Science.gov

Sample records for afferent nociceptive neurons

  1. Thermal nociceptive properties of trigeminal afferent neurons in rats

    PubMed Central

    2010-01-01

    Background Although nociceptive afferents innervating the body have been heavily studied form many years, much less attention has been paid to trigeminal afferent biology. In particular, very little is known concerning trigeminal nociceptor responses to heat, and almost nothing in the rat. This study uses a highly controlled and reproducible diode laser stimulator to investigate the activation of trigeminal afferents to noxious skin heating. Results The results of this experiment demonstrate that trigeminal thermonociceptors are distinct from themonociceptors innervating the limbs. Trigeminal nociceptors have considerably slower action potential conduction velocities and lower temperature thresholds than somatic afferent neurons. On the other hand, nociceptors innervating both tissue areas separate into those that respond to short pulse, high rate skin heating and those that respond to long pulse, low rate skin heating. Conclusions This paper provides the first description in the literature of the in vivo properties of thermonociceptors in rats. These finding of two separate populations aligns with the separation between C and A-delta thermonociceptors innervating the paw, but have significant differences in terms of temperature threshold and average conduction velocities. An understanding of the temperature response properties of afferent neurons innervating the paw skin have been critical in many mechanistic discoveries, some leading to new pain therapies. A clear understanding of trigeminal nociceptors may be similarly useful in the investigation of trigeminal pain mechanisms and potential therapies. PMID:20609212

  2. [Postsynaptic reactions of cerebral cortex neurons, activated by nociceptive afferents during stimulation of the Raphe nuclei].

    PubMed

    Labakhua, T Sh; Dzhanashiia, T K; Gedevanishvili, G I; Dzhokhadze, L D; Tkemaladze, T T; Abzianidze, I V

    2012-01-01

    On cats, we studied the influence of stimulation of the Raphe nuclei (RN) on postsynaptic processes evoked in neurons of the somatosensory cortex by stimulation of nociceptive (intensive stimulation of the tooth pulp) and non-nociceptive (moderate stimulation of the ventroposteromedial--VPN--nucleus of the thalamus) afferent inputs. 6 cells, selectively excited by stimulation of nocciceptors and 9 cells, activated by both the above nociceptive and non-nociceptive influences (nociceptive and convergent neurons, respectively) were recorded intracellular. In neurons of both groups, responses to nociceptive stimulation (of sufficient intensity) looked like an EPSP-spike-IPSP (the letter of significant duration, up to 200-300 ms) compleх. Conditioning stimulation of the RN which preceded test stimulus applied to the tooth pulp or VPM nucleus by 100 to 800 ms, induced 40-60 % decrease of the IPSP amplitude only, while maхimal effect of influence, in both cases, was noted within intervals of 300-800 ms between conditioning and test stimulus. During stimulation of the RN, serotonin released via receptor and second messengers, provides postsynaptic modulation of GABAergic system, decreasing the IPSP amplitude which occurs after stimulation of both the tooth pulp and VPM thalamic nucleus. This process may be realized trough either pre- or postsynaptic mechanisms.

  3. The TTX-resistant sodium channel Nav1.8 (SNS/PN3): expression and correlation with membrane properties in rat nociceptive primary afferent neurons.

    PubMed

    Djouhri, Laiche; Fang, Xin; Okuse, Kenji; Wood, John N; Berry, Carol M; Lawson, Sally N

    2003-08-01

    We have examined the distribution of the sensory neuron-specific Na+ channel Nav1.8 (SNS/PN3) in nociceptive and non-nociceptive dorsal root ganglion (DRG) neurons and whether its distribution is related to neuronal membrane properties. Nav1.8-like immunoreactivity (Nav1.8-LI) was examined with an affinity purified polyclonal antiserum (SNS11) in rat DRG neurons that were classified according to sensory receptive properties and by conduction velocity (CV) as C-, Adelta- or Aalpha/beta. A significantly higher proportion of nociceptive than low threshold mechanoreceptive (LTM) neurons showed Nav1.8-LI, and nociceptive neurons had significantly more intense immunoreactivity in their somata than LTM neurons. Results showed that 89, 93 and 60% of C-, Adelta- and Aalpha/beta-fibre nociceptive units respectively and 88% of C-unresponsive units were positive. C-unresponsive units had electrical membrane properties similar to C-nociceptors and were considered to be nociceptive-type neurons. Weak positive Nav1.8-LI was also present in some LTM units including a C LTM, all Adelta LTM units (D hair), about 10% of cutaneous LTM Aalpha/beta-units, but no muscle spindle afferent units. Nav1.8-LI intensity was negatively correlated with soma size (all neurons) and with dorsal root CVs in A- but not C-fibre neurons. Nav1.8-LI intensity was positively correlated with action potential (AP) duration (both rise and fall time) in A-fibre neurons and with AP rise time only in positive C-fibre neurons. It was also positively correlated with AP overshoot in positive neurons. Thus high levels of Nav1.8 protein may contribute to the longer AP durations (especially in A-fibre neurons) and larger AP overshoots that are typical of nociceptors. PMID:12794175

  4. The TTX-Resistant Sodium Channel Nav1.8 (SNS/PN3): Expression and Correlation with Membrane Properties in Rat Nociceptive Primary Afferent Neurons

    PubMed Central

    Djouhri, Laiche; Fang, Xin; Okuse, Kenji; Wood, John N; Berry, Carol M; Lawson, Sally N

    2003-01-01

    We have examined the distribution of the sensory neuron-specific Na+ channel Nav1.8 (SNS/PN3) in nociceptive and non-nociceptive dorsal root ganglion (DRG) neurons and whether its distribution is related to neuronal membrane properties. Nav1.8-like immunoreactivity (Nav1.8-LI) was examined with an affinity purified polyclonal antiserum (SNS11) in rat DRG neurons that were classified according to sensory receptive properties and by conduction velocity (CV) as C-, Aδ- or Aα/β. A significantly higher proportion of nociceptive than low threshold mechanoreceptive (LTM) neurons showed Nav1.8-LI, and nociceptive neurons had significantly more intense immunoreactivity in their somata than LTM neurons. Results showed that 89, 93 and 60 % of C-, Aδ- and Aα/β-fibre nociceptive units respectively and 88 % of C-unresponsive units were positive. C-unresponsive units had electrical membrane properties similar to C-nociceptors and were considered to be nociceptive-type neurons. Weak positive Nav1.8-LI was also present in some LTM units including a C LTM, all Aδ LTM units (D hair), about 10 % of cutaneous LTM Aα/β-units, but no muscle spindle afferent units. Nav1.8-LI intensity was negatively correlated with soma size (all neurons) and with dorsal root CVs in A- but not C-fibre neurons. Nav1.8-LI intensity was positively correlated with action potential (AP) duration (both rise and fall time) in A-fibre neurons and with AP rise time only in positive C-fibre neurons. It was also positively correlated with AP overshoot in positive neurons. Thus high levels of Nav1.8 protein may contribute to the longer AP durations (especially in A-fibre neurons) and larger AP overshoots that are typical of nociceptors. PMID:12794175

  5. Perineural capsaicin induces the uptake and transganglionic transport of choleratoxin B subunit by nociceptive C-fiber primary afferent neurons.

    PubMed

    Oszlács, O; Jancsó, G; Kis, G; Dux, M; Sántha, P

    2015-12-17

    The distribution of spinal primary afferent terminals labeled transganglionically with the choleratoxin B subunit (CTB) or its conjugates changes profoundly after perineural treatment with capsaicin. Injection of CTB conjugated with horseradish peroxidase (HRP) into an intact nerve labels somatotopically related areas in the ipsilateral dorsal horn with the exceptions of the marginal zone and the substantia gelatinosa, whereas injection of this tracer into a capsaicin-pretreated nerve also results in massive labeling of these most superficial layers of the dorsal horn. The present study was initiated to clarify the role of C-fiber primary afferent neurons in this phenomenon. In L5 dorsal root ganglia, analysis of the size frequency distribution of neurons labeled after injection of CTB-HRP into the ipsilateral sciatic nerve treated previously with capsaicin or resiniferatoxin revealed a significant increase in the proportion of small neurons. In the spinal dorsal horn, capsaicin or resiniferatoxin pretreatment resulted in intense CTB-HRP labeling of the marginal zone and the substantia gelatinosa. Electron microscopic histochemistry disclosed a dramatic, ∼10-fold increase in the proportion of CTB-HRP-labeled unmyelinated dorsal root axons following perineural capsaicin or resiniferatoxin. The present results indicate that CTB-HRP labeling of C-fiber dorsal root ganglion neurons and their central terminals after perineural treatment with vanilloid compounds may be explained by their phenotypic switch rather than a sprouting response of thick myelinated spinal afferents which, in an intact nerve, can be labeled selectively with CTB-HRP. The findings also suggest a role for GM1 ganglioside in the modulation of nociceptor function and pain.

  6. NEUROTROPHIN SELECTIVITY IN ORGANIZING TOPOGRAPHIC REGENERATION OF NOCICEPTIVE AFFERENTS

    PubMed Central

    Kelamangalath, Lakshmi; Tang, Xiaoqing; Bezik, Kathleen; Sterling, Noelle; Son, Young-Jin; Smith, George M.

    2015-01-01

    Neurotrophins represent some of the best candidates to enhance regeneration. In the current study, we investigated the effects of artemin, a member of the glial derived neurotrophic factor (GDNF) family, on sensory axon regeneration following a lumbar dorsal root injury and compared these effects with that observed after either NGF or GDNF expression in the rat spinal cord. Unlike previously published data, artemin failed to induce regeneration of large-diameter myelinated sensory afferents when expressed within either the spinal cord or DRG. However, artemin or NGF induced regeneration of calcitonin gene related peptide positive (CGRP+) axons only when expressed within the spinal cord. Accordingly, artemin or NGF enhanced recovery of only nociceptive behavior and showed a cFos distribution similar to the topography of regenerating axons. Artemin and GDNF signaling requires binding to different co-receptors (GFRα3 or GFRα1, respectively) prior to binding to the signaling receptor, cRet. Approximately 70% of DRG neurons express cRet, but only 35% express either co-receptor. To enhance artemin-induced regeneration, we co-expressed artemin with either GFRα3 or GDNF. Co-expression of artemin and GFRα3 only slightly enhanced regeneration of IB4+ non-peptidergic nociceptive axons, but not myelinated axons. Interestingly, this co-expression also disrupted the ability of artemin to produce topographic targeting and lead to significant increases in cFos immunoreactivity within the deep dorsal laminae. This study failed to demonstrate artemin-induced regeneration of myelinated axons, even with co-expression of GFR-α3, which only promoted mistargeted regeneration. PMID:26054884

  7. Mechanical sensibility of nociceptive and non-nociceptive fast-conducting afferents is modulated by skin temperature.

    PubMed

    Boada, M Danilo; Eisenach, James C; Ririe, Douglas G

    2016-01-01

    The ability to distinguish mechanical from thermal input is a critical component of peripheral somatosensory function. Polymodal C fibers respond to both stimuli. However, mechanosensitive, modality-specific fast-conducting tactile and nociceptor afferents theoretically carry information only about mechanical forces independent of the thermal environment. We hypothesize that the thermal environment can nonetheless modulate mechanical force sensibility in fibers that do not respond directly to change in temperature. To study this, fast-conducting mechanosensitive peripheral sensory fibers in male Sprague-Dawley rats were accessed at the soma in the dorsal root ganglia from T11 or L4/L5. Neuronal identification was performed using receptive field characteristics and passive and active electrical properties. Neurons responded to mechanical stimuli but failed to generate action potentials in response to changes in temperature alone, except for the tactile mechanical and cold sensitive neurons. Heat and cold ramps were utilized to determine temperature-induced modulation of response to mechanical stimuli. Mechanically evoked electrical activity in non-nociceptive, low-threshold mechanoreceptors (tactile afferents) decreased in response to changes in temperature while mechanically induced activity was increased in nociceptive, fast-conducting, high-threshold mechanoreceptors in response to the same changes in temperature. These data suggest that mechanical activation does not occur in isolation but rather that temperature changes appear to alter mechanical afferent activity and input to the central nervous system in a dynamic fashion. Further studies to understand the psychophysiological implications of thermal modulation of fast-conducting mechanical input to the spinal cord will provide greater insight into the implications of these findings. PMID:26581873

  8. Mechanical sensibility of nociceptive and non-nociceptive fast-conducting afferents is modulated by skin temperature.

    PubMed

    Boada, M Danilo; Eisenach, James C; Ririe, Douglas G

    2016-01-01

    The ability to distinguish mechanical from thermal input is a critical component of peripheral somatosensory function. Polymodal C fibers respond to both stimuli. However, mechanosensitive, modality-specific fast-conducting tactile and nociceptor afferents theoretically carry information only about mechanical forces independent of the thermal environment. We hypothesize that the thermal environment can nonetheless modulate mechanical force sensibility in fibers that do not respond directly to change in temperature. To study this, fast-conducting mechanosensitive peripheral sensory fibers in male Sprague-Dawley rats were accessed at the soma in the dorsal root ganglia from T11 or L4/L5. Neuronal identification was performed using receptive field characteristics and passive and active electrical properties. Neurons responded to mechanical stimuli but failed to generate action potentials in response to changes in temperature alone, except for the tactile mechanical and cold sensitive neurons. Heat and cold ramps were utilized to determine temperature-induced modulation of response to mechanical stimuli. Mechanically evoked electrical activity in non-nociceptive, low-threshold mechanoreceptors (tactile afferents) decreased in response to changes in temperature while mechanically induced activity was increased in nociceptive, fast-conducting, high-threshold mechanoreceptors in response to the same changes in temperature. These data suggest that mechanical activation does not occur in isolation but rather that temperature changes appear to alter mechanical afferent activity and input to the central nervous system in a dynamic fashion. Further studies to understand the psychophysiological implications of thermal modulation of fast-conducting mechanical input to the spinal cord will provide greater insight into the implications of these findings.

  9. Trafficking of Na+/Ca2+ exchanger to the site of persistent inflammation in nociceptive afferents.

    PubMed

    Scheff, Nicole N; Gold, Michael S

    2015-06-01

    Persistent inflammation results in an increase in the amplitude and duration of depolarization-evoked Ca(2+) transients in putative nociceptive afferents. Previous data indicated that these changes were the result of neither increased neuronal excitability nor an increase in the amplitude of depolarization. Subsequent data also ruled out an increase in voltage-gated Ca(2+) currents and recruitment of Ca(2+)-induced Ca(2+) release. Parametric studies indicated that the inflammation-induced increase in the duration of the evoked Ca(2+) transient required a relatively large and long-lasting increase in the concentration of intracellular Ca(2+) implicating the Na(+)/Ca(2+) exchanger (NCX), a major Ca(2+) extrusion mechanism activated with high intracellular Ca(2+) loads. The contribution of NCX to the inflammation-induced increase in the evoked Ca(2+) transient in rat sensory neurons was tested using fura-2 AM imaging and electrophysiological recordings. Changes in NCX expression and protein were assessed with real-time PCR and Western blot analysis, respectively. An inflammation-induced decrease in NCX activity was observed in a subpopulation of putative nociceptive neurons innervating the site of inflammation. The time course of the decrease in NCX activity paralleled that of the inflammation-induced changes in nociceptive behavior. The change in NCX3 in the cell body was associated with a decrease in NCX3 protein in the ganglia, an increase in the peripheral nerve (sciatic) yet no change in the central root. This single response to inflammation is associated with changes in at least three different segments of the primary afferent, all of which are likely to contribute to the dynamic response to persistent inflammation. PMID:26041911

  10. Trafficking of Na+/Ca2+ exchanger to the site of persistent inflammation in nociceptive afferents.

    PubMed

    Scheff, Nicole N; Gold, Michael S

    2015-06-01

    Persistent inflammation results in an increase in the amplitude and duration of depolarization-evoked Ca(2+) transients in putative nociceptive afferents. Previous data indicated that these changes were the result of neither increased neuronal excitability nor an increase in the amplitude of depolarization. Subsequent data also ruled out an increase in voltage-gated Ca(2+) currents and recruitment of Ca(2+)-induced Ca(2+) release. Parametric studies indicated that the inflammation-induced increase in the duration of the evoked Ca(2+) transient required a relatively large and long-lasting increase in the concentration of intracellular Ca(2+) implicating the Na(+)/Ca(2+) exchanger (NCX), a major Ca(2+) extrusion mechanism activated with high intracellular Ca(2+) loads. The contribution of NCX to the inflammation-induced increase in the evoked Ca(2+) transient in rat sensory neurons was tested using fura-2 AM imaging and electrophysiological recordings. Changes in NCX expression and protein were assessed with real-time PCR and Western blot analysis, respectively. An inflammation-induced decrease in NCX activity was observed in a subpopulation of putative nociceptive neurons innervating the site of inflammation. The time course of the decrease in NCX activity paralleled that of the inflammation-induced changes in nociceptive behavior. The change in NCX3 in the cell body was associated with a decrease in NCX3 protein in the ganglia, an increase in the peripheral nerve (sciatic) yet no change in the central root. This single response to inflammation is associated with changes in at least three different segments of the primary afferent, all of which are likely to contribute to the dynamic response to persistent inflammation.

  11. Piezo2 expression in corneal afferent neurons.

    PubMed

    Bron, Romke; Wood, Rhiannon J; Brock, James A; Ivanusic, Jason J

    2014-09-01

    Recently, a novel class of mechanically sensitive channels has been identified and have been called Piezo channels. In this study, we explored Piezo channel expression in sensory neurons supplying the guinea pig corneal epithelium, which have well-defined modalities in this species. We hypothesized that a proportion of corneal afferent neurons express Piezo2, and that these neurons are neurochemically distinct from corneal polymodal nociceptors or cold-sensing neurons. We used a combination of retrograde tracing to identify corneal afferent neurons and double label in situ hybridization and/or immunohistochemistry to determine their molecular and/or neurochemical profile. We found that Piezo2 expression occurs in ∼26% of trigeminal ganglion neurons and 30% of corneal afferent neurons. Piezo2 corneal afferent neurons are almost exclusively non-calcitonin gene-related peptide (CGRP)-immunoreactive (-IR), medium- to large-sized neurons that are NF200-IR, suggesting they are not corneal polymodal nociceptors. There was no coexpression of Piezo2 and transient receptor potential cation channel subfamily M member 8 (TRPM8) transcripts in any corneal afferent neurons, further suggesting that Piezo2 is not expressed in corneal cold-sensing neurons. We also noted that TRPM8-IR or CGRP-IR corneal afferent neurons are almost entirely small and lack NF200-IR. Piezo2 expression occurs in a neurochemically distinct subpopulation of corneal afferent neurons that are not polymodal nociceptors or cold-sensing neurons, and is likely confined to a subpopulation of pure mechano-nociceptors in the cornea. This provides the first evidence in an in vivo system that Piezo2 is a strong candidate for a channel that transduces noxious mechanical stimuli.

  12. The calcium-activated chloride channel anoctamin 1 acts as a heat sensor in nociceptive neurons.

    PubMed

    Cho, Hawon; Yang, Young Duk; Lee, Jesun; Lee, Byeongjoon; Kim, Tahnbee; Jang, Yongwoo; Back, Seung Keun; Na, Heung Sik; Harfe, Brian D; Wang, Fan; Raouf, Ramin; Wood, John N; Oh, Uhtaek

    2012-05-27

    Nociceptors are a subset of small primary afferent neurons that respond to noxious chemical, thermal and mechanical stimuli. Ion channels in nociceptors respond differently to noxious stimuli and generate electrical signals in different ways. Anoctamin 1 (ANO1 also known as TMEM16A) is a Ca(2+)-activated chloride channel that is essential for numerous physiological functions. We found that ANO1 was activated by temperatures over 44 °C with steep heat sensitivity. ANO1 was expressed in small sensory neurons and was highly colocalized with nociceptor markers, which suggests that it may be involved in nociception. Application of heat ramps to dorsal root ganglion (DRG) neurons elicited robust ANO1-dependent depolarization. Furthermore, knockdown or deletion of ANO1 in DRG neurons substantially reduced nociceptive behavior in thermal pain models. These results indicate that ANO1 is a heat sensor that detects nociceptive thermal stimuli in sensory neurons and possibly mediates nociception.

  13. Selective impact of Tau loss on nociceptive primary afferents and pain sensation.

    PubMed

    Sotiropoulos, Ioannis; Lopes, André T; Pinto, Vitor; Lopes, Sofia; Carlos, Sara; Duarte-Silva, Sara; Neves-Carvalho, Andreia; Pinto-Ribeiro, Filipa; Pinheiro, Sara; Fernandes, Rui; Almeida, Armando; Sousa, Nuno; Leite-Almeida, Hugo

    2014-11-01

    Tau protein hyperphosphorylation and consequent malfunction are hallmarks of Alzheimer's disease pathology; importantly, pain perception is diminished in these patients. In physiological conditions, Tau contributes to cytoskeletal dynamics and in this way, influences a number of cellular mechanisms including axonal trafficking, myelination and synaptic plasticity, processes that are also implicated in pain perception. However, there is no in vivo evidence clarifying the role of Tau in nociception. Thus, we tested Tau-null (Tau-/-) and Tau+/+ mice for acute thermal pain (Hargreaves' test), acute and tonic inflammatory pain (formalin test) and mechanical allodynia (Von Frey test). We report that Tau-/- animals presented a decreased response to acute noxious stimuli when compared to Tau+/+ while their pain-related behavior is augmented under tonic painful stimuli. This increased reactivity to tonic pain was accompanied by enhanced formalin-evoked c-fos staining of second order nociceptive neurons at Tau-null dorsal horn. In addition, we analyzed the primary afferents conveying nociceptive signals, estimating sciatic nerve fiber density, myelination and nerve conduction. Ultrastructural analysis revealed a decreased C-fiber density in the sciatic nerve of Tau-null mice and a hypomyelination of myelinated fibers (Aδ-fibers) - also confirmed by western blot analysis - followed by altered conduction properties of Tau-null sciatic nerves. To our knowledge, this is the first in vivo study that demonstrates that Tau depletion negatively affects the main systems conveying nociceptive information to the CNS, adding to our knowledge about Tau function(s) that might also be relevant for understanding peripheral neurological deficits in different Tauopathies.

  14. Neural coding of nociceptive stimuli-from rat spinal neurones to human perception.

    PubMed

    Sikandar, Shafaq; Ronga, Irene; Iannetti, Gian Domenico; Dickenson, Anthony H

    2013-08-01

    Translational studies are key to furthering our understanding of nociceptive signalling and bridging the gaps between molecules and pathways to the patients. This requires use of appropriate preclinical models that accurately depict outcome measures used in humans. Whereas behavioural animal studies classically involve reports related to nociceptive thresholds of, for example, withdrawal, electrophysiological recordings of spinal neurones that receive convergent input from primary afferents permits investigation of suprathreshold events and exploration of the full-range coding of different stimuli. We explored the central processing of nociceptive inputs in a novel parallel investigation between rats and humans. Using radiant laser pulses, we first compared the electrophysiological responses of deep wide dynamic range and superficial nociceptive-specific neurones in the rat dorsal horn with human psychophysics and cortical responses. Secondly, we explored the effects of spatial summation using laser pulses of identical energy and different size. We observed 3 main findings. Firstly, both rodent and human data confirmed that neodymium-yttrium aluminium perovskite laser stimulation is a nociceptive-selective stimulus that never activates Aβ afferents. Secondly, graded laser stimulation elicited similarly graded electrophysiological and behavioural responses in both species. Thirdly, there was a significant degree of spatial summation of laser nociceptive input. The remarkable similarity in rodent and human coding indicates that responses of rat dorsal horn neurones can translate to human nociceptive processing. These findings suggest that recordings of spinal neuronal activity elicited by laser stimuli could be a valuable predictive measure of human pain perception. PMID:23719576

  15. Neural coding of nociceptive stimuli-from rat spinal neurones to human perception.

    PubMed

    Sikandar, Shafaq; Ronga, Irene; Iannetti, Gian Domenico; Dickenson, Anthony H

    2013-08-01

    Translational studies are key to furthering our understanding of nociceptive signalling and bridging the gaps between molecules and pathways to the patients. This requires use of appropriate preclinical models that accurately depict outcome measures used in humans. Whereas behavioural animal studies classically involve reports related to nociceptive thresholds of, for example, withdrawal, electrophysiological recordings of spinal neurones that receive convergent input from primary afferents permits investigation of suprathreshold events and exploration of the full-range coding of different stimuli. We explored the central processing of nociceptive inputs in a novel parallel investigation between rats and humans. Using radiant laser pulses, we first compared the electrophysiological responses of deep wide dynamic range and superficial nociceptive-specific neurones in the rat dorsal horn with human psychophysics and cortical responses. Secondly, we explored the effects of spatial summation using laser pulses of identical energy and different size. We observed 3 main findings. Firstly, both rodent and human data confirmed that neodymium-yttrium aluminium perovskite laser stimulation is a nociceptive-selective stimulus that never activates Aβ afferents. Secondly, graded laser stimulation elicited similarly graded electrophysiological and behavioural responses in both species. Thirdly, there was a significant degree of spatial summation of laser nociceptive input. The remarkable similarity in rodent and human coding indicates that responses of rat dorsal horn neurones can translate to human nociceptive processing. These findings suggest that recordings of spinal neuronal activity elicited by laser stimuli could be a valuable predictive measure of human pain perception.

  16. Effects of acid on vagal nociceptive afferent subtypes in guinea pig esophagus.

    PubMed

    Yu, Xiaoyun; Hu, Youtian; Yu, Shaoyong

    2014-08-15

    Acid reflux-induced heartburn and noncardiac chest pain are processed peripherally by sensory nerve endings in the wall of the esophagus, but the underlying mechanism is still unclear. This study aims to determine the effects of acid on esophageal vagal nociceptive afferent subtypes. Extracellular single-unit recordings were performed in guinea pig vagal nodose or jugular C fiber neurons by using ex vivo esophageal-vagal preparations with intact nerve endings in the esophagus. We recorded action potentials (AP) of esophageal nodose or jugular C fibers evoked by acid perfusion and compared esophageal distension-evoked AP before and after acid perfusion. Acid perfusion for 30 min (pH range 7.4 to 5.8) did not evoke AP in nodose C fibers but significantly decreased their responses to esophageal distension, which could be recovered after washing out acid for 90 min. In jugular C fibers, acid perfusion not only evoked AP but also inhibited their responses to esophageal distension, which were not recovered after washing out acid for 120 min. Lower concentration of capsaicin perfusion mimicked acid-induced effects in nodose and jugular C fibers. Pretreatment with TRPV1 antagonist AMG9810, but not acid-sensing ion channel (ASIC) inhibitor amiloride, significantly inhibited acid-induced effects in nodose and jugular C fiber. These results demonstrate that esophageal vagal nociceptive afferent nerve subtypes display distinctive responses to acid. Acid activates jugular, but not nodose, C fibers and inhibits both of their responses to esophageal distension. These effects are mediated mainly through TRPV1. This inhibitory effect is a novel finding and may contribute to esophageal sensory/motor dysfunction in acid reflux diseases.

  17. Evidence that substance P selectively modulates C-fiber-evoked discharges of dorsal horn nociceptive neurons.

    PubMed

    Kellstein, D E; Price, D D; Hayes, R L; Mayer, D J

    1990-09-01

    Previous studies suggest that the undecapeptide substance P (SP) functions as a primary afferent neurotransmitter or neuromodulator of nociception which may mediate the slow temporal summation ('windup') of discharges of dorsal horn nociceptive neurons elicited by repetitive stimulation of C-afferents. The present study tested this hypothesis by investigating the effects of local spinal application of SP and an SP antagonist. [D-Pro2,D-Trp7,9]-SP (DPDT), on A- and C-fiber-evoked firing of dorsal horn neurons in an intact, urethane-anesthetized rat preparation. Extracellular single unit recordings from both wide dynamic range and nociceptive specific neurons during controlled repetitive electrical stimulation of the ipsilateral hind paw indicated that SP enhanced C-evoked firing in an apparent dose-related manner (100 greater than 20 = 4 nmol), whereas DPDT inhibited C-evoked discharges with an apparent bell-shaped dose-response (20 greater than 100 = 4 nmol). Neither agent significantly altered either A-evoked or spontaneous activity. In agreement with previous investigators, morphine sulfate also selectively inhibited C-fiber-evoked firing without altering A-fiber-mediated activity, validating the selectivity of our system. These findings provide additional evidence that SP functions as a neuromodulator of primary afferent nociception, and further suggest that the effects of SP are selective to nociceptive transmission mediated by C-fibers. PMID:1701684

  18. Somatic modulation of spinal reflex bladder activity mediated by nociceptive bladder afferent nerve fibers in cats.

    PubMed

    Xiao, Zhiying; Rogers, Marc J; Shen, Bing; Wang, Jicheng; Schwen, Zeyad; Roppolo, James R; de Groat, William C; Tai, Changfeng

    2014-09-15

    The goal of the present study was to determine if supraspinal pathways are necessary for inhibition of bladder reflex activity induced by activation of somatic afferents in the pudendal or tibial nerve. Cats anesthetized with α-chloralose were studied after acute spinal cord transection at the thoracic T9/T10 level. Dilute (0.25%) acetic acid was used to irritate the bladder, activate nociceptive afferent C-fibers, and trigger spinal reflex bladder contractions (amplitude: 19.3 ± 2.9 cmH2O). Hexamethonium (a ganglionic blocker, intravenously) significantly (P < 0.01) reduced the amplitude of the reflex bladder contractions to 8.5 ± 1.9 cmH2O. Injection of lidocaine (2%, 1-2 ml) into the sacral spinal cord or transection of the sacral spinal roots and spinal cord further reduced the contraction amplitude to 4.2 ± 1.3 cmH2O. Pudendal nerve stimulation (PNS) at frequencies of 0.5-5 Hz and 40 Hz but not at 10-20 Hz inhibited reflex bladder contractions, whereas tibial nerve stimulation (TNS) failed to inhibit bladder contractions at all tested frequencies (0.5-40 Hz). These results indicate that PNS inhibition of nociceptive afferent C-fiber-mediated spinal reflex bladder contractions can occur at the spinal level in the absence of supraspinal pathways, but TNS inhibition requires supraspinal pathways. In addition, this study shows, for the first time, that after acute spinal cord transection reflex bladder contractions can be triggered by activating nociceptive bladder afferent C-fibers using acetic acid irritation. Understanding the sites of action for PNS or TNS inhibition is important for the clinical application of pudendal or tibial neuromodulation to treat bladder dysfunctions.

  19. Somatic modulation of spinal reflex bladder activity mediated by nociceptive bladder afferent nerve fibers in cats.

    PubMed

    Xiao, Zhiying; Rogers, Marc J; Shen, Bing; Wang, Jicheng; Schwen, Zeyad; Roppolo, James R; de Groat, William C; Tai, Changfeng

    2014-09-15

    The goal of the present study was to determine if supraspinal pathways are necessary for inhibition of bladder reflex activity induced by activation of somatic afferents in the pudendal or tibial nerve. Cats anesthetized with α-chloralose were studied after acute spinal cord transection at the thoracic T9/T10 level. Dilute (0.25%) acetic acid was used to irritate the bladder, activate nociceptive afferent C-fibers, and trigger spinal reflex bladder contractions (amplitude: 19.3 ± 2.9 cmH2O). Hexamethonium (a ganglionic blocker, intravenously) significantly (P < 0.01) reduced the amplitude of the reflex bladder contractions to 8.5 ± 1.9 cmH2O. Injection of lidocaine (2%, 1-2 ml) into the sacral spinal cord or transection of the sacral spinal roots and spinal cord further reduced the contraction amplitude to 4.2 ± 1.3 cmH2O. Pudendal nerve stimulation (PNS) at frequencies of 0.5-5 Hz and 40 Hz but not at 10-20 Hz inhibited reflex bladder contractions, whereas tibial nerve stimulation (TNS) failed to inhibit bladder contractions at all tested frequencies (0.5-40 Hz). These results indicate that PNS inhibition of nociceptive afferent C-fiber-mediated spinal reflex bladder contractions can occur at the spinal level in the absence of supraspinal pathways, but TNS inhibition requires supraspinal pathways. In addition, this study shows, for the first time, that after acute spinal cord transection reflex bladder contractions can be triggered by activating nociceptive bladder afferent C-fibers using acetic acid irritation. Understanding the sites of action for PNS or TNS inhibition is important for the clinical application of pudendal or tibial neuromodulation to treat bladder dysfunctions. PMID:25056352

  20. NaV1.8 channels are expressed in large, as well as small, diameter sensory afferent neurons.

    PubMed

    Ramachandra, Renuka; McGrew, Stephanie Y; Baxter, James C; Howard, Jason R; Elmslie, Keith S

    2013-01-01

    Sensory neurons in the dorsal root ganglia (DRG) express a subset of voltage dependent sodium channels (NaV) including NaV1.1, 1.6, 1.7, 1.8 and 1.9. Previous work supported preferential localization of NaV1.8 channels to small-medium diameter, nociceptive afferent neurons. However, we recently published evidence that NaV1.8 was the dominant NaV channel expressed in the somas of small, medium and large diameter muscle afferent neurons, which is consistent with other reports. Here, we extend those results to show that NaV1.8 expression is not correlated with afferent neuron diameter. Using immunocytochemistry, we found NaV1.8 expression in ~50% of sensory afferent neurons with diameters ranging from 20 to 70 µm. In addition, electrophysiological analysis shows that the kinetic and inactivation properties of NaV1.8 current are invariant with neuron size. These data add further support to the idea that NaV1.8 contributes to the electrical excitability of both nociceptive and non-nociceptive sensory neurons. PMID:23064159

  1. Dual Modulation of Nociception and Cardiovascular Reflexes during Peripheral Ischemia through P2Y1 Receptor-Dependent Sensitization of Muscle Afferents

    PubMed Central

    Queme, Luis F.; Ross, Jessica L.; Lu, Peilin; Hudgins, Renita C.

    2016-01-01

    to play a key role in the development of pain-related behaviors during ischemia. At the same time, under these pathological conditions, the changes in muscle sensory neurons appear to modulate an increase in mean systemic blood pressure after exercise. This is the first report of the potential peripheral mechanisms by which group III/IV muscle afferents can dually regulate muscle nociception and the exercise pressor reflex. These data provide evidence related to the potential underlying reasons for the comorbidity of muscle pain and altered sympathetic reflexes in disease states that are based in problems with peripheral perfusion and may indicate a potential target for therapeutic intervention. PMID:26740646

  2. Modulatory Mechanism of Nociceptive Neuronal Activity by Dietary Constituent Resveratrol

    PubMed Central

    Takeda, Mamoru; Takehana, Shiori; Sekiguchi, Kenta; Kubota, Yoshiko; Shimazu, Yoshihito

    2016-01-01

    Changes to somatic sensory pathways caused by peripheral tissue, inflammation or injury can result in behavioral hypersensitivity and pathological pain, such as hyperalgesia. Resveratrol, a plant polyphenol found in red wine and various food products, is known to have several beneficial biological actions. Recent reports indicate that resveratrol can modulate neuronal excitability, including nociceptive sensory transmission. As such, it is possible that this dietary constituent could be a complementary alternative medicine (CAM) candidate, specifically a therapeutic agent. The focus of this review is on the mechanisms underlying the modulatory effects of resveratrol on nociceptive neuronal activity associated with pain relief. In addition, we discuss the contribution of resveratrol to the relief of nociceptive and/or pathological pain and its potential role as a functional food and a CAM. PMID:27727178

  3. Larval defense against attack from parasitoid wasps requires nociceptive neurons.

    PubMed

    Robertson, Jessica L; Tsubouchi, Asako; Tracey, W Daniel

    2013-01-01

    Parasitoid wasps are a fierce predator of Drosophila larvae. Female Leptopilina boulardi (LB) wasps use a sharp ovipositor to inject eggs into the bodies of Drosophila melanogaster larvae. The wasp then eats the Drosophila larva alive from the inside, and an adult wasp ecloses from the Drosophila pupal case instead of a fly. However, the Drosophila larvae are not defenseless as they may resist the attack of the wasps through somatosensory-triggered behavioral responses. Here we describe the full range of behaviors performed by the larval prey in immediate response to attacks by the wasps. Our results suggest that Drosophila larvae primarily sense the wasps using their mechanosensory systems. The range of behavioral responses included both "gentle touch" like responses as well as nociceptive responses. We found that the precise larval response depended on both the somatotopic location of the attack, and whether or not the larval cuticle was successfully penetrated during the course of the attack. Interestingly, nociceptive responses are more likely to be triggered by attacks in which the cuticle had been successfully penetrated by the wasp. Finally, we found that the class IV neurons, which are necessary for mechanical nociception, were also necessary for a nociceptive response to wasp attacks. Thus, the class IV neurons allow for a nociceptive behavioral response to a naturally occurring predator of Drosophila.

  4. Larval Defense against Attack from Parasitoid Wasps Requires Nociceptive Neurons

    PubMed Central

    Robertson, Jessica L.; Tsubouchi, Asako; Tracey, W. Daniel

    2013-01-01

    Parasitoid wasps are a fierce predator of Drosophila larvae. Female Leptopilina boulardi (LB) wasps use a sharp ovipositor to inject eggs into the bodies of Drosophila melanogaster larvae. The wasp then eats the Drosophila larva alive from the inside, and an adult wasp ecloses from the Drosophila pupal case instead of a fly. However, the Drosophila larvae are not defenseless as they may resist the attack of the wasps through somatosensory-triggered behavioral responses. Here we describe the full range of behaviors performed by the larval prey in immediate response to attacks by the wasps. Our results suggest that Drosophila larvae primarily sense the wasps using their mechanosensory systems. The range of behavioral responses included both “gentle touch” like responses as well as nociceptive responses. We found that the precise larval response depended on both the somatotopic location of the attack, and whether or not the larval cuticle was successfully penetrated during the course of the attack. Interestingly, nociceptive responses are more likely to be triggered by attacks in which the cuticle had been successfully penetrated by the wasp. Finally, we found that the class IV neurons, which are necessary for mechanical nociception, were also necessary for a nociceptive response to wasp attacks. Thus, the class IV neurons allow for a nociceptive behavioral response to a naturally occurring predator of Drosophila. PMID:24205297

  5. Melanocortin-4 receptor expression in different classes of spinal and vagal primary afferent neurons in the mouse.

    PubMed

    Gautron, Laurent; Lee, Charlotte E; Lee, Syann; Elmquist, Joel K

    2012-12-01

    Melanocortin-4 receptor (MC4R) ligands are known to modulate nociception, but the site of action of MC4R signaling on nociception remains to be elucidated. The current study investigated MC4R expression in dorsal root ganglia (DRG) of the MC4R-GFP reporter mouse. Because MC4R is known to be expressed in vagal afferent neurons in the nodose ganglion (NG), we also systematically compared MC4R-expressing vagal and spinal afferent neurons. Abundant green fluorescent protein (GFP) immunoreactivity was found in about 45% of DRG neuronal profiles (at the mid-thoracic level), the majority being small-sized profiles. Immunohistochemistry combined with in situ hybridization confirmed that GFP was genuinely produced in MC4R-expressing neurons in the DRG. While a large number of GFP profiles in the DRG coexpressed Nav1.8 mRNA (84%) and bound isolectin B4 (72%), relatively few GFP profiles were positive for NF200 (16%) or CGRP (13%), suggesting preferential MC4R expression in C-fiber nonpeptidergic neurons. By contrast, GFP in the NG frequently colocalized with Nav1.8 mRNA (64%) and NF200 (29%), but only to a moderate extent with isolectin B4 (16%). Lastly, very few GFP profiles in the NG expressed CGRP (5%) or CART (4%). Together, our findings demonstrate variegated MC4R expression in different classes of vagal and spinal primary afferent neurons, and underscore the role of the melanocortin system in modulating nociceptive and nonnociceptive peripheral sensory modalities. PMID:22592759

  6. TRPM8 function and expression in vagal sensory neurons and afferent nerves innervating guinea pig esophagus.

    PubMed

    Yu, Xiaoyun; Hu, Youtian; Ru, Fei; Kollarik, Marian; Undem, Bradley J; Yu, Shaoyong

    2015-03-15

    Sensory transduction in esophageal afferents requires specific ion channels and receptors. TRPM8 is a new member of the transient receptor potential (TRP) channel family and participates in cold- and menthol-induced sensory transduction, but its role in visceral sensory transduction is still less clear. This study aims to determine TRPM8 function and expression in esophageal vagal afferent subtypes. TRPM8 agonist WS-12-induced responses were first determined in nodose and jugular neurons by calcium imaging and then investigated by whole cell patch-clamp recordings in Dil-labeled esophageal nodose and jugular neurons. Extracellular single-unit recordings were performed in nodose and jugular C fiber neurons using ex vivo esophageal-vagal preparations with intact nerve endings in the esophagus. TRPM8 mRNA expression was determined by single neuron RT-PCR in Dil-labeled esophageal nodose and jugular neurons. The TRPM8 agonist WS-12 elicited calcium influx in a subpopulation of jugular but not nodose neurons. WS-12 activated outwardly rectifying currents in esophageal Dil-labeled jugular but not nodose neurons in a dose-dependent manner, which could be inhibited by the TRPM8 inhibitor AMTB. WS-12 selectively evoked action potential discharges in esophageal jugular but not nodose C fibers. Consistently, TRPM8 transcripts were highly expressed in esophageal Dil-labeled TRPV1-positive jugular neurons. In summary, the present study demonstrated a preferential expression and function of TRPM8 in esophageal vagal jugular but not nodose neurons and C fiber subtypes. This provides a distinctive role of TRPM8 in esophageal sensory transduction and may lead to a better understanding of the mechanisms of esophageal sensation and nociception.

  7. Diverse firing properties and Aβ-, Aδ-, and C-afferent inputs of small local circuit neurons in spinal lamina I.

    PubMed

    Fernandes, Elisabete C; Luz, Liliana L; Mytakhir, Oleh; Lukoyanov, Nikolai V; Szucs, Peter; Safronov, Boris V

    2016-02-01

    Spinal lamina I is a key element of the pain processing system, which integrates primary afferent input and relays it to supraspinal areas. More than 90% of neurons in this layer are local circuit neurons, whose role in the signal processing is poorly understood. We performed whole-cell recordings in a spinal cord preparation with attached dorsal roots to examine morphological features and physiological properties of small local circuit neurons (n = 47) in lamina I. Cells successfully filled with biocytin (n = 17) had fusiform (n = 10), flattened (n = 4), and multipolar (n = 3) somatodendritic morphology; their axons branched extensively and terminated in laminae I-III. Intrinsic firing properties were diverse; in addition to standard tonic (n = 16), adapting (n = 7), and delayed (n = 6) patterns, small local circuit neurons also generated rhythmic discharges (n = 6) and plateau potentials (n = 10), the latter were suppressed by the L-type Ca(2+)-channel blocker nifedipine. The neurons received monosynaptic inputs from Aδ and C afferents and could generate bursts of spikes on the root stimulation. In addition, we identified lamina I neurons (n = 7) with direct inputs from the low-threshold Aβ afferents, which could be picked up by ventral dendrites protruding to lamina III. Stimulation of afferents also evoked a disynaptic inhibition of neurons. Thus, small local circuit neurons exhibit diverse firing properties, can generate rhythmic discharges and plateau potentials, and their dendrites extending into several laminae allow broad integration of Aβ-, Aδ-, and C-afferent inputs. These properties are required for processing diverse modalities of nociceptive inputs in lamina I and may underlie spinal sensitization to pain.

  8. Interferon alpha inhibits spinal cord synaptic and nociceptive transmission via neuronal-glial interactions

    PubMed Central

    Liu, Chien-Cheng; Gao, Yong-Jing; Luo, Hao; Berta, Temugin; Xu, Zhen-Zhong; Ji, Ru-Rong; Tan, Ping-Heng

    2016-01-01

    It is well known that interferons (IFNs), such as type-I IFN (IFN-α) and type-II IFN (IFN-γ) are produced by immune cells to elicit antiviral effects. IFNs are also produced by glial cells in the CNS to regulate brain functions. As a proinflammatory cytokine, IFN-γ drives neuropathic pain by inducing microglial activation in the spinal cord. However, little is known about the role of IFN-α in regulating pain sensitivity and synaptic transmission. Strikingly, we found that IFN-α/β receptor (type-I IFN receptor) was expressed by primary afferent terminals in the superficial dorsal horn that co-expressed the neuropeptide CGRP. In the spinal cord IFN-α was primarily expressed by astrocytes. Perfusion of spinal cord slices with IFN-α suppressed excitatory synaptic transmission by reducing the frequency of spontaneous excitatory postsynaptic current (sEPSCs). IFN-α also inhibited nociceptive transmission by reducing capsaicin-induced internalization of NK-1 and phosphorylation of extracellular signal-regulated kinase (ERK) in superficial dorsal horn neurons. Finally, spinal (intrathecal) administration of IFN-α reduced inflammatory pain and increased pain threshold in naïve rats, whereas removal of endogenous IFN-α by a neutralizing antibody induced hyperalgesia. Our findings suggest a new form of neuronal-glial interaction by which IFN-α, produced by astrocytes, inhibits nociceptive transmission in the spinal cord. PMID:27670299

  9. The degree of acute descending control of spinal nociception in an area of primary hyperalgesia is dependent on the peripheral domain of afferent input

    PubMed Central

    Drake, Robert A R; Hulse, Richard P; Lumb, Bridget M; Donaldson, Lucy F

    2014-01-01

    Descending controls of spinal nociceptive processing play a critical role in the development of inflammatory hyperalgesia. Acute peripheral nociceptor sensitization drives spinal sensitization and activates spino–supraspinal–spinal loops leading to descending inhibitory and facilitatory controls of spinal neuronal activity that further modify the extent and degree of the pain state. The afferent inputs from hairy and glabrous skin are distinct with respect to both the profile of primary afferent classes and the degree of their peripheral sensitization. It is not known whether these differences in afferent input differentially engage descending control systems to different extents or in different ways. Injection of complete Freund's adjuvant resulted in inflammation and swelling of hairy hind foot skin in rats, a transient thermal hyperalgesia lasting <2 h, and longlasting primary mechanical hyperalgesia (≥7 days). Much longer lasting thermal hyperalgesia was apparent in glabrous skin (1 h to >72 h). In hairy skin, transient hyperalgesia was associated with sensitization of withdrawal reflexes to thermal activation of either A- or C-nociceptors. The transience of the hyperalgesia was attributable to a rapidly engaged descending inhibitory noradrenergic mechanism, which affected withdrawal responses to both A- and C-nociceptor activation and this could be reversed by intrathecal administration of yohimbine (α-2-adrenoceptor antagonist). In glabrous skin, yohimbine had no effect on an equivalent thermal inflammatory hyperalgesia. We conclude that acute inflammation and peripheral nociceptor sensitization in hind foot hairy skin, but not glabrous skin, rapidly activates a descending inhibitory noradrenergic system. This may result from differences in the engagement of descending control systems following sensitization of different primary afferent classes that innervate glabrous and hairy skin. PMID:24879873

  10. The Specification and Maturation of Nociceptive Neurons from Human Embryonic Stem Cells

    PubMed Central

    Boisvert, Erin M.; Engle, Sandra J.; Hallowell, Shawn E.; Liu, Ping; Wang, Zhao-Wen; Li, Xue-Jun

    2015-01-01

    Nociceptive neurons play an essential role in pain sensation by transmitting painful stimuli to the central nervous system. However, investigations of nociceptive neuron biology have been hampered by the lack of accessibility of human nociceptive neurons. Here, we describe a system for efficiently guiding human embryonic stem cells into nociceptive neurons by first inducing these cells to the neural lineage. Subsequent addition of retinoic acid and BMP4 at specific time points and concentrations yielded a high population of neural crest progenitor cells (AP2α+, P75+), which further differentiated into nociceptive neurons (TRKA+, Nav1.7+, P2X3+). The overexpression of Neurogenin 1 (Neurog1) promoted the neurons to express genes related to sensory neurons (Peripherin, TrkA) and to further mature into TRPV1+ nociceptive neurons. Importantly, the overexpression of Neurog1 increased the response of these neurons to capsaicin stimulation, a hallmark of mature functional nociceptive neurons. Taken together, this study reveals the important role that Neurog1 plays in generating functional human nociceptive neurons. PMID:26581770

  11. The Specification and Maturation of Nociceptive Neurons from Human Embryonic Stem Cells.

    PubMed

    Boisvert, Erin M; Engle, Sandra J; Hallowell, Shawn E; Liu, Ping; Wang, Zhao-Wen; Li, Xue-Jun

    2015-11-19

    Nociceptive neurons play an essential role in pain sensation by transmitting painful stimuli to the central nervous system. However, investigations of nociceptive neuron biology have been hampered by the lack of accessibility of human nociceptive neurons. Here, we describe a system for efficiently guiding human embryonic stem cells into nociceptive neurons by first inducing these cells to the neural lineage. Subsequent addition of retinoic acid and BMP4 at specific time points and concentrations yielded a high population of neural crest progenitor cells (AP2α(+), P75(+)), which further differentiated into nociceptive neurons (TRKA(+), Nav1.7(+), P2X3(+)). The overexpression of Neurogenin 1 (Neurog1) promoted the neurons to express genes related to sensory neurons (Peripherin, TrkA) and to further mature into TRPV1(+) nociceptive neurons. Importantly, the overexpression of Neurog1 increased the response of these neurons to capsaicin stimulation, a hallmark of mature functional nociceptive neurons. Taken together, this study reveals the important role that Neurog1 plays in generating functional human nociceptive neurons.

  12. Activation of CB1 inhibits NGF-induced sensitization of TRPV1 in adult mouse afferent neurons.

    PubMed

    Wang, Z-Y; McDowell, T; Wang, P; Alvarez, R; Gomez, T; Bjorling, D E

    2014-09-26

    Transient receptor potential vanilloid 1 (TRPV1)-containing afferent neurons convey nociceptive signals and play an essential role in pain sensation. Exposure to nerve growth factor (NGF) rapidly increases TRPV1 activity (sensitization). In the present study, we investigated whether treatment with the selective cannabinoid receptor 1 (CB1) agonist arachidonyl-2'-chloroethylamide (ACEA) affects NGF-induced sensitization of TRPV1 in adult mouse dorsal root ganglion (DRG) afferent neurons. We found that CB1, NGF receptor tyrosine kinase A (trkA), and TRPV1 are present in cultured adult mouse small- to medium-sized afferent neurons and treatment with NGF (100ng/ml) for 30 min significantly increased the number of neurons that responded to capsaicin (as indicated by increased intracellular Ca(2 +) concentration). Pretreatment with the CB1 agonist ACEA (10nM) inhibited the NGF-induced response, and this effect of ACEA was reversed by a selective CB1 antagonist. Further, pretreatment with ACEA inhibited NGF-induced phosphorylation of AKT. Blocking PI3 kinase activity also attenuated the NGF-induced increase in the number of neurons that responded to capsaicin. Our results indicate that the analgesic effect of CB1 activation may in part be due to inhibition of NGF-induced sensitization of TRPV1 and also that the effect of CB1 activation is at least partly mediated by attenuation of NGF-induced increased PI3 signaling.

  13. Delayed Exercise Is Ineffective at Reversing Aberrant Nociceptive Afferent Plasticity or Neuropathic Pain After Spinal Cord Injury in Rats.

    PubMed

    Detloff, Megan Ryan; Quiros-Molina, Daniel; Javia, Amy S; Daggubati, Lekhaj; Nehlsen, Anthony D; Naqvi, Ali; Ninan, Vinu; Vannix, Kirsten N; McMullen, Mary-Katharine; Amin, Sheena; Ganzer, Patrick D; Houlé, John D

    2016-08-01

    Neuropathic pain is a debilitating consequence of spinal cord injury (SCI) that correlates with sensory fiber sprouting. Recent data indicate that exercise initiated early after SCI prevents the development of allodynia and modulated nociceptive afferent plasticity. This study determined if delaying exercise intervention until pain is detected would similarly ameliorate established SCI-induced pain. Adult, female Sprague-Dawley rats with a C5 unilateral contusion were separated into SCI allodynic and SCI non-allodynic cohorts at 14 or 28 days postinjury when half of each group began exercising on automated running wheels. Allodynia, assessed by von Frey testing, was not ameliorated by exercise. Furthermore, rats that began exercise with no allodynia developed paw hypersensitivity within 2 weeks. At the initiation of exercise, the SCI Allodynia group displayed marked overlap of peptidergic and non-peptidergic nociceptive afferents in the C7 and L5 dorsal horn, while the SCI No Allodynia group had scant overlap. At the end of 5 weeks of exercise both the SCI Allodynia and SCI No Allodynia groups had extensive overlap of the 2 c-fiber types. Our findings show that exercise therapy initiated at early stages of allodynia is ineffective at attenuating neuropathic pain, but rather that it induces allodynia-aberrant afferent plasticity in previously pain-free rats. These data, combined with our previous results, suggest that there is a critical therapeutic window when exercise therapy may be effective at treating SCI-induced allodynia and that there are postinjury periods when exercise can be deleterious. PMID:26671215

  14. Delayed Exercise Is Ineffective at Reversing Aberrant Nociceptive Afferent Plasticity or Neuropathic Pain After Spinal Cord Injury in Rats.

    PubMed

    Detloff, Megan Ryan; Quiros-Molina, Daniel; Javia, Amy S; Daggubati, Lekhaj; Nehlsen, Anthony D; Naqvi, Ali; Ninan, Vinu; Vannix, Kirsten N; McMullen, Mary-Katharine; Amin, Sheena; Ganzer, Patrick D; Houlé, John D

    2016-08-01

    Neuropathic pain is a debilitating consequence of spinal cord injury (SCI) that correlates with sensory fiber sprouting. Recent data indicate that exercise initiated early after SCI prevents the development of allodynia and modulated nociceptive afferent plasticity. This study determined if delaying exercise intervention until pain is detected would similarly ameliorate established SCI-induced pain. Adult, female Sprague-Dawley rats with a C5 unilateral contusion were separated into SCI allodynic and SCI non-allodynic cohorts at 14 or 28 days postinjury when half of each group began exercising on automated running wheels. Allodynia, assessed by von Frey testing, was not ameliorated by exercise. Furthermore, rats that began exercise with no allodynia developed paw hypersensitivity within 2 weeks. At the initiation of exercise, the SCI Allodynia group displayed marked overlap of peptidergic and non-peptidergic nociceptive afferents in the C7 and L5 dorsal horn, while the SCI No Allodynia group had scant overlap. At the end of 5 weeks of exercise both the SCI Allodynia and SCI No Allodynia groups had extensive overlap of the 2 c-fiber types. Our findings show that exercise therapy initiated at early stages of allodynia is ineffective at attenuating neuropathic pain, but rather that it induces allodynia-aberrant afferent plasticity in previously pain-free rats. These data, combined with our previous results, suggest that there is a critical therapeutic window when exercise therapy may be effective at treating SCI-induced allodynia and that there are postinjury periods when exercise can be deleterious.

  15. Heat pulse excitability of vestibular hair cells and afferent neurons.

    PubMed

    Rabbitt, Richard D; Brichta, Alan M; Tabatabaee, Hessam; Boutros, Peter J; Ahn, JoongHo; Della Santina, Charles C; Poppi, Lauren A; Lim, Rebecca

    2016-08-01

    In the present study we combined electrophysiology with optical heat pulse stimuli to examine thermodynamics of membrane electrical excitability in mammalian vestibular hair cells and afferent neurons. We recorded whole cell currents in mammalian type II vestibular hair cells using an excised preparation (mouse) and action potentials (APs) in afferent neurons in vivo (chinchilla) in response to optical heat pulses applied to the crista (ΔT ≈ 0.25°C per pulse). Afferent spike trains evoked by heat pulse stimuli were diverse and included asynchronous inhibition, asynchronous excitation, and/or phase-locked APs synchronized to each infrared heat pulse. Thermal responses of membrane currents responsible for APs in ganglion neurons were strictly excitatory, with Q10 ≈ 2. In contrast, hair cells responded with a mix of excitatory and inhibitory currents. Excitatory hair cell membrane currents included a thermoelectric capacitive current proportional to the rate of temperature rise (dT/dt) and an inward conduction current driven by ΔT An iberiotoxin-sensitive inhibitory conduction current was also evoked by ΔT, rising in <3 ms and decaying with a time constant of ∼24 ms. The inhibitory component dominated whole cell currents in 50% of hair cells at -68 mV and in 67% of hair cells at -60 mV. Responses were quantified and described on the basis of first principles of thermodynamics. Results identify key molecular targets underlying heat pulse excitability in vestibular sensory organs and provide quantitative methods for rational application of optical heat pulses to examine protein biophysics and manipulate cellular excitability. PMID:27226448

  16. The integrative role of orexin/hypocretin neurons in nociceptive perception and analgesic regulation

    PubMed Central

    Inutsuka, Ayumu; Yamashita, Akira; Chowdhury, Srikanta; Nakai, Junichi; Ohkura, Masamichi; Taguchi, Toru; Yamanaka, Akihiro

    2016-01-01

    The level of wakefulness is one of the major factors affecting nociception and pain. Stress-induced analgesia supports an animal’s survival via prompt defensive responses against predators or competitors. Previous studies have shown the pharmacological effects of orexin peptides on analgesia. However, orexin neurons contain not only orexin but also other co-transmitters such as dynorphin, neurotensin and glutamate. Thus, the physiological importance of orexin neuronal activity in nociception is unknown. Here we show that adult-stage selective ablation of orexin neurons enhances pain-related behaviors, while pharmacogenetic activation of orexin neurons induces analgesia. Additionally, we found correlative activation of orexin neurons during nociception using fiber photometry recordings of orexin neurons in conscious animals. These findings suggest an integrative role for orexin neurons in nociceptive perception and pain regulation. PMID:27385517

  17. Possible involvement of convergent nociceptive input to medullary dorsal horn neurons in intraoral hyperalgesia following peripheral nerve injury.

    PubMed

    Terayama, Ryuji; Tsuchiya, Hiroki; Omura, Shinji; Maruhama, Kotaro; Mizutani, Masahide; Iida, Seiji; Sugimoto, Tomosada

    2015-04-01

    Previous studies demonstrated that the number of c-Fos protein-like immunoreactive (c-Fos-IR) neurons in the medullary dorsal horn (MDH) evoked by noxious stimulation was increased after peripheral nerve injury, and such increase has been proposed to reflect the development of neuropathic pain state. The aim of this study was to examine the MDH for convergent collateral primary afferent input to second order neurons deafferented by peripheral nerve injury, and to explore a possibility of its contribution to the c-Fos hyperinducibility. Double immunofluorescence labeling for c-Fos and phosphorylated extracellular signal-regulated kinase (p-ERK) was performed to detect convergent synaptic input. c-Fos expression and the phosphorylation of ERK were induced by the intraoral application of capsaicin and by electrical stimulation of the inferior alveolar nerve (IAN), respectively. The number of c-Fos-IR neurons in the MDH induced by the intraoral application of capsaicin was increased after IAN injury, whereas the number of p-ERK immunoreactive neurons remained unchanged. The number of double-labeled neurons, that presumably received convergent primary afferent input from the lingual nerve and the IAN, was significantly increased after IAN injury. These results indicated that convergent primary nociceptive input through neighboring intact nerves may contribute to the c-Fos hyperinducibility in the MDH and the pathogenesis of neuropathic pain following trigeminal nerve injury. PMID:25407627

  18. Cytosolic calcium regulation in rat afferent vagal neurons during anoxia.

    PubMed

    Henrich, Michael; Buckler, Keith J

    2013-12-01

    Sensory neurons are able to detect tissue ischaemia and both transmit information to the brainstem as well as release local vasoactive mediators. Their ability to sense tissue ischaemia is assumed to be primarily mediated through proton sensing ion channels, lack of oxygen however may also affect sensory neuron function. In this study we investigated the effects of anoxia on isolated capsaicin sensitive neurons from rat nodose ganglion. Acute anoxia triggered a reversible increase in [Ca2+]i that was mainly due to Ca2+-efflux from FCCP sensitive stores and from caffeine and CPA sensitive ER stores. Prolonged anoxia resulted in complete depletion of ER Ca2+-stores. Mitochondria were partially depolarised by acute anoxia but mitochondrial Ca2+-uptake/buffering during voltage-gated Ca2+-influx was unaffected. The process of Ca2+-release from mitochondria and cytosolic Ca2+-clearance following Ca2+ influx was however significantly slowed. Anoxia was also found to inhibit SERCA activity and, to a lesser extent, PMCA activity. Hence, anoxia has multiple influences on [Ca2+]i homeostasis in vagal afferent neurons, including depression of ATP-driven Ca2+-pumps, modulation of the kinetics of mitochondrial Ca2+ buffering/release and Ca2+-release from, and depletion of, internal Ca2+-stores. These effects are likely to influence sensory neuronal function during ischaemia. PMID:24189167

  19. 5-HT1B receptors inhibit glutamate release from primary afferent terminals in rat medullary dorsal horn neurons

    PubMed Central

    Choi, I-S; Cho, J-H; An, C-H; Jung, J-K; Hur, Y-K; Choi, J-K; Jang, I-S

    2012-01-01

    BACKGROUND AND PURPOSE Although 5-HT1B receptors are expressed in trigeminal sensory neurons, it is still not known whether these receptors can modulate nociceptive transmission from primary afferents onto medullary dorsal horn neurons. EXPERIMENTAL APPROACH Primary afferent-evoked EPSCs were recorded from medullary dorsal horn neurons of rat horizontal brain stem slices using a conventional whole-cell patch clamp technique under a voltage-clamp condition. KEY RESULTS CP93129, a selective 5-HT1B receptor agonist, reversibly and concentration-dependently decreased the amplitude of glutamatergic EPSCs and increased the paired-pulse ratio. In addition, CP93129 reduced the frequency of spontaneous miniature EPSCs without affecting the current amplitude. The CP93129-induced inhibition of EPSCs was significantly occluded by GR55562, a 5-HT1B/1D receptor antagonist, but not LY310762, a 5-HT1D receptor antagonist. Sumatriptan, an anti-migraine drug, also decreased EPSC amplitude, and this effect was partially blocked by either GR55562 or LY310762. On the other hand, primary afferent-evoked EPSCs were mediated by the Ca2+ influx passing through both presynaptic N-type and P/Q-type Ca2+ channels. The CP93129-induced inhibition of EPSCs was significantly occluded by ω-conotoxin GVIA, an N-type Ca2+ channel blocker. CONCLUSIONS AND IMPLICATIONS The present results suggest that the activation of presynaptic 5-HT1B receptors reduces glutamate release from primary afferent terminals onto medullary dorsal horn neurons, and that 5-HT1B receptors could be, at the very least, a potential target for the treatment of pain from orofacial tissues. LINKED ARTICLE This article is commented on by Connor, pp. 353–355 of this issue. To view this commentary visit http://dx.doi.org/10.1111/j.1476-5381.2012.01963.x PMID:22462474

  20. Long lasting activity of nociceptive muscular afferents facilitates bilateral flexion reflex pattern in the feline spinal cord.

