, there is a decreased expression of Na(v)1.8 sodium channels in bladder afferents, but no change in the expression of Na(v)1.8 in non-bladder afferent neurons. Both bladder and non-bladder afferent neurons exhibit limited increases in Na(v)1.9 expression following spinal cord transection. These results demonstrate that the expression of TTX-R channels in bladder afferent neurons changes after spinal cord transection, and these changes may contribute to the increased excitability of these neurons following spinal cord injury. PMID:12560118

  19. Differential central projections of vestibular afferents in pigeons

    NASA Technical Reports Server (NTRS)

    Dickman, J. D.; Fang, Q.

    1996-01-01

    The question of whether a differential distribution of vestibular afferent information to central nuclear neurons is present in pigeons was studied using neural tracer compounds. Discrete tracing of afferent fibers innervating the individual semicircular canal and otolith organs was produced by sectioning individual branches of the vestibular nerve that innervate the different receptor organs and applying crystals of horseradish peroxidase, or a horseradish peroxidase/cholera toxin mixture, or a biocytin compound for neuronal uptake and transport. Afferent fibers and their terminal distributions within the brainstem and cerebellum were visualized subsequently. Discrete areas in the pigeon central nervous system that receive primary vestibular input include the superior, dorsal lateral, ventral lateral, medial, descending, and tangential vestibular nuclei; the A and B groups; the intermediate, medial, and lateral cerebellar nuclei; and the nodulus, the uvula, and the paraflocculus. Generally, the vertical canal afferents projected heavily to medial regions in the superior and descending vestibular nuclei as well as the A group. Vertical canal projections to the medial and lateral vestibular nuclei were observed but were less prominent. Horizontal canal projections to the superior and descending vestibular nuclei were much more centrally located than those of the vertical canals. A more substantial projection to the medial and lateral vestibular nuclei was seen with horizontal canal afferents compared to vertical canal fibers. Afferents innervating the utricle and saccule terminated generally in the lateral regions of all vestibular nuclei in areas that were separate from the projections of the semicircular canals. In addition, utricular fibers projected to regions in the vestibular nuclei that overlapped with the horizontal semicircular canal terminal fields, whereas saccular afferents projected to regions that received vertical canal fiber terminations. Lagenar

  20. Netrin-1 Contributes to Myelinated Afferent Fiber Sprouting and Neuropathic Pain.

    PubMed

    Wu, Cai-Hua; Yuan, Xiao-Cui; Gao, Fang; Li, Hong-Ping; Cao, Jie; Liu, Yan-Shen; Yu, Wei; Tian, Bo; Meng, Xian-Fang; Shi, Jing; Pan, Hui-Lin; Li, Man

    2016-10-01

    Netrin-1 is a neuronal guidance molecule implicated in the development of spinal cord neurons and cortical neurons. In the adult spinal cord, UNC5H (repulsive receptor of netrin-1), but not deleted in colorectal cancer (DCC) (attractive receptor of netrin-1), constitutes a major mode of netrin-1 signal transduction, which may be involved in axon repulsion and inhibits neurite outgrowth. Abnormal sprouting of myelinated afferent fibers in the spinal dorsal horn can cause mechanical allodynia associated with postherpetic neuralgia (PHN, Shingles) and other neuropathic pains. However, whether netrin-1 participates in sprouting of myelinated afferent fibers and mechanical allodynia remains unknown. In an ultropotent TRPV1 agonist resiniferatoxin (RTX)-induced PHN-like model, RTX treatment for 6 weeks increased netrin-1 expression in dorsal horn neurons, including NK-1-positive projection neurons. In human neuroblastoma SH-SY5Y cells, we found that TRPV1 antagonist capsazepine antagonized RTX-induced upregulation of netrin-1. After RTX treatment, UNC5H2 expression was gradually decreased, whereas DCC expression was significantly increased. Silencing netrin-1 in the spinal dorsal horn significantly attenuated RTX-induced mechanical allodynia and sprouting of myelinated fibers into the spinal lamina II. Our results suggest that RTX treatment upregulates netrin-1 expression through activation of TRPV1 receptors and change UNC5H2-rich spinal dorsal horn into a growth-permissive environment by increasing DCC expression, thus enhancing the sprouting of myelinated afferent nerves. Netrin-1 may be targeted for reducing primary afferent sprouting and mechanical allodynia in PHN and other neuropathic pain conditions. PMID:26482371

  1. Netrin-1 Contributes to Myelinated Afferent Fiber Sprouting and Neuropathic Pain.

    PubMed

    Wu, Cai-Hua; Yuan, Xiao-Cui; Gao, Fang; Li, Hong-Ping; Cao, Jie; Liu, Yan-Shen; Yu, Wei; Tian, Bo; Meng, Xian-Fang; Shi, Jing; Pan, Hui-Lin; Li, Man

    2016-10-01

    Netrin-1 is a neuronal guidance molecule implicated in the development of spinal cord neurons and cortical neurons. In the adult spinal cord, UNC5H (repulsive receptor of netrin-1), but not deleted in colorectal cancer (DCC) (attractive receptor of netrin-1), constitutes a major mode of netrin-1 signal transduction, which may be involved in axon repulsion and inhibits neurite outgrowth. Abnormal sprouting of myelinated afferent fibers in the spinal dorsal horn can cause mechanical allodynia associated with postherpetic neuralgia (PHN, Shingles) and other neuropathic pains. However, whether netrin-1 participates in sprouting of myelinated afferent fibers and mechanical allodynia remains unknown. In an ultropotent TRPV1 agonist resiniferatoxin (RTX)-induced PHN-like model, RTX treatment for 6 weeks increased netrin-1 expression in dorsal horn neurons, including NK-1-positive projection neurons. In human neuroblastoma SH-SY5Y cells, we found that TRPV1 antagonist capsazepine antagonized RTX-induced upregulation of netrin-1. After RTX treatment, UNC5H2 expression was gradually decreased, whereas DCC expression was significantly increased. Silencing netrin-1 in the spinal dorsal horn significantly attenuated RTX-induced mechanical allodynia and sprouting of myelinated fibers into the spinal lamina II. Our results suggest that RTX treatment upregulates netrin-1 expression through activation of TRPV1 receptors and change UNC5H2-rich spinal dorsal horn into a growth-permissive environment by increasing DCC expression, thus enhancing the sprouting of myelinated afferent nerves. Netrin-1 may be targeted for reducing primary afferent sprouting and mechanical allodynia in PHN and other neuropathic pain conditions.

  2. Somatic modulation of spinal reflex bladder activity mediated by nociceptive bladder afferent nerve fibers in cats.

    PubMed

    Xiao, Zhiying; Rogers, Marc J; Shen, Bing; Wang, Jicheng; Schwen, Zeyad; Roppolo, James R; de Groat, William C; Tai, Changfeng

    2014-09-15

    The goal of the present study was to determine if supraspinal pathways are necessary for inhibition of bladder reflex activity induced by activation of somatic afferents in the pudendal or tibial nerve. Cats anesthetized with α-chloralose were studied after acute spinal cord transection at the thoracic T9/T10 level. Dilute (0.25%) acetic acid was used to irritate the bladder, activate nociceptive afferent C-fibers, and trigger spinal reflex bladder contractions (amplitude: 19.3 ± 2.9 cmH2O). Hexamethonium (a ganglionic blocker, intravenously) significantly (P < 0.01) reduced the amplitude of the reflex bladder contractions to 8.5 ± 1.9 cmH2O. Injection of lidocaine (2%, 1-2 ml) into the sacral spinal cord or transection of the sacral spinal roots and spinal cord further reduced the contraction amplitude to 4.2 ± 1.3 cmH2O. Pudendal nerve stimulation (PNS) at frequencies of 0.5-5 Hz and 40 Hz but not at 10-20 Hz inhibited reflex bladder contractions, whereas tibial nerve stimulation (TNS) failed to inhibit bladder contractions at all tested frequencies (0.5-40 Hz). These results indicate that PNS inhibition of nociceptive afferent C-fiber-mediated spinal reflex bladder contractions can occur at the spinal level in the absence of supraspinal pathways, but TNS inhibition requires supraspinal pathways. In addition, this study shows, for the first time, that after acute spinal cord transection reflex bladder contractions can be triggered by activating nociceptive bladder afferent C-fibers using acetic acid irritation. Understanding the sites of action for PNS or TNS inhibition is important for the clinical application of pudendal or tibial neuromodulation to treat bladder dysfunctions.

  3. Somatic modulation of spinal reflex bladder activity mediated by nociceptive bladder afferent nerve fibers in cats.

    PubMed

    Xiao, Zhiying; Rogers, Marc J; Shen, Bing; Wang, Jicheng; Schwen, Zeyad; Roppolo, James R; de Groat, William C; Tai, Changfeng

    2014-09-15

    The goal of the present study was to determine if supraspinal pathways are necessary for inhibition of bladder reflex activity induced by activation of somatic afferents in the pudendal or tibial nerve. Cats anesthetized with α-chloralose were studied after acute spinal cord transection at the thoracic T9/T10 level. Dilute (0.25%) acetic acid was used to irritate the bladder, activate nociceptive afferent C-fibers, and trigger spinal reflex bladder contractions (amplitude: 19.3 ± 2.9 cmH2O). Hexamethonium (a ganglionic blocker, intravenously) significantly (P < 0.01) reduced the amplitude of the reflex bladder contractions to 8.5 ± 1.9 cmH2O. Injection of lidocaine (2%, 1-2 ml) into the sacral spinal cord or transection of the sacral spinal roots and spinal cord further reduced the contraction amplitude to 4.2 ± 1.3 cmH2O. Pudendal nerve stimulation (PNS) at frequencies of 0.5-5 Hz and 40 Hz but not at 10-20 Hz inhibited reflex bladder contractions, whereas tibial nerve stimulation (TNS) failed to inhibit bladder contractions at all tested frequencies (0.5-40 Hz). These results indicate that PNS inhibition of nociceptive afferent C-fiber-mediated spinal reflex bladder contractions can occur at the spinal level in the absence of supraspinal pathways, but TNS inhibition requires supraspinal pathways. In addition, this study shows, for the first time, that after acute spinal cord transection reflex bladder contractions can be triggered by activating nociceptive bladder afferent C-fibers using acetic acid irritation. Understanding the sites of action for PNS or TNS inhibition is important for the clinical application of pudendal or tibial neuromodulation to treat bladder dysfunctions. PMID:25056352

  4. Laser ablation of Drosophila embryonic motoneurons causes ectopic innervation of target muscle fibers

    NASA Technical Reports Server (NTRS)

    Chang, T. N.; Keshishian, H.

    1996-01-01

    We have tested the effects of neuromuscular denervation in Drosophila by laser-ablating the RP motoneurons in intact embryos before synaptogenesis. We examined the consequences of this ablation on local synaptic connectivity in both 1st and 3rd instar larvae. We find that the partial or complete loss of native innervation correlates with the appearance of alternate inputs from neighboring motor endings and axons. These collateral inputs are found at ectopic sites on the denervated target muscle fibers. The foreign motor endings are electrophysiologically functional and are observed on the denervated muscle fibers by the 1st instar larval stage. Our data are consistent with the existence of a local signal from the target environment, which is regulated by innervation and influences synaptic connectivity. Our results show that, despite the stereotypy of Drosophila neuromuscular connections, denervation can induce local changes in connectivity in wild-type Drosophila, suggesting that mechanisms of synaptic plasticity may also be involved in normal Drosophila neuromuscular development.

  5. Synaptic Transfer from Outer Hair Cells to Type II Afferent Fibers in the Rat Cochlea

    PubMed Central

    Weisz, Catherine J.C.; Lehar, Mohamed; Hiel, Hakim; Glowatzki, Elisabeth; Fuchs, Paul Albert

    2012-01-01

    Type II cochlear afferents receive glutamatergic synaptic excitation from outer hair cells (OHCs) in the rat cochlea. However, it remains uncertain whether this connection is capable of providing auditory information to the brain. The functional efficacy of this connection depends in part on the number of presynaptic OHCs, their probability of transmitter release, and the effective electrical distance for spatial summation in the Type II fiber. The present work addresses these questions using whole-cell recordings from the spiral process of type II afferents that run below OHCs in the apical turn of young (5–9 days postnatal) rat cochlea. A ‘high potassium puffer’ was used to elicit calcium action potentials from individual OHCs and thereby show that the average probability of transmitter release was 0.26 (range 0.02 to 0.73). Electron microscopy showed relatively few vesicles tethered to ribbons in equivalent OHCs. A ‘receptive field’ map for individual type II fibers was constructed by successively puffing onto OHCs along the cochlear spiral, up to 180 µm from the recording pipette. These revealed a conservative estimate of 7 presynaptic OHCs per type II fiber (range 1–11). EPSCs evoked from presynaptic OHCs separated by more than 100 µm did not differ in amplitude or waveform, implying that the type II fiber’s length constant exceeded the length of the synaptic input zone. Taken together these data suggest that type II fibers could communicate centrally by maximal activation of their entire pool of presynaptic OHCs. PMID:22787038

  6. Innervation and functional characteristics of connective tissues, especially elastic fibers, in human fetal thoracic intervertebral articular capsule and its surroundings.

    PubMed

    Shiraishi, Yosuke; Kobayashi, Miya; Yasui, Masaya; Ozaki, Noriyuki; Sugiura, Yasuo

    2003-05-01

    The articular capsules between the thoracic vertebrae, which have physiologically different functions from those of other levels of the vertebrae, have yet to be subjected to neuro-anatomical and fine structural analysis. In the present study, we analyzed serial frozen sections of decalcified thoracic vertebrae in human fetuses, and identified the articular capsule tissue with its unique distribution of elastic fibers. The fine structure of the elastic fibers was studied by transmission electron microscopy. In the early-stage fetus, the fibrous membrane forming the lateral intervertebral articular capsule contained abundant thin elastic fibers consisting of microfibrils. In the late-stage fetus, the lateral capsule of fibrous membrane was occupied by thick elastic fibers. A medial articular capsule, namely the ligamenta flava, contained numerous thick elastic fibers in both early and late-stage fetuses. The distributional differences in nerve fibers between early and late-stage fetuses were determined by immunostaining, using antibodies raised against protein gene product 9.5 (PGP 9.5; ubiquitin carboxyl-terminal hydrolase). Innervation by PGP 9.5 immunoreactive fibers was limited to the areas of the articular capsules near the blood vessels, which may indicate their functional relation with blood flow. No PGP 9.5 immunoreactive fibers were found in the ligamenta flava of the late-stage fetus. Innervation might be directly involved in the development of the intervertebral articular capsules in normal human fetuses.

  7. Role of the heart and peripheral resistance in the reflex effect of group I afferent fibers on blood pressure.

    PubMed

    Orani, G P; Decandia, M

    1994-03-01

    Experiments were done on anesthetized and curarized cats to see whether the increase in blood pressure caused by electrical stimulation of group I afferent fibers is related to a direct reflex effect on the heart. The reflex effect of electrical stimulation of group I afferent fibers from the gastrocnemius-soleus muscles on the arterial pressure, the left ventricular pressure, the inotropic state of the left ventricle (dP50/dt) and the heart rate were compared before and after beta-blockade with propranolol (0.1 mg/kg intravenously) to reduce a possible direct effect on the heart. The same comparison was made before and after alpha-blockade with phentolamine (2.5 mg/kg intravenously) to keep the peripheral resistance constant. Electrical stimulation of group I afferent fibers caused an increase in the blood pressure, the left ventricular pressure and, to some extent, the inotropic state of the left ventricle and the heart rate. The beta-blockade had no significant effect on these increases, while the alpha-blockade abolished the increase in blood pressure. It is concluded that the effect of stimulation of group I afferent fibers on the blood pressure is not dependent on a direct reflex effect on the heart, but can be better explained by a reflex increase in the peripheral resistance. PMID:8204793

  8. A computational model for estimating recruitment of primary afferent fibers by intraneural stimulation in the dorsal root ganglia

    NASA Astrophysics Data System (ADS)

    Bourbeau, D. J.; Hokanson, J. A.; Rubin, J. E.; Weber, D. J.

    2011-10-01

    Primary afferent microstimulation has been proposed as a method for activating cutaneous and muscle afferent fibers to restore tactile and proprioceptive feedback after limb loss or peripheral neuropathy. Large populations of primary afferent fibers can be accessed directly by implanting microelectrode arrays in the dorsal root ganglia (DRG), which provide a compact and stable target for stimulating a diverse group of sensory fibers. To gain insight into factors affecting the number and types of primary afferents activated, we developed a computational model that simulates the recruitment of fibers in the feline L7 DRG. The model comprises two parts. The first part is a single-fiber model used to describe the current-distance relation and was based on the McIntyre-Richardson-Grill model for excitability. The second part uses the results of the singe-fiber model and published data on fiber size distributions to predict the probability of recruiting a given number of fibers as a function of stimulus intensity. The range of intensities over which exactly one fiber was recruited was approximately 0.5-5 µA (0.1-1 nC per phase); the stimulus intensity at which the probability of recruiting exactly one fiber was maximized was 2.3 µA. However, at 2.3 µA, it was also possible to recruit up to three fibers, albeit with a lower probability. Stimulation amplitudes up to 6 µA were tested with the population model, which showed that as the amplitude increased, the number of fibers recruited increased exponentially. The distribution of threshold amplitudes predicted by the model was similar to that previously reported by in vivo experimentation. Finally, the model suggested that medium diameter fibers (7.3-11.5 µm) may be recruited with much greater probability than large diameter fibers (12.8-16 µm). This model may be used to efficiently test a range of stimulation parameters and nerve morphologies to complement results from electrophysiology experiments and to aid in the

  9. A new technique for the direct demonstration of overlapping cutaneous innervation territories of peptidergic C-fibre afferents of rat hindlimb nerves.

    PubMed

    Dux, M; Jancsó, G

    1994-11-01

    A new technique based on the phenomenon of vascular labelling has been devised for the direct visualisation of overlapping innervation territories of cutaneous nerves. The saphenous, peroneal and sural nerves on one side in anaesthetised rats were exposed, cut centrally and successively stimulated antidromically to induce a neurogenic inflammatory response after an intravenous injection of either a 1% colloidal silver solution or a suspension of 3% Monastral Blue B. Light microscopic examination of transparent preparations of the dorsal hindpaw skin revealed labelled blood vessels of different colours which represented cutaneous territories served by different nerves. Blood vessels labelled with both substances were regarded as areas of overlapping innervation. Such areas were typically localised along the border of adjacent innervation territories. In addition, distinct areas exhibiting double-labelled blood vessels were regularly encountered in regions separate from this border zone. Areas of interest were drawn with the aid of a camera lucida and measured by means of a computerised system. The results indicate a significant, although topographically variable, degree of overlap of these cutaneous innervation areas. This new technique offers a possibility to explore the importance of normally existing overlap in the reinnervation of a denervated skin area by collateral nerve sprouting. PMID:7891461

  10. Catecholaminergic fiber innervation of the vocal motor system is intrasexually dimorphic in a teleost with alternative reproductive tactics

    PubMed Central

    Ghahramani, Zachary N.; Timothy, Miky; Kaur, Gurpreet; Gorbonosov, Michelle; Chernenko, Alena; Forlano, Paul M.

    2015-01-01

    Catecholamines, which include the neurotransmitters dopamine and noradrenaline, are known modulators of sensorimotor function, reproduction, and sexually motivated behaviors across vertebrates, including vocal-acoustic communication. Recently, we demonstrated robust catecholaminergic (CA) innervation throughout the vocal-motor system in the plainfin midshipman fish, Porichtys notatus, a seasonal breeding marine teleost that produces vocal signals for social communication. There are two distinct male reproductive morphs in this species: Type I males establish nests and court females with a long duration advertisement call, while type II males sneak-spawn to steal fertilizations from type I males. Like females, type II males can only produce brief, agonistic, grunt-type vocalizations. Here, we tested the hypothesis that intrasexual differences in the numbers of CA neurons and their fiber innervation patterns throughout the vocal-motor pathway may provide neural substrates underlying divergence in reproductive behavior between morphs. We employed immunofluorescence (-ir) histochemistry to measure tyrosine hydroxylase (TH, rate-limiting enzyme in catecholamine synthesis) neuron numbers in several forebrain and hindbrain nuclei as well as TH-ir fiber innervation throughout the vocal pathway in type I and type II males collected from nests during the summer reproductive season. After controlling for differences in body size, only one group of CA neurons displayed an unequivocal difference between male morphs: the extraventricular vagal-associated TH-ir neurons, located just lateral to the dimorphic vocal motor nucleus (VMN), were significantly greater in number in type II males. In addition, type II males exhibited greater TH-ir fiber density within the VMN and greater numbers of TH-ir varicosities with putative contacts on vocal motor neurons. This strong inverse relationship between the predominant vocal morphotype and CA innervation of vocal motor neurons suggests

  11. Cationic influences upon synaptic transmission at the hair cell-afferent fiber synapse of the frog

    NASA Technical Reports Server (NTRS)

    Cochran, S. L.

    1995-01-01

    The concentrations of inorganic cations (K+, Na+, and Ca2+) bathing the isolated frog labyrinth were varied in order to assess their role in influencing and mediating synaptic transmission at the hair cell-afferent fiber synapse. Experiments employed intracellular recordings of synaptic activity from VIIIth nerve afferents. Recordings were digitized continuously at 50 kHz, and excitatory postsynaptic potentials were detected and parameters quantified by computer algorithms. Particular attention was focused on cationic effects upon excitatory postsynaptic potential frequency of occurrence and excitatory postsynaptic potential amplitude, in order to discriminate between pre- and postsynaptic actions. Because the small size of afferents preclude long term stable recordings, alterations in cationic concentrations were applied transiently and their peak effects on synaptic activity were assessed. Increases in extracellular K+ concentration of a few millimolar produced a large increase in the frequency of occurrence of excitatory postsynaptic potentials with little change in amplitude, indicating that release of transmitter from the hair cell is tightly coupled to its membrane potential. Increasing extracellular Na+ concentration resulted in an increase in excitatory postsynaptic potential amplitude with no significant change in excitatory postsynaptic potential frequency of occurrence, suggesting that the transmitter-gated subsynaptic channel conducts Na+ ions. Decreases in extracellular Ca2+ concentration had little effect upon excitatory postsynaptic potential frequency, but increased excitatory postsynaptic potential frequency and amplitude. These findings suggest that at higher concentrations Ca2+ act presynaptically to prevent transmitter release and postsynaptically to prevent Na+ influx during the generation of the excitatory postsynaptic potential. The influences of these ions on synaptic activity at this synapse are remarkably similar to those reported at the

  12. Development and organization of polarity-specific segregation of primary vestibular afferent fibers in mice

    PubMed Central

    Kamel, Suzan; Wong, Elaine; Fritzsch, Bernd

    2010-01-01

    A striking feature of vestibular hair cells is the polarized arrangement of their stereocilia as the basis for their directional sensitivity. In mammals, each of the vestibular end organs is characterized by a distinct distribution of these polarized cells. We utilized the technique of post-fixation transganglionic neuronal tracing with fluorescent lipid soluble dyes in embryonic and postnatal mice to investigate whether these polarity characteristics correlate with the pattern of connections between the endorgans and their central targets; the vestibular nuclei and cerebellum. We found that the cerebellar and brainstem projections develop independently from each other and have a non-overlapping distribution of neurons and afferents from E11.5 on. In addition, we show that the vestibular fibers projecting to the cerebellum originate preferentially from the lateral half of the utricular macula and the medial half of the saccular macula. In contrast, the brainstem vestibular afferents originate primarily from the medial half of the utricular macula and the lateral half of the saccular macula. This indicates that the line of hair cell polarity reversal within the striola region segregates almost mutually exclusive central projections. A possible interpretation of this feature is that this macular organization provides an inhibitory side-loop through the cerebellum to produce synergistic tuning effects in the vestibular nuclei. The canal cristae project to the brainstem vestibular nuclei and cerebellum, but the projection to the vestibulocerebellum originates preferentially from the superior half of each of the cristae. The reason for this pattern is not clear, but it may compensate for unequal activation of crista hair cells or may be an evolutionary atavism reflecting a different polarity organization in ancestral vertebrate ears. PMID:20424840

  13. Electrical stimulation of low-threshold afferent fibers induces a prolonged synaptic depression in lamina II dorsal horn neurons to high-threshold afferent inputs in mice.

    PubMed

    Sdrulla, Andrei D; Xu, Qian; He, Shao-Qiu; Tiwari, Vinod; Yang, Fei; Zhang, Chen; Shu, Bin; Shechter, Ronen; Raja, Srinivasa N; Wang, Yun; Dong, Xinzhong; Guan, Yun

    2015-06-01

    Electrical stimulation of low-threshold Aβ-fibers (Aβ-ES) is used clinically to treat neuropathic pain conditions that are refractory to pharmacotherapy. However, it is unclear how Aβ-ES modulates synaptic responses to high-threshold afferent inputs (C-, Aδ-fibers) in superficial dorsal horn. Substantia gelatinosa (SG) (lamina II) neurons are important for relaying and modulating converging spinal nociceptive inputs. We recorded C-fiber-evoked excitatory postsynaptic currents (eEPSCs) in spinal cord slices in response to paired-pulse test stimulation (500 μA, 0.1 millisecond, 400 milliseconds apart). We showed that 50-Hz and 1000-Hz, but not 4-Hz, Aβ-ES (10 μA, 0.1 millisecond, 5 minutes) induced prolonged inhibition of C-fiber eEPSCs in SG neurons in naive mice. Furthermore, 50-Hz Aβ-ES inhibited both monosynaptic and polysynaptic forms of C-fiber eEPSC in naive mice and mice that had undergone spinal nerve ligation (SNL). The paired-pulse ratio (amplitude second eEPSC/first eEPSC) increased only in naive mice after 50-Hz Aβ-ES, suggesting that Aβ-ES may inhibit SG neurons by different mechanisms under naive and nerve-injured conditions. Finally, 50-Hz Aβ-ES inhibited both glutamatergic excitatory and GABAergic inhibitory interneurons, which were identified by fluorescence in vGlut2-Td and glutamic acid decarboxylase-green fluorescent protein transgenic mice after SNL. These findings show that activities in Aβ-fibers lead to frequency-dependent depression of synaptic transmission in SG neurons in response to peripheral noxious inputs. However, 50-Hz Aβ-ES failed to induce cell-type-selective inhibition in SG neurons. The physiologic implication of this novel form of synaptic depression for pain modulation by Aβ-ES warrants further investigation. PMID:25974163

  14. The effect of aging on the density of the sensory nerve fiber innervation of bone and acute skeletal pain

    PubMed Central

    Jimenez-Andrade, Juan M.; Mantyh, William G.; Bloom, Aaron P.; Freeman, Katie T.; Ghilardi, Joseph R.; Kuskowski, Michael A.; Mantyh, Patrick W.

    2010-01-01

    As humans age there is a decline in most sensory systems including vision, hearing, taste, smell, and tactile acuity. In contrast, the frequency and severity of musculoskeletal pain generally increases with age. To determine whether the density of sensory nerve fibers that transduce skeletal pain changes with age, calcitonin gene related peptide (CGRP) and neurofilament 200 kDa (NF200) sensory nerve fibers that innervate the femur were examined in the femurs of young (4 month old), middle-aged (13 month) and old (36 month) male F344/BNF1 rats. Whereas the bone quality showed a significant age-related decline, the density of CGRP+ and NF200+ nerve fibers that innervate the bone remained remarkably unchanged as well as the severity of acute skeletal fracture pain. Thus, while bone mass, quality and strength undergo a significant decline with age, the density of sensory nerve fibers that transduce noxious stimuli remain largely intact. These data may in part explain why musculoskeletal pain increases with age. PMID:20947214

  15. Retinal Input Regulates the Timing of Corticogeniculate Innervation

    PubMed Central

    Seabrook, Tania A.; El-Danaf, Rana N.; Krahe, Thomas E.

    2013-01-01

    Neurons in layer VI of visual cortex represent one of the largest sources of nonretinal input to the dorsal lateral geniculate nucleus (dLGN) and play a major role in modulating the gain of thalamic signal transmission. However, little is known about how and when these descending projections arrive and make functional connections with dLGN cells. Here we used a transgenic mouse to visualize corticogeniculate projections to examine the timing of cortical innervation in dLGN. Corticogeniculate innervation occurred at postnatal ages and was delayed compared with the arrival of retinal afferents. Cortical fibers began to enter dLGN at postnatal day 3 (P3) to P4, a time when retinogeniculate innervation is complete. However, cortical projections did not fully innervate dLGN until eye opening (P12), well after the time when retinal inputs from the two eyes segregate to form nonoverlapping eye-specific domains. In vitro thalamic slice recordings revealed that newly arriving cortical axons form functional connections with dLGN cells. However, adult-like responses that exhibited paired pulse facilitation did not fully emerge until 2 weeks of age. Finally, surgical or genetic elimination of retinal input greatly accelerated the rate of corticogeniculate innervation, with axons invading between P2 and P3 and fully innervating dLGN by P8 to P10. However, recordings in genetically deafferented mice showed that corticogeniculate synapses continued to mature at the same rate as controls. These studies suggest that retinal and cortical innervation of dLGN is highly coordinated and that input from retina plays an important role in regulating the rate of corticogeniculate innervation. PMID:23761904

  16. Perineural capsaicin induces the uptake and transganglionic transport of choleratoxin B subunit by nociceptive C-fiber primary afferent neurons.

    PubMed

    Oszlács, O; Jancsó, G; Kis, G; Dux, M; Sántha, P

    2015-12-17

    The distribution of spinal primary afferent terminals labeled transganglionically with the choleratoxin B subunit (CTB) or its conjugates changes profoundly after perineural treatment with capsaicin. Injection of CTB conjugated with horseradish peroxidase (HRP) into an intact nerve labels somatotopically related areas in the ipsilateral dorsal horn with the exceptions of the marginal zone and the substantia gelatinosa, whereas injection of this tracer into a capsaicin-pretreated nerve also results in massive labeling of these most superficial layers of the dorsal horn. The present study was initiated to clarify the role of C-fiber primary afferent neurons in this phenomenon. In L5 dorsal root ganglia, analysis of the size frequency distribution of neurons labeled after injection of CTB-HRP into the ipsilateral sciatic nerve treated previously with capsaicin or resiniferatoxin revealed a significant increase in the proportion of small neurons. In the spinal dorsal horn, capsaicin or resiniferatoxin pretreatment resulted in intense CTB-HRP labeling of the marginal zone and the substantia gelatinosa. Electron microscopic histochemistry disclosed a dramatic, ∼10-fold increase in the proportion of CTB-HRP-labeled unmyelinated dorsal root axons following perineural capsaicin or resiniferatoxin. The present results indicate that CTB-HRP labeling of C-fiber dorsal root ganglion neurons and their central terminals after perineural treatment with vanilloid compounds may be explained by their phenotypic switch rather than a sprouting response of thick myelinated spinal afferents which, in an intact nerve, can be labeled selectively with CTB-HRP. The findings also suggest a role for GM1 ganglioside in the modulation of nociceptor function and pain.

  17. Utricular afferents: morphology of peripheral terminals

    PubMed Central

    Huwe, J. A.; Logan, G. J.; Williams, B.; Rowe, M. H.

    2015-01-01

    The utricle provides critical information about spatiotemporal properties of head movement. It comprises multiple subdivisions whose functional roles are poorly understood. We previously identified four subdivisions in turtle utricle, based on hair bundle structure and mechanics, otoconial membrane structure and hair bundle coupling, and immunoreactivity to calcium-binding proteins. Here we ask whether these macular subdivisions are innervated by distinctive populations of afferents to help us understand the role each subdivision plays in signaling head movements. We quantified the morphology of 173 afferents and identified six afferent classes, which differ in structure and macular locus. Calyceal and dimorphic afferents innervate one striolar band. Bouton afferents innervate a second striolar band; they have elongated terminals and the thickest processes and axons of all bouton units. Bouton afferents in lateral (LES) and medial (MES) extrastriolae have small-diameter axons but differ in collecting area, bouton number, and hair cell contacts (LES >> MES). A fourth, distinctive population of bouton afferents supplies the juxtastriola. These results, combined with our earlier findings on utricular hair cells and the otoconial membrane, suggest the hypotheses that MES and calyceal afferents encode head movement direction with high spatial resolution and that MES afferents are well suited to signal three-dimensional head orientation and striolar afferents to signal head movement onset. PMID:25632074

  18. Innervation regulates synaptic ribbons in lateral line mechanosensory hair cells.

    PubMed

    Suli, Arminda; Pujol, Remy; Cunningham, Dale E; Hailey, Dale W; Prendergast, Andrew; Rubel, Edwin W; Raible, David W

    2016-06-01

    Failure to form proper synapses in mechanosensory hair cells, the sensory cells responsible for hearing and balance, leads to deafness and balance disorders. Ribbons are electron-dense structures that tether synaptic vesicles to the presynaptic zone of mechanosensory hair cells where they are juxtaposed with the post-synaptic endings of afferent fibers. They are initially formed throughout the cytoplasm, and, as cells mature, ribbons translocate to the basolateral membrane of hair cells to form functional synapses. We have examined the effect of post-synaptic elements on ribbon formation and maintenance in the zebrafish lateral line system by observing mutants that lack hair cell innervation, wild-type larvae whose nerves have been transected and ribbons in regenerating hair cells. Our results demonstrate that innervation is not required for initial ribbon formation but suggest that it is crucial for regulating the number, size and localization of ribbons in maturing hair cells, and for ribbon maintenance at the mature synapse.

  19. Innervation regulates synaptic ribbons in lateral line mechanosensory hair cells.

    PubMed

    Suli, Arminda; Pujol, Remy; Cunningham, Dale E; Hailey, Dale W; Prendergast, Andrew; Rubel, Edwin W; Raible, David W

    2016-06-01

    Failure to form proper synapses in mechanosensory hair cells, the sensory cells responsible for hearing and balance, leads to deafness and balance disorders. Ribbons are electron-dense structures that tether synaptic vesicles to the presynaptic zone of mechanosensory hair cells where they are juxtaposed with the post-synaptic endings of afferent fibers. They are initially formed throughout the cytoplasm, and, as cells mature, ribbons translocate to the basolateral membrane of hair cells to form functional synapses. We have examined the effect of post-synaptic elements on ribbon formation and maintenance in the zebrafish lateral line system by observing mutants that lack hair cell innervation, wild-type larvae whose nerves have been transected and ribbons in regenerating hair cells. Our results demonstrate that innervation is not required for initial ribbon formation but suggest that it is crucial for regulating the number, size and localization of ribbons in maturing hair cells, and for ribbon maintenance at the mature synapse. PMID:27103160

  20. Localization of Biogenic Amines in the Foregut of Aplysia californica: Catecholaminergic and Serotonergic Innervation

    PubMed Central

    Martínez-Rubio, Clarissa; Serrano, Geidy E.; Miller, Mark W.

    2009-01-01

    This study examined the catecholaminergic and serotonergic innervation of the foregut of Aplysia californica, a model system in which the control of feeding behaviors can be investigated at the cellular level. Similar numbers (15-25) of serotonin-like-immunoreactive (5HTli) and tyrosine hydroxylase-like-immunoreactive (THli) fibers were present in each (bilateral) esophageal nerve (En), the major source of pregastric neural innervation in this system. The majority of En 5HTli and THli fibers originated from the anterior branch (En2), which innervates the pharynx and the anterior esophagus. Fewer fibers were present in the posterior branch (En1), which innervates the majority of the esophagus and the crop. Backfills of the two En branches toward the central nervous system (CNS) labeled a single, centrifugally projecting serotonergic fiber, originating from the metacerebral cell (MCC). The MCC fiber projected only to En2. No central THli neurons were found to project to the En. Surveys of the pharynx and esophagus revealed major differences between their patterns of catecholaminergic (CA) and serotonergic innervation. Whereas THli fibers and cell bodies were distributed throughout the foregut, 5HTli fibers were present in restricted plexi, and no 5HTli somata were detected. Double-labeling experiments in the periphery revealed THli neurons projecting toward the buccal ganglion via En2. Other afferents received dense perisomatic serotonergic innervation. Finally, qualitative and quantitative differences were observed between the buccal motor programs (BMPs) produced by stimulation of the two En branches. These observations increase our understanding of aminergic contributions to the pregastric regulation of Aplysia feeding behaviors. PMID:19330814

  1. Spatial orientation of semicircular canals and afferent sensitivity vectors in pigeons.

    PubMed

    Dickman, J D

    1996-09-01

    Rotational head motion in vertebrates is detected by the semicircular canal system, whose innervating primary afferent fibers carry information about movement in specific head planes. The semicircular canals have been qualitatively examined over a number of years, and the canal planes have been quantitatively characterized in several animal species. The present study first determined the geometric relationship between individual semicircular canals and between the canals and the stereotactic head planes in pigeons. Stereotactic measurements of multiple points along the circumference of the bony canals were taken, and the measured points fitted with a three-dimensional planar surface. Direction normals to the plane's surface were calculated and used to define angles between semicircular canal pairs. Because of the unusual shape of the anterior semicircular canals in pigeons, two planes, a major and a minor, were fitted to the canal's course. Calculated angle values for all canals indicated that the horizontal and posterior semicircular canals are nearly orthogonal, but the anterior canals have substantial deviations from orthogonality with other canal planes. Next, the responses of the afferent fibers that innervate each of the semicircular canals to 0.5 Hz sinusoidal rotation about an earth-vertical axis were obtained. The head orientation relative to the rotation axis was systematically varied so that directions of maximum sensitivity for each canal afferent could be determined. These sensitivity vectors were then compared with the canal plane direction normals. The afferents that innervated specific semicircular canals formed homogeneous clusters of sensitivity vectors in different head planes. The horizontal and posterior afferents had average sensitivity vectors that were largely co-incident with the innervated canal plane direction normals. Anterior canal afferents, however, appeared to synthesize contributions from the major and minor plane components of the

  2. Spatial orientation of semicircular canals and afferent sensitivity vectors in pigeons

    NASA Technical Reports Server (NTRS)

    Dickman, J. D.

    1996-01-01

    Rotational head motion in vertebrates is detected by the semicircular canal system, whose innervating primary afferent fibers carry information about movement in specific head planes. The semicircular canals have been qualitatively examined over a number of years, and the canal planes have been quantitatively characterized in several animal species. The present study first determined the geometric relationship between individual semicircular canals and between the canals and the stereotactic head planes in pigeons. Stereotactic measurements of multiple points along the circumference of the bony canals were taken, and the measured points fitted with a three-dimensional planar surface. Direction normals to the plane's surface were calculated and used to define angles between semicircular canal pairs. Because of the unusual shape of the anterior semicircular canals in pigeons, two planes, a major and a minor, were fitted to the canal's course. Calculated angle values for all canals indicated that the horizontal and posterior semicircular canals are nearly orthogonal, but the anterior canals have substantial deviations from orthogonality with other canal planes. Next, the responses of the afferent fibers that innervate each of the semicircular canals to 0.5 Hz sinusoidal rotation about an earth-vertical axis were obtained. The head orientation relative to the rotation axis was systematically varied so that directions of maximum sensitivity for each canal afferent could be determined. These sensitivity vectors were then compared with the canal plane direction normals. The afferents that innervated specific semicircular canals formed homogeneous clusters of sensitivity vectors in different head planes. The horizontal and posterior afferents had average sensitivity vectors that were largely co-incident with the innervated canal plane direction normals. Anterior canal afferents, however, appeared to synthesize contributions from the major and minor plane components of the

  3. Perivagal antagonist treatment in rats selectively blocks the reflex and afferent responses of vagal lung C fibers to intravenous agonists.

    PubMed

    Lin, Yu-Jung; Lin, You Shuei; Lai, Ching Jung; Yuan, Zung Fan; Ruan, Ting; Kou, Yu Ru

    2013-02-01

    The terminals of vagal lung C fibers (VLCFs) express various types of pharmacological receptors that are important to the elicitation of airway reflexes and the development of airway hypersensitivity. We investigated the blockade of the reflex and afferent responses of VLCFs to intravenous injections of agonists using perivagal treatment with antagonists (PAT) targeting the transient receptor potential vanilloid 1, P2X, and 5-HT(3) receptors in anesthetized rats. Blockading these responses via perivagal capsaicin treatment (PCT), which blocks the neural conduction of C fibers, was also studied. We used capsaicin, α,β-methylene-ATP, and phenylbiguanide as the agonists, and capsazepine, iso-pyridoxalphosphate-6-azophenyl-2',5'-disulfonate, and tropisetron as the antagonists of transient receptor potential vanilloid 1, P2X, and 5-HT(3) receptors, respectively. We found that each of the PATs abolished the VLCF-mediated reflex apnea evoked by the corresponding agonist, while having no effect on the response to other agonists. Perivagal vehicle treatment failed to produce any such blockade. These blockades had partially recovered at 3 h after removal of the PATs. In contrast, PCT abolished the reflex apneic response to all three agonists. Both PATs and PCT did not affect the myelinated afferent-mediated apneic response to lung inflation. Consistently, our electrophysiological studies revealed that each of the PATs prevented the VLCF responses to the corresponding agonist, but not to any other agonist. PCT inevitably prevented the VLCF responses to all three agonists. Thus these PATs selectively blocked the stimulatory action of corresponding agonists on the VLCF terminals via mechanisms that are distinct from those of PCT. PAT may become a novel intervention for studying the pharmacological modulation of VLCFs.

  4. Regional difference in corticotropin-releasing factor immunoreactivity in mossy fiber terminals innervating calretinin-immunoreactive unipolar brush cells in vestibulocerebellum of rolling mouse Nagoya.

    PubMed

    Ando, Masahiro; Sawada, Kazuhiko; Sakata-Haga, Hiromi; Jeong, Young-Gil; Takeda, Noriaki; Fukui, Yoshihiro

    2005-11-23

    Unipolar brush cells (UBCs), a class of interneurons in the vestibulocerebellum, play roles in amplifying excitatory inputs from vestibulocerebellar mossy fibers. This study aimed to clarify whether corticotropin-releasing factor (CRF)-positive mossy fiber innervation of calretinin (CR)-positive UBCs was altered in rolling mouse Nagoya (RMN). The distribution and the number of CR-positive UBCs in the vestibulocerebellum were not different between RMN and control mice. Double immunofluorescence revealed that some CRF-positive mossy fiber terminals were in close apposition to CR-positive UBCs. In the lobule X of vermis, such mossy fiber terminals were about 5-fold greater in number in RMN than in controls. In contrast, the number of CRF-positive mossy fiber terminals adjoining CR-positive UBCs in the flocculus was not significantly different between RMN and controls. The results suggest increased number of CRF-positive mossy fiber terminals innervating CR-positive UBCs in the lobule X but not in the flocculus of RMN. CRF may alter CR-positive UBC-mediated excitatory pathways in the lobule X of RMN and may disturb functions of the lobule X such as cerebellar adaptation for linear motion of the head.

  5. Isolation of TRPV1 independent mechanisms of spontaneous and asynchronous glutamate release at primary afferent to NTS synapses.

    PubMed

    Fenwick, Axel J; Wu, Shaw-Wen; Peters, James H

    2014-01-01

    Cranial visceral afferents contained within the solitary tract (ST) contact second-order neurons in the nucleus of the solitary tract (NTS) and release the excitatory amino acid glutamate via three distinct exocytosis pathways; synchronous, asynchronous, and spontaneous release. The presence of TRPV1 in the central terminals of a majority of ST afferents conveys activity-dependent asynchronous glutamate release and provides a temperature sensitive calcium conductance which largely determines the rate of spontaneous vesicle fusion. TRPV1 is present in unmyelinated C-fiber afferents and these facilitated forms of glutamate release may underlie the relative strength of C-fibers in activating autonomic reflex pathways. However, pharmacological blockade of TRPV1 signaling eliminates only ~50% of the asynchronous profile and attenuates the temperature sensitivity of spontaneous release indicating additional thermosensitive calcium influx pathways may exist which mediate these forms of vesicle release. In the present study we isolate the contribution of TRPV1 independent forms of glutamate release at ST-NTS synapses. We found ST afferent innervation at NTS neurons and synchronous vesicle release from TRPV1 KO mice was not different to control animals; however, only half of TRPV1 KO ST afferents completely lacked asynchronous glutamate release. Further, temperature driven spontaneous rates of vesicle release were not different from 33 to 37°C between control and TRPV1 KO afferents. These findings suggest additional temperature dependent mechanisms controlling asynchronous and thermosensitive spontaneous release at physiological temperatures, possibly mediated by additional thermosensitive TRP channels in primary afferent terminals.

  6. Afferent control mechanisms involved in the development of soleus fiber alterations in simulated hypogravity

    NASA Astrophysics Data System (ADS)

    Shenkman, B. S.; Nemirovskaya, T. L.; Shapovalova, K. B.; Podlubnaya, Z. A.; Vikhliantsev, I. M.; Moukhina, A. M.; Kozlovskaya, I. B.

    2007-02-01

    It was recently established that support withdrawal (withdrawal of support reaction force) in microgravity provokes a sequence of functional shifts in the activity of motor units (inactivation of slow ones) and peripheral muscle apparatus which lead to the decline of postural muscle contractility and alterations in fiber characteristics. However, mechanisms involved in inactivation of the slow motor units and appropriate slow-twitch muscle fiber disuse under the supportless conditions remained unknown. We show here that artificial inactivation of muscles-antagonists (which are known to be hyperactive during unloading) counteracts some of the unloading-induced events in the rat soleus (fiber size reduction, slow-to-fast fiber-type transition and decline of titin and nebulin content). It was also demonstrated that direct activation of the muscarinic receptors of the neostriatum neurons prevented slow-to-fast fiber-type transformation in soleus of hindlimb suspended rats.

  7. Inhibition of repulsive guidance molecule, RGMa, increases afferent synapse formation with auditory hair cells.

    PubMed

    Brugeaud, Aurore; Tong, Mingjie; Luo, Li; Edge, Albert S B

    2014-04-01

    The peripheral fibers that extend from auditory neurons to hair cells are sensitive to damage, and replacement of the fibers and their afferent synapse with hair cells would be of therapeutic interest. Here, we show that RGMa, a repulsive guidance molecule previously shown to play a role in the development of the chick visual system, is expressed in the developing, newborn, and mature mouse inner ear. The effect of RGMa on synaptogenesis between afferent neurons and hair cells, from which afferent connections had been removed, was assessed. Contact of neural processes with hair cells and elaboration of postsynaptic densities at sites of the ribbon synapse were increased by treatment with a blocking antibody to RGMa, and pruning of auditory fibers to achieve the mature branching pattern of afferent neurons was accelerated. Inhibition by RGMa could thus explain why auditory neurons have a low capacity to regenerate peripheral processes: postnatal spiral ganglion neurons retain the capacity to send out processes that respond to signals for synapse formation, but expression of RGMa postnatally appears to be detrimental to regeneration of afferent hair cell innervation and antagonizes synaptogenesis. Increased synaptogenesis after inhibition of RGMa suggests that manipulation of guidance or inhibitory factors may provide a route to increase formation of new synapses at deafferented hair cells.

  8. Identified proprioceptive afferents and motor rhythm entrainment in the crayfish walking system.

    PubMed

    Elson, R C; Sillar, K T; Bush, B M

    1992-03-01

    1. In crayfish, Pacifastacus leniusculus, remotion of a walking leg stretches the thoraco-coxal (TC) muscle receptor organ (TCMRO), located at the leg's articulation with the thorax. In vitro, alternate stretch and release of the fourth leg's TCMRO entrained the centrally generated rhythmic motor output to that leg, with the remotor phase of the rhythm entraining to TCMRO stretch, the promoter phase to release. This coordination of motor bursts to afferent input corresponds to that of active, rhythmic movements in vivo. 2. Entrainment was rapid in onset (stable coordination resulting within the first or second stimulus cycle) and was relatively phase-constant (whatever the stimulus frequency, during 1:1 entrainment, remotor bursts began near the onset of stretch and promotor bursts began near the onset of release). Outside the range of 1:1 entrainment, 2:1, 1:2, and 1:3 coordination ratios (rhythm:stimulus) were encountered. Resetting by phasic stimulation of the TCMRO was complete and probabilistic: effective stimuli triggered rapid transitions between the two burst phases. 3. The TCMRO is innervated by two afferents, the nonspiking S and T fibers, which generate graded depolarizing receptor potentials in response to stretch. During proprioceptive entrainment, the more phasic T fiber depolarized and hyperpolarized more rapidly or in advance of the more tonic S fiber. These receptor potentials were modified differently in the two afferents by interaction with central synaptic inputs that were phase-locked to the entrained motor rhythm. 4. Injecting slow sinusoidal current into either afferent alone could entrain motor rhythms: promoter phase bursts were entrained to depolarization of the S fiber or hyperpolarization of the T fiber, whereas the converse response was obtained for remotor phase bursts. 5. During proprioceptive entrainment, tonic hyperpolarization of the S fiber weakened entrained promotor bursts and allowed remotor burst durations to increase

  9. Functional up-regulation of Nav1.8 sodium channel in Aβ afferent fibers subjected to chronic peripheral inflammation

    PubMed Central

    2014-01-01

    Background Functional alterations in the properties of Aβ afferent fibers may account for the increased pain sensitivity observed under peripheral chronic inflammation. Among the voltage-gated sodium channels involved in the pathophysiology of pain, Nav1.8 has been shown to participate in the peripheral sensitization of nociceptors. However, to date, there is no evidence for a role of Nav1.8 in controlling Aβ-fiber excitability following persistent inflammation. Methods Distribution and expression of Nav1.8 in dorsal root ganglia and sciatic nerves were qualitatively or quantitatively assessed by immunohistochemical staining and by real time-polymerase chain reaction at different time points following complete Freund’s adjuvant (CFA) administration. Using a whole-cell patch-clamp configuration, we further determined both total INa and TTX-R Nav1.8 currents in large-soma dorsal root ganglia (DRG) neurons isolated from sham or CFA-treated rats. Finally, we analyzed the effects of ambroxol, a Nav1.8-preferring blocker on the electrophysiological properties of Nav1.8 currents and on the mechanical sensitivity and inflammation of the hind paw in CFA-treated rats. Results Our findings revealed that Nav1.8 is up-regulated in NF200-positive large sensory neurons and is subsequently anterogradely transported from the DRG cell bodies along the axons toward the periphery after CFA-induced inflammation. We also demonstrated that both total INa and Nav1.8 peak current densities are enhanced in inflamed large myelinated Aβ-fiber neurons. Persistent inflammation leading to nociception also induced time-dependent changes in Aβ-fiber neuron excitability by shifting the voltage-dependent activation of Nav1.8 in the hyperpolarizing direction, thus decreasing the current threshold for triggering action potentials. Finally, we found that ambroxol significantly reduces the potentiation of Nav1.8 currents in Aβ-fiber neurons observed following intraplantar CFA injection and

  10. Response of hip joint afferent fibers to pressure and vibration in the cat.

    PubMed

    Aloisi, A M; Carli, G; Rossi, A

    1988-07-19

    Mechanical properties of 33 slowly adapting and 8 quickly adapting capsule receptors of the hip joint were investigated. All the slowly adapting receptors identified were of a limited range, discharging only when the femur was rotated to its limit of movement. They behaved as single-spot high-threshold pressure receptors as shown by the von Frey's hairs. In addition they showed a low sensitivity to vibratory stimuli applied perpendicularly to their receptive field. Only 14 out of 33 units were found to discharge following vibration; 11 could be driven 1:1 at different frequencies. There was a general trend to be entrained at lower amplitudes for higher frequencies of vibration. A positive correlation between the pressure threshold and both activation angle and vibration threshold was found. The mechanical properties of all the quickly adapting capsule receptors were found to be similar to those described in other tissues. Finally, unlike joint receptors, slowly adapting muscle afferents travelling in the same hip articular nerve were highly sensitive to pressure and vibratory stimuli.

  11. The influence of the muscle fiber pennation angle and innervation zone on the identification of neuromuscular fatigue during cycle ergometry.

    PubMed

    Camic, Clayton L; Housh, Terry J; Hendrix, C Russell; Zuniga, Jorge M; Bergstrom, Haley C; Schmidt, Richard J; Johnson, Glen O

    2011-02-01

    The purpose of the present investigation was to compare the electromyographic (EMG) responses and the estimated physical working capacity at the fatigue threshold (PWC(FT)) values recorded from electrode arrangements placed: (1) parallel to the muscle fiber pennation angle (MFPA), (2) parallel to the long axis of the femur, and (3) over the innervation zone (IZ) during incremental cycle ergometry. Thirteen college-aged males and females (mean age ± SD=22.4 ± 3.4 years) performed an incremental test to exhaustion on a cycle ergometer. A linear electrode array was utilized to determine the MFPA and location of the IZ of the vastus lateralis (VL). For determination of the PWC(FT) values, EMG signals were recorded from three bipolar electrode arrangements at different locations over the VL. The results of a one-way repeated measures ANOVA indicated there were no significant (p<0.05) mean differences in PWC(FT) values among the electrode arrangements (parallel to the MFPA=190 ± 36 W; parallel to the long axis of the femur=194 ± 40 W; and over the IZ=199 ± 51 W) or the EMG amplitude and MPF values at the common power outputs. There were also significant correlations (r=0.75-0.91) among the three electrode arrangements for PWC(FT) values. These findings suggested that the PWC(FT), like absolute EMG amplitude and MPF, is robust to the influence of electrode placement over the IZ as well as the orientation with respect to the MFPA during cycle ergometry.

  12. Electrophysiological characteristics of primary afferent fibers after systemic administration of anti-GD2 ganglioside antibody.

    PubMed

    Xiao, W H; Yu, A L; Sorkin, L S

    1997-01-01

    An animal model showing mechanical allodynia following systemic bolus injection of a human/mouse chimeric monoclonal antibody to the GD2 ganglioside (ch14.18) has been established (e.g. pain behavior generated by a light tactile stimulus). This is of clinical relevance since ch14.18 is a promising experimental treatment for pediatric neuroblastoma. The present study examined the hypothesis that allodynic effects of the anti-GD2 antibody are mediated by actions on cutaneous nerve fibers. After determining the basal magnitude of the mechanical stimulus required to produce withdrawal, ch14.18, a murine form of the anti-GD2 antibody of IgG2a isotype (14G2a), a control murine anti-melanoma antibody of IgG2a isotype (9.2.27) or saline was injected through a previously implanted jugular cannula. The experimenter was blinded to the syringe contents. Withdrawal threshold was tested at 15 min intervals for 1 h. After administration of either ch14.18 or 14G2a mechanical allodynia typically started within the first 15 min and persisted throughout the hour of behavioral testing. In the control antibody group, a modest change in tactile withdrawal threshold was observed at the 60 min time point only. Rats were then anesthetized with pentobarbital and prepared for single fiber recordings from the sural nerve. Fibers were classified based on conduction velocity, as A beta (> 25 m/s), A delta (2-25 m/s) or C (< 2 m/s). Background activity (BA) was observed in a significant number of A delta (12/61) and C (32/42) fibers in both anti-GD2 treated groups compared to the anti-melanoma antibody (1/17 A delta and 2/10 C fibers) and saline (0/26 A delta and 0/19 C fibers) treated groups. Mean mechanical threshold for A delta fibers in all three antibody treated groups was significantly reduced compared to the saline control; this was not observed for C-fibers in any group. Intravenous bolus injection (15 mg/kg) and infusion of lidocaine (plasma level 0.3-2.2 micrograms/ml) both reduced

  13. The Role of the Paratrigeminal Nucleus in Vagal Afferent Evoked Respiratory Reflexes: A Neuroanatomical and Functional Study in Guinea Pigs

    PubMed Central

    Driessen, Alexandria K.; Farrell, Michael J.; Mazzone, Stuart B.; McGovern, Alice E.

    2015-01-01

    The respiratory tree receives sensory innervation from the jugular and nodose vagal sensory ganglia. Neurons of these ganglia are derived from embryologically distinct origins and as such demonstrate differing molecular, neurochemical and physiological phenotypes. Furthermore, whereas nodose afferent neurons project to the nucleus of the solitary tract (nTS), recent neuroanatomical studies in rats suggest that jugular neurons have their central terminations in the paratrigeminal nucleus (Pa5). In the present study we confirm that guinea pigs demonstrate a comparable distinction between the brainstem terminations of nodose and jugular ganglia afferents. Thus, microinjection of fluorescently conjugated cholera toxin B (CT-B) neural tracers into the caudal nTS and Pa5 resulted in highly specific retrograde labeling of neurons in the nodose and jugular ganglia, respectively. Whereas, nodose neurons more often expressed 160 KD neurofilament proteins and the alpha3 subunit of Na+/K+ ATPase, significantly more jugular neurons expressed the neuropeptides substance P (SP) and, especially, Calcitonin Gene-Related Peptide (CGRP). Indeed, terminal fibers in the Pa5 compared to the nTS were characterized by their significantly greater expression of CGRP, further supporting the notion that jugular afferents project to trigeminal-related brainstem regions. Electrical stimulation of the guinea pig larynx following selective surgical denervation of the nodose afferent innervation to the larynx (leaving intact the jugular innervation) resulted in stimulus dependent respiratory slowing and eventual apnea. This jugular ganglia neuron mediated response was unaffected by bilateral microinjections of the GABAA agonist muscimol into the nTS, but was abolished by muscimol injected into the Pa5. Taken together these data confirm that jugular and nodose vagal ganglia afferent neurons innervate distinct central circuits and support the notion that multiple peripheral and central pathways

  14. Cholinergic innervation and receptors in the cerebellum.

    PubMed

    Jaarsma, D; Ruigrok, T J; Caffé, R; Cozzari, C; Levey, A I; Mugnaini, E; Voogd, J

    1997-01-01

    We have studied the source and ultrastructural characteristics of ChAT-immunoreactive fibers in the cerebellum of the rat, and the distribution of muscarinic and nicotinic receptors in the cerebellum of the rat, rabbit, cat and monkey, in order to define which of the cerebellar afferents may use ACh as a neurotransmitter, what target structures are they, and which cholinergic receptor mediate the actions of these pathways. Our data confirm and extend previous observations that cholinergic markers occur at relatively low density in the cerebellum and show not only interspecies variability, but also heterogeneity between cerebellar lobules in the same species. As previously demonstrated by Barmack et al. (1992a,b), the predominant fiber system in the cerebellum that might use ACh as a transmitter or a co-transmitter is formed by mossy fibers originating in the vestibular nuclei and innervating the nodulus and ventral uvula. Our results show that these fibers innervate both granule cells and unipolar brush cells, and that the presumed cholinergic action of these fibers most likely is mediated by nicotinic receptors. In addition to cholinergic mossy fibers, the rat cerebellum is innervated by beaded ChAT-immunoreactive fibers. We have demonstrated that these fibers originate in the pedunculopontine tegmental nucleus (PPTg), the lateral paragigantocellular nucleus (LPGi), and to a lesser extent in various raphe nuclei. In both the cerebellar cortex and the cerebellar nuclei these fibers make asymmetric synaptic junctions with small and medium-sized dendritic profiles. Both muscarinic and nicotinic receptor could mediate the action of these diffuse beaded fibers. In the cerebellar nuclei the beaded cholinergic fibers form a moderately dense network, and could in principle have a significant effect on neuronal activity. For instance, the cholinergic fibers arising in the PPTg may modulate the excitability of the cerebellonuclear neurons in relation to sleep and arousal (e

  15. [The stimulating effects of contralateral glossopharyngeal and hypoglossal afferent fibers on the glossopharyngeo-hypoglossal reflex activities in the frog].

    PubMed

    Murayama, N

    1991-01-01

    American Bullfrogs, Rana catesbiana, immobilized with suxamethonium chloride (20 mg/kg b. w., i. p.), were used. By stimulating the glossopharyngeal (IX) nerve, reflex activities, composed of early (10-20 ms in latency) and late (greater than 20 ms) components, were evoked in both protoractor branch (P. br.) and retractor branch (R. br.) of the ipsilateral hypoglossal (XII) nerve. Contralateral IXth nerve stimulation increased the reflex activities of both components in the P. br. elicited ipsilaterally by the homonymous nerve. Whereas, it increased the reflex activities of the early component in the R. br. but, decreased that of the late component. On the other hand, stimulation of P. br. in the contralateral XIIth nerve increased the activities of both components in the P. br. and those of the late component in the R. br., but did not affect the activities of the early component in the R. br. The time course of these effects was similar to that by contralateral IXth nerve stimulation. The present findings strongly suggest the existence of afferent fibers in the XIIth nerve. PMID:1770456

  16. The innervation of the mammalian adrenal gland.

    PubMed Central

    Parker, T L; Kesse, W K; Mohamed, A A; Afework, M

    1993-01-01

    Early conflicting reports and the lack of sensitive anatomical methods have led to an oversimplified view of adrenal gland innervation. It was not until the introduction of nerve fibre tracing techniques in the mid-1970s that the true complexity of adrenal innervation began to emerge. The first part of this article comprises a brief review of these and other relevant reports dealing with both medullary and cortical innervation. In the second part a detailed account is given of the work undertaken in Rex Coupland's Department relating to the innervation of the rodent and primate adrenal medulla using a retrograde fluorescent tracer technique. It was concluded that, in all 3 species studied, the adrenal medulla receives a sympathetic and parasympathetic efferent and an afferent innervation. The possible interrelationship between neural control of cortical and medullar secretions is discussed briefly. Images Fig. 1 Fig. 2 Fig. 5 PMID:8300416

  17. Bipolar spinal cord stimulation attenuates mechanical hypersensitivity at an intensity that activates a small portion of A-fiber afferents in spinal nerve-injured rats.

    PubMed

    Yang, F; Carteret, A F; Wacnik, P W; Chung, C-Y; Xing, L; Dong, X; Meyer, R A; Raja, S N; Guan, Y

    2011-12-29

    Spinal cord stimulation (SCS) is used clinically to treat neuropathic pain states, but the precise mechanism by which it attenuates neuropathic pain remains to be established. The profile of afferent fiber activation during SCS and how it may correlate with the efficacy of SCS-induced analgesia are unclear. After subjecting rats to an L5 spinal nerve ligation (SNL), we implanted a miniature quadripolar electrode similar to that used clinically. Our goal was to determine the population and number of afferent fibers retrogradely activated by SCS in SNL rats by recording the antidromic compound action potential (AP) at the sciatic nerve after examining the ability of bipolar epidural SCS to alleviate mechanical hypersensitivity in this model. Notably, we compared the profiles of afferent fiber activation to SCS between SNL rats that exhibited good SCS-induced analgesia (responders) and those that did not (nonresponders). Additionally, we examined how different contact configurations affect the motor threshold (MoT) and compound AP threshold. Results showed that three consecutive days of SCS treatment (50 Hz, 0.2 ms, 30 min, 80-90% of MoT), but not sham stimulation, gradually alleviated mechanical hypersensitivity in SNL rats. The MoT obtained in the animal behavioral study was significantly less than the Aα/β-threshold of the compound AP determined during electrophysiological recording, suggesting that SCS could attenuate mechanical hypersensitivity with a stimulus intensity that recruits only a small fraction of the A-fiber population in SNL rats. Although both the MoT and compound AP threshold were similar between responders and nonresponders, the size of the compound AP waveform at higher stimulation intensities was larger in the responders, indicating a more efficient activation of the dorsal column structure in responders. PMID:22001681

  18. Entropy of corneal nerve fibers distribution observed by laser scanning confocal microscopy: A noninvasive quantitative method to characterize the corneal innervation in Sjogren's syndrome patients.

    PubMed

    Bianciardi, Giorgio; Latronico, Maria Eugenia; Traversi, Claudio

    2015-12-01

    Sjogren's syndrome (SS) is a progressive autoimmune condition mainly affecting the salivary and lacrimal glands with an incidence of primary SS between 1/100 and 1/1,000. SS implies an alteration in the epithelium and subepithelium innervation, with consequent reduction of corneal sensitivity. It is necessary to have noninvasive quantitative methods to characterize the status of the corneal nerve fibers of the patients in order to choose and follow the best therapy. Entropy (information dimension) of the nerve corneal fibers distribution observed by confocal microscopy was evaluated in patients with primary SS (n = 30, 6 males, 24 females, 21-81 years), diagnosed by biopsy of salivary gland and blood tests and in sex- age-matched healthy subjects (n = 12). Corneal nerve fiber density, Langerhans cell count, and cell density in the nerve plexus images were also evaluated. In selected patients salivary gland atrophy degree was also evaluated. Nerve corneal distribution observed by confocal microscopy is fractal. Entropy of the corneal nerve distribution statistically distinguishes between SS patients and healthy subjects: patients present a lower value of information dimension of the corneal nerve fibers distribution than healthy individuals (P < 0.001). Percentage of grouped cases classified by entropy according to the subjects (selected patients vs. healthy) showed a 100% sensitivity and 96% specificity, P < 0.0001 with a low value of coefficient of variation among the individuals (6-7 times lower than the other morphometric indexes). Entropy correlated with the severity of the disease (salivary gland atrophy degree, P < 0.01). Evaluation of entropy of the corneal nerve distribution observed by a laser confocal microscopy appears to quantitatively and noninvasively characterize an aspect of the SS patients in relation to the recognition of an impairment of their ocular surface, giving us for the first time a method to objectively and precisely

  19. Cardiovascular effects of afferent renal nerve stimulation.

    PubMed

    Stella, A; Weaver, L; Golin, R; Genovesi, S; Zanchetti, A

    1987-01-01

    Electrical stimulation of afferent renal nerves elicits an increase in arterial pressure and heart rate. The hypertensive response is presumably due to the widespread activation of the sympathetic nervous system leading to peripheral vasoconstriction. Interestingly, the kidney does not appear involved in this reflex excitatory response to afferent renal nerve stimulation since changes in vascular conductances and excretory functions are equal in both the innervated and denervated kidney, and secondary to changes in renal perfusion pressure. In addition, no changes in renin release from either kidneys are observed during afferent renal nerve stimulation. It is likely that the electrical stimulation of afferent renal nerves activates other reflexes exerting an inhibitory influence on efferent renal nerve activity. Indeed, neural renorenal reflexes which tonically inhibit renal functions have clearly been demonstrated. Furthermore, preferential inhibition of efferent renal nerve activity by cardiopulmonary and sinoaortic receptors has recently been shown during activation of other visceral afferents.

  20. Long-Term Effects of Botulinum Toxin Complex Type A Injection on Mechano- and Metabo-Sensitive Afferent Fibers Originating from Gastrocnemius Muscle

    PubMed Central

    Caron, Guillaume; Marqueste, Tanguy; Decherchi, Patrick

    2015-01-01

    The aim of the present study was to investigate long term effects of motor denervation by botulinum toxin complex type A (BoNT/A) from Clostridium Botulinum, on the afferent fibers originating from the gastrocnemius muscle of rats. Animals were divided in 2 experimental groups: 1) untreated animals acting as control and 2) treated animals in which the toxin was injected in the left muscle, the latter being itself divided into 3 subgroups according to their locomotor recovery with the help of a test based on footprint measurements of walking rats: i) no recovery (B0), ii) 50% recovery (B50) and iii) full recovery (B100). Then, muscle properties, metabosensitive afferent fiber responses to potassium chloride (KCl) and lactic acid injections and Electrically-Induced Fatigue (EIF), and mechanosensitive responses to tendon vibrations were measured. At the end of the experiment, rats were killed and the toxin injected muscles were weighted. After toxin injection, we observed a complete paralysis associated to a loss of force to muscle stimulation and a significant muscle atrophy, and a return to baseline when the animals recover. The response to fatigue was only decreased in the B0 group. The responses to KCl injections were only altered in the B100 groups while responses to lactic acid were altered in the 3 injected groups. Finally, our results indicated that neurotoxin altered the biphasic pattern of response of the mechanosensitive fiber to tendon vibrations in the B0 and B50 groups. These results indicated that neurotoxin injection induces muscle afferent activity alterations that persist and even worsen when the muscle has recovered his motor activity. PMID:26485650

  1. Group I fibers: pressor reflex and cardiac activity.

    PubMed

    Decandia, G F; Decandia, M; Orani, G P

    1991-09-01

    Experiments were performed on cats to see whether stimulation of group I afferent fibers from gastrocnemius-soleus muscles induced changes in cardiac activity, in addition to the increase in systemic arterial pressure already established. The results show that the increase in arterial pressure is accompanied by an increase in systolic left ventricular pressure, without any significant changes in cardiac inotropism and chronotropism. It is concluded that the cardiac innervation is not an important efferent pathway of the pressor reflex evoked by stimulating group I afferent fibers, and that the reflex increase in arterial pressure depends mainly on an increase in peripheral vascular resistance. PMID:1742468

  2. An In Vitro Adult Mouse Muscle-nerve Preparation for Studying the Firing Properties of Muscle Afferents

    PubMed Central

    Franco, Joy A.; Kloefkorn, Heidi E.; Hochman, Shawn; Wilkinson, Katherine A.

    2014-01-01

    Muscle sensory neurons innervating muscle spindles and Golgi tendon organs encode length and force changes essential to proprioception. Additional afferent fibers monitor other characteristics of the muscle environment, including metabolite buildup, temperature, and nociceptive stimuli. Overall, abnormal activation of sensory neurons can lead to movement disorders or chronic pain syndromes. We describe the isolation of the extensor digitorum longus (EDL) muscle and nerve for in vitro study of stretch-evoked afferent responses in the adult mouse. Sensory activity is recorded from the nerve with a suction electrode and individual afferents can be analyzed using spike sorting software. In vitro preparations allow for well controlled studies on sensory afferents without the potential confounds of anesthesia or altered muscle perfusion. Here we describe a protocol to identify and test the response of muscle spindle afferents to stretch. Importantly, this preparation also supports the study of other subtypes of muscle afferents, response properties following drug application and the incorporation of powerful genetic approaches and disease models in mice. PMID:25285602

  3. Efferent innervation of turtle semicircular canal cristae: comparisons with bird and mouse.

    PubMed

    Jordan, Paivi M; Fettis, Margaret; Holt, Joseph C

    2015-06-01

    In the vestibular periphery of nearly every vertebrate, cholinergic vestibular efferent neurons give rise to numerous presynaptic varicosities that target hair cells and afferent processes in the sensory neuroepithelium. Although pharmacological studies have described the postsynaptic actions of vestibular efferent stimulation in several species, characterization of efferent innervation patterns and the relative distribution of efferent varicosities among hair cells and afferents are also integral to understanding how efferent synapses operate. Vestibular efferent markers, however, have not been well characterized in the turtle, one of the animal models used by our laboratory. Here we sought to identify reliable efferent neuronal markers in the vestibular periphery of turtle, to use these markers to understand how efferent synapses are organized, and to compare efferent neuronal labeling patterns in turtle with two other amniotes using some of the same markers. Efferent fibers and varicosities were visualized in the semicircular canal of red-eared turtles (Trachemys scripta elegans), zebra finches (Taeniopygia guttata), and mice (Mus musculus) utilizing fluorescent immunohistochemistry with antibodies against choline acetyltransferase (ChAT). Vestibular hair cells and afferents were counterstained using antibodies to myosin VIIa and calretinin. In all species, ChAT labeled a population of small diameter fibers giving rise to numerous spherical varicosities abutting type II hair cells and afferent processes. That these ChAT-positive varicosities represent presynaptic release sites were demonstrated by colabeling with antibodies against the synaptic vesicle proteins synapsin I, SV2, or syntaxin and the neuropeptide calcitonin gene-related peptide. Comparisons of efferent innervation patterns among the three species are discussed.

  4. Efferent innervation of turtle semicircular canal cristae: comparisons with bird and mouse

    PubMed Central

    Jordan, Paivi M.; Fettis, Margaret; Holt, Joseph C.

    2014-01-01

    In the vestibular periphery of nearly every vertebrate, cholinergic vestibular efferent neurons give rise to numerous presynaptic varicosities that target hair cells and afferent processes in the sensory neuroepithelium. Although pharmacological studies have described the postsynaptic actions of vestibular efferent stimulation in several species, characterization of efferent innervation patterns and the relative distribution of efferent varicosities among hair cells and afferents are also integral to understanding how efferent synapses operate. Vestibular efferent markers, however, have not been well characterized in the turtle, one of the animal models utilized by our laboratory. Here, we sought to identify reliable efferent neuronal markers in the vestibular periphery of turtle, to utilize these markers to understand how efferent synapses are organized, and to compare efferent neuronal labeling patterns in turtle with two other amniotes using some of the same markers. Efferent fibers and varicosities were visualized in the semicircular canal of Red-Eared Turtles (Trachemys scripta elegans), Zebra Finches (Taeniopygia guttata), and mice (Mus musculus) utilizing fluorescent immunohistochemistry with antibodies against choline acetyltransferase (ChAT). Vestibular hair cells and afferents were counterstained using antibodies to myosin VIIa and calretinin. In all species, ChAT labeled a population of small diameter fibers giving rise to numerous spherical varicosities abutting type II hair cells and afferent processes. That these ChAT-positive varicosities represent presynaptic release sites were demonstrated by colabeling with antibodies against the synaptic vesicle proteins synapsin I, SV2, or syntaxin and the neuropeptide calcitonin gene-related peptide (CGRP). Comparisons of efferent innervation patterns among the three species are discussed. PMID:25560461

  5. The correlated blanching of synaptic bodies and reduction in afferent firing rates caused by transmitter-depleting agents in the frog semicircular canal

    NASA Technical Reports Server (NTRS)

    Guth, P.; Norris, C.; Fermin, C. D.; Pantoja, M.

    1993-01-01

    Synaptic bodies (SBs) associated with rings of synaptic vesicles and well-defined, pre- and post-synaptic membrane structures are indicators of maturity in most hair cell-afferent nerve junctions. The role of the SBs remains elusive despite several experiments showing that they may be involved in storage of neurotransmitter. Our results demonstrate that SBs of the adult posterior semicircular canal (SCC) cristae hair cells become less electron dense following incubation of the SCC with the transmitter-depleting drug tetrabenazine (TBZ). Objective quantification and comparison of the densities of the SBs in untreated and TBZ-treated frog SCC demonstrated that TBZ significantly decreased the electron density of SBs. This reduction in electron density was accompanied by a reduction in firing rates of afferent fibers innervating the posterior SCC. A second transmitter-depleting drug, guanethidine, previously shown to reduce the electron density of hair cell SBs, also reduced the firing rates of afferent fibers innervating the posterior SCC. In contrast, the electron density of dense granules (DG), similar in size and shape to synaptic bodies (SB) in hair cells, did not change after incubation in TBZ, thus indicating that granules and SBs are not similar in regard to their electron density. The role of SBs in synaptic transmission and the transmitter, if any, stored in the SBs remain unknown. Nonetheless, the association of the lessening of electron density with a reduction in afferent firing rate provides impetus for the further investigation of the SB's role in neurotransmission.

