Science.gov

Sample records for afferent neurons cans

  1. Anatomy and Physiology of Phrenic Afferent Neurons.

    PubMed

    Nair, Jayakrishnan; Streeter, Kristi A; Turner, Sara M F; Sunshine, Michael D; Bolser, Donald C; Fox, Emily J; Davenport, Paul W; Fuller, David D

    2017-08-23

    Large diameter myelinated phrenic afferents discharge in phase with diaphragm contraction and smaller diameter fibers discharge across the respiratory cycle. In this article, we review the phrenic afferent literature and highlight areas in need of further study. We conclude that 1) activation of both myelinated and non-myelinated phrenic sensory afferents can influence respiratory motor output on a breath-by-breath basis; 2) the relative impact of phrenic afferents substantially increases with diaphragm work and fatigue; 3) activation of phrenic afferents has a powerful impact on sympathetic motor outflow, and 4) phrenic afferents contribute to diaphragm somatosensation and the conscious perception of breathing. Much remains to be learned regarding the spinal and supraspinal distribution and synaptic contacts of myelinated and non-myelinated phrenic afferents. Similarly, very little is known regarding the potential role of phrenic afferent neurons in triggering or modulating expression of respiratory neuroplasticity. Copyright © 2017, Journal of Neurophysiology.

  2. NMDA receptor subunit expression and PAR2 receptor activation in colospinal afferent neurons (CANs) during inflammation induced visceral hypersensitivity

    PubMed Central

    Suckow, Shelby K; Caudle, Robert M

    2009-01-01

    Background Visceral hypersensitivity is a clinical observation made when diagnosing patients with functional bowel disorders. The cause of visceral hypersensitivity is unknown but is thought to be attributed to inflammation. Previously we demonstrated that a unique set of enteric neurons, colospinal afferent neurons (CANs), co-localize with the NR1 and NR2D subunits of the NMDA receptor as well as with the PAR2 receptor. The aim of this study was to determine if NMDA and PAR2 receptors expressed on CANs contribute to visceral hypersensitivity following inflammation. Recently, work has suggested that dorsal root ganglion (DRG) neurons expressing the transient receptor potential vanilloid-1 (TRPV1) receptor mediate inflammation induced visceral hypersensitivity. Therefore, in order to study CAN involvement in visceral hypersensitivity, DRG neurons expressing the TRPV1 receptor were lesioned with resiniferatoxin (RTX) prior to inflammation and behavioural testing. Results CANs do not express the TRPV1 receptor; therefore, they survive following RTX injection. RTX treatment resulted in a significant decrease in TRPV1 expressing neurons in the colon and immunohistochemical analysis revealed no change in peptide or receptor expression in CANs following RTX lesioning as compared to control data. Behavioral studies determined that both inflamed non-RTX and RTX animals showed a decrease in balloon pressure threshold as compared to controls. Immunohistochemical analysis demonstrated that the NR1 cassettes, N1 and C1, of the NMDA receptor on CANs were up-regulated following inflammation. Furthermore, inflammation resulted in the activation of the PAR2 receptors expressed on CANs. Conclusion Our data show that inflammation causes an up-regulation of the NMDA receptor and the activation of the PAR2 receptor expressed on CANs. These changes are associated with a decrease in balloon pressure in response to colorectal distension in non-RTX and RTX lesioned animals. Therefore

  3. NMDA receptor subunit expression and PAR2 receptor activation in colospinal afferent neurons (CANs) during inflammation induced visceral hypersensitivity.

    PubMed

    Suckow, Shelby K; Caudle, Robert M

    2009-09-22

    Visceral hypersensitivity is a clinical observation made when diagnosing patients with functional bowel disorders. The cause of visceral hypersensitivity is unknown but is thought to be attributed to inflammation. Previously we demonstrated that a unique set of enteric neurons, colospinal afferent neurons (CANs), co-localize with the NR1 and NR2D subunits of the NMDA receptor as well as with the PAR2 receptor. The aim of this study was to determine if NMDA and PAR2 receptors expressed on CANs contribute to visceral hypersensitivity following inflammation. Recently, work has suggested that dorsal root ganglion (DRG) neurons expressing the transient receptor potential vanilloid-1 (TRPV1) receptor mediate inflammation induced visceral hypersensitivity. Therefore, in order to study CAN involvement in visceral hypersensitivity, DRG neurons expressing the TRPV1 receptor were lesioned with resiniferatoxin (RTX) prior to inflammation and behavioural testing. CANs do not express the TRPV1 receptor; therefore, they survive following RTX injection. RTX treatment resulted in a significant decrease in TRPV1 expressing neurons in the colon and immunohistochemical analysis revealed no change in peptide or receptor expression in CANs following RTX lesioning as compared to control data. Behavioral studies determined that both inflamed non-RTX and RTX animals showed a decrease in balloon pressure threshold as compared to controls. Immunohistochemical analysis demonstrated that the NR1 cassettes, N1 and C1, of the NMDA receptor on CANs were up-regulated following inflammation. Furthermore, inflammation resulted in the activation of the PAR2 receptors expressed on CANs. Our data show that inflammation causes an up-regulation of the NMDA receptor and the activation of the PAR2 receptor expressed on CANs. These changes are associated with a decrease in balloon pressure in response to colorectal distension in non-RTX and RTX lesioned animals. Therefore, these data suggest that CANs

  4. Piezo2 expression in corneal afferent neurons.

    PubMed

    Bron, Romke; Wood, Rhiannon J; Brock, James A; Ivanusic, Jason J

    2014-09-01

    Recently, a novel class of mechanically sensitive channels has been identified and have been called Piezo channels. In this study, we explored Piezo channel expression in sensory neurons supplying the guinea pig corneal epithelium, which have well-defined modalities in this species. We hypothesized that a proportion of corneal afferent neurons express Piezo2, and that these neurons are neurochemically distinct from corneal polymodal nociceptors or cold-sensing neurons. We used a combination of retrograde tracing to identify corneal afferent neurons and double label in situ hybridization and/or immunohistochemistry to determine their molecular and/or neurochemical profile. We found that Piezo2 expression occurs in ∼26% of trigeminal ganglion neurons and 30% of corneal afferent neurons. Piezo2 corneal afferent neurons are almost exclusively non-calcitonin gene-related peptide (CGRP)-immunoreactive (-IR), medium- to large-sized neurons that are NF200-IR, suggesting they are not corneal polymodal nociceptors. There was no coexpression of Piezo2 and transient receptor potential cation channel subfamily M member 8 (TRPM8) transcripts in any corneal afferent neurons, further suggesting that Piezo2 is not expressed in corneal cold-sensing neurons. We also noted that TRPM8-IR or CGRP-IR corneal afferent neurons are almost entirely small and lack NF200-IR. Piezo2 expression occurs in a neurochemically distinct subpopulation of corneal afferent neurons that are not polymodal nociceptors or cold-sensing neurons, and is likely confined to a subpopulation of pure mechano-nociceptors in the cornea. This provides the first evidence in an in vivo system that Piezo2 is a strong candidate for a channel that transduces noxious mechanical stimuli. © 2014 Wiley Periodicals, Inc.

  5. Purinergic signaling in cochleovestibular hair cells and afferent neurons

    PubMed Central

    Dulon, Didier

    2010-01-01

    Purinergic signaling in the mammalian cochleovestibular hair cells and afferent neurons is reviewed. The scope includes P2 and P1 receptors in the inner hair cells (IHCs) of the cochlea, the type I spiral ganglion neurons (SGNs) that convey auditory signals from IHCs, the vestibular hair cells (VHCs) in the vestibular end organs (macula in the otolith organs and crista in the semicircular canals), and the vestibular ganglion neurons (VGNs) that transmit postural and rotatory information from VHCs. Various subtypes of P2X ionotropic receptors are expressed in IHCs as well as P2Y metabotropic receptors that mobilize intracellular calcium. Their functional roles still remain speculative, but adenosine 5′-triphosphate (ATP) could regulate the spontaneous activity of the hair cells during development and the receptor potentials of mature hair cells during sound stimulation. In SGNs, P2Y metabotropic receptors activate a nonspecific cation conductance that is permeable to large cations as NMDG+ and TEA+. Remarkably, this depolarizing nonspecific conductance in SGNs can also be activated by other metabotropic processes evoked by acetylcholine and tachykinin. The molecular nature and the role of this depolarizing channel are unknown, but its electrophysiological properties suggest that it could lie within the transient receptor potential channel family and could regulate the firing properties of the afferent neurons. Studies on the vestibular partition (VHC and VGN) are sparse but have also shown the expression of P2X and P2Y receptors. There is still little evidence of functional P1 (adenosine) receptors in the afferent system of the inner ear. PMID:20806012

  6. Functional expression of α7-nicotinic acetylcholine receptors by muscle afferent neurons

    PubMed Central

    Baxter, James C.; Ramachandra, Renuka; Mayne, Dustin R.

    2014-01-01

    The exercise pressor reflex (EPR) is generated by group III and IV muscle afferents during exercise to increase cardiovascular function. Muscle contraction is triggered by ACh, which is metabolized into choline that could serve as a signal of exercise-induced activity. We demonstrate that ACh can induce current in muscle afferents neurons isolated from male Sprague-Dawley rats. The nicotinic ACh receptors (nAChRs) appear to be expressed by some group III-IV neurons since capsaicin (TRPV1) and/or ATP (P2X) induced current in 56% of ACh-responsive neurons. α7- And α4β2-nAChRs have been shown to be expressed in sensory neurons. An α7-nAChR antibody stained 83% of muscle afferent neurons. Functional expression was demonstrated by using the specific α7-nAChR blockers α-conotoxin ImI (IMI) and methyllycaconitine (MLA). MLA inhibited ACh responses in 100% of muscle afferent neurons, whereas IMI inhibited ACh responses in 54% of neurons. Dihydro-β-erythroidine, an α4β2-nAChR blocker, inhibited ACh responses in 50% of muscle afferent neurons, but recovery from block was not observed. Choline, an α7-nAChR agonist, elicited a response in 60% of ACh-responsive neurons. Finally, we demonstrated the expression of α7-nAChR by peripherin labeled (group IV) afferent fibers within gastrocnemius muscles. Some of these α7-nAChR-positive fibers were also positive for P2X3 receptors. Thus choline could serve as an activator of the EPR by opening α7-nAChR expressed by group IV (and possible group III) afferents. nAChRs could become pharmacological targets for suppressing the excessive EPR activation in patients with peripheral vascular disease. PMID:24966300

  7. Endocannabinoids and prostaglandins both contribute to GnRH neuron-GABAergic afferent local feedback circuits

    PubMed Central

    Glanowska, Katarzyna M.

    2011-01-01

    Gonadotropin-releasing hormone (GnRH) neurons form the final common pathway for central control of fertility. Regulation of GnRH neurons by long-loop gonadal steroid feedback through steroid receptor-expressing afferents such as GABAergic neurons is well studied. Recently, local central feedback circuits regulating GnRH neurons were identified. GnRH neuronal depolarization induces short-term inhibition of their GABAergic afferents via a mechanism dependent on metabotropic glutamate receptor (mGluR) activation. GnRH neurons are enveloped in astrocytes, which express mGluRs. GnRH neurons also produce endocannabinoids, which can be induced by mGluR activation. We hypothesized the local GnRH-GABA circuit utilizes glia-derived and/or cannabinoid mechanisms and is altered by steroid milieu. Whole cell voltage-clamp was used to record GABAergic postsynaptic currents (PSCs) from GnRH neurons before and after action potential-like depolarizations were mimicked. In GnRH neurons from ovariectomized (OVX) mice, this depolarization reduced PSC frequency. This suppression was blocked by inhibition of prostaglandin synthesis with indomethacin, by a prostaglandin receptor antagonist, or by a specific glial metabolic poison, together suggesting the postulate that prostaglandins, potentially glia-derived, play a role in this circuit. This circuit was also inhibited by a CB1 receptor antagonist or by blockade of endocannabinoid synthesis in GnRH neurons, suggesting an endocannabinoid element, as well. In females, local circuit inhibition persisted in androgen-treated mice but not in estradiol-treated mice or young ovary-intact mice. In contrast, local circuit inhibition was present in gonad-intact males. These data suggest GnRH neurons interact with their afferent neurons using multiple mechanisms and that these local circuits can be modified by both sex and steroid feedback. PMID:21917995

  8. Glucose-dependent trafficking of 5-HT3 receptors in rat gastrointestinal vagal afferent neurons

    PubMed Central

    Babic, Tanja; Troy, Amanda E; Fortna, Samuel R; Browning, Kirsteen N

    2012-01-01

    Background Intestinal glucose induces gastric relaxation via vagally mediated sensory-motor reflexes. Glucose can alter the activity of gastrointestinal (GI) vagal afferent (sensory) neurons directly, via closure of ATP-sensitive potassium channels, as well as indirectly, via the release of 5-hydroxytryptamine (5-HT) from mucosal enteroendocrine cells. We hypothesized that glucose may also be able to modulate the ability of GI vagal afferent neurons to respond to the released 5-HT, via regulation of neuronal 5-HT3 receptors. Methods Whole cell patch clamp recordings were made from acutely dissociated GI-projecting vagal afferent neurons exposed to equiosmolar Krebs’ solution containing different concentrations of D-glucose (1.25–20mM) and the response to picospritz application of 5-HT assessed. The distribution of 5-HT3 receptors in neurons exposed to different glucose concentrations was also assessed immunohistochemically. Key Results Increasing or decreasing extracellular D-glucose concentration increased or decreased, respectively, the 5-HT-induced inward current as well as the proportion of 5-HT3 receptors associated with the neuronal membrane. These responses were blocked by the Golgi-disrupting agent Brefeldin-A (5µM) suggesting involvement of a protein trafficking pathway. Furthermore, L-glucose did not mimic the response of D-glucose implying that metabolic events downstream of neuronal glucose uptake are required in order to observe the modulation of 5-HT3 receptor mediated responses. Conclusions & Inferences These results suggest that, in addition to inducing the release of 5-HT from enterochromaffin cells, glucose may also increase the ability of GI vagal sensory neurons to respond to the released 5-HT, providing a means by which the vagal afferent signal can be amplified or prolonged. PMID:22845622

  9. Regulation of Piezo2 Mechanotransduction by Static Plasma Membrane Tension in Primary Afferent Neurons.

    PubMed

    Jia, Zhanfeng; Ikeda, Ryo; Ling, Jennifer; Viatchenko-Karpinski, Viacheslav; Gu, Jianguo G

    2016-04-22

    The Piezo2 channel is a newly identified mammalian mechanical transducer that confers rapidly adapting mechanically activated (RA-MA) currents in primary afferent neurons. The Piezo2 channels sense rapid membrane displacement, but it is not clear whether they are sensitive to osmotic swelling, which slowly increases static plasma membrane tension (SPMT). Here, we show that SPMT exerts a profound impact on the mechanical sensitivity of RA-MA channels in primary afferent neurons. RA-MA currents are greatly enhanced, and the mechanical threshold was reduced in both primary afferent neurons of rat dorsal root ganglia (DRG) and HEK293 cells heterologously expressing Piezo2 when these cells undergo osmotic swelling to increase SPMT. Osmotic swelling switches the kinetics of RA-MA currents to the slowly adapting type in both cultured DRG neurons and HEK293 cells heterologously expressing Piezo2. The potentiation of RA-MA currents is abolished when cultured DRG neurons are treated with cytochalasin D, an actin filament disruptor that prevents SPMT of cultured DRG neurons from an increase by osmotic swelling. Osmotic swelling significantly increases DRG neuron mechano-excitability such that a subthreshold mechanical stimulus can result in action potential firing. Behaviorally, the mechanical hind paw withdrawal threshold in rats is reduced following the injection of a hypotonic solution, but this osmotic effect is abolished when cytochalasin D or Gd(3+) is co-administered with the hypo-osmotic solution. Taken together, our findings suggest that Piezo2-mediated mechanotransduction is regulated by SPMT in primary afferent neurons. Because SPMT can be changed by multiple biological factors, our findings may have broad implications in mechanical sensitivity under physiological and pathological conditions. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Regulation of Piezo2 Mechanotransduction by Static Plasma Membrane Tension in Primary Afferent Neurons*

    PubMed Central

    Jia, Zhanfeng; Ikeda, Ryo; Ling, Jennifer; Viatchenko-Karpinski, Viacheslav; Gu, Jianguo G.

    2016-01-01

    The Piezo2 channel is a newly identified mammalian mechanical transducer that confers rapidly adapting mechanically activated (RA-MA) currents in primary afferent neurons. The Piezo2 channels sense rapid membrane displacement, but it is not clear whether they are sensitive to osmotic swelling, which slowly increases static plasma membrane tension (SPMT). Here, we show that SPMT exerts a profound impact on the mechanical sensitivity of RA-MA channels in primary afferent neurons. RA-MA currents are greatly enhanced, and the mechanical threshold was reduced in both primary afferent neurons of rat dorsal root ganglia (DRG) and HEK293 cells heterologously expressing Piezo2 when these cells undergo osmotic swelling to increase SPMT. Osmotic swelling switches the kinetics of RA-MA currents to the slowly adapting type in both cultured DRG neurons and HEK293 cells heterologously expressing Piezo2. The potentiation of RA-MA currents is abolished when cultured DRG neurons are treated with cytochalasin D, an actin filament disruptor that prevents SPMT of cultured DRG neurons from an increase by osmotic swelling. Osmotic swelling significantly increases DRG neuron mechano-excitability such that a subthreshold mechanical stimulus can result in action potential firing. Behaviorally, the mechanical hind paw withdrawal threshold in rats is reduced following the injection of a hypotonic solution, but this osmotic effect is abolished when cytochalasin D or Gd3+ is co-administered with the hypo-osmotic solution. Taken together, our findings suggest that Piezo2-mediated mechanotransduction is regulated by SPMT in primary afferent neurons. Because SPMT can be changed by multiple biological factors, our findings may have broad implications in mechanical sensitivity under physiological and pathological conditions. PMID:26929410

  11. Piezo2 Expression in Mechanosensitive Dental Primary Afferent Neurons.

    PubMed

    Won, J; Vang, H; Lee, P R; Kim, Y H; Kim, H W; Kang, Y; Oh, S B

    2017-07-01

    Mechanosensitive ion channels have been suggested to be expressed in dental primary afferent (DPA) neurons to transduce the movement of dentinal fluid since the proposal of hydrodynamic theory. Piezo2, a mechanosensitive, rapidly inactivating (RI) ion channel, has been recently identified in dorsal root ganglion (DRG) neurons to mediate tactile transduction. Here, we examined the expression of Piezo2 in DPA neurons by in situ hybridization, single-cell reverse transcriptase polymerase chain reaction, and whole-cell patch-clamp recordings. DPA neurons with Piezo2 messenger RNA (mRNA) or Piezo2-like currents were further characterized based on their neurochemical and electrophysiological properties. Piezo2 mRNA was found mostly in medium- to large-sized DPA neurons, with the majority of these neurons also positive for Nav1.8, CGRP, and NF200, whereas only a minor population was positive for IB4 and peripherin. Whole-cell patch-clamp recordings revealed Piezo2-like, RI currents evoked by mechanical stimulation in a subpopulation of DPA neurons. RI currents were pharmacologically blocked by ruthenium red, a compound known to block Piezo2, and were also reduced by small interfering RNA-mediated Piezo2 knockdown. Piezo2-like currents were observed almost exclusively in IB4-negative DPA neurons, with the current amplitude larger in capsaicin-insensitive DPA neurons than the capsaicin-sensitive population. Our findings show that subpopulation of DPA neurons is indeed mechanically sensitive. Within this subpopulation of mechanosensitive DPA neurons, we have identified the Piezo2 ion channel as a potential transducer for mechanical stimuli, contributing to RI inward currents. Piezo2-positive DPA neurons were characterized as medium- to large-sized neurons with myelinated A-fibers, containing nociceptive peptidergic neurotransmitters.

  12. Electrophysiological and pharmacological validation of vagal afferent fiber type of neurons enzymatically isolated from rat nodose ganglia

    PubMed Central

    Li, Bai-Yan; Schild, John H

    2007-01-01

    An unavoidable consequence of enzymatic dispersion of sensory neurons from intact ganglia is loss of the axon and thus the ability to classify afferent fiber type based upon conduction velocity (CV). An intact rat nodose ganglion preparation was used to randomly sample neurons (n = 76) using the patch clamp technique. Reliable electrophysiological and chemophysiological correlates of afferent fiber type were established for use with isolated neuron preparations. Myelinated afferents (~25%) formed two groups exhibiting strikingly different functional profiles. One group (n = 10) exhibited CVs in excess of 10 m/s and narrow (< 1 ms) action potentials (APs) while the other (n = 9) had CVs as low as 4 m/s and broad (> 2 ms) APs that closely approximated those identified as unmyelinated afferents (n = 57) with CVs less than 1 m/s. A cluster analysis of select measures from the AP waveforms strongly correlated with CV, producing three statistically unique populations (p < 0.05). These groupings aligned with our earlier hypothesis (Jin et al., 2004) that a differential sensitivity to the selective purinergic and vanilloid receptor agonists can be used as reliable pharmacological indicators of vagal afferent fiber type. These metrics were further validated using an even larger population of isolated (n = 240) nodose neurons. Collectively, these indicators of afferent fiber type can be used to provide valuable insight concerning the relavence of isolated cellular observations to integrated afferent function of visceral organ systems. PMID:17512602

  13. Dynamic GABAergic afferent modulation of AgRP neurons

    PubMed Central

    Garfield, Alastair S; Shah, Bhavik P; Burgess, Christian R; Li, Monica M; Li, Chia; Steger, Jennifer S; Madara, Joseph C; Campbell, John N; Kroeger, Daniel; Scammell, Thomas E; Tannous, Bakhos A; Myers, Martin G; Andermann, Mark L; Krashes, Michael J; Lowell, Bradford B

    2017-01-01

    Agouti-related peptide (AgRP) neurons of the arcuate nucleus of the hypothalamus (ARC) promote homeostatic feeding at times of caloric insufficiency, yet they are rapidly suppressed by food-related sensory cues prior to ingestion. Here we identify a highly selective inhibitory afferent to AgRP neurons that serves as a neural determinant of this rapid modulation. Specifically, GABAergic projections arising from the ventral compartment of the dorsomedial nucleus of the hypothalamus (vDMH) contribute to the pre-consummatory modulation of ARCAgRP neurons. In a manner reciprocal to ARCAgRP neurons, ARC-projecting leptin receptor (LepR)-expressing GABAergic DMH neurons exhibit rapid activation upon availability of food that additionally reflects the relative value of the food. Thus, DMHLepR neurons form part of the sensory network that relays real-time information about the nature and availability of food to dynamically modulate ARCAgRP neuron activity and feeding behavior. PMID:27643429

  14. Heat pulse excitability of vestibular hair cells and afferent neurons

    PubMed Central

    Brichta, Alan M.; Tabatabaee, Hessam; Boutros, Peter J.; Ahn, JoongHo; Della Santina, Charles C.; Poppi, Lauren A.; Lim, Rebecca

    2016-01-01

    In the present study we combined electrophysiology with optical heat pulse stimuli to examine thermodynamics of membrane electrical excitability in mammalian vestibular hair cells and afferent neurons. We recorded whole cell currents in mammalian type II vestibular hair cells using an excised preparation (mouse) and action potentials (APs) in afferent neurons in vivo (chinchilla) in response to optical heat pulses applied to the crista (ΔT ≈ 0.25°C per pulse). Afferent spike trains evoked by heat pulse stimuli were diverse and included asynchronous inhibition, asynchronous excitation, and/or phase-locked APs synchronized to each infrared heat pulse. Thermal responses of membrane currents responsible for APs in ganglion neurons were strictly excitatory, with Q10 ≈ 2. In contrast, hair cells responded with a mix of excitatory and inhibitory currents. Excitatory hair cell membrane currents included a thermoelectric capacitive current proportional to the rate of temperature rise (dT/dt) and an inward conduction current driven by ΔT. An iberiotoxin-sensitive inhibitory conduction current was also evoked by ΔT, rising in <3 ms and decaying with a time constant of ∼24 ms. The inhibitory component dominated whole cell currents in 50% of hair cells at −68 mV and in 67% of hair cells at −60 mV. Responses were quantified and described on the basis of first principles of thermodynamics. Results identify key molecular targets underlying heat pulse excitability in vestibular sensory organs and provide quantitative methods for rational application of optical heat pulses to examine protein biophysics and manipulate cellular excitability. PMID:27226448

  15. Phrenic nerve afferent activation of neurons in the cat SI cerebral cortex.

    PubMed

    Davenport, Paul W; Reep, Roger L; Thompson, Floyd J

    2010-03-01

    mean onset latency of 36.0 +/- 4.2 ms and mean burst duration of 32.2 +/- 8.4 ms. The long-latency units were recorded at an average depth of 2.4 +/- 0.2 mm below the cortical surface. The results of the study demonstrated that phrenic nerve afferents have a short-latency central projection to the SI somatosensory cortex. The phrenic afferents activated neurons in lamina III and IV of areas 3a and 3b. The cortical representation of phrenic nerve afferents is medial to the forelimb, lateral to the hindlimb, similar to thoracic loci, hence the phrenic afferent SI site in the cat homunculus is consistent with body position (thoracic region) rather than spinal segment (C(5)-C(7)). The phrenic afferent activation of the somatosensory cortex is bilateral, with the ipsilateral cortical activation occurring subsequent to the contralateral. These results support the hypothesis that phrenic afferents provide somatosensory information to the cerebral cortex which can be used for diaphragmatic proprioception and somatosensation.

  16. Evidence that the Tritonia diomedea Swim Afferent Neurons Are Glutamatergic

    PubMed Central

    Megalou, E.V.; Brandon, C.J.; Frost, W.N.

    2011-01-01

    The escape swim response of the marine mollusc Tritonia diomedea is a well-established model system for studies of the neural basis of behavior. While the swim neural network is reasonably well understood, little is known about the transmitters used by its constituent neurons. In the present study, we provide immunocytochemical and electrophysiological evidence that the S-cells, the afferent neurons that detect aversive skin stimuli and in turn trigger Tritonia’s escape swim response, use glutamate as their transmitter. First, immunolabeling revealed that S-cell somata contain elevated levels of glutamate compared to most other neurons in the Tritonia brain, consistent with findings from glutamatergic neurons in many species. Second, pressure-applied puffs of glutamate produced the same excitatory response in the target neurons of the S-cells as the naturally released S-cell transmitter itself. Third, the glutamate receptor antagonist CNQX completely blocked S-cell synaptic connections. These findings support glutamate as a transmitter used by the S-cells, and will facilitate studies using this model system to explore a variety of issues related to the neural basis of behavior. PMID:19366921

  17. Corneal afferents differentially target thalamic- and parabrachial-projecting neurons in spinal trigeminal nucleus caudalis.

    PubMed

    Aicher, S A; Hermes, S M; Hegarty, D M

    2013-03-01

    Dorsal horn neurons send ascending projections to both thalamic nuclei and parabrachial nuclei; these pathways are thought to be critical pathways for central processing of nociceptive information. Afferents from the corneal surface of the eye mediate nociception from this tissue which is susceptible to clinically important pain syndromes. This study examined corneal afferents to the trigeminal dorsal horn and compared inputs to thalamic- and parabrachial-projecting neurons. We used anterograde tracing with cholera toxin B subunit to identify corneal afferent projections to trigeminal dorsal horn, and the retrograde tracer FluoroGold to identify projection neurons. Studies were conducted in adult male Sprague-Dawley rats. Our analysis was conducted at two distinct levels of the trigeminal nucleus caudalis (Vc) which receive corneal afferent projections. We found that corneal afferents project more densely to the rostral pole of Vc than the caudal pole. We also quantified the number of thalamic- and parabrachial-projecting neurons in the regions of Vc that receive corneal afferents. Corneal afferent inputs to both groups of projection neurons were also more abundant in the rostral pole of Vc. Finally, by comparing the frequency of corneal afferent appositions to thalamic- versus parabrachial-projecting neurons, we found that corneal afferents preferentially target parabrachial-projecting neurons in trigeminal dorsal horn. These results suggest that nociceptive pain from the cornea may be primarily mediated by a non-thalamic ascending pathway. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. Corneal afferents differentially target thalamic- and parabrachial-projecting neurons in trigeminal subnucleus caudalis

    PubMed Central

    Aicher, Sue A.; Hermes, Sam M.; Hegarty, Deborah M.

    2012-01-01

    Dorsal horn neurons send ascending projections to both thalamic nuclei and parabrachial nuclei; these pathways are thought to be critical pathways for central processing of nociceptive information. Afferents from the corneal surface of the eye mediate nociception from this tissue which is susceptible to clinically important pain syndromes. This study examined corneal afferents to the trigeminal dorsal horn and compared inputs to thalamic- and parabrachial-projecting neurons. We used anterograde tracing with cholera toxin B subunit to identify corneal afferent projections to trigeminal dorsal horn, and the retrograde tracer FluoroGold to identify projection neurons. Studies were conducted in adult male Sprague-Dawley rats. Our analysis was conducted at two distinct levels of the trigeminal subnucleus caudalis (Vc) which receive corneal afferent projections. We found that corneal afferents project more densely to the rostral pole of Vc than the caudal pole. We also quantified the number of thalamic- and parabrachial-projecting neurons in the regions of Vc that receive corneal afferents. Corneal afferent inputs to both groups of projection neurons were also more abundant in the rostral pole of Vc. Finally, by comparing the frequency of corneal afferent appositions to thalamic- versus parabrachial-projecting neurons, we found that corneal afferents preferentially target parabrachial-projecting neurons in trigeminal dorsal horn. These results suggest that nociceptive pain from the cornea may be primarily mediated by a non-thalamic ascending pathway. PMID:23201828

  19. Chronic exposure to low dose bacterial lipopolysaccharide inhibits leptin signaling in vagal afferent neurons.

    PubMed

    de La Serre, Claire B; de Lartigue, Guillaume; Raybould, Helen E

    2015-02-01

    Bacterially derived factors are implicated in the causation and persistence of obesity. Ingestion of a high fat diet in rodents and obesity in human subjects is associated with chronic elevation of low plasma levels of lipopolysaccharide (LPS), a breakdown product of Gram-negative bacteria. The terminals of vagal afferent neurons are positioned within the gut mucosa to convey information from the gut to the brain to regulate food intake and are responsive to LPS. We hypothesized that chronic elevation of LPS could alter vagal afferent signaling. We surgically implanted osmotic mini-pumps that delivered a constant, low-dose of LPS into the intraperitoneal cavity of rats (12.5 μg/kg/hr for 6 weeks). LPS-treated rats developed hyperphagia and showed marked changes in vagal afferent neuron function. Chronic LPS treatment reduced vagal afferent leptin signaling, characterized by a decrease in leptin-induced STAT3 phosphorylation. In addition, LPS treatment decreased cholecystokinin-induced satiety. There was no alteration in leptin signaling in the hypothalamus. These findings offer a mechanism by which a change in gut microflora can promote hyperphagia, possibly leading to obesity.

  20. Cardiopulmonary sympathetic afferent input to lower thoracic spinal neurons.

    PubMed

    Ammons, W S

    1990-10-08

    Spinal neuronal responses to stimulation of cardiopulmonary sympathetic afferent (CPS) fibers were studied in 25 alpha-chloralose-anesthetized cats. Eighty-two neurons located in the T7-T9 segments were tested for responses to electrical stimulation of CPS fibers. Activity of 55 neurons was altered; 37 were excited, 10 were inhibited, and 8 were both excited and inhibited. All 55 cells with CPS input also responded to stimulation of somatic receptors and the left greater splanchnic nerve (SPL). Somatic receptive fields were primarily located on the upper portion of the abdomen and left lower rib cage. Short and long latency responses occurred following CPS and SPL stimulation. Latencies of responses to CPS stimulation were significantly longer than latencies of responses to SPL stimulation (P less than 0.05). Early responses to CPS stimulation were significantly less in magnitude compared to early responses to SPL stimulation (P less than 0.05). Cell responses to CPS stimulation were reduced in magnitude for as long as 300 ms when a conditioning stimulus was applied to SPL. Inhibitory responses of 10 cells to CPS fiber stimulation were best observed during repetitive stimulation. Eight of the cells were also inhibited by repetitive stimulation of SPL. Injection of bradykinin (4 micrograms/kg) into the left atrium increased activity of 16/30 cells from 8 +/- 2 to 22 +/- 5 spikes/s. The results demonstrate that CPS fiber stimulation alters activity of lower thoracic spinal neurons but not as intensely as SPL stimulation. These neurons may participate in cardiac-abdominal visceral reflexes or the pain of cardiac origin that is referred to the abdomen.

  1. ATP-sensitive muscle afferents activate spinal trigeminal neurons with meningeal afferent input in rat - pathophysiological implications for tension-type headache.

    PubMed

    Nöbel, Moritz; Feistel, Stephan; Ellrich, Jens; Messlinger, Karl

    2016-12-01

    Tension-type headache and other primary headaches may be triggered or aggravated by disorders of pericranial muscles, which is possibly due to convergent or collateral afferent input from meningeal and muscular receptive areas. In rodent models high extracellular concentrations of ATP caused muscle nociception and central sensitization of second order neurons. In a rat model of meningeal nociception we asked if spinal trigeminal activity induced by ATP can be modulated by local anaesthesia of distinct muscles. Ongoing activity was recorded from spinal trigeminal neurons with afferent input from the cranial dura mater, the temporal muscle and neck muscles. The stable ATP analogue α,β-methylene adenosine 5'-triphosphate (α,β-meATP, 10 mM) was injected into the ipsilateral temporal muscle, 30 min later followed by injection of local anaesthetics (lidocaine, 2 %) into the ipsilateral neck muscles and/or the temporal muscle. Injection of α,β-meATP into the temporal muscle caused progressive increase in ongoing activity of most of the spinal trigeminal neurons within 30 min. Injection of lidocaine into the neck muscles and/or the temporal muscle reduced this activation to previous levels within 10 min. Distinct spinal trigeminal neurons processing meningeal nociceptive information are under the control of convergent afferent input from several pericranial muscles. Blockade of at least one of these inputs can normalize central trigeminal activity. This may explain why therapeutic manipulations of head muscles can be beneficial in primary headaches.

  2. Quantitative Analysis of Mouse Dural Afferent Neurons Expressing TRPM8, VGLUT3, and NF200.

    PubMed

    Ren, Lynn; Chang, Michelle Jaehee; Zhang, Zhiyu; Dhaka, Ajay; Guo, Zhaohua; Cao, Yu-Qing

    2017-09-19

    To quantify the abundance of dural afferent neurons expressing transient receptor potential channel melastatin 8 (TRPM8), vesicular glutamate transporter 3 (VGLUT3), and neurofilament 200 (NF200) in adult mice. With the increasing use of mice as a model system to study headache mechanisms, it is important to understand the composition of dural afferent neurons in mice. In a previous study, we have measured the abundance of mouse dural afferent neurons that express neuropeptide calcitonin gene-related peptide as well as two TRP channels TRPV1 and TRPA1, respectively. Here, we conducted quantitative analysis of three other dural afferent subpopulations in adult mice. We used the fluorescent tracer Fluoro-Gold to retrogradely label dural afferent neurons in adult mice expressing enhanced green fluorescent protein in discrete subpopulations of trigeminal ganglion (TG) neurons. Mechanoreceptors with myelinated fibers were identified by NF200 immunoreactivity. We also conducted Ca(2+) -imaging experiments to test the overlap between TRPM8 and VGLUT3 expression in mouse primary afferent neurons (PANs). The abundance of TRPM8-expressing neurons in dural afferent neurons was significantly lower than that in total TG neurons. The percentages of dural afferent neurons expressing VGLUT3 and NF200 were comparable to those of total TG neurons, respectively. TRPM8 agonist menthol evoked Ca(2+) influx in less than 7% VGLUT3-expressing PANs in adult mice. TG neurons expressing TRPM8, VGLUT3, and NF200 all innervate adult mouse dura. TRPM8 and VGLUT3 are expressed in distinct subpopulations of PANs in adult mice. These results provide an anatomical basis to investigate headache mechanisms in mouse models. © 2017 American Headache Society.

  3. Transient receptor potential (TRP) A1 activated currents in TRPV1 and cholecystokinin-sensitive cranial visceral afferent neurons.

    PubMed

    Choi, Myung-Jin; Jin, Zhenhua; Park, Yong Seek; Rhee, Young Kyoung; Jin, Young-Ho

    2011-04-06

    Culinary use of the pungent spices has potential health benefits including a reduction in food intake. Pungent spices often contain ingredients that activate members of the transient receptor potential (TRP) family A1 and evoke pain from capsaicin-sensitive somatosensory neurons. TRPA1 channel have also been identified on cranial visceral afferent neurons but their distribution and functional contributions are poorly understood. Visceral vagal neurons transduce mechanical and chemical signals from peripheral organs to the nucleus tractus solitarii. Many capsaicin-sensitive vagal afferents participate in peripheral satiety signaling that includes cholecystokinin (CCK) sensitive neurons. To assess signaling, the TRPA1 selective agonist allyl isothiocyanate (AITC) was tested together with CCK and capsaicin (200nM), a TRPV1 specific agonist. In isolated nodose neurons, AITC (0.05-0.2mM) evoked concentration-dependent inward currents in 38% of the tested neurons. The TRPA1 specific antagonist HC-030031 (10μM) blocked AITC responses. TRPA1 responses were mixed across neurons that were capsaicin-sensitive and -insensitive. However CCK evoked inward currents only on capsaicin-sensitive neurons and 28% of the CCK-sensitive neurons expressed TRPA1. Our results indicate that TRPA1 is co-expressed with TRPV1 in CCK-sensitive nodose neurons. The findings indicate a potential mechanism by which spices can act within cranial visceral afferent pathways mediating satiety and contribute to the reduction of the food intake associated with spiced diets.

  4. Electrophysiological property and chemical sensitivity of primary afferent neurons that innervate rat whisker hair follicles

    PubMed Central

    Ikeda, Ryo

    2016-01-01

    Whisker hair follicles are sensory organs that sense touch and perform tactile discrimination in animals, and they are sites where sensory impulses are initiated when whisker hairs touch an object. The sensory signals are then conveyed by whisker afferent fibers to the brain for sensory perception. Electrophysiological property and chemical sensitivity of whisker afferent fibers, important factors affecting whisker sensory processing, are largely not known. In the present study, we performed patch-clamp recordings from pre-identified whisker afferent neurons in whole-mount trigeminal ganglion preparations and characterized their electrophysiological property and sensitivity to ATP, serotonin and glutamate. Of 97 whisker afferent neurons examined, 67% of them are found to be large-sized (diameter ≥45 µm) cells and 33% of them are medium- to small-sized (diameter <45 µm) cells. Almost every large-sized whisker afferent neuron fires a single action potential but many (40%) small/medium-sized whisker afferent neurons fire multiple action potentials in response to prolonged stepwise depolarization. Other electrophysiological properties including resting membrane potential, action potential threshold, and membrane input resistance are also significantly different between large-sized and small/medium-sized whisker afferent neurons. Most large-sized and many small/medium-sized whisker afferent neurons are sensitive to ATP and/or serotonin, and ATP and/or serotonin could evoke strong inward currents in these cells. In contrast, few whisker afferent neurons are sensitive to glutamate. Our results raise a possibility that ATP and/or serotonin may be chemical messengers involving sensory signaling for different types of rat whisker afferent fibers. PMID:27927797

  5. Genetic and pharmacological evidence for low-abundance TRPV3 expression in primary vagal afferent neurons

    PubMed Central

    Wu, Shaw-wen; Lindberg, Jonathan E. M.

    2016-01-01

    Primary vagal afferent neurons express a multitude of thermosensitive ion channels. Within this family of ion channels, the heat-sensitive capsaicin receptor (TRPV1) greatly influences vagal afferent signaling by determining the threshold for action-potential initiation at the peripheral endings, while controlling temperature-sensitive forms of glutamate release at central vagal terminals. Genetic deletion of TRPV1 does not completely eliminate these temperature-dependent effects, suggesting involvement of additional thermosensitive ion channels. The warm-sensitive, calcium-permeable, ion channel TRPV3 is commonly expressed with TRPV1; however, the extent to which TRPV3 is found in vagal afferent neurons is unknown. Here, we begin to characterize the genetic and functional expression of TRPV3 in vagal afferent neurons using molecular biology (RT-PCR and RT-quantitative PCR) in whole nodose and isolated neurons and fluorescent calcium imaging on primary cultures of nodose ganglia neurons. We confirmed low-level TRPV3 expression in vagal afferent neurons and observed direct activation with putative TRPV3 agonists eugenol, ethyl vanillin (EVA), and farnesyl pyrophosphate (FPP). Agonist activation stimulated neurons also containing TRPV1 and was blocked by ruthenium red. FPP sensitivity overlapped with EVA and eugenol but represented the smallest percentage of vagal afferent neurons, and it was the only agonist that did not stimulate neurons from TRPV3−/−1 mice, suggesting FPP has the highest selectivity. Further, FPP was predictive of enhanced responses to capsaicin, EVA, and eugenol in rats. From our results, we conclude TRPV3 is expressed in a discrete subpopulation of vagal afferent neurons and may contribute to vagal afferent signaling either directly or in combination with TRPV1. PMID:26843581

  6. Diverse firing properties and Aβ-, Aδ-, and C-afferent inputs of small local circuit neurons in spinal lamina I.

    PubMed

    Fernandes, Elisabete C; Luz, Liliana L; Mytakhir, Oleh; Lukoyanov, Nikolai V; Szucs, Peter; Safronov, Boris V

    2016-02-01

    Spinal lamina I is a key element of the pain processing system, which integrates primary afferent input and relays it to supraspinal areas. More than 90% of neurons in this layer are local circuit neurons, whose role in the signal processing is poorly understood. We performed whole-cell recordings in a spinal cord preparation with attached dorsal roots to examine morphological features and physiological properties of small local circuit neurons (n = 47) in lamina I. Cells successfully filled with biocytin (n = 17) had fusiform (n = 10), flattened (n = 4), and multipolar (n = 3) somatodendritic morphology; their axons branched extensively and terminated in laminae I-III. Intrinsic firing properties were diverse; in addition to standard tonic (n = 16), adapting (n = 7), and delayed (n = 6) patterns, small local circuit neurons also generated rhythmic discharges (n = 6) and plateau potentials (n = 10), the latter were suppressed by the L-type Ca(2+)-channel blocker nifedipine. The neurons received monosynaptic inputs from Aδ and C afferents and could generate bursts of spikes on the root stimulation. In addition, we identified lamina I neurons (n = 7) with direct inputs from the low-threshold Aβ afferents, which could be picked up by ventral dendrites protruding to lamina III. Stimulation of afferents also evoked a disynaptic inhibition of neurons. Thus, small local circuit neurons exhibit diverse firing properties, can generate rhythmic discharges and plateau potentials, and their dendrites extending into several laminae allow broad integration of Aβ-, Aδ-, and C-afferent inputs. These properties are required for processing diverse modalities of nociceptive inputs in lamina I and may underlie spinal sensitization to pain.

  7. FMRFamide-related peptide expression in the vestibular-afferent neurons.

    PubMed

    Mercado, Francisco; López, Iván; Ortega, Aida; Almanza, Angélica; Soto, Enrique; Vega, Rosario

    2012-03-28

    Vestibular-afferent neurons innervate hair cells from the sensory epithelia of vestibular end-organs and their action-potential discharge dynamics are driven by linear and angular accelerations of the head. The electrical activity of the vestibular-afferent neurons depends on their intrinsic properties and on the synaptic input from hair cells and from the terminals of the efferent system. Here we report that vestibular-afferent neurons of the rat are immunoreactive to RFamide-related peptides, and that the stronger signal comes from calyx-shaped neuron dendrites, with no signal detected in hair cells or supporting cells. The whole-cell voltage clamp recording of isolated afferent neurons showed that they express robust acid-sensing ionic currents (ASICs). Extracellular multiunit recordings of the vestibular nerve in a preparation in vitro of the rat inner ear showed that the perfusion of FMRFamide (a snail ortholog of this family of neuropeptides) exerts an excitatory effect on the afferent-neurons spike-discharge rate. Because the FMRFamide cannot activate the ASIC but reduces its desensitization generating a more robust current, its effect indicates that the ASIC are tonically active in the vestibular-afferent neurons and modulated by RFamide-like peptides.

  8. State-space receptive fields of semicircular canal afferent neurons in the bullfrog

    NASA Technical Reports Server (NTRS)

    Paulin, M. G.; Hoffman, L. F.

    2001-01-01

    Receptive fields are commonly used to describe spatial characteristics of sensory neuron responses. They can be extended to characterize temporal or dynamical aspects by mapping neural responses in dynamical state spaces. The state-space receptive field of a neuron is the probability distribution of the dynamical state of the stimulus-generating system conditioned upon the occurrence of a spike. We have computed state-space receptive fields for semicircular canal afferent neurons in the bullfrog (Rana catesbeiana). We recorded spike times during broad-band Gaussian noise rotational velocity stimuli, computed the frequency distribution of head states at spike times, and normalized these to obtain conditional pdfs for the state. These state-space receptive fields quantify what the brain can deduce about the dynamical state of the head when a single spike arrives from the periphery. c2001 Elsevier Science B.V. All rights reserved.

  9. Channeling satiation: a primer on the role of TRP channels in the control of glutamate release from vagal afferent neurons.

    PubMed

    Wu, Shaw-wen; Fenwick, Axel J; Peters, James H

    2014-09-01

    Obesity results from the chronic imbalance between food intake and energy expenditure. To maintain homeostasis, the brainstem nucleus of the solitary tract (NTS) integrates peripheral information from visceral organs and initiates reflex pathways that control food intake and other autonomic functions. This peripheral-to-central neural communication occurs through activation of vagal afferent neurons which converge to form the solitary tract (ST) and synapse with strong glutamatergic contacts onto NTS neurons. Vagal afferents release glutamate containing vesicles via three distinct pathways (synchronous, asynchronous, and spontaneous) providing multiple levels of control through fast synaptic neurotransmission at ST-NTS synapses. While temperature at the NTS is relatively constant, vagal afferent neurons express an array of thermosensitive ion channels named transient receptor potential (TRP) channels. Here we review the evidence that TRP channels pre-synaptically control quantal glutamate release and examine the potential roles of TRP channels in vagally mediated satiety signaling. We summarize the current literature that TRP channels contribute to asynchronous and spontaneous release of glutamate which can distinctly influence the transfer of information across the ST-NTS synapse. In other words, multiple glutamate vesicle release pathways, guided by afferent TRP channels, provide for robust while adaptive neurotransmission and expand our understanding of vagal afferent signaling.

  10. Membrane Mechanics of Primary Afferent Neurons in the Dorsal Root Ganglia of Rats.

    PubMed

    Kanda, Hirosato; Gu, Jianguo G

    2017-04-25

    Membrane mechanics is an important biological factor regulating many cellular functions including cell motility, intercellular and intracellular signaling, gene expression, and membrane ion channel activity. Primary afferent neurons transduce sensory information about temperature, touch, and pain. These sensory functions may be profoundly affected by the states of primary afferent neuron mechanics. However, membrane mechanics of primary afferent neurons is largely unknown. In this study, we established the optical trapping technique for determining membrane mechanics of cultured primary afferent neurons of the dorsal root ganglia (DRG). We further determined the roles of cytoskeleton and membrane lipids in DRG neuron mechanics. We found that DRG neurons had a plasma membrane tension of ∼54 pN/μm, and the tension was significantly decreased to ∼29 pN/μm by cytochalasin D treatment to disrupt actin cytoskeleton and increased to ∼79 pN/μm by methyl-β-cyclodextrin treatment to sequester membrane cholesterol. DRG neuron membrane stiffness was not significantly affected by the cytoskeleton disruption but was significantly increased after cholesterol sequestration. Our findings elucidate membrane mechanical properties of primary afferent neurons, which provide, to our knowledge, a new perspective on their sensory functions. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  11. Afferent Neurons of the Zebrafish Lateral Line Are Strict Selectors of Hair-Cell Orientation

    PubMed Central

    Faucherre, Adèle; Pujol-Martí, Jesús; Kawakami, Koichi; López-Schier, Hernán

    2009-01-01

    Hair cells in the inner ear display a characteristic polarization of their apical stereocilia across the plane of the sensory epithelium. This planar orientation allows coherent transduction of mechanical stimuli because the axis of morphological polarity of the stereocilia corresponds to the direction of excitability of the hair cells. Neuromasts of the lateral line in fishes and amphibians form two intermingled populations of hair cells oriented at 180° relative to each other, however, creating a stimulus-polarity ambiguity. Therefore, it is unknown how these animals resolve the vectorial component of a mechanical stimulus. Using genetic mosaics and live imaging in transgenic zebrafish to visualize hair cells and neurons at single-cell resolution, we show that lateral-line afferents can recognize the planar polarization of hair cells. Each neuron forms synapses with hair cells of identical orientation to divide the neuromast into functional planar-polarity compartments. We also show that afferent neurons are strict selectors of polarity that can re-establish synapses with identically oriented targets during hair-cell regeneration. Our results provide the anatomical bases for the physiological models of signal-polarity resolution by the lateral line. PMID:19223970

  12. Central clock excites vasopressin neurons by waking osmosensory afferents during late sleep.

    PubMed

    Trudel, Eric; Bourque, Charles W

    2010-04-01

    Osmoregulated vasopressin release is facilitated during the late sleep period (LSP) to prevent dehydration and enuresis. Previous work has shown that clock neurons in the suprachiasmatic nucleus (SCN) have low firing rates during the LSP, but it is not known how this reduced activity enhances vasopressin release. We found that synaptic excitation of rat supraoptic nucleus neurons by osmosensory afferents is facilitated during the LSP. Stimulation of the SCN at this time inhibited excitatory synaptic currents induced in supraoptic neurons by activation of osmosensory afferents. This effect was associated with an increased rate of synaptic failures and occurred without changes in frequency facilitation, quantal size or in the ratio of postsynaptic responses mediated by AMPA and NMDA receptors. We conclude that clock neurons mediate an activity-dependent presynaptic silencing of osmosensory afferent synapses onto vasopressin neurons and that osmoregulatory gain is enhanced by removal of this effect during late sleep.

  13. Functional Organization of Cutaneous and Muscle Afferent Synapses onto Immature Spinal Lamina I Projection Neurons

    PubMed Central

    Li, Jie

    2017-01-01

    It is well established that sensory afferents innervating muscle are more effective at inducing hyperexcitability within spinal cord circuits compared with skin afferents, which likely contributes to the higher prevalence of chronic musculoskeletal pain compared with pain of cutaneous origin. However, the mechanisms underlying these differences in central nociceptive signaling remain incompletely understood, as nothing is known about how superficial dorsal horn neurons process sensory input from muscle versus skin at the synaptic level. Using a novel ex vivo spinal cord preparation, here we identify the functional organization of muscle and cutaneous afferent synapses onto immature rat lamina I spino-parabrachial neurons, which serve as a major source of nociceptive transmission to the brain. Stimulation of the gastrocnemius nerve and sural nerve revealed significant convergence of muscle and cutaneous afferent synaptic input onto individual projection neurons. Muscle afferents displayed a higher probability of glutamate release, although short-term synaptic plasticity was similar between the groups. Importantly, muscle afferent synapses exhibited greater relative expression of Ca2+-permeable AMPARs compared with cutaneous inputs. In addition, the prevalence and magnitude of spike timing-dependent long-term potentiation were significantly higher at muscle afferent synapses, where it required Ca2+-permeable AMPAR activation. Collectively, these results provide the first evidence for afferent-specific properties of glutamatergic transmission within the superficial dorsal horn. A larger propensity for activity-dependent strengthening at muscle afferent synapses onto developing spinal projection neurons could contribute to the enhanced ability of these sensory inputs to sensitize central nociceptive networks and thereby evoke persistent pain in children following injury. SIGNIFICANCE STATEMENT The neurobiological mechanisms underlying the high prevalence of chronic

  14. The role of corneal afferent neurons in regulating tears under normal and dry eye conditions.

    PubMed

    Meng, Ian D; Kurose, Masayuki

    2013-12-01

    The cornea is one of several orofacial structures requiring glandular secretion for proper lubrication. Glandular secretion is regulated through a neural reflex initiated by trigeminal primary afferent neurons innervating the corneal epithelium. Corneal sensory afferents must respond to irritating and potentially damaging stimuli, as well as drying that occurs with evaporation of the tear film, and the physiological properties of corneal afferents are consistent with these requirements. Polymodal neurons are sensitive to noxious mechanical, thermal and chemical stimuli, mechanoreceptive neurons are selectively activated by mechanical stimuli, and cool cells respond to innocuous cooling. The central terminations of corneal primary afferents are located within two regions of the spinal trigeminal nucleus. The more rostral region, located at the transition between the trigeminal subnucleus caudalis and interpolaris, represents a critical relay for the regulation of the lacrimation reflex. From this region, major control of lacrimation is carried through projections to preganglionic parasympathetic neurons located in or around the superior salivatory nucleus. Dry eye syndrome may be caused by a dysfunction in the tear secreting glands themselves or in the neuronal circuit regulating these glands. Furthermore, the dry eye condition itself may modify the properties of corneal afferents and affect their ability to regulate secretion, a possibility just now being explored. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. The role of corneal afferent neurons in regulating tears under normal and dry eye conditions

    PubMed Central

    Meng, Ian D.; Kurose, Masayuki

    2013-01-01

    The cornea is one of several orofacial structures requiring glandular secretion for proper lubrication. Glandular secretion is regulated through a neural reflex initiated by trigeminal primary afferent neurons innervating the corneal epithelium. Corneal sensory afferents must respond to irritating and potentially damaging stimuli, as well as drying that occurs with evaporation of the tear film, and the physiological properties of corneal afferents are consistent with these requirements. Polymodal neurons are sensitive to noxious mechanical, thermal and chemical stimuli, mechanoreceptive neurons are selectively activated by mechanical stimuli, and cool cells respond to innocuous cooling. The central terminations of corneal primary afferents are located within two regions of the spinal trigeminal nucleus. The more rostral region, located at the transition between the trigeminal subnucleus caudalis and interpolaris, represents a critical relay for the regulation of the lacrimation reflex. From this region, major control of lacrimation is carried through projections to preganglionic parasympathetic neurons located in or around the superior salivatory nucleus. Dry eye syndrome may be caused by a dysfunction in the tear secreting glands themselves or in the neuronal circuit regulating these glands. Furthermore, the dry eye condition itself may modify the properties of corneal afferents and affect their ability to regulate secretion, a possibility just now being explored. PMID:23994439

  16. Neuronal injury marker ATF-3 is induced in primary afferent neurons of monoarthritic rats.

    PubMed

    Nascimento, Diana; Pozza, Daniel Humberto; Castro-Lopes, José Manuel; Neto, Fani Lourença

    2011-01-01

    Activating transcription factor 3 (ATF-3) expression has been associated with several signaling pathways implicated in cellular stress response in many cell types and is usually regarded as a neuronal damage marker in dorsal root ganglia (DRG). We investigated ATF-3 expression in primary afferents in the monoarthritic (MA) model of chronic inflammatory joint pain. Immunohistochemistry revealed that ATF-3 is highly induced mainly in small and medium neurons, especially at 2 and 4 days of MA in L(5) DRGs. Colocalization with calcitonin gene-related peptide (CGRP) and isolectin B4 (IB4) demonstrated that ATF-3-immunoreactive cells are mainly peptidergic. The lack of significant differences in ATF-3 and pAkt colocalization indicated that ATF-3 is probably not involved in a pAkt-mediated survival pathway. Anti-inflammatory (ketoprofen) administration failed to reverse ATF-3 induction in MA rats, but significantly increased CGRP expression. These data suggest that ATF-3 expression is definitely involved in MA, actually marking injured neurons. Some degree of neuronal damage seems to occur right from the first days of disease, mainly affecting small-to-medium peptidergic neurons. The intra-articular injection of complete Freund's adjuvant and the generation of a neuroinflammatory environment seem to be the plausible explanation for the local nerve damage. Copyright © 2011 S. Karger AG, Basel.

  17. Transgene expression and effective gene silencing in vagal afferent neurons in vivo using recombinant adeno-associated virus vectors

    PubMed Central

    Kollarik, M; Carr, M J; Ru, F; Ring, C J A; Hart, V J; Murdock, P; Myers, A C; Muroi, Y; Undem, B J

    2010-01-01

    Vagal afferent fibres innervating thoracic structures such as the respiratory tract and oesophagus are diverse, comprising several subtypes of functionally distinct C-fibres and A-fibres. Both morphological and functional studies of these nerve subtypes would be advanced by selective, effective and long-term transduction of vagal afferent neurons with viral vectors. Here we addressed the hypothesis that vagal sensory neurons can be transduced with adeno-associated virus (AAV) vectors in vivo, in a manner that would be useful for morphological assessment of nerve terminals, using enhanced green fluorescent protein (eGFP), as well as for the selective knock-down of specific genes of interest in a tissue-selective manner. We found that a direct microinjection of AAV vectors into the vagal nodose ganglia in vivo leads to selective, effective and long-lasting transduction of the vast majority of primary sensory vagal neurons without transduction of parasympathetic efferent neurons. The transduction of vagal neurons by pseudoserotype AAV2/8 vectors in vivo is sufficiently efficient such that it can be used to functionally silence TRPV1 gene expression using short hairpin RNA (shRNA). The eGFP encoded by AAV vectors is robustly transported to both the central and peripheral terminals of transduced vagal afferent neurons allowing for bright imaging of the nerve endings in living tissues and suitable for structure–function studies of vagal afferent nerve endings. Finally, the AAV2/8 vectors are efficiently taken up by the vagal nerve terminals in the visceral tissue and retrogradely transported to the cell body, allowing for tissue-specific transduction. PMID:20736420

  18. Characterization of spinal afferent neurons projecting to different chambers of the rat heart.

    PubMed

    Guić, Maja Marinović; Kosta, Vana; Aljinović, Jure; Sapunar, Damir; Grković, Ivica

    2010-01-29

    The pattern of distribution of spinal afferent neurons (among dorsal root ganglia-DRGs) that project to anatomically and functionally different chambers of the rat heart, as well as their morphological and neurochemical characteristics were investigated. Retrograde tracing using a patch loaded with Fast blue (FB) was applied to all four chambers of the rat heart and labeled cardiac spinal afferents were characterized by using three neurochemical markers. The majority of cardiac projecting neurons were found from T1 to T4 DRGs, whereas the peak was at T2 DRG. There was no difference in the total number of FB-labeled neurons located in ipsilateral and contralateral DRGs regardless of the chambers marked with the patch. However, significantly more FB-labeled neurons projected to the ventricles compared to the atria (859 vs. 715). The proportion of isolectin B(4) binding in FB-labeled neurons was equal among all neurons projecting to different heart chambers (2.4%). Neurofilament 200 positivity was found in greater proportions in DRG neurons projecting to the left side of the heart, whereas calretinin-immunoreactivity was mostly represented in neurons projecting to the left atrium. Spinal afferent neurons projecting to different chambers of the rat heart exhibit a variety of neurochemical phenotypes depending on binding capacity for isolectin B(4) and immunoreactivity for neurofilament 200 and calretinin, and thus represent important baseline data for future studies.

  19. Opioids inhibit visceral afferent activation of catecholamine neurons in the solitary tract nucleus.

    PubMed

    Cui, R J; Roberts, B L; Zhao, H; Andresen, M C; Appleyard, S M

    2012-10-11

    Brainstem A2/C2 catecholamine (CA) neurons within the solitary tract nucleus (NTS) influence many homeostatic functions, including food intake, stress, respiratory and cardiovascular reflexes. They also play a role in both opioid reward and withdrawal. Injections of opioids into the NTS modulate many autonomic functions influenced by catecholamine neurons including food intake and cardiac function. We recently showed that NTS-CA neurons are directly activated by incoming visceral afferent inputs. Here we determined whether opioid agonists modulate afferent activation of NTS-CA neurons using transgenic mice with EGFP expressed under the control of the tyrosine hydroxylase promoter (TH-EGFP) to identify catecholamine neurons. The opioid agonist Met-enkephalin (Met-Enk) significantly attenuated solitary tract-evoked excitatory postsynaptic currents (ST-EPSCs) in NTS TH-EGFP neurons by 80%, an effect reversed by wash or the mu opioid receptor-specific antagonist D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH(2) (CTOP). Met-Enk had a significantly greater effect to inhibit afferent inputs onto TH-EGFP-positive neurons than EGFP-negative neurons, which were only inhibited by 50%. The mu agonist, DAMGO, also inhibited the ST-EPSC in TH-EGFP neurons in a dose-dependent manner. In contrast, neither the delta agonist DPDPE, nor the kappa agonist, U69,593, consistently inhibited the ST-EPSC amplitude. Met-Enk and DAMGO increased the paired pulse ratio, decreased the frequency, but not amplitude, of mini-EPSCs and had no effect on holding current, input resistance or current-voltage relationships in TH-EGFP neurons, suggesting a presynaptic mechanism of action on afferent terminals. Met-Enk significantly reduced both the basal firing rate of NTS TH-EGFP neurons and the ability of afferent stimulation to evoke an action potential. These results suggest that opioids inhibit NTS-CA neurons by reducing an excitatory afferent drive onto these neurons through presynaptic inhibition of

  20. Vagal afferent neurons in high fat diet-induced obesity; intestinal microflora, gut inflammation and cholecystokinin.

    PubMed

    de Lartigue, Guillaume; de La Serre, Claire Barbier; Raybould, Helen E

    2011-11-30

    The vagal afferent pathway is the major neural pathway by which information about ingested nutrients reaches the CNS and influences both GI function and feeding behavior. Vagal afferent neurons (VAN) express receptors for many of the regulatory peptides and molecules released from the intestinal wall, pancreas, and adipocytes that influence GI function, glucose homeostasis, and regulate food intake and body weight. As such, they play a critical role in both physiology and pathophysiology, such as obesity, where there is evidence that vagal afferent function is altered. This review will summarize recent findings on changes in vagal afferent function in response to ingestion of high fat diets and explore the hypothesis that changes in gut microbiota and integrity of the epithelium may not only be important in inducing these changes but may be the initial events that lead to dysregulation of food intake and body weight in response to high fat, high energy diets.

  1. Vagal afferent neurons in high fat diet-induced obesity; intestinal microflora, gut inflammation and cholecystokinin

    PubMed Central

    de Lartigue, Guillaume; de La Serre, Claire Barbier; Raybould, Helen E

    2011-01-01

    The vagal afferent pathway is the major neural pathway by which information about ingested nutrients reaches the CNS and influences both GI function and feeding behavior. Vagal afferent neurons (VAN) express receptors for many of the regulatory peptides and molecules released from the intestinal wall, pancreas, and adipocytes that influence GI function, glucose homeostasis, and regulate food intake and body weight. As such, they play a critical role in both physiology and pathophysiology, such as obesity, where there is evidence that vagal afferent function is altered. This review will summarize recent findings on changes in vagal afferent function in response to ingestion of high fat diets and explore the hypothesis that changes in gut microbiota and integrity of the epithelium may not only be important in inducing these changes but may be the initial events that lead to dysregulation of food intake and body weight in response to high fat, high energy diets. PMID:21376066

  2. Afferent synaptic connections between hair cells and the somata of intramacular neurons in the gravity receptor system of the statocyst of Octopus vulgaris.

    PubMed

    Colmers, W F

    1981-04-10

    In the sensory epithelium (macula) of the gravity receptor system of the statocyst of Octopus vulgaris, there are two types of afferent neurons, distinguished according to their position in the epithelium. The somata of one type lie accumulated in a ring peripheral to the hair cell layer of the epithelium; these are designated as perimacular neurons. The somata of the other type lie among the hair cells, below the level of their nuclei; these are designated as intramacular neurons. Axons of afferent neurons which touch the hair cells are postsynaptic to some of the hair cells touched. As the somata of the intramacular neurons also touch the hair cells, they were investigated by serial electron microscopic reconstruction to determine if afferent synaptic contacts between hair cells and these somata occur. An average of about 600 intramacular neurons was counted in two maculae. Afferent synapses were seen to occur between hair cells and the somata of 76% of the intramacular neurons investigated. The postsynaptic processes of the intramacular neurons' somata were of two morphological types; one with a finger-like and one with a flat postsynaptic process (average of one synapse of each type per soma). The soma of an intramacular neurons can be postsynaptic to more than one hair cell simultaneously (average of 1--2 hair cells per soma). In addition to being presynaptic to only one neuron's soma, a hair cell could be simultaneously presynaptic to the axons of one or more afferent neurons. The morphological findings are discussed as to their possible physiological consequences.

  3. Plasticity in vagal afferent neurones during feeding and fasting: mechanisms and significance.

    PubMed

    Dockray, G J; Burdyga, G

    2011-03-01

    The ingestion of food activates mechanisms leading to inhibition of food intake and gastric emptying mediated by the release of regulatory peptides, for example cholecystokinin (CCK), and lipid amides, e.g. oleylethanolamide from the gut. In addition, there are both peptides (e.g. ghrelin) and lipid amides (e.g. anandamide) that appear to signal the absence of food in the gut and that are associated with the stimulation of food intake. Vagal afferent neurones are a common target for both types of signal. Remarkably, the neurochemical phenotype of these neurones itself depends on nutritional status. CCK acting at CCK1 receptors on vagal afferent neurones stimulates expression in these neurones of Y2-receptors and the neuropeptide CART, both of which are associated with the inhibition of food intake. Conversely, in fasted rats when plasma CCK is low, these neurones express cannabinoid (CB)-1 and melanin concentrating hormone (MCH)-1 receptors, and MCH, and this is inhibited by exogenous CCK or endogenous CCK released by refeeding. The stimulation of CART expression by CCK is mediated by the activation of CREB and EGR1; ghrelin inhibits the action of CCK by promoting nuclear exclusion of CREB and leptin potentiates the action of CCK by the stimulation of EGR1 expression. Vagal afferent neurones therefore constitute a level of integration outside the CNS for nutrient-derived signals that control energy intake and that are capable of encoding recent nutrient ingestion.

  4. Bradykinin decreases K+ and increases Cl− conductances in vagal afferent neurones of the guinea pig

    PubMed Central

    Oh, Eun Joo; Weinreich, Daniel

    2004-01-01

    Bradykinin (BK) is an inflammatory mediator that can excite and sensitize primary afferent neurones. The nature of the ionic channels underlying the excitatory actions of BK is still incompletely understood. Using whole-cell patch-clamp recording from acutely dissociated nodose ganglion neurones (NGNs) we have examined the ionic mechanism responsible for BK's excitatory effect. Bath-applied BK (0.1 μm) depolarized the membrane potential (29 ± 3.1 mV, n = 7), evoked action potentials, and induced an inward ionic current (IBK) with two distinctive membrane conductances (gm). Initially, gm decreased; the ionic current associated with this gm had a reversal potential (Erev) value of −87 ± 1.1 mV (n = 26), a value close to EK (−89 mV). Subsequently, gm increased; the ionic current associated with this gm had an estimated Erev of 49 ± 4.3 mV (n = 23). When the second component was isolated from the first component, by replacing [K+]o with Cs+, Erev was 20 ± 4.7 mV (n = 10). Replacing external NaCl with NMDG-Cl or choline-Cl, or reducing [Ca2+]o did not significantly diminish IBK. After replacing external NaCl with sodium isethionate, Erev for the second component shifted to 56 ± 8.8 mV (n = 4), a value close to the ECl (66 mV). The second component was inhibited by intracellular BAPTA or by bath application of niflumic acid (100 μm), a Ca2+-activated Cl− channel blocker. These results suggest that the first and second components of IBK are produced by a decrease in K+ conductance and an increase in Ca2+-activated Cl− conductance, respectively. The BK-evoked Cl− conductance in NGNs may be the first demonstration of an inflammatory mediator exciting primary afferents via an anion channel. PMID:15169850

  5. Spatiotemporal processing of linear acceleration: primary afferent and central vestibular neuron responses

    NASA Technical Reports Server (NTRS)

    Angelaki, D. E.; Dickman, J. D.

    2000-01-01

    Spatiotemporal convergence and two-dimensional (2-D) neural tuning have been proposed as a major neural mechanism in the signal processing of linear acceleration. To examine this hypothesis, we studied the firing properties of primary otolith afferents and central otolith neurons that respond exclusively to horizontal linear accelerations of the head (0.16-10 Hz) in alert rhesus monkeys. Unlike primary afferents, the majority of central otolith neurons exhibited 2-D spatial tuning to linear acceleration. As a result, central otolith dynamics vary as a function of movement direction. During movement along the maximum sensitivity direction, the dynamics of all central otolith neurons differed significantly from those observed for the primary afferent population. Specifically at low frequencies (neurons peaked in phase with linear velocity, in contrast to primary afferents that peaked in phase with linear acceleration. At least three different groups of central response dynamics were described according to the properties observed for motion along the maximum sensitivity direction. "High-pass" neurons exhibited increasing gains and phase values as a function of frequency. "Flat" neurons were characterized by relatively flat gains and constant phase lags (approximately 20-55 degrees ). A few neurons ("low-pass") were characterized by decreasing gain and phase as a function of frequency. The response dynamics of central otolith neurons suggest that the approximately 90 degrees phase lags observed at low frequencies are not the result of a neural integration but rather the effect of nonminimum phase behavior, which could arise at least partly through spatiotemporal convergence. Neither afferent nor central otolith neurons discriminated between gravitational and inertial components of linear acceleration. Thus response sensitivity was indistinguishable during 0.5-Hz pitch oscillations and fore-aft movements

  6. Breadth of tuning in taste afferent neurons varies with stimulus strength.

    PubMed

    Wu, An; Dvoryanchikov, Gennady; Pereira, Elizabeth; Chaudhari, Nirupa; Roper, Stephen D

    2015-09-16

    Gustatory stimuli are detected by taste buds and transmitted to the hindbrain via sensory afferent neurons. Whether each taste quality (sweet, bitter and so on) is encoded by separate neurons ('labelled lines') remains controversial. We used mice expressing GCaMP3 in geniculate ganglion sensory neurons to investigate taste-evoked activity. Using confocal calcium imaging, we recorded responses to oral stimulation with prototypic taste stimuli. Up to 69% of neurons respond to multiple tastants. Moreover, neurons tuned to a single taste quality at low concentration become more broadly tuned when stimuli are presented at higher concentration. Responses to sucrose and monosodium glutamate are most related. Although mice prefer dilute NaCl solutions and avoid concentrated NaCl, we found no evidence for two separate populations of sensory neurons that encode this distinction. Altogether, our data suggest that taste is encoded by activity in patterns of peripheral sensory neurons and challenge the notion of strict labelled line coding.

  7. Dental afferents project onto gustatory neurons in the nucleus of the solitary tract.

    PubMed

    Braud, A; Vandenbeuch, A; Zerari-Mailly, F; Boucher, Y

    2012-02-01

    The aim of this study was to investigate the inferior alveolar nerve (IAN) and chorda tympani (CT) projections onto gustatory neurons of the nucleus of the solitary tract (NST) in the rat by immunochemical and electrophysiological techniques. IAN afferents were retrogradely labeled. NST neurons were labeled either by retrograde tracer injection into the parabrachial nucleus (PBN) or by c-Fos mapping after CT activation. NST neurons responding to tastant stimulation were recorded in vivo before and after electrical stimulation of the IAN. Results from the immunolabeling approach showed IAN boutons "en passant" apposed to retrogradely labeled neurons from PBN and to CT-activated neurons in the NST. Recordings of single NST neurons showed that the electrical stimulation of the IAN significantly decreased CT gustatory responses. Analysis of these data provides an anatomical and physiological basis to support trigeminal dental and gustatory interactions within the brainstem.

  8. Activation of afferent renal nerves modulates RVLM-projecting PVN neurons

    PubMed Central

    Xu, Bo; Zheng, Hong; Liu, Xuefei

    2015-01-01

    Renal denervation for the treatment of hypertension has proven to be successful; however, the underlying mechanism/s are not entirely clear. To determine if preautonomic neurons in the paraventricular nucleus (PVN) respond to afferent renal nerve (ARN) stimulation, extracellular single-unit recording was used to investigate the contribution of the rostral ventrolateral medulla (RVLM)-projecting PVN (PVN-RVLM) neurons to the response elicited during stimulation of ARN. In 109 spontaneously active neurons recorded in the PVN of anesthetized rats, 25 units were antidromically activated from the RVLM. Among these PVN-RVLM neurons, 84% (21/25) were activated by ARN stimulation. The baseline discharge rate was significantly higher in these neurons than those PVN-RVLM neurons not activated by ARN stimulation (16%, 4/25). The responsiveness of these neurons to baroreflex activation induced by phenylephrine and activation of cardiac sympathetic afferent reflex (CSAR) was also examined. Almost all of the PVN neurons that responded to ARN stimulation were sensitive to baroreflex (95%) and CSAR (100%). The discharge characteristics for nonevoked neurons (not activated by RVLM antidromic stimulation) showed that 23% of these PVN neurons responded to ARN stimulation. All the PVN neurons that responded to ARN stimulation were activated by N-methyl-d-aspartate, and these responses were attenuated by the glutamate receptor blocker AP5. These experiments demonstrated that sensory information originating in the kidney is integrated at the level of preautonomic neurons within the PVN, providing a novel mechanistic insight for use of renal denervation in the modulation of sympathetic outflow in disease states such as hypertension and heart failure. PMID:25637549

  9. Activation of afferent renal nerves modulates RVLM-projecting PVN neurons.

    PubMed

    Xu, Bo; Zheng, Hong; Liu, Xuefei; Patel, Kaushik P

    2015-05-01

    Renal denervation for the treatment of hypertension has proven to be successful; however, the underlying mechanism/s are not entirely clear. To determine if preautonomic neurons in the paraventricular nucleus (PVN) respond to afferent renal nerve (ARN) stimulation, extracellular single-unit recording was used to investigate the contribution of the rostral ventrolateral medulla (RVLM)-projecting PVN (PVN-RVLM) neurons to the response elicited during stimulation of ARN. In 109 spontaneously active neurons recorded in the PVN of anesthetized rats, 25 units were antidromically activated from the RVLM. Among these PVN-RVLM neurons, 84% (21/25) were activated by ARN stimulation. The baseline discharge rate was significantly higher in these neurons than those PVN-RVLM neurons not activated by ARN stimulation (16%, 4/25). The responsiveness of these neurons to baroreflex activation induced by phenylephrine and activation of cardiac sympathetic afferent reflex (CSAR) was also examined. Almost all of the PVN neurons that responded to ARN stimulation were sensitive to baroreflex (95%) and CSAR (100%). The discharge characteristics for nonevoked neurons (not activated by RVLM antidromic stimulation) showed that 23% of these PVN neurons responded to ARN stimulation. All the PVN neurons that responded to ARN stimulation were activated by N-methyl-D-aspartate, and these responses were attenuated by the glutamate receptor blocker AP5. These experiments demonstrated that sensory information originating in the kidney is integrated at the level of preautonomic neurons within the PVN, providing a novel mechanistic insight for use of renal denervation in the modulation of sympathetic outflow in disease states such as hypertension and heart failure.

  10. Area 3a Neuron Response to Skin Nociceptor Afferent Drive

    PubMed Central

    Favorov, Oleg V.; Li, Yongbiao; Quibrera, Miguel; Tommerdahl, Mark

    2009-01-01

    Area 3a neurons are identified that respond weakly or not at all to skin contact with a 25–38 °C probe, but vigorously to skin contact with the probe at ≥49 °C. Maximal rate of spike firing associated with 1- to 7-s contact at ≥49 °C occurs 1-2 s after probe removal from the skin. The activity evoked by 5-s contact with the probe at 51 °C remains above-background for ∼20 s after probe retraction. After 1-s contact at 55–56 °C activity remains above-background for ∼4 s. Magnitude of spike firing associated with 5-s contact increases linearly as probe temperature is increased from 49–51 °C. Intradermal capsaicin injection elicits a larger (∼2.5×) and longer-lasting (100×) increase in area 3a neuron firing rate than 5-s contact at 51 °C. Area 3a neurons exhibit enhanced or novel responsivity to 25–38 °C contact for a prolonged time after intradermal injection of capsaicin or α, β methylene adenosine triphosphate. Their 1) delayed and persisting increase in spike firing in response to contact at ≥49 °C, 2) vigorous and prolonged response to intradermal capsaicin, and 3) enhanced and frequently novel response to 25–38 °C contact following intradermal algogen injection or noxious skin heating suggest that the area 3a neurons identified in this study contribute to second pain and mechanical hyperalgesia/allodynia. PMID:18534992

  11. Caudal ventrolateral medulla mediates baroreceptor afferent inputs to subfornical organ angiotensin II responsive neurons.

    PubMed

    Ciriello, John

    2013-01-23

    Although anatomical data indicates that the caudal ventrolateral medulla (CVLM) projects directly to the subfornical organ (SFO), little is known about the afferent information relayed through the CVLM to SFO. Experiments were done in the anesthetized rat to investigate whether CVLM neurons mediate baroreceptor afferent information to SFO and whether this afferent information alters the response of SFO neurons to systemic injections of angiotensin II (ANG II). Extracellular single unit recordings were made from 78 spontaneously discharging single units in SFO. Of these, 32 (41%) responded to microinjection of L-glutamate (L-Glu; 0.25M; 10nl) into CVLM (27/32 were inhibited and 5/32 were excited). All 32 units also were excited by systemic injections of ANG II (250ng/0.1ml, ia). However, only those units inhibited by CVLM (n=27) were found to be inhibited by the reflex activation of baroreceptors following systemic injections of phenylephrine (2μg/kg, iv). Activation of CVLM or arterial baroreceptors in conjunction with ANG II resulted in an attenuation of the SFO unit's response to ANG II. Finally, microinjections (100nl) of the synaptic blocker CoCl(2) or the non-specific glutamate receptor antagonist kynurenic acid into CVLM attenuated (10/13 units tested) the SFO neuron's response to activation of baroreceptors, but not the unit's response evoked by systemic ANG II. Taken together, these data suggest that baroreceptor afferent information relayed through CVLM functions to modulate of the activity of neurons within SFO to extracellular signals of body fluid balance. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Perineural capsaicin induces the uptake and transganglionic transport of choleratoxin B subunit by nociceptive C-fiber primary afferent neurons.