    PubMed

    Schomburg, E D; Steffens, H; Pilyavskii, A I; Maisky, V A; Brück, W; Dibaj, P; Sears, T A

    2015-06-01

    Chronic muscular limb pain requires the adoption of motor patterns distinct from the classic ipsilateral flexion, crossed extension and corresponding reciprocal inhibitions to acute exteroceptive stimulation. Using selective chemical activation of group III/IV afferents in gastrocnemius-soleus (GS) muscles we investigated bilaterally their reflex responses conditioned by (a) acute 'myositis' induced by intramuscular carrageenan; and (b) sub-acute 'myositis' induced by infusion of complete Freund's adjuvant (CFA). Reflex transmission was detected by monosynaptic testing and c-fos staining used to identify increased neuronal activity. In all control experiments with chemical stimulation of group III/IV afferents, ipsilateral responses conformed to the flexor reflex pattern. However, the expected contralateral facilitation of GS motoneurones occurred in fewer than 50% trials while only 9% of trials induced contralateral inhibition of flexor posterior-biceps-semitendinosus (PBSt) motoneurones. During carrageenan acute myositis contralateral PBSt was transiently facilitated by selective activation of group III/IV afferents. During CFA-induced myositis, contralateral only inhibition of GS motoneurones occurred instead of any facilitation, while bidirectionally a crossed facilitation of PBST dominated. These reflex changes were mirrored in an enhanced number of neurones with enhanced c-fos expression. Muscle pain, particularly if chronically persistent, requires another behavioural response pattern than acute exteroceptive pain.

  1. Deletion of vanilloid receptor 1-expressing primary afferent neurons for pain control.

    PubMed

    Karai, Laszlo; Brown, Dorothy C; Mannes, Andrew J; Connelly, Stephen T; Brown, Jacob; Gandal, Michael; Wellisch, Ofer M; Neubert, John K; Olah, Zoltan; Iadarola, Michael J

    2004-05-01

    Control of cancer, neuropathic, and postoperative pain is frequently inadequate or compromised by debilitating side effects. Inhibition or removal of certain nociceptive neurons, while retaining all other sensory modalities and motor function, would represent a new therapeutic approach to control severe pain. The enriched expression of transient receptor potential cation channel, subfamily V, member 1 (TRPV1; also known as the vanilloid receptor, VR1) in nociceptive neurons of the dorsal root and trigeminal ganglia allowed us to test this concept. Administration of the potent TRPV1 agonist resiniferatoxin (RTX) to neuronal perikarya induces calcium cytotoxicity by opening the TRPV1 ion channel and selectively ablates nociceptive neurons. This treatment blocks experimental inflammatory hyperalgesia and neurogenic inflammation in rats and naturally occurring cancer and debilitating arthritic pain in dogs. Sensations of touch, proprioception, and high-threshold mechanosensitive nociception, as well as locomotor function, remained intact in both species. In separate experiments directed at postoperative pain control, subcutaneous administration of RTX transiently disrupted nociceptive nerve endings, yielding reversible analgesia. In human dorsal root ganglion cultures, RTX induced a prolonged increase in intracellular calcium in vanilloid-sensitive neurons, while leaving other, adjacent neurons unaffected. The results suggest that nociceptive neuronal or nerve terminal deletion will be effective and broadly applicable as strategies for pain management. PMID:15124026

  2. Frequency response properties of primary afferent neurons in the posterior lateral line system of larval zebrafish

    PubMed Central

    Levi, Rafael; Akanyeti, Otar; Ballo, Aleksander

    2014-01-01

    The ability of fishes to detect water flow with the neuromasts of their lateral line system depends on the physiology of afferent neurons as well as the hydrodynamic environment. Using larval zebrafish (Danio rerio), we measured the basic response properties of primary afferent neurons to mechanical deflections of individual superficial neuromasts. We used two types of stimulation protocols. First, we used sine wave stimulation to characterize the response properties of the afferent neurons. The average frequency-response curve was flat across stimulation frequencies between 0 and 100 Hz, matching the filtering properties of a displacement detector. Spike rate increased asymptotically with frequency, and phase locking was maximal between 10 and 60 Hz. Second, we used pulse train stimulation to analyze the maximum spike rate capabilities. We found that afferent neurons could generate up to 80 spikes/s and could follow a pulse train stimulation rate of up to 40 pulses/s in a reliable and precise manner. Both sine wave and pulse stimulation protocols indicate that an afferent neuron can maintain their evoked activity for longer durations at low stimulation frequencies than at high frequencies. We found one type of afferent neuron based on spontaneous activity patterns and discovered a correlation between the level of spontaneous and evoked activity. Overall, our results establish the baseline response properties of lateral line primary afferent neurons in larval zebrafish, which is a crucial step in understanding how vertebrate mechanoreceptive systems sense and subsequently process information from the environment. PMID:25355959

  3. Peripheral μ-opioid receptor mediated inhibition of calcium signaling and action potential-evoked calcium fluorescent transients in primary afferent CGRP nociceptive terminals.

    PubMed

    Baillie, Landon D; Schmidhammer, Helmut; Mulligan, Sean J

    2015-06-01

    While μ-opioid receptor (MOR) agonists remain the most powerful analgesics for the treatment of severe pain, serious adverse side effects that are secondary to their central nervous system actions pose substantial barriers to therapeutic use. Preclinical and clinical evidence suggest that peripheral MORs play an important role in opioid analgesia, particularly under inflammatory conditions. However, the mechanisms of peripheral MOR signaling in primary afferent pain fibres remain to be established. We have recently introduced a novel ex vivo optical imaging approach that, for the first time, allows the study of physiological functioning within individual peripheral nociceptive fibre free nerve endings in mice. In the present study, we found that MOR activation in selectively identified, primary afferent CGRP nociceptive terminals caused inhibition of N-type Ca(2+) channel signaling and suppression of action potential-evoked Ca(2+) fluorescent transients mediated by 'big conductance' Ca(2+)-activated K(+) channels (BKCa). In the live animal, we showed that the peripherally acting MOR agonist HS-731 produced analgesia and that BKCa channels were the major effectors of the peripheral MOR signaling. We have identified two key molecular transducers of MOR activation that mediate significant inhibition of nociceptive signaling in primary afferent terminals. Understanding the mechanisms of peripheral MOR signaling may promote the development of pathway selective μ-opioid drugs that offer improved therapeutic profiles for achieving potent analgesia while avoiding serious adverse central side effects. PMID:25721395

  4. Distribution and Properties of Visceral Nociceptive Neurons in Rabbit Cingulate Cortex

    PubMed Central

    Sikes, Robert W.; Vogt, Leslie J.; Vogt, Brent A.

    2008-01-01

    Human imaging localizes most visceral nociceptive responses to anterior cingulate cortex (ACC), however, imaging in conscious subjects cannot completely control anticipatory and reflexive activity or resolve neuron activity. This study overcame these shortcomings by recording individual neuron responses in 12 anesthetized and paralyzed rabbits to define the visceronociceptive response pattern by region and layer. Balloon distension was applied to the colon at innocuous (15 mmHg) or noxious (60 mmHg) intensities, and innocuous and noxious mechanical, thermal and electrical stimuli were applied to the skin. Simultaneous recording from multiple regions assured differences were not due to anesthesia and neuron responses were resolved by spike sorting using principal components analysis. Of the total 346 neurons, 48% were nociceptive; responding to noxious levels of visceral or cutaneous stimulation, or both. Visceronociceptive neurons were most frequent in ACC (39%) and midcingulate cortex (MCC, 36%) and infrequent in retrosplenial cortex (RSC, 12%). In contrast, cutaneous nociceptive units were higher in MCC (MCC, 43%; ACC, 32%; RSC, 23%). Visceral-specific neurons were proportionately more frequent in ACC (37%), while cutaneous-specific units predominated in RSC (62.5%). Visceral nociceptive response durations were longer than those for cutaneous responses. Postmortem analysis of electrode tracks confirmed regional designations, and laminar analysis found inhibitory responses mainly in superficial layers and excitatory in deep layers. Thus, cingulate visceral nociception extends beyond ACC, this is the first report of nociceptive activity in RSC including nociceptive cutaneous responses, and these regional differences require a new model of cingulate nociceptive processing. PMID:18022321

  5. Genetic and pharmacological evidence for low-abundance TRPV3 expression in primary vagal afferent neurons.

    PubMed

    Wu, Shaw-Wen; Lindberg, Jonathan E M; Peters, James H

    2016-05-01

    Primary vagal afferent neurons express a multitude of thermosensitive ion channels. Within this family of ion channels, the heat-sensitive capsaicin receptor (TRPV1) greatly influences vagal afferent signaling by determining the threshold for action-potential initiation at the peripheral endings, while controlling temperature-sensitive forms of glutamate release at central vagal terminals. Genetic deletion of TRPV1 does not completely eliminate these temperature-dependent effects, suggesting involvement of additional thermosensitive ion channels. The warm-sensitive, calcium-permeable, ion channel TRPV3 is commonly expressed with TRPV1; however, the extent to which TRPV3 is found in vagal afferent neurons is unknown. Here, we begin to characterize the genetic and functional expression of TRPV3 in vagal afferent neurons using molecular biology (RT-PCR and RT-quantitative PCR) in whole nodose and isolated neurons and fluorescent calcium imaging on primary cultures of nodose ganglia neurons. We confirmed low-level TRPV3 expression in vagal afferent neurons and observed direct activation with putative TRPV3 agonists eugenol, ethyl vanillin (EVA), and farnesyl pyrophosphate (FPP). Agonist activation stimulated neurons also containing TRPV1 and was blocked by ruthenium red. FPP sensitivity overlapped with EVA and eugenol but represented the smallest percentage of vagal afferent neurons, and it was the only agonist that did not stimulate neurons from TRPV3(-/-1) mice, suggesting FPP has the highest selectivity. Further, FPP was predictive of enhanced responses to capsaicin, EVA, and eugenol in rats. From our results, we conclude TRPV3 is expressed in a discrete subpopulation of vagal afferent neurons and may contribute to vagal afferent signaling either directly or in combination with TRPV1. PMID:26843581

  6. Electrical stimulation of low-threshold afferent fibers induces a prolonged synaptic depression in lamina II dorsal horn neurons to high-threshold afferent inputs in mice.

    PubMed

    Sdrulla, Andrei D; Xu, Qian; He, Shao-Qiu; Tiwari, Vinod; Yang, Fei; Zhang, Chen; Shu, Bin; Shechter, Ronen; Raja, Srinivasa N; Wang, Yun; Dong, Xinzhong; Guan, Yun

    2015-06-01

    Electrical stimulation of low-threshold Aβ-fibers (Aβ-ES) is used clinically to treat neuropathic pain conditions that are refractory to pharmacotherapy. However, it is unclear how Aβ-ES modulates synaptic responses to high-threshold afferent inputs (C-, Aδ-fibers) in superficial dorsal horn. Substantia gelatinosa (SG) (lamina II) neurons are important for relaying and modulating converging spinal nociceptive inputs. We recorded C-fiber-evoked excitatory postsynaptic currents (eEPSCs) in spinal cord slices in response to paired-pulse test stimulation (500 μA, 0.1 millisecond, 400 milliseconds apart). We showed that 50-Hz and 1000-Hz, but not 4-Hz, Aβ-ES (10 μA, 0.1 millisecond, 5 minutes) induced prolonged inhibition of C-fiber eEPSCs in SG neurons in naive mice. Furthermore, 50-Hz Aβ-ES inhibited both monosynaptic and polysynaptic forms of C-fiber eEPSC in naive mice and mice that had undergone spinal nerve ligation (SNL). The paired-pulse ratio (amplitude second eEPSC/first eEPSC) increased only in naive mice after 50-Hz Aβ-ES, suggesting that Aβ-ES may inhibit SG neurons by different mechanisms under naive and nerve-injured conditions. Finally, 50-Hz Aβ-ES inhibited both glutamatergic excitatory and GABAergic inhibitory interneurons, which were identified by fluorescence in vGlut2-Td and glutamic acid decarboxylase-green fluorescent protein transgenic mice after SNL. These findings show that activities in Aβ-fibers lead to frequency-dependent depression of synaptic transmission in SG neurons in response to peripheral noxious inputs. However, 50-Hz Aβ-ES failed to induce cell-type-selective inhibition in SG neurons. The physiologic implication of this novel form of synaptic depression for pain modulation by Aβ-ES warrants further investigation. PMID:25974163

  7. Similar nociceptive afferents mediate psychophysical and electrophysiological responses to heat stimulation of glabrous and hairy skin in humans

    PubMed Central

    Iannetti, G D; Zambreanu, L; Tracey, I

    2006-01-01

    The ability to perceive and withdraw rapidly from noxious environmental stimuli is crucial for survival. When heat stimuli are applied to primate hairy skin, first pain sensation is mediated by type-II A-fibre nociceptors (II-AMHs). In contrast, the reported absence of first pain and II-AMH microneurographical responses when heat stimuli are applied to the hand palm has led to the notion that II-AMHs are lacking in this primate glabrous skin. The aim of this study was to assess the effect of hairy and glabrous skin stimulation on neural transmission of nociceptive inputs elicited by different kinds of thermal heating. We recorded psychophysical and EEG brain responses to radiant (laser-evoked potentials, LEPs) and contact heat stimuli (contact heat-evoked potentials, CHEPs) delivered to the dorsum and the palm of the hand in normal volunteers. Brain responses were analysed at a single-trial level, using an automated approach based on multiple linear regression. Laser stimulation of hairy and glabrous skin at the same energy elicited remarkably similar psychophysical ratings and LEPs. This finding provides strong evidence that first pain to heat does exist in glabrous skin, and suggests that similar nociceptive afferents, with the physiological properties of II-AMHs, mediate first pain to heat stimulation of glabrous and hairy skin in humans. In contrast, when contact heat stimuli were employed, a significantly higher nominal temperature had to be applied to glabrous skin in order to achieve psychophysical ratings similar to those obtained following hairy skin stimulation, and CHEPs following glabrous skin stimulation had significantly longer latencies (N2 wave, +25%; P2 wave, +24%) and smaller amplitudes (N2 wave, −40%; P2 wave, −44%) than CHEPs following hairy skin stimulation. Irrespective of the stimulated territory, CHEPs always had significantly longer latencies (hairy skin N2 wave, +75%; P2 wave, +56%) and smaller amplitudes (hairy skin N2 wave, −42%; P

  8. Nociceptive stimuli induce changes in somatosensory responses of rat dorsal column nuclei neurons.

    PubMed

    Costa-García, Miguel; Nuñez, Angel

    2004-10-29

    Accumulating evidence suggest that the dorsal column nuclei (DCN) neurons play a role in nociception. To evaluate DCN neuronal responses to nociceptive stimuli, unit recordings were performed in urethane-anesthesized rats. Neurons selected for this analysis displayed a low spontaneous firing rate and some of them were antidromically activated by electrical stimulation of the ventral posterolateral thalamic nucleus. Formalin injections into receptive fields (RFs) of DCN cells, or applications of short-lasting and long-lasting thermal nociceptive stimuli were used. DCN neurons displayed smaller responses when long-lasting nociceptive thermal stimuli were applied to their RFs in comparison with values obtained from the innocuous cutaneous stimulation (5.2+/-1.0 and 4.0+/-0.6 spikes/stimuli, respectively; p=0.02). Formalin also decreased the responses to innocuous cutaneous stimuli when these stimuli were applied to the formalin injection site (2.6+/-0.3 spikes/stimuli in control conditions and 1.8+/-0.3 spikes/stimuli 20 min after formalin; p=0.002). In contrast, responses to sensory stimuli applied at the periphery of the RF after formalin injection increased (2.2+/-0.2 to 2.8+/-0.3 spikes/stimuli; p=0.005). In some cases, DCN neurons expanded their RF. Fiber input to the DCN did not modify their somatosensory responses when nociceptive stimuli were applied. Results demonstrate that thermal and formalin nociceptive stimuli modify the somatosensory responses of DCN neurons. Thus, decreasing somatosensory responses at the pain induction site or the generation of allodynia may be due to the activity of DCN neurons.

  9. Unmyelinated type II afferent neurons report cochlear damage

    PubMed Central

    Liu, Chang; Glowatzki, Elisabeth; Fuchs, Paul Albert

    2015-01-01

    In the mammalian cochlea, acoustic information is carried to the brain by the predominant (95%) large-diameter, myelinated type I afferents, each of which is postsynaptic to a single inner hair cell. The remaining thin, unmyelinated type II afferents extend hundreds of microns along the cochlear duct to contact many outer hair cells. Despite this extensive arbor, type II afferents are weakly activated by outer hair cell transmitter release and are insensitive to sound. Intriguingly, type II afferents remain intact in damaged regions of the cochlea. Here, we show that type II afferents are activated when outer hair cells are damaged. This response depends on both ionotropic (P2X) and metabotropic (P2Y) purinergic receptors, binding ATP released from nearby supporting cells in response to hair cell damage. Selective activation of P2Y receptors increased type II afferent excitability by the closure of KCNQ-type potassium channels, a potential mechanism for the painful hypersensitivity (that we term “noxacusis” to distinguish from hyperacusis without pain) that can accompany hearing loss. Exposure to the KCNQ channel activator retigabine suppressed the type II fiber’s response to hair cell damage. Type II afferents may be the cochlea’s nociceptors, prompting avoidance of further damage to the irreparable inner ear. PMID:26553995

  10. Neuronal NTPDase3 Mediates Extracellular ATP Degradation in Trigeminal Nociceptive Pathway

    PubMed Central

    Ma, Lihua; Trinh, Thu; Ren, Yanfang; Dirksen, Robert T.; Liu, Xiuxin

    2016-01-01

    ATP induces pain via activation of purinergic receptors in nociceptive sensory nerves. ATP signaling is terminated by ATP hydrolysis mediated by cell surface-localized ecto-nucleotidases. Using enzymatic histochemical staining, we show that ecto-ATPase activity is present in mouse trigeminal nerves. Using immunofluorescence staining, we found that ecto-NTPDase3 is expressed in trigeminal nociceptive neurons and their projections to the brainstem. In addition, ecto-ATPase activity and ecto-NTPDase3 are also detected in the nociceptive outermost layer of the trigeminal subnucleus caudalis. Furthermore, we demonstrate that incubation with anti-NTPDase3 serum reduces extracellular ATP degradation in the nociceptive lamina of both the trigeminal subnucleus caudalis and the spinal cord dorsal horn. These results are consistent with neuronal NTPDase3 activity modulating pain signal transduction and transmission by affecting extracellular ATP hydrolysis within the trigeminal nociceptive pathway. Thus, disruption of trigeminal neuronal NTPDase3 expression and localization to presynaptic terminals during chronic inflammation, local constriction and injury may contribute to the pathogenesis of orofacial neuropathic pain. PMID:27706204

  11. The effects of Sympathetic Outflow on Upregulation of Vanilloid Receptors TRPV1 in Primary Afferent Neurons Evoked by Intradermal Capsaicin

    PubMed Central

    Xu, Xijin; Wang, Peng; Zou, Xiaoju; Li, Dingge; Fang, Li; Gong, Kerui; Lin, Qing

    2010-01-01

    The vanilloid receptor TRPV1 is a key nociceptive molecule located in primary afferent nociceptive neurons in dorsal root ganglia (DRG) for initiating neurogenic inflammation and pain. Our recent study demonstrates that up-regulation of TRPV1 receptors by intradermal injection of capsaicin is modulated by activation of the protein kinase C (PKC) cascade. Neurogenic inflammation and pain resulting from capsaicin injection are sympathetically dependent, responding to norepinephrine, adenosine 5′-triphosphate (ATP) and/or neuropeptide Y released from sympathetic efferents. In a rat model of acute neurogenic inflammatory pain produced by capsaicin injection, we used immunofluorescence and Western blots combined with pharmacology and surgical sympathectomies to analyze whether the capsaicin-evoked up-regulation of TRPV1 in DRG neurons is affected by sympathetic outflow by way of activating the PKC cascade. Sympathetic denervation reduced significantly the capsaicin-evoked expressions of TRPV1, calcitonin gene-related peptide and/or phosphorylated PKC and their co-expression. These reductions could be restored by exogenous pretreatment with an analog of ATP, α,β-methylene ATP. Inhibition of PKC with chelerythrine chloride prevented the ATP effect. Consistent results were obtained from experiments in which capsaicin-evoked changes in cutaneous inflammation (vasodilation and edema) were examined after sympathetic denervation, and the effects of the above pharmacological manipulations were evaluated. Our findings suggest that the capsaicin-evoked up-regulation of TRPV1 receptors in DRG neurons is modulated sympathetically by the action of ATP released from sympathetic efferents to activate the PKC cascade. Thus, this study proposes a potential new mechanism of sympathetic modulation of neurogenic inflammation. PMID:20036240

  12. Inhibition of M current in sensory neurons by exogenous proteases: a signaling pathway mediating inflammatory nociception.

    PubMed

    Linley, John E; Rose, Kirstin; Patil, Mayur; Robertson, Brian; Akopian, Armen N; Gamper, Nikita

    2008-10-29

    Inflammatory pain is thought to be mediated in part through the action of inflammatory mediators on membrane receptors of peripheral nerve terminals, however, the downstream signaling events which lead to pain are poorly understood. In this study we investigated the nociceptive pathways induced by activation of protease-activated receptor 2 (PAR-2) in damage-sensing (nociceptive) neurons from rat dorsal root ganglion (DRG). We found that activation of PAR-2 in these cells strongly inhibited M-type potassium currents (conducted by Kv7 potassium channels). Such inhibition caused depolarization of the neuronal resting membrane potential leading, ultimately, to nociception. Consistent with this mechanism, injection of the specific M channel blocker XE991 into rat paw induced nociception in a concentration-dependent manner. Injection of a PAR-2 agonist peptide also induced nociception but coinjection of XE991 and the PAR-2 agonist did not result in summation of nociception, suggesting that the action of both agents may share a similar mechanism. We also studied the signaling pathway of M current inhibition by PAR-2 using patch-clamp and fluorescence imaging of DRG neurons. These experiments revealed that the PAR-2 effect was mediated by phospholipase C (PLC). Further experiments demonstrated that M current inhibition required concurrent rises in cytosolic Ca(2+) concentration and depletion of membrane phosphatidylinositol 4,5-bisphosphate (PIP(2)). We propose that PLC- and Ca(2+)/PIP(2)-mediated inhibition of M current in sensory neurons may represent one of the general mechanisms underlying pain produced by inflammatory mediators, and may therefore open up a new therapeutic window for treatment of this major clinical problem. PMID:18971466

  13. Differences in electrophysiological properties of functionally identified nociceptive sensory neurons in an animal model of cancer-induced bone pain

    PubMed Central

    Zhu, Yong Fang; Ungard, Robert; Seidlitz, Eric; Zacal, Natalie; Huizinga, Jan; Henry, James L

    2016-01-01

    Background Bone cancer pain is often severe, yet little is known about mechanisms generating this type of chronic pain. While previous studies have identified functional alterations in peripheral sensory neurons that correlate with bone tumours, none has provided direct evidence correlating behavioural nociceptive responses with properties of sensory neurons in an intact bone cancer model. Results In a rat model of prostate cancer-induced bone pain, we confirmed tactile hypersensitivity using the von Frey test. Subsequently, we recorded intracellularly from dorsal root ganglion neurons in vivo in anesthetized animals. Neurons remained connected to their peripheral receptive terminals and were classified on the basis of action potential properties, responses to dorsal root stimulation, and to mechanical stimulation of the respective peripheral receptive fields. Neurons included C-, Aδ-, and Aβ-fibre nociceptors, identified by their expression of substance P. We suggest that bone tumour may induce phenotypic changes in peripheral nociceptors and that these could contribute to bone cancer pain. Conclusions This work represents a significant technical and conceptual advance in the study of peripheral nociceptor functions in the development of cancer-induced bone pain. This is the first study to report that changes in sensitivity and excitability of dorsal root ganglion primary afferents directly correspond to mechanical allodynia and hyperalgesia behaviours following prostate cancer cell injection into the femur of rats. Furthermore, our unique combination of techniques has allowed us to follow, in a single neuron, mechanical pain-related behaviours, electrophysiological changes in action potential properties, and dorsal root substance P expression. These data provide a more complete understanding of this unique pain state at the cellular level that may allow for future development of mechanism-based treatments for cancer-induced bone pain. PMID:27030711

  14. Synaptic transmission of baro- and chemoreceptors afferents in the NTS second order neurons.

    PubMed

    Accorsi-Mendonça, Daniela; Machado, Benedito H

    2013-04-01

    Second order neurons in the nucleus tractus solitarius (NTS) process and integrate the afferent information from arterial baroreceptors with high fidelity and precise timing synaptic transmission. Since 2nd-order NTS neurons receiving baroreceptors inputs are relatively well characterized, their electrophysiological profile has been accepted as a general characteristic for all 2nd-order NTS neurons involved with the processing of different sensorial inputs. On the other hand, the synaptic properties of other afferent systems in NTS, such as the peripheral chemoreceptors, are not yet well understood. In this context, in previous studies we demonstrated that in response to repetitive afferents stimulation, the chemoreceptors 2nd-order NTS neurons also presented high fidelity of synaptic transmission, but with a large variability in the latency of evoked responses. This finding is different in relation to the precise timing transmission for baroreceptor 2nd-order NTS neurons, which was accepted as a general characteristic profile for all 2nd order neurons in the NTS. In this brief review we discuss this new concept as an index of complexity of the sensorial inputs to NTS with focus on the synaptic processing of baro- and chemoreceptor afferents.

  15. Processing of nociceptive mechanical and thermal information in central amygdala neurons with knee-joint input.

    PubMed

    Neugebauer, Volker; Li, Weidong

    2002-01-01

    Pain has a strong emotional dimension, and the amygdala plays a key role in emotionality. The processing of nociceptive mechanical and thermal information was studied in individual neurons of the central nucleus of the amygdala, the target of the spino-parabrachio-amygdaloid pain pathway and a major output nucleus of the amygdala. This study is the first to characterize nociceptive amygdala neurons with input from deep tissue, particularly the knee joint. In 46 anesthetized rats, extracellular single-unit recordings were made from 119 central amygdala neurons that were activated orthodromically by electrical stimulation in the lateral pontine parabrachial area and were tested for receptive fields in the knee joints. Responses to brief mechanical stimulation of joints, muscles, and skin and to cutaneous thermal stimuli were recorded. Receptive-field sizes and thresholds were mapped and stimulus-response functions constructed. Neurons in the central nucleus of the amygdala with excitatory input from the knee joint (n = 62) typically had large symmetrical receptive fields in both hindlimbs or in all four extremities and responded exclusively or preferentially to noxious mechanical stimulation of deep tissue (n = 58). Noxious mechanical stimulation of the skin excited 30 of these neurons; noxious heat activated 21 neurons. Stimulus-response data were best fitted by a sigmoid nonlinear regression model rather than by a monotonically increasing linear function. Another 15 neurons were inhibited by noxious mechanical stimulation of the knee joint and other deep tissue. Fifteen neurons had no receptive field in the knee but responded to noxious stimulation of other body areas; 27 nonresponsive neurons were not activated by natural somesthetic stimulation. Our data suggest that excitation is the predominant effect of brief painful stimulation of somatic tissue on the population of central amygdala neurons with knee joint input. Their large symmetrical receptive fields and

  16. Opioids inhibit visceral afferent activation of catecholamine neurons in the solitary tract nucleus

    PubMed Central

    Cui, Ran Ji; Roberts, Brandon L.; Zhao, Huan; Andresen, Michael C.; Appleyard, Suzanne M.

    2014-01-01

    Brainstem A2/C2 catecholamine (CA) neurons within the solitary tract nucleus (NTS) influence many homeostatic functions, including food intake, stress, respiratory and cardiovascular reflexes. They also play a role in both opioid reward and withdrawal. Injections of opioids into the NTS modulate many autonomic functions influenced by catecholamine neurons including food intake and cardiac function. We recently showed that NTS-CA neurons are directly activated by incoming visceral afferent inputs. Here we determined whether opioid agonists modulate afferent activation of NTS-CA neurons using transgenic mice with EGFP expressed under the control of the tyrosine hydroxylase promoter (TH-EGFP) to identify catecholamine neurons. The opioid agonist Met-enkephalin (Met-Enk) significantly attenuated solitary tract evoked EPSCs (ST-EPSCs) in NTS TH-EGFP neurons by 80%, an effect reversed by wash or the mu opioid receptor specific antagonist, CTOP. Met-Enk had a significantly greater effect to inhibit afferent inputs onto TH-EGFP positive neurons than EGFP negative neurons, which were only inhibited by 50%. The mu agonist, DAMGO, also inhibited the ST-EPSC in TH-EGFP neurons in a dose-dependent manner. In contrast, neither the delta agonist DPDPE, nor the kappa agonist, U69,593, consistently inhibited the ST-EPSC amplitude. Met-Enk and DAMGO increased the paired pulse ratio, decreased the frequency, but not amplitude, of mini-EPSCs and had no effect on holding current, input resistance or current-voltage relationships in TH-EGFP neurons, suggesting a presynaptic mechanism of action on afferent terminals. Met-Enk significantly reduced both the basal firing rate of NTS TH-EGFP neurons and the ability of afferent stimulation to evoke an action potential. These results suggest that opioids inhibit NTS-CA neurons by reducing an excitatory afferent drive onto these neurons through presynaptic inhibition of glutamate release and elucidate one potential mechanism by which opioids

  17. Systemic administration of resveratrol suppress the nociceptive neuronal activity of spinal trigeminal nucleus caudalis in rats.

    PubMed

    Takehana, Shiori; Sekiguchi, Kenta; Inoue, Maki; Kubota, Yoshiko; Ito, Yukihiko; Yui, Kei; Shimazu, Yoshihito; Takeda, Mamoru

    2016-01-01

    Although a modulatory role has been reported for the red wine polyphenol resveratrol on several types of ion channels and excitatory synaptic transmission in the nervous system, the acute effects of resveratrol in vivo, particularly on nociceptive transmission of the trigeminal system, remain to be determined. The aim of the present study was to investigate whether acute intravenous resveratrol administration to rats attenuates the excitability of wide dynamic range (WDR) spinal trigeminal nucleus caudalis (SpVc) neurons in response to nociceptive and non-nociceptive mechanical stimulation in vivo. Extracellular single unit recordings were made from 18 SpVc neurons in response to orofacial mechanical stimulation of pentobarbital-anesthetized rats. Responses to both non-noxious and noxious mechanical stimuli were analyzed in the present study. The mean firing frequency of SpVc WDR neurons in response to both non-noxious and noxious mechanical stimuli was inhibited by resveratrol (0.5-2 mg/kg, i.v.) and maximum inhibition of the discharge frequency of both non-noxious and noxious mechanical stimuli was seen within 10 min. These inhibitory effects were reversed after approximately 20 min. The relative magnitude of inhibition by resveratrol of SpVc WDR neuronal discharge frequency was significantly greater for noxious than non-noxious stimulation. These results suggest that, in the absence of inflammatory or neuropathic pain, acute intravenous resveratrol administration suppresses trigeminal sensory transmission, including nociception, and so resveratrol may be used as a complementary and alternative medicine therapeutic agent for the treatment of trigeminal nociceptive pain, including hyperalgesia. PMID:26608254

  18. Systemic administration of resveratrol suppress the nociceptive neuronal activity of spinal trigeminal nucleus caudalis in rats.

    PubMed

    Takehana, Shiori; Sekiguchi, Kenta; Inoue, Maki; Kubota, Yoshiko; Ito, Yukihiko; Yui, Kei; Shimazu, Yoshihito; Takeda, Mamoru

    2016-01-01

    Although a modulatory role has been reported for the red wine polyphenol resveratrol on several types of ion channels and excitatory synaptic transmission in the nervous system, the acute effects of resveratrol in vivo, particularly on nociceptive transmission of the trigeminal system, remain to be determined. The aim of the present study was to investigate whether acute intravenous resveratrol administration to rats attenuates the excitability of wide dynamic range (WDR) spinal trigeminal nucleus caudalis (SpVc) neurons in response to nociceptive and non-nociceptive mechanical stimulation in vivo. Extracellular single unit recordings were made from 18 SpVc neurons in response to orofacial mechanical stimulation of pentobarbital-anesthetized rats. Responses to both non-noxious and noxious mechanical stimuli were analyzed in the present study. The mean firing frequency of SpVc WDR neurons in response to both non-noxious and noxious mechanical stimuli was inhibited by resveratrol (0.5-2 mg/kg, i.v.) and maximum inhibition of the discharge frequency of both non-noxious and noxious mechanical stimuli was seen within 10 min. These inhibitory effects were reversed after approximately 20 min. The relative magnitude of inhibition by resveratrol of SpVc WDR neuronal discharge frequency was significantly greater for noxious than non-noxious stimulation. These results suggest that, in the absence of inflammatory or neuropathic pain, acute intravenous resveratrol administration suppresses trigeminal sensory transmission, including nociception, and so resveratrol may be used as a complementary and alternative medicine therapeutic agent for the treatment of trigeminal nociceptive pain, including hyperalgesia.

  19. Capsaicin-sensitive vagal afferent neurons contribute to the detection of pathogenic bacterial colonization in the gut.

    PubMed

    Riley, T P; Neal-McKinney, J M; Buelow, D R; Konkel, M E; Simasko, S M

    2013-04-15

    Vagal activation can reduce inflammation and disease activity in various animal models of intestinal inflammation via the cholinergic anti-inflammatory pathway. In the current model of this pathway, activation of descending vagal efferents is dependent on a signal initiated by stimulation of vagal afferents. However, little is known about how vagal afferents are activated, especially in the context of subclinical or clinical pathogenic bacterial infection. To address this question, we first determined if selective lesions of capsaicin-sensitive vagal afferents altered c-Fos expression in the nucleus of the solitary tract (nTS) after mice were inoculated with either Campylobacter jejuni or Salmonella typhimurium. Our results demonstrate that the activation of nTS neurons by intraluminal pathogenic bacteria is dependent on intact, capsaicin sensitive vagal afferents. We next determined if inflammatory mediators could cause the observed increase in c-Fos expression in the nTS by a direct action on vagal afferents. This was tested by the use of single-cell calcium measurements in cultured vagal afferent neurons. We found that tumor necrosis factor alpha (TNFα) and lipopolysaccharide (LPS) directly activate cultured vagal afferent neurons and that almost all TNFα and LPS responsive neurons were sensitive to capsaicin. We conclude that activation of the afferent arm of the parasympathetic neuroimmune reflex by pathogenic bacteria in the gut is dependent on capsaicin sensitive vagal afferent neurons and that the release of inflammatory mediators into intestinal tissue can be directly sensed by these neurons. PMID:23481698

  20. Capsaicin-sensitive vagal afferent neurons contribute to the detection of pathogenic bacterial colonization in the gut

    PubMed Central

    Riley, T.P.; Neal-McKinney, J.M.; Buelow, D.R.; Konkel, M.E.; Simasko, S.M.

    2014-01-01

    Vagal activation can reduce inflammation and disease activity in various animal models of intestinal inflammation via the cholinergic anti-inflammatory pathway. In the current model of this pathway, activation of descending vagal efferents is dependent on a signal initiated by stimulation of vagal afferents. However, little is known about how vagal afferents are activated, especially in the context of subclinical or clinical pathogenic bacterial infection. To address this question, we first determined if selective lesions of capsaicin-sensitive vagal afferents altered c-Fos expression in the nucleus of the solitary tract (nTS) after mice were inoculated with either Campylobacter jejuni or Salmonella typhimurium. Our results demonstrate that the activation of nTS neurons by intraluminal pathogenic bacteria is dependent on intact, capsaicin sensitive vagal afferents. We next determined if inflammatory mediators could cause the observed increase in c-Fos expression in the nTS by a direct action on vagal afferents. This was tested by the use of single-cell calcium measurements in cultured vagal afferent neurons. We found that tumor necrosis factor alpha (TNFα) and lipopolysaccharide (LPS) directly activate cultured vagal afferent neurons and that almost all TNFα and LPS responsive neurons were sensitive to capsaicin. We conclude that activation of the afferent arm of the parasympathetic neuroimmune reflex by pathogenic bacteria in the gut is dependent on capsaicin sensitive vagal afferent neurons and that the release of inflammatory mediators into intestinal tissue can be directly sensed by these neurons. PMID:23481698

  1. 5,6-EET Is Released upon Neuronal Activity and Induces Mechanical Pain Hypersensitivity via TRPA1 on Central Afferent Terminals

    PubMed Central

    Sisignano, Marco; Park, Chul-Kyu; Angioni, Carlo; Zhang, Dong Dong; von Hehn, Christian; Cobos, Enrique J.; Ghasemlou, Nader; Xu, Zhen-Zhong; Kumaran, Vigneswara; Lu, Ruirui; Grant, Andrew; Fischer, Michael J. M.; Schmidtko, Achim; Reeh, Peter; Ji, Ru-Rong; Woolf, Clifford J.; Geisslinger, Gerd; Scholich, Klaus; Brenneis, Christian

    2012-01-01

    Epoxyeicosatrienoic acids (EETs) are cytochrome P450-epoxygenase-derived metabolites of arachidonic acid that act as endogenous signaling molecules in multiple biological systems. Here we have investigated the specific contribution of 5,6-EET to transient receptor potential (TRP) channel activation in nociceptor neurons and its consequence for nociceptive processing. We found that, during capsaicin-induced nociception, 5,6-EET levels increased in dorsal root ganglia (DRGs) and the dorsal spinal cord, and 5,6-EET is released from activated sensory neurons in vitro. 5,6-EET potently induced a calcium flux (100 nm) in cultured DRG neurons that was completely abolished when TRPA1 was deleted or inhibited. In spinal cord slices, 5,6-EET dose dependently enhanced the frequency, but not the amplitude, of spontaneous EPSCs (sEPSCs) in lamina II neurons that also responded to mustard oil (allyl isothiocyanate), indicating a presynaptic action. Furthermore, 5,6-EET-induced enhancement of sEPSC frequency was abolished in TRPA1-null mice, suggesting that 5,6-EET presynaptically facilitated spinal cord synaptic transmission by TRPA1. Finally, in vivo intrathecal injection of 5,6-EET caused mechanical allodynia in wild-type but not TRPA1-null mice. We conclude that 5,6-EET is synthesized on the acute activation of nociceptors and can produce mechanical hypersensitivity via TRPA1 at central afferent terminals in the spinal cord. PMID:22553041

  2. Monosynaptic convergence of somatic and visceral C-fiber afferents on projection and local circuit neurons in lamina I: a substrate for referred pain.

    PubMed

    Luz, Liliana L; Fernandes, Elisabete C; Sivado, Miklos; Kokai, Eva; Szucs, Peter; Safronov, Boris V

    2015-10-01

    Referred pain is a phenomenon of feeling pain at a site other than the site of the painful stimulus origin. It arises from a pathological mixing of nociceptive processing pathways for visceral and somatic inputs. Despite numerous studies based on unit recordings from spinal and supraspinal neurons, the exact mechanism and site of this mixing within the central nervous system are not known. Here, we selectively recorded from lamina I neurons, using a visually guided patch-clamp technique, in thoracic spinal cord preparation with preserved intercostal (somatic) and splanchnic (visceral) nerves. We show that somatic and visceral C fibers converge monosynaptically onto a group of lamina I neurons, which includes both projection and local circuit neurons. Other groups of lamina I neurons received inputs from either somatic or visceral afferents. We have also identified a population of lamina I local circuit neurons showing overall inhibitory responses upon stimulation of both nerves. Thus, the present data allow us to draw two major conclusions. First, lamina I of the spinal cord is the first site in the central nervous system where somatic and visceral pathways directly converge onto individual projection and local circuit neurons. Second, the mechanism of somatovisceral convergence is complex and based on functional integration of monosynaptic and polysynaptic excitatory as well as inhibitory inputs in specific groups of neurons. This complex pattern of convergence provides a substrate for alterations in the balance between visceral and somatic inputs causing referred pain.

  3. Peripheral nerve injury activates convergent nociceptive input to dorsal horn neurons from neighboring intact nerve.

    PubMed

    Terayama, Ryuji; Yamamoto, Yuya; Kishimoto, Noriko; Maruhama, Kotaro; Mizutani, Masahide; Iida, Seiji; Sugimoto, Tomosada

    2015-04-01

    Previous studies demonstrated that peripheral nerve injury induced excessive nociceptive response of spinal cord dorsal horn neurons and such change has been proposed to reflect the development of neuropathic pain state. The aim of this study was to examine the spinal dorsal horn for convergence of nociceptive input to second-order neurons deafferented by peripheral nerve injury. Double immunofluorescence labeling for c-Fos and phosphorylated extracellular signal-regulated kinase (p-ERK) was performed to detect convergent synaptic input to spinal dorsal horn neurons after the saphenous nerve injury. c-Fos expression and the phosphorylation of ERK were induced by noxious heat stimulation of the hindpaw and by electrical stimulation of the injured or uninjured saphenous nerve, respectively. Within the central terminal field of the saphenous nerve, the number of c-Fos protein-like immunoreactive (c-Fos-IR) cell profiles was significantly decreased at 3 days and returned to the control level by 14 days after the injury. p-ERK immunoreactive (p-ERK-IR) cell profiles were distributed in the central terminal field of the saphenous nerve, and the topographic distribution pattern and number of such p-ERK-IR cell profiles remained unchanged after the nerve injury. The time course of changes in the number of double-labeled cell profiles was similar to that of c-Fos-IR cell profiles after the injury. These results indicate that convergent primary nociceptive input through neighboring intact nerves contributes to increased responsiveness of spinal dorsal horn nociceptive neurons.

  4. Spatiotemporal processing of linear acceleration: primary afferent and central vestibular neuron responses

    NASA Technical Reports Server (NTRS)

    Angelaki, D. E.; Dickman, J. D.

    2000-01-01

    Spatiotemporal convergence and two-dimensional (2-D) neural tuning have been proposed as a major neural mechanism in the signal processing of linear acceleration. To examine this hypothesis, we studied the firing properties of primary otolith afferents and central otolith neurons that respond exclusively to horizontal linear accelerations of the head (0.16-10 Hz) in alert rhesus monkeys. Unlike primary afferents, the majority of central otolith neurons exhibited 2-D spatial tuning to linear acceleration. As a result, central otolith dynamics vary as a function of movement direction. During movement along the maximum sensitivity direction, the dynamics of all central otolith neurons differed significantly from those observed for the primary afferent population. Specifically at low frequencies (neurons peaked in phase with linear velocity, in contrast to primary afferents that peaked in phase with linear acceleration. At least three different groups of central response dynamics were described according to the properties observed for motion along the maximum sensitivity direction. "High-pass" neurons exhibited increasing gains and phase values as a function of frequency. "Flat" neurons were characterized by relatively flat gains and constant phase lags (approximately 20-55 degrees ). A few neurons ("low-pass") were characterized by decreasing gain and phase as a function of frequency. The response dynamics of central otolith neurons suggest that the approximately 90 degrees phase lags observed at low frequencies are not the result of a neural integration but rather the effect of nonminimum phase behavior, which could arise at least partly through spatiotemporal convergence. Neither afferent nor central otolith neurons discriminated between gravitational and inertial components of linear acceleration. Thus response sensitivity was indistinguishable during 0.5-Hz pitch oscillations and fore-aft movements

  5. The somatostatin receptor 4 agonist J-2156 reduces mechanosensitivity of peripheral nerve afferents and spinal neurons in an inflammatory pain model.

    PubMed

    Schuelert, Niklas; Just, Stefan; Kuelzer, Raimund; Corradini, Laura; Gorham, Louise C J; Doods, Henri

    2015-01-01

    Somatostatin (SST) is a peptide hormone that regulates the endocrine system and affects neurotransmission via interaction with G protein-coupled SST receptors and inhibition of the release of different hormones. The aim of this study was to investigate whether the analgesic properties of the selective SSTR4 agonist J-2156 are mediated via peripheral and/or spinal receptors. Effect on mechanical hyperalgesia in the Complete Freund׳s Adjuvant (CFA) model was measured after intraperitoneal application of J-2156. Electrophysiological neuronal recordings were conducted 24 h after injection of CFA or vehicle into the paw of Wistar rats. Mechanosensitivity of peripheral afferents of the saphenous nerve as well as of spinal wide dynamic range (WDR) and nociceptive-specific (NS) neurons were measured after systemic or spinal application of J-2156. In CFA animals J-2156 dose dependently reduced hyperalgesia in behavioral studies. The minimal effective dose was 0.1 mg/kg. Mechanosensitivity of peripheral afferents and spinal neurons was significantly reduced by J-2156. NS neurons were dose dependently inhibited by J-2156 while in WDR neurons only the highest concentration of 100 µM had an effect. In sham controls, J-2156 had no effect on neuronal activity. We demonstrated that J-2156 dose-dependently reduces peripheral and spinal neuronal excitability in the CFA rat model without affecting physiological pain transmission. Given the high concentration of the compound required to inhibit spinal neurons, it is unlikely that the behavioral effect seen in CFA model is mediated centrally. Overall these data demonstrated that the analgesic effect of J-2156 is mediated mainly via peripheral SST4 receptors.

  6. Breadth of tuning in taste afferent neurons varies with stimulus strength.

    PubMed

    Wu, An; Dvoryanchikov, Gennady; Pereira, Elizabeth; Chaudhari, Nirupa; Roper, Stephen D

    2015-09-16

    Gustatory stimuli are detected by taste buds and transmitted to the hindbrain via sensory afferent neurons. Whether each taste quality (sweet, bitter and so on) is encoded by separate neurons ('labelled lines') remains controversial. We used mice expressing GCaMP3 in geniculate ganglion sensory neurons to investigate taste-evoked activity. Using confocal calcium imaging, we recorded responses to oral stimulation with prototypic taste stimuli. Up to 69% of neurons respond to multiple tastants. Moreover, neurons tuned to a single taste quality at low concentration become more broadly tuned when stimuli are presented at higher concentration. Responses to sucrose and monosodium glutamate are most related. Although mice prefer dilute NaCl solutions and avoid concentrated NaCl, we found no evidence for two separate populations of sensory neurons that encode this distinction. Altogether, our data suggest that taste is encoded by activity in patterns of peripheral sensory neurons and challenge the notion of strict labelled line coding.

  7. Activation of afferent renal nerves modulates RVLM-projecting PVN neurons.

    PubMed

    Xu, Bo; Zheng, Hong; Liu, Xuefei; Patel, Kaushik P

    2015-05-01

    Renal denervation for the treatment of hypertension has proven to be successful; however, the underlying mechanism/s are not entirely clear. To determine if preautonomic neurons in the paraventricular nucleus (PVN) respond to afferent renal nerve (ARN) stimulation, extracellular single-unit recording was used to investigate the contribution of the rostral ventrolateral medulla (RVLM)-projecting PVN (PVN-RVLM) neurons to the response elicited during stimulation of ARN. In 109 spontaneously active neurons recorded in the PVN of anesthetized rats, 25 units were antidromically activated from the RVLM. Among these PVN-RVLM neurons, 84% (21/25) were activated by ARN stimulation. The baseline discharge rate was significantly higher in these neurons than those PVN-RVLM neurons not activated by ARN stimulation (16%, 4/25). The responsiveness of these neurons to baroreflex activation induced by phenylephrine and activation of cardiac sympathetic afferent reflex (CSAR) was also examined. Almost all of the PVN neurons that responded to ARN stimulation were sensitive to baroreflex (95%) and CSAR (100%). The discharge characteristics for nonevoked neurons (not activated by RVLM antidromic stimulation) showed that 23% of these PVN neurons responded to ARN stimulation. All the PVN neurons that responded to ARN stimulation were activated by N-methyl-D-aspartate, and these responses were attenuated by the glutamate receptor blocker AP5. These experiments demonstrated that sensory information originating in the kidney is integrated at the level of preautonomic neurons within the PVN, providing a novel mechanistic insight for use of renal denervation in the modulation of sympathetic outflow in disease states such as hypertension and heart failure.

  8. Sensitization of nociceptive spinal neurons contributes to pain in a transgenic model of sickle cell disease.

    PubMed

    Cataldo, Giuseppe; Rajput, Sugandha; Gupta, Kalpna; Simone, Donald A

    2015-04-01

    Chronic pain is a major characteristic feature of sickle cell disease (SCD). The refractory nature of pain and the development of chronic pain syndromes in many patients with SCD suggest that central neural mechanisms contribute to pain in this disease. We used HbSS-BERK sickle mice, which show chronic features of pain similar to those observed in SCD, and determined whether sensitization of nociceptive neurons in the spinal cord contributes to pain and hyperalgesia in SCD. Electrophysiological recordings of action potential activity were obtained from single identified dorsal horn neurons of the spinal cord in anesthetized mice. Compared with control HbAA-BERK mice, nociceptive dorsal horn neurons in sickle mice exhibited enhanced excitability as evidenced by enlarged receptive fields, increased rate of spontaneous activity, lower mechanical thresholds, enhanced responses to mechanical stimuli, and prolonged afterdischarges following mechanical stimulation. These changes were accompanied by increased phosphorylation of mitogen-activated protein kinases (MAPKs) in the spinal cord that are known to contribute to neuronal hyperexcitability, including c-Jun N-terminal kinase (JNK), p44/p42 extracellular signaling-regulated kinase (ERK), and p38. These findings demonstrate that central sensitization contributes to pain in SCD.

  9. Sensitization of nociceptive spinal neurons contributes to pain in a transgenic model of sickle cell disease

    PubMed Central

    Cataldo, Giuseppe; Rajput, Sugandha; Gupta, Kalpna; Simone, Donald A.

    2015-01-01

    Chronic pain is a major characteristic feature of sickle cell disease (SCD). The refractory nature of pain and the development of chronic pain syndromes in many patients with SCD suggest that central neural mechanisms contribute to pain in this disease. We used HbSS-BERK sickle mice, which show chronic features of pain similar to those observed in SCD, and determined whether sensitization of nociceptive neurons in the spinal cord contributes to pain and hyperalgesia in SCD. Electrophysiological recordings of action potential activity were obtained from single, identified dorsal horn neurons of the spinal cord in anesthetized mice. Compared to control HbAA-BERK mice, nociceptive dorsal horn neurons in sickle mice exhibited enhanced excitability as evidenced by enlarged receptive fields, increased rate of spontaneous activity, lower mechanical thresholds, enhanced responses to mechanical stimuli, and prolonged after-discharges following mechanical stimulation. These changes were accompanied by increased phosphorylation of mitogen activated protein kinases (MAPKs) in the spinal cord that are known to contribute to neuronal hyperexcitability, including c-Jun N-terminal kinase (JNK), p44/p42 extracellular signaling-regulated kinase (ERK), and p38. These findings demonstrate that central sensitization contributes to pain in SCD. PMID:25630029

  10. Turn Down That Noise: Synaptic Encoding of Afferent SNR in a Single Spiking Neuron.

    PubMed

    Afshar, Saeed; George, Libin; Thakur, Chetan Singh; Tapson, Jonathan; van Schaik, André; de Chazal, Philip; Hamilton, Tara Julia

    2015-04-01

    We have added a simplified neuromorphic model of Spike Time Dependent Plasticity (STDP) to the previously described Synapto-dendritic Kernel Adapting Neuron (SKAN), a hardware efficient neuron model capable of learning spatio-temporal spike patterns. The resulting neuron model is the first to perform synaptic encoding of afferent signal-to-noise ratio in addition to the unsupervised learning of spatio-temporal spike patterns. The neuron model is particularly suitable for implementation in digital neuromorphic hardware as it does not use any complex mathematical operations and uses a novel shift-based normalization approach to achieve synaptic homeostasis. The neuron's noise compensation properties are characterized and tested on random spatio-temporal spike patterns as well as a noise corrupted subset of the zero images of the MNIST handwritten digit dataset. Results show the simultaneously learning common patterns in its input data while dynamically weighing individual afferents based on their signal to noise ratio. Despite its simplicity the interesting behaviors of the neuron model and the resulting computational power may also offer insights into biological systems. PMID:25910252

  11. TRPV1 expression level in isolectin B₄-positive neurons contributes to mouse strain difference in cutaneous thermal nociceptive sensitivity.

    PubMed

    Ono, Kentaro; Ye, Yi; Viet, Chi T; Dang, Dongmin; Schmidt, Brian L

    2015-05-01

    Differential thermal nociception across inbred mouse strains has genetic determinants. Thermal nociception is largely attributed to the heat/capsaicin receptor transient receptor potential vanilloid 1 (TRPV1); however, the contribution of this channel to the genetics of thermal nociception has not been revealed. In this study we compared TRPV1 expression levels and electrophysiological properties in primary sensory neurons and thermal nociceptive behaviors between two (C57BL/6 and BALB/c) inbred mouse strains. Using immunofluorescence and patch-clamp physiology methods, we demonstrated that TRPV1 expression was significantly higher in isolectin B4 (IB4)-positive trigeminal sensory neurons of C57BL/6 relative to BALB/c; the expression in IB4-negative neurons was similar between the strains. Furthermore, using electrophysiological cell classification (current signature method), we showed differences between the two strains in capsaicin sensitivity in IB4-positive neuronal cell types 2 and 13, which were previously reported as skin nociceptors. Otherwise electrophysiological membrane properties of the classified cell types were similar in the two mouse strains. In publicly available nocifensive behavior data and our own behavior data from the using the two mouse strains, C57BL/6 exhibited higher sensitivity to heat stimulation than BALB/c, independent of sex and anatomical location of thermal testing (the tail, hind paw, and whisker pad). The TRPV1-selective antagonist JNJ-17203212 inhibited thermal nociception in both strains; however, removing IB4-positive trigeminal sensory neurons with IB4-conjugated saporin inhibited thermal nociception on the whisker pad in C57BL/6 but not in BALB/c. These results suggest that TRPV1 expression levels in IB4-positive type 2 and 13 neurons contributed to differential thermal nociception in skin of C57BL/6 compared with BALB/c.

  12. Nociceptive Sensory Neurons Drive Interleukin-23 Mediated Psoriasiform Skin Inflammation

    PubMed Central

    Riol-Blanco, Lorena; Ordovas-Montanes, Jose; Perro, Mario; Naval, Elena; Thiriot, Aude; Alvarez, David; Wood, John N.; von Andrian, Ulrich H.

    2014-01-01

    The skin has a dual function as a barrier and a sensory interface between the body and the environment. To protect against invading pathogens, the skin harbors specialized immune cells, including dermal dendritic cells (DDCs) and interleukin (IL)-17 producing γδ T cells (γδT17), whose aberrant activation by IL-23 can provoke psoriasis-like inflammation1–4. The skin is also innervated by a meshwork of peripheral nerves consisting of relatively sparse autonomic and abundant sensory fibers. Interactions between the autonomic nervous system and immune cells in lymphoid organs are known to contribute to systemic immunity, but how peripheral nerves regulate cutaneous immune responses remains unclear5,6. Here, we have exposed the skin of mice to imiquimod (IMQ), which induces IL-23 dependent psoriasis-like inflammation7,8. We show that a subset of sensory neurons expressing the ion channels TRPV1 and NaV1.8 is essential to drive this inflammatory response. Imaging of intact skin revealed that a large fraction of DDCs, the principal source of IL-23, is in close contact with these nociceptors. Upon selective pharmacological or genetic ablation of nociceptors9–11, DDCs failed to produce IL-23 in IMQ exposed skin. Consequently, the local production of IL-23 dependent inflammatory cytokines by dermal γδT17 cells and the subsequent recruitment of inflammatory cells to the skin were dramatically reduced. Intradermal injection of IL-23 bypassed the requirement for nociceptor communication with DDCs and restored the inflammatory response12. These findings indicate that TRPV1+NaV1.8+ nociceptors, by interacting with DDCs, regulate the IL-23/IL-17 pathway and control cutaneous immune responses. PMID:24759321

  13. Nociceptive sensory neurons drive interleukin-23-mediated psoriasiform skin inflammation.

    PubMed

    Riol-Blanco, Lorena; Ordovas-Montanes, Jose; Perro, Mario; Naval, Elena; Thiriot, Aude; Alvarez, David; Paust, Silke; Wood, John N; von Andrian, Ulrich H

    2014-06-01

    The skin has a dual function as a barrier and a sensory interface between the body and the environment. To protect against invading pathogens, the skin harbours specialized immune cells, including dermal dendritic cells (DDCs) and interleukin (IL)-17-producing γδ T (γδT17) cells, the aberrant activation of which by IL-23 can provoke psoriasis-like inflammation. The skin is also innervated by a meshwork of peripheral nerves consisting of relatively sparse autonomic and abundant sensory fibres. Interactions between the autonomic nervous system and immune cells in lymphoid organs are known to contribute to systemic immunity, but how peripheral nerves regulate cutaneous immune responses remains unclear. We exposed the skin of mice to imiquimod, which induces IL-23-dependent psoriasis-like inflammation. Here we show that a subset of sensory neurons expressing the ion channels TRPV1 and Nav1.8 is essential to drive this inflammatory response. Imaging of intact skin revealed that a large fraction of DDCs, the principal source of IL-23, is in close contact with these nociceptors. Upon selective pharmacological or genetic ablation of nociceptors, DDCs failed to produce IL-23 in imiquimod-exposed skin. Consequently, the local production of IL-23-dependent inflammatory cytokines by dermal γδT17 cells and the subsequent recruitment of inflammatory cells to the skin were markedly reduced. Intradermal injection of IL-23 bypassed the requirement for nociceptor communication with DDCs and restored the inflammatory response. These findings indicate that TRPV1(+)Nav1.8(+) nociceptors, by interacting with DDCs, regulate the IL-23/IL-17 pathway and control cutaneous immune responses.

  14. Nociceptive sensory neurons drive interleukin-23-mediated psoriasiform skin inflammation.

    PubMed

    Riol-Blanco, Lorena; Ordovas-Montanes, Jose; Perro, Mario; Naval, Elena; Thiriot, Aude; Alvarez, David; Paust, Silke; Wood, John N; von Andrian, Ulrich H

    2014-06-01

    The skin has a dual function as a barrier and a sensory interface between the body and the environment. To protect against invading pathogens, the skin harbours specialized immune cells, including dermal dendritic cells (DDCs) and interleukin (IL)-17-producing γδ T (γδT17) cells, the aberrant activation of which by IL-23 can provoke psoriasis-like inflammation. The skin is also innervated by a meshwork of peripheral nerves consisting of relatively sparse autonomic and abundant sensory fibres. Interactions between the autonomic nervous system and immune cells in lymphoid organs are known to contribute to systemic immunity, but how peripheral nerves regulate cutaneous immune responses remains unclear. We exposed the skin of mice to imiquimod, which induces IL-23-dependent psoriasis-like inflammation. Here we show that a subset of sensory neurons expressing the ion channels TRPV1 and Nav1.8 is essential to drive this inflammatory response. Imaging of intact skin revealed that a large fraction of DDCs, the principal source of IL-23, is in close contact with these nociceptors. Upon selective pharmacological or genetic ablation of nociceptors, DDCs failed to produce IL-23 in imiquimod-exposed skin. Consequently, the local production of IL-23-dependent inflammatory cytokines by dermal γδT17 cells and the subsequent recruitment of inflammatory cells to the skin were markedly reduced. Intradermal injection of IL-23 bypassed the requirement for nociceptor communication with DDCs and restored the inflammatory response. These findings indicate that TRPV1(+)Nav1.8(+) nociceptors, by interacting with DDCs, regulate the IL-23/IL-17 pathway and control cutaneous immune responses. PMID:24759321

  15. Peripheral patterns of terminal innervation of vestibular primary afferent neurons projecting to the vestibulocerebellum in the gerbil.

    PubMed

    Purcell, I M; Perachio, A A

    2001-04-23

    Retrograde transganglionic labeling techniques with biotinylated dextran amine (BDA) were used to examine the terminal field structure and topographical patterns of innervation within the vestibular sensory end organs of vestibular primary afferent neurons projecting to the cerebellar uvula/nodulus and flocculus lobules in the gerbil. Robust, dark labeling in the cristae ampullares suggested that the vast majority of the terminals of afferent neurons were of the dimorphic type. The majority (94% to the uvula/nodulus and 100% to the flocculus) innervates the peripheral zones of each of the three semicircular canal cristae. Comparison of the type and distribution of terminals across the canalicular sensory neuroepithelium with morphophysiological studies in chinchilla suggests that the labeled population consists predominantly of peripheral terminal fields of lower-to-intermediate gain, more regularly firing, tonic afferents. For otolith organ-related afferents, the uvula/nodulus receives strong inputs from primary otolith afferent neurons identified as dimorphic in type that predominately innervate the peristriolar zones of the utricular and saccular maculae. No direct otolith organ-related inputs to the flocculus were observed. In contrast to the canal afferents, the types and locations of labeled otolith afferent terminals suggest that they largely consist of irregularly firing, high-gain, phasic neurons. PMID:11283948

  16. Network dynamics in nociceptive pathways assessed by the neuronal avalanche model

    PubMed Central

    2012-01-01

    Background Traditional electroencephalography provides a critical assessment of pain responses. The perception of pain, however, may involve a series of signal transmission pathways in higher cortical function. Recent studies have shown that a mathematical method, the neuronal avalanche model, may be applied to evaluate higher-order network dynamics. The neuronal avalanche is a cascade of neuronal activity, the size distribution of which can be approximated by a power law relationship manifested by the slope of a straight line (i.e., the α value). We investigated whether the neuronal avalanche could be a useful index for nociceptive assessment. Findings Neuronal activity was recorded with a 4 × 8 multichannel electrode array in the primary somatosensory cortex (S1) and anterior cingulate cortex (ACC). Under light anesthesia, peripheral pinch stimulation increased the slope of the α value in both the ACC and S1, whereas brush stimulation increased the α value only in the S1. The increase in α values was blocked in both regions under deep anesthesia. The increase in α values in the ACC induced by peripheral pinch stimulation was blocked by medial thalamic lesion, but the increase in α values in the S1 induced by brush and pinch stimulation was not affected. Conclusions The neuronal avalanche model shows a critical state in the cortical network for noxious-related signal processing. The α value may provide an index of brain network activity that distinguishes the responses to somatic stimuli from the control state. These network dynamics may be valuable for the evaluation of acute nociceptive processes and may be applied to chronic pathological pain conditions. PMID:22537828

  17. Molecular mechanism of modulation of nociceptive neuron membrane excitability by a tripeptide.

    PubMed

    Shelykh, T N; Rogachevsky, I V; Nozdrachev, A D; Veselkina, O S; Podzorova, S A; Krylov, B V; Plakhova, V B

    2016-01-01

    Using the whole-cell patch-clamp method, the ability of arginine-containing tripeptide Ac-RER-NH2, dipeptide Ac-RR-NH2, and free Arg molecule to modulate the membrane excitability of nociceptors was studied. Extracellular Ac-RER-NH2 upon interaction with the outer membrane of the nociceptive neuron decreases the Zeff value of the activation gating system of Nav1.8 channels. Thus, the tripeptide Ac-RER-NH2 can be considered as a new effective and safe analgesic. PMID:27025494

  18. Prolonged GABAA-mediated inhibition following single hair afferent input to single spinal dorsal horn neurones in cats.