  6. Sympathetic innervation of human muscle spindles

    PubMed Central

    Radovanovic, Dina; Peikert, Kevin; Lindström, Mona; Domellöf, Fatima Pedrosa

    2015-01-01

    The aim of the present study was to investigate the presence of sympathetic innervation in human muscle spindles, using antibodies against neuropeptide Y (NPY), NPY receptors and tyrosine hydroxylase (TH). A total of 232 muscle spindles were immunohistochemically examined. NPY and NPY receptors were found on the intrafusal fibers, on the blood vessels supplying muscle spindles and on free nerve endings in the periaxial space. TH-immunoreactivity was present mainly in the spindle nerve and vessel. This is, to our knowledge, the first morphological study concerning the sympathetic innervation of the human muscle spindles. The results provide anatomical evidence for direct sympathetic innervation of the intrafusal fibers and show that sympathetic innervation is not restricted to the blood vessels supplying spindles. Knowledge about direct sympathetic innervation of the muscle spindle might expand our understanding of motor and proprioceptive dysfunction under stress conditions, for example, chronic muscle pain syndromes. PMID:25994126

  7. Noradrenergic innervation of juvenile nasopharyngeal angiofibroma.

    PubMed

    Wang, H W; Su, W Y; Wang, J Y

    1994-01-01

    The glyoxylic catecholaminergic histofluorescence method was employed on tissues from five cases of juvenile nasopharyngeal angiofibroma in order to study the sympathetic innervation present. There was no sympathetic innervation identified in tumor parenchyma while some scant noradrenergic fibers were found in the tumor border. These findings indicate that keeping a dissection surface out of tumor during planned excisions may be very important, as vessels there have more sympathetic innervation which will then result in good vessel contraction in controlling bleeding. Non-diseased nasal mucosa from each patient was used as control tissue, with its submucosa seen to be filled with noradrenergic innervation. Some noradrenergic fibers were also found to innervate the muscle layers of arterioles or venules adjacent to the sphenopalatine foramen.

  8. Expression of receptors for glial cell line-derived neurotrophic factor family ligands in sacral spinal cord reveals separate targets of pelvic afferent fibers.

    PubMed

    Forrest, Shelley L; Keast, Janet R

    2008-02-20

    Nerve growth factor has been proposed to mediate many structural and chemical changes in bladder sensory neurons after injury or inflammation. We have examined the expression of receptors for the glial cell line-derived neurotrophic factor (GDNF) family within sensory terminals located in the sacral spinal cord and in bladder-projecting sacral dorsal root ganglion neurons of adult female Sprague-Dawley rats. Nerve fibers immunolabelled for GFRalpha1 (GDNF receptor), GFRalpha2 (neurturin receptor), or GFRalpha3 (artemin receptor) showed distinct distribution patterns in the spinal cord, suggesting separate populations of sensory fibers with different functions: GFRalpha1-labeled fibers were in outer lamina II and the lateral-collateral pathway and associated with autonomic interneurons and preganglionic neurons; GFRalpha2-labeled fibers were only in inner lamina II; GFRalpha3-labeled fibers were in lamina I, the lateral-collateral pathway, and areas surrounding dorsal groups of preganglionic neurons and associated interneurons. Immunofluorescence studies of retrogradely labelled bladder-projecting neurons in sacral dorsal root ganglia showed that approximately 25% expressed GFRalpha1 or GFRalpha3 immunoreactivity, the preferred receptors for GDNF and artemin, respectively. After cyclophosphamide-induced bladder inflammation, fluorescence intensity of GFRalpha1-positive fibers increased within the dorsal horn, but there was no change in the GFRalpha2- or GFRalpha3-positive fibers. These studies have shown that GDNF and artemin may target bladder sensory neurons and potentially mediate plasticity of sacral visceral afferent neurons following inflammation. Our results have also revealed three distinct subpopulations of sensory fibers within the sacral spinal cord, which have not been identified previously using other markers.

  9. Hepatocyte innervation in primates

    PubMed Central

    1977-01-01

    The efferent innervation and some characteristics of nerve fibers of the liver lobule in the tree shrew, a primate, are described. Nerve endings on hepatocytes were encountered regularly and were determined to be efferent adrenergic nerves. Transmission electron microscopy revealed nerve endings and varicosities in close apposition to the hepatocytes adjacent to the connective tissue of the triads as well as within the liver lobule in the space of Disse. Fluorescence microscopy indicated the existence of adrenergic nerves with a similar distribution. Autoradiography of the avid uptake of exogenous [3H]norepinephrine indicated that all intralobular nerves are potentially norepinephrinergic (adrenergic). Chemical sympathectomy with 6-OH-dopamine resulted in the degeneration of all intralobular liver nerve fibers as revealed by fluorescence microscopy and electron microscopy. Substantial regeneration occurred after 60-90 days but was not completed by that time. Some nerves were also observed in close association with von Kupffer cells and endothelial cells. The functional significance of the efferent liver innervation is discussed. PMID:406265

  10. Isolation of TRPV1 independent mechanisms of spontaneous and asynchronous glutamate release at primary afferent to NTS synapses

    PubMed Central

    Fenwick, Axel J.; Wu, Shaw-wen; Peters, James H.

    2014-01-01

    Cranial visceral afferents contained within the solitary tract (ST) contact second-order neurons in the nucleus of the solitary tract (NTS) and release the excitatory amino acid glutamate via three distinct exocytosis pathways; synchronous, asynchronous, and spontaneous release. The presence of TRPV1 in the central terminals of a majority of ST afferents conveys activity-dependent asynchronous glutamate release and provides a temperature sensitive calcium conductance which largely determines the rate of spontaneous vesicle fusion. TRPV1 is present in unmyelinated C-fiber afferents and these facilitated forms of glutamate release may underlie the relative strength of C-fibers in activating autonomic reflex pathways. However, pharmacological blockade of TRPV1 signaling eliminates only ~50% of the asynchronous profile and attenuates the temperature sensitivity of spontaneous release indicating additional thermosensitive calcium influx pathways may exist which mediate these forms of vesicle release. In the present study we isolate the contribution of TRPV1 independent forms of glutamate release at ST-NTS synapses. We found ST afferent innervation at NTS neurons and synchronous vesicle release from TRPV1 KO mice was not different to control animals; however, only half of TRPV1 KO ST afferents completely lacked asynchronous glutamate release. Further, temperature driven spontaneous rates of vesicle release were not different from 33 to 37°C between control and TRPV1 KO afferents. These findings suggest additional temperature dependent mechanisms controlling asynchronous and thermosensitive spontaneous release at physiological temperatures, possibly mediated by additional thermosensitive TRP channels in primary afferent terminals. PMID:24550768

  11. Thermal nociceptive properties of trigeminal afferent neurons in rats

    PubMed Central

    2010-01-01

    Background Although nociceptive afferents innervating the body have been heavily studied form many years, much less attention has been paid to trigeminal afferent biology. In particular, very little is known concerning trigeminal nociceptor responses to heat, and almost nothing in the rat. This study uses a highly controlled and reproducible diode laser stimulator to investigate the activation of trigeminal afferents to noxious skin heating. Results The results of this experiment demonstrate that trigeminal thermonociceptors are distinct from themonociceptors innervating the limbs. Trigeminal nociceptors have considerably slower action potential conduction velocities and lower temperature thresholds than somatic afferent neurons. On the other hand, nociceptors innervating both tissue areas separate into those that respond to short pulse, high rate skin heating and those that respond to long pulse, low rate skin heating. Conclusions This paper provides the first description in the literature of the in vivo properties of thermonociceptors in rats. These finding of two separate populations aligns with the separation between C and A-delta thermonociceptors innervating the paw, but have significant differences in terms of temperature threshold and average conduction velocities. An understanding of the temperature response properties of afferent neurons innervating the paw skin have been critical in many mechanistic discoveries, some leading to new pain therapies. A clear understanding of trigeminal nociceptors may be similarly useful in the investigation of trigeminal pain mechanisms and potential therapies. PMID:20609212

  12. A afferent fibers are involved in the pathology of central changes in the spinal dorsal horn associated with myofascial trigger spots in rats.

    PubMed

    Meng, Fei; Ge, Hong-You; Wang, Yong-Hui; Yue, Shou-Wei

    2015-11-01

    A afferent fibers have been reported to participate in the development of the central sensitization induced by inflammation and injuries. Current evidence suggests that myofascial trigger points (MTrPs) induce central sensitization in the related spinal dorsal horn, and clinical studies indicate that A fibers are associated with pain behavior. Because most of these clinical studies applied behavioral indexes, objective evidence is needed. Additionally, MTrP-related neurons in dorsal root ganglia and the spinal ventral horn have been reported to be smaller than normal, and these neurons were considered to be related to A fibers. To confirm the role of A fibers in MTrP-related central changes in the spinal dorsal horn, we studied central sensitization as well as the size of neurons associated with myofascial trigger spots (MTrSs, equivalent to MTrPs in humans) in the biceps femoris muscle of rats and provided some objective morphological evidence. Cholera toxin B subunit-conjugated horseradish peroxidase was applied to label the MTrS-related neurons, and tetrodotoxin was used to block A fibers specifically. The results showed that in the spinal dorsal horn associated with MTrS, the expression of glutamate receptor (mGluR1α/mGluR5/NMDAR1) increased, while the mean size of MTrS-related neurons was smaller than normal. After blocking A fibers, these changes reversed to some extent. Therefore, we concluded that A fibers participated in the development and maintenance of the central sensitization induced by MTrPs and were related to the mean size of neurons associated with MTrPs in the spinal dorsal horn.

  13. Structure-function relationships in rat medullary and cervical dorsal horns. I. Trigeminal primary afferents.

    PubMed

    Jacquin, M F; Renehan, W E; Mooney, R D; Rhoades, R W

    1986-06-01

    Intracellular recording and horseradish peroxidase (HRP) labeling were used to examine structure-function relationships in the medullary dorsal horn (MDH) and rostral cervical dorsal horn. In Nembutal-anesthetized rats, 78 trigeminal (V) primary afferent fibers were physiologically characterized and injected with HRP. Axons were sufficiently well stained to reconstruct all of their collaterals in the MDH. Many also extended into the cervical dorsal horn. Except for four axons, which responded best to noxious stimuli, all responded at short (mean = 0.50 ms) latencies to V ganglion shocks and to innocuous stimulation. Forty-five of our recovered fibers were associated with facial vibrissae and responded in either a rapidly adapting, slowly adapting type I, slowly adapting type IIa, or slowly adapting type IIb fashion. The adequate stimuli consisted of either slow deflection, high-velocity deflection, or a noxious pinch of the vibrissa follicle. The collaterals of all of the above-described mystacial vibrissa primary afferents proceeded directly to their region of arborization in a plane perpendicular to the lateral border of the medulla to collectively form a largely continuous, circumscribed terminal column. This longitudinally oriented column of terminal and en passant boutons angled from lamina V rostrally to lamina III caudally. In the magnocellular laminae of the MDH, all mystacial vibrissa primary afferents gave rise to similarly shaped arbors, regardless of their functional classification. While morphological variability was observed both within and between individual axons, variance between functional classes was no greater than that within a class. Moreover, number of collaterals, number of boutons, or bouton size did not distinguish functional classes. Nonmystacial vibrissa afferent arbors, with more caudal peripheral fields, had their primary arbor focus in C1 and C2 dorsal horn. These arbors had relatively little rostrocaudal overlap with mystacial

  14. Inhibitory Interneurons That Express GFP in the PrP-GFP Mouse Spinal Cord Are Morphologically Heterogeneous, Innervated by Several Classes of Primary Afferent and Include Lamina I Projection Neurons among Their Postsynaptic Targets.

    PubMed

    Ganley, Robert P; Iwagaki, Noboru; del Rio, Patricia; Baseer, Najma; Dickie, Allen C; Boyle, Kieran A; Polgár, Erika; Watanabe, Masahiko; Abraira, Victoria E; Zimmerman, Amanda; Riddell, John S; Todd, Andrew J

    2015-05-13

    The superficial dorsal horn of the spinal cord contains numerous inhibitory interneurons, which regulate the transmission of information perceived as touch, pain, or itch. Despite the importance of these cells, our understanding of their roles in the neuronal circuitry is limited by the difficulty in identifying functional populations. One group that has been identified and characterized consists of cells in the mouse that express green fluorescent protein (GFP) under control of the prion protein (PrP) promoter. Previous reports suggested that PrP-GFP cells belonged to a single morphological class (central cells), received inputs exclusively from unmyelinated primary afferents, and had axons that remained in lamina II. However, we recently reported that the PrP-GFP cells expressed neuronal nitric oxide synthase (nNOS) and/or galanin, and it has been shown that nNOS-expressing cells are more diverse in their morphology and synaptic connections. We therefore used a combined electrophysiological, pharmacological, and anatomical approach to reexamine the PrP-GFP cells. We provide evidence that they are morphologically diverse (corresponding to "unclassified" cells) and receive synaptic input from a variety of primary afferents, with convergence onto individual cells. We also show that their axons project into adjacent laminae and that they target putative projection neurons in lamina I. This indicates that the neuronal circuitry involving PrP-GFP cells is more complex than previously recognized, and suggests that they are likely to have several distinct roles in regulating the flow of somatosensory information through the dorsal horn.

  15. Identification of bladder and colon afferents in the nodose ganglia of male rats.

    PubMed

    Herrity, April N; Rau, Kristofer K; Petruska, Jeffrey C; Stirling, David P; Hubscher, Charles H

    2014-11-01

    The sensory neurons innervating the urinary bladder and distal colon project to similar regions of the central nervous system and often are affected simultaneously by various diseases and disorders, including spinal cord injury. Anatomical and physiological commonalities between the two organs involve the participation of shared spinally derived pathways, allowing mechanisms of communication between the bladder and colon. Prior electrophysiological data from our laboratory suggest that the bladder also may receive sensory innervation from a nonspinal source through the vagus nerve, which innervates the distal colon as well. The present study therefore aimed to determine whether anatomical evidence exists for vagal innervation of the male rat urinary bladder and to assess whether those vagal afferents also innervate the colon. Additionally, the relative contribution to bladder and colon sensory innervation of spinal and vagal sources was determined. By using lipophilic tracers, neurons that innervated the bladder and colon in both the nodose ganglia (NG) and L6/S1 and L1/L2 dorsal root ganglia (DRG) were quantified. Some single vagal and spinal neurons provided dual innervation to both organs. The proportions of NG afferents labeled from the bladder did not differ from spinal afferents labeled from the bladder when considering the collective population of total neurons from either group. Our results demonstrate evidence for vagal innervation of the bladder and colon and suggest that dichotomizing vagal afferents may provide a neural mechanism for cross-talk between the organs. PMID:24845615

  16. Pathophysiology of Small-Fiber Sensory System in Parkinson's Disease: Skin Innervation and Contact Heat Evoked Potential.

    PubMed

    Lin, Chin-Hsien; Chao, Chi-Chao; Wu, Shao-Wei; Hsieh, Paul-Chen; Feng, Fang-Ping; Lin, Yea-Huey; Chen, Ya-Mei; Wu, Ruey-Meei; Hsieh, Sung-Tsang

    2016-03-01

    Sensory symptoms are frequent nonmotor complaints in patients with Parkinson's disease (PD). However, few investigations integrally explored the physiology and pathology of the thermonociceptive pathway in PD. We aim to investigate the involvement of the thermonociceptive pathway in PD.Twenty-eight PD patients (16 men, with a mean age and standard deviation of 65.6 ± 10.7 years) free of neuropathic symptoms and systemic disorders were recruited for the study and compared to 23 age- and gender-matched control subjects (12 men, with a mean age and standard deviation of 65.1 ± 9.9 years). We performed skin biopsy, contact heat-evoked potential (CHEP), and quantitative sensory tests (QST) to study the involvement of the thermonociceptive pathway in PD.The duration of PD was 7.1 ± 3.2 (range 2-17 years) years and the UPDRS part III score was 25.6 ± 9.7 (range 10-48) during the off period. Compared to control subjects, PD patients had reduced intra-epidermal nerve fiber (IENF) density (2.48 ± 1.65 vs 6.36 ± 3.19 fibers/mm, P < 0.001) and CHEP amplitude (18.02 ± 10.23 vs 33.28 ± 10.48 μV, P < 0.001). Twenty-three patients (82.1%) had abnormal IENF densities and 18 (64.3%) had abnormal CHEP. Nine patients (32.1%) had abnormal thermal thresholds in the feet. In total 27 patients (96.4%) had at least 1 abnormality in IENF, CHEP, or thermal thresholds of the foot, indicating dysfunctions in the small-fiber nerve system. In control subjects, CHEP amplitude linearly correlated with IENF density (P < 0.001). In contrast, this relationship disappeared in PD (P = 0.312) and CHEP amplitude was negatively correlated with motor severity of PD independent of age, gender, and anti-PD medication dose (P = 0.036), suggesting the influences of central components on thermonociceptive systems in addition to peripheral small-fiber nerves in PD.The present study suggested impairment of small-fiber sensory system at both

  17. Pathophysiology of Small-Fiber Sensory System in Parkinson's Disease: Skin Innervation and Contact Heat Evoked Potential.

    PubMed

    Lin, Chin-Hsien; Chao, Chi-Chao; Wu, Shao-Wei; Hsieh, Paul-Chen; Feng, Fang-Ping; Lin, Yea-Huey; Chen, Ya-Mei; Wu, Ruey-Meei; Hsieh, Sung-Tsang

    2016-03-01

    Sensory symptoms are frequent nonmotor complaints in patients with Parkinson's disease (PD). However, few investigations integrally explored the physiology and pathology of the thermonociceptive pathway in PD. We aim to investigate the involvement of the thermonociceptive pathway in PD.Twenty-eight PD patients (16 men, with a mean age and standard deviation of 65.6 ± 10.7 years) free of neuropathic symptoms and systemic disorders were recruited for the study and compared to 23 age- and gender-matched control subjects (12 men, with a mean age and standard deviation of 65.1 ± 9.9 years). We performed skin biopsy, contact heat-evoked potential (CHEP), and quantitative sensory tests (QST) to study the involvement of the thermonociceptive pathway in PD.The duration of PD was 7.1 ± 3.2 (range 2-17 years) years and the UPDRS part III score was 25.6 ± 9.7 (range 10-48) during the off period. Compared to control subjects, PD patients had reduced intra-epidermal nerve fiber (IENF) density (2.48 ± 1.65 vs 6.36 ± 3.19 fibers/mm, P < 0.001) and CHEP amplitude (18.02 ± 10.23 vs 33.28 ± 10.48 μV, P < 0.001). Twenty-three patients (82.1%) had abnormal IENF densities and 18 (64.3%) had abnormal CHEP. Nine patients (32.1%) had abnormal thermal thresholds in the feet. In total 27 patients (96.4%) had at least 1 abnormality in IENF, CHEP, or thermal thresholds of the foot, indicating dysfunctions in the small-fiber nerve system. In control subjects, CHEP amplitude linearly correlated with IENF density (P < 0.001). In contrast, this relationship disappeared in PD (P = 0.312) and CHEP amplitude was negatively correlated with motor severity of PD independent of age, gender, and anti-PD medication dose (P = 0.036), suggesting the influences of central components on thermonociceptive systems in addition to peripheral small-fiber nerves in PD.The present study suggested impairment of small-fiber sensory system at both

  18. Systemic morphine treatment induces changes in firing patterns and responses of nociceptive afferent fibers in mouse glabrous skin.

    PubMed

    Hogan, Dale; Baker, Alyssa L; Morón, Jose A; Carlton, Susan M

    2013-11-01

    Patients receiving opioids for pain may experience decreased effectiveness of the drug and even abnormal pain sensitivity-hyperalgesia and/or allodynia. We hypothesized that peripheral nociceptor hyperexcitability contributes to opioid-induced hyperalgesia and tested this using an in vitro mouse glabrous skin-nerve preparation. Mice were injected intraperitoneally with escalating doses of morphine (5, 8, 10, 15 mg/kg) or saline every 12 hours for 48 hours and killed approximately 12 hours after the last injection. Receptive fields of nociceptors were tested for mechanical, heat, and cold sensitivity. Activity was also measured during an initial 2-minute period and during 5-minute periods between stimuli. Aberrant activity was common in fibers from morphine-treated mice but rare in saline-treated mice. Resting background activity was elevated in C-fibers from morphine-treated mice. Both C- and Aδ-fibers had afterdischarge in response to mechanical, heat, and/or cold stimulation of the skin as well as spontaneous, unevoked activity. Compared to saline, morphine treatment increased the proportion of fibers displaying polymodal rather than mechanical-only responses. A significant increase in Aδ-mechanoreceptive fibers responding to cold accounted for most of this change. In agreement with this, morphine-treated mice showed increased sensitivity in the cold tail flick test. In morphine-treated mice, aberrant activity and hyperexcitability of nociceptors could contribute to increased pain sensitivity. Importantly, this activity is likely driving central sensitization, a phenomenon contributing to abnormal sensory processing and chronic pain. If similar changes occur in human patients, aberrant nociceptor activity is likely to be interpreted as pain and could contribute to opioid-induced hyperalgesia.

  19. Monosynaptic convergence of somatic and visceral C-fiber afferents on projection and local circuit neurons in lamina I: a substrate for referred pain.

    PubMed

    Luz, Liliana L; Fernandes, Elisabete C; Sivado, Miklos; Kokai, Eva; Szucs, Peter; Safronov, Boris V

    2015-10-01

    Referred pain is a phenomenon of feeling pain at a site other than the site of the painful stimulus origin. It arises from a pathological mixing of nociceptive processing pathways for visceral and somatic inputs. Despite numerous studies based on unit recordings from spinal and supraspinal neurons, the exact mechanism and site of this mixing within the central nervous system are not known. Here, we selectively recorded from lamina I neurons, using a visually guided patch-clamp technique, in thoracic spinal cord preparation with preserved intercostal (somatic) and splanchnic (visceral) nerves. We show that somatic and visceral C fibers converge monosynaptically onto a group of lamina I neurons, which includes both projection and local circuit neurons. Other groups of lamina I neurons received inputs from either somatic or visceral afferents. We have also identified a population of lamina I local circuit neurons showing overall inhibitory responses upon stimulation of both nerves. Thus, the present data allow us to draw two major conclusions. First, lamina I of the spinal cord is the first site in the central nervous system where somatic and visceral pathways directly converge onto individual projection and local circuit neurons. Second, the mechanism of somatovisceral convergence is complex and based on functional integration of monosynaptic and polysynaptic excitatory as well as inhibitory inputs in specific groups of neurons. This complex pattern of convergence provides a substrate for alterations in the balance between visceral and somatic inputs causing referred pain.

  20. Serotonergic innervation of the inner ear: is it involved in the general physiological control of the auditory receptor?

    PubMed

    Bartolomé, M Visitación; Gil-Loyzaga, Pablo

    2005-01-01

    The auditory pathway of mammals is composed of two complementary ascending afferent and descending efferent independent systems. The brainstem nuclei and cochlear projections for these systems are now well-known. In addition, a highly conspicuous distribution for serotonergic fibers was recently reported. This study focused on these serotonergic fibers and their neurons of origin. We identified several different types of serotonergic brainstem neurons surrounding the superior olivary complex and around the periolivary nuclei. Even though the 5-hydroxytryptamine (5-HT) efferent cochlear innervation originates in the periolivary area of the superior olivary complex system projecting to the cochlea, it is not involved in the transduction of pure tones during auditory processing. However, recent findings, after cochlear blockade of serotonin transporters, strongly suggested that this neuroactive substance has an important turnover within the auditory receptor. The presence of a conspicuous peripheral nerve distribution together with a particular brainstem origin could define a complex role for this innervation. Therefore, 5-HT fibers projecting to the cochlea might be involved, as in other parts of the auditory pathway, in alertness, attention, control of sleep or wakefulness cycles, and state of urgency prior to the transduction processing at the auditory receptor. A lack, or reduction, of the function of these fibers could result in pathological alterations. PMID:16639911

  1. Stability of long term facilitation and expression of zif268 and Arc in the spinal cord dorsal horn is modulated by conditioning stimulation within the physiological frequency range of primary afferent fibers.

    PubMed

    Haugan, F; Wibrand, K; Fiskå, A; Bramham, C R; Tjølsen, A

    2008-07-17

    Long term facilitation (LTF) of C-fiber-evoked firing of wide dynamic range neurons in the spinal dorsal horn in response to conditioning stimulation (CS) of afferent fibers is a widely studied cellular model of spinal nociceptive sensitization. Although 100 Hz CS of primary afferent fibers is commonly used to induce spinal cord LTF, this frequency exceeds the physiological firing range. Here, we examined the effects of electrical stimulation of the sciatic nerve within the physiological frequency range on the magnitude and stability of the C-fiber-evoked responses of wide dynamic range neurons and the expression of immediate early genes (c-fos, zif268, and Arc) in anesthetized rats. Stimulation frequencies of 3, 30 and 100 Hz all induced facilitation of similar magnitude as recorded at 1 h post-CS. Strikingly, however, 3 Hz-induced potentiation of the C-fiber responses was decremental, whereas both 30 and 100 Hz stimulation resulted in stable, non-decremental facilitation over 3 h of recording. The number of dorsal horn neurons expressing c-fos, but not zif268 or Arc, was significantly elevated after 3 Hz CS and increased proportionally with stimulation rate. In contrast, a stable LTF of C-fiber responses was obtained at 30 and 100 Hz CS, and at these frequencies there was a sharp increase in zif268 expression and appearance of Arc-positive neurons. The results show that response facilitation can be induced by stimulation frequencies in the physiological range (3 and 30 Hz). Three hertz stimulation induced the early phase of LTF, but the responses were decremental. Arc and zif268, two genes previously coupled to LTP of synaptic transmission in the adult brain, are upregulated at the same frequencies that give stable LTF (30 and 100 Hz). This frequency-dependence is important for understanding how the afferent firing pattern affects neuronal plasticity and nociception in the spinal dorsal horn.

  2. Adrenergic and noradrenergic innervation of the midbrain ventral tegmental area and retrorubral field: Prominent inputs from medullary homeostatic centers

    PubMed Central

    Mejías-Aponte, Carlos A; Drouin, Candice; Aston-Jones, Gary

    2009-01-01

    Adrenergic agents modulate the activity of midbrain ventral tegmental area (VTA) neurons. However, the sources of noradrenergic and adrenergic inputs are not well characterized. Immunostaining for dopamine beta-hydroxylase revealed fibers within dopamine (DA) neuron areas, with the highest density in the retrorubral field (A8 cell group), followed by the VTA (A10 cell group), and very few fibers within substantia nigra compacta. A less dense, but similar pattern of fibers was also found for the epinephrine marker, phenylethanolamine N-methyl transferase. Injection of the retrograde tracer wheat germ agglutinin-apo (inactivated) horseradish peroxidase conjugated to colloidal gold, or cholera toxin subunit b, revealed that the noradrenergic innervation of the A10 and A8 regions arise primarily from A1, A2, A5, and locus coeruleus neurons. Selective lesions of the ventral noradrenergic bundle confirmed a prominent innervation from A1 and A2 areas. Retrogradely labeled epinephrine neurons were found mainly in the C1 area. The identification of medullary noradrenergic and adrenergic afferents to DA neuron areas indicates new pathways for visceral-related inputs to reward-related areas in the midbrain. PMID:19295165

  3. Correlation of peripheral innervation density and dorsal horn map scale.

    PubMed

    Wang, L; Millecchia, R; Brown, P B

    1997-08-01

    Dorsal horn map scale and peripheral innervation density were compared to test a hypothesized linear relationship. In anesthetized cats, low-threshold mechanoreceptive peripheral nerve innervation fields (IFs) were measured by outlining areas of skin from which action potentials could be elicited in cutaneous nerves. The same nerves were processed histologically and used to count myelinated axons. Innervation density for each nerve was calculated as number of axons divided by IF area. Single units were recorded throughout the hindlimb representation, in laminae III and IV. These data, combined with single-unit data from other animals and with cell counts in laminae III and IV, permitted estimation of numbers of cells whose receptive field centers fell in contiguous 1-cm bands from tips of toes to proximal thigh. A similar estimate was performed with the use of the nerve innervation data, so that peripheral innervation densities and map scales for the different 1-cm bands of skin could be compared. Correlation between the two was quite high (r = 0.8), and highly significant (P = 2.5 x 10(-7)). These results are consistent with a proposed developmental model in which map scale, peripheral innervation density, and reciprocal of dorsal horn cell receptive field size are mutually proportional, as a result of developmental mechanisms that produce constant divergence and convergence between primary afferent axons and dorsal horn cells. PMID:9307105

  4. Regeneration of specific innervation in Xenopus pectoralis muscle.

    PubMed

    Harada, Y; Grinnell, A D

    1996-12-01

    We investigated the motor unit organization and precision of reinnervation in the Xenopus pectoralis muscle following different manipulations, including crush or section of the posterior pectoralis nerve, foreign nerve innervation, and crush coupled with activity modulation or block. Most fibers have two neuromuscular junctions, and multielectrode recordings were used to identify the axonal origin of all inputs to both junctions on most or all fibers covering about 25% of the muscle surface. Following simple nerve crush, a highly organized innervation pattern was restored, indistinguishable from the normal pattern, including selective innervation of fibers of similar input resistance (R(in)), compact motor unit organization, and high incidence of exclusive innervation of both end plates on each fiber by the same axon (distributed mononeuronal innervation, or a/a pattern). Initial reinnervation was equally precise when nerve conduction in the regenerating nerve was blocked by tetrodotoxin. More distant or repeated nerve crush or nerve section delayed and reduced the precision of reinnervation, but the majority of fibers still received input to both end plates by the same axon, often in combination with others. A foreign nerve, the pectoralis sternalis, which in its own muscle forms only single end plates, showed less precise reinnervation, but still had an incidence of a/a innervation far above chance. These data imply the expression and recognition of remarkably precise chemospecific cues even in mature animals, superimposed on which is a further refinement by synapse elimination, probably based on an activity-dependent process.

  5. Innervation changes induced by inflammation of the rat thoracolumbar fascia.

    PubMed

    Hoheisel, U; Rosner, J; Mense, S

    2015-08-01

    Recently, the fascia innervation has become an important issue, particularly the existence of nociceptive fibers. Fascia can be a source of pain in several disorders such as fasciitis and non-specific low back pain. However, nothing is known about possible changes of the fascia innervation under pathological circumstances. This question is important, because theoretically pain from the fascia cannot only be due to increased nociceptor discharges, but also to a denser innervation of the fascia by nociceptive endings. In this histological study, an inflammation was induced in the thoracolumbar fascia (TLF) of rats and the innervation by various fiber types compared between the inflamed and intact TLF. Although the TLF is generally considered to have proprioceptive functions, no corpuscular proprioceptors (Pacini and Ruffini corpuscles) were found. To obtain quantitative data, the length of fibers and free nerve endings were determined in the three layers of the rat TLF: inner layer (IL, adjacent to the multifidus muscle), middle layer (ML) and outer layer (OL). The main results were that the overall innervation density showed little change; however, there were significant changes in some of the layers. The innervation density was significantly decreased in the OL, but this change was partly compensated for by an increase in the IL. The density of substance P (SP)-positive - presumably nociceptive - fibers was significantly increased. In contrast, the postganglionic sympathetic fibers were significantly decreased. In conclusion, the inflamed TLF showed an increase of presumably nociceptive fibers, which may explain the pain from a pathologically altered fascia. The meaning of the decreased innervation by sympathetic fibers is obscure at present. The lack of proprioceptive corpuscular receptors within the TLF does not preclude its role as a proprioceptive structure, because some of the free nerve endings may function as proprioceptors.

  6. Amino acid specificity of fibers of the facial/trigeminal complex innervating the maxillary barbel in the Japanese sea catfish, Plotosus japonicus.

    PubMed

    Caprio, John; Shimohara, Mami; Marui, Takayuki; Kohbara, Jun; Harada, Shuitsu; Kiyohara, Sadao

    2015-12-01

    The Japanese sea catfish, Plotosus japonicus, possesses taste and solitary chemoreceptor cells (SCCs) located on the external body surface that detect specific water-soluble substances. Here, we identify two major fiber types of the facial/trigeminal complex that transmit amino acid information to the medulla. Both single and few fiber preparations respond to amino acid stimulation in the 0.1 μM to mM range. One fiber type responds best to glycine and l-alanine (i.e. Gly/Ala fibers) whereas the other fiber type is best stimulated by l-proline and glycine betaine (hereafter referred to only as betaine) (i.e. Pro/Bet fibers). We demonstrate that betaine, which does not alter the pH of the seawater and therefore does not activate the animals' highly sensitive pH sensors (Caprio et al., Science 344:1154-1156, 2014), is sufficient to elicit appetitive food search behavior. We further show that the amino acid specificity of fibers of the facial/trigeminal complex in P. japonicus is different from that in Ariopsis felis (Michel and Caprio, J. Neurophysiol. 66:247-260, 1991; Michel et al., J. Comp. Physiol. A. 172:129-138, 1993), a representative member of the only other family (Ariidae) of extant marine catfishes. PMID:26459116

  7. Amino acid specificity of fibers of the facial/trigeminal complex innervating the maxillary barbel in the Japanese sea catfish, Plotosus japonicus.

    PubMed

    Caprio, John; Shimohara, Mami; Marui, Takayuki; Kohbara, Jun; Harada, Shuitsu; Kiyohara, Sadao

    2015-12-01

    The Japanese sea catfish, Plotosus japonicus, possesses taste and solitary chemoreceptor cells (SCCs) located on the external body surface that detect specific water-soluble substances. Here, we identify two major fiber types of the facial/trigeminal complex that transmit amino acid information to the medulla. Both single and few fiber preparations respond to amino acid stimulation in the 0.1 μM to mM range. One fiber type responds best to glycine and l-alanine (i.e. Gly/Ala fibers) whereas the other fiber type is best stimulated by l-proline and glycine betaine (hereafter referred to only as betaine) (i.e. Pro/Bet fibers). We demonstrate that betaine, which does not alter the pH of the seawater and therefore does not activate the animals' highly sensitive pH sensors (Caprio et al., Science 344:1154-1156, 2014), is sufficient to elicit appetitive food search behavior. We further show that the amino acid specificity of fibers of the facial/trigeminal complex in P. japonicus is different from that in Ariopsis felis (Michel and Caprio, J. Neurophysiol. 66:247-260, 1991; Michel et al., J. Comp. Physiol. A. 172:129-138, 1993), a representative member of the only other family (Ariidae) of extant marine catfishes.

  8. Cardiac Innervation and Sudden Cardiac Death

    PubMed Central

    Fukuda, Keiichi; Kanazawa, Hideaki; Aizawa, Yoshiyasu; Ardell, Jeffrey L.; Shivkumar, Kalyanam

    2015-01-01

    Afferent and efferent cardiac neurotransmission via the cardiac nerves intricately modulates nearly all physiological functions of the heart (chronotropy, dromotropy, lusitropy and inotropy). Afferent information from the heart is transmitted to higher levels of the nervous system for processing (intrinsic cardiac nervous system, extracardiac-intrathoracic ganglia, spinal cord, brain stem and higher centers) which ultimately results in efferent cardiomotor neural impulses (via the sympathetic and parasympathetic nerves). This system forms interacting feedback loops that provide physiological stability for maintaining normal rhythm and life-sustaining circulation. This system also ensures that there is fine-tuned regulation of sympathetic-parasympathetic balance in the heart under normal and stressed states in the short (beat to beat), intermediate (minutes-hours) and long term (days-years). This important neurovisceral /autonomic nervous system also plays a major role in the pathophysiology and progression of heart disease, including heart failure and arrhythmias leading to sudden cardiac death (SCD). Transdifferentiation of neurons in heart failure, functional denervation, cardiac and extra-cardiac neural remodeling have also been identified and characterized during the progression of disease. Recent advances in understanding the cellular and molecular processes governing innervation and the functional control of the myocardium in health and disease provides a rational mechanistic basis for development of neuraxial therapies for preventing SCD and other arrhythmias. Advances in cellular, molecular, and bioengineering realms have underscored the emergence of this area as an important avenue of scientific inquiry and therapeutic intervention. PMID:26044253

  9. Correlation between afferent rearrangements and behavioral deficits after local excitotoxic insult in the mammalian vestibule: a rat model of vertigo symptoms

    PubMed Central

    Travo, Cécile; Saleur, Aurélie; Broussy, Audrey; Brugeaud, Aurore; Chabbert, Christian

    2016-01-01

    ABSTRACT Damage to inner ear afferent terminals is believed to result in many auditory and vestibular dysfunctions. The sequence of afferent injuries and repair, as well as their correlation with vertigo symptoms, remains poorly documented. In particular, information on the changes that take place at the primary vestibular endings during the first hours following a selective insult is lacking. In the present study, we combined histological analysis with behavioral assessments of vestibular function in a rat model of unilateral vestibular excitotoxic insult. Excitotoxicity resulted in an immediate but transient alteration of the balance function that was resolved within a week. Concomitantly, vestibular primary afferents underwent a sequence of structural changes followed by spontaneous repair. Within the first two hours after the insult, a first phase of pronounced vestibular dysfunction coincided with extensive swelling of afferent terminals. In the next 24 h, a second phase of significant but incomplete reduction of the vestibular dysfunction was accompanied by a resorption of swollen terminals and fiber retraction. Eventually, within 1 week, a third phase of complete balance restoration occurred. The slow and progressive withdrawal of the balance dysfunction correlated with full reconstitution of nerve terminals. Competitive re-innervation by afferent and efferent terminals that mimicked developmental synaptogenesis resulted in full re-afferentation of the sensory epithelia. By deciphering the sequence of structural alterations that occur in the vestibule during selective excitotoxic impairment, this study offers new understanding of how a vestibular insult develops in the vestibule and how it governs the heterogeneity of vertigo symptoms. PMID:27483344

  10. Effects of methylmercury on the motor and sensory innervation of the rat extensor digitorum longus muscle

    SciTech Connect

    Yip, R.K.; Riley, D.A.

    1987-06-01

    The histochemical study examined the effects of chronic methylmercury (MeHg) intoxication on the motor and sensory innervation of extensor digitorum longus muscles. Light microscopic examination of silver-stained axons in the intramuscular nerve bundles of MeHg-treated rats showed Wallerian-like degeneration and a reduction in the number of nerve fibers. Disrupted axons were predominantly sensory because 22.2% of spindle afferents (I/sub a/) and 90.0% of Golgi tendon organ (I/sub b/) sensory fibers were completely degenerated whereas less than 1% of motor ending were totally destroyed. Partial disruption occurred in the cholinesterase and motor terminals of 13.7% of endplates. Their results demonstrated greater vulnerability of sensory nerves than of motor nerves to MeHg-induced degeneration. Thus, the abnormal reflexes, ataxia, and muscle weakness following MeHg poisoning appear related to reduction of proprioceptive feedback from muscles and tendons irradiation to the documented lesions in the central nervous system.

  11. Development, plasticity and modulation of visceral afferents

    PubMed Central

    Christianson, Julie A.; Bielefeldt, Klaus; Altier, Christophe; Cenac, Nicolas; Davis, Brian M.; Gebhart, Gerald F.; High, Karin W.; Kollarik, Marian; Randich, Alan; Undem, Brad; Vergnolle, Nathalie

    2010-01-01

    Visceral pain is the most common reason for doctor visits in the US. Like somatic pain, virtually all visceral pain sensations begin with the activation of primary sensory neurons innervating the viscera and/or the blood vessels associated with these structures. Visceral afferents also play a central role in tissue homeostasis. Recent studies show that in addition to monitoring the state of the viscera, they perform efferent functions through the release of small molecules (e.g. peptides like CGRP) that can drive inflammation, thereby contributing to the development of visceral pathologies (e.g. diabetes Razavi, R., Chan, Y., Afifiyan, F.N., Liu, X.J., Wan, X., Yantha, J., Tsui, H., Tang, L., Tsai, S., Santamaria, P., Driver, J.P., Serreze, D., Salter, M.W., Dosch, H.M., 2006. TRPV1+ sensory neurons control beta cell stress and islet inflammation in autoimmune diabetes, Cell 127 1123–1135). Visceral afferents are heterogeneous with respect to their anatomy, neurochemistry and function. They are also highly plastic in that their cellular environment continuously influences their response properties. This plasticity makes them susceptible to long-term changes that may contribute significantly to the development of persistent pain states such as those associated with irritable bowel syndrome, pancreatitis, and visceral cancers. This review examines recent insights into visceral afferent anatomy and neurochemistry and how neonatal insults can affect the function of these neurons in the adult. New approaches to the treatment of visceral pain, which focus on primary afferents, will also be discussed. PMID:19150371

  12. Short-latency afferent inhibition determined by the sensory afferent volley.

    PubMed

    Bailey, Aaron Z; Asmussen, Michael J; Nelson, Aimee J

    2016-08-01

    Short-latency afferent inhibition (SAI) is characterized by the suppression of the transcranial magnetic stimulation motor evoked potential (MEP) by the cortical arrival of a somatosensory afferent volley. It remains unknown whether the magnitude of SAI reflects changes in the sensory afferent volley, similar to that observed for somatosensory evoked potentials (SEPs). The present study investigated stimulus-response relationships between sensory nerve action potentials (SNAPs), SAI, and SEPs and their interrelatedness. Experiment 1 (n = 23, age 23 ± 1.5 yr) investigated the stimulus-response profile for SEPs and SAI in the flexor carpi radialis muscle after stimulation of the mixed median nerve at the wrist using ∼25%, 50%, 75%, and 100% of the maximum SNAP and at 1.2× and 2.4× motor threshold (the latter equated to 100% of the maximum SNAP). Experiment 2 (n = 20, age 23.1 ± 2 yr) probed SEPs and SAI stimulus-response relationships after stimulation of the cutaneous digital nerve at ∼25%, 50%, 75%, and 100% of the maximum SNAP recorded at the elbow. Results indicate that, for both nerve types, SAI magnitude is dependent on the volume of the sensory afferent volley and ceases to increase once all afferent fibers within the nerve are recruited. Furthermore, for both nerve types, the magnitudes of SAI and SEPs are related such that an increase in excitation within somatosensory cortex is associated with an increase in the magnitude of afferent-induced MEP inhibition. PMID:27226451

  13. Vagal Intramuscular Arrays: The Specialized Mechanoreceptor Arbors That Innervate the Smooth Muscle Layers of the Stomach Examined in the Rat.

    PubMed

    Powley, Terry L; Hudson, Cherie N; McAdams, Jennifer L; Baronowsky, Elizabeth A; Phillips, Robert J

    2016-03-01

    The fundamental roles that the stomach plays in ingestion and digestion notwithstanding, little morphological information is available on vagal intramuscular arrays (IMAs), the afferents that innervate gastric smooth muscle. To characterize IMAs better, rats were given injections of dextran biotin in the nodose ganglia, and, after tracer transport, stomach whole mounts were collected. Specimens were processed for avidin-biotin permanent labeling, and subsets of the whole mounts were immunohistochemically processed for c-Kit or stained with cuprolinic blue. IMAs (n = 184) were digitized for morphometry and mapping. Throughout the gastric muscle wall, IMAs possessed common phenotypic features. Each IMA was generated by a parent neurite arborizing extensively, forming an array of multiple (mean = 212) branches averaging 193 µm in length. These branches paralleled, and coursed in apposition with, bundles of muscle fibers and interstitial cells of Cajal. Individual arrays averaged 4.3 mm in length and innervated volumes of muscle sheet, presumptive receptive fields, averaging 0.1 mm(3) . Evaluated by region and by muscle sheet, IMAs displayed architectural adaptations to the different loci. A subset (32%) of circular muscle IMAs issued specialized polymorphic collaterals to myenteric ganglia, and a subset (41%) of antral longitudinal muscle IMAs formed specialized net endings associated with the serosal boundary. IMAs were concentrated in regional patterns that correlated with the unique biomechanical adaptations of the stomach, specifically proximal stomach reservoir functions and antral emptying operations. Overall, the structural adaptations and distributions of the IMAs were consonant with the hypothesized stretch receptor roles of the afferents.

  14. Distribution of presumptive chemosensory afferents with FMRFamide- or substance P-like immunoreactivity in decapod crustaceans.

    PubMed

    Schmidt, M

    1997-01-23

    In five species of decapod crustaceans--Cherax destructor (crayfish), Carcinus maenas (crab), Homarus americanus (clawed lobster), Eriocheir sinensis (crab), Macrobrachium rosenbergii (shrimp)--immunocytochemical stainings revealed the presence of sensory afferents with FMRFamide-like immunoreactivity in the central nervous system. These afferents were extremely thin, very numerous, and innervated all sensory neuropils except the optic and olfactory lobes. In their target neuropils they gave rise to condensed net- or ball-like terminal structures. Only in Homarus americanus but not in any other studied species immunocytochemistry revealed a separate, non-overlapping class of sensory afferents with substance P-like immunoreactivity. Also the afferents with substance P-like immunoreactivity were very thin and numerous, innervated all sensory neuropils except optic and olfactory lobes, and gave rise to condensed terminal structures. From their morphological characteristics it can be concluded that likely both classes of afferents are chemosensory. The substance P-like immunoreactivity suggests a link with the nociceptor afferents of vertebrates, with which both classes of afferents share several other morphological features.

  15. Relation between discharge regularity and responses to externally applied galvanic currents in vestibular nerve afferents of the squirrel monkey.

    PubMed

    Goldberg, J M; Smith, C E; Fernández, C

    1984-06-01

    Most vestibular nerve afferents can be classified as regularly or irregularly discharging. Two factors are theoretically identified as being potentially responsible for differences in discharge regularity. The first, ascribable to synaptic noise, is the variance (sigma v2) characterizing the transmembrane voltage fluctuations of the axon's spike trigger site, i.e., the place where impulses normally arise. The second factor is the slope (dmuv/dt) of the trigger site's postspike recovery function. Were (dmuv/dt) a major determinant of discharge regularity, the theory predicts that the more irregular the discharge of a unit, the greater should be its sensitivity to externally applied galvanic currents and the faster should be the postspike recovery of its electrical excitability. The predictions would not hold if differences in the discharge regularity between units largely reflected variations in sigma v. To test these predictions, the responses of vestibular nerve afferents to externally applied galvanic currents were studied in the barbiturate-anesthetized squirrel monkey. Current steps of 5-s duration and short (50 microsecond) shocks were delivered by way of the perilymphatic space of the vestibule. Results were similar regardless of which end organ an afferent innervated. The regularity of discharge of each unit was expressed by a normalized coefficient of variation (CV*). The galvanic sensitivity (beta p) of a unit, measured from its response to current steps, was linearly related to discharge regularity (CV*), there being approximately 20-fold variations in both variables across the afferent population. Various geometric factors--including fiber diameter, position of individual axons within the various nerve branches, and the configuration of unmyelinated processes within the sensory epithelium--are unlikely to have made a major contribution to the positive relation between beta P and CV*. The postspike recovery of electrical excitability was measured as

  16. Synapsin I-like immunoreactivity in nerve fibers associated with lingual taste buds of the rat.

    PubMed

    Finger, T E; Womble, M; Kinnamon, J C; Ueda, T

    1990-02-01

    Immunoreactivity to synapsin I, a neuronal phosphoprotein, was localized in free-floating tissue sections prepared from lingual tissue of rats. Many nerve fibers within the tissue exhibited clear immunoreactivity including motor endplates on striated muscle, autonomic fibers innervating blood vessels or glands, and sensory fibers innervating muscles or the lingual epithelium including taste buds. Numerous immunoreactive fibers occurred within each taste bud, with fewer, fine fibers being dispersed in the epithelium between taste buds. The majority of the intragemmal immunoreactive fibers extended throughout the taste buds most of the distance outward from the basal lamina toward the surface of the epithelium. Fine, perigemmal fibers reached nearly to the epithelial surface. Ultrastructural analysis of the immunoreactive sensory fibers revealed that synapsin I-immunoreactivity occurred diffusely throughout the cytoplasm, and heavily in association with microvesicles. The synaptic vesicles at the taste receptor cell-to-afferent fiber synapse were, however, not immunoreactive for synapsin I, although these vesicles fall into the size class shown to be immunoreactive in other systems. This absence of synapsin I may be a common property of vesicles in axonless short receptor cells. PMID:2108194

  17. Histaminergic afferent system in the cerebellum: structure and function.

    PubMed

    Li, Bin; Zhu, Jing-Ning; Wang, Jian-Jun

    2014-01-01

    Histaminergic afferent system of the cerebellum, having been considered as an essential component of the direct hypothalamocerebellar circuits, originates from the tuberomammillary nucleus in the hypothalamus. Unlike the mossy fibers and climbing fibers, the histaminergic afferent fibers, a third type of cerebellar afferents, extend fine varicose fibers throughout the cerebellar cortex and nuclei. Histamine receptors, belonging to the family of G protein-coupled receptors, are widely present in the cerebellum. Through these histamine receptors, histamine directly excites Purkinje cells and granule cells in the cerebellar cortex, as well as the cerebellar nuclear neurons. Therefore, the histaminergic afferents parallelly modulate these dominant components in the cerebellar circuitry and consequently influence the final output of the cerebellum. In this way, the histaminergic afferent system actively participates in the cerebellum-mediated motor balance and coordination and nonsomatic functions. Accordingly, histaminergic reagents may become potential drugs for clinical treatment of cerebellar ataxia and other cerebellar disease. On the other hand, considering the hypothalamus is a high regulatory center for autonomic and visceral activities, the hypothalamocerebellar histaminergic fibers/projections, bridging the nonsomatic center to somatic structure, may play a critical role in the somatic-nonsomatic integration.

  18. The Lesser Palatine Nerve Innervates the Levator Veli Palatini Muscle

    PubMed Central

    Matsuura, Yoshitaka; Kawai, Katsuya; Yamada, Shigehito; Suzuki, Shigehiko

    2016-01-01

    Summary: When the lesser palatine nerve (LPN) is supposed to be a branch of the trigeminal nerve and innervate sensation of the soft palate, whether the LPN contains motor fibers is unclear. In this study, we monitored the electromyogram of the levator veli palatini (LVP) muscle on stimulating the LPN during palatoplasty in 3 patients. The electromyogram of the muscles showed the myogenic potential induced by electrostimulation of the LPN. Taken together with the finding from our previous anatomical study that the motor fibers come from the facial nerve, this result supports the double innervation theory of the LVP, which posits that both the pharyngeal plexus and the facial nerve innervate it. Identifying and preserving the LPN during palatoplasty might improve postoperative speech results. PMID:27757354

  19. Cutaneous innervation: form and function.

    PubMed

    Oaklander, Anne Louise; Siegel, Sandra M

    2005-12-01

    It is useful for dermatologists to know about the innervation of the skin because dysfunction of cutaneous neurons can cause symptoms--such as itching, pain, and paresthesias--that are evaluated by dermatologists. We review the innervation of the skin and update readers about recent neuroscientific discoveries.

  20. Social temperament and lymph node innervation

    PubMed Central

    Sloan, Erica K.; Capitanio, John P.; Tarara, Ross P.; Cole, Steve W.

    2008-01-01

    Socially inhibited individuals show increased vulnerability to viral infections, and this has been linked to increased activity of the sympathetic nervous system (SNS). To determine whether structural alterations in SNS innervation of lymphoid tissue might contribute to these effects, we assayed the density of catecholaminergic nerve fibers in 13 lymph nodes from 7 healthy adult rhesus macaques that showed stable individual differences in propensity to socially affiliate (Sociability). Tissues from Low Sociable animals showed a 2.8-fold greater density of catecholaminergic innervation relative to tissues from High Sociable animals, and this was associated with a 2.3-fold greater expression of nerve growth factor (NGF) mRNA, suggesting a molecular mechanism for observed differences. Low Sociable animals also showed alterations in lymph node expression of the immunoregulatory cytokine genes IFNG and IL4, and lower secondary IgG responses to tetanus vaccination. These findings are consistent with the hypothesis that structural differences in lymphoid tissue innervation might potentially contribute to relationships between social temperament and immunobiology. PMID:18068331

  1. In vitro Functional Characterization of Mouse Colorectal Afferent Endings

    PubMed Central

    Feng, Bin; Gebhart, G.F.

    2015-01-01

    This video demonstrates in detail an in vitro single-fiber electrophysiological recording protocol using a mouse colorectum-nerve preparation. The approach allows unbiased identification and functional characterization of individual colorectal afferents. Extracellular recordings of propagated action potentials (APs) that originate from one or a few afferent (i.e., single-fiber) receptive fields (RFs) in the colorectum are made from teased nerve fiber fascicles. The colorectum is removed with either the pelvic (PN) or lumbar splanchnic (LSN) nerve attached and opened longitudinally. The tissue is placed in a recording chamber, pinned flat and perfused with oxygenated Krebs solution. Focal electrical stimulation is used to locate the colorectal afferent endings, which are further tested by three distinct mechanical stimuli (blunt probing, mucosal stroking and circumferential stretch) to functionally categorize the afferents into five mechanosensitive classes. Endings responding to none of these mechanical stimuli are categorized as mechanically-insensitive afferents (MIAs). Both mechanosensitive and MIAs can be assessed for sensitization (i.e., enhanced response, reduced threshold, and/or acquisition of mechanosensitivity) by localized exposure of RFs to chemicals (e.g., inflammatory soup (IS), capsaicin, adenosine triphosphate (ATP)). We describe the equipment and colorectum–nerve recording preparation, harvest of colorectum with attached PN or LSN, identification of RFs in the colorectum, single-fiber recording from nerve fascicles, and localized application of chemicals to the RF. In addition, challenges of the preparation and application of standardized mechanical stimulation are also discussed. PMID:25651300

  2. Rapid development of Purkinje cell excitability, functional cerebellar circuit, and afferent sensory input to cerebellum in zebrafish.

    PubMed

    Hsieh, Jui-Yi; Ulrich, Brittany; Issa, Fadi A; Wan, Jijun; Papazian, Diane M

    2014-01-01

    The zebrafish has significant advantages for studying the morphological development of the brain. However, little is known about the functional development of the zebrafish brain. We used patch clamp electrophysiology in live animals to investigate the emergence of excitability in cerebellar Purkinje cells, functional maturation of the cerebellar circuit, and establishment of sensory input to the cerebellum. Purkinje cells are born at 3 days post-fertilization (dpf). By 4 dpf, Purkinje cells spontaneously fired action potentials in an irregular pattern. By 5 dpf, the frequency and regularity of tonic firing had increased significantly and most cells fired complex spikes in response to climbing fiber activation. Our data suggest that, as in mammals, Purkinje cells are initially innervated by multiple climbing fibers that are winnowed to a single input. To probe the development of functional sensory input to the cerebellum, we investigated the response of Purkinje cells to a visual stimulus consisting of a rapid change in light intensity. At 4 dpf, sudden darkness increased the rate of tonic firing, suggesting that afferent pathways carrying visual information are already active by this stage. By 5 dpf, visual stimuli also activated climbing fibers, increasing the frequency of complex spiking. Our results indicate that the electrical properties of zebrafish and mammalian Purkinje cells are highly conserved and suggest that the same ion channels, Nav1.6 and Kv3.3, underlie spontaneous pacemaking activity. Interestingly, functional development of the cerebellum is temporally correlated with the emergence of complex, visually-guided behaviors such as prey capture. Because of the rapid formation of an electrically-active cerebellum, optical transparency, and ease of genetic manipulation, the zebrafish has great potential for functionally mapping cerebellar afferent and efferent pathways and for investigating cerebellar control of motor behavior.

  3. Long-term sensitization of mechanosensitive and -insensitive afferents in mice with persistent colorectal hypersensitivity

    PubMed Central

    La, Jun-ho; Schwartz, Erica S.; Tanaka, Takahiro; McMurray, Timothy P.; Gebhart, G. F.

    2012-01-01

    Afferent input contributes significantly to the pain and colorectal hypersensitivity that characterize irritable bowel syndrome. In the present study, we investigated the contributions of mechanically sensitive and mechanically insensitive afferents (MIAs; or silent afferents) to colorectal hypersensitivity. The visceromotor response to colorectal distension (CRD; 15–60 mmHg) was recorded in mice before and for weeks after intracolonic treatment with zymosan or saline. After CRD tests, the distal colorectum with the pelvic nerve attached was removed for single-fiber electrophysiological recordings. Colorectal afferent endings were located by electrical stimulation and characterized as mechanosensitive or not by blunt probing, mucosal stroking, and circumferential stretch. Intracolonic zymosan produced persistent colorectal hypersensitivity (>24 days) associated with brief colorectal inflammation. Pelvic nerve muscular-mucosal but not muscular mechanosensitive afferents recorded from mice with colorectal hypersensitivity exhibited persistent sensitization. In addition, the proportion of MIAs (relative to control) was significantly reduced from 27% to 13%, whereas the proportion of serosal afferents was significantly increased from 34% to 53%, suggesting that MIAs acquired mechanosensitivity. PGP9.5 immunostaining revealed no significant loss of colorectal nerve fiber density, suggesting that the reduction in MIAs is not due to peripheral fiber loss after intracolonic zymosan. These results indicate that colorectal MIAs and sensitized muscular-mucosal afferents that respond to stretch contribute significantly to the afferent input that sustains hypersensitivity to CRD, suggesting that targeted management of colorectal afferent input could significantly reduce patients' complaints of pain and hypersensitivity. PMID:22268098

  4. Vascular endothelial growth factor coordinates islet innervation via vascular scaffolding

    PubMed Central

    Reinert, Rachel B.; Cai, Qing; Hong, Ji-Young; Plank, Jennifer L.; Aamodt, Kristie; Prasad, Nripesh; Aramandla, Radhika; Dai, Chunhua; Levy, Shawn E.; Pozzi, Ambra; Labosky, Patricia A.; Wright, Christopher V. E.; Brissova, Marcela; Powers, Alvin C.

    2014-01-01

    Neurovascular alignment is a common anatomical feature of organs, but the mechanisms leading to this arrangement are incompletely understood. Here, we show that vascular endothelial growth factor (VEGF) signaling profoundly affects both vascularization and innervation of the pancreatic islet. In mature islets, nerves are closely associated with capillaries, but the islet vascularization process during embryonic organogenesis significantly precedes islet innervation. Although a simple neuronal meshwork interconnects the developing islet clusters as they begin to form at E14.5, the substantial ingrowth of nerve fibers into islets occurs postnatally, when islet vascularization is already complete. Using genetic mouse models, we demonstrate that VEGF regulates islet innervation indirectly through its effects on intra-islet endothelial cells. Our data indicate that formation of a VEGF-directed, intra-islet vascular plexus is required for development of islet innervation, and that VEGF-induced islet hypervascularization leads to increased nerve fiber ingrowth. Transcriptome analysis of hypervascularized islets revealed an increased expression of extracellular matrix components and axon guidance molecules, with these transcripts being enriched in the islet-derived endothelial cell population. We propose a mechanism for coordinated neurovascular development within pancreatic islets, in which endocrine cell-derived VEGF directs the patterning of intra-islet capillaries during embryogenesis, forming a scaffold for the postnatal ingrowth of essential autonomic nerve fibers. PMID:24574008

  5. Dietary sodium chloride deprivation throughout development selectively influences the terminal field organization of gustatory afferent fibers projecting to the rat nucleus of the solitary tract.

    PubMed

    King, C T; Hill, D L

    1991-01-01

    In order to determine whether the developing central gustatory system responds to altered sensory experience, terminal fields of the chorda tympani nerve (CT) within the nucleus of the solitary tract (NTS) in control, NaCl deprived, and rats in which CT taste responses "recovered" from NaCl deprivation were investigated via anterograde transport of HRP. Rats fed a low sodium diet (0.03% NaCl) from the third day of gestation to at least 35 days postnatal exhibited both abnormally distributed and irregularly shaped CT terminal fields. Specifically, the dorsal zone of the field was the smallest in controls whereas it was the largest in deprived rats, occupying more medial and caudal territory within the nucleus. The portion of the field immediately ventral to the dorsalmost zone was characterized by a compact, oval shape in control rats and an irregular, broad configuration in deprived rats. Although it has been observed that deprivation-induced changes in the neurophysiology of the CT are reversible, the central morphological alterations reported here remain abnormal. Restoration of 1.0% NaCl in the diet at 28 days postnatally, for at least 60 days, did not result in normal CT terminal fields. The pattern of the field in rats "recovered" from NaCl deprivation was comparable to that found in deprived rats, and the size of the field was three times that found in control and deprived rats. The terminal fields of another nerve containing gustatory afferents, the lingual-tonsilar branch of the glossopharyngeal nerve (LT-IX), were studied for comparison. Interestingly, the pattern of the LT-IX field was not altered by sodium deprivation. The relative size and topography of the LT-IX fields in deprived rats were similar to controls. Thus, sodium deprivation appears to alter selectively the anatomical organization of the CT. Differences in vulnerability between the CT and LT-IX terminal fields may derive from differences in the responsiveness of these nerves to NaCl, and

  6. Topographic and quantitative evaluation of gentamicin-induced damage to peripheral innervation of mouse cochleae.

    PubMed

    Ruan, Qingwei; Ao, Huafei; He, Jingchun; Chen, Zhengnong; Yu, Zhuowei; Zhang, Ruxin; Wang, Jian; Yin, Shankai

    2014-01-01

    Ototoxicity induced by aminoglycoside antibiotics appears to occur both in hair cells (HCs) and the cochlear nerves that innervate them. Although HC loss can be easily quantified, neuronal lesions are difficult to quantify because two types of afferent dendrites and two types of efferent axons are tangled beneath the hair cells. In the present study, ototoxicity was induced by gentamicin in combination with the diuretic agent furosemide. Neuronal lesions were quantified in cochlear whole-mount preparations combined with microsections across the habenular perforate (HP) openings to achieve a clear picture of the topographic relationship between neuronal damage and HC loss. Multiple immunostaining methods were employed to differentiate the two types of afferent dendrites and two types of efferent axons. The results show that co-administration of gentamicin and furosemide resulted in a typical dynamic pattern of HC loss that spread from the basal turn to the outer hair cells to the apex and inner hair cells, depending on the dose and survival time after drug administration. Lesions of the innervation appeared to occur at two stages. At the early stage (2-4 days), the loss of labeling of the two types of afferent dendrites was more obvious than the loss of labeled efferent axons. At the late stage (2-4 weeks), the loss of labeled efferent axons was more rapid. In the high-dose gentamicin group, the loss of outer HCs was congruent with afferent dendrite loss at the early stage and efferent axon loss at the late stage. In the low-dose gentamicin group, the loss of labeling for cochlear innervation was more severe and widespread. Thus, we hypothesize that the gentamicin-induced damage to cochlear innervation occurs independently of hair cell loss.

  7. Dopamine D1/D5, But not D2/D3, Receptor Dependency of Synaptic Plasticity at Hippocampal Mossy Fiber Synapses that Is Enabled by Patterned Afferent Stimulation, or Spatial Learning

    PubMed Central

    Hagena, Hardy; Manahan-Vaughan, Denise

    2016-01-01

    Although the mossy fiber (MF) synapses of the hippocampal CA3 region display quite distinct properties in terms of the molecular mechanisms that underlie synaptic plasticity, they nonetheless exhibit persistent (>24 h) synaptic plasticity that is akin to that observed at the Schaffer collateral (SCH)-CA1 and perforant path (PP)-dentate gyrus (DG) synapses of freely behaving rats. In addition, they also respond to novel spatial learning with very enduring forms of long-term potentiation (LTP) and long-term depression (LTD). These latter forms of synaptic plasticity are directly related to the learning behavior: novel exploration of generalized changes in space facilitates the expression of LTP at MF-CA3 synapses, whereas exploration of novel configurations of large environmental features facilitates the expression of LTD. In the absence of spatial novelty, synaptic plasticity is not expressed. Motivation is a potent determinant of whether learning about the spatial experience effectively occurs and the neuromodulator dopamine (DA) plays a key role in motivation-based learning. Prior research on the regulation by DA receptors of long-term synaptic plasticity in CA1 and DG synapses in vivo suggests that whereas D2/D3 receptors may modulate a general predisposition toward expressing plasticity, D1/D5 receptors may directly regulate the direction of change in synaptic strength that occurs during learning. Although the CA3 region is believed to play a pivotal role in many forms of learning, the role of dopamine receptors in persistent (>24 h) forms of synaptic plasticity at MF-CA3 synapses is unknown. Here, we report that whereas pharmacological antagonism of D2/D3 receptors had no impact on LTP or LTD, antagonism of D1/D5 receptors significantly impaired LTP and LTD that were induced by solely by means of patterned afferent stimulation, or LTP/LTD that are typically enhanced by the conjunction of afferent stimulation and novel spatial learning. These data indicate an

  8. Innervation of amphibian reproductive system. Histological and ultrastructural studies.

    PubMed

    Cisint, Susana; Crespo, Claudia A; Medina, Marcela F; Iruzubieta Villagra, Lucrecia; Fernández, Silvia N; Ramos, Inés

    2014-10-01

    In the present study we describe for the first time in anuran amphibians the histological and ultrastructural characteristics of innervation in the female reproductive organs. The observations in Rhinella arenarum revealed the presence of nerve fibers located predominantly in the ovarian hilium and in the oviduct wall. In both organs the nerves fibers are placed near blood vessels and smooth muscles fibers. In the present study the histological observations were confirmed using antibodies against peripherin and neurofilament 200 proteins. Ultrastructural analyses demonstrated that the innervation of the reproductive organs is constituted by unmyelinated nerve fibers surrounded by Schwann cells. Axon terminals contain a population of small, clear, translucent vesicles that coexist with a few dense cored vesicles. The ultrastructural characteristics together with the immunopositive reaction to tyrosine hydroxylase of the nerve fibers and the type of synaptic vesicles present in the axon terminal would indicate that the reproductive organs of R. arenarum females are innervated by the sympathetic division of the autonomic nervous system.

  9. Primary afferent depolarization and frequency processing in auditory afferents.

    PubMed

    Baden, Tom; Hedwig, Berthold

    2010-11-01

    Presynaptic inhibition is a widespread mechanism modulating the efficiency of synaptic transmission and in sensory pathways is coupled to primary afferent depolarizations. Axonal terminals of bush-cricket auditory afferents received 2-5 mV graded depolarizing inputs, which reduced the amplitude of invading spikes and indicated presynaptic inhibition. These inputs were linked to a picrotoxin-sensitive increase of Ca(2+) in the terminals. Electrophysiological recordings and optical imaging showed that in individual afferents the sound frequency tuning based on spike rates was different from the tuning of the graded primary afferent depolarizations. The auditory neuropil of the bush-cricket Mecopoda elongata is tonotopically organized, with low frequencies represented anteriorly and high frequencies represented posteriorly. In contrast graded depolarizing inputs were tuned to high-frequencies anteriorly and to low-frequencies posteriorly. Furthermore anterior and posterior axonal branches of individual afferents received different levels of primary afferent depolarization depending on sound frequency. The presence of primary afferent depolarization in the afferent terminals indicates that presynaptic inhibition may shape the synaptic transmission of frequency-specific activity to auditory interneurons.

  10. Compartmental Innervation of the Superior Oblique Muscle in Mammals

    PubMed Central

    Le, Alan; Poukens, Vadims; Ying, Howard; Rootman, Daniel; Goldberg, Robert A.; Demer, Joseph L.

    2015-01-01

    Purpose Intramuscular innervation of mammalian horizontal rectus extraocular muscles (EOMs) is compartmental. We sought evidence of similar compartmental innervation of the superior oblique (SO) muscle. Methods Three fresh bovine orbits and one human orbit were dissected to trace continuity of SO muscle and tendon fibers to the scleral insertions. Whole orbits were also obtained from four humans (two adults, a 17-month-old child, and a 33-week stillborn fetus), two rhesus monkeys, one rabbit, and one cow. Orbits were formalin fixed, embedded whole in paraffin, serially sectioned in the coronal plane at 10-μm thickness, and stained with Masson trichrome. Extraocular muscle fibers and branches of the trochlear nerve (CN4) were traced in serial sections and reconstructed in three dimensions. Results In the human, the lateral SO belly is in continuity with tendon fibers inserting more posteriorly on the sclera for infraducting mechanical advantage, while the medial belly is continuous with anteriorly inserting fibers having mechanical advantage for incycloduction. Fibers in the monkey superior SO insert more posteriorly on the sclera to favor infraduction, while the inferior portion inserts more anteriorly to favor incycloduction. In all species, CN4 bifurcates prior to penetrating the SO belly. Each branch innervates a nonoverlapping compartment of EOM fibers, consisting of medial and lateral compartments in humans and monkeys, and superior and inferior compartments in cows and rabbits. Conclusions The SO muscle of humans and other mammals is compartmentally innervated in a manner that could permit separate CN4 branches to selectively influence vertical versus torsional action. PMID:26426404

  11. Postnatal reduction of BDNF regulates the developmental remodeling of taste bud innervation.

    PubMed

    Huang, Tao; Ma, Liqun; Krimm, Robin F

    2015-09-15

    The refinement of innervation is a common developmental mechanism that serves to increase the specificity of connections following initial innervation. In the peripheral gustatory system, the extent to which innervation is refined and how refinement might be regulated is unclear. The initial innervation of taste buds is controlled by brain-derived neurotrophic factor (BDNF). Following initial innervation, taste receptor cells are added and become newly innervated. The connections between the taste receptor cells and nerve fibers are likely to be specific in order to retain peripheral coding mechanisms. Here, we explored the possibility that the down-regulation of BDNF regulates the refinement of taste bud innervation during postnatal development. An analysis of BDNF expression in Bdnf(lacZ/+) mice and real-time reverse transcription polymerase chain reaction (RT-PCR) revealed that BDNF was down-regulated between postnatal day (P) 5 and P10. This reduction in BDNF expression was due to a loss of precursor/progenitor cells that express BDNF, while the expression of BDNF in the subpopulations of taste receptor cells did not change. Gustatory innervation, which was identified by P2X3 immunohistochemistry, was lost around the perimeter where most progenitor/precursor cells are located. In addition, the density of innervation in the taste bud was reduced between P5 and P10, because taste buds increase in size without increasing innervation. This reduction of innervation density was blocked by the overexpression of BDNF in the precursor/progenitor population of taste bud cells. Together these findings indicate that the process of BDNF restriction to a subpopulation of taste receptor cells between P5 and P10, results in a refinement of gustatory innervation. We speculate that this refinement results in an increased specificity of connections between neurons and taste receptor cells during development.

  12. Postnatal reduction of BDNF regulates the developmental remodeling of taste bud innervation

    PubMed Central

    Huang, Tao; Ma, Liqun; Krimm, Robin F

    2015-01-01

    The refinement of innervation is a common developmental mechanism that serves to increase the specificity of connections following initial innervation. In the peripheral gustatory system, the extent to which innervation is refined and how refinement might be regulated is unclear. The initial innervation of taste buds is controlled by brain-derived neurotrophic factor (BDNF). Following initial innervation, taste receptor cells are added and become newly innervated. The connections between the taste receptor cells and nerve fibers are likely to be specific in order to retain peripheral coding mechanisms. Here, we explored the possibility that the down-regulation of BDNF regulates the refinement of taste bud innervation during postnatal development. An analysis of BDNF expression in BdnflacZ/+ mice and real-time reverse transcription polymerase chain reaction (RT-PCR) revealed that BDNF was down-regulated between postnatal day (P) 5 and P10. This reduction in BDNF expression was due to a loss of precursor/progenitor cells that express BDNF, while the expression of BDNF in the subpopulations of taste receptor cells did not change. Gustatory innervation, which was identified by P2X3 immunohistochemistry, was lost around the perimeter where most progenitor/precursor cells are located. In addition, the density of innervation in the taste bud was reduced between P5 and P10, because taste buds increase in size without increasing innervation. This reduction of innervation density was blocked by the overexpression of BDNF in the precursor/progenitor population of taste bud cells. Together these findings indicate that the process of BDNF restriction to a subpopulation of taste receptor cells between P5 and P10, results in a refinement of gustatory innervation. We speculate that this refinement results in an increased specificity of connections between neurons and taste receptor cells during development. PMID:26164656

  13. Postnatal reduction of BDNF regulates the developmental remodeling of taste bud innervation.

    PubMed

    Huang, Tao; Ma, Liqun; Krimm, Robin F

    2015-09-15

    The refinement of innervation is a common developmental mechanism that serves to increase the specificity of connections following initial innervation. In the peripheral gustatory system, the extent to which innervation is refined and how refinement might be regulated is unclear. The initial innervation of taste buds is controlled by brain-derived neurotrophic factor (BDNF). Following initial innervation, taste receptor cells are added and become newly innervated. The connections between the taste receptor cells and nerve fibers are likely to be specific in order to retain peripheral coding mechanisms. Here, we explored the possibility that the down-regulation of BDNF regulates the refinement of taste bud innervation during postnatal development. An analysis of BDNF expression in Bdnf(lacZ/+) mice and real-time reverse transcription polymerase chain reaction (RT-PCR) revealed that BDNF was down-regulated between postnatal day (P) 5 and P10. This reduction in BDNF expression was due to a loss of precursor/progenitor cells that express BDNF, while the expression of BDNF in the subpopulations of taste receptor cells did not change. Gustatory innervation, which was identified by P2X3 immunohistochemistry, was lost around the perimeter where most progenitor/precursor cells are located. In addition, the density of innervation in the taste bud was reduced between P5 and P10, because taste buds increase in size without increasing innervation. This reduction of innervation density was blocked by the overexpression of BDNF in the precursor/progenitor population of taste bud cells. Together these findings indicate that the process of BDNF restriction to a subpopulation of taste receptor cells between P5 and P10, results in a refinement of gustatory innervation. We speculate that this refinement results in an increased specificity of connections between neurons and taste receptor cells during development. PMID:26164656

  14. Three-dimensional analysis of vestibular efferent neurons innervating semicircular canals of the gerbil

    NASA Technical Reports Server (NTRS)

    Purcell, I. M.; Perachio, A. A.

    1997-01-01

    Anterograde labeling techniques were used to examine peripheral innervation patterns of vestibular efferent neurons in the crista ampullares of the gerbil. Vestibular efferent neurons were labeled by extracellular injections of biocytin or biotinylated dextran amine into the contralateral or ipsilateral dorsal subgroup of efferent cell bodies (group e) located dorsolateral to the facial nerve genu. Anterogradely labeled efferent terminal field varicosities consist mainly of boutons en passant with fewer of the terminal type. The bouton swellings are located predominately in apposition to the basolateral borders of the afferent calyces and type II hair cells, but several boutons were identified close to the hair cell apical border on both types. Three-dimensional reconstruction and morphological analysis of the terminal fields from these cells located in the sensory neuroepithelium of the anterior, horizontal, and posterior cristae were performed. We show that efferent neurons densely innervate each end organ in widespread terminal fields. Subepithelial bifurcations of parent axons were minimal, with extensive collateralization occurring after the axons penetrated the basement membrane of the neuroepithelium. Axonal branching ranged between the 6th and 27th orders and terminal field collecting area far exceeds that of the peripheral terminals of primary afferent neurons. The terminal fields of the efferent neurons display three morphologically heterogeneous types: central, peripheral, and planum. All cell types possess terminal fields displaying a high degree of anisotropy with orientations typically parallel to or within +/-45 degrees of the longitudinal axis if the crista. Terminal fields of the central and planum zones predominately project medially toward the transverse axis from the more laterally located penetration of the basement membrane by the parent axon. Peripheral zone terminal fields extend predominately toward the planum semilunatum. The innervation

  15. Fiber diameter distributions in the chinchilla's ampullary nerves

    NASA Technical Reports Server (NTRS)

    Hoffman, Larry F.; Honrubia, Vicente

    2002-01-01

    A morphometric study of the chinchilla's ampullary nerves was conducted to produce an unbiased accounting of the diameter distribution of their constituent fibers. Diameter analyses were determined from 1 microm plastic-embedded nerve sections taken at a plane immediately proximal to the sensory epithelium. We found these nerves to be composed of 2094+/-573 fibers, having diameters that ranged from 0.5 to 8 microm. The distributions of diameters were positively skewed, where approximately 75% of the fibers were found to have diameters less than 3.5 microm. An analysis of the spatial distribution of diameters within the nerve section revealed that the lateralmost areas of the nerve contained larger fractions of fibers within the smallest diameter quintiles, and the central area harbored greater proportions of the larger diameter quintiles. However, significant fractions of all quintiles were found in all areas. These data were integrated with available data of Fernandez et al. (1998) to produce diameter estimates of calyx, dimorphic, and bouton morphology subpopulations. In view of a general relationship between diameter, innervation locus, and an afferent's physiologic characteristics, these data provide the basis for developing a perspective for the in situ distribution of afferent response dynamics.