    PubMed

    Oszlács, O; Jancsó, G; Kis, G; Dux, M; Sántha, P

    2015-12-17

    The distribution of spinal primary afferent terminals labeled transganglionically with the choleratoxin B subunit (CTB) or its conjugates changes profoundly after perineural treatment with capsaicin. Injection of CTB conjugated with horseradish peroxidase (HRP) into an intact nerve labels somatotopically related areas in the ipsilateral dorsal horn with the exceptions of the marginal zone and the substantia gelatinosa, whereas injection of this tracer into a capsaicin-pretreated nerve also results in massive labeling of these most superficial layers of the dorsal horn. The present study was initiated to clarify the role of C-fiber primary afferent neurons in this phenomenon. In L5 dorsal root ganglia, analysis of the size frequency distribution of neurons labeled after injection of CTB-HRP into the ipsilateral sciatic nerve treated previously with capsaicin or resiniferatoxin revealed a significant increase in the proportion of small neurons. In the spinal dorsal horn, capsaicin or resiniferatoxin pretreatment resulted in intense CTB-HRP labeling of the marginal zone and the substantia gelatinosa. Electron microscopic histochemistry disclosed a dramatic, ∼10-fold increase in the proportion of CTB-HRP-labeled unmyelinated dorsal root axons following perineural capsaicin or resiniferatoxin. The present results indicate that CTB-HRP labeling of C-fiber dorsal root ganglion neurons and their central terminals after perineural treatment with vanilloid compounds may be explained by their phenotypic switch rather than a sprouting response of thick myelinated spinal afferents which, in an intact nerve, can be labeled selectively with CTB-HRP. The findings also suggest a role for GM1 ganglioside in the modulation of nociceptor function and pain.

  13. Expression of the transient receptor potential channels TRPV1, TRPA1 and TRPM8 in mouse trigeminal primary afferent neurons innervating the dura

    PubMed Central

    2012-01-01

    Background Migraine and other headache disorders affect a large percentage of the population and cause debilitating pain. Activation and sensitization of the trigeminal primary afferent neurons innervating the dura and cerebral vessels is a crucial step in the “headache circuit”. Many dural afferent neurons respond to algesic and inflammatory agents. Given the clear role of the transient receptor potential (TRP) family of channels in both sensing chemical stimulants and mediating inflammatory pain, we investigated the expression of TRP channels in dural afferent neurons. Methods We used two fluorescent tracers to retrogradely label dural afferent neurons in adult mice and quantified the abundance of peptidergic and non-peptidergic neuron populations using calcitonin gene-related peptide immunoreactivity (CGRP-ir) and isolectin B4 (IB4) binding as markers, respectively. Using immunohistochemistry, we compared the expression of TRPV1 and TRPA1 channels in dural afferent neurons with the expression in total trigeminal ganglion (TG) neurons. To examine the distribution of TRPM8 channels, we labeled dural afferent neurons in mice expressing farnesylated enhanced green fluorescent protein (EGFPf) from a TRPM8 locus. We used nearest-neighbor measurement to predict the spatial association between dural afferent neurons and neurons expressing TRPA1 or TRPM8 channels in the TG. Results and conclusions We report that the size of dural afferent neurons is significantly larger than that of total TG neurons and facial skin afferents. Approximately 40% of dural afferent neurons exhibit IB4 binding. Surprisingly, the percentage of dural afferent neurons containing CGRP-ir is significantly lower than those of total TG neurons and facial skin afferents. Both TRPV1 and TRPA1 channels are expressed in dural afferent neurons. Furthermore, nearest-neighbor measurement indicates that TRPA1-expressing neurons are clustered around a subset of dural afferent neurons. Interestingly, TRPM

  14. Ghrelin Inhibits Visceral Afferent Activation of Catecholamine Neurons in the Solitary Tract Nucleus

    PubMed Central

    Cui, Ran Ji; Li, Xiaojun; Appleyard, Suzanne M.

    2011-01-01

    Brainstem A2/C2 catecholamine (CA) neurons in the solitary tract nucleus (NTS) are thought to play an important role in the control of food intake and other homeostatic functions. We have previously demonstrated that these neurons, which send extensive projections to brain regions involved in the regulation of appetite, are strongly and directly activated by solitary tract (ST) visceral afferents. Ghrelin, a potent orexigenic peptide released from the stomach, is proposed to act in part through modulating NTS CA neurons but the underlying cellular mechanisms are unknown. Here we identified CA neurons using transgenic mice that express enhanced green florescent protein driven by the tyrosine hydroxylase promoter (TH-EGFP). We then determined how ghrelin modulates TH-EGFP neurons using patch clamp techniques in a horizontal brain slice preparation. Ghrelin inhibited the frequency of spontaneous glutamate inputs (sEPSCs) onto TH-EGFP neurons, including cholecystokinin-sensitive neurons, an effect blocked by the GHSR1 antagonist, D-Lys-3-GHRP-6. This resulted in a decrease in the basal firing rate of NTS TH-EGFP neurons, an effect blocked by the glutamate antagonist NBQX. Ghrelin also dose-dependently inhibited the amplitude of ST afferent evoked EPSCs (ST-EPSCs) in TH-EGFP NTS neurons, decreasing the success rate for ST-evoked action potentials. In addition, ghrelin decreased the frequency of mini-EPSCs suggesting its actions are pre-synaptic to reduce glutamate release. Lastly, ghrelin’s inhibition of the ST-EPSCs was significantly increased by an 18 hour fast. These results demonstrate a potential mechanism by which ghrelin inhibits NTS TH neurons through a pathway whose responsiveness is increased during fasting. PMID:21368060

  15. TRPM8 function and expression in vagal sensory neurons and afferent nerves innervating guinea pig esophagus.

    PubMed

    Yu, Xiaoyun; Hu, Youtian; Ru, Fei; Kollarik, Marian; Undem, Bradley J; Yu, Shaoyong

    2015-03-15

    Sensory transduction in esophageal afferents requires specific ion channels and receptors. TRPM8 is a new member of the transient receptor potential (TRP) channel family and participates in cold- and menthol-induced sensory transduction, but its role in visceral sensory transduction is still less clear. This study aims to determine TRPM8 function and expression in esophageal vagal afferent subtypes. TRPM8 agonist WS-12-induced responses were first determined in nodose and jugular neurons by calcium imaging and then investigated by whole cell patch-clamp recordings in Dil-labeled esophageal nodose and jugular neurons. Extracellular single-unit recordings were performed in nodose and jugular C fiber neurons using ex vivo esophageal-vagal preparations with intact nerve endings in the esophagus. TRPM8 mRNA expression was determined by single neuron RT-PCR in Dil-labeled esophageal nodose and jugular neurons. The TRPM8 agonist WS-12 elicited calcium influx in a subpopulation of jugular but not nodose neurons. WS-12 activated outwardly rectifying currents in esophageal Dil-labeled jugular but not nodose neurons in a dose-dependent manner, which could be inhibited by the TRPM8 inhibitor AMTB. WS-12 selectively evoked action potential discharges in esophageal jugular but not nodose C fibers. Consistently, TRPM8 transcripts were highly expressed in esophageal Dil-labeled TRPV1-positive jugular neurons. In summary, the present study demonstrated a preferential expression and function of TRPM8 in esophageal vagal jugular but not nodose neurons and C fiber subtypes. This provides a distinctive role of TRPM8 in esophageal sensory transduction and may lead to a better understanding of the mechanisms of esophageal sensation and nociception. Copyright © 2015 the American Physiological Society.

  16. TRPM8 function and expression in vagal sensory neurons and afferent nerves innervating guinea pig esophagus

    PubMed Central

    Yu, Xiaoyun; Hu, Youtian; Ru, Fei; Kollarik, Marian; Undem, Bradley J.

    2015-01-01

    Sensory transduction in esophageal afferents requires specific ion channels and receptors. TRPM8 is a new member of the transient receptor potential (TRP) channel family and participates in cold- and menthol-induced sensory transduction, but its role in visceral sensory transduction is still less clear. This study aims to determine TRPM8 function and expression in esophageal vagal afferent subtypes. TRPM8 agonist WS-12-induced responses were first determined in nodose and jugular neurons by calcium imaging and then investigated by whole cell patch-clamp recordings in Dil-labeled esophageal nodose and jugular neurons. Extracellular single-unit recordings were performed in nodose and jugular C fiber neurons using ex vivo esophageal-vagal preparations with intact nerve endings in the esophagus. TRPM8 mRNA expression was determined by single neuron RT-PCR in Dil-labeled esophageal nodose and jugular neurons. The TRPM8 agonist WS-12 elicited calcium influx in a subpopulation of jugular but not nodose neurons. WS-12 activated outwardly rectifying currents in esophageal Dil-labeled jugular but not nodose neurons in a dose-dependent manner, which could be inhibited by the TRPM8 inhibitor AMTB. WS-12 selectively evoked action potential discharges in esophageal jugular but not nodose C fibers. Consistently, TRPM8 transcripts were highly expressed in esophageal Dil-labeled TRPV1-positive jugular neurons. In summary, the present study demonstrated a preferential expression and function of TRPM8 in esophageal vagal jugular but not nodose neurons and C fiber subtypes. This provides a distinctive role of TRPM8 in esophageal sensory transduction and may lead to a better understanding of the mechanisms of esophageal sensation and nociception. PMID:25591866

  17. Cholinergic modulation of primary afferent glutamatergic transmission in rat medullary dorsal horn neurons.

    PubMed

    Jeong, Seok-Gwon; Choi, In-Sun; Cho, Jin-Hwa; Jang, Il-Sung

    2013-12-01

    Although muscarinic acetylcholine (mACh) receptors are expressed in trigeminal ganglia, it is still unknown whether mACh receptors modulate glutamatergic transmission from primary afferents onto medullary dorsal horn neurons. In this study, we have addressed the cholinergic modulation of primary afferent glutamatergic transmission using a conventional whole cell patch clamp technique. Glutamatergic excitatory postsynaptic currents (EPSCs) were evoked from primary afferents by electrical stimulation of trigeminal tract and monosynaptic EPSCs were recorded from medullary dorsal horn neurons of rat horizontal brain stem slices. Muscarine and ACh reversibly and concentration-dependently decreased the amplitude of glutamatergic EPSCs and increased the paired-pulse ratio. In addition, muscarine reduced the frequency of miniature EPSCs without affecting the current amplitude, suggesting that muscarine acts presynaptically to decrease the probability of glutamate release onto medullary dorsal horn neurons. The muscarine-induced decrease of glutamatergic EPSCs was significantly occluded by methoctramine or AF-DX116, M2 receptor antagonists, but not pirenzepine, J104129 and MT-3, selective M1, M3 and M4 receptor antagonists. The muscarine-induced decrease of glutamatergic EPSCs was highly dependent on the extracellular Ca2+ concentration. Physostigmine and clinically available acetylcholinesterase inhibitors, such as rivastigmine and donepezil, significantly shifted the concentration-inhibition relationship of ACh for glutamatergic EPSCs. These results suggest that muscarine acts on presynaptic M2 receptors to inhibit glutamatergic transmission by reducing the Ca2+ influx into primary afferent terminals, and that M2 receptor agonists and acetylcholinesterase inhibitors could be, at least, potential targets to reduce nociceptive transmission from orofacial tissues.

  18. Modulation of synaptic transmission from segmental afferents by spontaneous activity of dorsal horn spinal neurones in the cat.

    PubMed

    Manjarrez, E; Rojas-Piloni, J G; Jimenez, I; Rudomin, P

    2000-12-01

    We examined, in the anaesthetised cat, the influence of the neuronal ensembles producing spontaneous negative cord dorsum potentials (nCDPs) on segmental pathways mediating primary afferent depolarisation (PAD) of cutaneous and group I muscle afferents and on Ia monosynaptic activation of spinal motoneurones. The intraspinal distribution of the field potentials associated with the spontaneous nCDPs indicated that the neuronal ensembles involved in the generation of these potentials were located in the dorsal horn of lumbar segments, in the same region of termination of low-threshold cutaneous afferents. During the occurrence of spontaneous nCDPs, transmission from low-threshold cutaneous afferents to second order neurones in laminae III-VI, as well as transmission along pathways mediating PAD of cutaneous and Ib afferents, was facilitated. PAD of Ia afferents was instead inhibited. Monosynaptic reflexes of flexors and extensors were facilitated during the spontaneous nCDPs. The magnitude of the facilitation was proportional to the amplitude of the 'conditioning' spontaneous nCDPs. This led to a high positive correlation between amplitude fluctuations of spontaneous nCDPs and fluctuations of monosynaptic reflexes. Stimulation of low-threshold cutaneous afferents transiently reduced the probability of occurrence of spontaneous nCDPs as well as the fluctuations of monosynaptic reflexes. It is concluded that the spontaneous nCDPs were produced by the activation of a population of dorsal horn neurones that shared the same functional pathways and involved the same set of neurones as those responding monosynaptically to stimulation of large cutaneous afferents. The spontaneous activity of these neurones was probably the main cause of the fluctuations of the monosynaptic reflexes observed under anaesthesia and could provide a dynamic linkage between segmental sensory and motor pathways.

  19. Modulation of synaptic transmission from segmental afferents by spontaneous activity of dorsal horn spinal neurones in the cat

    PubMed Central

    Manjarrez, E; Rojas-Piloni, J G; Jiménez, I; Rudomin, P

    2000-01-01

    We examined, in the anaesthetised cat, the influence of the neuronal ensembles producing spontaneous negative cord dorsum potentials (nCDPs) on segmental pathways mediating primary afferent depolarisation (PAD) of cutaneous and group I muscle afferents and on Ia monosynaptic activation of spinal motoneurones. The intraspinal distribution of the field potentials associated with the spontaneous nCDPs indicated that the neuronal ensembles involved in the generation of these potentials were located in the dorsal horn of lumbar segments, in the same region of termination of low-threshold cutaneous afferents. During the occurrence of spontaneous nCDPs, transmission from low-threshold cutaneous afferents to second order neurones in laminae III-VI, as well as transmission along pathways mediating PAD of cutaneous and Ib afferents, was facilitated. PAD of Ia afferents was instead inhibited. Monosynaptic reflexes of flexors and extensors were facilitated during the spontaneous nCDPs. The magnitude of the facilitation was proportional to the amplitude of the ‘conditioning’ spontaneous nCDPs. This led to a high positive correlation between amplitude fluctuations of spontaneous nCDPs and fluctuations of monosynaptic reflexes. Stimulation of low-threshold cutaneous afferents transiently reduced the probability of occurrence of spontaneous nCDPs as well as the fluctuations of monosynaptic reflexes. It is concluded that the spontaneous nCDPs were produced by the activation of a population of dorsal horn neurones that shared the same functional pathways and involved the same set of neurones as those responding monosynaptically to stimulation of large cutaneous afferents. The spontaneous activity of these neurones was probably the main cause of the fluctuations of the monosynaptic reflexes observed under anaesthesia and could provide a dynamic linkage between segmental sensory and motor pathways. PMID:11101653

  20. Hysteretic behavior of bladder afferent neurons in response to changes in bladder pressure.

    PubMed

    Ross, Shani E; Sperry, Zachariah J; Mahar, Colin M; Bruns, Tim M

    2016-08-12

    Mechanosensitive afferents innervating the bladder increase their firing rate as the bladder fills and pressure rises. However, the relationship between afferent firing rates and intravesical pressure is not a simple linear one. Firing rate responses to pressure can differ depending on prior activity, demonstrating hysteresis in the system. Though this hysteresis has been commented on in published literature, it has not been quantified. Sixty-six bladder afferents recorded from sacral dorsal root ganglia in five alpha-chloralose anesthetized felines were identified based on their characteristic responses to pressure (correlation coefficient ≥ 0.2) during saline infusion (2 ml/min). For saline infusion trials, we calculated a maximum hysteresis ratio between the firing rate difference at each pressure and the overall firing rate range (or Hmax) of 0.86 ± 0.09 (mean ± standard deviation) and mean hysteresis ratio (or Hmean) of 0.52 ± 0.13 (n = 46 afferents). For isovolumetric trials in two experiments (n = 33 afferents) Hmax was 0.72 ± 0.14 and Hmean was 0.40 ± 0.14. A comprehensive state model that integrates these hysteresis parameters to determine the bladder state may improve upon existing neuroprostheses for bladder control.

  1. Local opioid-sensitive afferent sensory neurones in the modulation of gastric damage induced by Paf.

    PubMed Central

    Esplugues, J. V.; Whittle, B. J.; Moncada, S.

    1989-01-01

    1. The role of local sensory neurones in modulating the extent of gastric mucosal damage induced by close-arterial infusion of platelet-activating factor (Paf 50 ng kg-1 min-1 for 10 min) has been investigated in the anaesthetized rat. 2. Local intra-arterial infusion of the neurotoxin, tetrodotoxin (TTX), substantially augmented the mucosal damage induced by Paf, as assessed by both macroscopic and histological techniques. 3. In rats pretreated with capsaicin 2 weeks prior to study, to induce a functional ablation of primary afferent neurones, gastric damage induced by Paf was significantly augmented. 4. Administration of morphine (0.75-3 mg kg-1 i.v.) or its peripherally acting quaternary analogue, N-methyl morphine (15 mg kg-1 i.v.), also significantly enhanced the gastric damage induced by Paf. 5. The potentiation by morphine of Paf-induced gastric damage was inhibited by administration of the opioid antagonists, naloxone (1 mg kg-1 i.v.) or the peripherally acting N-methyl nalorphine (3 mg kg-1 i.v.). 6. Administration of TTX or morphine alone, or pretreatment with capsaicin did not induce any detectable mucosal damage, suggesting that interference with local sensory neuronal activity itself does not directly induce mucosal disruption. 7. These results indicate that peripheral opiate-sensitive afferent sensory neurones play a physiological defensive role in the mucosa, attenuating the extent of gastric damage induced by Paf. PMID:2758231

  2. Functional Changes in Muscle Afferent Neurones in an Osteoarthritis Model: Implications for Impaired Proprioceptive Performance

    PubMed Central

    Wu, Qi; Henry, James L.

    2012-01-01

    Background Impaired proprioceptive performance is a significant clinical issue for many who suffer osteoarthritis (OA) and is a risk factor for falls and other liabilities. This study was designed to evaluate weight-bearing distribution in a rat model of OA and to determine whether changes also occur in muscle afferent neurones. Methodology/Principal Findings Intracellular recordings were made in functionally identified dorsal root ganglion neurones in acute electrophysiological experiments on the anaesthetized animal following measurements of hind limb weight bearing in the incapacitance test. OA rats but not naïve control rats stood with less weight on the ipsilateral hind leg (P = 0.02). In the acute electrophysiological experiments that followed weight bearing measurements, action potentials (AP) elicited by electrical stimulation of the dorsal roots differed in OA rats, including longer AP duration (P = 0.006), slower rise time (P = 0.001) and slower maximum rising rate (P = 0.03). Depolarizing intracellular current injection elicited more APs in models than in naïve muscle afferent neurones (P = 0.01) indicating greater excitability. Axonal conduction velocity in model animals was slower (P = 0.04). Conclusions/Significance The present study demonstrates changes in hind limb stance accompanied by changes in the functional properties of muscle afferent neurones in this derangement model of OA. This may provide a possible avenue to explore mechanisms underlying the impaired proprioceptive performance and perhaps other sensory disorders in people with OA. PMID:22606297

  3. Prostaglandin potentiates 5-HT responses in stomach and ileum innervating visceral afferent sensory neurons

    SciTech Connect

    Kim, Sojin; Jin, Zhenhua; Lee, Goeun; Park, Yong Seek; Park, Cheung-Seog; Jin, Young-Ho

    2015-01-02

    Highlights: • Prostaglandin E2 (PGE{sub 2}) effect was tested on visceral afferent neurons. • PGE{sub 2} did not evoke response but potentiated serotonin (5-HT) currents up to 167%. • PGE{sub 2}-induced potentiation was blocked by E-prostanoid type 4 receptors antagonist. • PGE{sub 2} effect on 5-HT response was also blocked by protein kinase A inhibitor KT5720. • Thus, PGE{sub 2} modulate visceral afferent neurons via synergistic signaling with 5-HT. - Abstract: Gastrointestinal disorder is a common symptom induced by diverse pathophysiological conditions that include food tolerance, chemotherapy, and irradiation for therapy. Prostaglandin E{sub 2} (PGE{sub 2}) level increase was often reported during gastrointestinal disorder and prostaglandin synthetase inhibitors has been used for ameliorate the symptoms. Exogenous administration of PGE{sub 2} induces gastrointestinal disorder, however, the mechanism of action is not known. Therefore, we tested PGE{sub 2} effect on visceral afferent sensory neurons of the rat. Interestingly, PGE{sub 2} itself did not evoked any response but enhanced serotonin (5-HT)-evoked currents up to 167% of the control level. The augmented 5-HT responses were completely inhibited by a 5-HT type 3 receptor antagonist, ondansetron. The PGE{sub 2}-induced potentiation were blocked by a selective E-prostanoid type4 (EP{sub 4}) receptors antagonist, L-161,982, but type1 and 2 receptor antagonist AH6809 has no effect. A membrane permeable protein kinase A (PKA) inhibitor, KT5720 also inhibited PGE{sub 2} effects. PGE{sub 2} induced 5-HT current augmentation was observed on 15% and 21% of the stomach and ileum projecting neurons, respectively. Current results suggest a synergistic signaling in visceral afferent neurons underlying gastrointestinal disorder involving PGE{sub 2} potentiation of 5-HT currents. Our findings may open a possibility for screen a new type drugs with lower side effects than currently using steroidal prostaglandin

  4. Cholinergic neurons in the mouse rostral ventrolateral medulla target sensory afferent areas

    PubMed Central

    Stornetta, Ruth L.; Macon, Conrad J.; Nguyen, Thanh M.; Coates, Melissa B.; Guyenet, Patrice G.

    2012-01-01

    The rostral ventrolateral medulla (RVLM) primarily regulates respiration and the autonomic nervous system. Its medial portion (mRVLM) contains many choline acetyltransferase (ChAT)-immunoreactive (ir) neurons of unknown function. We sought to clarify the role of these cholinergic cells by tracing their axonal projections. We first established that these neurons are neither parasympathetic preganglionic neurons nor motor neurons because they did not accumulate intraperitoneally administered Fluorogold. We traced their axonal projections by injecting a Cre-dependent vector (floxed-AAV2) expressing either GFP or mCherrry into the mRVLM of ChAT-Cre mice. Transduced neurons expressing GFP or mCherry were confined to the injection site and were exclusively ChAT-ir. Their axonal projections included the dorsal column nuclei, medullary trigeminal complex, cochlear nuclei, superior olivary complex and spinal cord lamina III. For control experiments, the floxed-AAV2 (mCherry) was injected into the RVLM of dopamine beta-hydroxylase-Cre mice. In these mice mCherry was exclusively expressed by RVLM catecholaminergic neurons. Consistent with data from rats, these catecholaminergic neurons targeted brain regions involved in autonomic and endocrine regulation. These regions were almost totally different from those innervated by the intermingled mRVLM-ChAT neurons. This study emphasizes the advantages of using Cre-driver mouse strains in combination with floxed-AAV2 to trace the axonal projections of chemically defined neuronal groups. Using this technique, we revealed previously unknown projections of mRVLM-ChAT neurons and showed that despite their close proximity to the cardiorespiratory region of the RVLM, these cholinergic neurons regulate sensory afferent information selectively and presumably have little to do with respiration or circulatory control. PMID:22460939

  5. Prostaglandin potentiates 5-HT responses in stomach and ileum innervating visceral afferent sensory neurons.

    PubMed

    Kim, Sojin; Jin, Zhenhua; Lee, Goeun; Park, Yong Seek; Park, Cheung-Seog; Jin, Young-Ho

    2015-01-02

    Gastrointestinal disorder is a common symptom induced by diverse pathophysiological conditions that include food tolerance, chemotherapy, and irradiation for therapy. Prostaglandin E2 (PGE2) level increase was often reported during gastrointestinal disorder and prostaglandin synthetase inhibitors has been used for ameliorate the symptoms. Exogenous administration of PGE2 induces gastrointestinal disorder, however, the mechanism of action is not known. Therefore, we tested PGE2 effect on visceral afferent sensory neurons of the rat. Interestingly, PGE2 itself did not evoked any response but enhanced serotonin (5-HT)-evoked currents up to 167% of the control level. The augmented 5-HT responses were completely inhibited by a 5-HT type 3 receptor antagonist, ondansetron. The PGE2-induced potentiation were blocked by a selective E-prostanoid type 4 (EP4) receptors antagonist, L-161,982, but type 1 and 2 receptor antagonist AH6809 has no effect. A membrane permeable protein kinase A (PKA) inhibitor, KT5720 also inhibited PGE2 effects. PGE2 induced 5-HT current augmentation was observed on 15% and 21% of the stomach and ileum projecting neurons, respectively. Current results suggest a synergistic signaling in visceral afferent neurons underlying gastrointestinal disorder involving PGE2 potentiation of 5-HT currents. Our findings may open a possibility for screen a new type drugs with lower side effects than currently using steroidal prostaglandin synthetase inhibitors by selectively targeting EP4 receptor/PKA pathway without interrupt prostaglandin synthesis.

  6. Neuronal pathways from foot pad afferents to hindlimb motoneurons in the low spinalized cats.

    PubMed

    Wada, N; Kanda, Y; Takayama, R

    1998-07-01

    Experiments were performed on 16 adult spinalized (L2) cats. Postsynaptic potentials (PSPs) produced by electrical stimulation of afferent nerves innervating foot pads were recorded from hindlimb motoneurons innervating the following hindlimb muscles: the posterior biceps and semitendinosus (PBSt), anterior biceps and semimembranosus (ABSm), lateral gastrocnemius and soleus (LGS), medial gastrocnemius (MG), plantaris (P1), tibialis anterior (TA), popliteus (Pop), flexor digitorum longus and flexor hallucis longus (FDHL) and peroneus longus (Per.l). The rate of occurrence of different types of PSPs (EPSPs, IPSPs and mixed PSPs), the size of the PSPs and their central latencies were analyzed for each group of motoneurons to identify the neural pathways from the afferents innervating foot pads to hindlimb motoneurons. The rates of occurrence of different types of PSPs did not depend on the foot pad stimulated in PBSt, ABSm and LGS motoneurons, but for other groups of motoneurons their rates of occurrence depended on the foot pad stimulated. It was often noted that the size of PSPs in the same motoneurons differed according to the foot pad stimulated. Measurements of the central latencies of the PSPs indicated that the shortest neural pathways for EPSPs and IPSPs were disynaptic (central latencies < 1.8 ms). The functional role of neuronal pathways from afferent nerves innervating foot pads to hindlimb motoneurons could be to maintain stability of the foot during different postural and motor activities.

  7. [Immunoreactivity of the synapses on the primary afferent axons and sensory neurons of the spinal cord Lampetra fluviatilis].

    PubMed

    Adanina, V O; Rio, J P; Adanina, A S; Reperan, J; Veselkin, N P

    2008-01-01

    The existence of GABA-like immunoreactivity in the synapses on the primary afferent axons and GABA- and glutamate immunoreactive synapses on the dorsal cell somatic membrane was shown using double postembedding immunogold cytochemistry. These morphological findings suggest that control of the sensory information in the lamprey spinal cord is realized by means of presynaptic inhibition through the synapses on the primary afferent axons as well as directly through the synapses on the somata of the sensory neurons.

  8. Dorsal horn convergent neurones: negative feedback triggered by spatial summation of nociceptive afferents.

    PubMed

    Bouhassira, D; Gall, O; Chitour, D; Le Bars, D

    1995-08-01

    In order to investigate the effects of spatial summation on the spinal transmission of nociceptive information, we compared in intact and spinal anaesthetized rats, responses of lumbar convergent neurones elicited by noxious heat stimuli applied to areas of the body much greater in size than their individual excitatory receptive fields, located distally on the hindpaw. Twenty-four neurones were recorded in each group of animals. For each neurone, 4 successive immersions of increasing areas (1.9-18 cm2) of the ipsilateral hindpaw in a 48 degrees C water bath (15-sec duration) were performed with 10-min intervals in a randomized and balanced order. In intact animals, the responses of convergent neurones progressively decreased when the area of noxious thermal stimulation reached and then exceeded approximately twice the area of their individual excitatory receptive fields. This decrease was highly significant for 18 cm2 which represents approximately 10-fold the mean of the receptive field areas. Such a phenomenon was not observed for neurones recorded in spinal animals although their excitatory receptive field areas were not significantly different. These results suggest that the activation of a large population of nociceptive afferents triggers supraspinally mediated negative feed-back loop modulating the responses of convergent neurones.

  9. Combined Changes in Chloride Regulation and Neuronal Excitability Enable Primary Afferent Depolarization to Elicit Spiking without Compromising its Inhibitory Effects

    PubMed Central

    2016-01-01

    The central terminals of primary afferent fibers experience depolarization upon activation of GABAA receptors (GABAAR) because their intracellular chloride concentration is maintained above electrochemical equilibrium. Primary afferent depolarization (PAD) normally mediates inhibition via sodium channel inactivation and shunting but can evoke spikes under certain conditions. Antidromic (centrifugal) conduction of these spikes may contribute to neurogenic inflammation while orthodromic (centripetal) conduction could contribute to pain in the case of nociceptive fibers. PAD-induced spiking is assumed to override presynaptic inhibition. Using computer simulations and dynamic clamp experiments, we sought to identify which biophysical changes are required to enable PAD-induced spiking and whether those changes necessarily compromise PAD-mediated inhibition. According to computational modeling, a depolarizing shift in GABA reversal potential (EGABA) and increased intrinsic excitability (manifest as altered spike initiation properties) were necessary for PAD-induced spiking, whereas increased GABAAR conductance density (ḡGABA) had mixed effects. We tested our predictions experimentally by using dynamic clamp to insert virtual GABAAR conductances with different EGABA and kinetics into acutely dissociated dorsal root ganglion (DRG) neuron somata. Comparable experiments in central axon terminals are prohibitively difficult but the biophysical requirements for PAD-induced spiking are arguably similar in soma and axon. Neurons from naïve (i.e. uninjured) rats were compared before and after pharmacological manipulation of intrinsic excitability, and against neurons from nerve-injured rats. Experimental data confirmed that, in most neurons, both predicted changes were necessary to yield PAD-induced spiking. Importantly, such changes did not prevent PAD from inhibiting other spiking or from blocking spike propagation. In fact, since the high value of ḡGABA required for PAD

  10. Responses to somatosensory input by afferent and efferent neurons in the vestibular nerve of the frog.

    PubMed

    Caston, J; Bricout-Berthout, A

    1984-01-01

    In the frog, we have recorded the activity of efferent and afferent fibers in the nerve of the horizontal semicircular canal in response to somatosensory stimulation. Recordings were made extracellularly by means of glass micropipettes filled with 2 M NaCl, and somatosensory stimulation was produced either by electrical stimulation of the sciatic nerve (ipsi- or contralateral to the recording side) or by vibratory stimulation of the gastrocnemius. The discharge frequency of 43% of the efferent fibers recorded was significantly increased by such stimulation, while the activity of the others was unaffected. The discharge rate of the afferent fibers was either significantly increased (in about 11% of the cases when the results were pooled together) or significantly decreased (in about 22% of the cases) by stimulation of the somatosensory system. The latencies of the responses ranged from 5 to 50 ms. These results show that: somatosensory input can influence the activity of the vestibular apparatus at the most peripheral level; modulation of the afferent discharge is mediated by the efferent vestibular system (EVS); the influence of the EVS on the vestibular afferent activity is both inhibitory and facilitatory, and the responses to somatosensory stimulation are mediated by both long-latency polysynaptic and short-latency oligosynaptic pathways. The functional significance of these two pathways is discussed.

  11. Primary afferent neurons of the electrosensory system of paddlefish respond to the electrical signal of paddlefish moving prey.*

    NASA Astrophysics Data System (ADS)

    Wojtenek, Winfried; Neiman, Alexander; Moss, Frank; Wilkens, Lon

    2000-03-01

    The elongated rostrum and ampullae of Lorenzini of paddlefish (Polyodon spathula) function as an antenna for detecting electrical signals from planktonic prey (1,2). We characterize the weak electric field of the water flea (Daphnia), the natural prey of paddlefish, and the response of the electroreceptor primary afferents to the live plankton. Daphnia generate a steady DC electric field with a low-frequency AC component. The DC field is dipolar, with low-frequency AC modulations (5-10 Hz) of 10-20peak-to-peak amplitude of the steady DC electric field. Primary afferents discharge rate are briefly increased or decreased when Daphnia swept over their receptive fields. Cathodal stimulation increases the primary afferent spike rate, whereas anodal stimuli decrease neuronal activity. The pattern of neuronal discharge depend on dipole orientation and, in general, neuronal discharges follow the characteristic of moving Daphnia’s electric potentials.

  12. Deletion of leptin signaling in vagal afferent neurons results in hyperphagia and obesity.

    PubMed

    de Lartigue, Guillaume; Ronveaux, Charlotte C; Raybould, Helen E

    2014-09-01

    The vagal afferent pathway senses hormones released from the gut in response to nutritional cues and relays these signals to the brain. We tested the hypothesis that leptin resistance in vagal afferent neurons (VAN) is responsible for the onset of hyperphagia by developing a novel conditional knockout mouse to delete leptin receptor selectively in sensory neurons (Nav1.8/LepR (fl/fl) mice). Chow fed Nav1.8/LepR (fl/fl) mice weighed significantly more and had increased adiposity compared with wildtype mice. Cumulative food intake, meal size, and meal duration in the dark phase were increased in Nav1.8/LepR (fl/fl) mice; energy expenditure was unaltered. Reduced satiation in Nav1.8/LepR (fl/fl) mice is in part due to reduced sensitivity of VAN to CCK and the subsequent loss of VAN plasticity. Crucially Nav1.8/LepR (l/fl) mice did not gain further weight in response to a high fat diet. We conclude that disruption of leptin signaling in VAN is sufficient and necessary to promote hyperphagia and obesity.

  13. Type II spiral ganglion afferent neurons drive medial olivocochlear reflex suppression of the cochlear amplifier

    PubMed Central

    Froud, Kristina E.; Wong, Ann Chi Yan; Cederholm, Jennie M. E.; Klugmann, Matthias; Sandow, Shaun L.; Julien, Jean-Pierre; Ryan, Allen F.; Housley, Gary D.

    2015-01-01

    The dynamic adjustment of hearing sensitivity and frequency selectivity is mediated by the medial olivocochlear efferent reflex, which suppresses the gain of the ‘cochlear amplifier' in each ear. Such efferent feedback is important for promoting discrimination of sounds in background noise, sound localization and protecting the cochleae from acoustic overstimulation. However, the sensory driver for the olivocochlear reflex is unknown. Here, we resolve this longstanding question using a mouse model null for the gene encoding the type III intermediate filament peripherin (Prph). Prph(−/−) mice lacked type II spiral ganglion neuron innervation of the outer hair cells, whereas innervation of the inner hair cells by type I spiral ganglion neurons was normal. Compared with Prph(+/+) controls, both contralateral and ipsilateral olivocochlear efferent-mediated suppression of the cochlear amplifier were absent in Prph(−/−) mice, demonstrating that outer hair cells and their type II afferents constitute the sensory drive for the olivocochlear efferent reflex. PMID:25965946

  14. Serotonin increases the incidence of primary afferent-evoked long-term depression in rat deep dorsal horn neurons.

    PubMed

    Garraway, S M; Hochman, S

    2001-05-01

    5-hydroxytryptamine (5-HT) is released in spinal cord by descending systems that modulate somatosensory transmission and can potently depress primary afferent-evoked synaptic responses in dorsal horn neurons. Since primary afferent activity-induced long-term potentiation (LTP) may contribute to central sensitization of nociception, we studied the effects of 5-HT on the expression of sensory-evoked LTP and long-term depression (LTD) in deep dorsal horn (DDH) neurons. Whole cell, predominantly current clamp, recordings were obtained from DDH neurons in transverse slices of neonatal rat lumbar spinal cord. The effect of 5-HT on dorsal-root stimulation-evoked synaptic responses was tested before, during, or after high-frequency conditioning stimulation (CS). In most cells (80%), 5-HT caused a depression of the naïve synaptic response. Even though 5-HT depressed evoked responses, CS in the presence of 5-HT was not only still capable of inducing LTD but also increased its incidence from 54% in controls to 88% (P < 0.001). Activation of ligands selective for 5-HT(1A/1B) and 5-HT(1B), but not 5-HT(2A/2C) or 5-HT(3) receptors, best reproduced these actions. 5-HT also potently depressed postconditioning synaptic responses regardless of whether the induced plasticity was LTP or LTD. Our results demonstrate that in addition to depressing the amplitude of evoked sensory input, 5-HT can also control the direction of its long-term modifiability, favoring the expression of LTD. These findings demonstrate cellular mechanisms that may contribute to the descending serotonergic control of nociception.

  15. Nociceptive Afferent Activity Alters the SI RA Neuron Response to Mechanical Skin Stimulation

    PubMed Central

    Favorov, O.V.; Li, Y.; Lee, J.; Quibrera, P.M.; Tommerdahl, M.

    2010-01-01

    Procedures that reliably evoke cutaneous pain in humans (i.e., 5–7 s skin contact with a 47–51 °C probe, intradermal algogen injection) are shown to decrease the mean spike firing rate (MFR) and degree to which the rapidly adapting (RA) neurons in areas 3b/1 of squirrel monkey primary somatosensory cortex (SI) entrain to a 25-Hz stimulus to the receptive field center (RFcenter) when stimulus amplitude is “near-threshold” (i.e., 10–50 μm). In contrast, RA neuron MFR and entrainment are either unaffected or enhanced by 47–51 °C contact or intradermal algogen injection when the amplitude of 25-Hz stimulation is 100–200 μm (suprathreshold). The results are attributed to an “activity dependence” of γ-aminobutyric acid (GABA) action on the GABAA receptors of RA neurons. The nociceptive afferent drive triggered by skin contact with a 47–51 °C probe or intradermal algogen is proposed to activate nociresponsive neurons in area 3a which, via corticocortical connections, leads to the release of GABA in areas 3b/1. It is hypothesized that GABA is hyperpolarizing/inhibitory and suppresses stimulus-evoked RA neuron MFR and entrainment whenever RA neuron activity is low (as when the RFcenter stimulus is weak/near-threshold) but is depolarizing/excitatory and augments MFR and entrainment when RA neuron activity is high (when the stimulus is strong/suprathreshold). PMID:20308203

  16. Characteristics of rostral solitary tract nucleus neurons with identified afferent connections that project to the parabrachial nucleus in rats.

    PubMed

    Suwabe, Takeshi; Bradley, Robert M

    2009-07-01

    Afferent information derived from oral chemoreceptors is transmitted to second-order neurons in the rostral solitary tract nucleus (rNST) and then relayed to other CNS locations responsible for complex sensory and motor behaviors. Here we investigate the characteristics of rNST neurons sending information rostrally to the parabrachial nucleus (PBN). Afferent connections to these rNST-PBN projection neurons were identified by anterograde labeling of the chorda tympani (CT), glossopharyngeal (IX), and lingual (LV) nerves. We used voltage- and current-clamp recordings in brain slices to characterize the expression of both the transient A-type potassium current, IKA and the hyperpolarization-activated inward current, Ih, important determinants of neuronal repetitive discharge characteristics. The majority of rNST-PBN neurons express IKA, and these IKA-expressing neurons predominate in CT and IX terminal fields but were expressed in approximately half of the neurons in the LV field. rNST-PBN neurons expressing Ih were evenly distributed among CT, IX and LV terminal fields. However, expression patterns of IKA and Ih differed among CT, IX, and LV fields. IKA-expressing neurons frequently coexpress Ih in CT and IX terminal fields, whereas neurons in LV terminal field often express only Ih. After GABAA receptor block all rNST-PBN neurons responded to afferent stimulation with all-or-none excitatory synaptic responses. rNST-PBN neurons had either multipolar or elongate morphologies and were distributed throughout the rNST, but multipolar neurons were more often encountered in CT and IX terminal fields. No correlation was found between the biophysical and morphological characteristics of the rNST-PBN projection neurons in each terminal field.

  17. Cytoarchitecture, neuronal composition, and entorhinal afferents of the flying fox hippocampus.

    PubMed

    Buhl, E H; Dann, J F

    1991-04-01

    In a comparative approach, the anatomical organization of the hippocampus was investigated in two species of megachiropteran bats, the grey-headed flying fox, Pteropus poliocephalus, and the little red flying fox, Pteropus scapulatus. In general, the cytoarchitectonic appearance of the flying fox hippocampus corresponded well with that of other mammals, revealing all major subdivisions. While the dentate fascia was trilaminated with a molecular layer, a granule cell layer, and a distinct polymorphic layer, the ammonic subfields were subdivided into stratum lacunosum molecular, stratum radiatum, stratum lucidum or mossy fiber layer (restricted to the CA3 region), pyramidal cell layer, and stratum oriens. In Ammon's horn, only subfields CA1, CA3, and CA3c were clearly discernible, whereas the CA2 region remained indistinct. In some cytoarchitectonic features, such as the dispersion of the pyramidal layer in CA1, the megachiropteran hippocampus resembled the corresponding region in primates. Five characteristic neuronal cell types of the megachiropteran hippocampus were studied in fixed slice preparations after intracellular injection with Lucifer Yellow. While the morphological appearance of CA3 pyramidal cells, horizontal stratum oriens cells, aspiny stellate cells, and mossy cells strongly resembled their counterparts in rodents, primates, and carnivores, granule cells showed an interesting variation from the nonprimate pattern. Like a subset of granule cells in the primate dentate gyrus, 75% of flying fox granule cells revealed 1-2 basal dendrites that ramified in the polymorphic layer. These processes are presumed to form the morphological substrate for recurrent excitation. Entorhinal afferents to Ammon's horn and the dentate fascia were revealed by employing the method of tract tracing in fixed tissue with the carbocyanine dye DiI. Similar to the rat and cat, but unlike the monkey, the entorhino-dentate projection in the flying fox is bilaminate, with medial

  18. Evidence that antidromically stimulated vagal afferents activate inhibitory neurones innervating guinea-pig trachealis.

    PubMed Central

    Canning, B J; Undem, B J

    1994-01-01

    -selective agonist, acetyl-[Arg6, Sar9, Met (O2)11]-SP(6-11), elicited oesophagus-dependent relaxations of the trachealis that were abolished by oesophagus removal. Furthermore, pretreatment with the NK1-selective antagonists, CP 96345 and CP 99994, or pretreatment with a concentration of SR 48968 that also blocks NK3 receptors, markedly attenuated relaxations elicited by stimulation of the capsaicin-sensitive vagal pathways. 6. The data are consistent with the hypothesis that relaxations elicited by stimulation of capsaicin-sensitive vagal afferents involve tachykinin-mediated activation of peripheral NANC inhibitory neurones that are in some way associated with the oesophagus. The data also indicate that airway smooth muscle tone might be regulated by peripheral reflexes initiated by activation of capsaicin-sensitive afferent fibres. PMID:7869272

  19. [Localization of efferent sympathetic neurons and afferent neurons in dorsal root ganglia innervating the heart].

    PubMed

    Fateev, M M; Zaikina, M G

    1989-01-01

    The retrograde transport of horseradish peroxidase (HRP) has been used to study the localization and the number of neurons innervating the heart in the right stellate ganglion and accessory cervical ganglion, spinal cord and dorsal root ganglia of the cat. HRP was applied to the central cuts of anastomose of the stellate ganglion with the vagal nerve, of the vagosympathetic trunk caudal to anastomose and of the inferior cardiac nerve. HRP-labelled neurons were detected in the stellate ganglion in the regions which give off nerves, whereas in the accessory cervical ganglion labelled neurons were distributed throughout the whole ganglion. HRP-stained cells were found in the anastomose. In the spinal cord labelled neurons were detected in the lateral horn of T1-T5 segments. In the dorsal root ganglion the greatest number of neurons was observed in T2-T4 segments.

  20. [Postsynaptic reactions of cerebral cortex neurons, activated by nociceptive afferents during stimulation of the Raphe nuclei].

    PubMed

    Labakhua, T Sh; Dzhanashiia, T K; Gedevanishvili, G I; Dzhokhadze, L D; Tkemaladze, T T; Abzianidze, I V

    2012-01-01

    On cats, we studied the influence of stimulation of the Raphe nuclei (RN) on postsynaptic processes evoked in neurons of the somatosensory cortex by stimulation of nociceptive (intensive stimulation of the tooth pulp) and non-nociceptive (moderate stimulation of the ventroposteromedial--VPN--nucleus of the thalamus) afferent inputs. 6 cells, selectively excited by stimulation of nocciceptors and 9 cells, activated by both the above nociceptive and non-nociceptive influences (nociceptive and convergent neurons, respectively) were recorded intracellular. In neurons of both groups, responses to nociceptive stimulation (of sufficient intensity) looked like an EPSP-spike-IPSP (the letter of significant duration, up to 200-300 ms) compleх. Conditioning stimulation of the RN which preceded test stimulus applied to the tooth pulp or VPM nucleus by 100 to 800 ms, induced 40-60 % decrease of the IPSP amplitude only, while maхimal effect of influence, in both cases, was noted within intervals of 300-800 ms between conditioning and test stimulus. During stimulation of the RN, serotonin released via receptor and second messengers, provides postsynaptic modulation of GABAergic system, decreasing the IPSP amplitude which occurs after stimulation of both the tooth pulp and VPM thalamic nucleus. This process may be realized trough either pre- or postsynaptic mechanisms.

  1. Cardiopulmonary sympathetic afferent excitation of lower thoracic spinoreticular and spinothalamic neurons.

    PubMed

    Ammons, W S

    1990-12-01

    1. Responses of spinoreticular (SRT) and spinothalamic (STT) neurons located in the T7-T9 segments to cardiopulmonary sympathetic afferent (CPS) stimuli were studied in 27 cats that were anesthetized with alpha-chloralose. 2. CPS stimulation excited 32 SRT and 10 STT neurons. Each neuron was also excited by stimulation of the left greater splanchnic nerve (SPL) and had a somatic receptive field that was most commonly located on the upper abdomen and over the lower rib cage. An additional 12 SRT and 3 STT neurons received input from SPL and somatic structures but failed to respond to CPS stimulation. 3. CPS stimulation evoked early responses (23 cells) or both early and late responses (19 cells) that had average latencies of 12.7 +/- 1.8 and 88.2 +/- 13.1 (SE) ms, respectively. Latencies of responses to SPL stimulation were significantly shorter and averaged 8.1 +/- 0.9 and 46.1 +/- 7.1 ms. Magnitudes of early responses to SPL stimulation were significantly greater than responses to CPS stimulation; however, late responses were not different. 4. Responses to CPS stimulation were inhibited by a prior conditioning stimulus applied to SPL. Greatest inhibition occurred at a conditioning-test interval of 40 ms, and inhibition lasted for at least 300 ms. Inhibition of responses to SPL stimulation could be evoked by conditioning stimuli applied to CPS; however, the inhibition was significantly less than that evoked by SPL stimulation on responses to CPS stimulation. 5. Thirty-eight neurons were tested for responses to injection of bradykinin (4 micrograms/kg) into the left atrium. Discharge rate of 17 cells increased from 5 +/- 2 to 12 +/- 4 Hz. Four cells were tachyphylactic to repeated injections. Injections of bradykinin into the thoracic aorta did not significantly alter cell activity. Bilateral cervical vagotomy had no effect on responses to intracardiac bradykinin. 6. The results indicate that lower thoracic SRT and STT neurons are excited by CPS stimuli including

  2. The role of trigeminal nasal TRPM8-expressing afferent neurons in the antitussive effects of menthol

    PubMed Central

    Plevkova, J.; Kollarik, M.; Poliacek, I.; Brozmanova, M.; Surdenikova, L.; Tatar, M.; Mori, N.

    2013-01-01

    The cold-sensitive cation channel TRPM8 is a target for menthol, which is used routinely as a cough suppressant and as an additive to tobacco and food products. Given that cold temperatures and menthol activate neurons through gating of TRPM8, it is unclear how menthol actively suppresses cough. In this study we describe the antitussive effects of (−)-menthol in conscious and anesthetized guinea pigs. In anesthetized guinea pigs, cough evoked by citric acid applied topically to the tracheal mucosa was suppressed by menthol only when it was selectively administered as vapors to the upper airways. Menthol applied topically to the tracheal mucosa prior to and during citric acid application or administered continuously as vapors or as an aerosol to the lower airways was without effect on cough. These actions of upper airway menthol treatment were mimicked by cold air delivered to the upper airways but not by (+)-menthol, the inactive isomer of menthol, or by the TRPM8/TRPA1 agonist icilin administered directly to the trachea. Subsequent molecular analyses confirmed the expression of TRPM8 in a subset of nasal trigeminal afferent neurons that do not coincidently express TRPA1 or TRPV1. We conclude that menthol suppresses cough evoked in the lower airways primarily through a reflex initiated from the nose. PMID:23640596

  3. The role of trigeminal nasal TRPM8-expressing afferent neurons in the antitussive effects of menthol.

    PubMed

    Plevkova, J; Kollarik, M; Poliacek, I; Brozmanova, M; Surdenikova, L; Tatar, M; Mori, N; Canning, B J

    2013-07-15

    The cold-sensitive cation channel TRPM8 is a target for menthol, which is used routinely as a cough suppressant and as an additive to tobacco and food products. Given that cold temperatures and menthol activate neurons through gating of TRPM8, it is unclear how menthol actively suppresses cough. In this study we describe the antitussive effects of (-)-menthol in conscious and anesthetized guinea pigs. In anesthetized guinea pigs, cough evoked by citric acid applied topically to the tracheal mucosa was suppressed by menthol only when it was selectively administered as vapors to the upper airways. Menthol applied topically to the tracheal mucosa prior to and during citric acid application or administered continuously as vapors or as an aerosol to the lower airways was without effect on cough. These actions of upper airway menthol treatment were mimicked by cold air delivered to the upper airways but not by (+)-menthol, the inactive isomer of menthol, or by the TRPM8/TRPA1 agonist icilin administered directly to the trachea. Subsequent molecular analyses confirmed the expression of TRPM8 in a subset of nasal trigeminal afferent neurons that do not coincidently express TRPA1 or TRPV1. We conclude that menthol suppresses cough evoked in the lower airways primarily through a reflex initiated from the nose.

  4. Afferent inhibition and the functional properties of neurons in the projection zone of the whiskers in the somatosensory cortex of the cat.

    PubMed

    Aleksandrov, A A

    2000-01-01

    The effects of afferent evoked inhibition on the functional properties of neurons in the whisker projection zone were studied in the cat brain. These investigations showed that afferent inhibition produced significant changes in the receptive fields of neurons, resulting in the induction of directional sensitivity. These data provide evidence for a defined topical ordering of intracortical inhibitory interactions. It is suggested that in natural conditions, movement of an object across the whisker field, resulting in sequential stimulation of the whiskers, results in sequential tuning of the detector properties of neurons receiving afferent flows from the whiskers. This process may form part of the mechanism for recognizing the direction of stimulus movement.

  5. Inputs from regularly and irregularly discharging vestibular nerve afferents to secondary neurons in squirrel monkey vestibular nuclei. III. Correlation with vestibulospinal and vestibuloocular output pathways

    NASA Technical Reports Server (NTRS)

    Boyle, R.; Goldberg, J. M.; Highstein, S. M.

    1992-01-01

    1. A previous study measured the relative contributions made by regularly and irregularly discharging afferents to the monosynaptic vestibular nerve (Vi) input of individual secondary neurons located in and around the superior vestibular nucleus of barbiturate-anesthetized squirrel monkeys. Here, the analysis is extended to more caudal regions of the vestibular nuclei, which are a major source of both vestibuloocular and vestibulospinal pathways. As in the previous study, antidromic stimulation techniques are used to classify secondary neurons as oculomotor or spinal projecting. In addition, spinal-projecting neurons are distinguished by their descending pathways, their termination levels in the spinal cord, and their collateral projections to the IIIrd nucleus. 2. Monosynaptic excitatory postsynaptic potentials (EPSPs) were recorded intracellularly from secondary neurons as shocks of increasing strength were applied to Vi. Shocks were normalized in terms of the threshold (T) required to evoke field potentials in the vestibular nuclei. As shown previously, the relative contribution of irregular afferents to the total monosynaptic Vi input of each secondary neuron can be expressed as a %I index, the ratio (x100) of the relative sizes of the EPSPs evoked by shocks of 4 x T and 16 x T. 3. Antidromic stimulation was used to type secondary neurons as 1) medial vestibulospinal tract (MVST) cells projecting to spinal segments C1 or C6; 2) lateral vestibulospinal tract (LVST) cells projecting to C1, C6; or L1; 3) vestibulooculo-collic (VOC) cells projecting both to the IIIrd nucleus and by way of the MVST to C1 or C6; and 4) vestibuloocular (VOR) neurons projecting to the IIIrd nucleus but not to the spinal cord. Most of the neurons were located in the lateral vestibular nucleus (LV), including its dorsal (dLV) and ventral (vLV) divisions, and adjacent parts of the medial (MV) and descending nuclei (DV). Cells receiving quite different proportions of their direct inputs

  6. Inputs from regularly and irregularly discharging vestibular nerve afferents to secondary neurons in squirrel monkey vestibular nuclei. III. Correlation with vestibulospinal and vestibuloocular output pathways

    NASA Technical Reports Server (NTRS)

    Boyle, R.; Goldberg, J. M.; Highstein, S. M.

    1992-01-01

    1. A previous study measured the relative contributions made by regularly and irregularly discharging afferents to the monosynaptic vestibular nerve (Vi) input of individual secondary neurons located in and around the superior vestibular nucleus of barbiturate-anesthetized squirrel monkeys. Here, the analysis is extended to more caudal regions of the vestibular nuclei, which are a major source of both vestibuloocular and vestibulospinal pathways. As in the previous study, antidromic stimulation techniques are used to classify secondary neurons as oculomotor or spinal projecting. In addition, spinal-projecting neurons are distinguished by their descending pathways, their termination levels in the spinal cord, and their collateral projections to the IIIrd nucleus. 2. Monosynaptic excitatory postsynaptic potentials (EPSPs) were recorded intracellularly from secondary neurons as shocks of increasing strength were applied to Vi. Shocks were normalized in terms of the threshold (T) required to evoke field potentials in the vestibular nuclei. As shown previously, the relative contribution of irregular afferents to the total monosynaptic Vi input of each secondary neuron can be expressed as a %I index, the ratio (x100) of the relative sizes of the EPSPs evoked by shocks of 4 x T and 16 x T. 3. Antidromic stimulation was used to type secondary neurons as 1) medial vestibulospinal tract (MVST) cells projecting to spinal segments C1 or C6; 2) lateral vestibulospinal tract (LVST) cells projecting to C1, C6; or L1; 3) vestibulooculo-collic (VOC) cells projecting both to the IIIrd nucleus and by way of the MVST to C1 or C6; and 4) vestibuloocular (VOR) neurons projecting to the IIIrd nucleus but not to the spinal cord. Most of the neurons were located in the lateral vestibular nucleus (LV), including its dorsal (dLV) and ventral (vLV) divisions, and adjacent parts of the medial (MV) and descending nuclei (DV). Cells receiving quite different proportions of their direct inputs

  7. Dopaminergic Modulation of the Voltage-Gated Sodium Current in the Cochlear Afferent Neurons of the Rat

    PubMed Central

    Valdés-Baizabal, Catalina; Soto, Enrique; Vega, Rosario

    2015-01-01

    The cochlear inner hair cells synapse onto type I afferent terminal dendrites, constituting the main afferent pathway for auditory information flow. This pathway receives central control input from the lateral olivocochlear efferent neurons that release various neurotransmitters, among which dopamine (DA) plays a salient role. DA receptors activation exert a protective role in the over activation of the afferent glutamatergic synapses, which occurs when an animal is exposed to intense sound stimuli or during hypoxic events. However, the mechanism of action of DA at the cellular level is still not completely understood. In this work, we studied the actions of DA and its receptor agonists and antagonists on the voltage-gated sodium current (INa) in isolated cochlear afferent neurons of the rat to define the mechanisms of dopaminergic control of the afferent input in the cochlear pathway. Experiments were performed using the voltage and current clamp techniques in the whole-cell configuration in primary cultures of cochlear spiral ganglion neurons (SGNs). Recordings of the INa showed that DA receptor activation induced a significant inhibition of the peak current amplitude, leading to a significant decrease in cell excitability. Inhibition of the INa was produced by a phosphorylation of the sodium channels as shown by the use of phosphatase inhibitor that produced an inhibition analogous to that caused by DA receptor activation. Use of specific agonists and antagonists showed that inhibitory action of DA was mediated both by activation of D1- and D2-like DA receptors. The action of the D1- and D2-like receptors was shown to be mediated by a Gαs/AC/cAMP/PKA and Gαq/PLC/PKC pathways respectively. These results showed that DA receptor activation constitutes a significant modulatory input to SGNs, effectively modulating their excitability and information flow in the auditory pathway. PMID:25768433

  8. Dopaminergic modulation of the voltage-gated sodium current in the cochlear afferent neurons of the rat.

    PubMed

    Valdés-Baizabal, Catalina; Soto, Enrique; Vega, Rosario

    2015-01-01

    The cochlear inner hair cells synapse onto type I afferent terminal dendrites, constituting the main afferent pathway for auditory information flow. This pathway receives central control input from the lateral olivocochlear efferent neurons that release various neurotransmitters, among which dopamine (DA) plays a salient role. DA receptors activation exert a protective role in the over activation of the afferent glutamatergic synapses, which occurs when an animal is exposed to intense sound stimuli or during hypoxic events. However, the mechanism of action of DA at the cellular level is still not completely understood. In this work, we studied the actions of DA and its receptor agonists and antagonists on the voltage-gated sodium current (INa) in isolated cochlear afferent neurons of the rat to define the mechanisms of dopaminergic control of the afferent input in the cochlear pathway. Experiments were performed using the voltage and current clamp techniques in the whole-cell configuration in primary cultures of cochlear spiral ganglion neurons (SGNs). Recordings of the INa showed that DA receptor activation induced a significant inhibition of the peak current amplitude, leading to a significant decrease in cell excitability. Inhibition of the INa was produced by a phosphorylation of the sodium channels as shown by the use of phosphatase inhibitor that produced an inhibition analogous to that caused by DA receptor activation. Use of specific agonists and antagonists showed that inhibitory action of DA was mediated both by activation of D1- and D2-like DA receptors. The action of the D1- and D2-like receptors was shown to be mediated by a Gαs/AC/cAMP/PKA and Gαq/PLC/PKC pathways respectively. These results showed that DA receptor activation constitutes a significant modulatory input to SGNs, effectively modulating their excitability and information flow in the auditory pathway.

  9. Peripheral oxytocin activates vagal afferent neurons to suppress feeding in normal and leptin-resistant mice: a route for ameliorating hyperphagia and obesity.

    PubMed

    Iwasaki, Yusaku; Maejima, Yuko; Suyama, Shigetomo; Yoshida, Masashi; Arai, Takeshi; Katsurada, Kenichi; Kumari, Parmila; Nakabayashi, Hajime; Kakei, Masafumi; Yada, Toshihiko

    2015-03-01

    Oxytocin (Oxt), a neuropeptide produced in the hypothalamus, is implicated in regulation of feeding. Recent studies have shown that peripheral administration of Oxt suppresses feeding and, when infused subchronically, ameliorates hyperphagic obesity. However, the route through which peripheral Oxt informs the brain is obscure. This study aimed to explore whether vagal afferents mediate the sensing and anorexigenic effect of peripherally injected Oxt in mice. Intraperitoneal Oxt injection suppressed food intake and increased c-Fos expression in nucleus tractus solitarius to which vagal afferents project. The Oxt-induced feeding suppression and c-Fos expression in nucleus tractus solitarius were blunted in mice whose vagal afferent nerves were blocked by subdiaphragmatic vagotomy or capsaicin treatment. Oxt induced membrane depolarization and increases in cytosolic Ca(2+) concentration ([Ca(2+)]i) in single vagal afferent neurons. The Oxt-induced [Ca(2+)]i increases were markedly suppressed by Oxt receptor antagonist. These Oxt-responsive neurons also responded to cholecystokinin-8 and contained cocaine- and amphetamine-regulated transcript. In obese diabetic db/db mice, leptin failed to increase, but Oxt increased [Ca(2+)]i in vagal afferent neurons, and single or subchronic infusion of Oxt decreased food intake and body weight gain. These results demonstrate that peripheral Oxt injection suppresses food intake by activating vagal afferent neurons and thereby ameliorates obesity in leptin-resistant db/db mice. The peripheral Oxt-regulated vagal afferent neuron provides a novel target for treating hyperphagia and obesity. Copyright © 2015 the American Physiological Society.

  10. Diet-induced obesity leads to the development of leptin resistance in vagal afferent neurons.

    PubMed

    de Lartigue, Guillaume; Barbier de la Serre, Claire; Espero, Elvis; Lee, Jennifer; Raybould, Helen E

    2011-07-01

    Ingestion of high-fat, high-calorie diets is associated with hyperphagia, increased body fat, and obesity. The mechanisms responsible are currently unclear; however, altered leptin signaling may be an important factor. Vagal afferent neurons (VAN) integrate signals from the gut in response to ingestion of nutrients and express leptin receptors. Therefore, we tested the hypothesis that leptin resistance occurs in VAN in response to a high-fat diet. Sprague-Dawley rats, which exhibit a bimodal distribution of body weight gain, were used after ingestion of a high-fat diet for 8 wk. Body weight, food intake, and plasma leptin levels were measured. Leptin signaling was determined by immunohistochemical localization of phosphorylated STAT3 (pSTAT3) in cultured VAN and by quantifaction of pSTAT3 protein levels by Western blot analysis in nodose ganglia and arcuate nucleus in vivo. To determine the mechanism of leptin resistance in nodose ganglia, cultured VAN were stimulated with leptin alone or with lipopolysaccharide (LPS) and SOCS-3 expression measured. SOCS-3 protein levels in VAN were measured by Western blot following leptin administration in vivo. Leptin resulted in appearance of pSTAT3 in VAN of low-fat-fed rats and rats resistant to diet-induced obesity but not diet-induced obese (DIO) rats. However, leptin signaling was normal in arcuate neurons. SOCS-3 expression was increased in VAN of DIO rats. In cultured VAN, LPS increased SOCS-3 expression and inhibited leptin-induced pSTAT3 in vivo. We conclude that VAN of diet-induced obese rats become leptin resistant; LPS and SOCS-3 may play a role in the development of leptin resistance.

  11. Betahistine produces post-synaptic inhibition of the excitability of the primary afferent neurons in the vestibular endorgans.

    PubMed

    Soto, E; Chávez, H; Valli, P; Benvenuti, C; Vega, R

    2001-01-01

    Betahistine has been used to treat several vestibular disorders of both central and peripheral origin. The objective of this work was to study the action of betahistine in the vestibular endorgans. Experiments were done in wild larval axolotl (Ambystoma tigrinum). Multiunit extracellular recordings were obtained from the semicircular canal nerve using a suction electrode. Betahistine (10 microM to 10 mM; n = 32) inhibited the basal spike discharge of the vestibular afferent neurons with an IC50 of 600 microM. To define the site of action of betahistine, its interactions with the nitric oxide synthase inhibitor NG-nitro-L-arginine (3 microM) and with the cholinergic antagonists atropine (10 microM; n = 3) and d-tubocurarine (10 microM; n = 3) were studied. The action of betahistine when co-administered with these drugs was the same as that in control experiments, indicating that its effects did not include nitric oxide production or the activation of cholinergic receptors. In contrast, 0.01-1 mM betahistine reduced the excitatory action of kainic acid (10 microM; n = 6) and quiscualic acid (1 microM; n = 13). These results indicate that the action of betahistine on the spike discharge of afferent neurons seems to be due to a post-synaptic inhibitory action on the primary afferent neuron response to the hair cell neurotransmitter.

  12. Mechanism of Ghrelin-Induced Gastric Contractions in Suncus murinus (House Musk Shrew): Involvement of Intrinsic Primary Afferent Neurons

    PubMed Central

    Mondal, Anupom; Aizawa, Sayaka; Sakata, Ichiro; Goswami, Chayon; Oda, Sen-ichi; Sakai, Takafumi

    2013-01-01

    Here, we have reported that motilin can induce contractions in a dose-dependent manner in isolated Suncus murinus (house musk shrew) stomach. We have also shown that after pretreatment with a low dose of motilin (10−10 M), ghrelin also induces gastric contractions at levels of 10−10 M to 10−7 M. However, the neural mechanism of ghrelin action in the stomach has not been fully revealed. In the present study, we studied the mechanism of ghrelin-induced contraction in vitro using a pharmacological method. The responses to ghrelin in the stomach were almost completely abolished by hexamethonium and were significantly suppressed by the administration of phentolamine, prazosin, ondansetron, and naloxone. Additionally, N-nitro-l-arginine methylester significantly potentiated the contractions. Importantly, the mucosa is essential for ghrelin-induced, but not motilin-induced, gastric contractions. To evaluate the involvement of intrinsic primary afferent neurons (IPANs), which are multiaxonal neurons that pass signals from the mucosa to the myenteric plexus, we examined the effect of the IPAN-related pathway on ghrelin-induced contractions and found that pretreatment with adenosine and tachykinergic receptor 3 antagonists (SR142801) significantly eliminated the contractions and GR113808 (5-hydroxytryptamine receptor 4 antagonist) almost completely eliminated it. The results indicate that ghrelin stimulates and modulates suncus gastric contractions through cholinergic, adrenergic, serotonergic, opioidergic neurons and nitric oxide synthases in the myenteric plexus. The mucosa is also important for ghrelin-induced gastric contractions, and IPANs may be the important interneurons that pass the signal from the mucosa to the myenteric plexus. PMID:23565235

  13. Axonal transport of neurotrophins by visceral afferent and efferent neurons of the vagus nerve of the rat.

    PubMed

    Helke, C J; Adryan, K M; Fedorowicz, J; Zhuo, H; Park, J S; Curtis, R; Radley, H E; Distefano, P S

    1998-03-30

    The receptor-mediated axonal transport of [125I]-labeled neurotrophins by afferent and efferent neurons of the vagus nerve was determined to predict the responsiveness of these neurons to neurotrophins in vivo. [125I]-labeled neurotrophins were administered to the proximal stump of the transected cervical vagus nerve of adult rats. Vagal afferent neurons retrogradely transported [125I]neurotrophin-3 (NT-3), [125I]nerve growth factor (NGF), and [125I]neurotrophin-4 (NT-4) to perikarya in the ipsilateral nodose ganglion, and transganglionically transported [125I]NT-3, [125I]NGF, and [125I]NT-4 to the central terminal field, the nucleus tractus solitarius (NTS). Vagal afferent neurons showed minimal accumulation of [125I]brain-derived neurotrophic factor (BDNF). In contrast, efferent (parasympathetic and motor) neurons located in the dorsal motor nucleus of the vagus and nucleus ambiguus retrogradely transported [125I]BDNF, [125I]NT-3, and [125I]NT-4, but not [125I]NGF. The receptor specificity of neurotrophin transport was examined by applying [125I]-labeled neurotrophins with an excess of unlabeled neurotrophins. The retrograde transport of [125I]NT-3 to the nodose ganglion was reduced by NT-3 and by NGF, and the transport of [125I]NGF was reduced only by NGF, whereas the transport of [125I]NT-4 was significantly reduced by each of the neurotrophins. The competition profiles for the transport of NT-3 and NGF are consistent with the presence of TrkA and TrkC and the absence of TrkB in the nodose ganglion, whereas the profile for NT-4 suggests a p75 receptor-mediated transport mechanism. The transport profiles of neurotrophins by efferent vagal neurons in the dorsal motor nucleus of the vagus and nucleus ambiguus are consistent with the presence of TrkB and TrkC, but not TrkA, in these nuclei. These observations describe the unique receptor-mediated axonal transport of neurotrophins in adult vagal afferent and efferent neurons and thus serve as a template to discern

  14. Chronic recruitment of primary afferent neurons by microstimulation in the feline dorsal root ganglia

    NASA Astrophysics Data System (ADS)

    Fisher, Lee E.; Ayers, Christopher A.; Ciollaro, Mattia; Ventura, Valérie; Weber, Douglas J.; Gaunt, Robert A.

    2014-06-01

    Objective. This study describes results of primary afferent neural microstimulation experiments using microelectrode arrays implanted chronically in the lumbar dorsal root ganglia (DRG) of four cats. The goal was to test the stability and selectivity of these microelectrode arrays as a potential interface for restoration of somatosensory feedback after damage to the nervous system such as amputation. Approach. A five-contact nerve-cuff electrode implanted on the sciatic nerve was used to record the antidromic compound action potential response to DRG microstimulation (2-15 µA biphasic pulses, 200 µs cathodal pulse width), and the threshold for eliciting a response was tracked over time. Recorded responses were segregated based on conduction velocity to determine thresholds for recruiting Group I and Group II/Aβ primary afferent fibers. Main results. Thresholds were initially low (5.1 ± 2.3 µA for Group I and 6.3 ± 2.0 µA for Group II/Aβ) and increased over time. Additionally the number of electrodes with thresholds less than or equal to 15 µA decreased over time. Approximately 12% of tested electrodes continued to elicit responses at 15 µA up to 26 weeks after implantation. Higher stimulation intensities (up to 30 µA) were tested in one cat at 23 weeks post-implantation yielding responses on over 20 additional electrodes. Within the first six weeks after implantation, approximately equal numbers of electrodes elicited only Group I or Group II/Aβ responses at threshold, but the relative proportion of Group II/Aβ responses decreased over time. Significance. These results suggest that it is possible to activate Group I or Group II/Aβ primary afferent fibers in isolation with penetrating microelectrode arrays implanted in the DRG, and that those responses can be elicited up to 26 weeks after implantation, although it may be difficult to achieve a consistent response day-to-day with currently available electrode technology. The DRG are compelling targets

  15. Stimulation of renal afferent fibers leads to activation of catecholaminergic and non-catecholaminergic neurons in the medulla oblongata.

    PubMed

    Nishi, Erika E; Martins, Beatriz S; Milanez, Maycon I O; Lopes, Nathalia R; de Melo, Jose F; Pontes, Roberto B; Girardi, Adriana C; Campos, Ruy R; Bergamaschi, Cássia T

    2017-01-19

    Presympathetic neurons in the rostral ventrolateral medulla (RVLM) including the adrenergic cell groups play a major role in the modulation of several reflexes required for the control of sympathetic vasomotor tone and blood pressure (BP). Moreover, sympathetic vasomotor drive to the kidneys influence natriuresis and diuresis by inhibiting the cAMP/PKA pathway and redistributing the Na(+)/H(+) exchanger isoform 3 (NHE3) to the body of the microvilli in the proximal tubules. In this study we aimed to evaluate the effects of renal afferents stimulation on (1) the neurochemical phenotype of Fos expressing neurons in the medulla oblongata and (2) the level of abundance and phosphorylation of NHE3 in the renal cortex. We found that electrical stimulation of renal afferents increased heart rate and BP transiently and caused activation of tyrosine hydroxylase (TH)-containing neurons in the RVLM and non-TH neurons in the NTS. Additionally, activation of the inhibitory renorenal reflex over a 30-min period resulted in increased natriuresis and diuresis associated with increased phosphorylation of NHE3 at serine 552, a surrogate for reduced activity of this exchanger, in the contralateral kidney. This effect was not dependent of BP changes considering that no effects on natriuresis or diuresis were found in the ipsilateral-stimulated kidney. Therefore, our data show that renal afferents leads to activation of catecholaminergic and non-catecholaminergic neurons in the medulla oblongata. When renorenal reflex is induced, NHE3 exchanger activity appears to be decreased, resulting in decreased sodium and water reabsorption in the contralateral kidney.

  16. Primary afferent activation of thermosensitive TRPV1 triggers asynchronous glutamate release at central neurons

    PubMed Central

    Peters, James H.; McDougall, Stuart J.; Fawley, Jessica A.; Smith, Stephen M.; Andresen, Michael C.

    2010-01-01

    SUMMARY TRPV1 receptors feature prominently in nociception of spinal primary afferents but are also expressed in unmyelinated cranial visceral primary afferents linked to homeostatic regulation. Cranial visceral afferents enter the brain at the solitary tract nucleus (NTS) to control the heart, lungs and other vital organs. Here we identify a novel role for central TRPV1 in the activity-dependent facilitation of glutamatergic transmission from solitary tract (ST) afferents. Fast, synchronous ST-NTS transmission from capsaicin sensitive (TRPV1+) and insensitive (TRPV1−) afferents was similar. However, afferent activation triggered long lasting asynchronous glutamate release only from TRPV1+ synapses. Asynchronous release was proportional to synchronous EPSC amplitude, activity, and calcium entry. TRPV1 antagonists and low temperature blocked asynchronous release but not evoked EPSCs. At physiological afferent frequencies, asynchronous release strongly potentiated the duration of postsynaptic spiking. This activity dependent TPRV1-mediated facilitation is a novel form of synaptic plasticity that brings a unique central integrative feature to the CNS and autonomic regulation. PMID:20223201

  17. Leptin Resistance in Vagal Afferent Neurons Inhibits Cholecystokinin Signaling and Satiation in Diet Induced Obese Rats

    PubMed Central

    de Lartigue, Guillaume; Barbier de la Serre, Claire; Espero, Elvis; Lee, Jennifer; Raybould, Helen E.

    2012-01-01

    Background and Aims The gastrointestinal hormone cholecystokinin (CCK) plays an important role in regulating meal size and duration by activating CCK1 receptors on vagal afferent neurons (VAN). Leptin enhances CCK signaling in VAN via an early growth response 1 (EGR1) dependent pathway thereby increasing their sensitivity to CCK. In response to a chronic ingestion of a high fat diet, VAN develop leptin resistance and the satiating effects of CCK are reduced. We tested the hypothesis that leptin resistance in VAN is responsible for reducing CCK signaling and satiation. Results Lean Zucker rats sensitive to leptin signaling, significantly reduced their food intake following administration of CCK8S (0.22 nmol/kg, i.p.), while obese Zucker rats, insensitive to leptin, did not. CCK signaling in VAN of obese Zucker rats was reduced, preventing CCK-induced up-regulation of Y2 receptor and down-regulation of melanin concentrating hormone 1 receptor (MCH1R) and cannabinoid receptor (CB1). In VAN from diet-induced obese (DIO) Sprague Dawley rats, previously shown to become leptin resistant, we demonstrated that the reduction in EGR1 expression resulted in decreased sensitivity of VAN to CCK and reduced CCK-induced inhibition of food intake. The lowered sensitivity of VAN to CCK in DIO rats resulted in a decrease in Y2 expression and increased CB1 and MCH1R expression. These effects coincided with the onset of hyperphagia in DIO rats. Conclusions Leptin signaling in VAN is required for appropriate CCK signaling and satiation. In response to high fat feeding, the onset of leptin resistance reduces the sensitivity of VAN to CCK thus reducing the satiating effects of CCK. PMID:22412960

  18. US3 protein kinase of herpes simplex virus protects primary afferent neurons from virus-induced apoptosis in ICR mice.

    PubMed

    Asano, S; Honda, T; Goshima, F; Nishiyama, Y; Sugiura, Y

    2000-11-17

    Possible roles of the US3 gene of the herpes simplex virus (HSV) in the interaction between the virus and primary afferent neurons were examined. Neuronal apoptosis was observed in the trigeminal ganglion of mice that were infected with the wild-type (wt) of HSV-2 strain 186 and with US3-deficient mutant virus (L1BR1). In wt virus-infected mice, many HSV-immunoreactive (HSV-ir) cells were seen throughout the trigeminal ganglion, although no apoptotic change was detected. On the other hand, HSV-ir cells in L1BR1-infected mice were found only in the ophthalmic division of the trigeminal ganglions. Examination by HSV-immunohistochemistry combined with the terminal deoxynucleotidal transferase (Tdt)-mediated deoxyuridin 5'-triphosphate (dUTP) nick-end labeling (TUNEL) method showed that DNA fragmentation had occurred in almost all HSV-ir cells in the L1BRI-infected ganglion. Ultrastructurally, many viral particles were detected in apoptotic ganglionic neurons of mice infected with L1BR1. These results indicate that US3 protein kinase (US3pk) played a role in protecting HSV-infected primary afferent neurons from apoptotic cell death. The present study suggests that US3pk plays a role when HSV establishes latent infections in the sensory ganglia.