    PubMed

    De Koninck, Y; Henry, J L

    1994-04-01

    To study the central processing mechanisms of sensory input from low threshold afferents to the spinal cord, we examined the excitatory response of single lumbar dorsal horn neurones to stimulation of hairs in the receptive field using a mechanically driven probe, and to activation of single hair follicle afferents using an intracellular current pulse to the cell bodies in the dorsal root ganglion. Experiments were done on anaesthetized, paralysed cats, spinalized at the L1 lumbar level. Responses of spinal neurones to two types of hair afferent input were characteristically different. The excitatory response to input from a single group II hair afferent (A beta; innervating guard hair follicle receptors) was multimodal, characterized by a small early depolarization followed by a sharp, large component with a slow, prolonged decay phase, whereas the response to input from a single group III hair afferent (A delta; innervating down hair follicle receptors) was unimodal. The unitary EPSPs in response to activation of group III hair afferents had a slower rise time and longer decay time constant than those in response to activation of group II hair afferents. When the receptive field of the afferent was located in the centre of the receptive field of the dorsal horn neurone, the gain of the central response was greater for the input from a single group II afferent (> 1) than that for the input from a single group III afferent (< 1). In the case of single group II hair afferents, when pairs of single action potentials or pairs of trains of action potentials were generated at intervals of 20 ms to 3 s, the response in the dorsal horn neurone to the second volley was markedly depressed at intervals of less than 2 s, without any apparent inhibition of the on-going rate of firing. The response to the second volley in single group III afferents was less depressed. This inhibition of the response to the second of a paired volley in single group II hair afferents was

  19. Mu Opioid Receptors on Primary Afferent Nav1.8 Neurons Contribute to Opiate-Induced Analgesia: Insight from Conditional Knockout Mice

    PubMed Central

    Karchewski, Laurie; Gardon, Olivier; Matifas, Audrey; Filliol, Dominique; Becker, Jérôme A. J.; Wood, John N.; Kieffer, Brigitte L.; Gaveriaux-Ruff, Claire

    2013-01-01

    Opiates are powerful drugs to treat severe pain, and act via mu opioid receptors distributed throughout the nervous system. Their clinical use is hampered by centrally-mediated adverse effects, including nausea or respiratory depression. Here we used a genetic approach to investigate the potential of peripheral mu opioid receptors as targets for pain treatment. We generated conditional knockout (cKO) mice in which mu opioid receptors are deleted specifically in primary afferent Nav1.8-positive neurons. Mutant animals were compared to controls for acute nociception, inflammatory pain, opiate-induced analgesia and constipation. There was a 76% decrease of mu receptor-positive neurons and a 60% reduction of mu-receptor mRNA in dorsal root ganglia of cKO mice. Mutant mice showed normal responses to heat, mechanical, visceral and chemical stimuli, as well as unchanged morphine antinociception and tolerance to antinociception in models of acute pain. Inflammatory pain developed similarly in cKO and controls mice after Complete Freund’s Adjuvant. In the inflammation model, however, opiate-induced (morphine, fentanyl and loperamide) analgesia was reduced in mutant mice as compared to controls, and abolished at low doses. Morphine-induced constipation remained intact in cKO mice. We therefore genetically demonstrate for the first time that mu opioid receptors partly mediate opiate analgesia at the level of Nav1.8-positive sensory neurons. In our study, this mechanism operates under conditions of inflammatory pain, but not nociception. Previous pharmacology suggests that peripheral opiates may be clinically useful, and our data further demonstrate that Nav1.8 neuron-associated mu opioid receptors are feasible targets to alleviate some forms of persistent pain. PMID:24069332

  20. Regulation of Nociceptive Plasticity Threshold and DARPP-32 Phosphorylation in Spinal Dorsal Horn Neurons by Convergent Dopamine and Glutamate Inputs.

    PubMed

    Buesa, Itsaso; Aira, Zigor; Azkue, Jon Jatsu

    2016-01-01

    Dopamine can influence NMDA receptor function and regulate glutamate-triggered long-term changes in synaptic strength in several regions of the CNS. In spinal cord, regulation of the threshold of synaptic plasticity may determine the proneness to undergo sensitization and hyperresponsiveness to noxious input. In the current study, we increased endogenous dopamine levels in the dorsal horn by using re-uptake inhibitor GBR 12935. During the so-induced hyperdopaminergic transmission, conditioning low-frequency (1 Hz) stimulation (LFS) to the sciatic nerve induced long-term potentiation (LTP) of C-fiber-evoked potentials in dorsal horn neurons. The magnitude of LTP was attenuated by blockade of either dopamine D1-like receptors (D1LRs) by with SCH 23390 or NMDA receptor subunit NR2B with antagonist Ro25-6981. Conditioning LFS during GBR 12935 administration increased phosphorylation of dopamine- and cAMP-regulated phosphoprotein of Mr 32kDa (DARPP-32) at threonine 34 residue in synaptosomal (P3) fraction of dorsal horn homogenates, as assessed by Western blot analysis, which was partially prevented by NR2B blockade prior to conditioning stimulation. Conditioning LFS also was followed by higher co-localization of phosphorylated form of NR2B at tyrosine 1472 and pDARPP-32Thr34- with postsynaptic marker PSD-95 in transverse L5 dorsal horn sections. Such increase could be significantly attenuated by D1LR blockade with SCH 23390. The current results support that coincidental endogenous recruitment of D1LRs and NR2B in dorsal horn synapses plays a role in regulating afferent-induced nociceptive plasticity. Parallel increases in DARPP-32 phosphorylation upon LTP induction suggests a role for this phosphoprotein as intracellular detector of convergent D1L- and NMDA receptor activation. PMID:27610622

  1. Regulation of Nociceptive Plasticity Threshold and DARPP-32 Phosphorylation in Spinal Dorsal Horn Neurons by Convergent Dopamine and Glutamate Inputs

    PubMed Central

    Buesa, Itsaso; Aira, Zigor

    2016-01-01

    Dopamine can influence NMDA receptor function and regulate glutamate-triggered long-term changes in synaptic strength in several regions of the CNS. In spinal cord, regulation of the threshold of synaptic plasticity may determine the proneness to undergo sensitization and hyperresponsiveness to noxious input. In the current study, we increased endogenous dopamine levels in the dorsal horn by using re-uptake inhibitor GBR 12935. During the so-induced hyperdopaminergic transmission, conditioning low-frequency (1 Hz) stimulation (LFS) to the sciatic nerve induced long-term potentiation (LTP) of C-fiber-evoked potentials in dorsal horn neurons. The magnitude of LTP was attenuated by blockade of either dopamine D1-like receptors (D1LRs) by with SCH 23390 or NMDA receptor subunit NR2B with antagonist Ro25-6981. Conditioning LFS during GBR 12935 administration increased phosphorylation of dopamine- and cAMP-regulated phosphoprotein of Mr 32kDa (DARPP-32) at threonine 34 residue in synaptosomal (P3) fraction of dorsal horn homogenates, as assessed by Western blot analysis, which was partially prevented by NR2B blockade prior to conditioning stimulation. Conditioning LFS also was followed by higher co-localization of phosphorylated form of NR2B at tyrosine 1472 and pDARPP-32Thr34- with postsynaptic marker PSD-95 in transverse L5 dorsal horn sections. Such increase could be significantly attenuated by D1LR blockade with SCH 23390. The current results support that coincidental endogenous recruitment of D1LRs and NR2B in dorsal horn synapses plays a role in regulating afferent-induced nociceptive plasticity. Parallel increases in DARPP-32 phosphorylation upon LTP induction suggests a role for this phosphoprotein as intracellular detector of convergent D1L- and NMDA receptor activation. PMID:27610622

  2. Local administration of resveratrol inhibits excitability of nociceptive wide-dynamic range neurons in rat trigeminal spinal nucleus caudalis.

    PubMed

    Shimazu, Yoshihito; Shibuya, Eri; Takehana, Shiori; Sekiguchi, Kenta; Oshima, Katsuo; Kamata, Hiroaki; Karibe, Hiroyuki; Takeda, Mamoru

    2016-06-01

    Although we recently reported that intravenous administration of resveratrol suppresses trigeminal nociception, the precise peripheral effect of resveratrol on nociceptive and non-nociceptive mechanical stimulation-induced trigeminal neuron activity in vivo remains to be determined. The aim of the present study was to investigate whether local subcutaneous administration of resveratrol attenuates mechanical stimulation-induced excitability of trigeminal spinal nucleus caudalis (SpVc) neuron activity in rats, in vivo. Extracellular single-unit recordings were made of SpVc wide-dynamic range (WDR) neuron activity in response to orofacial mechanical stimulation in pentobarbital-anesthetized rats. Neurons responded to non-noxious and noxious mechanical stimulation applied to the orofacial skin. Local subcutaneous administration of resveratrol (1-10mM) into the orofacial skin dose dependently and significantly reduced the mean number of SpVc WDR neurons firing in response to both non-noxious and noxious mechanical stimuli, with the maximal inhibition of discharge frequency in response to both stimuli being seen within 5min. These inhibitory effects were no longer evident after approximately 20min. The mean magnitude of inhibition by resveratrol (10mM) of SpVc neuron discharge frequency was almost equal to that of the local anesthetic 1% lidocaine (37mM). These results suggest that local injection of resveratrol into the peripheral receptive field suppresses the excitability of SpVc neurons, possibly via inhibition of Na(+) channels in the nociceptive nerve terminals of trigeminal ganglion neurons. Therefore, local subcutaneous administration of resveratrol may provide relief of trigeminal nociceptive pain, without side effects, thus contributing to the suite of complementary and alternative medicines used as local anesthetic agents. PMID:27288246

  3. Local administration of resveratrol inhibits excitability of nociceptive wide-dynamic range neurons in rat trigeminal spinal nucleus caudalis.

    PubMed

    Shimazu, Yoshihito; Shibuya, Eri; Takehana, Shiori; Sekiguchi, Kenta; Oshima, Katsuo; Kamata, Hiroaki; Karibe, Hiroyuki; Takeda, Mamoru

    2016-06-01

    Although we recently reported that intravenous administration of resveratrol suppresses trigeminal nociception, the precise peripheral effect of resveratrol on nociceptive and non-nociceptive mechanical stimulation-induced trigeminal neuron activity in vivo remains to be determined. The aim of the present study was to investigate whether local subcutaneous administration of resveratrol attenuates mechanical stimulation-induced excitability of trigeminal spinal nucleus caudalis (SpVc) neuron activity in rats, in vivo. Extracellular single-unit recordings were made of SpVc wide-dynamic range (WDR) neuron activity in response to orofacial mechanical stimulation in pentobarbital-anesthetized rats. Neurons responded to non-noxious and noxious mechanical stimulation applied to the orofacial skin. Local subcutaneous administration of resveratrol (1-10mM) into the orofacial skin dose dependently and significantly reduced the mean number of SpVc WDR neurons firing in response to both non-noxious and noxious mechanical stimuli, with the maximal inhibition of discharge frequency in response to both stimuli being seen within 5min. These inhibitory effects were no longer evident after approximately 20min. The mean magnitude of inhibition by resveratrol (10mM) of SpVc neuron discharge frequency was almost equal to that of the local anesthetic 1% lidocaine (37mM). These results suggest that local injection of resveratrol into the peripheral receptive field suppresses the excitability of SpVc neurons, possibly via inhibition of Na(+) channels in the nociceptive nerve terminals of trigeminal ganglion neurons. Therefore, local subcutaneous administration of resveratrol may provide relief of trigeminal nociceptive pain, without side effects, thus contributing to the suite of complementary and alternative medicines used as local anesthetic agents.

  4. Prostaglandin potentiates 5-HT responses in stomach and ileum innervating visceral afferent sensory neurons

    SciTech Connect

    Kim, Sojin; Jin, Zhenhua; Lee, Goeun; Park, Yong Seek; Park, Cheung-Seog; Jin, Young-Ho

    2015-01-02

    Highlights: • Prostaglandin E2 (PGE{sub 2}) effect was tested on visceral afferent neurons. • PGE{sub 2} did not evoke response but potentiated serotonin (5-HT) currents up to 167%. • PGE{sub 2}-induced potentiation was blocked by E-prostanoid type 4 receptors antagonist. • PGE{sub 2} effect on 5-HT response was also blocked by protein kinase A inhibitor KT5720. • Thus, PGE{sub 2} modulate visceral afferent neurons via synergistic signaling with 5-HT. - Abstract: Gastrointestinal disorder is a common symptom induced by diverse pathophysiological conditions that include food tolerance, chemotherapy, and irradiation for therapy. Prostaglandin E{sub 2} (PGE{sub 2}) level increase was often reported during gastrointestinal disorder and prostaglandin synthetase inhibitors has been used for ameliorate the symptoms. Exogenous administration of PGE{sub 2} induces gastrointestinal disorder, however, the mechanism of action is not known. Therefore, we tested PGE{sub 2} effect on visceral afferent sensory neurons of the rat. Interestingly, PGE{sub 2} itself did not evoked any response but enhanced serotonin (5-HT)-evoked currents up to 167% of the control level. The augmented 5-HT responses were completely inhibited by a 5-HT type 3 receptor antagonist, ondansetron. The PGE{sub 2}-induced potentiation were blocked by a selective E-prostanoid type4 (EP{sub 4}) receptors antagonist, L-161,982, but type1 and 2 receptor antagonist AH6809 has no effect. A membrane permeable protein kinase A (PKA) inhibitor, KT5720 also inhibited PGE{sub 2} effects. PGE{sub 2} induced 5-HT current augmentation was observed on 15% and 21% of the stomach and ileum projecting neurons, respectively. Current results suggest a synergistic signaling in visceral afferent neurons underlying gastrointestinal disorder involving PGE{sub 2} potentiation of 5-HT currents. Our findings may open a possibility for screen a new type drugs with lower side effects than currently using steroidal prostaglandin

  5. alpha-SNS produces the slow TTX-resistant sodium current in large cutaneous afferent DRG neurons.

    PubMed

    Renganathan, M; Cummins, T R; Hormuzdiar, W N; Waxman, S G

    2000-08-01

    In this study, we used sensory neuron specific (SNS) sodium channel gene knockout (-/-) mice to ask whether SNS sodium channel produces the slow Na(+) current ("slow") in large (>40 microm diam) cutaneous afferent dorsal root ganglion (DRG) neurons. SNS wild-type (+/+) mice were used as controls. Retrograde Fluoro-Gold labeling permitted the definitive identification of cutaneous afferent neurons. Prepulse inactivation was used to separate the fast and slow Na(+) currents. Fifty-two percent of the large cutaneous afferent neurons isolated from SNS (+/+) mice expressed only fast-inactivating Na(+) currents ("fast"), and 48% expressed both fast and slow Na(+) currents. The fast and slow current densities were 0.90 +/- 0.12 and 0.39 +/- 0.16 nA/pF, respectively. Fast Na(+) currents were blocked completely by 300 nM tetrodotoxin (TTX), while slow Na(+) currents were resistant to 300 nM TTX, confirming that the slow Na(+) currents observed in large cutaneous DRG neurons are TTX-resistant (TTX-R). Slow Na(+) currents could not be detected in large cutaneous afferent neurons from SNS (-/-) mice; these cells expressed only fast Na(+) current, and it was blocked by 300 nM TTX. The fast Na(+) current density in SNS (-/-) neurons was 1.47 +/- 0. 14 nA/pF, approximately 60% higher than the current density observed in SNS (+/+) mice (P < 0.02). A low-voltage-activated TTX-R Na(+) current ("persistent") observed in small C-type neurons is not present in large cutaneous afferent neurons from either SNS (+/+) or SNS (-/-) mice. These results show that the slow TTX-R Na(+) current in large cutaneous afferent DRG is produced by the SNS sodium channel. PMID:10938298

  6. State-space receptive fields of semicircular canal afferent neurons in the bullfrog

    NASA Technical Reports Server (NTRS)

    Paulin, M. G.; Hoffman, L. F.

    2001-01-01

    Receptive fields are commonly used to describe spatial characteristics of sensory neuron responses. They can be extended to characterize temporal or dynamical aspects by mapping neural responses in dynamical state spaces. The state-space receptive field of a neuron is the probability distribution of the dynamical state of the stimulus-generating system conditioned upon the occurrence of a spike. We have computed state-space receptive fields for semicircular canal afferent neurons in the bullfrog (Rana catesbeiana). We recorded spike times during broad-band Gaussian noise rotational velocity stimuli, computed the frequency distribution of head states at spike times, and normalized these to obtain conditional pdfs for the state. These state-space receptive fields quantify what the brain can deduce about the dynamical state of the head when a single spike arrives from the periphery. c2001 Elsevier Science B.V. All rights reserved.

  7. Mechanosensory transduction of vagal and baroreceptor afferents revealed by study of isolated nodose neurons in culture.

    PubMed

    Snitsarev, Vladislav; Whiteis, Carol A; Abboud, Francois M; Chapleau, Mark W

    2002-06-28

    Changes in arterial pressure and blood volume are sensed by baroreceptor and vagal afferent nerves innervating aorta and heart with soma in nodose ganglia. The inability to measure membrane potential at the nerve terminals has limited our understanding of mechanosensory transduction. Goals of the present study were to: (1) Characterize membrane potential and action potential responses to mechanical stimulation of isolated nodose sensory neurons in culture; and (2) Determine whether the degenerin/epithelial sodium channel (DEG/ENaC) blocker amiloride selectively blocks mechanically induced depolarization without suppressing membrane excitability. Membrane potential of isolated rat nodose neurons was measured with sharp microelectrodes. Mechanical stimulation with buffer ejected from a micropipette (5, 10, 20 psi) depolarized 6 of 10 nodose neurons (60%) in an intensity-dependent manner. The depolarization evoked action potentials in 4 of the 6 neurons. Amiloride (1 microM) essentially abolished mechanically induced depolarization (15 +/- 4 mV during control vs. 1 +/- 2 mV during amiloride with 20-psi stimulation, n = 6) and action potential discharge. In contrast, amiloride did not inhibit the frequency of action potential discharge in response to depolarizing current injection (n = 6). In summary, mechanical stimulation depolarizes and triggers action potentials in a subpopulation of nodose sensory neurons in culture. The DEG/ENaC blocker amiloride at a concentration of 1 microM inhibits responses to mechanical stimulation without suppressing membrane excitability. The results support the hypothesis that DEG/ENaC subunits are components of mechanosensitive ion channels on vagal afferent and baroreceptor neurons. PMID:12144042

  8. TMC-1 Mediates Alkaline Sensation in C. elegans through Nociceptive Neurons.

    PubMed

    Wang, Xiang; Li, Guang; Liu, Jie; Liu, Jianfeng; Xu, X Z Shawn

    2016-07-01

    Noxious pH triggers pungent taste and nocifensive behavior. While the mechanisms underlying acidic pH sensation have been extensively characterized, little is known about how animals sense alkaline pH in the environment. TMC genes encode a family of evolutionarily conserved membrane proteins whose functions are largely unknown. Here, we characterize C. elegans TMC-1, which was suggested to form a Na(+)-sensitive channel mediating salt chemosensation. Interestingly, we find that TMC-1 is required for worms to avoid noxious alkaline environment. Alkaline pH evokes an inward current in nociceptive neurons, which is primarily mediated by TMC-1 and to a lesser extent by the TRP channel OSM-9. However, unlike OSM-9, which is sensitive to both acidic and alkaline pH, TMC-1 is only required for alkali-activated current, revealing a specificity for alkaline sensation. Ectopic expression of TMC-1 confers alkaline sensitivity to alkali-insensitive cells. Our results identify an unexpected role for TMCs in alkaline sensation and nociception. PMID:27321925

  9. GABAergic neurons of the medial septum play a nodal role in facilitation of nociception-induced affect.

    PubMed

    Ang, Seok Ting; Lee, Andy Thiam Huat; Foo, Fang Chee; Ng, Lynn; Low, Chian-Ming; Khanna, Sanjay

    2015-01-01

    The present study explored the functional details of the influence of medial septal region (MSDB) on spectrum of nociceptive behaviours by manipulating intraseptal GABAergic mechanisms. Results showed that formalin-induced acute nociception was not affected by intraseptal microinjection of bicuculline, a GABAA receptor antagonist, or on selective lesion of septal GABAergic neurons. Indeed, the acute nociceptive responses were dissociated from the regulation of sensorimotor behaviour and generation of theta-rhythm by the GABAergic mechanisms in MSDB. The GABAergic lesion attenuated formalin-induced unconditioned cellular response in the anterior cingulate cortex (ACC) and blocked formalin-induced conditioned place avoidance (F-CPA), and as well as the contextual fear induced on conditioning with brief footshock. The effects of lesion on nociceptive-conditioned cellular responses were, however, variable. Interestingly, the lesion attenuated the conditioned representation of experimental context in dorsal hippocampus field CA1 in the F-CPA task. Collectively, the preceding suggests that the MSDB is a nodal centre wherein the GABAergic neurons mediate nociceptive affect-motivation by regulating cellular mechanisms in ACC that confer an aversive value to the noxious stimulus. Further, in conjunction with a modulatory influence on hippocampal contextual processing, MSDB may integrate affect with context as part of associative learning in the F-CPA task. PMID:26487082

  10. GABAergic neurons of the medial septum play a nodal role in facilitation of nociception-induced affect

    PubMed Central

    Ang, Seok Ting; Lee, Andy Thiam Huat; Foo, Fang Chee; Ng, Lynn; Low, Chian-Ming; Khanna, Sanjay

    2015-01-01

    The present study explored the functional details of the influence of medial septal region (MSDB) on spectrum of nociceptive behaviours by manipulating intraseptal GABAergic mechanisms. Results showed that formalin-induced acute nociception was not affected by intraseptal microinjection of bicuculline, a GABAA receptor antagonist, or on selective lesion of septal GABAergic neurons. Indeed, the acute nociceptive responses were dissociated from the regulation of sensorimotor behaviour and generation of theta-rhythm by the GABAergic mechanisms in MSDB. The GABAergic lesion attenuated formalin-induced unconditioned cellular response in the anterior cingulate cortex (ACC) and blocked formalin-induced conditioned place avoidance (F-CPA), and as well as the contextual fear induced on conditioning with brief footshock. The effects of lesion on nociceptive-conditioned cellular responses were, however, variable. Interestingly, the lesion attenuated the conditioned representation of experimental context in dorsal hippocampus field CA1 in the F-CPA task. Collectively, the preceding suggests that the MSDB is a nodal centre wherein the GABAergic neurons mediate nociceptive affect-motivation by regulating cellular mechanisms in ACC that confer an aversive value to the noxious stimulus. Further, in conjunction with a modulatory influence on hippocampal contextual processing, MSDB may integrate affect with context as part of associative learning in the F-CPA task. PMID:26487082

  11. Type II spiral ganglion afferent neurons drive medial olivocochlear reflex suppression of the cochlear amplifier.

    PubMed

    Froud, Kristina E; Wong, Ann Chi Yan; Cederholm, Jennie M E; Klugmann, Matthias; Sandow, Shaun L; Julien, Jean-Pierre; Ryan, Allen F; Housley, Gary D

    2015-01-01

    The dynamic adjustment of hearing sensitivity and frequency selectivity is mediated by the medial olivocochlear efferent reflex, which suppresses the gain of the 'cochlear amplifier' in each ear. Such efferent feedback is important for promoting discrimination of sounds in background noise, sound localization and protecting the cochleae from acoustic overstimulation. However, the sensory driver for the olivocochlear reflex is unknown. Here, we resolve this longstanding question using a mouse model null for the gene encoding the type III intermediate filament peripherin (Prph). Prph((-/-)) mice lacked type II spiral ganglion neuron innervation of the outer hair cells, whereas innervation of the inner hair cells by type I spiral ganglion neurons was normal. Compared with Prph((+/+)) controls, both contralateral and ipsilateral olivocochlear efferent-mediated suppression of the cochlear amplifier were absent in Prph((-/-)) mice, demonstrating that outer hair cells and their type II afferents constitute the sensory drive for the olivocochlear efferent reflex.

  12. Neuronal activity of the cat supraoptic nucleus is influenced by muscle small-diameter afferent (groups III and IV) receptors.

    PubMed

    Kannan, H; Yamashita, H; Koizumi, K; Brooks, C M

    1988-08-01

    In anesthetized cats, responses of single neurosecretory neurons of the supraoptic nucleus to activation of muscle receptors were investigated. Electrical stimulation (1-3 pulses at 200 Hz) of group III and IV pure muscle afferents (gastrocnemius nerve) evoked excitation of greater than 50% of supraoptic nucleus neurons (n = 50), whereas stimulation of group Ia or Ib fibers was ineffective. Baroreceptor stimulation inhibited 95% of these supraoptic nucleus neurons that responded to activation of muscle afferents. Excitation of receptors in the gastrocnemius muscle by intra-arterial injection of chemicals (NaCl, KCl, and bradykinin) increased firing rates of most (84%, 74%, and 80%, respectively) neurosecretary neurons. The magnitude of the excitatory response was dose dependent--bradykinin being the most effective. The response disappeared after muscle denervation. When the gastrocnemius muscle alone was contracted phasically by ventral root stimulation, discharges of the supraoptic nucleus neurons increased, whereas quick stretch of the muscle had no effect. We conclude that activation of muscle receptors by chemical or mechanical stimulus can directly excite neurosecretory neurons in the supraoptic nucleus and that afferent impulses are carried by polymodal fibers of small diameter but not by the largest afferents (group I) from the muscle. The results may relate to increased concentrations of plasma vasopressin during exercise.

  13. Physiological and anatomical characteristics of primary vestibular afferent neurons in the bullfrog.

    PubMed

    Honrubia, V; Sitko, S; Kimm, J; Betts, W; Schwartz, I

    1981-01-01

    Intracellular recordings were made in the VIIIth nerve of the bullfrog (Rana catesbiana) to measure the membrane characteristics and obtain records of spontaneous and evoked spike activity of primary semicircular canal afferents. Physiological stimulation of the canals was achieved by rotating the preparation on a servomotor driven turntable with the animals' head centered in the rotational axis. The responses of each neuron to sinusoidal rotations at frequencies of 0.05Hz, 0.5Hz and for impulsive accelerations of 400 deg/sec2 were obtained. Membrane characteristics measured included the cell resting and action potential amplitude, and spike-activation threshold for applied currents. Physiologically characterized neurons were injected with horseradish peroxidase by applying pneumatic pressure and/or iontophoretic currents to the micropipettes containing 5% HRP in 1 M KCI. Following survival times of 12--48 h, the VIIIth nerve and attached vestibular end organ was removed for histochemical processing using a diaminobenzidine procedure to visualize the HRP reaction product. Light microscopy was used to discern the anatomical features of the neurons and to trace their peripheral dendritic trajectories from the ganglion to their termination(s) in the crista. Our studies have revealed that the bullfrog's primary vestibular afferents are characterized by a broad range of soma and axon diameters which correspond to an equally broad range of spontaneous and evoked activity characteristics. The largest neurons had more irregular spontaneous firing rates and consistently exhibited the greatest gain and smallest phase shifts with respect to head acceleration. These neurons consistently terminated at or near the central region of the crista. On the other hand, the smallest neurons were characterized by having the most regular spontaneous discharge patterns, the lowest gains, and greatest phase shifts with respect to head acceleration. Our findings are thus consistent with the

  14. Mechanosensory neurons innervating Aplysia siphon encode noxious stimuli and display nociceptive sensitization.

    PubMed

    Illich, P A; Walters, E T

    1997-01-01

    Numerous studies of learning and memory in Aplysia have focused on primary mechanosensory neurons innervating the siphon and having their somata in the left E (LE) cluster of the abdominal ganglion. Although systematic analyses have been made of the responses of these LE cells to mechanical stimulation of the tightly pinned siphon, little is known about corresponding responses when the siphon is unrestrained. The present study demonstrates that LE mechanosensory thresholds in the freely moving siphon are much higher than in the pinned siphon. Light tactile stimuli adequate to activate central neurons and reflexive siphon movements often fail to activate the LE cells when the siphon is unrestrained. Because the LE cells display increasing discharge to increasing pressures, with maximal activation by crushing or tearing stimuli that cause tissue injury, they satisfy accepted definitions of nociceptor. Indeed, they show similarities to vertebrate Adelta nociceptors, including a property apparently unique (among primary afferents) to nociceptors-sensitization by noxious stimulation of their receptive field. Either pinching or pinning the siphon decreases LE cell mechanosensory threshold and enhances soma excitability. Such stimuli reduce effective tissue compliance and cause neuromodulation that enhances sensory responsiveness. These results, and recent descriptions of predatory attacks on Aplysia, suggest that LE sensory neurons are tuned to grasping and crushing stimuli that threaten or produce bodily harm. LE cell sensitization has effects, resembling hyperalgesia and allodynia, that compensate for loss of sensory function during injury and help protect against subsequent threats.

  15. Voltage-gated Na(+) channels in chemoreceptor afferent neurons--potential roles and changes with development.

    PubMed

    Donnelly, David F

    2013-01-01

    Carotid body chemoreceptors increase their action potential (AP) activity in response to a decrease in arterial oxygen tension and this response increases in the post-natal period. The initial transduction site is likely the glomus cell which responds to hypoxia with an increase in intracellular calcium and secretion of multiple neurotransmitters. Translation of this secretion to AP spiking levels is determined by the excitability of the afferent nerve terminals that is largely determined by the voltage-dependence of activation of Na(+) channels. In this review, we examine the biophysical characteristics of Na(+) channels present at the soma of chemoreceptor afferent neurons with the assumption that similar channels are present at nerve terminals. The voltage dependence of this current is consistent with a single Na(+) channel isoform with activation around the resting potential and with about 60-70% of channels in the inactive state around the resting potential. Channel openings, due to transitions from inactive/open or closed/open states, may serve to amplify external depolarizing events or generate, by themselves, APs. Over the first two post-natal weeks, the Na(+) channel activation voltage shifts to more negative potentials, thus enhancing the amplifying action of Na(+) channels on depolarization events and increasing membrane noise generated by channel transitions. This may be a significant contributor to maturation of chemoreceptor activity in the post-natal period.

  16. Nociceptive-induced myocardial remote conditioning is mediated by neuronal gamma protein kinase C.

    PubMed

    Gross, Eric R; Hsu, Anna K; Urban, Travis J; Mochly-Rosen, Daria; Gross, Garrett J

    2013-09-01

    Deciphering the remote conditioning molecular mechanism may provide targets to develop therapeutics that can broaden the clinical application. To further investigate this, we tested whether two protein kinase C (PKC) isozymes, the ubiquitously expressed epsilon PKC (εPKC) and the neuronal-specific gamma PKC (γPKC), mediate nociceptive-induced remote myocardial conditioning. Male Sprague-Dawley rats were used for both in vivo and ex vivo myocardial ischemia-reperfusion protocols. For the in vivo studies, using a surgical abdominal incision for comparison, applying only to the abdomen either bradykinin or the εPKC activator (ψεRACK) reduced myocardial infarct size (45 ± 1, 44 ± 2 %, respectively, vs. incision: 43 ± 2 %, and control: 63 ± 2 %, P < 0.001). Western blot showed only εPKC, and not γPKC, is highly expressed in the myocardium. However, applying a selective γPKC inhibitor (γV5-3) to the abdominal skin blocked remote protection by any of these strategies. Using an ex vivo isolated heart model without an intact nervous system, only selective εPKC activation, unlike a selective classical PKC isozyme activator (activating α, β, βII, and γ), reduced myocardial injury. Importantly, the classical PKC isozyme activator given to the abdomen in vivo (with an intact nervous system including γPKC) during myocardial ischemia reduced infarct size as effectively as an abdominal incision or ψεRACK (45 ± 1 vs. 45 ± 2 and 47 ± 1 %, respectively). The classical PKC activator-induced protection was also blocked by spinal cord surgical transection. These findings identified potential remote conditioning mimetics, with these strategies effective even during myocardial ischemia. A novel mechanism of nociceptive-induced remote conditioning, involving γPKC, was also identified.

  17. The projection and synaptic organisation of NTS afferent connections with presympathetic neurons, GABA and nNOS neurons in the paraventricular nucleus of the hypothalamus.

    PubMed

    Affleck, V S; Coote, J H; Pyner, S

    2012-09-01

    Elevated sympathetic nerve activity, strongly associated with cardiovascular disease, is partly generated from the presympathetic neurons of the paraventricular nucleus of the hypothalamus (PVN). The PVN-presympathetic neurons regulating cardiac and vasomotor sympathetic activity receive information about cardiovascular status from receptors in the heart and circulation. These receptors signal changes via afferent neurons terminating in the nucleus tractus solitarius (NTS), some of which may result in excitation or inhibition of PVN-presympathetic neurons. Understanding the anatomy and neurochemistry of NTS afferent connections within the PVN could provide important clues to the impairment in homeostasis cardiovascular control associated with disease. Transynaptic labelling has shown the presence of neuronal nitric oxide synthase (nNOS)-containing neurons and GABA interneurons that terminate on presympathetic PVN neurons any of which may be the target for NTS afferents. So far NTS connections to these diverse neuronal pools have not been demonstrated and were investigated in this study. Anterograde (biotin dextran amine - BDA) labelling of the ascending projection from the NTS and retrograde (fluorogold - FG or cholera toxin B subunit - CTB) labelling of PVN presympathetic neurons combined with immunohistochemistry for GABA and nNOS was used to identify the terminal neuronal targets of the ascending projection from the NTS. It was shown that NTS afferent terminals are apposed to either PVN-GABA interneurons or to nitric oxide producing neurons or even directly to presympathetic neurons. Furthermore, there was evidence that some NTS axons were positive for vesicular glutamate transporter 2 (vGLUT2). The data provide an anatomical basis for the different functions of cardiovascular receptors that mediate their actions via the NTS-PVN pathways.

  18. Toll-like receptor 4 signaling in neurons of trigeminal ganglion contributes to nociception induced by acute pulpitis in rats

    PubMed Central

    Lin, Jia-Ji; Du, Yi; Cai, Wen-Ke; Kuang, Rong; Chang, Ting; Zhang, Zhuo; Yang, Yong-Xiang; Sun, Chao; Li, Zhu-Yi; Kuang, Fang

    2015-01-01

    Pain caused by acute pulpitis (AP) is a common symptom in clinical settings. However, its underlying mechanisms have largely remained unknown. Using AP model, we demonstrated that dental injury caused severe pulp inflammation with up-regulated serum IL-1β. Assessment from head-withdrawal reflex thresholds (HWTs) and open-field test demonstrated nociceptive response at 1 day post injury. A consistent up-regulation of Toll-like receptor 4 (TLR4) in the trigeminal ganglion (TG) ipsilateral to the injured pulp was found; and downstream signaling components of TLR4, including MyD88, TRIF and NF-κB, and cytokines such as TNF-α and IL-1β, were also increased. Retrograde labeling indicated that most TLR4 positve neuron in the TG innnervated the pulp and TLR4 immunoreactivity was mainly in the medium and small neurons. Double labeling showed that the TLR4 expressing neurons in the ipsilateral TG were TRPV1 and CGRP positive, but IB4 negative. Furthermore, blocking TLR4 by eritoran (TLR4 antagonist) in TGs of the AP model significantly down-regulated MyD88, TRIF, NF-κB, TNF-α and IL-1β production and behavior of nociceptive response. Our findings suggest that TLR4 signaling in TG cells, particularly the peptidergic TRPV1 neurons, plays a key role in AP-induced nociception, and indicate that TLR4 signaling could be a potential therapeutic target for orofacial pain. PMID:26224622

  19. [Changes in ingestive behavior during growth affects the functional maturation of temporomandibular joint nociceptive neurons of rats].

    PubMed

    Maya, Hiranuma

    2013-03-01

    Temporomandibular joint (TMJ) loading during development promotes its growth and maintains normal structure/function. Continuous change in diet consistency is related to development and maturation of the peripheral nervous system, including the nociceptive system. However, the functional modulation of TMJ-nociceptive neurons under different ingestive behavior is unclear. We fed growing rats a liquid diet to investigate the effects of low TMJ loading on the response properties of neurons in the trigeminal spinal tract subnucleus caudalis (Sp5C). Forty 2-week-old male rats were used. They were fed chow pellets (n = 20, C group) or a liquid diet (n = 20, LD group) soon after weaning. Firing activities of single sensory units in response to TMJ pressure stimuli were recorded at 4, 5, 7 and 9 weeks. In TMJ-nociceptive neurons, the firing threshold (FT) in the LD group was significantly lower than that in the C group at each recording age. The FT in the C group remained unchanged throughout the recording period, whereas that in the LD group was the highest at 4 weeks, and gradually decreased. On the other hand, the initial firing frequency (IFF) was significantly higher in the LD group than in the C group at each recording age. The IFF in the C group remained unchanged throughout the experimental period, whereas that in the LD group was at its lowest at 4 weeks, and gradually increased. Based on these findings, ingestive behavior that results from continuous changes in the physical consistency of the diet during growth may affect the functional maturation of TMJ-nociceptive neurons. PMID:23659164

  20. [Changes in ingestive behavior during growth affects the functional maturation of temporomandibular joint nociceptive neurons of rats].

    PubMed

    Maya, Hiranuma

    2013-03-01

    Temporomandibular joint (TMJ) loading during development promotes its growth and maintains normal structure/function. Continuous change in diet consistency is related to development and maturation of the peripheral nervous system, including the nociceptive system. However, the functional modulation of TMJ-nociceptive neurons under different ingestive behavior is unclear. We fed growing rats a liquid diet to investigate the effects of low TMJ loading on the response properties of neurons in the trigeminal spinal tract subnucleus caudalis (Sp5C). Forty 2-week-old male rats were used. They were fed chow pellets (n = 20, C group) or a liquid diet (n = 20, LD group) soon after weaning. Firing activities of single sensory units in response to TMJ pressure stimuli were recorded at 4, 5, 7 and 9 weeks. In TMJ-nociceptive neurons, the firing threshold (FT) in the LD group was significantly lower than that in the C group at each recording age. The FT in the C group remained unchanged throughout the recording period, whereas that in the LD group was the highest at 4 weeks, and gradually decreased. On the other hand, the initial firing frequency (IFF) was significantly higher in the LD group than in the C group at each recording age. The IFF in the C group remained unchanged throughout the experimental period, whereas that in the LD group was at its lowest at 4 weeks, and gradually increased. Based on these findings, ingestive behavior that results from continuous changes in the physical consistency of the diet during growth may affect the functional maturation of TMJ-nociceptive neurons.

  1. Cyclooxygenase-1 is a marker for a subpopulation of putative nociceptive neurons in rat dorsal root ganglia.

    PubMed

    Chopra, B; Giblett, S; Little, J G; Donaldson, L F; Tate, S; Evans, R J; Grubb, B D

    2000-03-01

    Immunocytochemical and morphometric techniques were used to quantify the distribution of cyclooxygenase (cox)-containing neurons in rat L5 dorsal root ganglia (DRG). Cox-1 immunolabelling was almost exclusively restricted to small diameter DRG neurons (< 1000 microm2), and was extensively colocalized with calcitonin gene-related peptide (CGRP) and isolectin B4 (IB4). Cox-1 was present in 65% and 70% of CGRP- and IB4-labelled neurons, respectively. Cox-1 labelling was also found in neurons expressing the sensory neuron-specific (SNS) Na+ channel. Cox-2 labelling was absent in DRG from normal rats. In the Freund's adjuvant model of monoarthritis, the proportion of cox-1-positive DRG neurons was unchanged and no neurons were found to be labelled for cox-2. In primary tissue culture, cox-1 immunolabelling persisted in vitro for up to 9 days and was present in morphologically identical neurons. The selective expression of cox-1 in peripheral ganglia was confirmed by the small number of nodose ganglion neurons and superior cervical ganglion (SCG) neurons labelled for cox-1. These data suggest that cox-1 is a marker for a subpopulation of putative nociceptive neurons in vitro and in vivo, and suggests that the prostaglandins synthesized by these neurons may be important for nociceptor function. These data may have important implications for the mode and mechanism of action of non-steroidal anti-inflammatory drugs (NSAIDs). PMID:10762321

  2. The role of trigeminal nasal TRPM8-expressing afferent neurons in the antitussive effects of menthol.

    PubMed

    Plevkova, J; Kollarik, M; Poliacek, I; Brozmanova, M; Surdenikova, L; Tatar, M; Mori, N; Canning, B J

    2013-07-15

    The cold-sensitive cation channel TRPM8 is a target for menthol, which is used routinely as a cough suppressant and as an additive to tobacco and food products. Given that cold temperatures and menthol activate neurons through gating of TRPM8, it is unclear how menthol actively suppresses cough. In this study we describe the antitussive effects of (-)-menthol in conscious and anesthetized guinea pigs. In anesthetized guinea pigs, cough evoked by citric acid applied topically to the tracheal mucosa was suppressed by menthol only when it was selectively administered as vapors to the upper airways. Menthol applied topically to the tracheal mucosa prior to and during citric acid application or administered continuously as vapors or as an aerosol to the lower airways was without effect on cough. These actions of upper airway menthol treatment were mimicked by cold air delivered to the upper airways but not by (+)-menthol, the inactive isomer of menthol, or by the TRPM8/TRPA1 agonist icilin administered directly to the trachea. Subsequent molecular analyses confirmed the expression of TRPM8 in a subset of nasal trigeminal afferent neurons that do not coincidently express TRPA1 or TRPV1. We conclude that menthol suppresses cough evoked in the lower airways primarily through a reflex initiated from the nose.

  3. The role of trigeminal nasal TRPM8-expressing afferent neurons in the antitussive effects of menthol.

    PubMed

    Plevkova, J; Kollarik, M; Poliacek, I; Brozmanova, M; Surdenikova, L; Tatar, M; Mori, N; Canning, B J

    2013-07-15

    The cold-sensitive cation channel TRPM8 is a target for menthol, which is used routinely as a cough suppressant and as an additive to tobacco and food products. Given that cold temperatures and menthol activate neurons through gating of TRPM8, it is unclear how menthol actively suppresses cough. In this study we describe the antitussive effects of (-)-menthol in conscious and anesthetized guinea pigs. In anesthetized guinea pigs, cough evoked by citric acid applied topically to the tracheal mucosa was suppressed by menthol only when it was selectively administered as vapors to the upper airways. Menthol applied topically to the tracheal mucosa prior to and during citric acid application or administered continuously as vapors or as an aerosol to the lower airways was without effect on cough. These actions of upper airway menthol treatment were mimicked by cold air delivered to the upper airways but not by (+)-menthol, the inactive isomer of menthol, or by the TRPM8/TRPA1 agonist icilin administered directly to the trachea. Subsequent molecular analyses confirmed the expression of TRPM8 in a subset of nasal trigeminal afferent neurons that do not coincidently express TRPA1 or TRPV1. We conclude that menthol suppresses cough evoked in the lower airways primarily through a reflex initiated from the nose. PMID:23640596

  4. Excitation and inhibition of neuronal activity in the pontine micturition center by pelvic rectal and pudendal anal afferents in dogs.

    PubMed

    Moda, Y; Yamane, M; Fukuda, H; Okada, H

    1993-04-01

    To examine whether or not the pontine micturition center (PMC) is involved in the inhibition of the micturition reflex by pelvic rectal and pudendal anal afferents, neuronal activity in the PMC was observed during inhibition of this reflex in paralyzed decerebrate dogs. Discharge of pelvic vesical branches (VBs) waxed and waned at a rhythm of about 2 Hz during the micturition reflex, which was activated by continuous stimulation of the contralateral VBs. This rhythmic discharge was modulated by continuous stimulation of contralateral pelvic rectal branches (RBs) superimposed on the VB stimulation. The modulation was composed of three effects; initial inhibition, augmentation and late inhibition. However, not all of the three effects were obvious in some dogs. One-sixth of 118 neurons examined in the pontine area ventromedial to the locus ceruleus exhibited rhythmic burst firings which preceded the rhythmic discharge of VBs by about 150 ms. Therefore, these pontine neurons are assumed to be output neurons of the PMC. The rhythmic firings of pontine neurons were augmented during continuous RB stimulation independent of the inhibitory and/or augmentative effects of the RB stimulation on the reflex discharge of the VBs. In contrast, the rhythmic firings of the pontine neurons and the reflex discharge of VBs were inhibited by mechanical stimulation of the anal canal and perineal hairs. These results suggest that the PMC is involved in the inhibition of the micturition reflex produced via pudendal afferents but not in that produced by pelvic rectal afferents, and that pelvic and pudendal afferents project to the PMC through separate pathways.

  5. Selective depression of nociceptive responses of dorsal horn neurones by SNC 80 in a perfused hindquarter preparation of adult mouse.

    PubMed

    Cao, C Q; Hong, Y G; Dray, A; Perkins, M N

    2001-01-01

    Detailed electrophysiological characterisation of spinal opioid receptors in the mouse has been limited due to various technical difficulties. In this study, extracellular single unit recordings were made from dorsal horn neurones in a perfused spinal cord with attached trunk-hindquarter to investigate the role of delta-opioid receptor in mediating nociceptive and non-nociceptive transmission in mouse. Noxious electrical shock, pinch and heat stimuli evoked a mean response of 20.8+/-2.5 (n=10, P<0.005), 30.1+/-5.4 (n=58, P<0.005) and 40.9+/-6.3 (n=29, P<0.005) spikes per stimulus respectively. In 5 of 22 cells, repetitive noxious electrical stimuli applied to the hindpaw for 20 s produced a progressive increase in spike number, the phenomenon known as 'wind-up' and/or hyperactivity. When the selective delta-opioid receptor agonist (+)-4-[(alpha R)-alpha-((2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N,N-diethylbenzamide (SNC 80) was perfused for 8-10 min, these evoked nociceptive responses were reversibly depressed. SNC 80 (2 microM) depressed the nociceptive responses evoked by electrical shock, pinch and heat by 74.0+/-13.7% (n=8, P<0.01), 66.5+/-16.6% (n=10, P<0.01) and 74.1+/-17.0% (n=10, P<0.01) respectively. The maximum depression by 5 microM SNC 80 was 92.6+/-6.8% (n=3). SNC 80 at 5 microM also completely abolished the wind-up and/or hypersensitivity (n=5). The depressant effects of SNC 80 on the nociceptive responses were completely blocked by 10 microM naloxone (n=5) and 3 microM 17-(cyclopropylmethyl)-6,7-dehydro-4,5 alpha-epoxy-14 beta-ethoxy-5 beta-methylindolo [2',3':6',7'] morphinan-3-ol hydrochloride (HS 378, n=8), a novel highly selective delta-opioid receptor antagonist. Interestingly, HS 378 (3 microM) itself potentiated the background activity and evoked responses to pinch and heat by 151.8+/-38.4% (P<0.05, n=8), 34.2+/-6.1% (P<0.01, n=7) and 45.5+/-11.8% (P<0.05, n=5) respectively. In contrast, the responses of non-nociceptive

  6. Afferent inhibition and the functional properties of neurons in the projection zone of the whiskers in the somatosensory cortex of the cat.

    PubMed

    Aleksandrov, A A

    2000-01-01

    The effects of afferent evoked inhibition on the functional properties of neurons in the whisker projection zone were studied in the cat brain. These investigations showed that afferent inhibition produced significant changes in the receptive fields of neurons, resulting in the induction of directional sensitivity. These data provide evidence for a defined topical ordering of intracortical inhibitory interactions. It is suggested that in natural conditions, movement of an object across the whisker field, resulting in sequential stimulation of the whiskers, results in sequential tuning of the detector properties of neurons receiving afferent flows from the whiskers. This process may form part of the mechanism for recognizing the direction of stimulus movement.

  7. Intact cutaneous C fibre afferent properties in mechanical and cold neuropathic allodynia

    PubMed Central

    Hulse, Richard; Wynick, David; Donaldson, Lucy F.

    2010-01-01

    Patients with neuropathy, report changes in sensory perception, particularly mechanical and thermal allodynia, and spontaneous pain. Similar sensory changes are seen in experimental neuropathies, in which alteration in primary afferent properties can also be determined. The neural correlate of spontaneous pain is ongoing activity in sensory afferents. Mechanical and heat allodynia are thought to result from lowered activation thresholds in primary afferent and/or central neurones, but the mechanisms underlying cold allodynia are very poorly understood. We investigated nociceptive behaviours and the properties of C and A fibre intact afferents running adjacent to damaged afferents following a partial ligation injury of the saphenous nerve (PSNI). Animals developed mechanical and cold allodynia by 3 days after PSNI. Intact mechanosensitive C fibre afferents developed ongoing activity, and had slower conduction velocities 3 and 7 days following nerve injury, with no change in mechanical threshold. There was a large increase (∼46-fold) in calculated afferent input 3 days after nerve injury, as a result of the ongoing activity in these fibres. Mechano-cooling-sensitive C fibre afferents showed both enhanced cooling-evoked firing, and increased ongoing activity. The afferent barrage associated with mechano-cooling-sensitive afferents was increased 26-fold 7 days after nerve injury. We observed no differences in the properties of intact A fibre mechanosensitive afferents. These studies demonstrate for the first time that the altered nociception seen after PSNI is associated with ongoing activity and enhanced cooling-evoked activity in intact C fibre afferents in the saphenous nerve, with no concurrent alteration in A fibre afferents. PMID:19942464

  8. Effect of protons on the mechanical response of rat muscle nociceptive fibers and neurons in vitro.

    PubMed

    Hotta, Norio; Kubo, Asako; Mizumura, Kazue

    2015-03-01

    Strong exercise makes muscle acidic, and painful. The stimulus that activates muscle nociceptors in such instance may be protons. Reportedly, however, not many afferents are excited by protons alone. We, therefore, posited that protons sensitize muscular nociceptors to mechanical stimuli. We examined effects of protons on mechanical sensitivity of muscle nociceptors by single-fiber recording from rat muscle-nerve preparations in vitro and by whole cell patch-clamp recording of mechanically activated (MA) currents from cultured rat dorsal root ganglion neurons. We recorded 38 Aδ- and C-fibers. Their response magnitude was increased by both pH 6.2 and pH 6.8; in addition the mechanical threshold was lowered by pH 6.2. Decrease in the threshold by pH6.2 was also observed in MA currents. Presently observed sensitization by protons could be involved in several types of ischemic muscle pain, and may also be involved in cardiovascular and respiratory controls during exercise.

  9. Dopaminergic Modulation of the Voltage-Gated Sodium Current in the Cochlear Afferent Neurons of the Rat

    PubMed Central

    Valdés-Baizabal, Catalina; Soto, Enrique; Vega, Rosario

    2015-01-01

    The cochlear inner hair cells synapse onto type I afferent terminal dendrites, constituting the main afferent pathway for auditory information flow. This pathway receives central control input from the lateral olivocochlear efferent neurons that release various neurotransmitters, among which dopamine (DA) plays a salient role. DA receptors activation exert a protective role in the over activation of the afferent glutamatergic synapses, which occurs when an animal is exposed to intense sound stimuli or during hypoxic events. However, the mechanism of action of DA at the cellular level is still not completely understood. In this work, we studied the actions of DA and its receptor agonists and antagonists on the voltage-gated sodium current (INa) in isolated cochlear afferent neurons of the rat to define the mechanisms of dopaminergic control of the afferent input in the cochlear pathway. Experiments were performed using the voltage and current clamp techniques in the whole-cell configuration in primary cultures of cochlear spiral ganglion neurons (SGNs). Recordings of the INa showed that DA receptor activation induced a significant inhibition of the peak current amplitude, leading to a significant decrease in cell excitability. Inhibition of the INa was produced by a phosphorylation of the sodium channels as shown by the use of phosphatase inhibitor that produced an inhibition analogous to that caused by DA receptor activation. Use of specific agonists and antagonists showed that inhibitory action of DA was mediated both by activation of D1- and D2-like DA receptors. The action of the D1- and D2-like receptors was shown to be mediated by a Gαs/AC/cAMP/PKA and Gαq/PLC/PKC pathways respectively. These results showed that DA receptor activation constitutes a significant modulatory input to SGNs, effectively modulating their excitability and information flow in the auditory pathway. PMID:25768433

  10. Dopaminergic modulation of the voltage-gated sodium current in the cochlear afferent neurons of the rat.

    PubMed

    Valdés-Baizabal, Catalina; Soto, Enrique; Vega, Rosario

    2015-01-01

    The cochlear inner hair cells synapse onto type I afferent terminal dendrites, constituting the main afferent pathway for auditory information flow. This pathway receives central control input from the lateral olivocochlear efferent neurons that release various neurotransmitters, among which dopamine (DA) plays a salient role. DA receptors activation exert a protective role in the over activation of the afferent glutamatergic synapses, which occurs when an animal is exposed to intense sound stimuli or during hypoxic events. However, the mechanism of action of DA at the cellular level is still not completely understood. In this work, we studied the actions of DA and its receptor agonists and antagonists on the voltage-gated sodium current (INa) in isolated cochlear afferent neurons of the rat to define the mechanisms of dopaminergic control of the afferent input in the cochlear pathway. Experiments were performed using the voltage and current clamp techniques in the whole-cell configuration in primary cultures of cochlear spiral ganglion neurons (SGNs). Recordings of the INa showed that DA receptor activation induced a significant inhibition of the peak current amplitude, leading to a significant decrease in cell excitability. Inhibition of the INa was produced by a phosphorylation of the sodium channels as shown by the use of phosphatase inhibitor that produced an inhibition analogous to that caused by DA receptor activation. Use of specific agonists and antagonists showed that inhibitory action of DA was mediated both by activation of D1- and D2-like DA receptors. The action of the D1- and D2-like receptors was shown to be mediated by a Gαs/AC/cAMP/PKA and Gαq/PLC/PKC pathways respectively. These results showed that DA receptor activation constitutes a significant modulatory input to SGNs, effectively modulating their excitability and information flow in the auditory pathway. PMID:25768433

  11. Chronic intermittent hypoxia depresses afferent neurotransmission in NTS neurons by a reduction in the number of active synapses.

    PubMed

    Almado, Carlos Eduardo L; Machado, Benedito H; Leão, Ricardo M

    2012-11-21

    Long-term synaptic plasticity has been recently described in brainstem areas associated to visceral afferent sensory integration. Chronic intermittent hypoxia (CIH), an animal model for studying obstructive sleep apnea in humans, depresses the afferent neurotransmission in nucleus tractus solitarii (NTS) neurons, which affect respiratory and autonomic regulation. Here we identified the synaptic mechanisms of CIH-induced depression of the afferent neurotransmission in NTS neurons in juvenile rats. We verified that CIH reduced the amplitude of both NMDA and non-NMDA glutamatergic excitatory currents (eEPSCs) evoked by tractus solitarii stimulation (TS-eEPSC) of second-order neurons in the NTS. No changes were observed in release probability, evidenced by absence of any CIH-elicited effects on short-term depression and failures in EPSCs evoked in low calcium. CIH also produced no changes in TS-eEPSC quantal size, since the amplitudes of both low calcium-evoked EPSCs and asynchronous TS-eEPSCs (evoked in the presence of Sr(2+)) were unchanged. Using single TS afferent fiber stimulation in slices from control and CIH rats we clearly show that CIH reduced the quantal content of the TS-eEPSCs without affecting the quantal size or release probability, suggesting a reduction in the number of active synapses as the mechanism of CIH induced TS-eEPSC depression. In accordance with this concept, the input-output relationship of stimulus intensity and TS-eEPSC amplitude shows an early saturation in CIH animals. These findings open new perspectives for a better understanding of the mechanisms underlying the synaptic plasticity in the brainstem sensory neurons under challenges such as those produced by CIH in experimental and pathological conditions.

  12. Reactive oxygen species are involved in group I mGluR-mediated facilitation of nociceptive processing in amygdala neurons.

    PubMed

    Ji, Guangchen; Neugebauer, Volker

    2010-07-01

    Recent biochemical and behavioral data implicate reactive oxygen species (ROS) in peripheral and spinal pain mechanisms. However, pain-related functions of ROS in the brain and mechanisms of pain-related ROS activation remain to be determined. Our previous studies showed that the amygdala plays a key role in emotional-affective pain responses and pain modulation. Hyperactivity of amygdala neurons in an animal pain model depends on group I metabotropic glutamate receptors (subtypes mGluR1 and mGluR5), but their signaling pathway remains to be determined. Here we tested the hypothesis that activation of group I mGluRs increases nociceptive processing in amygdala neurons through a mechanism that involves ROS. Extracellular single-unit recordings were made from neurons in the laterocapsular division of the central nucleus of the amygdala (CeLC) in anesthetized adult male rats. Administration of a group I mGluR agonist (DHPG) into the CeLC by microdialysis increased the responses to innocuous and noxious somatosensory (knee joint compression) and visceral (colorectal distention [CRD]) stimuli. A ROS scavenger (PBN) and a superoxide dismutase mimetic (TEMPOL) reversed the facilitatory effects of DHPG. An mGluR5 antagonist (MPEP) also inhibited the effects of DHPG on the responses to innocuous and noxious somatosensory and visceral stimuli, whereas an mGluR1 antagonist (LY367385) decreased only the responses to visceral stimulation. The results show for the first time that ROS mediate group I mGluR-induced facilitation of nociceptive processing in amygdala neurons. The antagonist data may suggest differential contributions of subtypes mGluR1 and mGluR5 to the processing of somatosensory and visceral nociceptive information in the amygdala.

  13. pH-dependent inhibition of tetrodotoxin-resistant Na(+) channels by diclofenac in rat nociceptive neurons.

    PubMed

    Nakamura, Michiko; Jang, Il-Sung

    2016-01-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) are widely used for the treatment of inflammatory pain. It is well established that NSAIDs exert their analgesic effects by inhibiting cyclooxygenase to prevent the production of prostaglandins; however, several NSAIDs including diclofenac also modulate other ion channels expressed in nociceptive neurons. In this study, we investigated the pH-dependent effects of diclofenac on tetrodotoxin-resistant (TTX-R) Na(+) channels in rat trigeminal sensory neurons by using the whole-cell patch clamp technique. Diclofenac decreased the peak amplitude of TTX-R Na(+) currents (INa) in a concentration dependent manner. While diclofenac had little effect on the voltage-activation relationship, it significantly shifted the steady-state fast inactivation relationship toward hyperpolarized potentials. Diclofenac increased the extent of use-dependent inhibition of TTX-R Na(+) currents. Diclofenac also significantly accelerated the development of inactivation and retarded the recovery from inactivation of TTX-R Na(+) channels. The effects of diclofenac on TTX-R Na(+) channels were stronger at pH 6.0 than at pH7.4 for most of the parameters tested. Considering that the extracellular pH falls in inflamed tissues, and that TTX-R Na(+) channels expressed on nociceptive neurons are implicated in the prostaglandin-mediated development and maintenance of inflammatory hyperalgesia, our findings could provide an additional analgesic effect of diclofenac under acidic pH conditions.

  14. Requirement of neuronal connexin36 in pathways mediating presynaptic inhibition of primary afferents in functionally mature mouse spinal cord

    PubMed Central

    Bautista, Wendy; Nagy, James I; Dai, Yue; McCrea, David A

    2012-01-01

    Electrical synapses formed by gap junctions containing connexin36 (Cx36) promote synchronous activity of interneurones in many regions of mammalian brain; however, there is limited information on the role of electrical synapses in spinal neuronal networks. Here we show that Cx36 is widely distributed in the spinal cord and is involved in mechanisms that govern presynaptic inhibition of primary afferent terminals. Electrophysiological recordings were made in spinal cord preparations from 8- to 11-day-old wild-type and Cx36 knockout mice. Several features associated with presynaptic inhibition evoked by conditioning stimulation of low threshold hindlimb afferents were substantially compromised in Cx36 knockout mice. Dorsal root potentials (DRPs) evoked by low intensity stimulation of sensory afferents were reduced in amplitude by 79% and in duration by 67% in Cx36 knockouts. DRPs were similarly affected in wild-types by bath application of gap junction blockers. Consistent with presynaptic inhibition of group Ia muscle spindle afferent terminals on motoneurones described in adult cats, conditioning stimulation of an adjacent dorsal root evoked a long duration inhibition of monosynaptic reflexes recorded from the ventral root in wild-type mice, and this inhibition was antagonized by bicuculline. The same conditioning stimulation failed to inhibit monosynaptic reflexes in Cx36 knockout mice. Immunofluorescence labelling for Cx36 was found throughout the dorsal and ventral horns of the spinal cord of juvenile mice and persisted in mature animals. In deep dorsal horn laminae, where interneurones involved in presynaptic inhibition of large diameter muscle afferents are located, cells were extensively dye-coupled following intracellular neurobiotin injection. Coupled cells displayed Cx36-positive puncta along their processes. Our results indicate that gap junctions formed by Cx36 in spinal cord are required for maintenance of presynaptic inhibition, including the

  15. Ultrastructural evidence for synaptic contacts between cortical noradrenergic afferents and endocannabinoid-synthesizing post-synaptic neurons.