  16. Characterization of Mouse Lumbar Splanchnic and Pelvic Nerve Urinary Bladder Mechanosensory Afferents

    PubMed Central

    Xu, Linjing; Gebhart, G. F.

    2009-01-01

    Sensory information from the urinary bladder is conveyed via lumbar splanchnic (LSN) and sacral pelvic (PN) nerves to the spinal cord. In the present report we compared the mechanosensitive properties of single afferent fibers in these two pathways using an in vitro mouse bladder preparation. Mechanosensitive primary afferents were recorded from the LSN or PN and distinguished based on their response to receptive field stimulation with different mechanical stimuli: probing (160 mg to 2 g), stretch (1–25 g), and stroking of the urothelium (10–1,000 mg). Four different classes of afferent were recorded from the LSN and PN: serosal, muscular, muscular/urothielial, and urothelial. The LSN contained principally serosal and muscular afferents (97% of the total sample), whereas all four afferent classes of afferent were present in the PN (63% of which were muscular afferents). In addition, the respective proportions and receptive field distributions differed between the two pathways. Both low- and high-threshold stretch-sensitive muscular afferents were present in both pathways, and muscular afferents in the PN were shown to sensitize after exposure to an inflammatory soup cocktail. The LSN and PN pathways contain different populations of mechanosensitive afferents capable of detecting a range of mechanical stimuli and individually tuned to detect the type, magnitude, and duration of the stimulus. This knowledge broadens our understanding of the potential roles these two pathways play in conveying mechanical information from the bladder to the spinal cord. PMID:18003875

  17. Innervation of the rat thymus gland.

    PubMed

    Kendall, M D; al-Shawaf, A A

    1991-03-01

    Current views from different laboratories on the innervation of the thymus gland are reviewed with particular reference to the rat. Noradrenergic nerve profiles of the sympathetic nervous system have been demonstrated in the subcapsular cortex, at the corticomedullary junction and in the cortex itself, and extremely sparsely in the medulla. By following beta-adrenergic receptor development in postnatal rats, it has been shown that there is a marked increase in density and morphological organization of the receptor in the medulla with the maturation of thymocyte function (monitored by measuring the proliferation response to concanavalin A) and a sexual dimorphism during the ontogeny of the receptor. Chemical sympathectomy of adult rats with 6-hydroxydopamine (6-OHDA) or guanethidine resulted in a loss of thymus weight, decreased cellularity, and increased apoptosis but a rise in the numbers of proliferating cells in the cortex. By contrast, proliferation of peripheral T cells was reduced after the use of 6-OHDA. Chemical sympathectomy also demonstrated that there were at least three nerve nets in the gland: noradrenergic neural profiles that were destroyed with both 6-OHDA and guanethidine, vasoactive intestinal polypeptide (VIP)-positive profiles that persisted, and AChE- and CGRP-positive profiles and cells that also persisted but had a different distribution to VIP-positive fibers. Some functional correlates of thymic innervation are discussed although the subject now needs to be further researched.

  18. [Innervation of the intervertebral disc].

    PubMed

    García-Cosamalón, José; Fernández-Fernández, Javier; González-Martínez, Emilio; Ibáñez-Plágaro, Javier; Robla Costales, Javier; Martínez-Madrigal, Milton; López Muñíz, Alfonso; del Valle, Miguel Enrique; Vega, José Antonio

    2013-01-01

    Until very recently, intervertebral disc innervation was a subject of considerable debate. Nowadays, the introduction of inmunohistochemical techniques associated to specific antibodies and studies with retrograde tracers in nerves have allowed greater understanding of disc innervation in physiological and pathological conditions and also endings characteristics and their patterns of distribution in both situations. The existing controversies regarding structural basis of discogenic pain, have raised the interest of knowing the influence of innervation in back pain from discal origin and its characteristics. Today, we know that pathologic neoinnervation accompanying radial fissures is an important factor in the genesis of discogenic pain; within a complex mechanism in which other neurobiomechemical, inflammatory and biomechanical factors are involved. PMID:23582224

  19. The innervation of tandem muscle spindles in the cat neck.

    PubMed

    Richmond, F J; Bakker, G J; Bakker, D A; Stacey, M J

    1986-03-22

    Patterns of innervation were examined in tandem muscle spindles teased from silver-stained muscles of the cat neck. Each tandem spindle was composed of two or more encapsulated receptors linked in series by a shared bag2 fiber. In most tandem spindles, two different types of encapsulation were identified according to differences in their intrafusal fiber content. One type, the b1b2c unit, contained typical bag1, bag2, and chain fibers and was structurally similar to single spindles described in other cat muscles. Each b1b2c unit contained a single primary sensory ending and 1-6 secondary endings. Fusimotor innervation was supplied by many axons. Some fusimotor axons ended in trail ramifications on bag2 and chain fibers, others ended in plates on the bag1 or long chain fiber. The other type of tandem encapsulation, the b2c unit, had only bag2 and chain fibers in its intrafusal fiber bundle. The b2c unit was usually supplied by only one sensory axon that ended on the nucleated part of the intrafusal fiber bundle. This single ending had a more variable terminal morphology than the primary ending in b1b2c units. A few b2c units (3/49) were also supplied by a secondary ending. The fusimotor innervation of the b2c unit was relatively simple. A single pole of the b2c unit was usually supplied by only one to three axons, all ending in trail ramifications. No plate endings were found in b2c units. These morphological specializations suggest that b1b2c and b2c units in tandem spindles differ in both their transductive and fusimotor mechanisms. Thus, the tandem spindle is a specialized structure that may provide additional proprioceptive information beyond that available from single muscle spindles.

  20. Determinants of Spatial and Temporal Coding by Semicircular Canal Afferents

    PubMed Central

    Highstein, Stephen M.; Rabbitt, Richard D.; Holstein, Gay R.; Boyle, Richard D.

    2010-01-01

    The vestibular semicircular canals are internal sensors that signal the magnitude, direction, and temporal properties of angular head motion. Fluid mechanics within the 3-canal labyrinth code the direction of movement and integrate angular acceleration stimuli over time. Directional coding is accomplished by decomposition of complex angular accelerations into 3 biomechanical components—one component exciting each of the 3 ampullary organs and associated afferent nerve bundles separately. For low-frequency angular motion stimuli, fluid displacement within each canal is proportional to angular acceleration. At higher frequencies, above the lower corner frequency, real-time integration is accomplished by viscous forces arising from the movement of fluid within the slender lumen of each canal. This results in angular velocity sensitive fluid displacements. Reflecting this, a subset of afferent fibers indeed report angular acceleration to the brain for low frequencies of head movement and report angular velocity for higher frequencies. However, a substantial number of afferent fibers also report angular acceleration, or a signal between acceleration and velocity, even at frequencies where the endolymph displacement is known to follow angular head velocity. These non-velocity-sensitive afferent signals cannot be attributed to canal biomechanics alone. The responses of non-velocity-sensitive cells include a mathematical differentiation (first-order or fractional) imparted by hair-cell and/or afferent complexes. This mathematical differentiation from velocity to acceleration cannot be attributed to hair cell ionic currents, but occurs as a result of the dynamics of synaptic transmission between hair cells and their primary afferent fibers. The evidence for this conclusion is reviewed below. PMID:15845995

  1. Identification of Different Types of Spinal Afferent Nerve Endings That Encode Noxious and Innocuous Stimuli in the Large Intestine Using a Novel Anterograde Tracing Technique

    PubMed Central

    Spencer, Nick J.; Kyloh, Melinda; Duffield, Michael

    2014-01-01

    In mammals, sensory stimuli in visceral organs, including those that underlie pain perception, are detected by spinal afferent neurons, whose cell bodies lie in dorsal root ganglia (DRG). One of the major challenges in visceral organs has been how to identify the different types of nerve endings of spinal afferents that transduce sensory stimuli into action potentials. The reason why spinal afferent nerve endings have been so challenging to identify is because no techniques have been available, until now, that can selectively label only spinal afferents, in high resolution. We have utilized an anterograde tracing technique, recently developed in our laboratory, which facilitates selective labeling of only spinal afferent axons and their nerve endings in visceral organs. Mice were anesthetized, lumbosacral DRGs surgically exposed, then injected with dextran-amine. Seven days post-surgery, the large intestine was removed. The characteristics of thirteen types of spinal afferent nerve endings were identified in detail. The greatest proportion of nerve endings was in submucosa (32%), circular muscle (25%) and myenteric ganglia (22%). Two morphologically distinct classes innervated myenteric ganglia. These were most commonly a novel class of intraganglionic varicose endings (IGVEs) and occasionally rectal intraganglionic laminar endings (rIGLEs). Three distinct classes of varicose nerve endings were found to innervate the submucosa and circular muscle, while one class innervated internodal strands, blood vessels, crypts of lieberkuhn, the mucosa and the longitudinal muscle. Distinct populations of sensory endings were CGRP-positive. We present the first complete characterization of the different types of spinal afferent nerve endings in a mammalian visceral organ. The findings reveal an unexpectedly complex array of different types of primary afferent endings that innervate specific layers of the large intestine. Some of the novel classes of nerve endings identified

  2. Prolonged GABAA-mediated inhibition following single hair afferent input to single spinal dorsal horn neurones in cats.

    PubMed

    De Koninck, Y; Henry, J L

    1994-04-01

    To study the central processing mechanisms of sensory input from low threshold afferents to the spinal cord, we examined the excitatory response of single lumbar dorsal horn neurones to stimulation of hairs in the receptive field using a mechanically driven probe, and to activation of single hair follicle afferents using an intracellular current pulse to the cell bodies in the dorsal root ganglion. Experiments were done on anaesthetized, paralysed cats, spinalized at the L1 lumbar level. Responses of spinal neurones to two types of hair afferent input were characteristically different. The excitatory response to input from a single group II hair afferent (A beta; innervating guard hair follicle receptors) was multimodal, characterized by a small early depolarization followed by a sharp, large component with a slow, prolonged decay phase, whereas the response to input from a single group III hair afferent (A delta; innervating down hair follicle receptors) was unimodal. The unitary EPSPs in response to activation of group III hair afferents had a slower rise time and longer decay time constant than those in response to activation of group II hair afferents. When the receptive field of the afferent was located in the centre of the receptive field of the dorsal horn neurone, the gain of the central response was greater for the input from a single group II afferent (> 1) than that for the input from a single group III afferent (< 1). In the case of single group II hair afferents, when pairs of single action potentials or pairs of trains of action potentials were generated at intervals of 20 ms to 3 s, the response in the dorsal horn neurone to the second volley was markedly depressed at intervals of less than 2 s, without any apparent inhibition of the on-going rate of firing. The response to the second volley in single group III afferents was less depressed. This inhibition of the response to the second of a paired volley in single group II hair afferents was

  3. Modulation of vagal afferent excitation and reduction of food intake by leptin and cholecystokinin.

    PubMed

    Peters, James H; Simasko, Steven M; Ritter, Robert C

    2006-11-30

    The gut-peptide, cholecystokinin (CCK), reduces food intake by acting at CCK-1 receptors on vagal afferent neurons, whereas the feeding effects of the adipokine hormone, leptin, are associated primarily with its action on receptors (ObRb) in the hypothalamus. Recently, however, ObRb mRNA has been reported in vagal afferent neurons, some of which also express CCK-1 receptor, suggesting that leptin, alone or in cooperation with CCK, might activate vagal afferent neurons, and influence food intake via a vagal route. To evaluate these possibilities we have been examining the cellular and behavioral effects of leptin and CCK on vagal afferent neurons. In cultured vagal afferent neurons leptin and CCK evoked short latency, transient depolarizations, often leading to action potentials, and increases in cytosolic calcium. There was a much higher prevalence of CCK and leptin sensitivity amongst cultured vagal afferent neurons that innervate stomach or duodenum than there was in the overall vagal afferent population. Furthermore, almost all leptin-responsive gastric and duodenal vagal afferents also were sensitive to CCK. Leptin, infused into the upper GI tract arterial supply, reduced meal size, and enhanced satiation evoked by CCK. These results indicate that vagal afferent neurons are activated by leptin, and that this activation is likely to participate in meal termination, perhaps by enhancing vagal sensitivity to CCK. Our findings are consistent with the view that leptin and CCK exert their influence on food intake by accessing multiple neural systems (viscerosensory, motivational, affective and motor) at multiple points along the neuroaxis. PMID:16872644

  4. Estradiol alters the chemosensitive cardiac afferent reflex in female rats by augmenting sympathoinhibition and attenuating sympathoexcitation.

    PubMed

    Pinkham, Maximilian I; Barrett, Carolyn J

    2015-06-01

    The chemosensitive cardiac vagal and sympathetic afferent reflexes are implicated in driving pathophysiological changes in sympathetic nerve activity (SNA) in cardiovascular disease states. This study investigated the impact of sex and ovarian hormones on the chemosensitive cardiac afferent reflex. Experiments were performed in anaesthetized, sinoaortic baroreceptor denervated male, female and ovariectomized female (OVX) Wistar rats with either intact cardiac innervation or bilateral vagotomy. To investigate the chemosensitive cardiac afferent reflexes renal SNA, heart rate (HR) and arterial pressure (AP) were recorded before and following application of capsaicin onto the epicardial surface of the left ventricle. Compared to males, ovary-intact females displayed similar cardiac afferent reflex mediated changes in renal SNA albeit with a reduced maximum sympathetic reflex driven increase in renal SNA. In females, ovariectomy significantly attenuated the cardiac vagal afferent reflex mediated inhibition of renal SNA (renal SNA decreased 2 ± 17% in OVX versus -50 ± 4% in ovary-intact females, P < 0.05) and augmented cardiac sympathetic afferent reflex mediated sympathoexcitation (renal SNA increased 91 ± 11% in OVX vs 62 ± 9% in ovary-intact females, P < 0.05) so that overall increases in reflex driven sympathoexcitation were significantly enhanced. Chronic estradiol replacement, but not progesterone replacement, begun at time of ovariectomy restored cardiac afferent reflex responses to be similar as ovary-intact females. Vagal denervation eliminated all group differences. The current findings show ovariectomy in female rats, mimicking menopause in women, results in greater chemosensitive cardiac afferent reflex driven sympathoexcitation and does so, at least partly, via the loss of estradiols actions on the cardiac vagal afferent reflex pathway.

  5. Morphology and neurochemistry of rabbit iris innervation.

    PubMed

    He, Jiucheng; Bazan, Haydee E P

    2015-06-01

    The aim of this study was to map the entire nerve architecture and sensory neuropeptide content of the rabbit iris. Irises from New Zealand rabbits were stained with antibodies against neuronal-class βIII-tubulin, calcitonin gene-related peptide (CGRP) and substance P (SP), and whole-mount images were acquired to build a two-dimensional view of the iridal nerve architecture. After taking images in time-lapse mode, we observed thick nerves running in the iris stroma close to the anterior epithelia, forming four to five stromal nerve rings from the iris periphery to the pupillary margin and sub-branches that connected with each other, constituting the stromal nerve plexus. In the anterior side, fine divisions derivated from the stromal nerves, forming a nerve network-like structure to innervate the superficial anterior border layer, with the pupillary margin having the densest innervation. In the posterior side, the nerve bundles ran along with the pupil dilator muscle in a radial pattern. The morphology of the iris nerves on both sides changed with pupil size. To obtain the relative content of the neuropeptides in the iris, the specimens were double stained with βIII-tubulin and CGRP or SP antibodies. Relative nerve fiber densities for each fiber population were assessed quantitatively by computer-assisted analysis. On the anterior side, CGRP-positive nerve fibers constituted about 61%, while SP-positive nerves constitute about 30.5%, of the total nerve content, which was expressed as βIII tubulin-positive fibers. In addition, in the anterior stroma of the collarette region, there were non-neuronal cells that were positive for SP. On the posterior side, CGRP-positive nerve fibers were about 69% of total nerve content, while SP constituted only up to 20%. Similarly, in the trigeminal ganglia (TG), the number of CGRP-positive neurons significantly outnumbered those that were positive for SP. Also, all the SP-positive neurons were labeled with CGRP. This is the

  6. Putative roles of neuropeptides in vagal afferent signaling

    PubMed Central

    de Lartigue, Guillaume

    2014-01-01

    The vagus nerve is a major pathway by which information is communicated between the brain and peripheral organs. Sensory neurons of the vagus are located in the nodose ganglia. These vagal afferent neurons innervate the heart, the lung and the gastrointestinal tract, and convey information about peripheral signals to the brain important in the control of cardiovascular tone, respiratory tone, and satiation, respectively. Glutamate is thought to be the primary neurotransmitter involved in conveying all of this information to the brain. It remains unclear how a single neurotransmitter can regulate such an extensive list of physiological functions from a wide range of visceral sites. Many neurotransmitters have been identified in vagal afferent neurons and have been suggested to modulate the physiological functions of glutamate. Specifically, the anorectic peptide transmitters, cocaine and amphetamine regulated transcript (CART) and the orexigenic peptide transmitters, melanin concentrating hormone (MCH) are differentially regulated in vagal afferent neurons and have opposing effects on food intake. Using these two peptides as a model, this review will discuss the potential role of peptide transmitters in providing a more precise and refined modulatory control of the broad physiological functions of glutamate, especially in relation to the control of feeding. PMID:24650553

  7. Innervation of propatagial musculature in a flying squirrel, Glaucomys volans (Rodentia, Sciuridae).

    PubMed

    Chickering, J G; Sokoloff, A J

    1996-01-01

    The propatagium of gliding and flying mammals is of both functional and phylogenetic interest. The innervation of the propatagial muscle, platysma II, was studied with the axonal tracer wheat germ agglutinin-conjugated horseradish peroxidase (WGA-HRP) in a flying squirrel, Glaucomys volans. Injections of WGA-HRP into the proximal third of platysma II labeled motoneurons in the lateral part of the medial subdivision of the ipsilateral facial nucleus and in the ipsilateral ventral horn of the brachial enlargement. Injections into distal regions of platysma II labeled motoneurons in the ipsilateral ventral horn of spinal segments C5-C8 but not in the facial nucleus. Injections along the whole length of the muscle labeled afferent axons in the ipsilateral dorsal horn of spinal segments C4-T1. These results demonstrate a mixed facial and spinal motor innervation of propatagial musculature in the flying squirrel and indicate that this pattern of mixed innervation is more widespread among flying and gliding mammals than previously reported. Mixed facial and cervical propatagial innervation, independently derived in different flying and gliding mammals, may represent a common solution in the design of the propatagium. These findings complicate the use of propatagial muscle innervation patterns for the establishment of phylogenetic relationships among flying and gliding mammals. PMID:8834780

  8. Innervation is required for sense organ development in the lateral line system of adult zebrafish.

    PubMed

    Wada, Hironori; Dambly-Chaudière, Christine; Kawakami, Koichi; Ghysen, Alain

    2013-04-01

    Superficial mechanosensory organs (neuromasts) distributed over the head and body of fishes and amphibians form the "lateral line" system. During zebrafish adulthood, each neuromast of the body (posterior lateral line system, or PLL) produces "accessory" neuromasts that remain tightly clustered, thereby increasing the total number of PLL neuromasts by a factor of more than 10. This expansion is achieved by a budding process and is accompanied by branches of the afferent nerve that innervates the founder neuromast. Here we show that innervation is essential for the budding process, in complete contrast with the development of the embryonic PLL, where innervation is entirely dispensable. To obtain insight into the molecular mechanisms that underlie the budding process, we focused on the terminal system that develops at the posterior tip of the body and on the caudal fin. In this subset of PLL neuromasts, bud neuromasts form in a reproducible sequence over a few days, much faster than for other PLL neuromasts. We show that wingless/int (Wnt) signaling takes place during, and is required for, the budding process. We also show that the Wnt activator R-spondin is expressed by the axons that innervate budding neuromasts. We propose that the axon triggers Wnt signaling, which itself is involved in the proliferative phase that leads to bud formation. Finally, we show that innervation is required not only for budding, but also for long-term maintenance of all PLL neuromasts.

  9. Netrin-1 controls sympathetic arterial innervation

    PubMed Central

    Brunet, Isabelle; Gordon, Emma; Han, Jinah; Cristofaro, Brunella; Broqueres-You, Dong; Liu, Chun; Bouvrée, Karine; Zhang, Jiasheng; del Toro, Raquel; Mathivet, Thomas; Larrivée, Bruno; Jagu, Julia; Pibouin-Fragner, Laurence; Pardanaud, Luc; Machado, Maria J.C.; Kennedy, Timothy E.; Zhuang, Zhen; Simons, Michael; Levy, Bernard I.; Tessier-Lavigne, Marc; Grenz, Almut; Eltzschig, Holger; Eichmann, Anne

    2014-01-01

    Autonomic sympathetic nerves innervate peripheral resistance arteries, thereby regulating vascular tone and controlling blood supply to organs. Despite the fundamental importance of blood flow control, how sympathetic arterial innervation develops remains largely unknown. Here, we identified the axon guidance cue netrin-1 as an essential factor required for development of arterial innervation in mice. Netrin-1 was produced by arterial smooth muscle cells (SMCs) at the onset of innervation, and arterial innervation required the interaction of netrin-1 with its receptor, deleted in colorectal cancer (DCC), on sympathetic growth cones. Function-blocking approaches, including cell type–specific deletion of the genes encoding Ntn1 in SMCs and Dcc in sympathetic neurons, led to severe and selective reduction of sympathetic innervation and to defective vasoconstriction in resistance arteries. These findings indicate that netrin-1 and DCC are critical for the control of arterial innervation and blood flow regulation in peripheral organs. PMID:24937433

  10. Evidence that the extraocular motor nuclei innervate monkey palisade endings.

    PubMed

    Zimmermann, Lars; May, Paul J; Pastor, Angel M; Streicher, Johannes; Blumer, Roland

    2011-02-01

    Palisade endings are found in the extraocular muscles (EOMs) of almost every mammalian species, including primates. These nerve specializations surrounding the muscle fiber insertion have been postulated to be the proprioceptors of the EOMs. However, it was recently demonstrated that palisade endings have a cholinergic nature, which reopened the question of whether palisade endings are motor or sensory structures. In this work, we examined whether the cell bodies of palisade endings lie in EOM motor nuclei by injecting an anterograde tracer, biotinylated dextran amine, into the abducens nucleus of a macaque monkey. Tracer visualization in the lateral rectus muscle was combined with choline acetyltransferase (ChAT) and α-bungarotoxin staining. Analysis of the samples was performed by conventional light microscopy and confocal laser scanning microscopy. About 30% of the nerve fibers innervating the muscle were tracer positive. These were ChAT positive as well. Tracer positive nerve fibers established motor contacts on singly and multiply innervated muscle fibers, which were confirmed by α-bungarotoxin staining. At the transition between muscle and distal tendon, we found palisade endings that contained tracer. Palisade endings exhibited the classic morphology: axons arising from the muscle extend onto the tendon, then turn back 180° and terminate in a cuff of terminals around an individual muscle fiber tip. This finding suggests that the cell bodies of palisade endings lie in the EOM motor nuclei, which complements prior studies demonstrating a cholinergic, and possibly motor, phenotype for palisade endings.

  11. Ovarian innervation develops before initiation of folliculogenesis in the rat.

    PubMed

    Malamed, S; Gibney, J A; Ojeda, S R

    1992-10-01

    Sympathetic neurotransmitters have been shown to be present in the ovary of the rat during early postnatal development and to affect steroidogenesis before the ovary becomes responsive to gonadotropins, and before the first primordial follicles are formed. This study was undertaken to determine if development of the ovarian innervation is an event that antedates the initiation of folliculogenesis in the rat, Rattus norvegicus. Serial sections of postnatal ovaries revealed a negligible frequency of follicles 24 h after birth (about 1 primordial follicle per ovary). Twelve hours later there were about 500 follicles per ovary, a number that more than doubled to about 1300 during the subsequent 12 h, indicating that an explosive period of follicular differentiation occurs between the end of postnatal days 1 and 2. Electron microscopy demonstrated that before birth the ovaries are already innervated by fibers containing clear and dense-core vesicles. Immunohistochemistry performed on either fetal (day 19) or newborn (less than 15h after birth) ovaries showed the presence of catecholaminergic nerves, identified by their content of immunoreactive tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamine biosynthesis. While some of these fibers innervate blood vessels, others are associated with primordial ovarian cells, thereby suggesting their participation in non-vascular functions. Since prefollicular ovaries are insensitive to gonadotropins, the results suggest that the developing ovary becomes subjected to direct neurogenic influences before it acquires responsiveness to gonadotropins.

  12. Functional recovery of anterior semicircular canal afferents following hair cell regeneration in birds

    NASA Technical Reports Server (NTRS)

    Boyle, Richard; Highstein, Stephen M.; Carey, John P.; Xu, Jinping

    2002-01-01

    Streptomycin sulfate (1.2 g/kg i.m.) was administered for 5 consecutive days to 5-7-day-old white Leghorn chicks; this causes damage to semicircular canal hair cells that ultimately regenerate to reform the sensory epithelium. During the recovery period, electrophysiological recordings were taken sequentially from anterior semicircular canal primary afferents using an indentation stimulus of the canal that has been shown to mimic rotational stimulation. Chicks were assigned to an early (14-18 days; n = 8), intermediate (28-34 days; n = 5), and late (38-58 days; n = 4) period based on days after treatment. Seven untreated chicks, 15-67 days old, provided control data. An absence of background and indent-induced discharge was the prominent feature of afferents in the early period: only "silent" afferents were encountered in 5/8 experiments. In several of these chicks, fascicles of afferent fibers were seen extending up to the epithelium that was void of hair cells, and intra- and extracellular biocytin labeling revealed afferent processes penetrating into the supporting cell layer of the crista. In 3/8 chicks 74 afferents could be characterized, and they significantly differed from controls (n = 130) by having a lower discharge rate and a negligible response to canal stimulation. In the intermediate period there was considerable variability in discharge properties of 121 afferents, but as a whole the number of "silent" fibers in the canal nerve diminished, the background rate increased, and a response to canal stimulation detected. Individually biocytin-labeled afferents had normal-appearing terminal specializations in the sensory epithelium by 28 days poststreptomycin. In the late period, afferents (n = 58) remained significantly different from controls in background discharge properties and response gain. The evidence suggests that a considerable amount of variability exists between chicks in the return of vestibular afferent function following ototoxic injury and

  13. Variation in response dynamics of regular and irregular vestibular-nerve afferents during sinusoidal head rotations and currents in the chinchilla.

    PubMed

    Kim, Kyu-Sung; Minor, Lloyd B; Della Santina, Charles C; Lasker, David M

    2011-05-01

    In mammals, vestibular-nerve afferents that innervate only type I hair cells (calyx-only afferents) respond nearly in phase with head acceleration for high-frequency motion, whereas afferents that innervate both type I and type II (dimorphic) or only type II (bouton-only) hair cells respond more in phase with head velocity. Afferents that exhibit irregular background discharge rates have a larger phase lead re-head velocity than those that fire more regularly. The goal of this study was to investigate the cause of the variation in phase lead between regular and irregular afferents at high-frequency head rotations. Under the assumption that externally applied galvanic currents act directly on the nerve, we derived a transfer function describing the dynamics of a semicircular canal and its hair cells through comparison of responses to sinusoidally modulated head velocity and currents. Responses of all afferents were fit well with a transfer function with one zero (lead term). Best-fit lead terms describing responses to current for each group of afferents were similar to the lead term describing responses to head velocity for regular afferents (0.006 s + 1). This finding indicated that the pre-synaptic and synaptic inputs to regular afferents were likely to be pure velocity transducers. However, the variation in phase lead between regular and irregular afferents could not be explained solely by the ratio of type I to II hair cells (Baird et al 1988), suggesting that the variation was caused by a combination of pre- (type of hair cell) and post-synaptic properties.

  14. Taste Bud-Derived BDNF Is Required to Maintain Normal Amounts of Innervation to Adult Taste Buds.

    PubMed

    Meng, Lingbin; Ohman-Gault, Lisa; Ma, Liqun; Krimm, Robin F

    2015-01-01

    Gustatory neurons transmit chemical information from taste receptor cells, which reside in taste buds in the oral cavity, to the brain. As adult taste receptor cells are renewed at a constant rate, nerve fibers must reconnect with new taste receptor cells as they arise. Therefore, the maintenance of gustatory innervation to the taste bud is an active process. Understanding how this process is regulated is a fundamental concern of gustatory system biology. We speculated that because brain-derived neurotrophic factor (BDNF) is required for taste bud innervation during development, it might function to maintain innervation during adulthood. If so, taste buds should lose innervation when Bdnf is deleted in adult mice. To test this idea, we first removed Bdnf from all cells in adulthood using transgenic mice with inducible CreERT2 under the control of the Ubiquitin promoter. When Bdnf was removed, approximately one-half of the innervation to taste buds was lost, and taste buds became smaller because of the loss of taste bud cells. Individual taste buds varied in the amount of innervation each lost, and those that lost the most innervation also lost the most taste bud cells. We then tested the idea that that the taste bud was the source of this BDNF by reducing Bdnf levels specifically in the lingual epithelium and taste buds. Taste buds were confirmed as the source of BDNF regulating innervation. We conclude that BDNF expressed in taste receptor cells is required to maintain normal levels of innervation in adulthood.

  15. Taste Bud-Derived BDNF Is Required to Maintain Normal Amounts of Innervation to Adult Taste Buds123

    PubMed Central

    Meng, Lingbin; Ohman-Gault, Lisa; Ma, Liqun

    2015-01-01

    Abstract Gustatory neurons transmit chemical information from taste receptor cells, which reside in taste buds in the oral cavity, to the brain. As adult taste receptor cells are renewed at a constant rate, nerve fibers must reconnect with new taste receptor cells as they arise. Therefore, the maintenance of gustatory innervation to the taste bud is an active process. Understanding how this process is regulated is a fundamental concern of gustatory system biology. We speculated that because brain-derived neurotrophic factor (BDNF) is required for taste bud innervation during development, it might function to maintain innervation during adulthood. If so, taste buds should lose innervation when Bdnf is deleted in adult mice. To test this idea, we first removed Bdnf from all cells in adulthood using transgenic mice with inducible CreERT2 under the control of the Ubiquitin promoter. When Bdnf was removed, approximately one-half of the innervation to taste buds was lost, and taste buds became smaller because of the loss of taste bud cells. Individual taste buds varied in the amount of innervation each lost, and those that lost the most innervation also lost the most taste bud cells. We then tested the idea that that the taste bud was the source of this BDNF by reducing Bdnf levels specifically in the lingual epithelium and taste buds. Taste buds were confirmed as the source of BDNF regulating innervation. We conclude that BDNF expressed in taste receptor cells is required to maintain normal levels of innervation in adulthood. PMID:26730405

  16. Taste Bud-Derived BDNF Is Required to Maintain Normal Amounts of Innervation to Adult Taste Buds.

    PubMed

    Meng, Lingbin; Ohman-Gault, Lisa; Ma, Liqun; Krimm, Robin F

    2015-01-01

    Gustatory neurons transmit chemical information from taste receptor cells, which reside in taste buds in the oral cavity, to the brain. As adult taste receptor cells are renewed at a constant rate, nerve fibers must reconnect with new taste receptor cells as they arise. Therefore, the maintenance of gustatory innervation to the taste bud is an active process. Understanding how this process is regulated is a fundamental concern of gustatory system biology. We speculated that because brain-derived neurotrophic factor (BDNF) is required for taste bud innervation during development, it might function to maintain innervation during adulthood. If so, taste buds should lose innervation when Bdnf is deleted in adult mice. To test this idea, we first removed Bdnf from all cells in adulthood using transgenic mice with inducible CreERT2 under the control of the Ubiquitin promoter. When Bdnf was removed, approximately one-half of the innervation to taste buds was lost, and taste buds became smaller because of the loss of taste bud cells. Individual taste buds varied in the amount of innervation each lost, and those that lost the most innervation also lost the most taste bud cells. We then tested the idea that that the taste bud was the source of this BDNF by reducing Bdnf levels specifically in the lingual epithelium and taste buds. Taste buds were confirmed as the source of BDNF regulating innervation. We conclude that BDNF expressed in taste receptor cells is required to maintain normal levels of innervation in adulthood. PMID:26730405

  17. Sympathetic innervation of the ileocecal junction in horses.

    PubMed

    Russo, D; Bombardi, C; Grandis, A; Furness, J B; Spadari, A; Bernardini, C; Chiocchetti, R

    2010-10-01

    The distribution and chemical phenotypes of sympathetic and dorsal root ganglion (DRG) neurons innervating the equine ileocecal junction (ICJ) were studied by combining retrograde tracing and immunohistochemistry. Immunoreactivity (IR) for tyrosine hydroxylase (TH), dopamine beta-hydroxylase (DBH), neuronal nitric oxide synthase (nNOS), calcitonin gene-related peptide (CGRP), substance P (SP), and neuropeptide Y (NPY) was investigated. Sympathetic neurons projecting to the ICJ were distributed within the celiac (CG), cranial mesenteric (CranMG), and caudal mesenteric (CaudMG) ganglia, as well as in the last ganglia of the thoracic sympathetic chain and in the splanchnic ganglia. In the CG and CranMG 91 +/- 8% and 93 +/- 12% of the neurons innervating the ICJ expressed TH- and DBH-IR, respectively. In the CaudMG 90 +/- 15% and 94 +/- 5% of ICJ innervating neurons were TH- and DBH-IR, respectively. Sympathetic (TH-IR) fibers innervated the myenteric and submucosal ganglia, ileal blood vessels, and the muscle layers. They were more concentrated at the ICJ level and were also seen encircling myenteric plexus (MP) and submucosal plexus (SMP) descending neurons that were retrogradely labeled from the ICJ. Among the few retrogradely labeled DRG neurons, nNOS-, CGRP-, and SP-IR nerve cells were observed. Dense networks of CGRP-, nNOS-, and SP-IR varicosities were seen around retrogradely labeled prevertebral ganglia neurons. The CGRP-IR fibers are probably the endings of neurons projecting from the intestine to the prevertebral ganglia. These findings indicate that this crucial region of the intestinal tract is strongly influenced by the sympathetic system and that sensory information of visceral origin influences the sympathetic control of the ICJ.

  18. Pharmacologically Distinct Nicotinic Acetylcholine Receptors Drive Efferent-Mediated Excitation in Calyx-Bearing Vestibular Afferents

    PubMed Central

    Kewin, Kevin; Jordan, Paivi M.; Cameron, Peter; Klapczynski, Marcin; McIntosh, J. Michael; Crooks, Peter A.; Dwoskin, Linda P.; Lysakowski, Anna

    2015-01-01

    Electrical stimulation of vestibular efferent neurons rapidly excites the resting discharge of calyx/dimorphic (CD) afferents. In turtle, this excitation arises when acetylcholine (ACh), released from efferent terminals, directly depolarizes calyceal endings by activating nicotinic ACh receptors (nAChRs). Although molecular biological data from the peripheral vestibular system implicate most of the known nAChR subunits, specific information about those contributing to efferent-mediated excitation of CD afferents is lacking. We sought to identify the nAChR subunits that underlie the rapid excitation of CD afferents and whether they differ from α9α10 nAChRs on type II hair cells that drive efferent-mediated inhibition in adjacent bouton afferents. We recorded from CD and bouton afferents innervating the turtle posterior crista during electrical stimulation of vestibular efferents while applying several subtype-selective nAChR agonists and antagonists. The α9α10 nAChR antagonists, α-bungarotoxin and α-conotoxin RgIA, blocked efferent-mediated inhibition in bouton afferents while leaving efferent-mediated excitation in CD units largely intact. Conversely, 5-iodo-A-85380, sazetidine-A, varenicline, α-conotoxin MII, and bPiDDB (N,N-dodecane-1,12-diyl-bis-3-picolinium dibromide) blocked efferent-mediated excitation in CD afferents without affecting efferent-mediated inhibition in bouton afferents. This pharmacological profile suggested that calyceal nAChRs contain α6 and β2, but not α9, nAChR subunits. Selective blockade of efferent-mediated excitation in CD afferents distinguished dimorphic from calyx afferents by revealing type II hair cell input. Dimorphic afferents differed in having higher mean discharge rates and a mean efferent-mediated excitation that was smaller in amplitude yet longer in duration. Molecular biological data demonstrated the expression of α9 in turtle hair cells and α4 and β2 in associated vestibular ganglia. PMID:25716861

  19. Resistance of a crayfish sensory interneurone to hyperinnervation by acceptable afferents.

    PubMed Central

    Krasne, F B; Lee, S H

    1982-01-01

    1. Intact normal innervation of muscle fibres and other peripheral targets usually prevents regenerating nerves from forming synapses with the targets. Whether intact innervation similarly prevents synapse formation on central target neurones has rarely been tested. This question was examined here for interneurone A of the crayfish last abdominal ganglion. 2. Interneurone A normally receives synaptic input from mechanoreceptor neurones distributed over the side of the tailfan ipsilateral to interneurone A's axon and unilateral dendrites. When the five nerve roots carrying mechanoreceptor axons of one side are cut and central and peripheral ends of one or more are sutured together, regeneration and reinnervation of interneurone A occurs over some two to six weeks. If peripheral ends of roots from the 'wrong' (contralateral) side of the body are sutured to ipsilateral central stumps, they also form connexions with interneurone A. When roots from the two sides of the body are simultaneously tied to a central stump, functional connexion formation occurs equally well for afferents from both sides. Therefore, roots of the two sides seem to be equivalent in their ability to reinnervate interneurone A. 3. If peripheral ends of roots from one side of the tailfan are tied to roots on the intact opposite side of the body, the cut axons appear to grow into the last ganglion but usually do not form functional synapses there. The intact innervation therefore seems to exclude further innervation by other acceptable afferents. 4. It is known that mechanoreceptors are added to the tailfan at moult. Exclusion of extra innervation often broke down partially in animals that moulted during the present experiments. This suggests the possibility that synapse formation or exchange may be controlled by moult-inducing hormones. PMID:7153906

  20. Inflammation increases the excitability of masseter muscle afferents.

    PubMed

    Harriott, A M; Dessem, D; Gold, M S

    2006-08-11

    Temporomandibular disorder is a major health problem associated with chronic orofacial pain in the masticatory muscles and/or temporomandibular joint. Evidence suggests that changes in primary afferents innervating the muscles of mastication may contribute to temporomandibular disorder. However, there has been little systematic study of the mechanisms controlling the excitability of these muscle afferents, nor their response to inflammation. In the present study, we tested the hypotheses that inflammation increases the excitability of sensory neurons innervating the masseter muscle of the rat and that the ionic mechanisms underlying these changes are unique to these neurons. We examined inflammation-induced changes in the excitability of trigeminal ganglia muscle neurons following intramuscular injections of complete Freund's adjuvant. Three days after complete Freund's adjuvant injection acutely dissociated, retrogradely labeled trigeminal ganglia neurons were studied using whole cell patch clamp techniques. Complete Freund's adjuvant-induced inflammation was associated with an increase in neuronal excitability marked by a significant decrease in rheobase and increase in the slope of the stimulus response function assessed with depolarizing current injection. The increase in excitability was associated with significant decreases in the rate of action potential fall and the duration of the action potential afterhyperpolarization. These changes in excitability and action potential waveform were associated with significant shifts in the voltage-dependence of activation and steady-state availability of voltage-gated K(+) current as well as significant decreases in the density of voltage-gated K(+) current subject to steady-state inactivation. These data suggest that K(+) channel subtypes may provide novel targets for the treatment of pain arising from inflamed muscle. These results also support the hypothesis that the underlying mechanisms of pain arising from

  1. Transfer characteristics of the hair cell's afferent synapse

    NASA Astrophysics Data System (ADS)

    Keen, Erica C.; Hudspeth, A. J.

    2006-04-01

    The sense of hearing depends on fast, finely graded neurotransmission at the ribbon synapses connecting hair cells to afferent nerve fibers. The processing that occurs at this first chemical synapse in the auditory pathway determines the quality and extent of the information conveyed to the central nervous system. Knowledge of the synapse's input-output function is therefore essential for understanding how auditory stimuli are encoded. To investigate the transfer function at the hair cell's synapse, we developed a preparation of the bullfrog's amphibian papilla. In the portion of this receptor organ representing stimuli of 400-800 Hz, each afferent nerve fiber forms several synaptic terminals onto one to three hair cells. By performing simultaneous voltage-clamp recordings from presynaptic hair cells and postsynaptic afferent fibers, we established that the rate of evoked vesicle release, as determined from the average postsynaptic current, depends linearly on the amplitude of the presynaptic Ca2+ current. This result implies that, for receptor potentials in the physiological range, the hair cell's synapse transmits information with high fidelity. auditory system | exocytosis | glutamate | ribbon synapse | synaptic vesicle

  2. Low excitatory innervation balances high intrinsic excitability of immature dentate neurons

    DOE PAGES

    Dieni, Cristina V.; Panichi, Roberto; Aimone, James B.; Kuo, Chay T.; Wadiche, Jacques I.; Overstreet-Wadiche, Linda

    2016-04-20

    Persistent neurogenesis in the dentate gyrus produces immature neurons with high intrinsic excitability and low levels of inhibition that are predicted to be more broadly responsive to afferent activity than mature neurons. Mounting evidence suggests that these immature neurons are necessary for generating distinct neural representations of similar contexts, but it is unclear how broadly responsive neurons help distinguish between similar patterns of afferent activity. Here we show that stimulation of the entorhinal cortex in mouse brain slices paradoxically generates spiking of mature neurons in the absence of immature neuron spiking. Immature neurons with high intrinsic excitability fail to spikemore » due to insufficient excitatory drive that results from low innervation rather than silent synapses or low release probability. Here, our results suggest that low synaptic connectivity prevents immature neurons from responding broadly to cortical activity, potentially enabling excitable immature neurons to contribute to sparse and orthogonal dentate representations.« less

  3. Low excitatory innervation balances high intrinsic excitability of immature dentate neurons

    PubMed Central

    Dieni, Cristina V.; Panichi, Roberto; Aimone, James B.; Kuo, Chay T.; Wadiche, Jacques I.; Overstreet-Wadiche, Linda

    2016-01-01

    Persistent neurogenesis in the dentate gyrus produces immature neurons with high intrinsic excitability and low levels of inhibition that are predicted to be more broadly responsive to afferent activity than mature neurons. Mounting evidence suggests that these immature neurons are necessary for generating distinct neural representations of similar contexts, but it is unclear how broadly responsive neurons help distinguish between similar patterns of afferent activity. Here we show that stimulation of the entorhinal cortex in mouse brain slices paradoxically generates spiking of mature neurons in the absence of immature neuron spiking. Immature neurons with high intrinsic excitability fail to spike due to insufficient excitatory drive that results from low innervation rather than silent synapses or low release probability. Our results suggest that low synaptic connectivity prevents immature neurons from responding broadly to cortical activity, potentially enabling excitable immature neurons to contribute to sparse and orthogonal dentate representations. PMID:27095423

  4. Low excitatory innervation balances high intrinsic excitability of immature dentate neurons.

    PubMed

    Dieni, Cristina V; Panichi, Roberto; Aimone, James B; Kuo, Chay T; Wadiche, Jacques I; Overstreet-Wadiche, Linda

    2016-04-20

    Persistent neurogenesis in the dentate gyrus produces immature neurons with high intrinsic excitability and low levels of inhibition that are predicted to be more broadly responsive to afferent activity than mature neurons. Mounting evidence suggests that these immature neurons are necessary for generating distinct neural representations of similar contexts, but it is unclear how broadly responsive neurons help distinguish between similar patterns of afferent activity. Here we show that stimulation of the entorhinal cortex in mouse brain slices paradoxically generates spiking of mature neurons in the absence of immature neuron spiking. Immature neurons with high intrinsic excitability fail to spike due to insufficient excitatory drive that results from low innervation rather than silent synapses or low release probability. Our results suggest that low synaptic connectivity prevents immature neurons from responding broadly to cortical activity, potentially enabling excitable immature neurons to contribute to sparse and orthogonal dentate representations.

  5. Low excitatory innervation balances high intrinsic excitability of immature dentate neurons.

    PubMed

    Dieni, Cristina V; Panichi, Roberto; Aimone, James B; Kuo, Chay T; Wadiche, Jacques I; Overstreet-Wadiche, Linda

    2016-01-01

    Persistent neurogenesis in the dentate gyrus produces immature neurons with high intrinsic excitability and low levels of inhibition that are predicted to be more broadly responsive to afferent activity than mature neurons. Mounting evidence suggests that these immature neurons are necessary for generating distinct neural representations of similar contexts, but it is unclear how broadly responsive neurons help distinguish between similar patterns of afferent activity. Here we show that stimulation of the entorhinal cortex in mouse brain slices paradoxically generates spiking of mature neurons in the absence of immature neuron spiking. Immature neurons with high intrinsic excitability fail to spike due to insufficient excitatory drive that results from low innervation rather than silent synapses or low release probability. Our results suggest that low synaptic connectivity prevents immature neurons from responding broadly to cortical activity, potentially enabling excitable immature neurons to contribute to sparse and orthogonal dentate representations. PMID:27095423

  6. Spatial convergence and divergence between cutaneous afferent axons and dorsal horn cells are not constant.

    PubMed

    Brown, P B; Harton, P; Millecchia, R; Lawson, J; Kunjara-Na-Ayudhya, T; Stephens, S; Miller, M A; Hicks, L; Culberson, J

    2000-05-01

    We have proposed a quantitative model of the development of dorsal horn cell receptive fields (RFs) and somatotopic organization (Brown et al. [1997] Somatosens. Motor Res. 14:93-106). One component of that model is a hypothesis that convergence and divergence of connections between low-threshold primary afferent mechanoreceptive axons and dorsal horn cells are invariant over skin location and dorsal horn location. The more limited, and more easily tested, hypothesis that spatial convergence and divergence between cutaneous mechanoreceptors and dorsal horn cell are constant was examined. Spatial divergence is the number of dorsal horn cells whose RFs overlap the RF center of a primary afferent, and spatial convergence is the number of afferent RF centers that lie within the RF of a dorsal horn cell. Innervation density was determined as a function of location on the hindlimb by using peripheral nerve recording and axon counting. A descriptive model of dorsal horn cell receptive fields (Brown et al. [1998] J. Neurophysiol. 31:833-848) was used to simulate RFs of the entire dorsal horn cell population in order to estimate RF area and map scale as a function of location on the hindlimb. Previously reported correlations among innervation density, map scale, and RF size were confirmed. However, these correlations were not linear. The hypothesis that spatial convergence and divergence are constant was rejected. The previously proposed model of development of dorsal horn cell somatotopy and RF geometries must be revised to take variable spatial convergence and divergence into account. PMID:10754502

  7. Altered colorectal afferent function associated with TNBS-induced visceral hypersensitivity in mice.

    PubMed

    Feng, Bin; La, Jun-Ho; Tanaka, Takahiro; Schwartz, Erica S; McMurray, Timothy P; Gebhart, G F

    2012-10-01

    Inflammation of the distal bowel is often associated with abdominal pain and hypersensitivity, but whether and which colorectal afferents contribute to the hypersensitivity is unknown. Using a mouse model of 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis, we investigated colorectal hypersensitivity following intracolonic TNBS and associated changes in colorectum and afferent functions. C57BL/6 mice were treated intracolonically with TNBS or saline. Visceromotor responses to colorectal distension (15-60 mmHg) were recorded over 8 wk in TNBS- and saline-treated (control) mice. In other mice treated with TNBS or saline, colorectal inflammation was assessed by myeloperoxidase assay and immunohistological staining. In vitro single-fiber recordings were conducted on both TNBS and saline-treated mice to assess colorectal afferent function. Mice exhibited significant colorectal hypersensitivity through day 14 after TNBS treatment that resolved by day 28 with no resensitization through day 56. TNBS induced a neutrophil- and macrophage-based colorectal inflammation as well as loss of nerve fibers, all of which resolved by days 14-28. Single-fiber recordings revealed a net increase in afferent drive from stretch-sensitive colorectal afferents at day 14 post-TNBS and reduced proportions of mechanically insensitive afferents (MIAs) at days 14-28. Intracolonic TNBS-induced colorectal inflammation was associated with the development and recovery of hypersensitivity in mice, which correlated with a transient increase and recovery of sensitization of stretch-sensitive colorectal afferents and MIAs. These results indicate that the development and maintenance of colorectal hypersensitivity following inflammation are mediated by peripheral drive from stretch-sensitive colorectal afferents and a potential contribution from MIAs.

  8. Altered colorectal afferent function associated with TNBS-induced visceral hypersensitivity in mice

    PubMed Central

    La, Jun-Ho; Tanaka, Takahiro; Schwartz, Erica S.; McMurray, Timothy P.; Gebhart, G. F.

    2012-01-01

    Inflammation of the distal bowel is often associated with abdominal pain and hypersensitivity, but whether and which colorectal afferents contribute to the hypersensitivity is unknown. Using a mouse model of 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis, we investigated colorectal hypersensitivity following intracolonic TNBS and associated changes in colorectum and afferent functions. C57BL/6 mice were treated intracolonically with TNBS or saline. Visceromotor responses to colorectal distension (15–60 mmHg) were recorded over 8 wk in TNBS- and saline-treated (control) mice. In other mice treated with TNBS or saline, colorectal inflammation was assessed by myeloperoxidase assay and immunohistological staining. In vitro single-fiber recordings were conducted on both TNBS and saline-treated mice to assess colorectal afferent function. Mice exhibited significant colorectal hypersensitivity through day 14 after TNBS treatment that resolved by day 28 with no resensitization through day 56. TNBS induced a neutrophil- and macrophage-based colorectal inflammation as well as loss of nerve fibers, all of which resolved by days 14–28. Single-fiber recordings revealed a net increase in afferent drive from stretch-sensitive colorectal afferents at day 14 post-TNBS and reduced proportions of mechanically insensitive afferents (MIAs) at days 14–28. Intracolonic TNBS-induced colorectal inflammation was associated with the development and recovery of hypersensitivity in mice, which correlated with a transient increase and recovery of sensitization of stretch-sensitive colorectal afferents and MIAs. These results indicate that the development and maintenance of colorectal hypersensitivity following inflammation are mediated by peripheral drive from stretch-sensitive colorectal afferents and a potential contribution from MIAs. PMID:22859364

  9. CNS Dopamine Transmission Mediated by Noradrenergic Innervation

    PubMed Central

    Smith, Caroline C.; Greene, Robert W.

    2012-01-01

    The pre-synaptic source of dopamine in the CA1 field of dorsal hippocampus is uncertain due to an anatomical mismatch between dopaminergic terminals and receptors. We show, in an in vitro slice preparation from C57BL6 male mice, that a dopamine (DA) D1 receptor (D1R) mediated enhancement in glutamate synaptic transmission occurs following release of endogenous DA with amphetamine exposure. It is assumed DA is released from terminals innervating from the ventral tegmental area (VTA) even though DA transporter (DAT) positive fibers are absent in hippocampus, a region with abundant D1Rs. It has been suggested this results from a lack of DAT expression on VTA terminals rather than a lack of these terminals per se. Neither a knockdown of tyrosine hydroxylase (TH) expression in the VTA by THsiRNA, delivered locally, by adeno-associated viral vector, nor localized pharmacological blockade of DAT to prevent amphetamine uptake into DA terminals, has any effect on the D1R synaptic, enhancement response to amphetamine. However, either a decrease in TH expression in the locus coeruleus (LC) or a blockade of the norepinephrine (NE) transporter prevents the DA mediated response, indicating LC terminals can release both NE and DA. These findings suggest noradrenergic fibers may be the primary source of DA release in hippocampus and corresponding DA mediated increase in synaptic transmission. Accordingly, these data imply the LC may have a role in DA transmission in the CNS in response to drugs of abuse, and potentially, under physiological conditions. PMID:22553014

  10. Multiple innervation of normal and re-innervated parasympathetic neurones in the frog cardiac ganglion.

    PubMed Central

    Dennis, M J; Sargent, P B

    1978-01-01

    1. Multiple innervation of parasympathetic neurones was examined in normal and re-innervated frog cardiac ganglia. The number of synaptic inputs impinging upon individual ganglion cells was determined by recording intracellularly and stimulating the vagosympathetic nerves. 2. In unoperated cardiac ganglia most neurones (93%) received a large, suprathreshold synaptic input. Some ganglion cells received additional, small synaptic inputs. Roughly equal numbers of cells encountered were singly and doubly innervated, and only 8% received more than two inputs. 3. Re-innervation of cardiac ganglion cells began three weeks after bilateral crush of the vagosympathetic nerves. By 7 weeks more than 90% of the ganglion cells were re-innervated. At this stage the pattern of multiple innervation was significantly different than normal: doubly innervated neurones outnumbered singly innervated ones, and 31% of the cells encountered received more than two inputs. This pattern was stable for at least a year. 4. These results indicate that polyneuronal innervation of cardiac ganglion cells is more widespread after re-innervation than it is normally and, furthermore, that synapse elimination does not occur during re-innervation of these cells. Images Plate 1 PMID:212557

  11. The optimal neural strategy for a stable motor task requires a compromise between level of muscle cocontraction and synaptic gain of afferent feedback

    PubMed Central

    Dideriksen, Jakob L.; Negro, Francesco

    2015-01-01

    Increasing joint stiffness by cocontraction of antagonist muscles and compensatory reflexes are neural strategies to minimize the impact of unexpected perturbations on movement. Combining these strategies, however, may compromise steadiness, as elements of the afferent input to motor pools innervating antagonist muscles are inherently negatively correlated. Consequently, a high afferent gain and active contractions of both muscles may imply negatively correlated neural drives to the muscles and thus an unstable limb position. This hypothesis was systematically explored with a novel computational model of the peripheral nervous system and the mechanics of one limb. Two populations of motor neurons received synaptic input from descending drive, spinal interneurons, and afferent feedback. Muscle force, simulated based on motor unit activity, determined limb movement that gave rise to afferent feedback from muscle spindles and Golgi tendon organs. The results indicated that optimal steadiness was achieved with low synaptic gain of the afferent feedback. High afferent gains during cocontraction implied increased levels of common drive in the motor neuron outputs, which were negatively correlated across the two populations, constraining instability of the limb. Increasing the force acting on the joint and the afferent gain both effectively minimized the impact of an external perturbation, and suboptimal adjustment of the afferent gain could be compensated by muscle cocontraction. These observations show that selection of the strategy for a given contraction implies a compromise between steadiness and effectiveness of compensations to perturbations. This indicates that a task-dependent selection of neural strategy for steadiness is necessary when acting in different environments. PMID:26203102

  12. The optimal neural strategy for a stable motor task requires a compromise between level of muscle cocontraction and synaptic gain of afferent feedback.

    PubMed

    Dideriksen, Jakob L; Negro, Francesco; Farina, Dario

    2015-09-01

    Increasing joint stiffness by cocontraction of antagonist muscles and compensatory reflexes are neural strategies to minimize the impact of unexpected perturbations on movement. Combining these strategies, however, may compromise steadiness, as elements of the afferent input to motor pools innervating antagonist muscles are inherently negatively correlated. Consequently, a high afferent gain and active contractions of both muscles may imply negatively correlated neural drives to the muscles and thus an unstable limb position. This hypothesis was systematically explored with a novel computational model of the peripheral nervous system and the mechanics of one limb. Two populations of motor neurons received synaptic input from descending drive, spinal interneurons, and afferent feedback. Muscle force, simulated based on motor unit activity, determined limb movement that gave rise to afferent feedback from muscle spindles and Golgi tendon organs. The results indicated that optimal steadiness was achieved with low synaptic gain of the afferent feedback. High afferent gains during cocontraction implied increased levels of common drive in the motor neuron outputs, which were negatively correlated across the two populations, constraining instability of the limb. Increasing the force acting on the joint and the afferent gain both effectively minimized the impact of an external perturbation, and suboptimal adjustment of the afferent gain could be compensated by muscle cocontraction. These observations show that selection of the strategy for a given contraction implies a compromise between steadiness and effectiveness of compensations to perturbations. This indicates that a task-dependent selection of neural strategy for steadiness is necessary when acting in different environments.

  13. Circadian variation in gastric vagal afferent mechanosensitivity.

    PubMed

    Kentish, Stephen J; Frisby, Claudine L; Kennaway, David J; Wittert, Gary A; Page, Amanda J

    2013-12-01

    Food intake is coordinated to cellular metabolism by clock gene expression with a master clock in the suprachiasmatic nucleus synchronized by light exposure. Gastric vagal afferents play a role in regulating food intake, but it is unknown whether they exhibit circadian variation in their mechanosensitivity. We aimed to determine whether gastric vagal afferents express clock genes and whether their response to mechanical stimuli oscillates throughout the light/dark cycle. Nodose ganglia were collected from 8-week-old female C57BL/6 mice every 3 h starting at lights off (1800 h) to quantify Bmal1, Per1, Per2, and Nr1d1 mRNA by qRT-PCR. Additionally in vitro single-fiber recordings of gastric vagal mechanoreceptors were taken at all time points. Per1, Per2, Bmal1, and Nr1d1 mRNA is expressed in the nodose ganglia and levels oscillated over a 24 h period. In mice fed ad libitum, gastric content was 3 times higher at 0000 h and 0300 h than 1200 h. The response of tension receptors to 3 g stretch was reduced by up to 70% at 2100 h, 0000 h, and 0300 h compared with 1200 h. Gastric mucosal receptor response to stroking with a 50 mg von Frey hair was 3 times greater at 1200 h and 1500 h than the response at 0000 h. Similar findings were obtained in mice fasted for 6 h or maintained in darkness for 3 d before study. Therefore, these changes do not result from food intake or the light/dark cycle. Thus, gastric vagal mechanoreceptors display circadian rhythm, which may act to control food intake differentially at different times of the day. PMID:24305819

  14. Regional and laminar distribution of the dopamine and serotonin innervation in the macaque cerebral cortex: a radioautographic study

    SciTech Connect

    Berger, B.; Trottier, S.; Verney, C.; Gaspar, P.; Alvarez, C.

    1988-07-01

    The regional density and laminar distribution of dopamine (DA) and serotonin (5-HT) afferents were investigated in the cerebral cortex of cynomolgus monkeys using a radioautographic technique that is based on the high affinity uptake capacity of these aminergic neurons. Large vibratome sections, 50 micron thick, were incubated with (3H) DA (0.2 microM) and desipramine (5 microM) or with unlabeled norepinephrine (5 microM) and (3H) 5-HT (0.6 microM), which allowed for the specific labeling of the DA and 5-HT innervations, respectively. After fixation, these sections were dried, defatted, and radioautographed by dipping. Semiquantitative data on the DA innervation also were provided by counting (3H) DA-labeled axonal varicosities in radioautographs from 4-micron-thick sections of the slices obtained after epon embedding. The DA innervation was widespread and differed in density and laminar distribution in the agranular and granular cortices. DA afferents were densest in the anterior cingulate (area 24) and the motor areas (areas 4, 6, and supplementary motor area (SMA)). In the latter they displayed a trilaminar pattern of distribution, predominating in layers I, IIIa, and V-VI, with characteristic cluster-like formations in layer IIIa, especially in the medial part of motor areas. In the granular prefrontal (areas 46, 9, 10, 11, 12), parietal (areas 1, 2, 3, 5, 7), temporal (areas 21, 22), and posterior cingulate (area 23) cortices, DA afferents were less dense and showed a bilaminar pattern of distribution, predominating in the depth of layer I and in layers V-VI; density in layers II, III, and IV was only 20% of that in layer I. The lowest density was in the visual cortex, particularly in area 17, where the DA afferents were almost restricted to layer I.

  15. Type II spiral ganglion afferent neurons drive medial olivocochlear reflex suppression of the cochlear amplifier.

    PubMed

    Froud, Kristina E; Wong, Ann Chi Yan; Cederholm, Jennie M E; Klugmann, Matthias; Sandow, Shaun L; Julien, Jean-Pierre; Ryan, Allen F; Housley, Gary D

    2015-01-01

    The dynamic adjustment of hearing sensitivity and frequency selectivity is mediated by the medial olivocochlear efferent reflex, which suppresses the gain of the 'cochlear amplifier' in each ear. Such efferent feedback is important for promoting discrimination of sounds in background noise, sound localization and protecting the cochleae from acoustic overstimulation. However, the sensory driver for the olivocochlear reflex is unknown. Here, we resolve this longstanding question using a mouse model null for the gene encoding the type III intermediate filament peripherin (Prph). Prph((-/-)) mice lacked type II spiral ganglion neuron innervation of the outer hair cells, whereas innervation of the inner hair cells by type I spiral ganglion neurons was normal. Compared with Prph((+/+)) controls, both contralateral and ipsilateral olivocochlear efferent-mediated suppression of the cochlear amplifier were absent in Prph((-/-)) mice, demonstrating that outer hair cells and their type II afferents constitute the sensory drive for the olivocochlear efferent reflex.

  16. Botulinum toxin in Migraine: Role of transport in trigemino-somatic and trigemino-vascular afferents

    PubMed Central

    Roshni, Ramachandran; Carmen, Lam; Yaksh Tony, L

    2015-01-01

    Migraine secondary to meningeal input is referred to extracranial regions innervated by somatic afferents that project to homologous regions in the trigeminal nucleus caudalis (TNC). Reported efficacy of extracranial botulinum toxin (BoNT) in treating migraine is surprising since a local extracranial effect of BoNT cannot account for its effect upon meningeal input. We hypothesize that intradermal BoNT acts through central transport in somatic afferents. Anesthetized C57Bl/6 mice (male) received unilateral supraorbital (SO) injections of BoNT-B (1.5 U/40 μl) or saline. 3 days later, mice received ipsilateral (ipsi) -SO capsaicin (2.5 μg/30 μl) or meningeal capsaicin (4 μl of 1mg/ml). Pre-treatment with ipsi-SO BONT-B i) decreased nocicsponsive ipsilateral wiping behavior following ipsi-SO capsaicin; ii) produced cleavage of VAMP in the V1 region of ipsi-TG and in TG neurons showing WGA after SO injection; iii) reduced expression of c-fos in ipsi-TNC following ipsi-SO capsaicin; iv) reduced c-fos activation and NK-1 internalization in ipsi-TNC secondary to ipsi-meningeal capsaicin; vi) SO WGA did not label dural afferents. We conclude that BoNT-B is taken up by peripheral afferents and transported to central terminals where it inhibits transmitter release resulting in decreased activation of second order neurons. Further, this study supports the hypothesis that SO BoNT exerts a trans-synaptic action on either the second order neuron (which receives convergent input from the meningeal afferent) or the terminal/TG of the converging meningeal afferent. PMID:25958249

  17. Renal afferents signaling diuretic activity in the cat.

    PubMed

    Genovesi, S; Pieruzzi, F; Wijnmaalen, P; Centonza, L; Golin, R; Zanchetti, A; Stella, A

    1993-11-01

    Mechanoreceptors and chemoreceptors have been identified inside the kidney, but their functional role is still largely unclear. The aim of this study was to investigate whether changes in urine output could modify the discharge rate of renal afferent fibers. Experiments were performed in anesthetized cats in which afferent renal nerve activity (ARNA) was recorded by standard electrophysiological techniques from a centrally cut renal nerve. Arterial pressure, renal blood flow velocity, urine flow rate, and renal pelvic pressure were also measured. Three diuretic maneuvers were tested in the same cat: intravenous administration of physiological saline (8 to 13 mL/min for 2 minutes), furosemide (1 mg/kg), and atrial natriuretic peptide (ANP, 1 microgram/kg). The three maneuvers increased urine flow rate and pelvic pressure, respectively, 137.0 +/- 20.6% and 136.8 +/- 21.1% (saline), 148.6 +/- 31.7% and 139.6 +/- 43.5% (furosemide), and 75.9 +/- 7.9% and 62.1 +/- 21.2% (ANP) at the time of the maximum response. Arterial pressure slightly increased after saline, did not change after furosemide, and slightly decreased after ANP. Renal blood flow increased after saline and did not change after furosemide and ANP. The three maneuvers increased ARNA by 98.4 +/- 15.2% (saline), 270.7 +/- 100.8% (furosemide), and 59.6 +/- 23.4% (ANP). Changes in ARNA significantly correlate with changes in both pelvic pressure and urine flow rate. Our data demonstrate that increments in urine flow rate increase the firing rate of renal afferent fibers and suggest that (1) pelvic pressure is the major determinant of the neural response, and (2) this increased afferent discharge is due to activation of renal mechanoreceptors.

  18. Fiber

    MedlinePlus

    ... it can help with weight control. Fiber aids digestion and helps prevent constipation . It is sometimes used ... fiber attracts water and turns to gel during digestion. This slows digestion. Soluble fiber is found in ...

  19. A Method to Target and Isolate Airway-innervating Sensory Neurons in Mice.

    PubMed

    Kaelberer, Melanie Maya; Jordt, Sven-Eric

    2016-01-01

    Somatosensory nerves transduce thermal, mechanical, chemical, and noxious stimuli caused by both endogenous and environmental agents. The cell bodies of these afferent neurons are located within the sensory ganglia. Sensory ganglia innervate a specific organ or portion of the body. For instance, the dorsal root ganglia (DRG) are located in the vertebral column and extend processes throughout the body and limbs. The trigeminal ganglia are located in the skull and innervate the face, and upper airways. Vagal afferents of the nodose ganglia extend throughout the gut, heart, and lungs. The nodose neurons control a diverse array of functions such as: respiratory rate, airway irritation, and cough reflexes. Thus, to understand and manipulate their function, it is critical to identify and isolate airway specific neuronal sub-populations. In the mouse, the airways are exposed to a fluorescent tracer dye, Fast Blue, for retrograde tracing of airway-specific nodose neurons. The nodose ganglia are dissociated and fluorescence activated cell (FAC) sorting is used to collect dye positive cells. Next, high quality ribonucleic acid (RNA) is extracted from dye positive cells for next generation sequencing. Using this method airway specific neuronal gene expression is determined. PMID:27168016

  20. Initial innervation of embryonic rat tongue and developing taste papillae: nerves follow distinctive and spatially restricted pathways.

    PubMed

    Mbiene, J P; Mistretta, C M

    1997-01-01

    The rat tongue has an extensive, complex innervation from four cranial nerves. However, the precise developmental time course and spatial routes of these nerves into the embryonic tongue are not known, although this knowledge is crucial for studying mechanisms that regulate development and innervation of the lingual taste organs, gustatory papillae and resident taste buds. We determined the initial spatial course of nerves in the developing tongue and papillae, and tested the hypothesis that sensory nerves first innervate the tongue homogeneously and then retract to more densely innervate papillae and taste buds. Antibodies to GAP-43 and neurofilaments were used to label nerve fibers in rat embryo heads from gestational day 11 through 16 (E11-E16). Serial sagittal sections were traced and reconstructed to follow paths of each nerve. In E11 rat, geniculate, trigeminal and petrosal ganglia were labeled and fibers left the ganglia and extended toward respective branchial arches. At E13 when the developing tongue is still a set of tissue swellings, the combined chorda/lingual, hypoglossal and petrosal nerves approached the lingual swellings from separate positions. Only the chorda/lingual entered the tongue base at this stage. At E14 and E15, the well-developed tongue was innervated by all four cranial nerves. However, the nerves maintained distinctive entry points and relatively restricted mesenchymal territories within the tongue, and did not follow one another in common early pathways. Furthermore, the chorda/lingual and glossopharyngeal nerves did not set up an obvious prepattern for gustatory papilla development, but rather seemed attracted to developing papillae which became very densely innervated compared to surrounding epithelium at E15. To effect this dense papilla innervation, sensory nerves did not first innervate the tongue in a homogeneous manner with subsequent retraction and/or extensive redirection of fibers into the taste organs. Results contribute to

  1. Xanthine oxidase, but not neutrophils, contributes to activation of cardiac sympathetic afferents during myocardial ischaemia in cats

    PubMed Central

    Tjen-A-Looi, Stephanie C; Fu, Liang-Wu; Longhurst, John C

    2002-01-01

    Activation of cardiac sympathetic afferents during myocardial ischaemia causes angina and induces important cardiovascular reflex responses. Reactive oxygen species (ROS) are important chemical stimuli of cardiac afferents during and after ischaemia. Iron-catalysed Fenton chemistry constitutes one mechanism of production of hydroxyl radicals. Another potential source of these species is xanthine oxidase-catalysed oxidation of purines. Polymorphonuclear leukocytes (PMNs) also contribute to the production of ROS in some conditions. The present study tested the hypothesis that both xanthine oxidase-catalysed oxidation of purines and neutrophils provide a source of ROS sufficient to activate cardiac afferents during ischaemia. We recorded single-unit activity of cardiac afferents innervating the ventricles recorded from the left thoracic sympathetic chain (T1-5) of anaesthetized cats to identify the afferents' responses to ischaemia. The role of xanthine oxidase in activation of these afferents was determined by infusion of oxypurinol (10 mg kg−1, i.v.), an inhibitor of xanthine oxidase. The importance of neutrophils as a potential source of ROS in the activation of cardiac afferents during ischaemia was assessed by the infusion of a polyclonal antibody (3 mg ml−1 kg−1, i.v.) raised in rabbits immunized with cat PMNs. This antibody decreased the number of circulating PMNs and, to a smaller extent, platelets. Since previous data suggest that platelets release serotonin (5-HT), which activates cardiac afferents through a serotonin receptor (subtype 3,5-HT3 receptor) mechanism, before treatment with the antibody in another group, we blocked 5-HT3 receptors on sensory nerve endings with tropisetron (300 μg kg−1, i.v.). We observed that oxypurinol significantly decreased the activity of cardiac afferents during myocardial ischaemia from 1.5 ± 0.4 to 0.8 ± 0.4 impulses s−1. Similarly, the polyclonal antibody significantly reduced the discharge frequency of

  2. Npn-1 Contributes to Axon-Axon Interactions That Differentially Control Sensory and Motor Innervation of the Limb

    PubMed Central

    Bianchi, Elisa; Novitch, Bennett G.; Huber, Andrea B.

    2011-01-01

    The initiation, execution, and completion of complex locomotor behaviors are depending on precisely integrated neural circuitries consisting of motor pathways that activate muscles in the extremities and sensory afferents that deliver feedback to motoneurons. These projections form in tight temporal and spatial vicinities during development, yet the molecular mechanisms and cues coordinating these processes are not well understood. Using cell-type specific ablation of the axon guidance receptor Neuropilin-1 (Npn-1) in spinal motoneurons or in sensory neurons in the dorsal root ganglia (DRG), we have explored the contribution of this signaling pathway to correct innervation of the limb. We show that Npn-1 controls the fasciculation of both projections and mediates inter-axonal communication. Removal of Npn-1 from sensory neurons results in defasciculation of sensory axons and, surprisingly, also of motor axons. In addition, the tight coupling between these two heterotypic axonal populations is lifted with sensory fibers now leading the spinal nerve projection. These findings are corroborated by partial genetic elimination of sensory neurons, which causes defasciculation of motor projections to the limb. Deletion of Npn-1 from motoneurons leads to severe defasciculation of motor axons in the distal limb and dorsal-ventral pathfinding errors, while outgrowth and fasciculation of sensory trajectories into the limb remain unaffected. Genetic elimination of motoneurons, however, revealed that sensory axons need only minimal scaffolding by motor axons to establish their projections in the distal limb. Thus, motor and sensory axons are mutually dependent on each other for the generation of their trajectories and interact in part through Npn-1-mediated fasciculation before and within the plexus region of the limbs. PMID:21364975

  3. Deficient Vasoactive Intestinal Peptide Innervation in the Sweat Glands of Cystic Fibrosis Patients

    NASA Astrophysics Data System (ADS)

    Heinz-Erian, Peter; Dey, Richard D.; Flux, Marinus; Said, Sami I.

    1985-09-01

    The innervation of acini and ducts of eccrine sweat glands by immunoreactive, vasoactive intestinal peptide--containing nerve fibers was sharply reduced in seven patients with cystic fibrosis compared to eight normal subjects. The decrease in innervation by this neuropeptide, which has been shown to promote blood flow and the movement of water and chloride across epithelial surfaces in other systems, may be a basic mechanism for the decreased water content and relative impermeability of the epithelium to chloride and other ions that characterize cystic fibrosis.