  19. Requirement of neuronal connexin36 in pathways mediating presynaptic inhibition of primary afferents in functionally mature mouse spinal cord

    PubMed Central

    Bautista, Wendy; Nagy, James I; Dai, Yue; McCrea, David A

    2012-01-01

    Electrical synapses formed by gap junctions containing connexin36 (Cx36) promote synchronous activity of interneurones in many regions of mammalian brain; however, there is limited information on the role of electrical synapses in spinal neuronal networks. Here we show that Cx36 is widely distributed in the spinal cord and is involved in mechanisms that govern presynaptic inhibition of primary afferent terminals. Electrophysiological recordings were made in spinal cord preparations from 8- to 11-day-old wild-type and Cx36 knockout mice. Several features associated with presynaptic inhibition evoked by conditioning stimulation of low threshold hindlimb afferents were substantially compromised in Cx36 knockout mice. Dorsal root potentials (DRPs) evoked by low intensity stimulation of sensory afferents were reduced in amplitude by 79% and in duration by 67% in Cx36 knockouts. DRPs were similarly affected in wild-types by bath application of gap junction blockers. Consistent with presynaptic inhibition of group Ia muscle spindle afferent terminals on motoneurones described in adult cats, conditioning stimulation of an adjacent dorsal root evoked a long duration inhibition of monosynaptic reflexes recorded from the ventral root in wild-type mice, and this inhibition was antagonized by bicuculline. The same conditioning stimulation failed to inhibit monosynaptic reflexes in Cx36 knockout mice. Immunofluorescence labelling for Cx36 was found throughout the dorsal and ventral horns of the spinal cord of juvenile mice and persisted in mature animals. In deep dorsal horn laminae, where interneurones involved in presynaptic inhibition of large diameter muscle afferents are located, cells were extensively dye-coupled following intracellular neurobiotin injection. Coupled cells displayed Cx36-positive puncta along their processes. Our results indicate that gap junctions formed by Cx36 in spinal cord are required for maintenance of presynaptic inhibition, including the

  20. Ultrastructural evidence for synaptic contacts between cortical noradrenergic afferents and endocannabinoid-synthesizing post-synaptic neurons

    PubMed Central

    Reyes, Beverly A. S.; Heldt, Nathan A.; Mackie, Ken; Van Bockstaele, Elisabeth J.

    2015-01-01

    Endocannabinoids (eCBs) are involved in a myriad of physiological processes that are mediated through the activation of cannabinoid receptors, which are ubiquitously distributed within the nervous system. One neurochemical target at which cannabinoids interact to have global effects on behavior is brain noradrenergic circuitry. We, and others, have previously shown that CB type 1 receptors (CB1r) are positioned to pre-synaptically modulate norepinephrine (NE) release in the rat frontal cortex (FC). Diacylglycerol lipase (DGL) is a key enzyme in the biosynthesis of the endocannabinoid 2-arachidonoylglycerol (2-AG). While DGL-α is expressed in the FC in the rat brain, it is not known whether noradrenergic afferents target neurons expressing synthesizing enzymes for the endocannabinoid, 2-AG. In the present study, we employed high-resolution neuroanatomical approaches to better define cellular sites for interactions between noradrenergic afferents and FC neurons expressing DGL-α. Immunofluorescence microscopy showed close appositions between processes containing the norepinephrine transporter (NET) or dopamine-β-hydroxylase (DβH) and cortical neurons expressing DGL-α-immunoreactivity. Ultrastructural analysis using immunogold-silver labeling for DGL-α and immunoperoxidase labeling for NET or DβH confirmed that NET-labeled axon terminals were directly apposed to FC somata and dendritic processes that exhibited DGL-α-immunoreactivity. Finally, tissue sections were processed for immunohistochemical detection of DGL-α , CB1r and DβH. Triple label immunofluorescence revealed that CB1r and DβH were co-localized in common cellular profiles and these were in close association with DGL-α. Taken together, these data provide anatomical evidence for direct synaptic associations between noradrenergic afferents and cortical neurons exhibiting endocannabinoid synthesizing machinery. PMID:26162236

  1. Co-localisation of kisspeptin with galanin or neurokinin B in afferents to mouse GnRH neurones.

    PubMed

    Kalló, I; Vida, B; Deli, L; Molnár, C S; Hrabovszky, E; Caraty, A; Ciofi, P; Coen, C W; Liposits, Z

    2012-03-01

    The gonadotrophin-releasing hormone (GnRH) secreting neurones, which form the final common pathway for the central regulation of reproduction, are directly targeted by kisspeptin (KP) via the G protein-coupled receptor, GPR54. In these multiple labelling studies, we used ovariectomised mice treated with 17β-oestradiol (OVX + E(2)) or vehicle (OVX + oil) to determine: (i) the ultrastructural characteristics of KP-immunoreactive (IR) afferents to GnRH neurones; (ii) their galanin or neurokinin B (NKB) content; and (iii) the co-expression of galanin or NKB with KP in the two major subpopulations of KP neurones located in the rostral periventricular area of the third ventricle (RP3V) and the arcuate nucleus (Arc). Electron microscopic investigation of the neuronal juxtapositions revealed axosomatic and axodendritic synapses; these showed symmetrical or asymmetrical characteristics, suggesting a phenotypic diversity of KP afferents. Heterogeneity of afferents was also demonstrated by differential co-expression of neuropeptides; in OVX + E(2) mice, KP afferents to GnRH neurones showed galanin-immunoreactivity with an incidence of 22.50 ± 2.41% and NKB-immunoreactivity with an incidence of 5.61 ± 2.57%. In OVX + oil animals, galanin-immunoreactivity in the KP afferents showed a major reduction, appearing in only 5.78 ± 1.57%. Analysis for co-localisation of galanin or NKB with KP was extended to the perikaryal level in animal models, which showed the highest KP incidence; these were OVX + E(2) females for the RP3V and OVX + oil females for the ARC. In the RP3V of colchicine-treated OVX + E(2) animals, 87.84 ± 2.65% of KP-IR neurones were galanin positive. In the Arc of the colchicine-treated OVX + oil animals, galanin immunoreactivity was detected in only 12.50 ± 1.92% of the KP expressing neurones. By contrast, the incidence of co-localisation with NKB in the Arc of those animals was 98.09 ± 1.30%. In situ hybridisation histochemistry of sections from OVX + E(2

  2. Duodenal afferent input converges onto T9-T10 spinal neurons responding to gastric distension in rats

    PubMed Central

    Qin, Chao; Chen, Jiande D.Z.; Zhang, Jing; Foreman, Robert D.

    2008-01-01

    Clinically, the overlap of gastroduodenal symptoms, such as visceral pain or hypersensitivity, is often observed in functional gastrointestinal disorders. The underlying mechanism may be related to intraspinal neuronal processing of noxious convergent inputs from the stomach and the intestine. The purpose of this study was to examine whether single low thoracic (T9-T10) spinal neurons responded to both gastric and duodenal mechanical stimulation. Extracellular potentials of single T9-T10 spinal neurons were recorded in pentobarbital anesthetized, paralyzed, and ventilated male rats. Graded gastric distensions (GD, 20, 40, 60 mmHg, 20s) were induced by air inflation of a latex balloon surgically placed in the stomach. Graded duodenal distensions (DD, 0.2, 0.4, 0.6 ml, 20s) were produced by water inflation of a latex balloon placed into the duodenum. Of 70 deeper (depth from dorsal surface of spinal cord: 0.3–1.2 mm) spinal neurons responsive to noxious GD (≥ 40 mmHg), 44(63%) also responded to noxious DD (≥ 0.4 ml). Similarly, 13/17 (76%) superficial neurons (depth < 0.3 mm) responded to both GD and DD. Of 57 gastroduodenal convergent neurons, 41 (72%) had excitatory and 6 had inhibitory responses to both GD and DD; the remaining neurons exhibited multiple patterns of excitation and inhibition. 43/57 (75%) gastroduodenal convergent neurons had low-threshold (≤ 20 mmHg) responses to GD, whereas 42/57 (74%) of these neurons had high-threshold (≥ 0.4 ml) responses to DD. In addition, 34/40 (85%) gastroduodenal convergent neurons had somatic receptive fields on the back, flank, and medial/lateral abdominal areas. These results suggested that superficial and deeper T9-T10 spinal neurons received innocuous and/or noxious convergent inputs from mechanical stimulation of the stomach and duodenum. Gastroduodenal convergent spinal neurons might contribute to intraspinal sensory transmission for cross-organ afferent-afferent communication between the stomach and

  3. Allergen challenge sensitizes TRPA1 in vagal sensory neurons and afferent C-fiber subtypes in guinea pig esophagus.

    PubMed

    Liu, Zhenyu; Hu, Youtian; Yu, Xiaoyun; Xi, Jiefeng; Fan, Xiaoming; Tse, Chung-Ming; Myers, Allen C; Pasricha, Pankaj J; Li, Xingde; Yu, Shaoyong

    2015-03-15

    Transient receptor potential A1 (TRPA1) is a newly defined cationic ion channel, which selectively expresses in primary sensory afferent nerve, and is essential in mediating inflammatory nociception. Our previous study demonstrated that TRPA1 plays an important role in tissue mast cell activation-induced increase in the excitability of esophageal vagal nodose C fibers. The present study aims to determine whether prolonged antigen exposure in vivo sensitizes TRPA1 in a guinea pig model of eosinophilic esophagitis (EoE). Antigen challenge-induced responses in esophageal mucosa were first assessed by histological stains and Ussing chamber studies. TRPA1 function in vagal sensory neurons was then studied by calcium imaging and by whole cell patch-clamp recordings in 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI)-labeled esophageal vagal nodose and jugular neurons. Extracellular single-unit recordings were performed in vagal nodose and jugular C-fiber neuron subtypes using ex vivo esophageal-vagal preparations with intact nerve endings in the esophagus. Antigen challenge significantly increased infiltrations of eosinophils and mast cells in the esophagus. TRPA1 agonist allyl isothiocyanate (AITC)-induced calcium influx in nodose and jugular neurons was significantly increased, and current densities in esophageal DiI-labeled nodose and jugular neurons were also significantly increased in antigen-challenged animals. Prolonged antigen challenge decreased esophageal epithelial barrier resistance, which allowed intraesophageal-infused AITC-activating nodose and jugular C fibers at their nerve endings. Collectively, these results demonstrated that prolonged antigen challenge sensitized TRPA1 in esophageal sensory neurons and afferent C fibers. This novel finding will help us to better understand the molecular mechanism underlying esophageal sensory and motor dysfunctions in EoE.

  4. Allergen challenge sensitizes TRPA1 in vagal sensory neurons and afferent C-fiber subtypes in guinea pig esophagus

    PubMed Central

    Liu, Zhenyu; Hu, Youtian; Yu, Xiaoyun; Xi, Jiefeng; Fan, Xiaoming; Tse, Chung-Ming; Myers, Allen C.; Pasricha, Pankaj J.; Li, Xingde

    2015-01-01

    Transient receptor potential A1 (TRPA1) is a newly defined cationic ion channel, which selectively expresses in primary sensory afferent nerve, and is essential in mediating inflammatory nociception. Our previous study demonstrated that TRPA1 plays an important role in tissue mast cell activation-induced increase in the excitability of esophageal vagal nodose C fibers. The present study aims to determine whether prolonged antigen exposure in vivo sensitizes TRPA1 in a guinea pig model of eosinophilic esophagitis (EoE). Antigen challenge-induced responses in esophageal mucosa were first assessed by histological stains and Ussing chamber studies. TRPA1 function in vagal sensory neurons was then studied by calcium imaging and by whole cell patch-clamp recordings in 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate (DiI)-labeled esophageal vagal nodose and jugular neurons. Extracellular single-unit recordings were performed in vagal nodose and jugular C-fiber neuron subtypes using ex vivo esophageal-vagal preparations with intact nerve endings in the esophagus. Antigen challenge significantly increased infiltrations of eosinophils and mast cells in the esophagus. TRPA1 agonist allyl isothiocyanate (AITC)-induced calcium influx in nodose and jugular neurons was significantly increased, and current densities in esophageal DiI-labeled nodose and jugular neurons were also significantly increased in antigen-challenged animals. Prolonged antigen challenge decreased esophageal epithelial barrier resistance, which allowed intraesophageal-infused AITC-activating nodose and jugular C fibers at their nerve endings. Collectively, these results demonstrated that prolonged antigen challenge sensitized TRPA1 in esophageal sensory neurons and afferent C fibers. This novel finding will help us to better understand the molecular mechanism underlying esophageal sensory and motor dysfunctions in EoE. PMID:25591867

  5. NERVE GROWTH FACTOR MAINTAINS POTASSIUM CONDUCTANCE AFTER NERVE INJURY IN ADULT CUTANEOUS AFFERENT DORSAL ROOT GANGLION NEURONS

    PubMed Central

    EVERILL, B.; KOCSIS, J. D.

    2008-01-01

    Whole-cell patch-clamp techniques were used to study the effects of nerve growth factor on voltage-dependent potassium conductance in normal and axotomized identified large cutaneous afferent dorsal root ganglion neurons (48–50 μm diameter) many of which probably give rise to myelinated Aβ fibers. K-currents were isolated by blocking Na- and Ca-currents with appropriate ion replacement and channel blockers. Separation of current components was achieved on the basis of response to variation in conditioning voltage. Cutaneous afferents were labeled by the retrograde marker hydroxy-stilbamide (FluoroGold) which was injected into the skin of the foot. The sciatic nerve was either ligated or crushed with fine forceps five to seven days later. Neurons were dissociated 14–17 days after injury. The cut ends of the sciatic nerves were positioned into polyethylene tubes, which were connected to mini-osmotic pumps filled with either nerve growth factor or sterile saline. Control neurons displayed a prominent sustained K-current and the transient potassium currents “A” and “D”. Nerve ligation, which blocks target reconnection resulted in near 50% reduction of total outward current; isolated sustained K-current and transient A-current were reduced by a comparable amount. Nerve crush, which allows regeneration to peripheral targets and exposure of the regenerating nerve to the distal nerve segment, resulted in a small reduction in sustained K-current but no reduction in transient A-current compared to controls. Levels of transient A-current and sustained K-current were maintained at control levels after nerve growth factor treatment. These results indicate that the large reduction in transient A-current, and in sustained K-current, observed in cutaneous afferent cell bodies after nerve ligation is prevented by application of nerve growth factor. PMID:11008179

  6. Early Afferent Activity from the Facet Joint after Painful Trauma to its Capsule Potentiates Neuronal Excitability and Glutamate Signaling in the Spinal Cord

    PubMed Central

    Crosby, Nathan D.; Gilliland, Taylor M.; Winkelstein, Beth A.

    2014-01-01

    Cervical facet joint injury induces persistent pain and central sensitization. Preventing the peripheral neuronal signals that initiate sensitization attenuates neuropathic pain. Yet, there is no clear relationship between facet joint afferent activity, development of central sensitization, and pain, which may be hindering effective treatments for this pain syndrome. This study investigates how afferent activity from the injured cervical facet joint affects induction of behavioral sensitivity and central sensitization. Intra-articular bupivacaine was administered to transiently suppress afferent activity immediately or 4 days after facet injury. Mechanical hyperalgesia was monitored after injury, and spinal neuronal hyperexcitability and spinal expression of proteins that promote neuronal excitability were measured on day 7. Facet injury with saline vehicle treatment induced significant mechanical hyperalgesia (p<0.027), dorsal horn neuronal hyperexcitability (p<0.026), upregulation of pERK1/2, pNR1, mGluR5, GLAST, and GFAP, and downregulation of GLT1 (p<0.032). However, intra-articular bupivacaine immediately after injury significantly attenuated hyperalgesia (p<0.0001), neuronal hyperexcitability (p<0.004), and dysregulation of excitatory signaling proteins (p<0.049). In contrast, intra-articular bupivacaine at day 4 had no effect on these outcomes. Silencing afferent activity during the development of neuronal hyperexcitability (4hr, 8hr, 1 day) attenuated hyperalgesia and neuronal hyperexcitability (p<0.045) only for the treatment given 4 hours after injury. This study suggests that early afferent activity from the injured facet induces development of spinal sensitization via spinal excitatory glutamatergic signaling. Peripheral intervention blocking afferent activity is only effective over a short period of time early after injury and before spinal modifications develop, and is independent of modulating spinal glial activation. PMID:24978827

  7. Adult axolotls can regenerate original neuronal diversity in response to brain injury.

    PubMed

    Amamoto, Ryoji; Huerta, Violeta Gisselle Lopez; Takahashi, Emi; Dai, Guangping; Grant, Aaron K; Fu, Zhanyan; Arlotta, Paola

    2016-05-09

    The axolotl can regenerate multiple organs, including the brain. It remains, however, unclear whether neuronal diversity, intricate tissue architecture, and axonal connectivity can be regenerated; yet, this is critical for recovery of function and a central aim of cell replacement strategies in the mammalian central nervous system. Here, we demonstrate that, upon mechanical injury to the adult pallium, axolotls can regenerate several of the populations of neurons present before injury. Notably, regenerated neurons acquire functional electrophysiological traits and respond appropriately to afferent inputs. Despite the ability to regenerate specific, molecularly-defined neuronal subtypes, we also uncovered previously unappreciated limitations by showing that newborn neurons organize within altered tissue architecture and fail to re-establish the long-distance axonal tracts and circuit physiology present before injury. The data provide a direct demonstration that diverse, electrophysiologically functional neurons can be regenerated in axolotls, but challenge prior assumptions of functional brain repair in regenerative species.

  8. The soma and neurites of primary afferent neurons in the guinea-pig intestine respond differentially to deformation

    PubMed Central

    Kunze, W A A; Clerc, N; Furness, J B; Gola, M

    2000-01-01

    Intrinsic primary afferent neurons in the small intestine are exposed to distortion of their processes and of their cell bodies. Recordings of mechanosensitivity have previously been made from these neurons using intracellular microelectrodes, but this form of recording has not permitted detection of generator potentials from the processes, or of responses to cell body distortion.We have developed a technique to record from enteric neurons in situ using patch electrodes. The mechanical stability of the patch recordings has allowed recording in cell-attached and whole cell configuration during imposed movement of the neurons.Pressing with a fine probe initiated generator potentials (14 ± 9 mV) from circumscribed regions of the neuron processes within the same myenteric ganglion, at distances from 100 to 500 μm from the cell body that was patched. Generator potentials persisted when synaptic transmission was blocked with high Mg2+, low Ca2+ solution.Soma distortion, by pressing down with the whole cell recording electrode, inhibited action potential firing. Consistent with this, moderate intra-electrode pressure (10 mbar; 1 kPa) increased the opening probability of large-conductance (BK) potassium channels, recorded in cell-attached mode, but suction was not effective. In outside-out patches, suction, but not pressure, increased channel opening probability. Mechanosensitive BK channels have not been identified on other neurons.The BK channels had conductances of 195 ± 25 pS. Open probability was increased by depolarization, with a half-maximum activation at a patch potential of 20 mV and a slope factor of 10 mV. Channel activity was blocked by charybdotoxin (20 nM).Stretch that increased membrane area under the electrode by 15 % was sufficient to double open probability. Similar changes in membrane area occur when the intestine changes diameter and wall tension under physiological conditions. Thus, the intestinal intrinsic primary afferent neurons are detectors of

  9. Dynorphin-Dependent Reduction of Excitability and Attenuation of Inhibitory Afferents of NPS Neurons in the Pericoerulear Region of Mice

    PubMed Central

    Jüngling, Kay; Blaesse, Peter; Goedecke, Lena; Pape, Hans-Christian

    2016-01-01

    The Neuropeptide S system, consisting of the 20-amino acid peptide neuropeptide S (NPS) and its G-protein coupled receptor (NPSR), modulates arousal, wakefulness, anxiety, and fear-extinction in mice. In addition, recent evidence indicates that the NPS system attenuates stress-dependent impairment of fear extinction, and that NPS-expressing neurons in close proximity to the locus coeruleus region (LC; pericoerulear, periLC) are activated by stress. Furthermore, periLC NPS neurons receive afferents from neurons of the centrolateral nucleus of the amygdala (CeL), of which a substantial population expresses the kappa opioid receptor (KOR) ligand precursor prodynorphin. This study aims to identify the effect of the dynorphinergic system on NPS neurons in the periLC via pre- and postsynaptic mechanisms. Using electrophysiological recordings in mouse brain slices, we provide evidence that NPS neurons in the periLC region are directly inhibited by dynorphin A (DynA) via activation of κ-opioid receptor 1 (KOR1) and a subsequent increase of potassium conductances. Thus, the dynorphinergic system is suited to inactivate NPS neurons in the periLC. In addition to this direct, somatic effect, DynA reduces the efficacy of GABAergic synapses on NPS neurons via KOR1 and KOR2. In conclusion, the present study provides evidence for the interaction of the NPS and the kappa opioid system in the periLC. Therefore, the endogenous opioid dynorphin is suited to inhibit NPS neurons with a subsequent decrease in NPS release in putative target regions leading to a variety of physiological consequences such as increased anxiety or vulnerability to stress exposure. PMID:27013974

  10. Jaw muscle spindle afferents coordinate multiple orofacial motoneurons via common premotor neurons in rats: an electrophysiological and anatomical study.

    PubMed

    Zhang, Jingdong; Luo, Pifu; Ro, Jin Y; Xiong, Huangui

    2012-12-13

    Jaw muscle spindle afferents (JMSA) in the mesencephalic trigeminal nucleus (Vme) project to the parvocellular reticular nucleus (PCRt) and dorsomedial spinal trigeminal nucleus (dm-Vsp). A number of premotor neurons that project to the trigeminal motor nucleus (Vmo), facial nucleus (VII) and hypoglossal nucleus (XII) are also located in the PCRt and dm-Vsp. In this study, we examined whether these premotor neurons serve as common relay pool for relaying JMSA to multiple orofacial motoneurons. JMSA inputs to the PCRt and dm-Vsp neurons were verified by recording extracellular responses to electrical stimulation of the caudal Vme or masseter nerve, mechanical stimulation of jaw muscles and jaw opening. After recording, biocytin in recording electrode was inotophorized into recording sites. Biocytin-Iabeled fibers traveled to the Vmo, VII, XII, and the nucleus ambiguus (Amb). Labeled boutons were seen in close apposition with Nissl-stained motoneurons in the Vmo, VII, XII and Amb. In addition, an anterograde tracer (biotinylated dextran amine) was iontophorized into the caudal Vme, and a retrograde tracer (Cholera toxin B subunit) was delivered into either the VII or Xll to identify VII and XII premotor neurons that receive JMSA input. Contacts between labeled Vme neuronal boutons and premotor neurons were observed in the PCRt and adjacent dm-Vsp. Confocal microscopic observations confirmed close contacts between Vme boutons and VII and XII premotor neurons. This study provides evidence that JMSA may coordinate activities of multiple orofacial motor nuclei, including Vmo, VII, XII and Amb in the brainstem via a common premotor neuron pool.

  11. Rescue of neuronal function by cross-regeneration of cutaneous afferents into muscle in cats.

    PubMed

    Nishimura, H; Johnson, R D; Munson, J B

    1993-07-01

    1. This study investigates the relation between the peripheral innervation of low-threshold cutaneous afferents and the postsynaptic potentials elicited by electrical stimulation of those afferents. 2. In cats deeply anesthetized with pentobarbital sodium, cord dorsum potentials (CDPs) and postsynaptic potentials (PSPs) in spinal motoneurons were elicited by stimulation of the caudal cutaneous sural nerve (CCS), the lateral cutaneous sural nerve (LCS), and the medial gastrocnemius (MG) muscle nerve. We tested 1) unoperated cats, and cats in which CCS has been 2) chronically axotomized and ligated, 3) cut and self-reunited, 4) cut and cross-united with LCS, or 5) cut and cross-united with the MG. Terminal experiments were performed 3-36 mo after initial surgery. 3. In cats in which the CCS had been self-reunited or cross-united distally with LCS, tactile stimulation of the hairy skin normally innervated by the distal nerve activated afferents in the CCS central to the coaptation, indicating that former CCS afferents had regenerated into native or foreign skin, respectively. 4. In cats in which the CCS had been cross-united distally with the MG, both stretch and contraction of the MG muscle activated the former CCS afferents. 5. In unoperated cats, CDPs elicited by stimulation of CCS and of LCS exhibited a low-threshold N1 wave and a higher-threshold N2 wave. These waves were greatly delayed and appeared to merge after chronic axotomy of CCS. Regeneration of CCS into itself, into LCS, or into MG restored the normal latencies and configurations of these potentials. 6. In unoperated cats, stimulation of CCS, of LCS, and of MG each produced PSPs of characteristic configurations in the various subpopulations of motoneurons of the triceps surae. CDPs and PSPs elicited by the CCS cross-regenerated into LCS or MG were typical of those generated by the normal CCS, i.e., there was no evidence of respecification of central synaptic connections to bring accord between center

  12. Intracellular ATP can regulate afferent arteriolar tone via ATP-sensitive K+ channels in the rabbit.

    PubMed Central

    Lorenz, J N; Schnermann, J; Brosius, F C; Briggs, J P; Furspan, P B

    1992-01-01

    Studies were performed to assess whether ATP-sensitive K+ (KATP) channels on rabbit preglomerular vessels can influence afferent arteriolar (AA) tone. K+ channels with a slope conductance of 258 +/- 13 (n = 7) pS and pronounced voltage dependence were demonstrated in excised patches from vascular smooth muscle cells of microdissected preglomerular segments. Channel activity was markedly reduced by 1 mM ATP and in a dose-dependent fashion by glibenclamide (10(-9) M to 10(-6) M), a specific antagonist of KATP channels. 10(-5) M diazoxide, a K+ channel opener, activated these channels in the presence of ATP, and this effect was also blocked by glibenclamide. To determine the role of these KATP channels in the control of vascular tone, diazoxide was tested on isolated perfused AA. After preconstriction from a control diameter of 13.1 +/- 1.1 to 3.5 +/- 2.1 microns with phenylephrine (PE), addition of 10(-5) M diazoxide dilated vessels to 11.2 +/- 0.7 microns, which was not different from control. Further addition of 10(-5) M glibenclamide reconstricted the vessels to 5.8 +/- 1.5 microns (n = 5; P less than 0.03). In support of its specificity for KATP channels, glibenclamide did not reverse verapamil induced dilation in a separate series of experiments. To determine whether intracellular ATP levels can effect AA tone, studies were conducted to test the effect of the glycolytic inhibitor 2-deoxy-D-glucose. After preconstriction from 13.4 +/- 3.2 to 7.7 +/- 1.3 microns with PE, bath glucose was replaced with 6 mM 2-deoxy-D-glucose. Within 10 min, the arteriole dilated to a mean value of 11.8 +/- 1.4 microns (n = 6; NS compared to control). Subsequent addition of 10(-5) M glibenclamide significantly reconstricted the vessels to a diameter of 8.6 +/- 0.5 micron (P less than 0.04). These data demonstrate that KATP channels are present on the preglomerular vasculature and that changes in intracellular ATP can directly influence afferent arteriolar tone via these channels

  13. 5,6-EET Is Released upon Neuronal Activity and Induces Mechanical Pain Hypersensitivity via TRPA1 on Central Afferent Terminals

    PubMed Central

    Sisignano, Marco; Park, Chul-Kyu; Angioni, Carlo; Zhang, Dong Dong; von Hehn, Christian; Cobos, Enrique J.; Ghasemlou, Nader; Xu, Zhen-Zhong; Kumaran, Vigneswara; Lu, Ruirui; Grant, Andrew; Fischer, Michael J. M.; Schmidtko, Achim; Reeh, Peter; Ji, Ru-Rong; Woolf, Clifford J.; Geisslinger, Gerd; Scholich, Klaus; Brenneis, Christian

    2012-01-01

    Epoxyeicosatrienoic acids (EETs) are cytochrome P450-epoxygenase-derived metabolites of arachidonic acid that act as endogenous signaling molecules in multiple biological systems. Here we have investigated the specific contribution of 5,6-EET to transient receptor potential (TRP) channel activation in nociceptor neurons and its consequence for nociceptive processing. We found that, during capsaicin-induced nociception, 5,6-EET levels increased in dorsal root ganglia (DRGs) and the dorsal spinal cord, and 5,6-EET is released from activated sensory neurons in vitro. 5,6-EET potently induced a calcium flux (100 nm) in cultured DRG neurons that was completely abolished when TRPA1 was deleted or inhibited. In spinal cord slices, 5,6-EET dose dependently enhanced the frequency, but not the amplitude, of spontaneous EPSCs (sEPSCs) in lamina II neurons that also responded to mustard oil (allyl isothiocyanate), indicating a presynaptic action. Furthermore, 5,6-EET-induced enhancement of sEPSC frequency was abolished in TRPA1-null mice, suggesting that 5,6-EET presynaptically facilitated spinal cord synaptic transmission by TRPA1. Finally, in vivo intrathecal injection of 5,6-EET caused mechanical allodynia in wild-type but not TRPA1-null mice. We conclude that 5,6-EET is synthesized on the acute activation of nociceptors and can produce mechanical hypersensitivity via TRPA1 at central afferent terminals in the spinal cord. PMID:22553041

  14. Limb-state information encoded by peripheral and central somatosensory neurons: implications for an afferent interface.

    PubMed

    Weber, Douglas J; London, Brian M; Hokanson, James A; Ayers, Christopher A; Gaunt, Robert A; Torres, Ricardo R; Zaaimi, Boubker; Miller, Lee E

    2011-10-01

    A major issue to be addressed in the development of neural interfaces for prosthetic control is the need for somatosensory feedback. Here, we investigate two possible strategies: electrical stimulation of either dorsal root ganglia (DRG) or primary somatosensory cortex (S1). In each approach, we must determine a model that reflects the representation of limb state in terms of neural discharge. This model can then be used to design stimuli that artificially activate the nervous system to convey information about limb state to the subject. Electrically activating DRG neurons using naturalistic stimulus patterns, modeled on recordings made during passive limb movement, evoked activity in S1 that was similar to that of the original movement. We also found that S1 neural populations could accurately discriminate different patterns of DRG stimulation across a wide range of stimulus pulse-rates. In studying the neural coding in S1, we also decoded the kinematics of active limb movement using multi-electrode recordings in the monkey. Neurons having both proprioceptive and cutaneous receptive fields contributed equally to this decoding. Some neurons were most informative of limb state in the recent past, but many others appeared to signal upcoming movements suggesting that they also were modulated by an efference copy signal. Finally, we show that a monkey was able to detect stimulation through a large percentage of electrodes implanted in area 2. We discuss the design of appropriate stimulus paradigms for conveying time-varying limb state information, and the relative merits and limitations of central and peripheral approaches.

  15. Morphological changes in different populations of bladder afferent neurons detected by herpes simplex virus (HSV) vectors with cell-type-specific promoters in mice with spinal cord injury.

    PubMed

    Shimizu, Nobutaka; Doyal, Mark F; Goins, William F; Kadekawa, Katsumi; Wada, Naoki; Kanai, Anthony J; de Groat, William C; Hirayama, Akihide; Uemura, Hirotsugu; Glorioso, Joseph C; Yoshimura, Naoki

    2017-09-20

    Functional and morphological changes in C-fiber bladder afferent pathways are reportedly involved in neurogenic detrusor overactivity (NDO) after spinal cord injury (SCI). This study examined the morphological changes in different populations of bladder afferent neurons after SCI using replication-defective herpes simplex virus (HSV) vectors encoding the mCherry reporter driven by neuronal cell-type-specific promoters. Spinal intact (SI) and SCI mice were injected into the bladder wall with HSV mCherry vectors driven by the cytomegalovirus (CMV) promoter, CGRP promoter, TRPV1 promoter or neurofilament 200 (NF200) promoter. Two weeks after vector inoculation into the bladder wall, L1 and L6 dorsal root ganglia (DRG) were removed bilaterally for immunofluorescent staining using anti-mCherry antibody. The number of CMV promoter vector-labeled neurons was not altered after SCI. The number of CGRP and TRPV1 promoter vector-labeled neurons was significantly increased whereas the number of NF200 vector-labeled neurons was decreased in L6 DRG after SCI. The median size of CGRP promoter-labeled C-fiber neurons was increased from 247.0 in SI mice to 271.3μm(2) in SCI mice whereas the median cell size of TRPV1 promoter vector-labeled neurons was decreased from 245.2 in SI mice to 216.5μm(2) in SCI mice. CGRP and TRPV1 mRNA levels of laser-captured bladder afferent neurons labeled with Fast Blue were significantly increased in SCI mice compared to SI mice. Thus, using a novel HSV vector-mediated neuronal labeling technique, we found that SCI induces expansion of the CGRP- and TRPV1-expressing C-fiber cell population, which could contribute to C-fiber afferent hyperexcitability and NDO after SCI. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. [Convergence and interaction of reticulofugal and afferent impulses on caudate nucleus neurons in the cat].

    PubMed

    Litvinova, A N; Verba, V G

    1987-01-01

    In chronic experiments on cats the activity of 269 striatal neurons was investigated extracellularly under direct electrical stimulation of the midbrain reticular formation and using different sensory stimuli: auditory, mechanical, visual. The same striatal neuron responded to reticular and peripheral stimulations. The responses to reticular stimulation recorded in 53% of striatal neurons were orthodromic with high probability of appearance. 23% of striatal neurons responded to reticular stimulation and to stimuli of a single modality. 14% of neurons exhibited polymodal responses. Under all kinds of stimulation excitatory reactions prevailed. Interaction between reticular and acoustic inputs was revealed with paired stimulation in 100 striatal neurons. The reticular formation stimulation caused both facilitatory (predominantly) and inhibitory influences on striatal neurons.

  17. Induction of delta opioid receptor function by up-regulation of membrane receptors in mouse primary afferent neurons.

    PubMed

    Walwyn, Wendy; Maidment, Nigel T; Sanders, Matthew; Evans, Christopher J; Kieffer, Brigitte L; Hales, Tim G

    2005-12-01

    It is not clear whether primary afferent neurons express functional cell-surface opioid receptors. We examined delta receptor coupling to Ca2+ channels in mouse dorsal root ganglion neurons under basal conditions and after receptor up-regulation. [D-Ala2,Phe4,Gly5-ol]-enkephalin (DAMGO), [D-Ala2,D-Leu5]-enkephalin (DADLE), trans-(+/-)-3,4-dichloro-N-methyl-N-(2-[1-pyrrolidinyl]cyclohexyl) benzene-acetamide methanesulfonate (U-50,488H; 1 microM), and baclofen (50 microM) inhibited Ca2+ currents, whereas the -selective ligands [D-Pen2,Pen5]-enkephalin (DPDPE) and deltorphin II (1 microM) did not. The effect of DADLE (1 microM) was blocked by the mu-antagonist D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 (CTAP; 300 nM) but not by the -antagonist Tyr-1,2,3,4-tetrahydroisoquinoline-Phe-Phe-OH (300 nM), implicating mu receptors. Despite a lack of functional delta receptors, flow cytometry revealed cell-surface receptors. We used this approach to identify conditions that up-regulate receptors, including mu receptor gene deletion in dorsal root ganglion neurons of mu-/- mice and 18-h incubation of mu+/+ neurons with CTAP followed by brief (10-min) DPDPE exposure. Under these conditions, the expression of cell-surface delta receptors was up-regulated to 149 +/- 9 and 139 +/- 5%, respectively; furthermore, DPDPE and deltorphin II (1 microM) inhibited Ca2+ currents in both cases. Viral replacement of mu receptors in mu-/- neurons reduced delta receptor expression to mu+/+ levels, restored the inhibition of Ca2+ currents by DAMGO, and abolished receptor coupling. Our observations suggest that receptor-Ca2+ channel coupling in primary afferent fibers may have little functional significance under basal conditions in which mu receptors predominate. However, up-regulation of cell-surface delta receptors induces their coupling to Ca2+ channels. Pharmacological approaches that increase functional delta receptor expression may reveal a novel target for analgesic therapy.

  18. Afferent Nerve Regulation of Bladder Function in Health and Disease

    PubMed Central

    de Groat, William C.; Yoshimura, Naoki

    2012-01-01

    The afferent innervation of the urinary bladder consists primarily of small myelinated (Aδ) and unmyelinated (C-fiber) axons that respond to chemical and mechanical stimuli. Immunochemical studies indicate that bladder afferent neurons synthesize several putative neurotransmitters, including neuropeptides, glutamic acid, aspartic acid, and nitric oxide. The afferent neurons also express various types of receptors and ion channels, including transient receptor potential channels, purinergic, muscarinic, endothelin, neurotrophic factor, and estrogen receptors. Patch-clamp recordings in dissociated bladder afferent neurons and recordings of bladder afferent nerve activity have revealed that activation of many of these receptors enhances neuronal excitability. Afferent nerves can respond to chemicals present in urine as well as chemicals released in the bladder wall from nerves, smooth muscle, inflammatory cells, and epithelial cells lining the bladder lumen. Pathological conditions alter the chemical and electrical properties of bladder afferent pathways, leading to urinary urgency, increased voiding frequency, nocturia, urinary incontinence, and pain. Neurotrophic factors have been implicated in the pathophysiological mechanisms underlying the sensitization of bladder afferent nerves. Neurotoxins such as capsaicin, resiniferatoxin, and botulinum neurotoxin that target sensory nerves are useful in treating disorders of the lower urinary tract. PMID:19655106

  19. Modulatory effects and afferent pathways of gastric electrical stimulation on rat thoracic spinal neurons receiving input from the stomach

    PubMed Central

    Qin, Chao; Chen, Jiande D.Z.; Zhang, Jing; Foreman, Robert D.

    2007-01-01

    Gastric electrical stimulation (GES) has been suggested as a potential therapy for patients with obesity or gastric motility disorders. The aim of this study was to investigate the spinal mechanism of GES effects on gastric functions. Extracellular potentials of single spinal (T9–T10) neurons were recorded in pentobarbital anesthetized, paralyzed, ventilated male rats (n=19). Gastric distension (GD) was produced by air inflation of a balloon. One pair of platinum electrodes (1.0–1.5 cm apart) was sutured onto the serosal surface of the lesser curvature of the stomach. GES with four sets of parameters was applied for one minute: GES-A (6 mA, 0.3 ms, 40 Hz, 2s on, 3s off), GES-B (6 mA, 0.3 ms, 14 Hz, 0.1s on, 5s off), GES-C (6 mA, 3 ms, 40 Hz, 2s on, 3s off), GES-D (6 mA, 200 ms, 12 pulses/min). 62/158 (39%) spinal neurons responded to GD (20, 40, 60 mmHg, 20s. Most GD-responsive neurons (n=43) had excitatory responses; the remainder had inhibitory (n=12) or biphasic responses (n=7). GES-A, -B, -C and –D affected activity of 12/33 (36%), 4/31 (13%), 22/29 (76%) and 13/30 (43%) GD-responsive neurons, respectively. Bilateral cervical vagotomy did not significantly alter mean excitatory neuronal responses to GD (n=5) or GES (n=6). Resiniferatoxin (2.0 μg/kg, i.v.), an ultrapotent agonist of vanilloid receptor-1, abolished excitatory responses to GD and GES in 4/4 neurons recorded in vagotomized rats. The results suggested that GES mainly had an excitatory effect on T9–T10 spinal neurons with gastric inputs; neuronal responses to GES were strengthened with stimulation at an increased pulse width and/or number of pulses. The modulatory effect of GES involved thoracic spinal (sympathetic) afferent fibers containing vanilloid receptor-1. PMID:17046091

  20. Transient receptor potential cation channel subfamily V member 1 expressing corneal sensory neurons can be subdivided into at least three subpopulations.

    PubMed

    Alamri, Abdulhakeem; Bron, Romke; Brock, James A; Ivanusic, Jason J

    2015-01-01

    The cornea is innervated by three main functional classes of sensory neurons: polymodal nociceptors, pure mechano-nociceptors and cold-sensing neurons. Here we explored transient receptor potential cation channel subfamily V member 1 (TRPV1) expression in guinea pig corneal sensory neurons, a widely used molecular marker of polymodal nociceptors. We used retrograde tracing to identify corneal afferent neurons in the trigeminal ganglion (TG) and double label in situ hybridization and/or immunohistochemistry to determine their molecular profile. In addition, we used immunohistochemistry to reveal the neurochemistry and structure of TRPV1 expressing nerve endings in the corneal epithelium. Approximately 45% of corneal afferent neurons expressed TRPV1, 28% expressed Piezo2 (a marker of putative pure mechano-nociceptors) and 8% expressed the transient receptor potential cation channel subfamily M member 8 (TRPM8; a marker of cold-sensing neurons). There was no co-expression of TRPV1 and Piezo2 in corneal afferent neurons, but 6% of TRPV1 neurons co-expressed TRPM8. The TRPV1 expressing corneal afferent neurons could be divided into three subpopulations on the basis of calcitonin gene-related peptide (CGRP) and/or or glial cell line-derived neurotrophic factor family receptor alpha3 (GFRα3) co-expression. In the corneal epithelium, the TRPV1 axons that co-expressed CGRP and GFRα3 ended as simple unbranched endings in the wing cell layer. In contrast, those that only co-expressed GFRα3 had ramifying endings that branched and terminated in the squamous cell layer, whereas those that only co-expressed CGRP had simple endings in the basal epithelium. This study shows that the majority of TRPV1 expressing corneal afferent neurons (>90%) are likely to be polymodal nociceptors. Furthermore, TRPV1 expressing corneal afferent neurons can be subdivided into specific subpopulations based on their molecular phenotype, nerve terminal morphology and distribution in the corneal

  1. Transient receptor potential cation channel subfamily V member 1 expressing corneal sensory neurons can be subdivided into at least three subpopulations

    PubMed Central

    Alamri, Abdulhakeem; Bron, Romke; Brock, James A.; Ivanusic, Jason J.

    2015-01-01

    The cornea is innervated by three main functional classes of sensory neurons: polymodal nociceptors, pure mechano-nociceptors and cold-sensing neurons. Here we explored transient receptor potential cation channel subfamily V member 1 (TRPV1) expression in guinea pig corneal sensory neurons, a widely used molecular marker of polymodal nociceptors. We used retrograde tracing to identify corneal afferent neurons in the trigeminal ganglion (TG) and double label in situ hybridization and/or immunohistochemistry to determine their molecular profile. In addition, we used immunohistochemistry to reveal the neurochemistry and structure of TRPV1 expressing nerve endings in the corneal epithelium. Approximately 45% of corneal afferent neurons expressed TRPV1, 28% expressed Piezo2 (a marker of putative pure mechano-nociceptors) and 8% expressed the transient receptor potential cation channel subfamily M member 8 (TRPM8; a marker of cold-sensing neurons). There was no co-expression of TRPV1 and Piezo2 in corneal afferent neurons, but 6% of TRPV1 neurons co-expressed TRPM8. The TRPV1 expressing corneal afferent neurons could be divided into three subpopulations on the basis of calcitonin gene-related peptide (CGRP) and/or or glial cell line-derived neurotrophic factor family receptor alpha3 (GFRα3) co-expression. In the corneal epithelium, the TRPV1 axons that co-expressed CGRP and GFRα3 ended as simple unbranched endings in the wing cell layer. In contrast, those that only co-expressed GFRα3 had ramifying endings that branched and terminated in the squamous cell layer, whereas those that only co-expressed CGRP had simple endings in the basal epithelium. This study shows that the majority of TRPV1 expressing corneal afferent neurons (>90%) are likely to be polymodal nociceptors. Furthermore, TRPV1 expressing corneal afferent neurons can be subdivided into specific subpopulations based on their molecular phenotype, nerve terminal morphology and distribution in the corneal

  2. Extended secondhand tobacco smoke exposure induces plasticity in nucleus tractus solitarius second-order lung afferent neurons in young guinea pigs.

    PubMed

    Sekizawa, Shin-Ichi; Chen, Chao-Yin; Bechtold, Andrea G; Tabor, Jocelyn M; Bric, John M; Pinkerton, Kent E; Joad, Jesse P; Bonham, Ann C

    2008-08-01

    Infants and young children experiencing extended exposure to secondhand smoke (SHS) have an increased occurrence of asthma, as well as increased cough, wheeze, mucus production and airway hyper-reactivity. Plasticity in lung reflex pathways has been implicated in causing these symptoms, as have changes in substance P-related mechanisms. Using whole-cell voltage-clamp recordings and immunohistochemistry in brainstem slices containing anatomically identified second-order lung afferent nucleus tractus solitarius (NTS) neurons, we determined whether extended SHS exposure during the equivalent period of human childhood modified evoked or spontaneous excitatory synaptic transmission, and whether those modifications were altered by endogenous substance P. SHS exposure enhanced evoked synaptic transmission between sensory afferents and the NTS second-order neurons by eliminating synaptic depression of evoked excitatory postsynaptic currents (eEPSCs), an effect reversed by the neurokinin-1-receptor antagonist (SR140333). The recruitment of substance P in enhancing evoked synaptic transmission was further supported by an increased number of substance P-expressing lung afferent central terminals synapsing onto the second-order lung afferent neurons. SHS exposure did not change background spontaneous EPSCs. The data suggest that substance P in the NTS augments evoked synaptic transmission of lung sensory input following extended exposure to a pollutant. The mechanism may help to explain some of the exaggerated respiratory responses of children exposed to SHS.

  3. Dopaminergic Presynaptic Modulation of Nigral Afferents: Its Role in the Generation of Recurrent Bursting in Substantia Nigra Pars Reticulata Neurons

    PubMed Central

    de Jesús Aceves, José; Rueda-Orozco, Pavel E.; Hernández, Ricardo; Plata, Víctor; Ibañez-Sandoval, Osvaldo; Galarraga, Elvira; Bargas, José

    2011-01-01

    Previous work has shown the functions associated with activation of dopamine presynaptic receptors in some substantia nigra pars reticulata (SNr) afferents: (i) striatonigral terminals (direct pathway) posses presynaptic dopamine D1-class receptors whose action is to enhance inhibitory postsynaptic currents (IPSCs) and GABA transmission. (ii) Subthalamonigral terminals posses D1- and D2-class receptors where D1-class receptor activation enhances and D2-class receptor activation decreases excitatory postsynaptic currents. Here we report that pallidonigral afferents posses D2-class receptors (D3 and D4 types) that decrease inhibitory synaptic transmission via presynaptic modulation. No action of D1-class agonists was found on pallidonigral synapses. In contrast, administration of D1-receptor antagonists greatly decreased striatonigral IPSCs in the same preparation, suggesting that tonic dopamine levels help in maintaining the function of the striatonigral (direct) pathway. When both D3 and D4 type receptors were blocked, pallidonigral IPSCs increased in amplitude while striatonigral connections had no significant change, suggesting that tonic dopamine levels are repressing a powerful inhibition conveyed by pallidonigral synapses (a branch of the indirect pathway). We then blocked both D1- and D2-class receptors to acutely decrease direct pathway (striatonigral) and enhance indirect pathways (subthalamonigral and pallidonigral) synaptic force. The result was that most SNr projection neurons entered a recurrent bursting firing mode similar to that observed during Parkinsonism in both patients and animal models. These results raise the question as to whether the lack of dopamine in basal ganglia output nuclei is enough to generate some pathological signs of Parkinsonism. PMID:21347219

  4. An ionic current model for neurons in the rat medial nucleus tractus solitarii receiving sensory afferent input.

    PubMed Central

    Schild, J H; Khushalani, S; Clark, J W; Andresen, M C; Kunze, D L; Yang, M

    1993-01-01

    1. Neurons from a horizontal slice of adult rat brainstem were examined using intracellular recording techniques. Investigations were restricted to a region within the nucleus tractus solitarii, medial to the solitary tract and centred on the obex (mNTS). Previous work has shown this restricted area of the NTS to contain the greatest concentration of aortic afferent baroreceptor terminal fields. Electrical stimulation of the tract elicited short-latency excitatory postsynaptic potentials in all neurons. 2. mNTS neurons were spontaneously active with firing frequencies ranging between 1 and 10 Hz, at resting potentials of -65 to -45 mV. These neurons did not exhibit spontaneous bursting activity. 3. Depolarizing current injection immediately evoked a finite, high-frequency spike discharge which rapidly declined to a lower steady-state level (i.e. spike frequency adaptation, SFA). Increasing depolarizations produced a marked increase in the peak instantaneous frequency but a much smaller increase in the steady-state firing level. 4. Conditioning with a hyperpolarizing prepulse resulted in a prolonged delay of up to 600 ms before the first action potential (i.e. delayed excitation, DE) with an attendant decrease in peak discharge rates. DE was modulated by both the magnitude and duration of the prestimulus hyperpolarization, as well as the magnitude of the depolarizing stimulus. Tetrodotoxin (TTX) eliminated spike discharge but had little effect on the ramp-like membrane depolarization characteristic of DE. 5. We have developed a mathematical model for mNTS neurons to facilitate our understanding of the interplay between the underlying ionic currents. It consists of a comprehensive membrane model of the Hodgkin-Huxley type coupled with a fluid compartment model describing cytoplasmic [Ca2+]i homeostasis. 6. The model suggests that (a) SFA is caused by an increase in [Ca2+]i which activates the outward K+ current, IK,Ca, and (b) DE results from the competitive

  5. Optogenetic activation of septal GABAergic afferents entrains neuronal firing in the medial habenula

    PubMed Central

    Choi, Kyuhyun; Lee, Youngin; Lee, Changwoo; Hong, Seokheon; Lee, Soonje; Kang, Shin Jung; Shin, Ki Soon

    2016-01-01

    The medial habenula (MHb) plays an important role in nicotine-related behaviors such as nicotine aversion and withdrawal. The MHb receives GABAergic input from the medial septum/diagonal band of Broca (MS/DB), yet the synaptic mechanism that regulates MHb activity is unclear. GABA (γ -aminobutyric acid) is a major inhibitory neurotransmitter activating both GABAA receptors and GABAB receptors. Depending on intracellular chloride concentration, however, GABAA receptors also function in an excitatory manner. In the absence of various synaptic inputs, we found that MHb neurons displayed spontaneous tonic firing at a rate of about ~4.4 Hz. Optogenetic stimulation of MS/DB inputs to the MHb evoked GABAA receptor-mediated synaptic currents, which produced stimulus-locked neuronal firing. Subsequent delayed yet lasting activation of GABAB receptors attenuated the intrinsic tonic firing. Consequently, septal GABAergic input alone orchestrates both excitatory GABAA and inhibitory GABAB receptors, thereby entraining the firing of MHb neurons. PMID:27703268

  6. Sympathetic preganglionic efferent and afferent neurons mediated by the greater splanchnic nerve in rabbit

    NASA Technical Reports Server (NTRS)

    Torigoe, Yasuhiro; Cernucan, Roxana D.; Nishimoto, Jo Ann S.; Blanks, Robert H. I.

    1985-01-01

    As a part of the study of the vestibular-autonomic pathways involved in motion sickness, the location and the morphology of preganglionic sympathetic neurons (PSNs) projecting via the greater splanchnic nerve were examined. Retrograde labeling of neurons was obtained by application of horseradish peroxidase to the cut end of the greater splanchnic nerve. Labeled PSNs were found, ipsilaterally, within the T1 to T11 spinal cord segments, with the highest density of neurons in T6. Most PSNs were located within the intermediolateral column, but a significant portion also occurred within the lateral funiculus, the intercalated region, and the central autonomic area; the proportion of labeling between the four regions depended on the spinal cord segment.

  7. Sympathetic preganglionic efferent and afferent neurons mediated by the greater splanchnic nerve in rabbit

    NASA Technical Reports Server (NTRS)

    Torigoe, Yasuhiro; Cernucan, Roxana D.; Nishimoto, Jo Ann S.; Blanks, Robert H. I.

    1985-01-01

    As a part of the study of the vestibular-autonomic pathways involved in motion sickness, the location and the morphology of preganglionic sympathetic neurons (PSNs) projecting via the greater splanchnic nerve were examined. Retrograde labeling of neurons was obtained by application of horseradish peroxidase to the cut end of the greater splanchnic nerve. Labeled PSNs were found, ipsilaterally, within the T1 to T11 spinal cord segments, with the highest density of neurons in T6. Most PSNs were located within the intermediolateral column, but a significant portion also occurred within the lateral funiculus, the intercalated region, and the central autonomic area; the proportion of labeling between the four regions depended on the spinal cord segment.

  8. Primary Afferent Neurons Express Functional Delta Opioid Receptors in Inflamed Skin

    PubMed Central

    Brederson, Jill-Desiree; Honda, Christopher N.

    2015-01-01

    Peripherally-restricted opiate compounds attenuate hyperalgesia in experimental models of inflammatory pain, but have little discernable effect on nociceptive behavior in normal animals. This suggests that activation of opioid receptors on peripheral sensory axons contributes to decreased afferent activity after injury. Previously, we reported that direct application of morphine to cutaneous receptive fields decreased mechanical and heat-evoked responses in a population of C-fiber nociceptors in inflamed skin. Consistent with reported behavioral studies, direct application of morphine had no effect on fiber activity in control skin. The aim of the present study was to determine whether mechanical responsiveness of nociceptors innervating inflamed skin was attenuated by direct activation of delta opioid receptors (DOR) on peripheral terminals. An ex vivo preparation of rat plantar skin and tibial nerve was used to examine effects of a selective DOR agonist, deltorphin II, on responsiveness of single fibers innervating inflamed skin. Electrical recordings were made eighteen hours after injection of complete Freund’s adjuvant into the hindpaw. Deltorphin II produced an inhibition of the mechanical responsiveness of single fibers innervating inflamed skin; an effect blocked by the DOR-selective antagonist, naltrindole. The population of units responsive to deltorphin II was identified as consisting of C fiber mechanical nociceptors. PMID:25911583

  9. Primary afferent neurons express functional delta opioid receptors in inflamed skin.

    PubMed

    Brederson, Jill-Desiree; Honda, Christopher N

    2015-07-21

    Peripherally-restricted opiate compounds attenuate hyperalgesia in experimental models of inflammatory pain, but have little discernable effect on nociceptive behavior in normal animals. This suggests that activation of opioid receptors on peripheral sensory axons contributes to decreased afferent activity after injury. Previously, we reported that direct application of morphine to cutaneous receptive fields decreased mechanical and heat-evoked responses in a population of C-fiber nociceptors in inflamed skin. Consistent with reported behavioral studies, direct application of morphine had no effect on fiber activity in control skin. The aim of the present study was to determine whether mechanical responsiveness of nociceptors innervating inflamed skin was attenuated by direct activation of delta opioid receptors (DORs) on peripheral terminals. An ex vivo preparation of rat plantar skin and tibial nerve was used to examine effects of a selective DOR agonist, deltorphin II, on responsiveness of single fibers innervating inflamed skin. Electrical recordings were made eighteen hours after injection of complete Freund's adjuvant into the hindpaw. Deltorphin II produced an inhibition of the mechanical responsiveness of single fibers innervating inflamed skin; an effect blocked by the DOR-selective antagonist, naltrindole. The population of units responsive to deltorphin II was identified as consisting of C fiber mechanical nociceptors.

  10. The effects of desensitization of capsaicin-sensitive afferent neurons on the microcirculation in the stomach in rats depend on the blood glucocorticoid hormone level.

    PubMed

    Podvigina, T T; Bobryshev, P Yu; Bagaeva, T R; Mal'tsev, N A; Levkovich, Yu I; Filaretova, L P

    2009-07-01

    The effects of densensitization of capsaicin-sensitive afferent neurons on the microcirculation in the stomach were studied before and after administration of indomethacin at an ulcerogenic dose in adrenalectomized rats receiving and not receiving replacement therapy with corticosterone and in sham-operated animals. Measures of the microcirculation consisted of blood flow rates in microvessels in the submucous layer of the stomach and the diameter and permeability of microvessels in the mucosa. Desensitization of capsaicin-sensitive afferent neurons was performed by administration of capsaicin at a dose of 100 mg/kg for two weeks and adrenalectomy one week before the experiment. Blood flow rates in microvessels and microvessel diameters were assessed in non-anesthetized rats by direct video recording methods using a special optical system with a contact dark-field epiobjective. Administration of indomethacin at an ulcerogenic dose led to decreases in blood flow rate in microvessels in the submucous layer, dilation of superficial microvessels in the mucosa of the stomach, and an increase in their permeability. Desensitization of capsaicin-sensitive neurons potentiated indomethacin-induced impairments to the microcirculation in the submucous layer and the mucosa of the stomach. These effects of densensitization were significantly enhanced in conditions of glucocorticoid hormone deficiency. Thus, glucocorticoid hormones have favorable effects on the gastric microcirculation in rats with desensitization of capsaicin-sensitive afferent neurons.

  11. Spinal cord thermosensitivity: An afferent phenomenon?

    PubMed Central

    Brock, James A.; McAllen, Robin M.

    2016-01-01

    ABSTRACT We review the evidence for thermoregulatory temperature sensors in the mammalian spinal cord and reach the following conclusions. 1) Spinal cord temperature contributes physiologically to temperature regulation. 2) Parallel anterolateral ascending pathways transmit signals from spinal cooling and spinal warming: they overlap with the respective axon pathways of the dorsal horn neurons that are driven by peripheral cold- and warm-sensitive afferents. 3) We hypothesize that these ‘cold’ and ‘warm’ ascending pathways transmit all extracranial thermosensory information to the brain. 4) Cutaneous cold afferents can be activated not only by cooling the skin but also by cooling sites along their axons: we consider that this is functionally insignificant in vivo. 5) By a presynaptic action on their central terminals, local spinal cooling enhances neurotransmission from incoming ‘cold’ afferent action potentials to second order neurons in the dorsal horn; this effect disappears when the spinal cord is warm. 6) Spinal warm sensitivity is due to warm-sensitive miniature vesicular transmitter release from afferent terminals in the dorsal horn: this effect is powerful enough to excite second order neurons in the ‘warm’ pathway independently of any incoming sensory traffic. 7) Distinct but related presynaptic mechanisms at cold- and warm-sensitive afferent terminals can thus account for the thermoregulatory actions of spinal cord temperature. PMID:27857953

  12. Abeta-afferents activate neurokinin-1 receptor in dorsal horn neurons after nerve injury.

    PubMed

    Zheng, Ji-Hong; Song, Xue-Jun

    2005-05-12

    We provide new evidence demonstrating that peripheral nerve injury produces profound alterations in synaptic input to dorsal horn neurons mediated by non-nociceptive sensory neurons, and activation of neurokinin-1 receptor may be involved in the enhanced synaptic response and thus contribute to the tactile allodynia. Our results show that Abeta-fiber-evoked field potential significantly increased in the first postoperative week and decreased thereafter while maximal mechanical allodynia was exhibited. The neurokinin-1 receptor antagonist L703,606 significantly reduced Abeta-fiber-evoked field potential in nerve-injured but not in sham-operated animals. The non-N-methyl-D-aspartate receptor antagonist CNQX inhibited Abeta-fiber-evoked field potential in both nerve-injured and sham-operated rats, while the N-methyl-D-aspartate receptor antagonist MK-801 did not affect Abeta-fiber-evoked field potential in either CCI or sham-operated animals.

  13. Body temperature dependency in baclofen-induced gastric acid secretion in rats relation to capsaicin-sensitive afferent neurons.

    PubMed

    Kato, S; Araki, H; Kawauchi, S; Takeuchi, K

    2001-03-16

    Body temperature dependency in gastric functional responses to baclofen, a GABA(B) agonist, such as acid secretion, mucosal blood flow (GMBF) and motor activity, was examined in urethane-anesthetized rats under normal (37+/-1 degrees C) and hypothermic (31+/-1 degrees C) conditions. A rat stomach was mounted in an ex-vivo chamber, perfused with saline, and the acid secretion was measured using a pH-stat method, simultaneously with GMBF by a laser Doppler flowmeter. Gastric motility was measured using a miniature balloon as intraluminal pressure recordings. Intravenous administration of baclofen significantly increased acid secretion at the doses > 0.3 mg/kg under hypothermic conditions, yet it caused a significant stimulation only at doses > 10 mg/kg under normothermic conditions. The increases in gastric motility and GMBF were similarly induced by baclofen, irrespective of whether the animals were subjected to normothermic or hypothermic conditions. These functional responses to baclofen under hypothermic conditions were totally attenuated by either bilateral vagotomy or atropine (3 mg/kg, s.c.). Baclofen at a lower dose (1 mg/kg i.v.) significantly increased the acid secretion even under normothermic conditions when the animals were subjected to chemical deafferenation of capsaicin-sensitive neurons or pretreatment with intracisternal injection of CGRP8-37 (30 ng/rat). These results suggest that 1) gastric effects of baclofen are dependent on body temperature in stimulating acid secretion but not GMBF or motor activity, 2) the acid stimulatory action of baclofen is enhanced under hypothermic conditions, and 3) the suppression of baclofen-induced acid response under normothermic conditions may be related to capsaicin-sensitive afferent neuronal activity, probably mediated by central release

  14. Modulation of the hyperpolarization-activated current (Ih) by cyclic nucleotides in guinea-pig primary afferent neurons.

    PubMed Central

    Ingram, S L; Williams, J T

    1996-01-01

    1. Whole-cell patch-clamp recordings were made from dissociated guinea-pig nodose and trigeminal ganglion neurons in culture to study second messenger mechanisms of the hyperpolarization-activated current (Ih) modulation. 2. Prostaglandin E2 (PGE2) and forskolin modulate Ih in primary afferents by shifting the activation curve in the depolarizing direction and increasing the maximum amplitude. 3. The cAMP analogues, RP-cAMP-S (an inhibitor of protein kinase A (PKA)) and SP-cAMP-S (an activator of PKA), both shifted the activation curve of Ih to more depolarized potentials and occluded the effects of forskolin. These results suggest that Ih is modulated by a direct action of the cAMP analogues. 4. Superfusion of other cyclic nucleotide analogues (8-Br-cAMP, 8-(4-chlorophenylthio)-cAMP and 8-Br-cGMP) mimicked the actions of forskolin and PGE2, but dibutyryl cGMP, 5'-AMP and adenosine had no effect on Ih. 8-Br-cAMP and 8-Br-cGMP had similar concentration response profiles, suggesting that Ih has little nucleotide selectivity. 5. The inhibitor peptide (PKI), the catalytic subunit of PKA (C subunit) and phosphatase inhibitors (microcystin and okadaic acid) had no effect on forskolin modulation of Ih. 6. These results indicate that Ih is regulated by cyclic nucleotides in sensory neurons. Positive regulation of Ih by prostaglandins produced during inflammation may lead to depolarization and facilitation of repetitive activity, and thus contribute to sensitization to painful stimuli. PMID:8730586

  15. Pontomesencephalic Tegmental Afferents to VTA Non-dopamine Neurons Are Necessary for Appetitive Pavlovian Learning.

    PubMed

    Yau, Hau-Jie; Wang, Dong V; Tsou, Jen-Hui; Chuang, Yi-Fang; Chen, Billy T; Deisseroth, Karl; Ikemoto, Satoshi; Bonci, Antonello

    2016-09-06

    The ventral tegmental area (VTA) receives phenotypically distinct innervations from the pedunculopontine tegmental nucleus (PPTg). While PPTg-to-VTA inputs are thought to play a critical role in stimulus-reward learning, direct evidence linking PPTg-to-VTA phenotypically distinct inputs in the learning process remains lacking. Here, we used optogenetic approaches to investigate the functional contribution of PPTg excitatory and inhibitory inputs to the VTA in appetitive Pavlovian conditioning. We show that photoinhibition of PPTg-to-VTA cholinergic or glutamatergic inputs during cue presentation dampens the development of anticipatory approach responding to the food receptacle during the cue. Furthermore, we employed in vivo optetrode recordings to show that photoinhibition of PPTg cholinergic or glutamatergic inputs significantly decreases VTA non-dopamine (non-DA) neural activity. Consistently, photoinhibition of VTA non-DA neurons disrupts the development of cue-elicited anticipatory approach responding. Taken together, our study reveals a crucial regulatory mechanism by PPTg excitatory inputs onto VTA non-DA neurons during appetitive Pavlovian conditioning. Published by Elsevier Inc.

  16. A long noncoding RNA contributes to neuropathic pain by silencing Kcna2 in primary afferent neurons

    PubMed Central

    Zhao, Xiuli; Tang, Zongxiang; Zhang, Hongkang; Atianjoh, Fidelis E.; Zhao, Jian-Yuan; Liang, Lingli; Wang, Wei; Guan, Xiaowei; Kao, Sheng-Chin; Tiwari, Vinod; Gao, Yong-Jing; Hoffman, Paul N.; Cui, Hengmi; Li, Min; Dong, Xinzhong; Tao, Yuan-Xiang

    2013-01-01

    Neuropathic pain is a refractory disease characterized by maladaptive changes in gene transcription and translation within the sensory pathway. Long noncoding RNAs (lncRNAs) are emerging as new players in gene regulation, but how lncRNAs operate in the development of neuropathic pain is unclear. Here we identify a conserved lncRNA for Kcna2 (named Kcna2 antisense RNA) in first-order sensory neurons of rat dorsal root ganglion (DRG). Peripheral nerve injury increases Kcna2 antisense RNA expression in injured DRG through activation of myeloid zinc finger protein 1, a transcription factor that binds to Kcna2 antisense RNA gene promoter. Mimicking this increase downregulates Kcna2, reduces total Kv current, increases excitability in DRG neurons, and produces neuropathic pain symptoms. Blocking this increase reverses nerve injury-induced downregulation of DRG Kcna2 and attenuates development and maintenance of neuropathic pain. These findings suggest native Kcna2 antisense RNA as a new therapeutic target for the treatment of neuropathic pain. PMID:23792947

  17. Antihyperalgesic effect of CB1 receptor activation involves the modulation of P2X3 receptor in the primary afferent neuron.

    PubMed

    Oliveira-Fusaro, Maria Cláudia Gonçalves; Zanoni, Cristiane Isabel Silva; Dos Santos, Gilson Gonçalves; Manzo, Luis Paulo; Araldi, Dionéia; Bonet, Ivan José Magayewski; Tambeli, Cláudia Herrera; Dias, Elayne Vieira; Parada, Carlos Amilcar

    2017-03-05

    Cannabinoid system is a potential target for pain control. Cannabinoid receptor 1 (CB1) activation play a role in the analgesic effect of cannabinoids once it is expressed in primary afferent neurons. This study investigates whether the anti-hyperalgesic effect of CB1 receptor activation involves P2X3 receptor in primary afferent neurons. Mechanical hyperalgesia was evaluated by electronic von Frey test. Cannabinoid effect was evaluated using anandamide or ACEA, a non-selective or a selective CB1 receptor agonists, respectively; AM251, a CB1 receptor antagonist, and antisense ODN for CB1 receptor. Calcium imaging assay was performed to evaluated α,β-meATP-responsive cultured DRG neurons pretreated with ACEA. Anandamide or ACEA administered in peripheral tissue reduced the carrageenan-induced mechanical hyperalgesia. The reduction in the carrageenan-induced hyperalgesia induced by ACEA was completely reversed by administration of AM251 as well as by the intrathecal treatment with antisense ODN for CB1 receptor. Also, ACEA reduced the mechanical hyperalgesia induced by bradykinin and by α,β-meATP, a P2X3 receptor non-selective agonist, but not by tumor necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1β) and chemokine-induced chemoattractant-1 (CINC-1). Finally, CB1 receptors are co-localized with P2X3 receptors in DRG small-diameter neurons and the treatment with ACEA reduced the number of α,β-meATP-responsive cultured DRG neurons. Our data suggest that the analgesic effect of CB1 receptor activation is mediated by a negative modulation of the P2X3 receptor in the primary afferent neurons.

  18. Can loss of muscle spindle afferents explain the ataxic gait in Riley-Day syndrome?

    PubMed

    Macefield, Vaughan G; Norcliffe-Kaufmann, Lucy; Gutiérrez, Joel; Axelrod, Felicia B; Kaufmann, Horacio

    2011-11-01

    The Riley-Day syndrome is the most common of the hereditary sensory and autonomic neuropathies (Type III). Among the well-recognized clinical features are reduced pain and temperature sensation, absent deep tendon reflexes and a progressively ataxic gait. To explain the latter we tested the hypothesis that muscle spindles, or their afferents, are absent in hereditary sensory and autonomic neuropathy III by attempting to record from muscle spindle afferents from a nerve supplying the leg in 10 patients. For comparison we also recorded muscle spindles from 15 healthy subjects and from two patients with hereditary sensory and autonomic neuropathy IV, who have profound sensory disturbances but no ataxia. Tungsten microelectrodes were inserted percutaneously into fascicles of the common peroneal nerve at the fibular head. Intraneural stimulation within muscle fascicles evoked twitches at normal stimulus currents (10-30 µA), and deep pain (which often referred) at high intensities (1 mA). Microneurographic recordings from muscle fascicles revealed a complete absence of spontaneously active muscle spindles in patients with hereditary sensory and autonomic neuropathy III; moreover, responses to passive muscle stretch could not be observed. Conversely, muscle spindles appeared normal in patients with hereditary sensory and autonomic neuropathy IV, with mean firing rates of spontaneously active endings being similar to those recorded from healthy controls. Intraneural stimulation within cutaneous fascicles evoked paraesthesiae in the fascicular innervation territory at normal stimulus intensities, but cutaneous pain was never reported during high-intensity stimulation in any of the patients. Microneurographic recordings from cutaneous fascicles revealed the presence of normal large-diameter cutaneous mechanoreceptors in hereditary sensory and autonomic neuropathy III. Our results suggest that the complete absence of functional muscle spindles in these patients explains

  19. The somatostatin receptor 4 agonist J-2156 reduces mechanosensitivity of peripheral nerve afferents and spinal neurons in an inflammatory pain model.

    PubMed

    Schuelert, Niklas; Just, Stefan; Kuelzer, Raimund; Corradini, Laura; Gorham, Louise C J; Doods, Henri

    2015-01-05

    Somatostatin (SST) is a peptide hormone that regulates the endocrine system and affects neurotransmission via interaction with G protein-coupled SST receptors and inhibition of the release of different hormones. The aim of this study was to investigate whether the analgesic properties of the selective SSTR4 agonist J-2156 are mediated via peripheral and/or spinal receptors. Effect on mechanical hyperalgesia in the Complete Freund׳s Adjuvant (CFA) model was measured after intraperitoneal application of J-2156. Electrophysiological neuronal recordings were conducted 24 h after injection of CFA or vehicle into the paw of Wistar rats. Mechanosensitivity of peripheral afferents of the saphenous nerve as well as of spinal wide dynamic range (WDR) and nociceptive-specific (NS) neurons were measured after systemic or spinal application of J-2156. In CFA animals J-2156 dose dependently reduced hyperalgesia in behavioral studies. The minimal effective dose was 0.1 mg/kg. Mechanosensitivity of peripheral afferents and spinal neurons was significantly reduced by J-2156. NS neurons were dose dependently inhibited by J-2156 while in WDR neurons only the highest concentration of 100 µM had an effect. In sham controls, J-2156 had no effect on neuronal activity. We demonstrated that J-2156 dose-dependently reduces peripheral and spinal neuronal excitability in the CFA rat model without affecting physiological pain transmission. Given the high concentration of the compound required to inhibit spinal neurons, it is unlikely that the behavioral effect seen in CFA model is mediated centrally. Overall these data demonstrated that the analgesic effect of J-2156 is mediated mainly via peripheral SST4 receptors.

  20. Tyrosine Hydroxylase Expression in Type II Cochlear Afferents in Mice.

    PubMed

    Vyas, Pankhuri; Wu, Jingjing Sherry; Zimmerman, Amanda; Fuchs, Paul; Glowatzki, Elisabeth

    2017-02-01

    Acoustic information propagates from the ear to the brain via spiral ganglion neurons that innervate hair cells in the cochlea. These afferents include unmyelinated type II fibers that constitute 5 % of the total, the majority being myelinated type I neurons. Lack of specific genetic markers of type II afferents in the cochlea has been a roadblock in studying their functional role. Unexpectedly, type II afferents were visualized by reporter proteins induced by tyrosine hydroxylase (TH)-driven Cre recombinase. The present study was designed to determine whether TH-driven Cre recombinase (TH-2A-CreER) provides a selective and reliable tool for identification and genetic manipulation of type II rather than type I cochlear afferents. The "TH-2A-CreER neurons" radiated from the spiral lamina, crossed the tunnel of Corti, turned towards the base of the cochlea, and traveled beneath the rows of outer hair cells. Neither the processes nor the somata of TH-2A-CreER neurons were labeled by antibodies that specifically labeled type I afferents and medial efferents. TH-2A-CreER-positive processes partially co-labeled with antibodies to peripherin, a known marker of type II afferents. Individual TH-2A-CreER neurons gave off short branches contacting 7-25 outer hair cells (OHCs). Only a fraction of TH-2A-CreER boutons were associated with CtBP2-immunopositive ribbons. These results show that TH-2A-CreER provides a selective marker for type II versus type I afferents and can be used to describe the morphology and arborization pattern of type II cochlear afferents in the mouse cochlea.

  1. Ketamine-mediated afferent-specific presynaptic transmission blocks in low-threshold and sex-specific subpopulation of myelinated Ah-type baroreceptor neurons of rats

    PubMed Central

    Wu, Di; Yin, Lei; Fan, Yao; Wang, Ye; Chen, Wei-Ran; Chen, Pei; Liu, Yang; Lu, Xiao-Long; Sun, Hong-Li; Shou, Weinian; Qiao, Guo-Fen; Li, Bai-Yan

    2015-01-01

    Background Ketamine enhances autonomic activity, and unmyelinated C-type baroreceptor afferents are more susceptible to be blocked by ketamine than myelinated A-types. However, the presynaptic transmission block in low-threshold and sex-specific myelinated Ah-type baroreceptor neurons (BRNs) is not elucidated. Methods Action potentials (APs) and excitatory post-synaptic currents (EPSCs) were investigated in BRNs/barosensitive neurons identified by conduction velocity (CV), capsaicin-conjugated with Iberiotoxin-sensitivity and fluorescent dye using intact nodose slice and brainstem slice in adult female rats. The expression of mRNA and targeted protein for NMDAR1 was also evaluated. Results Ketamine time-dependently blocked afferent CV in Ah-types in nodose slice with significant changes in AP discharge. The concentration-dependent inhibition of ketamine on AP discharge profiles were also assessed and observed using isolated Ah-type BRNs with dramatic reduction in neuroexcitability. In brainstem slice, the 2nd-order capsaicin-resistant EPSCs were identified and ∼50% of them were blocked by ketamine concentration-dependently with IC50 estimated at 84.4 μM compared with the rest (708.2 μM). Interestingly, the peak, decay time constant, and area under curve of EPSCs were significantly enhanced by 100 nM iberiotoxin in ketamine-more sensitive myelinated NTS neurons (most likely Ah-types), rather than ketamine-less sensitive ones (A-types). Conclusions These data have demonstrated, for the first time, that low-threshold and sex-specific myelinated Ah-type BRNs in nodose and Ah-type barosensitive neurons in NTS are more susceptible to ketamine and may play crucial roles in not only mean blood pressure regulation but also buffering dynamic changes in pressure, as well as the ketamine-mediated cardiovascular dysfunction through sexual-dimorphic baroreflex afferent pathway. PMID:26675761

  2. Adult axolotls can regenerate original neuronal diversity in response to brain injury

    PubMed Central

    Amamoto, Ryoji; Huerta, Violeta Gisselle Lopez; Takahashi, Emi; Dai, Guangping; Grant, Aaron K; Fu, Zhanyan; Arlotta, Paola

    2016-01-01

    The axolotl can regenerate multiple organs, including the brain. It remains, however, unclear whether neuronal diversity, intricate tissue architecture, and axonal connectivity can be regenerated; yet, this is critical for recovery of function and a central aim of cell replacement strategies in the mammalian central nervous system. Here, we demonstrate that, upon mechanical injury to the adult pallium, axolotls can regenerate several of the populations of neurons present before injury. Notably, regenerated neurons acquire functional electrophysiological traits and respond appropriately to afferent inputs. Despite the ability to regenerate specific, molecularly-defined neuronal subtypes, we also uncovered previously unappreciated limitations by showing that newborn neurons organize within altered tissue architecture and fail to re-establish the long-distance axonal tracts and circuit physiology present before injury. The data provide a direct demonstration that diverse, electrophysiologically functional neurons can be regenerated in axolotls, but challenge prior assumptions of functional brain repair in regenerative species. DOI: http://dx.doi.org/10.7554/eLife.13998.001 PMID:27156560

  3. Monosynaptic convergence of somatic and visceral C-fiber afferents on projection and local circuit neurons in lamina I: a substrate for referred pain

    PubMed Central

    Luz, Liliana L.; Fernandes, Elisabete C.; Sivado, Miklos; Kokai, Eva; Szucs, Peter; Safronov, Boris V.

    2015-01-01

    Abstract Referred pain is a phenomenon of feeling pain at a site other than the site of the painful stimulus origin. It arises from a pathological mixing of nociceptive processing pathways for visceral and somatic inputs. Despite numerous studies based on unit recordings from spinal and supraspinal neurons, the exact mechanism and site of this mixing within the central nervous system are not known. Here, we selectively recorded from lamina I neurons, using a visually guided patch-clamp technique, in thoracic spinal cord preparation with preserved intercostal (somatic) and splanchnic (visceral) nerves. We show that somatic and visceral C fibers converge monosynaptically onto a group of lamina I neurons, which includes both projection and local circuit neurons. Other groups of lamina I neurons received inputs from either somatic or visceral afferents. We have also identified a population of lamina I local circuit neurons showing overall inhibitory responses upon stimulation of both nerves. Thus, the present data allow us to draw two major conclusions. First, lamina I of the spinal cord is the first site in the central nervous system where somatic and visceral pathways directly converge onto individual projection and local circuit neurons. Second, the mechanism of somatovisceral convergence is complex and based on functional integration of monosynaptic and polysynaptic excitatory as well as inhibitory inputs in specific groups of neurons. This complex pattern of convergence provides a substrate for alterations in the balance between visceral and somatic inputs causing referred pain. PMID:26098437

  4. Monosynaptic convergence of somatic and visceral C-fiber afferents on projection and local circuit neurons in lamina I: a substrate for referred pain.