    PubMed

    Reyes, B A S; Heldt, N A; Mackie, K; Van Bockstaele, E J

    2015-09-10

    Endocannabinoids (eCBs) are involved in a myriad of physiological processes that are mediated through the activation of cannabinoid receptors, which are ubiquitously distributed within the nervous system. One neurochemical target at which cannabinoids interact to have global effects on behavior is brain noradrenergic circuitry. We, and others, have previously shown that CB type 1 receptors (CB1r) are positioned to pre-synaptically modulate norepinephrine (NE) release in the rat frontal cortex (FC). Diacylglycerol lipase (DGL) is a key enzyme in the biosynthesis of the endocannabinoid 2-arachidonoylglycerol (2-AG). While DGL-α is expressed in the FC in the rat brain, it is not known whether noradrenergic afferents target neurons expressing synthesizing enzymes for the endocannabinoid, 2-AG. In the present study, we employed high-resolution neuroanatomical approaches to better define cellular sites for interactions between noradrenergic afferents and FC neurons expressing DGL-α. Immunofluorescence microscopy showed close appositions between processes containing the norepinephrine transporter (NET) or dopamine-β-hydroxylase (DβH) and cortical neurons expressing DGL-α-immunoreactivity. Ultrastructural analysis using immunogold-silver labeling for DGL-α and immunoperoxidase labeling for NET or DβH confirmed that NET-labeled axon terminals were directly apposed to FC somata and dendritic processes that exhibited DGL-α-immunoreactivity. Finally, tissue sections were processed for immunohistochemical detection of DGL-α, CB1r and DβH. Triple label immunofluorescence revealed that CB1r and DβH were co-localized in common cellular profiles and these were in close association with DGL-α. Taken together, these data provide anatomical evidence for direct synaptic associations between noradrenergic afferents and cortical neurons exhibiting endocannabinoid synthesizing machinery.

  16. Ultrastructural evidence for synaptic contacts between cortical noradrenergic afferents and endocannabinoid-synthesizing post-synaptic neurons

    PubMed Central

    Reyes, Beverly A. S.; Heldt, Nathan A.; Mackie, Ken; Van Bockstaele, Elisabeth J.

    2015-01-01

    Endocannabinoids (eCBs) are involved in a myriad of physiological processes that are mediated through the activation of cannabinoid receptors, which are ubiquitously distributed within the nervous system. One neurochemical target at which cannabinoids interact to have global effects on behavior is brain noradrenergic circuitry. We, and others, have previously shown that CB type 1 receptors (CB1r) are positioned to pre-synaptically modulate norepinephrine (NE) release in the rat frontal cortex (FC). Diacylglycerol lipase (DGL) is a key enzyme in the biosynthesis of the endocannabinoid 2-arachidonoylglycerol (2-AG). While DGL-α is expressed in the FC in the rat brain, it is not known whether noradrenergic afferents target neurons expressing synthesizing enzymes for the endocannabinoid, 2-AG. In the present study, we employed high-resolution neuroanatomical approaches to better define cellular sites for interactions between noradrenergic afferents and FC neurons expressing DGL-α. Immunofluorescence microscopy showed close appositions between processes containing the norepinephrine transporter (NET) or dopamine-β-hydroxylase (DβH) and cortical neurons expressing DGL-α-immunoreactivity. Ultrastructural analysis using immunogold-silver labeling for DGL-α and immunoperoxidase labeling for NET or DβH confirmed that NET-labeled axon terminals were directly apposed to FC somata and dendritic processes that exhibited DGL-α-immunoreactivity. Finally, tissue sections were processed for immunohistochemical detection of DGL-α , CB1r and DβH. Triple label immunofluorescence revealed that CB1r and DβH were co-localized in common cellular profiles and these were in close association with DGL-α. Taken together, these data provide anatomical evidence for direct synaptic associations between noradrenergic afferents and cortical neurons exhibiting endocannabinoid synthesizing machinery. PMID:26162236

  17. D-Aspartate Modulates Nociceptive-Specific Neuron Activity and Pain Threshold in Inflammatory and Neuropathic Pain Condition in Mice

    PubMed Central

    Boccella, Serena; Vacca, Valentina; Errico, Francesco; Marinelli, Sara; Squillace, Marta; Di Maio, Anna; Vitucci, Daniela; Palazzo, Enza; De Novellis, Vito; Maione, Sabatino; Pavone, Flaminia; Usiello, Alessandro

    2015-01-01

    D-Aspartate (D-Asp) is a free D-amino acid found in the mammalian brain with a temporal-dependent concentration based on the postnatal expression of its metabolizing enzyme D-aspartate oxidase (DDO). D-Asp acts as an agonist on NMDA receptors (NMDARs). Accordingly, high levels of D-Asp in knockout mice for Ddo gene (Ddo−/−) or in mice treated with D-Asp increase NMDAR-dependent processes. We have here evaluated in Ddo−/− mice the effect of high levels of free D-Asp on the long-term plastic changes along the nociceptive pathway occurring in chronic and acute pain condition. We found that Ddo−/− mice show an increased evoked activity of the nociceptive specific (NS) neurons of the dorsal horn of the spinal cord (L4–L6) and a significant decrease of mechanical and thermal thresholds, as compared to control mice. Moreover, Ddo gene deletion exacerbated the nocifensive responses in the formalin test and slightly reduced pain thresholds in neuropathic mice up to 7 days after chronic constriction injury. These findings suggest that the NMDAR agonist, D-Asp, may play a role in the regulation of NS neuron electrophysiological activity and behavioral responses in physiological and pathological pain conditions. PMID:25629055

  18. Activation of TRPV1 mediates calcitonin gene-related peptide release, which excites trigeminal sensory neurons and is attenuated by a retargeted botulinum toxin with anti-nociceptive potential.

    PubMed

    Meng, Jianghui; Ovsepian, Saak V; Wang, Jiafu; Pickering, Mark; Sasse, Astrid; Aoki, K Roger; Lawrence, Gary W; Dolly, J Oliver

    2009-04-15

    Excessive release of inflammatory/pain mediators from peripheral sensory afferents renders nerve endings hyper-responsive, causing central sensitization and chronic pain. Herein, the basal release of proinflammatory calcitonin gene-related peptide (CGRP) was shown to increase the excitability of trigeminal sensory neurons in brainstem slices via CGRP1 receptors because the effect was negated by an antagonist, CGRP8-37. This excitatory action could be prevented by cleaving synaptosomal-associated protein of M(r) 25,000 (SNAP-25) with botulinum neurotoxin (BoNT) type A, a potent inhibitor of exocytosis. Strikingly, BoNT/A proved unable to abolish the CGRP1 receptor-mediated effect of capsaicin, a nociceptive TRPV1 stimulant, or its elevation of CGRP release from trigeminal ganglionic neurons (TGNs) in culture. Although the latter was also not susceptible to BoNT/E, apparently attributable to a paucity of its acceptors (glycosylated synaptic vesicle protein 2 A/B), this was overcome by using a recombinant chimera (EA) of BoNT/A and BoNT/E. It bound effectively to the C isoform of SV2 abundantly expressed in TGNs and cleaved SNAP-25, indicating that its /A binding domain (H(C)) mediated uptake of the active /E protease. The efficacy of /EA is attributable to removal of 26 C-terminal residues from SNAP-25, precluding formation of SDS-resistant SNARE complexes. In contrast, exocytosis could be evoked after deleting nine of the SNAP-25 residues with /A but only on prolonged elevation of [Ca(2+)](i) with capsaicin. This successful targeting of /EA to nociceptive neurons and inhibition of CGRP release in vitro and in situ highlight its potential as a new therapy for sensory dysmodulation and chronic pain.

  19. Kv4 Channels Underlie the Subthreshold-Operating A-type K-current in Nociceptive Dorsal Root Ganglion Neurons.

    PubMed

    Phuket, Thanawath Ratanadilok Na; Covarrubias, Manuel

    2009-01-01

    The dorsal root ganglion (DRG) contains heterogeneous populations of sensory neurons including primary nociceptive neurons and C-fibers implicated in pain signaling. Recent studies have demonstrated DRG hyperexcitability associated with downregulation of A-type K(+) channels; however, the molecular correlate of the corresponding A-type K(+) current (I(A)) has remained hypothetical. Kv4 channels may underlie the I(A) in DRG neurons. We combined electrophysiology, molecular biology (Whole-Tissue and Single-Cell RT-PCR) and immunohistochemistry to investigate the molecular basis of the I(A) in acutely dissociated DRG neurons from 7- to 8-day-old rats. Whole-cell recordings demonstrate a robust tetraethylammonium-resistant (20 mM) and 4-aminopyridine-sensitive (5 mM) I(A). Matching Kv4 channel properties, activation and inactivation of this I(A) occur in the subthreshold range of membrane potentials and the rate of recovery from inactivation is rapid and voltage-dependent. Among Kv4 transcripts, the DRG expresses significant levels of Kv4.1 and Kv4.3 mRNAs. Also, single small-medium diameter DRG neurons ( approximately 30 mum) exhibit correlated frequent expression of mRNAs encoding Kv4.1 and Nav1.8, a known nociceptor marker. In contrast, the expressions of Kv1.4 and Kv4.2 mRNAs at the whole-tissue and single-cell levels are relatively low and infrequent. Kv4 protein expression in nociceptive DRG neurons was confirmed by immunohistochemistry, which demonstrates colocalization of Kv4.3 and Nav1.8, and negligible expression of Kv4.2. Furthermore, specific dominant-negative suppression and overexpression strategies confirmed the contribution of Kv4 channels to I(A) in DRG neurons. Contrasting the expression patterns of Kv4 channels in the central and peripheral nervous systems, we discuss possible functional roles of these channels in primary sensory neurons. PMID:19668710

  20. Timing of medullary late-inspiratory neuron discharges: vagal afferent effects indicate possible off-switch function.

    PubMed

    Cohen, M I; Huang, W X; Barnhardt, R; See, W R

    1993-05-01

    1. In decerebrate paralyzed cats, we observed the responses of ventral and dorsal medullary inspiratory (I) neurons to two types of vagal afferent input that shorten neural I: lung inflation and vagal electrical stimulation. 2. A study population of 15 I neurons whose firing patterns suggested involvement in the inspiratory OFF-switch (IOS) was selected on the basis of two criteria: late onset of firing and excitation by vagal inputs. 3. Firing in relation to the end of I showed two types of response to vagal inputs. The pre-expiratory onset time (time from initial spike to end of I) was either unchanged (type 1 response in 5/15 neurons) or significantly changed (type 2 response in 10/15 neurons). 4. It is suggested that type 1 neurons, whose firing patterns remain closely locked to the end of I despite considerable changes of I duration, are involved in promoting the IOS, whereas type 2 neurons are either not involved (e.g., late-onset premotor neurons) or are involved at an earlier temporal processing stage. PMID:8389840

  1. Cortical Presynaptic Control of Dorsal Horn C–Afferents in the Rat

    PubMed Central

    Martínez-Lorenzana, Guadalupe; Condés-Lara, Miguel; Rojas-Piloni, Gerardo

    2013-01-01

    Lamina 5 sensorimotor cortex pyramidal neurons project to the spinal cord, participating in the modulation of several modalities of information transmission. A well-studied mechanism by which the corticospinal projection modulates sensory information is primary afferent depolarization, which has been characterized in fast muscular and cutaneous, but not in slow-conducting nociceptive skin afferents. Here we investigated whether the inhibition of nociceptive sensory information, produced by activation of the sensorimotor cortex, involves a direct presynaptic modulation of C primary afferents. In anaesthetized male Wistar rats, we analyzed the effects of sensorimotor cortex activation on post tetanic potentiation (PTP) and the paired pulse ratio (PPR) of dorsal horn field potentials evoked by C–fiber stimulation in the sural (SU) and sciatic (SC) nerves. We also explored the time course of the excitability changes in nociceptive afferents produced by cortical stimulation. We observed that the development of PTP was completely blocked when C-fiber tetanic stimulation was paired with cortex stimulation. In addition, sensorimotor cortex activation by topical administration of bicuculline (BIC) produced a reduction in the amplitude of C–fiber responses, as well as an increase in the PPR. Furthermore, increases in the intraspinal excitability of slow-conducting fiber terminals, produced by sensorimotor cortex stimulation, were indicative of primary afferent depolarization. Topical administration of BIC in the spinal cord blocked the inhibition of C–fiber neuronal responses produced by cortical stimulation. Dorsal horn neurons responding to sensorimotor cortex stimulation also exhibited a peripheral receptive field and responded to stimulation of fast cutaneous myelinated fibers. Our results suggest that corticospinal inhibition of nociceptive responses is due in part to a modulation of the excitability of primary C–fibers by means of GABAergic inhibitory

  2. Cortical presynaptic control of dorsal horn C-afferents in the rat.

    PubMed

    Moreno-López, Yunuen; Pérez-Sánchez, Jimena; Martínez-Lorenzana, Guadalupe; Condés-Lara, Miguel; Rojas-Piloni, Gerardo

    2013-01-01

    Lamina 5 sensorimotor cortex pyramidal neurons project to the spinal cord, participating in the modulation of several modalities of information transmission. A well-studied mechanism by which the corticospinal projection modulates sensory information is primary afferent depolarization, which has been characterized in fast muscular and cutaneous, but not in slow-conducting nociceptive skin afferents. Here we investigated whether the inhibition of nociceptive sensory information, produced by activation of the sensorimotor cortex, involves a direct presynaptic modulation of C primary afferents. In anaesthetized male Wistar rats, we analyzed the effects of sensorimotor cortex activation on post tetanic potentiation (PTP) and the paired pulse ratio (PPR) of dorsal horn field potentials evoked by C-fiber stimulation in the sural (SU) and sciatic (SC) nerves. We also explored the time course of the excitability changes in nociceptive afferents produced by cortical stimulation. We observed that the development of PTP was completely blocked when C-fiber tetanic stimulation was paired with cortex stimulation. In addition, sensorimotor cortex activation by topical administration of bicuculline (BIC) produced a reduction in the amplitude of C-fiber responses, as well as an increase in the PPR. Furthermore, increases in the intraspinal excitability of slow-conducting fiber terminals, produced by sensorimotor cortex stimulation, were indicative of primary afferent depolarization. Topical administration of BIC in the spinal cord blocked the inhibition of C-fiber neuronal responses produced by cortical stimulation. Dorsal horn neurons responding to sensorimotor cortex stimulation also exhibited a peripheral receptive field and responded to stimulation of fast cutaneous myelinated fibers. Our results suggest that corticospinal inhibition of nociceptive responses is due in part to a modulation of the excitability of primary C-fibers by means of GABAergic inhibitory interneurons

  3. Differential roles of mGluR1 and mGluR5 in brief and prolonged nociceptive processing in central amygdala neurons.

    PubMed

    Li, Weidong; Neugebauer, Volker

    2004-01-01

    The laterocapsular division of the central nucleus of the amygdala (CeA) is now defined as the "nociceptive amygdala" because of its high content of neurons that respond to painful stimuli. The majority of these neurons become sensitized in a model of arthritis pain. Here we address the role of G protein-coupled group I metabotropic glutamate receptor subtypes mGluR1 and mGluR5 in nociceptive processing under normal conditions and in pain-related sensitization. Extracellular single-unit recordings were made from 65 CeA neurons in anesthetized rats. Each neuron's responses to brief mechanical stimuli, background activity, receptive field size, and threshold were measured before and after induction of the kaolin/carrageenan mono-arthritis in one knee and before and during applications of agonists and antagonists into the CeA by microdialysis. All neurons received excitatory input from the knee(s) and responded most strongly to noxious stimuli. Before arthritis, a group I mGluR1 and mGluR5 agonist (DHPG, n = 10) potentiated the responses to innocuous and noxious stimuli. This effect was mimicked by an mGluR5 agonist (CHPG, n = 15). In the arthritis pain state (>6 h after induction), the facilitatory effects of DHPG (n = 9), but not CHPG (n = 7), increased. An mGluR1 antagonist (CPCCOEt) had no effect before arthritis (n = 12) but inhibited the responses of sensitized neurons in the arthritis pain state (n = 8). An mGluR5 antagonist (MPEP) inhibited brief nociceptive responses under normal conditions (n = 19) and prolonged nociception in arthritis (n = 8). These data suggest a change of mGluR1 function and activation in the amygdala in pain-related sensitization, whereas mGluR5 is involved in brief as well as prolonged nociception.

  4. Discovery of Prostamide F2α and Its Role in Inflammatory Pain and Dorsal Horn Nociceptive Neuron Hyperexcitability

    PubMed Central

    Giordano, Catia; Boccella, Serena; Lichtman, Aron; Maione, Sabatino; Di Marzo, Vincenzo

    2012-01-01

    It was suggested that endocannabinoids are metabolized by cyclooxygenase (COX)-2 in the spinal cord of rats with kaolin/λ-carrageenan-induced knee inflammation, and that this mechanism contributes to the analgesic effects of COX-2 inhibitors in this experimental model. We report the development of a specific method for the identification of endocannabinoid COX-2 metabolites, its application to measure the levels of these compounds in tissues, and the finding of prostamide F2α (PMF2α) in mice with knee inflammation. Whereas the levels of spinal endocannabinoids were not significantly altered by kaolin/λ-carrageenan-induced knee inflammation, those of the COX-2 metabolite of AEA, PMF2α, were strongly elevated. The formation of PMF2α was reduced by indomethacin (a non-selective COX inhibitor), NS-398 (a selective COX-2 inhibitor) and SC-560 (a selective COX-1 inhibitor). In healthy mice, spinal application of PMF2α increased the firing of nociceptive (NS) neurons, and correspondingly reduced the threshold of paw withdrawal latency (PWL). These effects were attenuated by the PMF2α receptor antagonist AGN211336, but not by the FP receptor antagonist AL8810. Also prostaglandin F2α increased NS neuron firing and reduced the threshold of PWL in healthy mice, and these effects were antagonized by AL8810, and not by AGN211336. In mice with kaolin/λ-carrageenan-induced knee inflammation, AGN211336, but not AL8810, reduced the inflammation-induced NS neuron firing and reduction of PWL. These findings suggest that inflammation-induced, and prostanoid-mediated, enhancement of dorsal horn NS neuron firing stimulates the production of spinal PMF2α, which in turn contributes to further NS neuron firing and pain transmission by activating specific receptors. PMID:22363560

  5. Adenomatous Polyposis Coli Protein Deletion in Efferent Olivocochlear Neurons Perturbs Afferent Synaptic Maturation and Reduces the Dynamic Range of Hearing

    PubMed Central

    Hickman, Tyler T.; Liberman, M. Charles

    2015-01-01

    Normal hearing requires proper differentiation of afferent ribbon synapses between inner hair cells (IHCs) and spiral ganglion neurons (SGNs) that carry acoustic information to the brain. Within individual IHCs, presynaptic ribbons show a size gradient with larger ribbons on the modiolar face and smaller ribbons on the pillar face. This structural gradient is associated with a gradient of spontaneous rates and threshold sensitivity, which is essential for a wide dynamic range of hearing. Despite their importance for hearing, mechanisms that direct ribbon differentiation are poorly defined. We recently identified adenomatous polyposis coli protein (APC) as a key regulator of interneuronal synapse maturation. Here, we show that APC is required for ribbon size heterogeneity and normal cochlear function. Compared with wild-type littermates, APC conditional knock-out (cKO) mice exhibit decreased auditory brainstem responses. The IHC ribbon size gradient is also perturbed. Whereas the normal-developing IHCs display ribbon size gradients before hearing onset, ribbon sizes are aberrant in APC cKOs from neonatal ages on. Reporter expression studies show that the CaMKII-Cre used to delete the floxed APC gene is present in efferent olivocochlear (OC) neurons, not IHCs or SGNs. APC loss led to increased volumes and numbers of OC inhibitory dopaminergic boutons on neonatal SGN fibers. Our findings identify APC in efferent OC neurons as essential for regulating ribbon heterogeneity, dopaminergic terminal differentiation, and cochlear sensitivity. This APC effect on auditory epithelial cell synapses resembles interneuronal and nerve–muscle synapses, thereby defining a global role for APC in synaptic maturation in diverse cell types. Significance Statement This study identifies novel molecules and cellular interactions that are essential for the proper maturation of afferent ribbon synapses in sensory cells of the inner ear, and for normal hearing. PMID:26085645

  6. Recombinant adeno-associated virus serotype 6 (rAAV2/6)-mediated gene transfer to nociceptive neurons through different routes of delivery

    PubMed Central

    Towne, Chris; Pertin, Marie; Beggah, Ahmed T; Aebischer, Patrick; Decosterd, Isabelle

    2009-01-01

    Background Gene transfer to nociceptive neurons of the dorsal root ganglia (DRG) is a promising approach to dissect mechanisms of pain in rodents and is a potential therapeutic strategy for the treatment of persistent pain disorders such as neuropathic pain. A number of studies have demonstrated transduction of DRG neurons using herpes simplex virus, adenovirus and more recently, adeno-associated virus (AAV). Recombinant AAV are currently the gene transfer vehicles of choice for the nervous system and have several advantages over other vectors, including stable and safe gene expression. We have explored the capacity of recombinant AAV serotype 6 (rAAV2/6) to deliver genes to DRG neurons and characterized the transduction of nociceptors through five different routes of administration in mice. Results Direct injection of rAAV2/6 expressing green fluorescent protein (eGFP) into the sciatic nerve resulted in transduction of up to 30% eGFP-positive cells of L4 DRG neurons in a dose dependant manner. More than 90% of transduced cells were small and medium sized neurons (< 700 μm2), predominantly colocalized with markers of nociceptive neurons, and had eGFP-positive central terminal fibers in the superficial lamina of the spinal cord dorsal horn. The efficiency and profile of transduction was independent of mouse genetic background. Intrathecal administration of rAAV2/6 gave the highest level of transduction (≈ 60%) and had a similar size profile and colocalization with nociceptive neurons. Intrathecal administration also transduced DRG neurons at cervical and thoracic levels and resulted in comparable levels of transduction in a mouse model for neuropathic pain. Subcutaneous and intramuscular delivery resulted in low levels of transduction in the L4 DRG. Likewise, delivery via tail vein injection resulted in relatively few eGFP-positive cells within the DRG, however, this transduction was observed at all vertebral levels and corresponded to large non-nociceptive cell

  7. Effect of Spinal Manipulation Thrust Duration on Trunk Mechanical Activation Thresholds of Nociceptive-Specific Lateral Thalamic Neurons

    PubMed Central

    Reed, William R.; Sozio, Randall; Pickar, Joel G.; Onifer, Stephen M.

    2015-01-01

    Objective The objective of this preliminary study was to determine if high-velocity, low-amplitude spinal manipulation (HVLA-SM) thrust duration alters mechanical trunk activation thresholds of nociceptive-specific (NS) lateral thalamic neurons. Methods Extracellular recordings were obtained from 18 NS neurons located in 2 lateral thalamic nuclei (ventrolateral [n = 12] and posterior [n = 6]) in normal anesthetized Wistar rats. Response thresholds to electronic von Frey anesthesiometer (rigid tip) mechanical trunk stimuli applied in 3 lumbar directions (dorsal-ventral, 45° caudal, and 45° cranial) were determined before and immediately after the delivery of 3 HVLA-SM thrust durations (time control 0, 100, and 400 milliseconds). Mean changes in mechanical trunk activation thresholds were compared using a mixed model analysis of variance. Results High-velocity, low-amplitude spinal manipulation duration did not significantly alter NS lateral thalamic neurons’ mechanical trunk responses to any of the 3 directions tested with the anesthesiometer. Conclusions This study is the first to examine the effect of HVLA-SM thrust duration on NS lateral thalamic mechanical response thresholds. High-velocity, low-amplitude spinal manipulation thrust duration did not affect mechanical trunk thresholds. PMID:25220757

  8. TRESK channel contribution to nociceptive sensory neurons excitability: modulation by nerve injury

    PubMed Central

    2011-01-01

    Background Neuronal hyperexcitability is a crucial phenomenon underlying spontaneous and evoked pain. In invertebrate nociceptors, the S-type leak K+ channel (analogous to TREK-1 in mammals) plays a critical role of in determining neuronal excitability following nerve injury. Few data are available on the role of leak K2P channels after peripheral axotomy in mammals. Results Here we describe that rat sciatic nerve axotomy induces hyperexcitability of L4-L5 DRG sensory neurons and decreases TRESK (K2P18.1) expression, a channel with a major contribution to total leak current in DRGs. While the expression of other channels from the same family did not significantly change, injury markers ATF3 and Cacna2d1 were highly upregulated. Similarly, acute sensory neuron dissociation (in vitro axotomy) produced marked hyperexcitability and similar total background currents compared with neurons injured in vivo. In addition, the sanshool derivative IBA, which blocked TRESK currents in transfected HEK293 cells and DRGs, increased intracellular calcium in 49% of DRG neurons in culture. Most IBA-responding neurons (71%) also responded to the TRPV1 agonist capsaicin, indicating that they were nociceptors. Additional evidence of a biological role of TRESK channels was provided by behavioral evidence of pain (flinching and licking), in vivo electrophysiological evidence of C-nociceptor activation following IBA injection in the rat hindpaw, and increased sensitivity to painful pressure after TRESK knockdown in vivo. Conclusions In summary, our results clearly support an important role of TRESK channels in determining neuronal excitability in specific DRG neurons subpopulations, and show that axonal injury down-regulates TRESK channels, therefore contributing to neuronal hyperexcitability. PMID:21527011

  9. Enhancement of spontaneous and heat-evoked activity in spinal nociceptive neurons by the endovanilloid/endocannabinoid N-arachidonoyldopamine (NADA).

    PubMed

    Huang, Susan M; Walker, J Michael

    2006-02-01

    N-arachidonoyldopamine (NADA) is an endogenous molecule found in the nervous system that is capable of acting as a vanilloid agonist via the TRPV1 receptor and as a cannabinoid agonist via the CB1 receptor. Using anesthetized rats, we investigated the neural correlates of behavioral thermal hyperalgesia produced by NADA. Extracellular single cell electrophysiology was conducted to assess the effects of peripheral administration of NADA (i.pl.) on nociceptive neurons in the dorsal horn of the spinal cord. Injection of NADA in the hindpaw caused increased spontaneous discharge of spinal nociceptive neurons compared with injection of vehicle. The neurons also displayed magnified responses to application of thermal stimuli ranging from 34 to 52 degrees C. NADA-induced neural hypersensitivity was dose dependent (EC50 = 1.55 microg) and TRPV1 dependent, as the effect was abolished by co-administration of the TRPV1 antagonist 5'-iodoresiniferatoxin (I-RTX). In contrast, co-administration of the CB1 antagonist SR 141716A did not attenuate this effect. These results suggest that the enhanced responses of spinal nociceptive neurons likely underlie the behavioral thermal hyperalgesia and implicate a possible pain-sensitizing role of endogenous NADA mediated by TRPV1 in the periphery.

  10. Functional properties of monkey motor cortex neurones receiving afferent input from the hand and fingers

    PubMed Central

    Lemon, R. N.

    1981-01-01

    1. Records have been made from area 4 of the cerebral cortex in five conscious monkeys. The properties of 216 neurones responsive to natural stimulation of the hand and fingers have been investigated. 2. 46% of these neurones responded only to cutaneous stimulation (especially light brushing across the glabrous skin) and a further 38% responded only to movement of the digits. 4% responded to brief prods of the hand. 12% of the sample responded to more than one stimulus modality. 3. Many hand-input neurones, including pyramidal tract neurones, responded at short-latency (8-15 msec) to light mechanical stimulation of the hand and to weak electrical stimulation of the median nerve. 4. Responsive neurones were found at all depths of the cortical grey matter. Responses of shortest latency were encountered in neurones probably located in layers IV and V. 5. The behaviour of eighty hand-input neurones was analysed during a simple, stereotyped task which involved pulling a lever and collecting a food reward from a small well. For comparison, the activity of 117 neurones with inputs from the wrist, elbow or shoulder was also analysed. 6. Nearly all hand-input neurones modulated their activity either before (48/80) or during (29/80) the retrieval of the reward which required precision grip between index finger and thumb. Many were silent during proximal arm movements and some displayed activity patterns independent of these movements. 7. By contrast, the activity of many neurones with proximal arm (elbow, shoulder) inputs was unrelated to food retrieval and manipulation, but well related to arm movements. 8. Forty-three of the eighty neurones had cutaneous input from the hand. Twenty-seven were active before hand contact. Thirty-five modulated their discharge when contact was made (twenty-one excitation, fourteen inhibition). 9. Most hand-input neurones were more active during fractionated movements of the hand or fingers than during power or ball grips requiring

  11. Acid-Sensing Ion Channels Expression, Identity and Role in the Excitability of the Cochlear Afferent Neurons

    PubMed Central

    González-Garrido, Antonia; Vega, Rosario; Mercado, Francisco; López, Iván A.; Soto, Enrique

    2015-01-01

    Acid-sensing ion channels (ASICs) are activated by an increase in the extracellular proton concentration. There are four genes (ASIC1-4) that encode six subunits, and they are involved in diverse neuronal functions, such as mechanosensation, learning and memory, nociception, and modulation of retinal function. In this study, we characterize the ASIC currents of spiral ganglion neurons (SGNs). These ASIC currents are primarily carried by Na+, exhibit fast activation and desensitization, display a pH50 of 6.2 and are blocked by amiloride, indicating that these are ASIC currents. The ASIC currents were further characterized using several pharmacological tools. Gadolinium and acetylsalicylic acid reduced these currents, and FMRFamide, zinc (at high concentrations) and N,N,N’,N’–tetrakis-(2-piridilmetil)-ethylenediamine increased them, indicating that functional ASICs are composed of the subunits ASIC1, ASIC2, and ASIC3. Neomycin and streptomycin reduced the desensitization rate of the ASIC current in SGNs, indicating that ASICs may contribute to the ototoxic action of aminoglycosides. RT-PCR of the spiral ganglion revealed significant expression of all ASIC subunits. By immunohistochemistry the expression of the ASIC1a, ASIC2a, ASIC2b, and ASIC3 subunits was detected in SGNs. Although only a few SGNs exhibited action potential firing in response to an acidic stimulus, protons in the extracellular solution modulated SGN activity during sinusoidal stimulation. Our results show that protons modulate the excitability of SGNs via ASICs. PMID:26733809

  12. Acid-Sensing Ion Channels Expression, Identity and Role in the Excitability of the Cochlear Afferent Neurons.

    PubMed

    González-Garrido, Antonia; Vega, Rosario; Mercado, Francisco; López, Iván A; Soto, Enrique

    2015-01-01

    Acid-sensing ion channels (ASICs) are activated by an increase in the extracellular proton concentration. There are four genes (ASIC1-4) that encode six subunits, and they are involved in diverse neuronal functions, such as mechanosensation, learning and memory, nociception, and modulation of retinal function. In this study, we characterize the ASIC currents of spiral ganglion neurons (SGNs). These ASIC currents are primarily carried by Na(+), exhibit fast activation and desensitization, display a pH50 of 6.2 and are blocked by amiloride, indicating that these are ASIC currents. The ASIC currents were further characterized using several pharmacological tools. Gadolinium and acetylsalicylic acid reduced these currents, and FMRFamide, zinc (at high concentrations) and N,N,N',N'-tetrakis-(2-piridilmetil)-ethylenediamine increased them, indicating that functional ASICs are composed of the subunits ASIC1, ASIC2, and ASIC3. Neomycin and streptomycin reduced the desensitization rate of the ASIC current in SGNs, indicating that ASICs may contribute to the ototoxic action of aminoglycosides. RT-PCR of the spiral ganglion revealed significant expression of all ASIC subunits. By immunohistochemistry the expression of the ASIC1a, ASIC2a, ASIC2b, and ASIC3 subunits was detected in SGNs. Although only a few SGNs exhibited action potential firing in response to an acidic stimulus, protons in the extracellular solution modulated SGN activity during sinusoidal stimulation. Our results show that protons modulate the excitability of SGNs via ASICs.

  13. Chronic recruitment of primary afferent neurons by microstimulation in the feline dorsal root ganglia

    NASA Astrophysics Data System (ADS)

    Fisher, Lee E.; Ayers, Christopher A.; Ciollaro, Mattia; Ventura, Valérie; Weber, Douglas J.; Gaunt, Robert A.

    2014-06-01

    Objective. This study describes results of primary afferent neural microstimulation experiments using microelectrode arrays implanted chronically in the lumbar dorsal root ganglia (DRG) of four cats. The goal was to test the stability and selectivity of these microelectrode arrays as a potential interface for restoration of somatosensory feedback after damage to the nervous system such as amputation. Approach. A five-contact nerve-cuff electrode implanted on the sciatic nerve was used to record the antidromic compound action potential response to DRG microstimulation (2-15 µA biphasic pulses, 200 µs cathodal pulse width), and the threshold for eliciting a response was tracked over time. Recorded responses were segregated based on conduction velocity to determine thresholds for recruiting Group I and Group II/Aβ primary afferent fibers. Main results. Thresholds were initially low (5.1 ± 2.3 µA for Group I and 6.3 ± 2.0 µA for Group II/Aβ) and increased over time. Additionally the number of electrodes with thresholds less than or equal to 15 µA decreased over time. Approximately 12% of tested electrodes continued to elicit responses at 15 µA up to 26 weeks after implantation. Higher stimulation intensities (up to 30 µA) were tested in one cat at 23 weeks post-implantation yielding responses on over 20 additional electrodes. Within the first six weeks after implantation, approximately equal numbers of electrodes elicited only Group I or Group II/Aβ responses at threshold, but the relative proportion of Group II/Aβ responses decreased over time. Significance. These results suggest that it is possible to activate Group I or Group II/Aβ primary afferent fibers in isolation with penetrating microelectrode arrays implanted in the DRG, and that those responses can be elicited up to 26 weeks after implantation, although it may be difficult to achieve a consistent response day-to-day with currently available electrode technology. The DRG are compelling targets

  14. Persistent Adaptations in Afferents to Ventral Tegmental Dopamine Neurons after Opiate Withdrawal

    PubMed Central

    Kaufling, Jennifer

    2015-01-01

    Protracted opiate withdrawal is accompanied by altered responsiveness of midbrain dopaminergic (DA) neurons, including a loss of DA cell response to morphine, and by behavioral alterations, including affective disorders. GABAergic neurons in the tail of the ventral tegmental area (tVTA), also called the rostromedial tegmental nucleus, are important for behavioral responses to opiates. We investigated the tVTA–VTA circuit in rats after chronic morphine exposure to determine whether tVTA neurons participate in the loss of opiate-induced disinhibition of VTA DA neurons observed during protracted withdrawal. In vivo recording revealed that VTA DA neurons, but not tVTA GABAergic neurons, are tolerant to morphine after 2 weeks of withdrawal. Optogenetic stimulation of tVTA neurons inhibited VTA DA neurons similarly in opiate-naive and long-term withdrawn rats. However, tVTA inactivation increased VTA DA activity in opiate-naive rats, but not in withdrawn rats, resembling the opiate tolerance effect in DA cells. Thus, although inhibitory control of DA neurons by tVTA is maintained during protracted withdrawal, the capacity for disinhibitory control is impaired. In addition, morphine withdrawal reduced both tVTA neural activity and tonic glutamatergic input to VTA DA neurons. We propose that these changes in glutamate and GABA inputs underlie the apparent tolerance of VTA DA neurons to opiates after chronic exposure. These alterations in the tVTA–VTA DA circuit could be an important factor in opiate tolerance and addiction. Moreover, the capacity of the tVTA to inhibit, but not disinhibit, DA cells after chronic opiate exposure may contribute to long-term negative affective states during withdrawal. SIGNIFICANCE STATEMENT Dopaminergic (DA) cells of the ventral tegmental area (VTA) are the origin of a brain reward system and are critically involved in drug abuse. Morphine has long been known to affect VTA DA cells via GABAergic interneurons. Recently, GABAergic neurons

  15. Tetrodotoxin-resistant sodium channels Na(v)1.8/SNS and Na(v)1.9/NaN in afferent neurons innervating urinary bladder in control and spinal cord injured rats.

    PubMed

    Black, Joel A; Cummins, Theodore R; Yoshimura, Naoki; de Groat, William C; Waxman, Stephen G

    2003-02-14

    Tetrodotoxin-resistant (TTX-R) sodium channels Na(v)1.8/SNS and Na(v)1.9/NaN are preferentially expressed in small diameter dorsal root ganglia (DRG) neurons. The urinary bladder is innervated by small afferent neurons from L6/S1 DRG, of which approximately 75% exhibit high-threshold action potentials that are mediated by TTX-R sodium channels. Following transection of the spinal cord at T8, the bladder becomes areflexic and then gradually hyper-reflexic, and there is an attenuation of the TTX-R sodium currents in bladder afferent neurons. In the present study, we demonstrate that Na(v)1.8 is expressed in both bladder and non-bladder afferent neurons, while Na(v)1.9 is expressed in non-bladder afferent neurons but is rarely observed in bladder afferent neurons. In spinal cord transected rats 28-32 days following transection, there is a decreased expression of Na(v)1.8 sodium channels in bladder afferents, but no change in the expression of Na(v)1.8 in non-bladder afferent neurons. Both bladder and non-bladder afferent neurons exhibit limited increases in Na(v)1.9 expression following spinal cord transection. These results demonstrate that the expression of TTX-R channels in bladder afferent neurons changes after spinal cord transection, and these changes may contribute to the increased excitability of these neurons following spinal cord injury. PMID:12560118

  16. Relationships between segregated afferents and postsynaptic neurones in the optic tectum of three-eyed frogs.

    PubMed

    Katz, L C; Constantine-Paton, M

    1988-09-01

    In 3-eyed frogs, afferents from 2 eyes converge on an optic tectum that normally receives input from only 1 eye. This produces an interdigitating series of stripes, resembling the ocular dominance columns in cats and monkeys. The consequences of this induced striping on the behavior of tectal dendrites was investigated in an in vitro preparation of the tectum. Stripes were labeled by anterograde transport of a fluorescent dye (rhodamine) and postsynaptic tectal cells labeled by intracellular injections of Lucifer yellow. The same types of cells were present in both normal and striped tecta, but dendritic arbors were altered in 2 ways. In normal tecta, dendrites were most frequently biased in a rostral direction. In striped tecta, dendrites were more frequently unbiased: fewer arbors had a strong rostral bias. The second effect of stripes was on the behaviors of individual dendrites of certain cell types. Some cells, primarily those with small, highly branched arbors, had dendrites that abruptly terminated at the borders between stripes. Other cells, with larger arbors, maintained "clumps" of dendrites in both eye's stripes. While these cells had portions of their dendritic arbor in more than one stripe, each individual dendrite was restricted to a single stripe. However, the processes of many cells, especially those with extensive, medial-laterally oriented dendrites, did not respect stripe boundaries in any obvious fashion. At the border between 2 stripes, there is an abrupt discontinuity in the patterns of activity in afferent axons. The dendritic alterations seen in striped tecta suggest that correlated activity can, in some cells, modulate the spatial arrangement of dendrites, such that an individual dendrite preferentially arborizes within such areas, but not between them. These cells as a whole can accommodate uncorrelated inputs, if these are segregated onto separate dendrites. This implies that local interactions between presynaptic terminals and

  17. In vivo responses of cutaneous C-mechanosensitive neurons in mouse to punctate chemical stimuli that elicit itch and nociceptive sensations in humans.

    PubMed

    Ma, C; Nie, H; Gu, Q; Sikand, P; Lamotte, R H

    2012-01-01

    Native cowhage spicules, and heat-inactivated spicules containing histamine or capsaicin, evoke similar sensations of itch and nociceptive sensations in humans. In ongoing studies of the peripheral neural mechanisms of chemical itch and pain in the mouse, extracellular electrophysiological recordings were obtained, in vivo, from the cell bodies of mechanosensitive nociceptive neurons in response to spicule stimuli delivered to their cutaneous receptive fields (RFs) on the distal hindlimb. A total of 43 mechanosensitive, cutaneous, nociceptive neurons with axonal conduction velocities in the C-fiber range (C-nociceptors) were classified as CM if responsive to noxious mechanical stimuli, such as pinch, or CMH if responsive to noxious mechanical and heat stimuli (51°C, 5 s). The tips of native cowhage spicules, or heat-inactivated spicules containing histamine or capsaicin, were applied to the RF. Heat-inactivated spicules containing no chemical produced only a transient response occurring during insertion. Of the 43 mechanosensitive nociceptors recorded, 20 of the 25 CMHs responded to capsaicin, and of these, 13 also responded to cowhage and/or histamine. In contrast, none of the 18 CMs responded to any of the chemical stimuli. The time course of the mean discharge rate of CMHs was similar in response to each type of spicule and generally similar, although reaching a peak earlier, to the temporal profiles of itch and nociceptive sensations evoked by the same stimuli in humans. These findings are consistent with the hypothesis that the itch and nociceptive sensations evoked by these punctuate chemical stimuli are mediated at least in part by the activity of mechanoheat-sensitive C-nociceptors. In contrast, activity in mechanosensitive C-nociceptors that do not respond to heat or to pruritic chemicals is hypothesized as contributing to pain but not to itch. PMID:21994268

  18. Divergence in Endothelin-1- and Bradykinin-Activated Store-Operated Calcium Entry in Afferent Sensory Neurons

    PubMed Central

    Szteyn, Kalina; Gomez, Ruben; Berg, Kelly A

    2015-01-01

    Endothelin-1 (ET-1) and bradykinin (BK) are endogenous peptides that signal through Gαq/11-protein coupled receptors (GPCRs) to produce nociceptor sensitization and pain. Both peptides activate phospholipase C to stimulate Ca2+ accumulation, diacylglycerol production, and protein kinase C activation and are rapidly desensitized via a G-protein receptor kinase 2-dependent mechanism. However, ET-1 produces a greater response and longer lasting nocifensive behavior than BK in multiple models, indicating a potentially divergent signaling mechanism in primary afferent sensory neurons. Using cultured sensory neurons, we demonstrate significant differences in both Ca2+ influx and Ca2+ release from intracellular stores following ET-1 and BK treatments. As intracellular store depletion may contribute to the regulation of other signaling cascades downstream of GPCRs, we concentrated our investigation on store-operated Ca2+ channels. Using pharmacological approaches, we identified transient receptor potential canonical channel 3 (TRPC3) as a dominant contributor to Ca2+ influx subsequent to ET-1 treatment. On the other hand, BK treatment stimulated Orai1 activation, with only minor input from TRPC3. Taken together, data presented here suggest that ET-1 signaling targets TRPC3, generating a prolonged Ca2+ signal that perpetuates nocifensive responses. In contrast, Orai1 dominates as the downstream target of BK receptor activation and results in transient intracellular Ca2+ increases and abridged nocifensive responses. PMID:25873305

  19. Dopaminergic Presynaptic Modulation of Nigral Afferents: Its Role in the Generation of Recurrent Bursting in Substantia Nigra Pars Reticulata Neurons

    PubMed Central

    de Jesús Aceves, José; Rueda-Orozco, Pavel E.; Hernández, Ricardo; Plata, Víctor; Ibañez-Sandoval, Osvaldo; Galarraga, Elvira; Bargas, José

    2011-01-01

    Previous work has shown the functions associated with activation of dopamine presynaptic receptors in some substantia nigra pars reticulata (SNr) afferents: (i) striatonigral terminals (direct pathway) posses presynaptic dopamine D1-class receptors whose action is to enhance inhibitory postsynaptic currents (IPSCs) and GABA transmission. (ii) Subthalamonigral terminals posses D1- and D2-class receptors where D1-class receptor activation enhances and D2-class receptor activation decreases excitatory postsynaptic currents. Here we report that pallidonigral afferents posses D2-class receptors (D3 and D4 types) that decrease inhibitory synaptic transmission via presynaptic modulation. No action of D1-class agonists was found on pallidonigral synapses. In contrast, administration of D1-receptor antagonists greatly decreased striatonigral IPSCs in the same preparation, suggesting that tonic dopamine levels help in maintaining the function of the striatonigral (direct) pathway. When both D3 and D4 type receptors were blocked, pallidonigral IPSCs increased in amplitude while striatonigral connections had no significant change, suggesting that tonic dopamine levels are repressing a powerful inhibition conveyed by pallidonigral synapses (a branch of the indirect pathway). We then blocked both D1- and D2-class receptors to acutely decrease direct pathway (striatonigral) and enhance indirect pathways (subthalamonigral and pallidonigral) synaptic force. The result was that most SNr projection neurons entered a recurrent bursting firing mode similar to that observed during Parkinsonism in both patients and animal models. These results raise the question as to whether the lack of dopamine in basal ganglia output nuclei is enough to generate some pathological signs of Parkinsonism. PMID:21347219

  20. Tamoxifen-inducible NaV1.8-CreERT2 recombinase activity in nociceptive neurons of dorsal root ganglia.

    PubMed

    Zhao, Jing; Nassar, Mohammed A; Gavazzi, Isabella; Wood, John N

    2006-08-01

    To explore the function of genes expressed in adult mouse nociceptive neurons, we generated heterozygous knock-in mice expressing the tamoxifen-inducible Cre recombinase construct CreERT2 downstream of the Na(V)1.8 promoter. CreERT2 encodes a Cre recombinase (Cre) fused to a mutant estrogen ligand-binding domain (ERT2) that requires the presence of tamoxifen for activity. We have previously shown that heterozygous Na(V)1.8-Cre mice will delete loxP flanked genes specifically in nociceptive sensory neurons from embryonic day 14. We therefore used the same strategy of homologous recombination and mouse generation, substituting the Cre cassette with CreERT2. No functional Cre recombinase activity was found in CreERT2 mice crossed with reporter mice in the absence of tamoxifen. We found that, as with Na(V)1.8-Cre mice, functional Cre recombinase was present in nociceptive sensory neurons after tamoxifen induction in vivo. However, the percentage of dorsal root ganglion (DRG) neurons expressing functional Cre activity was much reduced (<10% of the number found in the Na(V)1.8-Cre mouse). We also examined Cre recombinase activity in sensory neurons in culture. After treatment with 1 muM tamoxifen for 48 h, 15% of DRG neurons showed Cre activity. Na(V)1.8-CreERT2 animals may thus be useful for single cell studies of the functional consequences of gene ablation in culture, but are unlikely to be useful for behavioral studies. PMID:16850455

  1. Reduced GABAA Receptor α6 Expression in The Trigeminal Ganglion Enhanced Myofascial Nociceptive Response

    PubMed Central

    Kramer, P. R.; Bellinger, L. L.

    2013-01-01

    Activation of the GABAA receptor results in inhibition of neuronal activity. One subunit of this multi-subunit receptor termed alpha 6 (Gabrα6) contributed to inflammatory temporomandibular joint (TMJ) nociception but TMJ disorders often include myofascial pain. To address Gabrα6 role in myofascial pain we hypothesized that Gabrα6 has an inhibitory role in myofascial nociceptive responses similar to inflammatory TMJ arthritis. To test this hypothesis a, myofascial nociceptive response was induced by placing a ligature bilaterally on the tendon attachment of the anterior superficial part of a male rat's masseter muscle. Four days after ligature placement Gabrα6 expression was reduced by infusing the trigeminal ganglia (TG) with small interfering RNA (siRNA) having homology to either the Gabrα6 gene (Gabra6 siRNA) or no known gene (control siRNA). After siRNA infusion nociceptive behavioral responses were measured, i.e., feeding behavior and head withdrawal after pressing upon the region above the ligature with von Frey filaments. Neuronal activity in the TG and trigeminal nucleus caudalis and upper cervical region (Vc–C1) was measured by quantitating the amount of phosphorylated extracellular signalregulated kinase (p-ERK). Total Gabrα6 and GABAA receptor contents in the TG and Vc–C1 were determined. Gabrα6 siRNA infusion reduced Gabrα6 and GABAA receptor expression and significantly increased the nociceptive response in both nociceptive assays. Gabra6 siRNA infusion also significantly increased TG p-ERK expression of the ligated rats. From these results we conclude GABAA receptors consisting of the Gabrα6 subunit inhibit TG nociceptive sensory afferents in the trigeminal pathway and have an important role in the regulation of myofascial nociception. PMID:23602886

  2. An ionic current model for neurons in the rat medial nucleus tractus solitarii receiving sensory afferent input.

    PubMed Central

    Schild, J H; Khushalani, S; Clark, J W; Andresen, M C; Kunze, D L; Yang, M

    1993-01-01

    1. Neurons from a horizontal slice of adult rat brainstem were examined using intracellular recording techniques. Investigations were restricted to a region within the nucleus tractus solitarii, medial to the solitary tract and centred on the obex (mNTS). Previous work has shown this restricted area of the NTS to contain the greatest concentration of aortic afferent baroreceptor terminal fields. Electrical stimulation of the tract elicited short-latency excitatory postsynaptic potentials in all neurons. 2. mNTS neurons were spontaneously active with firing frequencies ranging between 1 and 10 Hz, at resting potentials of -65 to -45 mV. These neurons did not exhibit spontaneous bursting activity. 3. Depolarizing current injection immediately evoked a finite, high-frequency spike discharge which rapidly declined to a lower steady-state level (i.e. spike frequency adaptation, SFA). Increasing depolarizations produced a marked increase in the peak instantaneous frequency but a much smaller increase in the steady-state firing level. 4. Conditioning with a hyperpolarizing prepulse resulted in a prolonged delay of up to 600 ms before the first action potential (i.e. delayed excitation, DE) with an attendant decrease in peak discharge rates. DE was modulated by both the magnitude and duration of the prestimulus hyperpolarization, as well as the magnitude of the depolarizing stimulus. Tetrodotoxin (TTX) eliminated spike discharge but had little effect on the ramp-like membrane depolarization characteristic of DE. 5. We have developed a mathematical model for mNTS neurons to facilitate our understanding of the interplay between the underlying ionic currents. It consists of a comprehensive membrane model of the Hodgkin-Huxley type coupled with a fluid compartment model describing cytoplasmic [Ca2+]i homeostasis. 6. The model suggests that (a) SFA is caused by an increase in [Ca2+]i which activates the outward K+ current, IK,Ca, and (b) DE results from the competitive

  3. Sympathetic preganglionic efferent and afferent neurons mediated by the greater splanchnic nerve in rabbit

    NASA Technical Reports Server (NTRS)

    Torigoe, Yasuhiro; Cernucan, Roxana D.; Nishimoto, Jo Ann S.; Blanks, Robert H. I.

    1985-01-01

    As a part of the study of the vestibular-autonomic pathways involved in motion sickness, the location and the morphology of preganglionic sympathetic neurons (PSNs) projecting via the greater splanchnic nerve were examined. Retrograde labeling of neurons was obtained by application of horseradish peroxidase to the cut end of the greater splanchnic nerve. Labeled PSNs were found, ipsilaterally, within the T1 to T11 spinal cord segments, with the highest density of neurons in T6. Most PSNs were located within the intermediolateral column, but a significant portion also occurred within the lateral funiculus, the intercalated region, and the central autonomic area; the proportion of labeling between the four regions depended on the spinal cord segment.

  4. Optogenetic activation of septal GABAergic afferents entrains neuronal firing in the medial habenula

    PubMed Central

    Choi, Kyuhyun; Lee, Youngin; Lee, Changwoo; Hong, Seokheon; Lee, Soonje; Kang, Shin Jung; Shin, Ki Soon

    2016-01-01

    The medial habenula (MHb) plays an important role in nicotine-related behaviors such as nicotine aversion and withdrawal. The MHb receives GABAergic input from the medial septum/diagonal band of Broca (MS/DB), yet the synaptic mechanism that regulates MHb activity is unclear. GABA (γ -aminobutyric acid) is a major inhibitory neurotransmitter activating both GABAA receptors and GABAB receptors. Depending on intracellular chloride concentration, however, GABAA receptors also function in an excitatory manner. In the absence of various synaptic inputs, we found that MHb neurons displayed spontaneous tonic firing at a rate of about ~4.4 Hz. Optogenetic stimulation of MS/DB inputs to the MHb evoked GABAA receptor-mediated synaptic currents, which produced stimulus-locked neuronal firing. Subsequent delayed yet lasting activation of GABAB receptors attenuated the intrinsic tonic firing. Consequently, septal GABAergic input alone orchestrates both excitatory GABAA and inhibitory GABAB receptors, thereby entraining the firing of MHb neurons. PMID:27703268

  5. Mechanism of Ghrelin-Induced Gastric Contractions in Suncus murinus (House Musk Shrew): Involvement of Intrinsic Primary Afferent Neurons

    PubMed Central

    Mondal, Anupom; Aizawa, Sayaka; Sakata, Ichiro; Goswami, Chayon; Oda, Sen-ichi; Sakai, Takafumi

    2013-01-01

    Here, we have reported that motilin can induce contractions in a dose-dependent manner in isolated Suncus murinus (house musk shrew) stomach. We have also shown that after pretreatment with a low dose of motilin (10−10 M), ghrelin also induces gastric contractions at levels of 10−10 M to 10−7 M. However, the neural mechanism of ghrelin action in the stomach has not been fully revealed. In the present study, we studied the mechanism of ghrelin-induced contraction in vitro using a pharmacological method. The responses to ghrelin in the stomach were almost completely abolished by hexamethonium and were significantly suppressed by the administration of phentolamine, prazosin, ondansetron, and naloxone. Additionally, N-nitro-l-arginine methylester significantly potentiated the contractions. Importantly, the mucosa is essential for ghrelin-induced, but not motilin-induced, gastric contractions. To evaluate the involvement of intrinsic primary afferent neurons (IPANs), which are multiaxonal neurons that pass signals from the mucosa to the myenteric plexus, we examined the effect of the IPAN-related pathway on ghrelin-induced contractions and found that pretreatment with adenosine and tachykinergic receptor 3 antagonists (SR142801) significantly eliminated the contractions and GR113808 (5-hydroxytryptamine receptor 4 antagonist) almost completely eliminated it. The results indicate that ghrelin stimulates and modulates suncus gastric contractions through cholinergic, adrenergic, serotonergic, opioidergic neurons and nitric oxide synthases in the myenteric plexus. The mucosa is also important for ghrelin-induced gastric contractions, and IPANs may be the important interneurons that pass the signal from the mucosa to the myenteric plexus. PMID:23565235

  6. Estrogen and Visceral Nociception at the Level of Primary Sensory Neurons

    PubMed Central

    Chaban, Victor

    2012-01-01

    Clinical studies suggest the comorbidity of functional pain syndromes such as irritable bowel syndrome, painful bladder syndrome, chronic pelvic pain, and somatoform disorders approaches 40% to 60%. The incidence of episodic or persistent visceral pain associated with these “functional” disorders is two to three times higher in women than in men. One of the possible explanations for this phenomenon is estrogen modulation of viscerovisceral cross-sensitization. While a central site of this modulation has been shown previously, our studies suggest a peripheral site, the dorsal root ganglion (DRG). Estrogens have remarkably wide range of functions including modulation of voltage-gated calcium channels (VGCCs) and purinoreceptors (P2Xs). Significantly, inflammation dramatically alters purinoception by causing a several fold increase in ATP-activated current, alters the voltage dependence of P2X receptors, and enhances the expression of P2X receptors increasing neuronal hypersensitivity. Gonadal hormones are thought as indispensable cornerstones of the normal development and function, but it appears that no body region, no neuronal circuit, and virtually no cell is unaffected by them. Thus, increasing awareness toward estrogens appears to be obligatory. PMID:21984961

  7. Differential effects of GABA in modulating nociceptive vs. non-nociceptive synapses.

    PubMed

    Wang, Y; Summers, T; Peterson, W; Miiller, E; Burrell, B D

    2015-07-01

    GABA (γ-amino-butyric acid) -mediated signaling is normally associated with synaptic inhibition due to ionotropic GABA receptors that gate an inward Cl(-) current, hyperpolarizing the membrane potential. However, there are also situations where ionotropic GABA receptors trigger a Cl(-) efflux that results in depolarization. The well-characterized central nervous system of the medicinal leech was used to study the functional significance of opposing effects of GABA at the synaptic circuit level. Specifically, we focused on synapses made by the nociceptive N cell and the non-nociceptive P (pressure) cell that converge onto a common postsynaptic target. It is already known that GABA hyperpolarizes the P cell, but depolarizes the N cell and that inhibition of ionotropic GABA receptors by bicuculline (BIC) has opposing effects on the synapses made by these two inputs; enhancing P cell synaptic transmission, but depressing N cell synapses. The goal of the present study was to determine whether the opposing effects of GABA were due to differences in Cl(-) homeostasis between the two presynaptic neurons. VU 0240551 (VU), an inhibitor of the Cl(-) exporter K-Cl co-transporter isoform 2 (KCC2), attenuated GABA-mediated hyperpolarization of the non-nociceptive afferent while bumetanide (BUM), an inhibitor of the Cl(-) importer Na-K-Cl co-transporter isoform 1 (NKCC1), reduced GABA-mediated depolarization of the nociceptive neuron. VU treatment also enhanced P cell synaptic signaling, similar to the previously observed effects of BIC and consistent with the idea that GABA inhibits synaptic signaling at the presynaptic level. BUM treatment depressed N cell synapses, again similar to what is observed following BIC treatment and suggests that GABA has an excitatory effect on these synapses. The opposing effects of GABA could also be observed at the behavioral level with BIC and VU increasing responsiveness to non-nociceptive stimulation while BIC and BUM decreased responsiveness

  8. [Ultrastructure of afferent synapses on the ventral dendrite of mauthner neurons after goldfish adaptation to optokinetic stimulation].

    PubMed

    Mikheeva, I B; Shtanchaev, R Sh; Kokanova, N A; Mikhaĭlova, G Z; Bezgina, E N; Tiras, N P; Moshkov, D A

    2013-01-01

    Using the morphometric techniques, the ultrastructural changes of the afferent synapses on the ventral dendrite of the Mauthner neurons (MNs) were studied after the adaptation of goldfish to long-term fatiguing sensory (visual) stimulation, characterized by the growth of MN resistance. It was shown that after the adaptation, the length of active zones (AZs) in the synapses located on the MN ventral dendrite was significantly reduced by 23%. At the same time, the length the AZs of the excitatory visual synapses was reduced by 29% in comparison with the control, while the length of desmosome-like contacts (DLCs) bordering AZs was increased by 71%. It was also found that the length of AZs in the inhibitory synapses was decreased by 19% after the adaptation, which is consistent with the important role of inhibitory processes in the sensory pathways during the memory formation. Taking into account the actin nature of the DLCs, the basis of the adaptation to the visual stimulation is suggested to be in the presynaptic mechanism of neurotransmitter secretion regulation by actin.

  9. Modulation of the hyperpolarization-activated current (Ih) by cyclic nucleotides in guinea-pig primary afferent neurons.

    PubMed Central

    Ingram, S L; Williams, J T

    1996-01-01

    1. Whole-cell patch-clamp recordings were made from dissociated guinea-pig nodose and trigeminal ganglion neurons in culture to study second messenger mechanisms of the hyperpolarization-activated current (Ih) modulation. 2. Prostaglandin E2 (PGE2) and forskolin modulate Ih in primary afferents by shifting the activation curve in the depolarizing direction and increasing the maximum amplitude. 3. The cAMP analogues, RP-cAMP-S (an inhibitor of protein kinase A (PKA)) and SP-cAMP-S (an activator of PKA), both shifted the activation curve of Ih to more depolarized potentials and occluded the effects of forskolin. These results suggest that Ih is modulated by a direct action of the cAMP analogues. 4. Superfusion of other cyclic nucleotide analogues (8-Br-cAMP, 8-(4-chlorophenylthio)-cAMP and 8-Br-cGMP) mimicked the actions of forskolin and PGE2, but dibutyryl cGMP, 5'-AMP and adenosine had no effect on Ih. 8-Br-cAMP and 8-Br-cGMP had similar concentration response profiles, suggesting that Ih has little nucleotide selectivity. 5. The inhibitor peptide (PKI), the catalytic subunit of PKA (C subunit) and phosphatase inhibitors (microcystin and okadaic acid) had no effect on forskolin modulation of Ih. 6. These results indicate that Ih is regulated by cyclic nucleotides in sensory neurons. Positive regulation of Ih by prostaglandins produced during inflammation may lead to depolarization and facilitation of repetitive activity, and thus contribute to sensitization to painful stimuli. PMID:8730586

  10. Limb-state information encoded by peripheral and central somatosensory neurons: Implications for an afferent interface

    PubMed Central

    Weber, Douglas J.; London, Brian M.; Hokanson, James A.; Ayers, Christopher A.; Gaunt, Robert A.; Torres, Ricardo R.; Zaaimi, Boubker; Miller, Lee E.

    2013-01-01

    A major issue to be addressed in the development of neural interfaces for prosthetic control is the need for somatosensory feedback. Here, we investigate two possible strategies: electrical stimulation of either dorsal root ganglia (DRG) or primary somatosensory cortex (S1). In each approach, we must determine a model that reflects the representation of limb state in terms of neural discharge. This model can then be used to design stimuli that artificially activate the nervous system to convey information about limb state to the subject. Electrically activating DRG neurons using naturalistic stimulus patterns, modeled on recordings made during passive limb movement, evoked activity in S1 that was similar to that of the original movement. We also found that S1 neural populations could accurately discriminate different patterns of DRG stimulation across a wide range of stimulus pulse-rates. In studying the neural coding of limb-state in S1, we also decoded the kinematics of active limb movement using multi-electrode recordings in the monkey. Neurons having both proprioceptive and cutaneous receptive fields contributed equally to this decoding. Some neurons were most informative of limb state in the recent past, but many others appeared to signal upcoming movements suggesting that they also were modulated by an efference copy signal. Finally, we show that a monkey was able to detect stimulation through a large percentage of electrodes implanted in area 2. We discuss the design of appropriate stimulus paradigms for conveying time-varying limb state information, and the relative merits and limitations of central and peripheral approaches. PMID:21878419

  11. Pontomesencephalic Tegmental Afferents to VTA Non-dopamine Neurons Are Necessary for Appetitive Pavlovian Learning.

    PubMed

    Yau, Hau-Jie; Wang, Dong V; Tsou, Jen-Hui; Chuang, Yi-Fang; Chen, Billy T; Deisseroth, Karl; Ikemoto, Satoshi; Bonci, Antonello

    2016-09-01

    The ventral tegmental area (VTA) receives phenotypically distinct innervations from the pedunculopontine tegmental nucleus (PPTg). While PPTg-to-VTA inputs are thought to play a critical role in stimulus-reward learning, direct evidence linking PPTg-to-VTA phenotypically distinct inputs in the learning process remains lacking. Here, we used optogenetic approaches to investigate the functional contribution of PPTg excitatory and inhibitory inputs to the VTA in appetitive Pavlovian conditioning. We show that photoinhibition of PPTg-to-VTA cholinergic or glutamatergic inputs during cue presentation dampens the development of anticipatory approach responding to the food receptacle during the cue. Furthermore, we employed in vivo optetrode recordings to show that photoinhibition of PPTg cholinergic or glutamatergic inputs significantly decreases VTA non-dopamine (non-DA) neural activity. Consistently, photoinhibition of VTA non-DA neurons disrupts the development of cue-elicited anticipatory approach responding. Taken together, our study reveals a crucial regulatory mechanism by PPTg excitatory inputs onto VTA non-DA neurons during appetitive Pavlovian conditioning.