  4. Endogenous bradykinin activates ischaemically sensitive cardiac visceral afferents through kinin B2 receptors in cats

    PubMed Central

    Tjen-A-Looi, Stephanie C; Pan, Hui-Lin; Longhurst, John C

    1998-01-01

    Activity of ischaemically sensitive cardiac visceral afferents during myocardial ischaemia induces both angina and cardiovascular reflexes. Increased production of bradykinin (BK) and cyclo-oxygenase products (i.e. prostaglandins (PGs)) occurs during myocardial ischaemia. However, the role of these agents in activation of ischaemically sensitive cardiac afferents has not been established. The present study tested the hypothesis that BK produced during ischaemia activates cardiac afferents through kinin B2 receptors. Single-unit activity of cardiac afferents innervating the left ventricle was recorded from the left thoracic sympathetic chain (T1–T4) of anaesthetized cats. Ischaemically sensitive cardiac afferents were identified according to their response to 5 min of myocardial ischaemia. The mechanism of BK in activation of ischaemically sensitive cardiac afferents was determined by injection of BK (1 μg kg−1 i.a.), des-Arg9-BK (1 μg kg−1 i.a., a specific kinin B1 receptor agonist), kinin B2 receptor antagonists: HOE140 (30 μg kg−1 i.v.) and NPC-17731 (40 μg kg−1 i.v.), cyclo-oxygenase inhibition with indomethacin (5 mg kg−1 i.v.) and NPC-17731 (40 μg kg−1 i.v.) after pretreatment with indomethacin (5 mg kg−1 i.v.). We observed that BK increased the discharge rate of all eleven ischaemically sensitive cardiac afferents from 0.39 ± 0.12 to 1.47 ± 0.37 impulses s−1 (P < 0.05). Conversely, des-Arg9-BK did not significantly increase the activity of eleven ischaemically sensitive fibres (0.58 ± 0.02 vs. 0.50 ± 0.18 impulses s−1). HOE140 significantly attenuated the response of twelve afferents to ischaemia (0.61 ± 0.22 to 1.85 ± 0.5 vs. 0.53 ± 0.16 to 1.09 ± 0.4 impulses s−1). NPC-17731, another kinin B2 receptor antagonist, had similar inhibitory effects on six other ischaemically sensitive cardiac afferents (0.35 ± 0.14 to 1.19 ± 0.29 vs. 0.22 ± 0.08 to 0.23 ± 0.07 impulses s−1). Indomethacin significantly reduced the

  5. Cortical Presynaptic Control of Dorsal Horn C–Afferents in the Rat

    PubMed Central

    Martínez-Lorenzana, Guadalupe; Condés-Lara, Miguel; Rojas-Piloni, Gerardo

    2013-01-01

    Lamina 5 sensorimotor cortex pyramidal neurons project to the spinal cord, participating in the modulation of several modalities of information transmission. A well-studied mechanism by which the corticospinal projection modulates sensory information is primary afferent depolarization, which has been characterized in fast muscular and cutaneous, but not in slow-conducting nociceptive skin afferents. Here we investigated whether the inhibition of nociceptive sensory information, produced by activation of the sensorimotor cortex, involves a direct presynaptic modulation of C primary afferents. In anaesthetized male Wistar rats, we analyzed the effects of sensorimotor cortex activation on post tetanic potentiation (PTP) and the paired pulse ratio (PPR) of dorsal horn field potentials evoked by C–fiber stimulation in the sural (SU) and sciatic (SC) nerves. We also explored the time course of the excitability changes in nociceptive afferents produced by cortical stimulation. We observed that the development of PTP was completely blocked when C-fiber tetanic stimulation was paired with cortex stimulation. In addition, sensorimotor cortex activation by topical administration of bicuculline (BIC) produced a reduction in the amplitude of C–fiber responses, as well as an increase in the PPR. Furthermore, increases in the intraspinal excitability of slow-conducting fiber terminals, produced by sensorimotor cortex stimulation, were indicative of primary afferent depolarization. Topical administration of BIC in the spinal cord blocked the inhibition of C–fiber neuronal responses produced by cortical stimulation. Dorsal horn neurons responding to sensorimotor cortex stimulation also exhibited a peripheral receptive field and responded to stimulation of fast cutaneous myelinated fibers. Our results suggest that corticospinal inhibition of nociceptive responses is due in part to a modulation of the excitability of primary C–fibers by means of GABAergic inhibitory

  6. Cortical presynaptic control of dorsal horn C-afferents in the rat.

    PubMed

    Moreno-López, Yunuen; Pérez-Sánchez, Jimena; Martínez-Lorenzana, Guadalupe; Condés-Lara, Miguel; Rojas-Piloni, Gerardo

    2013-01-01

    Lamina 5 sensorimotor cortex pyramidal neurons project to the spinal cord, participating in the modulation of several modalities of information transmission. A well-studied mechanism by which the corticospinal projection modulates sensory information is primary afferent depolarization, which has been characterized in fast muscular and cutaneous, but not in slow-conducting nociceptive skin afferents. Here we investigated whether the inhibition of nociceptive sensory information, produced by activation of the sensorimotor cortex, involves a direct presynaptic modulation of C primary afferents. In anaesthetized male Wistar rats, we analyzed the effects of sensorimotor cortex activation on post tetanic potentiation (PTP) and the paired pulse ratio (PPR) of dorsal horn field potentials evoked by C-fiber stimulation in the sural (SU) and sciatic (SC) nerves. We also explored the time course of the excitability changes in nociceptive afferents produced by cortical stimulation. We observed that the development of PTP was completely blocked when C-fiber tetanic stimulation was paired with cortex stimulation. In addition, sensorimotor cortex activation by topical administration of bicuculline (BIC) produced a reduction in the amplitude of C-fiber responses, as well as an increase in the PPR. Furthermore, increases in the intraspinal excitability of slow-conducting fiber terminals, produced by sensorimotor cortex stimulation, were indicative of primary afferent depolarization. Topical administration of BIC in the spinal cord blocked the inhibition of C-fiber neuronal responses produced by cortical stimulation. Dorsal horn neurons responding to sensorimotor cortex stimulation also exhibited a peripheral receptive field and responded to stimulation of fast cutaneous myelinated fibers. Our results suggest that corticospinal inhibition of nociceptive responses is due in part to a modulation of the excitability of primary C-fibers by means of GABAergic inhibitory interneurons

  7. Autonomic innervation of the urogenital system: adrenergic and cholinergic elements.

    PubMed

    McConnell, J; Benson, G S; Wood, J G

    1982-01-01

    vesicles and numerous mitochondria, were observed in this tissue. Evidence from this study suggests that mammalian UG organs are innervated extensively by adrenergic nerves, and, excepting the bladder, have a limited cholinergic innervation; in the bladder, numerous fibers of each type can be found. In addition, another type of nerve fiber, perhaps peptidergic or purinergic, is found in large numbers in each of the organs studied and thus may represent a significant effector of autonomic regulation.

  8. Excitatory and inhibitory innervation of the mouse orofacial motor nuclei: A stereological study.

    PubMed

    Faunes, Macarena; Oñate-Ponce, Alejandro; Fernández-Collemann, Sara; Henny, Pablo

    2016-03-01

    Neurons in the trigeminal (Mo5), facial (Mo7), ambiguus (Amb), and hypoglossal (Mo12) motor nuclei innervate jaw, facial, pharynx/larynx/esophagus, and tongue muscles, respectively. They are essential for movements subserving feeding, exploration of the environment, and social communication. These neurons are largely controlled by sensory afferents and premotor neurons of the reticular formation, where central pattern generator circuits controlling orofacial movements are located. To provide a description of the orofacial nuclei of the adult mouse and to ascertain the influence of excitatory and inhibitory afferents upon them, we used stereology to estimate the number of motoneurons as well as of varicosities immunopositive for glutamate (VGluT1+, VGluT2+) and GABA/glycine (known as VIAAT+ or VGAT+) vesicular transporters in the Mo5, Mo7, Amb, and Mo12. Mo5, Mo7, Amb, and Mo12 contain ∼1,000, ∼3,000, ∼600, and ∼1,700 cells, respectively. VGluT1+, VGluT2+, and VIAAT+ varicosities respectively represent: 28%, 41%, and 31% in Mo5; 2%, 49%, and 49% in Mo7; 12%, 42%, and 46% in Amb; and 4%, 54%, and 42% in Mo12. The Mo5 jaw-closing subdivision shows the highest VGluT1+ innervation. Noticeably, the VGluT2+ and VIAAT+ varicosity density in Mo7 is 5-fold higher than in Mo5 and 10-fold higher than in Amb and Mo12. The high density of terminals in Mo7 likely reflects the convergence and integration of numerous inputs to motoneurons subserving the wide range of complex behaviors to which this nucleus contributes. Also, somatic versus neuropil location of varicosities suggests that most of these afferents are integrated in the dendritic trees of Mo7 neurons.

  9. Involvement of catecholaminergic neurons in motor innervation of striated muscle in the mouse esophagus.

    PubMed

    van der Keylen, Piet; Garreis, Fabian; Steigleder, Ruth; Sommer, Daniel; Neuhuber, Winfried L; Wörl, Jürgen

    2016-05-01

    Enteric co-innervation is a peculiar innervation pattern of striated esophageal musculature. Both anatomical and functional data on enteric co-innervation related to various transmitters have been collected in different species, although its function remains enigmatic. However, it is unclear whether catecholaminergic components are involved in such a co-innervation. Thus, we examined to identify catecholaminergic neuronal elements and clarify their relationship to other innervation components in the esophagus, using immunohistochemistry with antibodies against tyrosine hydroxylase (TH), vesicular acetylcholine transporter (VAChT), choline acetyltransferase (ChAT) and protein gene product 9.5 (PGP 9.5), α-bungarotoxin (α-BT) and PCR with primers for amplification of cDNA encoding TH and dopamine-β-hydroxylase (DBH). TH-positive nerve fibers were abundant throughout the myenteric plexus and localized on about 14% of α-BT-labelled motor endplates differing from VAChT-positive vagal nerve terminals. TH-positive perikarya represented a subpopulation of only about 2.8% of all PGP 9.5-positive myenteric neurons. Analysis of mRNA showed both TH and DBH transcripts in the mouse esophagus. As ChAT-positive neurons in the compact formation of the nucleus ambiguus were negative for TH, the TH-positive nerve varicosities on motor endplates are presumably of enteric origin, although a sympathetic origin cannot be excluded. In the medulla oblongata, the cholinergic ambiguus neurons were densely supplied with TH-positive varicosities. Thus, catecholamines may modulate vagal motor innervation of esophageal-striated muscles not only at the peripheral level via enteric co-innervation but also at the central level via projections to the nucleus ambiguus. As Parkinson's disease, with a loss of central dopaminergic neurons, also affects the enteric nervous system and dysphagia is prevalent in patients with this disease, investigation of intrinsic catecholamines in the esophagus may

  10. Mild Hyperbaric Oxygen Improves Decreased Oxidative Capacity of Spinal Motoneurons Innervating the Soleus Muscle of Rats with Type 2 Diabetes.

    PubMed

    Takemura, Ai; Ishihara, Akihiko

    2016-09-01

    Rats with type 2 diabetes exhibit decreased oxidative capacity, such as reduced oxidative enzyme activity, low-intensity staining for oxidative enzymes in fibers, and no high-oxidative type IIA fibers, in the skeletal muscle, especially in the soleus muscle. In contrast, there are no data available concerning the oxidative capacity of spinal motoneurons innervating skeletal muscle of rats with type 2 diabetes. This study examined the oxidative capacity of motoneurons innervating the soleus muscle of non-obese rats with type 2 diabetes. In addition, this study examined the effects of mild hyperbaric oxygen at 1.25 atmospheres absolute with 36 % oxygen for 10 weeks on the oxidative capacity of motoneurons innervating the soleus muscle because mild hyperbaric oxygen improves the decreased oxidative capacity of the soleus muscle in non-obese rats with type 2 diabetes. Spinal motoneurons innervating the soleus muscle were identified using nuclear yellow, a retrograde fluorescent neuronal tracer. Thereafter, the cell body sizes and succinate dehydrogenase activity of identified motoneurons were analyzed. Decreased succinate dehydrogenase activity of small-sized alpha motoneurons innervating the soleus muscle was observed in rats with type 2 diabetes. The decreased succinate dehydrogenase activity of these motoneurons was improved by mild hyperbaric oxygen. Therefore, we concluded that rats with type 2 diabetes have decreased oxidative capacity in motoneurons innervating the soleus muscle and this decreased oxidative capacity is improved by mild hyperbaric oxygen.

  11. A quantitative study of the central projection patterns of unmyelinated ventral root afferents in the cat.

    PubMed Central

    Häbler, H J; Jänig, W; Koltzenburg, M; McMahon, S B

    1990-01-01

    1. The ventral roots of the spinal cord contain a large number of unmyelinated primary afferent neurones. There is some controversy, however, about the function of these fibres and the route of their central projection. Here we have used electrophysiological techniques to quantify the central projection patterns of these neurones in the segment S2 of adult chloralose-anaesthesized cats. 2. A total of 1185 single unmyelinated units were recorded in small filaments isolated from intact and de-efferented ventral roots or intact dorsal roots of the segment S2 in nineteen cats. The projection patterns of these neurones were tested using supramaximal electrical stimulation of the pelvic and pudendal nerve (the main tributaries of the spinal nerve of this segment) and of the segmental companion root (dorsal or ventral as appropriate). 3. The principal finding of this study is that 85% of unmyelinated afferent axons in the ventral root are direct and exclusive projections. They constitute a separate class of afferents which is only capable of transmitting information from the periphery via the ventral roots. However, the proportion of these fibres that enter the central nervous system is unknown and it seems likely that some of them peter out as they approach the spinal cord and end blindly. The functional role of such afferents remains obscure. 4. For the remaining 15% of unmyelinated ventral root afferents, a projection into the segmental dorsal root was found. The majority of those fibres (about two-thirds) are primary afferent neurones innervating the pia mater. Some of these units had a small spot-like receptive field and responded to mechanical stimuli such as pressure and stretch of the root. They did not have axon projections in a peripheral nerve. 5. A few (5%) unmyelinated ventral root fibres are collateral branches of normal primary afferents projecting through the dorsal root. These trifurcating neurones are a small population which make up only some 0.5% of

  12. Neuropathic pain: Early spontaneous afferent activity is the trigger

    PubMed Central

    Xie, Wenrui; Strong, Judith A.; Meij, Johanna T.A.; Zhang, Jun-Ming; Yu, Lei

    2005-01-01

    Intractable neuropathic pain often results from nerve injury. One immediate event in damaged nerve is a sustained increase in spontaneous afferent activity, which has a well-established role in ongoing pain. Using two rat models of neuropathic pain, the CCI and SNI models, we show that local, temporary nerve blockade of this afferent activity permanently inhibits the subsequent development of both thermal hyperalgesia and mechanical allodynia. Timing is critical—the nerve blockade must last at least 3–5 days and is effective if started immediately after nerve injury, but not if started at 10 days after injury when neuropathic pain is already established. Effective nerve blockade also prevents subsequent development of spontaneous afferent activity measured electrophysiologically. Similar results were obtained in both pain models, and with two blockade methods (200 mg of a depot form bupivacaine at the injury site, or perfusion of the injured nerve just proximal to the injury site with TTX). These results indicate that early spontaneous afferent fiber activity is the key trigger for the development of pain behaviors, and suggest that spontaneous activity may be required for many of the later changes in the sensory neurons, spinal cord, and brain observed in neuropathic pain models. Many pre-clinical and clinical studies of pre-emptive analgesia have used much shorter duration of blockade, or have not started immediately after the injury. Our results suggest that effective pre-emptive analgesia can be achieved only when nerve block is administered early after injury and lasts several days. PMID:15964687

  13. Transient, afferent input-dependent, postnatal niche for neural progenitor cells in the cochlear nucleus.

    PubMed

    Volkenstein, Stefan; Oshima, Kazuo; Sinkkonen, Saku T; Corrales, C Eduardo; Most, Sam P; Chai, Renjie; Jan, Taha A; van Amerongen, Renée; Cheng, Alan G; Heller, Stefan

    2013-08-27

    In the cochlear nucleus (CN), the first central relay of the auditory pathway, the survival of neurons during the first weeks after birth depends on afferent innervation from the cochlea. Although input-dependent neuron survival has been extensively studied in the CN, neurogenesis has not been evaluated as a possible mechanism of postnatal plasticity. Here we show that new neurons are born in the CN during the critical period of postnatal plasticity. Coincidently, we found a population of neural progenitor cells that are controlled by a complex interplay of Wnt, Notch, and TGFβ/BMP signaling, in which low levels of TGFβ/BMP signaling are permissive for progenitor proliferation that is promoted by Wnt and Notch activation. We further show that cells with activated Wnt signaling reside in the CN and that these cells have high propensity for neurosphere formation. Cochlear ablation resulted in diminishment of progenitors and Wnt/β-catenin-active cells, suggesting that the neonatal CN maintains an afferent innervation-dependent population of progenitor cells that display active canonical Wnt signaling.

  14. Transient, afferent input-dependent, postnatal niche for neural progenitor cells in the cochlear nucleus

    PubMed Central

    Volkenstein, Stefan; Oshima, Kazuo; Sinkkonen, Saku T.; Corrales, C. Eduardo; Most, Sam P.; Chai, Renjie; Jan, Taha A.; van Amerongen, Renée; Cheng, Alan G.; Heller, Stefan

    2013-01-01

    In the cochlear nucleus (CN), the first central relay of the auditory pathway, the survival of neurons during the first weeks after birth depends on afferent innervation from the cochlea. Although input-dependent neuron survival has been extensively studied in the CN, neurogenesis has not been evaluated as a possible mechanism of postnatal plasticity. Here we show that new neurons are born in the CN during the critical period of postnatal plasticity. Coincidently, we found a population of neural progenitor cells that are controlled by a complex interplay of Wnt, Notch, and TGFβ/BMP signaling, in which low levels of TGFβ/BMP signaling are permissive for progenitor proliferation that is promoted by Wnt and Notch activation. We further show that cells with activated Wnt signaling reside in the CN and that these cells have high propensity for neurosphere formation. Cochlear ablation resulted in diminishment of progenitors and Wnt/β-catenin-active cells, suggesting that the neonatal CN maintains an afferent innervation-dependent population of progenitor cells that display active canonical Wnt signaling. PMID:23940359

  15. Oligosynaptic inhibition of group I afferents between the brachioradialis and flexor carpi radialis in humans.

    PubMed

    Kobayashi, Shinji; Hayashi, Masahiro; Shinozaki, Katsuhiro; Nito, Mitsuhiro; Hashizume, Wataru; Miyasaka, Takuji; Shindo, Masaomi; Naito, Akira

    2016-09-01

    Spinal reflex arcs mediated by low threshold afferents between the brachioradialis (BR) and flexor carpi radialis (FCR) were studied in eleven healthy human subjects using a post-stimulus time-histogram method. Electrical conditioning stimuli (ES) to the radial nerve branch innervating BR with the intensity below the motor threshold (MT) induced an early and significant trough (inhibition) in 32/85 FCR motor units (MUs) in 9/9 subjects. Such inhibition was never provoked by cutaneous stimulation. The central synaptic delay (CSD) of the inhibition was approximately 1.1ms longer than that of the homonymous FCR facilitation. ES to the median nerve branch innervating FCR with the intensity below MT induced an inhibition in 27/71 BR-MUs in 10/10 subjects. CSD of the inhibition was about 1.1ms longer than that of the homonymous BR facilitation. These findings suggest that inhibition between BR and FCR exists in humans. Group I afferents seem to mediate the inhibition through an oligo(di or tri)-synaptic path. PMID:26996830

  16. Activation of guanylate cyclase-C attenuates stretch responses and sensitization of mouse colorectal afferents

    PubMed Central

    Feng, Bin; Kiyatkin, Michael E.; La, Jun-Ho; Ge, Pei; Solinga, Robert; Silos-Santiago, Inmaculada; Gebhart, G.F.

    2013-01-01

    Irritable bowel syndrome (IBS) is characterized by altered bowel habits, persistent pain and discomfort, and typically colorectal hypersensitivity. Linaclotide, a peripherally-restricted 14-amino acid peptide approved for the treatment of IBS with constipation, relieves constipation and reduces IBS-associated pain in these patients presumably by activation of guanylate cyclase-C (GC-C), which stimulates production and release of cyclic guanosine monophosphate (cGMP) from intestinal epithelial cells. We investigated whether activation of GC-C by the endogenous agonist uroguanylin or the primary downstream effector of that activation, cGMP, directly modulates responses and sensitization of mechanosensitive colorectal primary afferents. The distal 2 cm of mouse colorectum with attached pelvic nerve was harvested, pinned flat mucosal side up for in vitro single-fiber recordings and the encoding properties of mechanosensitive afferents (serosal, mucosal, muscular and muscular-mucosal) to probing and circumferential stretch studied. Both cGMP (10–300μM) and uroguanylin (1–1000nM) applied directly to colorectal receptive endings significantly reduced responses of muscular and muscular-mucosal afferents to stretch; serosal and mucosal afferents were not affected. Sensitized responses (i.e., increased responses to stretch) of muscular and muscular-mucosal afferents were reversed by cGMP, returning responses to stretch to control. Blocking the transport of cGMP from colorectal epithelia by probenecid, a mechanism validated by studies in cultured intestinal T84 cells, abolished the inhibitory effect of uroguanylin on muscular-mucosal afferents. These results suggest that GC-C agonists like linaclotide alleviate colorectal pain and hypersensitivity by dampening stretch-sensitive afferent mechanosensitivity and normalizing afferent sensitization. PMID:23739979

  17. Influence of map scale on primary afferent terminal field geometry in cat dorsal horn.

    PubMed

    Millecchia, R J; Pubols, L M; Sonty, R V; Culberson, J L; Gladfelter, W E; Brown, P B

    1991-09-01

    1. Thirty-one physiologically identified primary afferent fibers were labeled intracellularly with horseradish peroxidase (HRP). 2. A computer analysis was used to determine whether the distribution of cutaneous mechanoreceptive afferent terminals varies as a function of location within the dorsal horn somatotopic map. 3. An analysis of the geometry of the projections of these afferents has shown that 1) terminal arbors have a greater mediolateral width within the region of the foot representation than lateral to it, 2) terminal arbors have larger length-to-width ratios outside the foot representation than within it, and 3) the orientation of terminal arbors near the boundary of the foot representation reflects the angle of the boundary. Previous attribution of mediolateral width variations to primary afferent type are probably in error, although there appear to be genuine variations of longitudinal extent as a function of primary afferent type. 4. Nonuniform terminal distributions represent the first of a three-component process underlying assembly of the monosynaptic portions of cell receptive fields (RFs) and the somatotopic map. The other two components consist of the elaboration of cell dendritic trees and the establishment of selective connections. 5. The variation of primary afferent terminal distributions with map location is not an absolute requirement for development of the map; for example, the RFs of postsynaptic cells could be assembled with the use of a uniform terminal distribution for all afferents, everywhere in the map, as long as cell dendrites penetrate the appropriate portions of the presynaptic neuropil and receive connections only from afferent axons contributing to their RFs.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1753281

  18. Loss of neurotrophin-3 from smooth muscle disrupts vagal gastrointestinal afferent signaling and satiation

    PubMed Central

    Biddinger, Jessica E.; Baquet, Zachary C.; Jones, Kevin R.; McAdams, Jennifer

    2013-01-01

    A large proportion of vagal afferents are dependent on neurotrophin-3 (NT-3) for survival. NT-3 is expressed in developing gastrointestinal (GI) smooth muscle, a tissue densely innervated by vagal mechanoreceptors, and thus could regulate their survival. We genetically ablated NT-3 from developing GI smooth muscle and examined the pattern of loss of NT-3 expression in the GI tract and whether this loss altered vagal afferent signaling or feeding behavior. Meal-induced c-Fos activation was reduced in the solitary tract nucleus and area postrema in mice with a smooth muscle-specific NT-3 knockout (SM-NT-3KO) compared with controls, suggesting a decrease in vagal afferent signaling. Daily food intake and body weight of SM-NT-3KO mice and controls were similar. Meal pattern analysis revealed that mutants, however, had increases in average and total daily meal duration compared with controls. Mutants maintained normal meal size by decreasing eating rate compared with controls. Although microstructural analysis did not reveal a decrease in the rate of decay of eating in SM-NT-3KO mice, they ate continuously during the 30-min meal, whereas controls terminated feeding after 22 min. This led to a 74% increase in first daily meal size of SM-NT-3KO mice compared with controls. The increases in meal duration and first meal size of SM-NT-3KO mice are consistent with reduced satiation signaling by vagal afferents. This is the first demonstration of a role for GI NT-3 in short-term controls of feeding, most likely involving effects on development of vagal GI afferents that regulate satiation. PMID:24068045

  19. Activation of intestinal spinal afferent endings by changes in intra-mesenteric arterial pressure

    PubMed Central

    Humenick, A; Chen, B N; Wiklendt, L; Spencer, N J; Zagorodnyuk, V P; Dinning, P G; Costa, M; Brookes, S J H

    2015-01-01

    Spinal sensory neurons innervate many large blood vessels throughout the body. Their activation causes the hallmarks of neurogenic inflammation: vasodilatation through the release of the neuropeptide calcitonin gene-related peptide and plasma extravasation via tachykinins. The same vasodilator afferent neurons show mechanical sensitivity, responding to crushing, compression or axial stretch of blood vessels – responses which activate pain pathways and which can be modified by cell damage and inflammation. In the present study, we tested whether spinal afferent axons ending on branching mesenteric arteries (‘vascular afferents’) are sensitive to increased intravascular pressure. From a holding pressure of 5 mmHg, distension to 20, 40, 60 or 80 mmHg caused graded, slowly adapting increases in firing of vascular afferents. Many of the same afferent units showed responses to axial stretch, which summed with responses evoked by raised pressure. Many vascular afferents were also sensitive to raised temperature, capsaicin and/or local compression with von Frey hairs. However, responses to raised pressure in single, isolated vessels were negligible, suggesting that the adequate stimulus is distortion of the arterial arcade rather than distension per se. Increasing arterial pressure often triggered peristaltic contractions in the neighbouring segment of intestine, an effect that was mimicked by acute exposure to capsaicin (1 μm) and which was reduced after desensitisation to capsaicin. These results indicate that sensory fibres with perivascular endings are sensitive to pressure-induced distortion of branched arteries, in addition to compression and axial stretch, and that they contribute functional inputs to enteric motor circuits. PMID:26010893

  20. Serotonergic innervation and serotonin receptor expression of NPY-producing neurons in the rat lateral and basolateral amygdaloid nuclei.

    PubMed

    Bonn, M; Schmitt, A; Lesch, K-P; Van Bockstaele, E J; Asan, E

    2013-03-01

    Pharmacobehavioral studies in experimental animals, and imaging studies in humans, indicate that serotonergic transmission in the amygdala plays a key role in emotional processing, especially for anxiety-related stimuli. The lateral and basolateral amygdaloid nuclei receive a dense serotonergic innervation in all species studied to date. We investigated interrelations between serotonergic afferents and neuropeptide Y (NPY)-producing neurons, which are a subpopulation of inhibitory interneurons in the rat lateral and basolateral nuclei with particularly strong anxiolytic properties. Dual light microscopic immunolabeling showed numerous appositions of serotonergic afferents on NPY-immunoreactive somata. Using electron microscopy, direct membrane appositions and synaptic contacts between serotonin-containing axon terminals and NPY-immunoreactive cellular profiles were unequivocally established. Double in situ hybridization documented that more than 50 %, and about 30-40 % of NPY mRNA-producing neurons, co-expressed inhibitory 5-HT1A and excitatory 5-HT2C mRNA receptor subtype mRNA, respectively, in both nuclei with no gender differences. Triple in situ hybridization showed that individual NPY mRNA-producing interneurons co-express both 5-HT1A and 5-HT2C mRNAs. Co-expression of NPY and 5-HT3 mRNA was not observed. The results demonstrate that serotonergic afferents provide substantial innervation of NPY-producing neurons in the rat lateral and basolateral amygdaloid nuclei. Studies of serotonin receptor subtype co-expression indicate a differential impact of the serotonergic innervation on this small, but important, population of anxiolytic interneurons, and provide the basis for future studies of the circuitry underlying serotonergic modulation of emotional stimulus processing in the amygdala.

  1. Vagal afferents are essential for maximal resection-induced intestinal adaptive growth in orally fed rats.

    PubMed

    Nelson, David W; Liu, Xiaowen; Holst, Jens J; Raybould, Helen E; Ney, Denise M

    2006-11-01

    Small bowel resection stimulates intestinal adaptive growth by a neuroendocrine process thought to involve both sympathetic and parasympathetic innervation and enterotrophic hormones such as glucagon-like peptide-2 (GLP-2). We investigated whether capsaicin-sensitive vagal afferent neurons are essential for maximal resection-induced intestinal growth. Rats received systemic or perivagal capsaicin or ganglionectomy before 70% midjejunoileal resection or transection and were fed orally or by total parenteral nutrition (TPN) for 7 days after surgery. Growth of residual bowel was assessed by changes in mucosal mass, protein, DNA, and histology. Both systemic and perivagal capsaicin significantly attenuated by 48-100% resection-induced increases in ileal mucosal mass, protein, and DNA in rats fed orally. Villus height was significantly reduced in resected rats given capsaicin compared with vehicle. Sucrase specific activity in jejunal mucosa was not significantly different; ileal mucosal sucrase specific activity was significantly increased by resection in capsaicin-treated rats. Capsaicin did not alter the 57% increase in ileal proglucagon mRNA or the 150% increase in plasma concentration of bioactive GLP-2 resulting from resection in orally fed rats. Ablation of spinal/splanchnic innervation by ganglionectomy failed to attenuate resection-induced adaptive growth. In TPN rats, capsaicin did not attenuate resection-induced mucosal growth. We conclude that vagal afferents are not essential for GLP-2 secretion when the ileum has direct contact with luminal nutrients after resection. In summary, vagal afferent neurons are essential for maximal resection-induced intestinal adaptation through a mechanism that appears to involve stimulation by luminal nutrients.

  2. The precise localization of nigral afferents in the rat as determined by a retrograde tracing technique.

    PubMed

    Bunney, B S; Aghajanian, G K

    1976-12-01

    Afferent innervation of the rat substantia nigra (SN) was studied by the retrograde horseradish peroxidase (HRP) method. High concentrations of HRP were deposited in discrete subregions of the SN by means of a microiontophoretic delivery system. Using this technique it was possible to demonstrate that the caudatonigral projection system is arranged topographically; All portions of the caudate-putamen except for a central medial core were found to contain HRP positive cells, indicative of retrograde transport. In the positive areas a much larger percentage of cells (30-50%) were found to participate in this projection than has previously been reported. Only medium size cells (12-20 mum) were found to contain the HRP reaction product. Other areas found to heavily innervate the SN were the globus pallidus, central nucleus of the amygdala and dorsal raphe nucleus. Areas containing fewer reactive cells but which also appear to innervate the SN included the prefrontal cortex and lateral habenula. These results emphasize the importance of striatonigral projections which recent studies have suggested contain a GABAergic link.

  3. Organization of vagal afferents in pylorus: mechanoreceptors arrayed for high sensitivity and fine spatial resolution?

    PubMed

    Powley, Terry L; Hudson, Cherie N; McAdams, Jennifer L; Baronowsky, Elizabeth A; Martin, Felecia N; Mason, Jacqueline K; Phillips, Robert J

    2014-07-01

    The pylorus is innervated by vagal mechanoreceptors that project to gastrointestinal smooth muscle, but the distributions and specializations of vagal endings in the sphincter have not been fully characterized. To evaluate their organization, the neural tracer dextran biotin was injected into the nodose ganglia of rats. Following tracer transport, animals were perfused, and their pylori and antra were prepared as whole mounts. Specimens were processed to permanently label the tracer, and subsets were counterstained with Cuprolinic blue or immunostained for c-Kit. Intramuscular arrays (IMAs) in the circular muscle comprised the principal vagal afferent innervation of the sphincter. These pyloric ring IMAs were densely distributed and evidenced a variety of structural specializations. Morphometric comparisons between the arbors innervating the pylorus and a corresponding sample of IMAs in the adjacent antral circular muscle highlighted that sphincter IMAs branched profusely, forming more than twice as many branches as did antral IMAs (means of 405 vs. 165, respectively), and condensed their numerous neurites into compact receptive fields (∼48% of the area of antral IMAs) deep in the circular muscle (∼6μm above the submucosa). Separate arbors of IMAs in the sphincter interdigitated and overlapped to form a 360° band of mechanoreceptors encircling the pyloric canal. The annulus of vagal IMA arbors, putative stretch receptors tightly intercalated in the sphincter ring and situated near the lumen of the pyloric canal, creates an architecture with the potential to generate gut reflexes on the basis of pyloric sensory maps of high sensitivity and fine spatial resolution.

  4. Social stress in mice induces urinary bladder overactivity and increases TRPV1 channel-dependent afferent nerve activity

    PubMed Central

    Heppner, Thomas J.; Tykocki, Nathan R.; Erickson, Cuixia Shi; Vizzard, Margaret A.; Nelson, Mark T.

    2015-01-01

    Social stress has been implicated as a cause of urinary bladder hypertrophy and dysfunction in humans. Using a murine model of social stress, we and others have shown that social stress leads to bladder overactivity. Here, we show that social stress leads to bladder overactivity, increased bladder compliance, and increased afferent nerve activity. In the social stress paradigm, 6-wk-old male C57BL/6 mice were exposed for a total of 2 wk, via barrier cage, to a C57BL/6 retired breeder aggressor mouse. We performed conscious cystometry with and without intravesical infusion of the TRPV1 inhibitor capsazepine, and measured pressure-volume relationships and afferent nerve activity during bladder filling using an ex vivo bladder model. Stress leads to a decrease in intermicturition interval and void volume in vivo, which was restored by capsazepine. Ex vivo studies demonstrated that at low pressures, bladder compliance and afferent activity were elevated in stressed bladders compared with unstressed bladders. Capsazepine did not significantly change afferent activity in unstressed mice, but significantly decreased afferent activity at all pressures in stressed bladders. Immunohistochemistry revealed that TRPV1 colocalizes with CGRP to stain nerve fibers in unstressed bladders. Colocalization significantly increased along the same nerve fibers in the stressed bladders. Our results support the concept that social stress induces TRPV1-dependent afferent nerve activity, ultimately leading to the development of overactive bladder symptoms. PMID:26224686

  5. Central projections of the wing afferents in the hawkmoth, Agrius convolvuli.

    PubMed

    Ando, Noriyasu; Wang, Hao; Shirai, Koji; Kiguchi, Kenji; Kanzaki, Ryohei

    2011-11-01

    Flight behaviors in various insect species are closely correlated with their mechanical and neuronal properties. Compared to locusts and flies which have been intensively studied, moths have "intermediate" properties in terms of the neurogenic muscle activations, power generation by indirect muscles, and two-winged-insect-like flapping behavior. Despite these unique characteristics, little is known about the neuronal mechanisms of flight control in moths. We investigated projections of the wing mechanosensory afferents in the central nervous system (CNS) of the hawkmoth, Agrius convolvuli, because the mechanosensory proprioceptive feedback has an essential role for flight control and would be presumably optimized for insect species. We conducted anterograde staining of nine afferent nerves from the fore- and hindwings. All of these afferents projected into the prothoracic, mesothoracic and metathoracic ganglia (TG1, 2 and 3) and had ascending fibers to the head ganglia. Prominent projection areas in the TG1-3 and suboesophageal ganglion (SOG) were common between the forewing, hindwing and contralateral forewing afferents, suggesting that information from different wings are converged at multiple levels presumably for coordinating wing flapping. On the other hand, differences of projections between the fore- and hindwing afferents were observed especially in projection areas of the tegulae in the TG1 and contralateral projections of the anterior forewing nerve in the TGs and SOG, which would reflect functional differences between corresponding mechanoreceptors on each wing. Afferents comprising groups of the campaniform sensilla at the wing bases had prominent ascending pathways to the SOG, resembling the head-neck motor system for gaze control in flies. Double staining of the wing afferents and flight or neck motoneurons also indicated potential connectivity between them. Our results suggest multiple roles of the wing proprioceptive feedback for flight and provide

  6. The unsilent majority-TRPV1 drives "spontaneous" transmission of unmyelinated primary afferents within cardiorespiratory NTS.

    PubMed

    Andresen, Michael C; Hofmann, Mackenzie E; Fawley, Jessica A

    2012-12-15

    Cranial primary afferent sensory neurons figure importantly in homeostatic control of visceral organ systems. Of the two broad classes of visceral afferents, the role of unmyelinated or C-type class remains poorly understood. This review contrasts key aspects of peripheral discharge properties of C-fiber afferents and their glutamate transmission mechanisms within the solitary tract nucleus (NTS). During normal prevailing conditions, most information arrives at the NTS through myelinated A-type nerves. However, most of visceral afferent axons (75-90%) in NTS are unmyelinated, C-type axons. Centrally, C-type solitary tract (ST) afferent terminals have presynaptic transient receptor potential vanilloid type 1 (TRPV1) receptors. Capsaicin activation of TRPV1 blocks phasic or synchronous release of glutamate but facilitates release of glutamate from a separate pool of vesicles. This TRPV1-operated pool of vesicles is active at normal temperatures and is responsible for actively driving a 10-fold higher release of glutamate at TRPV1 compared with TRPV1- terminals even in the absence of afferent action potentials. This novel TRPV1 mechanism is responsible for an additional asynchronous release of glutamate that is not present in myelinated terminals. The NTS is rich with presynaptic G protein-coupled receptors, and the implications of TRPV1-operated glutamate offer unique targets for signaling in C-type sensory afferent terminals from neuropeptides, inflammatory mediators, lipid metabolites, cytokines, and cannabinoids. From a homeostatic view, this combination could have broad implications for integration in chronic pathological disturbances in which the numeric dominance of C-type endings and TRPV1 would broadly disturb multisystem control mechanisms.

  7. The innervation of salivary glands as revealed by morphological methods.

    PubMed

    Garrett, J R; Kidd, A

    1993-09-01

    Salivary secretion is nerve mediated. The salivary glands are supplied by parasympathetic and sympathetic efferent nerves which travel to the glands by separate routes. Once in the glands the axons from each type of nerve intermingle and travel together in association with Schwann cells, forming Schwann-axon bundles. Two types of neuro-effector relationships exist with salivary parenchymal and myoepithelial cells: epilemmal (outside the parenchymal basement membrane) and hypolemmal (within the parenchymal basement membrane). Their relative frequencies with either type of nerve differ greatly between glands and species. Salivary blood vessels receive epilemmal innervations by both sympathetic and parasympathetic axons. The classical transmitters--acetylcholine in parasympathetic and noradrenaline in sympathetic axons--are stored in small vesicles. A variety of non-conventional neuropeptide transmitters have also been found in salivary nerves by immunohistochemistry, and they occur in large dense-cored vesicles. Prolonged high frequency stimulation has been found to cause depletion of large dense-cored vesicles from glandular nerves. In recent years afferent nerves have started to be identified and are found in greatest numbers around the main salivary ducts, where they may form a hypolemmal association with the epithelial cells. Functional studies demonstrate complex interactions between parasympathetic and sympathetic nerves. Morphological assessments of changes in the parenchymal cells after nerve stimulations or denervations add greatly to our understanding of the nerve functions. At least four types of influence can be exerted on salivary parenchymal cells by the nerves: hydrokinetic (water mobilizing), proteokinetic (protein secreting), synthetic (inducing synthesis), and trophic (maintaining normal functional size and state). In respect to each role, wide glandular and species differences exist between the relative contributions made by each type of nerve.

  8. The innervation of salivary glands as revealed by morphological methods.

    PubMed

    Garrett, J R; Kidd, A

    1993-09-01

    Salivary secretion is nerve mediated. The salivary glands are supplied by parasympathetic and sympathetic efferent nerves which travel to the glands by separate routes. Once in the glands the axons from each type of nerve intermingle and travel together in association with Schwann cells, forming Schwann-axon bundles. Two types of neuro-effector relationships exist with salivary parenchymal and myoepithelial cells: epilemmal (outside the parenchymal basement membrane) and hypolemmal (within the parenchymal basement membrane). Their relative frequencies with either type of nerve differ greatly between glands and species. Salivary blood vessels receive epilemmal innervations by both sympathetic and parasympathetic axons. The classical transmitters--acetylcholine in parasympathetic and noradrenaline in sympathetic axons--are stored in small vesicles. A variety of non-conventional neuropeptide transmitters have also been found in salivary nerves by immunohistochemistry, and they occur in large dense-cored vesicles. Prolonged high frequency stimulation has been found to cause depletion of large dense-cored vesicles from glandular nerves. In recent years afferent nerves have started to be identified and are found in greatest numbers around the main salivary ducts, where they may form a hypolemmal association with the epithelial cells. Functional studies demonstrate complex interactions between parasympathetic and sympathetic nerves. Morphological assessments of changes in the parenchymal cells after nerve stimulations or denervations add greatly to our understanding of the nerve functions. At least four types of influence can be exerted on salivary parenchymal cells by the nerves: hydrokinetic (water mobilizing), proteokinetic (protein secreting), synthetic (inducing synthesis), and trophic (maintaining normal functional size and state). In respect to each role, wide glandular and species differences exist between the relative contributions made by each type of nerve

  9. Vasopressin Innervation of the Mouse (Mus musculus) Brain and Spinal Cord

    PubMed Central

    Rood, Benjamin D.; De Vries, Geert J.

    2014-01-01

    The neuropeptide vasopressin (AVP) has been implicated in the regulation of numerous physiological and behavioral processes. Although mice have become an important model for studying this regulation, there is no comprehensive description of AVP distribution in the mouse brain and spinal cord. With C57BL/6 mice, we used immunohistochemistry to corroborate the location of AVP-containing cells and to define the location of AVP-containing fibers throughout the mouse central nervous system. We describe AVP-immunoreactive (-ir) fibers in midbrain, hindbrain, and spinal cord areas, which have not previously been reported in mice, including innervation of the ventral tegmental area, dorsal and median raphe, lateral and medial parabrachial, solitary, ventrolateral periaqueductal gray, and interfascicular nuclei. We also provide a detailed description of AVP-ir innervation in heterogenous regions such as the amygdala, bed nucleus of the stria terminalis, and ventral forebrain. In general, our results suggest that, compared with other species, the mouse has a particularly robust and widespread distribution of AVP-ir fibers, which, as in other species, originates from a number of different cell groups in the telencephalon and diencephalon. Our data also highlight the robust nature of AVP innervation in specific regulatory nuclei, such as the ventral tegmental area and dorsal raphe nucleus among others, that are implicated in the regulation of many behaviors. PMID:21456024

  10. A geometric analysis of semicircular canals and induced activity in their peripheral afferents in the rhesus monkey

    NASA Technical Reports Server (NTRS)

    Reisine, H.; Simpson, J. I.; Henn, V.

    1988-01-01

    Experiments were carried out to determine anatomically the planes of the semicircular canals of two juvenile rhesus monkeys, using plastic casts of the semicircular canals, and the anatomical measurements were related to the directional coding of neural signals transmitted by primary afferents innervating the same simicircular canals. In the experiments, animals were prepared for monitoring the eye position by the implantation of silver-silver chloride electrodes into the bony orbit. Following the recording of semicircular canal afferent activity, the animals were sacrificed; plastic casting resin was injected into the bony canals; and, when the temporal bone was demineralized and removed, the coordinates of points spaced along the circumference of the canal casts were measured. A comparison of the sensitivity vectors determined in these experiments and the anatomical measures showed that the average difference between a sensitivity vector and its respective normal vector was 6.3 deg.

  11. Sensory innervation of the dorsal longitudinal ligament and the meninges in the lumbar spine of the dog.

    PubMed

    Waber-Wenger, Barbara; Forterre, Franck; Kuehni-Boghenbor, Kathrin; Danuser, Renzo; Stein, Jens Volker; Stoffel, Michael Hubert

    2014-10-01

    Although intervertebral disc herniation is a well-known disease in dogs, pain management for this condition has remained a challenge. The goal of the present study is to address the lack of information regarding the innervation of anatomical structures within the canine vertebral canal. Immunolabeling was performed with antibodies against protein gene product 9.5, Tuj-1 (neuron-specific class III β-tubulin), calcitonin gene-related peptide, and neuropeptide Y in combination with the lectin from Lycopersicon esculentum as a marker for blood vessels. Staining was indicative of both sensory and sympathetic fibers. Innervation density was the highest in lateral areas, intermediate in dorsal areas, and the lowest in ventral areas. In the dorsal longitudinal ligament (DLL), the highest innervation density was observed in the lateral regions. Innervation was lower at mid-vertebral levels than at intervertebral levels. The presence of sensory and sympathetic fibers in the canine dura and DLL suggests that pain may originate from both these structures. Due to these regional differences in sensory innervation patterns, trauma to intervertebral DLL and lateral dura is expected to be particularly painful. The results ought to provide a better basis for the assessment of medicinal and surgical procedures.

  12. Sensory innervation of the suprarenal gland in the albino rat: a fluorescent tract tracer study.

    PubMed

    Sangari, S K; Khatri, K; Sengupta, P

    1998-01-01

    The afferent innervation of the suprarenal gland was studied by using a fluorescent tract tracer in the adult albino rat. The left suprarenal gland was injected slowly with 5 microl of 2% aqueous suspension of Fast blue. After a survival period of 4-5 days, the dorsal root ganglia were dissected out and 15-microm-thick plastic (JB 4) sections were examined under the fluorescent microscope. The labelled neurons were seen from the third thoracic to second lumbar dorsal root ganglia, ipsilateral to the site of injection with maximum concentration from T6 to T11. These primary sensory neurons were round to oval in shape, varied from 7 microm to 40 microm in size, and were distributed randomly in the dorsal root ganglia. The labelling of the primary sensory neurons in the dorsal root ganglia confirms the presence of sensory nerve endings in the suprarenal gland that may be responsible for the vascular distension and hormonal release.

  13. Morphophysiology of synaptic transmission between type I hair cells and vestibular primary afferents. An intracellular study employing horseradish peroxidase in the lizard, Calotes versicolor.

    PubMed

    Schessel, D A; Ginzberg, R; Highstein, S M

    1991-03-22

    Intracellular records with glass microelectrodes filled with horseradish peroxidase (HRP) were taken from primary afferents of the horizontal semicircular canal in the lizard, Calotes versicolor. A coefficient of variation (CV) of the interspike intervals of spontaneous action potentials (APs) was calculated and correlated with the terminal morphologies of afferents within the canal crista. Irregular fibers with CV greater than 0.4 always correlated with a nerve chalice or calyx afferent terminal expansion surrounding one or more type I hair cells; more regular fibers with CV less than 0.4 always correlated with a dimorphic or bouton only terminal expansion of afferents. Afferents with a CV greater than 0.4 demonstrated miniature excitatory postsynaptic potentials (mEPSPs) that summated to initiate APs. APs were blocked by tetrodotoxin and mEPSP frequency was modulated by caloric stimulation. Cobalt application reversibly blocked mEPSPs. Electron microscopic examination of physiologically studied afferents with CV greater than 0.4 revealed synaptic profiles consisting of typical synaptic bodies and synaptic vesicles in the type I hair cell presynaptic to the nerve chalice. Examples of the interspike baseline in regular and irregular afferents suggest differential modes of impulse initiation in these two fiber types.

  14. Afferent projections to pharynx and soft palate motoneurons: a light and electron microscopical tracing study in the cat.

    PubMed

    Boers, Jose; Hulshoff, Antoinette C; de Weerd, Henk; Mouton, Leonora J; Kuipers, Rutger; Holstege, Gert

    2005-05-23

    Pharynx and soft palate are muscles for respiration, vocalization, swallowing, and vomiting. In cat, motoneurons innervating pharynx/soft palate are located in the dorsal group of the nucleus ambiguus (dgNA) in the medulla oblongata. In cat, dgNA is the only part of nucleus ambiguus that can be distinguished as a separate cell group, which makes it possible to study its afferent input. In two cats, WGA-HRP injections in dgNA and surrounding tegmentum resulted in retrogradely labeled cells at several levels of the neuraxis. In 170 cases anterograde tracers were injected in areas in which the cells of origin were identified. Results demonstrate that dgNA afferents originate from the tegmentum dorsolateral to the superior olivary complex, medullary ventromedial tegmentum, caudal raphe nuclei, medullary lateral tegmental field, nucleus retroambiguus (NRA), and adjoining tegmentum, extending into the first cervical segment of the spinal cord. In order to determine whether periaqueductal gray (PAG) and parabrachial nuclei (PB) make synaptic contacts with dgNA, ultrastructural studies combined anterograde tracing from PAG, PB, and NRA with retrograde tracing of pharyngeal and soft palate motoneurons. The results showed that PB, but not PAG, projects to the dgNA and that NRA afferent synapses are three times as numerous as those from PB. The morphology of PB and NRA synapses is consistent with excitatory input. In conclusion, pharyngeal and soft palate motoneurons receive their afferents almost exclusively from the pontine and medullary tegmentum and first cervical spinal segment.

  15. High-frequency dynamics of regularly discharging canal afferents provide a linear signal for angular vestibuloocular reflexes.

    PubMed

    Hullar, T E; Minor, L B

    1999-10-01

    Regularly discharging vestibular-nerve afferents innervating the semicircular canals were recorded extracellularly in anesthetized chinchillas undergoing high-frequency, high-velocity sinusoidal rotations. In the range from 2 to 20 Hz, with peak velocities of 151 degrees/s at 6 Hz and 52 degrees/s at 20 Hz, 67/70 (96%) maintained modulated discharge throughout the sinusoidal stimulus cycle without inhibitory cutoff or excitatory saturation. These afferents showed little harmonic distortion, no dependence of sensitivity on peak amplitude of stimulation, and no measurable half-cycle asymmetry. A transfer function fitting the data predicts no change in sensitivity (gain) of regularly discharging afferents over the frequencies tested but shows a phase lead with regard to head velocity increasing from 0 degrees at 2 Hz to 30 degrees at 20 Hz. These results indicate that regularly discharging afferents provide a plausible signal to drive the angular vestibuloocular reflex (VOR) even during high-frequency head motion but are not a likely source for nonlinearities present in the VOR. PMID:10515990

  16. Patterns of peripheral innervation of the tongue and hyobranchial apparatus in caecilians (Amphibia: Gymnophiona).

    PubMed

    Wake, M H

    1992-04-01

    The innervation of the musculature of the tongue and the hyobranchial apparatus of caecilians has long been assumed to be simple and to exhibit little interspecific variation. A study of 14 genera representing all six families of caecilians demonstrates that general patterns of innervation by the trigeminal, facial, glossopharyngeal, and vagus nerves are similar across taxa but that the composition of the "hypoglossal" nerve is highly variable. Probably in all caecilians, spinal nerves 1 and 2 contribute to the hypoglossal. In addition, in certain taxa, an "occipital," the vagus, and/or spinal 3 appear to contribute fibers to the composition of the hypoglossal nerve. These patterns, the lengths of fusion of the contributing elements, and the branching patterns of the hypoglossal are assessed according to the currently accepted hypothesis of phylogenetic relationships of caecilians, and of amphibians. An hypothesis is proposed that limblessness and a simple tongue, with concomitant reduced complexity of innervation of muscles associated with limbs and the tongue, has released a constraint on pattern of innervation. As a consequence, a greater diversity and, in several taxa, greater complexity of neuroanatomical associations of nerve roots to form the hypoglossal are expressed.

  17. Patterns of peripheral innervation of the tongue and hyobranchial apparatus in caecilians (Amphibia: Gymnophiona).

    PubMed

    Wake, M H

    1992-04-01

    The innervation of the musculature of the tongue and the hyobranchial apparatus of caecilians has long been assumed to be simple and to exhibit little interspecific variation. A study of 14 genera representing all six families of caecilians demonstrates that general patterns of innervation by the trigeminal, facial, glossopharyngeal, and vagus nerves are similar across taxa but that the composition of the "hypoglossal" nerve is highly variable. Probably in all caecilians, spinal nerves 1 and 2 contribute to the hypoglossal. In addition, in certain taxa, an "occipital," the vagus, and/or spinal 3 appear to contribute fibers to the composition of the hypoglossal nerve. These patterns, the lengths of fusion of the contributing elements, and the branching patterns of the hypoglossal are assessed according to the currently accepted hypothesis of phylogenetic relationships of caecilians, and of amphibians. An hypothesis is proposed that limblessness and a simple tongue, with concomitant reduced complexity of innervation of muscles associated with limbs and the tongue, has released a constraint on pattern of innervation. As a consequence, a greater diversity and, in several taxa, greater complexity of neuroanatomical associations of nerve roots to form the hypoglossal are expressed. PMID:1588590

  18. Experimental and computational evidence for an essential role of NaV1.6 in spike initiation at stretch-sensitive colorectal afferent endings.

    PubMed

    Feng, Bin; Zhu, Yi; La, Jun-Ho; Wills, Zachary P; Gebhart, G F

    2015-04-01

    Stretch-sensitive afferents comprise ∼33% of the pelvic nerve innervation of mouse colorectum, which are activated by colorectal distension and encode visceral nociception. Stretch-sensitive colorectal afferent endings respond tonically to stepped or ramped colorectal stretch, whereas dissociated colorectal dorsal root ganglion neurons generally fail to spike repetitively upon stepped current stimulation. The present study investigated this difference in the neural encoding characteristics between the soma and afferent ending using pharmacological approaches in an in vitro mouse colon-nerve preparation and complementary computational simulations. Immunohistological staining and Western blots revealed the presence of voltage-gated sodium channel (NaV) 1.6 and NaV1.7 at sensory neuronal endings in mouse colorectal tissue. Responses of stretch-sensitive colorectal afferent endings were significantly reduced by targeting NaV1.6 using selective antagonists (μ-conotoxin GIIIa and μ-conotoxin PIIIa) or tetrodotoxin. In contrast, neither selective NaV1.8 (A803467) nor NaV1.7 (ProTX-II) antagonists attenuated afferent responses to stretch. Computational simulation of a colorectal afferent ending that incorporated independent Markov models for NaV1.6 and NaV1.7, respectively, recapitulated the experimental findings, suggesting a necessary role for NaV1.6 in encoding tonic spiking by stretch-sensitive afferents. In addition, computational simulation of a dorsal root ganglion soma showed that, by adding a NaV1.6 conductance, a single-spiking neuron was converted into a tonic spiking one. These results suggest a mechanism/channel to explain the difference in neural encoding characteristics between afferent somata and sensory endings, likely caused by differential expression of ion channels (e.g., NaV1.6) at different parts of the neuron. PMID:25652923

  19. Regeneration of normal afferent input does not eliminate aberrant synaptic connections of an identified auditory interneuron in the cricket, Teleogryllus oceanicus.

    PubMed

    Pallas, S L; Hoy, R R

    1986-06-15

    In the cricket, Teleogryllus oceanicus, the dendritic arborizations of an identified auditory interneuron (Int-1) are normally restricted to the ipsilateral auditory neuropile; unilateral deafferentation causes the medial portion of the dendritic field to sprout across the midline and make functional connections with the contralateral auditory neuropile (Hoy et al., '78: Soc. Neurosci. Abstr. 4:115, '85: Proc. Natl. Acad. Sci. USA 82:7772-7786; Hoy and Moiseff, '79: Soc. Neurosci. Abstr. 5:163). We have found that regeneration of the auditory afferents also results in an aberrant pattern of innervation of Int-1. Crickets were unilaterally deafferented during postembryonic development by crushing or cutting the auditory nerve. Regeneration of afferent-to-Int-1 connections was tested behaviorally. Of 86 nerve-crushed crickets tested as adults in the behavioral assay, 66% showed functional regeneration of the afferents. Similar results were obtained from the nerve-cut group. However, morphological investigations demonstrated that most of the regenerates still retained the aberrant contralateral dendritic projection. Electrophysiological recordings from these Int-1s showed that not only are some of them driven by their regenerated auditory afferents (the normal pathway) but that they retain their excitability via their contralateral dendrites (the aberrant pathway). This demonstrates that reinnervation of Int-1 by its normal afferent pool neither causes retraction nor prevents the formation of connections made with foreign, contralateral afferents. When the contralateral afferent pool was removed after Int-1 had sprouted, the sprouts remained present, but preliminary results suggest that if the contralateral afferents are removed before Int-1 is deafferented, sprouts are not formed. The results are discussed in relation to the roles of competition and conservation of membrane area in controlling synapse formation.

  20. Experimental and computational evidence for an essential role of NaV1.6 in spike initiation at stretch-sensitive colorectal afferent endings

    PubMed Central

    Zhu, Yi; La, Jun-Ho; Wills, Zachary P.; Gebhart, G. F.

    2015-01-01

    Stretch-sensitive afferents comprise ∼33% of the pelvic nerve innervation of mouse colorectum, which are activated by colorectal distension and encode visceral nociception. Stretch-sensitive colorectal afferent endings respond tonically to stepped or ramped colorectal stretch, whereas dissociated colorectal dorsal root ganglion neurons generally fail to spike repetitively upon stepped current stimulation. The present study investigated this difference in the neural encoding characteristics between the soma and afferent ending using pharmacological approaches in an in vitro mouse colon-nerve preparation and complementary computational simulations. Immunohistological staining and Western blots revealed the presence of voltage-gated sodium channel (NaV) 1.6 and NaV1.7 at sensory neuronal endings in mouse colorectal tissue. Responses of stretch-sensitive colorectal afferent endings were significantly reduced by targeting NaV1.6 using selective antagonists (μ-conotoxin GIIIa and μ-conotoxin PIIIa) or tetrodotoxin. In contrast, neither selective NaV1.8 (A803467) nor NaV1.7 (ProTX-II) antagonists attenuated afferent responses to stretch. Computational simulation of a colorectal afferent ending that incorporated independent Markov models for NaV1.6 and NaV1.7, respectively, recapitulated the experimental findings, suggesting a necessary role for NaV1.6 in encoding tonic spiking by stretch-sensitive afferents. In addition, computational simulation of a dorsal root ganglion soma showed that, by adding a NaV1.6 conductance, a single-spiking neuron was converted into a tonic spiking one. These results suggest a mechanism/channel to explain the difference in neural encoding characteristics between afferent somata and sensory endings, likely caused by differential expression of ion channels (e.g., NaV1.6) at different parts of the neuron. PMID:25652923

  1. Piezo2 expression in corneal afferent neurons.

    PubMed

    Bron, Romke; Wood, Rhiannon J; Brock, James A; Ivanusic, Jason J

    2014-09-01

    Recently, a novel class of mechanically sensitive channels has been identified and have been called Piezo channels. In this study, we explored Piezo channel expression in sensory neurons supplying the guinea pig corneal epithelium, which have well-defined modalities in this species. We hypothesized that a proportion of corneal afferent neurons express Piezo2, and that these neurons are neurochemically distinct from corneal polymodal nociceptors or cold-sensing neurons. We used a combination of retrograde tracing to identify corneal afferent neurons and double label in situ hybridization and/or immunohistochemistry to determine their molecular and/or neurochemical profile. We found that Piezo2 expression occurs in ∼26% of trigeminal ganglion neurons and 30% of corneal afferent neurons. Piezo2 corneal afferent neurons are almost exclusively non-calcitonin gene-related peptide (CGRP)-immunoreactive (-IR), medium- to large-sized neurons that are NF200-IR, suggesting they are not corneal polymodal nociceptors. There was no coexpression of Piezo2 and transient receptor potential cation channel subfamily M member 8 (TRPM8) transcripts in any corneal afferent neurons, further suggesting that Piezo2 is not expressed in corneal cold-sensing neurons. We also noted that TRPM8-IR or CGRP-IR corneal afferent neurons are almost entirely small and lack NF200-IR. Piezo2 expression occurs in a neurochemically distinct subpopulation of corneal afferent neurons that are not polymodal nociceptors or cold-sensing neurons, and is likely confined to a subpopulation of pure mechano-nociceptors in the cornea. This provides the first evidence in an in vivo system that Piezo2 is a strong candidate for a channel that transduces noxious mechanical stimuli.

  2. Innervation of the skin of camel (Camelus dromedarius) as revealed by cholinesterase technique.

    PubMed

    Mahdi, A H; El-Shafey, S M; Al-Shaikaly, A K

    1982-01-01

    Skin samples from 4 body sites were taken from 10 camels and histochemically treated for the localization of AChE and BuChE enzymes. The sebaceous and sewat glands were active site for both enzymes. The weat gland were innervated by a plexus of AChE-positive nerve fibers. In the papillary layer, the nerve breaks to form a plexus supplying the blood vessels, from this plexus fibers end in the deep interface of the epidermis. End bulbs and free intraepidermal nerve ending reactive for AChE were demonstrated.

  3. Fiber

    MedlinePlus

    ... broccoli, spinach, and artichokes legumes (split peas, soy, lentils, etc.) almonds Look for the fiber content of ... salsa, taco sauce, and cheese for dinner. Add lentils or whole-grain barley to your favorite soups. ...

  4. Sensory and autonomic innervation of the rat eyelid: neuronal origins and peptide phenotypes.

    PubMed

    Simons, E; Smith, P G

    1994-07-01

    Neuronal origins, peptide phenotypes and target distributions were determined for sensory and autonomic nerves projecting to the eyelid. The retrograde tracer, Fluoro-Ruby, was injected into the superior tarsal muscle and meibomian gland of Sprague-Dawley rats. Labelled neurons were observed within the pterygopalatine (31 +/- 6 of a total of 8238 +/- 1610 ganglion neurons), trigeminal (173 +/- 43 of 62,082 +/- 5869) and superior cervical ganglia (184 +/- 35 of 21,900 +/- 1741). Immunostaining revealed vasoactive intestinal polypeptide immunoreactivity (VIP-ir) in nearly all Fluoro-Ruby-labelled pterygopalatine ganglion neurons (86 +/- 5%) but only rarely in trigeminal (0.3 +/- 0.3%) or superior cervical (1.4 +/- 1.4%) ganglion neurons. Calcitonin gene-related peptide (CGRP)-ir was not observed in pterygopalatine or superior cervical ganglion somata, but was present in 24 +/- 4% of trigeminal neurons. Bright dopamine beta-hydroxylase (DBH) immunofluorescence was observed in the majority of eyelid-projecting neurons within the superior cervical ganglia (65 +/- 5%) and lighter staining was detected in pterygopalatine neurons (63 +/- 3%), but no DBH-ir was observed in trigeminal neurons. Examination of eyelid sections revealed dense VIP-ir innervation of meibomian gland acini and vasculature and modest distribution within tarsal muscle. CGRP-ir fibers surrounded ductal and vascular elements of the meibomian gland and the perimeter of tarsal muscle. DBH-ir fibers were associated with meibomian gland blood vessels and acini, and were more densely distributed within tarsal muscle. This study provides evidence for prominent meibomian gland innervation by parasympathetic pterygopalatine ganglion VIP-ir neurons, with more restricted innervation by sensory trigeminal CGRP-ir and sympathetic neurons. Tarsal muscle receives abundant sympathetic innervation, as well as moderate parasympathetic and sensory CGRP-ir projections. The eyelid contains substantial non-CGRP-ir sensory

  5. Origins of serotonin innervation of forebrain structures

    NASA Technical Reports Server (NTRS)

    Kellar, K. J.; Brown, P. A.; Madrid, J.; Bernstein, M.; Vernikos-Danellis, J.; Mehler, W. R.

    1977-01-01

    The tryptophan hydroxylase activity and high-affinity uptake of (3H) serotonin ((3H)5-HT) were measured in five discrete brain regions of rats following lesions of the dorsal or median raphe nuclei. Dorsal raphe lesions reduced enzyme and uptake activity in the striatum only. Median raphe lesions reduced activities in the hippocampus, septal area, frontal cortex, and, to a lesser extent, in the hypothalamus. These data are consistent with the suggestion that the dorsal and median raphe nuclei are the origins of two separate ascending serotonergic systems - one innervating striatal structures and the other mesolimbic structures, predominantly. In addition, the data suggest that measurements of high-affinity uptake of (3H)5-HT may be a more reliable index of innervation than either 5-HT content or tryptophan hydroxylase activity.

  6. Prognostic Significance of Imaging Myocardial Sympathetic Innervation.

    PubMed

    Malhotra, Saurabh; Fernandez, Stanley F; Fallavollita, James A; Canty, John M

    2015-08-01

    There has been a longstanding interest in understanding whether the presence of inhomogeneity in myocardial sympathetic innervation can predict patients at risk of sudden cardiac arrest from lethal ventricular arrhythmias. The advent of radiolabeled norepinephrine analogs has allowed this to be imaged in patients with ischemic and non-ischemic cardiomyopathy using single, photon emission computed tomography (SPECT) and positron emission tomography (PET). Several observational studies have demonstrated that globally elevated myocardial sympathetic tone (as reflected by reduced myocardial norepinephrine analog uptake) can predict composite cardiac end-points including total cardiovascular mortality. More recent studies have indicated that quantifying the extent of regional denervation can predict the risk of lethal ventricular arrhythmias and sudden cardiac death. This review will summarize our current understanding of the prognostic significance of altered myocardial sympathetic innervation. PMID:26087899

  7. Afferent Connectivity of the Zebrafish Habenulae

    PubMed Central

    Turner, Katherine J.; Hawkins, Thomas A.; Yáñez, Julián; Anadón, Ramón; Wilson, Stephen W.; Folgueira, Mónica

    2016-01-01

    The habenulae are bilateral nuclei located in the dorsal diencephalon that are conserved across vertebrates. Here we describe the main afferents to the habenulae in larval and adult zebrafish. We observe afferents from the subpallium, nucleus rostrolateralis, posterior tuberculum, posterior hypothalamic lobe, median raphe; we also see asymmetric afferents from olfactory bulb to the right habenula, and from the parapineal to the left habenula. In addition, we find afferents from a ventrolateral telencephalic nucleus that neurochemical and hodological data identify as the ventral entopeduncular nucleus (vENT), confirming and extending observations of Amo et al. (2014). Fate map and marker studies suggest that vENT originates from the diencephalic prethalamic eminence and extends into the lateral telencephalon from 48 to 120 hour post-fertilization (hpf). No afferents to the habenula were observed from the dorsal entopeduncular nucleus (dENT). Consequently, we confirm that the vENT (and not the dENT) should be considered as the entopeduncular nucleus “proper” in zebrafish. Furthermore, comparison with data in other vertebrates suggests that the vENT is a conserved basal ganglia nucleus, being homologous to the entopeduncular nucleus of mammals (internal segment of the globus pallidus of primates) by both embryonic origin and projections, as previously suggested by Amo et al. (2014). PMID:27199671

  8. Vestibular afferent responses to microrotational stimuli

    NASA Technical Reports Server (NTRS)

    Myers, Steven F.; Lewis, Edwin R.

    1991-01-01

    Intracellular microelectrode recording/labeling techniques were used to investigate vestibular afferent responses in the bullfrog, to very small amplitude (less than 5 deg p-p) sinusoidal rotations in the vertical plane over the frequency range of 0.063-4 Hz. Robust responses to peak accelerations as low as 0.031 deg/sec per sec were obtained from units subsequently traced to either the central portion of the anterior canal crista or the striolar region of the utricle. All of these microrotationally sensitive afferent neurons had irregular resting discharge rates, and the majority had transfer ratios (relative to rotational velocity) of 1-40 spikes/sec per deg/sec. Individual utricular afferent velocity transfer ratios were nearly constant over the frequency range of 0.125-4 Hz. Canal units displayed decreasing response transfer ratios as stimulus frequencies increased. These findings indicate that, although utricular striolar and central crista afferent velocity transfer ratios to microrotations were very similar, utricular striolar afferent neurons were more faithful sensors of very small amplitude rotational velocity in the vertical plane.

  9. Structure, innervation and response properties of integumentary sensory organs in crocodilians

    PubMed Central

    Leitch, Duncan B.; Catania, Kenneth C.

    2012-01-01

    SUMMARY Integumentary sensory organs (ISOs) are densely distributed on the jaws of crocodilians and on body scales of members of the families Crocodilidae and Gavialidae. We examined the distribution, anatomy, innervation and response properties of ISOs on the face and body of crocodilians and documented related behaviors for an alligatorid (Alligator mississippiensis) and a crocodylid (Crocodylus niloticus). Each of the ISOs (roughly 4000 in A. mississippiensis and 9000 in C. niloticus) was innervated by networks of afferents supplying multiple different mechanoreceptors. Electrophysiological recordings from the trigeminal ganglion and peripheral nerves were made to isolate single-unit receptive fields and to test possible osmoreceptive and electroreceptive functions. Multiple small (<0.1 mm2) receptive fields, often from a single ISO, were recorded from the premaxilla, the rostral dentary, the gingivae and the distal digits. These responded to a median threshold of 0.08 mN. The less densely innervated caudal margins of the jaws had larger receptive fields (>100 mm2) and higher thresholds (13.725 mN). Rapidly adapting, slowly adapting type I and slowly adapting type II responses were identified based on neuronal responses. Several rapidly adapting units responded maximally to vibrations at 20–35 Hz, consistent with reports of the ISOs' role in detecting prey-generated water surface ripples. Despite crocodilians' armored bodies, the ISOs imparted a mechanical sensitivity exceeding that of primate fingertips. We conclude that crocodilian ISOs have diverse functions, including detection of water movements, indicating when to bite based on direct contact of pursued prey, and fine tactile discrimination of items held in the jaws. PMID:23136155

  10. Ultrastructure and innervation of water buffalo (Bubalus bubalis) seminal vesicle.

    PubMed

    Abou-Elmagd, A; Kujat, R; Wrobel, K H

    1992-01-01

    The lining epithelium of secretory end pieces and central glandular duct in the seminal vesicle of the water buffalo (Bubalus bubalis) consists of columnar principal and small polymorphous basal cells. A system of intercellular and even intracellular canaliculi enlarges the secretory surface. The most prominent organelle of the columnar principal cells is the granular endoplasmic reticulum, forming large aggregates of parallel lamellae. Using antibodies against the neural cell adhesion molecule L1 and the neural marker protein gene product 9.5 (PGP 9.5), the innervation pattern of the seminal vesicle becomes evident. The muscular layer surrounding the propria contains a dense network of unmyelinated fibers. Thicker bundles traverse the muscular layer to reach the propria. Around glandular secretory tubules and below the epithelial lining of the glandular duct a tightly woven subepithelial plexus is observed which sends short penetrating branches into the basal zone of the epithelium. These intraepithelial nerves are devoid of Schwann cells and basal lamina (naked axons) and are situated within the intercellular spaces between principal and basal cells. Acetylcholinesterase histochemistry with short (1-2 h) incubation times, dopamine-beta-hydroxylase immunohistochemistry and ultrastructural study of transmitter-containing vesicles was performed. The results suggest that muscular contraction in the seminal vesicle is predominantly under the influence of the sympathetic nervous system, whereas secretory epithelial function is regulated by both sympathetic and parasympathetic fibers.

  11. Detection thresholds of macaque otolith afferents.

    PubMed

    Yu, Xiong-Jie; Dickman, J David; Angelaki, Dora E

    2012-06-13

    The vestibular system is our sixth sense and is important for spatial perception functions, yet the sensory detection and discrimination properties of vestibular neurons remain relatively unexplored. Here we have used signal detection theory to measure detection thresholds of otolith afferents using 1 Hz linear accelerations delivered along three cardinal axes. Direction detection thresholds were measured by comparing mean firing rates centered on response peak and trough (full-cycle thresholds) or by comparing peak/trough firing rates with spontaneous activity (half-cycle thresholds). Thresholds were similar for utricular and saccular afferents, as well as for lateral, fore/aft, and vertical motion directions. When computed along the preferred direction, full-cycle direction detection thresholds were 7.54 and 3.01 cm/s(2) for regular and irregular firing otolith afferents, respectively. Half-cycle thresholds were approximately double, with excitatory thresholds being half as large as inhibitory thresholds. The variability in threshold among afferents was directly related to neuronal gain and did not depend on spike count variance. The exact threshold values depended on both the time window used for spike count analysis and the filtering method used to calculate mean firing rate, although differences between regular and irregular afferent thresholds were independent of analysis parameters. The fact that minimum thresholds measured in macaque otolith afferents are of the same order of magnitude as human behavioral thresholds suggests that the vestibular periphery might determine the limit on our ability to detect or discriminate small differences in head movement, with little noise added during downstream processing.

  12. Combined genetic and pharmacological inhibition of TRPV1 and P2X3 attenuates colorectal hypersensitivity and afferent sensitization

    PubMed Central

    Kiyatkin, Michael E.; Feng, Bin; Schwartz, Erica S.

    2013-01-01

    The ligand-gated channels transient receptor potential vanilloid 1 (TRPV1) and P2X3 have been reported to facilitate colorectal afferent neuron sensitization, thus contributing to organ hypersensitivity and pain. In the present study, we hypothesized that TRPV1 and P2X3 cooperate to modulate colorectal nociception and afferent sensitivity. To test this hypothesis, we employed TRPV1-P2X3 double knockout (TPDKO) mice and channel-selective pharmacological antagonists and evaluated combined channel contributions to behavioral responses to colorectal distension (CRD) and afferent fiber responses to colorectal stretch. Baseline responses to CRD were unexpectedly greater in TPDKO compared with control mice, but zymosan-produced CRD hypersensitivity was absent in TPDKO mice. Relative to control mice, proportions of mechanosensitive and -insensitive pelvic nerve afferent classes were not different in TPDKO mice. Responses of mucosal and serosal class afferents to mechanical probing were unaffected, whereas responses of muscular (but not muscular/mucosal) afferents to stretch were significantly attenuated in TPDKO mice; sensitization of both muscular and muscular/mucosal afferents by inflammatory soup was also significantly attenuated. In pharmacological studies, the TRPV1 antagonist A889425 and P2X3 antagonist TNP-ATP, alone and in combination, applied onto stretch-sensitive afferent endings attenuated responses to stretch; combined antagonism produced greater attenuation. In the aggregate, these observations suggest that 1) genetic manipulation of TRPV1 and P2X3 leads to reduction in colorectal mechanosensation peripherally and compensatory changes and/or disinhibition of other channels centrally, 2) combined pharmacological antagonism produces more robust attenuation of mechanosensation peripherally than does antagonism of either channel alone, and 3) the relative importance of these channels appears to be enhanced in colorectal hypersensitivity. PMID:23989007

  13. Combined genetic and pharmacological inhibition of TRPV1 and P2X3 attenuates colorectal hypersensitivity and afferent sensitization.

    PubMed

    Kiyatkin, Michael E; Feng, Bin; Schwartz, Erica S; Gebhart, G F

    2013-11-01

    The ligand-gated channels transient receptor potential vanilloid 1 (TRPV1) and P2X3 have been reported to facilitate colorectal afferent neuron sensitization, thus contributing to organ hypersensitivity and pain. In the present study, we hypothesized that TRPV1 and P2X3 cooperate to modulate colorectal nociception and afferent sensitivity. To test this hypothesis, we employed TRPV1-P2X3 double knockout (TPDKO) mice and channel-selective pharmacological antagonists and evaluated combined channel contributions to behavioral responses to colorectal distension (CRD) and afferent fiber responses to colorectal stretch. Baseline responses to CRD were unexpectedly greater in TPDKO compared with control mice, but zymosan-produced CRD hypersensitivity was absent in TPDKO mice. Relative to control mice, proportions of mechanosensitive and -insensitive pelvic nerve afferent classes were not different in TPDKO mice. Responses of mucosal and serosal class afferents to mechanical probing were unaffected, whereas responses of muscular (but not muscular/mucosal) afferents to stretch were significantly attenuated in TPDKO mice; sensitization of both muscular and muscular/mucosal afferents by inflammatory soup was also significantly attenuated. In pharmacological studies, the TRPV1 antagonist A889425 and P2X3 antagonist TNP-ATP, alone and in combination, applied onto stretch-sensitive afferent endings attenuated responses to stretch; combined antagonism produced greater attenuation. In the aggregate, these observations suggest that 1) genetic manipulation of TRPV1 and P2X3 leads to reduction in colorectal mechanosensation peripherally and compensatory changes and/or disinhibition of other channels centrally, 2) combined pharmacological antagonism produces more robust attenuation of mechanosensation peripherally than does antagonism of either channel alone, and 3) the relative importance of these channels appears to be enhanced in colorectal hypersensitivity.