    PubMed

    Luz, Liliana L; Fernandes, Elisabete C; Sivado, Miklos; Kokai, Eva; Szucs, Peter; Safronov, Boris V

    2015-10-01

    Referred pain is a phenomenon of feeling pain at a site other than the site of the painful stimulus origin. It arises from a pathological mixing of nociceptive processing pathways for visceral and somatic inputs. Despite numerous studies based on unit recordings from spinal and supraspinal neurons, the exact mechanism and site of this mixing within the central nervous system are not known. Here, we selectively recorded from lamina I neurons, using a visually guided patch-clamp technique, in thoracic spinal cord preparation with preserved intercostal (somatic) and splanchnic (visceral) nerves. We show that somatic and visceral C fibers converge monosynaptically onto a group of lamina I neurons, which includes both projection and local circuit neurons. Other groups of lamina I neurons received inputs from either somatic or visceral afferents. We have also identified a population of lamina I local circuit neurons showing overall inhibitory responses upon stimulation of both nerves. Thus, the present data allow us to draw two major conclusions. First, lamina I of the spinal cord is the first site in the central nervous system where somatic and visceral pathways directly converge onto individual projection and local circuit neurons. Second, the mechanism of somatovisceral convergence is complex and based on functional integration of monosynaptic and polysynaptic excitatory as well as inhibitory inputs in specific groups of neurons. This complex pattern of convergence provides a substrate for alterations in the balance between visceral and somatic inputs causing referred pain.

  5. How can single sensory neurons predict behavior?

    PubMed Central

    Pitkow, Xaq; Liu, Sheng; Angelaki, Dora E.; DeAngelis, Gregory C.; Pouget, Alex

    2015-01-01

    Summary Single sensory neurons can be surprisingly predictive of behavior in discrimination tasks. We propose this is possible because sensory information extracted from neural populations is severely restricted, either by near-optimal decoding of a population with information-limiting correlations or suboptimal decoding that is blind to correlations. These have different consequences for choice correlations, the correlations between neural responses and behavioral choices. In the vestibular and cerebellar nuclei and the dorsal medial superior temporal area, we found that choice correlations during heading discrimination are consistent with near-optimal decoding of neuronal responses corrupted by information-limiting correlations. In the ventral intraparietal area, the choice correlations are also consistent with the presence of information-limiting correlations, but this area does not appear to influence behavior although the choice correlations are particularly large. These findings demonstrate how choice correlations can be used to assess the efficiency of the downstream read-out and detect the presence of information-limiting correlations. PMID:26182422

  6. TRPA1-expressing primary afferents synapse with a morphologically identified subclass of substantia gelatinosa neurons in the adult rat spinal cord.

    PubMed

    Uta, Daisuke; Furue, Hidemasa; Pickering, Anthony E; Rashid, Md Harunor; Mizuguchi-Takase, Hiroko; Katafuchi, Toshihiko; Imoto, Keiji; Yoshimura, Megumu

    2010-06-01

    The TRPA1 channel has been proposed to be a molecular transducer of cold and inflammatory nociceptive signals. It is expressed on a subset of small primary afferent neurons both in the peripheral terminals, where it serves as a sensor, and on the central nerve endings in the dorsal horn. The substantia gelatinosa (SG) of the spinal cord is a key site for integration of noxious inputs. The SG neurons are morphologically and functionally heterogeneous and the precise synaptic circuits of the SG are poorly understood. We examined how activation of TRPA1 channels affects synaptic transmission onto SG neurons using whole-cell patch-clamp recordings and morphological analyses in adult rat spinal cord slices. Cinnamaldehyde (TRPA1 agonist) elicited a barrage of excitatory postsynaptic currents (EPSCs) in a subset of the SG neurons that responded to allyl isothiocyanate (less specific TRPA1 agonist) and capsaicin (TRPV1 agonist). Cinnamaldehyde evoked EPSCs in vertical and radial but not islet or central SG cells. Notably, cinnamaldehyde produced no change in inhibitory postsynaptic currents and nor did it produce direct postsynaptic effects. In the presence of tetrodotoxin, cinnamaldehyde increased the frequency but not amplitude of miniature EPSCs. Intriguingly, cinnamaldehyde had a selective inhibitory action on monosynaptic C- (but not Adelta-) fiber-evoked EPSCs. These results indicate that activation of spinal TRPA1 presynaptically facilitates miniature excitatory synaptic transmission from primary afferents onto vertical and radial cells to initiate action potentials. The presence of TRPA1 channels on the central terminals raises the possibility of bidirectional modulatory action in morphologically identified subclasses of SG neurons.

  7. Primary afferent neurons containing calcitonin gene-related peptide but not substance P in forepaw skin, dorsal root ganglia, and spinal cord of mice.

    PubMed

    Kestell, Garreth R; Anderson, Rebecca L; Clarke, Jennifer N; Haberberger, Rainer V; Gibbins, Ian L

    2015-12-01

    In mice dorsal root ganglia (DRG), some neurons express calcitonin gene-related peptide (CGRP) without substance P (SP; CGRP(+) SP(-) ). The projections and functions of these neurons are unknown. Therefore, we combined in vitro axonal tracing with multiple-labeling immunohistochemistry to neurochemically define these neurons and characterize their peripheral and central projections. Cervical spinal cord, DRG, and forepaw skin were removed from C57Bl/6 mice and multiple-labeled for CGRP, SP, and either marker for the sensory neuron subpopulations transient receptor potential vanilloid type 1 (TRPV1), neurofilament 200 (NF200), or vesicular glutamate transporter 2 (VGluT1). To determine central projections of CGRP(+) SP(-) neurons, Neurobiotin (NB) was applied to the C7 ventral ramus and visualized in DRG and spinal cord sections colabeled for CGRP and SP. Half (50%) of the CGRP-immunoreactive DRG neurons lacked detectable SP and had a mean soma size of 473 ± 14 μm(2) (n = 5); 89% of the CGRP(+) SP(-) neurons expressed NF200 (n = 5), but only 32% expressed TRPV1 (n = 5). Cutaneous CGRP(+) SP(-) fibers were numerous within dermal papillae and around hair shafts (n = 4). CGRP(+) SP(-) boutons were prevalent in lateral lamina I and in lamina IV/V of the dorsal horn (n = 5). NB predominantly labeled fibers penetrating lamina IV/V, 6 ± 3% contained CGRP (n = 5), and 21 ± 2% contained VGluT1 (n = 3). CGRP(+) SP(-) afferent neurons are likely to be non-nociceptive. Their soma size, neurochemical profile, and peripheral and central targets suggest that CGRP(+) SP(-) neurons are polymodal mechanoceptors. © 2015 Wiley Periodicals, Inc.

  8. Early postnatal development of GABAergic presynaptic inhibition of Ia proprioceptive afferent connections in mouse spinal cord.

    PubMed

    Sonner, Patrick M; Ladle, David R

    2013-04-01

    Sensory feedback is critical for normal locomotion and adaptation to external perturbations during movement. Feedback provided by group Ia afferents influences motor output both directly through monosynaptic connections and indirectly through spinal interneuronal circuits. For example, the circuit responsible for reciprocal inhibition, which acts to prevent co-contraction of antagonist flexor and extensor muscles, is driven by Ia afferent feedback. Additionally, circuits mediating presynaptic inhibition can limit Ia afferent synaptic transmission onto central neuronal targets in a task-specific manner. These circuits can also be activated by stimulation of proprioceptive afferents. Rodent locomotion rapidly matures during postnatal development; therefore, we assayed the functional status of reciprocal and presynaptic inhibitory circuits of mice at birth and compared responses with observations made after 1 wk of postnatal development. Using extracellular physiological techniques from isolated and hemisected spinal cord preparations, we demonstrate that Ia afferent-evoked reciprocal inhibition is as effective at blocking antagonist motor neuron activation at birth as at 1 wk postnatally. In contrast, at birth conditioning stimulation of muscle nerve afferents failed to evoke presynaptic inhibition sufficient to block functional transmission at synapses between Ia afferents and motor neurons, even though dorsal root potentials could be evoked by stimulating the neighboring dorsal root. Presynaptic inhibition at this synapse was readily observed, however, at the end of the first postnatal week. These results indicate Ia afferent feedback from the periphery to central spinal circuits is only weakly gated at birth, which may provide enhanced sensitivity to peripheral feedback during early postnatal experiences.

  9. Neural responses from the filiform receptor neuron afferents of the wind-sensitive cercal system in three cockroach species

    PubMed Central

    Olsen, Anne C.K.; Triblehorn, Jeffrey D.

    2014-01-01

    The wind-sensitive insect cercal system is involved in many important behaviors, such as initiating terrestrial escape responses and providing sensory feedback during flight. The occurrence of these behaviors vary in cockroach species Periplaneta americana (strong terrestrial response and flight), Blaberus craniifer (weak terrestrial response and flight), and Gromphodorhina portentosa (no terrestrial response and no flight). A previous study focusing on wind-sensitive interneuron (WSI) responses demonstrated that variations in sensory processing of wind information accompany these behavioral differences. In this study, we recorded extracellurlarly from the cercal nerve to characterize filiform afferent population responses to different wind velocities to investigate how sensory processing differs across these species at the initial encoding of wind. We compared these results and responses from the WSI population to examine information transfer at the first synapse. Our main results were: 1) G portentosa had the weakest responses of the three species over the stimulus duration and possessed the smallest cerci with the least filiform hair receptors of the three species; 2) B. craniifer filiform responses were similar to or greater than P. americana responses even though B. craniifer possessed smaller cerci with less filiform hair receptors than P. americana; 3) the greater filiform afferent responses in B. craniifer, including a larger amplitude second positive peak compared to the other two species, suggest more synchronous activity between filiform afferents in this species; 4) the transfer of information at the first synapse appears to be similar in both P. americana and G. portentosa, but different in B. craniifer. PMID:25046275

  10. Activation of μ-opioid receptors inhibits calcium-currents in the vestibular afferent neurons of the rat through a cAMP dependent mechanism

    PubMed Central

    Seseña, Emmanuel; Vega, Rosario; Soto, Enrique

    2014-01-01

    Opioid receptors are expressed in the vestibular endorgans (afferent neurons and hair cells) and are activated by the efferent system, which modulates the discharge of action potentials in vestibular afferent neurons (VANs). In mammals, VANs mainly express the μ opioid-receptor, but the function of this receptors activation and the cellular mechanisms by which they exert their actions in these neurons are poorly studied. To determine the actions of μ opioid receptor (MOR) and cell signaling mechanisms in VANs, we made perforated patch-clamp recordings of VANs that were obtained from postnatal days 7 to 10 (P7–10) rats and then maintained in primary culture. The MOR agonist [D-Ala2, N-Me-Phe4, Gly5-ol]-enkephalin (DAMGO) inhibited the total voltage-gated outward current; this effect was prevented by the perfusion of a Ca2+-free extracellular solution. We then studied the voltage-gated calcium current (Ica) and found that DAMGO Met-enkephalin or endomorphin-1 inhibited the ICa in a dose-response fashion. The effects of DAMGO were prevented by the MOR antagonist (CTAP) or by pertussis toxin (PTX). The use of specific calcium channel blockers showed that MOR activation inhibited T-, L- and N-type ICa. The use of various enzyme activators and inhibitors and of cAMP analogs allowed us to demonstrate that the MOR acts through a cAMP dependent signaling mechanism. In current clamp experiments, MOR activation increased the duration and decreased the amplitude of the action potentials and modulated the discharge produced by current injection. Pre-incubation with PTX occluded MOR activation effect. We conclude that MOR activation inhibits the T-, L- and N-type ICa through activation of a Gαi/o protein that involves a decrease in AC-cAMP-PKA activity. The modulation of ICa may have an impact on the synaptic integration, excitability, and neurotransmitter release from VANs. PMID:24734002

  11. Enhanced Ras activity in pyramidal neurons induces cellular hypertrophy and changes in afferent and intrinsic connectivity in synRas mice.

    PubMed

    Gärtner, Ulrich; Alpár, Alán; Seeger, Gudrun; Heumann, Rolf; Arendt, Thomas

    2004-05-01

    Neurotrophic actions are critically controlled and transmitted to cellular responses by the small G protein Ras which is therefore essential for normal functioning and plasticity of the nervous system. The present study summarises findings of recent studies on morphological changes in the neocortex of synRas mice expressing Val12-Ha-Ras in vivo under the control of the rat synapsin I promoter. In the here reported model (introduced by Heumann et al. [J. Cell Biol. 151 (2000) 1537]), transgenic Val12-Ha-Ras expression is confined to the pyramidal cell population and starts postnatally at a time, when neurons are postmitotic and their developmental maturation has been basically completed. Expression of Val12-Ha-Ras results in a significant enlargement of pyramidal neurons. Size, complexity and spine density of dendritic trees are increased, which leads, finally, to cortical expansion. However, the main morphological design principles of 'transgenic' pyramidal cells remain preserved. In addition to somato-dendritic changes, expression of Val12-Ha-Ras in pyramidal cells induces augmented axon calibres and upregulates the establishment of efferent boutons. Despite the enlargement of cortical size, the overall density of terminals representing intra- or interhemispheric, specific and non-specific afferents is unchanged or even higher in transgenic mice suggesting a significant increase in the total afferent input to the neocortex. Although interneurons do not express the transgene and are therefore excluded from direct, intrinsic Val12-Ha-Ras effects, they respond with morphological adaptations to structural changes. Thus, dendritic arbours of interneurons are extended to follow the cortical expansion and basket cells establish a denser inhibitory innervation of 'transgenic' pyramidal cells perikarya. It is concluded that expression of Val12-Ha-Ras in pyramidal neurons results in remodelling of neocortical structuring which strongly implicates a crucial involvement of

  12. Presynaptic selection of afferent inflow in the spinal cord.

    PubMed

    Rudomin, P

    1999-01-01

    The synaptic effectiveness of sensory fibers ending in the spinal cord of vertebrates can be centrally controlled by means of specific sets of GABAergic interneurons that make axo-axonic synapses with the terminal arborizations of the afferent fibers. In the steady state, the intracellular concentration of chloride ions in these terminals is higher than that predicted from a passive distribution, because of an active transport mechanism. Following the release of GABA by spinal interneurons and activation of GABA(A) receptors in the afferent terminals, there is an outwardly directed efflux of chloride ions that produces primary afferent depolarization (PAD) and reduces transmitter release (presynaptic inhibition). Studies made by intrafiber recording of PAD, or by measuring changes in the intraspinal threshold of single afferent terminals (which is reduced during PAD), have further indicated that muscle and cutaneous afferents have distinctive, but modifiable PAD patterns in response to segmental and descending stimuli. This has suggested that PAD and presynaptic inhibition in the various types of afferents is mediated by separate sets of last-order GABAergic interneurons. Direct activation, by means of intraspinal microstimulation, of single or small groups of last-order PAD-mediating interneurons shows that the monosynaptic PAD elicited in Ia and Ib afferents can remain confined to some sets of the intraspinal collaterals and not spread to nearby collaterals. The local character of PAD allows cutaneous and descending inputs to selectively inhibit the PAD of segmental and ascending intraspinal collaterals of individual muscle spindle afferents. It thus seems that the intraspinal branches of the sensory fibers are not hard wired routes that diverge excitation to spinal neurons, but are instead dynamic pathways that can be centrally controlled to address information to selected neuronal targets. This feature appears to play an important role in the selection of

  13. Glucagon-like peptide 1 interacts with ghrelin and leptin to regulate glucose metabolism and food intake through vagal afferent neuron signaling.

    PubMed

    Ronveaux, Charlotte C; Tomé, Daniel; Raybould, Helen E

    2015-04-01

    Emerging evidence has suggested a possible physiologic role for peripheral glucagon-like peptide 1 (GLP-1) in regulating glucose metabolism and food intake. The likely site of action of GLP-1 is on vagal afferent neurons (VANs). The vagal afferent pathway is the major neural pathway by which information about ingested nutrients reaches the central nervous system and influences feeding behavior. Peripheral GLP-1 acts on VANs to inhibit food intake. The mechanism of the GLP-1 receptor (GLP-1R) is unlike other gut-derived receptors; GLP-1Rs change their cellular localization according to feeding status rather than their protein concentrations. It is possible that several gut peptides are involved in mediating GLP-1R translocation. The mechanism of peripheral GLP-1R translocation still needs to be elucidated. We review data supporting the role of peripheral GLP-1 acting on VANs in influencing glucose homeostasis and feeding behavior. We highlight evidence demonstrating that GLP-1 interacts with ghrelin and leptin to induce satiation. Our aim was to understand the mechanism of peripheral GLP-1 in the development of noninvasive antiobesity treatments.

  14. Ventral Tegmental Area Afferents and Drug-Dependent Behaviors

    PubMed Central

    Oliva, Idaira; Wanat, Matthew J.

    2016-01-01

    Drug-related behaviors in both humans and rodents are commonly thought to arise from aberrant learning processes. Preclinical studies demonstrate that the acquisition and expression of many drug-dependent behaviors involves the ventral tegmental area (VTA), a midbrain structure comprised of dopamine, GABA, and glutamate neurons. Drug experience alters the excitatory and inhibitory synaptic input onto VTA dopamine neurons, suggesting a critical role for VTA afferents in mediating the effects of drugs. In this review, we present evidence implicating the VTA in drug-related behaviors, highlight the diversity of neuronal populations in the VTA, and discuss the behavioral effects of selectively manipulating VTA afferents. Future experiments are needed to determine which VTA afferents and what neuronal populations in the VTA mediate specific drug-dependent behaviors. Further studies are also necessary for identifying the afferent-specific synaptic alterations onto dopamine and non-dopamine neurons in the VTA following drug administration. The identification of neural circuits and adaptations involved with drug-dependent behaviors can highlight potential neural targets for pharmacological and deep brain stimulation interventions to treat substance abuse disorders. PMID:27014097

  15. Development of inner ear afferent connections: forming primary neurons and connecting them to the developing sensory epithelia

    NASA Technical Reports Server (NTRS)

    Fritzsch, Bernd

    2003-01-01

    The molecular and cellular origin of the primary neurons of the inner ear, the vestibular and spiral neurons, is reviewed including how they connect to the specific sensory epithelia and what the molecular nature of their survival is. Primary neurons of the ear depend on a single basic Helix-Loop-Helix (bHLH) protein for their formation, neurogenin 1 (ngn1). An immediate downstream gene is the bHLH gene neuronal differentiation (NeuroD). Targeted null mutations of ngn1 results in absence of primary neuron formation; targeted null mutation of NeuroD results in loss of almost all spiral and many vestibular neurons. NeuroD and a later expressed gene, Brn3a, play a role in pathfinding to and within sensory epithelia. The molecular nature of this pathfinding property is unknown. Reduction of hair cells in ngn1 null mutations suggests a clonal relationship with primary neurons. This relationship may play some role in specifying the identity of hair cells and the primary neurons that connect with them. Primary neuron neurites growth to sensory epithelia is initially independent of trophic factors released from developing sensory epithelia, but becomes rapidly dependent on those factors. Null mutations of specific neurotrophic factors lose distinct primary neuron populations which undergo rapid embryonic cell death.

  16. Development of inner ear afferent connections: forming primary neurons and connecting them to the developing sensory epithelia

    NASA Technical Reports Server (NTRS)

    Fritzsch, Bernd

    2003-01-01

    The molecular and cellular origin of the primary neurons of the inner ear, the vestibular and spiral neurons, is reviewed including how they connect to the specific sensory epithelia and what the molecular nature of their survival is. Primary neurons of the ear depend on a single basic Helix-Loop-Helix (bHLH) protein for their formation, neurogenin 1 (ngn1). An immediate downstream gene is the bHLH gene neuronal differentiation (NeuroD). Targeted null mutations of ngn1 results in absence of primary neuron formation; targeted null mutation of NeuroD results in loss of almost all spiral and many vestibular neurons. NeuroD and a later expressed gene, Brn3a, play a role in pathfinding to and within sensory epithelia. The molecular nature of this pathfinding property is unknown. Reduction of hair cells in ngn1 null mutations suggests a clonal relationship with primary neurons. This relationship may play some role in specifying the identity of hair cells and the primary neurons that connect with them. Primary neuron neurites growth to sensory epithelia is initially independent of trophic factors released from developing sensory epithelia, but becomes rapidly dependent on those factors. Null mutations of specific neurotrophic factors lose distinct primary neuron populations which undergo rapid embryonic cell death.

  17. Connexin36 identified at morphologically mixed chemical/electrical synapses on trigeminal motoneurons and at primary afferent terminals on spinal cord neurons in adult mouse and rat.

    PubMed

    Bautista, W; McCrea, D A; Nagy, J I

    2014-03-28

    Morphologically mixed chemical/electrical synapses at axon terminals, with the electrical component formed by gap junctions, is common in the CNS of lower vertebrates. In mammalian CNS, evidence for morphologically mixed synapses has been obtained in only a few locations. Here, we used immunofluorescence approaches to examine the localization of the neuronally expressed gap junction forming protein connexin36 (Cx36) in relation to the axon terminal marker vesicular glutamate transporter-1 (vglut1) in the spinal cord and the trigeminal motor nucleus (Mo5) of rat and mouse. In adult rodents, immunolabeling for Cx36 appeared exclusively as Cx36-puncta, and was widely distributed at all rostro-caudal levels in most spinal cord laminae and in the Mo5. A high proportion of Cx36-puncta was co-localized with vglut1, forming morphologically mixed synapses on motoneurons, in intermediate spinal cord lamina, and in regions of medial lamina VII, where vglut1-containing terminals associated with Cx36 converged on neurons adjacent to the central canal. Unilateral transection of lumbar dorsal roots reduced immunolabeling of both vglut1 and Cx36 in intermediate laminae and lamina IX. Further, vglut1-terminals displaying Cx36-puncta were contacted by terminals labeled for glutamic acid decarboxylase65, which is known to be contained in presynaptic terminals on large-diameter primary afferents. Developmentally, mixed synapses begin to emerge in the spinal cord only after the second to third postnatal week and thereafter increase to adult levels. Our findings demonstrate that axon terminals of primary afferent origin form morphologically mixed synapses containing Cx36 in broadly distributed areas of adult rodent spinal cord and Mo5.

  18. Dorsal horn neurons firing at high frequency, but not primary afferents, release opioid peptides that produce μ-opioid receptor internalization in the rat spinal cord

    PubMed Central

    Song, Bingbing; Marvizón, Juan Carlos G.

    2008-01-01

    To determine what neural pathways trigger opioid release in the dorsal horn, we stimulated the dorsal root, the dorsal horn or the dorsolateral funiculus (DLF) in spinal cord slices, while superfusing them with peptidase inhibitors to prevent opioid degradation. Internalization of μ-opioid receptors (MORs) and neurokinin 1 receptors (NK1Rs) was measured to assess opioid and neurokinin release, respectively. Dorsal root stimulation at low, high or mixed frequencies produced abundant NK1R internalization but no MOR internalization, indicating that primary afferents do not release opioids. Moreover, capsaicin and NMDA also failed to produce MOR internalization. In contrast, dorsal horn stimulation elicited MOR internalization that increased with the frequency, being negligible at <10 Hz and maximal at 500 Hz. The internalization was abolished by the MOR antagonist CTAP, in the presence of low Ca2+, and by the Na+ channel blocker lidocaine, confirming that it was caused by opioid release and neuronal firing. DLF stimulation in “oblique” slices (encompassing the DLF and the dorsal horn of T11-L4) produced MOR internalization, but only in areas near the stimulation site. Moreover, cutting oblique slices across the dorsal horn (but not across the DLF) eliminated MOR internalization in areas distal to the cut, indicating that it was produced by signals traveling in the dorsal horn and not via the DLF. These findings demonstrate that some dorsal horn neurons release opioids when they fire at high frequencies, perhaps by integrating signals from the rostral ventromedial medulla, primary afferents and other areas of the spinal cord. PMID:14534251

  19. Development, plasticity and modulation of visceral afferents

    PubMed Central

    Christianson, Julie A.; Bielefeldt, Klaus; Altier, Christophe; Cenac, Nicolas; Davis, Brian M.; Gebhart, Gerald F.; High, Karin W.; Kollarik, Marian; Randich, Alan; Undem, Brad; Vergnolle, Nathalie

    2010-01-01

    Visceral pain is the most common reason for doctor visits in the US. Like somatic pain, virtually all visceral pain sensations begin with the activation of primary sensory neurons innervating the viscera and/or the blood vessels associated with these structures. Visceral afferents also play a central role in tissue homeostasis. Recent studies show that in addition to monitoring the state of the viscera, they perform efferent functions through the release of small molecules (e.g. peptides like CGRP) that can drive inflammation, thereby contributing to the development of visceral pathologies (e.g. diabetes Razavi, R., Chan, Y., Afifiyan, F.N., Liu, X.J., Wan, X., Yantha, J., Tsui, H., Tang, L., Tsai, S., Santamaria, P., Driver, J.P., Serreze, D., Salter, M.W., Dosch, H.M., 2006. TRPV1+ sensory neurons control beta cell stress and islet inflammation in autoimmune diabetes, Cell 127 1123–1135). Visceral afferents are heterogeneous with respect to their anatomy, neurochemistry and function. They are also highly plastic in that their cellular environment continuously influences their response properties. This plasticity makes them susceptible to long-term changes that may contribute significantly to the development of persistent pain states such as those associated with irritable bowel syndrome, pancreatitis, and visceral cancers. This review examines recent insights into visceral afferent anatomy and neurochemistry and how neonatal insults can affect the function of these neurons in the adult. New approaches to the treatment of visceral pain, which focus on primary afferents, will also be discussed. PMID:19150371

  20. Mu Opioid Receptors on Primary Afferent Nav1.8 Neurons Contribute to Opiate-Induced Analgesia: Insight from Conditional Knockout Mice

    PubMed Central

    Karchewski, Laurie; Gardon, Olivier; Matifas, Audrey; Filliol, Dominique; Becker, Jérôme A. J.; Wood, John N.; Kieffer, Brigitte L.; Gaveriaux-Ruff, Claire

    2013-01-01

    Opiates are powerful drugs to treat severe pain, and act via mu opioid receptors distributed throughout the nervous system. Their clinical use is hampered by centrally-mediated adverse effects, including nausea or respiratory depression. Here we used a genetic approach to investigate the potential of peripheral mu opioid receptors as targets for pain treatment. We generated conditional knockout (cKO) mice in which mu opioid receptors are deleted specifically in primary afferent Nav1.8-positive neurons. Mutant animals were compared to controls for acute nociception, inflammatory pain, opiate-induced analgesia and constipation. There was a 76% decrease of mu receptor-positive neurons and a 60% reduction of mu-receptor mRNA in dorsal root ganglia of cKO mice. Mutant mice showed normal responses to heat, mechanical, visceral and chemical stimuli, as well as unchanged morphine antinociception and tolerance to antinociception in models of acute pain. Inflammatory pain developed similarly in cKO and controls mice after Complete Freund’s Adjuvant. In the inflammation model, however, opiate-induced (morphine, fentanyl and loperamide) analgesia was reduced in mutant mice as compared to controls, and abolished at low doses. Morphine-induced constipation remained intact in cKO mice. We therefore genetically demonstrate for the first time that mu opioid receptors partly mediate opiate analgesia at the level of Nav1.8-positive sensory neurons. In our study, this mechanism operates under conditions of inflammatory pain, but not nociception. Previous pharmacology suggests that peripheral opiates may be clinically useful, and our data further demonstrate that Nav1.8 neuron-associated mu opioid receptors are feasible targets to alleviate some forms of persistent pain. PMID:24069332

  1. High frequency stimulation of afferent fibers generates asynchronous firing in the downstream neurons in hippocampus through partial block of axonal conduction.

    PubMed

    Feng, Zhouyan; Wang, Zhaoxiang; Guo, Zheshan; Zhou, Wenjie; Cai, Ziyan; Durand, Dominique M

    2017-04-15

    Deep brain stimulation (DBS) is effective for treating neurological disorders in clinic. However, the therapeutic mechanisms of high-frequency stimulation (HFS) of DBS have not yet been elucidated. Previous studies have suggested that HFS-induced changes in axon conduction could have important contributions to the DBS effects and desiderate further studies. To investigate the effects of prolonged HFS of afferent axons on the firing of downstream neurons, HFS trains of 100 and 200Hz were applied on the Schaffer collaterals of the hippocampal CA1 region in anaesthetized rats. Single unit activity of putative pyramidal cells and interneurons in the downstream region was analyzed during the late periods of prolonged HFS when the axonal conduction was blocked. The results show that the firing rates of both pyramidal cells and interneurons increased rather than decreased during the period of axon block. However, the firing rates were far smaller than the stimulation frequency of HFS. In addition, the firing pattern of pyramidal cells changed from typical bursts during baseline recordings into regular single spikes during HFS periods. Furthermore, the HFS produced asynchronous firing in the downstream neurons in contrast to the synchronous firing induced by single pulses. Presumably, the HFS-induced block of axonal conduction was not complete. During the period of partial block, individual axons could recover intermittently and independently, and drive the downstream neurons to fire in an asynchronous pattern. This axonal mechanism of HFS provides a novel explanation for how DBS could replace an original pattern of neuronal activity by a HFS-modulated asynchronous firing in the target region thereby generating the therapeutic effects of DBS.

  2. Mu opioid receptors on primary afferent nav1.8 neurons contribute to opiate-induced analgesia: insight from conditional knockout mice.

    PubMed

    Weibel, Raphaël; Reiss, David; Karchewski, Laurie; Gardon, Olivier; Matifas, Audrey; Filliol, Dominique; Becker, Jérôme A J; Wood, John N; Kieffer, Brigitte L; Gaveriaux-Ruff, Claire

    2013-01-01

    Opiates are powerful drugs to treat severe pain, and act via mu opioid receptors distributed throughout the nervous system. Their clinical use is hampered by centrally-mediated adverse effects, including nausea or respiratory depression. Here we used a genetic approach to investigate the potential of peripheral mu opioid receptors as targets for pain treatment. We generated conditional knockout (cKO) mice in which mu opioid receptors are deleted specifically in primary afferent Nav1.8-positive neurons. Mutant animals were compared to controls for acute nociception, inflammatory pain, opiate-induced analgesia and constipation. There was a 76% decrease of mu receptor-positive neurons and a 60% reduction of mu-receptor mRNA in dorsal root ganglia of cKO mice. Mutant mice showed normal responses to heat, mechanical, visceral and chemical stimuli, as well as unchanged morphine antinociception and tolerance to antinociception in models of acute pain. Inflammatory pain developed similarly in cKO and controls mice after Complete Freund's Adjuvant. In the inflammation model, however, opiate-induced (morphine, fentanyl and loperamide) analgesia was reduced in mutant mice as compared to controls, and abolished at low doses. Morphine-induced constipation remained intact in cKO mice. We therefore genetically demonstrate for the first time that mu opioid receptors partly mediate opiate analgesia at the level of Nav1.8-positive sensory neurons. In our study, this mechanism operates under conditions of inflammatory pain, but not nociception. Previous pharmacology suggests that peripheral opiates may be clinically useful, and our data further demonstrate that Nav1.8 neuron-associated mu opioid receptors are feasible targets to alleviate some forms of persistent pain.

  3. Origin and central projections of rat dorsal penile nerve: possible direct projection to autonomic and somatic neurons by primary afferents of nonmuscle origin.

    PubMed

    Núñez, R; Gross, G H; Sachs, B D

    1986-05-22

    Cell number, size, and somatotopic arrangement within the spinal ganglia of the cells of origin of the rat dorsal penile nerve (DPN), and their spinal cord projections, were studied by loading the proximal stump of the severed DPN with horseradish peroxidase (HRP). The DPN sensory cells were located entirely in the sixth lumbar (L6) dorsal root ganglia (DRG), in which a mean of 468 +/- 78 cells per side were observed, measuring 26.7 +/- 0.8 microns in their longest axis (range 10-65 microns) and distributed apparently randomly within the ganglia. Within the spinal cord, no retrograde label was found, i.e., no motoneurons were labeled, indicating that in the rat the DPN is formed exclusively of sensory nerve fibers. Although labeled fibers entered the cord only through L6, transganglionically transported HRP was evident in all spinal segments examined, i.e., T13-S2. Labeled fibers projected along the inner edge of the dorsal horn (medial pathway) throughout their extensive craniosacral distribution. However, laminar distribution varied with spinal segment. In the dorsal horn, terminals or preterminal axons were found in the dorsal horn marginal zone (lamina I), the substantia gelatinosa (lamina II), the nucleus proprius (laminae III and IV--the most consistent projection), Clarke's column (lamina VI), and the dorsal gray commissure. In the ventral horn, terminals were found in lamina VII and lamina IX. Label apposed to cell somas and dendrites in lamina VII may represent direct primary afferent projections onto sympathetic autonomic neurons. In lamina IX, labeled terminals delineated the somas and dendrites of cells that appeared to be motoneurons. This is the first description of an apparently monosynaptic contact onto motoneurons by a primary afferent of nonmuscle origin.

  4. Involvement of substance P present in primary afferent neurones in modulation of cutaneous blood flow in the instep of rat hind paw.

    PubMed Central

    Yonehara, N.; Chen, J. Q.; Imai, Y.; Inoki, R.

    1992-01-01

    1. The participation of small-diameter afferent fibres in the microcirculatory haemodynamics of cutaneous tissue was examined by studies on the effects of antidromic stimulation of primary afferent neurones on cutaneous blood flow (CBF) and tachykinin release into the subcutaneous space in the instep of the hind paw of rats. 2. Antidromic stimulation of the sectioned sciatic nerve induced a biphasic flow response, an initial transient decrease followed by an increase, with no alteration in the blood pressure. 3. Neither phase was affected by pretreatment with phentolamine (0.1 mg kg-1, i.a.), propranolol (0.5 mg kg-1, i.a.), atropine (0.5 mg kg-1, i.a.), methysergide (0.5 mg kg-1, i.a.) or mepyramine (10 mg kg-1, i.a.) plus cimetidine (10 mg kg-1, i.a.), but both were significantly inhibited by pretreatment with capsaicin (50 mg kg-1, s.c.). 4. Spantide (1-2 mumol kg-1, i.a.), a substance P (SP) antagonist, reduced the basal CBF, and also inhibited both phases of the biphasic flow response evoked by antidromic stimulation of the sectioned sciatic nerve. 5. Intra-arterial infusion of SP (0.5 mumol kg-1, i.a.) induced a biphasic flow response similar to that elicited by antidromic stimulation of the sectioned sciatic nerve. 6. Antidromic stimulation of the sectioned sciatic nerve caused a marked increase in SP release into the subcutaneous perfusate of the instep of the rat hind paw, but no detectable increase in neurokinin A release.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1382777

  5. DNA methyltransferase DNMT3a contributes to neuropathic pain by repressing Kcna2 in primary afferent neurons

    PubMed Central

    Zhao, Jian-Yuan; Liang, Lingli; Gu, Xiyao; Li, Zhisong; Wu, Shaogen; Sun, Linlin; Atianjoh, Fidelis E.; Feng, Jian; Mo, Kai; Jia, Shushan; Lutz, Brianna Marie; Bekker, Alex; Nestler, Eric J.; Tao, Yuan-Xiang

    2017-01-01

    Nerve injury induces changes in gene transcription in dorsal root ganglion (DRG) neurons, which may contribute to nerve injury-induced neuropathic pain. DNA methylation represses gene expression. Here, we report that peripheral nerve injury increases expression of the DNA methyltransferase DNMT3a in the injured DRG neurons via the activation of the transcription factor octamer transcription factor 1. Blocking this increase prevents nerve injury-induced methylation of the voltage-dependent potassium (Kv) channel subunit Kcna2 promoter region and rescues Kcna2 expression in the injured DRG and attenuates neuropathic pain. Conversely, in the absence of nerve injury, mimicking this increase reduces the Kcna2 promoter activity, diminishes Kcna2 expression, decreases Kv current, increases excitability in DRG neurons and leads to spinal cord central sensitization and neuropathic pain symptoms. These findings suggest that DNMT3a may contribute to neuropathic pain by repressing Kcna2 expression in the DRG. PMID:28270689

  6. Musings on the wanderer: what's new in our understanding of vago-vagal reflexes?: II. Integration of afferent signaling from the viscera by the nodose ganglia.

    PubMed

    Browning, Kirsteen N; Mendelowitz, David

    2003-01-01

    To understand vago-vagal reflexes, one must have an appreciation of the events surrounding the encoding, integration, and central transfer of peripheral sensations by vagal afferent neurons. A large body of work has shown that vagal afferent neurons have nonuniform properties and that distinct subpopulations of neurons exist within the nodose ganglia. These sensory neurons display a considerable degree of plasticity; electrophysiological, pharmacological, and neurochemical properties have all been shown to alter after peripheral tissue injury. The validity of claims of selective recordings from populations of neurons activated by peripheral stimuli may be diminished, however, by the recent demonstration that stimulation of a subpopulation of nodose neurons can enhance the activity of unstimulated neuronal neighbors. To better understand the neurophysiological processes occurring after vagal afferent stimulation, it is essential that the electrophysiological, pharmacological, and neurochemical properties of nodose neurons are correlated with their sensory function or, at the very least, with their specific innervation target.

  7. Response properties of whisker-associated primary afferent neurons following infraorbital nerve transection with microsurgical repair in adult rats

    PubMed Central

    Xiao, Bo; Zanoun, Rami R.; Carvell, George E.; Washington, Kia M.

    2016-01-01

    The rodent whisker/trigeminal system, characterized by high spatial and temporal resolution, provides an experimental model for developing new therapies for improving sensory functions of damaged peripheral nerves. Here, we use controlled whisker stimulation and single-unit recordings of trigeminal ganglion cells to examine in detail the nature and time course of functional recovery of mechanoreceptive afferents following nerve transection with microsurgical repair of the infraorbital nerve (ION) branch of the trigeminal nerve in adult rats. Response measures include rapid vs. slow adaptation, firing rate, interspike intervals, latency, and angular (directional) tuning. Whisker-evoked responses, readily observable by 3 wk post-transection, recover progressively for at least the next 5 wk. All cells in transected animals, as in control cases, responded to deflections of single whiskers only, but topography within the ganglion was clearly disrupted. The time course and extent of recovery of quantitative response measures were receptor dependent. Cells displaying slowly adapting (SA) properties recovered more quickly than rapidly adapting (RA) populations, and for some response measures—notably evoked firing rates—closely approached or attained control levels by 8 wk post-transection. Angular tuning of RA cells was slightly better than control units, whereas SA tuning did not differ from control values. Nerve conduction times and refractory periods, examined separately using electrical stimulation of the ION, were slower than normal in all transected animals and poorly reflected recovery of whisker-evoked response latencies and interspike intervals. Results underscore the need for multiple therapeutic strategies that target different aspects of functional restitution following peripheral nerve injury. PMID:26792886

  8. Vanilloid receptor type 1-immunoreactive nerves in the rat urinary bladder and primary afferent neurones: The effects of age.

    PubMed

    Saleh, H A M

    2006-08-01

    The vanilloid receptor (VR1) is a molecular integrator of various painful stimuli, including capsaicin, acid and high temperature. VR1 protein functions both as a receptor for capsaicin and a transducer of noxious thermal stimuli. In addition, VR1 is well characterised at the terminals of sensory nerves involved in the pain pathway. VR1 is also expressed in a capsaicin-sensitive and peptide-containing sub-population of primary sensory nerves. Indirect immunohistochemistry was used to examine the distribution of nerves immunoreactive (ir) for VR1 in the base of the urinary bladder and in the neurones of the lumbosacral dorsal root ganglia (L1-L2 and L6-S1) of young adult (3 months) and aged (24 months) male rats. Semi-quantitative estimations of nerve densities were assessed and quantitative studies were also used to examine the effects of age on the percentage of VR1-ir dorsal root ganglion neurones. The bladder base in young adults showed dense VR1-ir fibres within the urothelium and in the subepithelium and fibres ranging from sparse to moderate in number in the muscle coat. In comparison to the young animals, the aged rats showed sparse to moderate densities of VR1-ir nerves in the subepithelium and sparse fibres in the muscle layers. In the lumbosacral dorsal root ganglia the percentage of VR1-ir neuronal profiles showed a significant reduction from (mean +/- SEM) 17.8 +/- 2% in the young adult to 12 +/- 1.6 in the aged rats. The present findings suggest that the effects of VR1 on bladder function (nociception and reflex micturition) are influenced by age and the reduction with age of VR1-ir neurones in the dorsal root ganglia could also have important implications for the micturition reflex.

  9. Neurons in hippocampal afferent zones of rat striatum parse routes into multi-pace segments during maze navigation.

    PubMed

    Mulder, Antonius B; Tabuchi, Eiichi; Wiener, Sidney I

    2004-04-01

    Hippocampal 'place' neurons discharge when rats occupy specific regions within an environment. This finding is a cornerstone of the theory of the hippocampus as a cognitive map of space. But for navigation, representations of current position must be implemented by signals concerning where to go next, and how to get there. In recordings in hippocampal output structures associated with the motor system (nucleus accumbens and ventromedial caudate nucleus) in rats solving a plus-maze, neurons fired continuously from the moment the rat left one location until it arrived at the next goal site, or at an intermediate place, such as the maze centre. While other studies have shown discharges during reward approach behaviours, this is the first demonstration of activity corresponding to the parsing of complex routes into sequences of movements between landmarks, similar to the lists of instructions we often employ to communicate directions to follow between points on a map. As these cells fired during a series of several paces or re-orientation movements, perhaps this is homologous to 'chunking'. The temporal overlaps in the activity profiles of the individual neurons provide a possible substrate to successively trigger movements required to arrive at the goal. These hippocampally informed, and in some cases, spatially selective responses support the view of the ventral striatum as an interface between limbic and motor systems, permitting contextual representations to have an impact on fundamental action sequences for goal-directed behaviour.

  10. Local control of information flow in segmental and ascending collaterals of single afferents.

    PubMed

    Lomelí, J; Quevedo, J; Linares, P; Rudomin, P

    1998-10-08

    In the vertebrate spinal cord, the activation of GABA(gamma-amino-butyric acid)-releasing interneurons that synapse with intraspinal terminals of sensory fibres leading into the central nervous system (afferent fibres) produces primary afferent depolarization and presynaptic inhibition. It is not known to what extent these presynaptic mechanisms allow a selective control of information transmitted through specific sets of intraspinal branches of individual afferents. Here we study the local nature of the presynaptic control by measuring primary afferent depolarization simultaneously in two intraspinal collaterals of the same muscle spindle afferent. One of these collaterals ends at the L6-L7 segmental level in the intermediate nucleus, and the other ascends to segment L3 within Clarke's column, the site of origin of spinocerebellar neurons. Our results indicate that there are central mechanisms that are able to affect independently the synaptic effectiveness of segmental and ascending collaterals of individual muscle spindle afferents. Focal control of presynaptic inhibition thus allows the intraspinal branches of afferent fibres to function as a dynamic assembly that can be fractionated to convey information to selected neuronal targets. This may be a mechanism by which different spinal postsynaptic targets that are coupled by sensory input from a common source could be uncoupled.

  11. Non-Linear Neuronal Responses as an Emergent Property of Afferent Networks: A Case Study of the Locust Lobula Giant Movement Detector

    PubMed Central

    Bermúdez i Badia, Sergi; Bernardet, Ulysses; Verschure, Paul F. M. J.

    2010-01-01

    In principle it appears advantageous for single neurons to perform non-linear operations. Indeed it has been reported that some neurons show signatures of such operations in their electrophysiological response. A particular case in point is the Lobula Giant Movement Detector (LGMD) neuron of the locust, which is reported to locally perform a functional multiplication. Given the wide ramifications of this suggestion with respect to our understanding of neuronal computations, it is essential that this interpretation of the LGMD as a local multiplication unit is thoroughly tested. Here we evaluate an alternative model that tests the hypothesis that the non-linear responses of the LGMD neuron emerge from the interactions of many neurons in the opto-motor processing structure of the locust. We show, by exposing our model to standard LGMD stimulation protocols, that the properties of the LGMD that were seen as a hallmark of local non-linear operations can be explained as emerging from the dynamics of the pre-synaptic network. Moreover, we demonstrate that these properties strongly depend on the details of the synaptic projections from the medulla to the LGMD. From these observations we deduce a number of testable predictions. To assess the real-time properties of our model we applied it to a high-speed robot. These robot results show that our model of the locust opto-motor system is able to reliably stabilize the movement trajectory of the robot and can robustly support collision avoidance. In addition, these behavioural experiments suggest that the emergent non-linear responses of the LGMD neuron enhance the system's collision detection acuity. We show how all reported properties of this neuron are consistently reproduced by this alternative model, and how they emerge from the overall opto-motor processing structure of the locust. Hence, our results propose an alternative view on neuronal computation that emphasizes the network properties as opposed to the local

  12. Monosynaptic convergence of chorda tympani and glossopharyngeal afferents onto ascending relay neurons in the nucleus of the solitary tract: A high-resolution confocal and correlative electron microscopy approach

    PubMed Central

    Corson, James A.; Erisir, Alev

    2014-01-01

    While physiological studies suggested convergence of chorda tympani and glossopharyngeal afferent axons onto single neurons of the rostral nucleus of the solitary tract (rNTS), anatomical evidence has been elusive. The current study uses high-magnification confocal microscopy to identify putative synaptic contacts from afferent fibers of the two nerves onto individual projection neurons. Imaged tissue is re-visualized with electron microscopy, confirming that overlapping fluorescent signals in confocal z-stacks accurately identify appositions between labeled terminal and dendrite pairs. Monte Carlo modeling reveals that the probability of overlapping fluorophores is stochastically unrelated to the density of afferent label suggesting that convergent innervation in the rNTS is selective rather than opportunistic. Putative synaptic contacts from each nerve are often compartmentalized onto dendrite segments of convergently innervated neurons. These results have important implications for orosensory processing in the rNTS, and the techniques presented here have applications in investigations of neural microcircuitry with an emphasis on innervation patterning. PMID:23640852

  13. Acid-Sensing Ion Channels Expression, Identity and Role in the Excitability of the Cochlear Afferent Neurons.

    PubMed

    González-Garrido, Antonia; Vega, Rosario; Mercado, Francisco; López, Iván A; Soto, Enrique

    2015-01-01

    Acid-sensing ion channels (ASICs) are activated by an increase in the extracellular proton concentration. There are four genes (ASIC1-4) that encode six subunits, and they are involved in diverse neuronal functions, such as mechanosensation, learning and memory, nociception, and modulation of retinal function. In this study, we characterize the ASIC currents of spiral ganglion neurons (SGNs). These ASIC currents are primarily carried by Na(+), exhibit fast activation and desensitization, display a pH50 of 6.2 and are blocked by amiloride, indicating that these are ASIC currents. The ASIC currents were further characterized using several pharmacological tools. Gadolinium and acetylsalicylic acid reduced these currents, and FMRFamide, zinc (at high concentrations) and N,N,N',N'-tetrakis-(2-piridilmetil)-ethylenediamine increased them, indicating that functional ASICs are composed of the subunits ASIC1, ASIC2, and ASIC3. Neomycin and streptomycin reduced the desensitization rate of the ASIC current in SGNs, indicating that ASICs may contribute to the ototoxic action of aminoglycosides. RT-PCR of the spiral ganglion revealed significant expression of all ASIC subunits. By immunohistochemistry the expression of the ASIC1a, ASIC2a, ASIC2b, and ASIC3 subunits was detected in SGNs. Although only a few SGNs exhibited action potential firing in response to an acidic stimulus, protons in the extracellular solution modulated SGN activity during sinusoidal stimulation. Our results show that protons modulate the excitability of SGNs via ASICs.

  14. Acid-Sensing Ion Channels Expression, Identity and Role in the Excitability of the Cochlear Afferent Neurons

    PubMed Central

    González-Garrido, Antonia; Vega, Rosario; Mercado, Francisco; López, Iván A.; Soto, Enrique

    2015-01-01

    Acid-sensing ion channels (ASICs) are activated by an increase in the extracellular proton concentration. There are four genes (ASIC1-4) that encode six subunits, and they are involved in diverse neuronal functions, such as mechanosensation, learning and memory, nociception, and modulation of retinal function. In this study, we characterize the ASIC currents of spiral ganglion neurons (SGNs). These ASIC currents are primarily carried by Na+, exhibit fast activation and desensitization, display a pH50 of 6.2 and are blocked by amiloride, indicating that these are ASIC currents. The ASIC currents were further characterized using several pharmacological tools. Gadolinium and acetylsalicylic acid reduced these currents, and FMRFamide, zinc (at high concentrations) and N,N,N’,N’–tetrakis-(2-piridilmetil)-ethylenediamine increased them, indicating that functional ASICs are composed of the subunits ASIC1, ASIC2, and ASIC3. Neomycin and streptomycin reduced the desensitization rate of the ASIC current in SGNs, indicating that ASICs may contribute to the ototoxic action of aminoglycosides. RT-PCR of the spiral ganglion revealed significant expression of all ASIC subunits. By immunohistochemistry the expression of the ASIC1a, ASIC2a, ASIC2b, and ASIC3 subunits was detected in SGNs. Although only a few SGNs exhibited action potential firing in response to an acidic stimulus, protons in the extracellular solution modulated SGN activity during sinusoidal stimulation. Our results show that protons modulate the excitability of SGNs via ASICs. PMID:26733809

  15. Pharmacology of airway afferent nerve activity

    PubMed Central

    Undem, Bradley J; Carr, Michael J

    2001-01-01

    Afferent nerves in the airways serve to regulate breathing pattern, cough, and airway autonomic neural tone. Pharmacologic agents that influence afferent nerve activity can be subclassified into compounds that modulate activity by indirect means (e.g. bronchial smooth muscle spasmogens) and those that act directly on the nerves. Directly acting agents affect afferent nerve activity by interacting with various ion channels and receptors within the membrane of the afferent terminals. Whether by direct or indirect means, most compounds that enter the airspace will modify afferent nerve activity, and through this action alter airway physiology. PMID:11686889

  16. Colitis elicits differential changes in the expression levels of receptor tyrosine kinase TrkA and TrkB in colonic afferent neurons: A possible involvement of axonal transport

    PubMed Central

    Qiao, Li-Ya; Grider, John R

    2010-01-01

    The role of nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) in colitis-induced hypersensitivity has been suggested. NGF and BDNF facilitate cellular physiology through binding to receptor tyrosine kinase TrkA and TrkB respectively. The present study by examining the mRNA and/or protein levels of TrkA and TrkB in the distal colon and in colonic primary afferent neurons in the dorsal root ganglia (DRG) during colitis demonstrated that colitis elicited location-specific changes in the mRNA and protein levels of TrkA and TrkB in colonic primary sensory pathways. In colitis both the TrkA and TrkB protein levels were increased in the L1 and S1 DRGs in a time-dependent manner; however, the level of TrkB mRNA but not TrkA mRNA was increased in these DRGs. Further experiments showed that colitis facilitated a retrograde transport of TrkA protein toward and an anterograde transport of TrkA mRNA away from the DRG, which may contribute to the increased TrkA mRNA level in the distal colon during colitis. Colitis also increased the level of NGF mRNA but not BDNF mRNA in the distal colon. Double staining showed that the expression of TrkA but not TrkB was increased in the specifically labeled colonic afferent neurons in the L1 and S1 DRGs during colitis; this increase in TrkA level was attenuated by pretreatment with resiniferatoxin. These results suggested that colitis-induced primary afferent activation involved retrograde transport of TrkA but not TrkB from the distal colon to primary afferent neurons in DRG. PMID:20638179

  17. Structure of the Afferent Terminals in Terminal Ganglion of a Cricket and Persistent Homology

    PubMed Central

    Brown, Jacob; Gedeon, Tomáš

    2012-01-01

    We use topological data analysis to investigate the three dimensional spatial structure of the locus of afferent neuron terminals in crickets Acheta domesticus. Each afferent neuron innervates a filiform hair positioned on a cercus: a protruding appendage at the rear of the animal. The hairs transduce air motion to the neuron signal that is used by a cricket to respond to the environment. We stratify the hairs (and the corresponding afferent terminals) into classes depending on hair length, along with position. Our analysis uncovers significant structure in the relative position of these terminal classes and suggests the functional relevance of this structure. Our method is very robust to the presence of significant experimental and developmental noise. It can be used to analyze a wide range of other point cloud data sets. PMID:22649516

  18. Multiple clusters of release sites formed by individual thalamic afferents onto cortical interneurons ensure reliable transmission.

    PubMed

    Bagnall, Martha W; Hull, Court; Bushong, Eric A; Ellisman, Mark H; Scanziani, Massimo

    2011-07-14

    Thalamic afferents supply the cortex with sensory information by contacting both excitatory neurons and inhibitory interneurons. Interestingly, thalamic contacts with interneurons constitute such a powerful synapse that even one afferent can fire interneurons, thereby driving feedforward inhibition. However, the spatial representation of this potent synapse on interneuron dendrites is poorly understood. Using Ca imaging and electron microscopy we show that an individual thalamic afferent forms multiple contacts with the interneuronal proximal dendritic arbor, preferentially near branch points. More contacts are correlated with larger amplitude synaptic responses. Each contact, consisting of a single bouton, can release up to seven vesicles simultaneously, resulting in graded and reliable Ca transients. Computational modeling indicates that the release of multiple vesicles at each contact minimally reduces the efficiency of the thalamic afferent in exciting the interneuron. This strategy preserves the spatial representation of thalamocortical inputs across the dendritic arbor over a wide range of release conditions.

  19. Optogenetic stimulation of GABA neurons can decrease local neuronal activity while increasing cortical blood flow

    PubMed Central

    Anenberg, Eitan; Chan, Allen W; Xie, Yicheng; LeDue, Jeffrey M; Murphy, Timothy H

    2015-01-01

    We investigated the link between direct activation of inhibitory neurons, local neuronal activity, and hemodynamics. Direct optogenetic cortical stimulation in the sensorimotor cortex of transgenic mice expressing Channelrhodopsin-2 in GABAergic neurons (VGAT-ChR2) greatly attenuated spontaneous cortical spikes, but was sufficient to increase blood flow as measured with laser speckle contrast imaging. To determine whether the observed optogenetically evoked gamma aminobutyric acid (GABA)-neuron hemodynamic responses were dependent on ionotropic glutamatergic or GABAergic synaptic mechanisms, we paired optogenetic stimulation with application of antagonists to the cortex. Incubation of glutamatergic antagonists directly on the cortex (NBQX and MK-801) blocked cortical sensory evoked responses (as measured with electroencephalography and intrinsic optical signal imaging), but did not significantly attenuate optogenetically evoked hemodynamic responses. Significant light-evoked hemodynamic responses were still present after the addition of picrotoxin (GABA-A receptor antagonist) in the presence of the glutamatergic synaptic blockade. This activation of cortical inhibitory interneurons can mediate large changes in blood flow in a manner that is by and large not dependent on ionotropic glutamatergic or GABAergic synaptic transmission. This supports the hypothesis that activation of inhibitory neurons can increase local cerebral blood flow in a manner that is not entirely dependent on levels of net ongoing neuronal activity. PMID:26082013

  20. Up-regulation of brain-derived neurotrophic factor is regulated by extracellular signal-regulated protein kinase 5 and by nerve growth factor retrograde signaling in colonic afferent neurons in colitis

    PubMed Central

    Yu, Sharon J; Grider, John R; Gulick, Melisa A; Xia, Chun-mei; Shen, Shanwei; Qiao, Li-Ya

    2012-01-01

    Brain-derived neurotrophic factor (BDNF) plays an essential role in sensory neuronal activation in response to visceral inflammation. Here we report that BDNF up-regulation in the primary afferent neurons in the dorsal root ganglia (DRG) in a rat model of colitis is mediated by the activation of endogenous extracellular signal-regulated protein kinases (ERK) 5 and by nerve growth factor (NGF) retrograde signaling. At 7 days of colitis, the expression level of BDNF is increased in conventional neuronal tracing dye Fast Blue labeled primary afferent neurons project to the distal colon. In these neurons, the phosphorylation (activation) level of ERK5 is also increased. In contrast, the level of phospho-ERK1/2 is not changed in the DRG during colitis. Prevention of the ERK5 activation in vivo with an intrathecal application of the MEK inhibitor PD98059 significantly attenuates the colitis-induced increases in BDNF expression in the DRG. Further studies show that BDNF up-regulation in the DRG is triggered by NGF retrograde signaling which also involves activation of the MEK/ERK pathways. Application of exogenous NGF exclusively to the compartment containing DRG nerve terminals in an ex vivo ganglia-nerve preparation has markedly increased the BDNF expression level in the DRG neuronal cell body that is placed in a different compartment; this BDNF elevation is attenuated by U0126, PD98059 and a specific ERK5 inhibitor BIX02188. These results demonstrate the mechanisms and pathways by which BDNF expression is elevated in primary sensory neurons following visceral inflammation that is mediated by increased activity of ERK5 and is likely to be triggered by the elevated NGF level in the inflamed viscera. PMID:22921460

  1. Retrograde and transganglionic transport of horseradish peroxidase-conjugated cholera toxin B subunit, wheatgerm agglutinin and isolectin B4 from Griffonia simplicifolia I in primary afferent neurons innervating the rat urinary bladder.

    PubMed

    Wang, H F; Shortland, P; Park, M J; Grant, G

    1998-11-01

    In the present study, we investigated and compared the ability of the cholera toxin B subunit, wheat germ agglutinin and isolectin B4 from Griffonia simplicifolia I conjugated to horseradish peroxidase, to retrogradely and transganglionically label visceral primary afferents after unilateral injections into the rat urinary bladder wall. Horseradish peroxidase histochemical or lectin-immunofluorescence histochemical labelling of bladder afferents was seen in the L6-S1 spinal cord segments and in the T13-L2 and L6-S1 dorsal root ganglia. In the lumbosacral spinal cord, the most intense and extensive labelling of bladder afferents was seen when cholera toxin B subunit-horseradish peroxidase was injected. Cholera toxin B subunit-horseradish peroxidase-labelled fibres were found in Lissauer's tract, its lateral and medial collateral projections, and laminae I and IV-VI of the spinal gray matter. Labelled fibres were numerous in the lateral collateral projection and extended into the spinal parasympathetic nucleus. Labelling from both the lateral and medial projections extended into the dorsal grey commissural region. Wheat germ agglutinin-horseradish peroxidase labelling produced a similar pattern but was not as dense and extensive as that of cholera toxin B subunit-horseradish peroxidase. The isolectin B4 from Griffonia simplicifolia I-horseradish peroxidase-labelled fibres, on the other hand, were fewer and only observed in the lateral collateral projection and occasionally in lamina I. Cell profile counts showed that a larger number of dorsal root ganglion cells were labelled with cholera toxin B subunit-horseradish peroxidase than with wheat germ agglutinin- or isolectin B4-horseradish peroxidase. In the L6-S1 dorsal root ganglia, the majority (81%) of the cholera toxin B subunit-, and almost all of the wheat germ agglutinin- and isolectin B4-immunoreactive cells were RT97-negative (an anti-neurofilament antibody that labels dorsal root ganglion neurons with

  2. Neck muscle afferents influence oromotor and cardiorespiratory brainstem neural circuits.

    PubMed

    Edwards, I J; Lall, V K; Paton, J F; Yanagawa, Y; Szabo, G; Deuchars, S A; Deuchars, J

    2015-01-01

    Sensory information arising from the upper neck is important in the reflex control of posture and eye position. It has also been linked to the autonomic control of the cardiovascular and respiratory systems. Whiplash associated disorders (WAD) and cervical dystonia, which involve disturbance to the neck region, can often present with abnormalities to the oromotor, respiratory and cardiovascular systems. We investigated the potential neural pathways underlying such symptoms. Simulating neck afferent activity by electrical stimulation of the second cervical nerve in a working heart brainstem preparation (WHBP) altered the pattern of central respiratory drive and increased perfusion pressure. Tracing central targets of these sensory afferents revealed projections to the intermedius nucleus of the medulla (InM). These anterogradely labelled afferents co-localised with parvalbumin and vesicular glutamate transporter 1 indicating that they are proprioceptive. Anterograde tracing from the InM identified projections to brain regions involved in respiratory, cardiovascular, postural and oro-facial behaviours--the neighbouring hypoglossal nucleus, facial and motor trigeminal nuclei, parabrachial nuclei, rostral and caudal ventrolateral medulla and nucleus ambiguus. In brain slices, electrical stimulation of afferent fibre tracts lateral to the cuneate nucleus monosynaptically excited InM neurones. Direct stimulation of the InM in the WHBP mimicked the response of second cervical nerve stimulation. These results provide evidence of pathways linking upper cervical sensory afferents with CNS areas involved in autonomic and oromotor control, via the InM. Disruption of these neuronal pathways could, therefore, explain the dysphagic and cardiorespiratory abnormalities which may accompany cervical dystonia and WAD.

  3. Direct synaptic connections between superior colliculus afferents and thalamo-insular projection neurons in the feline suprageniculate nucleus: a double-labeling study with WGA-HRP and kainic acid.

    PubMed

    Hoshino, Kaeko; Horie, Masao; Nagy, Attila; Berényi, Antal; Benedek, György; Norita, Masao

    2010-01-01

    The suprageniculate nucleus (Sg) of the feline thalamus, which subserves largely unimodal sensory and orientation behavior, receives input from the deep layers of the superior colliculus (SC), and projects to the suprasylvian cortical areas, such as the anterior ectosylvian visual area and the insular visual area (IVA), which contain visually responsive neurons. Through a double tract-tracing procedure involving the injection of wheat germ agglutinin conjugated with horseradish peroxidase (WGA-HRP) into the IVA and the injection of kainic acid into the SC, this study sought to determine the nature of the synaptic relationship between the SC afferents and the thalamo-cortical projection neurons. WGA-HRP injections labeled numerous neurons in the Sg, while kainic acid injections destroyed many tectothalamic terminals in the Sg. The distributions of the WGA-HRP-labeled neurons and the degenerated axon terminals overlapped in the dorsal part of the Sg. Electron microscopic observations demonstrated that the degenerated axon terminals made synaptic contacts with the dendrites of the WGA-HRP-labeled neurons in this overlapping region of the Sg. These results provide the first anatomical evidence that the Sg may play a role in the key relay of visual information from the SC to the IVA, within an identified extrageniculo-cortical pathway.

  4. Modulation of jaw muscle spindle afferent activity following intramuscular injections with hypertonic saline.

    PubMed

    Ro, J Y; Capra, N F

    2001-05-01

    Transient noxious chemical stimulation of small diameter muscle afferents modulates jaw movement-related responses of caudal brainstem neurons. While it is likely that the effect is mediated from the spindle afferents in the mesencephalic nucleus (Vmes) via the caudally projecting Probst's tract, the mechanisms of pain induced modulations of jaw muscle spindle afferents is not known. In the present study, we tested the hypothesis that jaw muscle nociceptors gain access to muscle spindle afferents in the same muscle via central mechanisms and alter their sensitivity. Thirty-five neurons recorded from the Vmes were characterized as muscle spindle afferents based on their responses to passive jaw movements, muscle palpation, and electrical stimulation of the masseter nerve. Each cell was tested by injecting a small volume (250 microl) of either 5% hypertonic and/or isotonic saline into the receptor-bearing muscle. Twenty-nine units were tested with 5% hypertonic saline, of which 79% (23/29) showed significant modulation of mean firing rates (MFRs) during one or more phases of ramp-and-hold movements. Among the muscle spindle primary-like units (n = 12), MFRs of 4 units were facilitated, five reduced, two showed mixed responses and one unchanged. In secondary-like units (n = 17), MFRs of 9 were facilitated, three reduced and five unchanged. Thirteen units were tested with isotonic saline, of which 77% showed no significant changes of MFRs. Further analysis revealed that the hypertonic saline not only affected the overall output of muscle spindle afferents, but also increased the variability of firing and altered the relationship between afferent signal and muscle length. These results demonstrated that activation of muscle nociceptors significantly affects proprioceptive properties of jaw muscle spindles via central neural mechanisms. The changes can have deleterious effects on oral motor function as well as kinesthetic sensibility.

  5. A quantitative study of the central projection patterns of unmyelinated ventral root afferents in the cat.

    PubMed Central

    Häbler, H J; Jänig, W; Koltzenburg, M; McMahon, S B

    1990-01-01

    1. The ventral roots of the spinal cord contain a large number of unmyelinated primary afferent neurones. There is some controversy, however, about the function of these fibres and the route of their central projection. Here we have used electrophysiological techniques to quantify the central projection patterns of these neurones in the segment S2 of adult chloralose-anaesthesized cats. 2. A total of 1185 single unmyelinated units were recorded in small filaments isolated from intact and de-efferented ventral roots or intact dorsal roots of the segment S2 in nineteen cats. The projection patterns of these neurones were tested using supramaximal electrical stimulation of the pelvic and pudendal nerve (the main tributaries of the spinal nerve of this segment) and of the segmental companion root (dorsal or ventral as appropriate). 3. The principal finding of this study is that 85% of unmyelinated afferent axons in the ventral root are direct and exclusive projections. They constitute a separate class of afferents which is only capable of transmitting information from the periphery via the ventral roots. However, the proportion of these fibres that enter the central nervous system is unknown and it seems likely that some of them peter out as they approach the spinal cord and end blindly. The functional role of such afferents remains obscure. 4. For the remaining 15% of unmyelinated ventral root afferents, a projection into the segmental dorsal root was found. The majority of those fibres (about two-thirds) are primary afferent neurones innervating the pia mater. Some of these units had a small spot-like receptive field and responded to mechanical stimuli such as pressure and stretch of the root. They did not have axon projections in a peripheral nerve. 5. A few (5%) unmyelinated ventral root fibres are collateral branches of normal primary afferents projecting through the dorsal root. These trifurcating neurones are a small population which make up only some 0.5% of

  6. Central distribution of nociceptive intradental afferent nerve fibers in the rat.

    PubMed

    Bombardi, C; Chiocchetti, R; Brunetti, O; Grandis, A; Lucchi, M L; Bortolami, R

    2006-08-01

    The central distribution of intradental afferent nerve fibers was investigated by combining electron microscopic observations with a selective method for inducing degeneration of the A delta- and C-type afferent fibers. Degenerating terminals were found on the proprioceptive mesencephalic trigeminal neurons and on dendrites in the neuropil of the trigeminal motor nucleus after application of capsaicin to the rat's lower incisor tooth pulp. The results give anatomical evidence of new sites of central projection of intradental A delta- and C-type fibers whereby the nociceptive information from the tooth pulp can affect jaw muscle activity.

  7. Fusimotor reflexes in relaxed forearm muscles produced by cutaneous afferents from the human hand.

    PubMed Central

    Gandevia, S C; Wilson, L; Cordo, P J; Burke, D

    1994-01-01

    1. This study was designed to determine whether cutaneous receptors in the hand exert reflex effects on fusimotor neurones innervating relaxed muscles. Recordings were made from fifty-four muscle spindle afferents in the radial nerve while the arm was held relaxed in a supporting frame. Cutaneous afferents were activated by trains of stimuli at non-noxious levels to the superficial radial nerve or to the palmar surface of the fingers. 2. For the population of muscle spindle afferents, the mean discharge rate was 7.1 +/- 6.4 Hz (range 0-24 Hz). Thirty-three per cent had no background discharge, and this occurred significantly more often in finger extensors than wrist extensors. 3. Trains of cutaneous stimuli produced no change in the discharge rates of the majority of spindle endings irrespective of whether the spindle afferent had a background discharge or was given one by muscle stretch. However, with two of forty afferents, the stimuli produced an increase in discharge at latencies of 135 and 155 ms. 4. With a further fourteen muscle spindle endings, the dynamic responses to stretch were measured 100-400 ms after the trains of cutaneous stimuli. For four spindle afferents there was a statistically significant change in the dynamic response to stretch occurring at conditioned-stretch intervals of 100-200 ms. For two afferents the dynamic response decreased by 17 and 26% and for two others it increased by about 24 and 37%. 5. While these results support the view that the level of background fusimotor drive is low in the relaxed state, they suggest that there is some dynamic fusimotor drive to completely relaxed muscles operating on the human hand, and that this drive can be altered reflexly by cutaneous afferent inputs from the hand. Images Figure 4 PMID:7837105

  8. Resolution of Nested Neuronal Representations Can Be Exponential in the Number of Neurons

    NASA Astrophysics Data System (ADS)

    Mathis, Alexander; Herz, Andreas V. M.; Stemmler, Martin B.

    2012-07-01

    Collective computation is typically polynomial in the number of computational elements, such as transistors or neurons, whether one considers the storage capacity of a memory device or the number of floating-point operations per second of a CPU. However, we show here that the capacity of a computational network to resolve real-valued signals of arbitrary dimensions can be exponential in N, even if the individual elements are noisy and unreliable. Nested, modular codes that achieve such high resolutions mirror the properties of grid cells in vertebrates, which underlie spatial navigation.

  9. Neuronal health - can culinary and medicinal mushrooms help?

    PubMed

    Sabaratnam, Vikineswary; Kah-Hui, Wong; Naidu, Murali; Rosie David, Pamela

    2013-01-01

    Hericium erinaceus a culinary and medicinal mushroom is a well established candidate for brain and nerve health. Ganoderma lucidum, Grifola frondosa and Sarcodon scabrosus have been reported to have neurite outgrowth and neuronal health benefits. The number of mushrooms, however, studied for neurohealth activity are few compared to the more than 2 000 species of edible and / or medicinal mushrooms identified. In the on-going search for other potent culinary and / or medicinal mushrooms, indigenous mushrooms used in traditional medicines such as Lignosus rhinocerotis and Ganoderma neo-japonicum are also being investigated. Further, the edible mushroom, Pleurotus giganteus can be a potential candidate, too. Can these edible and medicinal mushrooms be tapped to tackle the health concerns of the aging population which is projected to be more than 80-90 million of people age 65 and above in 2050 who may be affected by age-related neurodegenerative disorders. Scientific validation is needed if these mushrooms are to be considered and this can be achieved by understanding the molecular and biochemical mechanisms involved in the stimulation of neurite outgrowth. Though it is difficult to extrapolate the in vitro studies to what may happen in the human brain, studies have shown that there can be improvement in cognitive abilities of the aged if the mushroom is incorporated in their daily diets.

  10. Neuronal Health – Can Culinary and Medicinal Mushrooms Help?

    PubMed Central

    Sabaratnam, Vikineswary; Kah-Hui, Wong; Naidu, Murali; Rosie David, Pamela

    2013-01-01

    Hericium erinaceus a culinary and medicinal mushroom is a well established candidate for brain and nerve health. Ganoderma lucidum, Grifola frondosa and Sarcodon scabrosus have been reported to have neurite outgrowth and neuronal health benefits. The number of mushrooms, however, studied for neurohealth activity are few compared to the more than 2 000 species of edible and / or medicinal mushrooms identified. In the on-going search for other potent culinary and / or medicinal mushrooms, indigenous mushrooms used in traditional medicines such as Lignosus rhinocerotis and Ganoderma neo-japonicum are also being investigated. Further, the edible mushroom, Pleurotus giganteus can be a potential candidate, too. Can these edible and medicinal mushrooms be tapped to tackle the health concerns of the aging population which is projected to be more than 80-90 million of people age 65 and above in 2050 who may be affected by age-related neurodegenerative disorders. Scientific validation is needed if these mushrooms are to be considered and this can be achieved by understanding the molecular and biochemical mechanisms involved in the stimulation of neurite outgrowth. Though it is difficult to extrapolate the in vitro studies to what may happen in the human brain, studies have shown that there can be improvement in cognitive abilities of the aged if the mushroom is incorporated in their daily diets. PMID:24716157

  11. Integration of sensory quanta in cuneate nucleus neurons in vivo.

    PubMed

    Bengtsson, Fredrik; Brasselet, Romain; Johansson, Roland S; Arleo, Angelo; Jörntell, Henrik

    2013-01-01

    Discriminative touch relies on afferent information carried to the central nervous system by action potentials (spikes) in ensembles of primary afferents bundled in peripheral nerves. These sensory quanta are first processed by the cuneate nucleus before the afferent information is transmitted to brain networks serving specific perceptual and sensorimotor functions. Here we report data on the integration of primary afferent synaptic inputs obtained with in vivo whole cell patch clamp recordings from the neurons of this nucleus. We find that the synaptic integration in individual cuneate neurons is dominated by 4-8 primary afferent inputs with large synaptic weights. In a simulation we show that the arrangement with a low number of primary afferent inputs can maximize transfer over the cuneate nucleus of information encoded in the spatiotemporal patterns of spikes generated when a human fingertip contact objects. Hence, the observed distributions of synaptic weights support high fidelity transfer of signals from ensembles of tactile afferents. Various anatomical estimates suggest that a cuneate neuron may receive hundreds of primary afferents rather than 4-8. Therefore, we discuss the possibility that adaptation of synaptic weight distribution, possibly involving silent synapses, may function to maximize information transfer in somatosensory pathways.

  12. AgRP Neurons Can Increase Food Intake during Conditions of Appetite Suppression and Inhibit Anorexigenic Parabrachial Neurons.

    PubMed

    Essner, Rachel A; Smith, Alison G; Jamnik, Adam A; Ryba, Anna R; Trutner, Zoe D; Carter, Matthew E

    2017-09-06

    To maintain energy homeostasis, orexigenic (appetite-inducing) and anorexigenic (appetite suppressing) brain systems functionally interact to regulate food intake. Within the hypothalamus, neurons that express agouti-related protein (AgRP) sense orexigenic factors and orchestrate an increase in food-seeking behavior. In contrast, calcitonin gene-related peptide (CGRP)-expressing neurons in the parabrachial nucleus (PBN) suppress feeding. PBN CGRP neurons become active in response to anorexigenic hormones released following a meal, including amylin, secreted by the pancreas, and cholecystokinin (CCK), secreted by the small intestine. Additionally, exogenous compounds, such as lithium chloride (LiCl), a salt that creates gastric discomfort, and lipopolysaccharide (LPS), a bacterial cell wall component that induces inflammation, exert appetite-suppressing effects and activate PBN CGRP neurons. The effects of increasing the homeostatic drive to eat on feeding behavior during appetite suppressing conditions are unknown. Here, we show in mice that food deprivation or optogenetic activation of AgRP neurons induces feeding to overcome the appetite suppressing effects of amylin, CCK, and LiCl, but not LPS. AgRP neuron photostimulation can also increase feeding during chemogenetic-mediated stimulation of PBN CGRP neurons. AgRP neuron stimulation reduces Fos expression in PBN CGRP neurons across all conditions. Finally, stimulation of projections from AgRP neurons to the PBN increases feeding following administration of amylin, CCK, and LiCl, but not LPS. These results demonstrate that AgRP neurons are sufficient to increase feeding during noninflammatory-based appetite suppression and to decrease activity in anorexigenic PBN CGRP neurons, thereby increasing food intake during homeostatic need.SIGNIFICANCE STATEMENT The motivation to eat depends on the relative balance of activity in distinct brain regions that induce or suppress appetite. An abnormal amount of activity in

  13. Characterization of sacral interneurons that mediate activation of locomotor pattern generators by sacrocaudal afferent input.

    PubMed

    Etlin, Alex; Finkel, Eran; Mor, Yoav; O'Donovan, Michael J; Anglister, Lili; Lev-Tov, Aharon

    2013-01-09

    Identification of the neural pathways involved in retraining the spinal central pattern generators (CPGs) by afferent input in the absence of descending supraspinal control is feasible in isolated rodent spinal cords where the locomotor CPGs are potently activated by sacrocaudal afferent (SCA) input. Here we study the involvement of sacral neurons projecting rostrally through the ventral funiculi (VF) in activation of the CPGs by sensory stimulation. Fluorescent labeling and immunostaining showed that VF neurons are innervated by primary afferents immunoreactive for vesicular glutamate transporters 1 and 2 and by intraspinal neurons. Calcium imaging revealed that 55% of the VF neurons were activated by SCA stimulation. The activity of VF neurons and the sacral and lumbar CPGs was abolished when non-NMDA receptors in the sacral segments were blocked by the antagonist CNQX. When sacral NMDA receptors were blocked by APV, the sacral CPGs were suppressed, VF neurons with nonrhythmic activity were recruited and a moderate-drive locomotor rhythm developed during SCA stimulation. In contrast, when the sacral CPGs were activated by SCA stimulation, rhythmic and nonrhythmic VF neurons were recruited and the locomotor rhythm was most powerful. The activity of 73 and 27% of the rhythmic VF neurons was in-phase with the ipsilateral and contralateral motor output, respectively. Collectively, our studies indicate that sacral VF neurons serve as a major link between SCA and the hindlimb CPGs and that the ability of SCA to induce stepping can be enhanced by the sacral CPGs. The nature of the ascending drive to lumbar CPGs, the identity of subpopulations of VF neurons, and their potential role in activating the locomotor rhythm are discussed.

  14. Beta-escin diminishes voltage-gated calcium current rundown in perforated patch-clamp recordings from rat primary afferent neurons.

    PubMed

    Sarantopoulos, Constantine; McCallum, J Bruce; Kwok, Wai-Meng; Hogan, Quinn

    2004-10-15

    Perforated patch recordings of neuronal calcium currents (I(Ca)) with amphotericin B or nystatin reduce dialysis of intracellular constituents and current rundown, but can be difficult and frequently unsuccessful. We investigated the saponin beta-escin as a putative ionophore for perforated patch I(Ca) recordings in acutely dissociated, rat dorsal root ganglion neurons. I(Ca) was recorded in time-course studies after including either beta-escin (50 microM), or amphotericin B (240 microg/ml) as perforating ionophores in the internal pipette solution, in comparison to standard ruptured-patch technique, using suction. Perforated patches were allowed to take place spontaneously. The percentage loss of I(Ca) per min (within the first 20 min) was significantly less after beta-escin (0.0518%) (n = 18), versus either amphotericin (1.82%) (n = 12) or standard patch (4.52%) (n = 7), (P < 0.001). The slope of the rundown after linear fit was also less after beta-escin (P < 0.001). Minimal "steady-state" access resistance (R(a)) of 6.6 +/- 1.6 MOmega was achieved within 7.1 +/- 9.3 min following perforation with beta-escin, 7.9 +/- 3.5 MOmega within 44 =/- 14 min after amphotericin B, and 6.8 +/- 1.9 MOmega with standard patch (P < 0.05 for R(a), and P < 0.01 for permeabilization time, respectively). Success rates were 59% with beta-escin versus 27% with amphotericin. Leak >10% of peak I(Ca) was present in 25% of cells after beta-escin versus 20% after amphotericin, and 12% after standard technique. Perforated patches using beta-escin were stable for 15-60 min. We conclude that beta-escin may be used as an alternative ionophore for perforated patch-clamp studies in neurons, and results in minimal rundown that can facilitate long-term recordings of I(Ca). Limited rundown may be due to better preservation of cytosolic ATP content.