  12. Pontomesencephalic Tegmental Afferents to VTA Non-dopamine Neurons Are Necessary for Appetitive Pavlovian Learning.

    PubMed

    Yau, Hau-Jie; Wang, Dong V; Tsou, Jen-Hui; Chuang, Yi-Fang; Chen, Billy T; Deisseroth, Karl; Ikemoto, Satoshi; Bonci, Antonello

    2016-09-01

    The ventral tegmental area (VTA) receives phenotypically distinct innervations from the pedunculopontine tegmental nucleus (PPTg). While PPTg-to-VTA inputs are thought to play a critical role in stimulus-reward learning, direct evidence linking PPTg-to-VTA phenotypically distinct inputs in the learning process remains lacking. Here, we used optogenetic approaches to investigate the functional contribution of PPTg excitatory and inhibitory inputs to the VTA in appetitive Pavlovian conditioning. We show that photoinhibition of PPTg-to-VTA cholinergic or glutamatergic inputs during cue presentation dampens the development of anticipatory approach responding to the food receptacle during the cue. Furthermore, we employed in vivo optetrode recordings to show that photoinhibition of PPTg cholinergic or glutamatergic inputs significantly decreases VTA non-dopamine (non-DA) neural activity. Consistently, photoinhibition of VTA non-DA neurons disrupts the development of cue-elicited anticipatory approach responding. Taken together, our study reveals a crucial regulatory mechanism by PPTg excitatory inputs onto VTA non-DA neurons during appetitive Pavlovian conditioning. PMID:27568569

  13. Differential inhibitory control of semicircular canal nerve afferent-evoked inputs in second-order vestibular neurons by glycinergic and GABAergic circuits.

    PubMed

    Biesdorf, Stefan; Malinvaud, David; Reichenberger, Ingrid; Pfanzelt, Sandra; Straka, Hans

    2008-04-01

    Labyrinthine nerve-evoked monosynaptic excitatory postsynaptic potentials (EPSPs) in second-order vestibular neurons (2 degrees VN) sum with disynaptic inhibitory postsynaptic potentials (IPSPs) that originate from the thickest afferent fibers of the same nerve branch and are mediated by neurons in the ipsilateral vestibular nucleus. Pharmacological properties of the inhibition and the interaction with the afferent excitation were studied by recording monosynaptic responses of phasic and tonic 2 degrees VN in an isolated frog brain after electrical stimulation of individual semicircular canal nerves. Specific transmitter antagonists revealed glycine and GABA(A) receptor-mediated IPSPs with a disynaptic onset only in phasic but not in tonic 2 degrees VN. Compared with GABAergic IPSPs, glycinergic responses in phasic 2 degrees VN have larger amplitudes and a longer duration and reduce early and late components of the afferent nerve-evoked subthreshold activation and spike discharge. The difference in profile of the disynaptic glycinergic and GABAergic inhibition is compatible with the larger number of glycinergic as opposed to GABAergic terminal-like structures on 2 degrees VN. The increase in monosynaptic excitation after a block of the disynaptic inhibition in phasic 2 degrees VN is in part mediated by a N-methyl-d-aspartate receptor-activated component. Although inhibitory inputs were superimposed on monosynaptic EPSPs in tonic 2 degrees VN as well, the much longer latency of these IPSPs excludes a control by short-latency inhibitory feed-forward side-loops as observed in phasic 2 degrees VN. The differential synaptic organization of the inhibitory control of labyrinthine afferent signals in phasic and tonic 2 degrees VN is consistent with the different intrinsic signal processing modes of the two neuronal types and suggests a co-adaptation of intrinsic membrane properties and emerging network properties. PMID:18256163

  14. Inputs from regularly and irregularly discharging vestibular nerve afferents to secondary neurons in squirrel monkey vestibular nuclei. III. Correlation with vestibulospinal and vestibuloocular output pathways

    NASA Technical Reports Server (NTRS)

    Boyle, R.; Goldberg, J. M.; Highstein, S. M.

    1992-01-01

    1. A previous study measured the relative contributions made by regularly and irregularly discharging afferents to the monosynaptic vestibular nerve (Vi) input of individual secondary neurons located in and around the superior vestibular nucleus of barbiturate-anesthetized squirrel monkeys. Here, the analysis is extended to more caudal regions of the vestibular nuclei, which are a major source of both vestibuloocular and vestibulospinal pathways. As in the previous study, antidromic stimulation techniques are used to classify secondary neurons as oculomotor or spinal projecting. In addition, spinal-projecting neurons are distinguished by their descending pathways, their termination levels in the spinal cord, and their collateral projections to the IIIrd nucleus. 2. Monosynaptic excitatory postsynaptic potentials (EPSPs) were recorded intracellularly from secondary neurons as shocks of increasing strength were applied to Vi. Shocks were normalized in terms of the threshold (T) required to evoke field potentials in the vestibular nuclei. As shown previously, the relative contribution of irregular afferents to the total monosynaptic Vi input of each secondary neuron can be expressed as a %I index, the ratio (x100) of the relative sizes of the EPSPs evoked by shocks of 4 x T and 16 x T. 3. Antidromic stimulation was used to type secondary neurons as 1) medial vestibulospinal tract (MVST) cells projecting to spinal segments C1 or C6; 2) lateral vestibulospinal tract (LVST) cells projecting to C1, C6; or L1; 3) vestibulooculo-collic (VOC) cells projecting both to the IIIrd nucleus and by way of the MVST to C1 or C6; and 4) vestibuloocular (VOR) neurons projecting to the IIIrd nucleus but not to the spinal cord. Most of the neurons were located in the lateral vestibular nucleus (LV), including its dorsal (dLV) and ventral (vLV) divisions, and adjacent parts of the medial (MV) and descending nuclei (DV). Cells receiving quite different proportions of their direct inputs

  15. Differential ATF3 expression in dorsal root ganglion neurons reveals the profile of primary afferents engaged by diverse noxious chemical stimuli

    PubMed Central

    Bráz, João M.; Basbaum, Allan I.

    2010-01-01

    Although transgenic and knockout mice have helped delineate the mechanisms of action of diverse noxious compounds, it is still difficult to determine unequivocally the subpopulations of primary afferent nociceptor that these molecules engage. As most noxious stimuli lead to tissue and/or nerve injury, here we used induction of activating transcription factor 3 (ATF3), a reliable marker of nerve injury, to assess the populations of primary afferent fibers that are activated after peripheral administration of noxious chemical stimuli. In wild-type mice, hindpaw injections of capsaicin, formalin, mustard oil or menthol induce expression of ATF3 in distinct subpopulations of sensory neurons. Interestingly, even though these noxious chemicals are thought to act through subtypes of transient receptor potential (TRP) channels, all compounds also induced ATF3 in neurons that appear not to express the expected TRP channel subtypes. On the other hand, capsaicin failed to induce ATF3 in mice lacking TRPV1, indicating that TRPV1 is required for both the direct and indirect induction of ATF3 in sensory neurons. By contrast, only low doses of formalin or mustard oil failed to induce ATF3 in TRPA1 null mice, indicating that injections of high doses (>0.5%) of formalin or mustard oil recruit both TRPA1 and non-TRPA1 expressing primary afferent fibers. Finally, peripheral injection of menthol, a TRPM8 receptor agonist, induced ATF3 in a wide variety of sensory neurons, but in a TRPM8-independent manner. We conclude that purportedly selective agonists can activate a heterogeneous population of sensory neurons, which ultimately could contribute to the behavioral responses evoked. PMID:20605331

  16. trkA is expressed in nociceptive neurons and influences electrophysiological properties via Nav1.8 expression in rapidly conducting nociceptors.

    PubMed

    Fang, Xin; Djouhri, Laiche; McMullan, Simon; Berry, Carol; Okuse, Kenji; Waxman, Stephen G; Lawson, Sally N

    2005-05-11

    To test the hypothesis that trkA (the high-affinity NGF receptor) is selectively expressed in nociceptive dorsal root ganglion (DRG) neurons, we examined the intensity of trkA immunoreactivity in single dye-injected rat DRG neurons, the sensory receptor properties of which were identified in vivo with mechanical and thermal stimuli. We provide the first evidence in single identified neurons that strong trkA expression in DRGs is restricted to nociceptive neurons, probably accounting for the profound influence of NGF on these neurons. Furthermore, we demonstrate that trkA expression is as high in rapidly conducting (Aalpha/beta) as in more slowly conducting (Adelta and C) nociceptors. All Aalpha/beta low-threshold mechanoreceptors (LTMs) are trkA negative, although weak but detectable trkA is present in some C and Adelta LTMs. NGF can influence electrophysiological properties of DRG neurons, probably by binding to trkA. We found positive correlations for single identified Aalpha/beta (but not C or Adelta) nociceptors between trkA immunocytochemical intensity and electrophysiological properties typical of nociceptors, namely long action potential and afterhyperpolarization durations and large action potential amplitudes. Furthermore, for Aalpha/beta (notCorAdelta) nociceptors, trkA intensity is inversely correlated with conduction velocity. Similar relationships, again only in Aalpha/beta nociceptors, between electrophysiological properties and trkA expression exist for sodium channel Nav1.8 but not Nav1.9 immunoreactivities. These findings suggest that in Aalpha/beta nociceptors, influences of NGF on expression levels of Nav1.8 are related to, and perhaps limited by, expression levels of trkA. This view is supported by a positive correlation between immuno-intensities of trkA and Nav1.8 in A-fiber, but not C-fiber, nociceptors. PMID:15888662

  17. Redox-Dependent Modulation of T-Type Ca2+ Channels in Sensory Neurons Contributes to Acute Anti-Nociceptive Effect of Substance P

    PubMed Central

    Huang, Dongyang; Huang, Sha; Gao, Haixia; Liu, Yani; Qi, Jinlong; Chen, Pingping; Wang, Caixue; Scragg, Jason L.; Vakurov, Alexander; Peers, Chris; Du, Xiaona

    2016-01-01

    Abstract Aims: Neuropeptide substance P (SP) is produced and released by a subset of peripheral sensory neurons that respond to tissue damage (nociceptors). SP exerts excitatory effects in the central nervous system, but peripheral SP actions are still poorly understood; therefore, here, we aimed at investigating these peripheral mechanisms. Results: SP acutely inhibited T-type voltage-gated Ca2+ channels in nociceptors. The effect was mediated by neurokinin 1 (NK1) receptor-induced stimulation of intracellular release of reactive oxygen species (ROS), as it can be prevented or reversed by the reducing agent dithiothreitol and mimicked by exogenous or endogenous ROS. This redox-mediated T-type Ca2+ channel inhibition operated through the modulation of CaV3.2 channel sensitivity to ambient zinc, as it can be prevented or reversed by zinc chelation and mimicked by exogenous zinc. Elimination of the zinc-binding site in CaV3.2 rendered the channel insensitive to SP-mediated inhibition. Importantly, peripherally applied SP significantly reduced bradykinin-induced nociception in rats in vivo; knock-down of CaV3.2 significantly reduced this anti-nociceptive effect. This atypical signaling cascade shared the initial steps with the SP-mediated augmentation of M-type K+ channels described earlier. Innovation: Our study established a mechanism underlying the peripheral anti-nociceptive effect of SP whereby this neuropeptide produces ROS-dependent inhibition of pro-algesic T-type Ca2+ current and concurrent enhancement of anti-algesic M-type K+ current. These findings will lead to a better understanding of mechanisms of endogenous analgesia. Conclusion: SP modulates T-type channel activity in nociceptors by a redox-dependent tuning of channel sensitivity to zinc; this novel modulatory pathway contributes to the peripheral anti-nociceptive effect of SP. Antioxid. Redox Signal. 25, 233–251. PMID:27306612

  18. KCa1.1 is potential marker for distinguishing Ah-type baroreceptor neurons in NTS and contributes to sex-specific presynaptic neurotransmission in baroreflex afferent pathway.

    PubMed

    Zhang, Yu-Yao; Yan, Zhen-Yu; Qu, Mei-Yu; Guo, Xin-Jing; Li, Guo; Lu, Xiao-Long; Liu, Yang; Ban, Tao; Sun, Hong-Li; Qiao, Guo-Fen; Li, Bai-Yan

    2015-09-14

    Sexual-dimorphic neurocontrol of circulation has been described in baroreflex due largely to the function of myelinated Ah-type baroreceptor neurons (BRNs, 1st-order) in nodose. However, it remains unclear if sex- and afferent-specific neurotransmission could also be observed in the central synapses within nucleus of solitary track (NTS, 2nd-order). According to the principle of no mixed neurotransmission among afferents and differentiation of Ah- and A-types to iberiotoxin (IbTX) observed in nodose, the 2nd-order Ah-type BRNs are highly expected. To test this hypothesis, the excitatory post-synaptic currents (EPSCs) were recorded in identified 2nd-order BRNs before and after IbTX using brain slice and whole-cell patch. These results showed that, in male rats, the dynamics of EPSCs in capsaicin-sensitive C-types were dramatically altered by IbTX, but not in capsaicin-insensitive A-types. Interestingly, near 50% capsaicin-insensitive neurons in females showed similar effects to C-types, suggesting the existence of Ah-types in NTS, which may be the likely reason why the females had lower blood pressure and higher sensitivity to aortic depressor nerve stimulation via KCa1.1-mediated presynaptic glutamate release from Ah-type afferent terminals.

  19. Molecular architecture of endocannabinoid signaling at nociceptive synapses mediating analgesia.

    PubMed

    Nyilas, Rita; Gregg, Laura C; Mackie, Ken; Watanabe, Masahiko; Zimmer, Andreas; Hohmann, Andrea G; Katona, István

    2009-05-01

    Cannabinoid administration suppresses pain by acting at spinal, supraspinal and peripheral levels. Intrinsic analgesic pathways also exploit endocannabinoids; however, the underlying neurobiological substrates of endocannabinoid-mediated analgesia have remained largely unknown. Compelling evidence shows that, upon exposure to a painful environmental stressor, an endocannabinoid molecule called 2-arachidonoylglycerol (2-AG) is mobilized in the lumbar spinal cord in temporal correlation with stress-induced antinociception. We therefore characterized the precise molecular architecture of 2-AG signaling and its involvement in nociception in the rodent spinal cord. Nonradioactive in situ hybridization revealed that dorsal horn neurons widely expressed the mRNA of diacylglycerol lipase-alpha (DGL-alpha), the synthesizing enzyme of 2-AG. Peroxidase-based immunocytochemistry demonstrated high levels of DGL-alpha protein and CB(1) cannabinoid receptor, a receptor for 2-AG, in the superficial dorsal horn, at the first site of modulation of the ascending pain pathway. High-resolution electron microscopy uncovered postsynaptic localization of DGL-alpha at nociceptive synapses formed by primary afferents, and revealed presynaptic positioning of CB(1) on excitatory axon terminals. Furthermore, DGL-alpha in postsynaptic elements receiving nociceptive input was colocalized with metabotropic glutamate receptor 5 (mGluR(5)), whose activation induces 2-AG biosynthesis. Finally, intrathecal activation of mGluR(5) at the lumbar level evoked endocannabinoid-mediated stress-induced analgesia through the DGL-2-AG-CB(1) pathway. Taken together, these findings suggest a key role for 2-AG-mediated retrograde suppression of nociceptive transmission at the spinal level. The striking positioning of the molecular players of 2-AG synthesis and action at nociceptive excitatory synapses suggests that pharmacological manipulation of spinal 2-AG levels may be an efficacious way to regulate pain

  20. An In Vitro Adult Mouse Muscle-nerve Preparation for Studying the Firing Properties of Muscle Afferents

    PubMed Central

    Franco, Joy A.; Kloefkorn, Heidi E.; Hochman, Shawn; Wilkinson, Katherine A.

    2014-01-01

    Muscle sensory neurons innervating muscle spindles and Golgi tendon organs encode length and force changes essential to proprioception. Additional afferent fibers monitor other characteristics of the muscle environment, including metabolite buildup, temperature, and nociceptive stimuli. Overall, abnormal activation of sensory neurons can lead to movement disorders or chronic pain syndromes. We describe the isolation of the extensor digitorum longus (EDL) muscle and nerve for in vitro study of stretch-evoked afferent responses in the adult mouse. Sensory activity is recorded from the nerve with a suction electrode and individual afferents can be analyzed using spike sorting software. In vitro preparations allow for well controlled studies on sensory afferents without the potential confounds of anesthesia or altered muscle perfusion. Here we describe a protocol to identify and test the response of muscle spindle afferents to stretch. Importantly, this preparation also supports the study of other subtypes of muscle afferents, response properties following drug application and the incorporation of powerful genetic approaches and disease models in mice. PMID:25285602

  1. Ketamine-mediated afferent-specific presynaptic transmission blocks in low-threshold and sex-specific subpopulation of myelinated Ah-type baroreceptor neurons of rats

    PubMed Central

    Wu, Di; Yin, Lei; Fan, Yao; Wang, Ye; Chen, Wei-Ran; Chen, Pei; Liu, Yang; Lu, Xiao-Long; Sun, Hong-Li; Shou, Weinian; Qiao, Guo-Fen; Li, Bai-Yan

    2015-01-01

    Background Ketamine enhances autonomic activity, and unmyelinated C-type baroreceptor afferents are more susceptible to be blocked by ketamine than myelinated A-types. However, the presynaptic transmission block in low-threshold and sex-specific myelinated Ah-type baroreceptor neurons (BRNs) is not elucidated. Methods Action potentials (APs) and excitatory post-synaptic currents (EPSCs) were investigated in BRNs/barosensitive neurons identified by conduction velocity (CV), capsaicin-conjugated with Iberiotoxin-sensitivity and fluorescent dye using intact nodose slice and brainstem slice in adult female rats. The expression of mRNA and targeted protein for NMDAR1 was also evaluated. Results Ketamine time-dependently blocked afferent CV in Ah-types in nodose slice with significant changes in AP discharge. The concentration-dependent inhibition of ketamine on AP discharge profiles were also assessed and observed using isolated Ah-type BRNs with dramatic reduction in neuroexcitability. In brainstem slice, the 2nd-order capsaicin-resistant EPSCs were identified and ∼50% of them were blocked by ketamine concentration-dependently with IC50 estimated at 84.4 μM compared with the rest (708.2 μM). Interestingly, the peak, decay time constant, and area under curve of EPSCs were significantly enhanced by 100 nM iberiotoxin in ketamine-more sensitive myelinated NTS neurons (most likely Ah-types), rather than ketamine-less sensitive ones (A-types). Conclusions These data have demonstrated, for the first time, that low-threshold and sex-specific myelinated Ah-type BRNs in nodose and Ah-type barosensitive neurons in NTS are more susceptible to ketamine and may play crucial roles in not only mean blood pressure regulation but also buffering dynamic changes in pressure, as well as the ketamine-mediated cardiovascular dysfunction through sexual-dimorphic baroreflex afferent pathway. PMID:26675761

  2. Effects of afferent volleys from the limbs on the discharge patterns of interpositus neurones in cats anaesthetized with alpha-chloralose.

    PubMed Central

    Armstrong, D M; Cogdell, B; Harvey, R

    1975-01-01

    that the short latency responses of the interpositus neurones were a result of synaptic excitation via cerebellar afferents, while the ensuing inhibition was a result of post-synaptic inhibition resulting from the Purkinje cell excitation due to the afferent volleys. It is suggested that the long latency excitation is due to the afferent volleys. It is suggested that the long latency excitation is due at least in part to disinhibition resulting from long pauses in Purkinje cell firing following their activation by climbing fibre afferents. 9. The possibility that these long latency responses have a physiological significance in relation to locomotion is discussed. PMID:1151794

  3. Hydrogen sulfide prevents ethanol-induced gastric damage in mice: role of ATP-sensitive potassium channels and capsaicin-sensitive primary afferent neurons.

    PubMed

    Medeiros, Jand Venes R; Bezerra, Víctor H; Gomes, Antoniella S; Barbosa, André Luiz R; Lima-Júnior, Roberto César P; Soares, Pedro Marcos G; Brito, Gerly Anne C; Ribeiro, Ronaldo A; Cunha, Fernando Q; Souza, Marcellus H L P

    2009-09-01

    The aim of this study was to evaluate the protective effect of hydrogen sulfide (H(2)S) on ethanol-induced gastric lesions in mice and the influence of ATP-sensitive potassium (K(ATP)) channels, capsaicin-sensitive sensory afferent neurons, and transient receptor potential vanilloid (TRPV) 1 receptors on such an effect. Saline and L-cysteine alone or with propargylglycine, sodium hydrogen sulfide (NaHS), or Lawesson's reagent were administrated for testing purposes. For other experiments, mice were pretreated with glibenclamide, neurotoxic doses of capsaicin, or capsazepine. Afterward, mice received L-cysteine, NaHS, or Lawesson's reagent. After 30 min, 50% ethanol was administrated by gavage. After 1 h, mice were sacrificed, and gastric damage was evaluated by macroscopic and microscopic analyses. L-cysteine, NaHS, and Lawesson's reagent treatment prevented ethanol-induced macroscopic and microscopic gastric damage in a dose-dependent manner. Administration of propargylglycine, an inhibitor of endogenous H(2)S synthesis, reversed gastric protection induced by L-cysteine. Glibenclamide reversed L-cysteine, NaHS, or Lawesson's reagent gastroprotective effects against ethanol-induced macroscopic damage in a dose-dependent manner. Chemical ablation of sensory afferent neurons by capsaicin reversed gastroprotective effects of L-cysteine or H(2)S donors (NaHS or Lawesson's reagent) in ethanol-induced macroscopic gastric damage. Likewise, in the presence of the TRPV1 antagonist capsazepine, the gastroprotective effects of L-cysteine, NaHS, or Lawesson's reagent were also abolished. Our results suggest that H(2)S prevents ethanol-induced gastric damage. Although there are many mechanisms through which this effect can occur, our data support the hypothesis that the activation of K(ATP) channels and afferent neurons/TRPV1 receptors is of primary importance. PMID:19491326

  4. Involvement of afferent neurons in the pathogenesis of endotoxin-induced ileus in mice: role of CGRP and TRPV1 receptors.

    PubMed

    De Winter, Benedicte Y; Bredenoord, Albert J; Van Nassauw, Luc; De Man, Joris G; De Schepper, Heiko U; Timmermans, Jean-Pierre; Pelckmans, Paul A

    2009-08-01

    Activation of neuronal reflex pathways by inflammatory mediators is postulated as an important pathogenic mechanism in postoperative ileus. In this study, we investigated the involvement of afferent neurons and more specifically the role of the transient receptor potential vanilloid receptor type 1 (TRPV1) and calcitonin gene-related peptide (CGRP) in endotoxin-induced motility disturbances in mice. Mice were injected with either lipopolysaccharides (LPS) or saline (control) and pre-treated with hexamethonium (blocker of neuronal transmission), capsaicin (neurotoxin), CGRP 8-37 (CGRP antagonist) or BCTC (TRPV1 receptor antagonist). We measured gastric emptying and intestinal transit of Evans blue next to rectal temperature and a global sickness behaviour scale. In vehicle-treated mice, LPS significantly delayed gastric emptying, small intestinal transit and rectal temperature while the sickness behaviour scale was increased. Hexamethonium, capsaicin, CGRP8-37 and BCTC all reversed the endotoxin-induced delay in gastric emptying and significantly reduced the delay in intestinal transit without effect on the endotoxin-induced decrease in rectal temperature and increase in sickness behaviour scale. Our findings provide evidence for the involvement of afferent nerves in the pathogenesis of endotoxin-induced motility disturbances in mice mediated via CGRP and TRPV1 receptors. Blockade of CGRP and TRPV1 receptors may offer a novel strategy for the treatment of endotoxin-induced ileus.

  5. Neutralization of nerve growth factor induces plasticity of ATP-sensitive P2X3 receptors of nociceptive trigeminal ganglion neurons.

    PubMed

    D'Arco, Marianna; Giniatullin, Rashid; Simonetti, Manuela; Fabbro, Alessandra; Nair, Asha; Nistri, Andrea; Fabbretti, Elsa

    2007-08-01

    The molecular mechanisms of migraine pain are incompletely understood, although migraine mediators such as NGF and calcitonin gene-related peptide (CGRP) are believed to play an algogenic role. Although NGF block is proposed as a novel analgesic approach, its consequences on nociceptive purinergic P2X receptors of trigeminal ganglion neurons remain unknown. We investigated whether neutralizing NGF might change the function of P2X3 receptors natively coexpressed with NGF receptors on cultured mouse trigeminal neurons. Treatment with an NGF antibody (24 h) decreased P2X3 receptor-mediated currents and Ca2+ transients, an effect opposite to exogenously applied NGF. Recovery from receptor desensitization was delayed by anti-NGF treatment without changing desensitization onset. NGF neutralization was associated with decreased threonine phosphorylation of P2X3 subunits, presumably accounting for their reduced responses and slower recovery. Anti-NGF treatment could also increase the residual current typical of heteromeric P2X2/3 receptors, consistent with enhanced membrane location of P2X2 subunits. This possibility was confirmed with cross-linking and immunoprecipitation studies. NGF neutralization also led to increased P2X2e splicing variant at mRNA and membrane protein levels. These data suggest that NGF controlled plasticity of P2X3 subunits and their membrane assembly with P2X2 subunits. Despite anti-NGF treatment, CGRP could still enhance P2X3 receptor activity, indicating separate NGF- or CGRP-mediated mechanisms to upregulate P2X3 receptors. In an in vivo model of mouse trigeminal pain, anti-NGF pretreatment suppressed responses evoked by P2X3 receptor activation. Our findings outline the important contribution by NGF signaling to nociception of trigeminal sensory neurons, which could be counteracted by anti-NGF pretreatment.

  6. Extracellular matrix proteoglycan plays a pivotal role in sensitization by low pH of mechanosensitive currents in nociceptive sensory neurones

    PubMed Central

    Kubo, Asako; Katanosaka, Kimiaki; Mizumura, Kazue

    2012-01-01

    Ischaemia, inflammation, and exercise lead to tissue acidosis, which induces pain and mechanical hyperalgesia. Corresponding to this, enhanced thin-fibre afferent responses to mechanical stimulation have been recorded in vitro at low pH. However, knowledge about how this sensitization by low pH occurs is lacking. In this study, we found that all three types (rapidly adapting (RA), intermediately adapting and slowly adapting) of mechanically activated currents recorded with the whole cell patch-clamp method were sensitized by low pH in rat cultured dorsal root ganglion neurones. This sensitization was mainly observed in neurones positively labelled with isolectin B4 (IB4), which binds to versican, a chondroitin sulfate proteoglycan. Inhibitors of acid-sensitive channels (amiloride and capsazepine) did not block sensitization by low pH except in RA neurones, and extracellular calcium was not involved even in the sensitization of this type of neurone. A broad spectrum kinase inhibitor and a phospholipase C inhibitor (staurosporine and U73122) failed to block pH-induced sensitization in IB4-positive neurones, suggesting that these intracellular signalling pathways are not involved. Notably, both excess chondroitin sulfate in the extracellular solution and pretreatment of the neurone culture with chondroitinase ABC attenuated this low pH-induced sensitization in IB4-positive neurones. These findings suggest that a change in interaction between mechanosensitive channels and/or their auxiliary molecules and the side chain of versican on the cell surface causes this sensitization, at least in IB4-positive neurones. This report proposes a novel mechanism for sensitization that involves extracellular proteoglycans (versican). PMID:22570376

  7. Experimental and computational evidence for an essential role of NaV1.6 in spike initiation at stretch-sensitive colorectal afferent endings.

    PubMed

    Feng, Bin; Zhu, Yi; La, Jun-Ho; Wills, Zachary P; Gebhart, G F

    2015-04-01

    Stretch-sensitive afferents comprise ∼33% of the pelvic nerve innervation of mouse colorectum, which are activated by colorectal distension and encode visceral nociception. Stretch-sensitive colorectal afferent endings respond tonically to stepped or ramped colorectal stretch, whereas dissociated colorectal dorsal root ganglion neurons generally fail to spike repetitively upon stepped current stimulation. The present study investigated this difference in the neural encoding characteristics between the soma and afferent ending using pharmacological approaches in an in vitro mouse colon-nerve preparation and complementary computational simulations. Immunohistological staining and Western blots revealed the presence of voltage-gated sodium channel (NaV) 1.6 and NaV1.7 at sensory neuronal endings in mouse colorectal tissue. Responses of stretch-sensitive colorectal afferent endings were significantly reduced by targeting NaV1.6 using selective antagonists (μ-conotoxin GIIIa and μ-conotoxin PIIIa) or tetrodotoxin. In contrast, neither selective NaV1.8 (A803467) nor NaV1.7 (ProTX-II) antagonists attenuated afferent responses to stretch. Computational simulation of a colorectal afferent ending that incorporated independent Markov models for NaV1.6 and NaV1.7, respectively, recapitulated the experimental findings, suggesting a necessary role for NaV1.6 in encoding tonic spiking by stretch-sensitive afferents. In addition, computational simulation of a dorsal root ganglion soma showed that, by adding a NaV1.6 conductance, a single-spiking neuron was converted into a tonic spiking one. These results suggest a mechanism/channel to explain the difference in neural encoding characteristics between afferent somata and sensory endings, likely caused by differential expression of ion channels (e.g., NaV1.6) at different parts of the neuron. PMID:25652923

  8. Experimental and computational evidence for an essential role of NaV1.6 in spike initiation at stretch-sensitive colorectal afferent endings

    PubMed Central

    Zhu, Yi; La, Jun-Ho; Wills, Zachary P.; Gebhart, G. F.

    2015-01-01

    Stretch-sensitive afferents comprise ∼33% of the pelvic nerve innervation of mouse colorectum, which are activated by colorectal distension and encode visceral nociception. Stretch-sensitive colorectal afferent endings respond tonically to stepped or ramped colorectal stretch, whereas dissociated colorectal dorsal root ganglion neurons generally fail to spike repetitively upon stepped current stimulation. The present study investigated this difference in the neural encoding characteristics between the soma and afferent ending using pharmacological approaches in an in vitro mouse colon-nerve preparation and complementary computational simulations. Immunohistological staining and Western blots revealed the presence of voltage-gated sodium channel (NaV) 1.6 and NaV1.7 at sensory neuronal endings in mouse colorectal tissue. Responses of stretch-sensitive colorectal afferent endings were significantly reduced by targeting NaV1.6 using selective antagonists (μ-conotoxin GIIIa and μ-conotoxin PIIIa) or tetrodotoxin. In contrast, neither selective NaV1.8 (A803467) nor NaV1.7 (ProTX-II) antagonists attenuated afferent responses to stretch. Computational simulation of a colorectal afferent ending that incorporated independent Markov models for NaV1.6 and NaV1.7, respectively, recapitulated the experimental findings, suggesting a necessary role for NaV1.6 in encoding tonic spiking by stretch-sensitive afferents. In addition, computational simulation of a dorsal root ganglion soma showed that, by adding a NaV1.6 conductance, a single-spiking neuron was converted into a tonic spiking one. These results suggest a mechanism/channel to explain the difference in neural encoding characteristics between afferent somata and sensory endings, likely caused by differential expression of ion channels (e.g., NaV1.6) at different parts of the neuron. PMID:25652923

  9. Neural responses from the filiform receptor neuron afferents of the wind-sensitive cercal system in three cockroach species.

    PubMed

    Olsen, Anne C K; Triblehorn, Jeffrey D

    2014-09-01

    The wind-sensitive insect cercal system is involved in many important behaviors, such as initiating terrestrial escape responses and providing sensory feedback during flight. The occurrence of these behaviors vary in cockroach species Periplaneta americana (strong terrestrial response and flight), Blaberus craniifer (weak terrestrial response and flight), and Gromphodorhina portentosa (no terrestrial response and no flight). A previous study focusing on wind-sensitive interneuron (WSI) responses demonstrated that variations in sensory processing of wind information accompany these behavioral differences. In this study, we recorded extracellularly from the cercal nerve to characterize filiform afferent population responses to different wind velocities to investigate how sensory processing differs across these species at the initial encoding of wind. We compared these results and responses from the WSI population to examine information transfer at the first synapse. Our main results were: (1) G. portentosa had the weakest responses of the three species over the stimulus duration and possessed the smallest cerci with the least filiform hair receptors of the three species; (2) B. craniifer filiform responses were similar to or greater than P. americana responses even though B. craniifer possessed smaller cerci with less filiform hair receptors than P. americana; (3) the greater filiform afferent responses in B. craniifer, including a larger amplitude second positive peak compared to the other two species, suggest more synchronous activity between filiform afferents in this species; (4) the transfer of information at the first synapse appears to be similar in both P. americana and G. portentosa, but different in B. craniifer.

  10. Neural responses from the filiform receptor neuron afferents of the wind-sensitive cercal system in three cockroach species

    PubMed Central

    Olsen, Anne C.K.; Triblehorn, Jeffrey D.

    2014-01-01

    The wind-sensitive insect cercal system is involved in many important behaviors, such as initiating terrestrial escape responses and providing sensory feedback during flight. The occurrence of these behaviors vary in cockroach species Periplaneta americana (strong terrestrial response and flight), Blaberus craniifer (weak terrestrial response and flight), and Gromphodorhina portentosa (no terrestrial response and no flight). A previous study focusing on wind-sensitive interneuron (WSI) responses demonstrated that variations in sensory processing of wind information accompany these behavioral differences. In this study, we recorded extracellurlarly from the cercal nerve to characterize filiform afferent population responses to different wind velocities to investigate how sensory processing differs across these species at the initial encoding of wind. We compared these results and responses from the WSI population to examine information transfer at the first synapse. Our main results were: 1) G portentosa had the weakest responses of the three species over the stimulus duration and possessed the smallest cerci with the least filiform hair receptors of the three species; 2) B. craniifer filiform responses were similar to or greater than P. americana responses even though B. craniifer possessed smaller cerci with less filiform hair receptors than P. americana; 3) the greater filiform afferent responses in B. craniifer, including a larger amplitude second positive peak compared to the other two species, suggest more synchronous activity between filiform afferents in this species; 4) the transfer of information at the first synapse appears to be similar in both P. americana and G. portentosa, but different in B. craniifer. PMID:25046275

  11. Activation of μ-opioid receptors inhibits calcium-currents in the vestibular afferent neurons of the rat through a cAMP dependent mechanism

    PubMed Central

    Seseña, Emmanuel; Vega, Rosario; Soto, Enrique

    2014-01-01

    Opioid receptors are expressed in the vestibular endorgans (afferent neurons and hair cells) and are activated by the efferent system, which modulates the discharge of action potentials in vestibular afferent neurons (VANs). In mammals, VANs mainly express the μ opioid-receptor, but the function of this receptors activation and the cellular mechanisms by which they exert their actions in these neurons are poorly studied. To determine the actions of μ opioid receptor (MOR) and cell signaling mechanisms in VANs, we made perforated patch-clamp recordings of VANs that were obtained from postnatal days 7 to 10 (P7–10) rats and then maintained in primary culture. The MOR agonist [D-Ala2, N-Me-Phe4, Gly5-ol]-enkephalin (DAMGO) inhibited the total voltage-gated outward current; this effect was prevented by the perfusion of a Ca2+-free extracellular solution. We then studied the voltage-gated calcium current (Ica) and found that DAMGO Met-enkephalin or endomorphin-1 inhibited the ICa in a dose-response fashion. The effects of DAMGO were prevented by the MOR antagonist (CTAP) or by pertussis toxin (PTX). The use of specific calcium channel blockers showed that MOR activation inhibited T-, L- and N-type ICa. The use of various enzyme activators and inhibitors and of cAMP analogs allowed us to demonstrate that the MOR acts through a cAMP dependent signaling mechanism. In current clamp experiments, MOR activation increased the duration and decreased the amplitude of the action potentials and modulated the discharge produced by current injection. Pre-incubation with PTX occluded MOR activation effect. We conclude that MOR activation inhibits the T-, L- and N-type ICa through activation of a Gαi/o protein that involves a decrease in AC-cAMP-PKA activity. The modulation of ICa may have an impact on the synaptic integration, excitability, and neurotransmitter release from VANs. PMID:24734002

  12. Expression and function of a CP339,818-sensitive K⁺ current in a subpopulation of putative nociceptive neurons from adult mouse trigeminal ganglia.

    PubMed

    Sforna, Luigi; D'Adamo, Maria Cristina; Servettini, Ilenio; Guglielmi, Luca; Pessia, Mauro; Franciolini, Fabio; Catacuzzeno, Luigi

    2015-04-01

    Trigeminal ganglion (TG) neurons are functionally and morphologically heterogeneous, and the molecular basis of this heterogeneity is still not fully understood. Here we describe experiments showing that a subpopulation of neurons expresses a delayed-rectifying K(+) current (IDRK) with a characteristically high (nanomolar) sensitivity to the dihydroquinoline CP339,818 (CP). Although submicromolar CP has previously been shown to selectively block Kv1.3 and Kv1.4 channels, the CP-sensitive IDRK found in TG neurons could not be associated with either of these two K(+) channels. It could neither be associated with Kv2.1 channels homomeric or heteromerically associated with the Kv9.2, Kv9.3, or Kv6.4 subunits, whose block by CP, tested using two-electrode voltage-clamp recordings from Xenopus oocytes, resulted in the low micromolar range, nor to the Kv7 subfamily, given the lack of blocking efficacy of 3 μM XE991. Within the group of multiple-firing neurons considered in this study, the CP-sensitive IDRK was preferentially expressed in a subpopulation showing several nociceptive markers, such as small membrane capacitance, sensitivity to capsaicin, and slow afterhyperpolarization (AHP); in these neurons the CP-sensitive IDRK controls the membrane resting potential, the firing frequency, and the AHP duration. A biophysical study of the CP-sensitive IDRK indicated the presence of two kinetically distinct components: a fast deactivating component having a relatively depolarized steady-state inactivation (IDRKf) and a slow deactivating component with a more hyperpolarized V1/2 for steady-state inactivation (IDRKs).

  13. GABA acting on GABAB receptors located in a medullary pain facilitatory area enhances nociceptive behaviors evoked by intraplantar formalin injection.

    PubMed

    Martins, Isabel; Carvalho, Paulina; de Vries, Martin G; Teixeira-Pinto, Armando; Wilson, Steven P; Westerink, Ben H C; Tavares, Isaura

    2015-08-01

    The dorsal reticular nucleus (DRt) plays a key role in facilitation of nociceptive transmission at the spinal cord. In this study, we evaluated the mechanisms involved in GABA-mediated control of the DRt focusing on the role of local GABAB receptors. First, we used in vivo microdialysis to study the release of GABA in the DRt during the course of the formalin test. An increase of GABA levels in comparison with baseline values was detected in the second phase of the test. Because we previously showed that GABAB receptors are expressed by opioidergic DRt neurons, which respond to nociceptive stimuli and inhibit spinally projecting DRt neurons involved in descending pronociception, we then interfered with local GABAB receptors using gene transfer and pharmacological approaches. Lentiviral-mediated knockdown of GABAB1a expression decreased nociceptive responses during the second phase of the test. Local administration of the GABAB receptor antagonist CGP 35348 also decreased nociceptive responses in the second phase of the test, whereas the opposite was detected after injection of the GABAB agonist baclofen. Finally, we determined the GABAergic afferents of the DRt, namely those arising from its main brain afferents, which are located at the telencephalon and diencephalon. For that purpose, we combined retrograde tract-tracing from the DRt with immunodetection of glutamate decarboxylase, the GABA-synthesizing enzyme. The higher numbers of retrogradely labelled glutamate decarboxylase-immunoreactive neurons were located at insular, somatosensory, and motor cortices. Collectively, the results suggest that GABA acting on GABAB receptors may enhance pain facilitation from the DRt during inflammatory pain.

  14. Maresin 1 Inhibits TRPV1 in Temporomandibular Joint-Related Trigeminal Nociceptive Neurons and TMJ Inflammation-Induced Synaptic Plasticity in the Trigeminal Nucleus

    PubMed Central

    Park, Chul-Kyu

    2015-01-01

    In the trigeminal system, disruption of acute resolution processing may lead to uncontrolled inflammation and chronic pain associated with the temporomandibular joint (TMJ). Currently, there are no effective treatments for TMJ pain. Recently, it has been recognized that maresin 1, a newly identified macrophage-derived mediator of inflammation resolution, is a potent analgesic for somatic inflammatory pain without noticeable side effects in mice and a potent endogenous inhibitor of transient receptor potential vanilloid 1 (TRPV1) in the somatic system. However, the molecular mechanisms underlying the analgesic actions of maresin 1 on TMJ pain are unclear in the trigeminal system. Here, by performing TMJ injection of a retrograde labeling tracer DiI (a fluorescent dye), I showed that maresin 1 potently inhibits capsaicin-induced TRPV1 currents and neuronal activity via Gαi-coupled G-protein coupled receptors in DiI-labeled trigeminal nociceptive neurons. Further, maresin 1 blocked TRPV1 agonist-evoked increases in spontaneous excitatory postsynaptic current frequency and abolished TMJ inflammation-induced synaptic plasticity in the trigeminal nucleus. These results demonstrate the potent actions of maresin 1 in regulating TRPV1 in the trigeminal system. Thus, maresin 1 may serve as a novel endogenous inhibitor for treating TMJ-inflammatory pain in the orofacial region. PMID:26617436

  15. Development of inner ear afferent connections: forming primary neurons and connecting them to the developing sensory epithelia

    NASA Technical Reports Server (NTRS)

    Fritzsch, Bernd

    2003-01-01

    The molecular and cellular origin of the primary neurons of the inner ear, the vestibular and spiral neurons, is reviewed including how they connect to the specific sensory epithelia and what the molecular nature of their survival is. Primary neurons of the ear depend on a single basic Helix-Loop-Helix (bHLH) protein for their formation, neurogenin 1 (ngn1). An immediate downstream gene is the bHLH gene neuronal differentiation (NeuroD). Targeted null mutations of ngn1 results in absence of primary neuron formation; targeted null mutation of NeuroD results in loss of almost all spiral and many vestibular neurons. NeuroD and a later expressed gene, Brn3a, play a role in pathfinding to and within sensory epithelia. The molecular nature of this pathfinding property is unknown. Reduction of hair cells in ngn1 null mutations suggests a clonal relationship with primary neurons. This relationship may play some role in specifying the identity of hair cells and the primary neurons that connect with them. Primary neuron neurites growth to sensory epithelia is initially independent of trophic factors released from developing sensory epithelia, but becomes rapidly dependent on those factors. Null mutations of specific neurotrophic factors lose distinct primary neuron populations which undergo rapid embryonic cell death.

  16. Combined genetic and pharmacological inhibition of TRPV1 and P2X3 attenuates colorectal hypersensitivity and afferent sensitization

    PubMed Central

    Kiyatkin, Michael E.; Feng, Bin; Schwartz, Erica S.

    2013-01-01

    The ligand-gated channels transient receptor potential vanilloid 1 (TRPV1) and P2X3 have been reported to facilitate colorectal afferent neuron sensitization, thus contributing to organ hypersensitivity and pain. In the present study, we hypothesized that TRPV1 and P2X3 cooperate to modulate colorectal nociception and afferent sensitivity. To test this hypothesis, we employed TRPV1-P2X3 double knockout (TPDKO) mice and channel-selective pharmacological antagonists and evaluated combined channel contributions to behavioral responses to colorectal distension (CRD) and afferent fiber responses to colorectal stretch. Baseline responses to CRD were unexpectedly greater in TPDKO compared with control mice, but zymosan-produced CRD hypersensitivity was absent in TPDKO mice. Relative to control mice, proportions of mechanosensitive and -insensitive pelvic nerve afferent classes were not different in TPDKO mice. Responses of mucosal and serosal class afferents to mechanical probing were unaffected, whereas responses of muscular (but not muscular/mucosal) afferents to stretch were significantly attenuated in TPDKO mice; sensitization of both muscular and muscular/mucosal afferents by inflammatory soup was also significantly attenuated. In pharmacological studies, the TRPV1 antagonist A889425 and P2X3 antagonist TNP-ATP, alone and in combination, applied onto stretch-sensitive afferent endings attenuated responses to stretch; combined antagonism produced greater attenuation. In the aggregate, these observations suggest that 1) genetic manipulation of TRPV1 and P2X3 leads to reduction in colorectal mechanosensation peripherally and compensatory changes and/or disinhibition of other channels centrally, 2) combined pharmacological antagonism produces more robust attenuation of mechanosensation peripherally than does antagonism of either channel alone, and 3) the relative importance of these channels appears to be enhanced in colorectal hypersensitivity. PMID:23989007

  17. Combined genetic and pharmacological inhibition of TRPV1 and P2X3 attenuates colorectal hypersensitivity and afferent sensitization.

    PubMed

    Kiyatkin, Michael E; Feng, Bin; Schwartz, Erica S; Gebhart, G F

    2013-11-01

    The ligand-gated channels transient receptor potential vanilloid 1 (TRPV1) and P2X3 have been reported to facilitate colorectal afferent neuron sensitization, thus contributing to organ hypersensitivity and pain. In the present study, we hypothesized that TRPV1 and P2X3 cooperate to modulate colorectal nociception and afferent sensitivity. To test this hypothesis, we employed TRPV1-P2X3 double knockout (TPDKO) mice and channel-selective pharmacological antagonists and evaluated combined channel contributions to behavioral responses to colorectal distension (CRD) and afferent fiber responses to colorectal stretch. Baseline responses to CRD were unexpectedly greater in TPDKO compared with control mice, but zymosan-produced CRD hypersensitivity was absent in TPDKO mice. Relative to control mice, proportions of mechanosensitive and -insensitive pelvic nerve afferent classes were not different in TPDKO mice. Responses of mucosal and serosal class afferents to mechanical probing were unaffected, whereas responses of muscular (but not muscular/mucosal) afferents to stretch were significantly attenuated in TPDKO mice; sensitization of both muscular and muscular/mucosal afferents by inflammatory soup was also significantly attenuated. In pharmacological studies, the TRPV1 antagonist A889425 and P2X3 antagonist TNP-ATP, alone and in combination, applied onto stretch-sensitive afferent endings attenuated responses to stretch; combined antagonism produced greater attenuation. In the aggregate, these observations suggest that 1) genetic manipulation of TRPV1 and P2X3 leads to reduction in colorectal mechanosensation peripherally and compensatory changes and/or disinhibition of other channels centrally, 2) combined pharmacological antagonism produces more robust attenuation of mechanosensation peripherally than does antagonism of either channel alone, and 3) the relative importance of these channels appears to be enhanced in colorectal hypersensitivity.

  18. The primary somatosensory cortex and the insula contribute differently to the processing of transient and sustained nociceptive and non-nociceptive somatosensory inputs.

    PubMed

    Hu, Li; Zhang, Li; Chen, Rui; Yu, Hongbo; Li, Hong; Mouraux, André

    2015-11-01

    Transient nociceptive stimuli elicit consistent brain responses in the primary and secondary somatosensory cortices (S1, S2), the insula and the anterior and mid-cingulate cortex (ACC/MCC). However, the functional significance of these responses, especially their relationship with sustained pain perception, remains largely unknown. Here, using functional magnetic resonance imaging, we characterize the differential involvement of these brain regions in the processing of sustained nociceptive and non-nociceptive somatosensory input. By comparing the spatial patterns of activity elicited by transient (0.5 ms) and long-lasting (15 and 30 s) stimuli selectively activating nociceptive or non-nociceptive afferents, we found that the contralateral S1 responded more strongly to the onset of non-nociceptive stimulation as compared to the onset of nociceptive stimulation and the sustained phases of nociceptive and non-nociceptive stimulation. Similarly, the anterior insula responded more strongly to the onset of nociceptive stimulation as compared to the onset of non-nociceptive stimulation and the sustained phases of nociceptive and non-nociceptive stimulation. This suggests that S1 is specifically sensitive to changes in incoming non-nociceptive input, whereas the anterior insula is specifically sensitive to changes in incoming nociceptive input. Second, we found that the MCC responded more strongly to the onsets as compared to the sustained phases of both nociceptive and non-nociceptive stimulation, suggesting that it could be involved in the detection of change regardless of sensory modality. Finally, the posterior insula and S2 responded maximally during the sustained phase of non-nociceptive stimulation but not nociceptive stimulation, suggesting that these regions are preferentially involved in processing non-nociceptive somatosensory input. PMID:26252509

  19. Rise of the Sensors: Nociception and Pruritus

    PubMed Central

    2014-01-01

    Once there was a day when all type C nonmyelinated neurons were indistinguishable. That time of histologic analysis has passed, and we have entered an era of unparalleled technological insight into the mechanisms of pain and pruritus. Since the description of the capsaicin receptor, transient receptor protein vanilloid 1 (TRPV1), in 1997, we have seen the number of related sensor ion channels, G protein–coupled receptors, and signaling proteins explode. Specific nociceptive pathways have been identified based on their sensitivity to mechanical, heat, chemical, and cold stimuli. Pruritus is now recognized to have both histamine-sensitive and histamine-independent afferent arcs. Cross-talk between C-fibre systems and myelinated neural pathways has become more complex, but through complexity, a new reality of sensory coding is emerging. A multitude of novel therapeutics have been and are in planning and production stages. These will almost certainly revolutionize our understanding and treatment of pain and itch by the end of this decade. PMID:22367178

  20. Nociceptive and Neuronal Evaluation of the Sciatic Nerve of Wistar Rats Subjected to Compression Injury and Treated with Resistive Exercise

    PubMed Central

    Antunes, Juliana Sobral; Lovison, Keli; Karvat, Jhenifer; Peretti, Ana Luiza; Vieira, Lizyana; Higuchi, Guilherme Hideaki; Ribeiro, Lucinéia de Fátima Chasko

    2016-01-01

    Background. To investigate the climb stairs resistance exercise on nociception and axonal regeneration in the sciatic nerve of rats. Methods. 24 Wistar rats were divided: control group (CG—no injury), exercise group (EG—no injury with physical exercise), lesion group (LG—injury, but without exercise), and treated group (LEG—injury and physical exercise). LG and LEG were subjected to sciatic nerve compression with hemostat. From the 3rd day after injury began treatment with exercise, and after 22 days occurs the removal of a nerve fragment for morphological analysis. Results. Regarding allodynia, CG obtained values less than EG (p = 0.012) and larger than LG and LEG (p < 0.001). Histological results showed that CG and EG had normal appearance, as LG and LEG showed up with large amounts of inflammatory infiltration, degeneration and disruption of nerve fibers, and reduction of the myelin sheath; however LEG presented some regenerated fibers. From the morphometric data there were significant differences, for nerve fiber diameter, comparing CG with LG and LEG and comparing axon diameter and the thickness of the myelin of the CG to others. Conclusion. Climb stairs resistance exercise was not effective to speed up the regenerative process of axons.

  1. Nociceptive and Neuronal Evaluation of the Sciatic Nerve of Wistar Rats Subjected to Compression Injury and Treated with Resistive Exercise.

    PubMed

    Antunes, Juliana Sobral; Lovison, Keli; Karvat, Jhenifer; Peretti, Ana Luiza; Vieira, Lizyana; Higuchi, Guilherme Hideaki; Brancalhão, Rose Meire Costa; Ribeiro, Lucinéia de Fátima Chasko; Bertolini, Gladson Ricardo Flor

    2016-01-01

    Background. To investigate the climb stairs resistance exercise on nociception and axonal regeneration in the sciatic nerve of rats. Methods. 24 Wistar rats were divided: control group (CG-no injury), exercise group (EG-no injury with physical exercise), lesion group (LG-injury, but without exercise), and treated group (LEG-injury and physical exercise). LG and LEG were subjected to sciatic nerve compression with hemostat. From the 3rd day after injury began treatment with exercise, and after 22 days occurs the removal of a nerve fragment for morphological analysis. Results. Regarding allodynia, CG obtained values less than EG (p = 0.012) and larger than LG and LEG (p < 0.001). Histological results showed that CG and EG had normal appearance, as LG and LEG showed up with large amounts of inflammatory infiltration, degeneration and disruption of nerve fibers, and reduction of the myelin sheath; however LEG presented some regenerated fibers. From the morphometric data there were significant differences, for nerve fiber diameter, comparing CG with LG and LEG and comparing axon diameter and the thickness of the myelin of the CG to others. Conclusion. Climb stairs resistance exercise was not effective to speed up the regenerative process of axons. PMID:27594795

  2. Clinical implications of basic science discoveries: nociceptive neurons as targets to control immunity--potential relevance for transplantation.

    PubMed

    Larregina, A T; Divito, S J; Morelli, A E

    2015-06-01

    Increasing evidence indicates the existence of a complex cross-regulation between the most important biosensors of the human body: The immune and nervous systems. Cytokines control body temperature and trigger autoimmune disorders in the central nervous system, whereas neuropeptides released in peripheral tissues and lymphoid organs modulate inflammatory (innate) and adaptive immune responses. Surprisingly, the effects of nerve fibers and the antidromic release of its pro-inflammatory neuropeptides on the leukocytes of the immune system that mediate graft rejection are practically unknown. In the transplantation field, such area of research remains practically unexplored. A recent study by Riol-Blanco et al has revealed new details on how nociceptive nerves regulate the pro-inflammatory function of leukocytes in peripheral tissues. Although the mechanism(s) by which neuroinflammation affects the immune response against the allograft remains unknown, recent data suggest that this new area of research is worth exploring for potential development of novel complementary therapies for prevention/treatment of graft rejection.

  3. Nociceptive and Neuronal Evaluation of the Sciatic Nerve of Wistar Rats Subjected to Compression Injury and Treated with Resistive Exercise

    PubMed Central

    Antunes, Juliana Sobral; Lovison, Keli; Karvat, Jhenifer; Peretti, Ana Luiza; Vieira, Lizyana; Higuchi, Guilherme Hideaki; Ribeiro, Lucinéia de Fátima Chasko

    2016-01-01

    Background. To investigate the climb stairs resistance exercise on nociception and axonal regeneration in the sciatic nerve of rats. Methods. 24 Wistar rats were divided: control group (CG—no injury), exercise group (EG—no injury with physical exercise), lesion group (LG—injury, but without exercise), and treated group (LEG—injury and physical exercise). LG and LEG were subjected to sciatic nerve compression with hemostat. From the 3rd day after injury began treatment with exercise, and after 22 days occurs the removal of a nerve fragment for morphological analysis. Results. Regarding allodynia, CG obtained values less than EG (p = 0.012) and larger than LG and LEG (p < 0.001). Histological results showed that CG and EG had normal appearance, as LG and LEG showed up with large amounts of inflammatory infiltration, degeneration and disruption of nerve fibers, and reduction of the myelin sheath; however LEG presented some regenerated fibers. From the morphometric data there were significant differences, for nerve fiber diameter, comparing CG with LG and LEG and comparing axon diameter and the thickness of the myelin of the CG to others. Conclusion. Climb stairs resistance exercise was not effective to speed up the regenerative process of axons. PMID:27594795

  4. Synaptobrevin I mediates exocytosis of CGRP from sensory neurons and inhibition by botulinum toxins reflects their anti-nociceptive potential.

    PubMed

    Meng, Jianghui; Wang, Jiafu; Lawrence, Gary; Dolly, J Oliver

    2007-08-15

    Calcitonin-gene-related peptide (CGRP), a potent vasodilator that mediates inflammatory pain, is elevated in migraine; nevertheless, little is known about its release from sensory neurons. In this study, CGRP was found to occur in the majority of neurons from rat trigeminal ganglia, together with the three exocytotic SNAREs [SNAP25, syntaxin 1 and the synaptobrevin (Sbr, also known as VAMP) isoforms] and synaptotagmin. Ca(2+)-dependent CGRP release was evoked with K(+)-depolarisation and, to lower levels, by capsaicin or bradykinin from neurons that contain the vanilloid receptor 1 and/or bradykinin receptor 2. Botulinum neurotoxin (BoNT) type A cleaved SNAP25 and inhibited release triggered by K(+) > bradykinin > capsaicin. Unlike BoNT type D, BoNT type B did not affect exocytosis, even though the neurons possess its receptor and Sbr II and Sbr III got proteolysed (I is resistant in rat) but, in mouse neurons, it additionally cleaved Sbr I and blocked transmitter release. Sbr I and II were found in CGRP-containing vesicles, and each was shown to separately form a SNARE complex. These new findings, together with punctate staining of Sbr I and CGRP in neurites, implicate isoform Sbr I in exocytosis from large dense-core vesicles together with SNAP25 (also, probably, syntaxin 1 because BoNT type C1 caused partial cleavage and inhibition); this differs from Sbr-II-dependent release of transmitters from small synaptic vesicles. Such use of particular Sbr isoform(s) by different neurons raises the functional implications for other cells previously unrecognised.

  5. A novel selective and orally bioavailable Nav1.8 channel blocker, PF-01247324, attenuates nociception and sensory neuron excitability

    PubMed Central

    Payne, Claire Elizabeth; Brown, Adam R; Theile, Jonathon W; Loucif, Alexandre J C; Alexandrou, Aristos J; Fuller, Mathew D; Mahoney, John H; Antonio, Brett M; Gerlach, Aaron C; Printzenhoff, David M; Prime, Rebecca L; Stockbridge, Gillian; Kirkup, Anthony J; Bannon, Anthony W; England, Steve; Chapman, Mark L; Bagal, Sharan; Roeloffs, Rosemarie; Anand, Uma; Anand, Praveen; Bungay, Peter J; Kemp, Mark; Butt, Richard P; Stevens, Edward B

    2015-01-01

    Background and Purpose NaV1.8 ion channels have been highlighted as important molecular targets for the design of low MW blockers for the treatment of chronic pain. Here, we describe the effects of PF-01247324, a new generation, selective, orally bioavailable Nav1.8 channel blocker of novel chemotype. Experimental Approach The inhibition of Nav1.8 channels by PF-01247324 was studied using in vitro patch-clamp electrophysiology and the oral bioavailability and antinociceptive effects demonstrated using in vivo rodent models of inflammatory and neuropathic pain. Key Results PF-01247324 inhibited native tetrodotoxin-resistant (TTX-R) currents in human dorsal root ganglion (DRG) neurons (IC50: 331 nM) and in recombinantly expressed h Nav1.8 channels (IC50: 196 nM), with 50-fold selectivity over recombinantly expressed TTX-R hNav1.5 channels (IC50: ∼10 μM) and 65–100-fold selectivity over TTX-sensitive (TTX-S) channels (IC50: ∼10–18 μM). Native TTX-R currents in small-diameter rodent DRG neurons were inhibited with an IC50 448 nM, and the block of both human recombinant Nav1.8 channels and TTX-R from rat DRG neurons was both frequency and state dependent. In vitro current clamp showed that PF-01247324 reduced excitability in both rat and human DRG neurons and also altered the waveform of the action potential. In vivo experiments n rodents demonstrated efficacy in both inflammatory and neuropathic pain models. Conclusions and Implications Using PF-01247324, we have confirmed a role for Nav1.8 channels in both inflammatory and neuropathic pain. We have also demonstrated a key role for Nav1.8 channels in action potential upstroke and repetitive firing of rat and human DRG neurons. PMID:25625641

  6. Optogenetic Silencing of Nav1.8-Positive Afferents Alleviates Inflammatory and Neuropathic Pain.

    PubMed

    Daou, Ihab; Beaudry, Hélène; Ase, Ariel R; Wieskopf, Jeffrey S; Ribeiro-da-Silva, Alfredo; Mogil, Jeffrey S; Séguéla, Philippe

    2016-01-01

    We report a novel transgenic mouse model in which the terminals of peripheral nociceptors can be silenced optogenetically with high spatiotemporal precision, leading to the alleviation of inflammatory and neuropathic pain. Inhibitory archaerhodopsin-3 (Arch) proton pumps were delivered to Nav1.8(+) primary afferents using the Nav1.8-Cre driver line. Arch expression covered both peptidergic and nonpeptidergic nociceptors and yellow light stimulation reliably blocked electrically induced action potentials in DRG neurons. Acute transdermal illumination of the hindpaws of Nav1.8-Arch(+) mice significantly reduced mechanical allodynia under inflammatory conditions, while basal mechanical sensitivity was not affected by the optical stimulation. Arch-driven hyperpolarization of nociceptive terminals was sufficient to prevent channelrhodopsin-2 (ChR2)-mediated mechanical and thermal hypersensitivity in double-transgenic Nav1.8-ChR2(+)-Arch(+) mice. Furthermore, prolonged optical silencing of peripheral afferents in anesthetized Nav1.8-Arch(+) mice led to poststimulation analgesia with a significant decrease in mechanical and thermal hypersensitivity under inflammatory and neuropathic conditions. These findings highlight the role of peripheral neuronal inputs in the onset and maintenance of pain hypersensitivity, demonstrate the plasticity of pain pathways even after sensitization has occurred, and support the involvement of Nav1.8(+) afferents in both inflammatory and neuropathic pain. Together, we present a selective analgesic approach in which genetically identified subsets of peripheral sensory fibers can be remotely and optically inhibited with high temporal resolution, overcoming the compensatory limitations of genetic ablations. PMID:27022626

  7. Activation of neuronal Kv7/KCNQ/M-channels by the opener QO58-lysine and its anti-nociceptive effects on inflammatory pain in rodents

    PubMed Central

    Teng, Bo-chuan; Song, Yan; Zhang, Fan; Ma, Tian-yang; Qi, Jin-long; Zhang, Hai-lin; Li, Gang; Wang, KeWei

    2016-01-01

    Aim: The aim of this study was to examine the activation of neuronal Kv7/KCNQ channels by a novel modified Kv7 opener QO58-lysine and to test the anti-nociceptive effects of QO58-lysine on inflammatory pain in rodent models. Methods: Assays including whole-cell patch clamp recordings, HPLC, and in vivo pain behavioral evaluations were employed. Results: QO58-lysine caused instant activation of Kv7.2/7.3 currents, and increasing the dose of QO58-lysine resulted in a dose-dependent activation of Kv7.2/Kv7.3 currents with an EC50 of 1.2±0.2 μmol/L. QO58-lysine caused a leftward shift of the voltage-dependent activation of Kv7.2/Kv7.3 to a hyperpolarized potential at V1/2=-54.4±2.5 mV from V1/2=-26.0±0.6 mV. The half-life in plasma (t1/2) was derived as 2.9, 2.7, and 3.0 h for doses of 12.5, 25, and 50 mg/kg, respectively. The absolute bioavailabilities for the three doses (12.5, 25, and 50 mg/kg) of QO58-lysine (po) were determined as 13.7%, 24.3%, and 39.3%, respectively. QO58-lysine caused a concentration-dependent reduction in the licking times during phase II pain induced by the injection of formalin into the mouse hindpaw. In the Complete Freund's adjuvant (CFA)-induced inflammatory pain model in rats, oral or intraperitoneal administration of QO58-lysine resulted in a dose-dependent increase in the paw withdrawal threshold, and the anti-nociceptive effect on mechanical allodynia could be reversed by the channel-specific blocker XE991 (3 mg/kg). Conclusion: Taken together, our findings show that a modified QO58 compound (QO58-lysine) can specifically activate Kv7.2/7.3/M-channels. Oral or intraperitoneal administration of QO58-lysine, which has improved bioavailability and a half-life of approximately 3 h in plasma, can reverse inflammatory pain in rodent animal models. PMID:27264315

  8. Keratinocytes can modulate and directly initiate nociceptive responses

    PubMed Central

    Baumbauer, Kyle M; DeBerry, Jennifer J; Adelman, Peter C; Miller, Richard H; Hachisuka, Junichi; Lee, Kuan Hsien; Ross, Sarah E; Koerber, H Richard; Davis, Brian M; Albers, Kathryn M

    2015-01-01

    How thermal, mechanical and chemical stimuli applied to the skin are transduced into signals transmitted by peripheral neurons to the CNS is an area of intense study. Several studies indicate that transduction mechanisms are intrinsic to cutaneous neurons and that epidermal keratinocytes only modulate this transduction. Using mice expressing channelrhodopsin (ChR2) in keratinocytes we show that blue light activation of the epidermis alone can produce action potentials (APs) in multiple types of cutaneous sensory neurons including SA1, A-HTMR, CM, CH, CMC, CMH and CMHC fiber types. In loss of function studies, yellow light stimulation of keratinocytes that express halorhodopsin reduced AP generation in response to naturalistic stimuli. These findings support the idea that intrinsic sensory transduction mechanisms in epidermal keratinocytes can directly elicit AP firing in nociceptive as well as tactile sensory afferents and suggest a significantly expanded role for the epidermis in sensory processing. DOI: http://dx.doi.org/10.7554/eLife.09674.001 PMID:26329459

  9. Neurons in hippocampal afferent zones of rat striatum parse routes into multi-pace segments during maze navigation.

    PubMed

    Mulder, Antonius B; Tabuchi, Eiichi; Wiener, Sidney I

    2004-04-01

    Hippocampal 'place' neurons discharge when rats occupy specific regions within an environment. This finding is a cornerstone of the theory of the hippocampus as a cognitive map of space. But for navigation, representations of current position must be implemented by signals concerning where to go next, and how to get there. In recordings in hippocampal output structures associated with the motor system (nucleus accumbens and ventromedial caudate nucleus) in rats solving a plus-maze, neurons fired continuously from the moment the rat left one location until it arrived at the next goal site, or at an intermediate place, such as the maze centre. While other studies have shown discharges during reward approach behaviours, this is the first demonstration of activity corresponding to the parsing of complex routes into sequences of movements between landmarks, similar to the lists of instructions we often employ to communicate directions to follow between points on a map. As these cells fired during a series of several paces or re-orientation movements, perhaps this is homologous to 'chunking'. The temporal overlaps in the activity profiles of the individual neurons provide a possible substrate to successively trigger movements required to arrive at the goal. These hippocampally informed, and in some cases, spatially selective responses support the view of the ventral striatum as an interface between limbic and motor systems, permitting contextual representations to have an impact on fundamental action sequences for goal-directed behaviour.