  14. Innervation of the human gastric wall.

    PubMed Central

    Kyösola, K; Rechardt, L; Veijola, L; Waris, T; Penttilä, O

    1980-01-01

    The intrinsic innervation of the human gastric wall was studied by means of (1) demonstration of the acetylcholinesterase activity, (2) fluorescence microscopy, and (3) electron microscopy. The cholinergic innervation was rich: in the mucosa, a dense three dimensional network consisting of single delicate varicose acetylcholinesterase-positive axons and small nerve fascicles was observed in close relation to the gastric glands. In the submucosa, large nerve trunks and densely woven plexuses mainly consisting of single varicose axons (obviously perivascular plexuses)) were seen. In the muscularis external, a small-meshed net consisting of single varicose axons and nerve fascicles was observed. The ganglia of the myenteric plexus were small and scattered irregularly between and within the muscle layers. Most of the nerve cells exhibited moderate to intense acetylcholinesterase activity. In the serosa, only a few nerves were observed. By fluorescence microscopy, an abundance of brightly yellow fluorescing irregularly fusiform enterochromaffin cells was observed in the epithelial lining of the antral glands. The parietal cells of the fundic glands exhibited a granular, yellow to orange autofluorescence. Fluorescing axons were seen in intimate relation to some enterochromaffin cells, whereas most enterochromaffin cells and parietal cells did not receive any direct functional adrenergic innervation. In the other tissue layers, only a few fluorescing nerves were seen. The main ultrastructural characteristics of the intrinsic innervation of the mucosa were: (1) 'Innervation fasciculée'; (2) the axons were unmyelinated; (3) two main types of nerve terminals were identified according to their vesicle population(s): (a) nerve terminals containing only clear vesicles, (b) nerve terminals containing clear vesicles and large dense-cored vesicles. Most of the axons and nerve terminals within the nerve fascicles were acetylcholinesterase-positive. The nerve terminals were

  15. Implications for Bidirectional Signaling Between Afferent Nerves and Urothelial Cells—ICI-RS 2014

    PubMed Central

    Kanai, Anthony; Fry, Christopher; Ikeda, Youko; Kullmann, Florenta Aura; Parsons, Brian; Birder, Lori

    2016-01-01

    Aims To present a synopsis of the presentations and discussions from Think Tank I, “Implications for afferent–urothelial bidirectional communication” of the 2014 International Consultation on Incontinence-Research Society (ICI-RS) meeting in Bristol, UK. Methods The participants presented what is new, currently understood or still unknown on afferent–urothelial signaling mechanisms. New avenues of research and experimental methodologies that are or could be employed were presented and discussed. Results It is clear that afferent–urothelial interactions are integral to the regulation of normal bladder function and that its disruption can have detrimental consequences. The urothelium is capable of releasing numerous signaling factors that can affect sensory neurons innervating the suburothelium. However, the understanding of how factors released from urothelial cells and afferent nerve terminals regulate one another is incomplete. Utilization of techniques such as viruses that genetically encode Ca2+ sensors, based on calmodulin and green fluorescent protein, has helped to address the cellular mechanisms involved. Additionally, the epithelial–neuronal interactions in the urethra may also play a significant role in lower urinary tract regulation and merit further investigation. Conclusion The signaling capabilities of the urothelium and afferent nerves are well documented, yet how these signals are integrated to regulate bladder function is unclear. There is unquestionably a need for expanded methodologies to further our understanding of lower urinary tract sensory mechanisms and their contribution to various pathologies. PMID:26872567

  16. Cartography of human diaphragmatic innervation: preliminary data.

    PubMed

    Verin, Eric; Marie, Jean-Paul; Similowski, Thomas

    2011-04-30

    In humans, anatomy indicates that the phrenic nerve mainly arises from the C4 cervical root, with variable C3 and C5 contributions. How this translates into functional innervation is unknown. The diaphragm response to electrical stimulation of C3, C4 and C5 was described in three patients undergoing surgical laryngeal reinnervation with an upper phrenic root (surface chest electrodes at anterior, lateral and posterior sites; oesophageal and gastric pressures (Pes and Pga) to derive transdiaphragmatic pressure (Pdi)). Anatomically, the phrenic nerve predominantly originated from C4. Phrenic stimulation elicited motor responses at the three sites in the three patients, as did C4 stimulation. It produced Pdi values of 9, 11, and 14cmH(2)O in the three patients, respectively, vs. 9, 9, and 7cmH(2)O for C4. C3 stimulation produced modest Pdi responses, whereas C5 stimulation could produce Pdi responses close to those observed with C4 stimulation. These singular observations confirm the dominance of C4 in diaphragm innervation but suggest than C5 can be of importance.

  17. Characterization of sacral interneurons that mediate activation of locomotor pattern generators by sacrocaudal afferent input.

    PubMed

    Etlin, Alex; Finkel, Eran; Mor, Yoav; O'Donovan, Michael J; Anglister, Lili; Lev-Tov, Aharon

    2013-01-01

    Identification of the neural pathways involved in retraining the spinal central pattern generators (CPGs) by afferent input in the absence of descending supraspinal control is feasible in isolated rodent spinal cords where the locomotor CPGs are potently activated by sacrocaudal afferent (SCA) input. Here we study the involvement of sacral neurons projecting rostrally through the ventral funiculi (VF) in activation of the CPGs by sensory stimulation. Fluorescent labeling and immunostaining showed that VF neurons are innervated by primary afferents immunoreactive for vesicular glutamate transporters 1 and 2 and by intraspinal neurons. Calcium imaging revealed that 55% of the VF neurons were activated by SCA stimulation. The activity of VF neurons and the sacral and lumbar CPGs was abolished when non-NMDA receptors in the sacral segments were blocked by the antagonist CNQX. When sacral NMDA receptors were blocked by APV, the sacral CPGs were suppressed, VF neurons with nonrhythmic activity were recruited and a moderate-drive locomotor rhythm developed during SCA stimulation. In contrast, when the sacral CPGs were activated by SCA stimulation, rhythmic and nonrhythmic VF neurons were recruited and the locomotor rhythm was most powerful. The activity of 73 and 27% of the rhythmic VF neurons was in-phase with the ipsilateral and contralateral motor output, respectively. Collectively, our studies indicate that sacral VF neurons serve as a major link between SCA and the hindlimb CPGs and that the ability of SCA to induce stepping can be enhanced by the sacral CPGs. The nature of the ascending drive to lumbar CPGs, the identity of subpopulations of VF neurons, and their potential role in activating the locomotor rhythm are discussed. PMID:23303951

  18. Human-specific increase of dopaminergic innervation in a striatal region associated with speech and language: A comparative analysis of the primate basal ganglia.

    PubMed

    Raghanti, Mary Ann; Edler, Melissa K; Stephenson, Alexa R; Wilson, Lakaléa J; Hopkins, William D; Ely, John J; Erwin, Joseph M; Jacobs, Bob; Hof, Patrick R; Sherwood, Chet C

    2016-07-01

    The dopaminergic innervation of the striatum has been implicated in learning processes and in the development of human speech and language. Several lines of evidence suggest that evolutionary changes in dopaminergic afferents of the striatum may be associated with uniquely human cognitive and behavioral abilities, including the association of the human-specific sequence of the FOXP2 gene with decreased dopamine in the dorsomedial striatum of mice. To examine this possibility, we quantified the density of tyrosine hydroxylase-immunoreactive axons as a measure of dopaminergic innervation within five basal ganglia regions in humans, great apes, and New and Old World monkeys. Our results indicate that humans differ from nonhuman primate species in having a significant increase in dopaminergic innervation selectively localized to the medial caudate nucleus. This region of the striatum is highly interconnected, receiving afferents from multiple neocortical regions, and supports behavioral and cognitive flexibility. The medial caudate nucleus also shows hyperactivity in humans lacking a functional FOXP2 allele and exhibits altered dopamine concentrations in humanized Foxp2 mice. Additionally, striatal dopaminergic input was not altered in chimpanzees that used socially learned attention-getting sounds versus those that did not. This evidence indicates that the increase in dopamine innervation of the medial caudate nucleus in humans is a species-typical characteristic not associated with experience-dependent plasticity. The specificity of this increase may be related to the degree of convergence from cortical areas within this region of the striatum and may also be involved in human speech and language. J. Comp. Neurol. 524:2117-2129, 2016. © 2015 Wiley Periodicals, Inc. PMID:26715195

  19. Representation of Afferent Signals from Forearm Muscle and Cutaneous Nerves in the Primary Somatosensory Cortex of the Macaque Monkey

    PubMed Central

    Yamada, Hiroshi; Yaguchi, Hiroaki; Tomatsu, Saeka; Takei, Tomohiko; Oya, Tomomichi

    2016-01-01

    Proprioception is one’s overall sense of the relative positions and movements of the various parts of one’s body. The primary somatosensory cortex (SI) is involved in generating the proprioception by receiving peripheral sensory inputs from both cutaneous and muscle afferents. In particular, area 3a receives input from muscle afferents and areas 3b and 1 from cutaneous afferents. However, segregation of two sensory inputs to these cortical areas has not been evaluated quantitatively because of methodological difficulties in distinguishing the incoming signals. To overcome this, we applied electrical stimulation separately to two forearm nerves innervating muscle (deep radial nerve) and skin (superficial radial nerve), and examined the spatiotemporal distribution of sensory evoked potentials (SEPs) in SI of anaesthetized macaques. The SEPs arising from the deep radial nerve were observed exclusively at the bottom of central sulcus (CS), which was identified as area 3a using histological reconstruction. In contrast, SEPs evoked by stimulation of the superficial radial nerve were observed in the superficial part of SI, identified as areas 3b and 1. In addition to these earlier, larger potentials, we also found small and slightly delayed SEPs evoked by cutaneous nerve stimulation in area 3a. Coexistence of the SEPs from both deep and superficial radial nerves suggests that area 3a could integrate muscle and cutaneous signals to shape proprioception. PMID:27701434

  20. Sensing pulmonary oxidative stress by lung vagal afferents

    PubMed Central

    Taylor-Clark, Thomas E.; Undem, Bradley J.

    2011-01-01

    Oxidative stress in the bronchopulmonary airways can occur through a variety of inflammatory mechanisms and also following the inhalation of environmental pollutants. Oxidative stress causes cellular dysfunction and thus mammals (including humans) have developed mechanisms for detecting oxidative stress, such that defensive behavior and defensive biological mechanisms can be induced to lessen its potential damage. Vagal sensory nerves innervating the airways play a critical role in the detection of the microenvironment in the airways. Oxidative stress and associated compounds activate unmyelinated bronchopulmonary C-fibers, initiating action potentials in these nerves that conduct centrally to evoke unpleasant sensations (e.g. urge to cough, dyspnea, chest-tightness) and to stimulate/modulate reflexes (e.g. cough, bronchoconstriction, respiratory rate, inspiratory drive). This review will summarize the published evidence regarding the mechanisms by which oxidative stress, reactive oxygen species, environmental pollutants and lipid products of peroxidation activate bronchopulmonary C-fibers. Evidence suggests a key role for transient receptor potential ankyrin 1 (TRPA1), although transient receptor potential vanilloid 1 (TRPV1) and purinergic P2X channels may also play a role. Knowledge of these pathways greatly aids our understanding of the role of oxidative stress in health and disease and represents novel therapeutic targets for diseases of the airways. PMID:21600314

  1. Targeting primary afferent nerves for novel antitussive therapy.

    PubMed

    Undem, Bradley J; Carr, Michael J

    2010-01-01

    The best available data support the hypothesis that there are at least two types of vagal nerves responsible for initiating coughing reflexes. One type of nerve conducts action potentials in the A-range and is characterized by rapidly adapting responses to mechanical probing or acidification of the large airway epithelium. Stimulation of these nerves can evoke cough in unconscious experimental animals and humans. These nerves are important in immediate cough evoked by aspiration and as such perform a critical role in airway defense. The other type of primary afferent nerve involved in cough is the vagal C-fiber. Inhalation of selective C-fiber stimulants leads to cough only in conscious animals. In clinical studies, inhalation of a low concentration of a C-fiber stimulant causes an irritating, itchy urge-to-cough sensation that mimics the urge-to-cough sensations associated with respiratory tract infection, post-infection, gastroesophageal reflux disorders, and inflammatory airway diseases. Here we discuss the recent advances in sensory neurobiology that allow for the targeting of vagal C-fibers for novel antitussive therapy. No attempts are made to be all-inclusive with respect to the numerous possible molecular targets being considered to accomplish this goal. Rather, two general strategies are discussed: decreasing generator potential amplitude and decreasing the efficiency by which a generator potential evokes action-potential discharge. For the first category we focus on two targets, transient receptor potential vanilloid 1 and transient receptor potential A1. For the latter category we focus on recent advances in voltage-gated sodium (Na(V)) channel biology.

  2. Innervation of the renal proximal convoluted tubule of the rat

    SciTech Connect

    Barajas, L.; Powers, K. )

    1989-12-01

    Experimental data suggest the proximal tubule as a major site of neurogenic influence on tubular function. The functional and anatomical axial heterogeneity of the proximal tubule prompted this study of the distribution of innervation sites along the early, mid, and late proximal convoluted tubule (PCT) of the rat. Serial section autoradiograms, with tritiated norepinephrine serving as a marker for monoaminergic nerves, were used in this study. Freehand clay models and graphic reconstructions of proximal tubules permitted a rough estimation of the location of the innervation sites along the PCT. In the subcapsular nephrons, the early PCT (first third) was devoid of innervation sites with most of the innervation occurring in the mid (middle third) and in the late (last third) PCT. Innervation sites were found in the early PCT in nephrons located deeper in the cortex. In juxtamedullary nephrons, innervation sites could be observed on the PCT as it left the glomerulus. This gradient of PCT innervation can be explained by the different tubulovascular relationships of nephrons at different levels of the cortex. The absence of innervation sites in the early PCT of subcapsular nephrons suggests that any influence of the renal nerves on the early PCT might be due to an effect of neurotransmitter released from renal nerves reaching the early PCT via the interstitium and/or capillaries.

  3. Reduced innervation in the human pharynx in patients with obstructive sleep apnea.

    PubMed

    de Carlos, Félix; Cobo, Juan; Macías, Emilio; Feito, Jorge; González, Mónica; Cobo, Teresa; Fernández-Mondragón, María P; García-Suárez, Olivia; Vega, José A

    2015-07-01

    Obstructive sleep apnea is a disease characterized by repetitive breathing during sleep that lead to reduced oxygen saturation and sleep disturbance among other symptoms. Obstructive sleep apnea is caused by blockade of the upper respiratory airway, although the pathogenic mechanism underlying this occlusion remains unknown. In these studies we explored the hypothesis that alterations in the innervation, especially mechanosensory innervation, of the pharynx may contribute to obstructive sleep apnea. We tested this hypothesis by analyzing the innervation of the human pharynx in normal individuals and in subjects clinically diagnosed with obstructive sleep apnea. Using immunohistochemistry for axon and Schwann cells, as well as for two putative mechanoproteins (ASIC2 and TRPV4), we observed a significant reduction in the density of nerve fibers in the submucosa of patients with obstructive sleep apnea as well as morphological abnormalities in mechanosensory corpuscles. Importantly, while ASIC2 and TRPV4 expression was regularly found in the axons of mechanosensory corpuscles distributed throughout the muscular layer in the control subjects, it was absent in patients with obstructive sleep apnea. These findings support that neurological alterations are important contributors to the pathogenesis of obstructive sleep apnea.

  4. Symptoms of notalgia paresthetica may be explained by increased dermal innervation.

    PubMed

    Springall, D R; Karanth, S S; Kirkham, N; Darley, C R; Polak, J M

    1991-09-01

    Notalgia paresthetica is a sensory neuropathy characterized by infrascapular pruritus, burning pain, hyperalgesia, or tenderness. To assess whether the symptoms may be caused by alterations in the cutaneous innervation, skin from the affected area of patients (n = 5) was compared with controls (n = 10) comprising the contralateral unaffected area from the same patients and site-matched biopsies of normals, using immunohistochemistry. Frozen sections were immunostained with antisera to the neuropeptides substance P, calcitonin gene-related peptide, vasoactive intestinal polypeptide, and neuropeptide with tyrosine, and to the general neural marker PGP 9.5 and the glial marker S-100 to show the overall innervation and glial cells, respectively. No discernible change in the distribution of neuropeptide-immunoreactive axons was found, but all of the specimens from the affected areas had a significant increase in the number of intradermal PGP 9.5-immunoreactive nerve fibers compared with unaffected areas from the same patients and normal controls. Epidermal dendritic cells immunoreactive for S-100, possibly Langerhans cells, were substantially increased. It is concluded that there is an increase in the sensory epidermal innervation in the affected skin areas in notalgia paresthetica, which could contribute to the symptoms, and that neural immunohistochemistry of skin biopsies could be helpful in the diagnosis of the disease. PMID:1831466

  5. Rare human nerve growth factor-β mutation reveals relationship between C-afferent density and acute pain evaluation.

    PubMed

    Perini, Irene; Tavakoli, Mitra; Marshall, Andrew; Minde, Jan; Morrison, India

    2016-08-01

    The rare nerve growth factor-β (NGFB) mutation R221W causes a selective loss of thinly myelinated fibers and especially unmyelinated C-fibers. Carriers of this mutation show altered pain sensation. A subset presents with arthropathic symptoms, with the homozygous most severely affected. The aim of the present study was to investigate the relationship between peripheral afferent loss and pain evaluation by performing a quantification of small-fiber density in the cornea of the carriers, relating density to pain evaluation measures. In vivo corneal confocal microscopy (CCM) was used to quantify C-fiber loss in the cornea of 19 R221W mutation carriers (3 homozygous) and 19 age-matched healthy control subjects. Pain evaluation data via the Situational Pain Questionnaire (SPQ) and the severity of neuropathy based on the Neuropathy Disability Score (NDS) were assessed. Homozygotes, heterozygotes, and control groups differed significantly in corneal C-nerve fiber density, with the homozygotes showing a significant afferent reduction. Importantly, peripheral C-fiber loss correlated negatively with pain evaluation, as revealed by SPQ scores. This study is the first to investigate the contribution of small-fiber density to the perceptual evaluation of pain. It demonstrates that the lower the peripheral small-fiber density, the lower the degree of reported pain intensity, indicating a functional relationship between small-fiber density and higher level pain experience. PMID:27146986

  6. The vestibular nerve of the chinchilla. III. Peripheral innervation patterns in the utricular macula

    NASA Technical Reports Server (NTRS)

    Fernandez, C.; Goldberg, J. M.; Baird, R. A.

    1990-01-01

    1. Nerve fibers supplying the utricular macula of the chinchilla were labeled by extracellular injection of horseradish peroxidase into the vestibular nerve. The peripheral terminations of individual fibers were reconstructed and related to the regions of the end organ they innervated and to the sizes of their parent axons. 2. The macula is divided into medial and lateral parts by the striola, a narrow zone that runs for almost the entire length of the sensory epithelium. The striola can be distinguished from the extrastriolar regions to either side of it by the wider spacing of its hair cells. Calyx endings in the striola have especially thick walls, and, unlike similar endings in the extrastriola, many of them innervate more than one hair cell. The striola occupies 10% of the sensory epithelium; the lateral extrastriola, 50%; and the medial extrastriola, 40%. 3. The utricular nerve penetrates the bony labyrinth anterior to the end organ. Axons reaching the anterior part of the sensory epithelium run directly through the connective tissue stroma. Those supplying more posterior regions first enter a fiber layer located at the bottom of the stroma. Approximately one-third of the axons bifurcate below the epithelium, usually within 5-20 microns of the basement membrane. Bifurcations are more common in fibers destined for the extrastriola than for the striola. 4. Both calyx and bouton endings were labeled. Calyces can be simple or complex. Simple calyces innervate individual hair cells, whereas complex calyces supply 2-4 adjacent hair cells. Complex endings are more heavily concentrated in the striola than in the extrastriola. Simple calyces and boutons are found in all parts of the epithelium. Calyces emerge from the parent axon or one of its thick branches. Boutons, whether en passant or terminal, are located on thin collaterals. 5. Fibers can be classified into calyx, bouton, or dimorphic categories. The first type only has calyx endings; the second, only bouton

  7. Pain processing by spinal microcircuits: afferent combinatorics.

    PubMed

    Prescott, Steven A; Ratté, Stéphanie

    2012-08-01

    Pain, itch, heat, cold, and touch represent different percepts arising from somatosensory input. How stimuli give rise to these percepts has been debated for over a century. Recent work supports the view that primary afferents are highly specialized to transduce and encode specific stimulus modalities. However, cross-modal interactions (e.g. inhibition or exacerbation of pain by touch) support convergence rather than specificity in central circuits. We outline how peripheral specialization together with central convergence could enable spinal microcircuits to combine inputs from distinctly specialized, co-activated afferents and to modulate the output signals thus formed through computations like normalization. These issues will be discussed alongside recent advances in our understanding of microcircuitry in the superficial dorsal horn.

  8. Pain processing by spinal microcircuits: afferent combinatorics.

    PubMed

    Prescott, Steven A; Ratté, Stéphanie

    2012-08-01

    Pain, itch, heat, cold, and touch represent different percepts arising from somatosensory input. How stimuli give rise to these percepts has been debated for over a century. Recent work supports the view that primary afferents are highly specialized to transduce and encode specific stimulus modalities. However, cross-modal interactions (e.g. inhibition or exacerbation of pain by touch) support convergence rather than specificity in central circuits. We outline how peripheral specialization together with central convergence could enable spinal microcircuits to combine inputs from distinctly specialized, co-activated afferents and to modulate the output signals thus formed through computations like normalization. These issues will be discussed alongside recent advances in our understanding of microcircuitry in the superficial dorsal horn. PMID:22409855

  9. Human nasociliary nerve with special reference to its unique parasympathetic cutaneous innervation

    PubMed Central

    Hosaka, Fumio; Cho, Kwang Ho; Jang, Hyung Suk; Murakami, Gen; Abe, Shin-ichi

    2016-01-01

    The frontal nerve is characterized by its great content of sympathetic nerve fibers in contrast to cutaneous branches of the maxillary and mandibular nerves. However, we needed to add information about composite fibers of cutaneous branches of the nasociliary nerve. Using cadaveric specimens from 20 donated cadavers (mean age, 85), we performed immunohistochemistry of tyrosine hydroxylase (TH), neuronal nitric oxide synthase (nNOS), and vasoactive intestinal polypeptide (VIP). The nasocilliary nerve contained abundant nNOS-positive fibers in contrast to few TH- and VIP-positive fibers. The short ciliary nerves also contained nNOS-positive fibers, but TH-positive fibers were more numerous than nNOS-positive ones. Parasympathetic innervation to the sweat gland is well known, but the original nerve course seemed not to be demonstrated yet. The present study may be the first report on a skin nerve containing abundant nNOS-positive fibers. The unique parasympathetic contents in the nasocilliary nerve seemed to supply the forehead sweat glands as well as glands in the eyelid and nasal epithelium. PMID:27382515

  10. Human nasociliary nerve with special reference to its unique parasympathetic cutaneous innervation.

    PubMed

    Hosaka, Fumio; Yamamoto, Masahito; Cho, Kwang Ho; Jang, Hyung Suk; Murakami, Gen; Abe, Shin-Ichi

    2016-06-01

    The frontal nerve is characterized by its great content of sympathetic nerve fibers in contrast to cutaneous branches of the maxillary and mandibular nerves. However, we needed to add information about composite fibers of cutaneous branches of the nasociliary nerve. Using cadaveric specimens from 20 donated cadavers (mean age, 85), we performed immunohistochemistry of tyrosine hydroxylase (TH), neuronal nitric oxide synthase (nNOS), and vasoactive intestinal polypeptide (VIP). The nasocilliary nerve contained abundant nNOS-positive fibers in contrast to few TH- and VIP-positive fibers. The short ciliary nerves also contained nNOS-positive fibers, but TH-positive fibers were more numerous than nNOS-positive ones. Parasympathetic innervation to the sweat gland is well known, but the original nerve course seemed not to be demonstrated yet. The present study may be the first report on a skin nerve containing abundant nNOS-positive fibers. The unique parasympathetic contents in the nasocilliary nerve seemed to supply the forehead sweat glands as well as glands in the eyelid and nasal epithelium. PMID:27382515

  11. Blockage of vibrissae afferents: I. Motor effects.

    PubMed

    Prchal, A; Albarracín, A L; Décima, E E

    2004-02-01

    In the past, it has been proposed that the rat vibrissae play an important role in other hand, postural abnormalities, muscle tone decreases and hypomotility after sensory organ destructions were proposed as evidence supporting the "level setting" or "tonic" hypothesis. This hypothesis postulates that afferent activity, besides its well know transductive functions, sets the excitability state of the central nervous system. We thought the vibrissal system to be a good model to dissect these two postulated roles because vibrissae trimming would annul the transductive function without affecting the integrity of nerve activity. Thus we compare the effects of trimming the whiskers with blocking the vibrissal afferent nerves on two types of motor behavior: activity in an open field and walking over a rope connecting two elevated platforms. We found that only vibrissal afferent blockage (both nerve section and local anaesthesia) produced severe failures in the motor performances studied. These effects could not be fully explained by the abolition of the vibrissae as a sensory modality because cutting the whiskers did not significantly affect the motor performance. These data are discussed in reference to a tonic or general excitatory function of sensory inputs upon the central nervous system. PMID:15143620

  12. Catecholaminergic Innervation of Central and Peripheral Auditory Circuitry Varies with Reproductive State in Female Midshipman Fish, Porichthys notatus

    PubMed Central

    Forlano, Paul M.; Ghahramani, Zachary N.; Monestime, Camillia M.; Kurochkin, Philip; Chernenko, Alena; Milkis, Dmitriy

    2015-01-01

    In seasonal breeding vertebrates, hormone regulation of catecholamines, which include dopamine and noradrenaline, may function, in part, to modulate behavioral responses to conspecific vocalizations. However, natural seasonal changes in catecholamine innervation of auditory nuclei is largely unexplored, especially in the peripheral auditory system, where encoding of social acoustic stimuli is initiated. The plainfin midshipman fish, Porichthys notatus, has proven to be an excellent model to explore mechanisms underlying seasonal peripheral auditory plasticity related to reproductive social behavior. Recently, we demonstrated robust catecholaminergic (CA) innervation throughout the auditory system in midshipman. Most notably, dopaminergic neurons in the diencephalon have widespread projections to auditory circuitry including direct innervation of the saccule, the main endorgan of hearing, and the cholinergic octavolateralis efferent nucleus (OE) which also projects to the inner ear. Here, we tested the hypothesis that gravid, reproductive summer females show differential CA innervation of the auditory system compared to non-reproductive winter females. We utilized quantitative immunofluorescence to measure tyrosine hydroxylase immunoreactive (TH-ir) fiber density throughout central auditory nuclei and the sensory epithelium of the saccule. Reproductive females exhibited greater density of TH-ir innervation in two forebrain areas including the auditory thalamus and greater density of TH-ir on somata and dendrites of the OE. In contrast, non-reproductive females had greater numbers of TH-ir terminals in the saccule and greater TH-ir fiber density in a region of the auditory hindbrain as well as greater numbers of TH-ir neurons in the preoptic area. These data provide evidence that catecholamines may function, in part, to seasonally modulate the sensitivity of the inner ear and, in turn, the appropriate behavioral response to reproductive acoustic signals. PMID

  13. Catecholaminergic innervation of central and peripheral auditory circuitry varies with reproductive state in female midshipman fish, Porichthys notatus.

    PubMed

    Forlano, Paul M; Ghahramani, Zachary N; Monestime, Camillia M; Kurochkin, Philip; Chernenko, Alena; Milkis, Dmitriy

    2015-01-01

    In seasonal breeding vertebrates, hormone regulation of catecholamines, which include dopamine and noradrenaline, may function, in part, to modulate behavioral responses to conspecific vocalizations. However, natural seasonal changes in catecholamine innervation of auditory nuclei is largely unexplored, especially in the peripheral auditory system, where encoding of social acoustic stimuli is initiated. The plainfin midshipman fish, Porichthys notatus, has proven to be an excellent model to explore mechanisms underlying seasonal peripheral auditory plasticity related to reproductive social behavior. Recently, we demonstrated robust catecholaminergic (CA) innervation throughout the auditory system in midshipman. Most notably, dopaminergic neurons in the diencephalon have widespread projections to auditory circuitry including direct innervation of the saccule, the main endorgan of hearing, and the cholinergic octavolateralis efferent nucleus (OE) which also projects to the inner ear. Here, we tested the hypothesis that gravid, reproductive summer females show differential CA innervation of the auditory system compared to non-reproductive winter females. We utilized quantitative immunofluorescence to measure tyrosine hydroxylase immunoreactive (TH-ir) fiber density throughout central auditory nuclei and the sensory epithelium of the saccule. Reproductive females exhibited greater density of TH-ir innervation in two forebrain areas including the auditory thalamus and greater density of TH-ir on somata and dendrites of the OE. In contrast, non-reproductive females had greater numbers of TH-ir terminals in the saccule and greater TH-ir fiber density in a region of the auditory hindbrain as well as greater numbers of TH-ir neurons in the preoptic area. These data provide evidence that catecholamines may function, in part, to seasonally modulate the sensitivity of the inner ear and, in turn, the appropriate behavioral response to reproductive acoustic signals.

  14. Central connectivity of the chorda tympani afferent terminals in the rat rostral nucleus of the solitary tract.

    PubMed

    Park, Sook Kyung; Lee, Dae Seop; Bae, Jin Young; Bae, Yong Chul

    2016-03-01

    The rostral nucleus of the solitary tract (rNST) receives gustatory input via chorda tympani (CT) afferents from the anterior two-thirds of the tongue and transmits it to higher brain regions. To help understand how the gustatory information is processed at the 1st relay nucleus of the brain stem, we investigated the central connectivity of the CT afferent terminals in the central subdivision of the rat rNST through retrograde labeling with horseradish peroxidase, immunogold staining for GABA, glycine, and glutamate, and quantitative ultrastructural analysis. Most CT afferents were small myelinated fibers (<5 µm(2) in cross-sectional area) and made simple synaptic arrangements with 1-2 postsynaptic dendrites. It suggests that the gustatory signal is relayed to a specific group of neurons with a small degree of synaptic divergence. The volume of the identified synaptic boutons was positively correlated with their mitochondrial volume and active zone area, and also with the number of their postsynaptic dendrites. One-fourth of the boutons received synapses from GABA-immunopositive presynaptic profiles, 27 % of which were also glycine-immunopositive. These results suggest that the gustatory information mediated by CT afferents to the rNST is processed in a simple and specific manner. They also suggest that the minority of CT afferents are presynaptically modulated by GABA- and/or glycine-mediated mechanism.

  15. Resting Discharge Patterns of Macular Primary Afferents in Otoconia-Deficient Mice

    PubMed Central

    Jones, S. M.; Hoffman, L. F.

    2008-01-01

    Vestibular primary afferents in the normal mammal are spontaneously active. The consensus hypothesis states that such discharge patterns are independent of stimulation and depend instead on excitation by vestibular hair cells due to background release of synaptic neurotransmitter. In the case of otoconial sensory receptors, it is difficult to test the independence of resting discharge from natural tonic stimulation by gravity. We examined this question by studying discharge patterns of single vestibular primary afferent neurons in the absence of gravity stimulation using two mutant strains of mice that lack otoconia (OTO−; head tilt, het-Nox3, and tilted, tlt-Otop1). Our findings demonstrated that macular primary afferent neurons exhibit robust resting discharge activity in OTO− mice. Spike interval coefficient of variation (CV = SD/mean spike interval) values reflected both regular and irregular discharge patterns in OTO− mice, and the range of values for rate-normalized CV was similar to mice and other mammals with intact otoconia although there were proportionately fewer irregular fibers. Mean discharge rates were slightly higher in otoconia-deficient strains even after accounting for proportionately fewer irregular fibers [OTO− = 75.4 ± 31.1(113) vs OTO+ = 68.1 ± 28.5(143) in sp/s]. These results confirm the hypothesis that resting activity in macular primary afferents occurs in the absence of ambient stimulation. The robust discharge rates are interesting in that they may reflect the presence of a functionally ‘up-regulated’ tonic excitatory process in the absence of natural sensory stimulation. PMID:18661184

  16. An afferent explanation for sexual dimorphism in the aortic baroreflex of rat.

    PubMed

    Santa Cruz Chavez, Grace C; Li, Bai-Yan; Glazebrook, Patricia A; Kunze, Diana L; Schild, John H

    2014-09-15

    Sex differences in baroreflex (BRx) function are well documented. Hormones likely contribute to this dimorphism, but many functional aspects remain unresolved. Our lab has been investigating a subset of vagal sensory neurons that constitute nearly 50% of the total population of myelinated aortic baroreceptors (BR) in female rats but less than 2% in male rats. Termed "Ah," this unique phenotype has many of the nonoverlapping electrophysiological properties and chemical sensitivities of both myelinated A-type and unmyelinated C-type BR afferents. In this study, we utilize three distinct experimental protocols to determine if Ah-type barosensory afferents underlie, at least in part, the sex-related differences in BRx function. Electron microscopy of the aortic depressor nerve (ADN) revealed that female rats have less myelin (P < 0.03) and a smaller fiber cross-sectional area (P < 0.05) per BR fiber than male rats. Electrical stimulation of the ADN evoked compound action potentials and nerve conduction profiles that were markedly different (P < 0.01, n = 7 females and n = 9 males). Selective activation of ADN myelinated fibers evoked a BRx-mediated depressor response that was 3-7 times greater in female (n = 16) than in male (n = 17) rats. Interestingly, the most striking hemodynamic difference was functionally dependent upon the rate of myelinated barosensory fiber activation. Only 5-10 Hz of stimulation evoked a rapid, 20- to 30-mmHg reduction in arterial pressure of female rats, whereas rates of 50 Hz or higher were required to elicit a comparable depressor response from male rats. Collectively, our experimental results are suggestive of an alternative myelinated baroreceptor afferent pathway in females that may account for, at least in part, the noted sex-related differences in autonomic control of cardiovascular function.

  17. Ontogeny and innervation of taste buds in mouse palatal gustatory epithelium.

    PubMed

    Rashwan, Ahmed; Konishi, Hiroyuki; El-Sharaby, Ashraf; Kiyama, Hiroshi

    2016-01-01

    We investigated the relationship between mouse taste bud development and innervation of the soft palate. We employed scanning electron microscopy and immunohistochemistry using antibodies against protein gene product 9.5 and peripherin to detect sensory nerves, and cytokeratin 8 and α-gustducin to stain palatal taste buds. At E14, nerve fibers were observed along the medial border of the palatal shelves that tracked toward the epithelium. At E15.5, primordial stages of taste buds in the basal lamina of the soft palate first appeared. At E16, the taste buds became large spherical masses of columnar cells scattered in the soft palate basal lamina. At E17, the morphology and also the location of taste buds changed. At E18-19, some taste buds acquired a more elongated shape with a short neck, extending a variable distance from the soft palate basal lamina toward the surface epithelium. At E18, mature taste buds with taste pores and perigemmal nerve fibers were observed on the surface epithelium of the soft palate. The expression of α-gustducin was demonstrated at postnatal day 1 and the number of pored taste buds increased with age and they became pear-shaped at 8 weeks. The percent of pored fungiform-like papillae at birth was 58.3% of the whole palate; this increased to 83.8% at postnatal day 8 and reached a maximum of 95.7% at 12 weeks. The innervation of the soft palate was classified into three types of plexuses in relation to taste buds: basal nerve plexus, intragemmal and perigemmal nerve fibers. This study reveals that the nerve fibers preceded the development of taste buds in the palate of mice, and therefore the nerve fibers have roles in the initial induction of taste buds in the soft palate.

  18. Nerve growth factor facilitates perivascular innervation in neovasculatures of mice.

    PubMed

    Goda, Mitsuhiro; Takatori, Shingo; Atagi, Saori; Hashikawa-Hobara, Narumi; Kawasaki, Hiromu

    2016-08-01

    It is well known that blood vessels including arterioles have a perivascular innervation. It is also widely accepted that perivascular nerves maintain vascular tone and regulate blood flow. Although there are currently prevailing opinions, unified views on the innervation of microcirculation in any organs have not been established. The present study was designed to investigate whether there are perivascular nerves innervated in microvessels and neovessels. Furthermore, we examined whether nerve growth factor (NGF) can exert a promotional effect on perivascular nerve innervation in neovessels of Matrigel plugs. A Matrigel was subcutaneously implanted in mouse. The presence of perivascular nerves in Matrigel on Day 7-21 after the implantation was immunohistochemically studied. NGF or saline was subcutaneously administered by an osmotic mini-pump for a period of 3-14 days. The immunostaining of neovasculatures in Matrigel showed the presence of perivascular nerves on Day 21 after Matrigel injection. Perivascular nerve innervation of neovessels within Matrigel implanted in NGF-treated mice was observed in Day 17 after Matrigel implantation. However, NGF treatment did not increase numbers of neovessels in Matrigel. These results suggest that perivascular nerves innervate neovessels as neovasculatures mature and that NGF accelerates the innervation of perivascular nerves in neovessels. PMID:27493098

  19. Effects of acid on vagal nociceptive afferent subtypes in guinea pig esophagus.

    PubMed

    Yu, Xiaoyun; Hu, Youtian; Yu, Shaoyong

    2014-08-15

    Acid reflux-induced heartburn and noncardiac chest pain are processed peripherally by sensory nerve endings in the wall of the esophagus, but the underlying mechanism is still unclear. This study aims to determine the effects of acid on esophageal vagal nociceptive afferent subtypes. Extracellular single-unit recordings were performed in guinea pig vagal nodose or jugular C fiber neurons by using ex vivo esophageal-vagal preparations with intact nerve endings in the esophagus. We recorded action potentials (AP) of esophageal nodose or jugular C fibers evoked by acid perfusion and compared esophageal distension-evoked AP before and after acid perfusion. Acid perfusion for 30 min (pH range 7.4 to 5.8) did not evoke AP in nodose C fibers but significantly decreased their responses to esophageal distension, which could be recovered after washing out acid for 90 min. In jugular C fibers, acid perfusion not only evoked AP but also inhibited their responses to esophageal distension, which were not recovered after washing out acid for 120 min. Lower concentration of capsaicin perfusion mimicked acid-induced effects in nodose and jugular C fibers. Pretreatment with TRPV1 antagonist AMG9810, but not acid-sensing ion channel (ASIC) inhibitor amiloride, significantly inhibited acid-induced effects in nodose and jugular C fiber. These results demonstrate that esophageal vagal nociceptive afferent nerve subtypes display distinctive responses to acid. Acid activates jugular, but not nodose, C fibers and inhibits both of their responses to esophageal distension. These effects are mediated mainly through TRPV1. This inhibitory effect is a novel finding and may contribute to esophageal sensory/motor dysfunction in acid reflux diseases.

  20. Neuronal activity of the cat supraoptic nucleus is influenced by muscle small-diameter afferent (groups III and IV) receptors.

    PubMed

    Kannan, H; Yamashita, H; Koizumi, K; Brooks, C M

    1988-08-01

    In anesthetized cats, responses of single neurosecretory neurons of the supraoptic nucleus to activation of muscle receptors were investigated. Electrical stimulation (1-3 pulses at 200 Hz) of group III and IV pure muscle afferents (gastrocnemius nerve) evoked excitation of greater than 50% of supraoptic nucleus neurons (n = 50), whereas stimulation of group Ia or Ib fibers was ineffective. Baroreceptor stimulation inhibited 95% of these supraoptic nucleus neurons that responded to activation of muscle afferents. Excitation of receptors in the gastrocnemius muscle by intra-arterial injection of chemicals (NaCl, KCl, and bradykinin) increased firing rates of most (84%, 74%, and 80%, respectively) neurosecretary neurons. The magnitude of the excitatory response was dose dependent--bradykinin being the most effective. The response disappeared after muscle denervation. When the gastrocnemius muscle alone was contracted phasically by ventral root stimulation, discharges of the supraoptic nucleus neurons increased, whereas quick stretch of the muscle had no effect. We conclude that activation of muscle receptors by chemical or mechanical stimulus can directly excite neurosecretory neurons in the supraoptic nucleus and that afferent impulses are carried by polymodal fibers of small diameter but not by the largest afferents (group I) from the muscle. The results may relate to increased concentrations of plasma vasopressin during exercise.

  1. Sympathetic and sensory innervation of small intensely fluorescent (SIF) cells in rat superior cervical ganglion.

    PubMed

    Takaki, Fumiya; Nakamuta, Nobuaki; Kusakabe, Tatsumi; Yamamoto, Yoshio

    2015-02-01

    The sympathetic ganglion contains small intensely fluorescent (SIF) cells derived from the neural crest. We morphologically characterize SIF cells and focus on their relationship with ganglionic cells, preganglionic nerve fibers and sensory nerve endings. SIF cells stained intensely for tyrosine hydroxylase (TH), with a few cells also being immunoreactive for dopamine β-hydroxylase (DBH). Vesicular acetylcholine transporter (VAChT)-immunoreactive puncta were distributed around some clusters of SIF cells, whereas some SIF cells closely abutted DBH-immunoreactive ganglionic cells. SIF cells contained bassoon-immunoreactive products beneath the cell membrane at the attachments and on opposite sites to the ganglionic cells. Ganglion neurons and SIF cells were immunoreactive to dopamine D2 receptors. Immunohistochemistry for P2X3 revealed ramified nerve endings with P2X3 immunoreactivity around SIF cells. Triple-labeling for P2X3, TH and VAChT allowed the classification of SIF cells into three types based on their innervation: (1) with only VAChT-immunoreactive puncta, (2) with only P2X3-immunoreactive nerve endings, (3) with both P2X3-immunoreactive nerve endings and VAChT-immunoreactive puncta. The results of retrograde tracing with fast blue dye indicated that most of these nerve endings originated from the petrosal ganglion. Thus, SIF cells in the superior cervical ganglion are innervated by preganglionic fibers and glossopharyngeal sensory nerve endings and can be classified into three types. SIF cells might modulate sympathetic activity in the superior cervical ganglion. PMID:25416508

  2. Neuropilin-2/Semaphorin-3F-mediated repulsion promotes inner hair cell innervation by spiral ganglion neurons

    PubMed Central

    Coate, Thomas M; Spita, Nathalie A; Zhang, Kaidi D; Isgrig, Kevin T; Kelley, Matthew W

    2015-01-01

    Auditory function is dependent on the formation of specific innervation patterns between mechanosensory hair cells (HCs) and afferent spiral ganglion neurons (SGNs). In particular, type I SGNs must precisely connect with inner HCs (IHCs) while avoiding connections with nearby outer HCs (OHCs). The factors that mediate these patterning events are largely unknown. Using sparse-labeling and time-lapse imaging, we visualized for the first time the behaviors of developing SGNs including active retraction of processes from OHCs, suggesting that some type I SGNs contact OHCs before forming synapses with IHCs. In addition, we demonstrate that expression of Semaphorin-3F in the OHC region inhibits type I SGN process extension by activating Neuropilin-2 receptors expressed on SGNs. These results suggest a model in which cochlear innervation patterns by type I SGNs are determined, at least in part, through a Semaphorin-3F-mediated inhibitory signal that impedes processes from extending beyond the IHC region. DOI: http://dx.doi.org/10.7554/eLife.07830.001 PMID:26302206

  3. Origin of the radial nerve branch innervating the brachialis muscle.

    PubMed

    Oh, Chang-Seok; Won, Hyung-Sun; Lee, Kyu-Seok; Chung, In-Hyuk

    2009-05-01

    The brachialis muscle is dually innervated by the musculocutaneous nerve running via the anterior division of the brachial plexus and the radial nerve running via the posterior division of the plexus. There have been inconsistent descriptions of the pathway of the radial nerve branch at the brachial plexus. This study investigated the route of the radial nerve branch innervating the brachialis muscle at the brachial plexus. In 20 samples, the radial nerve branch innervating the brachialis muscle was separated and traced up to the cervical nerve under a surgical microscope. All the radial nerve branches innervating the muscle ran via the posterior cord, the posterior division, and the superior or middle trunk at the brachial plexus. The radial nerve branches arose from C5 in 5 cases, C6 in 11 cases, C5 and C6 in 3 cases, and C6 and C7 in 1 case. PMID:19260072

  4. Extrinsic innervation of ileum and pelvic flexure of foals with ileocolonic aganglionosis.

    PubMed

    Giancola, F; Gentilini, F; Romagnoli, N; Spadari, A; Turba, M E; Giunta, M; Sadeghinezhad, J; Sorteni, C; Chiocchetti, R

    2016-10-01

    Equine ileocolonic aganglionosis, which is also called lethal white foal syndrome (LWFS), is a severe congenital condition characterized by the unsuccessful colonization of neural crest progenitors in the caudal part of the small intestine and the entire large intestine. LWFS, which is attributable to a mutation in the endothelin receptor B gene, is the horse equivalent of Hirschsprung's disease in humans. Affected foals suffer from aganglionosis or hypoganglionosis of the enteric ganglia resulting in intestinal akinesia and colic. In other species with aganglionosis, fibers of extrinsic origin show an abnormal distribution pattern within the gut wall, but we have no information to date regarding this occurrence in horses. Our present aim is to investigate the distribution of extrinsic sympathetic and sensory neural fibers in LWFS, focusing on ileum and the pelvic flexure of the colon of two LWFS foals compared with a control subject. The sympathetic fibers were immunohistochemically identified with the markers tyrosine hydroxylase and dopamine beta-hydroxylase. The extrinsic sensory fibers were identified with the markers Substance P (SP) and calcitonin gene-related peptide (CGRP). Since SP and CGRP are also synthesized by subclasses of horse intramural neurons, LWFS represents a good model for the selective study of extrinsic fiber distribution. Affected foals showed large bundles of extrinsic fibers, compared with the control, as observed in Hirschsprung's disease. Furthermore, altered adrenergic pathways were observed, prominently in the pelvic flexure. The numbers of SP- and CGRP-immunoreactive fibers in the muscle, a target of enteric neurons, were dramatically reduced, whereas fibers deduced to be extrinsic sensory axons persisted around submucosal blood vessels. Fiber numbers in the mucosa were reduced. Thus, extrinsic innervation, contributing to modulate enteric functions, might also be affected during LWFS.

  5. EXPRESS: Voltage-dependent sodium (NaV) channels in group IV sensory afferents.

    PubMed

    Ramachandra, Renuka; Elmslie, Keith S

    2016-01-01

    Patients with intermittent claudication suffer from both muscle pain and an exacerbated exercise pressor reflex. Excitability of the group III and group IV afferent fibers mediating these functions is controlled in part by voltage-dependent sodium (NaV) channels. We previously found tetrodotoxin-resistant NaV1.8 channels to be the primary type in muscle afferent somata. However, action potentials in group III and IV afferent axons are blocked by TTX, supporting a minimal role of NaV1.8 channels. To address these apparent differences in NaV channel expression between axon and soma, we used immunohistochemistry to identify the NaV channels expressed in group IV axons within the gastrocnemius muscle and the dorsal root ganglia sections. Positive labeling by an antibody against the neurofilament protein peripherin was used to identify group IV neurons and axons. We show that >67% of group IV fibers express NaV1.8, NaV1.6, or NaV1.7. Interestingly, expression of NaV1.8 channels in group IV somata was significantly higher than in the fibers, whereas there were no significant differences for either NaV1.6 or NaV1.7. When combined with previous work, our results suggest that NaV1.8 channels are expressed in most group IV axons, but that, under normal conditions, NaV1.6 and/or NaV1.7 play a more important role in action potential generation to signal muscle pain and the exercise pressor reflex. PMID:27385723

  6. Voltage-dependent sodium (NaV) channels in group IV sensory afferents

    PubMed Central

    Elmslie, Keith S

    2016-01-01

    Patients with intermittent claudication suffer from both muscle pain and an exacerbated exercise pressor reflex. Excitability of the group III and group IV afferent fibers mediating these functions is controlled in part by voltage-dependent sodium (NaV) channels. We previously found tetrodotoxin-resistant NaV1.8 channels to be the primary type in muscle afferent somata. However, action potentials in group III and IV afferent axons are blocked by TTX, supporting a minimal role of NaV1.8 channels. To address these apparent differences in NaV channel expression between axon and soma, we used immunohistochemistry to identify the NaV channels expressed in group IV axons within the gastrocnemius muscle and the dorsal root ganglia sections. Positive labeling by an antibody against the neurofilament protein peripherin was used to identify group IV neurons and axons. We show that >67% of group IV fibers express NaV1.8, NaV1.6, or NaV1.7. Interestingly, expression of NaV1.8 channels in group IV somata was significantly higher than in the fibers, whereas there were no significant differences for either NaV1.6 or NaV1.7. When combined with previous work, our results suggest that NaV1.8 channels are expressed in most group IV axons, but that, under normal conditions, NaV1.6 and/or NaV1.7 play a more important role in action potential generation to signal muscle pain and the exercise pressor reflex. PMID:27385723

  7. Centrifugal innervation of the mammalian olfactory bulb.

    PubMed

    Matsutani, Shinji; Yamamoto, Noboru

    2008-12-01

    Although it has been known for decades that the mammalian olfactory bulb receives a substantial number of centrifugal inputs from other regions of the brain, relatively few data have been available on the function of the centrifugal olfactory system. Knowing the role of the centrifugal projection and how it works is of critical importance to fully understanding olfaction. The centrifugal fibers can be classified into two groups, a group that release neuromodulators, such as noradrenaline, serotonin, or acetylcholine, and a group originating in the olfactory cortex. Accumulating evidence suggests that centrifugal neuromodulatory inputs are associated with acquisition of odor memory. Because the distribution of the terminals on these fibers is diffuse and widespread, the neuromodulatory inputs must affect diverse subsets of bulbar neurons at the same time. In contrast, knowledge of the role of centrifugal fibers from the olfactory cortical areas is limited. Judging from recent morphological evidence, these fibers may modify the activity of neurons located in sparse and discrete loci in the olfactory bulb. Given the modular organization of the olfactory bulb, centrifugal fibers from the olfactory cortex may help coordinate the activities of restricted subsets of neurons belonging to distinct functional modules in an odor-specific manner. Because the olfactory cortex receives inputs from limbic and neocortical areas in addition to inputs from the bulb, the centrifugal inputs from the cortex can modulate odor processing in the bulb in response to non-olfactory as well as olfactory cues.

  8. Intact subepidermal nerve fibers mediate mechanical hypersensitivity via the activation of protein kinase C gamma in spared nerve injury

    PubMed Central

    Ko, Miau-Hwa; Yang, Ming-Ling; Youn, Su-Chung; Tseng, To-Jung

    2016-01-01

    Background Spared nerve injury is an important neuropathic pain model for investigating the role of intact primary afferents in the skin on pain hypersensitivity. However, potential cellular mechanisms remain poorly understood. In phosphoinositide-3 kinase pathway, pyruvate dehydrogenase kinase 1 (PDK1) participates in the regulation of neuronal plasticity for central sensitization. The downstream cascades of PDK1 include: (1) protein kinase C gamma (PKCγ) controls the trafficking and phosphorylation of ionotropic glutamate receptor; (2) protein kinase B (Akt)/the mammalian target of rapamycin (mTOR) signaling is responsible for local protein synthesis. Under these statements, we therefore hypothesized that an increase of PKCγ activation and mTOR-dependent PKCγ synthesis in intact primary afferents after SNI might contribute to pain hypersensitivity. Results The variants of spared nerve injury were performed in Sprague-Dawley rats by transecting any two of the three branches of the sciatic nerve, leaving only one branch intact. Following SNIt (spared tibial branch), mechanical hyperalgesia and mechanical allodynia, but not thermal hyperalgesia, were significantly induced. In the first footpad, normal epidermal innervations were verified by the protein gene product 9.5 (PGP9.5)- and growth-associated protein 43 (GAP43)-immunoreactive (IR) intraepidermal nerve fibers (IENFs) densities. Furthermore, the rapid increases of phospho-PKCγ- and phospho-mTOR-IR subepidermal nerve fibers (SENFs) areas were distinct gathered from the results of PGP9.5-, GAP43-, and neurofilament 200 (NF200)-IR SENFs areas. The efficacy of PKC inhibitor (GF 109203X) or mTOR complex 1 inhibitor (rapamycin) for attenuating mechanical hyperalgesia and mechanical allodynia by intraplantar injection was dose-dependent. Conclusions From results obtained in this study, we strongly recommend that the intact SENFs persistently increase PKCγ activation and mTOR-dependent PKCγ synthesis participate

  9. Caudal Nuclei Of The Rat Nucleus Of The Solitary Tract Differentially Innervate Respiratory Compartments Within The Ventrolateral Medulla

    PubMed Central

    Alheid, George F.; Jiao, Weijie; McCrimmon, Donald R.

    2011-01-01

    A substantial array of respiratory, cardiovascular, visceral and somatic afferents are relayed via the nucleus of the solitary tract (NTS) to the brainstem (and forebrain). Despite some degree of overlap within the NTS, specificity is maintained in central respiratory reflexes driven by 2nd order afferent relay neurons in the NTS. While the topographical arrangement of respiratory-related afferents targeting the NTS has been extensively investigated, their higher order brainstem targets beyond the NTS has only rarely been defined with any precision. Nonetheless, the various brainstem circuits serving blood gas homeostasis and airway protective reflexes must clearly receive a differential innervation from the NTS in order to evoke stimulus appropriate behavioral responses. Accordingly, we have examined the question of which specific NTS nuclei project to particular compartments within the ventral respiratory column (VRC) of the ventrolateral medulla. Our analyses of NTS labeling after retrograde tracer injections in the VRC and the nearby neuronal groups controlling autonomic function indicate a significant distinction between projections to the Bötzinger complex and preBötzinger complex compared to the remainder of the VRC. Specifically, the caudomedial NTS, including caudal portions of the medial solitary nucleus and the commissural division of NTS project relatively densely to the region of the retrotrapezoid nucleus and rostral ventrolateral medullary nucleus as well as to the rostral ventral respiratory group while avoiding the intervening Bötzinger and preBötzinger complexes. Area postrema appears to demonstrate a pattern of projections similar to that of caudal medial and commissural NTS nuclei. Other, less pronounced differential projections of lateral NTS nuclei to the various VRC compartments are additionally noted. PMID:21704133

  10. Mechanosensory neurons innervating Aplysia siphon encode noxious stimuli and display nociceptive sensitization.

    PubMed

    Illich, P A; Walters, E T

    1997-01-01

    Numerous studies of learning and memory in Aplysia have focused on primary mechanosensory neurons innervating the siphon and having their somata in the left E (LE) cluster of the abdominal ganglion. Although systematic analyses have been made of the responses of these LE cells to mechanical stimulation of the tightly pinned siphon, little is known about corresponding responses when the siphon is unrestrained. The present study demonstrates that LE mechanosensory thresholds in the freely moving siphon are much higher than in the pinned siphon. Light tactile stimuli adequate to activate central neurons and reflexive siphon movements often fail to activate the LE cells when the siphon is unrestrained. Because the LE cells display increasing discharge to increasing pressures, with maximal activation by crushing or tearing stimuli that cause tissue injury, they satisfy accepted definitions of nociceptor. Indeed, they show similarities to vertebrate Adelta nociceptors, including a property apparently unique (among primary afferents) to nociceptors-sensitization by noxious stimulation of their receptive field. Either pinching or pinning the siphon decreases LE cell mechanosensory threshold and enhances soma excitability. Such stimuli reduce effective tissue compliance and cause neuromodulation that enhances sensory responsiveness. These results, and recent descriptions of predatory attacks on Aplysia, suggest that LE sensory neurons are tuned to grasping and crushing stimuli that threaten or produce bodily harm. LE cell sensitization has effects, resembling hyperalgesia and allodynia, that compensate for loss of sensory function during injury and help protect against subsequent threats.

  11. Optogenetic Silencing of Nav1.8-Positive Afferents Alleviates Inflammatory and Neuropathic Pain.

    PubMed

    Daou, Ihab; Beaudry, Hélène; Ase, Ariel R; Wieskopf, Jeffrey S; Ribeiro-da-Silva, Alfredo; Mogil, Jeffrey S; Séguéla, Philippe

    2016-01-01

    We report a novel transgenic mouse model in which the terminals of peripheral nociceptors can be silenced optogenetically with high spatiotemporal precision, leading to the alleviation of inflammatory and neuropathic pain. Inhibitory archaerhodopsin-3 (Arch) proton pumps were delivered to Nav1.8(+) primary afferents using the Nav1.8-Cre driver line. Arch expression covered both peptidergic and nonpeptidergic nociceptors and yellow light stimulation reliably blocked electrically induced action potentials in DRG neurons. Acute transdermal illumination of the hindpaws of Nav1.8-Arch(+) mice significantly reduced mechanical allodynia under inflammatory conditions, while basal mechanical sensitivity was not affected by the optical stimulation. Arch-driven hyperpolarization of nociceptive terminals was sufficient to prevent channelrhodopsin-2 (ChR2)-mediated mechanical and thermal hypersensitivity in double-transgenic Nav1.8-ChR2(+)-Arch(+) mice. Furthermore, prolonged optical silencing of peripheral afferents in anesthetized Nav1.8-Arch(+) mice led to poststimulation analgesia with a significant decrease in mechanical and thermal hypersensitivity under inflammatory and neuropathic conditions. These findings highlight the role of peripheral neuronal inputs in the onset and maintenance of pain hypersensitivity, demonstrate the plasticity of pain pathways even after sensitization has occurred, and support the involvement of Nav1.8(+) afferents in both inflammatory and neuropathic pain. Together, we present a selective analgesic approach in which genetically identified subsets of peripheral sensory fibers can be remotely and optically inhibited with high temporal resolution, overcoming the compensatory limitations of genetic ablations. PMID:27022626

  12. Adaptations in the structure and innervation of follicle-sinus complexes to an aquatic environment as seen in the Florida manatee (Trichechus manatus latirostris).

    PubMed

    Sarko, Diana K; Reep, Roger L; Mazurkiewicz, Joseph E; Rice, Frank L

    2007-09-20

    Florida manatees are large-bodied aquatic herbivores that use large tactile vibrissae for several purposes. Facial vibrissae are used to forage in a turbid water environment, and the largest perioral vibrissae can also grasp and manipulate objects. Other vibrissae distributed over the entire postfacial body appear to function as a lateral line system. All manatee vibrissae emanate from densely innervated follicle-sinus complexes (FSCs) like those in other mammals, although proportionately larger commensurate with the caliber of the vibrissae. As revealed by immunofluorescence, all manatee FSCs have many types of C, Adelta and Abeta innervation including Merkel, club, and longitudinal lanceolate endings at the level of the ring sinus, but they lack other types such as reticular and spiny endings at the level of the cavernous sinus. As in non-whisking terrestrial species, the inner conical bodies of facial FSCs are well innervated but lack Abeta-fiber terminals. Importantly, manatee FSCs have two unique types of Abeta-fiber endings. First, all of the FSCs have exceptionally large-caliber axons that branch to terminate as novel, gigantic spindle-like endings located at the upper ring sinus. Second, facial FSCs have smaller caliber Abeta fibers that terminate in the trabeculae of the cavernous sinus as an ending that resembles a Golgi tendon organ. In addition, the largest perioral vibrissae, which are used for grasping, have exceptionally well-developed medullary cores that have a structure and dense small-fiber innervation resembling that of tooth pulp. Other features of the epidermis and upper dermis structure and innervation differ from that seen in terrestrial mammals.

  13. Adaptations in the structure and innervation of follicle-sinus complexes to an aquatic environment as seen in the Florida manatee (Trichechus manatus latirostris).

    PubMed

    Sarko, Diana K; Reep, Roger L; Mazurkiewicz, Joseph E; Rice, Frank L

    2007-09-20

    Florida manatees are large-bodied aquatic herbivores that use large tactile vibrissae for several purposes. Facial vibrissae are used to forage in a turbid water environment, and the largest perioral vibrissae can also grasp and manipulate objects. Other vibrissae distributed over the entire postfacial body appear to function as a lateral line system. All manatee vibrissae emanate from densely innervated follicle-sinus complexes (FSCs) like those in other mammals, although proportionately larger commensurate with the caliber of the vibrissae. As revealed by immunofluorescence, all manatee FSCs have many types of C, Adelta and Abeta innervation including Merkel, club, and longitudinal lanceolate endings at the level of the ring sinus, but they lack other types such as reticular and spiny endings at the level of the cavernous sinus. As in non-whisking terrestrial species, the inner conical bodies of facial FSCs are well innervated but lack Abeta-fiber terminals. Importantly, manatee FSCs have two unique types of Abeta-fiber endings. First, all of the FSCs have exceptionally large-caliber axons that branch to terminate as novel, gigantic spindle-like endings located at the upper ring sinus. Second, facial FSCs have smaller caliber Abeta fibers that terminate in the trabeculae of the cavernous sinus as an ending that resembles a Golgi tendon organ. In addition, the largest perioral vibrissae, which are used for grasping, have exceptionally well-developed medullary cores that have a structure and dense small-fiber innervation resembling that of tooth pulp. Other features of the epidermis and upper dermis structure and innervation differ from that seen in terrestrial mammals. PMID:17640045

  14. Different tonotopic regions of the lateral superior olive receive a similar combination of afferent inputs.

    PubMed

    Gómez-Álvarez, Marcelo; Saldaña, Enrique

    2016-08-01

    The mammalian lateral superior olive (LSO) codes disparities in the intensity of the sound that reaches the two ears by integrating ipsilateral excitation and contralateral inhibition, but it remains unclear what particular neuron types convey acoustic information to the nucleus. It is also uncertain whether the known conspicuous morphofunctional differences and gradients along the tonotopic axis of the LSO relate to qualitative and/or quantitative regional differences in its afferents. To clarify these issues, we made small, single injections of the neuroanatomical tracer biotinylated dextran amine (BDA) into different tonotopic regions of the LSO of albino rats and analyzed the neurons labeled retrogradely in brainstem auditory nuclei. We demonstrate that the LSO is innervated tonotopically by four brainstem neuron types: spherical bushy cells and planar multipolar neurons of the ipsilateral ventral cochlear nucleus, principal neurons of the ipsilateral medial nucleus of the trapezoid body, and small multipolar neurons of the contralateral ventral nucleus of the trapezoid body. Unexpectedly, the proportion of labeled neurons of each type was virtually identical in all cases, thus indicating that all tonotopic regions of the LSO receive a similar combination of inputs. Even more surprisingly, our data also suggest that the representation of frequencies in the LSO differs from that of the nuclei that innervate it: compared to the latter nuclei, the LSO seems to possess a relatively larger portion of its volume devoted to processing frequencies in the lower-middle part of the spectrum, and a relative smaller portion devoted to higher frequencies. J. Comp. Neurol. 524:2230-2250, 2016. © 2015 Wiley Periodicals, Inc.

  15. Central projections of antennular chemosensory and mechanosensory afferents in the brain of the terrestrial hermit crab (Coenobita clypeatus; Coenobitidae, Anomura)

    PubMed Central

    Tuchina, Oksana; Koczan, Stefan; Harzsch, Steffen; Rybak, Jürgen; Wolff, Gabriella; Strausfeld, Nicholas J.; Hansson, Bill S.

    2015-01-01

    The Coenobitidae (Decapoda, Anomura, Paguroidea) is a taxon of hermit crabs that includes two genera with a fully terrestrial life style as adults. Previous studies have shown that Coenobitidae have evolved a sense of spatial odor localization that is behaviorally highly relevant. Here, we examined the central olfactory pathway of these animals by analyzing central projections of the antennular nerve of Coenobita clypeatus, combining backfilling of the nerve with dextran-coupled dye, Golgi impregnations and three-dimensional reconstruction of the primary olfactory center, the antennular lobe. The principal pattern of putative olfactory sensory afferents in C. clypeatus is in many aspects similar to what have been established for aquatic decapod crustaceans, such as the spiny lobster Panulirus argus. However, there are also obvious differences that may, or may not represent adaptations related to a terrestrial lifestyle. In C. clypeatus, the antennular lobe dominates the deutocerebrum, having more than one thousand allantoid-shaped subunits. We observed two distinct patterns of sensory neuron innervation: putative olfactory afferents from the aesthetascs either supply the cap/subcap region of the subunits or they extend through its full depth. Our data also demonstrate that any one sensory axon can supply input to several subunits. Putative chemosensory (non-aesthetasc) and mechanosensory axons represent a different pathway and innervate the lateral and median antennular neuropils. Hence, we suggest that the chemosensory input in C. clypeatus might be represented via a dual pathway: aesthetascs target the antennular lobe, and bimodal sensilla target the lateral antennular neuropil and median antennular neuropil. The present data is compared to related findings in other decapod crustaceans. PMID:26236202

  16. Central projections of antennular chemosensory and mechanosensory afferents in the brain of the terrestrial hermit crab (Coenobita clypeatus; Coenobitidae, Anomura).

    PubMed

    Tuchina, Oksana; Koczan, Stefan; Harzsch, Steffen; Rybak, Jürgen; Wolff, Gabriella; Strausfeld, Nicholas J; Hansson, Bill S

    2015-01-01

    The Coenobitidae (Decapoda, Anomura, Paguroidea) is a taxon of hermit crabs that includes two genera with a fully terrestrial life style as adults. Previous studies have shown that Coenobitidae have evolved a sense of spatial odor localization that is behaviorally highly relevant. Here, we examined the central olfactory pathway of these animals by analyzing central projections of the antennular nerve of Coenobita clypeatus, combining backfilling of the nerve with dextran-coupled dye, Golgi impregnations and three-dimensional reconstruction of the primary olfactory center, the antennular lobe. The principal pattern of putative olfactory sensory afferents in C. clypeatus is in many aspects similar to what have been established for aquatic decapod crustaceans, such as the spiny lobster Panulirus argus. However, there are also obvious differences that may, or may not represent adaptations related to a terrestrial lifestyle. In C. clypeatus, the antennular lobe dominates the deutocerebrum, having more than one thousand allantoid-shaped subunits. We observed two distinct patterns of sensory neuron innervation: putative olfactory afferents from the aesthetascs either supply the cap/subcap region of the subunits or they extend through its full depth. Our data also demonstrate that any one sensory axon can supply input to several subunits. Putative chemosensory (non-aesthetasc) and mechanosensory axons represent a different pathway and innervate the lateral and median antennular neuropils. Hence, we suggest that the chemosensory input in C. clypeatus might be represented via a dual pathway: aesthetascs target the antennular lobe, and bimodal sensilla target the lateral antennular neuropil and median antennular neuropil. The present data is compared to related findings in other decapod crustaceans. PMID:26236202

  17. Resistance Training Enhances Skeletal Muscle Innervation Without Modifying the Number of Satellite Cells or their Myofiber Association in Obese Older Adults.

    PubMed

    Messi, María Laura; Li, Tao; Wang, Zhong-Min; Marsh, Anthony P; Nicklas, Barbara; Delbono, Osvaldo

    2016-10-01

    Studies in humans and animal models provide compelling evidence for age-related skeletal muscle denervation, which may contribute to muscle fiber atrophy and loss. Skeletal muscle denervation seems relentless; however, long-term, high-intensity physical activity appears to promote muscle reinnervation. Whether 5-month resistance training (RT) enhances skeletal muscle innervation in obese older adults is unknown. This study found that neural cell-adhesion molecule, NCAM+ muscle area decreased with RT and was inversely correlated with muscle strength. NCAM1 and RUNX1 gene transcripts significantly decreased with the intervention. Type I and type II fiber grouping in the vastus lateralis did not change significantly but increases in leg press and knee extensor strength inversely correlated with type I, but not with type II, fiber grouping. RT did not modify the total number of satellite cells, their number per area, or the number associated with specific fiber subtypes or innervated/denervated fibers. Our results suggest that RT has a beneficial impact on skeletal innervation, even when started late in life by sedentary obese older adults. PMID:26447161

  18. Resistance Training Enhances Skeletal Muscle Innervation Without Modifying the Number of Satellite Cells or their Myofiber Association in Obese Older Adults.

    PubMed

    Messi, María Laura; Li, Tao; Wang, Zhong-Min; Marsh, Anthony P; Nicklas, Barbara; Delbono, Osvaldo

    2016-10-01

    Studies in humans and animal models provide compelling evidence for age-related skeletal muscle denervation, which may contribute to muscle fiber atrophy and loss. Skeletal muscle denervation seems relentless; however, long-term, high-intensity physical activity appears to promote muscle reinnervation. Whether 5-month resistance training (RT) enhances skeletal muscle innervation in obese older adults is unknown. This study found that neural cell-adhesion molecule, NCAM+ muscle area decreased with RT and was inversely correlated with muscle strength. NCAM1 and RUNX1 gene transcripts significantly decreased with the intervention. Type I and type II fiber grouping in the vastus lateralis did not change significantly but increases in leg press and knee extensor strength inversely correlated with type I, but not with type II, fiber grouping. RT did not modify the total number of satellite cells, their number per area, or the number associated with specific fiber subtypes or innervated/denervated fibers. Our results suggest that RT has a beneficial impact on skeletal innervation, even when started late in life by sedentary obese older adults.

  19. Trafficking of Na+/Ca2+ exchanger to the site of persistent inflammation in nociceptive afferents.

    PubMed

    Scheff, Nicole N; Gold, Michael S

    2015-06-01

    Persistent inflammation results in an increase in the amplitude and duration of depolarization-evoked Ca(2+) transients in putative nociceptive afferents. Previous data indicated that these changes were the result of neither increased neuronal excitability nor an increase in the amplitude of depolarization. Subsequent data also ruled out an increase in voltage-gated Ca(2+) currents and recruitment of Ca(2+)-induced Ca(2+) release. Parametric studies indicated that the inflammation-induced increase in the duration of the evoked Ca(2+) transient required a relatively large and long-lasting increase in the concentration of intracellular Ca(2+) implicating the Na(+)/Ca(2+) exchanger (NCX), a major Ca(2+) extrusion mechanism activated with high intracellular Ca(2+) loads. The contribution of NCX to the inflammation-induced increase in the evoked Ca(2+) transient in rat sensory neurons was tested using fura-2 AM imaging and electrophysiological recordings. Changes in NCX expression and protein were assessed with real-time PCR and Western blot analysis, respectively. An inflammation-induced decrease in NCX activity was observed in a subpopulation of putative nociceptive neurons innervating the site of inflammation. The time course of the decrease in NCX activity paralleled that of the inflammation-induced changes in nociceptive behavior. The change in NCX3 in the cell body was associated with a decrease in NCX3 protein in the ganglia, an increase in the peripheral nerve (sciatic) yet no change in the central root. This single response to inflammation is associated with changes in at least three different segments of the primary afferent, all of which are likely to contribute to the dynamic response to persistent inflammation. PMID:26041911

  20. Trafficking of Na+/Ca2+ exchanger to the site of persistent inflammation in nociceptive afferents.

    PubMed

    Scheff, Nicole N; Gold, Michael S

    2015-06-01

    Persistent inflammation results in an increase in the amplitude and duration of depolarization-evoked Ca(2+) transients in putative nociceptive afferents. Previous data indicated that these changes were the result of neither increased neuronal excitability nor an increase in the amplitude of depolarization. Subsequent data also ruled out an increase in voltage-gated Ca(2+) currents and recruitment of Ca(2+)-induced Ca(2+) release. Parametric studies indicated that the inflammation-induced increase in the duration of the evoked Ca(2+) transient required a relatively large and long-lasting increase in the concentration of intracellular Ca(2+) implicating the Na(+)/Ca(2+) exchanger (NCX), a major Ca(2+) extrusion mechanism activated with high intracellular Ca(2+) loads. The contribution of NCX to the inflammation-induced increase in the evoked Ca(2+) transient in rat sensory neurons was tested using fura-2 AM imaging and electrophysiological recordings. Changes in NCX expression and protein were assessed with real-time PCR and Western blot analysis, respectively. An inflammation-induced decrease in NCX activity was observed in a subpopulation of putative nociceptive neurons innervating the site of inflammation. The time course of the decrease in NCX activity paralleled that of the inflammation-induced changes in nociceptive behavior. The change in NCX3 in the cell body was associated with a decrease in NCX3 protein in the ganglia, an increase in the peripheral nerve (sciatic) yet no change in the central root. This single response to inflammation is associated with changes in at least three different segments of the primary afferent, all of which are likely to contribute to the dynamic response to persistent inflammation.

  1. Can loss of muscle spindle afferents explain the ataxic gait in Riley-Day syndrome?

    PubMed

    Macefield, Vaughan G; Norcliffe-Kaufmann, Lucy; Gutiérrez, Joel; Axelrod, Felicia B; Kaufmann, Horacio

    2011-11-01

    The Riley-Day syndrome is the most common of the hereditary sensory and autonomic neuropathies (Type III). Among the well-recognized clinical features are reduced pain and temperature sensation, absent deep tendon reflexes and a progressively ataxic gait. To explain the latter we tested the hypothesis that muscle spindles, or their afferents, are absent in hereditary sensory and autonomic neuropathy III by attempting to record from muscle spindle afferents from a nerve supplying the leg in 10 patients. For comparison we also recorded muscle spindles from 15 healthy subjects and from two patients with hereditary sensory and autonomic neuropathy IV, who have profound sensory disturbances but no ataxia. Tungsten microelectrodes were inserted percutaneously into fascicles of the common peroneal nerve at the fibular head. Intraneural stimulation within muscle fascicles evoked twitches at normal stimulus currents (10-30 µA), and deep pain (which often referred) at high intensities (1 mA). Microneurographic recordings from muscle fascicles revealed a complete absence of spontaneously active muscle spindles in patients with hereditary sensory and autonomic neuropathy III; moreover, responses to passive muscle stretch could not be observed. Conversely, muscle spindles appeared normal in patients with hereditary sensory and autonomic neuropathy IV, with mean firing rates of spontaneously active endings being similar to those recorded from healthy controls. Intraneural stimulation within cutaneous fascicles evoked paraesthesiae in the fascicular innervation territory at normal stimulus intensities, but cutaneous pain was never reported during high-intensity stimulation in any of the patients. Microneurographic recordings from cutaneous fascicles revealed the presence of normal large-diameter cutaneous mechanoreceptors in hereditary sensory and autonomic neuropathy III. Our results suggest that the complete absence of functional muscle spindles in these patients explains

  2. Mechanosensory transduction of vagal and baroreceptor afferents revealed by study of isolated nodose neurons in culture.

    PubMed

    Snitsarev, Vladislav; Whiteis, Carol A; Abboud, Francois M; Chapleau, Mark W

    2002-06-28

    Changes in arterial pressure and blood volume are sensed by baroreceptor and vagal afferent nerves innervating aorta and heart with soma in nodose ganglia. The inability to measure membrane potential at the nerve terminals has limited our understanding of mechanosensory transduction. Goals of the present study were to: (1) Characterize membrane potential and action potential responses to mechanical stimulation of isolated nodose sensory neurons in culture; and (2) Determine whether the degenerin/epithelial sodium channel (DEG/ENaC) blocker amiloride selectively blocks mechanically induced depolarization without suppressing membrane excitability. Membrane potential of isolated rat nodose neurons was measured with sharp microelectrodes. Mechanical stimulation with buffer ejected from a micropipette (5, 10, 20 psi) depolarized 6 of 10 nodose neurons (60%) in an intensity-dependent manner. The depolarization evoked action potentials in 4 of the 6 neurons. Amiloride (1 microM) essentially abolished mechanically induced depolarization (15 +/- 4 mV during control vs. 1 +/- 2 mV during amiloride with 20-psi stimulation, n = 6) and action potential discharge. In contrast, amiloride did not inhibit the frequency of action potential discharge in response to depolarizing current injection (n = 6). In summary, mechanical stimulation depolarizes and triggers action potentials in a subpopulation of nodose sensory neurons in culture. The DEG/ENaC blocker amiloride at a concentration of 1 microM inhibits responses to mechanical stimulation without suppressing membrane excitability. The results support the hypothesis that DEG/ENaC subunits are components of mechanosensitive ion channels on vagal afferent and baroreceptor neurons. PMID:12144042

  3. Response properties of pigeon otolith afferents to linear acceleration

    NASA Technical Reports Server (NTRS)

    Si, X.; Angelaki, D. E.; Dickman, J. D.