  15. Cerebellar and afferent ataxias.

    PubMed

    Pandolfo, Massimo; Manto, Mario

    2013-10-01

    Ataxia is the predominant manifestation of many acquired and inherited neurologic disorders affecting the cerebellum, its connections, and the afferent proprioceptive pathways. This article reviews the phenomenology and etiologies of cerebellar and afferent ataxias and provides indications for a rational approach to diagnosis and management. The pathophysiology of ataxia is being progressively understood and linked to the functional organization of the cerebellum. The impact of cerebellar diseases on different neurologic functions has been better defined and shown not to be limited to loss of motor coordination. The role of autoimmunity is increasingly recognized as a cause of sporadic cases of ataxia. Large collaborative studies of long duration are providing crucial information on the clinical spectrum and natural history of both sporadic ataxias (such as the cerebellar form of multiple system atrophy) and inherited ataxias. New dominant and recessive ataxia genes have been identified. On the therapeutic front, progress mostly concerns the development of treatments for Friedreich ataxia. Ataxia is the clinical manifestation of a wide range of disorders. In addition to accurate clinical assessment, MRI plays a major role in the diagnostic workup, allowing us to distinguish degenerative conditions from those due to other types of structural damage to the cerebellar or proprioceptive systems. Diagnostic algorithms based on clinical features, imaging, and neurophysiologic and biochemical parameters can be used to guide genetic testing for hereditary ataxias, the diagnosis of which is likely to be greatly improved by the introduction of new-generation DNA-sequencing approaches. Some rare forms of ataxia can be treated, so their diagnosis should not be missed. Proven symptomatic treatments for ataxia are still lacking, but intensive physical therapy appears to be helpful.

  16. Abnormal Development of Glutamatergic Synapses Afferent to Dopaminergic Neurons of the Pink1−/− Mouse Model of Parkinson’s Disease

    PubMed Central

    Pearlstein, Edouard; Michel, François J.; Save, Laurène; Ferrari, Diana C.; Hammond, Constance

    2016-01-01

    In a preceding study, we showed that in adult pink1−/− mice, a monogenic animal model of Parkinson’s disease (PD), striatal neurons display aberrant electrical activities that precede the onset of overt clinical manifestations. Here, we tested the hypothesis that the maturation of dopaminergic (DA) neurons of the pink1−/− substantia nigra compacta (SNc) follows, from early stages on, a different developmental trajectory from age-matched wild type (wt) SNc DA neurons. We used immature (postnatal days P2–P10) and young adult (P30–P90) midbrain slices of pink1−/− mice expressing the green fluorescent protein in tyrosine hydroxylase (TH)-positive neurons. We report that the developmental sequence of N-Methyl-D-aspartic acid (NMDA) spontaneous excitatory postsynaptic currents (sEPSCs) is altered in pink1−/− SNc DA neurons, starting from shortly after birth. They lack the transient episode of high NMDA receptor-mediated neuronal activity characteristic of the immature stage of wt SNc DA neurons. The maturation of the membrane resistance of pink1−/− SNc DA neurons is also altered. Collectively, these observations suggest that electrical manifestations occurring shortly after birth in SNc DA neurons might lead to dysfunction in dopamine release and constitute an early pathogenic mechanism of PD. PMID:27445695

  17. Human and Murine Tissue-Engineered Colon Exhibit Diverse Neuronal Subtypes and Can Be Populated by Enteric Nervous System Progenitor Cells When Donor Colon Is Aganglionic.

    PubMed

    Wieck, Minna M; El-Nachef, Wael N; Hou, Xiaogang; Spurrier, Ryan G; Holoyda, Kathleen A; Schall, Kathy A; Mojica, Salvador Garcia; Collins, Malie K; Trecartin, Andrew; Cheng, Zhi; Frykman, Philip K; Grikscheit, Tracy C

    2016-01-01

    Tissue-engineered colon (TEC) might potentially replace absent or injured large intestine, but the enteric nervous system (ENS), a key component, has not been investigated. In various enteric neuropathic diseases in which the TEC is derived from aganglionic donor colon, the resulting construct might also be aganglionic, limiting tissue engineering applications in conditions such as Hirschsprung disease (HD). We hypothesized that TEC might contain a diverse population of enteric neuronal subtypes, and that aganglionic TEC can be populated by neurons and glia when supplemented with ENS progenitor cells in the form of neurospheres. Human and murine organoid units (OU) and multicellular clusters containing epithelium and mesenchyme were isolated from both mouse and human donor tissues, including from normally innervated and aganglionic colon. The OU were seeded onto a biodegradable scaffold and implanted within a host mouse, resulting in the growth of TEC. Aganglionic murine and human OU were supplemented with cultured neurospheres to populate the absent ENS not provided by the OU to rescue the HD phenotype. TEC demonstrated abundant smooth muscle and clusters of neurons and glia beneath the epithelium and deeper within the mesenchyme. Motor and afferent neuronal subtypes were identified in TEC. Aganglionic OU formed TEC with absent neural elements, but neurons and glia were abundant when aganglionic OU were supplemented with ENS progenitor cells. Murine and human TEC contain key components of the ENS that were not previously identified, including glia, neurons, and fundamental neuronal subtypes. TEC derived from aganglionic colon can be populated with neurons and glia when supplemented with neurospheres. Combining tissue engineering and cellular replacement therapies represents a new strategy for treating enteric neuropathies, particularly HD.

  18. Human and Murine Tissue-Engineered Colon Exhibit Diverse Neuronal Subtypes and Can Be Populated by Enteric Nervous System Progenitor Cells When Donor Colon Is Aganglionic

    PubMed Central

    Wieck, Minna M.; El-Nachef, Wael N.; Hou, Xiaogang; Spurrier, Ryan G.; Holoyda, Kathleen A.; Schall, Kathy A.; Mojica, Salvador Garcia; Collins, Malie K.; Trecartin, Andrew; Cheng, Zhi; Frykman, Philip K.

    2016-01-01

    Purpose: Tissue-engineered colon (TEC) might potentially replace absent or injured large intestine, but the enteric nervous system (ENS), a key component, has not been investigated. In various enteric neuropathic diseases in which the TEC is derived from aganglionic donor colon, the resulting construct might also be aganglionic, limiting tissue engineering applications in conditions such as Hirschsprung disease (HD). We hypothesized that TEC might contain a diverse population of enteric neuronal subtypes, and that aganglionic TEC can be populated by neurons and glia when supplemented with ENS progenitor cells in the form of neurospheres. Materials and Methods: Human and murine organoid units (OU) and multicellular clusters containing epithelium and mesenchyme were isolated from both mouse and human donor tissues, including from normally innervated and aganglionic colon. The OU were seeded onto a biodegradable scaffold and implanted within a host mouse, resulting in the growth of TEC. Aganglionic murine and human OU were supplemented with cultured neurospheres to populate the absent ENS not provided by the OU to rescue the HD phenotype. Results: TEC demonstrated abundant smooth muscle and clusters of neurons and glia beneath the epithelium and deeper within the mesenchyme. Motor and afferent neuronal subtypes were identified in TEC. Aganglionic OU formed TEC with absent neural elements, but neurons and glia were abundant when aganglionic OU were supplemented with ENS progenitor cells. Conclusion: Murine and human TEC contain key components of the ENS that were not previously identified, including glia, neurons, and fundamental neuronal subtypes. TEC derived from aganglionic colon can be populated with neurons and glia when supplemented with neurospheres. Combining tissue engineering and cellular replacement therapies represents a new strategy for treating enteric neuropathies, particularly HD. PMID:26414777

  19. Knockdown of sodium channel NaV1.6 blocks mechanical pain and abnormal bursting activity of afferent neurons in inflamed sensory ganglia.

    PubMed

    Xie, Wenrui; Strong, Judith A; Ye, Ling; Mao, Ju-Xian; Zhang, Jun-Ming

    2013-08-01

    Inflammatory processes in the sensory ganglia contribute to many forms of chronic pain. We previously showed that local inflammation of the lumbar sensory ganglia rapidly leads to prolonged mechanical pain behaviors and high levels of spontaneous bursting activity in myelinated cells. Abnormal spontaneous activity of sensory neurons occurs early in many preclinical pain models and initiates many other pathological changes, but its molecular basis is not well understood. The sodium channel isoform NaV1.6 can underlie repetitive firing and excitatory persistent and resurgent currents. We used in vivo knockdown of this channel via local injection of siRNA to examine its role in chronic pain after local inflammation of the rat lumbar sensory ganglia. In normal dorsal root ganglion (DRG), quantitative polymerase chain reaction showed that cells capable of firing repetitively had significantly higher relative expression of NaV1.6. In inflamed DRG, spontaneously active bursting cells expressed high levels of NaV1.6 immunoreactivity. In vivo knockdown of NaV1.6 locally in the lumbar DRG at the time of DRG inflammation completely blocked development of pain behaviors and abnormal spontaneous activity, while having only minor effects on unmyelinated C cells. Current research on isoform-specific sodium channel blockers for chronic pain is largely focused on NaV1.8 because it is present primarily in unmyelinated C fiber nociceptors, or on NaV1.7 because lack of this channel causes congenital indifference to pain. However, the results suggest that NaV1.6 may be a useful therapeutic target for chronic pain and that some pain conditions may be mediated primarily by myelinated A fiber sensory neurons.

  20. Plasmonic properties of gold nanoparticles can promote neuronal activity

    NASA Astrophysics Data System (ADS)

    Paviolo, Chiara; Haycock, John W.; Yong, Jiawey; Yu, Aimin; McArthur, Sally L.; Stoddart, Paul R.

    2013-02-01

    As-synthesized, poly(4-styrenesulfonic acid) (PSS)-coated and SiO2 coated gold nanorods were taken up by NG108-15 neuronal cells. Exposure to laser light at the plasmon resonance wavelength of gold nanorods was found to trigger the differentiation process in the nanoparticle treated cells. Results were assessed by measuring the maximum neurite length, the number of neurites per neuron and the percentage of neurons with neurites. When the intracellular Ca2+ signaling was monitored, evidence of photo-generated transients were recorded without altering other normal cell functions. These results open new opportunities for peripheral nerve regeneration treatments and for the process of infrared nerve stimulation.

  1. [Reactions of the neurons of the reticular and ventral anterior nuclei of the optic thalamus to afferent stimulation of different modalities].

    PubMed

    Voloshin, M Ia; Prokopenko, V F

    1975-01-01

    Responses of 146 reticular (R) and 98 ventral anterior (VA) thalamic neurons to electrical stimulation of pads, to light flashes and sound clicks were studied in cats immobilized with d-tubocurarine or myorelaxine. The contralateral forepaw was the most effective receptive field: 24.9% of R and 31.3% of VA investigated neurons responded to its stimulation. Only 4.4% of R and 2.4% of VA neurons responded to the click. Almost all responding neurons reacted to different kind of the applied stimulation by phasic or tonic excitation. Inhibition of background activity was observed after the pads stimulation only in 2.6-4.3% of R and in 1.7%-2.1% of VA neurons. The latency of phasic responses in most neurons ranged: to electrical stimulation of the contralateral forepaw from 6 to 64 ms, to the contralateral hindpaw -- from 11 to 43 ms, to light -- 10-60 ms, and to the click -- 8-60 ms. 75.1-95.6% of R and 68.7-97.6% of VA neurons did not respond at all to different kinds of peripheral stimulation. Of a sample of cells tested to all inputs 25% of R and 47% of VA neurons responded to stimulation of more than one paw; 16% of R and 22% of VA neurons revealed convergence of volleys of different modality. The functional role of this convergence consists in inhibition (more seldom facilitation) of the neuronal response to a testing signal following 40-70 ms after a conditioning one.

  2. Microstimulation of primary afferent neurons in the L7 dorsal root ganglia using multielectrode arrays in anesthetized cats: thresholds and recruitment properties

    NASA Astrophysics Data System (ADS)

    Gaunt, R. A.; Hokanson, J. A.; Weber, D. J.

    2009-10-01

    Current research in motor neural prosthetics has focused primarily on issues related to the extraction of motor command signals from the brain (e.g. brain-machine interfaces) to direct the motion of prosthetic limbs. Patients using these types of systems could benefit from a somatosensory neural interface that conveys natural tactile and kinesthetic sensations for the prosthesis. Electrical microstimulation within the dorsal root ganglia (DRG) has been proposed as one method to accomplish this, yet little is known about the recruitment properties of electrical microstimulation in activating nerve fibers in this structure. Current-controlled microstimulation pulses in the range of 1-15 µA (200 µs, leading cathodic pulse) were delivered to the L7 DRG in four anesthetized cats using penetrating microelectrode arrays. Evoked responses and their corresponding conduction velocities (CVs) were measured in the sciatic nerve with a 5-pole nerve cuff electrode arranged as two adjacent tripoles. It was found that in 76% of the 69 electrodes tested, the stimulus threshold was less than or equal to 3 µA, with the lowest recorded threshold being 1.1 µA. The CVs of afferents recruited at threshold had a bimodal distribution with peaks at 70 m s-1 and 85 m s-1. In 53% of cases, the CV of the response at threshold was slower (i.e. smaller diameter fiber) than the CVs of responses observed at increasing stimulation amplitudes. In summary, we found that microstimulation applied through penetrating microelectrodes in the DRG provides selective recruitment of afferent fibers from a range of sensory modalities (as identified by CVs) at very low stimulation intensities. We conclude that the DRG may serve as an attractive location from which to introduce surrogate somatosensory feedback into the nervous system.

  3. Microstimulation of primary afferent neurons in the L7 dorsal root ganglia using multielectrode arrays in anesthetized cats: thresholds and recruitment properties.

    PubMed

    Gaunt, R A; Hokanson, J A; Weber, D J

    2009-10-01

    Current research in motor neural prosthetics has focused primarily on issues related to the extraction of motor command signals from the brain (e.g. brain-machine interfaces) to direct the motion of prosthetic limbs. Patients using these types of systems could benefit from a somatosensory neural interface that conveys natural tactile and kinesthetic sensations for the prosthesis. Electrical microstimulation within the dorsal root ganglia (DRG) has been proposed as one method to accomplish this, yet little is known about the recruitment properties of electrical microstimulation in activating nerve fibers in this structure. Current-controlled microstimulation pulses in the range of 1-15 microA (200 micros, leading cathodic pulse) were delivered to the L7 DRG in four anesthetized cats using penetrating microelectrode arrays. Evoked responses and their corresponding conduction velocities (CVs) were measured in the sciatic nerve with a 5-pole nerve cuff electrode arranged as two adjacent tripoles. It was found that in 76% of the 69 electrodes tested, the stimulus threshold was less than or equal to 3 microA, with the lowest recorded threshold being 1.1 microA. The CVs of afferents recruited at threshold had a bimodal distribution with peaks at 70 m s(-1) and 85 m s(-1). In 53% of cases, the CV of the response at threshold was slower (i.e. smaller diameter fiber) than the CVs of responses observed at increasing stimulation amplitudes. In summary, we found that microstimulation applied through penetrating microelectrodes in the DRG provides selective recruitment of afferent fibers from a range of sensory modalities (as identified by CVs) at very low stimulation intensities. We conclude that the DRG may serve as an attractive location from which to introduce surrogate somatosensory feedback into the nervous system.

  4. Hair-Cell Versus Afferent Adaptation in the Semicircular Canals

    PubMed Central

    Rabbitt, R. D.; Boyle, R.; Holstein, G. R.; Highstein, S. M.

    2010-01-01

    The time course and extent of adaptation in semicircular canal hair cells was compared to adaptation in primary afferent neurons for physiological stimuli in vivo to study the origins of the neural code transmitted to the brain. The oyster toadfish, Opsanus tau, was used as the experimental model. Afferent firing-rate adaptation followed a double-exponential time course in response to step cupula displacements. The dominant adaptation time constant varied considerably among afferent fibers and spanned six orders of magnitude for the population (~1 ms to >1,000 s). For sinusoidal stimuli (0.1–20 Hz), the rapidly adapting afferents exhibited a 90° phase lead and frequency-dependent gain, whereas slowly adapting afferents exhibited a flat gain and no phase lead. Hair-cell voltage and current modulations were similar to the slowly adapting afferents and exhibited a relatively flat gain with very little phase lead over the physiological bandwidth and dynamic range tested. Semicircular canal microphonics also showed responses consistent with the slowly adapting subset of afferents and with hair cells. The relatively broad diversity of afferent adaptation time constants and frequency-dependent discharge modulations relative to hair-cell voltage implicate a subsequent site of adaptation that plays a major role in further shaping the temporal characteristics of semicircular canal afferent neural signals. PMID:15306633

  5. Segmental and supraspinal control of synaptic effectiveness of functionally identified muscle afferents in the cat.

    PubMed

    Enríquez, M; Jiménez, I; Rudomin, P

    1996-01-01

    The present investigation documents the patterns of primary afferent depolarization (PAD) of single, functionally identified muscle afferents from the medial gastrocnemius nerve in the intact, anesthetized cat. Classification of the impaled muscle afferents as from muscle spindles or from tendon organs was made according to several criteria, which comprised measurement of conduction velocity and electrical threshold of the peripheral axons, and the maximal frequency followed by the afferent fibers during vibration, as well as the changes in discharge frequency during longitudinal stretch, the projection of the afferent fiber to the motor pool, and, in unparalyzed preparations, the changes in afferent activity during a muscle twitch. In confirmation of a previous study, we found that most muscle spindle afferents (46.1-66.6%, depending on the combination of criteria utilized for receptor classification) had a type A PAD pattern. That is, they were depolarized by stimulation of group I fibers of the posterior biceps and semitendinosus (PBSt) nerve, but not by stimulation of cutaneous nerves (sural and superficial peroneus) or the bulbar reticular formation (RF), which in many cases inhibited the PBSt-induced PAD. In addition, we found a significant fraction of muscle spindle primaries that were depolarized by stimulation of group I PBSt fibers and also by stimulation of the bulbar RF. Stimulation of cutaneous nerves produced PAD in 9.1-31.2% of these fibers (type B PAD pattern) and no PAD in 8.2-15.4% (type C PAD pattern). In contrast to muscle spindle afferents, only the 7.7-15.4% of fibers from tendon organs had a type A PAD pattern, 23-46.1% had a type B and 50-61.5% a type C PAD pattern. These observations suggest that the neuronal circuitry involved in the control of the synaptic effectiveness of muscle spindles and tendon organs is subjected to excitatory as well as to inhibitory influences from cutaneous and reticulospinal fibers. As shown in the accompanying

  6. Afferent baroreflex failure in familial dysautonomia.

    PubMed

    Norcliffe-Kaufmann, Lucy; Axelrod, Felicia; Kaufmann, Horacio

    2010-11-23

    Familial dysautonomia (FD) is due to a genetic deficiency of the protein IKAP, which affects development of peripheral neurons. Patients with FD display complex abnormalities of the baroreflex of unknown cause. To test the hypothesis that the autonomic phenotype of FD is due to selective impairment of afferent baroreceptor input, we examined the autonomic and neuroendocrine responses triggered by stimuli that either engage (postural changes) or bypass (cognitive/emotional) afferent baroreflex pathways in 50 patients with FD and compared them to those of normal subjects and to those of patients with pure autonomic failure (PAF), a disorder with selective impairment of efferent autonomic neurons. During upright tilt, in patients with FD and in patients with PAF blood pressure fell markedly but the heart rate increased in PAF and decreased in FD. Plasma norepinephrine levels failed to increase in both groups. Vasopressin levels increased appropriately in patients with PAF but failed to increase in patients with FD. Head-down tilt increased blood pressure in both groups but increased heart rate only in patients with FD. Mental stress evoked a marked increase in blood pressure and heart rate in patients with FD but little change in those with PAF. The failure to modulate sympathetic activity and to release vasopressin by baroreflex-mediated stimuli together with marked sympathetic activation during cognitive tasks indicate selective failure of baroreceptor afference. These findings indicate that IKAP is critical for the development of afferent baroreflex pathways and has therapeutic implications in the management of these patients.

  7. Increases in transient receptor potential vanilloid-1 mRNA and protein in primary afferent neurons stimulated by protein kinase C and their possible role in neurogenic inflammation

    PubMed Central

    Xu, Xijin; Wang, Peng; Zou, Xiaoju; Li, Dingge; Fang, Li; Lin, Qing

    2008-01-01

    A recent study by our group demonstrates pharmacologically that the transient receptor potential vanilloid-1 (TRPV1) is activated by intradermal injection of capsaicin to initiate neurogenic inflammation by the release of neuropeptides in the periphery. In this study, expression of TRPV1, phosphorylated protein kinase C (p-PKC) and calcitonin gene-related peptide (CGRP) in dorsal root ganglion (DRG) neurons were visualized using immunofluorescence, real-time PCR and Western blots to examine whether increases in TRPV1 mRNA and protein levels evoked by capsaicin injection are subject to modulation by the activation of PKC and to analyze the role of this process in the pathogenesis of neurogenic inflammation. Capsaicin injection into the hindpaw skin of anesthetized rats evoked increases in the expression of TRPV1, CGRP and p-PKC in mRNA and/or protein levels and in the number of single labeled TRPV1, p-PKC and CGRP neurons in ipsilateral L4–5 DRGs. Co-expressions of TRPV1 with p-PKC and/or CGRP in DRG neurons were also significantly increased after CAP injection. These evoked expressions both at molecular and cellular levels were significantly inhibited after TRPV1 receptors were blocked by 5′-iodoresiniferatoxin (5 μg) or PKC was inhibited by chelerythrine chloride (5 μg). Taken together, these results provide evidence that up-regulation of TRPV1 mRNA and protein levels under inflammatory conditions evoked by capsaicin injection is subject to modulation by the PKC cascade in which increased CGRP level in DRG neurons may be related to the initiation of neurogenic inflammation. Thus, up-regulation of TRPV1 receptors in DRG neurons seems critical for initiating acute neurogenic inflammation. PMID:18752301

  8. Electrophysiological characterization of human rectal afferents

    PubMed Central

    Ng, Kheng-Seong; Brookes, Simon J.; Montes-Adrian, Noemi A.; Mahns, David A.

    2016-01-01

    It is presumed that extrinsic afferent nerves link the rectum to the central nervous system. However, the anatomical/functional existence of such nerves has never previously been demonstrated in humans. Therefore, we aimed to identify and make electrophysiological recordings in vitro from extrinsic afferents, comparing human rectum to colon. Sections of normal rectum and colon were procured from anterior resection and right hemicolectomy specimens, respectively. Sections were pinned and extrinsic nerves dissected. Extracellular visceral afferent nerve activity was recorded. Neuronal responses to chemical [capsaicin and “inflammatory soup” (IS)] and mechanical (Von Frey probing) stimuli were recorded and quantified as peak firing rate (range) in 1-s intervals. Twenty-eight separate nerve trunks from eight rectums were studied. Of these, spontaneous multiunit afferent activity was recorded in 24 nerves. Peak firing rates increased significantly following capsaicin [median 6 (range 3–25) spikes/s vs. 2 (1–4), P < 0.001] and IS [median 5 (range 2–18) spikes/s vs. 2 (1–4), P < 0.001]. Mechanosensitive “hot spots” were identified in 16 nerves [median threshold 2.0 g (range 1.4–6.0 g)]. In eight of these, the threshold decreased after IS [1.0 g (0.4–1.4 g)]. By comparison, spontaneous activity was recorded in only 3/30 nerves studied from 10 colons, and only one hot spot (threshold 60 g) was identified. This study confirms the anatomical/functional existence of extrinsic rectal afferent nerves and characterizes their chemo- and mechanosensitivity for the first time in humans. They have different electrophysiological properties to colonic afferents and warrant further investigation in disease states. PMID:27789454

  9. Electrophysiological characterization of human rectal afferents.

    PubMed

    Ng, Kheng-Seong; Brookes, Simon J; Montes-Adrian, Noemi A; Mahns, David A; Gladman, Marc A

    2016-12-01

    It is presumed that extrinsic afferent nerves link the rectum to the central nervous system. However, the anatomical/functional existence of such nerves has never previously been demonstrated in humans. Therefore, we aimed to identify and make electrophysiological recordings in vitro from extrinsic afferents, comparing human rectum to colon. Sections of normal rectum and colon were procured from anterior resection and right hemicolectomy specimens, respectively. Sections were pinned and extrinsic nerves dissected. Extracellular visceral afferent nerve activity was recorded. Neuronal responses to chemical [capsaicin and "inflammatory soup" (IS)] and mechanical (Von Frey probing) stimuli were recorded and quantified as peak firing rate (range) in 1-s intervals. Twenty-eight separate nerve trunks from eight rectums were studied. Of these, spontaneous multiunit afferent activity was recorded in 24 nerves. Peak firing rates increased significantly following capsaicin [median 6 (range 3-25) spikes/s vs. 2 (1-4), P < 0.001] and IS [median 5 (range 2-18) spikes/s vs. 2 (1-4), P < 0.001]. Mechanosensitive "hot spots" were identified in 16 nerves [median threshold 2.0 g (range 1.4-6.0 g)]. In eight of these, the threshold decreased after IS [1.0 g (0.4-1.4 g)]. By comparison, spontaneous activity was recorded in only 3/30 nerves studied from 10 colons, and only one hot spot (threshold 60 g) was identified. This study confirms the anatomical/functional existence of extrinsic rectal afferent nerves and characterizes their chemo- and mechanosensitivity for the first time in humans. They have different electrophysiological properties to colonic afferents and warrant further investigation in disease states. Copyright © 2016 the American Physiological Society.

  10. Visceral perception: sensory transduction in visceral afferents and nutrients.

    PubMed

    Raybould, H E

    2002-07-01

    The possible mechanisms that may be involved in nutrient detection in the wall of the gastrointestinal tract are reviewed. There is strong functional and electrophysiological evidence that both intrinsic and extrinsic primary afferent neurones mediate mechano- and chemosensitive responses in the gastrointestinal tract. This review focuses on the extrinsic afferent pathways as these are the ones that convey information to the central nervous system which is clearly necessary for perception to occur.

  11. β2-Microglobulin elicits itch-related responses in mice through the direct activation of primary afferent neurons expressing transient receptor potential vanilloid 1.

    PubMed

    Andoh, Tsugunobu; Maki, Takahito; Li, Sikai; Uta, Daisuke

    2017-09-05

    Uremic pruritus is an unpleasant symptom in patients undergoing hemodialysis, and the underlying mechanisms remain unclear. β2-Microglobulin (β2-MG) is well-known as an MHC class I molecule and its level is increased in the plasma of patients undergoing hemodialysis. In this study, we investigated whether β2-MG was a pruritogen in mice. Intradermal injections of β2-MG into the rostral back induced scratching in a dose-dependent manner. Intradermal injection of β2-MG into the cheek also elicited scratching, but not wiping. β2-MG-induced scratching was inhibited by the μ-opioid receptor antagonist naltrexone hydrochloride. β2-MG-induced scratching was not inhibited by antagonists of itch-related receptors (e.g., H1 histamine receptor (terfenadine), TP thromboxane receptor (DCHCH), BLT1 leukotriene B4 receptor (CMHVA), and proteinase-activated receptor 2 (FSLLRY-NH2)). However, β2-MG-induced scratching was attenuated in mice desensitized by repeated application of capsaicin and also by a selective transient receptor potential vanilloid 1 (TRPV1) antagonist (BCTC). In addition, β2-MG induced phosphorylation of extracellular signal-regulated kinase (a marker of activated neurons) in primary culture of dorsal root ganglion neurons that expressed TRPV1. These results suggest that β2-MG is a pruritogen and elicits itch-related responses, at least in part, through TRPV1-expressing primary sensory neurons. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Differential localization of vesicular glutamate transporters and peptides in corneal afferents to trigeminal nucleus caudalis.

    PubMed

    Hegarty, Deborah M; Tonsfeldt, Karen; Hermes, Sam M; Helfand, Helen; Aicher, Sue A

    2010-09-01

    Trigeminal afferents convey nociceptive information from the corneal surface of the eye to the trigeminal subnucleus caudalis (Vc). Trigeminal afferents, like other nociceptors, are thought to use glutamate and neuropeptides as neurotransmitters. The current studies examined whether corneal afferents contain both neuropeptides and vesicular glutamate transporters. Corneal afferents to the Vc were identified by using cholera toxin B (CTb). Corneal afferents project in two clusters to the rostral and caudal borders of the Vc, regions that contain functionally distinct nociceptive neurons. Thus, corneal afferents projecting to these two regions were examined separately. Dual immunocytochemical studies combined CTb with either calcitonin gene-related peptide (CGRP), substance P (SP), vesicular glutamate transporter 1 (VGluT1), or VGluT2. Corneal afferents were more likely to contain CGRP than SP, and corneal afferents projecting to the rostral region were more likely to contain CGRP than afferents projecting caudally. Overall, corneal afferents were equally likely to contain VGluT1 or VGluT2. Together, 61% of corneal afferents contained either VGluT1 or VGluT2, suggesting that some afferents lack a VGluT. Caudal corneal afferents were more likely to contain VGluT2 than VGluT1, whereas rostral corneal afferents were more likely to contain VGluT1 than VGluT2. Triple-labeling studies combining CTb, CGRP, and VGluT2 showed that very few corneal afferents contain both CGRP and VGluT2, caudally (1%) and rostrally (2%). These results suggest that most corneal afferents contain a peptide or a VGluT, but rarely both. Our results are consistent with a growing literature suggesting that glutamatergic and peptidergic sensory afferents may be distinct populations.

  13. Models of utricular bouton afferents: role of afferent-hair cell connectivity in determining spike train regularity.

    PubMed

    Holmes, William R; Huwe, Janice A; Williams, Barbara; Rowe, Michael H; Peterson, Ellengene H

    2017-05-01

    Vestibular bouton afferent terminals in turtle utricle can be categorized into four types depending on their location and terminal arbor structure: lateral extrastriolar (LES), striolar, juxtastriolar, and medial extrastriolar (MES). The terminal arbors of these afferents differ in surface area, total length, collecting area, number of boutons, number of bouton contacts per hair cell, and axon diameter (Huwe JA, Logan CJ, Williams B, Rowe MH, Peterson EH. J Neurophysiol 113: 2420-2433, 2015). To understand how differences in terminal morphology and the resulting hair cell inputs might affect afferent response properties, we modeled representative afferents from each region, using reconstructed bouton afferents. Collecting area and hair cell density were used to estimate hair cell-to-afferent convergence. Nonmorphological features were held constant to isolate effects of afferent structure and connectivity. The models suggest that all four bouton afferent types are electrotonically compact and that excitatory postsynaptic potentials are two to four times larger in MES afferents than in other afferents, making MES afferents more responsive to low input levels. The models also predict that MES and LES terminal structures permit higher spontaneous firing rates than those in striola and juxtastriola. We found that differences in spike train regularity are not a consequence of differences in peripheral terminal structure, per se, but that a higher proportion of multiple contacts between afferents and individual hair cells increases afferent firing irregularity. The prediction that afferents having primarily one bouton contact per hair cell will fire more regularly than afferents making multiple bouton contacts per hair cell has implications for spike train regularity in dimorphic and calyx afferents.NEW & NOTEWORTHY Bouton afferents in different regions of turtle utricle have very different morphologies and afferent-hair cell connectivities. Highly detailed computational

  14. The auriculo-vagal afferent pathway and its role in seizure suppression in rats

    PubMed Central

    2013-01-01

    Background The afferent projections from the auricular branch of the vagus nerve (ABVN) to the nucleus tractus solitaries (NTS) have been proposed as the anatomical basis for the increased parasympathetic tone seen in auriculo-vagal reflexes. As the afferent center of the vagus nerve, the NTS has been considered to play roles in the anticonvulsant effect of cervical vagus nerve stimulation (VNS). Here we proposed an “auriculo-vagal afferent pathway” (AVAP), by which transcutaneous auricular vagus nerve stimulation (ta-VNS) suppresses pentylenetetrazol (PTZ)-induced epileptic seizures by activating the NTS neurons in rats. Results The afferent projections from the ABVN to the NTS were firstly observed in rats. ta-VNS increased the first grand mal latency of the epileptic seizure and decreased the seizure scores in awake rats. Furthermore, when the firing rates of the NTS neurons decreased, epileptiform activity manifested as electroencephalogram (EEG) synchronization increased with 0.37±0.12 s delay in anaesthetized rats. The change of instantaneous frequency, mean frequency of the NTS neurons was negative correlated with the amplitude of the epileptic activity in EEG traces. ta-VNS significantly suppressed epileptiform activity in EEG traces via increasing the firing rates of the neurons of the NTS. In comparison with tan-VNS, the anticonvulsant durations of VNS and ta-VNS were significantly longer (P<0.01). There was no significant difference between the anticonvulsant durations of VNS and ta-VNS (P>0.05). The anticonvulsant effect of ta-VNS was weakened by reversible cold block of the NTS. Conclusions There existed an anatomical relationship between the ABVN and the NTS, which strongly supports the concept that ta-VNS has the potential for suppressing epileptiform activity via the AVAP in rats. ta-VNS will provide alternative treatments for neurological disorders, which can avoid the disadvantage of VNS. PMID:23927528

  15. Psychoactive bacteria Lactobacillus rhamnosus (JB-1) elicits rapid frequency facilitation in vagal afferents.

    PubMed

    Perez-Burgos, Azucena; Wang, Bingxian; Mao, Yu-Kang; Mistry, Bhavik; McVey Neufeld, Karen-Anne; Bienenstock, John; Kunze, Wolfgang

    2013-01-15

    Mounting evidence supports the influence of the gut microbiome on the local enteric nervous system and its effects on brain chemistry and relevant behavior. Vagal afferents are involved in some of these effects. We previously showed that ingestion of the probiotic bacterium Lactobacillus rhamnosus (JB-1) caused extensive neurochemical changes in the brain and behavior that were abrogated by prior vagotomy. Because information can be transmitted to the brain via primary afferents encoded as neuronal spike trains, our goal was to record those induced by JB-1 in vagal afferents in the mesenteric nerve bundle and thus determine the nature of the signals sent to the brain. Male Swiss Webster mice jejunal segments were cannulated ex vivo, and serosal and luminal compartments were perfused separately. Bacteria were added intraluminally. We found no evidence for translocation of labeled bacteria across the epithelium during the experiment. We recorded extracellular multi- and single-unit neuronal activity with glass suction pipettes. Within minutes of application, JB-1 increased the constitutive single- and multiunit firing rate of the mesenteric nerve bundle, but Lactobacillus salivarius (a negative control) or media alone were ineffective. JB-1 significantly augmented multiunit discharge responses to an intraluminal distension pressure of 31 hPa. Prior subdiaphragmatic vagotomy abolished all of the JB-1-evoked effects. This detailed exploration of the neuronal spike firing that encodes behavioral signaling to the brain may be useful to identify effective psychoactive bacteria and thereby offer an alternative new perspective in the field of psychiatry and comorbid conditions.

  16. Activation of intestinal spinal afferent endings by changes in intra-mesenteric arterial pressure

    PubMed Central

    Humenick, A; Chen, B N; Wiklendt, L; Spencer, N J; Zagorodnyuk, V P; Dinning, P G; Costa, M; Brookes, S J H

    2015-01-01

    Spinal sensory neurons innervate many large blood vessels throughout the body. Their activation causes the hallmarks of neurogenic inflammation: vasodilatation through the release of the neuropeptide calcitonin gene-related peptide and plasma extravasation via tachykinins. The same vasodilator afferent neurons show mechanical sensitivity, responding to crushing, compression or axial stretch of blood vessels – responses which activate pain pathways and which can be modified by cell damage and inflammation. In the present study, we tested whether spinal afferent axons ending on branching mesenteric arteries (‘vascular afferents’) are sensitive to increased intravascular pressure. From a holding pressure of 5 mmHg, distension to 20, 40, 60 or 80 mmHg caused graded, slowly adapting increases in firing of vascular afferents. Many of the same afferent units showed responses to axial stretch, which summed with responses evoked by raised pressure. Many vascular afferents were also sensitive to raised temperature, capsaicin and/or local compression with von Frey hairs. However, responses to raised pressure in single, isolated vessels were negligible, suggesting that the adequate stimulus is distortion of the arterial arcade rather than distension per se. Increasing arterial pressure often triggered peristaltic contractions in the neighbouring segment of intestine, an effect that was mimicked by acute exposure to capsaicin (1 μm) and which was reduced after desensitisation to capsaicin. These results indicate that sensory fibres with perivascular endings are sensitive to pressure-induced distortion of branched arteries, in addition to compression and axial stretch, and that they contribute functional inputs to enteric motor circuits. PMID:26010893

  17. Decoding of the spike timing of primary afferents during voluntary arm movements in monkeys

    PubMed Central

    Umeda, Tatsuya; Watanabe, Hidenori; Sato, Masa-aki; Kawato, Mitsuo; Isa, Tadashi; Nishimura, Yukio

    2014-01-01

    Understanding the mechanisms of encoding forelimb kinematics in the activity of peripheral afferents is essential for developing a somatosensory neuroprosthesis. To investigate whether the spike timing of dorsal root ganglion (DRG) neurons could be estimated from the forelimb kinematics of behaving monkeys, we implanted two multi-electrode arrays chronically in the DRGs at the level of the cervical segments in two monkeys. Neuronal activity during voluntary reach-to-grasp movements were recorded simultaneously with the trajectories of hand/arm movements, which were tracked in three-dimensional space using a motion capture system. Sixteen and 13 neurons, including muscle spindles, skin receptors, and tendon organ afferents, were recorded in the two monkeys, respectively. We were able to reconstruct forelimb joint kinematics from the temporal firing pattern of a subset of DRG neurons using sparse linear regression (SLiR) analysis, suggesting that DRG neuronal ensembles encoded information about joint kinematics. Furthermore, we estimated the spike timing of the DRG neuronal ensembles from joint kinematics using an integrate-and-fire model (IF) incorporating the SLiR algorithm. The temporal change of firing frequency of a subpopulation of neurons was reconstructed precisely from forelimb kinematics using the SLiR. The estimated firing pattern of the DRG neuronal ensembles encoded forelimb joint angles and velocities as precisely as the originally recorded neuronal activity. These results suggest that a simple model can be used to generate an accurate estimate of the spike timing of DRG neuronal ensembles from forelimb joint kinematics, and is useful for designing a proprioceptive decoder in a brain machine interface. PMID:24860416

  18. Decoding of the spike timing of primary afferents during voluntary arm movements in monkeys.

    PubMed

    Umeda, Tatsuya; Watanabe, Hidenori; Sato, Masa-Aki; Kawato, Mitsuo; Isa, Tadashi; Nishimura, Yukio

    2014-01-01

    Understanding the mechanisms of encoding forelimb kinematics in the activity of peripheral afferents is essential for developing a somatosensory neuroprosthesis. To investigate whether the spike timing of dorsal root ganglion (DRG) neurons could be estimated from the forelimb kinematics of behaving monkeys, we implanted two multi-electrode arrays chronically in the DRGs at the level of the cervical segments in two monkeys. Neuronal activity during voluntary reach-to-grasp movements were recorded simultaneously with the trajectories of hand/arm movements, which were tracked in three-dimensional space using a motion capture system. Sixteen and 13 neurons, including muscle spindles, skin receptors, and tendon organ afferents, were recorded in the two monkeys, respectively. We were able to reconstruct forelimb joint kinematics from the temporal firing pattern of a subset of DRG neurons using sparse linear regression (SLiR) analysis, suggesting that DRG neuronal ensembles encoded information about joint kinematics. Furthermore, we estimated the spike timing of the DRG neuronal ensembles from joint kinematics using an integrate-and-fire model (IF) incorporating the SLiR algorithm. The temporal change of firing frequency of a subpopulation of neurons was reconstructed precisely from forelimb kinematics using the SLiR. The estimated firing pattern of the DRG neuronal ensembles encoded forelimb joint angles and velocities as precisely as the originally recorded neuronal activity. These results suggest that a simple model can be used to generate an accurate estimate of the spike timing of DRG neuronal ensembles from forelimb joint kinematics, and is useful for designing a proprioceptive decoder in a brain machine interface.

  19. bcl-2 transgene expression can protect neurons against developmental and induced cell death.

    PubMed Central

    Farlie, P G; Dringen, R; Rees, S M; Kannourakis, G; Bernard, O

    1995-01-01

    The bcl-2 protooncogene, which protects various cell types from apoptotic cell death, is expressed in the developing and adult nervous system. To explore its role in regulation of neuronal cell death, we generated transgenic mice expressing Bcl-2 under the control of the neuron-specific enolase promoter, which forced expression uniquely in neurons. Sensory neurons isolated from dorsal root ganglia of newborn mice normally require nerve growth factor for their survival in culture, but those from the bcl-2 transgenic mice showed enhanced survival in its absence. Furthermore, apoptotic death of motor neurons after axotomy of the sciatic nerve was inhibited in these mice. The number of neurons in two neuronal populations from the central and peripheral nervous system was increased by 30%, indicating that Bcl-2 expression can protect neurons from cell death during development. The generation of these transgenic mice suggests that Bcl-2 may play an important role in survival of neurons both during development and throughout adult life. Images Fig. 1 Fig. 2 Fig. 4 PMID:7753817

  20. Inflammation enhances Y1 receptor signaling, neuropeptide Y-mediated inhibition of hyperalgesia, and substance P release from primary afferent neurons

    PubMed Central

    Taylor, Bradley K.; Fu, Weisi; Kuphal, Karen E.; Stiller, Carl-Olav; Winter, Michelle K.; Chen, Wenling; Corder, Gregory F.; Urban, Janice H.; McCarson, Kenneth E.; Marvizon, Juan Carlos

    2014-01-01

    Neuropeptide Y (NPY) is present in the superficial laminae of the dorsal horn and inhibits spinal nociceptive processing, but the mechanisms underlying its anti-hyperalgesic actions are unclear. We hypothesized that NPY acts at neuropeptide Y1 receptors in dorsal horn to decrease nociception by inhibiting substance P (SP) release, and that these effects are enhanced by inflammation. To evaluate SP release, we used microdialysis and neurokinin 1 receptor (NK1R) internalization in rat. NPY decreased capsaicin-evoked SP-like immunoreactivity in microdialysate of the dorsal horn. NPY also decreased non-noxious stimulus (paw brush)-evoked NK1R internalization (as well as mechanical hyperalgesia and mechanical and cold allodynia) after intraplantar injection of carrageenan. Similarly, in rat spinal cord slices with dorsal root attached, [Leu31, Pro34]-NPY inhibited dorsal root stimulus-evoked NK1R internalization. In rat dorsal root ganglion neurons, Y1 receptors colocalized extensively with calcitonin gene-related peptide (CGRP). In dorsal horn neurons, Y1 receptors were extensively expressed and this may have masked detection of terminal co-localization with CGRP or SP. To determine whether the pain inhibitory actions of Y1 receptors are enhanced by inflammation, we administered [Leu31, Pro34]-NPY after intraplantar injection of complete Freund's adjuvant (CFA) in rat. We found that [Leu31, Pro34]-NPY reduced paw clamp-induced NK1R internalization in CFA rats but not uninjured controls. To determine the contribution of increased Y1 receptor-G protein coupling, we measured [35S]GTPγS binding simulated by [Leu31, Pro34]-NPY in mouse dorsal horn. CFA inflammation increased the affinity of Y1 receptor G-protein coupling. We conclude that Y1 receptors contribute to the anti-hyperalgesic effects of NPY by mediating inhibition of SP release, and that Y1 receptor signaling in the dorsal horn is enhanced during inflammatory nociception. PMID:24184981

  1. Glutamate pharmacology and metabolism in peripheral primary afferents: physiological and pathophysiological mechanisms.

    PubMed

    Miller, Kenneth E; Hoffman, E Matthew; Sutharshan, Mathura; Schechter, Ruben

    2011-06-01

    In addition to using glutamate as a neurotransmitter at central synapses, many primary sensory neurons release glutamate from peripheral terminals. Primary sensory neurons with cell bodies in dorsal root or trigeminal ganglia produce glutaminase, the synthetic enzyme for glutamate, and transport the enzyme in mitochondria to peripheral terminals. Vesicular glutamate transporters fill neurotransmitter vesicles with glutamate and they are shipped to peripheral terminals. Intense noxious stimuli or tissue damage causes glutamate to be released from peripheral afferent nerve terminals and augmented release occurs during acute and chronic inflammation. The site of action for glutamate can be at the autologous or nearby nerve terminals. Peripheral nerve terminals contain both ionotropic and metabotropic excitatory amino acid receptors (EAARs) and activation of these receptors can lower the activation threshold and increase the excitability of primary afferents. Antagonism of EAARs can reduce excitability of activated afferents and produce antinociception in many animal models of acute and chronic pain. Glutamate injected into human skin and muscle causes acute pain. Trauma in humans, such as arthritis, myalgia, and tendonitis, elevates glutamate levels in affected tissues. There is evidence that EAAR antagonism at peripheral sites can provide relief in some chronic pain sufferers. Copyright © 2011. Published by Elsevier Inc.

  2. Cholinergic and GABAergic afferents to the olfactory bulb in the rat with special emphasis on the projection neurons in the nucleus of the horizontal limb of the diagonal band.

    PubMed

    Záborszky, L; Carlsen, J; Brashear, H R; Heimer, L

    1986-01-22

    other projection neurons in the HDB. After multiple injections of fluorescent tracer in the neocortex, retrogradely labeled neurons were concentrated in the most medial part of the HDB, while neurons projecting to the olfactory and entorhinal cortices were located in the ventral part of the HDB. These results show that the cells of the HDB can be divided into subpopulations based upon projection target as well as transmitter content. Furthermore, these subpopulations correspond, at least to a considerable extent, to areas that can be defined on cyto- and fibroarchitectural grounds.

  3. Differential modulation of primary afferent depolarization of segmental and ascending intraspinal collaterals of single muscle afferents in the cat spinal cord.

    PubMed

    Rudomin, P; Lomelí, J; Quevedo, J

    2004-06-01

    We examined primary afferent depolarization (PAD) in the anesthetized cat elicited in 109 pairs of intraspinal collaterals of single group I afferents from the gastrocnemius nerve, one of the pair ending in the L3 segment, around the Clarke's column nuclei, and the other in the L6 segment within the intermediate zone. Tests for refractoriness were made to assess whether the responses produced by intraspinal stimulation in the L3 and L6 segments were due to activation of collaterals of the same afferent fiber. PAD in each collateral was estimated by independent computer-controlled measurement of the intraspinal current required to maintain a constant probability of antidromic firing. In most fibers, stimulation of the ipsilateral posterior biceps and semitendinosus (PBSt) nerve with trains of pulses maximal for group I afferents had a qualitatively similar effect but produced a larger PAD in the L6 than in the L3 collaterals. Stimulation of cutaneous nerves (sural and superficial peroneus) with single pulses and of the posterior articular nerve, the ipsilateral reticular formation, nucleus raphe magnus and contralateral motor cortex with trains of pulses often had qualitatively different effects. They could produce PAD and/or facilitate the PBSt-induced PAD in one collateral, and produce PAH and/or inhibit the PAD in the other collateral. These patterns could be changed in a differential manner by sensory or supraspinal conditioning stimulation. In summary, the present investigation suggests that the segmental and ascending collaterals of individual afferents are not fixed routes for information transmission, but parts of dynamic systems in which information transmitted to segmental reflex pathways and to Clarke's column neurons by common sources can be decoupled by sensory and descending inputs and funneled to specific targets according to the motor tasks to be performed.

  4. Lipopolysaccharide can induce errors in anatomical measures of neuronal plasticity by increasing tracing efficacy.

    PubMed

    Weishaupt, Nina; Krajacic, Aleksandra; Fouad, Karim

    2013-11-27

    Evidence suggests that activating certain components of the immune system may increase regeneration and plasticity in the injured central nervous system. Investigating the effect of lipopolysaccharide (LPS), a potent endotoxin and immune activator, on neuronal plasticity in rat models of spinal cord injury, we discovered that systemic administration of LPS can increase the number of descending motor axons that transport neuronal tracers anterogradely to the spinal cord. This effect of LPS was not observed across all motor tracts traced in two different experiments, but was significant for two different tracers administered to corticospinal tract neurons. Densitometry measurement of traced corticospinal axons within the cervical gray matter revealed that normalization to the number of traced axons is crucial to avoid false-positive reports of increased plasticity following LPS injection. These findings indicate that assessments of neuronal growth based on neuronal tracing techniques should be normalized when inflammation or immune activation is an experimental variable. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  5. Dendritic spine geometry can localize GTPase signaling in neurons

    PubMed Central

    Ramirez, Samuel A.; Raghavachari, Sridhar; Lew, Daniel J.

    2015-01-01

    Dendritic spines are the postsynaptic terminals of most excitatory synapses in the mammalian brain. Learning and memory are associated with long-lasting structural remodeling of dendritic spines through an actin-mediated process regulated by the Rho-family GTPases RhoA, Rac, and Cdc42. These GTPases undergo sustained activation after synaptic stimulation, but whereas Rho activity can spread from the stimulated spine, Cdc42 activity remains localized to the stimulated spine. Because Cdc42 itself diffuses rapidly in and out of the spine, the basis for the retention of Cdc42 activity in the stimulated spine long after synaptic stimulation has ceased is unclear. Here we model the spread of Cdc42 activation at dendritic spines by means of reaction-diffusion equations solved on spine-like geometries. Excitable behavior arising from positive feedback in Cdc42 activation leads to spreading waves of Cdc42 activity. However, because of the very narrow neck of the dendritic spine, wave propagation is halted through a phenomenon we term geometrical wave-pinning. We show that this can account for the localization of Cdc42 activity in the stimulated spine, and, of interest, retention is enhanced by high diffusivity of Cdc42. Our findings are broadly applicable to other instances of signaling in extreme geometries, including filopodia and primary cilia. PMID:26337387

  6. Acid-sensing by airway afferent nerves

    PubMed Central

    Lee, Lu-Yuan; Gu, Qihai; Xu, Fadi; Hong, Ju-Lun

    2013-01-01

    Inhalation of acid aerosol or aspiration of acid solution evokes a stimulatory effect on airway C-fiber and Aδ afferents, which in turn causes airway irritation and triggers an array of defense reflex responses (e.g., cough, reflex bronchoconstriction, etc.). Tissue acidosis can also occur locally in the respiratory tract as a result of ischemia or inflammation, such as in the airways of asthmatic patients during exacerbation. The action of proton on the airway sensory neurons is generated by activation of two different current species: a transient (rapidly activating and inactivating) current mediated through the acid-sensing ion channels, and a slowly activating and sustained current mediated through the transient receptor potential vanilloid type 1 (TRPV1) receptor. In view of the recent findings that the expression and/or sensitivity of TRPV1 are up-regulated in the airway sensory nerves during chronic inflammatory reaction, the proton-evoked irritant effects on these nerves may play an important part in the manifestation of various symptoms associated with airway inflammatory diseases. PMID:23524016

  7. Vagal Afferent Innervation of the Airways in Health and Disease

    PubMed Central

    Mazzone, Stuart B.

    2016-01-01

    Vagal sensory neurons constitute the major afferent supply to the airways and lungs. Subsets of afferents are defined by their embryological origin, molecular profile, neurochemistry, functionality, and anatomical organization, and collectively these nerves are essential for the regulation of respiratory physiology and pulmonary defense through local responses and centrally mediated neural pathways. Mechanical and chemical activation of airway afferents depends on a myriad of ionic and receptor-mediated signaling, much of which has yet to be fully explored. Alterations in the sensitivity and neurochemical phenotype of vagal afferent nerves and/or the neural pathways that they innervate occur in a wide variety of pulmonary diseases, and as such, understanding the mechanisms of vagal sensory function and dysfunction may reveal novel therapeutic targets. In this comprehensive review we discuss historical and state-of-the-art concepts in airway sensory neurobiology and explore mechanisms underlying how vagal sensory pathways become dysfunctional in pathological conditions. PMID:27279650

  8. Afferent baroreflex failure in familial dysautonomia

    PubMed Central

    Norcliffe-Kaufmann, Lucy; Axelrod, Felicia; Kaufmann, Horacio

    2010-01-01

    Background: Familial dysautonomia (FD) is due to a genetic deficiency of the protein IKAP, which affects development of peripheral neurons. Patients with FD display complex abnormalities of the baroreflex of unknown cause. Methods: To test the hypothesis that the autonomic phenotype of FD is due to selective impairment of afferent baroreceptor input, we examined the autonomic and neuroendocrine responses triggered by stimuli that either engage (postural changes) or bypass (cognitive/emotional) afferent baroreflex pathways in 50 patients with FD and compared them to those of normal subjects and to those of patients with pure autonomic failure (PAF), a disorder with selective impairment of efferent autonomic neurons. Results: During upright tilt, in patients with FD and in patients with PAF blood pressure fell markedly but the heart rate increased in PAF and decreased in FD. Plasma norepinephrine levels failed to increase in both groups. Vasopressin levels increased appropriately in patients with PAF but failed to increase in patients with FD. Head-down tilt increased blood pressure in both groups but increased heart rate only in patients with FD. Mental stress evoked a marked increase in blood pressure and heart rate in patients with FD but little change in those with PAF. Conclusion: The failure to modulate sympathetic activity and to release vasopressin by baroreflex-mediated stimuli together with marked sympathetic activation during cognitive tasks indicate selective failure of baroreceptor afference. These findings indicate that IKAP is critical for the development of afferent baroreflex pathways and has therapeutic implications in the management of these patients. GLOSSARY FD = familial dysautonomia; FVR = forearm vascular resistance; PAF = pure autonomic failure. PMID:21098405

  9. Foodborne-Transmitted Prions From the Brain of Cows With Bovine Spongiform Encephalopathy Ascend in Afferent Neurons to the Simian Central Nervous System and Spread to Tonsils and Spleen at a Late Stage of the Incubation Period.

    PubMed

    Holznagel, Edgar; Yutzy, Barbara; Kruip, Carina; Bierke, Par; Schulz-Schaeffer, Walter; Löwer, Johannes

    2015-11-01

    Protease-resistant prion protein (PrP(res)) accumulation in lymphoreticular tissues indicates prion infection. To date, tonsillectomy and appendectomy samples have been used in population prevalence surveys to detect clinically silent carriers of variant Creutzfeldt-Jakob disease (vCJD). However, the temporal sequence of prion spread in the human body is still not known. We therefore traced the temporal-spatial pattern of PrP(res) accumulation in the body of a simian vCJD model. Cynomolgus monkeys were fed brain of (eleven) cows with bovine spongiform encephalopathy, and some were euthanized before and some after onset of neurological signs. PrP(res) was detected in tissues by a paraffin-embedded tissue blot technique and a semiquantitative Western immunoblot assay. Bovine spongiform encephalopathy (BSE)-associated prions were preferentially transported from the gut to the central nervous system (CNS) along sensory nerve fibers and initially entered the simian CNS at lumbar spinal cord levels. In asymptomatic animals, we found BSE in 50% and 12% of gut- and tonsil-derived samples, respectively. Unlike in rodents and ruminants, foodborne BSE-associated prions entered the simian CNS via afferent neurons. From sites of initial CNS invasion, prions spread centrifugally to tonsils and spleen at an advanced stage of the incubation period, thus explaining why tonsil specimens were not reliable for detection of simian disease carriers before onset of clinical signs. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. Differential central projections of vestibular afferents in pigeons

    NASA Technical Reports Server (NTRS)

    Dickman, J. D.; Fang, Q.

    1996-01-01

    The question of whether a differential distribution of vestibular afferent information to central nuclear neurons is present in pigeons was studied using neural tracer compounds. Discrete tracing of afferent fibers innervating the individual semicircular canal and otolith organs was produced by sectioning individual branches of the vestibular nerve that innervate the different receptor organs and applying crystals of horseradish peroxidase, or a horseradish peroxidase/cholera toxin mixture, or a biocytin compound for neuronal uptake and transport. Afferent fibers and their terminal distributions within the brainstem and cerebellum were visualized subsequently. Discrete areas in the pigeon central nervous system that receive primary vestibular input include the superior, dorsal lateral, ventral lateral, medial, descending, and tangential vestibular nuclei; the A and B groups; the intermediate, medial, and lateral cerebellar nuclei; and the nodulus, the uvula, and the paraflocculus. Generally, the vertical canal afferents projected heavily to medial regions in the superior and descending vestibular nuclei as well as the A group. Vertical canal projections to the medial and lateral vestibular nuclei were observed but were less prominent. Horizontal canal projections to the superior and descending vestibular nuclei were much more centrally located than those of the vertical canals. A more substantial projection to the medial and lateral vestibular nuclei was seen with horizontal canal afferents compared to vertical canal fibers. Afferents innervating the utricle and saccule terminated generally in the lateral regions of all vestibular nuclei in areas that were separate from the projections of the semicircular canals. In addition, utricular fibers projected to regions in the vestibular nuclei that overlapped with the horizontal semicircular canal terminal fields, whereas saccular afferents projected to regions that received vertical canal fiber terminations. Lagenar

  11. Differential central projections of vestibular afferents in pigeons

    NASA Technical Reports Server (NTRS)

    Dickman, J. D.; Fang, Q.

    1996-01-01

    The question of whether a differential distribution of vestibular afferent information to central nuclear neurons is present in pigeons was studied using neural tracer compounds. Discrete tracing of afferent fibers innervating the individual semicircular canal and otolith organs was produced by sectioning individual branches of the vestibular nerve that innervate the different receptor organs and applying crystals of horseradish peroxidase, or a horseradish peroxidase/cholera toxin mixture, or a biocytin compound for neuronal uptake and transport. Afferent fibers and their terminal distributions within the brainstem and cerebellum were visualized subsequently. Discrete areas in the pigeon central nervous system that receive primary vestibular input include the superior, dorsal lateral, ventral lateral, medial, descending, and tangential vestibular nuclei; the A and B groups; the intermediate, medial, and lateral cerebellar nuclei; and the nodulus, the uvula, and the paraflocculus. Generally, the vertical canal afferents projected heavily to medial regions in the superior and descending vestibular nuclei as well as the A group. Vertical canal projections to the medial and lateral vestibular nuclei were observed but were less prominent. Horizontal canal projections to the superior and descending vestibular nuclei were much more centrally located than those of the vertical canals. A more substantial projection to the medial and lateral vestibular nuclei was seen with horizontal canal afferents compared to vertical canal fibers. Afferents innervating the utricle and saccule terminated generally in the lateral regions of all vestibular nuclei in areas that were separate from the projections of the semicircular canals. In addition, utricular fibers projected to regions in the vestibular nuclei that overlapped with the horizontal semicircular canal terminal fields, whereas saccular afferents projected to regions that received vertical canal fiber terminations. Lagenar

  12. Tonic differential supraspinal modulation of PAD and PAH of segmental and ascending intraspinal collaterals of single group I muscle afferents in the cat spinal cord.

    PubMed

    Rudomin, P; Lomelí, J; Quevedo, J

    2004-11-01

    We compared in the anesthetized cat the effects of reversible spinalization by cold block on primary afferent depolarization (PAD) and primary afferent hyperpolarization (PAH) elicited in pairs of intraspinal collaterals of single group I afferents from the gastrocnemius nerve, one of the pairs ending in the L3 segment, around the Clarke's column nuclei, and the other in the L6 segment within the intermediate zone. PAD in each collateral was estimated by independent computer-controlled measurement of the intraspinal current required to maintain a constant probability of antidromic firing. The results indicate that the segmental and ascending collaterals of individual afferents are subjected to a tonic PAD of descending origin affecting in a differential manner the excitatory and inhibitory actions of cutaneous and joint afferents on the pathways mediating the PAD of group I fibers. The PAD-mediating networks appear to function as distributed systems whose output will be determined by the balance of the segmental and supraspinal influences received at that moment. It is suggested that the descending differential modulation of PAD enables the intraspinal arborizations of the muscle afferents to function as dynamic systems, in which information transmitted to segmental reflex pathways and to Clarke's column neurons by common sources can be decoupled by sensory and descending inputs, and funneled to specific targets according to the motor tasks to be performed.

  13. Unmyelinated visceral afferents exhibit frequency dependent action potential broadening while myelinated visceral afferents do not.

    PubMed

    Li, Bai-Yan; Feng, Bin; Tsu, Hwa Y; Schild, John H

    2007-06-21

    Sensory information arising from visceral organ systems is encoded into action potential trains that propagate along afferent fibers to target nuclei in the central nervous system. These information streams range from tight patterns of action potentials that are well synchronized with the sensory transduction event to irregular, patternless discharge with no clear correlation to the sensory input. In general terms these afferent pathways can be divided into unmyelinated and myelinated fiber types. Our laboratory has a long standing interest in the functional differences between these two types of afferents in terms of the preprocessing of sensory information into action potential trains (synchrony, frequency, duration, etc.), the reflexogenic consequences of this sensory input to the central nervous system and the ionic channels that give rise to the electrophysiological properties of these unique cell types. The aim of this study was to determine whether there were any functional differences in the somatic action potential characteristics of unmyelinated and myelinated vagal afferents in response to different rates of sensory nerve stimulation. Our results showed that activity and frequency-dependent widening of the somatic action potential was quite prominent in unmyelinated but not myelinated vagal afferents. Spike broadening often leads to increased influx of Ca(2+) ions that has been associated with a diverse range of modulatory mechanisms both at the cell body and central synaptic terminations (e.g. increased neurotransmitter release.) We conclude that our observations are indicative of fundamentally different mechanisms for neural integration of sensory information arising from unmyelinated and myelinated vagal afferents.

  14. Identification of different types of spinal afferent nerve endings that encode noxious and innocuous stimuli in the large intestine using a novel anterograde tracing technique.

    PubMed

    Spencer, Nick J; Kyloh, Melinda; Duffield, Michael

    2014-01-01

    In mammals, sensory stimuli in visceral organs, including those that underlie pain perception, are detected by spinal afferent neurons, whose cell bodies lie in dorsal root ganglia (DRG). One of the major challenges in visceral organs has been how to identify the different types of nerve endings of spinal afferents that transduce sensory stimuli into action potentials. The reason why spinal afferent nerve endings have been so challenging to identify is because no techniques have been available, until now, that can selectively label only spinal afferents, in high resolution. We have utilized an anterograde tracing technique, recently developed in our laboratory, which facilitates selective labeling of only spinal afferent axons and their nerve endings in visceral organs. Mice were anesthetized, lumbosacral DRGs surgically exposed, then injected with dextran-amine. Seven days post-surgery, the large intestine was removed. The characteristics of thirteen types of spinal afferent nerve endings were identified in detail. The greatest proportion of nerve endings was in submucosa (32%), circular muscle (25%) and myenteric ganglia (22%). Two morphologically distinct classes innervated myenteric ganglia. These were most commonly a novel class of intraganglionic varicose endings (IGVEs) and occasionally rectal intraganglionic laminar endings (rIGLEs). Three distinct classes of varicose nerve endings were found to innervate the submucosa and circular muscle, while one class innervated internodal strands, blood vessels, crypts of lieberkuhn, the mucosa and the longitudinal muscle. Distinct populations of sensory endings were CGRP-positive. We present the first complete characterization of the different types of spinal afferent nerve endings in a mammalian visceral organ. The findings reveal an unexpectedly complex array of different types of primary afferent endings that innervate specific layers of the large intestine. Some of the novel classes of nerve endings identified

  15. Neuronal Differentiation of Embryonic Stem Cell Derived Neuronal Progenitors Can Be Regulated by Stretchable Conducting Polymers

    PubMed Central

    Srivastava, Nishit; Venugopalan, Vijay; Divya, M.S.; Rasheed, V.A.

    2013-01-01

    Electrically conducting polymers are prospective candidates as active substrates for the development of neuroprosthetic devices. The utility of these substrates for promoting differentiation of embryonic stem cells paves viable routes for regenerative medicine. Here, we have tuned the electrical and mechanical cues provided to the embryonic stem cells during differentiation by precisely straining the conducting polymer (CP) coated, elastomeric-substrate. Upon straining the substrates, the neural differentiation pattern occurs in form of aggregates, accompanied by a gradient where substrate interface reveals a higher degree of differentiation. The CP domains align under linear stress along with the formation of local defect patterns leading to disruption of actin cytoskeleton of cells, and can provide a mechano-transductive basis for the observed changes in the differentiation. Our results demonstrate that along with biochemical and mechanical cues, conductivity of the polymer plays a major role in cellular differentiation thereby providing another control feature to modulate the differentiation and proliferation of stem cells. PMID:23544950

  16. Identifying local and descending inputs for primary sensory neurons

    PubMed Central

    Zhang, Yi; Zhao, Shengli; Rodriguez, Erica; Takatoh, Jun; Han, Bao-Xia; Zhou, Xiang; Wang, Fan

    2015-01-01

    Primary pain and touch sensory neurons not only detect internal and external sensory stimuli, but also receive inputs from other neurons. However, the neuronal derived inputs for primary neurons have not been systematically identified. Using a monosynaptic rabies viruses–based transneuronal tracing method combined with sensory-specific Cre-drivers, we found that sensory neurons receive intraganglion, intraspinal, and supraspinal inputs, the latter of which are mainly derived from the rostroventral medulla (RVM). The viral-traced central neurons were largely inhibitory but also consisted of some glutamatergic neurons in the spinal cord and serotonergic neurons in the RVM. The majority of RVM-derived descending inputs were dual GABAergic and enkephalinergic (opioidergic). These inputs projected through the dorsolateral funiculus and primarily innervated layers I, II, and V of the dorsal horn, where pain-sensory afferents terminate. Silencing or activation of the dual GABA/enkephalinergic RVM neurons in adult animals substantially increased or decreased behavioral sensitivity, respectively, to heat and mechanical stimuli. These results are consistent with the fact that both GABA and enkephalin can exert presynaptic inhibition of the sensory afferents. Taken together, this work provides a systematic view of and a set of tools for examining peri- and extrasynaptic regulations of pain-afferent transmission. PMID:26426077

  17. Sensations evoked by microstimulation of single mechanoreceptive afferents innervating the human face and mouth.

    PubMed

    Trulsson, M; Essick, G K

    2010-04-01

    Intraneural microneurography and microstimulation were performed on single afferent axons in the inferior alveolar and lingual nerves innervating the face, teeth, labial, or oral mucosa. Using natural mechanical stimuli, 35 single mechanoreceptive afferents were characterized with respect to unit type [fast adapting type I (FA I), FA hair, slowly adapting type I and II (SA I and SA II), periodontal, and deep tongue units] as well as size and shape of the receptive field. All afferents were subsequently microstimulated with pulse trains at 30 Hz lasting 1.0 s. Afferents recordings whose were stable thereafter were also tested with single pulses and pulse trains at 5 and 60 Hz. The results revealed that electrical stimulation of single FA I, FA hair, and SA I afferents from the orofacial region can evoke a percept that is spatially matched to the afferent's receptive field and consistent with the afferent's response properties as observed on natural mechanical stimulation. Stimulation of FA afferents typically evoked sensations that were vibratory in nature; whereas those of SA I afferents were felt as constant pressure. These afferents terminate superficially in the orofacial tissues and seem to have a particularly powerful access to perceptual levels. In contrast, microstimulation of single periodontal, SA II, and deep tongue afferents failed to evoke a sensation that matched the receptive field of the afferent. These afferents terminate more deeply in the tissues, are often active in the absence of external stimulation, and probably access perceptual levels only when multiple afferents are stimulated. It is suggested that the spontaneously active afferents that monitor tension in collagen fibers (SA II and periodontal afferents) may have the role to register the mechanical state of the soft tissues, which has been hypothesized to help maintain the body's representation in the central somatosensory system.

  18. Transplanted embryonic neurons integrate into adult neocortical circuits.

    PubMed

    Falkner, Susanne; Grade, Sofia; Dimou, Leda; Conzelmann, Karl-Klaus; Bonhoeffer, Tobias; Götz, Magdalena; Hübener, Mark

    2016-11-10

    The ability of the adult mammalian brain to compensate for neuronal loss caused by injury or disease is very limited. Transplantation aims to replace lost neurons, but the extent to which new neurons can integrate into existing circuits is unknown. Here, using chronic in vivo two-photon imaging, we show that embryonic neurons transplanted into the visual cortex of adult mice mature into bona fide pyramidal cells with selective pruning of basal dendrites, achieving adult-like densities of dendritic spines and axonal boutons within 4-8 weeks. Monosynaptic tracing experiments reveal that grafted neurons receive area-specific, afferent inputs matching those of pyramidal neurons in the normal visual cortex, including topographically organized geniculo-cortical connections. Furthermore, stimulus-selective responses refine over the course of many weeks and finally become indistinguishable from those of host neurons. Thus, grafted neurons can integrate with great specificity into neocortical circuits that normally never incorporate new neurons in the adult brain.

  19. Can scale-freeness offset delayed signal detection in neuronal networks?

    NASA Astrophysics Data System (ADS)

    Uzun, Rukiye; Ozer, Mahmut; Perc, Matjaž

    2014-03-01

    First-spike latency following stimulus onset is of significant physiological relevance. Neurons transmit information about their inputs by transforming them into spike trains, and the timing of these spike trains is in turn crucial for effectively encoding that information. Random processes and uncertainty that underly neuronal dynamics have been shown to prolong the time towards the first response in a phenomenon dubbed noise-delayed decay. Here we study whether Hodgkin-Huxley neurons with a tunable intensity of intrinsic noise might have shorter response times to external stimuli just above threshold if placed on a scale-free network. We show that the heterogeneity of the interaction network may indeed eradicate slow responsiveness, but only if the coupling between individual neurons is sufficiently strong. Increasing the average degree also favors a fast response, but it is less effective than increasing the coupling strength. We also show that noise-delayed decay can be offset further by adjusting the frequency of the external signal, as well as by blocking a fraction of voltage-gated sodium or potassium ion channels. For certain conditions, we observe a double peak in the response time depending on the intensity of intrinsic noise, indicating competition between local and global effects on the neuronal dynamics.

  20. Transportation in the Interstitial Space of the Brain Can Be Regulated by Neuronal Excitation

    PubMed Central

    Shi, Chunyan; Lei, Yiming; Han, Hongbin; Zuo, Long; Yan, Junhao; He, Qingyuan; Yuan, Lan; Liu, Huipo; Xu, Ge; Xu, Weiguo

    2015-01-01

    The transportation of substances in the interstitial space (ISS) is crucial for the maintenance of brain homeostasis, however its link to neuronal activity remains unclear. Here, we report a marked reduction in substance transportation in the ISS after neuronal excitation. Using a tracer-based method, water molecules in the interstitial fluid (ISF) could be specifically visualized in magnetic resonance (MR) imaging. We first observed the flow of ISF in the thalamus and caudate nucleus of a rat. The ISF flow was then modulated using a painful stimulation model. We demonstrated that the flow of ISF slowed significantly following neuronal activity in the thalamus. This reduction in ISF flow continued for hours and was not accompanied by slow diffusion into the ISS. This observation suggests that the transportation of substances into the ISS can be regulated with a selective external stimulation. PMID:26631412

  1. Transportation in the Interstitial Space of the Brain Can Be Regulated by Neuronal Excitation.

    PubMed

    Shi, Chunyan; Lei, Yiming; Han, Hongbin; Zuo, Long; Yan, Junhao; He, Qingyuan; Yuan, Lan; Liu, Huipo; Xu, Ge; Xu, Weiguo

    2015-12-03

    The transportation of substances in the interstitial space (ISS) is crucial for the maintenance of brain homeostasis, however its link to neuronal activity remains unclear. Here, we report a marked reduction in substance transportation in the ISS after neuronal excitation. Using a tracer-based method, water molecules in the interstitial fluid (ISF) could be specifically visualized in magnetic resonance (MR) imaging. We first observed the flow of ISF in the thalamus and caudate nucleus of a rat. The ISF flow was then modulated using a painful stimulation model. We demonstrated that the flow of ISF slowed significantly following neuronal activity in the thalamus. This reduction in ISF flow continued for hours and was not accompanied by slow diffusion into the ISS. This observation suggests that the transportation of substances into the ISS can be regulated with a selective external stimulation.

  2. Transportation in the Interstitial Space of the Brain Can Be Regulated by Neuronal Excitation

    NASA Astrophysics Data System (ADS)

    Shi, Chunyan; Lei, Yiming; Han, Hongbin; Zuo, Long; Yan, Junhao; He, Qingyuan; Yuan, Lan; Liu, Huipo; Xu, Ge; Xu, Weiguo

    2015-12-01

    The transportation of substances in the interstitial space (ISS) is crucial for the maintenance of brain homeostasis, however its link to neuronal activity remains unclear. Here, we report a marked reduction in substance transportation in the ISS after neuronal excitation. Using a tracer-based method, water molecules in the interstitial fluid (ISF) could be specifically visualized in magnetic resonance (MR) imaging. We first observed the flow of ISF in the thalamus and caudate nucleus of a rat. The ISF flow was then modulated using a painful stimulation model. We demonstrated that the flow of ISF slowed significantly following neuronal activity in the thalamus. This reduction in ISF flow continued for hours and was not accompanied by slow diffusion into the ISS. This observation suggests that the transportation of substances into the ISS can be regulated with a selective external stimulation.

  3. Impaired excitability of renal afferent innervation after exposure to the inflammatory chemokine CXCL1.

    PubMed

    Ditting, Tilmann; Freisinger, Wolfgang; Rodionova, Kristina; Schatz, Johannes; Lale, Nena; Heinlein, Sonja; Linz, Peter; Ott, Christian; Schmieder, Roland E; Scrogin, Karie E; Veelken, Roland

    2016-03-01

    Recently, we showed that renal afferent neurons exhibit a unique firing pattern, i.e., predominantly sustained firing, upon stimulation. Pathological conditions such as renal inflammation likely alter excitability of renal afferent neurons. Here, we tested whether the proinflammatory chemokine CXCL1 alters the firing pattern of renal afferent neurons. Rat dorsal root ganglion neurons (Th11-L2), retrogradely labeled with dicarbocyanine dye, were incubated with CXCL1 (20 h) or vehicle before patch-clamp recording. The firing pattern of neurons was characterized as tonic, i.e., sustained action potential (AP) firing, or phasic, i.e., <5 APs following current injection. Of the labeled renal afferents treated with vehicle, 58.9% exhibited a tonic firing pattern vs. 7.8%, in unlabeled, nonrenal neurons (P < 0.05). However, after exposure to CXCL1, significantly more phasic neurons were found among labeled renal neurons; hence the occurrence of tonic neurons with sustained firing upon electrical stimulation decreased (35.6 vs. 58.9%, P < 0.05). The firing frequency among tonic neurons was not statistically different between control and CXCL1-treated neurons. However, the lower firing frequency of phasic neurons was even further decreased with CXCL1 exposure [control: 1 AP/600 ms (1-2) vs. CXCL1: 1 AP/600 ms (1-1); P < 0.05; median (25th-75th percentile)]. Hence, CXCL1 shifted the firing pattern of renal afferents from a predominantly tonic to a more phasic firing pattern, suggesting that CXCL1 reduced the sensitivity of renal afferent units upon stimulation. Copyright © 2016 the American Physiological Society.

  4. Transcriptional changes in sensory ganglia associated with primary afferent axon collateral sprouting in spared dermatome model

    PubMed Central

    Harrison, Benjamin J.; Venkat, Gayathri; Hutson, Thomas; Rau, Kristofer K.; Bunge, Mary Bartlett; Mendell, Lorne M.; Gage, Fred H.; Johnson, Richard D.; Hill, Caitlin; Rouchka, Eric C.; Moon, Lawrence; Petruska, Jeffrey C.

    2015-01-01

    Primary afferent collateral sprouting is a process whereby non-injured primary afferent neurons respond to some stimulus and extend new branches from existing axons. Neurons of both the central and peripheral nervous systems undergo this process, which contributes to both adaptive and maladaptive plasticity (e.g., [1], [2], [3], [4], [5], [6], [7], [8], [9]). In the model used here (the “spared dermatome” model), the intact sensory neurons respond to the denervation of adjacent areas of skin by sprouting new axon branches into that adjacent denervated territory. Investigations of gene expression changes associated with collateral sprouting can provide a better understanding of the molecular mechanisms controlling this process. Consequently, it can be used to develop treatments to promote functional recovery for spinal cord injury and other similar conditions. This report includes raw gene expression data files from microarray experiments in order to study the gene regulation in spared sensory ganglia in the initiation (7 days) and maintenance (14 days) phases of the spared dermatome model relative to intact (“naïve”) sensory ganglia. Data has been deposited into GEO (GSE72551). PMID:26697387

  5. Convergent neuromodulation onto a network neuron can have divergent effects at the network level.

    PubMed

    Kintos, Nickolas; Nusbaum, Michael P; Nadim, Farzan

    2016-04-01

    Different neuromodulators often target the same ion channel. When such modulators act on different neuron types, this convergent action can enable a rhythmic network to produce distinct outputs. Less clear are the functional consequences when two neuromodulators influence the same ion channel in the same neuron. We examine the consequences of this seeming redundancy using a mathematical model of the crab gastric mill (chewing) network. This network is activated in vitro by the projection neuron MCN1, which elicits a half-center bursting oscillation between the reciprocally-inhibitory neurons LG and Int1. We focus on two neuropeptides which modulate this network, including a MCN1 neurotransmitter and the hormone crustacean cardioactive peptide (CCAP). Both activate the same voltage-gated current (I MI ) in the LG neuron. However, I MI-MCN1 , resulting from MCN1 released neuropeptide, has phasic dynamics in its maximal conductance due to LG presynaptic inhibition of MCN1, while I MI-CCAP retains the same maximal conductance in both phases of the gastric mill rhythm. Separation of time scales allows us to produce a 2D model from which phase plane analysis shows that, as in the biological system, I MI-MCN1 and I MI-CCAP primarily influence the durations of opposing phases of this rhythm. Furthermore, I MI-MCN1 influences the rhythmic output in a manner similar to the Int1-to-LG synapse, whereas I MI-CCAP has an influence similar to the LG-to-Int1 synapse. These results show that distinct neuromodulators which target the same voltage-gated ion channel in the same network neuron can nevertheless produce distinct effects at the network level, providing divergent neuromodulator actions on network activity.