  10. Evidence for the tonic inhibition of spinal pain by nicotinic cholinergic transmission through primary afferents

    PubMed Central

    Matsumoto, Misaki; Xie, Weijiao; Inoue, Makoto; Ueda, Hiroshi

    2007-01-01

    Background We have proposed that nerve injury-specific loss of spinal tonic cholinergic inhibition may play a role in the analgesic effects of nicotinic acetylcholine receptor (nAChR) agonists on neuropathic pain. However, the tonic cholinergic inhibition of pain remains to be well characterized. Results Here, we show that choline acetyltransferase (ChAT) signals were localized not only in outer dorsal horn fibers (lamina I–III) and motor neurons in the spinal cord, but also in the vast majority of neurons in the dorsal root ganglion (DRG). When mice were treated with an antisense oligodeoxynucleotide (AS-ODN) against ChAT, which decreased ChAT signals in the dorsal horn and DRG, but not in motor neurons, they showed a significant decrease in nociceptive thresholds in paw pressure and thermal paw withdrawal tests. Furthermore, in a novel electrical stimulation-induced paw withdrawal (EPW) test, the thresholds for stimulation through C-, Aδ- and Aβ-fibers were all decreased by AS-ODN-pretreatments. The administration of nicotine (10 nmol i.t.) induced a recovery of the nociceptive thresholds, decreased by the AS-ODN, in the mechanical, thermal and EPW tests. However, nicotine had no effects in control mice or treated with a mismatch scramble (MS)-ODN in all of these nociception tests. Conclusion These findings suggest that primary afferent cholinergic neurons produce tonic inhibition of spinal pain through nAChR activation, and that intrathecal administration of nicotine rescues the loss of tonic cholinergic inhibition. PMID:18088441

  11. Steady-state evoked potentials to study the processing of tactile and nociceptive somatosensory input in the human brain.

    PubMed

    Colon, E; Legrain, V; Mouraux, A

    2012-10-01

    The periodic presentation of a sensory stimulus induces, at certain frequencies of stimulation, a sustained electroencephalographic response of corresponding frequency, known as steady-state evoked potentials (SS-EP). In visual, auditory and vibrotactile modalities, studies have shown that SS-EP reflect mainly activity originating from early, modality-specific sensory cortices. Furthermore, it has been shown that SS-EP have several advantages over the recording of transient event-related brain potentials (ERP), such as a high signal-to-noise ratio, a shorter time to obtain reliable signals, and the capacity to frequency-tag the cortical activity elicited by concurrently presented sensory stimuli. Recently, we showed that SS-EP can be elicited by the selective activation of skin nociceptors and that nociceptive SS-EP reflect the activity of a population of neurons that is spatially distinct from the somatotopically-organized population of neurons underlying vibrotactile SS-EP. Hence, the recording of SS-EP offers a unique opportunity to study the cortical representation of nociception and touch in humans, and to explore their potential crossmodal interactions. Here, (1) we review available methods to achieve the rapid periodic stimulation of somatosensory afferents required to elicit SS-EP, (2) review previous studies that have characterized vibrotactile and nociceptive SS-EP, (3) discuss the nature of the recorded signals and their relationship with transient event-related potentials and (4) outline future perspectives and potential clinical applications of this technique.

  12. Nociceptor-Enriched Genes Required for Normal Thermal Nociception.

    PubMed

    Honjo, Ken; Mauthner, Stephanie E; Wang, Yu; Skene, J H Pate; Tracey, W Daniel

    2016-07-12

    Here, we describe a targeted reverse genetic screen for thermal nociception genes in Drosophila larvae. Using laser capture microdissection and microarray analyses of nociceptive and non-nociceptive neurons, we identified 275 nociceptor-enriched genes. We then tested the function of the enriched genes with nociceptor-specific RNAi and thermal nociception assays. Tissue-specific RNAi targeted against 14 genes caused insensitive thermal nociception while targeting of 22 genes caused hypersensitive thermal nociception. Previously uncategorized genes were named for heat resistance (i.e., boilerman, fire dancer, oven mitt, trivet, thawb, and bunker gear) or heat sensitivity (firelighter, black match, eucalyptus, primacord, jet fuel, detonator, gasoline, smoke alarm, and jetboil). Insensitive nociception phenotypes were often associated with severely reduced branching of nociceptor neurites and hyperbranched dendrites were seen in two of the hypersensitive cases. Many genes that we identified are conserved in mammals.

  13. Nociceptor-Enriched Genes Required for Normal Thermal Nociception.

    PubMed

    Honjo, Ken; Mauthner, Stephanie E; Wang, Yu; Skene, J H Pate; Tracey, W Daniel

    2016-07-12

    Here, we describe a targeted reverse genetic screen for thermal nociception genes in Drosophila larvae. Using laser capture microdissection and microarray analyses of nociceptive and non-nociceptive neurons, we identified 275 nociceptor-enriched genes. We then tested the function of the enriched genes with nociceptor-specific RNAi and thermal nociception assays. Tissue-specific RNAi targeted against 14 genes caused insensitive thermal nociception while targeting of 22 genes caused hypersensitive thermal nociception. Previously uncategorized genes were named for heat resistance (i.e., boilerman, fire dancer, oven mitt, trivet, thawb, and bunker gear) or heat sensitivity (firelighter, black match, eucalyptus, primacord, jet fuel, detonator, gasoline, smoke alarm, and jetboil). Insensitive nociception phenotypes were often associated with severely reduced branching of nociceptor neurites and hyperbranched dendrites were seen in two of the hypersensitive cases. Many genes that we identified are conserved in mammals. PMID:27346357

  14. THE NEURONAL DISTRIBUTION OF CANNABINOID RECEPTOR TYPE 1 IN THE TRIGEMINAL GANGLION OF THE RAT

    PubMed Central

    PRICE, T. J.; HELESIC, G.; PARGHI, D.; HARGREAVES, K. M.; FLORES, C. M.

    2007-01-01

    Cannabinoid compounds have been shown to produce antinociception and antihyperalgesia by acting upon cannabinoid receptors located in both the CNS and the periphery. A potential mechanism by which cannabinoids could inhibit nociception in the periphery is the activation of cannabinoid receptors located on one or more classes of primary nociceptive neurons. To address this hypothesis, we evaluated the neuronal distribution of cannabinoid receptor type 1 (CB1) in the trigeminal ganglion (TG) of the adult rat through combined in situ hybridization (ISH) and immunohistochemistry (IHC). CB1 receptor mRNA was localized mainly to medium and large diameter neurons of the maxillary and mandibular branches of the TG. Consistent with this distribution, in a de facto nociceptive sensory neuron population that exhibited vanilloid receptor type 1 immunoreactivity, colocalization with CB1 mRNA was also sparse (<5%). Furthermore, very few neurons (approximately 5%) in the peptidergic (defined as calcitonin gene-related peptide- or substance P-immunoreactive) or the isolectin B4-binding sensory neuron populations contained CB1 mRNA. In contrast, and consistent with the neuron-size distribution for CB1, nearly 75% of CB1-positive neurons exhibited N52-immunoreactivity, a marker of myelinated axons. These results indicate that in the rat TG, CB1 receptors are expressed predominantly in neurons that are not thought to subserve nociceptive neurotransmission in the noninjured animal. Taken together with the absence of an above background in situ signal for CB2 mRNA in TG neurons, these findings suggest that the peripherally mediated antinociceptive effects of cannabinoids may involve either as yet unidentified receptors or interaction with afferent neuron populations that normally subserve non-nociceptive functions. PMID:12849749

  15. The neuronal distribution of cannabinoid receptor type 1 in the trigeminal ganglion of the rat.

    PubMed

    Price, T J; Helesic, G; Parghi, D; Hargreaves, K M; Flores, C M

    2003-01-01

    Cannabinoid compounds have been shown to produce antinociception and antihyperalgesia by acting upon cannabinoid receptors located in both the CNS and the periphery. A potential mechanism by which cannabinoids could inhibit nociception in the periphery is the activation of cannabinoid receptors located on one or more classes of primary nociceptive neurons. To address this hypothesis, we evaluated the neuronal distribution of cannabinoid receptor type 1 (CB1) in the trigeminal ganglion (TG) of the adult rat through combined in situ hybridization (ISH) and immunohistochemistry (IHC). CB1 receptor mRNA was localized mainly to medium and large diameter neurons of the maxillary and mandibular branches of the TG. Consistent with this distribution, in a de facto nociceptive sensory neuron population that exhibited vanilloid receptor type 1 immunoreactivity, colocalization with CB1 mRNA was also sparse (<5%). Furthermore, very few neurons (approximately 5%) in the peptidergic (defined as calcitonin gene-related peptide- or substance P-immunoreactive) or the isolectin B4-binding sensory neuron populations contained CB1 mRNA. In contrast, and consistent with the neuron-size distribution for CB1, nearly 75% of CB1-positive neurons exhibited N52-immunoreactivity, a marker of myelinated axons. These results indicate that in the rat TG, CB1 receptors are expressed predominantly in neurons that are not thought to subserve nociceptive neurotransmission in the noninjured animal. Taken together with the absence of an above background in situ signal for CB2 mRNA in TG neurons, these findings suggest that the peripherally mediated antinociceptive effects of cannabinoids may involve either as yet unidentified receptors or interaction with afferent neuron populations that normally subserve non-nociceptive functions.

  16. Peripheral prostaglandin E2 prolongs the sensitization of nociceptive dorsal root ganglion neurons possibly by facilitating the synthesis and anterograde axonal trafficking of EP4 receptors.

    PubMed

    St-Jacques, Bruno; Ma, Weiya

    2014-11-01

    Prostaglandin E2 (PGE2), a well-known pain mediator enriched in inflamed tissues, plays a pivotal role in the genesis of chronic pain conditions such as inflammatory and neuropathic pain. PGE2-prolonged sensitization of nociceptive dorsal root ganglion (DRG) neurons (nociceptors) may contribute to the transition from acute to chronic pain. However, the underlying cellular mechanisms are poorly understood. In this study, we tested the hypothesis that facilitating synthesis and anterograde axonal trafficking of EP receptors contribute to PGE2-prolonged nociceptor sensitization. Intraplantar (i.pl.) injection of a stabilized PGE2 analog, 16,16 dimethyl PGE2 (dmPGE2), in a dose- and time-dependent manner, not only elicited primary tactile allodynia which lasted for 1d, but also prolonged tactile allodynia evoked by a subsequent i.pl. injection of dmPGE2 from 1d to 4d. Moreover, the duration of tactile allodynia was progressively prolonged following multiple sequential i.pl. injections of dmPGE2. Co-injection of the selective EP1 or EP4 receptor antagonist, the inhibitors of cAMP, PKA, PKC, PKCε or PLC as well as an interleukin-6 (IL-6) neutralizing antiserum differentially blocked primary tactile allodynia elicited by the 1st dmPGE2 and the prolonged tactile allodynia evoked by the 2nd dmPGE2, suggesting the involvement of these signaling events in dmPGE2-induced nociceptor activation and sensitization. Co-injection of a selective COX2 inhibitor or two EP4 antagonists prevented or shortened inflammagen-prolonged nociceptor sensitization. I.pl. injection of dmPGE2 or carrageenan time-dependently increased EP4 levels in L4-6 DRG neurons and peripheral nerves. EP4 was expressed in almost half of IB4-binding nociceptors of L4-6 DRG. Taken together, our data suggest that stimulating the synthesis and anterograde axonal trafficking to increase EP4 availability at the axonal terminals of nociceptors is likely a novel mechanism underlying PGE2-prolonged nociceptor

  17. Electrophysiological and neurochemical techniques to investigate sensory neurons in analgesia research.

    PubMed

    Babes, Alexandru; Fischer, Michael J M; Reid, Gordon; Sauer, Susanne K; Zimmermann, Katharina; Reeh, Peter W

    2010-01-01

    The primary afferent nociceptive neuron has recently attracted major research interest because of the cloning of very selectively expressed and well-conserved ion channel genes. All parts of the neuron, sensory terminals, axon and cell body, are accessible to validated research techniques in vitro using various isolated tissues or cells taken from laboratory animals. Single-unit recording and measuring stimulated calcitonin gene-related peptide (CGRP) release as well as patch-clamping and calcium imaging of cultured sensory neurons provide different kinds of information, and no model alone answers all questions. In combination, however, consistent results and complementary evidence form a solid basis for translational research to follow. PMID:20336427

  18. The peripheral pro-nociceptive state induced by repetitive inflammatory stimuli involves continuous activation of protein kinase A and protein kinase C epsilon and its Na(V)1.8 sodium channel functional regulation in the primary sensory neuron.

    PubMed

    Villarreal, Cristiane Flora; Sachs, Daniela; Funez, Mani Indiana; Parada, Carlos Amílcar; de Queiroz Cunha, Fernando; Ferreira, Sérgio Henrique

    2009-03-01

    In the present study, the participation of the Na(V)1.8 sodium channel was investigated in the development of the peripheral pro-nociceptive state induced by daily intraplantar injections of PGE(2) in rats and its regulation in vivo by protein kinase A (PKA) and protein kinase C epsilon (PKCvarepsilon) as well. In the prostaglandin E(2) (PGE(2))-induced persistent hypernociception, the Na(V)1.8 mRNA in the dorsal root ganglia (DRG) was up-regulated. The local treatment with dipyrone abolished this persistent hypernociception but did not alter the Na(V)1.8 mRNA level in the DRG. Daily intrathecal administrations of antisense Na(V)1.8 decreased the Na(V)1.8 mRNA in the DRG and reduced ongoing persistent hypernociception. Once the persistent hypernociception had been abolished by dipyrone, but not by Na(V)1.8 antisense treatment, a small dose of PGE(2) restored the hypernociceptive plateau. These data show that, after a period of recurring inflammatory stimuli, an intense and prolonged nociceptive response is elicited by a minimum inflammatory stimulus and that this pro-nociceptive state depends on Na(V)1.8 mRNA up-regulation in the DRG. In addition, during the persistent hypernociceptive state, the PKA and PKCvarepsilon expression and activity in the DRG are up-regulated and the administration of the PKA and PKCvarepsilon inhibitors reduce the hypernociception as well as the Na(V)1.8 mRNA level. In the present study, we demonstrated that the functional regulation of the Na(V)1.8 mRNA by PKA and PKCvarepsilon in the primary sensory neuron is important for the development of the peripheral pro-nociceptive state induced by repetitive inflammatory stimuli and for the maintenance of the behavioral persistent hypernociception. PMID:19073148

  19. Fos, nociception and the dorsal horn.

    PubMed

    Coggeshall, Richard E

    2005-12-01

    The protooncogene c-fos is rapidly activated after noxious stimuli to express the protein Fos in spinal dorsal horn neurons that are in the 'correct' locations for nociceptive information transfer. As such, therefore, mapping Fos expression in these neurons is at present the best global marker for efficiently locating populations of neurons in the awake animal that respond to nociceptive input. This allows, among other things, precise behavioral measurements to be correlated with Fos expression. Two arenas where mapping dorsal horn Fos expression has made a major impact are in the anatomy of nociceptive systems and as a useful assay for the analgesic properties of various therapeutic regimens. Also Fos expression is the only way to map populations of neurons that are responding to non-localized input such as withdrawal after addiction and vascular occlusion. Another insight is that it shows a clear activation of neurons in superficial 'pain-processing' laminae by innocuous stimuli after nerve lesions, a finding that presumably bears on the allodynia that often accompanies these lesions. It is to be understood, however, that the Fos localizations are not sufficient unto themselves, but the major function of these studies is to efficiently locate populations of cells in nociceptive pathways so that powerful anatomic and physiologic techniques can be brought to bear efficiently. Thus, the purpose of this review is to summarize the studies whose numbers are geometrically expanding that deal with Fos in the dorsal horn and the conclusions therefrom.

  20. Presynaptic modulation of spinal nociceptive transmission by glial cell line-derived neurotrophic factor (GDNF).

    PubMed

    Salio, Chiara; Ferrini, Francesco; Muthuraju, Sangu; Merighi, Adalberto

    2014-10-01

    The role of glial cell line-derived neurotrophic factor (GDNF) in nociceptive pathways is still controversial, as both pronociceptive and antinociceptive actions have been reported. To elucidate this role in the mouse, we performed combined structural and functional studies in vivo and in acute spinal cord slices where C-fiber activation was mimicked by capsaicin challenge. Nociceptors and their terminals in superficial dorsal horn (SDH; laminae I-II) constitute two separate subpopulations: the peptidergic CGRP/somatostatin+ cells expressing GDNF and the nonpeptidergic IB4+ neurons expressing the GFRα1-RET GDNF receptor complex. Ultrastructurally the dorsal part of inner lamina II (LIIid) harbors a mix of glomeruli that either display GDNF/somatostatin (GIb)-IR or GFRα1/IB4 labeling (GIa). LIIid thus represents the preferential site for ligand-receptor interactions. Functionally, endogenous GDNF released from peptidergic CGRP/somatostatin+ nociceptors upon capsaicin stimulation exert a tonic inhibitory control on the glutamate excitatory drive of SDH neurons as measured after ERK1/2 phosphorylation assay. Real-time Ca(2+) imaging and patch-clamp experiments with bath-applied GDNF (100 nM) confirm the presynaptic inhibition of SDH neurons after stimulation of capsaicin-sensitive, nociceptive primary afferent fibers. Accordingly, the reduction of the capsaicin-evoked [Ca(2+)]i rise and of the frequency of mEPSCs in SDH neurons is specifically abolished after enzymatic ablation of GFRα1. Therefore, GDNF released from peptidergic CGRP/somatostatin+ nociceptors acutely depresses neuronal transmission in SDH signaling to nonpeptidergic IB4+ nociceptors at glomeruli in LIIid. These observations are of potential pharmacological interest as they highlight a novel modality of cross talk between nociceptors that may be relevant for discrimination of pain modalities.

  1. The expression profile of acid-sensing ion channel (ASIC) subunits ASIC1a, ASIC1b, ASIC2a, ASIC2b, and ASIC3 in the esophageal vagal afferent nerve subtypes

    PubMed Central

    Dusenkova, Svetlana; Ru, Fei; Surdenikova, Lenka; Nassenstein, Christina; Hatok, Jozef; Dusenka, Robert; Banovcin, Peter; Kliment, Jan; Tatar, Milos

    2014-01-01

    Acid-sensing ion channels (ASICs) have been implicated in esophageal acid sensing and mechanotransduction. However, insufficient knowledge of ASIC subunit expression profile in esophageal afferent nerves hampers the understanding of their role. This knowledge is essential because ASIC subunits form heteromultimeric channels with distinct functional properties. We hypothesized that the esophageal putative nociceptive C-fiber nerves (transient receptor potential vanilloid 1, TRPV1-positive) express multiple ASIC subunits and that the ASIC expression profile differs between the nodose TRPV1-positive subtype developmentally derived from placodes and the jugular TRPV1-positive subtype derived from neural crest. We performed single cell RT-PCR on the vagal afferent neurons retrogradely labeled from the esophagus. In the guinea pig, nearly all (90%–95%) nodose and jugular esophageal TRPV1-positive neurons expressed ASICs, most often in a combination (65–75%). ASIC1, ASIC2, and ASIC3 were expressed in 65–75%, 55–70%, and 70%, respectively, of both nodose and jugular TRPV1-positive neurons. The ASIC1 splice variants ASIC1a and ASIC1b and the ASIC2 splice variant ASIC2b were similarly expressed in both nodose and jugular TRPV1-positive neurons. However, ASIC2a was found exclusively in the nodose neurons. In contrast to guinea pig, ASIC3 was almost absent from the mouse vagal esophageal TRPV1-positive neurons. However, ASIC3 was similarly expressed in the nonnociceptive TRPV1-negative (tension mechanoreceptors) neurons in both species. We conclude that the majority of esophageal vagal nociceptive neurons express multiple ASIC subunits. The placode-derived nodose neurons selectively express ASIC2a, known to substantially reduce acid sensitivity of ASIC heteromultimers. ASIC3 is expressed in the guinea pig but not in the mouse vagal esophageal TRPV1-positive neurons, indicating species differences in ASIC expression. PMID:25190475

  2. Intracellular calcium regulation among subpopulations of rat dorsal root ganglion neurons

    PubMed Central

    Lu, Shao-Gang; Zhang, Xiulin; Gold, Michael S

    2006-01-01

    Primary afferent neurons are functionally heterogeneous. To determine whether this functional heterogeneity reflects, in part, heterogeneity in the regulation of the concentration of intracellular Ca2+ ([Ca2+]i), the magnitude and decay of evoked Ca2+ transients were assessed in subpopulations of dorsal root ganglion (DRG) neurons with voltage clamp and fura-2 ratiometric imaging. To determine whether differences in evoked Ca2+ transients among subpopulations of DRG neurons reflected differences in the contribution of Ca2+ regulatory mechanisms, pharmacological techniques were employed to assess the contribution of influx, efflux, release and uptake pathways. Subpopulations of DRG neurons were defined by cell body size, binding of the plant lectin IB4 and responsiveness to the algogenic compound capsaicin (CAP). Ca2+ transients were evoked with 30 mm K+ or voltage steps to 0 mV. There were marked differences between subpopulations of neurons with respect to both the magnitude and decay of the Ca2+ transient, with the largest and most slowly decaying Ca2+ transients in small-diameter, IB4-positive, CAP-responsive neurons. The smallest and most rapidly decaying transients were in large-diameter, IB4-negative and CAP-unresponsive DRG neurons. These differences were not due to a differential distribution of voltage-gated Ca2+ currents. However, these differences did appear to reflect a differential contribution of other influx, efflux, release and uptake mechanisms between subpopulations of neurons. These results suggest that electrical activity in subpopulations of DRG neurons will have a differential influence on Ca2+-regulated phenomena such as spike adaptation, transmitter release and gene transcription. Significantly more activity should be required in large-diameter non-nociceptive afferents than in small-diameter nociceptive afferents to have a comparable influence on these processes. PMID:16945973

  3. Optogenetic Silencing of Nav1.8-Positive Afferents Alleviates Inflammatory and Neuropathic Pain123

    PubMed Central

    Daou, Ihab; Beaudry, Hélène; Ase, Ariel R.; Wieskopf, Jeffrey S.; Ribeiro-da-Silva, Alfredo; Mogil, Jeffrey S.

    2016-01-01

    Abstract We report a novel transgenic mouse model in which the terminals of peripheral nociceptors can be silenced optogenetically with high spatiotemporal precision, leading to the alleviation of inflammatory and neuropathic pain. Inhibitory archaerhodopsin-3 (Arch) proton pumps were delivered to Nav1.8+ primary afferents using the Nav1.8-Cre driver line. Arch expression covered both peptidergic and nonpeptidergic nociceptors and yellow light stimulation reliably blocked electrically induced action potentials in DRG neurons. Acute transdermal illumination of the hindpaws of Nav1.8-Arch+ mice significantly reduced mechanical allodynia under inflammatory conditions, while basal mechanical sensitivity was not affected by the optical stimulation. Arch-driven hyperpolarization of nociceptive terminals was sufficient to prevent channelrhodopsin-2 (ChR2)-mediated mechanical and thermal hypersensitivity in double-transgenic Nav1.8-ChR2+-Arch+mice. Furthermore, prolonged optical silencing of peripheral afferents in anesthetized Nav1.8-Arch+ mice led to poststimulation analgesia with a significant decrease in mechanical and thermal hypersensitivity under inflammatory and neuropathic conditions. These findings highlight the role of peripheral neuronal inputs in the onset and maintenance of pain hypersensitivity, demonstrate the plasticity of pain pathways even after sensitization has occurred, and support the involvement of Nav1.8+ afferents in both inflammatory and neuropathic pain. Together, we present a selective analgesic approach in which genetically identified subsets of peripheral sensory fibers can be remotely and optically inhibited with high temporal resolution, overcoming the compensatory limitations of genetic ablations. PMID:27022626

  4. Stability of long term facilitation and expression of zif268 and Arc in the spinal cord dorsal horn is modulated by conditioning stimulation within the physiological frequency range of primary afferent fibers.

    PubMed

    Haugan, F; Wibrand, K; Fiskå, A; Bramham, C R; Tjølsen, A

    2008-07-17

    Long term facilitation (LTF) of C-fiber-evoked firing of wide dynamic range neurons in the spinal dorsal horn in response to conditioning stimulation (CS) of afferent fibers is a widely studied cellular model of spinal nociceptive sensitization. Although 100 Hz CS of primary afferent fibers is commonly used to induce spinal cord LTF, this frequency exceeds the physiological firing range. Here, we examined the effects of electrical stimulation of the sciatic nerve within the physiological frequency range on the magnitude and stability of the C-fiber-evoked responses of wide dynamic range neurons and the expression of immediate early genes (c-fos, zif268, and Arc) in anesthetized rats. Stimulation frequencies of 3, 30 and 100 Hz all induced facilitation of similar magnitude as recorded at 1 h post-CS. Strikingly, however, 3 Hz-induced potentiation of the C-fiber responses was decremental, whereas both 30 and 100 Hz stimulation resulted in stable, non-decremental facilitation over 3 h of recording. The number of dorsal horn neurons expressing c-fos, but not zif268 or Arc, was significantly elevated after 3 Hz CS and increased proportionally with stimulation rate. In contrast, a stable LTF of C-fiber responses was obtained at 30 and 100 Hz CS, and at these frequencies there was a sharp increase in zif268 expression and appearance of Arc-positive neurons. The results show that response facilitation can be induced by stimulation frequencies in the physiological range (3 and 30 Hz). Three hertz stimulation induced the early phase of LTF, but the responses were decremental. Arc and zif268, two genes previously coupled to LTP of synaptic transmission in the adult brain, are upregulated at the same frequencies that give stable LTF (30 and 100 Hz). This frequency-dependence is important for understanding how the afferent firing pattern affects neuronal plasticity and nociception in the spinal dorsal horn.

  5. Inhibitory Interneurons That Express GFP in the PrP-GFP Mouse Spinal Cord Are Morphologically Heterogeneous, Innervated by Several Classes of Primary Afferent and Include Lamina I Projection Neurons among Their Postsynaptic Targets.

    PubMed

    Ganley, Robert P; Iwagaki, Noboru; del Rio, Patricia; Baseer, Najma; Dickie, Allen C; Boyle, Kieran A; Polgár, Erika; Watanabe, Masahiko; Abraira, Victoria E; Zimmerman, Amanda; Riddell, John S; Todd, Andrew J

    2015-05-13

    The superficial dorsal horn of the spinal cord contains numerous inhibitory interneurons, which regulate the transmission of information perceived as touch, pain, or itch. Despite the importance of these cells, our understanding of their roles in the neuronal circuitry is limited by the difficulty in identifying functional populations. One group that has been identified and characterized consists of cells in the mouse that express green fluorescent protein (GFP) under control of the prion protein (PrP) promoter. Previous reports suggested that PrP-GFP cells belonged to a single morphological class (central cells), received inputs exclusively from unmyelinated primary afferents, and had axons that remained in lamina II. However, we recently reported that the PrP-GFP cells expressed neuronal nitric oxide synthase (nNOS) and/or galanin, and it has been shown that nNOS-expressing cells are more diverse in their morphology and synaptic connections. We therefore used a combined electrophysiological, pharmacological, and anatomical approach to reexamine the PrP-GFP cells. We provide evidence that they are morphologically diverse (corresponding to "unclassified" cells) and receive synaptic input from a variety of primary afferents, with convergence onto individual cells. We also show that their axons project into adjacent laminae and that they target putative projection neurons in lamina I. This indicates that the neuronal circuitry involving PrP-GFP cells is more complex than previously recognized, and suggests that they are likely to have several distinct roles in regulating the flow of somatosensory information through the dorsal horn.

  6. Roles of phosphotase 2A in nociceptive signal processing

    PubMed Central

    2013-01-01

    Multiple protein kinases affect the responses of dorsal horn neurons through phosphorylation of synaptic receptors and proteins involved in intracellular signal transduction pathways, and the consequences of this modulation may be spinal central sensitization. In contrast, the phosphatases catalyze an opposing reaction of de-phosphorylation, which may also modulate the functions of crucial proteins in signaling nociception. This is an important mechanism in the regulation of intracellular signal transduction pathways in nociceptive neurons. Accumulated evidence has shown that phosphatase 2A (PP2A), a serine/threonine specific phosphatase, is implicated in synaptic plasticity of the central nervous system and central sensitization of nociception. Therefore, targeting protein phosphotase 2A may provide an effective and novel strategy for the treatment of clinical pain. This review will characterize the structure and functional regulation of neuronal PP2A and bring together recent advances on the modulation of PP2A in targeted downstream substrates and relevant multiple nociceptive signaling molecules. PMID:24010880

  7. Activation characteristics of transient receptor potential ankyrin 1 and its role in nociception.

    PubMed

    Raisinghani, Manish; Zhong, Linlin; Jeffry, Joseph A; Bishnoi, Mahendra; Pabbidi, Reddy M; Pimentel, Fátima; Cao, De-Shou; Evans, M Steven; Premkumar, Louis S

    2011-09-01

    Transient receptor potential (TRP) ankyrin 1 (TRPA1) is a Ca(2+)-permeant, nonselective cationic channel. It is predominantly expressed in the C afferent sensory nerve fibers of trigeminal and dorsal root ganglion neurons and is highly coexpressed with the nociceptive ion channel transient receptor potential vanilloid 1 (TRPV1). Several physical and chemical stimuli have been shown to activate the channel. In this study, we have used electrophysiological techniques and behavioral models to characterize the properties of TRPA1. Whole cell TRPA1 currents induced by brief application of lower concentrations of N-methyl maleimide (NMM) or allyl isothiocyanate (AITC) can be reversed readily by washout, whereas continuous application of higher concentrations of NMM or AITC completely desensitized the currents. The deactivation and desensitization kinetics differed between NMM and AITC. TRPA1 current amplitude increased with repeated application of lower concentrations of AITC, whereas saturating concentrations of AITC induced tachyphylaxis, which was more pronounced in the presence of extracellular Ca(2+). The outward rectification exhibited by native TRPA1-mediated whole cell and single-channel currents was minimal as compared with other TRP channels. TRPA1 currents were negatively modulated by protons and polyamines, both of which activate the heat-sensitive channel, TRPV1. Interestingly, neither protein kinase C nor protein kinase A activation sensitized AITC-induced currents, but each profoundly sensitized capsaicin-induced currents. Current-clamp experiments revealed that AITC produced a slow and sustained depolarization as compared with capsaicin. TRPA1 is also expressed at the central terminals of nociceptors at the caudal spinal trigeminal nucleus. Activation of TRPA1 in this area increases the frequency and amplitude of miniature excitatory or inhibitory postsynaptic currents. In behavioral studies, intraplantar and intrathecal administration of AITC induced

  8. Aberrant Synaptic Integration in Adult Lamina I Projection Neurons Following Neonatal Tissue Damage

    PubMed Central

    Li, Jie; Kritzer, Elizabeth; Craig, Paige E.

    2015-01-01

    Mounting evidence suggests that neonatal tissue damage evokes alterations in spinal pain reflexes which persist into adulthood. However, less is known about potential concomitant effects on the transmission of nociceptive information to the brain, as the degree to which early injury modulates synaptic integration and membrane excitability in mature spinal projection neurons remains unclear. Here we demonstrate that neonatal surgical injury leads to a significant shift in the balance between synaptic excitation and inhibition onto identified lamina I projection neurons of the adult mouse spinal cord. The strength of direct primary afferent input to mature spino-parabrachial neurons was enhanced following neonatal tissue damage, whereas the efficacy of both GABAergic and glycinergic inhibition onto the same population was compromised. This was accompanied by reorganization in the pattern of sensory input to adult projection neurons, which included a greater prevalence of monosynaptic input from low-threshold A-fibers when preceded by early tissue damage. In addition, neonatal incision resulted in greater primary afferent-evoked action potential discharge in mature projection neurons. Overall, these results demonstrate that tissue damage during early life causes a long-term increase in the gain of spinal nociceptive circuits, and suggest that the prolonged consequences of neonatal trauma may not be restricted to the spinal cord but rather include excessive ascending signaling to supraspinal pain centers. PMID:25673839

  9. The anoctamin family channel subdued mediates thermal nociception in Drosophila.

    PubMed

    Jang, Wijeong; Kim, Ji Young; Cui, Shanyu; Jo, Juyeon; Lee, Byoung-Cheol; Lee, Yeonwoo; Kwon, Ki-Sun; Park, Chul-Seung; Kim, Changsoo

    2015-01-23

    Calcium-permeable and thermosensitive transient receptor potential (TRP) channels mediate the nociceptive transduction of noxious temperature in Drosophila nociceptors. However, the underlying molecular mechanisms are not completely understood. Here we find that Subdued, a calcium-activated chloride channel of the Drosophila anoctamin family, functions in conjunction with the thermo-TRPs in thermal nociception. Genetic analysis with deletion and the RNAi-mediated reduction of subdued show that subdued is required for thermal nociception in nociceptors. Further genetic analysis of subdued mutant and thermo-TRP mutants show that they interact functionally in thermal nociception. We find that Subdued expressed in heterologous cells mediates a strong chloride conductance in the presence of both heat and calcium ions. Therefore, our analysis suggests that Subdued channels may amplify the nociceptive neuronal firing that is initiated by thermo-TRP channels in response to thermal stimuli.

  10. Vestibular afferent responses to microrotational stimuli

    NASA Technical Reports Server (NTRS)

    Myers, Steven F.; Lewis, Edwin R.

    1991-01-01

    Intracellular microelectrode recording/labeling techniques were used to investigate vestibular afferent responses in the bullfrog, to very small amplitude (less than 5 deg p-p) sinusoidal rotations in the vertical plane over the frequency range of 0.063-4 Hz. Robust responses to peak accelerations as low as 0.031 deg/sec per sec were obtained from units subsequently traced to either the central portion of the anterior canal crista or the striolar region of the utricle. All of these microrotationally sensitive afferent neurons had irregular resting discharge rates, and the majority had transfer ratios (relative to rotational velocity) of 1-40 spikes/sec per deg/sec. Individual utricular afferent velocity transfer ratios were nearly constant over the frequency range of 0.125-4 Hz. Canal units displayed decreasing response transfer ratios as stimulus frequencies increased. These findings indicate that, although utricular striolar and central crista afferent velocity transfer ratios to microrotations were very similar, utricular striolar afferent neurons were more faithful sensors of very small amplitude rotational velocity in the vertical plane.

  11. Tachykinin acts upstream of autocrine Hedgehog signaling during nociceptive sensitization in Drosophila

    PubMed Central

    Im, Seol Hee; Takle, Kendra; Jo, Juyeon; Babcock, Daniel T; Ma, Zhiguo; Xiang, Yang; Galko, Michael J

    2015-01-01

    Pain signaling in vertebrates is modulated by neuropeptides like Substance P (SP). To determine whether such modulation is conserved and potentially uncover novel interactions between nociceptive signaling pathways we examined SP/Tachykinin signaling in a Drosophila model of tissue damage-induced nociceptive hypersensitivity. Tissue-specific knockdowns and genetic mutant analyses revealed that both Tachykinin and Tachykinin-like receptor (DTKR99D) are required for damage-induced thermal nociceptive sensitization. Electrophysiological recording showed that DTKR99D is required in nociceptive sensory neurons for temperature-dependent increases in firing frequency upon tissue damage. DTKR overexpression caused both behavioral and electrophysiological thermal nociceptive hypersensitivity. Hedgehog, another key regulator of nociceptive sensitization, was produced by nociceptive sensory neurons following tissue damage. Surprisingly, genetic epistasis analysis revealed that DTKR function was upstream of Hedgehog-dependent sensitization in nociceptive sensory neurons. Our results highlight a conserved role for Tachykinin signaling in regulating nociception and the power of Drosophila for genetic dissection of nociception. DOI: http://dx.doi.org/10.7554/eLife.10735.001 PMID:26575288

  12. Tachykinin acts upstream of autocrine Hedgehog signaling during nociceptive sensitization in Drosophila.

    PubMed

    Im, Seol Hee; Takle, Kendra; Jo, Juyeon; Babcock, Daniel T; Ma, Zhiguo; Xiang, Yang; Galko, Michael J

    2015-11-17

    Pain signaling in vertebrates is modulated by neuropeptides like Substance P (SP). To determine whether such modulation is conserved and potentially uncover novel interactions between nociceptive signaling pathways we examined SP/Tachykinin signaling in a Drosophila model of tissue damage-induced nociceptive hypersensitivity. Tissue-specific knockdowns and genetic mutant analyses revealed that both Tachykinin and Tachykinin-like receptor (DTKR99D) are required for damage-induced thermal nociceptive sensitization. Electrophysiological recording showed that DTKR99D is required in nociceptive sensory neurons for temperature-dependent increases in firing frequency upon tissue damage. DTKR overexpression caused both behavioral and electrophysiological thermal nociceptive hypersensitivity. Hedgehog, another key regulator of nociceptive sensitization, was produced by nociceptive sensory neurons following tissue damage. Surprisingly, genetic epistasis analysis revealed that DTKR function was upstream of Hedgehog-dependent sensitization in nociceptive sensory neurons. Our results highlight a conserved role for Tachykinin signaling in regulating nociception and the power of Drosophila for genetic dissection of nociception.

  13. Fixative composition alters distributions of immunoreactivity for glutaminase and two markers of nociceptive neurons, Nav1.8 and TRPV1, in the rat dorsal root ganglion.

    PubMed

    Hoffman, E Matthew; Schechter, Ruben; Miller, Kenneth E

    2010-04-01

    Most, if not all, dorsal root ganglion (DRG) neurons use the neurotransmitter glutamate. There are, however, conflicting reports of the percentages of DRG neurons that express glutaminase (GLS), the enzyme that synthesizes glutamate, ranging from 30% to 100% of DRG neurons. Defining DRG neuron populations by the expression of proteins like GLS, which indicates function, is routinely accomplished with immunolabeling techniques. Proper characterization of DRG neuron populations relies on accurate detection of such antigens. It is known intuitively that fixation can alter immunoreactivity (IR). In this study, we compared the effects of five formaldehyde concentrations between 0.25% and 4.0% (w/v) and five picric acid concentrations between 0.0% and 0.8% (w/v) on the IR of GLS, the voltage-gated sodium channel 1.8 (Na(v)1.8), and the capsaicin receptor TRPV1. We also compared the effects of five incubation time lengths from 2 to 192 hr, in primary antiserum on IR. Lowering formaldehyde concentration elevated IR for all three antigens, while raising picric acid concentration increased Na(v)1.8 and TRPV1 IR. Increasing IR improved detection sensitivity, which led to higher percentages of labeled DRG neurons. By selecting fixation conditions that optimized IR, we found that all DRG neurons express GLS, 69% of neurons express Na(v)1.8, and 77% of neurons express TRPV1, indicating that some previous studies may have underestimated the percentages of DRG neurons expressing these proteins. This manuscript contains online supplemental material at http://www.jhc.org. Please visit this article online to view these materials. PMID:20026672

  14. Abnormal Development of Glutamatergic Synapses Afferent to Dopaminergic Neurons of the Pink1−/− Mouse Model of Parkinson’s Disease

    PubMed Central

    Pearlstein, Edouard; Michel, François J.; Save, Laurène; Ferrari, Diana C.; Hammond, Constance

    2016-01-01

    In a preceding study, we showed that in adult pink1−/− mice, a monogenic animal model of Parkinson’s disease (PD), striatal neurons display aberrant electrical activities that precede the onset of overt clinical manifestations. Here, we tested the hypothesis that the maturation of dopaminergic (DA) neurons of the pink1−/− substantia nigra compacta (SNc) follows, from early stages on, a different developmental trajectory from age-matched wild type (wt) SNc DA neurons. We used immature (postnatal days P2–P10) and young adult (P30–P90) midbrain slices of pink1−/− mice expressing the green fluorescent protein in tyrosine hydroxylase (TH)-positive neurons. We report that the developmental sequence of N-Methyl-D-aspartic acid (NMDA) spontaneous excitatory postsynaptic currents (sEPSCs) is altered in pink1−/− SNc DA neurons, starting from shortly after birth. They lack the transient episode of high NMDA receptor-mediated neuronal activity characteristic of the immature stage of wt SNc DA neurons. The maturation of the membrane resistance of pink1−/− SNc DA neurons is also altered. Collectively, these observations suggest that electrical manifestations occurring shortly after birth in SNc DA neurons might lead to dysfunction in dopamine release and constitute an early pathogenic mechanism of PD. PMID:27445695

  15. Distinctive membrane and discharge properties of rat spinal lamina I projection neurones in vitro

    PubMed Central

    Ruscheweyh, Ruth; Ikeda, Hiroshi; Heinke, Bernhard; Sandkühler, Jürgen

    2004-01-01

    Most lamina I neurones with a projection to the brainstem express the neurokinin 1 receptor and thus belong to a small subgroup of lamina I neurones that are necessary for the development of hyperalgesia in rat models of persisting pain. These neurones are prone to synaptic plasticity following primary afferent stimulation in the noxious range while other nociceptive lamina I neurones are not. Here, we used whole-cell patch-clamp recordings from lamina I neurones in young rat spinal cord transverse slices to test if projection neurones possess membrane properties that set them apart from other lamina I neurones. Neurones with a projection to the parabrachial area or the periaqueductal grey (PAG) were identified by retrograde labelling with the fluorescent tracer DiI. The properties of lamina I projection neurones were found to be fundamentally different from those of unidentified, presumably propriospinal lamina I neurones. Two firing patterns, the gap and the bursting firing pattern, occurred almost exclusively in projection neurones. Most spino-parabrachial neurones showed the gap firing pattern while the bursting firing pattern was characteristic of spino-PAG neurones. The underlying membrane currents had the properties of an A-type K+ current and a Ca2+ curent with a low activation threshold, respectively. Projection neurones, especially those of the burst firing type, were more easily excitable than unidentified neurones and received a larger proportion of monosynaptic input from primary afferent C-fibres. Intracellular labelling with Lucifer yellow showed that projection neurones had larger somata than unidentified neurones and many had a considerable extension in the mediolateral plane. PMID:14694142

  16. Non-Linear Neuronal Responses as an Emergent Property of Afferent Networks: A Case Study of the Locust Lobula Giant Movement Detector

    PubMed Central

    Bermúdez i Badia, Sergi; Bernardet, Ulysses; Verschure, Paul F. M. J.

    2010-01-01

    In principle it appears advantageous for single neurons to perform non-linear operations. Indeed it has been reported that some neurons show signatures of such operations in their electrophysiological response. A particular case in point is the Lobula Giant Movement Detector (LGMD) neuron of the locust, which is reported to locally perform a functional multiplication. Given the wide ramifications of this suggestion with respect to our understanding of neuronal computations, it is essential that this interpretation of the LGMD as a local multiplication unit is thoroughly tested. Here we evaluate an alternative model that tests the hypothesis that the non-linear responses of the LGMD neuron emerge from the interactions of many neurons in the opto-motor processing structure of the locust. We show, by exposing our model to standard LGMD stimulation protocols, that the properties of the LGMD that were seen as a hallmark of local non-linear operations can be explained as emerging from the dynamics of the pre-synaptic network. Moreover, we demonstrate that these properties strongly depend on the details of the synaptic projections from the medulla to the LGMD. From these observations we deduce a number of testable predictions. To assess the real-time properties of our model we applied it to a high-speed robot. These robot results show that our model of the locust opto-motor system is able to reliably stabilize the movement trajectory of the robot and can robustly support collision avoidance. In addition, these behavioural experiments suggest that the emergent non-linear responses of the LGMD neuron enhance the system's collision detection acuity. We show how all reported properties of this neuron are consistently reproduced by this alternative model, and how they emerge from the overall opto-motor processing structure of the locust. Hence, our results propose an alternative view on neuronal computation that emphasizes the network properties as opposed to the local

  17. Microstimulation of primary afferent neurons in the L7 dorsal root ganglia using multielectrode arrays in anesthetized cats: thresholds and recruitment properties

    NASA Astrophysics Data System (ADS)

    Gaunt, R. A.; Hokanson, J. A.; Weber, D. J.

    2009-10-01

    Current research in motor neural prosthetics has focused primarily on issues related to the extraction of motor command signals from the brain (e.g. brain-machine interfaces) to direct the motion of prosthetic limbs. Patients using these types of systems could benefit from a somatosensory neural interface that conveys natural tactile and kinesthetic sensations for the prosthesis. Electrical microstimulation within the dorsal root ganglia (DRG) has been proposed as one method to accomplish this, yet little is known about the recruitment properties of electrical microstimulation in activating nerve fibers in this structure. Current-controlled microstimulation pulses in the range of 1-15 µA (200 µs, leading cathodic pulse) were delivered to the L7 DRG in four anesthetized cats using penetrating microelectrode arrays. Evoked responses and their corresponding conduction velocities (CVs) were measured in the sciatic nerve with a 5-pole nerve cuff electrode arranged as two adjacent tripoles. It was found that in 76% of the 69 electrodes tested, the stimulus threshold was less than or equal to 3 µA, with the lowest recorded threshold being 1.1 µA. The CVs of afferents recruited at threshold had a bimodal distribution with peaks at 70 m s-1 and 85 m s-1. In 53% of cases, the CV of the response at threshold was slower (i.e. smaller diameter fiber) than the CVs of responses observed at increasing stimulation amplitudes. In summary, we found that microstimulation applied through penetrating microelectrodes in the DRG provides selective recruitment of afferent fibers from a range of sensory modalities (as identified by CVs) at very low stimulation intensities. We conclude that the DRG may serve as an attractive location from which to introduce surrogate somatosensory feedback into the nervous system.

  18. Detection thresholds of macaque otolith afferents.

    PubMed

    Yu, Xiong-Jie; Dickman, J David; Angelaki, Dora E

    2012-06-13

    The vestibular system is our sixth sense and is important for spatial perception functions, yet the sensory detection and discrimination properties of vestibular neurons remain relatively unexplored. Here we have used signal detection theory to measure detection thresholds of otolith afferents using 1 Hz linear accelerations delivered along three cardinal axes. Direction detection thresholds were measured by comparing mean firing rates centered on response peak and trough (full-cycle thresholds) or by comparing peak/trough firing rates with spontaneous activity (half-cycle thresholds). Thresholds were similar for utricular and saccular afferents, as well as for lateral, fore/aft, and vertical motion directions. When computed along the preferred direction, full-cycle direction detection thresholds were 7.54 and 3.01 cm/s(2) for regular and irregular firing otolith afferents, respectively. Half-cycle thresholds were approximately double, with excitatory thresholds being half as large as inhibitory thresholds. The variability in threshold among afferents was directly related to neuronal gain and did not depend on spike count variance. The exact threshold values depended on both the time window used for spike count analysis and the filtering method used to calculate mean firing rate, although differences between regular and irregular afferent thresholds were independent of analysis parameters. The fact that minimum thresholds measured in macaque otolith afferents are of the same order of magnitude as human behavioral thresholds suggests that the vestibular periphery might determine the limit on our ability to detect or discriminate small differences in head movement, with little noise added during downstream processing.

  19. De novo expression of neurokinin-1 receptors by spinoparabrachial lamina I pyramidal neurons following a peripheral nerve lesion.

    PubMed

    Saeed, Abeer W; Ribeiro-da-Silva, Alfredo

    2013-06-01

    Lamina I of the spinal dorsal horn is a major site of integration and transmission to higher centers of nociceptive information from the periphery. One important primary afferent population that transmits such information to the spinal cord expresses substance P (SP). These fibers terminate in contact with lamina I projection neurons that express the SP receptor, also known as the neurokinin-1 receptor (NK-1r). Three types of lamina I projection neurons have been described: multipolar, fusiform, and pyramidal. Most neurons of the first two types are thought to be nociceptive and express the NK-1r, whereas most pyramidal neurons are nonnociceptive and do not express the NK-1r. In this immunocytochemical and behavioral study, we induced a neuropathic pain-like condition in the rat by means of a polyethylene cuff placed around in the sciatic nerve. We document that this lesion led to a de novo expression of NK-1r on pyramidal neurons as well as a significant increase in SP-immunoreactive innervation onto these neurons. These phenotypic changes were evident at the time of onset of neuropathic pain-related behavior. Additionally, we show that, after a noxious stimulus (intradermal capsaicin injection), these NK-1r on pyramidal neurons were internalized, providing evidence that these neurons become responsive to peripheral noxious stimulation. We suggest that the changes following nerve lesion in the phenotype and innervation pattern of pyramidal neurons are of significance for neuropathic pain and/or limb temperature regulation.

  20. Possible sources and sites of action of the nitric oxide involved in synaptic plasticity at spinal lamina I projection neurons.

    PubMed

    Ruscheweyh, R; Goralczyk, A; Wunderbaldinger, G; Schober, A; Sandkühler, J

    2006-08-25

    The synaptic long-term potentiation between primary afferent C-fibers and spinal lamina I projection neurons is a cellular model for hyperalgesia [Ikeda H, Heinke B, Ruscheweyh R, Sandkühler J (2003) Synaptic plasticity in spinal lamina I projection neurons that mediate hyperalgesia. Science 299:1237-1240]. In lamina I neurons with a projection to the periaqueductal gray, this long-term potentiation is dependent on nitric oxide. In the present study, we used immunohistochemistry to detect possible sources and sites of action of the nitric oxide necessary for the long-term potentiation at lamina I spino-periaqueductal gray neurons in rats. None of the three isoforms of the nitric oxide synthase was expressed in a significant number of lamina I spino-periaqueductal gray neurons or primary afferent C-fibers (as evaluated by staining of their cell bodies in the dorsal root ganglia). However, endothelial and inducible nitric oxide synthase were found throughout the spinal cord vasculature and neuronal nitric oxide synthase was present in a number of neurons in laminae II and III. The nitric oxide target soluble guanylyl cyclase was detected in most lamina I spino-periaqueductal gray neurons and in approximately 12% of the dorsal root ganglion neurons, all of them nociceptive as evaluated by coexpression of substance P. Synthesis of cyclic 3',5'-guanosine monophosphate upon stimulation by a nitric oxide donor confirmed the presence of active guanylyl cyclase in at least a portion of the spino-periaqueductal gray neuronal cell bodies. We therefore propose that nitric oxide generated in neighboring neurons or blood vessels acts on the spino-periaqueductal gray neuron and/or the primary afferent C-fiber to enable long-term potentiation. Lamina I spino-parabrachial neurons were stained for comparison and yielded similar results.

  1. Partial nerve injury induces electrophysiological changes in conducting (uninjured) nociceptive and nonnociceptive DRG neurons: Possible relationships to aspects of peripheral neuropathic pain and paresthesias

    PubMed Central

    Djouhri, Laiche; Fang, Xin; Koutsikou, Stella; Lawson, Sally N.

    2012-01-01

    Partial nerve injury leads to peripheral neuropathic pain. This injury results in conducting/uninterrupted (also called uninjured) sensory fibres, conducting through the damaged nerve alongside axotomised/degenerating fibres. In rats seven days after L5 spinal nerve axotomy (SNA) or modified-SNA (added loose-ligation of L4 spinal nerve with neuroinflammation-inducing chromic-gut), we investigated a) neuropathic pain behaviours and b) electrophysiological changes in conducting/uninterrupted L4 dorsal root ganglion (DRG) neurons with receptive fields (called: L4-receptive-field-neurons). Compared to pretreatment, modified-SNA rats showed highly significant increases in spontaneous-foot-lifting duration, mechanical-hypersensitivity/allodynia, and heat-hypersensitivity/hyperalgesia, that were significantly greater than after SNA, especially spontaneous-foot-lifting. We recorded intracellularly in vivo from normal L4/L5 DRG neurons and ipsilateral L4-receptive-field-neurons. After SNA or modified-SNA, L4-receptive-field-neurons showed the following: a) increased percentages of C-, Ad-, and Ab-nociceptors and cutaneous Aa/b-low-threshold mechanoreceptors with ongoing/spontaneous firing; b) spontaneous firing in C-nociceptors that originated peripherally; this was at a faster rate in modified-SNA than SNA; c) decreased electrical thresholds in A-nociceptors after SNA; d) hyperpolarised membrane potentials in A-nociceptors and Aa/b-low-threshold-mechanoreceptors after SNA, but not C-nociceptors; e) decreased somatic action potential rise times in C- and A-nociceptors, not Aa/b-low-threshold-mechanoreceptors. We suggest that these changes in subtypes of conducting/uninterrupted neurons after partial nerve injury contribute to the different aspects of neuropathic pain as follows: spontaneous firing in nociceptors to ongoing/spontaneous pain; spontaneous firing in Aa/b-low-threshold-mechanoreceptors to dysesthesias/paresthesias; and lowered A-nociceptor electrical thresholds

  2. A role for nociceptive, myelinated nerve fibers in itch sensation.

    PubMed

    Ringkamp, Matthias; Schepers, Raf J; Shimada, Steven G; Johanek, Lisa M; Hartke, Timothy V; Borzan, Jasenka; Shim, Beom; LaMotte, Robert H; Meyer, Richard A

    2011-10-19

    Despite its clinical importance, the underlying neural mechanisms of itch sensation are poorly understood. In many diseases, pruritus is not effectively treated with antihistamines, indicating the involvement of nonhistaminergic mechanisms. To investigate the role of small myelinated afferents in nonhistaminergic itch, we tested, in psychophysical studies in humans, the effect of a differential nerve block on itch produced by intradermal insertion of spicules from the pods of a cowhage plant (Mucuna pruriens). Electrophysiological experiments in anesthetized monkey were used to investigate the responsiveness of cutaneous, nociceptive, myelinated afferents to different chemical stimuli (cowhage spicules, histamine, capsaicin). Our results provide several lines of evidence for an important role of myelinated fibers in cowhage-induced itch: (1) a selective conduction block in myelinated fibers substantially reduces itch in a subgroup of subjects with A-fiber-dominated itch, (2) the time course of itch sensation differs between subjects with A-fiber- versus C-fiber-dominated itch, (3) cowhage activates a subpopulation of myelinated and unmyelinated afferents in monkey, (4) the time course of the response to cowhage is different in myelinated and unmyelinated fibers, (5) the time of peak itch sensation for subjects with A-fiber-dominated itch matches the time for peak response in myelinated fibers, and (6) the time for peak itch sensation for subjects with C-fiber-dominated itch matches the time for the peak response in unmyelinated fibers. These findings demonstrate that activity in nociceptive, myelinated afferents contributes to cowhage-induced sensations, and that nonhistaminergic itch is mediated through activity in both unmyelinated and myelinated afferents. PMID:22016517

  3. Classification of neurons by dendritic branching pattern. A categorisation based on Golgi impregnation of spinal and cranial somatic and visceral afferent and efferent cells in the adult human.

    PubMed

    Abdel-Maguid, T E; Bowsher, D

    1984-06-01

    Neurons from adult human brainstem and spinal cord, fixed by immersion in formalin, were impregnated by a Golgi method and examined in sections 100 micron thick. Objective numerical criteria were used to classify completely impregnated neurons. Only the parameters mentioned below were found to be valid. Neurons in 100 micron sections were classified on the basis of (i) the primary dendrite number, indicated by a Roman numeral and called group; (ii) the dendritic branching pattern, comprising the highest branching order seen, indicated by an Arabic numeral and called category; the lowest dendritic branching order observed in complete neurons, indicated by an upper case letter and called class; and the number of branching orders seen between the two preceding, indicated by a lower case letter and called subclass. On the basis of the above characteristics, all neurons seen in the grey matter of the spinal cord and cranial nerve nuclei could be classified into thirteen 'families'. The results of other investigations (Abdel-Maguid & Bowsher, 1979, 1984) showed that this classification has functional value. PMID:6204961

  4. Hypergravity modulates behavioral nociceptive responses in rats

    NASA Astrophysics Data System (ADS)

    Kumei, Y.; Shimokawa, R.; Toda, K.; Kawauchi, Y.; Makita, K.; Terasawa, M.; Ohya, K.; Shimokawa, H.

    Hypergravity (2G) exposure elevated the nociceptive threshold (pain suppression) concomitantly with evoked neuronal activity in the hypothalamus. Young Wistar male rats were exposed to 2G by centrifugal rotation for 10 min. Before and after 2G exposure, the nociceptive threshold was measured as the withdrawal reflex by using the von Frey type needle at a total of 8 sites of each rat (nose, four quarters, upper and lower back, tail), and then rats were sacrificed. Fos expression was examined immunohistochemically in the hypothalamic slices of the 2G-treated rats. When rats were exposed to 2G hypergravity, the nociceptive threshold was significantly elevated to approximately 150 to 250% of the 1G baseline control levels in all the examination sites. The 2G hypergravity remarkably induced Fos expression in the paraventricular and arcuate nuclei of the hypothalamus. The analgesic effects of 2G hypergravity were attenuated by naloxone pretreatment. Data indicate that hypergravity induces analgesic effects in rats, mediated through hypothalamic neuronal activity in the endogenous opioid system and hypothalamo-pituitary-adrenal axis.

  5. Differential regulation of primary afferent input to spinal cord by muscarinic receptor subtypes delineated using knockout mice.

    PubMed

    Chen, Shao-Rui; Chen, Hong; Yuan, Wei-Xiu; Wess, Jürgen; Pan, Hui-Lin

    2014-05-16

    Stimulation of muscarinic acetylcholine receptors (mAChRs) inhibits nociceptive transmission at the spinal level. However, it is unclear how each mAChR subtype regulates excitatory synaptic input from primary afferents. Here we examined excitatory postsynaptic currents (EPSCs) of dorsal horn neurons evoked by dorsal root stimulation in spinal cord slices from wild-type and mAChR subtype knock-out (KO) mice. In wild-type mice, mAChR activation with oxotremorine-M decreased the amplitude of monosynaptic EPSCs in ∼67% of neurons but increased it in ∼10% of neurons. The inhibitory effect of oxotremorine-M was attenuated by the M2/M4 antagonist himbacine in the majority of neurons, and the remaining inhibition was abolished by group II/III metabotropic glutamate receptor (mGluR) antagonists in wild-type mice. In M2/M4 double-KO mice, oxotremorine-M inhibited monosynaptic EPSCs in significantly fewer neurons (∼26%) and increased EPSCs in significantly more neurons (33%) compared with wild-type mice. Blocking group II/III mGluRs eliminated the inhibitory effect of oxotremorine-M in M2/M4 double-KO mice. In M2 single-KO and M4 single-KO mice, himbacine still significantly reduced the inhibitory effect of oxotremorine-M. However, the inhibitory and potentiating effects of oxotremorine-M on EPSCs in M3 single-KO and M1/M3 double-KO mice were similar to those in wild-type mice. In M5 single-KO mice, oxotremorine-M failed to potentiate evoked EPSCs, and its inhibitory effect was abolished by himbacine. These findings indicate that activation of presynaptic M2 and M4 subtypes reduces glutamate release from primary afferents. Activation of the M5 subtype either directly increases primary afferent input or inhibits it through indirectly stimulating group II/III mGluRs. PMID:24695732

  6. Capsaicin, Nociception and Pain.

    PubMed

    Frias, Bárbara; Merighi, Adalberto

    2016-01-01

    Capsaicin, the pungent ingredient of the hot chili pepper, is known to act on the transient receptor potential cation channel vanilloid subfamily member 1 (TRPV1). TRPV1 is involved in somatic and visceral peripheral inflammation, in the modulation of nociceptive inputs to spinal cord and brain stem centers, as well as the integration of diverse painful stimuli. In this review, we first describe the chemical and pharmacological properties of capsaicin and its derivatives in relation to their analgesic properties. We then consider the biochemical and functional characteristics of TRPV1, focusing on its distribution and biological effects within the somatosensory and viscerosensory nociceptive systems. Finally, we discuss the use of capsaicin as an agonist of TRPV1 to model acute inflammation in slices and other ex vivo preparations. PMID:27322240

  7. Capsaicin, Nociception and Pain.

    PubMed

    Frias, Bárbara; Merighi, Adalberto

    2016-01-01

    Capsaicin, the pungent ingredient of the hot chili pepper, is known to act on the transient receptor potential cation channel vanilloid subfamily member 1 (TRPV1). TRPV1 is involved in somatic and visceral peripheral inflammation, in the modulation of nociceptive inputs to spinal cord and brain stem centers, as well as the integration of diverse painful stimuli. In this review, we first describe the chemical and pharmacological properties of capsaicin and its derivatives in relation to their analgesic properties. We then consider the biochemical and functional characteristics of TRPV1, focusing on its distribution and biological effects within the somatosensory and viscerosensory nociceptive systems. Finally, we discuss the use of capsaicin as an agonist of TRPV1 to model acute inflammation in slices and other ex vivo preparations.