    1997-01-01

    In the present study, the sensitivity to sinusoidal linear accelerations in the plane of the utricular macula was tested in afferents. The head orientation relative to the translation axis was varied in order to determine the head position that elicited the maximal and minimal responses for each afferent. The response gain and phase values obtained to 0.5-Hz and 2-Hz linear acceleration stimuli were then plotted as a function of head orientation and a modified cosine function was fit to the data. From the best-fit cosine function, the predicted head orientations that would produce the maximal and minimal response gains were estimated. The estimated maximum response gains to linear acceleration in the utricular plane for the afferents varied between 75 and 1420 spikes s-1 g-1. The mean maximal gains for all afferents to 0.5-Hz and 2-Hz sinusoidal linear acceleration stimuli were 282 and 367 spikes s-1 g-1, respectively. The minimal response gains were essentially zero for most units. The response phases always led linear acceleration and remained constant for each afferent, regardless of head orientation. These response characteristics indicate that otolith afferents are cosine tuned and behave as one-dimensional linear accelerometers. The directions of maximal sensitivity to linear acceleration for the afferents varied throughout the plane of the utricle; however, most vectors were directed out of the opposite ear near the interaural axis. The response dynamics of the afferents were tested using stimulus frequencies ranging between 0.25 Hz and 10 Hz (0.1 g peak acceleration). Across stimulus frequencies, most afferents had increasing gains and constant phase values. These dynamic properties for individual afferents were fit with a simple transfer function that included three parameters: a mechanical time constant, a gain constant, and a fractional order distributed adaptation operator.

  4. Spatial distribution of neurons innervated by chandelier cells.

    PubMed

    Blazquez-Llorca, Lidia; Woodruff, Alan; Inan, Melis; Anderson, Stewart A; Yuste, Rafael; DeFelipe, Javier; Merchan-Perez, Angel

    2015-09-01

    Chandelier (or axo-axonic) cells are a distinct group of GABAergic interneurons that innervate the axon initial segments of pyramidal cells and are thus thought to have an important role in controlling the activity of cortical circuits. To examine the circuit connectivity of chandelier cells (ChCs), we made use of a genetic targeting strategy to label neocortical ChCs in upper layers of juvenile mouse neocortex. We filled individual ChCs with biocytin in living brain slices and reconstructed their axonal arbors from serial semi-thin sections. We also reconstructed the cell somata of pyramidal neurons that were located inside the ChC axonal trees and determined the percentage of pyramidal neurons whose axon initial segments were innervated by ChC terminals. We found that the total percentage of pyramidal neurons that were innervated by a single labeled ChC was 18-22 %. Sholl analysis showed that this percentage peaked at 22-35 % for distances between 30 and 60 µm from the ChC soma, decreasing to lower percentages with increasing distances. We also studied the three-dimensional spatial distribution of the innervated neurons inside the ChC axonal arbor using spatial statistical analysis tools. We found that innervated pyramidal neurons are not distributed at random, but show a clustered distribution, with pockets where almost all cells are innervated and other regions within the ChC axonal tree that receive little or no innervation. Thus, individual ChCs may exert a strong, widespread influence on their local pyramidal neighbors in a spatially heterogeneous fashion. PMID:25056931

  5. [Disorders of intestinal innervation as a possible cause for chronic constipation].

    PubMed

    Wedel, T; Roblick, U; Gleiss, J; Ott, V; Eggers, R; Kühnel, W; Krammer, H J

    1999-01-01

    The gastrointestinal tract contains the largest amount of nerve cells apart from the central nervous system constituting together with glial cells the enteric nervous system (ENS). The morphology of the ENS is characterized by intramurally located ganglionated and non-ganglionated plexus of different structure. The diversity of neurotransmitters synthesized by the different nerve cell types as well as the complex neuronal circuits establish the basis for the mediation of a coordinated intestinal motility. Subsequently abnormalities of the ENS may cause severe constipation. The most acknowledged intestinal innervation disorder represents aganglionosis (Hirschsprung's disease) characterized by the absence of intramural nerve cells and the hypertrophy of nerve fiber bundles within the affected intestinal segment. Non-aganglionic intestinal innervation disorders include intestinal neuronal dysplasia (IND), hypoganglionosis and heterotopic ganglia. The pathogenesis of intestinal neuronal malformations is mainly attributed to development disorders of the ENS, in part caused by genetic defects. Furthermore, the ENS can sustain damage during the postnatal period by ischemic, inflammatory, autoimmunological processes or neurotoxic agents. The histopathological diagnosis of intestinal innervation disorders is achieved by enzyme- and immunohistochemical methods. The examination of the ENS can be carried out on mucosal, deep submucosal or full-thickness biopsies using serial transverse sections as well as on intestinal whole-mount preparations allowing a three-dimensional demonstration and assessment of the intramural plexus. Structural abnormalities of the myenteric and submucosal plexus and an abnormal content of neurotransmitters have been considered to be responsible for primary chronic constipation. However, until now no unified pathophysiological concept has been established due to the partly contradictory findings. Therefore, an important goal in patients with chronic

  6. Estradiol-dependent catecholaminergic innervation of auditory areas in a seasonally breeding songbird.

    PubMed

    Matragrano, Lisa L; Sanford, Sara E; Salvante, Katrina G; Sockman, Keith W; Maney, Donna L

    2011-08-01

    A growing body of evidence suggests that gonadal steroids such as estradiol (E2) alter neural responses not only in brain regions associated with reproductive behavior but also in sensory areas. Because catecholamine systems are involved in sensory processing and selective attention, and because they are sensitive to E2 in many species, they may mediate the neural effects of E2 in sensory areas. Here, we tested the effects of E2 on catecholaminergic innervation, synthesis and activity in the auditory system of white-throated sparrows, a seasonally breeding songbird in which E2 promotes selective auditory responses to song. Non-breeding females with regressed ovaries were held on a winter-like photoperiod and implanted with silastic capsules containing either no hormone or E2. In one hemisphere of the brain, we used immunohistochemistry to quantify fibers immunoreactive for tyrosine hydroxylase or dopamine beta-hydroxylase in the auditory forebrain, thalamus and midbrain. E2 treatment increased catecholaminergic innervation in the same areas of the auditory system in which E2 promotes selectivity for song. In the contralateral hemisphere we quantified dopamine, norepinephrine and their metabolites in tissue punches using HPLC. Norepinephrine increased in the auditory forebrain, but not the midbrain, after E2 treatment. We found that evidence of interhemispheric differences, both in immunoreactivity and catecholamine content that did not depend on E2 treatment. Overall, our results show that increases in plasma E2 typical of the breeding season enhanced catecholaminergic innervation and synthesis in some parts of the auditory system, raising the possibility that catecholamines play a role in E2-dependent auditory plasticity in songbirds.

  7. Chicken (Gallus domesticus) inner ear afferents

    NASA Technical Reports Server (NTRS)

    Hara, H.; Chen, X.; Hartsfield, J. F.; Hara, J.; Martin, D.; Fermin, C. D.

    1998-01-01

    Neurons from the vestibular (VG) and the statoacoustic (SAG) ganglion of the chick (Gallus domesticus) were evaluated histologically and morphometrically. Embryos at stages 34 (E8 days), 39 (E13 days) and 44 (E18 days) were sacrificed and temporal bones microdissected. Specimens were embedded in JB-4 methacrylate plastic, and stained with a mixture of 0.2% toluidine blue (TB) and 0.1% basic Fuschin in 25% ethanol or with a mixture of 2% TB and 1% paraphenylenediamine (PDA) for axon and myelin measurement study. Images of the VIIIth nerve were produced by a V150 (R) color imaging system and the contour of 200-300 neuronal bodies (perikarya) was traced directly on a video screen with a mouse in real time. The cross-sectional area of VG perikarya was 67.29 micrometers2 at stage 34 (E8), 128.46 micrometers2 at stage 39 (E13) and 275.85 micrometers2 at stage 44 (E18). The cross-sectional area of SAG perikarya was 62.44 micrometers2 at stage 34 (E8), 102.05 micrometers2 at stage 39 (E13) and 165.02 micrometers2 at stage 44 (E18). A significant cross-sectional area increase of the VG perikarya between stage 39 (E13) and stage 44 (E18) was determined. We randomly measured the cross-sectional area of myelin and axoplasm of hatchling afferent nerves, and found a correspondence between axoplasmic and myelin cross-sectional area in the utricular, saccular and semicircular canal nerve branches of the nerve. The results suggest that the period between stage 34 (E8) and 39 (E13) is a critical period for afferent neuronal development. Physiological and behavioral vestibular properties of developing and maturing hatchlings may change accordingly. The results compliment previous work by other investigators and provide valuable anatomical measures useful to correlate physiological data obtained from stimulation of the whole nerve or its parts.

  8. The innervated anterolateral thigh flap: anatomical study and clinical implications.

    PubMed

    Ribuffo, Diego; Cigna, Emanuele; Gargano, Francesco; Spalvieri, Cristina; Scuderi, Nicolò

    2005-02-01

    During the past 20 years, the neural anatomy of many flaps has been investigated, although no extensive studies have been reported yet on the anterolateral thigh flap. The goal of this study was to describe the sensory territories of the nerves supplying the anterolateral thigh flap with dissections on fresh cadavers and with local anesthetic injections in living subjects. The sensate anterolateral thigh flap is typically described as innervated by the lateral cutaneous femoral nerve. Two other well-known nerves, the superior perforator nerve and the median perforator nerve, which enter the flap at its medial border, might have a role in anterolateral thigh flap innervation. Twenty-nine anterolateral thigh flaps were elevated in 15 cadavers, and the lateral cutaneous femoral nerve, the superior perforator nerve, and median perforator nerve were dissected. In the injection study, the lateral cutaneous femoral nerve, superior perforator nerve, and median perforator nerve in 16 thighs of eight subjects were sequentially blocked. The resulting sensory deficit from each injection was mapped on the skin and superimposed on the marked anterolateral thigh flap territory. The study shows that the sensate anterolateral thigh flap is basically innervated by all three nerves. The lateral cutaneous femoral nerve was present in 29 of 29 thighs, whereas the superior perforator nerve was present in 25 of 29 and the median perforator nerve in 24 of 29 thighs. Furthermore, in the proximal half of the flap, the lateral cutaneous femoral nerve lies deep, whereas the superior perforator nerve and median perforator nerve lie more superficially. Whereas the lateral cutaneous femoral nerve innervates the entire flap, the superior perforator nerve innervates 25 percent of the flap and the median perforator nerve innervates 60 percent of the flap. Clinically, a small anterolateral thigh flap (7 x 5 cm) can be raised sparing the lateral cutaneous femoral nerve and using only the selective

  9. Modulation of visceral hypersensitivity by glial cell line-derived neurotrophic factor family receptor α-3 in colorectal afferents

    PubMed Central

    Shinoda, M.; Feng, B.; Albers, K. M.; Gebhart, G. F.

    2011-01-01

    Irritable bowel syndrome is characterized by colorectal hypersensitivity and contributed to by sensitized mechanosensitive primary afferents and recruitment of mechanoinsensitive (silent) afferents. Neurotrophic factors are well known to orchestrate dynamic changes in the properties of sensory neurons. Although pain modulation by proteins in the glial cell line-derived neurotrophic factor (GDNF) family has been documented in various pathophysiological states, their role in colorectal hypersensitivity remains unexplored. Therefore, we investigated the involvement of the GDNF family receptor α-3 (GFRα3) signaling in visceral hypersensitivity by quantifying visceromotor responses (VMR) to colorectal distension before and after intracolonic treatment with 2,4,6-trinitrobenzene sulfonic acid (TNBS). Baseline responses to colorectal distension did not differ between C57BL/6 and GFRα3 knockout (KO) mice. Relative to intracolonic saline treatment, TNBS significantly enhanced the VMR to colorectal distension in C57BL/6 mice 2, 7, 10, and 14 days posttreatment, whereas TNBS-induced visceral hypersensitivity was significantly suppressed in GFRα3 KO mice. The proportion of GFRα3 immunopositive thoracolumbar and lumbosacral colorectal dorsal root ganglion neurons was significantly elevated 2 days after TNBS treatment. In single fiber recordings, responses to circumferential stretch of colorectal afferent endings in C57BL/6 mice were significantly increased (sensitized) after exposure to an inflammatory soup, whereas responses to stretch did not sensitize in GFRα3 KO mice. These findings suggest that enhanced GFRα3 signaling in visceral afferents may contribute to development of colorectal hypersensitivity. PMID:21193524

  10. TRPA1 mediates amplified sympathetic responsiveness to activation of metabolically sensitive muscle afferents in rats with femoral artery occlusion

    PubMed Central

    Xing, Jihong; Lu, Jian; Li, Jianhua

    2015-01-01

    Autonomic responses to activation of mechanically and metabolically sensitive muscle afferent nerves during static contraction are augmented in rats with femoral artery occlusion. Moreover, metabolically sensitive transient receptor potential cation channel subfamily A, member 1 (TRPA1) has been reported to contribute to sympathetic nerve activity (SNA) and arterial blood pressure (BP) responses evoked by static muscle contraction. Thus, in the present study, we examined the mechanisms by which afferent nerves' TRPA1 plays a role in regulating amplified sympathetic responsiveness due to a restriction of blood flow directed to the hindlimb muscles. Our data show that 24–72 h of femoral artery occlusion (1) upregulates the protein levels of TRPA1 in dorsal root ganglion (DRG) tissues; (2) selectively increases expression of TRPA1 in DRG neurons supplying metabolically sensitive afferent nerves of C-fiber (group IV); and (3) enhances renal SNA and BP responses to AITC (a TRPA1 agonist) injected into the hindlimb muscles. In addition, our data demonstrate that blocking TRPA1 attenuates SNA and BP responses during muscle contraction to a greater degree in ligated rats than those responses in control rats. In contrast, blocking TRPA1 fails to attenuate SNA and BP responses during passive tendon stretch in both groups. Overall, results of this study indicate that alternations in muscle afferent nerves' TRPA1 likely contribute to enhanced sympathetically mediated autonomic responses via the metabolic component of the muscle reflex under circumstances of chronic muscle ischemia. PMID:26441669

  11. Transplantation of tectal tissue in rats. I. Organization of transplants and pattern of distribution of host afferents within them

    SciTech Connect

    Lund, R.D.; Harvey, A.R.

    1981-01-01

    We have examined the maturation of tectal tissue transplanted from fetal rats to the midbrain of newborns and have characterized the distribution of host retinal and cortical afferents within the transplants. The transplants develop characteristic internal order and connections which distinguish them from either embryonic cortex or retina placed in the same region. Host retinal afferents project to clearly circumscribed regions, where they synapse mainly on small dendrites or dendritic spines, and only rarely on vesicle-containing profiles. The retinorecipient areas contain few stained axons in neurofibrillar preparations and are almost always located at the surface of the transplant. There is very little overlap in the input from the two eyes into a single transplant even though the projections from each eye may lie adjacent to one another. Cortical afferents spread more broadly in the transplants, but are largely absent from areas of optic termination and from other more deeply located regions with sparse fiber staining properties. The observations suggest that when placed close to its normal location, tectal tissue can develop a number of features characteristic of normal superior colliculus. Appreciation of the internal order of the transplants makes it possible to investigate the cortical and retinal afferent pathways using physiological techniques.

  12. FMRFamide-like immunoreactive nervus terminalis innervation to the pituitary in the catfish, Clarias batrachus (Linn.): demonstration by lesion and immunocytochemical techniques

    NASA Technical Reports Server (NTRS)

    Krishna, N. S.; Subhedar, N.; Schreibman, M. P.

    1992-01-01

    Certain thick FMRFamide-like immunoreactive fibers arising from the ganglion cells of nervus terminalis in the olfactory bulb of Clarias batrachus can be traced centripetally through the medial olfactory tract, telencephalon, lateral preoptic area, tuberal area, and hypothalamohypophysial tract to the pituitary. Following 6 days of bilateral olfactory tract transection, the immunoreactivity in the thick fibers, caudal to the lesion site, was partially eliminated, whereas after 10 and 14 days, it was totally abolished in the processes en route to the pituitary. The results indicate a direct innervation of the pituitary gland by the FMRFamide-like peptide containing fibers of the nervus terminalis.

  13. Unmyelinated type II afferent neurons report cochlear damage

    PubMed Central

    Liu, Chang; Glowatzki, Elisabeth; Fuchs, Paul Albert

    2015-01-01

    In the mammalian cochlea, acoustic information is carried to the brain by the predominant (95%) large-diameter, myelinated type I afferents, each of which is postsynaptic to a single inner hair cell. The remaining thin, unmyelinated type II afferents extend hundreds of microns along the cochlear duct to contact many outer hair cells. Despite this extensive arbor, type II afferents are weakly activated by outer hair cell transmitter release and are insensitive to sound. Intriguingly, type II afferents remain intact in damaged regions of the cochlea. Here, we show that type II afferents are activated when outer hair cells are damaged. This response depends on both ionotropic (P2X) and metabotropic (P2Y) purinergic receptors, binding ATP released from nearby supporting cells in response to hair cell damage. Selective activation of P2Y receptors increased type II afferent excitability by the closure of KCNQ-type potassium channels, a potential mechanism for the painful hypersensitivity (that we term “noxacusis” to distinguish from hyperacusis without pain) that can accompany hearing loss. Exposure to the KCNQ channel activator retigabine suppressed the type II fiber’s response to hair cell damage. Type II afferents may be the cochlea’s nociceptors, prompting avoidance of further damage to the irreparable inner ear. PMID:26553995

  14. Target-derived trophic effect on skeletal muscle innervation in senescent mice.

    PubMed

    Messi, Maria Laura; Delbono, Osvaldo

    2003-02-15

    In the present work, we tested the hypothesis that target-derived insulin-like growth factor-1 (IGF-1) prevents alterations in neuromuscular innervation in aging mammals. To explore this hypothesis, we studied senescent wild-type mice as a model of deficient IGF-1 secretion and signaling and S1S2 transgenic mice as a tool to investigate the role of sustained overexpression of IGF-1 in striated muscle in neuromuscular innervation. The analysis of the nerve terminal in extensor digitorum longus muscles from senescent mice showed that the decrease in the percentage of cholinesterase-stained zones (CSZ) exhibiting nerve terminal branching, number of nerve branches at the CSZ, and nerve branch points was partially or completely reversed by sustained overexpression of IGF-1 in skeletal muscle. Target-derived IGF-1 also prevented age-related decreases in the postterminal alpha-bungarotoxin immunostained area, as well as the reduction in the number and length of postsynaptic folds, and area and density of postsynaptic folds studied with electron microscopy. Overexpression of IGF-1 in skeletal muscle may account for the lack of age-dependent switch in muscle fiber type composition recorded in senescent mice. In summary, the use of the S1S2 IGF-1 transgenic mouse model allowed us to provide morphological evidence for the role of target-derived IGF-1 in spinal cord motor neurons in senescent mice.

  15. Function and innervation of the involuntary m. retroauricularis.

    PubMed

    Heuser, M

    1976-10-01

    Beside the automatic, obligatory and tonic coinnervation of the involuntary m. retroauricularis in conjugate lateral gaze (oculoauricular phenomenon, nystagmus) several other physiological ways of accidental coinnervation are described. In talking, chewing, swallowing and during involuntary inspiration irregular bursts of innervation may be registered. In sleep regular rhythmic inspiratory innervation is demonstrated as well as myoclonic jerks. With reservation, an allusion is made to rem-sleep. In "nervous subjects" irregular involuntary innervation of the m. retroauricularis might serve as a measurement instrument for the involuntary somatomotor nervous system, i.e. the degree of neurotic tensity. An early myasthenic reaction is gained from the M. retroauricularis in patients with ocular forms of the disease. A common motor nucleus of abducens and facial nerve is discussed. Complementary studies are announced on the various forms of facial paralysis, strabismus and nystagmus. A further diagnostic use is presumed.

  16. The innervation of the zebrafish pharyngeal jaws and teeth.

    PubMed

    Crucke, Jeroen; Van de Kelft, Annelore; Huysseune, Ann

    2015-07-01

    Zebrafish (Danio rerio) teeth are increasingly used as a model to study odontogenesis in non-mammalians. Using serial semi-thin section histology and immunohistochemistry, the nerves innervating the pharyngeal jaws and teeth have been identified. The last pair of branchial arches, which are non-gill bearing but which carry the teeth, are innervated by an internal branch of a post-trematic ramus of the vagal nerve. Another, external, branch is probably responsible for the motor innervation of the branchiomeric musculature. Nerve fibres appear in the pulp cavity of the teeth only late during cytodifferentiation, and are therefore likely not involved in early steps of tooth formation. The precise role of the nervous system during continuous tooth replacement remains to be determined. Nonetheless, this study provides the necessary morphological background information to address this question.

  17. Remodelling sympathetic innervation in rat pancreatic islets ontogeny

    PubMed Central

    Cabrera-Vásquez, Siraam; Navarro-Tableros, Víctor; Sánchez-Soto, Carmen; Gutiérrez-Ospina, Gabriel; Hiriart, Marcia

    2009-01-01

    Background Pancreatic islets are not fully developed at birth and it is not clear how they are vascularised and innervated. Nerve Growth Factor (NGF) is required to guide sympathetic neurons that innervate peripheral organs and also in cardiovascular system and ovary angiogenesis. Pancreatic beta cells of a transgenic mouse that over-expressed NGF in attracts sympathetic hyper-innervation towards them. Moreover, we have previously demonstrated that adult beta cells synthesize and secrete NGF; however, we do not know how is NGF secreted during development, nor if it might be trophic for sympathetic innervation and survival in the pancreas. We analyzed sympathetic innervation and vasculature development in rat pancreatic islets at different developmental stages; foetal (F19), early postnatal (P1), weaning period (P20) and adults. We temporarily correlated these events to NGF secretion by islet cells. Results Sympathetic fibres reached pancreatic islets in the early postnatal period, apparently following blood vessels. The maximal number of sympathetic fibres (TH immunopositive) in the periphery of the islets was observed at P20, and then fibres entered the islets and reached the core where beta cells are mainly located. The number of fibres decreased from that stage to adulthood. At all stages studied, islet cells secreted NGF and also expressed the high affinity receptor TrkA. Foetal and neonatal isolated islet cells secreted more NGF than adults. TrkA receptors were expressed at all stages in pancreatic sympathetic fibres and blood vessels. These last structures were NGF–immunoreactive only at early stages (foetal and P0). Conclusion The results suggest that NGF signalling play an important role in the guidance of blood vessels and sympathetic fibres toward the islets during foetal and neonatal stages and could also preserve innervation at later stages of life. PMID:19534767

  18. Central GABAergic innervation of the pituitary in goldfish: a radioautographic and immunocytochemical study at the electron microscope level

    SciTech Connect

    Kah, O.; Dubourg, P.; Martinoli, M.G.; Rabhi, M.; Gonnet, F.; Geffard, M.; Calas, A.

    1987-09-01

    The GABAergic innervation of the goldfish pituitary was studied at the light and electron microscope levels by means of radioautography after in vitro incubation in tritiated gamma-aminobutyric acid (GABA) and immunocytochemistry using antibodies against GABA. Following incubation of pituitary fragments in a medium containing tritiated GABA, a selective uptake of the tracer was observed within the digitations of the neurohypophysis. Silver grain clusters were also observed in the adenohypophyseal tissue. At the electron microscope level, this uptake was found to correspond to nerve endings containing small clear and dense-core vesicles. These labeled profiles were located mainly in neurohypophyseal digitations in close apposition with the basement membrane separating the neurohypophysis from the adenohypophysis. However, they were also encountered in direct contact with most adenohypophyseal cell types in the different lobes. These results were confirmed by immunocytochemical data demonstrating the presence of numerous GABA immunoreactive fibers in both anterior and neurointermediate lobes. They were found either in the digitations of the neurohypophysis or in the adenohypophysis in direct contact with the glandular cells with a distribution and an ultrastructural aspect similar to those observed by radioautography. These data demonstrate that the pituitary of teleosts receives a massive GABAergic innervation. Although physiological data providing a functional significance for such an innervation are lacking, the present study suggests that, as already documented in mammals, GABA may be involved in the neuroendocrine regulation of pituitary functions in teleosts.

  19. Sympathetic innervation controls homeostasis of neuromuscular junctions in health and disease

    PubMed Central

    Khan, Muzamil Majid; Lustrino, Danilo; Silveira, Willian A.; Wild, Franziska; Straka, Tatjana; Issop, Yasmin; O’Connor, Emily; Cox, Dan; Reischl, Markus; Marquardt, Till; Labeit, Dittmar; Labeit, Siegfried; Benoit, Evelyne; Molgó, Jordi; Lochmüller, Hanns; Witzemann, Veit; Kettelhut, Isis C.; Navegantes, Luiz C. C.; Pozzan, Tullio; Rudolf, Rüdiger

    2016-01-01

    The distribution and function of sympathetic innervation in skeletal muscle have largely remained elusive. Here we demonstrate that sympathetic neurons make close contact with neuromuscular junctions and form a network in skeletal muscle that may functionally couple different targets including blood vessels, motor neurons, and muscle fibers. Direct stimulation of sympathetic neurons led to activation of muscle postsynaptic β2-adrenoreceptor (ADRB2), cAMP production, and import of the transcriptional coactivator peroxisome proliferator-activated receptor γ-coactivator 1α (PPARGC1A) into myonuclei. Electrophysiological and morphological deficits of neuromuscular junctions upon sympathectomy and in myasthenic mice were rescued by sympathicomimetic treatment. In conclusion, this study identifies the neuromuscular junction as a target of the sympathetic nervous system and shows that sympathetic input is crucial for synapse maintenance and function. PMID:26733679

  20. Innervated ectopic salivary gland associated with Rathke's cleft cyst clinically mimicking pituitary adenoma.

    PubMed

    Stefanits, Harald; Matula, Christian; Frischer, Josa M; Furtner, Julia; Hainfellner, Johannes A; Woehrer, Adelheid

    2013-01-01

    Herein, we report an exceptional case of a young female patient with progressive enlargement of a sellar mass, clinically suggestive of pituitary adenoma. Histopathology, however, demonstrated Rathke's cleft cyst associated with salivary gland remnants. In contrast to the majority of prior reports, the ectopic salivary glands were found in close proximity to the anterior pituitary lobe and showed active production of mucous secret, which caused progressive growth and symptoms in this patient. We further demonstrate nerve fibers surrounding the ectopic salivary glands, thereby suggesting parasympathetic innervation as a plausible mechanism triggering seromucous secretion. Neurosurgeons and neuropathologists need to be aware of this rare clinical condition expanding the spectrum of differential diagnoses of sellar masses. PMID:23254138

  1. Sympathetic innervation controls homeostasis of neuromuscular junctions in health and disease.

    PubMed

    Khan, Muzamil Majid; Lustrino, Danilo; Silveira, Willian A; Wild, Franziska; Straka, Tatjana; Issop, Yasmin; O'Connor, Emily; Cox, Dan; Reischl, Markus; Marquardt, Till; Labeit, Dittmar; Labeit, Siegfried; Benoit, Evelyne; Molgó, Jordi; Lochmüller, Hanns; Witzemann, Veit; Kettelhut, Isis C; Navegantes, Luiz C C; Pozzan, Tullio; Rudolf, Rüdiger

    2016-01-19

    The distribution and function of sympathetic innervation in skeletal muscle have largely remained elusive. Here we demonstrate that sympathetic neurons make close contact with neuromuscular junctions and form a network in skeletal muscle that may functionally couple different targets including blood vessels, motor neurons, and muscle fibers. Direct stimulation of sympathetic neurons led to activation of muscle postsynaptic β2-adrenoreceptor (ADRB2), cAMP production, and import of the transcriptional coactivator peroxisome proliferator-activated receptor γ-coactivator 1α (PPARGC1A) into myonuclei. Electrophysiological and morphological deficits of neuromuscular junctions upon sympathectomy and in myasthenic mice were rescued by sympathicomimetic treatment. In conclusion, this study identifies the neuromuscular junction as a target of the sympathetic nervous system and shows that sympathetic input is crucial for synapse maintenance and function. PMID:26733679

  2. Dendritic HCN Channels Shape Excitatory Postsynaptic Potentials at the Inner Hair Cell Afferent Synapse in the Mammalian Cochlea

    PubMed Central

    Yi, Eunyoung; Roux, Isabelle

    2010-01-01

    Synaptic transmission at the inner hair cell (IHC) afferent synapse, the first synapse in the auditory pathway, is specialized for rapid and reliable signaling. Here we investigated the properties of a hyperpolarization-activated current (Ih), expressed in the afferent dendrite of auditory nerve fibers, and its role in shaping postsynaptic activity. We used whole cell patch-clamp recordings from afferent dendrites directly where they contact the IHC in excised postnatal rat cochlear turns. Excitatory postsynaptic potentials (EPSPs) of variable amplitude (1–35 mV) were found with 10–90% rise times of about 1 ms and time constants of decay of about 5 ms at room temperature. Current–voltage relations recorded in afferent dendrites revealed Ih. The pharmacological profile and reversal potential (−45 mV) indicated that Ih is mediated by hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channels. The HCN channel subunits HCN1, HCN2, and HCN4 were found to be expressed in afferent dendrites using immunolabeling. Raising intracellular cAMP levels sped up the activation kinetics, increased the magnitude of Ih and shifted the half activation voltage (Vhalf) to more positive values (−104 ± 3 to −91 ± 2 mV). Blocking Ih with 50 μM ZD7288 resulted in hyperpolarization of the resting membrane potential (∼4 mV) and slowing the decay of the EPSP by 47%, suggesting that Ih is active at rest and shortens EPSPs, thereby potentially improving rapid and reliable signaling at this first synapse in the auditory pathway. PMID:20220080

  3. Dendritic HCN channels shape excitatory postsynaptic potentials at the inner hair cell afferent synapse in the mammalian cochlea.

    PubMed

    Yi, Eunyoung; Roux, Isabelle; Glowatzki, Elisabeth

    2010-05-01

    Synaptic transmission at the inner hair cell (IHC) afferent synapse, the first synapse in the auditory pathway, is specialized for rapid and reliable signaling. Here we investigated the properties of a hyperpolarization-activated current (I(h)), expressed in the afferent dendrite of auditory nerve fibers, and its role in shaping postsynaptic activity. We used whole cell patch-clamp recordings from afferent dendrites directly where they contact the IHC in excised postnatal rat cochlear turns. Excitatory postsynaptic potentials (EPSPs) of variable amplitude (1-35 mV) were found with 10-90% rise times of about 1 ms and time constants of decay of about 5 ms at room temperature. Current-voltage relations recorded in afferent dendrites revealed I(h). The pharmacological profile and reversal potential (-45 mV) indicated that I(h) is mediated by hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channels. The HCN channel subunits HCN1, HCN2, and HCN4 were found to be expressed in afferent dendrites using immunolabeling. Raising intracellular cAMP levels sped up the activation kinetics, increased the magnitude of I(h) and shifted the half activation voltage (V(half)) to more positive values (-104 +/- 3 to -91 +/- 2 mV). Blocking I(h) with 50 microM ZD7288 resulted in hyperpolarization of the resting membrane potential (approximately 4 mV) and slowing the decay of the EPSP by 47%, suggesting that I(h) is active at rest and shortens EPSPs, thereby potentially improving rapid and reliable signaling at this first synapse in the auditory pathway.

  4. Wounded Embryonic Corneas Exhibit Nonfibrotic Regeneration and Complete Innervation

    PubMed Central

    Spurlin, James W.; Lwigale, Peter Y.

    2013-01-01

    Purpose. Wound healing in adult corneas is characterized by activation of keratocytes and extracellular matrix (ECM) synthesis that results in fibrotic scar formation and loss of transparency. Since most fetal wounds heal without scaring, we investigated the regenerative potential of wounded embryonic corneas. Methods. On embryonic day (E) 7 chick corneas were wounded by making a linear incision traversing the epithelium and anterior stroma. Wounded corneas were collected between E7 and E18, and analyzed for apoptosis, cell proliferation, staining of ECM components, and corneal innervation. Results. Substantial wound retraction was observed within 16-hours postwounding (hpw) and partial re-epithelialized by 5-days postwounding (dpw). Corneal wounds were fully re-epithelialized by 11 dpw with no visible scars. There was no difference in the number of cells undergoing apoptosis between wounded and control corneas. Cell proliferation was reduced in the wounded corneas, albeit mitotic cells in the regenerating epithelium. Staining for alpha–smooth muscle actin (α-SMA), tenascin, and fibronectin was vivid but transient at the wound site. Staining for procollagen I, perlecan, and keratan sulfate proteoglycan was reduced at the wound site. Wounded corneas were fully regenerated by 11 dpw and showed similar patterns of staining for ECM components, albeit an increase in perlecan staining. Corneal innervation was inhibited during wound healing, but regenerated corneas were innervated similar to controls. Conclusions. These data show that minimal keratocyte activation, rapid ECM reconstruction, and proper innervation occur during nonfibrotic regeneration of the embryonic cornea. PMID:24003085

  5. The evidence for the spinal segmental innervation of bone.

    PubMed

    Ivanusic, Jason J

    2007-11-01

    Dermatomes and myotomes are areas of skin and muscle, respectively, that are innervated by single spinal segmental nerves, and reflect a principle of organization that appears in just about every clinical textbook available today. The evidence for the existence of dermatomes and myotomes has a long and substantial history. A lesser known, but similar principle exists for the skeletal system. The term "sclerotome" was first used in the non-embryological sense by Inman and Saunders ([1944] J. Nerv. Ment. Dis. 99:660-667) to define a region of bone and periosteum that is innervated by a single spinal segment. It is used by clinicians in many healthcare settings to aid in the diagnosis and description of a variety of deep and/or skeletal tissue pathologies and pain syndromes. In this article, the evidence for the existence of the sclerotomes is described in detail. Early clinical studies that define the sclerotomes, evidence from studies of the development of skeletal innervation, and the contributions of anatomical and physiological investigations are explored. It is suggested that there is in fact little direct evidence for the existence of discrete spinal segmental innervation patterns for the skeleton. PMID:17948287

  6. Follicle Microstructure and Innervation Vary between Pinniped Micro- and Macrovibrissae.

    PubMed

    Mattson, Erin E; Marshall, Christopher D

    2016-01-01

    Histological data from terrestrial, semiaquatic, and fully aquatic mammal vibrissa (whisker) studies indicate that follicle microstructure and innervation vary across the mystacial vibrissal array (i.e. medial microvibrissae to lateral macrovibrissae). However, comparative data are lacking, and current histological studies on pinniped vibrissae only focus on the largest ventrolateral vibrissae. Consequently, we investigated the microstructure, medial-to-lateral innervation, and morphometric trends in harp seal (Pagophilus groenlandicus) vibrissal follicle-sinus complexes (F-SCs). The F-SCs were sectioned either longitudinally or in cross-section and stained with a modified Masson's trichrome stain (microstructure) or Bodian's silver stain (innervation). All F-SCs exhibited a tripartite blood organization system. The dermal capsule thickness, the distribution of major branches of the deep vibrissal nerve, and the hair shaft design were more symmetrical in medial F-SCs, but these features became more asymmetrical as the F-SCs became more lateral. Overall, the mean axon count was 1,221 ± 422.3 axons/F-SC and mean axon counts by column ranged from 550 ± 97.4 axons/F-SC (medially, column 11) to 1,632 ± 173.2 axons/F-SC (laterally, column 2). These values indicate a total of 117,216 axons innervating the entire mystacial vibrissal array. The mean axon count of lateral F-SCs was 1,533 ± 192.9 axons/ F-SC, which is similar to values reported in the literature for other pinniped F-SCs. Our data suggest that conventional studies that only examine the largest ventrolateral vibrissae may overestimate the total innervation by ∼20%. However, our study also accounts for variation in quantification methods and shows that conventional analyses likely only overestimate innervation by ∼10%. The relationship between axon count and cross-sectional F-SC surface area was nonlinear, and axon densities were consistent across the snout. Our data indicate that harp seals exhibit

  7. Follicle Microstructure and Innervation Vary between Pinniped Micro- and Macrovibrissae.

    PubMed

    Mattson, Erin E; Marshall, Christopher D

    2016-01-01

    Histological data from terrestrial, semiaquatic, and fully aquatic mammal vibrissa (whisker) studies indicate that follicle microstructure and innervation vary across the mystacial vibrissal array (i.e. medial microvibrissae to lateral macrovibrissae). However, comparative data are lacking, and current histological studies on pinniped vibrissae only focus on the largest ventrolateral vibrissae. Consequently, we investigated the microstructure, medial-to-lateral innervation, and morphometric trends in harp seal (Pagophilus groenlandicus) vibrissal follicle-sinus complexes (F-SCs). The F-SCs were sectioned either longitudinally or in cross-section and stained with a modified Masson's trichrome stain (microstructure) or Bodian's silver stain (innervation). All F-SCs exhibited a tripartite blood organization system. The dermal capsule thickness, the distribution of major branches of the deep vibrissal nerve, and the hair shaft design were more symmetrical in medial F-SCs, but these features became more asymmetrical as the F-SCs became more lateral. Overall, the mean axon count was 1,221 ± 422.3 axons/F-SC and mean axon counts by column ranged from 550 ± 97.4 axons/F-SC (medially, column 11) to 1,632 ± 173.2 axons/F-SC (laterally, column 2). These values indicate a total of 117,216 axons innervating the entire mystacial vibrissal array. The mean axon count of lateral F-SCs was 1,533 ± 192.9 axons/ F-SC, which is similar to values reported in the literature for other pinniped F-SCs. Our data suggest that conventional studies that only examine the largest ventrolateral vibrissae may overestimate the total innervation by ∼20%. However, our study also accounts for variation in quantification methods and shows that conventional analyses likely only overestimate innervation by ∼10%. The relationship between axon count and cross-sectional F-SC surface area was nonlinear, and axon densities were consistent across the snout. Our data indicate that harp seals exhibit

  8. Mast cells drive mesenteric afferent signalling during acute intestinal ischaemia

    PubMed Central

    Jiang, Wen; Kirkup, Anthony J; Grundy, David

    2011-01-01

    Abstract Acute intestinal ischaemia stimulates visceral afferent nerves but the mechanisms responsible for this excitation are not fully understood. Mast cells may participate in this process as they are known to signal to mesenteric afferents during intestinal anaphylaxis and contribute to early inflammation and neuronal damage in response to cerebral ischaemia. We therefore hypothesised that mast cells are early responders to acute intestinal ischaemia and their activation initiates rapid signalling to the CNS via the excitation of mesenteric afferents. Primary afferent firing was recorded from a mesenteric nerve bundle supplying a segment of jejunum in anaesthetized adult rats. Acute focal ischaemia was produced by clamping the mesenteric vessels for 8 min, and reperfusion followed removal of the vessel clip. Two episodes of ischaemia–reperfusion (I–R) separated by a 30 min interval were performed. Drugs or their vehicles were administered 10 min before the 2nd I–R episode. Ischaemia caused a reproducible, intense and biphasic afferent firing that was temporally dissociated from the concomitantly triggered complex pattern of intestinal motor activity. The L-type calcium channel blocker, nifedipine, significantly attenuated this afferent firing by a mechanism independent of its action on intestinal tone. Ischaemia-induced afferent firing was also abrogated by the mast cell stabilizer, doxantrazole, and the H1 histamine receptor antagonist, pyrilamine. In contrast, the nicotinic receptor antagonist, hexamethonium, and the N-type calcium channel toxin, ω-conotoxin GVIA, each reduced the ischaemia-evoked motor inhibition but not the concurrent afferent discharge. Similarly, the cyclooxygenase inhibitor, naproxen, had no effect on the ischaemic afferent response but reduced the intestinal tone shortly from the onset of ischaemia to the early period of reperfusion. These data support a critical role for mast cell-derived histamine in the direct chemoexcitation

  9. The degree of acute descending control of spinal nociception in an area of primary hyperalgesia is dependent on the peripheral domain of afferent input

    PubMed Central

    Drake, Robert A R; Hulse, Richard P; Lumb, Bridget M; Donaldson, Lucy F

    2014-01-01

    Descending controls of spinal nociceptive processing play a critical role in the development of inflammatory hyperalgesia. Acute peripheral nociceptor sensitization drives spinal sensitization and activates spino–supraspinal–spinal loops leading to descending inhibitory and facilitatory controls of spinal neuronal activity that further modify the extent and degree of the pain state. The afferent inputs from hairy and glabrous skin are distinct with respect to both the profile of primary afferent classes and the degree of their peripheral sensitization. It is not known whether these differences in afferent input differentially engage descending control systems to different extents or in different ways. Injection of complete Freund's adjuvant resulted in inflammation and swelling of hairy hind foot skin in rats, a transient thermal hyperalgesia lasting <2 h, and longlasting primary mechanical hyperalgesia (≥7 days). Much longer lasting thermal hyperalgesia was apparent in glabrous skin (1 h to >72 h). In hairy skin, transient hyperalgesia was associated with sensitization of withdrawal reflexes to thermal activation of either A- or C-nociceptors. The transience of the hyperalgesia was attributable to a rapidly engaged descending inhibitory noradrenergic mechanism, which affected withdrawal responses to both A- and C-nociceptor activation and this could be reversed by intrathecal administration of yohimbine (α-2-adrenoceptor antagonist). In glabrous skin, yohimbine had no effect on an equivalent thermal inflammatory hyperalgesia. We conclude that acute inflammation and peripheral nociceptor sensitization in hind foot hairy skin, but not glabrous skin, rapidly activates a descending inhibitory noradrenergic system. This may result from differences in the engagement of descending control systems following sensitization of different primary afferent classes that innervate glabrous and hairy skin. PMID:24879873

  10. Micromotional studies of utricular and canal afferents

    NASA Technical Reports Server (NTRS)

    Lewis, Edwin R.

    1989-01-01

    The long-range goal of this research was to refine our understanding of the sensitivity of the vestibular components of the ear to very-low-amplitude motion, especially, the role of gravity in this sensitivity. We focused on the American bullfrog--a common animal subject for vestibular sensory research. Our principal experimental method was to apply precise, sinusoidal microrotational stimuli to an anesthetized animal subject, to record the resulting responses in an individual vestibular nerve fiber from the intact ear, and to use intracellular dye to trace the fiber and thus identify the vestibular sensor that gave rise to it. In this way, we were able to identify specific micromotional sensitivities and to associate those sensitivities definitely with specific sensors. Furthermore, by recording from nerve fibers after they leave the intact inner-ear cavity, we were able to achieve these identifications without interrupting the delicate micromechanics of the inner ear. We were especially concerned with the relative roles of the utricle and the anterior semicircular canal in the sensing of microrotational motion of the head about horizontal axes, and with the role of gravity in mediating that sensing process in the utricle. The functional characterization of individual nerve fibers was accomplished with a conventional analytical tool, the cycle histogram, in which the nerve impulse rate was plotted against the phase of the sinusoidal stimulus.

  11. Role of afferent input in load-dependent plasticity of rat muscle

    NASA Astrophysics Data System (ADS)

    Kawano, F.; Umemoto, S.; Higo, Y.; Kawabe, N.; Wang, X. D.; Lan, Y. B.; Ohira, Y.

    We have been studying the role of afferent input in the plasticity of skeletal muscles. The present study was performed to investigate the mechanisms responsible for the deafferentation-related inhibition of the compensatory hypertrophy in rat soleus muscle. Adult male Wistar rats were randomly separated into the control, functionally overloaded (FO), and functionally overloaded + deafferentation (FO+DA) group. The tendons of plantaris and gastrocnemius muscles were transected in the FO rats. The dorsal roots of the spinal cord at the L4-5 segmental levels were additionally transected in the FO+DA rats. The sampling of the soleus was performed 2 weeks after the surgery and ambulation recovery. The single muscle fibers were isolated in low-calcium relaxing solution. Further, the myonuclei or argyrophilic nucleolar organizer regions (AgNORs) were stained. Significant increase of the fiber cross-sectional area (CSA) was seen in the FO, but not in the FO+DA, rats. The myonuclear number in fiber was significantly decreased by FO. Addition of DA to FO further promoted the reduction of myonuclear number. The mean nucleus size and DNA content in single nucleus in all groups were identical. Although a single or double AgNORs were seen in ~90% of myonuclei in the control rats, their distributions were 72 and 76% in the FO and FO+DA rats, respectively (p<0.05). More myonuclei containing 3-5 AgNORs were noted in the FO and FO+DA rats. The mean number of the AgNORs per myonucleus was 1.7 in the control, 2.1 in both FO and FO+DA rats (p<0.05). It was suggested that the FO-related increase of the number of AgNORs may be responsible for the induction of compensatory hypertrophy. It was also indicated that intact afferent input plays an essential role in these phenomena.

  12. Dendritic arbors and central projections of physiologically characterized auditory fibers from the saccule of the toadfish, Opsanus tau.

    PubMed

    Edds-Walton, P L; Fay, R R; Highstein, S M

    1999-08-23

    Neurobiotin was injected iontophoretically into saccular afferents of toadfish (Opsanus tau) after intracellular recording to examine dendritic arbors and central projections with respect to the physiological and directional response properties of the cells. Dendritic arbors of 36 afferents were examined in detail. Maximum diameter of the arbor and the number of terminal points were positively correlated with each other, but neither was predictive of spontaneous activity or sensitivity. Best azimuths were centered around 30 degrees -40 degrees, which corresponds to the angle of the saccule with respect to the fish's midline. In general, best elevations for afferents corresponded to hair cell orientations in the region innervated; unexpectedly low elevations obtained from afferents innervating the middle saccule may reflect curvature of the sensory epithelium against the otolith. Three efferent cells were filled partially. The location and large size of the efferent projections indicate that activity along the saccule could be modulated by a single efferent. All afferents projected to the dorsal zone of the descending octaval nucleus (dDON); many afferents bifurcated to terminate in the anterior octaval nucleus, and a few of those also had terminal fields in the medial zone of DON. All afferent projections into the dDON consisted of multiple axon collaterals projecting to numerous sites along the rostral-caudal extent of the nucleus. Variation in terminal field sites also was noted in the medial to lateral axis of the dDON; however, there were no consistent correlations between terminal field locations, physiology, and best directions of the saccular afferents.

  13. Optogenetic Silencing of Nav1.8-Positive Afferents Alleviates Inflammatory and Neuropathic Pain123

    PubMed Central

    Daou, Ihab; Beaudry, Hélène; Ase, Ariel R.; Wieskopf, Jeffrey S.; Ribeiro-da-Silva, Alfredo; Mogil, Jeffrey S.

    2016-01-01

    Abstract We report a novel transgenic mouse model in which the terminals of peripheral nociceptors can be silenced optogenetically with high spatiotemporal precision, leading to the alleviation of inflammatory and neuropathic pain. Inhibitory archaerhodopsin-3 (Arch) proton pumps were delivered to Nav1.8+ primary afferents using the Nav1.8-Cre driver line. Arch expression covered both peptidergic and nonpeptidergic nociceptors and yellow light stimulation reliably blocked electrically induced action potentials in DRG neurons. Acute transdermal illumination of the hindpaws of Nav1.8-Arch+ mice significantly reduced mechanical allodynia under inflammatory conditions, while basal mechanical sensitivity was not affected by the optical stimulation. Arch-driven hyperpolarization of nociceptive terminals was sufficient to prevent channelrhodopsin-2 (ChR2)-mediated mechanical and thermal hypersensitivity in double-transgenic Nav1.8-ChR2+-Arch+mice. Furthermore, prolonged optical silencing of peripheral afferents in anesthetized Nav1.8-Arch+ mice led to poststimulation analgesia with a significant decrease in mechanical and thermal hypersensitivity under inflammatory and neuropathic conditions. These findings highlight the role of peripheral neuronal inputs in the onset and maintenance of pain hypersensitivity, demonstrate the plasticity of pain pathways even after sensitization has occurred, and support the involvement of Nav1.8+ afferents in both inflammatory and neuropathic pain. Together, we present a selective analgesic approach in which genetically identified subsets of peripheral sensory fibers can be remotely and optically inhibited with high temporal resolution, overcoming the compensatory limitations of genetic ablations. PMID:27022626

  14. Changes in vagal afferent drive alter tracheobronchial coughing in anesthetized cats.

    PubMed

    Simera, Michal; Poliacek, Ivan; Veternik, Marcel; Babalova, Lucia; Kotmanova, Zuzana; Jakus, Jan

    2016-08-01

    Unilateral cooling of the vagus nerve (<5°C, blocking mainly conductivity of myelinated fibers) and unilateral vagotomy were employed to reduce cough afferent drive in order to evaluate the effects of these interventions on the temporal features of the cough reflex. Twenty pentobarbitone anesthetized, spontaneously breathing cats were used. Cough was induced by mechanical stimulation of the tracheobronchial airways. The number of coughs during vagal cooling was significantly decreased (p<0.001). Inspiratory cough efforts were reduced by approximately 30% (p<0.001) and expiratory motor drive by more than 80% (p<0.001). Temporal analysis showed prolonged inspiratory and expiratory phases, the total cycle duration, its active portion, and the interval between maxima of the diaphragm and the abdominal activity during coughing (p<0.001). There was no significant difference in the average effects on the cough reflex between cooling of the left or the right vagus nerve. Compared to control, vagal cooling produced no significant difference in heart rate and mean arterial blood pressure (p>0.05), however, cold block of vagal conduction reduced respiratory rate (p<0.001). Unilateral vagotomy significantly reduced cough number, cough-related diaphragmatic activity, and relative values of maximum expiratory esophageal pressure (all p<0.05). Our results indicate that reduced cough afferent drive (lower responsiveness) markedly attenuates the motor drive to respiratory pump muscles during coughing and alters cough temporal features. Differences in the effects of unilateral vagal cooling and vagotomy on coughing support an inhibitory role of sensory afferents that are relatively unaffected by cooling of the vagus nerve to 5°C on mechanically induced cough. PMID:27184303

  15. P2X3 antagonists: novel therapeutics for afferent sensitization and chronic pain.

    PubMed

    Ford, Anthony P

    2012-05-01

    SUMMARY Despite decades of innovation and effort, the pharmaceutical needs of countless patients with chronic pain remain underserved. Effective and safe treatments must clearly come from novel approaches, yet targets and molecules selected hitherto have returned little benefit. Antagonism of P2X3 purinoceptors on pain-conveying nerves is a highly novel approach, and compounds from this class are advancing into patient studies. P2X3 channels are found in C- and Aδ-primary afferent neurons in most tissues, and are strikingly specific to pain detection. P2X3 antagonists block peripheral activation of these fibers via ATP, released from most cells by inflammation, injury, stress and distension, and clearly provide an alternative pharmacological mechanism to attenuate pain signals. P2X3 is also expressed presynaptically at central spinal terminals of afferent neurons, where ATP further sensitizes painful signals en route to the brain. The selectivity of P2X3 expression allows hope of a lower potential for adverse effects in brain, gut and cardiovascular tissues - limiting factors for most analgesics. P2X3 receptor-mediated sensitization has been implicated in rodent models in inflammatory, visceral, neuropathic and cancer pain states, as well as in airways hyper-reactivity, migraine and visceral organ irritability. Although we are often reminded that the effects of new medicines can translate poorly into clinical effectiveness, the broad efficacy seen following P2X3 inhibition in rodent models strengthens the prospect that an unprecedented mechanism to counter sensitization of afferent pathways may offer some merciful relief to millions of patients struggling daily with persistent discomfort and pain.

  16. Directional sound sensitivity in utricular afferents in the toadfish Opsanus tau.

    PubMed

    Maruska, Karen P; Mensinger, Allen F

    2015-06-01

    The inner ear of fishes contains three paired otolithic end organs, the saccule, lagena and utricle, which function as biological accelerometers. The saccule is the largest otolith in most fishes and much of our current understanding on auditory function in this diverse group of vertebrates is derived from anatomical and neurophysiological studies on this end organ. In contrast, less is known about how the utricle contributes to auditory functions. In this study, chronically implanted electrodes were used, along with neural telemetry or tethers to record primary afferent responses from the utricular nerve in free-ranging and naturally behaving oyster toadfish Opsanus tau Linnaeus. The hypothesis was that the utricle plays a role in detecting underwater sounds, including conspecific vocalizations, and exhibits directional sensitivity. Utricular afferents responded best to low frequency (80-200 Hz) pure tones and to playbacks of conspecific boatwhistles and grunts (80-180 Hz fundamental frequency), with the majority of the units (∼75%) displaying a clear, directional response, which may allow the utricle to contribute to sound detection and localization during social interactions. Responses were well within the sound intensity levels of toadfish vocalization (approximately 140 SPL dBrms re. 1 µPa with fibers sensitive to thresholds of approximately 120 SPL dBrms re. 1 µPa). Neurons were also stimulated by self-generated body movements such as opercular movements and swimming. This study is the first to investigate underwater sound-evoked response properties of primary afferents from the utricle of an unrestrained/unanesthetized free-swimming teleost fish. These data provide experimental evidence that the utricle has an auditory function, and can contribute to directional hearing to facilitate sound localization. PMID:25883378

  17. Effect of synthetic cationic protein on mechanoexcitability of vagal afferent nerve subtypes in guinea pig esophagus.

    PubMed

    Yu, Shaoyong; Ouyang, Ann

    2011-12-01

    Eosinophilic esophagitis is characterized by increased infiltration and degranulation of eosinophils in the esophagus. Whether eosinophil-derived cationic proteins regulate esophageal sensory nerve function is still unknown. Using synthetic cationic protein to investigate such effect, we performed extracellular recordings from vagal nodose or jugular neurons in ex vivo esophageal-vagal preparations with intact nerve endings in the esophagus. Nerve excitabilities were determined by comparing action potentials evoked by esophageal distensions before and after perfusion of synthetic cationic protein poly-L-lysine (PLL) with or without pretreatment with poly-L-glutamic acid (PLGA), which neutralized cationic charges of PLL. Perfusion with PLL did not evoke action potentials in esophageal nodose C fibers but increased their responses to esophageal distension. This potentiation effect lasted for 30 min after washing out of PLL. Pretreatment with PLGA significantly inhibited PLL-induced mechanohyperexcitability of esophageal nodose C fibers. In esophageal nodose Aδ fibers, perfusion with PLL did not evoke action potentials. In contrast to nodose C fibers, both the spontaneous discharges and the responses to esophageal distension in nodose Aδ fibers were decreased by perfusion with PLL, which can be restored after washing out PLL for 30-60 min. Pretreatment with PLGA attenuated PLL-induced decrease in spontaneous discharge and mechanoexcitability of esophageal nodose Aδ fibers. In esophageal jugular C fibers, PLL neither evoked action potentials nor changed their responses to esophageal distension. Collectively, these data demonstrated that synthetic cationic protein did not evoke action potential discharges of esophageal vagal afferents but had distinctive sensitization effects on their responses to esophageal distension.

  18. Convergence in reflex pathways from multiple cutaneous nerves innervating the foot depends upon the number of rhythmically active limbs during locomotion.

    PubMed

    Nakajima, Tsuyoshi; Mezzarane, Rinaldo A; Hundza, Sandra R; Komiyama, Tomoyoshi; Zehr, E Paul

    2014-01-01

    Neural output from the locomotor system for each arm and leg influences the spinal motoneuronal pools directly and indirectly through interneuronal (IN) reflex networks. While well documented in other species, less is known about the functions and features of convergence in common IN reflex system from cutaneous afferents innervating different foot regions during remote arm and leg movement in humans. The purpose of the present study was to use spatial facilitation to examine possible convergence in common reflex pathways during rhythmic locomotor limb movements. Cutaneous reflexes were evoked in ipsilateral tibialis anterior muscle by stimulating (in random order) the sural nerve (SUR), the distal tibial nerve (TIB), and combined simultaneous stimulation of both nerves (TIB&SUR). Reflexes were evoked while participants performed rhythmic stepping and arm swinging movement with both arms and the leg contralateral to stimulation (ARM&LEG), with just arm movement (ARM) and with just contralateral leg movement (LEG). Stimulation intensities were just below threshold for evoking early latency (<80 ms to peak) reflexes. For each stimulus condition, rectified EMG signals were averaged while participants held static contractions in the stationary (stimulated) leg. During ARM&LEG movement, amplitudes of cutaneous reflexes evoked by combined TIB&SUR stimulation were significantly larger than simple mathematical summation of the amplitudes evoked by SUR or TIB alone. Interestingly, this extra facilitation seen during combined nerve stimulation was significantly reduced when performing ARM or LEG compared to ARM&LEG. We conclude that locomotor rhythmic limb movement induces excitation of common IN reflex pathways from cutaneous afferents innervating different foot regions. Importantly, activity in this pathway is most facilitated during ARM&LEG movement. These results suggest that transmission in IN reflex pathways is weighted according to the number of limbs directly engaged

  19. Phase relation changes between the firings of alpha and gamma-motoneurons and muscle spindle afferents in the sacral micturition centre during continence functions in brain-dead human and patients with spinal cord injury.

    PubMed

    Schalow, G

    2010-01-01

    1. Single-nerve fibre action potentials (APs) were recorded with 2 pairs of wire electrodes from lower sacral nerve roots during surgery in patients with spinal cord injury and in a brain-dead human. Conduction velocity distribution histograms were constructed for afferent and efferent fibres, nerve fibre groups were identified and simultaneous impulse patterns of alpha and gamma-motoneurons and secondary muscle spindle afferents (SP2) were constructed. Temporal relations between afferent and efferent APs were analyzed by interspike interval (II) and phase relation changes to explore the coordinated self-organization of somatic and parasympathetic neuronal networks in the sacral micturition centre during continence functions under physiologic (brain-dead) and pathophysiologic conditions (spinal cord injury). 2. In a paraplegic with hyperreflexia of the bladder, urinary bladder stretch (S1) and tension receptor afferents (ST) fired already when the bladder was empty, and showed a several times higher bladder afferent activity increase upon retrograde bladder filling than observed in the brain-dead individual. Two alpha2-motoneurons (FR) innervating the external bladder sphincter were already oscillatory firing to generate high activity levels when the bladder was empty. They showed activity levels with no bladder filling, comparable to those measured at a bladder filling of 600 ml in the brain-dead individual. A bladder storage volume of 600 ml was thus lost in the paraplegic, due to a too high bladder afferent input to the sacral micturition center, secondary to inflammation and hypertrophy of the detrusor. 3. In a brain-dead human, 2 phase relations existed per oscillation period of 160 ms between the APs of a sphincteric oscillatory firing alpha2-motoneuron, a dynamic fusimotor and a secondary muscle spindle afferent fibre. Following stimulation of mainly somatic afferent fibres, the phase relations changed only little. 4. In a paraplegic with dyssynergia of the

  20. Deletion of the murine ATP/UTP receptor P2Y2 alters mechanical and thermal response properties in polymodal cutaneous afferents.

    PubMed

    Molliver, Derek C; Rau, Kristofer K; Jankowski, Michael P; Soneji, Deepak J; Baumbauer, Kyle M; Koerber, H Richard

    2016-09-22

    P2Y2 is a member of the P2Y family of G protein-coupled nucleotide receptors that is widely co-expressed with TRPV1 in peripheral sensory neurons of the dorsal root ganglia. To characterize P2Y2 function in cutaneous afferents, intracellular recordings from mouse sensory neurons were made using an ex vivo preparation in which hindlimb skin, saphenous nerve, dorsal root ganglia and spinal cord are dissected intact. The peripheral response properties of individual cutaneous C-fibers were analyzed using digitally controlled mechanical and thermal stimuli in male P2Y2(+/+) and P2Y2(-/-) mice. Selected sensory neurons were labeled with Neurobiotin and further characterized by immunohistochemistry. In wildtype preparations, C-fibers responding to both mechanical and thermal stimuli (CMH or CMHC) preferentially bound the lectin marker IB4 and were always immunonegative for TRPV1. Conversely, cells that fired robustly to noxious heat, but were insensitive to mechanical stimuli, were TRPV1-positive and IB4-negative. P2Y2 gene deletion resulted in reduced firing by TRPV1-negative CMH fibers to a range of heat stimuli. However, we also identified an atypical population of IB4-negative, TRPV1-positive CMH fibers. Compared to wildtype CMH fibers, these TRPV1-positive neurons exhibited lower firing rates in response to mechanical stimulation, but had increased firing to noxious heat (43-51°C). Collectively, these results demonstrate that P2Y2 contributes to response properties of cutaneous afferents, as P2Y2 deletion reduces responsiveness of conventional unmyelinated polymodal afferents to heat and appears to result in the acquisition of mechanical responsiveness in a subset of TRPV1-expressing afferents. PMID:27393251

  1. Deletion of the murine ATP/UTP receptor P2Y2 alters mechanical and thermal response properties in polymodal cutaneous afferents.

    PubMed

    Molliver, Derek C; Rau, Kristofer K; Jankowski, Michael P; Soneji, Deepak J; Baumbauer, Kyle M; Koerber, H Richard

    2016-09-22

    P2Y2 is a member of the P2Y family of G protein-coupled nucleotide receptors that is widely co-expressed with TRPV1 in peripheral sensory neurons of the dorsal root ganglia. To characterize P2Y2 function in cutaneous afferents, intracellular recordings from mouse sensory neurons were made using an ex vivo preparation in which hindlimb skin, saphenous nerve, dorsal root ganglia and spinal cord are dissected intact. The peripheral response properties of individual cutaneous C-fibers were analyzed using digitally controlled mechanical and thermal stimuli in male P2Y2(+/+) and P2Y2(-/-) mice. Selected sensory neurons were labeled with Neurobiotin and further characterized by immunohistochemistry. In wildtype preparations, C-fibers responding to both mechanical and thermal stimuli (CMH or CMHC) preferentially bound the lectin marker IB4 and were always immunonegative for TRPV1. Conversely, cells that fired robustly to noxious heat, but were insensitive to mechanical stimuli, were TRPV1-positive and IB4-negative. P2Y2 gene deletion resulted in reduced firing by TRPV1-negative CMH fibers to a range of heat stimuli. However, we also identified an atypical population of IB4-negative, TRPV1-positive CMH fibers. Compared to wildtype CMH fibers, these TRPV1-positive neurons exhibited lower firing rates in response to mechanical stimulation, but had increased firing to noxious heat (43-51°C). Collectively, these results demonstrate that P2Y2 contributes to response properties of cutaneous afferents, as P2Y2 deletion reduces responsiveness of conventional unmyelinated polymodal afferents to heat and appears to result in the acquisition of mechanical responsiveness in a subset of TRPV1-expressing afferents.

  2. Chronic recruitment of primary afferent neurons by microstimulation in the feline dorsal root ganglia

    NASA Astrophysics Data System (ADS)

    Fisher, Lee E.; Ayers, Christopher A.; Ciollaro, Mattia; Ventura, Valérie; Weber, Douglas J.; Gaunt, Robert A.

    2014-06-01

    Objective. This study describes results of primary afferent neural microstimulation experiments using microelectrode arrays implanted chronically in the lumbar dorsal root ganglia (DRG) of four cats. The goal was to test the stability and selectivity of these microelectrode arrays as a potential interface for restoration of somatosensory feedback after damage to the nervous system such as amputation. Approach. A five-contact nerve-cuff electrode implanted on the sciatic nerve was used to record the antidromic compound action potential response to DRG microstimulation (2-15 µA biphasic pulses, 200 µs cathodal pulse width), and the threshold for eliciting a response was tracked over time. Recorded responses were segregated based on conduction velocity to determine thresholds for recruiting Group I and Group II/Aβ primary afferent fibers. Main results. Thresholds were initially low (5.1 ± 2.3 µA for Group I and 6.3 ± 2.0 µA for Group II/Aβ) and increased over time. Additionally the number of electrodes with thresholds less than or equal to 15 µA decreased over time. Approximately 12% of tested electrodes continued to elicit responses at 15 µA up to 26 weeks after implantation. Higher stimulation intensities (up to 30 µA) were tested in one cat at 23 weeks post-implantation yielding responses on over 20 additional electrodes. Within the first six weeks after implantation, approximately equal numbers of electrodes elicited only Group I or Group II/Aβ responses at threshold, but the relative proportion of Group II/Aβ responses decreased over time. Significance. These results suggest that it is possible to activate Group I or Group II/Aβ primary afferent fibers in isolation with penetrating microelectrode arrays implanted in the DRG, and that those responses can be elicited up to 26 weeks after implantation, although it may be difficult to achieve a consistent response day-to-day with currently available electrode technology. The DRG are compelling targets

  3. Gut vagal afferents differentially modulate innate anxiety and learned fear.

    PubMed

    Klarer, Melanie; Arnold, Myrtha; Günther, Lydia; Winter, Christine; Langhans, Wolfgang; Meyer, Urs

    2014-05-21

    Vagal afferents are an important neuronal component of the gut-brain axis allowing bottom-up information flow from the viscera to the CNS. In addition to its role in ingestive behavior, vagal afferent signaling has been implicated modulating mood and affect, including distinct forms of anxiety and fear. Here, we used a rat model of subdiaphragmatic vagal deafferentation (SDA), the most complete and selective vagal deafferentation method existing to date, to study the consequences of complete disconnection of abdominal vagal afferents on innate anxiety, conditioned fear, and neurochemical parameters in the limbic system. We found that compared with Sham controls, SDA rats consistently displayed reduced innate anxiety-like behavior in three procedures commonly used in preclinical rodent models of anxiety, namely the elevated plus maze test, open field test, and food neophobia test. On the other hand, SDA rats exhibited increased expression of auditory-cued fear conditioning, which specifically emerged as attenuated extinction of conditioned fear during the tone re-exposure test. The behavioral manifestations in SDA rats were associated with region-dependent changes in noradrenaline and GABA levels in key areas of the limbic system, but not with functional alterations in the hypothalamus-pituitary-adrenal grand stress. Our study demonstrates that innate anxiety and learned fear are both subjected to visceral modulation through abdominal vagal afferents, possibly via changing limbic neurotransmitter systems. These data add further weight to theories emphasizing an important role of afferent visceral signals in the regulation of emotional behavior.

  4. Semicircular Canal Geometry, Afferent Sensitivity And Animal Behavior

    PubMed Central

    Hullar, Timothy A.

    2008-01-01

    The geometry of the semicircular canals has been used in evolutionary studies to predict the behaviors of extinct animals. These predictions have relied on an assumption that the responses of the canals can be determined from their dimensions, and that an organism’s behavior can be determined from these responses. However, the relationship between a canal’s sensitivity and its size is not well known. An intraspecies comparison among canal responses in each of three species (cat, squirrel monkey, and pigeon) was undertaken to evaluate various models of canal function and determine how their dimensions may be related to afferent physiology. All models predicted the responses of the cat afferents, but the models performed less well for squirrel monkey and pigeon. Possible causes for this discrepancy include incorrectly assuming that afferent responses accurately represent canal function, or errors in current biophysical models of the canals. These findings leave open the question as to how reliably canal anatomy can be used to estimate afferent responses and how closely afferent responses are related to behavior. Other labyrinthine features—such as orientation of the horizontal canal, which is reliably held near earth-horizontal across many species—may be better to use when extrapolating the posture and related behavior of extinct animals from labyrinthine morphology. PMID:16550591

  5. Age-related changes of the noradrenergic and acetylcholinesterase reactive nerve fibres innervating the pigeon bursa of Fabricius.

    PubMed

    Ciriaco, E; Ricci, A; Bronzetti, E; Mammola, C L; Germanà, G; Vega, J A

    1995-05-01

    Age-dependent changes in the innervation of the pigeon (Columba livia, L.) bursa of Fabricius, from hatching to 120 days of age, were studied by fluorescence-histochemical and neurochemical methods for demonstrating noradrenergic and acetylcholinesterase (AChE)-reactive nerve fibres respectively. The distribution of both nerve fibre types was largely perivascular. Furthermore, a few isolated nerve fiber profiles were observed beneath the bursal epithelium, in the interfollicular septa and in the follicular cortex. No nerve fibre profiles reaching the medulla of the lymphoid follicles were observed. In addition to nerve fibres, AChE reactive neuron-like cells were encountered within the capsule and interfollicular septa. AChE reactivity was also found in dendritic-like cells localized in the cortical and cortico-medullary border. No changes in the density of perivascular noradrenergic innervation were noticeable during the ages studied, whereas the density of AChE-reactive fibres supplying vessels reached the adult pattern at 30 days, and then remained unvaried. The density of non-perivascular nerve fiber profiles, specially the AChE reactive type, increased until 30 days, remained unchanged until 75 days and then increased with aging (90-120 days). The interrelationship between the autonomic nervous system and the immune system is discussed.

  6. Testis of prepubertal rhesus monkeys receives a dual catecholaminergic input provided by the extrinsic innervation and an intragonadal source of catecholamines.

    PubMed

    Mayerhofer, A; Danilchik, M; Pau, K Y; Lara, H E; Russell, L D; Ojeda, S R

    1996-09-01

    The mammalian testis is innervated by extrinsic catecholaminergic nerves and responds to catecholamines with steroid secretion. Although the primate testis has also been shown to be innervated, potential differences in the density of this innervation between immature and sexually developed individuals have not been described. A recent study demonstrated that the primate ovary contains a network of neuron-like cells and that some of these cells are catecholaminergic. It is thus possible that the male gonad is also endowed with a similar intragonadal source of catecholamines. The present study addresses these two issues. Catecholaminergic nerves were identified as such by their content of immunoreactive tyrosine hydroxylase (TH; the rate-limiting step in catecholamine biosynthesis), and in some cases by glyoxylic acid histochemistry. Fibers containing TH were abundant in testes from juvenile animals (1-2 yr of postnatal life), but the density of this innervation was not maintained in adult animals, whose testis showed only a few TH-positive fibers scattered in the interstitial tissue. Testicular norepinephrine (NE) concentration was much lower in adult than in juvenile animals, suggesting that the marked increase in testicular weight that occurs with the attainment of sexual maturity is not accompanied by corresponding changes in NE content. At the ultrastructural level, testicular nerve fibers contained pleiomorphic, dense-core and clear vesicles, suggesting the presence of catecholamines and other neurotransmitters. In addition to this extrinsic catecholaminergic innervation, prepubertal testes, but not adult gonads, contained an intrinsic population of TH-immunopositive neuron-like elements, identified as cells by confocal scanning laser microscopy. To determine whether the prepubertal monkey testis indeed expresses the TH gene, testicular RNA was subjected to reverse transcriptase polymerase chain reaction to amplify the 5' end of TH mRNA, which encodes the

  7. Anatomy and innervation ratios in motor units of cat gastrocnemius

    PubMed Central

    Burke, R. E.; Tsairis, P.

    1973-01-01

    1. Muscle fibres belonging to single motor units of identified type were studied in frozen sections of cat medial and lateral gastrocnemius muscles. Reconstruction of the distribution of fibres in individual units showed that the territories of all three physiological types present in the cat medial gastrocnemius were quite extensive. Within its territory, fibres belonging to the studied unit were distributed more or less uniformly without localized collections. The density of unit fibres suggests that, in cat medial gastrocnemius, a given region of the muscle may be shared by as many as fifty different muscle units. 2. Direct determination of innervation ratios in identified muscle units required complete reconstruction of the three-dimensional distribution of unit fibres within the whole medial gastrocnemius. Satisfactory results were obtained with two type FF units and one type FR unit. 3. Indirect estimates of the average innervation ratios expected for muscle units of different physiological type were obtained using counts of muscle fibres with characteristic histochemical profiles and data on relative frequencies of motor units of known type in the medial gastrocnemius unit pool. Such indirect estimates of innervation ratios agreed with the results of direct fibre counts in identified units for types FF and FR muscle units. Taken in sum, the available evidence suggests that an average muscle unit in the cat medial gastrocnemius contains between 400 and 800 muscle fibres, irrespective of physiological type. 4. Tension production by single muscle units depends on a number of factors, including innervation ratio, the cross-sectional areas of unit fibres and the specific tension outputs of the unit fibres. The present results suggest that the specific tension output of gastrocnemius type S unit muscle fibres is considerably smaller (about 0·6 kg/cm2) than in either FF units (about 1·5-2·0 kg/cm2) or type FR units (2·6-2·9 kg/cm2). PMID:4148753

  8. Adipose afferent reflex: sympathetic activation and obesity hypertension.

    PubMed

    Xiong, X-Q; Chen, W-W; Zhu, G-Q

    2014-03-01

    Excessive sympathetic activity contributes to the pathogenesis of hypertension and the progression of the related organ damage. Adipose afferent reflex (AAR) is a sympatho-excitatory reflex that the afferent activity from white adipose tissue (WAT) increases sympathetic outflow and blood pressure. Hypothalamic paraventricular nucleus (PVN or PVH) is one of the central sites in the control of the AAR, and ionotropic glutamate receptors in the nucleus mediate the AAR. The AAR is enhanced in obesity and obesity hypertension. Enhanced WAT afferent activity and AAR contribute to the excessive sympathetic activation and hypertension in obesity. Blockage of the AAR attenuates the excessive sympathetic activity and hypertension. Leptin may be one of sensors in the WAT for the AAR, and is involved in the enhanced AAR in obesity and hypertension. This review focuses on the neuroanatomical basis and physiological functions of the AAR, and the important role of the enhanced AAR in the pathogenesis of obesity hypertension.

  9. Mechanical sensibility of nociceptive and non-nociceptive fast-conducting afferents is modulated by skin temperature.

    PubMed

    Boada, M Danilo; Eisenach, James C; Ririe, Douglas G

    2016-01-01

    The ability to distinguish mechanical from thermal input is a critical component of peripheral somatosensory function. Polymodal C fibers respond to both stimuli. However, mechanosensitive, modality-specific fast-conducting tactile and nociceptor afferents theoretically carry information only about mechanical forces independent of the thermal environment. We hypothesize that the thermal environment can nonetheless modulate mechanical force sensibility in fibers that do not respond directly to change in temperature. To study this, fast-conducting mechanosensitive peripheral sensory fibers in male Sprague-Dawley rats were accessed at the soma in the dorsal root ganglia from T11 or L4/L5. Neuronal identification was performed using receptive field characteristics and passive and active electrical properties. Neurons responded to mechanical stimuli but failed to generate action potentials in response to changes in temperature alone, except for the tactile mechanical and cold sensitive neurons. Heat and cold ramps were utilized to determine temperature-induced modulation of response to mechanical stimuli. Mechanically evoked electrical activity in non-nociceptive, low-threshold mechanoreceptors (tactile afferents) decreased in response to changes in temperature while mechanically induced activity was increased in nociceptive, fast-conducting, high-threshold mechanoreceptors in response to the same changes in temperature. These data suggest that mechanical activation does not occur in isolation but rather that temperature changes appear to alter mechanical afferent activity and input to the central nervous system in a dynamic fashion. Further studies to understand the psychophysiological implications of thermal modulation of fast-conducting mechanical input to the spinal cord will provide greater insight into the implications of these findings. PMID:26581873

  10. Mechanical sensibility of nociceptive and non-nociceptive fast-conducting afferents is modulated by skin temperature.