  6. Relationship between electrophysiological signature and defined sensory modality of trigeminal ganglion neurons in vivo.

    PubMed

    Boada, M Danilo

    2013-02-01

    The trigeminal ganglia (TG) innervate a heterogeneous set of highly sensitive and exposed tissues. Weak, innocuous stimuli can evoke pain as a normal response in some areas such as the cornea. This observation implies, however, the capability of low-threshold mechanoreceptors, inducing pain in the normal condition. To clarify this matter, the present study correlates the electrical signature (both fiber conduction velocity and somatic electrical properties) with receptor field, mechanical threshold, and temperature responsiveness of sensory afferents innervating tissues with dissimilar sensitivity (skin vs. cornea) in the trigeminal domain. Intracellular recordings were obtained in vivo from 148 neurons of the left TG of 62 mice. In 111 of these neurons, the peripheral receptor field was successfully localized: 96 of them innervated the hairy skin, while the remaining 15 innervated the cornea. The electrical signature was defined and peripheral responses correlated with tissue target. No high threshold neurons were found in the cornea. Moreover, the electrical signature of corneal afferents resembles nociceptive neurons in the skin. TG skin afferents showed similar membrane electrical signature and sensory modality as skin afferents from dorsal root ganglion, although TG afferents exhibited a shorter duration of afterhyperpolarization then those previously described in dorsal root ganglion. These data suggest than new or different ways to classify and study TG sensory neurons may be required.

  7. Functional specializations of primary auditory afferents on the Mauthner cells: Interactions between membrane and synaptic properties

    PubMed Central

    Curti, Sebastian; Pereda, Alberto E.

    2009-01-01

    Primary auditory afferents are usually perceived as passive, timing-preserving, lines of communication. Contrasting this view, a special class of auditory afferents to teleost Mauthner cells, a command neuron that organizes tail-flip escape responses, undergoes potentiation of their mixed (electrical and chemical) synapses in response to high frequency cellular activity. This property is likely to represent a mechanism of input sensitization as these neurons provide the Mauthner cell with essential information for the initiation of an escape response. We review here the anatomical and physiological specializations of these identifiable auditory afferents. In particular, we discuss how their membrane and synaptic properties act in concert to more efficaciously activate the Mauthner cells. The striking functional specializations of these neurons suggest that primary auditory afferents might be capable of more sophisticated contributions to auditory processing than has been generally recognized. PMID:19941953

  8. Cortical discrimination of complex natural stimuli: can single neurons match behavior?

    PubMed

    Wang, Le; Narayan, Rajiv; Graña, Gilberto; Shamir, Maoz; Sen, Kamal

    2007-01-17

    A central finding in many cortical areas is that single neurons can match behavioral performance in the discrimination of sensory stimuli. However, whether this is true for natural behaviors involving complex natural stimuli remains unknown. Here we use the model system of songbirds to address this problem. Specifically, we investigate whether neurons in field L, the homolog of primary auditory cortex, can match behavioral performance in the discrimination of conspecific songs. We use a classification framework based on the (dis)similarity between single spike trains to quantify neural discrimination. We use this framework to investigate the discriminability of single spike trains in field L in response to conspecific songs, testing different candidate neural codes underlying discrimination. We find that performance based on spike timing is significantly higher than performance based on spike rate and interspike intervals. We then assess the impact of temporal correlations in spike trains on discrimination. In contrast to widely discussed effects of correlations in limiting the accuracy of a population code, temporal correlations appear to improve the performance of single neurons in the majority of cases. Finally, we compare neural performance with behavioral performance. We find a diverse range of performance levels in field L, with neural performance matching behavioral accuracy only for the best neurons using a spike-timing-based code.

  9. Coarse topographic organization of pheromone-sensitive afferents from different antennal surfaces in the American cockroach.

    PubMed

    Nishino, Hiroshi; Watanabe, Hidehiro; Kamimura, Itsuro; Yokohari, Fumio; Mizunami, Makoto

    2015-05-19

    In contrast to visual, auditory, taste, and mechanosensory neuropils, in which sensory afferents are topographically organized on the basis of their peripheral soma locations, axons of cognate sensory neurons from different locations of the olfactory sense organ converge onto a small spherical neuropil (glomerulus) in the first-order olfactory center. In the cockroach Periplaneta americana, sex pheromone-sensitive afferents with somata in the antero-dorsal and postero-ventral surfaces of a long whip-like antenna are biased toward the anterior and posterior regions of a macroglomerulus, respectively. In each region, afferents with somata in the more proximal antenna project to more proximal region, relative to the axonal entry points. However, precise topography of afferents in the macroglomerulus has remained unknown. Using single and multiple neuronal stainings, we showed that afferents arising from anterior, dorsal, ventral and posterior surfaces of the proximal regions of an antenna were biased progressively from the anterior to posterior region of the macroglomerulus, reflecting chiasmatic axonal re-arrangements that occur immediately before entering the antennal lobe. Morphologies of individual afferents originating from the proximal antenna matched results of mass neuronal stainings, but their three-dimensional origins in the antenna were hardly predictable on the basis of the projection patterns. Such projection biases made by neuronal populations differ from strict somatotopic projections of antennal mechanosensory neurons in the same species, suggesting a unique sensory mechanism to process information about odor location and direction on a single antenna.

  10. BDNF released during neuropathic pain potentiates NMDA receptors in primary afferent terminals.

    PubMed

    Chen, Wenling; Walwyn, Wendy; Ennes, Helena S; Kim, Hyeyoung; McRoberts, James A; Marvizón, Juan Carlos G

    2014-05-01

    NMDA receptors in primary afferent terminals can contribute to hyperalgesia by increasing neurotransmitter release. In rats and mice, we found that the ability of intrathecal NMDA to induce neurokinin 1 receptor (NK1R) internalization (a measure of substance P release) required a previous injection of BDNF. Selective knock-down of NMDA receptors in primary afferents decreased NMDA-induced NK1R internalization, confirming the presynaptic location of these receptors. The effect of BDNF was mediated by tropomyosin-related kinase B (trkB) receptors and not p75 neurotrophin receptors (p75(NTR) ), because it was not produced by proBDNF and was inhibited by the trkB antagonist ANA-12 but not by the p75(NTR) inhibitor TAT-Pep5. These effects are probably mediated through the truncated form of the trkB receptor as there is little expression of full-length trkB in dorsal root ganglion (DRG) neurons. Src family kinase inhibitors blocked the effect of BDNF, suggesting that trkB receptors promote the activation of these NMDA receptors by Src family kinase phosphorylation. Western blots of cultured DRG neurons revealed that BDNF increased Tyr(1472) phosphorylation of the NR2B subunit of the NMDA receptor, known to have a potentiating effect. Patch-clamp recordings showed that BDNF, but not proBDNF, increased NMDA receptor currents in cultured DRG neurons. NMDA-induced NK1R internalization was also enabled in a neuropathic pain model or by activating dorsal horn microglia with lipopolysaccharide. These effects were decreased by a BDNF scavenger, a trkB receptor antagonist and a Src family kinase inhibitor, indicating that BDNF released by microglia potentiates NMDA receptors in primary afferents during neuropathic pain. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  11. BDNF released during neuropathic pain potentiates NMDA receptors in primary afferent terminals

    PubMed Central

    Chen, Wenling; Walwyn, Wendy; Ennes, Helena S.; Kim, Hyeyoung; McRoberts, James A.; Marvizón, Juan Carlos G.

    2014-01-01

    NMDA receptors in primary afferent terminals can contribute to hyperalgesia by increasing neurotransmitter release. In rats and mice, we found that the ability of intrathecal NMDA to induce neurokinin 1 receptor (NK1R) internalization (a measure of substance P release) required a previous injection of BDNF. Selective knock-down of NMDA receptors in primary afferents decreased NMDA-induced NK1R internalization, confirming the presynaptic location of these receptors. The effect of BDNF was mediated by tropomyosin-related kinase B (trkB) receptors and not p75 neurotrophin receptors (p75NTR), because it was not produced by proBDNF and was inhibited by the trkB antagonist ANA-12 but not by the p75NTR inhibitor TAT-Pep5. These effects are probably mediated through the truncated form of the trkB receptor as there is little expression of full-length trkB in dorsal root ganglion (DRG) neurons. Src family kinase inhibitors blocked the effect of BDNF, suggesting that trkB receptors promote the activation of these NMDA receptors by Src family kinase phosphorylation. Western blots of cultured DRG neurons revealed that BDNF increased Tyr1472 phosphorylation of the NR2B subunit of the NMDA receptor, known to have a potentiating effect. Patch-clamp recordings showed that BDNF, but not proBDNF, increased NMDA receptor currents in cultured DRG neurons. NMDA-induced NK1R internalization was also enabled in a neuropathic pain model or by activating dorsal horn microglia with lipopolysaccharide. These effects were decreased by a BDNF scavenger, a trkB receptor antagonist and an Src family kinase inhibitor, indicating that BDNF released by microglia potentiates NMDA receptors in primary afferents during neuropathic pain. PMID:24611998

  12. Comparison of baroreceptive to other afferent synaptic transmission to the medial solitary tract nucleus.

    PubMed

    Andresen, Michael C; Peters, James H

    2008-11-01

    Cranial nerve visceral afferents enter the brain stem to synapse on neurons within the solitary tract nucleus (NTS). The broad heterogeneity of both visceral afferents and NTS neurons makes understanding afferent synaptic transmission particularly challenging. To study a specific subgroup of second-order neurons in medial NTS, we anterogradely labeled arterial baroreceptor afferents of the aortic depressor nerve (ADN) with lipophilic fluorescent tracer (i.e., ADN+) and measured synaptic responses to solitary tract (ST) activation recorded from dye-identified neurons in medial NTS in horizontal brain stem slices. Every ADN+ NTS neuron received constant-latency ST-evoked excitatory postsynaptic currents (EPSCs) (jitter < 192 micros, SD of latency). Stimulus-recruitment profiles showed single thresholds and no suprathreshold recruitment, findings consistent with EPSCs arising from a single, branched afferent axon. Frequency-dependent depression of ADN+ EPSCs averaged approximately 70% for five shocks at 50 Hz, but single-shock failure rates did not exceed 4%. Whether adjacent ADN- or those from unlabeled animals, other second-order NTS neurons (jitters < 200 micros) had ST transmission properties indistinguishable from ADN+. Capsaicin (CAP; 100 nM) blocked ST transmission in some neurons. CAP-sensitive ST-EPSCs were smaller and failed over five times more frequently than CAP-resistant responses, whether ADN+ or from unlabeled animals. Variance-mean analysis of ST-EPSCs suggested uniformly high probabilities for quantal glutamate release across second-order neurons. While amplitude differences may reflect different numbers of contacts, higher frequency-dependent failure rates in CAP-sensitive ST-EPSCs may arise from subtype-specific differences in afferent axon properties. Thus afferent transmission within medial NTS differed by axon class (e.g., CAP sensitive) but was indistinguishable by source of axon (e.g., baroreceptor vs. nonbaroreceptor).

  13. Mast cells drive mesenteric afferent signalling during acute intestinal ischaemia.

    PubMed

    Jiang, Wen; Kirkup, Anthony J; Grundy, David

    2011-08-01

    Acute intestinal ischaemia stimulates visceral afferent nerves but the mechanisms responsible for this excitation are not fully understood. Mast cells may participate in this process as they are known to signal to mesenteric afferents during intestinal anaphylaxis and contribute to early inflammation and neuronal damage in response to cerebral ischaemia. We therefore hypothesised that mast cells are early responders to acute intestinal ischaemia and their activation initiates rapid signalling to the CNS via the excitation of mesenteric afferents. Primary afferent firing was recorded from a mesenteric nerve bundle supplying a segment of jejunum in anaesthetized adult rats. Acute focal ischaemia was produced by clamping theme senteric vessels for 8 min, and reperfusion followed removal of the vessel clip. Two episodes of ischaemia–reperfusion (I–R) separated by a 30 min interval were performed. Drugs or their vehicles were administered 10 min before the 2nd I–R episode. Ischaemia caused a reproducible, intense and biphasic afferent firing that was temporally dissociated from the concomitantly triggered complex pattern of intestinal motor activity. The L-type calcium channel blocker, nifedipine, significantly attenuated this afferent firing by a mechanism independent of its action on intestinal tone. Ischaemia-induced afferent firing was also abrogated by the mast cell stabilizer, doxantrazole, and the H1 histamine receptor antagonist, pyrilamine. In contrast, the nicotinic receptor antagonist, hexamethonium, and the N-type calcium channel toxin, ω-conotoxin GVIA, each reduced the ischaemia-evoked motor inhibition but not the concurrent afferent discharge. Similarly, the cyclooxygenase inhibitor, naproxen, had no effect on the ischaemic afferent response but reduced the intestinal tone shortly from the onset of ischaemia to the early period of reperfusion. These data support a critical role for mast cell-derived histamine in the direct chemoexcitation of

  14. Modulation of long-latency afferent inhibition by the amplitude of sensory afferent volley.

    PubMed

    Turco, Claudia V; El-Sayes, Jenin; Fassett, Hunter J; Chen, Robert; Nelson, Aimee J

    2017-07-01

    Long-latency afferent inhibition (LAI) is the inhibition of the transcranial magnetic stimulation (TMS) motor-evoked potentials (MEP) by the sensory afferent volley following electrical stimulation of a peripheral nerve. It is unknown how the activation of sensory afferent fibers relates to the magnitude of LAI. This study investigated the relationship between LAI and the sensory nerve action potentials (SNAP) from the median nerve (MN) and the digital nerves (DN) of the second digit. LAI was obtained by delivering nerve stimulation 200 ms before a TMS pulse delivered over the motor cortex. Experiment 1 assessed the magnitude of LAI following stimulation of the contralateral MN or DN using nerve stimulus intensities relative to the maximum SNAP (SNAPmax) of that nerve and two TMS intensities (0.5- and 1-mV MEP). Results indicate that MN LAI is maximal at ~50% SNAPmax, when presumably all sensory afferents are recruited for TMS of 0.5-mV MEP. For DN, LAI appears at ~50% SNAPmax and does not increase with further recruitment of sensory afferents. Experiment 2 investigated the magnitude of LAI following ipsilateral nerve stimulation at intensities relative to SNAPmax Results show minimal LAI evoked by ipsilateral MN and no LAI following ipsilateral DN stimulation. Implications for future studies investigating LAI include adjusting nerve stimulation to 50% SNAPmax to obtain maximal LAI. Additionally, MN LAI can be used as a marker for neurological disease or injury by using a nerve stimulation intensity that can evoke a depth of LAI capable of increasing or decreasing.NEW & NOTEWORTHY This is the first investigation of the relationship between long-latency afferent inhibition (LAI) and the sensory afferent volley. Differences exist between median and digital nerve LAI. For the median nerve, LAI increases until all sensory fibers are presumably recruited. In contrast, digital nerve LAI does not increase with the recruitment of additional sensory fibers but rather is

  15. Muscle afferent excitability testing in spinal root-intact rats: dissociating peripheral afferent and efferent volleys generated by intraspinal microstimulation.

    PubMed

    Tomatsu, Saeka; Kim, Geehee; Confais, Joachim; Seki, Kazuhiko

    2017-02-01

    Presynaptic inhibition of the sensory input from the periphery to the spinal cord can be evaluated directly by intra-axonal recording of primary afferent depolarization (PAD) or indirectly by intraspinal microstimulation (excitability testing). Excitability testing is superior for use in normal behaving animals, because this methodology bypasses the technically challenging intra-axonal recording. However, use of excitability testing on the muscle or joint afferent in intact animals presents its own technical challenges. Because these afferents, in many cases, are mixed with motor axons in the peripheral nervous system, it is crucial to dissociate antidromic volleys in the primary afferents from orthodromic volleys in the motor axon, both of which are evoked by intraspinal microstimulation. We have demonstrated in rats that application of a paired stimulation protocol with a short interstimulus interval (ISI) successfully dissociated the antidromic volley in the nerve innervating the medial gastrocnemius muscle. By using a 2-ms ISI, the amplitude of the volleys evoked by the second stimulation was decreased in dorsal root-sectioned rats, but the amplitude did not change or was slightly increased in ventral root-sectioned rats. Excitability testing in rats with intact spinal roots indicated that the putative antidromic volleys exhibited dominant primary afferent depolarization, which was reasonably induced from the more dorsal side of the spinal cord. We concluded that excitability testing with a paired-pulse protocol can be used for studying presynaptic inhibition of somatosensory afferents in animals with intact spinal roots.NEW & NOTEWORTHY Excitability testing of primary afferents has been used to evaluate presynaptic modulation of synaptic transmission in experiments conducted in vivo. However, to apply this method to muscle afferents of animals with intact spinal roots, it is crucial to dissociate antidromic and orthodromic volleys induced by spinal

  16. Hair cell tufts and afferent innervation of the bullfrog crista ampullaris

    NASA Technical Reports Server (NTRS)

    Myers, Steven F.; Lewis, Edwin R.

    1990-01-01

    Within the bullfrog semicircular canal crista, hair cell tuft types were defined and mapped with the aid of scanning electron microscopy. Dye-filled planar afferent axons had mean distal axonal diameters of 1.6-4.9 microns, highly branched arbors, and contacted 11-24 hair cells. Dye-filled isthmus afferent axons had mean distal axonal diameters of 1.8-7.9 microns, with either small or large field arbors contacting 4-9 or 25-31 hair cells. The estimated mean number of contacts per innervated hair cell was 2.2 for planar and 1.3 for isthmus afferent neurons. Data on evoked afferent responses were available only for isthmus units that were observed to respond to our microrotational stimuli. Of 21 such afferent neurons, eight were successfully dye-filled. Within this sample, high-gain units had large field arbors and lower-gain units had small field arbors. The sensitivity of each afferent neuron was analyzed in terms of noise equivalent input (NEI), the stimulus amplitude for which the afferent response amplitude is just equivalent to the rms deviation of the instantaneous spike rate. NEI for isthmus units varied from 0.63 to 8.2 deg/s; the mean was 3.2 deg/s.

  17. A single mechanism can explain the speed tuning properties of MT and V1 complex neurons.

    PubMed

    Perrone, John A

    2006-11-15

    A recent study by Priebe et al., (2006) has shown that a small proportion (27%) of primate directionally selective, complex V1 neurons are tuned for the speed of image motion. In this study, I show that the weighted intersection mechanism (WIM) model, which was previously proposed to explain speed tuning in middle temporal neurons, can also explain the tuning found in complex V1 neurons. With the addition of a contrast gain mechanism, this model is able to replicate the effects of contrast on V1 speed tuning, a phenomenon that was recently discovered by Priebe et al., (2006). The WIM model simulations also indicate that V1 neuron spatiotemporal frequency response maps may be asymmetrical in shape and hence poorly characterized by the symmetrical two-dimensional Gaussian fitting function used by Priebe et al., (2006) to classify their cells. Therefore, the actual proportion of speed tuning among directional complex V1 cells may be higher than the 27% estimate suggested by these authors.

  18. Enlargement of Ribbons in Zebrafish Hair Cells Increases Calcium Currents But Disrupts Afferent Spontaneous Activity and Timing of Stimulus Onset.

    PubMed

    Sheets, Lavinia; He, Xinyi J; Olt, Jennifer; Schreck, Mary; Petralia, Ronald S; Wang, Ya-Xian; Zhang, Qiuxiang; Beirl, Alisha; Nicolson, Teresa; Marcotti, Walter; Trapani, Josef G; Kindt, Katie S

    2017-06-28

    In sensory hair cells of auditory and vestibular organs, the ribbon synapse is required for the precise encoding of a wide range of complex stimuli. Hair cells have a unique presynaptic structure, the synaptic ribbon, which organizes both synaptic vesicles and calcium channels at the active zone. Previous work has shown that hair-cell ribbon size is correlated with differences in postsynaptic activity. However, additional variability in postsynapse size presents a challenge to determining the specific role of ribbon size in sensory encoding. To selectively assess the impact of ribbon size on synapse function, we examined hair cells in transgenic zebrafish that have enlarged ribbons, without postsynaptic alterations. Morphologically, we found that enlarged ribbons had more associated vesicles and reduced presynaptic calcium-channel clustering. Functionally, hair cells with enlarged ribbons had larger global and ribbon-localized calcium currents. Afferent neuron recordings revealed that hair cells with enlarged ribbons resulted in reduced spontaneous spike rates. Additionally, despite larger presynaptic calcium signals, we observed fewer evoked spikes with longer latencies from stimulus onset. Together, our work indicates that hair-cell ribbon size influences the spontaneous spiking and the precise encoding of stimulus onset in afferent neurons.SIGNIFICANCE STATEMENT Numerous studies support that hair-cell ribbon size corresponds with functional sensitivity differences in afferent neurons and, in the case of inner hair cells of the cochlea, vulnerability to damage from noise trauma. Yet it is unclear whether ribbon size directly influences sensory encoding. Our study reveals that ribbon enlargement results in increased ribbon-localized calcium signals, yet reduces afferent spontaneous activity and disrupts the timing of stimulus onset, a distinct aspect of auditory and vestibular encoding. These observations suggest that varying ribbon size alone can influence

  19. Enlargement of Ribbons in Zebrafish Hair Cells Increases Calcium Currents But Disrupts Afferent Spontaneous Activity and Timing of Stimulus Onset

    PubMed Central

    Schreck, Mary; Petralia, Ronald S.; Wang, Ya-Xian; Zhang, Qiuxiang

    2017-01-01

    In sensory hair cells of auditory and vestibular organs, the ribbon synapse is required for the precise encoding of a wide range of complex stimuli. Hair cells have a unique presynaptic structure, the synaptic ribbon, which organizes both synaptic vesicles and calcium channels at the active zone. Previous work has shown that hair-cell ribbon size is correlated with differences in postsynaptic activity. However, additional variability in postsynapse size presents a challenge to determining the specific role of ribbon size in sensory encoding. To selectively assess the impact of ribbon size on synapse function, we examined hair cells in transgenic zebrafish that have enlarged ribbons, without postsynaptic alterations. Morphologically, we found that enlarged ribbons had more associated vesicles and reduced presynaptic calcium-channel clustering. Functionally, hair cells with enlarged ribbons had larger global and ribbon-localized calcium currents. Afferent neuron recordings revealed that hair cells with enlarged ribbons resulted in reduced spontaneous spike rates. Additionally, despite larger presynaptic calcium signals, we observed fewer evoked spikes with longer latencies from stimulus onset. Together, our work indicates that hair-cell ribbon size influences the spontaneous spiking and the precise encoding of stimulus onset in afferent neurons. SIGNIFICANCE STATEMENT Numerous studies support that hair-cell ribbon size corresponds with functional sensitivity differences in afferent neurons and, in the case of inner hair cells of the cochlea, vulnerability to damage from noise trauma. Yet it is unclear whether ribbon size directly influences sensory encoding. Our study reveals that ribbon enlargement results in increased ribbon-localized calcium signals, yet reduces afferent spontaneous activity and disrupts the timing of stimulus onset, a distinct aspect of auditory and vestibular encoding. These observations suggest that varying ribbon size alone can influence

  20. Gut vagal afferents differentially modulate innate anxiety and learned fear.

    PubMed

    Klarer, Melanie; Arnold, Myrtha; Günther, Lydia; Winter, Christine; Langhans, Wolfgang; Meyer, Urs

    2014-05-21

    Vagal afferents are an important neuronal component of the gut-brain axis allowing bottom-up information flow from the viscera to the CNS. In addition to its role in ingestive behavior, vagal afferent signaling has been implicated modulating mood and affect, including distinct forms of anxiety and fear. Here, we used a rat model of subdiaphragmatic vagal deafferentation (SDA), the most complete and selective vagal deafferentation method existing to date, to study the consequences of complete disconnection of abdominal vagal afferents on innate anxiety, conditioned fear, and neurochemical parameters in the limbic system. We found that compared with Sham controls, SDA rats consistently displayed reduced innate anxiety-like behavior in three procedures commonly used in preclinical rodent models of anxiety, namely the elevated plus maze test, open field test, and food neophobia test. On the other hand, SDA rats exhibited increased expression of auditory-cued fear conditioning, which specifically emerged as attenuated extinction of conditioned fear during the tone re-exposure test. The behavioral manifestations in SDA rats were associated with region-dependent changes in noradrenaline and GABA levels in key areas of the limbic system, but not with functional alterations in the hypothalamus-pituitary-adrenal grand stress. Our study demonstrates that innate anxiety and learned fear are both subjected to visceral modulation through abdominal vagal afferents, possibly via changing limbic neurotransmitter systems. These data add further weight to theories emphasizing an important role of afferent visceral signals in the regulation of emotional behavior.

  1. Simulation studies of vestibular macular afferent-discharge patterns using a new, quasi-3-D finite volume method

    NASA Technical Reports Server (NTRS)

    Ross, M. D.; Linton, S. W.; Parnas, B. R.

    2000-01-01

    A quasi-three-dimensional finite-volume numerical simulator was developed to study passive voltage spread in vestibular macular afferents. The method, borrowed from computational fluid dynamics, discretizes events transpiring in small volumes over time. The afferent simulated had three calyces with processes. The number of processes and synapses, and direction and timing of synapse activation, were varied. Simultaneous synapse activation resulted in shortest latency, while directional activation (proximal to distal and distal to proximal) yielded most regular discharges. Color-coded visualizations showed that the simulator discretized events and demonstrated that discharge produced a distal spread of voltage from the spike initiator into the ending. The simulations indicate that directional input, morphology, and timing of synapse activation can affect discharge properties, as must also distal spread of voltage from the spike initiator. The finite volume method has generality and can be applied to more complex neurons to explore discrete synaptic effects in four dimensions.

  2. Simulation studies of vestibular macular afferent-discharge patterns using a new, quasi-3-D finite volume method

    NASA Technical Reports Server (NTRS)

    Ross, M. D.; Linton, S. W.; Parnas, B. R.

    2000-01-01

    A quasi-three-dimensional finite-volume numerical simulator was developed to study passive voltage spread in vestibular macular afferents. The method, borrowed from computational fluid dynamics, discretizes events transpiring in small volumes over time. The afferent simulated had three calyces with processes. The number of processes and synapses, and direction and timing of synapse activation, were varied. Simultaneous synapse activation resulted in shortest latency, while directional activation (proximal to distal and distal to proximal) yielded most regular discharges. Color-coded visualizations showed that the simulator discretized events and demonstrated that discharge produced a distal spread of voltage from the spike initiator into the ending. The simulations indicate that directional input, morphology, and timing of synapse activation can affect discharge properties, as must also distal spread of voltage from the spike initiator. The finite volume method has generality and can be applied to more complex neurons to explore discrete synaptic effects in four dimensions.

  3. Localization of TRPV1 and P2X3 in unmyelinated and myelinated vagal afferents in the rat

    PubMed Central

    Hermes, Sam M.; Andresen, Michael C.; Aicher, Sue A.

    2016-01-01

    The vagus nerve is dominated by afferent fibers that convey sensory information from the viscera to the brain. Most vagal afferents are unmyelinated, slow-conducting C-fibers, while a smaller portion are myelinated, fast-conducting A-fibers. Vagal afferents terminate in the nucleus tractus solitarius (NTS) in the dorsal brainstem and regulate autonomic and respiratory reflexes, as well as ascending pathways throughout the brain. Vagal afferents form glutamatergic excitatory synapses with postsynaptic NTS neurons that are modulated by a variety of channels. The organization of vagal afferents with regard to fiber type and channels is not well understood. In the present study, we used tract tracing methods to identify distinct populations of vagal afferents to determine if key channels are selectively localized to specific groups of afferent fibers. Vagal afferents were labeled with isolectin B4 (IB4) or cholera toxin B (CTb) to detect unmyelinated and myelinated afferents, respectively. We find that TRPV1 channels are preferentially found in unmyelinated vagal afferents identified with IB4, with almost half of all IB4 fibers showing co-localization with TRPV1. These results agree with prior electrophysiological findings. In contrast, we found that the ATP-sensitive channel P2X3 is found in a subset of both myelinated and unmyelinated vagal afferent fibers. Specifically, 18% of IB4 and 23% of CTb afferents contained P2X3. The majority of CTb-ir vagal afferents contained neither channel. Since neither channel was found in all vagal afferents, there are likely further degrees of heterogeneity in the modulation of vagal afferent sensory input to the NTS beyond fiber type. PMID:26706222

  4. Vagal afferent stimulation as a cardioprotective strategy? Introducing the concept.

    PubMed

    Fallen, Ernest L

    2005-10-01

    The effect of vagal afferent signaling on cardioinhibition has been well known for over 130 years. Both experimental and clinical studies have demonstrated not only the potential adverse effect of unrestrained sympathoexcitation in high risk patients with ischemic heart disease but the potential for cardioprotection by programmed vagal activity. The vasodepressor and negative chronotropic effects of efferent vagal stimulation has been a cause for concern. However it is becoming clear that favorable shifts towards increased cardiac vagal modulation can be achieved by vagal afferent nerve stimulation. This phasic effect appears to operate though central medullary pathways. Thus by engaging vagal afferent fibers in humans there is the possibility that one can exploit the benefits of central cardioinhibition without adversely affecting heart rate, respiration or hemodynamics. This commentary explores the background and rationale for considering vagal afferent stimulation as a plausible cardioprotective strategy.

  5. Chicken (Gallus domesticus) inner ear afferents

    NASA Technical Reports Server (NTRS)

    Hara, H.; Chen, X.; Hartsfield, J. F.; Hara, J.; Martin, D.; Fermin, C. D.

    1998-01-01

    Neurons from the vestibular (VG) and the statoacoustic (SAG) ganglion of the chick (Gallus domesticus) were evaluated histologically and morphometrically. Embryos at stages 34 (E8 days), 39 (E13 days) and 44 (E18 days) were sacrificed and temporal bones microdissected. Specimens were embedded in JB-4 methacrylate plastic, and stained with a mixture of 0.2% toluidine blue (TB) and 0.1% basic Fuschin in 25% ethanol or with a mixture of 2% TB and 1% paraphenylenediamine (PDA) for axon and myelin measurement study. Images of the VIIIth nerve were produced by a V150 (R) color imaging system and the contour of 200-300 neuronal bodies (perikarya) was traced directly on a video screen with a mouse in real time. The cross-sectional area of VG perikarya was 67.29 micrometers2 at stage 34 (E8), 128.46 micrometers2 at stage 39 (E13) and 275.85 micrometers2 at stage 44 (E18). The cross-sectional area of SAG perikarya was 62.44 micrometers2 at stage 34 (E8), 102.05 micrometers2 at stage 39 (E13) and 165.02 micrometers2 at stage 44 (E18). A significant cross-sectional area increase of the VG perikarya between stage 39 (E13) and stage 44 (E18) was determined. We randomly measured the cross-sectional area of myelin and axoplasm of hatchling afferent nerves, and found a correspondence between axoplasmic and myelin cross-sectional area in the utricular, saccular and semicircular canal nerve branches of the nerve. The results suggest that the period between stage 34 (E8) and 39 (E13) is a critical period for afferent neuronal development. Physiological and behavioral vestibular properties of developing and maturing hatchlings may change accordingly. The results compliment previous work by other investigators and provide valuable anatomical measures useful to correlate physiological data obtained from stimulation of the whole nerve or its parts.

  6. Evidence that neurones accumulating amyloid can undergo lysis to form amyloid plaques in Alzheimer's disease.

    PubMed

    D'Andrea, M R; Nagele, R G; Wang, H Y; Peterson, P A; Lee, D H

    2001-02-01

    Amyloid has recently been shown to accumulate intracellularly in the brains of patients with Alzheimer's disease (AD), yet amyloid plaques are generally thought to arise from gradual extracellular amyloid deposition. We have investigated the possibility of a link between these two apparently conflicting observations. Immunohistochemistry and digital image analysis was used to examine the detailed localization of beta-amyloid(42) (A beta 42), a major component of amyloid plaques, in the entorhinal cortex and hippocampus of AD brains. A beta 42 first selectively accumulates in the perikaryon of pyramidal cells as discrete, granules that appear to be cathepsin D-positive, suggesting that they may represent lysosomes or lysosome-derived structures. AD brain regions abundantly populated with pyramidal neurones exhibiting excessive A beta 42 accumulations also contained evidence of neuronal lysis. Lysis of these A beta 42-burdened neurones apparently resulted in a local, radial dispersion of their cytoplasmic contents, including A beta 42 and lysosomal enzymes, into the surrounding extracellular space. A nuclear remnant was found at the dense core of many amyloid plaques, strengthening the idea that each amyloid plaque represents the end product of a single neuronal cell lysis. The inverse relationship between the amyloid plaque density and pyramidal cell density in the AD brain regions also supports this possibility, as does the close correlation between plaque size and the size of local pyramidal cells. Our findings suggest that excessive intracellular accumulation of A beta 42-positive material in pyramidal cells can result in cell lysis, and that cell lysis is an important source of amyloid plaques and neuronal loss in AD brains.

  7. Expression and function of the ion channel TRPA1 in vagal afferent nerves innervating mouse lungs.

    PubMed

    Nassenstein, Christina; Kwong, Kevin; Taylor-Clark, Thomas; Kollarik, Marian; Macglashan, Donald M; Braun, Armin; Undem, Bradley J

    2008-03-15

    Transient receptor potential (TRP) A1 and TRPM8 are ion channels that have been localized to afferent nociceptive nerves. These TRP channels may be of particular relevance to respiratory nociceptors in that they can be activated by various inhaled irritants and/or cold air. We addressed the hypothesis that mouse vagal sensory nerves projecting to the airways express TRPA1 and TRPM8 and that they can be activated via these receptors. Single cell RT-PCR analysis revealed that TRPA1 mRNA, but not TRPM8, is uniformly expressed in lung-labelled TRPV1-expressing vagal sensory neurons. Neither TRPA1 nor TRPM8 mRNA was expressed in TRPV1-negative neurons. Capsaicin-sensitive, but not capsaicin-insensitive, lung-specific neurons responded to cinnamaldehyde, a TRPA1 agonist, with increases in intracellular calcium. Menthol, a TRPM8 agonist, was ineffective at increasing cellular calcium in lung-specific vagal sensory neurons. Cinnamaldehyde also induced TRPA1-like inward currents (as measured by means of whole cell patch clamp recordings) in capsaicin-sensitive neurons. In an ex vivo vagal innervated mouse lung preparation, cinnamaldehyde evoked action potential discharge in mouse vagal C-fibres with a peak frequency similar to that observed with capsaicin. Cinnamaldehyde inhalation in vivo mimicked capsaicin in eliciting strong central-reflex changes in breathing pattern. Taken together, our results support the hypothesis that TRPA1, but not TRPM8, is expressed in vagal sensory nerves innervating the airways. TRPA1 activation provides a mechanism by which certain environmental stimuli may elicit action potential discharge in airway afferent C-fibres and the consequent nocifensor reflexes.

  8. GluA2-Containing AMPA Receptors Distinguish Ribbon-Associated from Ribbonless Afferent Contacts on Rat Cochlear Hair Cells123

    PubMed Central

    Martinez-Monedero, Rodrigo

    2016-01-01

    Abstract Mechanosensory hair cells release glutamate at ribbon synapses to excite postsynaptic afferent neurons, via AMPA-type ionotropic glutamate receptors (AMPARs). However, type II afferent neurons contacting outer hair cells in the mammalian cochlea were thought to differ in this respect, failing to show GluA immunolabeling and with many “ribbonless” afferent contacts. Here it is shown that antibodies to the AMPAR subunit GluA2 labeled afferent contacts below inner and outer hair cells in the rat cochlea, and that synaptic currents in type II afferents had AMPAR-specific pharmacology. Only half the postsynaptic densities of type II afferents that labeled for PSD-95, Shank, or Homer were associated with GluA2 immunopuncta or presynaptic ribbons, the “empty slots” corresponding to ribbonless contacts described previously. These results extend the universality of AMPAergic transmission by hair cells, and support the existence of silent afferent contacts. PMID:27257620

  9. Activation of TRPA1 on dural afferents: a potential mechanism of headache pain.

    PubMed

    Edelmayer, Rebecca M; Le, Larry N; Yan, Jin; Wei, Xiaomei; Nassini, Romina; Materazzi, Serena; Preti, Delia; Appendino, Giovanni; Geppetti, Pierangelo; Dodick, David W; Vanderah, Todd W; Porreca, Frank; Dussor, Gregory

    2012-09-01

    Activation of transient receptor potential ankyrin-1 (TRPA1) on meningeal nerve endings has been suggested to contribute to environmental irritant-induced headache, but this channel may also contribute to other forms of headache, such as migraine. The preclinical studies described here examined functional expression of TRPA1 on dural afferents and investigated whether activation of TRPA1 contributes to headache-like behaviors. Whole-cell patch-clamp recordings were performed in vitro with 2 TRPA1 agonists, mustard oil (MO), and the environmental irritant umbellulone (UMB) on dural-projecting trigeminal ganglion neurons. Application of MO and UMB to dural afferents produced TRPA1-like currents in approximately 42% and 38% of cells, respectively. By means of an established in vivo behavioral model of migraine-related allodynia, dural application of MO and UMB produced robust time-related tactile facial and hind paw allodynia that was attenuated by pretreatment with the TRPA1 antagonist HC-030031. Additionally, MO or UMB were applied to the dura, and exploratory activity was monitored for 30min with an automated open-field activity chamber. Dural MO and UMB decreased the number of vertical rearing episodes and the time spent rearing in comparison to vehicle-treated animals. This change in activity was prevented in rats pretreated with HC-030031 as well as sumatriptan, a clinically effective antimigraine agent. These data indicate that TRPA1 is expressed on a substantial fraction of dural afferents, and activation of meningeal TRPA1 produces behaviors consistent with those observed in patients during migraine attacks. Further, they suggest that activation of meningeal TRPA1 via endogenous or exogenous mechanisms can lead to afferent signaling and headache.

  10. A consensus layer V pyramidal neuron can sustain interpulse-interval coding

    PubMed Central

    Singh, Chandan; Levy, William B.

    2017-01-01

    In terms of a single neuron’s long-distance communication, interpulse intervals (IPIs) are an attractive alternative to rate and binary codes. As a proxy for an IPI, a neuron’s time-to-spike can be found in the biophysical and experimental intracellular literature. Using the current, consensus layer V pyramidal neuron, the present study examines the feasibility of IPI-coding and examines the noise sources that limit the information rate of such an encoding. In descending order of importance, the noise sources are (i) synaptic variability, (ii) sodium channel shot-noise, followed by (iii) thermal noise. The biophysical simulations allow the calculation of mutual information, which is about 3.0 bits/spike. More importantly, while, by any conventional definition, the biophysical model is highly nonlinear, the underlying function that relates input intensity to the defined output variable is linear. When one assumes the perspective of a neuron coding via first hitting-time, this result justifies a pervasive and simplifying assumption of computational modelers—that a class of cortical neurons can be treated as linearly additive, computational devices. PMID:28704450

  11. Cultured Cortical Neurons Can Perform Blind Source Separation According to the Free-Energy Principle

    PubMed Central

    Isomura, Takuya; Kotani, Kiyoshi; Jimbo, Yasuhiko

    2015-01-01

    Blind source separation is the computation underlying the cocktail party effect––a partygoer can distinguish a particular talker’s voice from the ambient noise. Early studies indicated that the brain might use blind source separation as a signal processing strategy for sensory perception and numerous mathematical models have been proposed; however, it remains unclear how the neural networks extract particular sources from a complex mixture of inputs. We discovered that neurons in cultures of dissociated rat cortical cells could learn to represent particular sources while filtering out other signals. Specifically, the distinct classes of neurons in the culture learned to respond to the distinct sources after repeating training stimulation. Moreover, the neural network structures changed to reduce free energy, as predicted by the free-energy principle, a candidate unified theory of learning and memory, and by Jaynes’ principle of maximum entropy. This implicit learning can only be explained by some form of Hebbian plasticity. These results are the first in vitro (as opposed to in silico) demonstration of neural networks performing blind source separation, and the first formal demonstration of neuronal self-organization under the free energy principle. PMID:26690814

  12. Cultured Cortical Neurons Can Perform Blind Source Separation According to the Free-Energy Principle.

    PubMed

    Isomura, Takuya; Kotani, Kiyoshi; Jimbo, Yasuhiko

    2015-12-01

    Blind source separation is the computation underlying the cocktail party effect--a partygoer can distinguish a particular talker's voice from the ambient noise. Early studies indicated that the brain might use blind source separation as a signal processing strategy for sensory perception and numerous mathematical models have been proposed; however, it remains unclear how the neural networks extract particular sources from a complex mixture of inputs. We discovered that neurons in cultures of dissociated rat cortical cells could learn to represent particular sources while filtering out other signals. Specifically, the distinct classes of neurons in the culture learned to respond to the distinct sources after repeating training stimulation. Moreover, the neural network structures changed to reduce free energy, as predicted by the free-energy principle, a candidate unified theory of learning and memory, and by Jaynes' principle of maximum entropy. This implicit learning can only be explained by some form of Hebbian plasticity. These results are the first in vitro (as opposed to in silico) demonstration of neural networks performing blind source separation, and the first formal demonstration of neuronal self-organization under the free energy principle.

  13. Impaired intestinal afferent nerve satiety signalling and vagal afferent excitability in diet induced obesity in the mouse

    PubMed Central

    Daly, Donna M; Park, Sung Jin; Valinsky, William C; Beyak, Michael J

    2011-01-01

    Abstract Gastrointestinal vagal afferents transmit satiety signals to the brain via both chemical and mechanical mechanisms. There is indirect evidence that these signals may be attenuated in obesity. We hypothesized that responses to satiety mediators and distension of the gut would be attenuated after induction of diet induced obesity. Obesity was induced by feeding a high fat diet (60% kcal from fat). Low fat fed mice (10% kcal from fat) served as a control. High fat fed mice were obese, with increased visceral fat, but were not hyperglycaemic. Recordings from jejunal afferents demonstrated attenuated responses to the satiety mediators cholecystokinin (CCK, 100 nm) and 5-hydroxytryptamine (5-HT, 10 μm), as was the response to low intensity jejunal distension, while responses to higher distension pressures were preserved. We performed whole cell patch clamp recordings on nodose ganglion neurons, both unlabelled, and those labelled by fast blue injection into the wall of the jejunum. The cell membrane of both labelled and unlabelled nodose ganglion neurons was less excitable in HFF mice, with an elevated rheobase and decreased number of action potentials at twice rheobase. Input resistance of HFF neurons was also significantly decreased. Calcium imaging experiments revealed reduced proportion of nodose ganglion neurons responding to CCK and 5-HT in obese mice. These results demonstrate a marked reduction in afferent sensitivity to satiety related stimuli after a chronic high fat diet. A major mechanism underlying this change is reduced excitability of the neuronal cell membrane. This may explain the development of hyperphagia when a high fat diet is consumed. Improving sensitivity of gastrointestinal afferent nerves may prove useful to limit food intake in obesity. PMID:21486762

  14. Differential chemosensory function and receptor expression of splanchnic and pelvic colonic afferents in mice

    PubMed Central

    Brierley, Stuart M; Carter, R; Jones, W; Xu, Linjing; Robinson, David R; Hicks, Gareth A; Gebhart, GF; Blackshaw, L Ashley

    2005-01-01

    Lumbar splanchnic (LSN) and sacral pelvic (PN) nerves convey different mechanosensory information from the colon to the spinal cord. Here we determined whether these pathways also differ in their chemosensitivity and receptor expression. Using an in vitro mouse colon preparation, individual primary afferents were tested with selective P2X and transient receptor potential vanilloid receptor 1 (TRPV1) receptor ligands. Afferent cell bodies in thoracolumbar and lumbosacral dorsal root ganglia (DRG) were retrogradely labelled from the colon and analysed for P2X3- and TRPV1-like immunoreactivity (LI). Forty per cent of LSN afferents responded to α,β-methylene adenosine 5′-triphosphate (α,β-meATP; 1 mm), an effect that was concentration dependent and reversed by the P2X antagonist pyridoxyl5-phosphate 6-azophenyl-2′,4′-disulphonic acid (PPADS) (100 μm). Significantly fewer PN afferents (7%) responded to α,β-meATP. Correspondingly, 36% of colonic thoracolumbar DRG neurones exhibited P2X3-LI compared with only 19% of colonic lumbosacral neurones. Capsaicin (3 μm) excited 61% of LSN afferents and 47% of PN afferents; 82% of thoracolumbar and 50% of lumbosacral colonic DRG neurones displayed TRPV1-LI. Mechanically insensitive afferents were recruited by α,β-meATP or capsaicin, and were almost exclusive to the LSN. Capsaicin-responsive LSN afferents displayed marked mechanical desensitization after responding to capsaicin, which did not occur in capsaicin-responsive PN afferents. Therefore, colonic LSN and PN pathways differ in their chemosensitivity to known noxious stimuli and their corresponding receptor expression. As these pathways relay information that may relate to symptoms in functional gastrointestinal disease, these results may have implications for the efficacy of therapies targeting receptor modulation. PMID:15946967

  15. Optogenetic Silencing of Nav1.8-Positive Afferents Alleviates Inflammatory and Neuropathic Pain123

    PubMed Central

    Daou, Ihab; Beaudry, Hélène; Ase, Ariel R.; Wieskopf, Jeffrey S.; Ribeiro-da-Silva, Alfredo; Mogil, Jeffrey S.

    2016-01-01

    Abstract We report a novel transgenic mouse model in which the terminals of peripheral nociceptors can be silenced optogenetically with high spatiotemporal precision, leading to the alleviation of inflammatory and neuropathic pain. Inhibitory archaerhodopsin-3 (Arch) proton pumps were delivered to Nav1.8+ primary afferents using the Nav1.8-Cre driver line. Arch expression covered both peptidergic and nonpeptidergic nociceptors and yellow light stimulation reliably blocked electrically induced action potentials in DRG neurons. Acute transdermal illumination of the hindpaws of Nav1.8-Arch+ mice significantly reduced mechanical allodynia under inflammatory conditions, while basal mechanical sensitivity was not affected by the optical stimulation. Arch-driven hyperpolarization of nociceptive terminals was sufficient to prevent channelrhodopsin-2 (ChR2)-mediated mechanical and thermal hypersensitivity in double-transgenic Nav1.8-ChR2+-Arch+mice. Furthermore, prolonged optical silencing of peripheral afferents in anesthetized Nav1.8-Arch+ mice led to poststimulation analgesia with a significant decrease in mechanical and thermal hypersensitivity under inflammatory and neuropathic conditions. These findings highlight the role of peripheral neuronal inputs in the onset and maintenance of pain hypersensitivity, demonstrate the plasticity of pain pathways even after sensitization has occurred, and support the involvement of Nav1.8+ afferents in both inflammatory and neuropathic pain. Together, we present a selective analgesic approach in which genetically identified subsets of peripheral sensory fibers can be remotely and optically inhibited with high temporal resolution, overcoming the compensatory limitations of genetic ablations. PMID:27022626

  16. Phase relation changes between the firings of alpha and gamma-motoneurons and muscle spindle afferents in the sacral micturition centre during continence functions in brain-dead human and patients with spinal cord injury.

    PubMed

    Schalow, G

    2010-01-01

    urinary bladder also 2 phase relations (less stable) existed per oscillation period of 110 ms in a functional unit between the APs of a sphincteric alpha-motoneuron, a fusimotor and a secondary spindle afferent fibre. The phase relations changed with time following stimulation of mainly somatic afferents. A second functional unit organized by phase related interactions was phase related to the first functional unit. 5. Following painful bladder catheter pulling, the parasympathetic division was transiently activated several times in the paraplegic. At times of activation of the parasympathetic division, 3 broad phase relations occurred within and between the two functional units, indicating that the parasympathetic division in the sacral micturition and defecation center channeled an additional input to the somatic oscillatory firing neuronal networks driving motoneurons which innervate the external bladder and/or anal sphincters. 6. It is conceivable that the mutual inhibitory action of detrusor and external bladder sphincter has the capacity to recover, if the functional neuronal organization of the sacral micturition center is improved in the direction of more stable phase relations between the firings of neurons and neuronal ensembles by natural coordinated afferent inputs from continence organs, supraspinal neurons, and functionally connected neuronal networks. For supraspinal control and improvement of neuronal organization some kinds of bulbo-spinal-bulbo pathways have to exist or to be reconstructed by regeneration. 7. It will be shown in a following article that the sacral micturition centre can be repaired after spinal cord injury by a functional reorganization and limited regeneration of the human spinal cord by administering coordination dynamics therapy.

  17. Response properties of gerbil otolith afferents to small angle pitch and roll tilts

    NASA Technical Reports Server (NTRS)

    Dickman, J. D.; Angelaki, D. E.; Correia, M. J.

    1991-01-01

    The responses from isolated single otolith afferent fibers were obtained to small angle sinusoidal pitch and roll tilts in anesthetized gerbils. The stimulus directions that produced the maximum (response vector) and minimum response sensitivities were determined for each otolith afferent, with response vectors for the units being spread throughout the horizontal plane, similar to those reported for other species. A breadth of tuning measure was derived, with narrowly tuned neurons responding maximally to stimulation in one direction and minimally along an orthogonal ('null') direction. Most (approximately 80%) otolith afferents are narrowly tuned, however, some fibers were broadly tuned responding significantly to stimulations in any direction in the horizontal plane. The number of broadly tuned otolith afferents (approximately 20%) differs significantly from the more substantial number of broadly tuned vestibular nuclei neurons (88%) recently reported in rats.

  18. Lipolysis sensation by white fat afferent nerves triggers brown fat thermogenesis.

    PubMed

    Garretson, John T; Szymanski, Laura A; Schwartz, Gary J; Xue, Bingzhong; Ryu, Vitaly; Bartness, Timothy J

    2016-08-01

    Metabolic challenges, such as a cold environment, stimulate sympathetic neural efferent activity to white adipose tissue (WAT) to drive lipolysis, thereby increasing the availability of free fatty acids as one source of fuel for brown adipose tissue (BAT) thermogenesis. WAT is also innervated by sensory nerve fibers that network to metabolic brain areas; moreover, activation of these afferents is reported to increase sympathetic nervous system outflow. However, the endogenous stimuli sufficient to drive WAT afferents during metabolic challenges as well as their functional relation to BAT thermogenesis remain unknown. We tested if local WAT lipolysis directly activates WAT afferent nerves, and then assessed whether this WAT sensory signal affected BAT thermogenesis in Siberian hamsters (Phodopus sungorus). 2-deoxyglucose, a sympathetic nervous system stimulant, caused β-adrenergic receptor dependent increases in inguinal WAT (IWAT) afferent neurophysiological activity. In addition, direct IWAT injections of the β3-AR agonist CL316,243 dose-dependently increased: 1) phosphorylation of IWAT hormone sensitive lipase, an indicator of SNS-stimulated lipolysis, 2) expression of the neuronal activation marker c-Fos in dorsal root ganglion neurons receiving sensory input from IWAT, and 3) IWAT afferent neurophysiological activity, an increase blocked by antilipolytic agent 3,5-dimethylpyrazole. Finally, we demonstrated that IWAT afferent activation by lipolysis triggers interscapular BAT thermogenesis through a neural link between these two tissues. These data suggest IWAT lipolysis activates local IWAT afferents triggering a neural circuit from WAT to BAT that acutely induces BAT thermogenesis.

  19. Vagal afferents sense meal-associated gastrointestinal and pancreatic hormones: mechanism and physiological role.

    PubMed

    Iwasaki, Yusaku; Yada, Toshihiko

    2012-12-01

    Some gastrointestinal and pancreatic hormones are potently secreted by meal intake and reduce food intake, therefore these hormones play a role in the meal-evoked satiety peptides. Previous reports have demonstrated that peripheral administration of these gastrointestinal or pancreatic hormones decrease feeding and the anorectic effects are abolished by lesions of vagal afferent nerves using surgical or chemical protocols, indicative of the involvement of the vagal afferents. Vagal afferent nerves link between several peripheral organs and the nucleus tractus solitarius of the brainstem. The present review focuses on cholecystokinin, peptide YY(3-36), pancreatic polypeptide, and nesfatin-1 released from endocrine cells of the gut and pancreas. These hormonal peptides directly act on and increase cytosolic Ca(2+) in vagal afferent nodose ganglion neurons and finally suppress food intake via vagal afferents. Therefore, peripheral terminals of vagal afferents could sense gastrointestinal and pancreatic hormones and regulate food intake. Here, we review how the vagal afferent neurons sense a variety of gastrointestinal and pancreatic hormones and discuss its physiological significance in regulation of feeding.

  20. Vestibular primary afferent responses to sound and vibration in the guinea pig.

    PubMed

    Curthoys, Ian S; Vulovic, Vedran

    2011-05-01

    This study tested whether air-conducted sound and bone-conducted vibration activated primary vestibular afferent neurons and whether, at low levels, such stimuli are specific to particular vestibular sense organs. In response to 500 Hz bone-conducted vibration or 500 Hz air-conducted sound, primary vestibular afferent neurons in the guinea pig fall into one of two categories--some neurons show no measurable change in firing up to 2 g peak-to-peak or 140 dB SPL. These are semicircular canal neurons (regular or irregular) and regular otolith neurons. In sharp contrast, otolith irregular neurons show high sensitivity: a steep increase in firing as stimulus intensity is increased. These sensitive neurons typically, but not invariably, were activated by both bone-conducted vibration and air-conducted sound, they originate from both the utricular and saccular maculae, and their sensitivity underpins new clinical tests of otolith function.

  1. Selective cortical control of information flow through different intraspinal collaterals of the same muscle afferent fiber.

    PubMed

    Eguibar, J R; Quevedo, J; Jiménez, I; Rudomin, P

    1994-04-18

    We have analyzed in the anesthetized cat the effects of electrical stimulation of the cerebral cortex on the intraspinal threshold of two collaterals belonging to the same muscle spindle or tendon organ afferent fiber. The results obtained provide, for the first time, direct evidence showing that the motor cortex is able to modify, in a highly selective manner, the synaptic effectiveness of individual collaterals of the same primary afferent fiber. This presynaptic control could function as a mechanism that allows funneling of information to specific groups of spinal neurons in the presence of extensive intraspinal branching of the afferent fibers.

  2. Persistence of PAD and presynaptic inhibition of muscle spindle afferents after peripheral nerve crush.

    PubMed

    Enríquez-Denton, M; Manjarrez, E; Rudomin, P

    2004-11-19

    Two to twelve weeks after crushing a muscle nerve, still before the damaged afferents reinnervate the muscle receptors, conditioning stimulation of group I fibers from flexor muscles depolarizes the damaged afferents [M. Enriquez, I. Jimenez, P. Rudomin, Changes in PAD patterns of group I muscle afferents after a peripheral nerve crush. Exp. Brain Res., 107 (1996), 405-420]. It is not known, however, if this primary afferent depolarization (PAD) is indeed related to presynaptic inhibition. We now show in the cat that 2-12 weeks after crushing the medial gastrocnemius nerve (MG), conditioning stimulation of group I fibers from flexors increases the excitability of the intraspinal terminals of both the intact lateral gastrocnemius plus soleus (LGS) and of the previously damaged MG fibers ending in the motor pool, because of PAD. The PAD is associated with the depression of the pre- and postsynaptic components of the extracellular field potentials (EFPs) evoked in the motor pool by stimulation of either the intact LGS or of the previously damaged MG nerves. These observations indicate, in contrast to what has been reported for crushed cutaneous afferents [K.W. Horch, J.W. Lisney, Changes in primary afferent depolarization of sensory neurones during peripheral nerve regeneration in the cat, J. Physiol., 313 (1981), 287-299], that shortly after damaging their peripheral axons, the synaptic efficacy of group I spindle afferents remains under central control. Presynaptic inhibitory mechanisms could be utilized to adjust the central actions of muscle afferents not fully recovered from peripheral lesions.

  3. Attention can increase or decrease spike count correlations between pairs of neurons depending on their role in a task

    PubMed Central

    Ruff, Douglas A.; Cohen, Marlene R.

    2015-01-01

    Visual attention enhances the responses of visual neurons that encode the attended location. Several recent studies showed that attention also decreases correlations between fluctuations in the responses of pairs of neurons (termed spike count correlation or rSC). The previous results are consistent with two hypotheses. Attention–related changes in rate and rSC might be linked (perhaps through a common mechanism), so that attention always decreases rSC. Alternately, attention might either increase or decrease rSC, possibly depending on the role the neurons play in the behavioral task. We recorded simultaneously from dozens of neurons in area V4 while monkeys performed a discrimination task. We found strong evidence in favor of the second hypothesis, showing that attention can flexibly increase or decrease correlations, depending on whether the neurons provide evidence for the same or opposite perceptual decisions. These results place important constraints on models of the neuronal mechanisms underlying cognitive factors. PMID:25306550

  4. External QX-314 inhibits evoked cranial primary afferent synaptic transmission independent of TRPV1

    PubMed Central

    Largent-Milnes, Tally M.; Fawley, Jessica A.; Andresen, Michael C.

    2014-01-01

    The cell-impermeant lidocaine derivative QX-314 blocks sodium channels via intracellular mechanisms. In somatosensory nociceptive neurons, open transient receptor potential vanilloid type 1 (TRPV1) receptors provide a transmembrane passageway for QX-314 to produce long-lasting analgesia. Many cranial primary afferents express TRPV1 at synapses on neurons in the nucleus of the solitary tract and caudal trigeminal nucleus (Vc). Here, we investigated whether QX-314 interrupts neurotransmission from primary afferents in rat brain-stem slices. Shocks to the solitary tract (ST) activated highly synchronous evoked excitatory postsynaptic currents (ST-EPSCs). Application of 300 μM QX-314 increased the ST-EPSC latency from TRPV1+ ST afferents, but, surprisingly, it had similar actions at TRPV1− ST afferents. Continued exposure to QX-314 blocked evoked ST-EPSCs at both afferent types. Neither the time to onset of latency changes nor the time to ST-EPSC failure differed between responses for TRPV1+ and TRPV1− inputs. Likewise, the TRPV1 antagonist capsazepine failed to prevent the actions of QX-314. Whereas QX-314 blocked ST-evoked release, the frequency and amplitude of spontaneous EPSCs remained unaltered. In neurons exposed to QX-314, intracellular current injection evoked action potentials suggesting a presynaptic site of action. QX-314 acted similarly at Vc neurons to increase latency and block EPSCs evoked from trigeminal tract afferents. Our results demonstrate that QX-314 blocked nerve conduction in cranial primary afferents without interrupting the glutamate release mechanism or generation of postsynaptic action potentials. The TRPV1 independence suggests that QX-314 either acted extracellularly or more likely entered these axons through an undetermined pathway common to all cranial primary afferents. PMID:25185814

  5. Dual Modulation of Nociception and Cardiovascular Reflexes during Peripheral Ischemia through P2Y1 Receptor-Dependent Sensitization of Muscle Afferents.

    PubMed

    Queme, Luis F; Ross, Jessica L; Lu, Peilin; Hudgins, Renita C; Jankowski, Michael P

    2016-01-06

    the development of pain-related behaviors during ischemia. At the same time, under these pathological conditions, the changes in muscle sensory neurons appear to modulate an increase in mean systemic blood pressure after exercise. This is the first report of the potential peripheral mechanisms by which group III/IV muscle afferents can dually regulate muscle nociception and the exercise pressor reflex. These data provide evidence related to the potential underlying reasons for the comorbidity of muscle pain and altered sympathetic reflexes in disease states that are based in problems with peripheral perfusion and may indicate a potential target for therapeutic intervention. Copyright © 2016 the authors 0270-6474/16/360019-12$15.00/0.

  6. Inhibition of Repulsive Guidance Molecule, RGMa, Increases Afferent Synapse Formation with Auditory Hair Cells

    PubMed Central

    Brugeaud, Aurore; Tong, Mingjie; Luo, Li; Edge, Albert S.B.

    2017-01-01

    The peripheral fibers that extend from auditory neurons to hair cells are sensitive to damage, and replacement of the fibers and their afferent synapse with hair cells would be of therapeutic interest. Here, we show that RGMa, a repulsive guidance molecule previously shown to play a role in the development of the chick visual system, is expressed in the developing, newborn, and mature mouse inner ear. The effect of RGMa on synaptogenesis between afferent neurons and hair cells, from which afferent connections had been removed, was assessed. Contact of neural processes with hair cells and elaboration of postsynaptic densities at sites of the ribbon synapse were increased by treatment with a blocking antibody to RGMa, and pruning of auditory fibers to achieve the mature branching pattern of afferent neurons was accelerated. Inhibition by RGMa could thus explain why auditory neurons have a low capacity to regenerate peripheral processes: postnatal spiral ganglion neurons retain the capacity to send out processes that respond to signals for synapse formation, but expression of RGMa postnatally appears to be detrimental to regeneration of afferent hair cell innervation and antagonizes synaptogenesis. Increased synaptogenesis after inhibition of RGMa suggests that manipulation of guidance or inhibitory factors may provide a route to increase formation of new synapses at deafferented hair cells. PMID:24123853

  7. Cells from the adult corneal stroma can be reprogrammed to a neuron-like cell using exogenous growth factors

    SciTech Connect

    Greene, Carol Ann Chang, Chuan-Yuan; Fraser, Cameron J.; Nelidova, Dasha E.; Chen, Jing A.; Lim, Angela; Brebner, Alex; McGhee, Jennifer; Sherwin, Trevor; Green, Colin R.

    2014-03-10

    Cells thought to be stem cells isolated from the cornea of the eye have been shown to exhibit neurogenic potential. We set out to uncover the identity and location of these cells within the cornea and to elucidate their neuronal protein and gene expression profile during the process of switching to a neuron-like cell. Here we report that every cell of the adult human and rat corneal stroma is capable of differentiating into a neuron-like cell when treated with neurogenic differentiation specifying growth factors. Furthermore, the expression of genes regulating neurogenesis and mature neuronal structure and function was increased. The switch from a corneal stromal cell to a neuron-like cell was also shown to occur in vivo in intact corneas of living rats. Our results clearly indicate that lineage specifying growth factors can affect changes in the protein and gene expression profiles of adult cells, suggesting that possibly many adult cell populations can be made to switch into another type of mature cell by simply modifying the growth factor environment. - Highlights: • Adult corneal stromal cells can differentiated into neuron-like cells. • Neuronal specification of the adult stromal cell population is stochastic. • Neuronal specification in an adult cell population can be brought about by growth factors.

  8. Afferent and motoneuron activity in response to single neuromast stimulation in the posterior lateral line of larval zebrafish

    PubMed Central

    Haehnel-Taguchi, Melanie; Akanyeti, Otar

    2014-01-01

    The lateral line system of fishes contains mechanosensory receptors along the body surface called neuromasts, which can detect water motion relative to the body. The ability to sense flow informs many behaviors, such as schooling, predator avoidance, and rheotaxis. Here, we developed a new approach to stimulate individual neuromasts while either recording primary sensory afferent neuron activity or swimming motoneuron activity in larval zebrafish (Danio rerio). Our results allowed us to characterize the transfer functions between a controlled lateral line stimulus, its representation by primary sensory neurons, and its subsequent behavioral output. When we deflected the cupula of a neuromast with a ramp command, we found that the connected afferent neuron exhibited an adapting response which was proportional in strength to deflection velocity. The maximum spike rate of afferent neurons increased sigmoidally with deflection velocity, with a linear range between 0.1 and 1.0 μm/ms. However, spike rate did not change when the cupula was deflected below 8 μm, regardless of deflection velocity. Our findings also reveal an unexpected sensitivity in the larval lateral line system: stimulation of a single neuromast could elicit a swimming response which increased in reliability with increasing deflection velocities. At high deflection velocities, we observed that lateral line evoked swimming has intermediate values of burst frequency and duty cycle that fall between electrically evoked and spontaneous swimming. An understanding of the sensory capabilities of a single neuromast will help to build a better picture of how stimuli are encoded at the systems level and ultimately translated into behavior. PMID:24966296

  9. Cold-Sensitive Corneal Afferents Respond to a Variety of Ocular Stimuli Central to Tear Production: Implications for Dry Eye Disease

    PubMed Central

    Meng, Ian D.

    2010-01-01

    Purpose. To investigate the response characteristics of the corneal afferents that detect ocular conditions critical to the activation of the “afferent limb” of the lacrimation reflex. Methods. In isoflurane-anesthetized male rats, trigeminal ganglia were explored extracellularly in vivo to identify the corneal neurons that can be activated by ocular stimuli important to lacrimation. After verifying their receptive field loci to be restricted to the cornea, neural response properties were characterized with a variety of stimuli, such as drying and wetting of the cornea, by applying and removing artificial tears, temperature changes (35°C–15°C and 39°C–51°C), menthol (10–100 μM), and hyperosmolar solutions (NaCl, sucrose; 297-3014 mOsm), applied to the ocular surface. Results. A specific type of corneal afferent was identified that responded to drying of the ocular surface. These neurons were classified as innocuous “cold” thermoreceptors by their responses to steady state and dynamic temperature changes applied to the cornea. In addition to drying and slight cooling (<1°C) of the corneal surface, these neurons were excited by evaporation of tears from the ocular surface and hyperosmolar tears. Moreover, these neurons were activated by noxious thermal stimulation and menthol applied to the corneal surface. Conclusions. These results demonstrate that innocuous “cold” cornea thermoreceptors are activated by drying of the ocular surface and hyperosmotic solutions, conditions that are consistent with a role in tear production. The authors hypothesize that the dysfunction of these corneal afferents and the lacrimation reflex pathway they activate lead to some forms of dry eye disease. PMID:20335617

  10. Genetic Tracing of Nav1.8-Expressing Vagal Afferents in the Mouse

    PubMed Central

    Gautron, Laurent; Sakata, Ichiro; Udit, Swalpa; Zigman, Jeffrey M.; Wood, John N.; Elmquist, Joel K.

    2012-01-01

    Nav1.8 is a tetrodotoxin-resistant sodium channel present in large subsets of peripheral sensory neurons, including both spinal and vagal afferents. In spinal afferents, Nav1.8 plays a key role in signaling different types of pain. Little is known, however, about the exact identity and role of Nav1.8-expressing vagal neurons. Here we generated mice with restricted expression of tdTomato fluorescent protein in all Nav1.8-expressing afferent neurons. As a result, intense fluorescence was visible in the cell bodies, central relays, and sensory endings of these neurons, revealing the full extent of their innervation sites in thoracic and abdominal viscera. For instance, vagal and spinal Nav1.8-expressing endings were seen clearly within the gastrointestinal mucosa and myenteric plexus, respectively. In the gastrointestinal muscle wall, labeled endings included a small subset of vagal tension receptors but not any stretch receptors. We also examined the detailed inner-vation of key metabolic tissues such as liver and pancreas and evaluated the anatomical relationship of Nav1.8-expressing vagal afferents with select enteroendocrine cells (i.e., ghrelin, glucagon, GLP-1). Specifically, our data revealed the presence of Nav1.8-expressing vagal afferents in several metabolic tissues and varying degrees of proximity between Nav1.8-expressing mucosal afferents and enteroendocrine cells, including apparent neuroendocrine apposition. In summary, this study demonstrates the power and versatility of the Cre-LoxP technology to trace identified visceral afferents, and our data suggest a previously unrecognized role for Nav1.8-expressing vagal neurons in gastrointestinal functions. PMID:21618224

  11. Probabilistic inference in discrete spaces can be implemented into networks of LIF neurons

    PubMed Central

    Probst, Dimitri; Petrovici, Mihai A.; Bytschok, Ilja; Bill, Johannes; Pecevski, Dejan; Schemmel, Johannes; Meier, Karlheinz

    2015-01-01

    The means by which cortical neural networks are able to efficiently solve inference problems remains an open question in computational neuroscience. Recently, abstract models of Bayesian computation in neural circuits have been proposed, but they lack a mechanistic interpretation at the single-cell level. In this article, we describe a complete theoretical framework for building networks of leaky integrate-and-fire neurons that can sample from arbitrary probability distributions over binary random variables. We test our framework for a model inference task based on a psychophysical phenomenon (the Knill-Kersten optical illusion) and further assess its performance when applied to randomly generated distributions. As the local computations performed by the network strongly depend on the interaction between neurons, we compare several types of couplings mediated by either single synapses or interneuron chains. Due to its robustness to substrate imperfections such as parameter noise and background noise correlations, our model is particularly interesting for implementation on novel, neuro-inspired computing architectures, which can thereby serve as a fast, low-power substrate for solving real-world inference problems. PMID:25729361

  12. Probabilistic inference in discrete spaces can be implemented into networks of LIF neurons.

    PubMed

    Probst, Dimitri; Petrovici, Mihai A; Bytschok, Ilja; Bill, Johannes; Pecevski, Dejan; Schemmel, Johannes; Meier, Karlheinz

    2015-01-01

    The means by which cortical neural networks are able to efficiently solve inference problems remains an open question in computational neuroscience. Recently, abstract models of Bayesian computation in neural circuits have been proposed, but they lack a mechanistic interpretation at the single-cell level. In this article, we describe a complete theoretical framework for building networks of leaky integrate-and-fire neurons that can sample from arbitrary probability distributions over binary random variables. We test our framework for a model inference task based on a psychophysical phenomenon (the Knill-Kersten optical illusion) and further assess its performance when applied to randomly generated distributions. As the local computations performed by the network strongly depend on the interaction between neurons, we compare several types of couplings mediated by either single synapses or interneuron chains. Due to its robustness to substrate imperfections such as parameter noise and background noise correlations, our model is particularly interesting for implementation on novel, neuro-inspired computing architectures, which can thereby serve as a fast, low-power substrate for solving real-world inference problems.

  13. Effects of antidromic discharges in crayfish primary afferents.

    PubMed

    Cattaert, Daniel; Bévengut, Michelle

    2002-10-01

    Contrary to orthodromic spikes that are generated in sensory organs and conveyed to CNS, antidromic spikes are generated in the axon terminals of the sensory neurons within the CNS and are conveyed to the peripheral sensory organ. Antidromic discharges are observed in primary afferent neurons of both vertebrates and invertebrates and seem to be related to the rhythmic activity of central neural networks. In this study, we analyzed the effect of antidromic discharges on the sensory activity of a leg proprioceptor in in vitro preparations of the crayfish CNS. Intracellular microelectrodes were used both to record the orthodromic spikes and to elicit antidromic spikes by injecting squares pulses of depolarizing current at various frequencies. Experiments were performed on the three types of identified sensory afferents (tonic, phasotonic, and phasic). The main results showed a reduction of the firing frequency of the orthodromic activity in 82% of the tested afferents. In tonic afferents, during their occurrences and according to their frequency, antidromic spikes or bursts reduced or suppressed the orthodromic activity. Following their terminations, they also induced a silent period and a gradual recovery of the orthodromic activity, both of which increased as the duration and the frequency of the antidromic bursts increased. In phasotonic and phasic afferents, antidromic bursts reduced or suppressed the phasic responses as their frequency and durations increased. In phasotonic afferents, if elicited prior to the movements, long-duration bursts with increasing frequency reduced more rapidly the tonic background activity than the phasic one whereas short-duration bursts at high frequency produced strong decreases of both. The effect of antidromic bursts accumulated when they are repetitively elicited. Antidromic bursts induced a much larger decrease of the sensory activity than adaptation alone. The occurrences of antidromic spikes or bursts may have a functional role

  14. Dichotomizing unmyelinated afferents supplying pelvic viscera and perineum are rare in the sacral segments of the cat.

    PubMed

    Häbler, H J; Jänig, W; Koltzenburg, M

    1988-11-22

    We have tested the hypothesis that referred pain of pelvic viscera is elicited by dichotomizing branches of unmyelinated primary afferents projecting via the pelvic nerve to the viscera and through the pudendal nerve to the perineum where pelvic pain is commonly referred to. Using neurophysiological techniques 588 unmyelinated single units projecting into either nerve were recorded in the ventral (n = 228) and dorsal (n = 360) root S2. In each sample only one neurone sent an axon into both nerves. Thus, dichotomizing afferents account for less than 0.5% of the afferent neurones and appear to be an unlikely explanation for referred pain in this body area.

  15. Gut chemosensing: interactions between gut endocrine cells and visceral afferents.

    PubMed

    Raybould, Helen E

    2010-02-16

    Chemosensing in the gastrointestinal tract is less well understood than many aspects of gut mechanosensitivity; however, it is important in the overall function of the GI tract and indeed the organism as a whole. Chemosensing in the gut represents a complex interplay between the function of enteroendocrine (EEC) cells and visceral (primarily vagal) afferent neurons. In this brief review, I will concentrate on a new data on endocrine cells in chemosensing in the GI tract, in particular on new findings on glucose-sensing by gut EEC cells and the importance of incretin peptides and vagal afferents in glucose homeostasis, on the role of G protein coupled receptors in gut chemosensing, and on the possibility that gut endocrine cells may be involved in the detection of a luminal constituent other than nutrients, the microbiota. The role of vagal afferent pathways as a downstream target of EEC cell products will be considered and, in particular, exciting new data on the plasticity of the vagal afferent pathway with respect to expression of receptors for GI hormones and how this may play a role in energy homeostasis will also be discussed.

  16. Influences of neck afferents on sympathetic and respiratory nerve activity.

    PubMed

    Bolton, P S; Kerman, I A; Woodring, S F; Yates, B J

    1998-11-15

    It is well established that the vestibular system influences the sympathetic nervous system and the respiratory system; presumably, vestibulosympathetic and vestibulorespiratory responses participate in maintaining stable blood pressure and blood oxygenation during movement and changes in posture. Many brainstem neurons that generate vestibulospinal reflexes integrate signals from the labyrinth and neck muscles to distinguish between head movements on a stable body and whole body movements. In the present study, responses were recorded from the splanchnic (sympathetic), hypoglossal (inspiratory) and abdominal (expiratory) nerves during stimulation of the C2 dorsal root ganglion or C2 or C3 nerve branches innervating dorsal neck muscles. Stimulation of neck afferents using low current intensities, in many cases less than twice the threshold for producing an afferent volley recordable from the cord dorsum, elicited changes in sympathetic and respiratory nerve activity. These data suggest that head rotation on a stable body would elicit both cervical and vestibular inputs to respiratory motoneurons and sympathetic preganglionic neurons. The effects of cervical afferent stimulation on abdominal, splanchnic and hypoglossal nerve activity were not abolished by transection of the brainstem caudal to the vestibular nuclei; thus, pathways in addition to those involving the vestibular nuclei are involved in relaying cervical inputs to sympathetic preganglionic neurons and respiratory motoneurons. Transection of the C1-3 dorsal roots enhanced responses of the splanchnic and abdominal nerves to pitch head rotations on a fixed body but diminished responses of the hypoglossal nerve. Thus, neck and vestibular afferent influences on activity of respiratory pump muscles and sympathetic outflow appear to be antagonistic, so that responses will occur during whole body movements but not head movements on a stationary trunk. In contrast, neck and vestibular influences on tongue

  17. Interneurones in pathways from group II muscle afferents in sacral segments of the feline spinal cord.

    PubMed

    Jankowska, E; Riddell, J S

    1994-03-15

    1. Properties of dorsal horn interneurones that process information from group II muscle afferents in the sacral segments of the spinal cord have been investigated in the cat using both intracellular and extracellular recording. 2. The interneurones were excited by group II muscle afferents and cutaneous afferents but not by group I muscle afferents. They were most effectively excited by group II afferents of the posterior biceps, semitendinosus, triceps surae and quadriceps muscle nerves and by cutaneous afferents running in the cutaneous femoris, pudendal and sural nerves. The earliest synaptic actions were evoked monosynaptically and were very tightly locked to the stimuli. 3. EPSPs evoked monosynaptically by group II muscle afferents and cutaneous afferents of the most effective nerves were often cut short by disynaptic IPSPs. As a consequence of this negative feedback the EPSPs gave rise to single or double spike potentials and only a minority of interneurones responded with repetitive discharges. However, the neurones that did respond repetitively did so at a very high frequency of discharges (0.8-1.2 ms intervals between the first 2-3 spikes). 4. Sacral dorsal horn group II interneurones do not appear to act directly upon motoneurones because: (i) these interneurones are located outside the area within which last order interneurones have previously been found and (ii) the latencies of PSPs evoked in motoneurones by stimulation of the posterior biceps and semitendinosus, cutaneous femoris and pudendal nerves (i.e. the main nerves providing input to sacral interneurones) are compatible with a tri- but not with a disynaptic coupling. Spatial facilitation of EPSPs and IPSPs following synchronous stimulation of group II and cutaneous afferents of these nerves shows, however, that sacral interneurones may induce excitation or inhibition of motoneurones via other interneurones. 5. Comparison of the properties of group II interneurones in the sacral segments with

  18. Neuronal mechanism for acute mechanosensitivity in tactile-foraging waterfowl

    PubMed Central

    Schneider, Eve R.; Mastrotto, Marco; Laursen, Willem J.; Schulz, Vincent P.; Goodman, Jena B.; Funk, Owen H.; Gallagher, Patrick G.; Gracheva, Elena O.; Bagriantsev, Sviatoslav N.