  8. Differential roles of stretch-sensitive pelvic nerve afferents innervating mouse distal colon and rectum

    PubMed Central

    Brumovsky, Pablo R.; Gebhart, Gerald F.

    2010-01-01

    Information about colorectal distension (i.e., colorectal dilation by increased intraluminal pressure) is primarily encoded by stretch-sensitive colorectal afferents in the pelvic nerve (PN). Despite anatomic differences between rectum and distal colon, little is known about the functional roles of colonic vs. rectal afferents in the PN pathway or the quantitative nature of mechanosensory encoding. We utilized an in vitro mouse colorectum-PN preparation to investigate pressure-encoding characteristics of colorectal afferents. The colorectum with PN attached was dissected, opened longitudinally, and pinned flat in a Sylgard-lined chamber. Action potentials of afferent fibers evoked by circumferential stretch (servo-controlled force actuator) were recorded from the PN. Stretch-sensitive fibers were categorized into the following four groups: colonic muscular, colonic muscular/mucosal, rectal muscular, and rectal muscular/mucosal. Seventy-nine stretch-sensitive PN afferents evenly distributed into the above four groups were studied. Rectal muscular afferents had significantly greater stretch-responses than the other three groups. Virtually all rectal afferents (98%) had low thresholds for response and encoded stimulus intensity into the noxious range without obvious saturation. Most colonic afferents (72%) also had low thresholds (<14 mmHg), but a significant proportion (28%) had high thresholds (>18 mmHg) for response. These high-threshold colonic afferents were sensitized to stretch by inflammatory soup; response threshold was significantly reduced (from 23 to 12 mmHg), and response magnitude significantly increased. These results suggest that the encoding of mechanosensory information differs between colonic and rectal stretch-sensitive PN afferents. Rectal afferents have a wide response range to stretch, whereas high-threshold colonic afferents likely contribute to visceral nociception. PMID:20075141

  9. Differential roles of stretch-sensitive pelvic nerve afferents innervating mouse distal colon and rectum.

    PubMed

    Feng, Bin; Brumovsky, Pablo R; Gebhart, Gerald F

    2010-03-01

    Information about colorectal distension (i.e., colorectal dilation by increased intraluminal pressure) is primarily encoded by stretch-sensitive colorectal afferents in the pelvic nerve (PN). Despite anatomic differences between rectum and distal colon, little is known about the functional roles of colonic vs. rectal afferents in the PN pathway or the quantitative nature of mechanosensory encoding. We utilized an in vitro mouse colorectum-PN preparation to investigate pressure-encoding characteristics of colorectal afferents. The colorectum with PN attached was dissected, opened longitudinally, and pinned flat in a Sylgard-lined chamber. Action potentials of afferent fibers evoked by circumferential stretch (servo-controlled force actuator) were recorded from the PN. Stretch-sensitive fibers were categorized into the following four groups: colonic muscular, colonic muscular/mucosal, rectal muscular, and rectal muscular/mucosal. Seventy-nine stretch-sensitive PN afferents evenly distributed into the above four groups were studied. Rectal muscular afferents had significantly greater stretch-responses than the other three groups. Virtually all rectal afferents (98%) had low thresholds for response and encoded stimulus intensity into the noxious range without obvious saturation. Most colonic afferents (72%) also had low thresholds (<14 mmHg), but a significant proportion (28%) had high thresholds (>18 mmHg) for response. These high-threshold colonic afferents were sensitized to stretch by inflammatory soup; response threshold was significantly reduced (from 23 to 12 mmHg), and response magnitude significantly increased. These results suggest that the encoding of mechanosensory information differs between colonic and rectal stretch-sensitive PN afferents. Rectal afferents have a wide response range to stretch, whereas high-threshold colonic afferents likely contribute to visceral nociception.

  10. Nociception at the diabetic foot, an uncharted territory

    PubMed Central

    Chantelau, Ernst A

    2015-01-01

    The diabetic foot is characterised by painless foot ulceration and/or arthropathy; it is a typical complication of painless diabetic neuropathy. Neuropathy depletes the foot skin of intraepidermal nerve fibre endings of the afferent A-delta and C-fibres, which are mostly nociceptors and excitable by noxious stimuli only. However, some of them are cold or warm receptors whose functions in diabetic neuropathy have frequently been reported. Hence, it is well established by quantitative sensory testing that thermal detection thresholds at the foot skin increase during the course of painless diabetic neuropathy. Pain perception (nociception), by contrast, has rarely been studied. Recent pilot studies of pinprick pain at plantar digital skinfolds showed that the perception threshold was always above the upper limit of measurement of 512 mN (equivalent to 51.2 g) at the diabetic foot. However, deep pressure pain perception threshold at musculus abductor hallucis was beyond 1400 kPa (equivalent to 14 kg; limit of measurement) only in every fifth case. These discrepancies of pain perception between forefoot and hindfoot, and between skin and muscle, demand further study. Measuring nociception at the feet in diabetes opens promising clinical perspectives. A critical nociception threshold may be quantified (probably corresponding to a critical number of intraepidermal nerve fibre endings), beyond which the individual risk of a diabetic foot rises appreciably. Staging of diabetic neuropathy according to nociception thresholds at the feet is highly desirable as guidance to an individualised injury prevention strategy. PMID:25897350

  11. Nociception at the diabetic foot, an uncharted territory.

    PubMed

    Chantelau, Ernst A

    2015-04-15

    The diabetic foot is characterised by painless foot ulceration and/or arthropathy; it is a typical complication of painless diabetic neuropathy. Neuropathy depletes the foot skin of intraepidermal nerve fibre endings of the afferent A-delta and C-fibres, which are mostly nociceptors and excitable by noxious stimuli only. However, some of them are cold or warm receptors whose functions in diabetic neuropathy have frequently been reported. Hence, it is well established by quantitative sensory testing that thermal detection thresholds at the foot skin increase during the course of painless diabetic neuropathy. Pain perception (nociception), by contrast, has rarely been studied. Recent pilot studies of pinprick pain at plantar digital skinfolds showed that the perception threshold was always above the upper limit of measurement of 512 mN (equivalent to 51.2 g) at the diabetic foot. However, deep pressure pain perception threshold at musculus abductor hallucis was beyond 1400 kPa (equivalent to 14 kg; limit of measurement) only in every fifth case. These discrepancies of pain perception between forefoot and hindfoot, and between skin and muscle, demand further study. Measuring nociception at the feet in diabetes opens promising clinical perspectives. A critical nociception threshold may be quantified (probably corresponding to a critical number of intraepidermal nerve fibre endings), beyond which the individual risk of a diabetic foot rises appreciably. Staging of diabetic neuropathy according to nociception thresholds at the feet is highly desirable as guidance to an individualised injury prevention strategy.

  12. Disparate cholinergic currents in rat principal trigeminal sensory nucleus neurons mediated by M1 and M2 receptors: a possible mechanism for selective gating of afferent sensory neurotransmission.

    PubMed

    Kohlmeier, Kristi A; Soja, Peter J; Kristensen, Morten P

    2006-06-01

    Neurons situated in the principal sensory trigeminal nucleus (PSTN) convey orofacial sensory inputs to thalamic relay regions and higher brain centres, and the excitability of these ascending tract cells is modulated across sleep/wakefulness states and during pain conditions. Moreover, acetylcholine release changes profoundly across sleep/wakefulness states and ascending sensory neurotransmission is altered by cholinergic agonists. An intriguing possibility is, therefore, that cholinergic mechanisms mediate such state-dependent modulation of PSTN tract neurons. We tested the hypotheses that cholinergic agonists can modulate PSTN cell excitability and that such effects are mediated by muscarinic receptor subtypes, using patch-clamp methods in rat and mouse. In all examined cells, carbachol elicited an electrophysiological response that was independent of action potential generation as it persisted in the presence of tetrodotoxin. Responses were of three types: depolarization, hyperpolarization or a biphasic response consisting of hyperpolarization followed by depolarization. In voltage-clamp mode, carbachol evoked corresponding inward, outward or biphasic currents. Moreover, immunostaining for the vesicle-associated choline transporter showed cholinergic innervation of the PSTN. Using muscarinic receptor antagonists, we found that carbachol-elicited PSTN neuron hyperpolarization was mediated by M2 receptors and depolarization, in large part, by M1 receptors. These data suggest that acetylcholine acting on M1 and M2 receptors may contribute to selective excitability enhancement or depression in individual, rostrally projecting sensory neurons. Such selective gating effects via cholinergic input may play a functional role in modulation of ascending sensory transmission, including across behavioral states typified by distinct cholinergic tone, e.g. sleep/wakefulness arousal levels or neuropathic pain conditions. PMID:16820015

  13. Development, plasticity and modulation of visceral afferents

    PubMed Central

    Christianson, Julie A.; Bielefeldt, Klaus; Altier, Christophe; Cenac, Nicolas; Davis, Brian M.; Gebhart, Gerald F.; High, Karin W.; Kollarik, Marian; Randich, Alan; Undem, Brad; Vergnolle, Nathalie

    2010-01-01

    Visceral pain is the most common reason for doctor visits in the US. Like somatic pain, virtually all visceral pain sensations begin with the activation of primary sensory neurons innervating the viscera and/or the blood vessels associated with these structures. Visceral afferents also play a central role in tissue homeostasis. Recent studies show that in addition to monitoring the state of the viscera, they perform efferent functions through the release of small molecules (e.g. peptides like CGRP) that can drive inflammation, thereby contributing to the development of visceral pathologies (e.g. diabetes Razavi, R., Chan, Y., Afifiyan, F.N., Liu, X.J., Wan, X., Yantha, J., Tsui, H., Tang, L., Tsai, S., Santamaria, P., Driver, J.P., Serreze, D., Salter, M.W., Dosch, H.M., 2006. TRPV1+ sensory neurons control beta cell stress and islet inflammation in autoimmune diabetes, Cell 127 1123–1135). Visceral afferents are heterogeneous with respect to their anatomy, neurochemistry and function. They are also highly plastic in that their cellular environment continuously influences their response properties. This plasticity makes them susceptible to long-term changes that may contribute significantly to the development of persistent pain states such as those associated with irritable bowel syndrome, pancreatitis, and visceral cancers. This review examines recent insights into visceral afferent anatomy and neurochemistry and how neonatal insults can affect the function of these neurons in the adult. New approaches to the treatment of visceral pain, which focus on primary afferents, will also be discussed. PMID:19150371

  14. Knockdown of sodium channel NaV1.6 blocks mechanical pain and abnormal bursting activity of afferent neurons in inflamed sensory ganglia.

    PubMed

    Xie, Wenrui; Strong, Judith A; Ye, Ling; Mao, Ju-Xian; Zhang, Jun-Ming

    2013-08-01

    Inflammatory processes in the sensory ganglia contribute to many forms of chronic pain. We previously showed that local inflammation of the lumbar sensory ganglia rapidly leads to prolonged mechanical pain behaviors and high levels of spontaneous bursting activity in myelinated cells. Abnormal spontaneous activity of sensory neurons occurs early in many preclinical pain models and initiates many other pathological changes, but its molecular basis is not well understood. The sodium channel isoform NaV1.6 can underlie repetitive firing and excitatory persistent and resurgent currents. We used in vivo knockdown of this channel via local injection of siRNA to examine its role in chronic pain after local inflammation of the rat lumbar sensory ganglia. In normal dorsal root ganglion (DRG), quantitative polymerase chain reaction showed that cells capable of firing repetitively had significantly higher relative expression of NaV1.6. In inflamed DRG, spontaneously active bursting cells expressed high levels of NaV1.6 immunoreactivity. In vivo knockdown of NaV1.6 locally in the lumbar DRG at the time of DRG inflammation completely blocked development of pain behaviors and abnormal spontaneous activity, while having only minor effects on unmyelinated C cells. Current research on isoform-specific sodium channel blockers for chronic pain is largely focused on NaV1.8 because it is present primarily in unmyelinated C fiber nociceptors, or on NaV1.7 because lack of this channel causes congenital indifference to pain. However, the results suggest that NaV1.6 may be a useful therapeutic target for chronic pain and that some pain conditions may be mediated primarily by myelinated A fiber sensory neurons. PMID:23622763

  15. Knockdown of sodium channel NaV1.6 blocks mechanical pain and abnormal bursting activity of afferent neurons in inflamed sensory ganglia

    PubMed Central

    Xie, Wenrui; Strong, Judith A.; Ye, Ling; Mao, Ju-Xian; Zhang, Jun-Ming

    2013-01-01

    Inflammatory processes in the sensory ganglia contribute to many forms of chronic pain. We previously showed that local inflammation of the lumbar sensory ganglia rapidly leads to prolonged mechanical pain behaviors and high levels of spontaneous bursting activity in myelinated cells. Abnormal spontaneous activity of sensory neurons occurs early in many preclinical pain models, and initiates many other pathological changes, but its molecular basis is not well understood. The sodium channel isoform NaV1.6 can underlie repetitive firing and excitatory persistent and resurgent currents. We used in vivo knockdown of this channel via local injection of siRNA to examine its role in chronic pain following local inflammation of the rat lumbar sensory ganglia. In normal DRG, quantitative PCR showed that cells capable of firing repetitively had significantly higher relative expression of NaV1.6. In inflamed DRG, spontaneously active bursting cells expressed high levels of NaV1.6′ immunoreactivity. In vivo knockdown of NaV1.6 locally in the lumbar DRG at the time of DRG inflammation completely blocked development of pain behaviors and abnormal spontaneous activity, while having only minor effects on unmyelinated C-cells. Current research on isoform-specific sodium channel blockers for chronic pain is largely focused on NaV1.8, because it is present primarily in unmyelinated C fiber nociceptors, or on NaV1.7, because lack of this channel causes congenital indifference to pain. However, the results suggest that NaV1.6 may be a useful therapeutic target for chronic pain, and that some pain conditions may be primarily mediated by myelinated A-fiber sensory neurons. PMID:23622763

  16. Organization of afferents to the striatopallidal systems in the fire-bellied toad Bombina orientalis.

    PubMed

    Ramsay, Zachary J; Laberge, Frédéric

    2014-11-01

    The cerebral hemispheres of amphibians display paired dorsal and ventral striatum (commonly referred to as striatum proper and nucleus accumbens, respectively). Each striatal region is proposed to be closely associated with a pallidal structure located caudal to it to form a striatopallidal system. In the present study, afferents to the dorsal and ventral striatopallidal systems of the fire-bellied toad (Bombina orientalis) were investigated using the neuronal tracer biocytin. A quantitative analysis of the topographical distribution of afferent neurons from the thalamus and posterior tubercle/ventral tegmentum was emphasised. The main results show that inputs to the two striatopallidal systems originate from distinct dorsal thalamic nuclei, with dorsal and ventral striatopallidal afferent neurons favouring strongly the lateral/central and anterior thalamic nuclei, respectively. However, afferent neuron distribution in the dorsal thalamus does not differ in the rostrocaudal axis of the brain. Afferent neurons from the posterior tubercle and ventral tegmentum, on the other hand, are organised topographically along the rostrocaudal axis. About 85 % of afferent neurons to the dorsal striatopallidal system are located rostrally in the posterior tubercle, while 75 % of afferent neurons to the ventral striatopallidal system are found more caudally in the ventral tegmentum. This difference is statistically significant and confirms the presence of distinct mesostriatal pathways in an amphibian. These findings demonstrate that an amphibian brain displays striatopallidal systems integrating parallel streams of sensory information potentially under the influence of distinct ascending mesostriatal pathways.

  17. Neuronal regulation of tendon homoeostasis.

    PubMed

    Ackermann, Paul W

    2013-08-01

    The regulation of tendon homoeostasis, including adaptation to loading, is still not fully understood. Accumulating data, however, demonstrates that in addition to afferent (sensory) functions, the nervous system, via efferent pathways which are associated with through specific neuronal mediators plays an active role in regulating pain, inflammation and tendon homeostasis. This neuronal regulation of intact-, healing- and tendinopathic tendons has been shown to be mediated by three major groups of molecules including opioid, autonomic and excitatory glutamatergic neuroregulators. In intact healthy tendons the neuromediators are found in the surrounding structures: paratenon, endotenon and epitenon, whereas the proper tendon itself is practically devoid of neurovascular supply. This neuroanatomy reflects that normal tendon homoeostasis is regulated from the tendon surroundings. After injury and during tendon repair, however, there is extensive nerve ingrowth into the tendon proper, followed by a time-dependent emergence of sensory, autonomic and glutamatergic mediators, which amplify and fine-tune inflammation and regulate tendon regeneration. In tendinopathic condition, excessive and protracted presence of sensory and glutamatergic neuromediators has been identified, suggesting involvement in inflammatory, nociceptive and hypertrophic (degenerative) tissue responses. Under experimental and clinical conditions of impaired (e.g. diabetes) as well as excessive (e.g. tendinopathy) neuromediator release, dysfunctional tendon homoeostasis develops resulting in chronic pain and gradual degeneration. Thus there is a prospect that in the future pharmacotherapy and tissue engineering approaches targeting neuronal mediators and their receptors may prove to be effective therapies for painful, degenerative and traumatic tendon disorders.

  18. Neuronal regulation of tendon homoeostasis

    PubMed Central

    Ackermann, Paul W

    2013-01-01

    The regulation of tendon homoeostasis, including adaptation to loading, is still not fully understood. Accumulating data, however, demonstrates that in addition to afferent (sensory) functions, the nervous system, via efferent pathways which are associated with through specific neuronal mediators plays an active role in regulating pain, inflammation and tendon homeostasis. This neuronal regulation of intact-, healing- and tendinopathic tendons has been shown to be mediated by three major groups of molecules including opioid, autonomic and excitatory glutamatergic neuroregulators. In intact healthy tendons the neuromediators are found in the surrounding structures: paratenon, endotenon and epitenon, whereas the proper tendon itself is practically devoid of neurovascular supply. This neuroanatomy reflects that normal tendon homoeostasis is regulated from the tendon surroundings. After injury and during tendon repair, however, there is extensive nerve ingrowth into the tendon proper, followed by a time-dependent emergence of sensory, autonomic and glutamatergic mediators, which amplify and fine-tune inflammation and regulate tendon regeneration. In tendinopathic condition, excessive and protracted presence of sensory and glutamatergic neuromediators has been identified, suggesting involvement in inflammatory, nociceptive and hypertrophic (degenerative) tissue responses. Under experimental and clinical conditions of impaired (e.g. diabetes) as well as excessive (e.g. tendinopathy) neuromediator release, dysfunctional tendon homoeostasis develops resulting in chronic pain and gradual degeneration. Thus there is a prospect that in the future pharmacotherapy and tissue engineering approaches targeting neuronal mediators and their receptors may prove to be effective therapies for painful, degenerative and traumatic tendon disorders. PMID:23718724

  19. Differential central projections of vestibular afferents in pigeons

    NASA Technical Reports Server (NTRS)

    Dickman, J. D.; Fang, Q.

    1996-01-01

    The question of whether a differential distribution of vestibular afferent information to central nuclear neurons is present in pigeons was studied using neural tracer compounds. Discrete tracing of afferent fibers innervating the individual semicircular canal and otolith organs was produced by sectioning individual branches of the vestibular nerve that innervate the different receptor organs and applying crystals of horseradish peroxidase, or a horseradish peroxidase/cholera toxin mixture, or a biocytin compound for neuronal uptake and transport. Afferent fibers and their terminal distributions within the brainstem and cerebellum were visualized subsequently. Discrete areas in the pigeon central nervous system that receive primary vestibular input include the superior, dorsal lateral, ventral lateral, medial, descending, and tangential vestibular nuclei; the A and B groups; the intermediate, medial, and lateral cerebellar nuclei; and the nodulus, the uvula, and the paraflocculus. Generally, the vertical canal afferents projected heavily to medial regions in the superior and descending vestibular nuclei as well as the A group. Vertical canal projections to the medial and lateral vestibular nuclei were observed but were less prominent. Horizontal canal projections to the superior and descending vestibular nuclei were much more centrally located than those of the vertical canals. A more substantial projection to the medial and lateral vestibular nuclei was seen with horizontal canal afferents compared to vertical canal fibers. Afferents innervating the utricle and saccule terminated generally in the lateral regions of all vestibular nuclei in areas that were separate from the projections of the semicircular canals. In addition, utricular fibers projected to regions in the vestibular nuclei that overlapped with the horizontal semicircular canal terminal fields, whereas saccular afferents projected to regions that received vertical canal fiber terminations. Lagenar

  20. Ventral Tegmental Area Afferents and Drug-Dependent Behaviors

    PubMed Central

    Oliva, Idaira; Wanat, Matthew J.

    2016-01-01

    Drug-related behaviors in both humans and rodents are commonly thought to arise from aberrant learning processes. Preclinical studies demonstrate that the acquisition and expression of many drug-dependent behaviors involves the ventral tegmental area (VTA), a midbrain structure comprised of dopamine, GABA, and glutamate neurons. Drug experience alters the excitatory and inhibitory synaptic input onto VTA dopamine neurons, suggesting a critical role for VTA afferents in mediating the effects of drugs. In this review, we present evidence implicating the VTA in drug-related behaviors, highlight the diversity of neuronal populations in the VTA, and discuss the behavioral effects of selectively manipulating VTA afferents. Future experiments are needed to determine which VTA afferents and what neuronal populations in the VTA mediate specific drug-dependent behaviors. Further studies are also necessary for identifying the afferent-specific synaptic alterations onto dopamine and non-dopamine neurons in the VTA following drug administration. The identification of neural circuits and adaptations involved with drug-dependent behaviors can highlight potential neural targets for pharmacological and deep brain stimulation interventions to treat substance abuse disorders. PMID:27014097

  1. Modulation of vagal afferent excitation and reduction of food intake by leptin and cholecystokinin.

    PubMed

    Peters, James H; Simasko, Steven M; Ritter, Robert C

    2006-11-30

    The gut-peptide, cholecystokinin (CCK), reduces food intake by acting at CCK-1 receptors on vagal afferent neurons, whereas the feeding effects of the adipokine hormone, leptin, are associated primarily with its action on receptors (ObRb) in the hypothalamus. Recently, however, ObRb mRNA has been reported in vagal afferent neurons, some of which also express CCK-1 receptor, suggesting that leptin, alone or in cooperation with CCK, might activate vagal afferent neurons, and influence food intake via a vagal route. To evaluate these possibilities we have been examining the cellular and behavioral effects of leptin and CCK on vagal afferent neurons. In cultured vagal afferent neurons leptin and CCK evoked short latency, transient depolarizations, often leading to action potentials, and increases in cytosolic calcium. There was a much higher prevalence of CCK and leptin sensitivity amongst cultured vagal afferent neurons that innervate stomach or duodenum than there was in the overall vagal afferent population. Furthermore, almost all leptin-responsive gastric and duodenal vagal afferents also were sensitive to CCK. Leptin, infused into the upper GI tract arterial supply, reduced meal size, and enhanced satiation evoked by CCK. These results indicate that vagal afferent neurons are activated by leptin, and that this activation is likely to participate in meal termination, perhaps by enhancing vagal sensitivity to CCK. Our findings are consistent with the view that leptin and CCK exert their influence on food intake by accessing multiple neural systems (viscerosensory, motivational, affective and motor) at multiple points along the neuroaxis. PMID:16872644

  2. Primary afferent depolarization and frequency processing in auditory afferents.

    PubMed

    Baden, Tom; Hedwig, Berthold

    2010-11-01

    Presynaptic inhibition is a widespread mechanism modulating the efficiency of synaptic transmission and in sensory pathways is coupled to primary afferent depolarizations. Axonal terminals of bush-cricket auditory afferents received 2-5 mV graded depolarizing inputs, which reduced the amplitude of invading spikes and indicated presynaptic inhibition. These inputs were linked to a picrotoxin-sensitive increase of Ca(2+) in the terminals. Electrophysiological recordings and optical imaging showed that in individual afferents the sound frequency tuning based on spike rates was different from the tuning of the graded primary afferent depolarizations. The auditory neuropil of the bush-cricket Mecopoda elongata is tonotopically organized, with low frequencies represented anteriorly and high frequencies represented posteriorly. In contrast graded depolarizing inputs were tuned to high-frequencies anteriorly and to low-frequencies posteriorly. Furthermore anterior and posterior axonal branches of individual afferents received different levels of primary afferent depolarization depending on sound frequency. The presence of primary afferent depolarization in the afferent terminals indicates that presynaptic inhibition may shape the synaptic transmission of frequency-specific activity to auditory interneurons.

  3. Distribution of input and output synapses on the central branches of bushcricket and cricket auditory afferent neurones: immunocytochemical evidence for GABA and glutamate in different populations of presynaptic boutons.

    PubMed

    Hardt, M; Watson, A H

    1999-01-18

    In order to investigate the synapses on the terminals of primary auditory afferents in the bushcricket and cricket, these were impaled with microelectrodes and after physiological characterisation, injected intracellularly with horseradish peroxidase. The tissue was prepared for electron microscopy, and immunocytochemistry for gamma-aminobutyric acid (GABA) and glutamate was carried out on ultrathin sections by using a post-embedding immunogold technique. The afferent terminals received many input synapses. Between 60-65% of these were made by processes immunoreactive for GABA and approximately 25% from processes immunoreactive for glutamate. The relative distribution of the different classes of input were analysed from serial section reconstruction of terminal afferent branches. Inputs from GABA and glutamate-immunoreactive processes appeared to be scattered at random over the terminal arborisation of the afferents both with respect to each other and to the architecture of the terminals. They were, however, always found close to the output synapses. The possible roles of presynaptic inhibition in the auditory afferents is discussed in the context of the auditory responses of the animals.

  4. A novel role for TRPM8 in visceral afferent function.

    PubMed

    Harrington, Andrea M; Hughes, Patrick A; Martin, Christopher M; Yang, Jing; Castro, Joel; Isaacs, Nicole J; Blackshaw, L Ashley; Brierley, Stuart M

    2011-07-01

    Transient receptor potential ion channel melastatin subtype 8 (TRPM8) is activated by cold temperatures and cooling agents, such as menthol and icilin. Compounds containing peppermint are reported to reduce symptoms of bowel hypersensitivity; however, the underlying mechanisms of action are unclear. Here we determined the role of TRPM8 in colonic sensory pathways. Laser capture microdissection, quantitative reverse transcription-polymerase chain reaction (RT-PCR), immunofluorescence, and retrograde tracing were used to localise TRPM8 to colonic primary afferent neurons. In vitro extracellular single-fibre afferent recordings were used to determine the effect of TRPM8 channel activation on the chemosensory and mechanosensory function of colonic high-threshold afferent fibres. TRPM8 mRNA was present in colonic DRG neurons, whereas TRPM8 protein was present on nerve fibres throughout the wall of the colon. A subpopulation (24%, n=58) of splanchnic serosal and mesenteric afferents tested responded directly to icilin (5 μmol/L). Subsequently, icilin significantly desensitised afferents to mechanical stimulation (P<.0001; n=37). Of the splanchnic afferents responding to icilin, 21 (33%) also responded directly to the TRPV1 agonist capsaicin (3 μmol/L), and icilin reduced the direct chemosensory response to capsaicin. Icilin also prevented mechanosensory desensitization and sensitization induced by capsaicin and the TRPA1 agonist AITC (40 μmol/L), respectively. TRPM8 is present on a select population of colonic high threshold sensory neurons, which may also co-express TRPV1. TRPM8 couples to TRPV1 and TRPA1 to inhibit their downstream chemosensory and mechanosensory actions. PMID:21489690

  5. Long-term potentiation in spinal nociceptive systems--how acute pain may become chronic.

    PubMed

    Rygh, Lars Jørgen; Svendsen, Frode; Fiskå, Atle; Haugan, Frøydis; Hole, Kjell; Tjølsen, Arne

    2005-11-01

    Chronic pain is a major problem since it is difficult to treat and the understanding of the underlying neurobiology is sparse. The mechanisms underpinning the transition of acute into chronic pain remain unclear. However, long-term potentiation (LTP) in spinal nociceptive systems may be one such mechanism. Here, we briefly review the literature regarding LTP in spinal nociceptive systems including our own data on LTP in deep convergent nociceptive neurons. Furthermore, we discuss the role of this phenomenon in understanding the neurobiology of chronic pain and the possible therapeutic implications.

  6. Specific activation of the paralemniscal pathway during nociception.

    PubMed

    Frangeul, Laura; Porrero, Cesar; Garcia-Amado, Maria; Maimone, Benedetta; Maniglier, Madlyne; Clascá, Francisco; Jabaudon, Denis

    2014-05-01

    Two main neuronal pathways connect facial whiskers to the somatosensory cortex in rodents: (i) the lemniscal pathway, which originates in the brainstem principal trigeminal nucleus and is relayed in the ventroposterior thalamic nucleus and (ii) the paralemniscal pathway, originating in the spinal trigeminal nucleus and relayed in the posterior thalamic nucleus. While lemniscal neurons are readily activated by whisker contacts, the contribution of paralemniscal neurons to perception is less clear. Here, we functionally investigated these pathways by manipulating input from the whisker pad in freely moving mice. We report that while lemniscal neurons readily respond to neonatal infraorbital nerve sectioning or whisker contacts in vivo, paralemniscal neurons do not detectably respond to these environmental changes. However, the paralemniscal pathway is specifically activated upon noxious stimulation of the whisker pad. These findings reveal a nociceptive function for paralemniscal neurons in vivo that may critically inform context-specific behaviour during environmental exploration.

  7. Impaired excitability of renal afferent innervation after exposure to the inflammatory chemokine CXCL1.

    PubMed

    Ditting, Tilmann; Freisinger, Wolfgang; Rodionova, Kristina; Schatz, Johannes; Lale, Nena; Heinlein, Sonja; Linz, Peter; Ott, Christian; Schmieder, Roland E; Scrogin, Karie E; Veelken, Roland

    2016-03-01

    Recently, we showed that renal afferent neurons exhibit a unique firing pattern, i.e., predominantly sustained firing, upon stimulation. Pathological conditions such as renal inflammation likely alter excitability of renal afferent neurons. Here, we tested whether the proinflammatory chemokine CXCL1 alters the firing pattern of renal afferent neurons. Rat dorsal root ganglion neurons (Th11-L2), retrogradely labeled with dicarbocyanine dye, were incubated with CXCL1 (20 h) or vehicle before patch-clamp recording. The firing pattern of neurons was characterized as tonic, i.e., sustained action potential (AP) firing, or phasic, i.e., <5 APs following current injection. Of the labeled renal afferents treated with vehicle, 58.9% exhibited a tonic firing pattern vs. 7.8%, in unlabeled, nonrenal neurons (P < 0.05). However, after exposure to CXCL1, significantly more phasic neurons were found among labeled renal neurons; hence the occurrence of tonic neurons with sustained firing upon electrical stimulation decreased (35.6 vs. 58.9%, P < 0.05). The firing frequency among tonic neurons was not statistically different between control and CXCL1-treated neurons. However, the lower firing frequency of phasic neurons was even further decreased with CXCL1 exposure [control: 1 AP/600 ms (1-2) vs. CXCL1: 1 AP/600 ms (1-1); P < 0.05; median (25th-75th percentile)]. Hence, CXCL1 shifted the firing pattern of renal afferents from a predominantly tonic to a more phasic firing pattern, suggesting that CXCL1 reduced the sensitivity of renal afferent units upon stimulation.

  8. Functional specializations of primary auditory afferents on the Mauthner cells: interactions between membrane and synaptic properties.

    PubMed

    Curti, Sebastian; Pereda, Alberto E

    2010-01-01

    Primary auditory afferents are usually perceived as passive, timing-preserving, lines of communication. Contrasting this view, a special class of auditory afferents to teleost Mauthner cells, a command neuron that organizes tail-flip escape responses, undergoes potentiation of their mixed (electrical and chemical) synapses in response to high frequency cellular activity. This property is likely to represent a mechanism of input sensitization as these neurons provide the Mauthner cell with essential information for the initiation of an escape response. We review here the anatomical and physiological specializations of these identifiable auditory afferents. In particular, we discuss how their membrane and synaptic properties act in concert to more efficaciously activate the Mauthner cells. The striking functional specializations of these neurons suggest that primary auditory afferents might be capable of more sophisticated contributions to auditory processing than has been generally recognized. PMID:19941953

  9. Mast cells drive mesenteric afferent signalling during acute intestinal ischaemia

    PubMed Central

    Jiang, Wen; Kirkup, Anthony J; Grundy, David

    2011-01-01

    Abstract Acute intestinal ischaemia stimulates visceral afferent nerves but the mechanisms responsible for this excitation are not fully understood. Mast cells may participate in this process as they are known to signal to mesenteric afferents during intestinal anaphylaxis and contribute to early inflammation and neuronal damage in response to cerebral ischaemia. We therefore hypothesised that mast cells are early responders to acute intestinal ischaemia and their activation initiates rapid signalling to the CNS via the excitation of mesenteric afferents. Primary afferent firing was recorded from a mesenteric nerve bundle supplying a segment of jejunum in anaesthetized adult rats. Acute focal ischaemia was produced by clamping the mesenteric vessels for 8 min, and reperfusion followed removal of the vessel clip. Two episodes of ischaemia–reperfusion (I–R) separated by a 30 min interval were performed. Drugs or their vehicles were administered 10 min before the 2nd I–R episode. Ischaemia caused a reproducible, intense and biphasic afferent firing that was temporally dissociated from the concomitantly triggered complex pattern of intestinal motor activity. The L-type calcium channel blocker, nifedipine, significantly attenuated this afferent firing by a mechanism independent of its action on intestinal tone. Ischaemia-induced afferent firing was also abrogated by the mast cell stabilizer, doxantrazole, and the H1 histamine receptor antagonist, pyrilamine. In contrast, the nicotinic receptor antagonist, hexamethonium, and the N-type calcium channel toxin, ω-conotoxin GVIA, each reduced the ischaemia-evoked motor inhibition but not the concurrent afferent discharge. Similarly, the cyclooxygenase inhibitor, naproxen, had no effect on the ischaemic afferent response but reduced the intestinal tone shortly from the onset of ischaemia to the early period of reperfusion. These data support a critical role for mast cell-derived histamine in the direct chemoexcitation

  10. Hair cell tufts and afferent innervation of the bullfrog crista ampullaris

    NASA Technical Reports Server (NTRS)

    Myers, Steven F.; Lewis, Edwin R.

    1990-01-01

    Within the bullfrog semicircular canal crista, hair cell tuft types were defined and mapped with the aid of scanning electron microscopy. Dye-filled planar afferent axons had mean distal axonal diameters of 1.6-4.9 microns, highly branched arbors, and contacted 11-24 hair cells. Dye-filled isthmus afferent axons had mean distal axonal diameters of 1.8-7.9 microns, with either small or large field arbors contacting 4-9 or 25-31 hair cells. The estimated mean number of contacts per innervated hair cell was 2.2 for planar and 1.3 for isthmus afferent neurons. Data on evoked afferent responses were available only for isthmus units that were observed to respond to our microrotational stimuli. Of 21 such afferent neurons, eight were successfully dye-filled. Within this sample, high-gain units had large field arbors and lower-gain units had small field arbors. The sensitivity of each afferent neuron was analyzed in terms of noise equivalent input (NEI), the stimulus amplitude for which the afferent response amplitude is just equivalent to the rms deviation of the instantaneous spike rate. NEI for isthmus units varied from 0.63 to 8.2 deg/s; the mean was 3.2 deg/s.

  11. Histaminergic afferent system in the cerebellum: structure and function.

    PubMed

    Li, Bin; Zhu, Jing-Ning; Wang, Jian-Jun

    2014-01-01

    Histaminergic afferent system of the cerebellum, having been considered as an essential component of the direct hypothalamocerebellar circuits, originates from the tuberomammillary nucleus in the hypothalamus. Unlike the mossy fibers and climbing fibers, the histaminergic afferent fibers, a third type of cerebellar afferents, extend fine varicose fibers throughout the cerebellar cortex and nuclei. Histamine receptors, belonging to the family of G protein-coupled receptors, are widely present in the cerebellum. Through these histamine receptors, histamine directly excites Purkinje cells and granule cells in the cerebellar cortex, as well as the cerebellar nuclear neurons. Therefore, the histaminergic afferents parallelly modulate these dominant components in the cerebellar circuitry and consequently influence the final output of the cerebellum. In this way, the histaminergic afferent system actively participates in the cerebellum-mediated motor balance and coordination and nonsomatic functions. Accordingly, histaminergic reagents may become potential drugs for clinical treatment of cerebellar ataxia and other cerebellar disease. On the other hand, considering the hypothalamus is a high regulatory center for autonomic and visceral activities, the hypothalamocerebellar histaminergic fibers/projections, bridging the nonsomatic center to somatic structure, may play a critical role in the somatic-nonsomatic integration.

  12. Gut vagal afferents differentially modulate innate anxiety and learned fear.

    PubMed

    Klarer, Melanie; Arnold, Myrtha; Günther, Lydia; Winter, Christine; Langhans, Wolfgang; Meyer, Urs

    2014-05-21

    Vagal afferents are an important neuronal component of the gut-brain axis allowing bottom-up information flow from the viscera to the CNS. In addition to its role in ingestive behavior, vagal afferent signaling has been implicated modulating mood and affect, including distinct forms of anxiety and fear. Here, we used a rat model of subdiaphragmatic vagal deafferentation (SDA), the most complete and selective vagal deafferentation method existing to date, to study the consequences of complete disconnection of abdominal vagal afferents on innate anxiety, conditioned fear, and neurochemical parameters in the limbic system. We found that compared with Sham controls, SDA rats consistently displayed reduced innate anxiety-like behavior in three procedures commonly used in preclinical rodent models of anxiety, namely the elevated plus maze test, open field test, and food neophobia test. On the other hand, SDA rats exhibited increased expression of auditory-cued fear conditioning, which specifically emerged as attenuated extinction of conditioned fear during the tone re-exposure test. The behavioral manifestations in SDA rats were associated with region-dependent changes in noradrenaline and GABA levels in key areas of the limbic system, but not with functional alterations in the hypothalamus-pituitary-adrenal grand stress. Our study demonstrates that innate anxiety and learned fear are both subjected to visceral modulation through abdominal vagal afferents, possibly via changing limbic neurotransmitter systems. These data add further weight to theories emphasizing an important role of afferent visceral signals in the regulation of emotional behavior.

  13. Effects of intravenous metamizole on ongoing and evoked activity of dura-sensitive thalamic neurons in rats.

    PubMed

    Sokolov, Alexey Y; Lyubashina, Olga A; Sivachenko, Ivan B; Panteleev, Sergey S

    2014-05-15

    Migraine and tension-type headache (TTH) are the most common forms of primary headaches. A general key mechanism underlying development of both the diseases is the trigeminal system activation associated with the ascending nociceptive transmission via the trigemino-thalamo-cortical pathway. The ventroposteromedial (VPM) nucleus is a key thalamic structure, receiving afferent inflow from the craniofacial region; it holds the third-order neurons responsible for conveying sensory information from the extra- and intracranial nociceptors to the cortex. The VPM is currently seen as a therapeutic target for various antimigraine medications, which is shown to reduce the VPM neuronal excitability. A non-opioid analgesic metamizole is widely used in some countries for acute treatment of migraine or TTH. However, the precise mechanisms underlying anticephalgic action of metamizole remain unclear. The objective of our study performed in the rat model of trigemino-durovascular nociception was to evaluate the effects of intravenously administered metamizole on ongoing and evoked firing of the dura-sensitive VPM neurons. The experiments were carried out on rats under urethane-chloralose anesthesia. Cumulative administration of metamizole (thrice-repeated intravenous infusion of 150 mg/kg performed 30 min apart) in 56% of cases produced a suppression of both the ongoing activity of the thalamic VPM neurons and their responses to dural electrical stimulation. Although the inhibitory effect was prevailing, a number of VPM neurons were indifferent to the administration of metamizole. These data suggest that one of the main components of neural mechanism underlying anticephalgic action of metamizole is suppression of the thalamo-cortical nociceptive transmission associated with trigemino-vascular activation. PMID:24650732

  14. The effect of spinal cord injury on the neurochemical properties of vagal sensory neurons

    PubMed Central

    Herrity, April N.; Petruska, Jeffrey C.; Stirling, David P.; Rau, Kristofer K.

    2015-01-01

    The vagus nerve is composed primarily of nonmyelinated sensory neurons whose cell bodies are located in the nodose ganglion (NG). The vagus has widespread projections that supply most visceral organs, including the bladder. Because of its nonspinal route, the vagus nerve itself is not directly damaged from spinal cord injury (SCI). Because most viscera, including bladder, are dually innervated by spinal and vagal sensory neurons, an impact of SCI on the sensory component of vagal circuitry may contribute to post-SCI visceral pathologies. To determine whether SCI, in male Wistar rats, might impact neurochemical characteristics of NG neurons, immunohistochemical assessments were performed for P2X3 receptor expression, isolectin B4 (IB4) binding, and substance P expression, three known injury-responsive markers in sensory neuronal subpopulations. In addition to examining the overall population of NG neurons, those innervating the urinary bladder also were assessed separately. All three of the molecular markers were represented in the NG from noninjured animals, with the majority of the neurons binding IB4. In the chronically injured rats, there was a significant increase in the number of NG neurons expressing P2X3 and a significant decrease in the number binding IB4 compared with noninjured animals, a finding that held true also for the bladder-innervating population. Overall, these results indicate that vagal afferents, including those innervating the bladder, display neurochemical plasticity post-SCI that may have implications for visceral homeostatic mechanisms and nociceptive signaling. PMID:25855310

  15. The effect of spinal cord injury on the neurochemical properties of vagal sensory neurons.

    PubMed

    Herrity, April N; Petruska, Jeffrey C; Stirling, David P; Rau, Kristofer K; Hubscher, Charles H

    2015-06-15

    The vagus nerve is composed primarily of nonmyelinated sensory neurons whose cell bodies are located in the nodose ganglion (NG). The vagus has widespread projections that supply most visceral organs, including the bladder. Because of its nonspinal route, the vagus nerve itself is not directly damaged from spinal cord injury (SCI). Because most viscera, including bladder, are dually innervated by spinal and vagal sensory neurons, an impact of SCI on the sensory component of vagal circuitry may contribute to post-SCI visceral pathologies. To determine whether SCI, in male Wistar rats, might impact neurochemical characteristics of NG neurons, immunohistochemical assessments were performed for P2X3 receptor expression, isolectin B4 (IB4) binding, and substance P expression, three known injury-responsive markers in sensory neuronal subpopulations. In addition to examining the overall population of NG neurons, those innervating the urinary bladder also were assessed separately. All three of the molecular markers were represented in the NG from noninjured animals, with the majority of the neurons binding IB4. In the chronically injured rats, there was a significant increase in the number of NG neurons expressing P2X3 and a significant decrease in the number binding IB4 compared with noninjured animals, a finding that held true also for the bladder-innervating population. Overall, these results indicate that vagal afferents, including those innervating the bladder, display neurochemical plasticity post-SCI that may have implications for visceral homeostatic mechanisms and nociceptive signaling. PMID:25855310

  16. Chicken (Gallus domesticus) inner ear afferents

    NASA Technical Reports Server (NTRS)

    Hara, H.; Chen, X.; Hartsfield, J. F.; Hara, J.; Martin, D.; Fermin, C. D.

    1998-01-01

    Neurons from the vestibular (VG) and the statoacoustic (SAG) ganglion of the chick (Gallus domesticus) were evaluated histologically and morphometrically. Embryos at stages 34 (E8 days), 39 (E13 days) and 44 (E18 days) were sacrificed and temporal bones microdissected. Specimens were embedded in JB-4 methacrylate plastic, and stained with a mixture of 0.2% toluidine blue (TB) and 0.1% basic Fuschin in 25% ethanol or with a mixture of 2% TB and 1% paraphenylenediamine (PDA) for axon and myelin measurement study. Images of the VIIIth nerve were produced by a V150 (R) color imaging system and the contour of 200-300 neuronal bodies (perikarya) was traced directly on a video screen with a mouse in real time. The cross-sectional area of VG perikarya was 67.29 micrometers2 at stage 34 (E8), 128.46 micrometers2 at stage 39 (E13) and 275.85 micrometers2 at stage 44 (E18). The cross-sectional area of SAG perikarya was 62.44 micrometers2 at stage 34 (E8), 102.05 micrometers2 at stage 39 (E13) and 165.02 micrometers2 at stage 44 (E18). A significant cross-sectional area increase of the VG perikarya between stage 39 (E13) and stage 44 (E18) was determined. We randomly measured the cross-sectional area of myelin and axoplasm of hatchling afferent nerves, and found a correspondence between axoplasmic and myelin cross-sectional area in the utricular, saccular and semicircular canal nerve branches of the nerve. The results suggest that the period between stage 34 (E8) and 39 (E13) is a critical period for afferent neuronal development. Physiological and behavioral vestibular properties of developing and maturing hatchlings may change accordingly. The results compliment previous work by other investigators and provide valuable anatomical measures useful to correlate physiological data obtained from stimulation of the whole nerve or its parts.

  17. Congenital taurine deficiency in mice is associated with reduced sensitivity to nociceptive chemical stimulation.

    PubMed

    Lötsch, J; Hummel, T; Warskulat, U; Coste, O; Häussinger, D; Geisslinger, G; Tegeder, I

    2014-02-14

    The amino acid taurine is required for development and functioning of the central and peripheral nervous system where it exerts osmoregulatory, neuromodulatory and anti-apoptotic actions. It is subject to cellular import by the taurine transporter slc6a6. Absence of the transporter and consequently, absence of taurine leads to several neurologic deficits and sensory losses. In a slc6a6 knock-out mouse model, consequences of congenital taurine deficiency were assessed in nociceptive sensory processes. The formalin assay, hot plate assay, and summated generator potentials in response to local nociceptive stimulation with gaseous CO2 were applied. Reduced responsiveness of slc6a6(-/-) mice to nociceptive stimulation was observed in particular to chemical nociceptive stimuli. Scl6a6 knock-out mice spent significantly less time licking the formalin injected paw and displayed smaller amplitudes of the nociceptive nasal mucosa potentials than wild-type mice (p=0.002 and 0.01 respectively). In contrast, withdrawal latencies on a hot plate did not significantly differ, suggesting that intracellular taurine deficits lead in particular to a hyposensitivity of nociceptive sensory neurons sensitive to noxious chemical stimulation. As hereditary absence of taurine affects biological processes of anatomical structure development, the altered nociceptive responses likely reflect consequences of compromised peripheral nervous system development.

  18. Sertraline inhibits formalin-induced nociception and cardiovascular responses

    PubMed Central

    Santuzzi, C.H.; Futuro Neto, H.A.; Pires, J.G.P.; Gonçalves, W.L.S.; Tiradentes, R.V.; Gouvea, S.A.; Abreu, G.R.

    2011-01-01

    The objective of the present study was to determine the antihyperalgesic effect of sertraline, measured indirectly by the changes of sciatic afferent nerve activity, and its effects on cardiorespiratory parameters, using the model of formalin-induced inflammatory nociception in anesthetized rats. Serum serotonin (5-HT) levels were measured in order to test their correlation with the analgesic effect. Male Wistar rats (250-300 g) were divided into 4 groups (N = 8 per group): sertraline-treated group (Sert + Saline (Sal) and Sert + Formalin (Form); 3 mg·kg−1·day−1, ip, for 7 days) and saline-treated group (Sal + Sal and Sal + Form). The rats were injected with 5% (50 µL) formalin or saline into the right hind paw. Sciatic nerve activity was recorded using a silver electrode connected to a NeuroLog apparatus, and cardiopulmonary parameters (mean arterial pressure, heart rate and respiratory frequency), assessed after arterial cannulation and tracheotomy, were monitored using a Data Acquisition System. Blood samples were collected from the animals and serum 5-HT levels were determined by ELISA. Formalin injection induced the following changes: sciatic afferent nerve activity (+50.8 ± 14.7%), mean arterial pressure (+1.4 ± 3 mmHg), heart rate (+13 ± 6.8 bpm), respiratory frequency (+4.6 ± 5 cpm) and serum 5-HT increased to 1162 ± 124.6 ng/mL. Treatment with sertraline significantly reduced all these parameters (respectively: +19.8 ± 6.9%, -3.3 ± 2 mmHg, -13.1 ± 10.8 bpm, -9.8 ± 5.7 cpm) and serum 5-HT level dropped to 634 ± 69 ng/mL (P < 0.05). These results suggest that sertraline plays an analgesic role in formalin-induced nociception probably through a serotonergic mechanism. PMID:22086464

  19. Putative roles of neuropeptides in vagal afferent signaling

    PubMed Central

    de Lartigue, Guillaume

    2014-01-01

    The vagus nerve is a major pathway by which information is communicated between the brain and peripheral organs. Sensory neurons of the vagus are located in the nodose ganglia. These vagal afferent neurons innervate the heart, the lung and the gastrointestinal tract, and convey information about peripheral signals to the brain important in the control of cardiovascular tone, respiratory tone, and satiation, respectively. Glutamate is thought to be the primary neurotransmitter involved in conveying all of this information to the brain. It remains unclear how a single neurotransmitter can regulate such an extensive list of physiological functions from a wide range of visceral sites. Many neurotransmitters have been identified in vagal afferent neurons and have been suggested to modulate the physiological functions of glutamate. Specifically, the anorectic peptide transmitters, cocaine and amphetamine regulated transcript (CART) and the orexigenic peptide transmitters, melanin concentrating hormone (MCH) are differentially regulated in vagal afferent neurons and have opposing effects on food intake. Using these two peptides as a model, this review will discuss the potential role of peptide transmitters in providing a more precise and refined modulatory control of the broad physiological functions of glutamate, especially in relation to the control of feeding. PMID:24650553

  20. GluA2-Containing AMPA Receptors Distinguish Ribbon-Associated from Ribbonless Afferent Contacts on Rat Cochlear Hair Cells123

    PubMed Central

    Martinez-Monedero, Rodrigo

    2016-01-01

    Abstract Mechanosensory hair cells release glutamate at ribbon synapses to excite postsynaptic afferent neurons, via AMPA-type ionotropic glutamate receptors (AMPARs). However, type II afferent neurons contacting outer hair cells in the mammalian cochlea were thought to differ in this respect, failing to show GluA immunolabeling and with many “ribbonless” afferent contacts. Here it is shown that antibodies to the AMPAR subunit GluA2 labeled afferent contacts below inner and outer hair cells in the rat cochlea, and that synaptic currents in type II afferents had AMPAR-specific pharmacology. Only half the postsynaptic densities of type II afferents that labeled for PSD-95, Shank, or Homer were associated with GluA2 immunopuncta or presynaptic ribbons, the “empty slots” corresponding to ribbonless contacts described previously. These results extend the universality of AMPAergic transmission by hair cells, and support the existence of silent afferent contacts. PMID:27257620

  1. Learned control over spinal nociception reduces supraspinal nociception as quantified by late somatosensory evoked potentials.

    PubMed

    Ruscheweyh, Ruth; Bäumler, Maximilian; Feller, Moritz; Krafft, Stefanie; Sommer, Jens; Straube, Andreas

    2015-12-01

    We have recently shown that subjects can learn to use cognitive-emotional strategies to suppress their spinal nociceptive flexor reflex (RIII reflex) under visual RIII feedback and proposed that this reflects learned activation of descending pain inhibition. Here, we investigated whether learned RIII suppression also affects supraspinal nociception and whether previous relaxation training increases success. Subjects were trained over 3 sessions to reduce their RIII size by self-selected cognitive-emotional strategies. Two groups received true RIII feedback (with or without previous relaxation training) and a sham group received false feedback (15 subjects per group). RIII reflexes, late somatosensory evoked potentials (SEPs), and F-waves were recorded and pain intensity ratings collected. Both true feedback groups achieved significant (P < 0.01) but similar RIII suppression (to 79% ± 21% and 70% ± 17% of control). Somatosensory evoked potential amplitude (100-150 milliseconds after stimulation) was reduced in parallel with the RIII size (r = 0.57, P < 0.01). In the sham group, neither RIII size nor SEP amplitude was significantly reduced during feedback training. Pain intensity was significantly reduced in all 3 groups and also correlated with RIII reduction (r = 0.44, P < 0.01). F-wave parameters were not affected during RIII suppression. The present results show that learned RIII suppression also affects supraspinal nociception as quantified by SEPs, although effects on pain ratings were less clear. Lower motor neuron excitability as quantified by F-waves was not affected. Previous relaxation training did not significantly improve RIII feedback training success. PMID:26270584

  2. Activation of TRESK channels by the inflammatory mediator lysophosphatidic acid balances nociceptive signalling

    PubMed Central

    Kollert, Sina; Dombert, Benjamin; Döring, Frank; Wischmeyer, Erhard

    2015-01-01

    In dorsal root ganglia (DRG) neurons TRESK channels constitute a major current component of the standing outward current IKSO. A prominent physiological role of TRESK has been attributed to pain sensation. During inflammation mediators of pain e.g. lysophosphatidic acid (LPA) are released and modulate nociception. We demonstrate co-expression of TRESK and LPA receptors in DRG neurons. Heterologous expression of TRESK and LPA receptors in Xenopus oocytes revealed augmentation of basal K+ currents upon LPA application. In DRG neurons nociception can result from TRPV1 activation by capsaicin or LPA. Upon co-expression in Xenopus oocytes LPA simultaneously increased both depolarising TRPV1 and hyperpolarising TRESK currents. Patch-clamp recordings in cultured DRG neurons from TRESK[wt] mice displayed increased IKSO after application of LPA whereas under these conditions IKSO in neurons from TRESK[ko] mice remained unaltered. Under current-clamp conditions LPA application differentially modulated excitability in these genotypes upon depolarising pulses. Spike frequency was attenuated in TRESK[wt] neurons and, in contrast, augmented in TRESK[ko] neurons. Accordingly, excitation of nociceptive neurons by LPA is balanced by co-activation of TRESK channels. Hence excitation of sensory neurons is strongly controlled by the activity of TRESK channels, which therefore are good candidates for the treatment of pain disorders. PMID:26224542

  3. Activation of TRESK channels by the inflammatory mediator lysophosphatidic acid balances nociceptive signalling.

    PubMed

    Kollert, Sina; Dombert, Benjamin; Döring, Frank; Wischmeyer, Erhard

    2015-07-30

    In dorsal root ganglia (DRG) neurons TRESK channels constitute a major current component of the standing outward current IKSO. A prominent physiological role of TRESK has been attributed to pain sensation. During inflammation mediators of pain e.g. lysophosphatidic acid (LPA) are released and modulate nociception. We demonstrate co-expression of TRESK and LPA receptors in DRG neurons. Heterologous expression of TRESK and LPA receptors in Xenopus oocytes revealed augmentation of basal K(+) currents upon LPA application. In DRG neurons nociception can result from TRPV1 activation by capsaicin or LPA. Upon co-expression in Xenopus oocytes LPA simultaneously increased both depolarising TRPV1 and hyperpolarising TRESK currents. Patch-clamp recordings in cultured DRG neurons from TRESK[wt] mice displayed increased IKSO after application of LPA whereas under these conditions IKSO in neurons from TRESK[ko] mice remained unaltered. Under current-clamp conditions LPA application differentially modulated excitability in these genotypes upon depolarising pulses. Spike frequency was attenuated in TRESK[wt] neurons and, in contrast, augmented in TRESK[ko] neurons. Accordingly, excitation of nociceptive neurons by LPA is balanced by co-activation of TRESK channels. Hence excitation of sensory neurons is strongly controlled by the activity of TRESK channels, which therefore are good candidates for the treatment of pain disorders.

  4. Activation of TRESK channels by the inflammatory mediator lysophosphatidic acid balances nociceptive signalling.

    PubMed

    Kollert, Sina; Dombert, Benjamin; Döring, Frank; Wischmeyer, Erhard

    2015-01-01

    In dorsal root ganglia (DRG) neurons TRESK channels constitute a major current component of the standing outward current IKSO. A prominent physiological role of TRESK has been attributed to pain sensation. During inflammation mediators of pain e.g. lysophosphatidic acid (LPA) are released and modulate nociception. We demonstrate co-expression of TRESK and LPA receptors in DRG neurons. Heterologous expression of TRESK and LPA receptors in Xenopus oocytes revealed augmentation of basal K(+) currents upon LPA application. In DRG neurons nociception can result from TRPV1 activation by capsaicin or LPA. Upon co-expression in Xenopus oocytes LPA simultaneously increased both depolarising TRPV1 and hyperpolarising TRESK currents. Patch-clamp recordings in cultured DRG neurons from TRESK[wt] mice displayed increased IKSO after application of LPA whereas under these conditions IKSO in neurons from TRESK[ko] mice remained unaltered. Under current-clamp conditions LPA application differentially modulated excitability in these genotypes upon depolarising pulses. Spike frequency was attenuated in TRESK[wt] neurons and, in contrast, augmented in TRESK[ko] neurons. Accordingly, excitation of nociceptive neurons by LPA is balanced by co-activation of TRESK channels. Hence excitation of sensory neurons is strongly controlled by the activity of TRESK channels, which therefore are good candidates for the treatment of pain disorders. PMID:26224542

  5. Bright light activates a trigeminal nociceptive pathway

    PubMed Central

    Okamoto, Keiichiro; Tashiro, Akimasa; Chang, Zheng; Bereiter, David A.

    2010-01-01

    Bright light can cause ocular discomfort and/or pain; however, the mechanism linking luminance to trigeminal nerve activity is not known. In this study we identify a novel reflex circuit necessary for bright light to excite nociceptive neurons in superficial laminae of trigeminal subnucleus caudalis (Vc/C1). Vc/C1 neurons encoded light intensity and displayed a long delay (>10 s) for activation. Microinjection of lidocaine into the eye or trigeminal root ganglion (TRG) inhibited light responses completely, whereas topical application onto the ocular surface had no effect. These findings indicated that light-evoked Vc/C1 activity was mediated by an intraocular mechanism and transmission through the TRG. Disrupting local vasomotor activity by intraocular microinjection of the vasoconstrictive agents, norepinephrine or phenylephrine, blocked light-evoked neural activity, whereas ocular surface or intra-TRG microinjection of norepinephrine had no effect. Pupillary muscle activity did not contribute since light-evoked responses were not altered by atropine. Microinjection of lidocaine into the superior salivatory nucleus diminished light-evoked Vc/C1 activity and lacrimation suggesting that increased parasympathetic outflow was critical for light-evoked responses. The reflex circuit also required input through accessory visual pathways since both Vc/C1 activity and lacrimation were prevented by local blockade of the olivary pretectal nucleus. These findings support the hypothesis that bright light activates trigeminal nerve activity through an intraocular mechanism driven by a luminance-responsive circuit and increased parasympathetic outflow to the eye. PMID:20206444

  6. ATP induces sustained facilitation of craniofacial nociception through P2X receptors on neck muscle nociceptors in mice.

    PubMed

    Makowska, A; Panfil, C; Ellrich, J

    2006-06-01

    Noxious input from neck muscles probably plays a key role in tension-type headache pathophysiology. ATP selectively excites group III and IV muscle afferents in vitro. Accordingly, ATP infusion into trapezius muscle induces strong pain and local tenderness in healthy man. The present study addresses the impact of ATP on neck muscle nociception in anaesthetized mice. Craniofacial nociceptive processing was tested by the jaw-opening reflex via noxious electrical tongue stimulation. Within 2 h after injection of 100 nmol/l or 1 micromol/l ATP into semispinal neck muscles, reflex integrals significantly increased by 114% or 328%, respectively. Preceding intramuscular administration of the P2X receptor antagonist PPADS (3-100 nmol/l) suppressed the ATP effect. Subsequent application of PPADS (100 nmol/l) caused a total recovery of facilitated reflex to baseline values. ATP induces sustained facilitation of craniofacial nociception by prolonged excitation of P2X receptors in neck muscles. PMID:16686909

  7. Characterization of primary afferent spinal innervation of mouse uterus.

    PubMed

    Herweijer, Geraldine; Kyloh, Melinda; Beckett, Elizabeth A H; Dodds, Kelsi N; Spencer, Nick J

    2014-01-01

    The primary afferent innervation of the uterus is incompletely understood. The aim of this study was to identify the location and characteristics of primary afferent neurons that innervate the uterine horn of mice and correlate the different morphological types of putative primary afferent nerve endings, immunoreactive to the sensory marker, calcitonin gene related peptide (CGRP). Using retrograde tracing, injection of 5-10 μL of 1,1'-didodecyl-3,3,3,3'-tetramethylindocarbocyanine perchlorate (DiI) into discrete single sites in each uterine horn revealed a biomodal distribution of sensory neurons in dorsal root ganglia (DRG) with peak labeling occurring between T13-L3 and a second smaller peak between L6-S1. The mean cross sectional area of labeled cells was 463 μm(2) ± s.e.m. A significantly greater proportion of labeled neurons consisted of small cell bodies (<300 μm(2)) in the sacral spinal cord (S2) compared with peak labeling at the lumbar (L2) region. In both sections and whole mount preparations, immunohistochemical staining for CGRP revealed substantial innervation of the uterus by CGRP-positive nerve fibers located primarily at the border between the circular and longitudinal muscle layers (N = 4). The nerve endings were classified into three distinct types: "single," "branching," or "complex," that often aligned preferentially in either the circular or longitudinal axis of the smooth muscles. Complex endings were often associated with mesenteric vessels. We have identified that the cell bodies of primary afferent neurons innervating the mouse uterus lie primarily in DRG at L2 and S1 spinal levels. Also, the greatest density of CGRP immunoreactivity lies within the myometrium, with at least three different morphological types of nerve endings identified. These findings will facilitate further investigations into the mechanisms underlying sensory transduction in mouse uterus. PMID:25120416

  8. ATP decreases mechanical sensitivity of muscle thin-fiber afferents in rats.

    PubMed

    Matsuda, Teru; Kubo, Asako; Taguchi, Toru; Mizumura, Kazue

    2015-08-01

    ATP is an energy rich substance contained in cells in the order of mM. It is released when cells are damaged and when muscle is compressed or contracted. Subcutaneous injection of ATP induces pain-related behavior and hyperalgesia to mechanical and heat stimulation in rats. However, the effects of ATP in muscle have not been fully studied. In the present study we examined the effects of ATP on muscle C-fiber afferent activities using single fiber recordings, and on nociceptive behavior. Muscle C-fiber activities were recorded in vitro using extensor digitorum longus muscle-common peroneal nerve preparations excised from rats deeply anesthetized with pentobarbital. ATP (100 μM and 1 mM, but not 1 μM) superfused for 5 min before the mechanical stimulation suppressed the mechanical responses of muscle thin fibers irrespective of whether they excited the fiber. This suppressive effect was reversed by P2X receptor antagonists PPADS (100 μM) and suramin (300 μM). We also found that subcutaneous injection of ATP (10 mM) induced nociceptive behavior, whereas intramuscular injection had no effect. These findings showed that effects of ATP on muscle afferents differ from those on cutaneous afferents.