    PubMed

    Boada, M Danilo; Eisenach, James C; Ririe, Douglas G

    2016-01-01

    The ability to distinguish mechanical from thermal input is a critical component of peripheral somatosensory function. Polymodal C fibers respond to both stimuli. However, mechanosensitive, modality-specific fast-conducting tactile and nociceptor afferents theoretically carry information only about mechanical forces independent of the thermal environment. We hypothesize that the thermal environment can nonetheless modulate mechanical force sensibility in fibers that do not respond directly to change in temperature. To study this, fast-conducting mechanosensitive peripheral sensory fibers in male Sprague-Dawley rats were accessed at the soma in the dorsal root ganglia from T11 or L4/L5. Neuronal identification was performed using receptive field characteristics and passive and active electrical properties. Neurons responded to mechanical stimuli but failed to generate action potentials in response to changes in temperature alone, except for the tactile mechanical and cold sensitive neurons. Heat and cold ramps were utilized to determine temperature-induced modulation of response to mechanical stimuli. Mechanically evoked electrical activity in non-nociceptive, low-threshold mechanoreceptors (tactile afferents) decreased in response to changes in temperature while mechanically induced activity was increased in nociceptive, fast-conducting, high-threshold mechanoreceptors in response to the same changes in temperature. These data suggest that mechanical activation does not occur in isolation but rather that temperature changes appear to alter mechanical afferent activity and input to the central nervous system in a dynamic fashion. Further studies to understand the psychophysiological implications of thermal modulation of fast-conducting mechanical input to the spinal cord will provide greater insight into the implications of these findings.

  11. Immunohistochemical demonstration of lumbar intervertebral disc innervation in the dog.

    PubMed

    Willenegger, S; Friess, A E; Lang, J; Stoffel, M H

    2005-04-01

    Low back pain is a common ailment in dogs, particularly in specific breeds such as the German shepherd dog. A number of structures such as facet joint capsules, ligaments, dorsal root ganglia, periosteum, vertebral endplates and meninges have been associated with this condition. Yet, in spite of all diagnostic efforts, the origin of pain remains obscure in a substantial proportion of all cases. A further structure often being involved in vertebral column disorders is the intervertebral disc. The presence of nerves, however, is a precondition for pain sensation and, consequently, structures lacking innervation can be left out of consideration as a cause for low back pain. Nerve fibres have been demonstrated at the periphery of the intervertebral disc in man, rabbit and rat. With regard to the dog, however, the extent of intervertebral disc innervation is still being disputed. The goal of the present study, therefore, was to substantiate and expand current knowledge of intervertebral disc innervation. Protein gene product (PGP) 9.5 was used for immunohistochemical examination of serial transversal and sagittal paraffin sections of lumbar discs from adult dogs. This general marker revealed nerve fibres to be confined to the periphery of the intervertebral discs. These results indicate that even limited pathological processes affecting the outer layers of the intervertebral disc are prone to cause low back pain.

  12. Distinct subclassification of DRG neurons innervating the distal colon and glans penis/distal urethra based on the electrophysiological current signature.

    PubMed

    Rau, Kristofer K; Petruska, Jeffrey C; Cooper, Brian Y; Johnson, Richard D

    2014-09-15

    Spinal sensory neurons innervating visceral and mucocutaneous tissues have unique microanatomic distribution, peripheral modality, and physiological, pharmacological, and biophysical characteristics compared with those neurons that innervate muscle and cutaneous tissues. In previous patch-clamp electrophysiological studies, we have demonstrated that small- and medium-diameter dorsal root ganglion (DRG) neurons can be subclassified on the basis of their patterns of voltage-activated currents (VAC). These VAC-based subclasses were highly consistent in their action potential characteristics, responses to algesic compounds, immunocytochemical expression patterns, and responses to thermal stimuli. For this study, we examined the VAC of neurons retrogradely traced from the distal colon and the glans penis/distal urethra in the adult male rat. The afferent population from the distal colon contained at least two previously characterized cell types observed in somatic tissues (types 5 and 8), as well as four novel cell types (types 15, 16, 17, and 18). In the glans penis/distal urethra, two previously described cell types (types 6 and 8) and three novel cell types (types 7, 14, and 15) were identified. Other characteristics, including action potential profiles, responses to algesic compounds (acetylcholine, capsaicin, ATP, and pH 5.0 solution), and neurochemistry (expression of substance P, CGRP, neurofilament, TRPV1, TRPV2, and isolectin B4 binding) were consistent for each VAC-defined subgroup. With identification of distinct DRG cell types that innervate the distal colon and glans penis/distal urethra, future in vitro studies related to the gastrointestinal and urogenital sensory function in normal as well as abnormal/pathological conditions may be benefitted.

  13. A novel role for TRPM8 in visceral afferent function.

    PubMed

    Harrington, Andrea M; Hughes, Patrick A; Martin, Christopher M; Yang, Jing; Castro, Joel; Isaacs, Nicole J; Blackshaw, L Ashley; Brierley, Stuart M

    2011-07-01

    Transient receptor potential ion channel melastatin subtype 8 (TRPM8) is activated by cold temperatures and cooling agents, such as menthol and icilin. Compounds containing peppermint are reported to reduce symptoms of bowel hypersensitivity; however, the underlying mechanisms of action are unclear. Here we determined the role of TRPM8 in colonic sensory pathways. Laser capture microdissection, quantitative reverse transcription-polymerase chain reaction (RT-PCR), immunofluorescence, and retrograde tracing were used to localise TRPM8 to colonic primary afferent neurons. In vitro extracellular single-fibre afferent recordings were used to determine the effect of TRPM8 channel activation on the chemosensory and mechanosensory function of colonic high-threshold afferent fibres. TRPM8 mRNA was present in colonic DRG neurons, whereas TRPM8 protein was present on nerve fibres throughout the wall of the colon. A subpopulation (24%, n=58) of splanchnic serosal and mesenteric afferents tested responded directly to icilin (5 μmol/L). Subsequently, icilin significantly desensitised afferents to mechanical stimulation (P<.0001; n=37). Of the splanchnic afferents responding to icilin, 21 (33%) also responded directly to the TRPV1 agonist capsaicin (3 μmol/L), and icilin reduced the direct chemosensory response to capsaicin. Icilin also prevented mechanosensory desensitization and sensitization induced by capsaicin and the TRPA1 agonist AITC (40 μmol/L), respectively. TRPM8 is present on a select population of colonic high threshold sensory neurons, which may also co-express TRPV1. TRPM8 couples to TRPV1 and TRPA1 to inhibit their downstream chemosensory and mechanosensory actions. PMID:21489690

  14. A role for nociceptive, myelinated nerve fibers in itch sensation.

    PubMed

    Ringkamp, Matthias; Schepers, Raf J; Shimada, Steven G; Johanek, Lisa M; Hartke, Timothy V; Borzan, Jasenka; Shim, Beom; LaMotte, Robert H; Meyer, Richard A

    2011-10-19

    Despite its clinical importance, the underlying neural mechanisms of itch sensation are poorly understood. In many diseases, pruritus is not effectively treated with antihistamines, indicating the involvement of nonhistaminergic mechanisms. To investigate the role of small myelinated afferents in nonhistaminergic itch, we tested, in psychophysical studies in humans, the effect of a differential nerve block on itch produced by intradermal insertion of spicules from the pods of a cowhage plant (Mucuna pruriens). Electrophysiological experiments in anesthetized monkey were used to investigate the responsiveness of cutaneous, nociceptive, myelinated afferents to different chemical stimuli (cowhage spicules, histamine, capsaicin). Our results provide several lines of evidence for an important role of myelinated fibers in cowhage-induced itch: (1) a selective conduction block in myelinated fibers substantially reduces itch in a subgroup of subjects with A-fiber-dominated itch, (2) the time course of itch sensation differs between subjects with A-fiber- versus C-fiber-dominated itch, (3) cowhage activates a subpopulation of myelinated and unmyelinated afferents in monkey, (4) the time course of the response to cowhage is different in myelinated and unmyelinated fibers, (5) the time of peak itch sensation for subjects with A-fiber-dominated itch matches the time for peak response in myelinated fibers, and (6) the time for peak itch sensation for subjects with C-fiber-dominated itch matches the time for the peak response in unmyelinated fibers. These findings demonstrate that activity in nociceptive, myelinated afferents contributes to cowhage-induced sensations, and that nonhistaminergic itch is mediated through activity in both unmyelinated and myelinated afferents. PMID:22016517

  15. The afferent pupillary defect in acute optic neuritis.

    PubMed Central

    Ellis, C J

    1979-01-01

    Twenty-two patients with acute optic neuritis were studied by the techniques of infrared pupillometry and visual evoked responses (VER) to pattern reversal. A relative afferent pupillary defect was found in all cases and the magnitude of this defect was found to be related to the amplitude, but not to the latency, of the VER. During follow-up the afferent defect was found to remain persistently abnormal while other methods of clinical evaluation could not demonstrate abnormality reliably. The amplitude of the VER also remained low. PMID:501365

  16. Afferents to the GABAergic tail of the ventral tegmental area in the rat.

    PubMed

    Kaufling, Jennifer; Veinante, Pierre; Pawlowski, Sophie A; Freund-Mercier, Marie-Jose; Barrot, Michel

    2009-04-20

    We previously showed that chronic psychostimulant exposure induces the transcription factor DeltaFosB in gamma-aminobutyric acid (GABA)ergic neurons of the caudal tier of the ventral tegmental area (VTA). This subregion was defined as the tail of the VTA (tVTA). In the present study, we showed that tVTA can also be visualized by analyzing FosB/DeltaFosB response following acute cocaine injection. This induction occurs in GABAergic neurons, as identified by glutamic acid decarboxylase (GAD) expression. To characterize tVTA further, we mapped its inputs by using the retrograde tracers Fluoro-Gold or cholera toxin B subunit. Retrogradely labeled neurons were observed in the medial prefrontal cortex, the lateral septum, the ventral pallidum, the bed nucleus of the stria terminalis, the substantia innominata, the medial and lateral preoptic areas, the lateral and dorsal hypothalamic areas, the lateral habenula, the intermediate layers of the superior colliculus, the dorsal raphe, the periaqueductal gray, and the mesencephalic and pontine reticular formation. Projections from the prefrontal cortex, the hypothalamus, and the lateral habenula to the tVTA were also shown by using the anterograde tracer biotinylated dextran amine (BDA). We showed that the central nucleus of the amygdala innervates the anterior extent of the VTA but not the tVTA. Moreover, the tVTA mainly receives non-aminergic inputs from the dorsal raphe and the locus coeruleus. Although the tVTA has a low density of dopaminergic neurons, its afferents are mostly similar to those targeting the rest of the VTA. This suggests that the tVTA can be considered as a VTA subregion despite its caudal location.

  17. [Proprioceptive deficit following cruciate lesions--afferent disorder or compensatory mechanism?].

    PubMed

    Hopf, T; Gleitz, M; Hess, T; Mielke, U; Müller, B

    1995-01-01

    It was suggested that the ACL has not only mechanical functions but also acts as proprioceptive organ. In cruciate deficient knees pathological patterns of muscle control were found. These findings could be caused by a disturbed afferent signal from the disrupted ACL or by secondary changes in muscle innervation, which shall protect the instable knee against subluxation. 33 patients with unilateral operative ACL repair (21 cases with primary suture, 12 cases with autogenous ligamentum-patellae-reconstruction; average post op 36.5 yr) were examined clinically and with the KT 1000 arthrometer (MEDMETRIC Inc.). Patients history was evaluated by using the LYSHOLM score. During a cycling task the electromyographic activity was monitored from the thigh muscles (M. vastus lat. and med., lat. and med. hamstrings). In comparison to the ACL deficient patients, we tested 25 healthy subjects of same age and activity level. In the ACL group the following differences to the normals were found: the M. vastus lat. showed a significantly delayed onset, earlier end and shorter duration. M. vastus med. had the same pattern; the delayed begin of activity and the shorter duration were statistically significant. M. biceps femoris showed a significant later onset and shorter duration. So did the medial hamstrings; the differences, however, were not statistically significant. There was no significant difference between operated and healthy leg in the ACL group. By comparing the primary sutures and the ligamentum-patellae-reconstructions no significant differences were found. The instable patients (KT 1000 > 3 mm) of the ACL group showed more distinct differences in the EMG pattern than the patients with stable knee joints.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Whole-brain mapping of afferent projections to the bed nucleus of the stria terminalis in tree shrews.

    PubMed

    Ni, Rong-Jun; Luo, Peng-Hao; Shu, Yu-Mian; Chen, Ju-Tao; Zhou, Jiang-Ning

    2016-10-01

    The bed nucleus of the stria terminalis (BST) plays an important role in integrating and relaying input information to other brain regions in response to stress. The cytoarchitecture of the BST in tree shrews (Tupaia belangeri chinensis) has been comprehensively described in our previous publications. However, the inputs to the BST have not been described in previous reports. The aim of the present study was to investigate the sources of afferent projections to the BST throughout the brain of tree shrews using the retrograde tracer Fluoro-Gold (FG). The present results provide the first detailed whole-brain mapping of BST-projecting neurons in the tree shrew brain. The BST was densely innervated by the prefrontal cortex, entorhinal cortex, ventral subiculum, amygdala, ventral tegmental area, and parabrachial nucleus. Moreover, moderate projections to the BST originated from the medial preoptic area, supramammillary nucleus, paraventricular thalamic nucleus, pedunculopontine tegmental nucleus, dorsal raphe nucleus, locus coeruleus, and nucleus of the solitary tract. Afferent projections to the BST are identified in the ventral pallidum, nucleus of the diagonal band, ventral posteromedial thalamic nucleus, posterior complex of the thalamus, interfascicular nucleus, retrorubral field, rhabdoid nucleus, intermediate reticular nucleus, and parvicellular reticular nucleus. In addition, the different densities of BST-projecting neurons in various regions were analyzed in the tree shrew brains. In summary, whole-brain mapping of direct inputs to the BST is delineated in tree shrews. These brain circuits are implicated in the regulation of numerous physiological and behavioral processes including stress, reward, food intake, and arousal.

  19. Whole-brain mapping of afferent projections to the bed nucleus of the stria terminalis in tree shrews.

    PubMed

    Ni, Rong-Jun; Luo, Peng-Hao; Shu, Yu-Mian; Chen, Ju-Tao; Zhou, Jiang-Ning

    2016-10-01

    The bed nucleus of the stria terminalis (BST) plays an important role in integrating and relaying input information to other brain regions in response to stress. The cytoarchitecture of the BST in tree shrews (Tupaia belangeri chinensis) has been comprehensively described in our previous publications. However, the inputs to the BST have not been described in previous reports. The aim of the present study was to investigate the sources of afferent projections to the BST throughout the brain of tree shrews using the retrograde tracer Fluoro-Gold (FG). The present results provide the first detailed whole-brain mapping of BST-projecting neurons in the tree shrew brain. The BST was densely innervated by the prefrontal cortex, entorhinal cortex, ventral subiculum, amygdala, ventral tegmental area, and parabrachial nucleus. Moreover, moderate projections to the BST originated from the medial preoptic area, supramammillary nucleus, paraventricular thalamic nucleus, pedunculopontine tegmental nucleus, dorsal raphe nucleus, locus coeruleus, and nucleus of the solitary tract. Afferent projections to the BST are identified in the ventral pallidum, nucleus of the diagonal band, ventral posteromedial thalamic nucleus, posterior complex of the thalamus, interfascicular nucleus, retrorubral field, rhabdoid nucleus, intermediate reticular nucleus, and parvicellular reticular nucleus. In addition, the different densities of BST-projecting neurons in various regions were analyzed in the tree shrew brains. In summary, whole-brain mapping of direct inputs to the BST is delineated in tree shrews. These brain circuits are implicated in the regulation of numerous physiological and behavioral processes including stress, reward, food intake, and arousal. PMID:27436534

  20. Chronic intermittent hypoxia depresses afferent neurotransmission in NTS neurons by a reduction in the number of active synapses.

    PubMed

    Almado, Carlos Eduardo L; Machado, Benedito H; Leão, Ricardo M

    2012-11-21

    Long-term synaptic plasticity has been recently described in brainstem areas associated to visceral afferent sensory integration. Chronic intermittent hypoxia (CIH), an animal model for studying obstructive sleep apnea in humans, depresses the afferent neurotransmission in nucleus tractus solitarii (NTS) neurons, which affect respiratory and autonomic regulation. Here we identified the synaptic mechanisms of CIH-induced depression of the afferent neurotransmission in NTS neurons in juvenile rats. We verified that CIH reduced the amplitude of both NMDA and non-NMDA glutamatergic excitatory currents (eEPSCs) evoked by tractus solitarii stimulation (TS-eEPSC) of second-order neurons in the NTS. No changes were observed in release probability, evidenced by absence of any CIH-elicited effects on short-term depression and failures in EPSCs evoked in low calcium. CIH also produced no changes in TS-eEPSC quantal size, since the amplitudes of both low calcium-evoked EPSCs and asynchronous TS-eEPSCs (evoked in the presence of Sr(2+)) were unchanged. Using single TS afferent fiber stimulation in slices from control and CIH rats we clearly show that CIH reduced the quantal content of the TS-eEPSCs without affecting the quantal size or release probability, suggesting a reduction in the number of active synapses as the mechanism of CIH induced TS-eEPSC depression. In accordance with this concept, the input-output relationship of stimulus intensity and TS-eEPSC amplitude shows an early saturation in CIH animals. These findings open new perspectives for a better understanding of the mechanisms underlying the synaptic plasticity in the brainstem sensory neurons under challenges such as those produced by CIH in experimental and pathological conditions.

  1. Competition with Primary Sensory Afferents Drives Remodeling of Corticospinal Axons in Mature Spinal Motor Circuits

    PubMed Central

    Jiang, Yu-Qiu; Zaaimi, Boubker

    2016-01-01

    Injury to the mature motor system drives significant spontaneous axonal sprouting instead of axon regeneration. Knowing the circuit-level determinants of axonal sprouting is important for repairing motor circuits after injury to achieve functional rehabilitation. Competitive interactions are known to shape corticospinal tract axon outgrowth and withdrawal during development. Whether and how competition contributes to reorganization of mature spinal motor circuits is unclear. To study this question, we examined plastic changes in corticospinal axons in response to two complementary proprioceptive afferent manipulations: (1) enhancing proprioceptive afferents activity by electrical stimulation; or (2) diminishing their input by dorsal rootlet rhizotomy. Experiments were conducted in adult rats. Electrical stimulation produced proprioceptive afferent sprouting that was accompanied by significant corticospinal axon withdrawal and a decrease in corticospinal connections on cholinergic interneurons in the medial intermediate zone and C boutons on motoneurons. In contrast, dorsal rootlet rhizotomy led to a significant increase in corticospinal connections, including those on cholinergic interneurons; C bouton density increased correspondingly. Motor cortex-evoked muscle potentials showed parallel changes to those of corticospinal axons, suggesting that reciprocal corticospinal axon changes are functional. Using the two complementary models, we showed that competitive interactions between proprioceptive and corticospinal axons are an important determinant in the organization of mature corticospinal axons and spinal motor circuits. The activity- and synaptic space-dependent properties of the competition enables prediction of the remodeling of spared corticospinal connection and spinal motor circuits after injury and informs the target-specific control of corticospinal connections to promote functional recovery. SIGNIFICANCE STATEMENT Neuroplasticity is limited in maturity

  2. Efferent and afferent connections of the olfactory bulb and prepiriform cortex in the pigeon (Columba livia).

    PubMed

    Atoji, Yasuro; Wild, J Martin

    2014-06-01

    Although olfaction in birds is known to be involved in a variety of behaviors, there is comparatively little detailed information on the olfactory brain. In the pigeon brain, the olfactory bulb (OB) is known to project to the prepiriform cortex (CPP), piriform cortex (CPi), and dorsolateral corticoid area (CDL), which together are called the olfactory pallium, but centrifugal pathways to the OB have not been fully explored. Fiber connections of CPi and CDL have been reported, but those of other olfactory pallial nuclei remain unknown. The present study examines the fiber connections of OB and CPP in pigeons to provide a more detailed picture of their connections using tract-tracing methods. When anterograde and retrograde tracers were injected in OB, projections to a more extensive olfactory pallium were revealed, including the anterior olfactory nucleus, CPP, densocellular part of the hyperpallium, tenia tecta, hippocampal continuation, CPi, and CDL. OB projected commissural fibers to the contralateral OB but did not receive afferents from the contralateral olfactory pallium. When tracers were injected in CPP, reciprocal ipsilateral connections with OB and nuclei of the olfactory pallium were observed, and CPP projected to the caudolateral nidopallium and the limbic system, including the hippocampal formation, septum, lateral hypothalamic nucleus, and lateral mammillary nucleus. These results show that the connections of OB have a wider distribution throughout the olfactory pallium than previously thought and that CPP provides a centrifugal projection to the OB and acts as a relay station to the limbic system.

  3. Ventral Tegmental Area Afferents and Drug-Dependent Behaviors

    PubMed Central

    Oliva, Idaira; Wanat, Matthew J.

    2016-01-01

    Drug-related behaviors in both humans and rodents are commonly thought to arise from aberrant learning processes. Preclinical studies demonstrate that the acquisition and expression of many drug-dependent behaviors involves the ventral tegmental area (VTA), a midbrain structure comprised of dopamine, GABA, and glutamate neurons. Drug experience alters the excitatory and inhibitory synaptic input onto VTA dopamine neurons, suggesting a critical role for VTA afferents in mediating the effects of drugs. In this review, we present evidence implicating the VTA in drug-related behaviors, highlight the diversity of neuronal populations in the VTA, and discuss the behavioral effects of selectively manipulating VTA afferents. Future experiments are needed to determine which VTA afferents and what neuronal populations in the VTA mediate specific drug-dependent behaviors. Further studies are also necessary for identifying the afferent-specific synaptic alterations onto dopamine and non-dopamine neurons in the VTA following drug administration. The identification of neural circuits and adaptations involved with drug-dependent behaviors can highlight potential neural targets for pharmacological and deep brain stimulation interventions to treat substance abuse disorders. PMID:27014097

  4. Changes in monkey horizontal semicircular canal afferent responses after spaceflight

    NASA Technical Reports Server (NTRS)

    Correia, M. J.; Perachio, A. A.; Dickman, J. D.; Kozlovskaia, I. B.; Sirota, M. G.; Iakushin, S. B.; Beloozerova, I. N.

    1992-01-01

    Extracellular responses from single horizontal semicircular canal afferents in two rhesus monkeys were studied after recovery from a 14-day biosatellite (Cosmos 2044) orbital spaceflight. On the 1st postflight day, the mean gain for 9 different horizontal canal afferents, tested using one or several different passive yaw rotation waveforms, was nearly twice that for 20 horizontal canal afferents similarly tested during preflight and postflight control studies. Adaptation of the afferent response to passive yaw rotation on the 1st postflight day was also greater. These results suggest that at least one component of the vestibular end organ (the semicircular canals) is transiently modified after exposure to 14 days of microgravity. It is unclear whether the changes are secondary to other effects of microgravity, such as calcium loss, or an adaptive response. If the response is adaptive, then this report is the first evidence that the response of the vestibular end organ may be modified (presumably by the central nervous system via efferent connections) after prolonged unusual vestibular stimulation. If this is the case, the sites of plasticity of vestibular responses may not be exclusively within central nervous system vestibular structures, as previously believed.

  5. Several morphological types of terminal arborizations of primary afferents in laminae I-II of the rat spinal cord, as shown after HRP labeling and Golgi impregnation.

    PubMed

    Cruz, F; Lima, D; Coimbra, A

    1987-07-01

    The morphology of the terminal arborizations in laminae I-II of primary afferent fibers was studied in sections stained by the heavy metal (nickel and cobalt) intensification of diaminobenzidine (DAB) after crushing one dorsal root with horseradish peroxidase (HRP) crystals, and with the mixed Golgi method which duplicated the staining provided by the first method. Besides the flame-shaped arbors located in deep lamina IIi as an extension of the arbors of lamina III, which were derived from 1.7-micron thick stem fibers (probably A alpha beta fibers), six types of terminal arbors, all rostrocaudally oriented, arising from fine stem fibers and having preferential locations, were disclosed. The lateral third of laminae I-II contained a longitudinal plexus of parallel 0.8-micron thick stem fibers (C fibers) with longitudinal side branches generating many boutons en passant. Laminae I and IIo, in their middle third, contained dichotomizing longitudinal fibers with elongated boutons, arising from 1-micron thick stem fibers (C or A delta), and, in the medial third, a dense plexus with terminal networks carrying large boutons, which arose from 1.3-micron thick stem fibers (A delta). Fibers ending in terminal bouquets and issuing from 1-micron thick stem fibers (C or A delta) occupied the dorsal part of middle and medial lamina IIi, while the intermediate part contained clusters (swarms) of ultrafine boutons arising from extremely fine fibers. The whole medial lamina IIi also contained fine undulating fibers arising from 0.3 micron-thick stem fibers (C fibers) with large boutons near their ends. The functional meaning of this multiplicity of morphological types and locations is still unclear. It may be clarified when single unit analysis of HRP-injected fine fibers is made possible, or immunocytochemical stainings disclose the neurotransmitters utilized by each fiber type.

  6. Neck muscle afferents influence oromotor and cardiorespiratory brainstem neural circuits.

    PubMed

    Edwards, I J; Lall, V K; Paton, J F; Yanagawa, Y; Szabo, G; Deuchars, S A; Deuchars, J

    2015-01-01

    Sensory information arising from the upper neck is important in the reflex control of posture and eye position. It has also been linked to the autonomic control of the cardiovascular and respiratory systems. Whiplash associated disorders (WAD) and cervical dystonia, which involve disturbance to the neck region, can often present with abnormalities to the oromotor, respiratory and cardiovascular systems. We investigated the potential neural pathways underlying such symptoms. Simulating neck afferent activity by electrical stimulation of the second cervical nerve in a working heart brainstem preparation (WHBP) altered the pattern of central respiratory drive and increased perfusion pressure. Tracing central targets of these sensory afferents revealed projections to the intermedius nucleus of the medulla (InM). These anterogradely labelled afferents co-localised with parvalbumin and vesicular glutamate transporter 1 indicating that they are proprioceptive. Anterograde tracing from the InM identified projections to brain regions involved in respiratory, cardiovascular, postural and oro-facial behaviours--the neighbouring hypoglossal nucleus, facial and motor trigeminal nuclei, parabrachial nuclei, rostral and caudal ventrolateral medulla and nucleus ambiguus. In brain slices, electrical stimulation of afferent fibre tracts lateral to the cuneate nucleus monosynaptically excited InM neurones. Direct stimulation of the InM in the WHBP mimicked the response of second cervical nerve stimulation. These results provide evidence of pathways linking upper cervical sensory afferents with CNS areas involved in autonomic and oromotor control, via the InM. Disruption of these neuronal pathways could, therefore, explain the dysphagic and cardiorespiratory abnormalities which may accompany cervical dystonia and WAD. PMID:24595534

  7. Innervation of Gill Lateral Cells in the Bivalve Mollusc Crassostrea virginica Affects Cellular Membrane Potential and Cilia Activity

    PubMed Central

    Catapane, Edward J; Nelson, Michael; Adams, Trevon; Carroll, Margaret A

    2016-01-01

    Gill lateral cells of Crassostrea virginica are innervated by the branchial nerve, which contains serotonergic and dopaminergic fibers that regulate cilia beating rate. Terminal release of serotonin or dopamine results in an increase or decrease, respectively, of cilia beating rate in lateral gill cells. In this study we used the voltage sensitive fluorescent probe DiBAC4(3) to quantify changes in gill lateral cell membrane potential in response to electrical stimulation of the branchial nerve or to applications of serotonin and dopamine, and correlate these changes to cilia beating rates. Application of serotonin to gill lateral cells caused prolonged membrane depolarization, similar to plateau potentials, while increasing cilia beating rate. Application of dopamine hyperpolarized the resting membrane while decreasing cilia beating rate. Low frequency (5 Hz) electrical stimulations of the branchial nerve, which cause terminal release of endogenous serotonin, or high frequency (20 Hz) stimulations, which cause terminal release of endogenous dopamine, had the same effects on gill lateral cell membrane potentials and cilia beating rate as the respective applications of serotonin or dopamine. The study shows that innervation of gill lateral cells by the branchial nerve affects membrane potential as well as cilia beating rate, and demonstrates a strong correlation between changes in membrane potential and regulation of cilia beating rate. The study furthers the understanding of serotonin and dopamine signaling in the innervation and regulation of gill cilia in bivalves. The study also shows that voltage sensitive fluorescent probes like DiBAC 4(3) can be successfully used as an alternative to microelectrodes to measure changes in membrane potential of ciliated gill cells and other small cells with fast moving cilia. PMID:27489887

  8. Testosterone alters genomic responses to song and monoaminergic innervation of auditory areas in a seasonally breeding songbird.

    PubMed

    Matragrano, Lisa L; LeBlanc, Meredith M; Chitrapu, Anjani; Blanton, Zane E; Maney, Donna L

    2013-06-01

    Behavioral responses to social stimuli often vary according to endocrine state. Our previous work has suggested that such changes in behavior may be due in part to hormone-dependent sensory processing. In the auditory forebrain of female white-throated sparrows, expression of the immediate early gene ZENK (egr-1) is higher in response to conspecific song than to a control sound only when plasma estradiol reaches breeding-typical levels. Estradiol also increases the number of detectable noradrenergic neurons in the locus coeruleus and the density of noradrenergic and serotonergic fibers innervating auditory areas. We hypothesize, therefore, that reproductive hormones alter auditory responses by acting on monoaminergic systems. This possibility has not been examined in males. Here, we treated non-breeding male white-throated sparrows with testosterone to mimic breeding-typical levels and then exposed them to conspecific male song or frequency-matched tones. We observed selective ZENK responses in the caudomedial nidopallium only in the testosterone-treated males. Responses in another auditory area, the caudomedial mesopallium, were selective regardless of hormone treatment. Testosterone treatment reduced serotonergic fiber density in the auditory forebrain, thalamus, and midbrain, and although it increased the number of noradrenergic neurons detected in the locus coeruleus, it reduced noradrenergic fiber density in the auditory midbrain. Thus, whereas we previously reported that estradiol enhances monoaminergic innervation of the auditory pathway in females, we show here that testosterone decreases it in males. Mechanisms underlying testosterone-dependent selectivity of the ZENK response may differ from estradiol-dependent ones

  9. Delayed Exercise Is Ineffective at Reversing Aberrant Nociceptive Afferent Plasticity or Neuropathic Pain After Spinal Cord Injury in Rats.

    PubMed

    Detloff, Megan Ryan; Quiros-Molina, Daniel; Javia, Amy S; Daggubati, Lekhaj; Nehlsen, Anthony D; Naqvi, Ali; Ninan, Vinu; Vannix, Kirsten N; McMullen, Mary-Katharine; Amin, Sheena; Ganzer, Patrick D; Houlé, John D

    2016-08-01

    Neuropathic pain is a debilitating consequence of spinal cord injury (SCI) that correlates with sensory fiber sprouting. Recent data indicate that exercise initiated early after SCI prevents the development of allodynia and modulated nociceptive afferent plasticity. This study determined if delaying exercise intervention until pain is detected would similarly ameliorate established SCI-induced pain. Adult, female Sprague-Dawley rats with a C5 unilateral contusion were separated into SCI allodynic and SCI non-allodynic cohorts at 14 or 28 days postinjury when half of each group began exercising on automated running wheels. Allodynia, assessed by von Frey testing, was not ameliorated by exercise. Furthermore, rats that began exercise with no allodynia developed paw hypersensitivity within 2 weeks. At the initiation of exercise, the SCI Allodynia group displayed marked overlap of peptidergic and non-peptidergic nociceptive afferents in the C7 and L5 dorsal horn, while the SCI No Allodynia group had scant overlap. At the end of 5 weeks of exercise both the SCI Allodynia and SCI No Allodynia groups had extensive overlap of the 2 c-fiber types. Our findings show that exercise therapy initiated at early stages of allodynia is ineffective at attenuating neuropathic pain, but rather that it induces allodynia-aberrant afferent plasticity in previously pain-free rats. These data, combined with our previous results, suggest that there is a critical therapeutic window when exercise therapy may be effective at treating SCI-induced allodynia and that there are postinjury periods when exercise can be deleterious. PMID:26671215

  10. Delayed Exercise Is Ineffective at Reversing Aberrant Nociceptive Afferent Plasticity or Neuropathic Pain After Spinal Cord Injury in Rats.

    PubMed

    Detloff, Megan Ryan; Quiros-Molina, Daniel; Javia, Amy S; Daggubati, Lekhaj; Nehlsen, Anthony D; Naqvi, Ali; Ninan, Vinu; Vannix, Kirsten N; McMullen, Mary-Katharine; Amin, Sheena; Ganzer, Patrick D; Houlé, John D

    2016-08-01

    Neuropathic pain is a debilitating consequence of spinal cord injury (SCI) that correlates with sensory fiber sprouting. Recent data indicate that exercise initiated early after SCI prevents the development of allodynia and modulated nociceptive afferent plasticity. This study determined if delaying exercise intervention until pain is detected would similarly ameliorate established SCI-induced pain. Adult, female Sprague-Dawley rats with a C5 unilateral contusion were separated into SCI allodynic and SCI non-allodynic cohorts at 14 or 28 days postinjury when half of each group began exercising on automated running wheels. Allodynia, assessed by von Frey testing, was not ameliorated by exercise. Furthermore, rats that began exercise with no allodynia developed paw hypersensitivity within 2 weeks. At the initiation of exercise, the SCI Allodynia group displayed marked overlap of peptidergic and non-peptidergic nociceptive afferents in the C7 and L5 dorsal horn, while the SCI No Allodynia group had scant overlap. At the end of 5 weeks of exercise both the SCI Allodynia and SCI No Allodynia groups had extensive overlap of the 2 c-fiber types. Our findings show that exercise therapy initiated at early stages of allodynia is ineffective at attenuating neuropathic pain, but rather that it induces allodynia-aberrant afferent plasticity in previously pain-free rats. These data, combined with our previous results, suggest that there is a critical therapeutic window when exercise therapy may be effective at treating SCI-induced allodynia and that there are postinjury periods when exercise can be deleterious.

  11. Localization of motoneurons innervating individual abdominal muscles of the cat

    NASA Technical Reports Server (NTRS)

    Miller, Alan D.

    1987-01-01

    The paper presents the results of a systematic investigation of the innervation of the cat's individual abdominal muscles. The segmental distribution of the different motor pools was determined by using electrical microstimulation of the ventral horn to produce visible localized muscle twitches and by retrograde transport of horseradish peroxidase injected into individual muscles. The segmental distribution of each motor pool was as follows: rectus abdominis, T4-L3; external oblique, T6-L3; transverse abdominis, T9-L3; and internal oblique, T13-L3.

  12. Electrophysiological evidence for the existence of a rare population of C-fiber low threshold mechanoreceptive (C-LTM) neurons in glabrous skin of the rat hindpaw.

    PubMed

    Djouhri, Laiche

    2016-02-01

    The mammalian skin in innervated by distinct classes of low-threshold mechanoreceptive (LTM) primary afferent neurons that are classified as Aβ-, Aδ- or C-LTMs according to their axonal conduction velocities (CVs). C-LTMs are thought to signal pleasant and erotic touch sensations in humans, and to exist only in the hairy skin of primates and other species. Using intracellular recordings from rat L4/L5 dorsal root ganglion (DRG) neurons that were classified in vivo as C-nociceptors or C-LTMs, according to their dorsal root CVs and their responses to mechanical and thermal stimuli, the present study provides the first electrophysiological evidence that C-LTMs exist in the glabrous skin of the rat's hindpaw. Indeed 6.4% (5/78) of the total sample of lumbar C-fiber DRG neurons with receptive fields in the glabrous skin of the rat hindpaw were C-LTMs. The electrophysiological properties of this rare subpopulation of C-fiber neurons (mean CV=0.48±0.06m/s) are distinct from those of C-fiber high threshold mechanoreceptors (HTMs). Indeed, their mean mechanical (1.7±1.1mN) and electrical (4.0±0.4V) thresholds was significantly different from that of C-HTMs. They also exhibited faster action potential and afterhyperpolarization kinetics than C-HTMs. The present study lends support to previous studies that have provided indirect evidence for the presence of C-LTMs in glabrous skin. If C-LTMs are present in human glabrous skin, they may, in this type of skin, represent a novel peripheral neuronal substrate for the pleasant/social touch sensation, and account for or contribute to touch hypersensitivity after injury.

  13. Electrophysiological evidence for the existence of a rare population of C-fiber low threshold mechanoreceptive (C-LTM) neurons in glabrous skin of the rat hindpaw.

    PubMed

    Djouhri, Laiche

    2016-02-01

    The mammalian skin in innervated by distinct classes of low-threshold mechanoreceptive (LTM) primary afferent neurons that are classified as Aβ-, Aδ- or C-LTMs according to their axonal conduction velocities (CVs). C-LTMs are thought to signal pleasant and erotic touch sensations in humans, and to exist only in the hairy skin of primates and other species. Using intracellular recordings from rat L4/L5 dorsal root ganglion (DRG) neurons that were classified in vivo as C-nociceptors or C-LTMs, according to their dorsal root CVs and their responses to mechanical and thermal stimuli, the present study provides the first electrophysiological evidence that C-LTMs exist in the glabrous skin of the rat's hindpaw. Indeed 6.4% (5/78) of the total sample of lumbar C-fiber DRG neurons with receptive fields in the glabrous skin of the rat hindpaw were C-LTMs. The electrophysiological properties of this rare subpopulation of C-fiber neurons (mean CV=0.48±0.06m/s) are distinct from those of C-fiber high threshold mechanoreceptors (HTMs). Indeed, their mean mechanical (1.7±1.1mN) and electrical (4.0±0.4V) thresholds was significantly different from that of C-HTMs. They also exhibited faster action potential and afterhyperpolarization kinetics than C-HTMs. The present study lends support to previous studies that have provided indirect evidence for the presence of C-LTMs in glabrous skin. If C-LTMs are present in human glabrous skin, they may, in this type of skin, represent a novel peripheral neuronal substrate for the pleasant/social touch sensation, and account for or contribute to touch hypersensitivity after injury. PMID:26752785

  14. Pain from intra-articular NGF or joint injury in the rat requires contributions from peptidergic joint afferents.

    PubMed

    Kras, Jeffrey V; Weisshaar, Christine L; Pall, Parul S; Winkelstein, Beth A

    2015-09-14

    Non-physiological stretch of the cervical facet joint's capsular ligament induces persistent behavioral hypersensitivity and spinal neuronal hyperexcitability via an intra-articular NGF-dependent mechanism. Although that ligament is innervated by nociceptors, it is unknown if a subpopulation is exclusively responsible for the behavioral and spinal neuronal responses to intra-articular NGF and/or facet joint injury. This study ablated joint afferents using the neurotoxin saporin targeted to neurons involved in either peptidergic ([Sar(9),Met (O2)(11)]-substance P-saporin (SSP-Sap)) or non-peptidergic (isolectin B4-saporin (IB4-Sap)) signaling to investigate the contributions of those neuronal populations to facet-mediated pain. SSP-Sap, but not IB4-Sap, injected into the bilateral C6/C7 facet joints 14 days prior to an intra- articular NGF injection prevents NGF-induced mechanical and thermal hypersensitivity in the forepaws. Similarly, only SSP- Sap prevents the increase in mechanical forepaw stimulation- induced firing of spinal neurons after intra-articular NGF. In addition, intra-articular SSP-Sap prevents both behavioral hypersensitivity and upregulation of NGF in the dorsal root ganglion after a facet joint distraction that normally induces pain. These findings collectively suggest that disruption of peptidergic signaling within the joint may be a potential treatment for facet pain, as well as other painful joint conditions associated with elevated NGF, such as osteoarthritis.

  15. Thresholds of cutaneous afferents related to perceptual threshold across the human foot sole.

    PubMed

    Strzalkowski, Nicholas D J; Mildren, Robyn L; Bent, Leah R

    2015-10-01

    Perceptual thresholds are known to vary across the foot sole, despite a reported even distribution in cutaneous afferents. Skin mechanical properties have been proposed to account for these differences; however, a direct relationship between foot sole afferent firing, perceptual threshold, and skin mechanical properties has not been previously investigated. Using the technique of microneurography, we recorded the monofilament firing thresholds of cutaneous afferents and associated perceptual thresholds across the foot sole. In addition, receptive field hardness measurements were taken to investigate the influence of skin hardness on these threshold measures. Afferents were identified as fast adapting [FAI (n = 48) or FAII (n = 13)] or slowly adapting [SAI (n = 21) or SAII (n = 20)], and were grouped based on receptive field location (heel, arch, metatarsals, toes). Overall, perceptual thresholds were found to most closely align with firing thresholds of FA afferents. In contrast, SAI and SAII afferent firing thresholds were found to be significantly higher than perceptual thresholds and are not thought to mediate monofilament perceptual threshold across the foot sole. Perceptual thresholds and FAI afferent firing thresholds were significantly lower in the arch compared with other regions, and skin hardness was found to positively correlate with both FAI and FAII afferent firing and perceptual thresholds. These data support a perceptual influence of skin hardness, which is likely the result of elevated FA afferent firing threshold at harder foot sole sites. The close coupling between FA afferent firing and perceptual threshold across foot sole indicates that small changes in FA afferent firing can influence perceptual thresholds.

  16. Identification of distinct tyraminergic and octopaminergic neurons innervating the central complex of the desert locust, Schistocerca gregaria

    PubMed Central

    Homberg, Uwe; Seyfarth, Jutta; Binkle, Ulrike; Monastirioti, Maria; Alkema, Mark J.

    2012-01-01

    The central complex is a group of modular neuropils in the insect brain with a key role in visual memory, spatial orientation, and motor control. In desert locusts the neurochemical organization of the central complex has been investigated in detail, including the distribution of dopamine-, serotonin-, and histamine-immunoreactive neurons. In the present study we identified neurons immunoreactive with antisera against octopamine, tyramine, and the enzymes required for their synthesis, tyrosine decarboxylase (TDC) and tyramine β-hydroxylase (TBH). Octopamine- and tyramine immunostaining in the central complex differed strikingly. In each brain hemisphere tyramine immunostaining was found in four neurons innervating the noduli, 12–15 tangential neurons of the protocerebral bridge, and about 17 neurons that supplied the anterior lip region and parts of the central body. In contrast, octopamine immunostaining was present in two bilateral pairs of ascending fibers innervating the upper division of the central body and a single pair of neurons with somata near the oesophageal foramen that gave rise to arborizations in the protocerebral bridge. Immunostaining for TDC, the enzyme converting tyrosine to tyramine, combined the patterns seen with the tyramine- and octopamine antisera. Immunostaining for TBH, the enzyme converting tyramine to octopamine, in contrast, was strikingly similar to octopamine immunolabeling. We conclude that tyramine and octopamine act as neurotransmitters/modulators in distinct sets of neurons of the locust central complex with TBH likely being the rate limiting enzyme for octopamine synthesis in a small subpopulation of TDC-containing neurons. PMID:23595814

  17. SWEAT GLAND INNERVATION IS PIONEERED BY SYMPATHETIC NEURONS EXPRESSING A CHOLINERGIC/NORADRENERGIC CO-PHENOTYPE IN THE MOUSE

    PubMed Central

    SCHÜTZ, B.; VON ENGELHARDT, J.; GÖRDES, M.; SCHÄFER, M. K.-H.; EIDEN, L. E.; MONYER, H.; WEIHE, E.

    2009-01-01

    Classic neurotransmitter phenotypes are generally predetermined and develop as a consequence of target-independent lineage decisions. A unique mode of target-dependent phenotype instruction is the acquisition of the cholinergic phenotype in the peripheral sympathetic nervous system. A body of work suggests that the sweat gland plays an important role to determine the cholinergic phenotype at this target site. A key issue is whether neurons destined to innervate the sweat glands express cholinergic markers before or only after their terminals make target contact. We employed cholinergic-specific over-expression of the vesicular acetylcholine transporter (VAChT) in transgenic mice to overcome sensitivity limits in the detection of initial cholinergic sweat gland innervation. We found that VAChT immunoreactive nerve terminals were present around the sweat gland anlage already from the earliest postnatal stages on, coincident selectively at this sympathetic target with tyrosine hydroxylase–positive fibers. Our results provide a new mechanistic model for sympathetic neuron–target interaction during development, with initial selection by the target of pioneering nerve terminals expressing a cholinergic phenotype, and subsequent stabilization of this phenotype during development. PMID:18722510

  18. Cholinergic afferent stimulation induces axonal function plasticity in adult hippocampal granule cells.

    PubMed

    Martinello, Katiuscia; Huang, Zhuo; Lujan, Rafael; Tran, Baouyen; Watanabe, Masahiko; Cooper, Edward C; Brown, David A; Shah, Mala M

    2015-01-21

    Acetylcholine critically influences hippocampal-dependent learning. Cholinergic fibers innervate hippocampal neuron axons, dendrites, and somata. The effects of acetylcholine on axonal information processing, though, remain unknown. By stimulating cholinergic fibers and making electrophysiological recordings from hippocampal dentate gyrus granule cells, we show that synaptically released acetylcholine preferentially lowered the action potential threshold, enhancing intrinsic excitability and synaptic potential-spike coupling. These effects persisted for at least 30 min after the stimulation paradigm and were due to muscarinic receptor activation. This caused sustained elevation of axonal intracellular Ca(2+) via T-type Ca(2+) channels, as indicated by two-photon imaging. The enhanced Ca(2+) levels inhibited an axonal KV7/M current, decreasing the spike threshold. In support, immunohistochemistry revealed muscarinic M1 receptor, CaV3.2, and KV7.2/7.3 subunit localization in granule cell axons. Since alterations in axonal signaling affect neuronal firing patterns and neurotransmitter release, this is an unreported cellular mechanism by which acetylcholine might, at least partly, enhance cognitive processing. PMID:25578363

  19. The cells of origin of the commissural afferents to the area dentata in the mouse.

    PubMed

    West, J R; Nornes, H O; Barnes, C L; Bronfenbrenner, M

    1979-01-12

    The hippocampal commissural projection to the area dentata of the mouse was studied using the retrograde horseradish peroxidase (HRP) technique. Small volumes of HRP injected into the molecular layer of the fascia dentata or various subareas of regio inferior of the hippocampus (fields CA3a-c) resulted inlabeled perikarya in the contralateral hippocampus and area dentata. The commissural projection to the fascia dentata was observed to originate exclusively from cells within the hilus fasciae dentatae (CA4) of the contralateral area dentata. There was evidence of a considerable spread of commissural innervation along the septotemporal axis preferentially in the septal direction, confirming earlier observations. In contrast to the septotemporal spread, a sharp homotopic spatial organization was found in the mediolateral direction. For example, injections into the lateral portion of field CA3 (CA3a) resulted in HRP-positive cell bodies only in the contralateral field CA3a. When injections were made which apparently labeled all of the commissural fibers, the HRP reaction product was found in neurons both in the entire regio inferior and as far as the innermost point of the hilus fasciae dentatae; the majority of labeled cells were located in hippocampal subfield CA3c. No labeled cells were observed beyond the tip of the mossy fibers in regio superior.

  20. Toxic rhinitis-induced changes of human nasal mucosa innervation.

    PubMed

    Groneberg, David A; Heppt, Werner; Cryer, Annette; Wussow, Anke; Peiser, Christian; Zweng, Martina; Dinh, Q Thai; Witt, Christian; Fischer, Axel

    2003-01-01

    Irritative toxic rhinitis is a nasal disorder induced by chemical compounds like ozone, formaldehyde, nickel, chrome, solvents and tobacco smoke. These noxious stimuli may have effects on the nasal innervation leading to a cascade of neuro-immune interactions and an augmentation of the symptoms. Here we examined changes in the neuropeptide content of mucosal parasympathetic, sympathetic and sensory nerves of patients with toxic rhinitis caused by chronic cigarette smoke exposure. Semiquantitative immunohistochemistry using antibodies against calcitonin gene-related peptide (CGRP), substance P (SP), neuropeptide tyrosine (NPY), and vasoactive intestinal peptide (VIP) was carried out on cryostat sections of human nasal mucosa obtained from normal subjects and patients with toxic rhinitis and revealed significant differences between both groups. Toxic rhinitis patients had significantly elevated expression scores for VIP (2.83 +/- 0.31 vs 1.27 +/- 0.47 control group) and NPY (3.17 +/- 0.31 vs 0.91 +/- 0.37 control group) revealing an increase of mediators in distinct subpopulations of airway nerves. In summary, the present studies indicate a differential participation of subclasses of mucosal nerves in the pathophysiology of toxic rhinitis. Airway innervation may have a major role in the pathophysiology of toxic rhinitis associated with chronic cigarette smoke exposure.

  1. The sympathetic innervation of the heart: Important new insights.

    PubMed

    Coote, J H; Chauhan, R A

    2016-08-01

    Autonomic control of the heart has a significant influence over development of life threatening arrhythmias that can lead to sudden cardiac death. Sympathetic activity is known to be upregulated during these conditions and hence the sympathetic nerves present a target for treatment. However, a better understanding of the anatomy and physiology of cardiac sympathetic nerves is required for the progression of clinical interventions. This review explores the organization of the cardiac sympathetic nerves, from the preganglionic origin to the postganglionic innervations, and provides an overview of literature surrounding anti-arrhythmic therapies including thoracic sympathectomy and dorsal spinal cord stimulation. Several features of the innervation are clear. The cardiac nerves differentially supply the nodal and myocardial tissue of the heart and are dependent on activity generated in spinal neurones in the upper thoracic cord which project to synapse with ganglion cells in the stellate complex on each side. Networks of spinal interneurones determine the pattern of activity. Groups of spinal neurones selectively target specific regions of the heart but whether they exhibit a functional selectivity has still to be elucidated. Electrical or ischemic signals can lead to remodeling of nerves in the heart or ganglia. Surgical and electrical methods are proving to be clinically beneficial in reducing atrial and ventricular arrhythmias, heart failure and severe cardiac pain. This is a rapidly developing area and we need more basic understanding of how these methods work to ensure safety and reduction of side effects. PMID:27568995

  2. Differential serotonergic innervation of the amygdala in bonobos and chimpanzees.

    PubMed

    Stimpson, Cheryl D; Barger, Nicole; Taglialatela, Jared P; Gendron-Fitzpatrick, Annette; Hof, Patrick R; Hopkins, William D; Sherwood, Chet C

    2016-03-01

    Humans' closest living relatives are bonobos (Pan paniscus) and chimpanzees (Pan troglodytes), yet these great ape species differ considerably from each other in terms of social behavior. Bonobos are more tolerant of conspecifics in competitive contexts and often use sexual behavior to mediate social interactions. Chimpanzees more frequently employ aggression during conflicts and actively patrol territories between communities. Regulation of emotional responses is facilitated by the amygdala, which also modulates social decision-making, memory and attention. Amygdala responsiveness is further regulated by the neurotransmitter serotonin. We hypothesized that the amygdala of bonobos and chimpanzees would differ in its neuroanatomical organization and serotonergic innervation. We measured volumes of regions and the length density of serotonin transporter-containing axons in the whole amygdala and its lateral, basal, accessory basal and central nuclei. Results showed that accessory basal nucleus volume was larger in chimpanzees than in bonobos. Of particular note, the amygdala of bonobos had more than twice the density of serotonergic axons than chimpanzees, with the most pronounced differences in the basal and central nuclei. These findings suggest that variation in serotonergic innervation of the amygdala may contribute to mediating the remarkable differences in social behavior exhibited by bonobos and chimpanzees. PMID:26475872

  3. Differential serotonergic innervation of the amygdala in bonobos and chimpanzees.

    PubMed

    Stimpson, Cheryl D; Barger, Nicole; Taglialatela, Jared P; Gendron-Fitzpatrick, Annette; Hof, Patrick R; Hopkins, William D; Sherwood, Chet C

    2016-03-01

    Humans' closest living relatives are bonobos (Pan paniscus) and chimpanzees (Pan troglodytes), yet these great ape species differ considerably from each other in terms of social behavior. Bonobos are more tolerant of conspecifics in competitive contexts and often use sexual behavior to mediate social interactions. Chimpanzees more frequently employ aggression during conflicts and actively patrol territories between communities. Regulation of emotional responses is facilitated by the amygdala, which also modulates social decision-making, memory and attention. Amygdala responsiveness is further regulated by the neurotransmitter serotonin. We hypothesized that the amygdala of bonobos and chimpanzees would differ in its neuroanatomical organization and serotonergic innervation. We measured volumes of regions and the length density of serotonin transporter-containing axons in the whole amygdala and its lateral, basal, accessory basal and central nuclei. Results showed that accessory basal nucleus volume was larger in chimpanzees than in bonobos. Of particular note, the amygdala of bonobos had more than twice the density of serotonergic axons than chimpanzees, with the most pronounced differences in the basal and central nuclei. These findings suggest that variation in serotonergic innervation of the amygdala may contribute to mediating the remarkable differences in social behavior exhibited by bonobos and chimpanzees.

  4. Selective impact of Tau loss on nociceptive primary afferents and pain sensation.

    PubMed

    Sotiropoulos, Ioannis; Lopes, André T; Pinto, Vitor; Lopes, Sofia; Carlos, Sara; Duarte-Silva, Sara; Neves-Carvalho, Andreia; Pinto-Ribeiro, Filipa; Pinheiro, Sara; Fernandes, Rui; Almeida, Armando; Sousa, Nuno; Leite-Almeida, Hugo

    2014-11-01

    Tau protein hyperphosphorylation and consequent malfunction are hallmarks of Alzheimer's disease pathology; importantly, pain perception is diminished in these patients. In physiological conditions, Tau contributes to cytoskeletal dynamics and in this way, influences a number of cellular mechanisms including axonal trafficking, myelination and synaptic plasticity, processes that are also implicated in pain perception. However, there is no in vivo evidence clarifying the role of Tau in nociception. Thus, we tested Tau-null (Tau-/-) and Tau+/+ mice for acute thermal pain (Hargreaves' test), acute and tonic inflammatory pain (formalin test) and mechanical allodynia (Von Frey test). We report that Tau-/- animals presented a decreased response to acute noxious stimuli when compared to Tau+/+ while their pain-related behavior is augmented under tonic painful stimuli. This increased reactivity to tonic pain was accompanied by enhanced formalin-evoked c-fos staining of second order nociceptive neurons at Tau-null dorsal horn. In addition, we analyzed the primary afferents conveying nociceptive signals, estimating sciatic nerve fiber density, myelination and nerve conduction. Ultrastructural analysis revealed a decreased C-fiber density in the sciatic nerve of Tau-null mice and a hypomyelination of myelinated fibers (Aδ-fibers) - also confirmed by western blot analysis - followed by altered conduction properties of Tau-null sciatic nerves. To our knowledge, this is the first in vivo study that demonstrates that Tau depletion negatively affects the main systems conveying nociceptive information to the CNS, adding to our knowledge about Tau function(s) that might also be relevant for understanding peripheral neurological deficits in different Tauopathies.

  5. VEGF-A and Semaphorin3A: Modulators of vascular sympathetic innervation

    PubMed Central

    Long, Jennifer B.; Jay, Steven M.; Segal, Steven S.; Madri, Joseph A.

    2010-01-01

    Sympathetic nerve activity regulates blood pressure by altering peripheral vascular resistance. Variations in vascular sympathetic innervation suggest that vascular-derived cues promote selective innervation of particular vessels during development. As axons extend towards peripheral targets, they migrate along arterial networks following gradients of guidance cues. Collective ratios of these gradients may determine whether axons grow towards and innervate vessels or continue past non-innervated vessels towards peripheral targets. Utilizing directed neurite outgrowth in a three-dimensional (3D) co-culture, we observed increased axon growth from superior cervical ganglion explants (SCG) towards innervated compared to non-innervated vessels, mediated in part by vascular endothelial growth factor (VEGF-A) and Semaphorin3A (Sema3A) which both signal via neuropilin-1 (Nrp1). Exogenous VEGF-A, delivered by high-expressing VEGF-A–LacZ vessels or by rhVEGF-A/alginate spheres, increased sympathetic neurite outgrowth while exogenous rhSema3A/Fc decreased neurite outgrowth. VEGF-A expression is similar between the innervated and non-innervated vessels examined. Sema3A expression is higher in non-innervated vessels. Spatial gradients of Sema3A and VEGF-A may promote differential Nrp1 binding. Vessels expressing high levels of Sema3A favor Nrp1-PlexinA1 signaling, producing chemorepulsive cues limiting sympathetic neurite outgrowth and vascular innervation; while low Sema3A expressing vessels favor Nrp1-VEGFR2 signaling providing chemoattractive cues for sympathetic neurite outgrowth and vascular innervation. PMID:19631637

  6. Improved bladder emptying in urinary retention by electrical stimulation of pudendal afferents

    NASA Astrophysics Data System (ADS)

    Peng, Chih-Wei; Chen, Jia-Jin Jason; Cheng, Chen-Li; Grill, Warren M.

    2008-06-01

    Urinary retention is the inability to empty the bladder completely, and may result from bladder hypocontractility, increases in outlet resistance or both. Chronic urinary retention can lead to several urological complications and is often refractory to pharmacologic, behavioral and surgical treatments. We sought to determine whether electrical stimulation of sensory fibers in the pudendal nerve could engage an augmenting reflex and thereby improve bladder emptying in an animal model of urinary retention. We measured the efficiency of bladder emptying with and without concomitant electrical stimulation of pudendal nerve afferents in urethane-anesthetized rats. Voiding efficiency (VE = voided volume/initial volume) was reduced from 72 ± 7% to 29 ± 7% following unilateral transection of the sensory branch of the pudendal nerve (UST) and from 70 ± 5% to 18 ± 4% following bilateral transection (BST). Unilateral electrical stimulation of the proximal transected sensory pudendal nerve during distention-evoked voiding contractions significantly improved VE. Low-intensity stimulation at frequencies of 1-50 Hz increased VE to 40-51% following UST and to 39-49% following BST, while high-intensity stimulation was ineffective at increasing VE. The increase in VE was mediated by increases in the duration of distention-evoked voiding bladder contractions, rather than increases in contraction amplitude. These results are consistent with an essential role for pudendal sensory feedback in efficient bladder emptying, and raise the possibility that electrical activation of pudendal nerve afferents may provide a new approach to restore efficient bladder emptying in persons with urinary retention.

  7. Effects of stimulation of vesical afferents on colonic motility in cats.

    PubMed

    Bouvier, M; Grimaud, J C; Abysique, A

    1990-05-01

    The effects of distension and isovolumetric contraction of urinary bladder on colonic motility were studied in anesthetized cats. Distension and contraction of the urinary bladder induced an inhibition of spontaneous colonic electromyographic activity and a decrease in the amplitudes of the excitatory junction potentials evoked in the colon by stimulation of the distal end of the parasympathetic nerve fibers. This inhibition was blocked by guanethidine and phentolamine. Reversely, vesical emptying resulted in an increase in colonic motility, abolished by atropine, and an increase in the amplitude of the excitatory junction potentials. Both excitatory and inhibitory reflexes disappeared after hexamethonium. The inhibitory effects of bladder distension were abolished by bilateral section of the lumbar ventral or dorsal spinal roots and after bilateral section of the lumbar colonic or hypogastric nerves. These results indicate (a) that the vesical afferents responsible for the inhibitory and excitatory reflexes run in the hypogastric and pelvic nerves respectively and (b) that the inhibitory and excitatory effects are caused by the activation of sympathetic and parasympathetic efferent nerve fibers, respectively. The supraspinal nervous structures were not implicated in these reflexes because they persisted in spinal cats.

  8. Retinal afferents and efferents of an infrared sensitive snake, Crotalus viridis

    SciTech Connect

    Schroeder, D.M.

    1981-01-01

    The retinal afferents and efferents were examined in Crotalus viridis. Retinofugal fibers were traced by injecting horseradish peroxidase (HRP) or tritiated leucine into the eye, or by removing the eye and staining degenerating axons with silver methods. Terminations were seen contralaterally in the suprachiasmatic nucleus, the dorsal and ventral lateral geniculate nuclei (extensive), the pretectal nuclei, including the nucleus posterodorsalis (a very heavy input), the nucleus lentiformis mesencephali, nucleus geniculatus pretectalis, and nucleus pretectalis, the superficial layers of the optic tectum, including the stratum zonale, the stratum opticum, the stratum griseum et fibrosum centrale and the upper portion of stratum griseum centrale, and the basal optic nucleus. Ipsilateral input reaches the intermediate portion of the dorsal lateral geniculate nucleus, a small portion of the pretectal nucleus and nucleus posterodorsalis, and the basal optic nucleus (very minimally). Retinopedal fibers were traced with the HRP method. The cell bodies lie in the ventral thalamus within the nucleus of the ventral supraoptic decussation. These neurons project primarily to the contralateral retina, but some more rostrally located neurons project to the ipsilateral retina.

  9. Distinct recurrent versus afferent dynamics in cortical visual processing.

    PubMed

    Reinhold, Kimberly; Lien, Anthony D; Scanziani, Massimo

    2015-12-01

    How intracortical recurrent circuits in mammalian sensory cortex influence dynamics of sensory representation is not understood. Previous methods could not distinguish the relative contributions of recurrent circuits and thalamic afferents to cortical dynamics. We accomplish this by optogenetically manipulating thalamus and cortex. Over the initial 40 ms of visual stimulation, excitation from recurrent circuits in visual cortex progressively increased to exceed direct thalamocortical excitation. Even when recurrent excitation exceeded thalamic excitation, upon silencing thalamus, sensory-evoked activity in cortex decayed rapidly, with a time constant of 10 ms, which is similar to a neuron's integration time window. In awake mice, this cortical decay function predicted the time-locking of cortical activity to thalamic input at frequencies <15 Hz and attenuation of the cortical response to higher frequencies. Under anesthesia, depression at thalamocortical synapses disrupted the fidelity of sensory transmission. Thus, we determine dynamics intrinsic to cortical recurrent circuits that transform afferent input in time.

  10. Organization of lumbosacral motoneuronal cell groups innervating hindlimb, pelvic floor, and axial muscles in the cat.

    PubMed

    Vanderhorst, V G; Holstege, G

    1997-05-26

    In a study on descending pathways from the nucleus retroambiguus (NRA) to hindlimb motoneurons (see accompanying paper), it appeared impossible, using data from the literature, to precisely determine which muscles were innervated by the motoneurons receiving the NRA fibers. This lack of data made it necessary to produce a detailed map of the lumbosacral motoneuronal cell groups in the cat. Therefore, 50 different muscles or muscle compartments of hindlimb, pelvic floor and lower back were injected with horseradish peroxidase (HRP) in 135 cases. The respective muscles were divided into ten groups: I, sartorius and iliopsoas; II, quadriceps; III, adductors; IV, hamstrings; V, gluteal and other proximal muscles of the hip; VI, posterior compartment of the distal hindlimb; VII, anterior compartment of the distal hindlimb; VIII, long flexors and intrinsic muscles of the foot; IX, pelvic floor muscles; and X, extensors of the lower back and tail. The L4-S2 segments were cut and incubated, and labeled motoneurons were counted and plotted. A new method was developed that made it possible, despite variations in size and segmental organization between the different cases, to compare the results of different cases. The results show that the spatial interrelationship between the hindlimb and pelvic floor lumbosacral motoneuronal cell groups remains constant. This finding enabled the authors to compose an accurate overall map of the location of lumbosacral motoneuronal cell groups. The general distribution of the motoneuronal cell groups is also discussed in respect to their dorsoventral, mediolateral, and rostrocaudal position within the lumbosacral ventral horn. PMID:9136811

  11. Pattern of innervation and recruitment of different classes of motoneurons in adult zebrafish.

    PubMed

    Ampatzis, Konstantinos; Song, Jianren; Ausborn, Jessica; El Manira, Abdeljabbar

    2013-06-26

    In vertebrates, spinal circuits drive rhythmic firing in motoneurons in the appropriate sequence to produce locomotor movements. These circuits become active early during development and mature gradually to acquire the flexibility necessary to accommodate the increased behavioral repertoire of adult animals. The focus here is to elucidate how different pools of motoneurons are organized and recruited and how membrane properties contribute to their mode of operation. For this purpose, we have used the in vitro preparation of adult zebrafish. We show that different motoneuron pools are organized in a somatotopic fashion in the motor column related to the type of muscle fibers (slow, intermediate, fast) they innervate. During swimming, the different motoneuron pools are recruited in a stepwise manner from slow, to intermediate, to fast to cover the full range of locomotor frequencies seen in intact animals. The spike threshold, filtering properties, and firing patterns of the different motoneuron pools are graded in a manner that relates to their order of recruitment. Our results thus show that motoneurons in adult zebrafish are organized into distinct modules, each with defined locations, properties, and recruitment patterns tuned to precisely match the muscle properties and hence produce swimming of different speeds and modalities. PMID:23804107

  12. Early events in myofibrillogenesis and innervation of skeletal, sound-generating muscle in a teleost fish.

    PubMed

    Lindholm, M M; Bass, A H

    1993-05-01

    The plainfin midshipman, Porichthys notatus, generates acoustic communication signals through the rapid contraction of a pair of vocal (sonic) muscles attached to the walls of the swimbladder. Light and electron microscopic methods were used to study two aspects of sonic muscle ontogeny: 1) the development and transformation of myotubes into muscle fibers and 2) innervation, including the formation of sonic neuromuscular junctions and the myelination of sonic motor axons. Sonic motor axons are associated with sonic mesenchyme during its initial migration away from occipital somites. However, myofibrillogenesis, the formation of neuromuscular junctions, and axon myelination do not occur until sonic mesenchyme reaches its final destination (i.e., the swimbladder). A continuum of developing myotubes is present rather than two temporally distinct populations of primary and secondary myotubes as observed for skeletal muscles in mammalian and avian species. Potential reasons for the lack of primary and secondary myotubes are considered, including the functional homogeneity of the sonic motor system and the sonic muscle's unique architecture, namely its direct attachment to the wall of the swimbladder.

  13. Recovery of viscerosensory innervation from the dorsal root ganglia of the adult rat following capsaicin-induced injury.

    PubMed

    Gallaher, Zachary R; Larios, Rose Marie; Ryu, Vitaly; Sprunger, Leslie K; Czaja, Krzysztof

    2010-09-01

    Capsaicin is a neurotoxin selective for C- and Adelta-type neurons. Systemic treatment with capsaicin is known to reduce this subpopulation in the dorsal root ganglia (DRG) of neonatal rats. To better understand the effects of capsaicin on adult afferent fibers, we examined DRG neurons retrogradely labeled by an i.p. injection of Fast Blue (FB) administered 3, 30, or 60 days after systemic capsaicin treatment (125 mg/kg i.p.). FB labeling in the 12th and 13th thoracic DRG was dramatically reduced 3 and 30 days post capsaicin (50% and 35% of control, respectively). However, the number of retrogradely labeled neurons rose to 65% of control by 60 days post capsaicin. In addition to FB labeling, we quantified the immunoreactivity of NR1, the obligatory N-methyl-D-aspartate receptor subunit, and Na(v)1.8, a DRG-specific sodium channel, in FB-labeled neurons as well as mRNA levels for both proteins in the 5th and 6th lumbar DRG. NR1 immunoreactivity and mRNA expression followed a pattern of early reduction and subsequent partial restoration similar to FB labeling. Na(v)1.8 immunoreactivity and mRNA expression dropped to approximately 50% of control at 3 days post capsaicin but completely recovered by 60 days. These data strongly support the conclusion that restoration of spinal afferent projections and signaling occurs in adult rats following capsaicin-induced damage. PMID:20593356

  14. Coding of stimuli by ampullary afferents in Gnathonemus petersii.

    PubMed

    Engelmann, J; Gertz, S; Goulet, J; Schuh, A; von der Emde, G

    2010-10-01

    Weakly electric fish use electroreception for both active and passive electrolocation and for electrocommunication. While both active and passive electrolocation systems are prominent in weakly electric Mormyriform fishes, knowledge of their passive electrolocation ability is still scarce. To better estimate the contribution of passive electric sensing to the orientation toward electric stimuli in weakly electric fishes, we investigated frequency tuning applying classical input-output characterization and stimulus reconstruction methods to reveal the encoding capabilities of ampullary receptor afferents. Ampullary receptor afferents were most sensitive (threshold: 40 μV/cm) at low frequencies (<10 Hz) and appear to be tuned to a mix of amplitude and slope of the input signals. The low-frequency tuning was corroborated by behavioral experiments, but behavioral thresholds were one order of magnitude higher. The integration of simultaneously recorded afferents of similar frequency-tuning resulted in strongly enhanced signal-to-noise ratios and increased mutual information rates but did not increase the range of frequencies detectable by the system. Theoretically the neuronal integration of input from receptors experiencing opposite polarities of a stimulus (left and right side of the fish) was shown to enhance encoding of such stimuli, including an increase of bandwidth. Covariance and coherence analysis showed that spiking of ampullary afferents is sufficiently explained by the spike-triggered average, i.e., receptors respond to a single linear feature of the stimulus. Our data support the notion of a division of labor of the active and passive electrosensory systems in weakly electric fishes based on frequency tuning. Future experiments will address the role of central convergence of ampullary input that we expect to lead to higher sensitivity and encoding power of the system. PMID:20685928

  15. Subcortical afferent connections of the amygdala in the monkey

    NASA Technical Reports Server (NTRS)

    Mehler, W. R.

    1980-01-01

    The cells of origin of the afferent connections of the amygdala in the rhesus and squirrel monkeys are determined according to the retrograde axonal transport of the enzyme horseradish peroxidase injected into various quadrants of the amygdala. Analysis of the distribution of enzyme-labeled cells reveals afferent amygdalar connections with the ipsilateral halves of the midline nucleus paraventricularis thalami and both the parvo- and magnocellular parts of the nucleus subparafascicularis in the dorsal thalamus, all the subdivisions of the midline nucleus centralis complex, the nucleus reuniens ventralis and the nucleus interventralis. The largest populations of enzyme-labeled cells in the hypothalamus are found to lie in the middle and posterior parts of the ipsilateral, lateral hypothalamus and the ventromedial hypothalamic nucleus, with scattered cells in the supramammillary and dorsomedial nuclei and the posterior hypothalamic area, Tsai's ventral tegmental area, the rostral and caudal subdivisions of the nucleus linearis in the midbrain and the dorsal raphe nucleus. The most conspicuous subdiencephalic source of amygdalar afferent connections is observed to be the pars lateralis of the nucleus parabrachialis in the dorsolateral pontine tegmentum, with a few labeled cells differentiated from pigmented cells in the locus coeruleus.

  16. Neck afferent involvement in cardiovascular control during movement

    NASA Technical Reports Server (NTRS)

    Bolton, P. S.; Ray, C. A.

    2000-01-01

    It is well established that labyrinth and neck afferent information contributes to the regulation of somatomotor function during movement and changes in posture. There is also convincing evidence that the vestibular system participates in the modulation of sympathetic outflow and cardiovascular function during changes in posture, presumably to prevent orthostatic hypotension. However, the labyrinth organs do not provide any signals concerning body movements with respect to the head. In contrast, the neck receptors, particularly muscle spindles, are well located and suited to provide information about changes in body position with respect to the head and vestibular signals. Studies in the cat suggest that neck afferent information may modulate the vestibulosympathetic reflex responses to head-neck movements. There is some evidence in the cat to suggest involvement of low threshold mechanoreceptors. However, human studies do not indicate that low threshold mechanoreceptors in the neck modulate cardiovascular responses. The human studies are consistent with the studies in the cat in that they demonstrate the importance of otolith activation in mediating cardiovascular and sympathetic responses to changes in posture. This paper briefly reviews the current experimental evidence concerning the involvement of neck afferent information in the modulation of cardiovascular control during movement and changes in posture.

  17. Expression of messenger RNAs for peptides and tyrosine hydroxylase in primary sensory neurons that innervate arterial baroreceptors and chemoreceptors.

    PubMed

    Czyzyk-Krzeska, M F; Bayliss, D A; Lawson, E E; Millhorn, D E

    1991-08-01

    Retrograde fiber tracing and in situ hybridization were used to determine expression of mRNAs for preprotachykinin A (ppTA), calcitonin gene related peptide (CGRP), preproenkephalin A (ENK), neuropeptide tyrosine (NPY) and somatostatin (SOM) as well as tyrosine hydroxylase (TH) in the petrosal ganglia primary sensory neurons which innervate carotid sinus baroreceptors and carotid body chemoreceptors. Perfusion of the carotid sinus with the retrogradely transported dye (Fluoro-Gold) labeled primary sensory neurons in petrosal ganglion. Numerous somata in the petrosal ganglion labeled with dye contained mRNAs for all the above peptides, except SOM. Moreover, TH mRNA was found in a substantial number of retrogradely labeled cells in the petrosal ganglion. This study provides information concerning which of the numerous peptides identified in sensory neurons of petrosal ganglion may be involved in modulation of the arterial baroreceptor and chemoreceptor reflexes. PMID:1681484

  18. Peripheral Nerve Damage Facilitates Functional Innervation of Brain Grafts in Adult Sensory Cortex

    NASA Astrophysics Data System (ADS)

    Ebner, Ford F.; Erzurumlu, Reha S.; Lee, Stefan M.

    1989-01-01

    The neuralb pathways that relay information from cutaneous receptors to the cortex provide the somatic sensory information needed for cortical function. The last sensory relay neurons in this pathway have cell bodies in the thalamus and axons that synapse on neurons in the somatosensory cortex. After cortical lesions that damage mature thalamocortical fibers in the somatosensory cortex, we have attempted to reestablish somatosensory cortical function by grafting embryonic neocortical cells into the lesioned area. Such grafts survive in adult host animals but are not innervated by thalamic neurons, and consequently the grafted neurons show little if any spontaneous activity and no responses to cutaneous stimuli. We have reported that transection of peripheral sensory nerves prior to grafting ``conditions'' or ``primes'' the thalamic neurons in the ventrobasal complex so that they extend axons into grafts subsequently placed in the cortical domain of the cut nerve. In this report we present evidence that the ingrowth of ventrobasal fibers leads to graft neurons that become functionally integrated into the sensory circuitry of the host brain. Specifically, the conditioning lesions made prior to grafting produce graft neurons that are spontaneously active and can be driven by natural activation of cutaneous receptors or electrical stimulation of the transected nerve after it regenerates. Furthermore, oxidative metabolism in these grafts reaches levels that are comparable to normal cortex, whereas without prior nerve cut, oxidative metabolism is abnormally low in neocortical grafts. We conclude that damage to the sensory periphery transsynaptically stimulates reorganization of sensory pathways through mechanisms that include axonal elongation and functional synaptogenesis.

  19. Sympathetic innervation during development is necessary for pancreatic islet architecture and functional maturation

    PubMed Central

    Borden, Philip; Houtz, Jessica; Leach, Steven D.; Kuruvilla, Rejji

    2013-01-01

    Summary Sympathetic neurons depend on target-derived neurotrophic cues to control their survival and growth. However, whether sympathetic innervation contributes reciprocally to the development of target tissues is less clear. Here, we report that sympathetic innervation is necessary for the formation of the pancreatic islets of Langerhans and for their functional maturation. Genetic or pharmacological ablation of sympathetic innervation during development resulted in altered islet architecture, reduced insulin secretion and impaired glucose tolerance in mice. Similar defects were observed with pharmacological blockade of β-adrenergic signaling. Conversely, the administration of a β-adrenergic agonist restored islet morphology and glucose tolerance in de-innervated animals. Furthermore, in neuron-islet co-cultures, sympathetic neurons promoted islet cell migration in a β-adrenergic dependent manner. This study reveals that islet architecture requires extrinsic inductive cues from neighboring tissues such as sympathetic nerves, and suggests that early perturbations in sympathetic innervation might underlie metabolic disorders. PMID:23850289

  20. Vestibular afferent responses to linear accelerations in the alert squirrel monkey

    NASA Technical Reports Server (NTRS)

    Somps, Christopher J.; Schor, Robert H.; Tomko, David L.