    2014-01-01

    Relying almost exclusively on their acute sense of touch, tactile-foraging birds can feed in murky water, but the cellular mechanism is unknown. Mechanical stimuli activate specialized cutaneous end organs in the bill, innervated by trigeminal afferents. We report that trigeminal ganglia (TG) of domestic and wild tactile-foraging ducks exhibit numerical expansion of large-diameter mechanoreceptive neurons expressing the mechano-gated ion channel Piezo2. These features are not found in visually foraging birds. Moreover, in the duck, the expansion of mechanoreceptors occurs at the expense of thermosensors. Direct mechanical stimulation of duck TG neurons evokes high-amplitude depolarizing current with a low threshold of activation, high signal amplification gain, and slow kinetics of inactivation. Together, these factors contribute to efficient conversion of light mechanical stimuli into neuronal excitation. Our results reveal an evolutionary strategy to hone tactile perception in vertebrates at the level of primary afferents. PMID:25246547

  19. Neuronal mechanism for acute mechanosensitivity in tactile-foraging waterfowl.

    PubMed

    Schneider, Eve R; Mastrotto, Marco; Laursen, Willem J; Schulz, Vincent P; Goodman, Jena B; Funk, Owen H; Gallagher, Patrick G; Gracheva, Elena O; Bagriantsev, Sviatoslav N

    2014-10-14

    Relying almost exclusively on their acute sense of touch, tactile-foraging birds can feed in murky water, but the cellular mechanism is unknown. Mechanical stimuli activate specialized cutaneous end organs in the bill, innervated by trigeminal afferents. We report that trigeminal ganglia (TG) of domestic and wild tactile-foraging ducks exhibit numerical expansion of large-diameter mechanoreceptive neurons expressing the mechano-gated ion channel Piezo2. These features are not found in visually foraging birds. Moreover, in the duck, the expansion of mechanoreceptors occurs at the expense of thermosensors. Direct mechanical stimulation of duck TG neurons evokes high-amplitude depolarizing current with a low threshold of activation, high signal amplification gain, and slow kinetics of inactivation. Together, these factors contribute to efficient conversion of light mechanical stimuli into neuronal excitation. Our results reveal an evolutionary strategy to hone tactile perception in vertebrates at the level of primary afferents.

  20. Single tactile afferents outperform human subjects in a vibrotactile intensity discrimination task.

    PubMed

    Arabzadeh, Ehsan; Clifford, Colin W G; Harris, Justin A; Mahns, David A; Macefield, Vaughan G; Birznieks, Ingvars

    2014-11-15

    We simultaneously compared the sensitivity of single primary afferent neurons supplying the glabrous skin of the hand and the psychophysical amplitude discrimination thresholds in human subjects for a set of vibrotactile stimuli delivered to the receptive field. All recorded afferents had a dynamic range narrower than the range of amplitudes across which the subjects could discriminate. However, when the vibration amplitude was chosen to be within the steepest part of the afferent's stimulus-response function the response of single afferents, defined as the spike count over the vibration duration (500 ms), was often more sensitive in discriminating vibration amplitude than the perceptual judgment of the participants. We quantified how the neuronal performance depended on the integration window: for short windows the neuronal performance was inferior to the performance of the subject. The neuronal performance progressively improved with increasing spike count duration and reached a level significantly above that of the subjects when the integration window was 250 ms or longer. The superiority in performance of individual neurons over observers could reflect a nonoptimal integration window or be due to the presence of noise between the sensory periphery and the cortical decision stage. Additionally, it could indicate that the range of perceptual sensitivity comes at the cost of discrimination through pooling across neurons with different response functions.

  1. Can Exercise Make You Smarter, Happier, and Have More Neurons? A Hormetic Perspective

    PubMed Central

    Gradari, Simona; Pallé, Anna; McGreevy, Kerry R.; Fontán-Lozano, Ángela; Trejo, José L.

    2016-01-01

    Exercise can make you smarter, happier and have more neurons depending on the dose (intensity) of the training program. It is well recognized that exercise protocols induce both positive and negative effects depending on the intensity of the exercise, among other key factors, a process described as a hormetic-like biphasic dose-response. However, no evidences have been reported till very recently about the biphasic response of some of the potential mediators of the exercise-induced actions. This hypothesis and theory will focus on the adult hippocampal neurogenesis (AHN) as a putative physical substrate for hormesis responses to exercise in the context of exercise-induced actions on cognition and mood, and on the molecular pathways which might potentially be mediating these actions. PMID:27013955

  2. Altered Nociceptive Neuronal Circuits After Neonatal Peripheral Inflammation

    NASA Astrophysics Data System (ADS)

    Ruda, M. A.; Ling, Qing-Dong; Hohmann, Andrea G.; Peng, Yuan Bo; Tachibana, Toshiya

    2000-07-01

    Nociceptive neuronal circuits are formed during embryonic and postnatal times when painful stimuli are normally absent or limited. Today, medical procedures for neonates with health risks can involve tissue injury and pain for which the long-term effects are unknown. To investigate the impact of neonatal tissue injury and pain on development of nociceptive neuronal circuitry, we used an animal model of persistent hind paw peripheral inflammation. We found that, as adults, these animals exhibited spinal neuronal circuits with increased input and segmental changes in nociceptive primary afferent axons and altered responses to sensory stimulation.

  3. Double-stranded RNA made in C. elegans neurons can enter the germline and cause transgenerational gene silencing

    PubMed Central

    Devanapally, Sindhuja; Ravikumar, Snusha; Jose, Antony M.

    2015-01-01

    An animal that can transfer gene-regulatory information from somatic cells to germ cells may be able to communicate changes in the soma from one generation to the next. In the worm Caenorhabditis elegans, expression of double-stranded RNA (dsRNA) in neurons can result in the export of dsRNA-derived mobile RNAs to other distant cells. Here, we show that neuronal mobile RNAs can cause transgenerational silencing of a gene of matching sequence in germ cells. Consistent with neuronal mobile RNAs being forms of dsRNA, silencing of target genes that are expressed either in somatic cells or in the germline requires the dsRNA-selective importer SID-1. In contrast to silencing in somatic cells, which requires dsRNA expression in each generation, silencing in the germline is heritable after a single generation of exposure to neuronal mobile RNAs. Although initiation of inherited silencing within the germline requires SID-1, a primary Argonaute RDE-1, a secondary Argonaute HRDE-1, and an RNase D homolog MUT-7, maintenance of inherited silencing is independent of SID-1 and RDE-1, but requires HRDE-1 and MUT-7. Inherited silencing can persist for >25 generations in the absence of the ancestral source of neuronal dsRNA. Therefore, our results suggest that sequence-specific regulatory information in the form of dsRNA can be transferred from neurons to the germline to cause transgenerational silencing. PMID:25646479

  4. Differentiation of sympathetic neurones projecting in the hypogastric nerves in terms of their discharge patterns in cats.

    PubMed Central

    Jänig, W; Schmidt, M; Schnitzler, A; Wesselmann, U

    1991-01-01

    1. Sympathetic neurones that project in the hypogastric nerves (HGNs) were analysed for their discharge patterns in anaesthetized cats. The activity of these neurones was recorded from their axons. Afferents from the pelvic organs (urinary bladder, colon, anal canal), and arterial baro-and chemoreceptors were stimulated. 150 postganglionic and nine preganglionic neurones were analysed. 2. The postganglionic neurones exhibited reflex patterns that were typical of visceral vasoconstrictor neurones and various types of motility-regulating neurones. Most motility-regulating neurones and all visceral vasoconstrictor neurones had ongoing activity. 3. Postganglionic motility-regulating neurones were not influenced by stimulation of arterial baro-and chemoreceptors, but showed distinctive reflexes on stimulation of afferents from pelvic organs. Three subgroups of motility-regulating neurones were identified: type 1 neurones (34% of the sample of postganglionic neurones) were excited from the urinary bladder and inhibited or not influenced from the colon. Type 2 neurones (14%) exhibited a reflex pattern reciprocal to that of the type 1 neurones. Anal motility-regulating neurones (8%) were only influenced from the anal canal. The most powerful reflexes in these types of motility-regulating neurones were elicited by mechanical stimulation of the anal mucosa. 4. Postganglionic visceral vasoconstrictor neurones (16% of the sample) were under powerful inhibitory control from the arterial baroreceptors and weakly excited by stimulation of arterial chemoreceptors. Visceral stimuli had little or no effect on most of these neurones. Some visceral vasoconstrictor neurones exhibited some overlap in their functional properties with motility-regulating neurones. 5. Twenty-eight per cent of our sample of postganglionic neurones showed no reflexes to the afferent stimuli used. About half of these neurones had on-going activity. 6. Nine preganglionic neurones with on-going activity were

  5. Mechanical sensibility of nociceptive and non-nociceptive fast-conducting afferents is modulated by skin temperature

    PubMed Central

    Eisenach, James C.; Ririe, Douglas G.

    2015-01-01

    The ability to distinguish mechanical from thermal input is a critical component of peripheral somatosensory function. Polymodal C fibers respond to both stimuli. However, mechanosensitive, modality-specific fast-conducting tactile and nociceptor afferents theoretically carry information only about mechanical forces independent of the thermal environment. We hypothesize that the thermal environment can nonetheless modulate mechanical force sensibility in fibers that do not respond directly to change in temperature. To study this, fast-conducting mechanosensitive peripheral sensory fibers in male Sprague-Dawley rats were accessed at the soma in the dorsal root ganglia from T11 or L4/L5. Neuronal identification was performed using receptive field characteristics and passive and active electrical properties. Neurons responded to mechanical stimuli but failed to generate action potentials in response to changes in temperature alone, except for the tactile mechanical and cold sensitive neurons. Heat and cold ramps were utilized to determine temperature-induced modulation of response to mechanical stimuli. Mechanically evoked electrical activity in non-nociceptive, low-threshold mechanoreceptors (tactile afferents) decreased in response to changes in temperature while mechanically induced activity was increased in nociceptive, fast-conducting, high-threshold mechanoreceptors in response to the same changes in temperature. These data suggest that mechanical activation does not occur in isolation but rather that temperature changes appear to alter mechanical afferent activity and input to the central nervous system in a dynamic fashion. Further studies to understand the psychophysiological implications of thermal modulation of fast-conducting mechanical input to the spinal cord will provide greater insight into the implications of these findings. PMID:26581873

  6. Mechanical sensibility of nociceptive and non-nociceptive fast-conducting afferents is modulated by skin temperature.

    PubMed

    Boada, M Danilo; Eisenach, James C; Ririe, Douglas G

    2016-01-01

    The ability to distinguish mechanical from thermal input is a critical component of peripheral somatosensory function. Polymodal C fibers respond to both stimuli. However, mechanosensitive, modality-specific fast-conducting tactile and nociceptor afferents theoretically carry information only about mechanical forces independent of the thermal environment. We hypothesize that the thermal environment can nonetheless modulate mechanical force sensibility in fibers that do not respond directly to change in temperature. To study this, fast-conducting mechanosensitive peripheral sensory fibers in male Sprague-Dawley rats were accessed at the soma in the dorsal root ganglia from T11 or L4/L5. Neuronal identification was performed using receptive field characteristics and passive and active electrical properties. Neurons responded to mechanical stimuli but failed to generate action potentials in response to changes in temperature alone, except for the tactile mechanical and cold sensitive neurons. Heat and cold ramps were utilized to determine temperature-induced modulation of response to mechanical stimuli. Mechanically evoked electrical activity in non-nociceptive, low-threshold mechanoreceptors (tactile afferents) decreased in response to changes in temperature while mechanically induced activity was increased in nociceptive, fast-conducting, high-threshold mechanoreceptors in response to the same changes in temperature. These data suggest that mechanical activation does not occur in isolation but rather that temperature changes appear to alter mechanical afferent activity and input to the central nervous system in a dynamic fashion. Further studies to understand the psychophysiological implications of thermal modulation of fast-conducting mechanical input to the spinal cord will provide greater insight into the implications of these findings.

  7. Nociceptive primary afferents: they have a mind of their own

    PubMed Central

    Carlton, Susan M

    2014-01-01

    Nociceptive primary afferents have three surprising properties: they are highly complex in their expression of neurotransmitters and receptors and most probably participate in autocrine and paracrine interactions; they are capable of exerting tonic and activity-dependent inhibitory control over incoming nociceptive input; they can generate signals in the form of dorsal root reflexes that are transmitted antidromically out to the periphery and these signals can result in neurogenic inflammation in the innervated tissue. Thus, nociceptive primary afferents are highly complicated structures, capable of modifying input before it is ever transmitted to the central nervous system and capable of altering the tissue they innervate. PMID:24879874

  8. Noise in any frequency range can enhance information transmission in a sensory neuron

    NASA Astrophysics Data System (ADS)

    Levin, Jacob E.

    1997-05-01

    The effect of noise on the neural encoding of broadband signals was investigated in the cricket cercal system, a mechanosensory system sensitive to small near-field air particle disturbances. Known air current stimuli were presented to the cricket through audio speakers in a controlled environment in a variety of background noise conditions. Spike trains from the second layer of neuronal processing, the primary sensory interneurons, were recorded with intracellular Electrodes and the performance of these neurons characterized with the tools of information theory. SNR, mutual information rates, and other measures of encoding accuracy were calculated for single frequency, narrowband, and broadband signals over the entire amplitude sensitivity range of the cells, in the presence of uncorrelated noise background also spanning the cells' frequency and amplitude sensitivity range. Significant enhancements of transmitted information through the addition of external noise were observed regardless of the frequency range of either the signal or noise waveforms, provided both were within the operating range of the cell. Considerable improvements in signal encoding were observed for almost an entire order of magnitude of near-threshold signal amplitudes. This included sinusoidal signals embedded in broadband white noise, broadband signals in broadband noise, and even broadband signals presented with narrowband noise in a completely non-overlapping frequency range. The noise related increases in mutual information rate for broadband signals were as high as 150%, and up to 600% increases in SNR were observed for sinusoidal signals. Additionally, it was shown that the amount of information about the signal carried, on average, by each spike was INCREASED for small signals when presented with noise—implying that added input noise can, in certain situations, actually improve the accuracy of the encoding process itself.

  9. Cell dialysis by sharp electrodes can cause nonphysiological changes in neuron properties.

    PubMed

    Hooper, Scott L; Thuma, Jeffrey B; Guschlbauer, Christoph; Schmidt, Joachim; Büschges, Ansgar

    2015-08-01

    We recorded from lobster and leech neurons with two sharp electrodes filled with solutions often used with these preparations (lobster: 0.6 M K2SO4 or 2.5 M KAc; leech: 4 M KAc), with solutions approximately matching neuron cytoplasm ion concentrations, and with 6.5 M KAc (lobster, leech) and 0.6 M KAc (lobster). We measured membrane potential, input resistance, and transient and sustained depolarization-activated outward current amplitudes in leech and these neuron properties and hyperpolarization-activated current time constant in lobster, every 10 min for 60 min after electrode penetration. Neuron properties varied with electrode fill. For fills with molarities ≥2.5 M, neuron properties also varied strongly with time after electrode penetration. Depending on the property being examined, these variations could be large. In leech, cell size also increased with noncytoplasmic fills. The changes in neuron properties could be due to the ions being injected from the electrodes during current injection. We tested this possibility in lobster with the 2.5 M KAc electrode fill by making measurements only 10 and 60 min after penetration. Neuron properties still changed, although the changes were less extreme. Making measurements every 2 min showed that the time-dependent variations in neuron properties occurred in concert with each other. Neuron property changes with high molarity electrode-fill solutions were great enough to decrease neuron firing strongly. An experiment with (14)C-glucose electrode fill confirmed earlier work showing substantial leak from sharp electrodes. Sharp electrode work should thus be performed with cytoplasm-matched electrode fills. Copyright © 2015 the American Physiological Society.

  10. Cell dialysis by sharp electrodes can cause nonphysiological changes in neuron properties

    PubMed Central

    Hooper, Scott L.; Guschlbauer, Christoph; Schmidt, Joachim; Büschges, Ansgar

    2015-01-01

    We recorded from lobster and leech neurons with two sharp electrodes filled with solutions often used with these preparations (lobster: 0.6 M K2SO4 or 2.5 M KAc; leech: 4 M KAc), with solutions approximately matching neuron cytoplasm ion concentrations, and with 6.5 M KAc (lobster, leech) and 0.6 M KAc (lobster). We measured membrane potential, input resistance, and transient and sustained depolarization-activated outward current amplitudes in leech and these neuron properties and hyperpolarization-activated current time constant in lobster, every 10 min for 60 min after electrode penetration. Neuron properties varied with electrode fill. For fills with molarities ≥2.5 M, neuron properties also varied strongly with time after electrode penetration. Depending on the property being examined, these variations could be large. In leech, cell size also increased with noncytoplasmic fills. The changes in neuron properties could be due to the ions being injected from the electrodes during current injection. We tested this possibility in lobster with the 2.5 M KAc electrode fill by making measurements only 10 and 60 min after penetration. Neuron properties still changed, although the changes were less extreme. Making measurements every 2 min showed that the time-dependent variations in neuron properties occurred in concert with each other. Neuron property changes with high molarity electrode-fill solutions were great enough to decrease neuron firing strongly. An experiment with 14C-glucose electrode fill confirmed earlier work showing substantial leak from sharp electrodes. Sharp electrode work should thus be performed with cytoplasm-matched electrode fills. PMID:26063785

  11. The role of gastrointestinal vagal afferent fibres in obesity

    PubMed Central

    Kentish, Stephen J; Page, Amanda J

    2015-01-01

    Gastrointestinal (GI) vagal afferents are a key mediatory of food intake. Through a balance of responses to chemical and mechanical stimuli food intake can be tightly controlled via the ascending satiety signals initiated in the GI tract. However, vagal responses to both mechanical and chemical stimuli are modified in diet-induced obesity (DIO). Much of the research to date whilst in relatively isolated/controlled circumstances indicates a shift between a balance of orexigenic and anorexigenic vagal signals to blunted anorexigenic and potentiated orexigenic capacity. Although the mechanism responsible for the DIO shift in GI vagal afferent signalling is unknown, one possible contributing factor is the gut microbiota. Nevertheless, whatever the mechanism, the observed changes in gastrointestinal vagal afferent signalling may underlie the pathophysiological changes in food consumption that are pivotal for the development and maintenance of obesity. PMID:25433079

  12. Bacterial toxins and the nervous system: neurotoxins and multipotential toxins interacting with neuronal cells.

    PubMed

    Popoff, Michel R; Poulain, Bernard

    2010-04-01

    Toxins are potent molecules used by various bacteria to interact with a host organism. Some of them specifically act on neuronal cells (clostridial neurotoxins) leading to characteristics neurological affections. But many other toxins are multifunctional and recognize a wider range of cell types including neuronal cells. Various enterotoxins interact with the enteric nervous system, for example by stimulating afferent neurons or inducing neurotransmitter release from enterochromaffin cells which result either in vomiting, in amplification of the diarrhea, or in intestinal inflammation process. Other toxins can pass the blood brain barrier and directly act on specific neurons.

  13. Bacterial Toxins and the Nervous System: Neurotoxins and Multipotential Toxins Interacting with Neuronal Cells

    PubMed Central

    Popoff, Michel R.; Poulain, Bernard

    2010-01-01

    Toxins are potent molecules used by various bacteria to interact with a host organism. Some of them specifically act on neuronal cells (clostridial neurotoxins) leading to characteristics neurological affections. But many other toxins are multifunctional and recognize a wider range of cell types including neuronal cells. Various enterotoxins interact with the enteric nervous system, for example by stimulating afferent neurons or inducing neurotransmitter release from enterochromaffin cells which result either in vomiting, in amplification of the diarrhea, or in intestinal inflammation process. Other toxins can pass the blood brain barrier and directly act on specific neurons. PMID:22069606

  14. Synaptic plasticity in neuronal network models can explain patterns of bursting activity seen in temporal lobe epileptic seizures.

    PubMed

    Kudela, Pawel; Franszczuk, Piotr J; Bergey, Gregory K

    2004-01-01

    High-resolution time-frequency analyses of ictal EEG allow for identification and characterization of ictal patterns. These patterns reflect alterations in the brain network synchrony. It is not clear why seizures undergo these dynamical changes and what mechanisms contribute to or cause these changes. In this work we use neural modeling studies to address these issues. We investigate the role of synaptic plasticity and nonsynaptic neuronal plasticity (firing frequency adaptation) in regulating pattern of neuronal network synchrony. We show that nonsynaptic neuronal plasticity (i.e. calcium dependent afterhyperpolarization in neurons) can regulate the frequency of the dominant rhythm in EEG while synaptic potentiation may be responsible for irregular bursting prior to seizure termination.

  15. Dendritic Pooling of Noisy Threshold Processes Can Explain Many Properties of a Collision-Sensitive Visual Neuron

    PubMed Central

    Keil, Matthias S.

    2015-01-01

    Power laws describe brain functions at many levels (from biophysics to psychophysics). It is therefore possible that they are generated by similar underlying mechanisms. Previously, the response properties of a collision-sensitive neuron were reproduced by a model which used a power law for scaling its inhibitory input. A common characteristic of such neurons is that they integrate information across a large part of the visual field. Here we present a biophysically plausible model of collision-sensitive neurons with η-like response properties, in which we assume that each information channel is noisy and has a response threshold. Then, an approximative power law is obtained as a result of pooling these channels. We show that with this mechanism one can successfully predict many response characteristics of the Lobula Giant Movement Detector Neuron (LGMD). Moreover, the results depend critically on noise in the inhibitory pathway, but they are fairly robust against noise in the excitatory pathway. PMID:26513150

  16. Properties of Neurons in External Globus Pallidus Can Support Optimal Action Selection

    PubMed Central

    Bogacz, Rafal; Martin Moraud, Eduardo; Abdi, Azzedine; Magill, Peter J.; Baufreton, Jérôme

    2016-01-01

    The external globus pallidus (GPe) is a key nucleus within basal ganglia circuits that are thought to be involved in action selection. A class of computational models assumes that, during action selection, the basal ganglia compute for all actions available in a given context the probabilities that they should be selected. These models suggest that a network of GPe and subthalamic nucleus (STN) neurons computes the normalization term in Bayes’ equation. In order to perform such computation, the GPe needs to send feedback to the STN equal to a particular function of the activity of STN neurons. However, the complex form of this function makes it unlikely that individual GPe neurons, or even a single GPe cell type, could compute it. Here, we demonstrate how this function could be computed within a network containing two types of GABAergic GPe projection neuron, so-called ‘prototypic’ and ‘arkypallidal’ neurons, that have different response properties in vivo and distinct connections. We compare our model predictions with the experimentally-reported connectivity and input-output functions (f-I curves) of the two populations of GPe neurons. We show that, together, these dichotomous cell types fulfil the requirements necessary to compute the function needed for optimal action selection. We conclude that, by virtue of their distinct response properties and connectivities, a network of arkypallidal and prototypic GPe neurons comprises a neural substrate capable of supporting the computation of the posterior probabilities of actions. PMID:27389780

  17. Introduced Amino Terminal Epitopes Can Reduce Surface Expression of Neuronal Nicotinic Receptors

    PubMed Central

    Bracamontes, John R.; Akk, Gustav; Steinbach, Joe Henry

    2016-01-01

    Epitopes accessible on the surface of intact cells are extremely valuable in studies of membrane proteins, allowing quantification and determination of the distribution of proteins as well as identification of cells expressing large numbers of proteins. However for many membrane proteins there are no suitable antibodies to native sequences, due to lack of availability, low affinity or lack of specificity. In these cases the use of an introduced epitope at specific sites in the protein of interest can often provide a suitable tool for studies. However, the introduction of the epitope sequence has the potential to affect protein expression, the assembly of multisubunit proteins or transport to the surface membrane. We find that surface expression of heteromeric neuronal nicotinic receptors containing the α4 and β4 subunits can be affected by introduced epitopes when inserted near the amino terminus of a subunit. The FLAG epitope greatly reduces surface expression when introduced into either α4 or β4 subunits, the V5 epitope has little effect when placed in either, while the Myc epitope reduces expression more when inserted into β4 than α4. These results indicate that the extreme amino terminal region is important for assembly of these receptors, and demonstrate that some widely used introduced epitopes may severely reduce surface expression. PMID:26963253

  18. The response of guinea pig primary utricular and saccular irregular neurons to bone-conducted vibration (BCV) and air-conducted sound (ACS).

    PubMed

    Curthoys, Ian S; Vulovic, Vedran; Burgess, Ann M; Sokolic, Ljiljana; Goonetilleke, Samanthi C

    2016-01-01

    This study sought to characterize the response of mammalian primary otolithic neurons to sound and vibration by measuring the resting discharge rates, thresholds for increases in firing rate and supra-threshold sensitivity functions of guinea pig single primary utricular and saccular afferents. Neurons with irregular resting discharge were activated in response to bone conducted vibration (BCV) and air conducted sound (ACS) for frequencies between 100 Hz and 3000 Hz. The location of neurons was verified by labelling with neurobiotin. Many afferents from both maculae have very low or zero resting discharge, with saccular afferents having on average, higher resting rates than utricular afferents. Most irregular utricular and saccular afferents can be evoked by both BCV and ACS. For BCV stimulation: utricular and saccular neurons show similar low thresholds for increased firing rate (around 0.02 g on average) for frequencies from 100 Hz to 750 Hz. There is a steep increase in rate change threshold for BCV frequencies above 750 Hz. The suprathreshold sensitivity functions for BCV were similar for both utricular and saccular neurons, with, at low frequencies, very steep increases in firing rate as intensity increased. For ACS stimulation: utricular and saccular neurons can be activated by high intensity stimuli for frequencies from 250 Hz to 3000 Hz with similar flattened U-shaped tuning curves with lowest thresholds for frequencies around 1000-2000 Hz. The average ACS thresholds for saccular afferents across these frequencies is about 15-20 dB lower than for utricular neurons. The suprathreshold sensitivity functions for ACS were similar for both utricular and saccular neurons. Both utricular and saccular afferents showed phase-locking to BCV and ACS, extending up to frequencies of at least around 1500 Hz for BCV and 3000 Hz for ACS. Phase-locking at low frequencies (e.g. 100 Hz) imposes a limit on the neural firing rate evoked by the stimulus since the

  19. Botulinum toxin B in the sensory afferent: transmitter release, spinal activation, and pain behavior.

    PubMed

    Marino, Marc J; Terashima, Tetsuji; Steinauer, Joanne J; Eddinger, Kelly A; Yaksh, Tony L; Xu, Qinghao

    2014-04-01

    We addressed the hypothesis that intraplantar botulinum toxin B (rimabotulinumtoxin B: BoNT-B) has an early local effect upon peripheral afferent terminal releasing function and, over time, will be transported to the central terminals of the primary afferent. Once in the terminals it will cleave synaptic protein, block spinal afferent transmitter release, and thereby prevent spinal nociceptive excitation and behavior. In mice, C57Bl/6 males, intraplantar BoNT-B (1 U) given unilaterally into the hind paw had no effect upon survival or motor function, but ipsilaterally decreased: (1) intraplantar formalin-evoked flinching; (2) intraplantar capsaicin-evoked plasma extravasation in the hind paw measured by Evans blue in the paw; (3) intraplantar formalin-evoked dorsal horn substance P (SP) release (neurokinin 1 [NK1] receptor internalization); (4) intraplantar formalin-evoked dorsal horn neuronal activation (c-fos); (5) ipsilateral dorsal root ganglion (DRG) vesicle-associated membrane protein (VAMP); (6) ipsilateral SP release otherwise evoked bilaterally by intrathecal capsaicin; (7) ipsilateral activation of c-fos otherwise evoked bilaterally by intrathecal SP. These results indicate that BoNT-B, after unilateral intraplantar delivery, is taken up by the peripheral terminal, is locally active (blocking plasma extravasation), is transported to the ipsilateral DRG to cleave VAMP, and is acting presynaptically to block release from the spinal peptidergic terminal. The observations following intrathecal SP offer evidence for a possible transsynaptic effect of intraplantar BoNT. These results provide robust evidence that peripheral BoNT-B can alter peripheral and central terminal release from a nociceptor and attenuate downstream nociceptive processing via a presynaptic effect, with further evidence suggesting a possible postsynaptic effect.

  20. Physiological, morphological and neurochemical characterization of neurons modulated by movement.

    PubMed

    Dessem, Dean

    2011-04-21

    The role of individual neurons and their function in neuronal circuits is fundamental to understanding the neuronal mechanisms of sensory and motor functions. Most investigations of sensorimotor mechanisms rely on either examination of neurons while an animal is static or record extracellular neuronal activity during a movement. While these studies have provided the fundamental background for sensorimotor function, they either do not evaluate functional information which occurs during a movement or are limited in their ability to fully characterize the anatomy, physiology and neurochemical phenotype of the neuron. A technique is shown here which allows extensive characterization of individual neurons during an in vivo movement. This technique can be used not only to study primary afferent neurons but also to characterize motoneurons and sensorimotor interneurons. Initially the response of a single neuron is recorded using electrophysiological methods during various movements of the mandible followed by determination of the receptive field for the neuron. A neuronal tracer is then intracellularly injected into the neuron and the brain is processed so that the neuron can be visualized with light, electron or confocal microscopy (Fig. 1). The detailed morphology of the characterized neuron is then reconstructed so that neuronal morphology can be correlated with the physiological response of the neuron (Figs. 2,3). In this communication important key details and tips for successful implementation of this technique are provided. Valuable additional information can be determined for the neuron under study by combining this method with other techniques. Retrograde neuronal labeling can be used to determine neurons with which the labeled neuron synapses; thus allowing detailed determination of neuronal circuitry. Immunocytochemistry can be combined with this method to examine neurotransmitters within the labeled neuron and to determine the chemical phenotypes of neurons

  1. Capsaicin-responsive corneal afferents do not contain TRPV1 at their central terminals in trigeminal nucleus caudalis in rats.

    PubMed

    Hegarty, Deborah M; Hermes, Sam M; Largent-Milnes, Tally M; Aicher, Sue A

    2014-11-01

    We examined the substrates for ocular nociception in adult male Sprague-Dawley rats. Capsaicin application to the ocular surface in awake rats evoked nocifensive responses and suppressed spontaneous grooming responses. Thus, peripheral capsaicin was able to activate the central pathways encoding ocular nociception. Our capsaicin stimulus evoked c-Fos expression in a select population of neurons within rostral trigeminal nucleus caudalis in anesthetized rats. These activated neurons also received direct contacts from corneal afferent fibers traced with cholera toxin B from the corneal surface. However, the central terminals of the corneal afferents that contacted capsaicin-activated trigeminal neurons did not contain TRPV1. To determine if TRPV1 expression had been altered by capsaicin stimulation, we examined TRPV1 content of corneal afferents in animals that did not receive capsaicin stimulation. These studies confirmed that while TRPV1 was present in 30% of CTb-labeled corneal afferent neurons within the trigeminal ganglion, TRPV1 was only detected in 2% of the central terminals of these corneal afferents within the trigeminal nucleus caudalis. Other TRP channels were also present in low proportions of central corneal afferent terminals in unstimulated animals (TRPM8, 2%; TRPA1, 10%). These findings indicate that a pathway from the cornea to rostral trigeminal nucleus caudalis is involved in corneal nociceptive transmission, but that central TRP channel expression is unrelated to the type of stimulus transduced by the peripheral nociceptive endings. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Capsaicin-responsive corneal afferents do not contain TRPV1 at their central terminals in trigeminal nucleus caudalis in rats

    PubMed Central

    Hegarty, Deborah M.; Hermes, Sam M.; Largent-Milnes, Tally M.; Aicher, Sue A.

    2014-01-01

    We examined the substrates for ocular nociception in adult male Sprague-Dawley rats. Capsaicin application to the ocular surface in awake rats evoked nocifensive responses and suppressed spontaneous grooming responses. Thus, peripheral capsaicin was able to activate the central pathways encoding ocular nociception. Our capsaicin stimulus evoked c-Fos expression in a select population of neurons within rostral trigeminal nucleus caudalis in anesthetized rats. These activated neurons also received direct contacts from corneal afferent fibers traced with cholera toxin B from the corneal surface. However, the central terminals of the corneal afferents that contacted capsaicin-activated trigeminal neurons did not contain TRPV1. To determine if TRPV1 expression had been altered by capsaicin stimulation, we examined TRPV1 content of corneal afferents in animals that did not receive capsaicin stimulation. These studies confirmed that while TRPV1 was present in 30% of CTb-labeled corneal afferent neurons within the trigeminal ganglion, TRPV1 was only detected in 2% of the central terminals of these corneal afferents within the trigeminal nucleus caudalis. Other TRP channels were also present in low proportions of central corneal afferent terminals in unstimulated animals (TRPM8, 2%; TRPA1, 10%). These findings indicate that a pathway from the cornea to rostral trigeminal nucleus caudalis is involved in corneal nociceptive transmission, but that central TRP channel expression is unrelated to the type of stimulus transduced by the peripheral nociceptive endings. PMID:24996127

  3. Dying with motor neurone disease, what can we learn from family caregivers?

    PubMed

    Ray, Robin A; Brown, Janice; Street, Annette F

    2014-08-01

    Increasingly, people with neurodegenerative illness are cared for at home until close to death. Yet, discussing the reality of dying remains a social taboo. To examine the ways, family caregivers of people living with motor neurone disease (MND) experienced the dying of their relative and to identify how health practitioners can better prepare families for end-of-life care. Secondary analysis was undertaken on data sets generated from two longitudinal qualitative studies employing similar data collection and analysis methods. Combining data sets increased participant numbers in a low incidence disease group. Primary studies were undertaken with family caregivers in England and Australia. Interview and observational data were collected mostly in home. Participants who discussed dying and death formed the sample for secondary analysis. Combined data revealed four major themes: planning for end of life, unexpected dying, dignity in the dying body and positive end to MND. Despite short survival predictions, discussions among family members about dying were often sporadic and linked to loss of hope. Effective planning for death assisted caregivers to manage the final degenerative processes of dying. When plans were not effectively communicated or enacted, capacity to preserve personhood was reduced. Returning death and dying to social discourse will raise the level of community awareness and normalize conversations about end-of-life care. Strategies for on-going, effective communication that facilitates advance care planning among patients, their families and practitioners are essential to improve dying and death for people with MND and their family caregivers. © 2012 John Wiley & Sons Ltd.

  4. Nonlinear high-order mode locking in stochastic sensory neurons

    NASA Astrophysics Data System (ADS)

    Rowe, Michael; Afghan, Muhammad; Neiman, Alexander

    2004-03-01

    Excitable systems demonstrate various mode locking regimes when driven by periodic external signals. With noise taken into account, such regimes represent complex nonlinear responses which depend crucially on the frequency and amplitude of the periodic drive as well as on the noise intensity. We study this using a computational model of a stochastic Hodgkin-Huxley neuron in combination with the turtle vestibular sensory system as an experimental model. A bifurcation analysis of the model is performed. Extracellular recordings from primary vestibular afferent neurons with two types of stimuli are used in the experimental study. First, mechanical stimuli applied to the labyrinth allow us to study the responses of the entire system, including transduction by the hair cells and spike generation in the primary afferents. Second, a galvanic stimuli applied directly to an afferent are used to study the responses of afferent spike generator directly. The responses to galvanic stimuli reveal multiple high-order mode locking regimes which are well reproduced in numerical simulation. Responses to mechanical stimulation are characterized by larger variability so that fewer mode-locking regimes can be observed.

  5. Direct and Indirect Regulation of Spinal Cord Ia Afferent Terminal Formation by the γ-Protocadherins.

    PubMed

    Prasad, Tuhina; Weiner, Joshua A

    2011-01-01

    The Pcdh-γ gene cluster encodes 22 protocadherin adhesion molecules that interact as homophilic multimers and critically regulate synaptogenesis and apoptosis of interneurons in the developing spinal cord. Unlike interneurons, the two primary components of the monosynaptic stretch reflex circuit, dorsal root ganglion sensory neurons and ventral motor neurons (MNs), do not undergo excessive apoptosis in Pcdh-γ(del/del) null mutants, which die shortly after birth. However, as we show here, mutants exhibit severely disorganized Ia proprioceptive afferent terminals in the ventral horn. In contrast to the fine net-like pattern observed in wild-type mice, central Ia terminals in Pcdh-γ mutants appear clumped, and fill the space between individual MNs; quantitative analysis shows a ~2.5-fold increase in the area of terminals. Concomitant with this, there is a 70% loss of the collaterals that Ia afferents extend to ventral interneurons (vINs), many of which undergo apoptosis in the mutants. The Ia afferent phenotype is ameliorated, though not entirely rescued, when apoptosis is blocked in Pcdh-γ null mice by introduction of a Bax null allele. This indicates that loss of vINs, which act as collateral Ia afferent targets, contributes to the disorganization of terminals on motor pools. Restricted mutation of the Pcdh-γ cluster using conditional mutants and multiple Cre transgenic lines (Wnt1-Cre for sensory neurons; Pax2-Cre for vINs; Hb9-Cre for MNs) also revealed a direct requirement for the γ-Pcdhs in Ia neurons and vINs, but not in MNs themselves. Together, these genetic manipulations indicate that the γ-Pcdhs are required for the formation of the Ia afferent circuit in two ways: First, they control the survival of vINs that act as collateral Ia targets; and second, they provide a homophilic molecular cue between Ia afferents and target vINs.

  6. Greater excitability and firing irregularity of tufted cells underlies distinct afferent-evoked activity of olfactory bulb mitral and tufted cells

    PubMed Central

    Burton, Shawn D; Urban, Nathaniel N

    2014-01-01

    Mitral and tufted cells, the two classes of principal neurons in the mammalian main olfactory bulb, exhibit morphological differences but remain widely viewed as functionally equivalent. Results from several recent studies, however, suggest that these two cell classes may encode complementary olfactory information in their distinct patterns of afferent-evoked activity. To understand how these differences in activity arise, we have performed the first systematic comparison of synaptic and intrinsic properties between mitral and tufted cells. Consistent with previous studies, we found that tufted cells fire with higher probability and rates and shorter latencies than mitral cells in response to physiological afferent stimulation. This stronger response of tufted cells could be partially attributed to synaptic differences, as tufted cells received stronger afferent-evoked excitation than mitral cells. However, differences in intrinsic excitability also contributed to the differences between mitral and tufted cell activity. Compared to mitral cells, tufted cells exhibited twofold greater excitability and peak instantaneous firing rates. These differences in excitability probably arise from differential expression of voltage-gated potassium currents, as tufted cells exhibited faster action potential repolarization and afterhyperpolarizations than mitral cells. Surprisingly, mitral and tufted cells also showed firing mode differences. While both cell classes exhibited regular firing and irregular stuttering of action potential clusters, tufted cells demonstrated a greater propensity to stutter than mitral cells. Collectively, stronger afferent-evoked excitation, greater intrinsic excitability and more irregular firing in tufted cells can combine to drive distinct responses of mitral and tufted cells to afferent-evoked input. PMID:24614745

  7. The eloquence of silent cortex: analysis of afferent input to deafferented cortex in arm amputees.

    PubMed

    Mackert, Bruno-Marcel; Sappok, Tanja; Grüsser, Sabine; Flor, Herta; Curio, Gabriel

    2003-03-03

    Cortical reorganisation after limb amputation includes topographic displacements of body representation areas and changes of areal extent. Remarkably, truncated nerves, which had innervated amputated limb parts and remained in the residual limbs, can retain access to the deafferented somatosensory cortex. Using somatosensory evoked potentials (SEP) we characterized afferences from electrically stimulated truncated nerves to the brachial plexus and cortex in 12 arm amputees. While peripheral responses were highly variable, thalamocortical input to S-1, as reflected by the primary cortical SEP component, was present in 11 of 12 patients. Despite long-term deafferentation, macroscopic phenomena of inhibition/refractoriness, as assessed by stimulus rate variations, appeared to be changed only marginally. Thus, deafferented cortex remains responsive when given artificial phantom input and could provide a neuronal substrate for spontaneous phantom limb sensations, including phantom pain.

  8. Afferent-specific innervation of two distinct AMPA receptor subtypes on single hippocampal interneurons.

    PubMed

    Tóth, K; McBain, C J

    1998-11-01

    Using the polyamine toxin philanthotoxin, which selectively blocks calcium-permeable AMPA receptors, we show that synaptic transmission onto single hippocampal interneurons occurs by afferent-specific activation of philanthotoxin-sensitive and -insensitive AMPA receptors. Calcium-permeable AMPA receptors are found exclusively at synapses from mossy fibers. In contrast, synaptic responses evoked by stimulation of CA3 pyramidal neurons are mediated by calcium-impermeable AMPA receptors. Both pathways converge onto single interneurons and can be discriminated with Group II mGluR agonists. Thus, single interneurons target AMPA receptors of different subunit composition to specific postsynaptic sites, providing a mechanism to increase the synapse-specific computational properties of hippocampal interneurons.

  9. Artificial spatiotemporal touch inputs reveal complementary decoding in neocortical neurons

    PubMed Central

    Oddo, Calogero M.; Mazzoni, Alberto; Spanne, Anton; Enander, Jonas M. D.; Mogensen, Hannes; Bengtsson, Fredrik; Camboni, Domenico; Micera, Silvestro; Jörntell, Henrik

    2017-01-01

    Investigations of the mechanisms of touch perception and decoding has been hampered by difficulties in achieving invariant patterns of skin sensor activation. To obtain reproducible spatiotemporal patterns of activation of sensory afferents, we used an artificial fingertip equipped with an array of neuromorphic sensors. The artificial fingertip was used to transduce real-world haptic stimuli into spatiotemporal patterns of spikes. These spike patterns were delivered to the skin afferents of the second digit of rats via an array of stimulation electrodes. Combined with low-noise intra- and extracellular recordings from neocortical neurons in vivo, this approach provided a previously inaccessible high resolution analysis of the representation of tactile information in the neocortical neuronal circuitry. The results indicate high information content in individual neurons and reveal multiple novel neuronal tactile coding features such as heterogeneous and complementary spatiotemporal input selectivity also between neighboring neurons. Such neuronal heterogeneity and complementariness can potentially support a very high decoding capacity in a limited population of neurons. Our results also indicate a potential neuroprosthetic approach to communicate with the brain at a very high resolution and provide a potential novel solution for evaluating the degree or state of neurological disease in animal models. PMID:28374841

  10. Artificial spatiotemporal touch inputs reveal complementary decoding in neocortical neurons.

    PubMed

    Oddo, Calogero M; Mazzoni, Alberto; Spanne, Anton; Enander, Jonas M D; Mogensen, Hannes; Bengtsson, Fredrik; Camboni, Domenico; Micera, Silvestro; Jörntell, Henrik

    2017-04-04

    Investigations of the mechanisms of touch perception and decoding has been hampered by difficulties in achieving invariant patterns of skin sensor activation. To obtain reproducible spatiotemporal patterns of activation of sensory afferents, we used an artificial fingertip equipped with an array of neuromorphic sensors. The artificial fingertip was used to transduce real-world haptic stimuli into spatiotemporal patterns of spikes. These spike patterns were delivered to the skin afferents of the second digit of rats via an array of stimulation electrodes. Combined with low-noise intra- and extracellular recordings from neocortical neurons in vivo, this approach provided a previously inaccessible high resolution analysis of the representation of tactile information in the neocortical neuronal circuitry. The results indicate high information content in individual neurons and reveal multiple novel neuronal tactile coding features such as heterogeneous and complementary spatiotemporal input selectivity also between neighboring neurons. Such neuronal heterogeneity and complementariness can potentially support a very high decoding capacity in a limited population of neurons. Our results also indicate a potential neuroprosthetic approach to communicate with the brain at a very high resolution and provide a potential novel solution for evaluating the degree or state of neurological disease in animal models.

  11. Organically modified silica nanoparticles are biocompatible and can be targeted to neurons in vivo.

    PubMed

    Barandeh, Farda; Nguyen, Phuong-Lan; Kumar, Rajiv; Iacobucci, Gary J; Kuznicki, Michelle L; Kosterman, Andrew; Bergey, Earl J; Prasad, Paras N; Gunawardena, Shermali

    2012-01-01

    The application of nanotechnology in biological research is beginning to have a major impact leading to the development of new types of tools for human health. One focus of nanobiotechnology is the development of nanoparticle-based formulations for use in drug or gene delivery systems. However most of the nano probes currently in use have varying levels of toxicity in cells or whole organisms and therefore are not suitable for in vivo application or long-term use. Here we test the potential of a novel silica based nanoparticle (organically modified silica, ORMOSIL) in living neurons within a whole organism. We show that feeding ORMOSIL nanoparticles to Drosophila has no effect on viability. ORMOSIL nanoparticles penetrate into living brains, neuronal cell bodies and axonal projections. In the neuronal cell body, nanoparticles are present in the cytoplasm, but not in the nucleus. Strikingly, incorporation of ORMOSIL nanoparticles into the brain did not induce aberrant neuronal death or interfered with normal neuronal processes. Our results in Drosophila indicate that these novel silica based nanoparticles are biocompatible and not toxic to whole organisms, and has potential for the development of long-term applications.

  12. Organically Modified Silica Nanoparticles Are Biocompatible and Can Be Targeted to Neurons In Vivo

    PubMed Central

    Kumar, Rajiv; Iacobucci, Gary J.; Kuznicki, Michelle L.; Kosterman, Andrew; Bergey, Earl J.; Prasad, Paras N.; Gunawardena, Shermali

    2012-01-01

    The application of nanotechnology in biological research is beginning to have a major impact leading to the development of new types of tools for human health. One focus of nanobiotechnology is the development of nanoparticle-based formulations for use in drug or gene delivery systems. However most of the nano probes currently in use have varying levels of toxicity in cells or whole organisms and therefore are not suitable for in vivo application or long-term use. Here we test the potential of a novel silica based nanoparticle (organically modified silica, ORMOSIL) in living neurons within a whole organism. We show that feeding ORMOSIL nanoparticles to Drosophila has no effect on viability. ORMOSIL nanoparticles penetrate into living brains, neuronal cell bodies and axonal projections. In the neuronal cell body, nanoparticles are present in the cytoplasm, but not in the nucleus. Strikingly, incorporation of ORMOSIL nanoparticles into the brain did not induce aberrant neuronal death or interfered with normal neuronal processes. Our results in Drosophila indicate that these novel silica based nanoparticles are biocompatible and not toxic to whole organisms, and has potential for the development of long-term applications. PMID:22238611

  13. Isolation of TRPV1 independent mechanisms of spontaneous and asynchronous glutamate release at primary afferent to NTS synapses.

    PubMed

    Fenwick, Axel J; Wu, Shaw-Wen; Peters, James H

    2014-01-01

    Cranial visceral afferents contained within the solitary tract (ST) contact second-order neurons in the nucleus of the solitary tract (NTS) and release the excitatory amino acid glutamate via three distinct exocytosis pathways; synchronous, asynchronous, and spontaneous release. The presence of TRPV1 in the central terminals of a majority of ST afferents conveys activity-dependent asynchronous glutamate release and provides a temperature sensitive calcium conductance which largely determines the rate of spontaneous vesicle fusion. TRPV1 is present in unmyelinated C-fiber afferents and these facilitated forms of glutamate release may underlie the relative strength of C-fibers in activating autonomic reflex pathways. However, pharmacological blockade of TRPV1 signaling eliminates only ~50% of the asynchronous profile and attenuates the temperature sensitivity of spontaneous release indicating additional thermosensitive calcium influx pathways may exist which mediate these forms of vesicle release. In the present study we isolate the contribution of TRPV1 independent forms of glutamate release at ST-NTS synapses. We found ST afferent innervation at NTS neurons and synchronous vesicle release from TRPV1 KO mice was not different to control animals; however, only half of TRPV1 KO ST afferents completely lacked asynchronous glutamate release. Further, temperature driven spontaneous rates of vesicle release were not different from 33 to 37°C between control and TRPV1 KO afferents. These findings suggest additional temperature dependent mechanisms controlling asynchronous and thermosensitive spontaneous release at physiological temperatures, possibly mediated by additional thermosensitive TRP channels in primary afferent terminals.

  14. Myelinated primary afferents of the sacral spinal cord responding to slow filling and distension of the cat urinary bladder.

    PubMed

    Häbler, H J; Jänig, W; Koltzenburg, M

    1993-04-01

    1. A total of sixty-five sacral afferent neurones with myelinated fibres supplying the urinary bladder was recorded from the sacral roots S2 in anaesthetized cats. All afferent units were identified with electrical stimulation of the pelvic nerve. The discharge properties were quantitatively evaluated using slow filling at rates of 1-2 ml min-1 and isotonic distension to preset pressure levels. Eight afferents were studied prior to and after acute sacral de-efferentation of the urinary bladder. 2. All afferent units were silent when the bladder was empty and responded in a graded manner to an increase of intravesical pressure. During slow filling the level of afferent activity correlated closely with the level of the intravesical pressure. All afferents behaved like slowly adapting mechanoreceptors with both a dynamic and static component of their discharge. With the exception of two units the intraluminal pressure threshold was below 25 mmHg. Thus virtually all myelinated afferents respond in the pressure range that is reached during a non-painful micturition cycle. 3. The stimulus-response functions of the afferents were similar regardless of whether intravesical pressure was increased by slow filling or by distension. However, during slow filling stimulation response functions often exhibited steeper slopes between 5 and 25 mmHg indicating that relatively small changes of intravesical pressure result in large changes of afferent activity. Nevertheless, all units displayed monotonically increasing stimulus response functions throughout the innocuous and noxious pressure level. 4. The stimulus-response functions of the afferent neurones did not change after acute de-efferentation of the urinary bladder, although the rapid phasic fluctuations of afferent activity that are produced by small contractions of the urinary bladder under normal conditions largely disappeared. This means that contractions and distension activate the afferent endings by a common mechanism

  15. Myelinated primary afferents of the sacral spinal cord responding to slow filling and distension of the cat urinary bladder.

    PubMed Central

    Häbler, H J; Jänig, W; Koltzenburg, M

    1993-01-01

    1. A total of sixty-five sacral afferent neurones with myelinated fibres supplying the urinary bladder was recorded from the sacral roots S2 in anaesthetized cats. All afferent units were identified with electrical stimulation of the pelvic nerve. The discharge properties were quantitatively evaluated using slow filling at rates of 1-2 ml min-1 and isotonic distension to preset pressure levels. Eight afferents were studied prior to and after acute sacral de-efferentation of the urinary bladder. 2. All afferent units were silent when the bladder was empty and responded in a graded manner to an increase of intravesical pressure. During slow filling the level of afferent activity correlated closely with the level of the intravesical pressure. All afferents behaved like slowly adapting mechanoreceptors with both a dynamic and static component of their discharge. With the exception of two units the intraluminal pressure threshold was below 25 mmHg. Thus virtually all myelinated afferents respond in the pressure range that is reached during a non-painful micturition cycle. 3. The stimulus-response functions of the afferents were similar regardless of whether intravesical pressure was increased by slow filling or by distension. However, during slow filling stimulation response functions often exhibited steeper slopes between 5 and 25 mmHg indicating that relatively small changes of intravesical pressure result in large changes of afferent activity. Nevertheless, all units displayed monotonically increasing stimulus response functions throughout the innocuous and noxious pressure level. 4. The stimulus-response functions of the afferent neurones did not change after acute de-efferentation of the urinary bladder, although the rapid phasic fluctuations of afferent activity that are produced by small contractions of the urinary bladder under normal conditions largely disappeared. This means that contractions and distension activate the afferent endings by a common mechanism

  16. Characterization of the primary spinal afferent innervation of the mouse colon using retrograde labelling.

    PubMed

    Robinson, D R; McNaughton, P A; Evans, M L; Hicks, G A

    2004-02-01

    Visceral pain is the most common form of pain produced by disease and is thus of interest in the study of gastrointestinal (GI) complaints such as irritable bowel syndrome, in which sensory signals perceived as GI pain travel in extrinsic afferent neurones with cell bodies in the dorsal root ganglia (DRG). The DRG from which the primary spinal afferent innervation of the mouse descending colon arises are not well defined. This study has combined retrograde labelling and immunohistochemistry to identify and characterize these neurones. Small to medium-sized retrogradely labelled cell bodies were found in the DRG at levels T8-L1 and L6-S1. Calcitonin gene-related peptide (CGRP)- and P2X3-like immunoreactivity (LI) was seen in 81 and 32%, respectively, of retrogradely labelled cells, and 20% bound the Griffonia simplicifolia-derived isolectin IB4. CGRP-LI and IB4 were co-localized in 22% of retrogradely labelled cells, whilst P2X3-LI and IB4 were co-localized in 7% (vs 34% seen in the whole DRG population). Eighty-two per cent of retrogradely labelled cells exhibited vanilloid receptor 1-like immunoreactivity (VR1-LI). These data suggest that mouse colonic spinal primary afferent neurones are mostly peptidergic CGRP-containing, VR1-LI, C fibre afferents. In contrast to the general DRG population, a subset of neurones exist that are P2X3 receptor-LI but do not bind IB4.

  17. Mechanisms regulating the specificity and strength of muscle afferent inputs in the spinal cord

    PubMed Central

    Mentis, George Z.; Alvarez, Francisco J.; Shneider, Neil A.; Siembab, Valerie C.; O'Donovan, Michael J.

    2010-01-01

    We investigated factors controlling the development of connections between muscle spindle afferents, spinal motor neurons and inhibitory Renshaw cells. Several mutants were examined to establish the role of muscle spindles, muscle spindle-derived NT3 and excess NT3 in determining the specificity and strength of these connections. The findings suggest that although spindle-derived factors are not necessary for the initial formation and specificity of the synapses, spindle-derived NT3 seems necessary for strengthening homonymous connections between Ia afferents and motor neurons during the second postnatal week. We also found evidence for functional monosynaptic connections between sensory afferents and neonatal Renshaw cells although the density of these synapses decreases at P15. We conclude that muscle spindle synapses are weakened on Renshaw cells while they are strengthened on motor neurons. Interestingly, the loss of sensory synapses on Renshaw cells was reversed in mice over-expresssing NT3 in the periphery, suggesting that different levels of NT3 are required for functional maintenance and strengthening of spindle afferent inputs on motor neurons and Renshaw cells. PMID:20536937

  18. Mechanisms regulating the specificity and strength of muscle afferent inputs in the spinal cord.

    PubMed

    Mentis, George Z; Alvarez, Francisco J; Shneider, Neil A; Siembab, Valerie C; O'Donovan, Michael J

    2010-06-01

    We investigated factors controlling the development of connections between muscle spindle afferents, spinal motor neurons, and inhibitory Renshaw cells. Several mutants were examined to establish the role of muscle spindles, muscle spindle-derived NT3, and excess NT3 in determining the specificity and strength of these connections. The findings suggest that although spindle-derived factors are not necessary for the initial formation and specificity of the synapses, spindle-derived NT3 seems necessary for strengthening homonymous connections between Ia afferents and motor neurons during the second postnatal week. We also found evidence for functional monosynaptic connections between sensory afferents and neonatal Renshaw cells although the density of these synapses decreases at P15. We conclude that muscle spindle synapses are weakened on Renshaw cells while they are strengthened on motor neurons. Interestingly, the loss of sensory synapses on Renshaw cells was reversed in mice overexpressing NT3 in the periphery, suggesting that different levels of NT3 are required for functional maintenance and strengthening of spindle afferent inputs on motor neurons and Renshaw cells.

  19. Neuronal regeneration in C. elegans requires subcellular calcium release by ryanodine receptor channels and can be enhanced by optogenetic stimulation.

    PubMed

    Sun, Lin; Shay, James; McLoed, Melissa; Roodhouse, Kevin; Chung, Samuel H; Clark, Christopher M; Pirri, Jennifer K; Alkema, Mark J; Gabel, Christopher V

    2014-11-26

    Regulated calcium signals play conserved instructive roles in neuronal repair, but how localized calcium stores are differentially mobilized, or might be directly manipulated, to stimulate regeneration within native contexts is poorly understood. We find here that localized calcium release from the endoplasmic reticulum via ryanodine receptor (RyR) channels is critical in stimulating initial regeneration following traumatic cellular damage in vivo. Using laser axotomy of single neurons in Caenorhabditis elegans, we find that mutation of unc-68/RyR greatly impedes both outgrowth and guidance of the regenerating neuron. Performing extended in vivo calcium imaging, we measure subcellular calcium signals within the immediate vicinity of the regenerating axon end that are sustained for hours following axotomy and completely eliminated within unc-68/RyR mutants. Finally, using a novel optogenetic approach to periodically photo-stimulate the axotomized neuron, we can enhance its regeneration. The enhanced outgrowth depends on both amplitude and temporal pattern of excitation and can be blocked by disruption of UNC-68/RyR. This demonstrates the exciting potential of emerging optogenetic technology to beneficially manipulate cell physiology in the context of neuronal regeneration and indicates a link to the underlying cellular calcium signal. Taken as a whole, our findings define a specific localized calcium signal mediated by RyR channel activity that stimulates regenerative outgrowth, which may be dynamically manipulated for beneficial neurotherapeutic effects.

  20. Single neuron transcriptome analysis can reveal more than cell type classification

    PubMed Central

    Harbom, Lise J.; Chronister, William D.

    2016-01-01

    A recent single cell mRNA sequencing study by Dueck et al. compares neuronal transcriptomes to the transcriptomes of adipocytes and cardiomyocytes. Single cell ‘omic approaches such as those used by the authors are at the leading edge of molecular and biophysical measurement. Many groups are currently employing single cell sequencing approaches to understand cellular heterogeneity in cancer and during normal development. These single cell approaches also are beginning to address long‐standing questions regarding nervous system diversity. Beyond an innate interest in cataloging cell type diversity in the brain, single cell neuronal diversity has important implications for neurotypic neural circuit function and for neurological disease. Herein, we review the authors’ methods and findings, which most notably include evidence of unique expression profiles in some single neurons. PMID:26749010

  1. Neurons with hysteresis form a network that can learn without any changes in synaptic connection strengths

    NASA Astrophysics Data System (ADS)

    Hoffmann, Geoffrey W.; Benson, Maurice W.

    1986-08-01

    A neural network concept derived from an analogy between the immune system and the central nerous system is outlined. The theory is based on a nervous that is slightly more complicated than the conventional McCullogh-Pitts type of neuron, in that it exhibits hysteresis at the single cell level. This added complication is compensated by the fact that a network of such neurons is able to learn without the necessity for any changes in synaptic connection strengths. The learning occurs as a natural consequence of interactions between the network and its enviornment, with environmental stimuli moving the system around in an N-dimensional phase space, until a point in phase space is reached such that the system's responses are appropriate for dealing with the stimuli. Due to the hysteresis associated with each neuron, the system tends to stay in the region of phase space where it is located. The theory includes a role for sleep in learning.

  2. Social Stress Engages Neurochemically-Distinct Afferents to the Rat Locus Coeruleus Depending on Coping Strategy123

    PubMed Central

    Reyes, Beverly A. S.; Zitnik, Gerard; Foster, Celia; Van Bockstaele, Elisabeth J.

    2015-01-01

    Abstract Stress increases vulnerability to psychiatric disorders, partly by affecting brain monoamine systems, such as the locus coeruleus (LC)-norepinephrine system. During stress, LC activity is coregulated by corticotropin-releasing factor (CRF) and endogenous opioids. This study identified neural circuitry that regulates LC activity of intruder rats during the resident–intruder model of social stress. LC afferents were retrogradely labeled with Fluorogold (FG) and rats were subjected to one or five daily exposures to an aggressive resident. Sections through the nucleus paragigantocellularis (PGi) and central amygdalar nucleus (CNA), major sources of enkephalin (ENK) and CRF LC afferents, respectively, were immunocytochemically processed to detect c-fos, FG, and CRF or ENK. In response to a single exposure, intruder rats assumed defeat with a relatively short latency (SL). LC neurons, PGI-ENK LC afferents, and CNA-CRF LC afferents were activated in these rats as indicated by increased c-fos expression. With repeated stress, rats exhibited either a SL or long latency (LL) to defeat and these strategies were associated with distinct patterns of neuronal activation. In SL rats, LC neurons were activated, as were CNA-CRF LC afferents but not PGI-ENK LC afferents. LL rats had an opposite pattern, maintaining activation of PGi-ENK LC afferents but not CNA-CRF LC afferents or LC neurons. Together, these results indicate that the establishment of different coping strategies to social stress is associated with changes in the circuitry that regulates activity of the brain norepinephrine system. This may underlie differential vulnerability to the consequences of social stress that characterize these different coping strategies. PMID:26634226

  3. Dying with motor neurone disease, what can we learn from family caregivers?

    PubMed Central

    Ray, Robin A.; Brown, Janice; Street, Annette F.

    2012-01-01

    Abstract Background  Increasingly, people with neurodegenerative illness are cared for at home until close to death. Yet, discussing the reality of dying remains a social taboo. Objective  To examine the ways, family caregivers of people living with motor neurone disease (MND) experienced the dying of their relative and to identify how health practitioners can better prepare families for end‐of‐life care. Design  Secondary analysis was undertaken on data sets generated from two longitudinal qualitative studies employing similar data collection and analysis methods. Combining data sets increased participant numbers in a low incidence disease group. Setting and participants  Primary studies were undertaken with family caregivers in England and Australia. Interview and observational data were collected mostly in home. Participants who discussed dying and death formed the sample for secondary analysis. Results  Combined data revealed four major themes: planning for end of life, unexpected dying, dignity in the dying body and positive end to MND. Despite short survival predictions, discussions among family members about dying were often sporadic and linked to loss of hope. Effective planning for death assisted caregivers to manage the final degenerative processes of dying. When plans were not effectively communicated or enacted, capacity to preserve personhood was reduced. Discussion and Conclusion  Returning death and dying to social discourse will raise the level of community awareness and normalize conversations about end‐of‐life care. Strategies for on‐going, effective communication that facilitates advance care planning among patients, their families and practitioners are essential to improve dying and death for people with MND and their family caregivers. PMID:22512686

  4. Reflections of other minds: how primate social cognition can inform the function of mirror neurons

    PubMed Central

    Lyons, Derek E; Santos, Laurie R; Keil, Frank C

    2006-01-01

    Mirror neurons, located in the premotor cortex of macaque monkeys, are activated both by the performance and the passive observation of particular goal-directed actions. Although this property would seem to make them the ideal neural substrate for imitation, the puzzling fact is that monkeys simply do not imitate. Indeed, imitation appears to be a uniquely human ability. We are thus left with a fascinating question: if not imitation, what are mirror neurons for? Recent advances in the study of non-human primate social cognition suggest a surprising potential answer. PMID:16564687

  5. Neuronal and synaptic organization in the gravity receptor system of the statocyst of Octopus vulgaris.

    PubMed

    Colmers, W F

    1977-12-28

    The neuronal and synaptic organization of the sensory epithelium (macula) of the gravity receptor system of Octopus vulgaris was investigated by serial electron microscopic reconstruction. Three different types of afferent neurons, unipolar, bipolar, and multipolar, are described. Afferent synapses exist between the secondary sensory cells (hair cells) and the afferent neurons. Consequently, the neurons are first-order neurons. Two morphologically distinct types of afferent synapses could be identified: the most common type, present on every hair cell, has a finger-like postsynaptic process; the second type, which does not occur on every hair cell, has a flat or somewhat curved postsynaptic process. As a rule, the hair cells each form synapses with more than one afferent neuron. The neurons, in turn, form synapses with more than one hair cell. A complicated arrangement of efferent synapses was found at the level of both the hair cells and the neurons. The results are discussed with reference to their physiological consequences.

  6. Afferent projections to the deep mesencephalic nucleus in the rat

    SciTech Connect

    Veazey, R.B.; Severin, C.M.

    1982-01-10

    Afferent projections to the deep mesencephalic nucleus (DMN) of the rat were demonstrated with axonal transport techniques. Potential sources for projections to the DMN were first identified by injecting the nucleus with HRP and examining the cervical spinal cord, brain stem, and cortex for retrogradely labeled neurons. Areas consistently labeled were then injected with a tritiated radioisotope, the tissue processed for autoradiography, and the DMN examined for anterograde labeling. Afferent projections to the medial and/or lateral parts of the DMN were found to originate from a number of spinal, bulbar, and cortical centers. Rostral brain centers projecting to both medial and lateral parts of the DMN include the ipsilateral motor and somatosensory cortex, the entopeduncular nucleus, and zona incerta. at the level of the midbrain, the ipsilateral substantia nigra and contralateral DMN likewise project to the DMN. Furthermore, the ipsilateral superior colliculus projects to the DMN, involving mainly the lateral part of the nucleus. Afferents from caudal centers include bilateral projections from the sensory nucleus of the trigeminal complex and the nucleus medulla oblongata centralis, as well as from the contralateral dentate nucleus. The projections from the trigeminal complex and nucleus medullae oblongatae centralis terminate in the intermediate and medial parts of the DMN, whereas projections from the contralateral dentate nucleus terminate mainly in its lateral part. In general, the afferent connections of the DMN arise from diverse areas of the brain. Although most of these projections distribute throughout the entire extent of the DMN, some of them project mainly to either medial or lateral parts of the nucleus, thus suggesting that the organization of the DMN is comparable, at least in part, to that of the reticular formation of the pons and medulla, a region in which hodological differences between medial and lateral subdivisions are known to exist.

  7. Mechanically insensitive afferents (MIAs) in cutaneous nerves of monkey.

    PubMed

    Meyer, R A; Davis, K D; Cohen, R H; Treede, R D; Campbell, J N

    1991-10-11

    A problem in the study of nociceptors is that intense stimuli are used to locate the receptive field (RF), and thus the receptor may be damaged before the first responses are recorded. In addition, some nociceptors do not respond to the mechanical stimuli often used to search for the RF. To overcome these problems, an electrical search technique was developed to locate the RF of cutaneous nociceptors. In the hairy skin of anesthetized monkey, we used this technique to locate the RF of 63 A delta-fibers and 22 C-fibers that had extremely high thresholds or were unresponsive to mechanical stimuli. We refer to these afferents as mechanically insensitive afferents (MIAs). Ten A delta-fiber MIAs had a short latency response to stepped heat stimuli and could be responsible for first pain sensation. Five A delta-fiber MIAs and one C-fiber MIA did not respond to mechanical or heat stimuli but did respond to injection into the electrical RF of an artificial inflammatory soup containing histamine, bradykinin, prostaglandin E1, and serotonin. These chemoreceptors might be responsible for the pain and itch sensations that result from chemical stimuli. Some MIAs became more responsive to mechanical stimuli after injection into the RF of the inflammatory soup and, thus, may contribute to the hyperalgesia to mechanical stimuli associated with cutaneous injury. A large proportion of the A delta-fiber (48%) and C-fiber (30%) afferents in this study were insensitive to mechanical stimuli. The role of these MIAs in sensation needs to be studied further. The electrical search technique enables a systematic study of these afferents to be performed. This technique may also be of use to identify and characterize dorsal horn neurons that have inputs from MIAs.

  8. Afferent connections of the cerebellum in various types of reptiles.

    PubMed

    Bangma, G C; ten Donkelaar, H

    1982-05-20

    The origin of cerebellar afferents was studied in various types of reptiles, viz., the turtles Pseudemys scripta elegans and Testudo hermanni, the lizard Varanus exanthematicus, and the snake Python regius, with retrograde tracers (the enzyme horseradish peroxidase and the fluorescent tracer "Fast Blue"). Projections to the cerebellum were demonstrated from the nucleus of the basal optic root, the interstitial nucleus of the fasciculus longitudinalis medialis, the vestibular ganglion, and the vestibular nuclear complex, two somatosensory nuclei, viz., the descending nucleus of the trigeminal nerve and the nucleus of the dorsal funiculus, the nucleus of the solitary tract, the reticular formation, and throughout the spinal cord. A distinct bilateral projection to the cerebellum was found to arise in a nucleus previously called nucleus parvocellularis medialis (Ebbesson, '67). In the present study this cell mass is termed the perihypoglossal nuclear complex, considering its comparable position and fiber connections to the perihypoglossal nuclei in mammals. In all reptilian species studied a contralateral cerebellar projection of a cell mass located in the caudal brainstem adjacent to the nucleus raphes inferior was observed. It seems likely that this cell mass represents the reptilian homologue of the mammalian inferior olive. Most of the spinocerebellar fibers appeared to arise in neurons located in area VII-VIII of the gray matter. In this respect the origin of the spinocerebellar projection in reptiles resembles the origin of the rostral and ventral spinocerebellar tracts in mammals. No indications for the existence of a column of Clarke or a central cervical nucleus in the reptilian spinal cord were obtained. On comparison of the cerebellum afferents in reptiles with the known connections of the cerebellum in amphibians, birds, and mammals, a basic pattern of cerebellar afferent projections appears to exist in these vertebrate classes, including retinal

  9. Functional analysis of ultra high information rates conveyed by rat vibrissal primary afferents

    PubMed Central

    Chagas, André M.; Theis, Lucas; Sengupta, Biswa; Stüttgen, Maik C.; Bethge, Matthias; Schwarz, Cornelius

    2013-01-01

    Sensory receptors determine the type and the quantity of information available for perception. Here, we quantified and characterized the information transferred by primary afferents in the rat whisker system using neural system identification. Quantification of “how much” information is conveyed by primary afferents, using the direct method (DM), a classical information theoretic tool, revealed that primary afferents transfer huge amounts of information (up to 529 bits/s). Information theoretic analysis of instantaneous spike-triggered kinematic stimulus features was used to gain functional insight on “what” is coded by primary afferents. Amongst the kinematic variables tested—position, velocity, and acceleration—primary afferent spikes encoded velocity best. The other two variables contributed to information transfer, but only if combined with velocity. We further revealed three additional characteristics that play a role in information transfer by primary afferents. Firstly, primary afferent spikes show preference for well separated multiple stimuli (i.e., well separated sets of combinations of the three instantaneous kinematic variables). Secondly, neurons are sensitive to short strips of the stimulus trajectory (up to 10 ms pre-spike time), and thirdly, they show spike patterns (precise doublet and triplet spiking). In order to deal with these complexities, we used a flexible probabilistic neuron model fitting mixtures of Gaussians to the spike triggered stimulus distributions, which quantitatively captured the contribution of the mentioned features and allowed us to achieve a full functional analysis of the total information rate indicated by the DM. We found that instantaneous position, velocity, and acceleration explained about 50% of the total information rate. Adding a 10 ms pre-spike interval of stimulus trajectory achieved 80–90%. The final 10–20% were found to be due to non-linear coding by spike bursts. PMID:24367295

  10. Sericin can reduce hippocampal neuronal apoptosis by activating the Akt signal transduction pathway in a rat model of diabetes mellitus☆

    PubMed Central

    Chen, Zhihong; He, Yaqiang; Song, Chengjun; Dong, Zhijun; Su, Zhejun; Xue, Jingfeng

    2012-01-01

    In the present study, a rat model of type 2 diabetes mellitus was established by continuous peritoneal injection of streptozotocin. Following intragastric perfusion of sericin for 35 days, blood glucose levels significantly reduced, neuronal apoptosis in the hippocampal CA1 region decreased, hippocampal phosphorylated Akt and nuclear factor kappa B expression were enhanced, but Bcl-xL/Bcl-2 associated death promoter expression decreased. Results demonstrated that sericin can reduce hippocampal neuronal apoptosis in a rat model of diabetes mellitus by regulating abnormal changes in the Akt signal transduction pathway. PMID:25767499

  11. Innervation of enteric mast cells by primary spinal afferents in guinea pig and human small intestine.

    PubMed

    Wang, Guo-Du; Wang, Xi-Yu; Liu, Sumei; Qu, Meihua; Xia, Yun; Needleman, Bradley J; Mikami, Dean J; Wood, Jackie D

    2014-10-01

    Mast cells express the substance P (SP) neurokinin 1 receptor and the calcitonin gene-related peptide (CGRP) receptor in guinea pig and human small intestine. Enzyme-linked immunoassay showed that activation of intramural afferents by antidromic electrical stimulation or by capsaicin released SP and CGRP from human and guinea pig intestinal segments. Electrical stimulation of the afferents evoked slow excitatory postsynaptic potentials (EPSPs) in the enteric nervous system. The slow EPSPs were mediated by tachykinin neurokinin 1 and CGRP receptors. Capsaicin evoked slow EPSP-like responses that were suppressed by antagonists for protease-activated receptor 2. Afferent stimulation evoked slow EPSP-like excitation that was suppressed by mast cell-stabilizing drugs. Histamine and mast cell protease II were released by 1) exposure to SP or CGRP, 2) capsaicin, 3) compound 48/80, 4) elevation of mast cell Ca²⁺ by ionophore A23187, and 5) antidromic electrical stimulation of afferents. The mast cell stabilizers cromolyn and doxantrazole suppressed release of protease II and histamine when evoked by SP, CGRP, capsaicin, A23187, electrical stimulation of afferents, or compound 48/80. Neural blockade by tetrodotoxin prevented mast cell protease II release in response to antidromic electrical stimulation of mesenteric afferents. The results support a hypothesis that afferent innervation of enteric mast cells releases histamine and mast cell protease II, both of which are known to act in a diffuse paracrine manner to influence the behavior of enteric nervous system neurons and to elevate the sensitivity of spinal afferent terminals.

  12. Innervation of enteric mast cells by primary spinal afferents in guinea pig and human small intestine

    PubMed Central

    Wang, Guo-Du; Wang, Xi-Yu; Liu, Sumei; Qu, Meihua; Xia, Yun; Needleman, Bradley J.; Mikami, Dean J.

    2014-01-01

    Mast cells express the substance P (SP) neurokinin 1 receptor and the calcitonin gene-related peptide (CGRP) receptor in guinea pig and human small intestine. Enzyme-linked immunoassay showed that activation of intramural afferents by antidromic electrical stimulation or by capsaicin released SP and CGRP from human and guinea pig intestinal segments. Electrical stimulation of the afferents evoked slow excitatory postsynaptic potentials (EPSPs) in the enteric nervous system. The slow EPSPs were mediated by tachykinin neurokinin 1 and CGRP receptors. Capsaicin evoked slow EPSP-like responses that were suppressed by antagonists for protease-activated receptor 2. Afferent stimulation evoked slow EPSP-like excitation that was suppressed by mast cell-stabilizing drugs. Histamine and mast cell protease II were released by 1) exposure to SP or CGRP, 2) capsaicin, 3) compound 48/80, 4) elevation of mast cell Ca2+ by ionophore A23187, and 5) antidromic electrical stimulation of afferents. The mast cell stabilizers cromolyn and doxantrazole suppressed release of protease II and histamine when evoked by SP, CGRP, capsaicin, A23187, electrical stimulation of afferents, or compound 48/80. Neural blockade by tetrodotoxin prevented mast cell protease II release in response to antidromic electrical stimulation of mesenteric afferents. The results support a hypothesis that afferent innervation of enteric mast cells releases histamine and mast cell protease II, both of which are known to act in a diffuse paracrine manner to influence the behavior of enteric nervous system neurons and to elevate the sensitivity of spinal afferent terminals. PMID:25147231

  13. Selective neuronal PTEN deletion: can we take the brakes off of growth without losing control?

    PubMed

    Gutilla, Erin A; Steward, Oswald

    2016-08-01

    The limited ability for injured adult axons to regenerate is a major cause for limited functional recovery after injury to the nervous system, motivating numerous efforts to uncover mechanisms capable of enhancing regeneration potential. One promising strategy involves deletion or knockdown of the phosphatase and tensin (PTEN) gene. Conditional genetic deletion of PTEN before, immediately following, or several months after spinal cord injury enables neurons of the corticospinal tract (CST) to regenerate their axons across the lesion, which is accompanied by enhanced recovery of skilled voluntary motor functions mediated by the CST. Although conditional genetic deletion or knockdown of PTEN in neurons enables axon regeneration, PTEN is a well-known tumor suppressor and mutations of the PTEN gene disrupt brain development leading to neurological abnormalities including macrocephaly, seizures, and early mortality. The long-term consequences of manipulating PTEN in the adult nervous system, as would be done for therapeutic intervention after injury, are only now being explored. Here, we summarize evidence indicating that long-term deletion of PTEN in mature neurons does not cause evident pathology; indeed, cortical neurons that have lived without PTEN for over 1 year appear robust and healthy. Studies to date provide only a first look at potential negative consequences of PTEN deletion or knockdown, but the absence of any detectable neuropathology supports guarded optimism that interventions to enable axon regeneration after injury are achievable.

  14. Selective neuronal PTEN deletion: can we take the brakes off of growth without losing control?

    PubMed Central

    Gutilla, Erin A.; Steward, Oswald

    2016-01-01

    The limited ability for injured adult axons to regenerate is a major cause for limited functional recovery after injury to the nervous system, motivating numerous efforts to uncover mechanisms capable of enhancing regeneration potential. One promising strategy involves deletion or knockdown of the phosphatase and tensin (PTEN) gene. Conditional genetic deletion of PTEN before, immediately following, or several months after spinal cord injury enables neurons of the corticospinal tract (CST) to regenerate their axons across the lesion, which is accompanied by enhanced recovery of skilled voluntary motor functions mediated by the CST. Although conditional genetic deletion or knockdown of PTEN in neurons enables axon regeneration, PTEN is a well-known tumor suppressor and mutations of the PTEN gene disrupt brain development leading to neurological abnormalities including macrocephaly, seizures, and early mortality. The long-term consequences of manipulating PTEN in the adult nervous system, as would be done for therapeutic intervention after injury, are only now being explored. Here, we summarize evidence indicating that long-term deletion of PTEN in mature neurons does not cause evident pathology; indeed, cortical neurons that have lived without PTEN for over 1 year appear robust and healthy. Studies to date provide only a first look at potential negative consequences of PTEN deletion or knockdown, but the absence of any detectable neuropathology supports guarded optimism that interventions to enable axon regeneration after injury are achievable. PMID:27651754

  15. Neurons with hysteresis from a network that can learn without any changes in synaptic connection strengths

    SciTech Connect

    Hoffmann, G.W.; Benson, M.W.

    1986-01-01

    A neural network concept derived from an analogy between the immune system and the central nervous system is outlined. The theory is based on a neuron that is slightly more complicated than the conventional McCullogh-Pitts type of neuron, in that is exhibits hysteresis at the single cell level. This added complication is compensated by the fact that a network of such neurons is able to learn without the necessity for any changes in synaptic connection strengths. The learning occurs as a neural consequence of interactions between the network and its environment, with environmental stimuli moving the system around in an N-dimensional phase space, until a point in phase space is reached such that the system's responses are appropriate for dealing with the stimuli. Due to the hysteresis associated with each neuron, the system tends to stay in the region of phase space where it is located. The theory includes a role for sleep in learning. 18 refs., 2 figs.

  16. SA13353 (1-[2-(1-Adamantyl)ethyl]-1-pentyl-3-[3-(4-pyridyl)propyl]urea) inhibits TNF-alpha production through the activation of capsaicin-sensitive afferent neurons mediated via transient receptor potential vanilloid 1 in vivo.

    PubMed

    Murai, Masaaki; Tsuji, Fumio; Nose, Masafumi; Seki, Iwao; Oki, Kenji; Setoguchi, Chikako; Suhara, Hiroshi; Sasano, Minoru; Aono, Hiroyuki

    2008-07-07

    Tumor necrosis factor-alpha (TNF-alpha) is known to play a crucial role in the pathogenesis of rheumatoid arthritis. In the present study, we demonstrate the effects of SA13353 (1-[2-(1-Adamantyl)ethyl]-1-pentyl-3-[3-(4-pyridyl)propyl]urea), a novel orally active inhibitor of TNF-alpha production, in animal models, and its mechanism of action on TNF-alpha production. SA13353 significantly inhibited lipopolysaccharide (LPS)-induced TNF-alpha production in a dose-dependent manner in rats. Moreover, SA13353 exhibited a binding affinity for the rat vanilloid receptor and increased neuropeptide release from the rat dorsal root ganglion neurons. However, its effects were blocked by pretreatment with the transient receptor potential vanilloid 1 (TRPV1) antagonist capsazepine. The ability of SA13353 and capsaicin to inhibit LPS-induced TNF-alpha production was eliminated by sensory denervation or capsazepine pretreatment in vivo. Although they inhibited LPS-induced TNF-alpha production in mice, these effects were not observed in TRPV1 knockout mice. SA13353 provoked the release of neuropeptides without nerve inactivation, even when chronically administered to rats. These results suggest that SA13353 inhibits TNF-alpha production through activation of capsaicin-sensitive afferent neurons mediated via TRPV1 in vivo. Post-onset treatment of SA13353 strongly reduced the hindpaw swelling and joint destruction associated with collagen-induced arthritis in rats. Thus, SA13353 is expected to be a novel anti-arthritic agent with a unique mechanism of action.

  17. Development of vestibular afferent projections into the hindbrain and their central targets

    NASA Technical Reports Server (NTRS)

    Maklad, Adel; Fritzsch, Bernd

    2003-01-01

    In contrast to most other sensory systems, hardly anything is known about the neuroanatomical development of central projections of primary vestibular neurons and how their second order target neurons develop. Recent data suggest that afferent projections may develop not unlike other sensory systems, forming first the overall projection by molecular means followed by an as yet unspecified phase of activity mediated refinement. The latter aspect has not been tested critically and most molecules that guide the initial projection are unknown.The molecular and topological origin of the vestibular and cochlear nucleus neurons is also only partially understood. Auditory and vestibular nuclei form from several rhombomeres and a given rhombomere can contribute to two or more auditory or vestibular nuclei. Rhombomere compartments develop as functional subdivisions from a single column that extends from the hindbrain to the spinal cord. Suggestions are provided for the molecular origin of these columns but data on specific mutants testing these proposals are not yet available. Overall, the functional significance of both overlapping and segregated projections are not yet fully experimentally explored in mammals. Such lack of details of the adult organization compromises future developmental analysis.

  18. Development of vestibular afferent projections into the hindbrain and their central targets

    NASA Technical Reports Server (NTRS)

    Maklad, Adel; Fritzsch, Bernd

    2003-01-01

    In contrast to most other sensory systems, hardly anything is known about the neuroanatomical development of central projections of primary vestibular neurons and how their second order target neurons develop. Recent data suggest that afferent projections may develop not unlike other sensory systems, forming first the overall projection by molecular means followed by an as yet unspecified phase of activity mediated refinement. The latter aspect has not been tested critically and most molecules that guide the initial projection are unknown.The molecular and topological origin of the vestibular and cochlear nucleus neurons is also only partially understood. Auditory and vestibular nuclei form from several rhombomeres and a given rhombomere can contribute to two or more auditory or vestibular nuclei. Rhombomere compartments develop as functional subdivisions from a single column that extends from the hindbrain to the spinal cord. Suggestions are provided for the molecular origin of these columns but data on specific mutants testing these proposals are not yet available. Overall, the functional significance of both overlapping and segregated projections are not yet fully experimentally explored in mammals. Such lack of details of the adult organization compromises future developmental analysis.

  19. Botulinum toxin in migraine: Role of transport in trigemino-somatic and trigemino-vascular afferents.

    PubMed

    Ramachandran, Roshni; Lam, Carmen; Yaksh, Tony L

    2015-07-01

    Migraine secondary to meningeal input is referred to extracranial regions innervated by somatic afferents that project to homologous regions in the trigeminal nucleus caudalis (TNC). Reported efficacy of extracranial botulinum toxin (BoNT) in treating migraine is surprising since a local extracranial effect of BoNT cannot account for its effect upon meningeal input. We hypothesize that intradermal BoNT acts through central transport in somatic afferents. Anesthetized C57Bl/6 mice (male) received unilateral supraorbital (SO) injections of BoNT-B (1.5 U/40 μl) or saline. 3 days later, mice received ipsilateral (ipsi)-SO capsaicin (20 μl of 0.5mM solution) or meningeal capsaicin (4 μl of 0.35 μM). Pre-treatment with ipsi-SO BoNT-B i) decreased nocicsponsive ipsilateral wiping behavior following ipsi-SO capsaicin; ii) produced cleavage of VAMP in the V1 region of ipsi-TG and in TG neurons showing WGA after SO injection; iii) reduced expression of c-fos in ipsi-TNC following ipsi-SO capsaicin; iv) reduced c-fos activation and NK-1 internalization in ipsi-TNC secondary to ipsi-meningeal capsaicin; and vi) SO WGA did not label dural afferents. We conclude that BoNT-B is taken up by peripheral afferents and transported to central terminals where it inhibits transmitter release resulting in decreased activation of second order neurons. Further, this study supports the hypothesis that SO BoNT exerts a trans-synaptic action on either the second order neuron (which receives convergent input from the meningeal afferent) or the terminal/TG of the converging meningeal afferent.

  20. Botulinum toxin in Migraine: Role of transport in trigemino-somatic and trigemino-vascular afferents

    PubMed Central

    Roshni, Ramachandran; Carmen, Lam; Yaksh Tony, L

    2015-01-01

    Migraine secondary to meningeal input is referred to extracranial regions innervated by somatic afferents that project to homologous regions in the trigeminal nucleus caudalis (TNC). Reported efficacy of extracranial botulinum toxin (BoNT) in treating migraine is surprising since a local extracranial effect of BoNT cannot account for its effect upon meningeal input. We hypothesize that intradermal BoNT acts through central transport in somatic afferents. Anesthetized C57Bl/6 mice (male) received unilateral supraorbital (SO) injections of BoNT-B (1.5 U/40 μl) or saline. 3 days later, mice received ipsilateral (ipsi) -SO capsaicin (2.5 μg/30 μl) or meningeal capsaicin (4 μl of 1mg/ml). Pre-treatment with ipsi-SO BONT-B i) decreased nocicsponsive ipsilateral wiping behavior following ipsi-SO capsaicin; ii) produced cleavage of VAMP in the V1 region of ipsi-TG and in TG neurons showing WGA after SO injection; iii) reduced expression of c-fos in ipsi-TNC following ipsi-SO capsaicin; iv) reduced c-fos activation and NK-1 internalization in ipsi-TNC secondary to ipsi-meningeal capsaicin; vi) SO WGA did not label dural afferents. We conclude that BoNT-B is taken up by peripheral afferents and transported to central terminals where it inhibits transmitter release resulting in decreased activation of second order neurons. Further, this study supports the hypothesis that SO BoNT exerts a trans-synaptic action on either the second order neuron (which receives convergent input from the meningeal afferent) or the terminal/TG of the converging meningeal afferent. PMID:25958249

  1. Tactile afferents encode grip safety before slip for different frictions.

    PubMed

    Khamis, Heba A; Redmond, Stephen J; Macefield, Vaughan G; Birznieks, Ingvars

    2014-01-01

    Adjustments to frictional forces are crucial to maintain a safe grip during precision object handling in both humans and robotic manipulators. The aim of this work was to investigate whether a population of human tactile afferents can provide information about the current tangential/normal force ratio expressed as the percentage of the critical load capacity - the tangential/normal force ratio at which the object would slip. A smooth stimulation surface was tested on the fingertip under three frictional conditions, with a 4 N normal force and a tangential force generated by motion in the ulnar or distal direction at a fixed speed. During stimulation, the responses of 29 afferents (12 SA-I, 2 SA-II, 12 FA-I, 3 FA-II) were recorded. A multiple regression model was trained and tested using cross-validation to estimate the percentage of the critical load capacity in real-time as the tangential force increased. The features for the model were the number of spikes from each afferent in windows of fixed length (50, 100 or 200 ms) around points spanning the range from 50% to 100% of the critical load capacity, in 5% increments. The mean regression estimate error was less than 1% of the critical load capacity with a standard deviation between 5% and 10%. A larger number of afferents is expected to improve the estimate error. This work is important for understanding human dexterous manipulation and inspiring improvements in robotic grippers and prostheses.

  2. Pharmacologically Distinct Nicotinic Acetylcholine Receptors Drive Efferent-Mediated Excitation in Calyx-Bearing Vestibular Afferents

    PubMed Central

    Kewin, Kevin; Jordan, Paivi M.; Cameron, Peter; Klapczynski, Marcin; McIntosh, J. Michael; Crooks, Peter A.; Dwoskin, Linda P.; Lysakowski, Anna

    2015-01-01

    Electrical stimulation of vestibular efferent neurons rapidly excites the resting discharge of calyx/dimorphic (CD) afferents. In turtle, this excitation arises when acetylcholine (ACh), released from efferent terminals, directly depolarizes calyceal endings by activating nicotinic ACh receptors (nAChRs). Although molecular biological data from the peripheral vestibular system implicate most of the known nAChR subunits, specific information about those contributing to efferent-mediated excitation of CD afferents is lacking. We sought to identify the nAChR subunits that underlie the rapid excitation of CD afferents and whether they differ from α9α10 nAChRs on type II hair cells that drive efferent-mediated inhibition in adjacent bouton afferents. We recorded from CD and bouton afferents innervating the turtle posterior crista during electrical stimulation of vestibular efferents while applying several subtype-selective nAChR agonists and antagonists. The α9α10 nAChR antagonists, α-bungarotoxin and α-conotoxin RgIA, blocked efferent-mediated inhibition in bouton afferents while leaving efferent-mediated excitation in CD units largely intact. Conversely, 5-iodo-A-85380, sazetidine-A, varenicline, α-conotoxin MII, and bPiDDB (N,N-dodecane-1,12-diyl-bis-3-picolinium dibromide) blocked efferent-mediated excitation in CD afferents without affecting efferent-mediated inhibition in bouton afferents. This pharmacological profile suggested that calyceal nAChRs contain α6 and β2, but not α9, nAChR subunits. Selective blockade of efferent-mediated excitation in CD afferents distinguished dimorphic from calyx afferents by revealing type II hair cell input. Dimorphic afferents differed in having higher mean discharge rates and a mean efferent-mediated excitation that was smaller in amplitude yet longer in duration. Molecular biological data demonstrated the expression of α9 in turtle hair cells and α4 and β2 in associated vestibular ganglia. PMID:25716861

  3. Receptive properties of embryonic chick sensory neurons innervating skin.

    PubMed

    Koltzenburg, M; Lewin, G R

    1997-11-01

    Receptive properties of embryonic chick sensory neurons innervating skin. J. Neurophysiol. 78: 2560-2568, 1997. We describe a new in vitro skin-nerve preparation from chick embryos that allows detailed study of the functional properties of developing sensory neurons innervating skin. Functionally single sensory afferents were isolated by recording from their axons in microdissected filaments of the cutaneous femoralis medialis nerve, which innervates skin of the thigh. A total of 157 single neurons were characterized from embryos [embryonic days 17-21 (E17-E21), n = 115] and hatchlings up to 3 wk old (n = 42). Neurons were initially classified on the basis of their conduction velocity; those conducting below 1.0 m/s were being classified as C fibers and faster conducting fibers as A fibers. The proportions of A and C fibers encountered in embryonic and hatchling preparations were not very different, indicating that myelination and axon growth proceeds quite slowly over the period studied. Afferent fibers that could subserve nociceptive and nonnociceptive functions were identified in the time period studied. Subpopulations of low-threshold myelinated afferent units exhibited rapidly or slowly adapting discharges to constant force stimuli and could have tactile functions. Many afferent fibers responded to noxious heat and were excited and sensitized by exposure to inflammatory mediators, suggesting that they are nociceptors. The behavior of these units changed in several respects over the period studied. The discharge of C fibers to noxious heat increased with age as did their mechanical thresholds. A substantial population of heat-responsive neurons (34% of the A fibers) present in embryos were not encountered in hatchling chicks. This indicates that substantial changes in the physiological response properties of sensory afferents occur after hatching. We conclude that this new preparation can be used for quantitative assessment of the receptive properties of

  4. Radial stretch reveals distinct populations of mechanosensitive mammalian somatosensory neurons

    PubMed Central

    Bhattacharya, Martha R. C.; Bautista, Diana M.; Wu, Karin; Haeberle, Henry; Lumpkin, Ellen A.; Julius, David

    2008-01-01

    Primary afferent somatosensory neurons mediate our sense of touch in response to changes in ambient pressure. Molecules that detect and transduce thermal stimuli have been recently identified, but mechanisms underlying mechanosensation, particularly in vertebrate organisms, remain enigmatic. Traditionally, mechanically evoked responses in somatosensory neurons have been assessed one cell at a time by recording membrane currents in response to application of focal pressure, suction, or osmotic challenge. Here, we used radial stretch in combination with live-cell calcium imaging to gain a broad overview of mechanosensitive neuronal subpopulations. We found that different stretch intensities activate distinct subsets of sensory neurons as defined by size, molecular markers, or pharmacological attributes. In all subsets, stretch-evoked responses required extracellular calcium, indicating that mechanical force triggers calcium influx. This approach extends the repertoire of stimulus paradigms that can be used to examine mechanotransduction in mammalian sensory neurons, facilitating future physiological and pharmacological studies. PMID:19060212

  5. Interneurones in pathways from group II muscle afferents in the lower-lumbar segments of the feline spinal cord

    PubMed Central

    Riddell, J S; Hadian, M

    2000-01-01

    Interneurones receiving excitatory input from group II muscle afferents of hindlimb nerves and located in the lower-lumbar (L6-L7) segments of the cat spinal cord were investigated using both extracellular and intracellular recording. The interneurones were located mainly in the lateral parts of laminae IV-VII, dorsal and lateral to the main region in which interneurones with input from group I muscle afferents are located. Almost half the sample of interneurones (38 of 76) were characterized by an ipsilateral ascending projection within the lateral funiculus to the L4 level. The most powerful group II excitation was produced by afferents of the quadriceps and deep peroneal muscle nerves (which discharged 70–80 % of extracellularly recorded neurones) while group II afferents of tibialis posterior, posterior biceps-semitendinosus and gastrocnemius soleus were also highly effective (discharging 45–55 % of extracellularly recorded neurones). A proportion of intracellularly recorded group II EPSPs were monosynaptic. Seventy-five per cent of the extracellularly recorded interneurones were discharged by group II afferents of two or more muscle nerves and 43 % by afferents of three or more nerves. Group I muscle afferents evoked small EPSPs in over one-quarter of the intracellularly recorded interneurones and virtually all were strongly excited by cutaneous afferents. Evidence of excitatory input from joint, interosseous and group III muscle afferents was also observed. The properties of the interneurones are compared with those of others in the lumbosacral segments and the possibility that they may function as last-order premotor interneurones is discussed. PMID:10618156

  6. Visualization of spinal afferent innervation in the mouse colon by AAV8-mediated GFP expression

    PubMed Central

    Schuster, Daniel J.; Dykstra, Jaclyn A.; Riedl, Maureen S.; Kitto, Kelley F.; Honda, Christopher N.; McIvor, R. Scott; Fairbanks, Carolyn A.; Vulchanova, Lucy

    2012-01-01

    Background Primary afferent neurons whose cell bodies reside in thoracolumbar and lumbosacral dorsal root ganglia (DRG) innervate colon and transmit sensory signals from colon to spinal cord under normal conditions and conditions of visceral hypersensitivity. Histologically, these extrinsic afferents cannot be differentiated from intrinsic fibers of enteric neurons because all known markers label neurons of both populations. Adeno-associated virus (AAV) vectors are capable of transducing DRG neurons after intrathecal administration. We hypothesized that AAV-driven overexpression of green fluorescent protein (GFP) in DRG would enable visualization of extrinsic spinal afferents in colon separately from enteric neurons. Methods Recombinant AAV serotype 8 (rAAV8) vector carrying the GFP gene was delivered via direct lumbar puncture. GFP labeling in DRG and colon was examined using immunohistochemistry. Key Results Analysis of colon from rAAV8-GFP treated mice demonstrated GFP-immunoreactivity (GFP-ir) within mesenteric nerves, smooth muscle layers, myenteric plexus, submucosa and mucosa, but not in cell bodies of enteric neurons. Notably, GFP-ir co-localized with CGRP and TRPV1 in mucosa, myenteric plexus, and globular-like clusters surrounding nuclei within myenteric ganglia. Additionally, GFP-positive fibers were observed in close association with blood vessels of mucosa and submucosa. Analysis of GFP-ir in thoracolumbar and lumbosacral DRG revealed that levels of expression in colon and L6 DRG appeared to be related. Conclusions and Inferences These results demonstrate the feasibility of gene transfer to mouse colonic spinal sensory neurons using intrathecal delivery of AAV vectors and the utility of this approach for histological analysis of spinal afferent nerve fibers within colon. PMID:23252426

  7. Inverse modulation of motor neuron cellular and synaptic properties can maintain the same motor output.

    PubMed

    McClelland, Thomas James; Parker, David

    2017-09-30

    Although often examined in isolation, a single neuromodulator typically has multiple cellular and synaptic effects. Here, we have examined the interaction of the cellular and synaptic effects of 5-HT in the lamprey spinal cord. 5-HT reduces the amplitude of glutamatergic synaptic inputs and the slow post-spike afterhyperpolarization (sAHP) in motor neurons. We examined the interaction between these effects using ventral root activity evoked by stimulation of the spinal cord. While 5-HT reduced excitatory glutamatergic synaptic inputs in motor neurons to approximately 60% of control, ventral root activity was not significantly affected. The reduction of the sAHP by 5-HT increased motor neuron excitability by reducing spike frequency adaptation, an effect that could in principle have opposed the reduction of the excitatory synaptic input. Support for this was sought by reducing the amplitude of the sAHP by applying the toxin apamin before 5-HT application. In these experiments, 5-HT reduced the ventral root response, presumably because the reduction of the synaptic input now dominated. This was supported by computer simulations that showed that the motor output could be maintained over a wide range of synaptic input values if they were matched by changes in postsynaptic excitability. The effects of 5-HT on ventral root responses were altered by spinal cord lesions: 5-HT significantly increased ventral root responses in animals that recovered good locomotor function, consistent with a lesion-induced reduction in the synaptic effects of 5-HT, which thus biases its effects to the increase in motor neuron excitability. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  8. The orientation of the neuronal growth process can be directed via magnetic nanoparticles under an applied magnetic field.

    PubMed

    Riggio, Cristina; Calatayud, M Pilar; Giannaccini, Martina; Sanz, Beatriz; Torres, Teobaldo E; Fernández-Pacheco, Rodrigo; Ripoli, Andrea; Ibarra, Manuel Ricardo; Dente, Luciana; Cuschieri, Alfred; Goya, Gerardo F; Raffa, Vittoria

    2014-10-01

    There is a growing body of evidence indicating the importance of physical stimuli for neuronal growth and development. Specifically, results from published experimental studies indicate that forces, when carefully controlled, can modulate neuronal regeneration. Here, we validate a non-invasive approach for physical guidance of nerve regeneration based on the synergic use of magnetic nanoparticles (MNPs) and magnetic fields (Ms). The concept is that the application of a tensile force to a neuronal cell can stimulate neurite initiation or axon elongation in the desired direction, the MNPs being used to generate this tensile force under the effect of a static external magnetic field providing the required directional orientation. In a neuron-like cell line, we have confirmed that MNPs direct the neurite outgrowth preferentially along the direction imposed by an external magnetic field, by inducing a net angle displacement (about 30°) of neurite direction. From the clinical editor: This study validates that non-invasive approaches for physical guidance of nerve regeneration based on the synergic use of magnetic nanoparticles and magnetic fields are possible. The hypothesis was confirmed by observing preferential neurite outgrowth in a cell culture system along the direction imposed by an external magnetic field.

  9. Immunostaining for the α3 isoform of the Na+/K+-ATPase is selective for functionally identified muscle spindle afferents in vivo

    PubMed Central

    Parekh, A; Campbell, A J M; Djouhri, L; Fang, X; McMullan, S; Berry, C; Acosta, C; Lawson, S N

    2010-01-01

    Muscle spindle afferent (MSA) neurons can show rapid and sustained firing. Immunostaining for the α3 isoform of the Na+/K+-ATPase (α3) in some large dorsal root ganglion (DRG) neurons and large intrafusal fibres suggested α3 expression in MSAs (Dobretsov et al. 2003), but not whether α3-immunoreactive DRG neuronal somata were exclusively MSAs. We found that neuronal somata with high α3 immunointensity were neurofilament-rich, suggesting they have A-fibres; we therefore focussed on A-fibre neurons to determine the sensory properties of α3-immunoreactive neurons. We examined α3 immunointensity in 78 dye-injected DRG neurons whose conduction velocities and hindlimb sensory receptive fields were determined in vivo. A dense perimeter or ring of staining in a subpopulation of neurons was clearly overlying the soma membrane and not within satellite cells. Neurons with clear α3 rings (n = 23) were all MSAs (types I and II); all MSAs had darkly stained α3 rings, that tended to be darker in MSA1 than MSA2 units. Of 52 non-MSA A-fibre neurons including nociceptive and cutaneous low-threshold mechanoreceptive (LTM) neurons, 50 had no discernable ring, while 2 (Aα/β cutaneous LTMs) had weakly stained rings. Three of three C-nociceptors had no rings. MSAs with strong ring immunostaining also showed the strongest cytoplasmic staining. These findings suggest that α3 ring staining is a selective marker for MSAs. The α3 isoform of the Na+/K+-ATPase has previously been shown to be activated by higher Na+ levels and to have greater affinity for ATP than the α1 isoform (in all DRG neurons). The high α3 levels in MSAs may enable the greater dynamic firing range in MSAs. PMID:20807787

  10. Anatomy and physiology of the afferent visual system.

    PubMed

    Prasad, Sashank; Galetta, Steven L

    2011-01-01

    The efficient organization of the human afferent visual system meets enormous computational challenges. Once visual information is received by the eye, the signal is relayed by the retina, optic nerve, chiasm, tracts, lateral geniculate nucleus, and optic radiations to the striate cortex and extrastriate association cortices for final visual processing. At each stage, the functional organization of these circuits is derived from their anatomical and structural relationships. In the retina, photoreceptors convert photons of light to an electrochemical signal that is relayed to retinal ganglion cells. Ganglion cell axons course through the optic nerve, and their partial decussation in the chiasm brings together corresponding inputs from each eye. Some inputs follow pathways to mediate pupil light reflexes and circadian rhythms. However, the majority of inputs arrive at the lateral geniculate nucleus, which relays visual information via second-order neurons that course through the optic radiations to arrive in striate cortex. Feedback mechanisms from higher cortical areas shape the neuronal responses in early visual areas, supporting coherent visual perception. Detailed knowledge of the anatomy of the afferent visual system, in combination with skilled examination, allows precise localization of neuropathological processes and guides effective diagnosis and management of neuro-ophthalmic disorders. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Microsecond-Scale Timing Precision in Rodent Trigeminal Primary Afferents

    PubMed Central

    Bale, Michael R.; Campagner, Dario; Erskine, Andrew

    2015-01-01

    Communication in the nervous system occurs by spikes: the timing precision with which spikes are fired is a fundamental limit on neural information processing. In sensory systems, spike-timing precision is constrained by first-order neurons. We found that spike-timing precision of trigeminal primary afferents in rats and mice is limited both by stimulus speed and by electrophysiological sampling rate. High-speed video of behaving mice revealed whisker velocities of at least 17,000°/s, so we delivered an ultrafast “ping” (>50,000°/s) to single whiskers and sampled primary afferent activity at 500 kHz. Median spike jitter was 17.4 μs; 29% of neurons had spike jitter < 10 μs. These results indicate that the input stage of the trigeminal pathway has extraordinary spike-timing precision and very high potential information capacity. This timing precision ranks among the highest in biology. PMID:25878266

  12. Hydrogen sulfide determines HNO-induced stimulation of trigeminal afferents.

    PubMed

    Wild, Vanessa; Messlinger, Karl; Fischer, Michael J M

    2015-08-18

    Endogenous NO and hydrogen sulfide form HNO, which causes CGRP release via TRPA1 channel activation in sensory nerves. In the present study, stimulation of intact trigeminal afferent neuron preparations with NO donors, Na2S or both was analyzed by measuring CGRP release as an index of mass activation. Combined stimulation was able to activate all parts of the trigeminal system and acted synergistic compared to stimulation with both substances alone. To investigate the contribution of both substances, we varied their ratio and tracked intracellular calcium in isolated neurons. Our results demonstrate that hydrogen sulfide is the rate-limiting factor for HNO formation. CGRP has a key role in migraine pathophysiology and HNO formation at all sites of the trigeminal system should be considered for this novel means of activation.

  13. Tactile stimulation with kinesiology tape alleviates muscle weakness attributable to attenuation of Ia afferents.

    PubMed

    Konishi, Yu

    2013-01-01

    Prolonged vibration stimulation to normal individuals could lead to muscle weakness attributable to attenuation of afferent feedback. This weakness is neurophysiologically similar to that seen in patients with knee injury. Theoretically, increasing input to gamma motor neurons could reverse this weakness. Sensory input to these neurons from skin could indirectly increase Ia afferent feedback. The present study examined the effect of this tactile stimulation in the form of Kinesiology tape on muscle weakness attributable to attenuation of afferent feedback. Randomized, crossover design. All participants were measured their eccentric maximal voluntary contractions under the 2 conditions (taping and non-taping). First, maximal voluntary contraction during eccentric contraction was measured as baseline. For the taping condition, Kinesiology tape was applied around each subject's knee joint during maximal voluntary contraction measurement after vibration. For the non-taping condition, tape was not applied during maximal voluntary contraction measurement after vibration. Mean percentage changes between pre- and post-vibration stimulation were compared between two conditions. Maximal voluntary contraction and average electromyography of taping condition was significantly larger than that of non-taping condition. Our results suggest that tactile stimulation in the form of Kinesiology tape inhibits the decline of both strength and electromyography. Alpha motor neuron activity attenuated by prolonged vibration would thus be partially rescued by tactile stimulation. These results indirectly suggest that stimulation of skin around the knee could counter quadriceps femoris weakness due to attenuated Ia afferent activity. Copyright © 2012 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  14. Diversity of vestibular nuclei neurons targeted by cerebellar nodulus inhibition

    PubMed Central

    Meng, Hui; Blázquez, Pablo M; Dickman, J David; Angelaki, Dora E

    2014-01-01

    Abstract A functional role of the cerebellar nodulus and ventral uvula (lobules X and IXc,d of the vermis) for vestibular processing has been strongly suggested by direct reciprocal connections with the vestibular nuclei, as well as direct vestibular afferent inputs as mossy fibres. Here we have explored the types of neurons in the macaque vestibular nuclei targeted by nodulus/ventral uvula inhibition using orthodromic identification from the caudal vermis. We found that all nodulus-target neurons are tuned to vestibular stimuli, and most are insensitive to eye movements. Such non-eye-movement neurons are thought to project to vestibulo-spinal and/or thalamo-cortical pathways. Less than 20% of nodulus-target neurons were sensitive to eye movements, suggesting that the caudal vermis can also directly influence vestibulo-ocular pathways. In general, response properties of nodulus-target neurons were diverse, spanning the whole continuum previously described in the vestibular nuclei. Most nodulus-target cells responded to both rotation and translation stimuli and only a few were selectively tuned to translation motion only. Other neurons were sensitive to net linear acceleration, similar to otolith afferents. These results demonstrate that, unlike the flocculus and ventral paraflocculus which target a particular cell group, nodulus/ventral uvula inhibition targets a large diversity of cell types in the vestibular nuclei, consistent with a broad functional significance contributing to vestibulo-ocular, vestibulo-thalamic and vestibulo-spinal pathways. PMID:24127616

  15. Intrinsic and synaptic long-term depression of NTS relay of nociceptin- and capsaicin-sensitive cardiopulmonary afferents hyperactivity.

    PubMed

    Bantikyan, Armenak; Song, Gang; Feinberg-Zadek, Paula; Poon, Chi-Sang

    2009-03-01

    The nucleus tractus solitarius (NTS) in the caudal medulla is a gateway for a variety of cardiopulmonary afferents important for homeostatic regulation and defense against airway and cardiovascular insults and is a key central target potentially mediating the response habituation to these inputs. Here, whole-cell and field population action potential recordings and infrared imaging in rat brainstem slices in vitro revealed a compartmental pain-pathway-like organization of capsaicin-facilitated vs. nocistatin-facilitated/nociceptin-suppressed neuronal clusters in an NTS region, which receives cardiopulmonary A- and C-fiber afferents with differing capsaicin sensitivities. All capsaicin-sensitive neurons and a fraction of nociceptin-sensitive neurons expressed N-methyl-D: -aspartate (NMDA) receptor-dependent synaptic long-term depression (LTD) following afferent stimulation. All neurons also expressed activity-dependent decrease of excitability (intrinsic LTD), which converted to NMDA receptor-dependent intrinsic long-term potentiation after GABA(A) receptor blockade. Thus, distinct intrinsic and synaptic LTD mechanisms in the NTS specific to the relay of A- or C-fiber afferents may underlie the response habituation to persistent afferents hyperactivity that are associated with varying physiologic challenges and cardiopulmonary derangements-including hypertension, chronic cough, asthmatic bronchoconstriction, sustained elevated lung volume in chronic obstructive pulmonary disease or in continuous positive-airway-pressure therapy for sleep apnea, metabolic acidosis, and prolonged exposure to hypoxia at high altitude.

  16. Calcium Imaging of Neuronal Activity in Drosophila Can Identify Anticonvulsive Compounds.

    PubMed

    Streit, Anne K; Fan, Yuen Ngan; Masullo, Laura; Baines, Richard A

    2016-01-01

    Although there are now a number of antiepileptic drugs (AEDs) available, approximately one-third of epilepsy patients respond poorly to drug intervention. The reasons for this are complex, but are probably reflective of the increasing number of identified mutations that predispose individuals to this disease. Thus, there is a clear requirement for the development of novel treatments to address this unmet clinical need. The existence of gene mutations that mimic a seizure-like behaviour in the fruit fly, Drosophila melanogaster, offers the possibility to exploit the powerful genetics of this insect to identify novel cellular targets to facilitate design of more effective AEDs. In this study we use neuronal expression of GCaMP, a potent calcium reporter, to image neuronal activity using a non-invasive and rapid method. Expression in motoneurons in the isolated CNS of third instar larvae shows waves of calcium-activity that pass between segments of the ventral nerve cord. Time between calcium peaks, in the same neurons, between adjacent segments usually show a temporal separation of greater than 200 ms. Exposure to proconvulsants (picrotoxin or 4-aminopyridine) reduces separation to below 200 ms showing increased synchrony of activity across adjacent segments. Increased synchrony, characteristic of epilepsy, is similarly observed in genetic seizure mutants: bangsenseless1 (bss1) and paralyticK1270T (paraK1270T). Exposure of bss1 to clinically-used antiepileptic drugs (phenytoin or gabapentin) significantly reduces synchrony. In this study we use the measure of synchronicity to evaluate the effectiveness of known and novel anticonvulsive compounds (antipain, isethionate, etopiside rapamycin and dipyramidole) to reduce seizure-like CNS activity. We further show that such compounds also reduce the Drosophila voltage-gated persistent Na+ current (INaP) in an identified motoneuron (aCC). Our combined assays provide a rapid and reliable method to screen unknown compounds

  17. Calcium Imaging of Neuronal Activity in Drosophila Can Identify Anticonvulsive Compounds

    PubMed Central

    Streit, Anne K.; Fan, Yuen Ngan; Masullo, Laura; Baines, Richard A.

    2016-01-01

    Although there are now a number of antiepileptic drugs (AEDs) available, approximately one-third of epilepsy patients respond poorly to drug intervention. The reasons for this are complex, but are probably reflective of the increasing number of identified mutations that predispose individuals to this disease. Thus, there is a clear requirement for the development of novel treatments to address this unmet clinical need. The existence of gene mutations that mimic a seizure-like behaviour in the fruit fly, Drosophila melanogaster, offers the possibility to exploit the powerful genetics of this insect to identify novel cellular targets to facilitate design of more effective AEDs. In this study we use neuronal expression of GCaMP, a potent calcium reporter, to image neuronal activity using a non-invasive and rapid method. Expression in motoneurons in the isolated CNS of third instar larvae shows waves of calcium-activity that pass between segments of the ventral nerve cord. Time between calcium peaks, in the same neurons, between adjacent segments usually show a temporal separation of greater than 200 ms. Exposure to proconvulsants (picrotoxin or 4-aminopyridine) reduces separation to below 200 ms showing increased synchrony of activity across adjacent segments. Increased synchrony, characteristic of epilepsy, is similarly observed in genetic seizure mutants: bangsenseless1 (bss1) and paralyticK1270T (paraK1270T). Exposure of bss1 to clinically-used antiepileptic drugs (phenytoin or gabapentin) significantly reduces synchrony. In this study we use the measure of synchronicity to evaluate the effectiveness of known and novel anticonvulsive compounds (antipain, isethionate, etopiside rapamycin and dipyramidole) to reduce seizure-like CNS activity. We further show that such compounds also reduce the Drosophila voltage-gated persistent Na+ current (INaP) in an identified motoneuron (aCC). Our combined assays provide a rapid and reliable method to screen unknown compounds

  18. Effect of hypergravity on the development of vestibulocerebellar afferent fibers

    NASA Astrophysics Data System (ADS)

    Bruce, L. L.

    Gravity is a critical factor in the normal development of the vestibular system, as prolonged prenatal exposures to either micro- or hypergravity will alter the pattern of projections from specific vestibular organs to specific targets in the vestibular nuclei. This study addresses the effect of gravity on the development of vestibulocerebellar projections. In adult rats the semicircular canal afferents project mainly to the cerebellar nodulus whereas the otolith maculae project mainly to the ventral uvula of the cerebellum. To determine if the distribution pattern of these afferents is altered by exposures to altered gravity, 10 pregnant rats were exposed to hypergravity (1.5g) from embryonic day 12 (before vestibular ganglion neurons contact vestibular nuclei) to embryonic day 21 (near the time when the vestibular system becomes functional). Controls were exposed to Earth's gravity but otherwise received the same treatment. At the end of the exposure the embryos were deeply anesthetized and fixed by transcardiac perfusion with 4% paraformaldehyde in 0.1 M phosphate buffer (pH7.4). Filter strips coated with DiI and PTIR were implanted into the saccule (gravistatic vestibular receptor) or into the posterior vertical canal (angular acceleration receptor), and allowed to diffuse for 2 weeks at 37°C. Then the brains were dissected and sectioned for fluorescent confocal imaging. Examination of the control cerebella revealed that the canal and otolith afferents have reached the nodulus and uvula, and axons extend into the internal granular, Purkinje, and molecular layers. Projections from the saccule and posterior vertical canal were partially segregated into their respective domains, the uvula and nodulus. In contrast, in hypergravity-exposed rat fetuses the saccule and posterior vertical canal projections were poorly segregated, and both organs contributed labeled fibers to all layers of the nodulus and uvula. This contrasts with the increased afferent segregation

  19. Distribution of primary afferent fibres in the cochlear nuclei. A silver and horseradish peroxidase (HRP) study.

    PubMed Central

    Merchan, M A; Collia, F P; Merchan, J A; Saldana, E

    1985-01-01

    Horseradish peroxidase, when injected intracochlearly, is transported transganglionically to the brain stem cochlear nuclei, thus providing an excellent method for tracing the central projection of the spiral ganglion neurons. Silver impregnation using the Cajal-de Castro method, which stains axons even when inside the bone, was used as a reference technique. The combination of both procedures led to the following conclusions. Primary cochlear afferents are found only in the ventral zone of the dorsal cochlear nucleus. In this area they cover the deep and fusiform cell layers. The molecular layer shows no HRP label. The higher concentration of primary cochlear afferents in the ventral cochlear nucleus appears in its central zone; wide areas in this nucleus are not labelled at all. A thin bundle of primary cochlear afferents runs parallel to, and beneath, the granular region. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:4077711

  20. The optimal neural strategy for a stable motor task requires a compromise between level of muscle cocontraction and synaptic gain of afferent feedback

    PubMed Central

    Dideriksen, Jakob L.; Negro, Francesco

    2015-01-01

    Increasing joint stiffness by cocontraction of antagonist muscles and compensatory reflexes are neural strategies to minimize the impact of unexpected perturbations on movement. Combining these strategies, however, may compromise steadiness, as elements of the afferent input to motor pools innervating antagonist muscles are inherently negatively correlated. Consequently, a high afferent gain and active contractions of both muscles may imply negatively correlated neural drives to the muscles and thus an unstable limb position. This hypothesis was systematically explored with a novel computational model of the peripheral nervous system and the mechanics of one limb. Two populations of motor neurons received synaptic input from descending drive, spinal interneurons, and afferent feedback. Muscle force, simulated based on motor unit activity, determined limb movement that gave rise to afferent feedback from muscle spindles and Golgi tendon organs. The results indicated that optimal steadiness was achieved with low synaptic gain of the afferent feedback. High afferent gains during cocontraction implied increased levels of common drive in the motor neuron outputs, which were negatively correlated across the two populations, constraining instability of the limb. Increasing the force acting on the joint and the afferent gain both effectively minimized the impact of an external perturbation, and suboptimal adjustment of the afferent gain could be compensated by muscle cocontraction. These observations show that selection of the strategy for a given contraction implies a compromise between steadiness and effectiveness of compensations to perturbations. This indicates that a task-dependent selection of neural strategy for steadiness is necessary when acting in different environments. PMID:26203102

  1. Spiral Ganglion Stem Cells Can Be Propagated and Differentiated Into Neurons and Glia

    PubMed Central

    Zecha, Veronika; Wagenblast, Jens; Arnhold, Stefan; Edge, Albert S. B.; Stöver, Timo

    2014-01-01

    Abstract The spiral ganglion is an essential functional component of the peripheral auditory system. Most types of hearing loss are associated with spiral ganglion cell degeneration which is irreversible due to the inner ear's lack of regenerative capacity. Recent studies revealed the existence of stem cells in the postnatal spiral ganglion, which gives rise to the hope that these cells might be useful for regenerative inner ear therapies. Here, we provide an in-depth analysis of sphere-forming stem cells isolated from the spiral ganglion of postnatal mice. We show that spiral ganglion spheres have characteristics similar to neurospheres isolated from the brain. Importantly, spiral ganglion sphere cells maintain their major stem cell characteristics after repeated propagation, which enables the culture of spheres for an extended period of time. In this work, we also demonstrate that differentiated sphere-derived cell populations not only adopt the immunophenotype of mature spiral ganglion cells but also develop distinct ultrastructural features of neurons and glial cells. Thus, our work provides further evidence that self-renewing spiral ganglion stem cells might serve as a promising source for the regeneration of lost auditory neurons. PMID:24940560

  2. High-amplitude electrical stimulation can reduce elicited neuronal activity in visual prosthesis

    PubMed Central

    Barriga-Rivera, Alejandro; Guo, Tianruo; Yang, Chih-Yu; Abed, Amr Al; Dokos, Socrates; Lovell, Nigel H.; Morley, John W.; Suaning, Gregg J.

    2017-01-01

    Retinal electrostimulation is promising a successful therapy to restore functional vision. However, a narrow stimulating current range exists between retinal neuron excitation and inhibition which may lead to misperformance of visual prostheses. As the conveyance of representation of complex visual scenes may require neighbouring electrodes to be activated simultaneously, electric field summation may contribute to reach this inhibitory threshold. This study used three approaches to assess the implications of relatively high stimulating conditions in visual prostheses: (1) in vivo, using a suprachoroidal prosthesis implanted in a feline model, (2) in vitro through electrostimulation of murine retinal preparations, and (3) in silico by computing the response of a population of retinal ganglion cells. Inhibitory stimulating conditions led to diminished cortical activity in the cat. Stimulus-response relationships showed non-monotonic profiles to increasing stimulating current. This was observed in vitro and in silico as the combined response of groups of neurons (close to the stimulating electrode) being inhibited at certain stimulating amplitudes, whilst other groups (far from the stimulating electrode) being recruited. These findings may explain the halo-like phosphene shapes reported in clinical trials and suggest that simultaneous stimulation in retinal prostheses is limited by the inhibitory threshold of the retinal ganglion cells. PMID:28209965

  3. Tonic and phasic differential GABAergic inhibition of synaptic actions of joint afferents in the cat.

    PubMed

    Rudomin, P; Hernández, E; Lomelí, J

    2007-01-01

    The aim of this study was to examine the functional organization of the spinal neuronal networks activated by myelinated afferent fibers in the posterior articular nerve (PAN) of the anesthetized cat. Particular attention was given to the tonic and phasic GABAa inhibitory modulation of these networks. Changes in the synaptic effectiveness of the joint afferents were inferred from changes in the intraspinal focal potentials produced by electrical stimulation of the PAN. We found that conditioning stimulation of cutaneous nerves (sural, superficial peroneus and saphenous) and of the nucleus raphe magnus often inhibited, in a differential manner, the early and late components of the intraspinal focal potentials produced by stimulation of low and high threshold myelinated PAN afferents, respectively. The degree of the inhibition depended on the strength of both the conditioning and test stimuli and on the segmental level of recording. Conditioning stimulation of group I muscle afferents was less effective, but marked depression of the early and late focal potentials was produced by stimuli exceeding 5 xT. The i.v. injection of 1-2.5 mg/kg of picrotoxin, a GABAa blocker, had relatively minor effects on the early components of the PAN focal potentials, but was able to induce a significant increase of the late components. It also reduced the inhibitory effects of cutaneous and joint nerve conditioning on PAN focal responses. Conditioning autogenetic stimulation with high-frequency trains depressed the PAN focal potentials. The late components of the PAN responses remained depressed several minutes after discontinuing the conditioning train, even after picrotoxin administration. The present observations indicate that the neuronal networks activated by the low threshold PAN afferents show a relatively small post-activation depression and appear to be subjected to a minor tonic inhibitory GABAa control. In contrast, the pathways activated by stimulation of high threshold

  4. Glycogen metabolism in brain and neurons - astrocytes metabolic cooperation can be altered by pre- and neonatal lead (Pb) exposure.

    PubMed

    Baranowska-Bosiacka, Irena; Falkowska, Anna; Gutowska, Izabela; Gąssowska, Magdalena; Kolasa-Wołosiuk, Agnieszka; Tarnowski, Maciej; Chibowska, Karina; Goschorska, Marta; Lubkowska, Anna; Chlubek, Dariusz

    2017-09-12

    Lead (Pb) is an environmental neurotoxin which particularly affects the developing brain but the molecular mechanism of its neurotoxicity still needs clarification. The aim of this paper was to examine whether pre- and neonatal exposure to Pb (concentration of Pb in rat offspring blood below the "threshold level") may affect the brain's energy metabolism in neurons and astrocytes via the amount of available glycogen. We investigated the glycogen concentration in the brain, as well as the expression of the key enzymes involved in glycogen metabolism in brain: glycogen synthase 1 (Gys1), glycogen phosphorylase (PYGM, an isoform active in astrocytes; and PYGB, an isoform active in neurons) and phosphorylase kinase β (PHKB). Moreover, the expression of connexin 43 (Cx43) was evaluated to analyze whether Pb poisoning during the early phase of life may affect the neuron-astrocytes' metabolic cooperation. This work shows for the first time that exposure to Pb in early life can impair brain energy metabolism by reducing the amount of glycogen and decreasing the rate of its metabolism. This reduction in brain glycogen level was accompanied by a decrease in Gys1 expression. We noted a reduction in the immunoreactivity and the gene expression of both PYGB and PYGM isoform, as well as an increase in the expression of PHKB in Pb-treated rats. Moreover, exposure to Pb induced decrease in connexin 43 immunoexpression in all the brain structures analyzed, both in astrocytes as well as in neurons. Our data suggests that exposure to Pb in the pre- and neonatal periods results in a decrease in the level of brain glycogen and a reduction in the rate of its metabolism, thereby reducing glucose availability, which as a further consequence may lead to the impairment of brain energy metabolism and the metabolic cooperation between neurons and astrocytes. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. The Role of the Paratrigeminal Nucleus in Vagal Afferent Evoked Respiratory Reflexes: A Neuroanatomical and Functional Study in Guinea Pigs

    PubMed Central

    Driessen, Alexandria K.; Farrell, Michael J.; Mazzone, Stuart B.; McGovern, Alice E.

    2015-01-01

    The respiratory tree receives sensory innervation from the jugular and nodose vagal sensory ganglia. Neurons of these ganglia are derived from embryologically distinct origins and as such demonstrate differing molecular, neurochemical and physiological phenotypes. Furthermore, whereas nodose afferent neurons project to the nucleus of the solitary tract (nTS), recent neuroanatomical studies in rats suggest that jugular neurons have their central terminations in the paratrigeminal nucleus (Pa5). In the present study we confirm that guinea pigs demonstrate a comparable distinction between the brainstem terminations of nodose and jugular ganglia afferents. Thus, microinjection of fluorescently conjugated cholera toxin B (CT-B) neural tracers into the caudal nTS and Pa5 resulted in highly specific retrograde labeling of neurons in the nodose and jugular ganglia, respectively. Whereas, nodose neurons more often expressed 160 KD neurofilament proteins and the alpha3 subunit of Na+/K+ ATPase, significantly more jugular neurons expressed the neuropeptides substance P (SP) and, especially, Calcitonin Gene-Related Peptide (CGRP). Indeed, terminal fibers in the Pa5 compared to the nTS were characterized by their significantly greater expression of CGRP, further supporting the notion that jugular afferents project to trigeminal-related brainstem regions. Electrical stimulation of the guinea pig larynx following selective surgical denervation of the nodose afferent innervation to the larynx (leaving intact the jugular innervation) resulted in stimulus dependent respiratory slowing and eventual apnea. This jugular ganglia neuron mediated response was unaffected by bilateral microinjections of the GABAA agonist muscimol into the nTS, but was abolished by muscimol injected into the Pa5. Taken together these data confirm that jugular and nodose vagal ganglia afferent neurons innervate distinct central circuits and support the notion that multiple peripheral and central pathways

  6. N-acetylcysteine alters apoptotic gene expression in axotomised primary sensory afferent subpopulations.

    PubMed

    Reid, Adam J; Shawcross, Susan G; Hamilton, Alex E; Wiberg, Mikael; Terenghi, Giorgio

    2009-10-01

    Novel approaches are required in peripheral nerve injury management because current surgical techniques, which do not address axotomy-induced neuronal death, lead to deficient sensory recovery. Sensory neuronal death has functional preference with cutaneous neurons dying in great numbers whilst muscle afferents survive axotomy. This offers the potential of comparing similar cell types that suffer distinct fates upon nerve injury. Here, a novel approach, combining in vivo rat nerve injury model with laser microdissection and quantitative real-time polymerase chain reaction, identifies crucial disparities in apoptotic gene expression attributable to subpopulations of differing sensory modalities and examines the response to N-acetylcysteine (NAC) therapy. We show that axotomised muscle afferent neurons survive injury due to a neuroprotective response which markedly downregulates Bax and caspase-3 mRNA. In contrast, axotomised cutaneous sensory neurons significantly upregulate caspase-3 and alter both Bcl-2 and Bax expression such that pro-apoptotic Bax predominates. N-Acetylcysteine (NAC) intervention promotes neuroprotection of cutaneous sensory neurons through considerable upregulation of Bcl-2 and downregulation of both Bax and caspase-3 mRNA. The data presented identifies differential activation of apoptotic genes in axotomised neuronal subpopulations. Furthermore, NAC therapy instigates apoptotic gene expression changes in axotomised neurons, thereby offering pharmacotherapeutic potential in the clinical treatment of nerve injury.

  7. The unsilent majority-TRPV1 drives "spontaneous" transmission of unmyelinated primary afferents within cardiorespiratory NTS.

    PubMed

    Andresen, Michael C; Hofmann, Mackenzie E; Fawley, Jessica A

    2012-12-15

    Cranial primary afferent sensory neurons figure importantly in homeostatic control of visceral organ systems. Of the two broad classes of visceral afferents, the role of unmyelinated or C-type class remains poorly understood. This review contrasts key aspects of peripheral discharge properties of C-fiber afferents and their glutamate transmission mechanisms within the solitary tract nucleus (NTS). During normal prevailing conditions, most information arrives at the NTS through myelinated A-type nerves. However, most of visceral afferent axons (75-90%) in NTS are unmyelinated, C-type axons. Centrally, C-type solitary tract (ST) afferent terminals have presynaptic transient receptor potential vanilloid type 1 (TRPV1) receptors. Capsaicin activation of TRPV1 blocks phasic or synchronous release of glutamate but facilitates release of glutamate from a separate pool of vesicles. This TRPV1-operated pool of vesicles is active at normal temperatures and is responsible for actively driving a 10-fold higher release of glutamate at TRPV1 compared with TRPV1- terminals even in the absence of afferent action potentials. This novel TRPV1 mechanism is responsible for an additional asynchronous release of glutamate that is not present in myelinated terminals. The NTS is rich with presynaptic G protein-coupled receptors, and the implications of TRPV1-operated glutamate offer unique targets for signaling in C-type sensory afferent terminals from neuropeptides, inflammatory mediators, lipid metabolites, cytokines, and cannabinoids. From a homeostatic view, this combination could have broad implications for integration in chronic pathological disturbances in which the numeric dominance of C-type endings and TRPV1 would broadly disturb multisystem control mechanisms.

  8. Signal propagation through feedforward neuronal networks with different operational modes

    NASA Astrophysics Data System (ADS)

    Li, Jie; Liu, Feng; Xu, Ding; Wang, Wei

    2009-02-01

    How neuronal activity is propagated across multiple layers of neurons is a fundamental issue in neuroscience. Using numerical simulations, we explored how the operational mode of neurons —coincidence detector or temporal integrator— could affect the propagation of rate signals through a 10-layer feedforward network with sparse connectivity. Our study was based on two kinds of neuron models. The Hodgkin-Huxley (HH) neuron can function as a coincidence detector, while the leaky integrate-and-fire (LIF) neuron can act as a temporal integrator. When white noise is afferent to the input layer, rate signals can be stably propagated through both networks, while neurons in deeper layers fire synchronously in the absence of background noise; but the underlying mechanism for the development of synchrony is different. When an aperiodic signal is presented, the network of HH neurons can represent the temporal structure of the signal in firing rate. Meanwhile, synchrony is well developed and is resistant to background noise. In contrast, rate signals are somewhat distorted during the propagation through the network of LIF neurons, and only weak synchrony occurs in deeper layers. That is, coincidence detectors have a performance advantage over temporal integrators in propagating rate signals. Therefore, given weak synaptic conductance and sparse connectivity between layers in both networks, synchrony does greatly subserve the propagation of rate signals with fidelity, and coincidence detection could be of considerable functional significance in cortical processing.

  9. What can be learned from studies of multisubstrate mechanisms of neuronal dopamine transport?

    PubMed

    Schenk, James O; George, Shannon E; Schumacher, Paul Dietrich

    2003-10-31

    The dopamine transporter (DAT) is a Na+- and Cl--dependent transporter and, with respect to its three apparent substrates, both partially random sequential as well as ordered mechanisms have been reported. Here we describe some of the features of DAT, such as the coupling of energy to concentrate dopamine and the properties of slippage and leakage. Further, in considering the regulation of transport velocities by DAT few have considered issues related to substrate regulation of DAT activity. Specifically, what effect do changes in the constants (K) for the participation of Na+ and Cl- have on dopamine transport velocity? It is shown that DAT may possess properties of slippage, an argument is made that leakage may be important in neuronal systems containing DAT, and the influence of changing values of K for the participation of Na+ and Cl- in transport is shown to produce large effects on DAT activity depending on the multisubstrate kinetic mechanism.

  10. Enzymatic biomarkers can portray nanoCuO-induced oxidative and neuronal stress in freshwater shredders.

    PubMed

    Pradhan, Arunava; Silva, Carla O; Silva, Carlos; Pascoal, Cláudia; Cássio, Fernanda

    2016-11-01

    Commercial applications of nanometal oxides have increased concern about their release into natural waters and consequent risks to aquatic biota and the processes they drive. In forest streams, the invertebrate shredder Allogamus ligonifer plays a key role in detritus food webs by transferring carbon and energy from plant litter to higher trophic levels. We assessed the response profiles of oxidative and neuronal stress enzymatic biomarkers in A. ligonifer after 96h exposure to nanoCuO at concentration ranges neuronal stress in A. ligonifer.

  11. Optical Communication among Oscillatory Reactions and Photo-Excitable Systems: UV and Visible Radiation Can Synchronize Artificial Neuron Models.

    PubMed

    Gentili, Pier Luigi; Giubila, Maria Sole; Germani, Raimondo; Romani, Aldo; Nicoziani, Andrea; Spalletti, Anna; Heron, B Mark

    2017-06-19

    Neuromorphic engineering promises to have a revolutionary impact in our societies. A strategy to develop artificial neurons (ANs) is to use oscillatory and excitable chemical systems. Herein, we use UV and visible radiation as both excitatory and inhibitory signals for the communication among oscillatory reactions, such as the Belousov-Zhabotinsky and the chemiluminescent Orban transformations, and photo-excitable photochromic and fluorescent species. We present the experimental results and the simulations regarding pairs of ANs communicating by either one or two optical signals, and triads of ANs arranged in both feed-forward and recurrent networks. We find that the ANs, powered chemically and/or by the energy of electromagnetic radiation, can give rise to the emergent properties of in-phase, out-of-phase, anti-phase synchronizations and phase-locking, dynamically mimicking the communication among real neurons. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Vagal afferent control of opioidergic effects in rat brainstem circuits

    PubMed Central

    Browning, Kirsteen N; Zheng, Zhongling; Gettys, Thomas W; Travagli, R Alberto

    2006-01-01

    We demonstrated recently that increasing the levels of cAMP allows opioids to modulate GABAergic synaptic transmission between the nucleus of the tractus solitarius (NTS) and dorsal motor nucleus of the vagus (DMV). Using a combination of electrophysiological, immunohistochemical and biochemical approaches, we provide evidence that vagal afferent fibres dampen cAMP levels within the vagal brainstem circuits via tonic activation of group II metabotropic glutamate receptors (mGluRs). Whole-cell patch-clamp recordings were made from identified neurons of the rat DMV. Following chronic vagal deafferentation, the opioid agonist methionine-enkephalin (ME) inhibited the amplitude of evoked IPSC (eIPSC) in 32 of 33 neurons, without exogenous enhancement of cAMP levels. The ME-induced inhibition was prevented by the group II mGluR-selective agonist APDC. Following perfusion with the group II mGluR-selective antagonist EGLU, ME inhibited eIPSC amplitude in brainstem slices of control rats. Immunohistochemical experiments revealed that, following vagal deafferentation, μ-opioid receptors were colocalized on GABAergic profiles apposing DMV neurons; the number of colocalized profiles was significantly decreased by pretreatment with APDC. Radioimmunoassay and Western blot analysis showed that cAMP and phosphorylated cyclic AMP response element binding protein (pCREB) levels in the dorsal vagal complex were increased following vagal deafferentation. Our data show that by tonically dampening the levels of cAMP within the GABAergic synaptic contacts, activated group II mGluRs prevent the modulation of this synapse by endogenous opioids. These data suggest that the plasticity, hence the response, of central circuits controlling the vagal motor outflow to visceral organs is modulated and finely tuned by vagal afferent fibres. PMID:16825311

  13. pH-evoked dural afferent signaling is mediated by ASIC3 and is sensitized by mast cell mediators.

    PubMed

    Yan, Jin; Wei, Xiaomei; Bischoff, Christina; Edelmayer, Rebecca M; Dussor, Gregory

    2013-09-01

    Prior studies have shown that decreased meningeal pH activates dural afferents via opening of acid-sensing ion channels (ASICs), suggesting one pathophysiological mechanism for the generation of headaches. The studies described here further examined the ASIC subtype mediating pH-induced dural-afferent activation and examined whether sensitization influences pH responses. Given the potential importance of meningeal mast cells to headache, the goal of this study was to evaluate dural afferent responses to pH following sensitization with mast cell mediators. Cutaneous allodynia was measured in rats following stimulation of the dura with decreased pH alone or in combination with mast cell mediators. Trigeminal ganglion neurons retrogradely labeled from the dura were stained with an ASIC3 antibody using immunohistochemistry. Current and action potentials evoked by changes in pH alone or in combination with mast cell mediators were measured in retrogradely labeled dural afferents using patch-clamp electrophysiology. pH-sensitive dural afferents generated currents in response to the ASIC3 activator 2-guanidine-4-methylquinazoline (GMQ), approximately 80% of these neurons express ASIC3 protein, and pH-evoked behavioral responses were inhibited by the ASIC3 blocker APETx2. Following exposure to mast cell mediators, dural afferents exhibited increased pH-evoked excitability, and cutaneous allodynia was observed at higher pH than with pH stimuli alone. These data indicate that the predominant ASIC subtype responding to decreased meningeal pH is ASIC3. Additionally, they demonstrate that in the presence of inflammation, dural afferents respond to even smaller decreases in pH providing further support for the ability of small pH changes within the meninges to initiate afferent input leading to headache. © 2013 American Headache Society.

  14. Vagal intramuscular array afferents form complexes with interstitial cells of Cajal in gastrointestinal smooth muscle: Analogues of muscle spindle organs?

    PubMed Central

    Powley, Terry L.; Phillips, Robert J.

    2011-01-01

    Intramuscular arrays (IMAs), vagal mechanoreceptors that innervate gastrointestinal smooth muscle, have not been completely described structurally or functionally. To delineate more fully the architecture of IMAs and to consider the structure-function implications of the observations, the present experiment examined the organization of the IMA terminal arbors and the accessory tissue elements of those arbors. IMA terminal fields, labeled by injection of biotinylated dextran into the nodose ganglia, were examined in whole mounts of rat gastric smooth muscle double-labeled with immunohistochemistry for interstitial cells of Cajal (ICCs; c-Kit) and/or inputs of different neuronal efferent transmitter (markers: TH, VChAT, and NOS) or afferent neuropeptidergic (CGRP) phenotypes. IMAs make extensive varicose and lamellar contacts with ICCs. In addition, axons of the multiple efferent and afferent phenotypes examined converge and articulate with IMA terminal arbors innervating ICCs. This architecture is consistent with the hypothesis that IMAs, or the multiply innervated IMA-ICC complexes they form, can function as stretch receptors. The tissue organization is also consonant with the proposal that those units can operate as functional analogues of muscle spindle organs. For electrophysiological assessments of IMA functions, experiments will need protocols that preserve both the complex architecture and the dynamic operations of IMA-ICC complexes. PMID:21530617

  15. Vagal intramuscular array afferents form complexes with interstitial cells of Cajal in gastrointestinal smooth muscle: analogues of muscle spindle organs?

    PubMed

    Powley, T L; Phillips, R J

    2011-07-14

    Intramuscular arrays (IMAs), vagal mechanoreceptors that innervate gastrointestinal smooth muscle, have not been completely described structurally or functionally. To delineate more fully the architecture of IMAs and to consider the structure-function implications of the observations, the present experiment examined the organization of the IMA terminal arbors and the accessory tissue elements of those arbors. IMA terminal fields, labeled by injection of biotinylated dextran into the nodose ganglia, were examined in whole mounts of rat gastric smooth muscle double-labeled with immunohistochemistry for interstitial cells of Cajal (ICCs; c-Kit) and/or inputs of different neuronal efferent transmitter (markers: tyrosine hydroxylase (TH), vesicular acetylcholine transporter (VAChT), and nitric oxide synthase (NOS)) or afferent neuropeptidergic (calcitonin gene-related peptide (CGRP)) phenotypes. IMAs make extensive varicose and lamellar contacts with ICCs. In addition, axons of the multiple efferent and afferent phenotypes examined converge and articulate with IMA terminal arbors innervating ICCs. This architecture is consistent with the hypothesis that IMAs, or the multiply innervated IMA-ICC complexes they form, can function as stretch receptors. The tissue organization is also consonant with the proposal that those units can operate as functional analogues of muscle spindle organs. For electrophysiological assessments of IMA functions, experiments will need protocols that preserve both the complex architecture and the dynamic operations of IMA-ICC complexes.

  16. Different types of spinal afferent nerve endings in stomach and esophagus identified by anterograde tracing from dorsal root ganglia.

    PubMed

    Spencer, Nick J; Kyloh, Melinda; Beckett, Elizabeth A; Brookes, Simon; Hibberd, Tim

    2016-10-15

    In visceral organs of mammals, most noxious (painful) stimuli as well as innocuous stimuli are detected by spinal afferent neurons, whose cell bodies lie in dorsal root ganglia (DRGs). One of the major unresolved questions is the location, morphology, and neurochemistry of the nerve endings of spinal afferents that actually detect these stimuli in the viscera. In the upper gastrointestinal (GI) tract, there have been many anterograde tracing studies of vagal afferent endings, but none on spinal afferent endings. Recently, we developed a technique that now provides selective labeling of only spinal afferents. We used this approach to identify spinal afferent nerve endings in the upper GI tract of mice. Animals were anesthetized, and injections of dextran-amine were made into thoracic DRGs (T8-T12). Seven days post surgery, mice were euthanized, and the stomach and esophagus were removed, fixed, and stained for calcitonin gene-related peptide (CGRP). Spinal afferent axons were identified that ramified extensively through many rows of myenteric ganglia and formed nerve endings in discrete anatomical layers. Most commonly, intraganglionic varicose endings (IGVEs) were identified in myenteric ganglia of the stomach and varicose simple-type endings in the circular muscle and mucosa. Less commonly, nerve endings were identified in internodal strands, blood vessels, submucosal ganglia, and longitudinal muscle. In the esophagus, only IGVEs were identified in myenteric ganglia. No intraganglionic lamellar endings (IGLEs) were identified in the stomach or esophagus. We present the first identification of spinal afferent endings in the upper GI tract. Eight distinct types of spinal afferent endings were identified in the stomach, and most of them were CGRP immunoreactive. J. Comp. Neurol. 524:3064-3083, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  17. Cortical Presynaptic Control of Dorsal Horn C–Afferents in the Rat

    PubMed Central

    Martínez-Lorenzana, Guadalupe; Condés-Lara, Miguel; Rojas-Piloni, Gerardo

    2013-01-01

    Lamina 5 sensorimotor cortex pyramidal neurons project to the spinal cord, participating in the modulation of several modalities of information transmission. A well-studied mechanism by which the corticospinal projection modulates sensory information is primary afferent depolarization, which has been characterized in fast muscular and cutaneous, but not in slow-conducting nociceptive skin afferents. Here we investigated whether the inhibition of nociceptive sensory information, produced by activation of the sensorimotor cortex, involves a direct presynaptic modulation of C primary afferents. In anaesthetized male Wistar rats, we analyzed the effects of sensorimotor cortex activation on post tetanic potentiation (PTP) and the paired pulse ratio (PPR) of dorsal horn field potentials evoked by C–fiber stimulation in the sural (SU) and sciatic (SC) nerves. We also explored the time course of the excitability changes in nociceptive afferents produced by cortical stimulation. We observed that the development of PTP was completely blocked when C-fiber tetanic stimulation was paired with cortex stimulation. In addition, sensorimotor cortex activation by topical administration of bicuculline (BIC) produced a reduction in the amplitude of C–fiber responses, as well as an increase in the PPR. Furthermore, increases in the intraspinal excitability of slow-conducting fiber terminals, produced by sensorimotor cortex stimulation, were indicative of primary afferent depolarization. Topical administration of BIC in the spinal cord blocked the inhibition of C–fiber neuronal responses produced by cortical stimulation. Dorsal horn neurons responding to sensorimotor cortex stimulation also exhibited a peripheral receptive field and responded to stimulation of fast cutaneous myelinated fibers. Our results suggest that corticospinal inhibition of nociceptive responses is due in part to a modulation of the excitability of primary C–fibers by means of GABAergic inhibitory

  18. Profound alteration in cutaneous primary afferent activity produced by inflammatory mediators

    PubMed Central

    Smith-Edwards, Kristen M; DeBerry, Jennifer J; Saloman, Jami L; Davis, Brian M; Woodbury, C Jeffery

    2016-01-01

    Inflammatory pain is thought to arise from increased transmission from nociceptors and recruitment of 'silent' afferents. To evaluate inflammation-induced changes, mice expressing GCaMP3 in cutaneous sensory neurons were generated and neuronal responses to mechanical stimulation in vivo before and after subcutaneous infusion of an 'inflammatory soup' (IS) were imaged in an unanesthetized preparation. Infusion of IS rapidly altered mechanical responsiveness in the majority of neurons. Surprisingly, more cells lost, rather than gained, sensitivity and 'silent' afferents that were mechanically insensitive and gained mechanosensitivity after IS exposure were rare. However, the number of formerly 'silent' afferents that became mechanosensitive was increased five fold when the skin was heated briefly prior to infusion of IS. These findings suggest that pain arising from inflamed skin reflects a dramatic shift in the balance of sensory input, where gains and losses in neuronal populations results in novel output that is ultimately interpreted by the CNS as pain. DOI: http://dx.doi.org/10.7554/eLife.20527.001 PMID:27805567

  19. Endoscopic removal of an enterolith causing afferent loop syndrome using electrohydraulic lithotripsy.

    PubMed

    Kim, Hwa Jong; Moon, Jong Ho; Choi, Hyun Jong; Koo, Hyun Cheol; Park, Sung Jin; Cheon, Young Koog; Cho, Young Deok; Lee, Moon Sung; Shim, Chan Sup

    2010-07-01

    Electrohydraulic lithotripsy is a very useful method for fragmenting biliary stones and it can be used for endoscopic removal of difficult biliary stones. Acute afferent loop syndrome induced by enterolith is very rare, and surgical treatment is the usual choice for this condition. We describe a patient with acute afferent loop syndrome, which was induced by an enterolith after a Billroth II gastrectomy. We used electrohydraulic lithotripsy to endoscopically remove the enterolith.

  20. Noninvasive Focused Ultrasound Stimulation Can Modulate Phase-Amplitude Coupling between Neuronal Oscillations in the Rat Hippocampus

    PubMed Central

    Yuan, Yi; Yan, Jiaqing; Ma, Zhitao; Li, Xiaoli

    2016-01-01

    Noninvasive focused ultrasound stimulation (FUS) can be used to modulate neural activity with high spatial resolution. Phase-amplitude coupling (PAC) between neuronal oscillations is tightly associated with cognitive processes, including learning, attention, and memory. In this study, we investigated the effect of FUS on PAC between neuronal oscillations and established the relationship between the PAC index and ultrasonic intensity. The rat hippocampus was stimulated using focused ultrasound at different spatial-average pulse-average ultrasonic intensities (3.9, 9.6, and 19.2 W/cm2). The local field potentials (LFPs) in the rat hippocampus were recorded before and after FUS. Then, we analyzed PAC between neuronal oscillations using a PAC calculation algorithm. Our results showed that FUS significantly modulated PAC between the theta (4–8 Hz) and gamma (30–80 Hz) bands and between the alpha (9–13 Hz) and ripple (81–200 Hz) bands in the rat hippocampus, and PAC increased with incremental increases in ultrasonic intensity. PMID:27499733

  1. A synergistic effect of simultaneous TRPA1 and TRPV1 activations on vagal pulmonary C-fiber afferents.

    PubMed

    Lin, Yu-Jung; Lin, Ruei-Lung; Ruan, Ting; Khosravi, Mehdi; Lee, Lu-Yuan

    2015-02-01

    Transient receptor potential ankyrin type 1 (TRPA1) and vanilloid type 1 (TRPV1) receptors are coexpressed in vagal pulmonary C-fiber sensory nerves. Because both these receptors are sensitive to a number of endogenous inflammatory mediators, it is conceivable that they can be activated simultaneously during airway inflammation. This study aimed to determine whether there is an interaction between these two polymodal transducers upon simultaneous activation, and how it modulates the activity of vagal pulmonary C-fiber sensory nerves. In anesthetized, spontaneously breathing rats, the reflex-mediated apneic response to intravenous injection of a combined dose of allyl isothiocyanate (AITC, a TRPA1 activator) and capsaicin (Cap, a TRPV1 activator) was ∼202% greater than the mathematical sum of the responses to AITC and Cap when they were administered individually. Similar results were also observed in anesthetized mice. In addition, the synergistic effect was clearly demonstrated when the afferent activity of single vagal pulmonary C-fiber afferents were recorded in anesthetized, artificially ventilated rats; C-fiber responses to AITC, Cap and AITC + Cap (in combination) were 0.6 ± 0.1, 0.8 ± 0.1, and 4.8 ± 0.6 impulses/s (n = 24), respectively. This synergism was absent when either AITC or Cap was replaced by other chemical activators of pulmonary C-fiber afferents. The pronounced potentiating effect was further demonstrated in isolated vagal pulmonary sensory neurons using the Ca(2+) imaging technique. In summary, this study showed a distinct positive interaction between TRPA1 and TRPV1 when they were activated simultaneously in pulmonary C-fiber sensory nerves.

  2. Can Parkinson's disease pathology be propagated from one neuron to another?

    PubMed

    Dunning, Christopher J R; Reyes, Juan F; Steiner, Jennifer A; Brundin, Patrik

    2012-05-01

    Parkinson's disease is the second most prevalent neurodegenerative disease, yet despite this, very little is known about the underlying cellular mechanisms. Initially it was thought to be a disease primarily involving loss of dopaminergic neurons in the substantia nigra pars compacta. Recent studies, however, have focused on observations that aggregated α-synuclein protein, the major component of Lewy bodies, is found throughout the nervous system. It is speculated that misfolded α-synuclein transfers between cells in a prion-like manner, thereby mediating the spread of the neuropathology. In this review, we discuss the staging (according to Braak) of Parkinson pathology and the concept describing the disease progression from one region of the brain to the other. We highlight how α-synuclein might be responsible for the spread of the disease. We compare the idea of a prion-like mechanism contributing to Parkinson's disease to emerging concepts that other proteins participate in similar processes in other neurodegenerative diseases. We then examine the future implications of a critical role in disease pathogenesis of α-synuclein for the classification, diagnosis and treatment of Parkinson's disease in the future. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Microcarrier-Expanded Neural Progenitor Cells Can Survive, Differentiate, and Innervate Host Neurons Better When Transplanted as Aggregates.

    PubMed

    Qiu, Lifeng; Lim, Yu Ming; Chen, Allen K; Reuveny, Shaul; Oh, Steve K W; Tan, Eng King; Zeng, Li

    2016-01-01

    Neuronal progenitor cells (NPCs) derived from human embryonic stem cells (hESCs) are an excellent cell source for transplantation therapy due to their availability and ethical acceptability. However, the traditional method of expansion and differentiation of hESCs into NPCs in monolayer cultures requires a long time, and the cell yield is low. A microcarrier (MC) platform can improve the expansion of hESCs and increase the yield of NPCs. In this study, for the first time, we transplanted microcarrier-expanded hESC-derived NPCs into the striatum of adult NOD-SCID IL2Rgc null mice, either as single cells or as cell aggregates. The recipient mice were perfused, and the in vivo survival, differentiation, and targeted innervation of the transplanted cells were assessed by immunostaining. We found that both the transplanted single NPCs and aggregate NPCs were able to survive 1 month posttransplantation, as revealed by human-specific neural cell adhesion molecule (NCAM) and human nuclear antigen staining. Compared to the single cells, the transplanted cell aggregates showed better survival over a 3-month period. In addition, both the transplanted single NPCs and the aggregate NPCs were able to differentiate into DCX-positive immature neurons and Tuj1-positive neurons in vivo by 1 month posttransplantation. However, only the transplantation of aggregate NPCs was shown to result in mature neurons at 3 months posttransplantation. Furthermore, we found that the cell aggregates were able to send long axons to innervate their targets. Our study provides preclinical evidence that the use of MCs to expand and differentiate hESC-derived NPCs and transplantation of these cells as aggregates produce longer survival in vivo.

  4. Functional role of unmyelinated tactile afferents in human hairy skin: sympathetic response and perceptual localization.

    PubMed

    Olausson, Håkan; Cole, Jonathan; Rylander, Karin; McGlone, Francis; Lamarre, Yves; Wallin, B Gunnar; Krämer, Heidrun; Wessberg, Johan; Elam, Mikael; Bushnell, M Catherine; Vallbo, Ake

    2008-01-01

    In addition to A-beta fibres the human hairy skin has unmyelinated (C) fibres responsive to light touch. Previous functional magnetic resonance imaging (fMRI) studies in a subject with a neuronopathy who specifically lacks A-beta afferents indicated that tactile C afferents (CT) activate insular cortex, whereas no response was seen in somatosensory areas 1 and 2. Psychophysical tests suggested that CT afferents give rise to an inconsistent perception of weak and pleasant touch. By examining two neuronopathy subjects as well as control subjects we have now demonstrated that CT stimulation can elicit a sympathetic skin response. Further, the neuronopathy subjects' ability to localize stimuli which activate CT afferents was very poor but above chance level. The findings support the interpretation that the CT system is well suited to underpin affective rather than discriminative functions of tactile sensations.

  5. Three-dimensional head angular velocity detection from otolith afferent signals.

    PubMed

    Hess, B J

    1992-01-01

    Afferent signals from the otolith organs can produce compensatory eye position and velocity signals which has been described as linear vestibulo-ocular reflex (LVOR). The afferent otolith signals carry information about head orientation and changes of head orientation relative to gravity. A head orientation (tilt) related position signal can be obtained from population vector coding of tonic otolith afferent signals during static or dynamic head tilts, which in turn could produce compensatory eye position signals in the LVOR. On the other hand, eye angular velocity signals may be extracted, as proposed in this study, from the population response of tilt-velocity sensitive otolith afferents. Such afferents are shown to encode instantaneous head orientation relative to gravity at onset of a head movement and, as the movement continues, the projection of head angular velocity onto the earth-horizontal plane, indicating the instantaneous direction of movement relative to gravity. Angular velocity components along the earth-vertical direction which are not directly encoded by otolith afferents can be detected by central signal processing. Central reconstruction of 3D head angular velocity allows to obtain information about absolute head orientation in space even in the absence of semi-circular canal related information. Such information is important for generating compensatory eye movements as well as for dynamic control of posture.

  6. Intrinsic and integrative properties of substantia nigra pars reticulata neurons

    PubMed Central

    Zhou, Fu-Ming; Lee, Christian R.

    2011-01-01

    The GABA projection neurons of the substantia nigra pars reticulata (SNr) are output neurons for the basal ganglia and thus critical for movement control. Their most striking neurophysiological feature is sustained, spontaneous high frequency spike firing. A fundamental question is: what are the key ion channels supporting the remarkable firing capability in these neurons? Recent studies indicate that these neurons express tonically active TRPC3 channels that conduct a Na-dependent inward current even at hyperpolarized membrane potentials. When the membrane potential reaches −60 mV, a voltage-gated persistent sodium current (INaP) starts to activate, further depolarizing the membrane potential. At or slightly below −50 mV, the large transient voltage-activated sodium current (INaT) starts to activate and eventually triggers the rapid rising phase of action potentials. SNr GABA neurons have a higher density of (INaT), contributing to the faster rise and larger amplitude of action potentials, compared with the slow-spiking dopamine neurons. INaT also recovers from inactivation more quickly in SNr GABA neurons than in nigral dopamine neurons. In SNr GABA neurons, the rising phase of the action potential triggers the activation of high-threshold, inactivation-resistant Kv3-like channels that can rapidly repolarize the membrane. These intrinsic ion channels provide SNr GABA neurons with the ability to fire spontaneous and sustained high frequency spikes. Additionally, robust GABA inputs from direct pathway medium spiny neurons in the striatum and GABA neurons in the globus pallidus may inhibit and silence SNr GABA neurons, whereas glutamate synaptic input from the subthalamic nucleus may induce burst firing in SNr GABA neurons. Thus, afferent GABA and glutamate synaptic inputs sculpt the tonic high frequency firing of SNr GABA neurons and the consequent inhibition of their targets into an integrated motor control signal that is further fine-tuned by neuromodulators