    1994-01-01

    The spontaneous activity of 40 otolith afferents and 44 canal afferents was recorded in 4 alert, intact squirrel monkeys. Polarization vectors and response properties of otolith afferents were determined during static re-orientations relative to gravity and during Earth-horizontal, sinusoidal, linear oscillations. Canal afferents were tested for sensitivity to linear accelerations. For regular otolith afferents, a significant correlation between upright discharge rate and sensitivity to dynamic acceleration in the horizontal plane was observed. This correlation was not present in irregular units. The sensitivity of otolith afferents to both static tilts and dynamic linear acceleration was much greater in irregularly discharging units than in regularly discharging units. The spontaneous activity and static and dynamic response properties of regularly discharging otolith afferents were similar to those reported in barbiturate-anesthetized squirrel monkeys. Irregular afferents also had similar dynamic response properties when compared to anesthetized monkeys. However, this sample of irregular afferents in alert animals had higher resting discharge rates and greater sensitivity to static tilts. The majority of otolith polarization vectors were oriented near the horizontal in the plane of the utricular maculae; however, directions of maximum sensitivity were different during dynamic and static testing. Canal afferents were not sensitive to static tilts or linear oscillations of the head.

  1. Intact cutaneous C fibre afferent properties in mechanical and cold neuropathic allodynia

    PubMed Central

    Hulse, Richard; Wynick, David; Donaldson, Lucy F.

    2010-01-01

    Patients with neuropathy, report changes in sensory perception, particularly mechanical and thermal allodynia, and spontaneous pain. Similar sensory changes are seen in experimental neuropathies, in which alteration in primary afferent properties can also be determined. The neural correlate of spontaneous pain is ongoing activity in sensory afferents. Mechanical and heat allodynia are thought to result from lowered activation thresholds in primary afferent and/or central neurones, but the mechanisms underlying cold allodynia are very poorly understood. We investigated nociceptive behaviours and the properties of C and A fibre intact afferents running adjacent to damaged afferents following a partial ligation injury of the saphenous nerve (PSNI). Animals developed mechanical and cold allodynia by 3 days after PSNI. Intact mechanosensitive C fibre afferents developed ongoing activity, and had slower conduction velocities 3 and 7 days following nerve injury, with no change in mechanical threshold. There was a large increase (∼46-fold) in calculated afferent input 3 days after nerve injury, as a result of the ongoing activity in these fibres. Mechano-cooling-sensitive C fibre afferents showed both enhanced cooling-evoked firing, and increased ongoing activity. The afferent barrage associated with mechano-cooling-sensitive afferents was increased 26-fold 7 days after nerve injury. We observed no differences in the properties of intact A fibre mechanosensitive afferents. These studies demonstrate for the first time that the altered nociception seen after PSNI is associated with ongoing activity and enhanced cooling-evoked activity in intact C fibre afferents in the saphenous nerve, with no concurrent alteration in A fibre afferents. PMID:19942464

  2. Properties of somata of spinal dorsal root ganglion cells differ according to peripheral receptor innervated.

    PubMed

    Koerber, H R; Druzinsky, R E; Mendell, L M

    1988-11-01

    1. Intracellular recordings were made in the somata of dorsal root ganglion cells in the L7 or S1 DRG in cats anesthetized with alpha-chloralose. The properties of the action potentials (amplitude, duration, peak rate of rise), duration of afterhyperpolarization (AHP), magnitude of inward rectification, and axonal conduction velocity were measured. The adequate stimulus was determined, and the extent to which these properties are correlated was investigated. 2. All cells with receptive fields could be classified as mechanoreceptors. Most cells with A-beta-axons (greater than 36 m/s) could be activated by gentle mechanical stimulation but a small minority with conduction velocity in the low end of the A-beta-range were nociceptors. Cells with A-delta-axons (2-36 m/s) innervated either the very sensitive Down hair follicles (D-hairs) or high-threshold mechanoreceptors (HTMRs). In addition a group of A-delta-fibers was found for which no receptive field could be described. Their spikes, AHPs, and membrane properties were indistinguishable from those of cells supplying HTMRs (see below) and they were lumped together with A-delta-HTMRs. 3. A-beta-neurons exhibited smaller, briefer spikes than A-delta-neurons, even those supplying D-hairs. Peak rate of rise (dV/dt)max and inward rectification were significantly larger in A-beta-cells than in A-delta s, whereas AHP duration and input resistance were smaller. However, the values of these parameters in cells of a given conduction velocity range were generally associated with receptor type. 4. A-delta-HTMRs exhibited spikes of greater amplitude and duration, longer AHP duration, and smaller inward rectification than D-hairs. The long duration of these spikes was due largely to a prominent hump on their descending limb. Input resistance was similar in both groups of cells. 5. A-beta-HTMRs differed from A-beta-cells innervating low threshold receptors in the same general way that A-delta-HTMRs differed from D-hairs. However, A

  3. TRPV4 mediates afferent pathways in the urinary bladder. A spinal c-fos study showing TRPV1 related adaptations in the TRPV4 knockout mouse.

    PubMed

    Janssen, Dick A W; Hoenderop, Joost G; Heesakkers, John P F A; Schalken, Jack A

    2016-10-01

    The role of transient receptor potential vanilloid subtype 4 (TRPV4) channels in urinary bladder afferent neural pathways was investigated using spinal c-fos measurements in mice. Anesthetized wild type and TRPV4 knockout (-/-) mice underwent noxious bladder distention and treatment with either intravesical instillation with lipopolysaccharide (LPS), or the TRPV1 agonist resiniferatoxin (RTX), vehicle or an intraperitoneal injected TRPV4 antagonist (HC067047). Mice underwent paraformaldehyde perfusion for rapid fixation and L6-S1 spinal cord sections were removed followed by immunohistochemical staining for c-fos. A number of c-fos expressing neurons in the dorsal horns of L6-S1 spinal cord transections were quantified. Groups were compared using univariate ANOVA. Even with the absence of bladder inflammation on H&E, the TRPV4 -/- mice still have a significant twofold higher c-fos expression (n = 39, SD 2) after noxious bladder distention compared to wild type mice (n = 20, SD 3). A twofold increase in c-fos expression was observed after LPS treatment in wild types (n = 42, SD 5), but no increase was seen in TRPV4 -/- mice (n = 42, SD 2). After desensitization of primary afferent C-nerve fibers with RTX, c-fos expression in TRPV4-/- mice decreased significantly (threefold) (n = 12, SD 4). Results imply that TRPV4 channels are important for bladder afferent signaling. TRPV4 -/- mice bladders generate more noxious sensory output, which is predominantly mediated through TRPV1 expressing high threshold nerve fibers. This study reveals TRPV1 related adaptive changes in afferent pathways of the TRPV4 -/- mouse. We propose that this effect is caused by a congenital impairment of low threshold nerves that mediate normal bladder filling sensations. PMID:27491796

  4. TRPV4 mediates afferent pathways in the urinary bladder. A spinal c-fos study showing TRPV1 related adaptations in the TRPV4 knockout mouse.

    PubMed

    Janssen, Dick A W; Hoenderop, Joost G; Heesakkers, John P F A; Schalken, Jack A

    2016-10-01

    The role of transient receptor potential vanilloid subtype 4 (TRPV4) channels in urinary bladder afferent neural pathways was investigated using spinal c-fos measurements in mice. Anesthetized wild type and TRPV4 knockout (-/-) mice underwent noxious bladder distention and treatment with either intravesical instillation with lipopolysaccharide (LPS), or the TRPV1 agonist resiniferatoxin (RTX), vehicle or an intraperitoneal injected TRPV4 antagonist (HC067047). Mice underwent paraformaldehyde perfusion for rapid fixation and L6-S1 spinal cord sections were removed followed by immunohistochemical staining for c-fos. A number of c-fos expressing neurons in the dorsal horns of L6-S1 spinal cord transections were quantified. Groups were compared using univariate ANOVA. Even with the absence of bladder inflammation on H&E, the TRPV4 -/- mice still have a significant twofold higher c-fos expression (n = 39, SD 2) after noxious bladder distention compared to wild type mice (n = 20, SD 3). A twofold increase in c-fos expression was observed after LPS treatment in wild types (n = 42, SD 5), but no increase was seen in TRPV4 -/- mice (n = 42, SD 2). After desensitization of primary afferent C-nerve fibers with RTX, c-fos expression in TRPV4-/- mice decreased significantly (threefold) (n = 12, SD 4). Results imply that TRPV4 channels are important for bladder afferent signaling. TRPV4 -/- mice bladders generate more noxious sensory output, which is predominantly mediated through TRPV1 expressing high threshold nerve fibers. This study reveals TRPV1 related adaptive changes in afferent pathways of the TRPV4 -/- mouse. We propose that this effect is caused by a congenital impairment of low threshold nerves that mediate normal bladder filling sensations.

  5. Intrinsic innervation in the intestine of the lizard Podarcis hispanica.

    PubMed

    Martinez-Ciriano, C; Junquera, C; Castiella, T; Gomez-Barrena, E; Aisa, J; Blasco, J

    2000-10-01

    The aim of this study was the description of the morphology and distribution of nerve structure elements in the intestine of the lizard Podarcis hispanica using different histochemical methods; namely acetylcholinesterase (AChE), formol-induced fluorescence for catecholamines (FIF), nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d), and immunohistochemistry for vasoactive intestinal peptide (VIP), as well as substance P (SP) and electron microscopy. The AChE method showed fibres in the myenteric and submucosal plexus, with a higher fibre density in the large intestine. The highest number of related neurons was located in the myenteric plexus ganglia. Noradrenergic innervation was distributed through the myenteric and submucosal plexus, and also around blood vessels, with the highest fibre density in the large intestine. VIP immunohistochemistry showed a wide distribution of positive fibres throughout the intestine, although the highest density was again detected in the large intestine. Small positive cells for VIP were located at internodal segments in the plexus. SP labeling, although subtle, was present all along the intestine. It showed delicate varicose nets and few fibres innervating blood vessels. Small positive cells for SP were located in the large intestine. The indirect method to detect nitric oxide (NO)-producing system showed neural cells in the myenteric plexus ganglia of the large intestine. Electron microscopy showed ganglion neurons with scattered chromatin condensations, glial cells with higher electron density, and axons with varicosities occupied by different vesicles. We also identified certain cells as interstitial cells of Cajal due to their ultrastructural features. They were mostly located in the region of the myenteric plexus.

  6. Target areas innervated by PACAP-immunoreactive retinal ganglion cells.

    PubMed

    Hannibal, Jens; Fahrenkrug, Jan

    2004-04-01

    The retinohypothalamic tract (RHT) originates from a subset of retinal ganglion cells (RGCs). The cells of the RHT co-store the neurotransmitters PACAP and glutamate, which in a complex interplay mediate light information to the circadian clock located in the suprachiasmatic nuclei (SCN). These ganglion cells are intrinsically photosensitive probably due to expression of melanopsin, a putative photoreceptor involved in light entrainment. In the present study we examined PACAP-containing retinal projections to the brain using intravitreal injection of the anterograde tracer cholera toxin subunit B (ChB) and double immunostaining for PACAP and ChB. Our results show that the PACAP-containing nerve fibres not only constituted the major projections to the SCN and the intergeniculate leaflet of the thalamus but also had a large terminal field in the olivary pretectal nucleus. The contralateral projection dominated except for the SCN, which showed bilateral innervation. PACAP-containing retinal fibres were also found in the ventrolateral preoptic nucleus, the anterior and lateral hypothalamic area, the subparaventricular zone, the ventral part of the lateral geniculate nucleus and the nucleus of the optic tract. Retinal projections not previously described in the rat also contained PACAP. These new projections were found in the lateral posterior nucleus, the posterior limitans nucleus, the dorsal part of the anterior pretectal nucleus and the posterior and medial pretectal nuclei. Only a few PACAP-containing retinal fibres were found in the superior colliculus. Areas innervated by PACAP-immunoreactive fibres also expressed the PACAP-specific PAC1 receptor as shown by in situ hybridization histochemistry. The findings suggest that PACAP plays a role as neurotransmitter in non-imaging photoperception to target areas in the brain regulating circadian timing, masking, regulation of sleep-wake cycle and pupillary reflex.

  7. Sudomotor innervation in transthyretin amyloid neuropathy: Pathology and functional correlates

    PubMed Central

    Huang, Cho‐Min; Chiang, Hao‐Hua; Luo, Kai‐Ren; Kan, Hung‐Wei; Yang, Naomi Chu‐Chiao; Chiang, Hao; Lin, Whei‐Min; Lai, Shu‐Mei; Lee, Ming‐Jen; Shun, Chia‐Tung; Hsieh, Sung‐Tsang

    2015-01-01

    Objective Autonomic neuropathy is a major component of familial amyloid polyneuropathy (FAP) due to mutated transthyretin, with sudomotor failure as a common manifestation. This study aimed to investigate the pathology and clinical significance of sudomotor denervation. Methods Skin biopsies were performed on the distal leg of FAP patients with a follow‐up duration of 3.8 ± 1.6 years. Sudomotor innervation was stained with 2 markers: protein gene product 9.5 (PGP 9.5), a general neuronal marker, and vasoactive intestinal peptide (VIP), a sudomotor nerve functional marker, followed by quantitation according to sweat gland innervation index (SGII) for PGP 9.5 (SGIIPGP 9.5) and VIP (SGIIVIP). Results There were 28 patients (25 men) with Ala97Ser transthyretin and late onset (59.9 ± 6.0 years) disabling neuropathy. Autonomic symptoms were present in 22 patients (78.6%) at the time of skin biopsy. The SGIIPGP 9.5 and SGIIVIP of FAP patients were significantly lower than those of age‐ and gender‐matched controls. The reduction of SGIIVIP was more severe than that of SGIIPGP 9.5 (p = 0.002). Patients with orthostatic hypotension or absent sympathetic skin response at palms were associated with lower SGIIPGP 9.5 (p = 0.019 and 0.002, respectively). SGIIPGP 9.5 was negatively correlated with the disability grade at the time of skin biopsy (p = 0.004), and was positively correlated with the interval from the time of skin biopsy to the time of wheelchair usage (p = 0.029). Interpretation This study documented the pathological evidence of sudomotor denervation in FAP. SGIIPGP 9.5 was functionally correlated with autonomic symptoms, autonomic tests, ambulation status, and progression of disability. Ann Neurol 2015;78:272℃283 PMID:25973863

  8. Effects of Polysialic Acid on Sensory Innervation of the Cornea

    PubMed Central

    Mao, Xiuli; Zhang, Yuntao; Schwend, Tyler; Conrad, Gary W.

    2014-01-01

    Sensory trigeminal growth cones innervate the cornea in a coordinated fashion during embryonic development. Polysialic acid (polySia) is known for its important roles during nerve development and regeneration. The purpose of this work is to determine whether polySia, present in developing eyefronts and on the surface of sensory nerves, may provide guidance cues to nerves during corneal innervation. Expression and localization of polySia in embryonic day (E)5-14 chick eyefronts and E9 trigeminal ganglia were identified using Western blotting and immunostaining. Effects of polySia removal on trigeminal nerve growth behavior were determined in vivo, using exogenous endoneuraminidase (endoN) treatments to remove polySia substrates during chick cornea development, and in vitro, using neuronal explant cultures. PolySia substrates, made by the physical adsorption of colominic acid to a surface coated with poly-D-lysine (PDL), were used as a model to investigate functions of the polySia expressed in axonal environments. PolySia was localized within developing eyefronts and on trigeminal sensory nerves. Distributions of PolySia in corneas and pericorneal regions are developmentally regulated. PolySia removal caused defasciculation of the limbal nerve trunk in vivo from E7 to E10. Removal of polySia on trigeminal neurites inhibited neurite outgrowth and caused axon defasciculation, but did not affect Neural Cell Adhesion Molecule (NCAM) expression or Schwann cell migration in vitro. PolySia substrates in vitro inhibited outgrowth of trigeminal neurites and promoted their fasciculation. In conclusion, polySia is localized on corneal nerves and in their targeting environment during early developing stages of chick embryos. PolySias promote fasciculation of trigeminal axons in vivo and in vitro, whereas, in contrast, their removal promotes defasciculation. PMID:25478909

  9. "Warmth-insensitive fields": evidence of sparse and irregular innervation of human skin by the warmth sense.

    PubMed

    Green, B G; Cruz, A

    1998-01-01

    Although more acute in some areas of the body than in others, temperature sensitivity is assumed to be present throughout the skin. Only when very small stimuli have been used (e.g., approximately 1 mm2) has sensitivity to warming or cooling appeared discontinuous. Here we report the discovery of patches of skin several square centimeters in area within which heating cannot be detected until skin temperature exceeds the thresholds of C heat-sensitive nociceptors (>41 degrees C). These warmth-insensitive fields (> or = 5 cm2), which appear to lack low-threshold warm fibers, were also found to have reduced responsiveness to non-painful heating and significantly higher heat pain thresholds compared to surrounding areas of skin. The existence of such sites corroborates reports that warm fibers are rare in human cutaneous nerves and confirms the classical theory that cutaneous innervation by the warmth sense is punctate and sparse. The insensitive areas also provide unique opportunities for assessing the contribution of the low-threshold warmth system to perception of heat and heat pain, and their existence in healthy young adults contraindicates use of warmth sensitivity in neurological assessments of C-fiber function.

  10. Melanocortin-4 receptor expression in different classes of spinal and vagal primary afferent neurons in the mouse.

    PubMed

    Gautron, Laurent; Lee, Charlotte E; Lee, Syann; Elmquist, Joel K

    2012-12-01

    Melanocortin-4 receptor (MC4R) ligands are known to modulate nociception, but the site of action of MC4R signaling on nociception remains to be elucidated. The current study investigated MC4R expression in dorsal root ganglia (DRG) of the MC4R-GFP reporter mouse. Because MC4R is known to be expressed in vagal afferent neurons in the nodose ganglion (NG), we also systematically compared MC4R-expressing vagal and spinal afferent neurons. Abundant green fluorescent protein (GFP) immunoreactivity was found in about 45% of DRG neuronal profiles (at the mid-thoracic level), the majority being small-sized profiles. Immunohistochemistry combined with in situ hybridization confirmed that GFP was genuinely produced in MC4R-expressing neurons in the DRG. While a large number of GFP profiles in the DRG coexpressed Nav1.8 mRNA (84%) and bound isolectin B4 (72%), relatively few GFP profiles were positive for NF200 (16%) or CGRP (13%), suggesting preferential MC4R expression in C-fiber nonpeptidergic neurons. By contrast, GFP in the NG frequently colocalized with Nav1.8 mRNA (64%) and NF200 (29%), but only to a moderate extent with isolectin B4 (16%). Lastly, very few GFP profiles in the NG expressed CGRP (5%) or CART (4%). Together, our findings demonstrate variegated MC4R expression in different classes of vagal and spinal primary afferent neurons, and underscore the role of the melanocortin system in modulating nociceptive and nonnociceptive peripheral sensory modalities. PMID:22592759

  11. Lingual and palatal gustatory afferents each depend on both BDNF and NT-4, but the dependence is greater for lingual than palatal afferents.

    PubMed

    Patel, Ami V; Huang, Tao; Krimm, Robin F

    2010-08-15

    Neurons of the geniculate ganglion innervate taste buds located in two spatially distinct targets, the tongue and palate. About 50% of these neurons die in Bdnf(-/-) mice and Ntf4/5(-/-) mice. Bdnf(-/-)/Ntf4/5(-/-) double mutants lose 90-95% of geniculate ganglion neurons. To determine whether different subpopulations are differentially influenced by neurotrophins, we quantified neurons from two ganglion subpopulations separately and remaining taste buds at birth within each target field in wild-type, Bdnf(-/-), Ntf4/5(-/-), and Bdnf(-/-)/Ntf4/5(-/-) mice. In wild-type mice the same number of neurons innervated the anterior tongue and soft palate and each target contained the same number of taste buds. Compared to wild-type mice, Bdnf(-/-) mice showed a 50% reduction in geniculate neurons innervating the tongue and a 28% loss in neurons innervating the soft palate. Ntf4/5(-/-) mice lost 58% of the neurons innervating the tongue and 41% of the neurons innervating the soft palate. Taste bud loss was not as profound in the NT-4 null mice compared to BDNF-null mice. Tongues of Bdnf(-/-)/Ntf4/5(-/-) mice were innervated by 0 to 4 gustatory neurons and contained 3 to 16 taste buds at birth, indicating that some taste buds remain even when all innervation is lost. Thus, gustatory neurons are equally dependent on BDNF and NT-4 expression for survival, regardless of what peripheral target they innervate. However, taste buds are more sensitive to BDNF than NT-4 removal. PMID:20575060

  12. Effects of intratympanic gentamicin on vestibular afferents and hair cells in the chinchilla.

    PubMed

    Hirvonen, Timo P; Minor, Lloyd B; Hullar, Timothy E; Carey, John P

    2005-02-01

    Gentamicin is toxic to vestibular hair cells, but its effects on vestibular afferents have not been defined. We treated anesthetized chinchillas with one injection of gentamicin (26.7 mg/ml) into the middle ear and made extracellular recordings from afferents after 5-25 (early) or 90-115 days (late). The relative proportions of regular, intermediate, and irregular afferents did not change after treatment. The spontaneous firing rate of regular afferents was lower (P < 0.001) on the treated side (early: 44.3 +/- 16.3; late: 33.9 +/- 13.2 spikes x s(-1)) than on the untreated side (54.9 +/- 16.8 spikes x s(-1)). Spontaneous rates of irregular and intermediate afferents did not change. The majority of treated afferents did not measurably respond to tilt or rotation (82% in the early group, 76% in the late group). Those that did respond had abnormally low sensitivities (P < 0.001). Treated canal units that responded to rotation had mean sensitivities only 5-7% of the values for untreated canal afferents. Treated otolith afferents had mean sensitivities 23-28% of the values for untreated otolith units. Sensitivity to externally applied galvanic currents was unaffected for all afferents. Intratympanic gentamicin treatment reduced the histological density of all hair cells by 57% (P = 0.04). The density of hair cells with calyx endings was reduced by 99% (P = 0.03), although some remaining hair cells had other features suggestive of type I morphology. Type II hair cell density was not significantly reduced. These findings suggest that a single intratympanic gentamicin injection causes partial damage and loss of vestibular hair cells, particularly type I hair cells or their calyceal afferent endings, does not damage the afferent spike initiation zones, and preserves enough hair cell synaptic activity to drive the spontaneous activity of vestibular afferents.

  13. Facilitation from hand muscles innervated by the ulnar nerve to the extensor carpi radialis motoneurone pool in humans: a study with an electromyogram-averaging technique.

    PubMed

    Suzuki, Katsuhiko; Ogawa, Keiichi; Sato, Toshiaki; Nakano, Haruki; Fujii, Hiromi; Shindo, Masaomi; Naito, Akira

    2012-10-01

    Effects of low-threshold afferents of hand muscles innervated by the ulnar nerve on an excitability of the extensor carpi radialis (ECR) motoneurone pool in humans were examined using an electromyogram-averaging (EMG-A) technique. Changes of EMG-A of ECR exhibiting 10% of the maximum contraction by electrical stimulation to the ulnar nerve at the wrist (ES-UN) and mechanical stimulation to the hypothenar muscles (MS-HTM) and first dorsal interosseus (MS-FDI) were evaluated in eight normal human subjects. The ES-UN with the intensity immediately below the motor threshold and MS-HTM and -FDI with the intensity below the threshold of the tendon(T)-reflex were delivered. Early and significant peaks in EMG-A were produced by ES-UN, MS-HTM, and MS-FDI in eight of eight subjects. The mean amplitudes of the peaks by ES-UN, MS-HTM, and MS-FDI were, respectively, 121.9%, 139.3%, and 149.9% of the control EMG (100%). The difference between latencies of the peaks by ES-UN and MS-HTM, and ES-UN and MS-FDI was almost equivalent to that of the Hoffmann(H)- and T-reflexes of HTM and FDI, respectively. The peaks by ES-UN, MS-HTM, and MS-FDI diminished with tonic vibration stimulation (TVS) to HTM and FDI, respectively. These findings suggest that group Ia afferents of the hand muscles facilitate the ECR motoneurone pool.

  14. Motor activity affects adult skeletal muscle re-innervation acting via tyrosine kinase receptors.

    PubMed

    Sartini, Stefano; Bartolini, Fanny; Ambrogini, Patrizia; Betti, Michele; Ciuffoli, Stefano; Lattanzi, Davide; Di Palma, Michael; Cuppini, Riccardo

    2013-05-01

    Recently, muscle expression of brain-derived neurotrophic factor (BDNF) mRNA and protein under activity control has been reported. BDNF is a neurotrophin known to be involved in axon sprouting in the CNS. Hence, we set out to study the effect of chronic treadmill mid-intensity running on adult rat muscle re-innervation, and to explore the involvement of BDNF and tropomyosin-related kinase (Trk) receptors. After nerve crush, muscle re-innervation was evaluated using intracellular recordings, tension recordings, immunostaining and Western blot analyses. An enhanced muscle multiple innervation was found in running rats that was fully reversed to control values blocking Trk receptors or interrupting the running activity. An increase in muscle multiple innervation was also found in sedentary rats treated with a selective TrkB receptor agonist. The expression of TrkB receptors by intramuscular axons was demonstrated, and increased muscle expression of BDNF was found in running animals. The increase in muscle multiple innervation was consistent with the faster muscle re-innervation that we found in running animals. We conclude that, when regenerating axons contact muscle cells, muscle activity progressively increases modulating BDNF and possibly other growth factors, which in turn, acting via Trk receptors, induce axon sprouting to re-innervate skeletal muscle.

  15. Inhibiting TRPA1 ion channel reduces loss of cutaneous nerve fiber function in diabetic animals: sustained activation of the TRPA1 channel contributes to the pathogenesis of peripheral diabetic neuropathy.

    PubMed

    Koivisto, Ari; Hukkanen, Mika; Saarnilehto, Marja; Chapman, Hugh; Kuokkanen, Katja; Wei, Hong; Viisanen, Hanna; Akerman, Karl E; Lindstedt, Ken; Pertovaara, Antti

    2012-01-01

    Peripheral diabetic neuropathy (PDN) is a devastating complication of diabetes mellitus (DM). Here we test the hypothesis that the transient receptor potential ankyrin 1 (TRPA1) ion channel on primary afferent nerve fibers is involved in the pathogenesis of PDN, due to sustained activation by reactive compounds generated in DM. DM was induced by streptozotocin in rats that were treated daily for 28 days with a TRPA1 channel antagonist (Chembridge-5861528) or vehicle. Laser Doppler flow method was used for assessing axon reflex induced by intraplantar injection of a TRPA1 channel agonist (cinnamaldehyde) and immunohistochemistry to assess substance P-like innervation of the skin. In vitro calcium imaging and patch clamp were used to assess whether endogenous TRPA1 agonists (4-hydroxynonenal and methylglyoxal) generated in DM induce sustained activation of the TRPA1 channel. Axon reflex induced by a TRPA1 channel agonist in the plantar skin was suppressed and the number of substance P-like immunoreactive nerve fibers was decreased 4 weeks after induction of DM. Prolonged treatment with Chembridge-5861528 reduced the DM-induced attenuation of the cutaneous axon reflex and loss of substance P-like immunoreactive nerve fibers. Moreover, in vitro calcium imaging and patch clamp results indicated that reactive compounds generated in DM (4-hydroxynonenal and methylglyoxal) produced sustained activations of the TRPA1 channel, a prerequisite for adverse long-term effects. The results indicate that the TRPA1 channel exerts an important role in the pathogenesis of PDN. Blocking the TRPA1 channel provides a selective disease-modifying treatment of PDN. PMID:22133672

  16. Innervation patterns of the canine masticatory muscles in comparison to human.

    PubMed

    Yang, Hun-Mu; Hu, Kyung-Seok; Song, Woo-Chul; Park, Jong-Tae; Kim, Heung-Joong; Koh, Ki-Seok; Kim, Hee-Jin

    2010-01-01

    The aim of this study was to clarify the nerve distribution of the masseter, temporalis, and zygomaticomandibularis (ZM) muscles to elucidate the phylogenetic traits of canine mastication. A detailed dissection was made of 15 hemisectioned heads of adult beagle dogs. The innervations of the masticatory nerve twigs exhibited a characteristic pattern and were classified into seven groups. Twig innervating the anterior portion of the temporalis (aTM) was defined as the anterior temporal nerve (ATN). Anterior twig of ATN branched from the buccal nerve and innervated only the aTM, whereas posterior twig of ATN innervated both of the aTM and deep layer of the tempolaris (dTM). From this and morphological observations, it was proposed that the action of the canine aTM is more independent than that of the human. The middle temporal nerve ran superoposteriorly within the dTM and superficial layer of the temporalis (sTM) innervating both of them, whereas the posterior temporal nerve innervated only the posterior region of the sTM. The masseteric nerve (MSN) innervated the ZM and the three layers of the masseter. Deep twig of MSN was also observed innervating sTM after entering the ZM in all cases. The major role played by the canine ZM might thus underlie the differential arrangement of the distribution of the masticatory nerve bundles in dogs and humans. Although the patterns of innervation to the canine and human masticatory muscles were somewhat similar, there were some differences that might be due to evolutionary adaptation to their respective feeding styles.

  17. Meningeal afferent signaling and the pathophysiology of migraine.

    PubMed

    Burgos-Vega, Carolina; Moy, Jamie; Dussor, Gregory

    2015-01-01

    Migraine is the most common neurological disorder. Attacks are complex and consist of multiple phases but are most commonly characterized by intense, unilateral, throbbing headache. The pathophysiology contributing to migraine is poorly understood and the disorder is not well managed with currently available therapeutics, often rendering patients disabled during attacks. The mechanisms most likely to contribute to the pain phase of migraine require activation of trigeminal afferent signaling from the cranial meninges and subsequent relay of nociceptive information into the central nervous system in a region of the dorsal brainstem known as the trigeminal nucleus caudalis. Events leading to activation of meningeal afferents are unclear, but nerve endings within this tissue are mechanosensitive and also express a variety of ion channels including acid-sensing ion channels and transient receptor-potential channels. These properties may provide clues into the pathophysiology of migraine by suggesting that decreased extracellular pH and environmental irritant exposure in the meninges contributes to headache. Neuroplasticity is also likely to play a role in migraine given that attacks are triggered by routine events that are typically nonnoxious in healthy patients and clear evidence of sensitization occurs during an attack. Where and how plasticity develops is also not clear but may include events directly on the afferents and/or within the TNC. Among the mediators potentially contributing to plasticity, calcitonin gene-related peptide has received the most attention within the migraine field but other mechanisms may also contribute. Ultimately, greater understanding of the molecules and mechanisms contributing to migraine will undoubtedly lead to better therapeutics and relief for the large number of patients across the globe who suffer from this highly disabling neurological disorder.

  18. Kv1 channels and neural processing in vestibular calyx afferents.

    PubMed

    Meredith, Frances L; Kirk, Matthew E; Rennie, Katherine J

    2015-01-01

    Potassium-selective ion channels are important for accurate transmission of signals from auditory and vestibular sensory end organs to their targets in the central nervous system. During different gravity conditions, astronauts experience altered input signals from the peripheral vestibular system resulting in sensorimotor dysfunction. Adaptation to altered sensory input occurs, but it is not explicitly known whether this involves synaptic modifications within the vestibular epithelia. Future investigations of such potential plasticity require a better understanding of the electrophysiological mechanisms underlying the known heterogeneity of afferent discharge under normal conditions. This study advances this understanding by examining the role of the Kv1 potassium channel family in mediating action potentials in specialized vestibular afferent calyx endings in the gerbil crista and utricle. Pharmacological agents selective for different sub-types of Kv1 channels were tested on membrane responses in whole cell recordings in the crista. Kv1 channels sensitive to α-dendrotoxin and dendrotoxin-K were found to prevail in the central regions, whereas K(+) channels sensitive to margatoxin, which blocks Kv1.3 and 1.6 channels, were more prominent in peripheral regions. Margatoxin-sensitive currents showed voltage-dependent inactivation. Dendrotoxin-sensitive currents showed no inactivation and dampened excitability in calyces in central neuroepithelial regions. The differential distribution of Kv1 potassium channels in vestibular afferents supports their importance in accurately relaying gravitational and head movement signals through specialized lines to the central nervous system. Pharmacological modulation of specific groups of K(+) channels could help alleviate vestibular dysfunction on earth and in space. PMID:26082693

  19. Heat pulse excitability of vestibular hair cells and afferent neurons.

    PubMed

    Rabbitt, Richard D; Brichta, Alan M; Tabatabaee, Hessam; Boutros, Peter J; Ahn, JoongHo; Della Santina, Charles C; Poppi, Lauren A; Lim, Rebecca

    2016-08-01

    In the present study we combined electrophysiology with optical heat pulse stimuli to examine thermodynamics of membrane electrical excitability in mammalian vestibular hair cells and afferent neurons. We recorded whole cell currents in mammalian type II vestibular hair cells using an excised preparation (mouse) and action potentials (APs) in afferent neurons in vivo (chinchilla) in response to optical heat pulses applied to the crista (ΔT ≈ 0.25°C per pulse). Afferent spike trains evoked by heat pulse stimuli were diverse and included asynchronous inhibition, asynchronous excitation, and/or phase-locked APs synchronized to each infrared heat pulse. Thermal responses of membrane currents responsible for APs in ganglion neurons were strictly excitatory, with Q10 ≈ 2. In contrast, hair cells responded with a mix of excitatory and inhibitory currents. Excitatory hair cell membrane currents included a thermoelectric capacitive current proportional to the rate of temperature rise (dT/dt) and an inward conduction current driven by ΔT An iberiotoxin-sensitive inhibitory conduction current was also evoked by ΔT, rising in <3 ms and decaying with a time constant of ∼24 ms. The inhibitory component dominated whole cell currents in 50% of hair cells at -68 mV and in 67% of hair cells at -60 mV. Responses were quantified and described on the basis of first principles of thermodynamics. Results identify key molecular targets underlying heat pulse excitability in vestibular sensory organs and provide quantitative methods for rational application of optical heat pulses to examine protein biophysics and manipulate cellular excitability. PMID:27226448

  20. Pituitary adenylatecyclase-activating polypeptide-immunoreactive nerve fibers in the rat epiglottis and pharynx.

    PubMed

    Kano, Mitsuhiro; Shimizu, Yoshinaka; Suzuki, Yujiro; Furukawa, Yusuke; Ishida, Hiroko; Oikawa, Miho; Kanetaka, Hiroyasu; Ichikawa, Hiroyuki; Suzuki, Toshihiko

    2011-12-20

    The distribution of pituitary adenylatecyclase-activating polypeptide-immunoreactive (PACAP-IR) nerve fibers was studied in the rat epiglottis and pharynx. PACAP-IR nerve fibers were located beneath the mucous epithelium, and occasionally penetrated the epithelium. These nerve fibers were abundant on the laryngeal side of the epiglottis and in the dorsal and lateral border region between naso-oral and laryngeal parts of the pharynx. PACAP-IR nerve fibers were also detected in taste buds within the epiglottis and pharynx. In addition, many PACAP-IR nerve fibers were found around acinar cells and blood vessels. The double immunofluorescence method demonstrated that distribution of PACAP-IR nerve fibers was similar to that in CGRP-IR nerve fibers in the epithelium and taste bud. However, distributions of PACAP-IR and CGRP-IR nerve fibers innervating mucous glands and blood vessels were different. The retrograde tracing method also demonstrated that PACAP and CGRP were co-expressed by vagal and glossopharyngeal sensory neurons innervating the pharynx. These findings suggest that PACAP-IR nerve fibers in the epithelium and taste bud of the epiglottis and pharynx which originate from the vagal and glossopharyngeal sensory ganglia include nociceptors and chemoreceptors. The origin of PACAP-IR nerve fibers which innervate mucous glands and blood vessels may be the autonomic ganglion.

  1. Ontogeny of the serotonergic projection to rat neocortex: transient expression of a dense innervation to primary sensory areas

    SciTech Connect

    D'Amato, R.J.; Blue, M.E.; Largent, B.L.; Lynch, D.R.; Ledbetter, D.J.; Molliver, M.E.; Snyder, S.H.

    1987-06-01

    The development of serotonergic innervation to rat cerebral cortex was characterized by immunohistochemical localization of serotonin combined with autoradiographic imaging of serotonin-uptake sites. In neonatal rat, a transient, dense, serotonergic innervation appears in all primary sensory areas of cortex. In somatosensory cortex, dense patches of serotonergic innervation are aligned with specialized cellular aggregates called barrels. The dense patches are not apparent after 3 weeks of age, and the serotonergic innervation becomes more uniform in adult neocortex. This precocious neonatal serotonergic innervation may play a transient physiologic role in sensory areas of cortex or may exert a trophic influence on the development of cortical circuitry and thalamocortical connections.

  2. The lophophore innervation pattern of the inarticulate brachiopod Lingula anatina (Brachiopoda) supports monophyly of Lophophorata.

    PubMed

    Temereva, E N; Malakhov, V V

    2015-01-01

    Lophophore innervation in the brachiopod Lingula anatina has been investigated using immunocytochemistry and laser confocal microscopy. Three prominent nerves, namely, the main brachial nerve, the accessory brachial nerve, and the lower brachial nerve, have been found to extend along each brachium of the lophophore. Tentacle innervation is also described in detail. Comparative analysis revealed homologous nerves in lophophores of brachiopods, phoronids, and bryozoans. Similarities in tentacle innervation in these phyla of invertebrates have been detected. The results obtained confirm lophophore homology in different groups of lophophorates and provide evidence for monophyly of Lophophorata.

  3. Phenotypic alterations of neuropeptide Y and calcitonin gene-related peptide-containing neurons innervating the rat temporomandibular joint during carrageenan-induced arthritis

    PubMed Central

    Damico, J.P.; Ervolino, E.; Torres, K.R.; Batagello, D.S.; Cruz-Rizzolo, R.J.; Casatti, C.A.; Bauer, J.A.

    2012-01-01

    The aim of this study was to identify immunoreactive neuropeptide Y (NPY) and calcitonin gene-related peptide (CGRP) neurons in the autonomic and sensory ganglia, specifically neurons that innervate the rat temporomandibular joint (TMJ). A possible variation between the percentages of these neurons in acute and chronic phases of carrageenan-induced arthritis was examined. Retrograde neuronal tracing was combined with indirect immunofluorescence to identify NPY-immunoreactive (NPY-IR) and CGRP- immunoreactive (CGRP-IR) neurons that send nerve fibers to the normal and arthritic temporomandibular joint. In normal joints, NPY-IR neurons constitute 78±3%, 77±6% and 10±4% of double-labeled nucleated neuronal profile originated from the superior cervical, stellate and otic ganglia, respectively. These percentages in the sympathetic ganglia were significantly decreased in acute (58±2% for superior cervical ganglion and 58±8% for stellate ganglion) and chronic (60±2% for superior cervical ganglion and 59±15% for stellate ganglion) phases of arthritis, while in the otic ganglion these percentages were significantly increased to 19±5% and 13±3%, respectively. In the trigeminal ganglion, CGRP-IR neurons innervating the joint significantly increased from 31±3% in normal animals to 54±2% and 49±3% in the acute and chronic phases of arthritis, respectively. It can be concluded that NPY neurons that send nerve fibers to the rat temporomandibular joint are located mainly in the superior cervical, stellate and otic ganglia. Acute and chronic phases of carrageenan-induced arthritis lead to an increase in the percentage of NPY-IR parasympathetic and CGRP-IR sensory neurons and to a decrease in the percentage of NPY-IR sympathetic neurons related to TMJ innervation. PMID:23027347

  4. [Muscle afferent block for the treatment of writer's cramp].

    PubMed

    Sawamoto, N; Kaji, R; Katayama, M; Kubori, T; Kimura, J

    1995-11-01

    A 29-year-old man suffered from dystonic writer's cramp for over three years. When he wrote, typed and did other tasks using right hand, dystonic involuntary movement triggered medial rotation of the arm, wrist extension and shoulder elevation. Medication, biofeedback, and botulinum injection were performed without much success. We tried to block the sensory input from muscles by using lidocaine and ethanol. We made injections of 0.5% lidocaine 50ml and 99% ethanol 5ml into muscles with abnormal activity at the frequency of twice a week for about six months. After the treatment, dystonic movement was remarkably improved and he was then able to write, type and perform other tasks with the right hand. Side effects included pain of the injection site, nausea and dizziness, which lasted for a few hours. This "muscle afferent block" did not cause muscle weakness. We speculate that muscle afferent plays a pivotal role in dystonia so that its blocking may be of clinical use.

  5. Interactions between visceral afferent signaling and stimulus processing.

    PubMed

    Critchley, Hugo D; Garfinkel, Sarah N

    2015-01-01

    Visceral afferent signals to the brain influence thoughts, feelings and behavior. Here we highlight the findings of a set of empirical investigations in humans concerning body-mind interaction that focus on how feedback from states of autonomic arousal shapes cognition and emotion. There is a longstanding debate regarding the contribution of the body to mental processes. Recent theoretical models broadly acknowledge the role of (autonomically-mediated) physiological arousal to emotional, social and motivational behaviors, yet the underlying mechanisms are only partially characterized. Neuroimaging is overcoming this shortfall; first, by demonstrating correlations between autonomic change and discrete patterns of evoked, and task-independent, neural activity; second, by mapping the central consequences of clinical perturbations in autonomic response and; third, by probing how dynamic fluctuations in peripheral autonomic state are integrated with perceptual, cognitive and emotional processes. Building on the notion that an important source of the brain's representation of physiological arousal is derived from afferent information from arterial baroreceptors, we have exploited the phasic nature of these signals to show their differential contribution to the processing of emotionally-salient stimuli. This recent work highlights the facilitation at neural and behavioral levels of fear and threat processing that contrasts with the more established observations of the inhibition of central pain processing during baroreceptors activation. The implications of this body-brain-mind axis are discussed. PMID:26379481

  6. Cross-Modal Calibration of Vestibular Afference for Human Balance.

    PubMed

    Héroux, Martin E; Law, Tammy C Y; Fitzpatrick, Richard C; Blouin, Jean-Sébastien

    2015-01-01

    To determine how the vestibular sense controls balance, we used instantaneous head angular velocity to drive a galvanic vestibular stimulus so that afference would signal that head movement was faster or slower than actual. In effect, this changed vestibular afferent gain. This increased sway 4-fold when subjects (N = 8) stood without vision. However, after a 240 s conditioning period with stable balance achieved through reliable visual or somatosensory cues, sway returned to normal. An equivalent galvanic stimulus unrelated to sway (not driven by head motion) was equally destabilising but in this situation the conditioning period of stable balance did not reduce sway. Reflex muscle responses evoked by an independent, higher bandwidth vestibular stimulus were initially reduced in amplitude by the galvanic stimulus but returned to normal levels after the conditioning period, contrary to predictions that they would decrease after adaptation to increased sensory gain and increase after adaptation to decreased sensory gain. We conclude that an erroneous vestibular signal of head motion during standing has profound effects on balance control. If it is unrelated to current head motion, the CNS has no immediate mechanism of ignoring the vestibular signal to reduce its influence on destabilising balance. This result is inconsistent with sensory reweighting based on disturbances. The increase in sway with increased sensory gain is also inconsistent with a simple feedback model of vestibular reflex action. Thus, we propose that recalibration of a forward sensory model best explains the reinterpretation of an altered reafferent signal of head motion during stable balance. PMID:25894558

  7. Spontaneous hyperactivity in the auditory midbrain: relationship to afferent input.

    PubMed

    Robertson, Donald; Bester, Christofer; Vogler, Darryl; Mulders, Wilhelmina H A M

    2013-01-01

    Hyperactivity in the form of increased spontaneous firing rates of single neurons develops in the guinea pig inferior colliculus (IC) after unilateral loud sound exposures that result in behavioural signs of tinnitus. The hyperactivity is found in those parts of the topographic frequency map in the IC where neurons possess characteristic frequencies (CFs) closely related to the region in the cochlea where lasting sensitivity changes occur as a result of the loud sound exposure. The observed hyperactivity could be endogenous to the IC, or it could be driven by hyperactivity at lower stages of the auditory pathway. In addition to the dorsal cochlear nucleus (DCN) hyperactivity reported by others, specific cell types in the ventral cochlear nucleus (VCN) also show hyperactivity in this animal model suggesting that increased drive from several regions of the lower brainstem could contribute to the observed hyperactivity in the midbrain. In addition, spontaneous afferent drive from the cochlea itself is necessary for the maintenance of hyperactivity up to about 8 weeks post cochlear trauma. After 8 weeks however, IC hyperactivity becomes less dependent on cochlear input, suggesting that central neurons transition from a state of hyperexcitability to a state in which they generate their own endogenous firing. The results suggest that there might be a "therapeutic window" for early-onset tinnitus, using treatments that reduce cochlear afferent firing. PMID:22349094

  8. Cross-Modal Calibration of Vestibular Afference for Human Balance

    PubMed Central

    Héroux, Martin E; Law, Tammy C. Y.; Fitzpatrick, Richard C.; Blouin, Jean-Sébastien

    2015-01-01

    To determine how the vestibular sense controls balance, we used instantaneous head angular velocity to drive a galvanic vestibular stimulus so that afference would signal that head movement was faster or slower than actual. In effect, this changed vestibular afferent gain. This increased sway 4-fold when subjects (N = 8) stood without vision. However, after a 240 s conditioning period with stable balance achieved through reliable visual or somatosensory cues, sway returned to normal. An equivalent galvanic stimulus unrelated to sway (not driven by head motion) was equally destabilising but in this situation the conditioning period of stable balance did not reduce sway. Reflex muscle responses evoked by an independent, higher bandwidth vestibular stimulus were initially reduced in amplitude by the galvanic stimulus but returned to normal levels after the conditioning period, contrary to predictions that they would decrease after adaptation to increased sensory gain and increase after adaptation to decreased sensory gain. We conclude that an erroneous vestibular signal of head motion during standing has profound effects on balance control. If it is unrelated to current head motion, the CNS has no immediate mechanism of ignoring the vestibular signal to reduce its influence on destabilising balance. This result is inconsistent with sensory reweighting based on disturbances. The increase in sway with increased sensory gain is also inconsistent with a simple feedback model of vestibular reflex action. Thus, we propose that recalibration of a forward sensory model best explains the reinterpretation of an altered reafferent signal of head motion during stable balance. PMID:25894558

  9. Interactions between visceral afferent signaling and stimulus processing

    PubMed Central

    Critchley, Hugo D.; Garfinkel, Sarah N.

    2015-01-01

    Visceral afferent signals to the brain influence thoughts, feelings and behavior. Here we highlight the findings of a set of empirical investigations in humans concerning body-mind interaction that focus on how feedback from states of autonomic arousal shapes cognition and emotion. There is a longstanding debate regarding the contribution of the body to mental processes. Recent theoretical models broadly acknowledge the role of (autonomically-mediated) physiological arousal to emotional, social and motivational behaviors, yet the underlying mechanisms are only partially characterized. Neuroimaging is overcoming this shortfall; first, by demonstrating correlations between autonomic change and discrete patterns of evoked, and task-independent, neural activity; second, by mapping the central consequences of clinical perturbations in autonomic response and; third, by probing how dynamic fluctuations in peripheral autonomic state are integrated with perceptual, cognitive and emotional processes. Building on the notion that an important source of the brain's representation of physiological arousal is derived from afferent information from arterial baroreceptors, we have exploited the phasic nature of these signals to show their differential contribution to the processing of emotionally-salient stimuli. This recent work highlights the facilitation at neural and behavioral levels of fear and threat processing that contrasts with the more established observations of the inhibition of central pain processing during baroreceptors activation. The implications of this body-brain-mind axis are discussed. PMID:26379481

  10. Microsecond-Scale Timing Precision in Rodent Trigeminal Primary Afferents

    PubMed Central

    Bale, Michael R.; Campagner, Dario; Erskine, Andrew

    2015-01-01

    Communication in the nervous system occurs by spikes: the timing precision with which spikes are fired is a fundamental limit on neural information processing. In sensory systems, spike-timing precision is constrained by first-order neurons. We found that spike-timing precision of trigeminal primary afferents in rats and mice is limited both by stimulus speed and by electrophysiological sampling rate. High-speed video of behaving mice revealed whisker velocities of at least 17,000°/s, so we delivered an ultrafast “ping” (>50,000°/s) to single whiskers and sampled primary afferent activity at 500 kHz. Median spike jitter was 17.4 μs; 29% of neurons had spike jitter < 10 μs. These results indicate that the input stage of the trigeminal pathway has extraordinary spike-timing precision and very high potential information capacity. This timing precision ranks among the highest in biology. PMID:25878266

  11. Effects of stimulus intensity, cervical cord tractotomies and cerebellectomy on somatosensory evoked potentials from skin and muscle afferents of cat hind limb.

    PubMed

    Schieppati, M; Ducati, A

    1981-04-01

    The somatosensory evoked potentials (SEPs) recorded from the sensory cortex were investigated by using graded stimulation of skin and muscle nerves from contralateral hind limb in the cat. Sections were made of the middle cervical cord to assess the pathways involved in mediating SEPs evoked by large and small diameter fibers. Dorsal column (DC) section caused a decrease of SEPs from skin group I afferents, and a small increase in those from group I muscle afferents. A subsequent section of dorso-lateral fasciculus (DLF) further decreased SEPs from skin and eliminated SEPs from muscle, evoked at low stimulus intensity. When the stimulus recruited group III fibres, SEPs were still present after DC and DLF section, both from skin and muscle nerves. Section of ALT in addition to DC confirmed a major role played by DLF (mainly spino-cervical tract of Morin) in transmitting impulses from muscle afferents; the role of DLF in mediating potentials evoked from skin is less remarkable than that of DC. Cerebellectomy did not change any SEP, however evoked. Previous results in the literature are discussed, taking into account the methodologies employed by various authors, and the possible interactions among pathways mediating SEPs.

  12. Dopamine Innervation in the Thalamus: Monkey versus Rat

    PubMed Central

    García-Cabezas, Miguel Ángel; Martínez-Sánchez, Patricia; Sánchez-González, Miguel Ángel; Garzón, Miguel

    2009-01-01

    We recently identified the thalamic dopaminergic system in the human and macaque monkey brains, and, based on earlier reports on the paucity of dopamine in the rat thalamus, hypothesized that this dopaminergic system was particularly developed in primates. Here we test this hypothesis using immunohistochemistry against the dopamine transporter (DAT) in adult macaque and rat brains. The extent and density of DAT-immunoreactive (-ir) axons were remarkably greater in the macaque dorsal thalamus, where the mediodorsal association nucleus and the ventral motor nuclei held the densest immunolabeling. In contrast, sparse DAT immunolabeling was present in the rat dorsal thalamus; it was mainly located in the mediodorsal, paraventricular, ventral medial, and ventral lateral nuclei. The reticular nucleus, zona incerta, and lateral habenular nucleus held numerous DAT-ir axons in both species. Ultrastructural analysis in the macaque mediodorsal nucleus revealed that thalamic interneurons are a main postsynaptic target of DAT-ir axons; this suggests that the marked expansion of the dopamine innervation in the primate in comparison to the rodent thalamus may be related to the presence of a sizable interneuron population in primates. We remark that it is important to be aware of brain species differences when using animal models of human brain disease. PMID:18550594

  13. Positron emission tomographic imaging of cardiac sympathetic innervation and function

    SciTech Connect

    Goldstein, D.S.; Chang, P.C.; Eisenhofer, G.; Miletich, R.; Finn, R.; Bacher, J.; Kirk, K.L.; Bacharach, S.; Kopin, I.J. )

    1990-05-01

    Sites of uptake, storage, and metabolism of ({sup 18}F)fluorodopamine and excretion of ({sup 18}F)fluorodopamine and its metabolites were visualized using positron emission tomographic (PET) scanning after intravenous injection of the tracer into anesthetized dogs. Radioactivity was concentrated in the renal pelvis, heart, liver, spleen, salivary glands, and gall bladder. Uptake of 18F by the heart resulted in striking delineation of the left ventricular myocardium. Pretreatment with desipramine markedly decreased cardiac positron emission, consistent with dependence of the heart on neuronal uptake (uptake-1) for removal of circulating catecholamines. In reserpinized animals, cardiac positron emission was absent within 30 minutes after injection of ({sup 18}F)-6-fluorodopamine, demonstrating that the emission in untreated animals was from radioactive labeling of the sympathetic storage vesicles. Decreased positron emission from denervated salivary glands confirmed that the tracer was concentrated in sympathetic neurons. Radioactivity in the gall bladder and urinary system depicted the hepatic and renal excretion of the tracer and its metabolites. Administration of tyramine or nitroprusside increased and ganglionic blockade with trimethaphan decreased the rate of loss of myocardial radioactivity. The results show that PET scanning after administration of ({sup 18}F)fluorodopamine can be used to visualize sites of sympathetic innervation, follow the metabolism and renal and hepatic excretion of catecholamines, and examine cardiac sympathetic function.

  14. From innervation density to tactile acuity: 1. Spatial representation.

    PubMed

    Brown, Paul B; Koerber, H Richard; Millecchia, Ronald

    2004-06-11

    We tested the hypothesis that the population receptive field representation (a superposition of the excitatory receptive field areas of cells responding to a tactile stimulus) provides spatial information sufficient to mediate one measure of static tactile acuity. In psychophysical tests, two-point discrimination thresholds on the hindlimbs of adult cats varied as a function of stimulus location and orientation, as they do in humans. A statistical model of the excitatory low threshold mechanoreceptive fields of spinocervical, postsynaptic dorsal column and spinothalamic tract neurons was used to simulate the population receptive field representations in this neural population of the one- and two-point stimuli used in the psychophysical experiments. The simulated and observed thresholds were highly correlated. Simulated and observed thresholds' relations to physiological and anatomical variables such as stimulus location and orientation, receptive field size and shape, map scale, and innervation density were strikingly similar. Simulated and observed threshold variations with receptive field size and map scale obeyed simple relationships predicted by the signal detection model, and were statistically indistinguishable from each other. The population receptive field representation therefore contains information sufficient for this discrimination. PMID:15140641

  15. Excitatory and inhibitory enteric innervation of horse lower esophageal sphincter.

    PubMed

    Chiocchetti, R; Giancola, F; Mazzoni, M; Sorteni, C; Romagnoli, N; Pietra, M

    2015-06-01

    The lower esophageal sphincter (LES) is a specialized, thickened muscle region with a high resting tone mediated by myogenic and neurogenic mechanisms. During swallowing or belching, the LES undergoes strong inhibitory innervation. In the horse, the LES seems to be organized as a "one-way" structure, enabling only the oral-anal progression of food. We characterized the esophageal and gastric pericardial inhibitory and excitatory intramural neurons immunoreactive (IR) for the enzymes neuronal nitric oxide synthase (nNOS) and choline acetyltransferase. Large percentages of myenteric plexus (MP) and submucosal (SMP) plexus nNOS-IR neurons were observed in the esophagus (72 ± 9 and 69 ± 8 %, respectively) and stomach (57 ± 17 and 45 ± 3 %, respectively). In the esophagus, cholinergic MP and SMP neurons were 29 ± 14 and 65 ± 24 vs. 36 ± 8 and 38 ± 20 % in the stomach, respectively. The high percentage of nitrergic inhibitory motor neurons observed in the caudal esophagus reinforces the role of the enteric nervous system in the horse LES relaxation. These findings might allow an evaluation of whether selective groups of enteric neurons are involved in horse neurological disorders such as megaesophagus, equine dysautonomia, and white lethal foal syndrome.

  16. Vasomotion in chicken foot: dual innervation of arteriovenous anastomoses.

    PubMed

    Hillman, P E; Scott, N R; van Tienhoven, A

    1982-05-01

    Blood exits the foot of the domestic chicken via two major venous routes: a counter-current network surrounding the major incoming artery and a large collateral vein. Between these two routes are numerous large collateral vein. Between these two routes are numerous anastomotic veins. Both venous routes drain capillaries and arteriovenous anastomoses (AVAs). Blood flow through the foot was measured on unanesthetized hens. Flow varies with ambient temperature: 0.2 ml/min at 5 degrees C, 2.2 ml/min at thermoneutrality, and 5.4 ml/min at 36 degrees C; the AVAs contribute 8, 26, and 63% to this flow, respectively. Flow through capillaries is reduced by alpha-adrenergic agonists and is increased by beta-adrenergic agonists. Blocking nerve conduction to the foot at thermoneutrality releases alpha-adrenergic tone and increase AVA flow. Faradic stimulation of foot nerves after adrenergic blockage increases AVA flow, but not capillary flow, suggesting active vasodilation of the AVAs. Such AVA vasodilation normally occurs during body heating, since AVA flow decreases after denervation. Dopaminergic or beta-adrenergic nerves are not involved in active vasodilatation, however, purinergic nerves may play a role. Thus AVAs have a functional dual innervation.

  17. Innervation of sinoatrial nodal cells in the rabbit.

    PubMed

    Inokaitis, Hermanas; Pauziene, Neringa; Rysevaite-Kyguoliene, Kristina; Pauza, Dainius H

    2016-05-01

    In spite of the fact that the rabbit is being widely used as a laboratory animal in experimental neurocardiology, neural control of SAN cells in the rabbit heart has been insufficiently examined thus far. This study analyzes the distribution of SAN cells and their innervation pattern employing fluorescent immunohistochemistry on rabbit whole mount atrial preparations. A dense network of adrenergic (positive for TH), cholinergic (positive for ChAT), nitrergic (positive for nNOS) and possibly sensory (positive for SP) NFs together with numerous neuronal somata were identified on the RRCV where the main mass of SAN cells positive for HCN4 were distributed as well. In general, the area occupied by SAN cells comprised nearly the entire RRCV and possessed a three to four times denser network of NFs compared with adjacent atrial walls. Adrenergic NFs predominated noticeably in-between SAN cells. Solitary neuronal somata or somata gathered into small clusters were positive solely for ChAT or nNOS, respectively or simultaneously for both neuronal markers (ChAT and nNOS). Neuronal somata positive for nNOS were more frequent than those positive for ChAT. In conclusion, findings of the present study demonstrate a dense and complex ganglionated neural network of both autonomic and sensory NFs, closely related to SAN cells which spread widely on the RRCV and extend as sleeves of these cells toward the walls of the rabbit RA. PMID:27045595

  18. Role of GPR55 during Axon Growth and Target Innervation.

    PubMed

    Cherif, Hosni; Argaw, Anteneh; Cécyre, Bruno; Bouchard, Alex; Gagnon, Jonathan; Javadi, Pasha; Desgent, Sébastien; Mackie, Ken; Bouchard, Jean-François

    2015-01-01

    Guidance molecules regulate the navigation of retinal ganglion cell (RGC) projections toward targets in the visual thalamus. In this study, we demonstrate that the G-protein-coupled receptor 55 (GPR55) is expressed in the retina during development, and regulates growth cone (GC) morphology and axon growth. In vitro, neurons obtained from gpr55 knock-out (gpr55(-/-) ) mouse embryos have smaller GCs, less GC filopodia, and have a decreased outgrowth compared with gpr55(+/+) neurons. When gpr55(+/+) neurons were treated with GPR55 agonists, lysophosphatidylinositol (LPI) and O-1602, we observed a chemo-attractive effect and an increase in GC size and filopodia number. In contrast, cannabidiol (CBD) decreased the GC size and filopodia number inducing chemo-repulsion. In absence of the receptor (gpr55(-/-) ), no pharmacologic effects of the GPR55 ligands were observed. In vivo, compared to their wild-type (WT) littermates, gpr55(-/-) mice revealed a decreased branching in the dorsal terminal nucleus (DTN) and a lower level of eye-specific segregation of retinal projections in the superior colliculus (SC) and in the dorsal lateral geniculate nucleus (dLGN). Moreover, a single intraocular injection of LPI increased branching in the DTN, whereas treatment with CBD, an antagonist of GPR55, decreased it. These results indicate that GPR55 modulates the growth rate and the targets innervation of retinal projections and highlight, for the first time, an important role of GPR55 in axon refinement during development. PMID:26730399

  19. Role of GPR55 during Axon Growth and Target Innervation

    PubMed Central

    Cherif, Hosni; Argaw, Anteneh; Cécyre, Bruno; Bouchard, Alex; Gagnon, Jonathan; Javadi, Pasha; Desgent, Sébastien; Mackie, Ken

    2015-01-01

    Abstract Guidance molecules regulate the navigation of retinal ganglion cell (RGC) projections toward targets in the visual thalamus. In this study, we demonstrate that the G-protein-coupled receptor 55 (GPR55) is expressed in the retina during development, and regulates growth cone (GC) morphology and axon growth. In vitro, neurons obtained from gpr55 knock-out (gpr55-/-) mouse embryos have smaller GCs, less GC filopodia, and have a decreased outgrowth compared with gpr55+/+ neurons. When gpr55+/+ neurons were treated with GPR55 agonists, lysophosphatidylinositol (LPI) and O-1602, we observed a chemo-attractive effect and an increase in GC size and filopodia number. In contrast, cannabidiol (CBD) decreased the GC size and filopodia number inducing chemo-repulsion. In absence of the receptor (gpr55-/-), no pharmacologic effects of the GPR55 ligands were observed. In vivo, compared to their wild-type (WT) littermates, gpr55-/- mice revealed a decreased branching in the dorsal terminal nucleus (DTN) and a lower level of eye-specific segregation of retinal projections in the superior colliculus (SC) and in the dorsal lateral geniculate nucleus (dLGN). Moreover, a single intraocular injection of LPI increased branching in the DTN, whereas treatment with CBD, an antagonist of GPR55, decreased it. These results indicate that GPR55 modulates the growth rate and the targets innervation of retinal projections and highlight, for the first time, an important role of GPR55 in axon refinement during development. PMID:26730399

  20. Anatomical study on the innervation of the elbow capsule☆

    PubMed Central

    Cavalheiro, Cristina Schmitt; Filho, Mauro Razuk; Rozas, João; Wey, João; de Andrade, Antonio Marcos; Caetano, Edie Benedito

    2015-01-01

    Objectives To put forward an anatomical description of the innervation of the elbow capsule, illustrated through morphological analysis on dissections. Methods Thirty elbows from fresh fixed adult cadavers aged 32–74 years, of both sexes, were dissected. Results Among the dissected arms, we observed that the median nerve did not have any branches in two arms, while it had one branch in five arms, two branches in two arms, three branches in ten arms, four branches in nine arms and five branches in two arms. The radial nerve did not have any branches in two arms, while it had one branch in two arms, two branches in nine arms, three branches in ten arms, four branches in five arms and five branches in two arms. The ulnar nerve did not have any branches in three arms, while it had one branch in six arms, two branches in four arms, three branches in five arms, four branches in seven arms, five branches in four arms and six branches in one arm. Conclusions We observed branches of the radial, ulnar and medial nerves in the elbow joint, and a close relationship between their capsular and motor branches. PMID:27218079

  1. GAD67-mediated GABA synthesis and signaling regulate inhibitory synaptic innervation in the visual cortex.

    PubMed

    Chattopadhyaya, Bidisha; Di Cristo, Graziella; Wu, Cai Zhi; Knott, Graham; Kuhlman, Sandra; Fu, Yu; Palmiter, Richard D; Huang, Z Josh

    2007-06-21

    The development of GABAergic inhibitory circuits is shaped by neural activity, but the underlying mechanisms are unclear. Here, we demonstrate a novel function of GABA in regulating GABAergic innervation in the adolescent brain, when GABA is mainly known as an inhibitory transmitter. Conditional knockdown of the rate-limiting synthetic enzyme GAD67 in basket interneurons in adolescent visual cortex resulted in cell autonomous deficits in axon branching, perisomatic synapse formation around pyramidal neurons, and complexity of the innervation fields; the same manipulation had little influence on the subsequent maintenance of perisomatic synapses. These effects of GABA deficiency were rescued by suppressing GABA reuptake and by GABA receptor agonists. Germline knockdown of GAD67 but not GAD65 showed similar deficits, suggesting a specific role of GAD67 in the maturation of perisomatic innervation. Since intracellular GABA levels are modulated by neuronal activity, our results implicate GAD67-mediated GABA synthesis in activity-dependent regulation of inhibitory innervation patterns.

  2. Ontogeny of cardiac sympathetic innervation and its implications for cardiac disease.

    PubMed

    Vincentz, Joshua W; Rubart, Michael; Firulli, Anthony B

    2012-08-01

    The vertebrate heart is innervated by the sympathetic and parasympathetic components of the peripheral autonomic nervous system, which regulates its contractile rate and force. Understanding the mechanisms that control sympathetic neuronal growth, differentiation, and innervation of the heart may provide insight into the etiology of cardiac arrhythmogenesis. This review provides an overview of the cell signaling pathways and transcriptional effectors that regulate both the noradrenergic gene program during sympathetic neurogenesis and regional nerve density during cardiac innervation. Recent studies exploring transcriptional regulation of the bHLH transcription factor Hand1 in developing sympathetic neurons are explored, and how the Hand1 sympathetic neuron-specific cis-regulatory element may be used further to assess the contribution of altered sympathetic innervation to human cardiac disease is discussed.

  3. Correlation between automated writing movements and striatal dopaminergic innervation in patients with Wilson's disease.

    PubMed

    Hermann, Wieland; Eggers, Birk; Barthel, Henryk; Clark, Daniel; Villmann, Thomas; Hesse, Swen; Grahmann, Friedrich; Kühn, Hans-Jürgen; Sabri, Osama; Wagner, Armin

    2002-08-01

    Handwriting defects are an early sign of motor impairment in patients with Wilson's disease. The basal ganglia being the primary site of copper accumulation in the brain suggests a correlation with lesions in the nigrostiatal dopaminergic system. We have analysed and correlated striatal dopaminergic innervation using [(123)I]beta-CIT-SPECT and automated handwriting movements in 37 patients with Wilson's disease. There was a significant correlation of putaminal dopaminergic innervation with fine motor ability (p < 0,05 for NIV [number of inversion in velocity], NIA [number of inversion in acceleration], frequency). These data suggest that loss of dorsolateral striatal dopaminergic innervation has a pathophysiological function for decreased automated motor control in Wilson's disease. Furthermore analysis of automated handwriting movements could be useful for therapy monitoring and evaluation of striatal dopaminergic innervation. PMID:12195459

  4. Skeletal parasympathetic innervation communicates central IL-1 signals regulating bone mass accrual.

    PubMed

    Bajayo, Alon; Bar, Arik; Denes, Adam; Bachar, Marilyn; Kram, Vardit; Attar-Namdar, Malka; Zallone, Alberta; Kovács, Krisztina J; Yirmiya, Raz; Bab, Itai

    2012-09-18

    Bone mass accrual is a major determinant of skeletal mass, governed by bone remodeling, which consists of bone resorption by osteoclasts and bone formation by osteoblasts. Bone mass accrual is inhibited by sympathetic signaling centrally regulated through activation of receptors for serotonin, leptin, and ACh. However, skeletal activity of the parasympathetic nervous system (PSNS) has not been reported at the bone level. Here we report skeletal immune-positive fibers for the PSNS marker vesicular ACh transporter (VAChT). Pseudorabies virus inoculated into the distal femoral metaphysis is identifiable in the sacral intermediolateral cell column and central autonomic nucleus, demonstrating PSNS femoral innervation originating in the spinal cord. The PSNS neurotransmitter ACh targets nicotinic (nAChRs), but not muscarinic receptors in bone cells, affecting mainly osteoclasts. nAChR agonists up-regulate osteoclast apoptosis and restrain bone resorption. Mice deficient of the α(2)nAChR subunit have increased bone resorption and low bone mass. Silencing of the IL-1 receptor signaling in the central nervous system by brain-specific overexpression of the human IL-1 receptor antagonist (hIL1ra(Ast)(+/+) mice) leads to very low skeletal VAChT expression and ACh levels. These mice also exhibit increased bone resorption and low bone mass. In WT but not in hIL1ra(Ast)(+/+) mice, the cholinergic ACh esterase inhibitor pyridostigmine increases ACh levels and bone mass apparently by inhibiting bone resorption. Taken together, these results identify a previously unexplored key central IL-1-parasympathetic-bone axis that antagonizes the skeletal sympathetic tone, thus potently favoring bone mass accrual.

  5. The Effect of Exercise on Neuropathic Symptoms, Nerve Function, and Cutaneous Innervation in People with Diabetic Peripheral Neuropathy

    PubMed Central

    Kluding, Patricia M.; Pasnoor, Mamatha; Singh, Rupali; Jernigan, Stephen; Farmer, Kevin; Rucker, Jason; Sharma, Neena; Wright, Douglas E.

    2012-01-01

    Although exercise can significantly reduce the prevalence and severity of diabetic complications, no studies have evaluated the impact of exercise on nerve function in people with diagnosed diabetic peripheral neuropathy (DPN). The purpose of this pilot study was to examine feasibility and effectiveness of a supervised, moderately intense aerobic and resistance exercise program in people with DPN. We hypothesize that the exercise intervention can improve neuropathic symptoms, nerve function, and cutaneous innervation. Methods A pre-test post-test design was to assess change in outcome measures following participation in a 10-week aerobic and strengthening exercise program. Seventeen subjects with diagnosed DPN (8 males/9 females; age 58.4±5.98; duration of diabetes 12.4±12.2 years) completed the study. Outcome measures included pain measures (visual analog scale), Michigan Neuropathy Screening Instrument (MNSI) questionnaire of neuropathic symptoms, nerve function measures, and intraepidermal nerve fiber (IENF) density and branching in distal and proximal lower extremity skin biopsies. Results Significant reductions in pain (−18.1±35.5 mm on a 100 mm scale, p=0.05), neuropathic symptoms (−1.24±1.8 on MNSI, p=0.01), and increased intraepidermal nerve fiber branching (+0.11±0.15 branch nodes/fiber, p=−.008) from a proximal skin biopsy were noted following the intervention. Conclusions This is the first study to describe improvements in neuropathic and cutaneous nerve fiber branching following supervised exercise in people with diabetic peripheral neuropathy. These findings are particularly promising given the short duration of the intervention, but need to be validated by comparison with a control group in future studies. PMID:22717465

  6. Postnatal changes in serotonergic innervation to the hippocampus of methyl-CpG-binding protein 2-null mice.

    PubMed

    Isoda, K; Morimoto, M; Matsui, F; Hasegawa, T; Tozawa, T; Morioka, S; Chiyonobu, T; Nishimura, A; Yoshimoto, K; Hosoi, H

    2010-02-17

    Rett syndrome is a progressive neurodevelopmental disorder caused by mutations in the methyl-CpG-binding protein 2 (MeCP2) gene. Previous reports have revealed serotonergic function to be altered in the medullas of patients with Rett syndrome and in an animal model of the disease. However, it has remained unclear whether a genetic loss of MeCP2 disrupts serotonergic innervation to the forebrain. In this study, we measured levels of monoamines by high-performance liquid chromatography with electrochemical detection in selected regions of the forebrains of Mecp2-null mice (Mecp2-/y) and wild-type mice (Mecp2+/y) on postnatal day (P) 14, P28, P42 and P56. The levels of hippocampal serotonin (5-HT) and its main metabolite, 5-hydroxyindoleacetic acid (5-HIAA), were significantly lower in Mecp2-null mice than in age-matched wild-type mice on P28, P42 and P56. Immunohistochemical analysis revealed a loss of 5-HT-immunoreactive fibers in the Mecp2-null hippocampus on P56. By contrast, in the raphe region of Mecp2-null mice, there were significant decreases in 5-HT and noradrenaline levels, but these differences later disappeared and there was no change in the number of 5-HT-immunoreactive neuronal cell bodies. Furthermore, we conducted an experiment comparing HPLC measurements in presymptomatic heterozygous females (Mecp2+/-) and wild-type female littermates (Mecp2+/+) on P56. Significant decreases in hippocampal 5-HT and 5-HIAA contents in Mecp2-heterozygous mice were revealed, and these were not accompanied by changes in 5-HT or noradrenaline contents in the raphe region. Therefore, these results indicated decreases in serotonergic innervation to the hippocampus in Mecp2-null males and Mecp2 heterozygous females. We speculate that disturbances in serotonergic neurotransmission in the hippocampus may be linked to the behavioral abnormalities seen in Rett syndrome, such as increased anxiety-like behaviors and reduced exploratory locomotion. MeCP2 may be required for stable

  7. Evidence for the tonic inhibition of spinal pain by nicotinic cholinergic transmission through primary afferents

    PubMed Central

    Matsumoto, Misaki; Xie, Weijiao; Inoue, Makoto; Ueda, Hiroshi

    2007-01-01

    Background We have proposed that nerve injury-specific loss of spinal tonic cholinergic inhibition may play a role in the analgesic effects of nicotinic acetylcholine receptor (nAChR) agonists on neuropathic pain. However, the tonic cholinergic inhibition of pain remains to be well characterized. Results Here, we show that choline acetyltransferase (ChAT) signals were localized not only in outer dorsal horn fibers (lamina I–III) and motor neurons in the spinal cord, but also in the vast majority of neurons in the dorsal root ganglion (DRG). When mice were treated with an antisense oligodeoxynucleotide (AS-ODN) against ChAT, which decreased ChAT signals in the dorsal horn and DRG, but not in motor neurons, they showed a significant decrease in nociceptive thresholds in paw pressure and thermal paw withdrawal tests. Furthermore, in a novel electrical stimulation-induced paw withdrawal (EPW) test, the thresholds for stimulation through C-, Aδ- and Aβ-fibers were all decreased by AS-ODN-pretreatments. The administration of nicotine (10 nmol i.t.) induced a recovery of the nociceptive thresholds, decreased by the AS-ODN, in the mechanical, thermal and EPW tests. However, nicotine had no effects in control mice or treated with a mismatch scramble (MS)-ODN in all of these nociception tests. Conclusion These findings suggest that primary afferent cholinergic neurons produce tonic inhibition of spinal pain through nAChR activation, and that intrathecal administration of nicotine rescues the loss of tonic cholinergic inhibition. PMID:18088441

  8. Defects in myelination, paranode organization and Purkinje cell innervation in the ether lipid-deficient mouse cerebellum

    PubMed Central

    Teigler, Andre; Komljenovic, Dorde; Draguhn, Andreas; Gorgas, Karin; Just, Wilhelm W.

    2009-01-01

    Ether lipids (ELs), particularly plasmalogens, are essential constituents of the mammalian central nervous system. The physiological role of ELs, in vivo, however is still enigmatic. In the present study, we characterized a mouse model carrying a targeted deletion of the peroxisomal dihydroxyacetonephosphate acyltransferase gene that results in the complete lack of ELs. Investigating the cerebellum of these mice, we observed: (i) defects in foliation patterning and delay in precursor