  9. Paraventricular nucleus is involved in the central pathway of adipose afferent reflex in rats.

    PubMed

    Shi, Zhen; Wang, Yuan-Fang; Wang, Gui-Hua; Wu, Yu-Long; Ma, Chun-Lei

    2016-05-01

    Increasing evidence indicates a link between sympathetic nervous system activation and obesity, but the underlying mechanisms remain elusive. The adipose afferent reflex (AAR) is a sympathoexcitatory reflex that is activated by afferent neurotransmission from the white adipose tissue (WAT). This study aimed to investigate whether the hypothalamic paraventricular nucleus (PVH) is an important component of the central neurocircuitry of the AAR. In anesthetized rats, the discharge activity of individual PVH neurons was recorded in vivo. Activation of WAT afferents was initiated by capsaicin injection, and the AAR was evaluated by monitoring renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) responses. The responses of PVH neurons to activation of WAT afferents were evaluated by c-fos immunoreactivity and the discharge activity of individual PVH neurons, which was recorded using extracellular single-unit recording. After activation of WAT afferents, both individual PVH neuron discharge activity and c-fos immunoreactivity increased. Bilateral selective lesions of the neurons in the PVH with kainic acid abolished the AAR. These results indicate that PVH is an important component of the central neurocircuitry of the AAR. PMID:26963333

  10. Inhibition of repulsive guidance molecule, RGMa, increases afferent synapse formation with auditory hair cells.

    PubMed

    Brugeaud, Aurore; Tong, Mingjie; Luo, Li; Edge, Albert S B

    2014-04-01

    The peripheral fibers that extend from auditory neurons to hair cells are sensitive to damage, and replacement of the fibers and their afferent synapse with hair cells would be of therapeutic interest. Here, we show that RGMa, a repulsive guidance molecule previously shown to play a role in the development of the chick visual system, is expressed in the developing, newborn, and mature mouse inner ear. The effect of RGMa on synaptogenesis between afferent neurons and hair cells, from which afferent connections had been removed, was assessed. Contact of neural processes with hair cells and elaboration of postsynaptic densities at sites of the ribbon synapse were increased by treatment with a blocking antibody to RGMa, and pruning of auditory fibers to achieve the mature branching pattern of afferent neurons was accelerated. Inhibition by RGMa could thus explain why auditory neurons have a low capacity to regenerate peripheral processes: postnatal spiral ganglion neurons retain the capacity to send out processes that respond to signals for synapse formation, but expression of RGMa postnatally appears to be detrimental to regeneration of afferent hair cell innervation and antagonizes synaptogenesis. Increased synaptogenesis after inhibition of RGMa suggests that manipulation of guidance or inhibitory factors may provide a route to increase formation of new synapses at deafferented hair cells.

  11. Neck muscle afferents influence oromotor and cardiorespiratory brainstem neural circuits.

    PubMed

    Edwards, I J; Lall, V K; Paton, J F; Yanagawa, Y; Szabo, G; Deuchars, S A; Deuchars, J

    2015-01-01

    Sensory information arising from the upper neck is important in the reflex control of posture and eye position. It has also been linked to the autonomic control of the cardiovascular and respiratory systems. Whiplash associated disorders (WAD) and cervical dystonia, which involve disturbance to the neck region, can often present with abnormalities to the oromotor, respiratory and cardiovascular systems. We investigated the potential neural pathways underlying such symptoms. Simulating neck afferent activity by electrical stimulation of the second cervical nerve in a working heart brainstem preparation (WHBP) altered the pattern of central respiratory drive and increased perfusion pressure. Tracing central targets of these sensory afferents revealed projections to the intermedius nucleus of the medulla (InM). These anterogradely labelled afferents co-localised with parvalbumin and vesicular glutamate transporter 1 indicating that they are proprioceptive. Anterograde tracing from the InM identified projections to brain regions involved in respiratory, cardiovascular, postural and oro-facial behaviours--the neighbouring hypoglossal nucleus, facial and motor trigeminal nuclei, parabrachial nuclei, rostral and caudal ventrolateral medulla and nucleus ambiguus. In brain slices, electrical stimulation of afferent fibre tracts lateral to the cuneate nucleus monosynaptically excited InM neurones. Direct stimulation of the InM in the WHBP mimicked the response of second cervical nerve stimulation. These results provide evidence of pathways linking upper cervical sensory afferents with CNS areas involved in autonomic and oromotor control, via the InM. Disruption of these neuronal pathways could, therefore, explain the dysphagic and cardiorespiratory abnormalities which may accompany cervical dystonia and WAD. PMID:24595534

  12. CPEB3 Deficiency Elevates TRPV1 Expression in Dorsal Root Ganglia Neurons to Potentiate Thermosensation

    PubMed Central

    Chen, Chih-Cheng; Huang, Yi-Shuian

    2016-01-01

    Cytoplasmic polyadenylation element binding protein 3 (CPEB3) is a sequence-specific RNA-binding protein that downregulates translation of multiple plasticity-related proteins (PRPs) at the glutamatergic synapses. Activity-induced synthesis of PRPs maintains long-lasting synaptic changes that are critical for memory consolidation and chronic pain manifestation. CPEB3-knockout (KO) mice show aberrant hippocampus-related plasticity and memory, so we investigated whether CPEB3 might have a role in nociception-associated plasticity. CPEB3 is widely expressed in the brain and peripheral afferent sensory neurons. CPEB3-KO mice with normal mechanosensation showed hypersensitivity to noxious heat. In the complete Freund's adjuvant (CFA)-induced inflammatory pain model, CPEB3-KO animals showed normal thermal hyperalgesia and transiently enhanced mechanical hyperalgesia. Translation of transient receptor potential vanilloid 1 (TRPV1) RNA was suppressed by CPEB3 in dorsal root ganglia (DRG), whereas CFA-induced inflammation reversed this inhibition. Moreover, CPEB3/TRPV1 double-KO mice behaved like TRPV1-KO mice, with severely impaired thermosensation and thermal hyperalgesia. An enhanced thermal response was recapitulated in non-inflamed but not inflamed conditional-KO mice, with cpeb3 gene ablated mostly but not completely, in small-diameter nociceptive DRG neurons. CPEB3-regulated translation of TRPV1 RNA may play a role in fine-tuning thermal sensitivity of nociceptors. PMID:26915043

  13. Application of bifurcation analysis for determining the mechanism of coding of nociceptive signals

    NASA Astrophysics Data System (ADS)

    Dik, O. E.; Shelykh, T. N.; Plakhova, V. B.; Nozdrachev, A. D.; Podzorova, S. A.; Krylov, B. V.

    2015-10-01

    The patch clamp method is used for studying the characteristics of slow sodium channels responsible for coding of nociceptive signals. Quantitative estimates of rate constants of transitions of "normal" and pharmacologically modified activation gating mechanisms of these channels are obtained. A mathematical model of the type of Hogdkin-Huxley nociceptive neuron membrane is constructed. Cometic acid, which is a drug substance of a new nonopioid analgesic, is used as a pharmacological agent. The application of bifurcation analysis makes it possible to outline the boundaries of the region in which a periodic impulse activity is generated. This boundary separates the set of values of the model parameter for which periodic pulsation is observed from the values for which such pulsations are absent or damped. The results show that the finest effect of modulation of physical characteristic of a part of a protein molecule and its effective charge suppresses the excitability of the nociceptive neuron membrane and, hence, leads to rapid reduction of pain.

  14. Meningeal afferent signaling and the pathophysiology of migraine.

    PubMed

    Burgos-Vega, Carolina; Moy, Jamie; Dussor, Gregory

    2015-01-01

    Migraine is the most common neurological disorder. Attacks are complex and consist of multiple phases but are most commonly characterized by intense, unilateral, throbbing headache. The pathophysiology contributing to migraine is poorly understood and the disorder is not well managed with currently available therapeutics, often rendering patients disabled during attacks. The mechanisms most likely to contribute to the pain phase of migraine require activation of trigeminal afferent signaling from the cranial meninges and subsequent relay of nociceptive information into the central nervous system in a region of the dorsal brainstem known as the trigeminal nucleus caudalis. Events leading to activation of meningeal afferents are unclear, but nerve endings within this tissue are mechanosensitive and also express a variety of ion channels including acid-sensing ion channels and transient receptor-potential channels. These properties may provide clues into the pathophysiology of migraine by suggesting that decreased extracellular pH and environmental irritant exposure in the meninges contributes to headache. Neuroplasticity is also likely to play a role in migraine given that attacks are triggered by routine events that are typically nonnoxious in healthy patients and clear evidence of sensitization occurs during an attack. Where and how plasticity develops is also not clear but may include events directly on the afferents and/or within the TNC. Among the mediators potentially contributing to plasticity, calcitonin gene-related peptide has received the most attention within the migraine field but other mechanisms may also contribute. Ultimately, greater understanding of the molecules and mechanisms contributing to migraine will undoubtedly lead to better therapeutics and relief for the large number of patients across the globe who suffer from this highly disabling neurological disorder.

  15. Substance P spinal signaling induces glial activation and nociceptive sensitization after fracture.

    PubMed

    Li, W-W; Guo, T-Z; Shi, X; Sun, Y; Wei, T; Clark, D J; Kingery, W S

    2015-12-01

    Tibia fracture in rodents induces substance P (SP)-dependent keratinocyte activation and inflammatory changes in the hindlimb, similar to those seen in complex regional pain syndrome (CRPS). In animal pain models spinal glial cell activation results in nociceptive sensitization. This study tested the hypothesis that limb fracture triggers afferent C-fiber SP release in the dorsal horn, resulting in chronic glial activation and central sensitization. At 4 weeks after tibia fracture and casting in rats, the cast was removed and hind paw allodynia, unweighting, warmth, and edema were measured, then the antinociceptive effects of microglia (minocycline) or astrocyte (L-2-aminoadipic acid (LAA)) inhibitors or an SP receptor antagonist (LY303870) were tested. Immunohistochemistry and PCR were used to evaluate microglial and astrocyte activation in the dorsal horn. Similar experiments were performed in intact rats after brief sciatic nerve electric stimulation at C-fiber intensity. Microglia and astrocytes were chronically activated at 4 weeks after fracture and contributed to the maintenance of hind paw allodynia and unweighting. Furthermore, LY303870 treatment initiated at 4 weeks after fracture partially reversed both spinal glial activation and nociceptive sensitization. Similarly, persistent spinal microglial activation and hind paw nociceptive sensitization were observed at 48 h after sciatic nerve C-fiber stimulation and this effect was inhibited by treatment with minocycline, LAA, or LY303870. These data support the hypothesis that C-fiber afferent SP signaling chronically supports spinal neuroglial activation after limb fracture and that glial activation contributes to the maintenance of central nociceptive sensitization in CRPS. Treatments inhibiting glial activation and spinal inflammation may be therapeutic for CRPS. PMID:26386297

  16. Mechanisms of G protein-coupled estrogen receptor-mediated spinal nociception

    PubMed Central

    Deliu, Elena; Brailoiu, G. Cristina; Arterburn, Jeffrey B.; Oprea, Tudor I.; Benamar, Khalid; Dun, Nae J.; Brailoiu, Eugen

    2012-01-01

    Human and animal studies suggest estrogens are involved in the processing of nociceptive sensory information and analgesic responses in the central nervous system. Rapid pro-nociceptive estrogenic effects have been reported, some of which likely involve G protein-coupled estrogen receptor (GPER) activation. Membrane depolarization, increases in cytosolic calcium and reactive oxygen species (ROS) levels are markers of neuronal activation, underlying pain sensitization in the spinal cord. Using behavioral, electrophysiological and fluorescent imaging studies, we evaluated GPER involvement in spinal nociceptive processing. Intrathecal challenging of mice with the GPER agonist G-1 results in pain-related behaviors. GPER antagonism with G15 reduces the G-1 induced response. Electrophysiological recordings from superficial dorsal horn neurons indicate neuronal membrane depolarization upon G-1 application, which is G15 sensitive. In cultured spinal sensory neurons G-1 increases intracellular calcium concentration and induces mitochondrial and cytosolic ROS accumulation. In the presence of G15, G-1 does not elicit the calcium and ROS responses, confirming specific GPER involvement in this process. Following G-1 intracellular microinjections, cytosolic calcium concentration elevates faster and with higher amplitude compared to extracellular exposure, suggesting subcellular GPER functionality. Thus, GPER activation results in spinal nociception, and the downstream mechanisms involve cytosolic calcium increase, ROS accumulation and neuronal membrane depolarization. Perspective Our results suggest that GPER modulates pain processing in spinal sensory neurons via cytosolic calcium increase and ROS accumulation. These findings extend the current knowledge on GPER involvement in physiology and disease, providing the first evidence of its pro-nociceptive effects at central levels and characterizing some of the underlying mechanisms. PMID:22858342

  17. Neuropeptides amplify and focus the monoaminergic inhibition of nociception in Caenorhabditis elegans.

    PubMed

    Hapiak, Vera; Summers, Philip; Ortega, Amanda; Law, Wen Jing; Stein, Andrew; Komuniecki, Richard

    2013-08-28

    Monoamines and neuropeptides interact to modulate most behaviors. To better understand these interactions, we have defined the roles of tyramine (TA), octopamine, and neuropeptides in the inhibition of aversive behavior in Caenorhabditis elegans. TA abolishes the serotonergic sensitization of aversive behavior mediated by the two nociceptive ASH sensory neurons and requires the expression of the adrenergic-like, Gαq-coupled, TA receptor TYRA-3 on inhibitory monoaminergic and peptidergic neurons. For example, TA inhibition requires Gαq and Gαs signaling in the peptidergic ASI sensory neurons, with an array of ASI neuropeptides activating neuropeptide receptors on additional neurons involved in locomotory decision-making. The ASI neuropeptides required for tyraminergic inhibition are distinct from those required for octopaminergic inhibition, suggesting that individual monoamines stimulate the release of different subsets of ASI neuropeptides. Together, these results demonstrate that a complex humoral mix of monoamines is focused by more local, synaptic, neuropeptide release to modulate nociception and highlight the similarities between the tyraminergic/octopaminergic inhibition of nociception in C. elegans and the noradrenergic inhibition of nociception in mammals that also involves inhibitory peptidergic signaling.

  18. Transcranial magnetic stimulation reduces nociceptive threshold in rats.

    PubMed

    Ambriz-Tututi, Mónica; Sánchez-González, Violeta; Drucker-Colín, René

    2012-05-01

    Transcranial magnetic stimulation (TMS) is a procedure that uses magnetic fields to stimulate or inhibit nerve cells in the brain noninvasively. TMS induces an electromagnetic current in the underlying cortical neurons. Varying frequencies and intensities of TMS increase or decrease excitability in the cortical area directly targeted. It has been suggested that TMS has potential in the treatment of some neurological disorders such as Parkinson's disease, stroke, and depression. Initial case reports and open label trials reported by several groups support the use of TMS in pain treatment. In the present study, we evaluated the effect of TMS on the nociceptive threshold in the rat. The parameters used were a frequency of 60 Hz and an intensity of 2 and 6 mT for 2 hr twice per day. After 5 days of TMS treatment, rats were evaluated for mechanical, chemical, and cold stimulation. We observed a significant reduction in the nociceptive threshold in TMS-treated rats but not in sham-treated rats in all behavioral tests evaluated. When TMS treatment was stopped, a slow recovery to normal mechanic threshold was observed. Interestingly, i.c.v. MK-801 or CNQX administration reverted the TMS-induced pronociception. The results suggest that high-frequency TMS can alter the nociceptive threshold and produce allodynia in the rats; results suggest the involvement of NMDA and AMPA/KA receptors on TMS-induced allodynia in the rat. PMID:22315163

  19. Axon diversity of lamina I local-circuit neurons in the lumbar spinal cord.

    PubMed

    Szucs, Peter; Luz, Liliana L; Pinho, Raquel; Aguiar, Paulo; Antal, Zsófia; Tiong, Sheena Y X; Todd, Andrew J; Safronov, Boris V

    2013-08-15

    Spinal lamina I is a key area for relaying and integrating information from nociceptive primary afferents with various other sources of inputs. Although lamina I projection neurons have been intensively studied, much less attention has been given to local-circuit neurons (LCNs), which form the majority of the lamina I neuronal population. In this work the infrared light-emitting diode oblique illumination technique was used to visualize and label LCNs, allowing reconstruction and analysis of their dendritic and extensive axonal trees. We show that the majority of lamina I neurons with locally branching axons fall into the multipolar (with ventrally protruding dendrites) and flattened (dendrites limited to lamina I) somatodendritic categories. Analysis of their axons revealed that the initial myelinated part gives rise to several unmyelinated small-diameter branches that have a high number of densely packed, large varicosities and an extensive rostrocaudal (two or three segments), mediolateral, and dorsoventral (reaching laminae III-IV) distribution. The extent of the axon and the occasional presence of long, solitary branches suggest that LCNs may also form short and long propriospinal connections. We also found that the distribution of axon varicosities and terminal field locations show substantial heterogeneity and that a substantial portion of LCNs is inhibitory. Our observations indicate that LCNs of lamina I form intersegmental as well as interlaminar connections and may govern large numbers of neurons, providing anatomical substrate for rostrocaudal "processing units" in the dorsal horn.

  20. Functional up-regulation of Nav1.8 sodium channel in Aβ afferent fibers subjected to chronic peripheral inflammation

    PubMed Central

    2014-01-01

    Background Functional alterations in the properties of Aβ afferent fibers may account for the increased pain sensitivity observed under peripheral chronic inflammation. Among the voltage-gated sodium channels involved in the pathophysiology of pain, Nav1.8 has been shown to participate in the peripheral sensitization of nociceptors. However, to date, there is no evidence for a role of Nav1.8 in controlling Aβ-fiber excitability following persistent inflammation. Methods Distribution and expression of Nav1.8 in dorsal root ganglia and sciatic nerves were qualitatively or quantitatively assessed by immunohistochemical staining and by real time-polymerase chain reaction at different time points following complete Freund’s adjuvant (CFA) administration. Using a whole-cell patch-clamp configuration, we further determined both total INa and TTX-R Nav1.8 currents in large-soma dorsal root ganglia (DRG) neurons isolated from sham or CFA-treated rats. Finally, we analyzed the effects of ambroxol, a Nav1.8-preferring blocker on the electrophysiological properties of Nav1.8 currents and on the mechanical sensitivity and inflammation of the hind paw in CFA-treated rats. Results Our findings revealed that Nav1.8 is up-regulated in NF200-positive large sensory neurons and is subsequently anterogradely transported from the DRG cell bodies along the axons toward the periphery after CFA-induced inflammation. We also demonstrated that both total INa and Nav1.8 peak current densities are enhanced in inflamed large myelinated Aβ-fiber neurons. Persistent inflammation leading to nociception also induced time-dependent changes in Aβ-fiber neuron excitability by shifting the voltage-dependent activation of Nav1.8 in the hyperpolarizing direction, thus decreasing the current threshold for triggering action potentials. Finally, we found that ambroxol significantly reduces the potentiation of Nav1.8 currents in Aβ-fiber neurons observed following intraplantar CFA injection and

  1. Thermoreception and nociception of the skin: a classic paper of Bessou and Perl and analyses of thermal sensitivity during a student laboratory exercise.

    PubMed

    Kuhtz-Buschbeck, Johann P; Andresen, Wiebke; Göbel, Stephan; Gilster, René; Stick, Carsten

    2010-06-01

    About four decades ago, Perl and collaborators were the first ones who unambiguously identified specifically nociceptive neurons in the periphery. In their classic work, they recorded action potentials from single C-fibers of a cutaneous nerve in cats while applying carefully graded stimuli to the skin (Bessou P, Perl ER. Response of cutaneous sensory units with unmyelinated fibers to noxious stimuli. J Neurophysiol 32: 1025-1043, 1969). They discovered polymodal nociceptors, which responded to mechanical, thermal, and chemical stimuli in the noxious range, and differentiated them from low-threshold thermoreceptors. Their classic findings form the basis of the present method that undergraduate medical students experience during laboratory exercises of sensory physiology, namely, quantitative testing of the thermal detection and pain thresholds. This diagnostic method examines the function of thin afferent nerve fibers. We collected data from nearly 300 students that showed that 1) women are more sensitive to thermal detection and thermal pain at the thenar than men, 2) habituation shifts thermal pain thresholds during repetititve testing, 3) the cold pain threshold is rather variable and lower when tested after heat pain than in the reverse case (order effect), and 4) ratings of pain intensity on a visual analog scale are correlated with the threshold temperature for heat pain but not for cold pain. Median group results could be reproduced in a retest. Quantitative sensory testing of thermal thresholds is feasible and instructive in the setting of a laboratory exercise and is appreciated by the students as a relevant and interesting technique.

  2. Single tactile afferents outperform human subjects in a vibrotactile intensity discrimination task.

    PubMed

    Arabzadeh, Ehsan; Clifford, Colin W G; Harris, Justin A; Mahns, David A; Macefield, Vaughan G; Birznieks, Ingvars

    2014-11-15

    We simultaneously compared the sensitivity of single primary afferent neurons supplying the glabrous skin of the hand and the psychophysical amplitude discrimination thresholds in human subjects for a set of vibrotactile stimuli delivered to the receptive field. All recorded afferents had a dynamic range narrower than the range of amplitudes across which the subjects could discriminate. However, when the vibration amplitude was chosen to be within the steepest part of the afferent's stimulus-response function the response of single afferents, defined as the spike count over the vibration duration (500 ms), was often more sensitive in discriminating vibration amplitude than the perceptual judgment of the participants. We quantified how the neuronal performance depended on the integration window: for short windows the neuronal performance was inferior to the performance of the subject. The neuronal performance progressively improved with increasing spike count duration and reached a level significantly above that of the subjects when the integration window was 250 ms or longer. The superiority in performance of individual neurons over observers could reflect a nonoptimal integration window or be due to the presence of noise between the sensory periphery and the cortical decision stage. Additionally, it could indicate that the range of perceptual sensitivity comes at the cost of discrimination through pooling across neurons with different response functions. PMID:25143540

  3. Single tactile afferents outperform human subjects in a vibrotactile intensity discrimination task.

    PubMed

    Arabzadeh, Ehsan; Clifford, Colin W G; Harris, Justin A; Mahns, David A; Macefield, Vaughan G; Birznieks, Ingvars

    2014-11-15

    We simultaneously compared the sensitivity of single primary afferent neurons supplying the glabrous skin of the hand and the psychophysical amplitude discrimination thresholds in human subjects for a set of vibrotactile stimuli delivered to the receptive field. All recorded afferents had a dynamic range narrower than the range of amplitudes across which the subjects could discriminate. However, when the vibration amplitude was chosen to be within the steepest part of the afferent's stimulus-response function the response of single afferents, defined as the spike count over the vibration duration (500 ms), was often more sensitive in discriminating vibration amplitude than the perceptual judgment of the participants. We quantified how the neuronal performance depended on the integration window: for short windows the neuronal performance was inferior to the performance of the subject. The neuronal performance progressively improved with increasing spike count duration and reached a level significantly above that of the subjects when the integration window was 250 ms or longer. The superiority in performance of individual neurons over observers could reflect a nonoptimal integration window or be due to the presence of noise between the sensory periphery and the cortical decision stage. Additionally, it could indicate that the range of perceptual sensitivity comes at the cost of discrimination through pooling across neurons with different response functions.

  4. Peripheral involvement of PKA and PKC in subcutaneous bee venom-induced persistent nociception, mechanical hyperalgesia, and inflammation in rats.

    PubMed

    Chen, Hui-Sheng; Lei, Jing; He, Xiang; Qu, Fang; Wang, Yang; Wen, Wei-Wei; You, Hao-Jun; Arendt-Nielsen, Lars

    2008-03-01

    The roles of central protein kinases A and C (PKA and PKC) in various pain states have intensively been investigated during the past decade. The aim of the present study was to investigate the peripheral involvement of PKA and PKC in persistent nociceptive response, evoked pain behaviors, and inflammation induced by subcutaneous (s.c.) injection of bee venom (BV, 0.2mg/50 microl) in rats. The effects of intraplantar injection of H-89 (a PKA inhibitor, 5-100 microg/50 microl) and chelerythrine chloride (a PKC inhibitor, 5-100 microg/50 microl) on BV-elicited persistent nociception (nociceptive flinching reflex), mechanical hyperalgesia, and inflammation were systematically investigated. Pre-treatment with H-89 dose-dependently inhibited only BV-induced mechanical hyperalgesia, but not the persistent nociception and inflammation. In contrast, pre-treatment with chelerythrine chloride dose-dependently inhibited BV-induced sustained nociception and inflammation, but not the mechanical hyperalgesia. Topical pre-treatment of the sciatic nerve with 1% capsaicin significantly blocked the inhibitory effects of the PKC inhibitor on BV-induced inflammation, but not the persistent flinching response. These results indicate that peripheral PKA and PKC involvements in BV-induced pain behaviors differ, and capsaicin-sensitive afferents appear to participate in the pro-inflammatory role of PKC in the BV pain model. Findings from the present study also suggest that targeting specific peripheral protein kinases might prove effective in the treatment of persistent pain and inflammation.

  5. Distinct recurrent versus afferent dynamics in cortical visual processing.

    PubMed

    Reinhold, Kimberly; Lien, Anthony D; Scanziani, Massimo

    2015-12-01

    How intracortical recurrent circuits in mammalian sensory cortex influence dynamics of sensory representation is not understood. Previous methods could not distinguish the relative contributions of recurrent circuits and thalamic afferents to cortical dynamics. We accomplish this by optogenetically manipulating thalamus and cortex. Over the initial 40 ms of visual stimulation, excitation from recurrent circuits in visual cortex progressively increased to exceed direct thalamocortical excitation. Even when recurrent excitation exceeded thalamic excitation, upon silencing thalamus, sensory-evoked activity in cortex decayed rapidly, with a time constant of 10 ms, which is similar to a neuron's integration time window. In awake mice, this cortical decay function predicted the time-locking of cortical activity to thalamic input at frequencies <15 Hz and attenuation of the cortical response to higher frequencies. Under anesthesia, depression at thalamocortical synapses disrupted the fidelity of sensory transmission. Thus, we determine dynamics intrinsic to cortical recurrent circuits that transform afferent input in time.

  6. Utricular afferents: morphology of peripheral terminals

    PubMed Central

    Huwe, J. A.; Logan, G. J.; Williams, B.; Rowe, M. H.

    2015-01-01

    The utricle provides critical information about spatiotemporal properties of head movement. It comprises multiple subdivisions whose functional roles are poorly understood. We previously identified four subdivisions in turtle utricle, based on hair bundle structure and mechanics, otoconial membrane structure and hair bundle coupling, and immunoreactivity to calcium-binding proteins. Here we ask whether these macular subdivisions are innervated by distinctive populations of afferents to help us understand the role each subdivision plays in signaling head movements. We quantified the morphology of 173 afferents and identified six afferent classes, which differ in structure and macular locus. Calyceal and dimorphic afferents innervate one striolar band. Bouton afferents innervate a second striolar band; they have elongated terminals and the thickest processes and axons of all bouton units. Bouton afferents in lateral (LES) and medial (MES) extrastriolae have small-diameter axons but differ in collecting area, bouton number, and hair cell contacts (LES >> MES). A fourth, distinctive population of bouton afferents supplies the juxtastriola. These results, combined with our earlier findings on utricular hair cells and the otoconial membrane, suggest the hypotheses that MES and calyceal afferents encode head movement direction with high spatial resolution and that MES afferents are well suited to signal three-dimensional head orientation and striolar afferents to signal head movement onset. PMID:25632074

  7. The contribution of activated peripheral kappa opioid receptors (kORs) in the inflamed knee joint to anti-nociception.

    PubMed

    Moon, Sun Wook; Park, Eui Ho; Suh, Hye Rim; Ko, Duk Hwan; Kim, Yang In; Han, Hee Chul

    2016-10-01

    The systemic administration of opioids can be used for their strong analgesic effect. However, extensive activation of opioid receptors (ORs) beyond the targeted tissue can cause dysphoria, pruritus, and constipation. Therefore, selective activation of peripheral ORs present in the afferent fibers of the targeted tissue can be considered a superior strategy in opioid analgesia to avoid potential adverse effects. The purpose of this study was to clarify the role of peripheral kappa opioid receptors (kORs) in arthritic pain for the possible use of peripheral ORs as a target in anti-nociceptive therapy. We administered U50488 or nor-BNI/DIPPA, a selective agonist or antagonist of kOR, respectively into arthritic rat knee joints induced using 1% carrageenan. After the injection of U50488 or U50488 with nor-BNI or DIPPA into the inflamed knee joint, we evaluated nociceptive behavior as indicated by reduced weight-bearing on the ipsilateral limbs of the rat and recorded the activity of mechanosensitive afferents (MSA). In the inflamed knee joint, the intra-articular application of 1μM, 10nM, or 0.1nM U50488 resulted in a significant reduction in nociceptive behavior. In addition, 1μM and 10nM U50488 decreased MSA activity. However, in a non-inflamed knee joint, 1μM U50488 had no effect on MSA activity. Additionally, intra-articular pretreatment with 20μM nor-BNI or 10μM DIPPA significantly blocked the inhibitory effects of 1μM U50488 on nociceptive behavior and MSA activity in the inflamed knee joint. These results implicate that peripheral kORs can contribute to anti-nociceptive processing in an inflamed knee joint. PMID:27378583

  8. Lidocaine Inhibits HCN Currents in Rat Spinal Substantia Gelatinosa Neurons

    PubMed Central

    Hu, Tao; Liu, Nana; Lv, Minhua; Ma, Longxian; Peng, Huizhen; Peng, Sicong

    2016-01-01

    BACKGROUND: Lidocaine, which blocks voltage-gated sodium channels, is widely used in surgical anesthesia and pain management. Recently, it has been proposed that the hyperpolarization-activated cyclic nucleotide (HCN) channel is one of the other novel targets of lidocaine. Substantia gelatinosa in the spinal dorsal horn, which plays key roles in modulating nociceptive information from primary afferents, comprises heterogeneous interneurons that can be electrophysiologically categorized by firing pattern. Our previous study demonstrated that a substantial proportion of substantia gelatinosa neurons reveal the presence of HCN current (Ih); however, the roles of lidocaine and HCN channel expression in different types of substantia gelatinosa neurons remain unclear. METHODS: By using the whole-cell patch-clamp technique, we investigated the effect of lidocaine on Ih in rat substantia gelatinosa neurons of acute dissociated spinal cord slices. RESULTS: We found that lidocaine rapidly decreased the peak Ih amplitude with an IC50 of 80 μM. The inhibition rate on Ih was not significantly different with a second application of lidocaine in the same neuron. Tetrodotoxin, a sodium channel blocker, did not affect lidocaine’s effect on Ih. In addition, lidocaine shifted the half-activation potential of Ih from −109.7 to −114.9 mV and slowed activation. Moreover, the reversal potential of Ih was shifted by −7.5 mV by lidocaine. In the current clamp, lidocaine decreased the resting membrane potential, increased membrane resistance, delayed rebound depolarization latency, and reduced the rebound spike frequency. We further found that approximately 58% of substantia gelatinosa neurons examined expressed Ih, in which most of them were tonically firing. CONCLUSIONS: Our studies demonstrate that lidocaine strongly inhibits Ih in a reversible and concentration-dependent manner in substantia gelatinosa neurons, independent of tetrodotoxin-sensitive sodium channels. Thus, our

  9. Central projections of the wing afferents in the hawkmoth, Agrius convolvuli.

    PubMed

    Ando, Noriyasu; Wang, Hao; Shirai, Koji; Kiguchi, Kenji; Kanzaki, Ryohei

    2011-11-01

    Flight behaviors in various insect species are closely correlated with their mechanical and neuronal properties. Compared to locusts and flies which have been intensively studied, moths have "intermediate" properties in terms of the neurogenic muscle activations, power generation by indirect muscles, and two-winged-insect-like flapping behavior. Despite these unique characteristics, little is known about the neuronal mechanisms of flight control in moths. We investigated projections of the wing mechanosensory afferents in the central nervous system (CNS) of the hawkmoth, Agrius convolvuli, because the mechanosensory proprioceptive feedback has an essential role for flight control and would be presumably optimized for insect species. We conducted anterograde staining of nine afferent nerves from the fore- and hindwings. All of these afferents projected into the prothoracic, mesothoracic and metathoracic ganglia (TG1, 2 and 3) and had ascending fibers to the head ganglia. Prominent projection areas in the TG1-3 and suboesophageal ganglion (SOG) were common between the forewing, hindwing and contralateral forewing afferents, suggesting that information from different wings are converged at multiple levels presumably for coordinating wing flapping. On the other hand, differences of projections between the fore- and hindwing afferents were observed especially in projection areas of the tegulae in the TG1 and contralateral projections of the anterior forewing nerve in the TGs and SOG, which would reflect functional differences between corresponding mechanoreceptors on each wing. Afferents comprising groups of the campaniform sensilla at the wing bases had prominent ascending pathways to the SOG, resembling the head-neck motor system for gaze control in flies. Double staining of the wing afferents and flight or neck motoneurons also indicated potential connectivity between them. Our results suggest multiple roles of the wing proprioceptive feedback for flight and provide

  10. [The central mechanisms underlying the phenomenon of acupoint sensitization evoked by visceral nociceptive afferent].

    PubMed

    Li, Liang; Rong, Peijing; Luo, Man; Zhao, Jingjun; Ben, Hui; Zhu, Bing

    2015-11-01

    The physiological mechanism underlying the acupoint sensitization was evaluated systemically by using the method of electric physiology at spinal cord, medulla, and thalamus levels; the dynamic change of acupoint from the relative "silence" to the relative "activation" function was explained through the study on the dynamic process of acupoint sensitization; the biological process of the therapeutic effect of acupoint stimulation was illuminated through the research of the central mechanism underlining the dose effect relationship between the sensitive acupoint and the related brain area, thus scientific evidence for the functional link between the acupoint and internal organs as well as the nature of the acupoint were provided. PMID:26939345

  11. Mechanisms Involved in the Nociception Triggered by the Venom of the Armed Spider Phoneutria nigriventer

    PubMed Central

    Gewehr, Camila; Oliveira, Sara Marchesan; Rossato, Mateus Fortes; Trevisan, Gabriela; Dalmolin, Gerusa Duarte; Rigo, Flávia Karine; de Castro Júnior, Célio José; Cordeiro, Marta Nascimento; Ferreira, Juliano; Gomez, Marcus V.

    2013-01-01

    Background The frequency of accidental spider bites in Brazil is growing, and poisoning due to bites from the spider genus Phoneutria nigriventer is the second most frequent source of such accidents. Intense local pain is the major symptom reported after bites of P. nigriventer, although the mechanisms involved are still poorly understood. Therefore, the aim of this study was to identify the mechanisms involved in nociception triggered by the venom of Phoneutria nigriventer (PNV). Methodology/Principal Findings Twenty microliters of PNV or PBS was injected into the mouse paw (intraplantar, i.pl.). The time spent licking the injected paw was considered indicative of the level of nociception. I.pl. injection of PNV produced spontaneous nociception, which was reduced by arachnid antivenin (ArAv), local anaesthetics, opioids, acetaminophen and dipyrone, but not indomethacin. Boiling or dialysing the venom reduced the nociception induced by the venom. PNV-induced nociception is not dependent on glutamate or histamine receptors or on mast cell degranulation, but it is mediated by the stimulation of sensory fibres that contain serotonin 4 (5-HT4) and vanilloid receptors (TRPV1). We detected a kallikrein-like kinin-generating enzyme activity in tissue treated with PNV, which also contributes to nociception. Inhibition of enzymatic activity or administration of a receptor antagonist for kinin B2 was able to inhibit the nociception induced by PNV. PNV nociception was also reduced by the blockade of tetrodotoxin-sensitive Na+ channels, acid-sensitive ion channels (ASIC) and TRPV1 receptors. Conclusion/Significance Results suggest that both low- and high-molecular-weight toxins of PNV produce spontaneous nociception through direct or indirect action of kinin B2, TRPV1, 5-HT4 or ASIC receptors and voltage-dependent sodium channels present in sensory neurons but not in mast cells. Understanding the mechanisms involved in nociception caused by PNV are of interest not only for

  12. Tuberoinfundibular peptide of 39 residues (TIP39) signaling modulates acute and tonic nociception.

    PubMed

    Dimitrov, Eugene L; Petrus, Emily; Usdin, Ted B

    2010-11-01

    Tuberoinfundibular peptide of 39 residues (TIP39) synthesizing neurons at the caudal border of the thalamus and in the lateral pons project to areas rich in its receptor, the parathyroid hormone 2 receptor (PTH2R). These areas include many involved in processing nociceptive information. Here we examined the potential role of TIP39 signaling in nociception using a PTH2R antagonist (HYWH) and mice with deletion of TIP39's coding sequence or PTH2R null mutation. Intracerebroventricular (icv) infusion of HYWH significantly inhibited nociceptive responses in tail-flick and hot-plate tests and attenuated the nociceptive response to hindpaw formalin injection. TIP39-KO and PTH2R-KO had increased response latency in the 55°C hot-plate test and reduced responses in the hindpaw formalin test. The tail-flick test was not affected in either KO line. Thermal hypoalgesia in KO mice was dose-dependently reversed by systemic administration of the cannabinoid receptor 1 (CB1) antagonist rimonabant, which did not affect nociception in wild-type (WT). Systemic administration of the cannabinoid agonist CP 55,940 did not affect nociception in KO mice at a dose effective in WT. WT mice administered HYWH icv, and both KOs, had significantly increased stress-induced analgesia (SIA). Rimonabant blocked the increased SIA in TIP39-KO, PTH2R-KO or after HYWH infusion. CB1 and FAAH mRNA were decreased and increased, respectively, in the basolateral amygdala of TIP39-KO mice. These data suggest that TIP39 signaling modulates nociception, very likely by inhibiting endocannabinoid circuitry at a supraspinal level. We infer a new central mechanism for endocannabinoid regulation, via TIP39 acting on the PTH2R in discrete brain regions.

  13. Tuberoinfundibular peptide of 39 residues (TIP39) signaling modulates acute and tonic nociception

    PubMed Central

    Dimitrov, Eugene L.; Petrus, Emily; Usdin, Ted B.

    2010-01-01

    Tuberoinfundibular peptide of 39 residues (TIP39) synthesizing neurons at the caudal border of the thalamus and in the lateral pons project to areas rich in its receptor, the parathyroid hormone 2 receptor (PTH2R). These areas include many involved in processing nociceptive information. Here we examined the potential role of TIP39 signaling in nociception using a PTH2R antagonist (HYWH) and mice with deletion of TIP39's coding sequence or PTH2R null mutation. Intracerebroventricular (icv) infusion of HYWH significantly inhibited nociceptive responses in tail-flick and hot-plate tests and attenuated the nociceptive response to hindpaw formalin injection. TIP39-KO and PTH2R-KO had increased response latency in the 55 °C hot-plate test and reduced responses in the hindpaw formalin test. The tail-flick test was not affected in either KO line. Thermal hypoalgesia in KO mice was dose-dependently reversed by systemic administration of the cannabinoid receptor 1 (CB1) antagonist rimonabant, which did not affect nociception in wild-type (WT). Systemic administration of the cannabinoid agonist CP 55,940 did not affect nociception in KO mice at a dose effective in WT. WT mice administered HYWH icv, and both KOs, had significantly increased stress-induced analgesia (SIA). Rimonabant blocked the increased SIA in TIP39-KO, PTH2R-KO or after HYWH infusion. CB1 and FAAH mRNA were decreased and increased, respectively, in the basolateral amygdala of TIP39-KO mice. These data suggest that TIP39 signaling modulates nociception, very likely by inhibiting endocannabinoid circuitry at a supraspinal level. We infer a new central mechanism for endocannabinoid regulation, via TIP39 acting on the PTH2R in discrete brain regions. PMID:20696160

  14. Top-Down Effect of Direct Current Stimulation on the Nociceptive Response of Rats.

    PubMed

    Dimov, Luiz Fabio; Franciosi, Adriano Cardozo; Campos, Ana Carolina Pinheiro; Brunoni, André Russowsky; Pagano, Rosana Lima

    2016-01-01

    Transcranial direct current stimulation (tDCS) is an emerging, noninvasive technique of neurostimulation for treating pain. However, the mechanisms and pathways involved in its analgesic effects are poorly understood. Therefore, we investigated the effects of direct current stimulation (DCS) on thermal and mechanical nociceptive thresholds and on the activation of the midbrain periaqueductal gray (PAG) and the dorsal horn of the spinal cord (DHSC) in rats; these central nervous system areas are associated with pain processing. Male Wistar rats underwent cathodal DCS of the motor cortex and, while still under stimulation, were evaluated using tail-flick and paw pressure nociceptive tests. Sham stimulation and naive rats were used as controls. We used a randomized design; the assays were not blinded to the experimenter. Immunoreactivity of the early growth response gene 1 (Egr-1), which is a marker of neuronal activation, was evaluated in the PAG and DHSC, and enkephalin immunoreactivity was evaluated in the DHSC. DCS did not change the thermal nociceptive threshold; however, it increased the mechanical nociceptive threshold of both hind paws compared with that of controls, characterizing a topographical effect. DCS decreased the Egr-1 labeling in the PAG and DHSC as well as the immunoreactivity of spinal enkephalin. Altogether, the data suggest that DCS disinhibits the midbrain descending analgesic pathway, consequently inhibiting spinal nociceptive neurons and causing an increase in the nociceptive threshold. This study reinforces the idea that the motor cortex participates in the neurocircuitry that is involved in analgesia and further clarifies the mechanisms of action of tDCS in pain treatment. PMID:27071073

  15. Top-Down Effect of Direct Current Stimulation on the Nociceptive Response of Rats

    PubMed Central

    Dimov, Luiz Fabio; Franciosi, Adriano Cardozo; Campos, Ana Carolina Pinheiro; Brunoni, André Russowsky

    2016-01-01

    Transcranial direct current stimulation (tDCS) is an emerging, noninvasive technique of neurostimulation for treating pain. However, the mechanisms and pathways involved in its analgesic effects are poorly understood. Therefore, we investigated the effects of direct current stimulation (DCS) on thermal and mechanical nociceptive thresholds and on the activation of the midbrain periaqueductal gray (PAG) and the dorsal horn of the spinal cord (DHSC) in rats; these central nervous system areas are associated with pain processing. Male Wistar rats underwent cathodal DCS of the motor cortex and, while still under stimulation, were evaluated using tail-flick and paw pressure nociceptive tests. Sham stimulation and naive rats were used as controls. We used a randomized design; the assays were not blinded to the experimenter. Immunoreactivity of the early growth response gene 1 (Egr-1), which is a marker of neuronal activation, was evaluated in the PAG and DHSC, and enkephalin immunoreactivity was evaluated in the DHSC. DCS did not change the thermal nociceptive threshold; however, it increased the mechanical nociceptive threshold of both hind paws compared with that of controls, characterizing a topographical effect. DCS decreased the Egr-1 labeling in the PAG and DHSC as well as the immunoreactivity of spinal enkephalin. Altogether, the data suggest that DCS disinhibits the midbrain descending analgesic pathway, consequently inhibiting spinal nociceptive neurons and causing an increase in the nociceptive threshold. This study reinforces the idea that the motor cortex participates in the neurocircuitry that is involved in analgesia and further clarifies the mechanisms of action of tDCS in pain treatment. PMID:27071073

  16. A pro-nociceptive role of neuromedin U in adult mice.

    PubMed

    Cao, Chang Qing; Yu, Xiao Hong; Dray, Andy; Filosa, Angelo; Perkins, Martin N

    2003-08-01

    Although the neuropeptide neuromedin U (NMU) was first isolated from the spinal cord, its actions in this site are unknown. The recent identification of the NMU receptor subtype 2 (NMU2R) in the spinal cord has increased the interest in investigating the role of NMU in this part of the central nervous system. Here, we report a novel function for NMU in spinal nociception in the mouse. Systemic perfusion of NMU (rat, NMU-23) dose-dependently (0.2, 0.5, 1, and 2.5 microM) potentiated both the background activity and noxious pinch-evoked response of nociceptive or wide dynamic range, but not non-nociceptive, dorsal horn neurons. At 2.5 microM, NMU-23 increased the total background activity from 154+/-34 to 1374+/-260 spikes/160 s (P<0.005, n=28) and increased the evoked nociceptive response by 185+/-50% (P<0.01, n=13). Intrathecal administration of NMU-23 (0.4, 1.1, and 3.8 nmol/10 microl) dose-dependently decreased thermal withdrawal latencies and produced a morphine-sensitive behavioral response. These electrophysiological and behavioral results suggest that NMU may be a novel physiological regulator in spinal nociceptive transmission and processing. PMID:12927633

  17. Spontaneous hyperactivity in the auditory midbrain: relationship to afferent input.

    PubMed

    Robertson, Donald; Bester, Christofer; Vogler, Darryl; Mulders, Wilhelmina H A M

    2013-01-01

    Hyperactivity in the form of increased spontaneous firing rates of single neurons develops in the guinea pig inferior colliculus (IC) after unilateral loud sound exposures that result in behavioural signs of tinnitus. The hyperactivity is found in those parts of the topographic frequency map in the IC where neurons possess characteristic frequencies (CFs) closely related to the region in the cochlea where lasting sensitivity changes occur as a result of the loud sound exposure. The observed hyperactivity could be endogenous to the IC, or it could be driven by hyperactivity at lower stages of the auditory pathway. In addition to the dorsal cochlear nucleus (DCN) hyperactivity reported by others, specific cell types in the ventral cochlear nucleus (VCN) also show hyperactivity in this animal model suggesting that increased drive from several regions of the lower brainstem could contribute to the observed hyperactivity in the midbrain. In addition, spontaneous afferent drive from the cochlea itself is necessary for the maintenance of hyperactivity up to about 8 weeks post cochlear trauma. After 8 weeks however, IC hyperactivity becomes less dependent on cochlear input, suggesting that central neurons transition from a state of hyperexcitability to a state in which they generate their own endogenous firing. The results suggest that there might be a "therapeutic window" for early-onset tinnitus, using treatments that reduce cochlear afferent firing. PMID:22349094

  18. Isolation of TRPV1 independent mechanisms of spontaneous and asynchronous glutamate release at primary afferent to NTS synapses.

    PubMed

    Fenwick, Axel J; Wu, Shaw-Wen; Peters, James H

    2014-01-01

    Cranial visceral afferents contained within the solitary tract (ST) contact second-order neurons in the nucleus of the solitary tract (NTS) and release the excitatory amino acid glutamate via three distinct exocytosis pathways; synchronous, asynchronous, and spontaneous release. The presence of TRPV1 in the central terminals of a majority of ST afferents conveys activity-dependent asynchronous glutamate release and provides a temperature sensitive calcium conductance which largely determines the rate of spontaneous vesicle fusion. TRPV1 is present in unmyelinated C-fiber afferents and these facilitated forms of glutamate release may underlie the relative strength of C-fibers in activating autonomic reflex pathways. However, pharmacological blockade of TRPV1 signaling eliminates only ~50% of the asynchronous profile and attenuates the temperature sensitivity of spontaneous release indicating additional thermosensitive calcium influx pathways may exist which mediate these forms of vesicle release. In the present study we isolate the contribution of TRPV1 independent forms of glutamate release at ST-NTS synapses. We found ST afferent innervation at NTS neurons and synchronous vesicle release from TRPV1 KO mice was not different to control animals; however, only half of TRPV1 KO ST afferents completely lacked asynchronous glutamate release. Further, temperature driven spontaneous rates of vesicle release were not different from 33 to 37°C between control and TRPV1 KO afferents. These findings suggest additional temperature dependent mechanisms controlling asynchronous and thermosensitive spontaneous release at physiological temperatures, possibly mediated by additional thermosensitive TRP channels in primary afferent terminals.

  19. Identification of bladder and colon afferents in the nodose ganglia of male rats.

    PubMed

    Herrity, April N; Rau, Kristofer K; Petruska, Jeffrey C; Stirling, David P; Hubscher, Charles H

    2014-11-01

    The sensory neurons innervating the urinary bladder and distal colon project to similar regions of the central nervous system and often are affected simultaneously by various diseases and disorders, including spinal cord injury. Anatomical and physiological commonalities between the two organs involve the participation of shared spinally derived pathways, allowing mechanisms of communication between the bladder and colon. Prior electrophysiological data from our laboratory suggest that the bladder also may receive sensory innervation from a nonspinal source through the vagus nerve, which innervates the distal colon as well. The present study therefore aimed to determine whether anatomical evidence exists for vagal innervation of the male rat urinary bladder and to assess whether those vagal afferents also innervate the colon. Additionally, the relative contribution to bladder and colon sensory innervation of spinal and vagal sources was determined. By using lipophilic tracers, neurons that innervated the bladder and colon in both the nodose ganglia (NG) and L6/S1 and L1/L2 dorsal root ganglia (DRG) were quantified. Some single vagal and spinal neurons provided dual innervation to both organs. The proportions of NG afferents labeled from the bladder did not differ from spinal afferents labeled from the bladder when considering the collective population of total neurons from either group. Our results demonstrate evidence for vagal innervation of the bladder and colon and suggest that dichotomizing vagal afferents may provide a neural mechanism for cross-talk between the organs. PMID:24845615

  20. Persistent pain after spinal cord injury is maintained by primary afferent activity.

    PubMed

    Yang, Qing; Wu, Zizhen; Hadden, Julia K; Odem, Max A; Zuo, Yan; Crook, Robyn J; Frost, Jeffrey A; Walters, Edgar T

    2014-08-01

    Chronic pain caused by insults to the CNS (central neuropathic pain) is widely assumed to be maintained exclusively by central mechanisms. However, chronic hyperexcitablility occurs in primary nociceptors after spinal cord injury (SCI), suggesting that SCI pain also depends upon continuing activity of peripheral sensory neurons. The present study in rats (Rattus norvegicus) found persistent upregulation after SCI of protein, but not mRNA, for a voltage-gated Na(+) channel, Nav1.8, that is expressed almost exclusively in primary afferent neurons. Selectively knocking down Nav1.8 after SCI suppressed spontaneous activity in dissociated dorsal root ganglion neurons, reversed hypersensitivity of hindlimb withdrawal reflexes, and reduced ongoing pain assessed by a conditioned place preference test. These results show that activity in primary afferent neurons contributes to ongoing SCI pain. PMID:25100607

  1. Daily rhythm of nociception in rats.

    PubMed

    Christina, AJM; Merlin, NJ; Vijaya, C; Jayaprakash, S; Murugesh, N

    2004-03-25

    BACKGROUND: Many behavioral and physiological variables exhibit daily rhythmicity. Few investigations of the daily rhythmicity in nociception have been conducted, and conflicting results have been obtained. The present study evaluated the daily rhythmicity in nociception in Wistar rats. METHODS: Nociception was investigated by Eddy's hot plate method, tail immersion method, and tail clip method. The latency between the noxious stimulus and the animal's response was recorded as reaction time. Separate groups of rats were tested in 4-hour intervals for 24 hours. RESULTS: There was clear daily variation in response latency. Reaction time was shortest a few hours before lights-on and longest at the light-dark transition. CONCLUSION: Nociception exhibits robust daily rhythmicity in rats. Sensitivity to pain is highest late in the dark phase of the light-dark cycle and lowest at the light-dark transition.

  2. Daily rhythm of nociception in rats

    PubMed Central

    Christina, AJM; Merlin, NJ; Vijaya, C; Jayaprakash, S; Murugesh, N

    2004-01-01

    Background Many behavioral and physiological variables exhibit daily rhythmicity. Few investigations of the daily rhythmicity in nociception have been conducted, and conflicting results have been obtained. The present study evaluated the daily rhythmicity in nociception in Wistar rats. Methods Nociception was investigated by Eddy's hot plate method, tail immersion method, and tail clip method. The latency between the noxious stimulus and the animal's response was recorded as reaction time. Separate groups of rats were tested in 4-hour intervals for 24 hours. Results There was clear daily variation in response latency. Reaction time was shortest a few hours before lights-on and longest at the light-dark transition. Conclusion Nociception exhibits robust daily rhythmicity in rats. Sensitivity to pain is highest late in the dark phase of the light-dark cycle and lowest at the light-dark transition. PMID:15043763

  3. The role of Drosophila Piezo in mechanical nociception.

    PubMed

    Kim, Sung Eun; Coste, Bertrand; Chadha, Abhishek; Cook, Boaz; Patapoutian, Ardem

    2012-02-19

    Transduction of mechanical stimuli by receptor cells is essential for senses such as hearing, touch and pain. Ion channels have a role in neuronal mechanotransduction in invertebrates; however, functional conservation of these ion channels in mammalian mechanotransduction is not observed. For example, no mechanoreceptor potential C (NOMPC), a member of transient receptor potential (TRP) ion channel family, acts as a mechanotransducer in Drosophila melanogaster and Caenorhabditis elegans; however, it has no orthologues in mammals. Degenerin/epithelial sodium channel (DEG/ENaC) family members are mechanotransducers in C. elegans and potentially in D. melanogaster; however, a direct role of its mammalian homologues in sensing mechanical force has not been shown. Recently, Piezo1 (also known as Fam38a) and Piezo2 (also known as Fam38b) were identified as components of mechanically activated channels in mammals. The Piezo family are evolutionarily conserved transmembrane proteins. It is unknown whether they function in mechanical sensing in vivo and, if they do, which mechanosensory modalities they mediate. Here we study the physiological role of the single Piezo member in D. melanogaster (Dmpiezo; also known as CG8486). Dmpiezo expression in human cells induces mechanically activated currents, similar to its mammalian counterparts. Behavioural responses to noxious mechanical stimuli were severely reduced in Dmpiezo knockout larvae, whereas responses to another noxious stimulus or touch were not affected. Knocking down Dmpiezo in sensory neurons that mediate nociception and express the DEG/ENaC ion channel pickpocket (ppk) was sufficient to impair responses to noxious mechanical stimuli. Furthermore, expression of Dmpiezo in these same neurons rescued the phenotype of the constitutive Dmpiezo knockout larvae. Accordingly, electrophysiological recordings from ppk-positive neurons revealed a Dmpiezo-dependent, mechanically activated current. Finally, we found that Dmpiezo

  4. Heterogeneous presynaptic distribution of monoacylglycerol lipase, a multipotent regulator of nociceptive circuits in the mouse spinal cord

    PubMed Central

    Horváth, Eszter; Woodhams, Stephen G; Nyilas, Rita; Henstridge, Christopher M; Kano, Masanobu; Sakimura, Kenji; Watanabe, Masahiko; Katona, István

    2014-01-01

    Monoacylglycerol lipase (MGL) is a multifunctional serine hydrolase, which terminates anti-nociceptive endocannabinoid signaling and promotes pro-nociceptive prostaglandin signaling. Accordingly, both acute nociception and its sensitization in chronic pain models are prevented by systemic or focal spinal inhibition of MGL activity. Despite its analgesic potential, the neurobiological substrates of beneficial MGL blockade have remained unexplored. Therefore, we examined the regional, cellular and subcellular distribution of MGL in spinal circuits involved in nociceptive processing. All immunohistochemical findings obtained with light, confocal or electron microscopy were validated in MGL-knockout mice. Immunoperoxidase staining revealed a highly concentrated accumulation of MGL in the dorsal horn, especially in superficial layers. Further electron microscopic analysis uncovered that the majority of MGL-immunolabeling is found in axon terminals forming either asymmetric glutamatergic or symmetric γ-aminobutyric acid/glycinergic synapses in laminae I/IIo. In line with this presynaptic localization, analysis of double-immunofluorescence staining by confocal microscopy showed that MGL colocalizes with neurochemical markers of peptidergic and non-peptidergic nociceptive terminals, and also with markers of local excitatory or inhibitory interneurons. Interestingly, the ratio of MGL-immunolabeling was highest in calcitonin gene-related peptide-positive peptidergic primary afferents, and the staining intensity of nociceptive terminals was significantly reduced in MGL-knockout mice. These observations highlight the spinal nociceptor synapse as a potential anatomical site for the analgesic effects of MGL blockade. Moreover, the presence of MGL in additional terminal types raises the possibility that MGL may play distinct regulatory roles in synaptic endocannabinoid or prostaglandin signaling according to its different cellular locations in the dorsal horn pain circuitry

  5. A quantitative study of the central projection patterns of unmyelinated ventral root afferents in the cat.

    PubMed Central

    Häbler, H J; Jänig, W; Koltzenburg, M; McMahon, S B

    1990-01-01

    1. The ventral roots of the spinal cord contain a large number of unmyelinated primary afferent neurones. There is some controversy, however, about the function of these fibres and the route of their central projection. Here we have used electrophysiological techniques to quantify the central projection patterns of these neurones in the segment S2 of adult chloralose-anaesthesized cats. 2. A total of 1185 single unmyelinated units were recorded in small filaments isolated from intact and de-efferented ventral roots or intact dorsal roots of the segment S2 in nineteen cats. The projection patterns of these neurones were tested using supramaximal electrical stimulation of the pelvic and pudendal nerve (the main tributaries of the spinal nerve of this segment) and of the segmental companion root (dorsal or ventral as appropriate). 3. The principal finding of this study is that 85% of unmyelinated afferent axons in the ventral root are direct and exclusive projections. They constitute a separate class of afferents which is only capable of transmitting information from the periphery via the ventral roots. However, the proportion of these fibres that enter the central nervous system is unknown and it seems likely that some of them peter out as they approach the spinal cord and end blindly. The functional role of such afferents remains obscure. 4. For the remaining 15% of unmyelinated ventral root afferents, a projection into the segmental dorsal root was found. The majority of those fibres (about two-thirds) are primary afferent neurones innervating the pia mater. Some of these units had a small spot-like receptive field and responded to mechanical stimuli such as pressure and stretch of the root. They did not have axon projections in a peripheral nerve. 5. A few (5%) unmyelinated ventral root fibres are collateral branches of normal primary afferents projecting through the dorsal root. These trifurcating neurones are a small population which make up only some 0.5% of

  6. Coding of stimuli by ampullary afferents in Gnathonemus petersii.

    PubMed

    Engelmann, J; Gertz, S; Goulet, J; Schuh, A; von der Emde, G

    2010-10-01

    Weakly electric fish use electroreception for both active and passive electrolocation and for electrocommunication. While both active and passive electrolocation systems are prominent in weakly electric Mormyriform fishes, knowledge of their passive electrolocation ability is still scarce. To better estimate the contribution of passive electric sensing to the orientation toward electric stimuli in weakly electric fishes, we investigated frequency tuning applying classical input-output characterization and stimulus reconstruction methods to reveal the encoding capabilities of ampullary receptor afferents. Ampullary receptor afferents were most sensitive (threshold: 40 μV/cm) at low frequencies (<10 Hz) and appear to be tuned to a mix of amplitude and slope of the input signals. The low-frequency tuning was corroborated by behavioral experiments, but behavioral thresholds were one order of magnitude higher. The integration of simultaneously recorded afferents of similar frequency-tuning resulted in strongly enhanced signal-to-noise ratios and increased mutual information rates but did not increase the range of frequencies detectable by the system. Theoretically the neuronal integration of input from receptors experiencing opposite polarities of a stimulus (left and right side of the fish) was shown to enhance encoding of such stimuli, including an increase of bandwidth. Covariance and coherence analysis showed that spiking of ampullary afferents is sufficiently explained by the spike-triggered average, i.e., receptors respond to a single linear feature of the stimulus. Our data support the notion of a division of labor of the active and passive electrosensory systems in weakly electric fishes based on frequency tuning. Future experiments will address the role of central convergence of ampullary input that we expect to lead to higher sensitivity and encoding power of the system. PMID:20685928

  7. Neuropathic pain: Early spontaneous afferent activity is the trigger

    PubMed Central

    Xie, Wenrui; Strong, Judith A.; Meij, Johanna T.A.; Zhang, Jun-Ming; Yu, Lei

    2005-01-01

    Intractable neuropathic pain often results from nerve injury. One immediate event in damaged nerve is a sustained increase in spontaneous afferent activity, which has a well-established role in ongoing pain. Using two rat models of neuropathic pain, the CCI and SNI models, we show that local, temporary nerve blockade of this afferent activity permanently inhibits the subsequent development of both thermal hyperalgesia and mechanical allodynia. Timing is critical—the nerve blockade must last at least 3–5 days and is effective if started immediately after nerve injury, but not if started at 10 days after injury when neuropathic pain is already established. Effective nerve blockade also prevents subsequent development of spontaneous afferent activity measured electrophysiologically. Similar results were obtained in both pain models, and with two blockade methods (200 mg of a depot form bupivacaine at the injury site, or perfusion of the injured nerve just proximal to the injury site with TTX). These results indicate that early spontaneous afferent fiber activity is the key trigger for the development of pain behaviors, and suggest that spontaneous activity may be required for many of the later changes in the sensory neurons, spinal cord, and brain observed in neuropathic pain models. Many pre-clinical and clinical studies of pre-emptive analgesia have used much shorter duration of blockade, or have not started immediately after the injury. Our results suggest that effective pre-emptive analgesia can be achieved only when nerve block is administered early after injury and lasts several days. PMID:15964687

  8. Caloric vestibular stimulation modulates nociceptive evoked potentials.

    PubMed

    Ferrè, Elisa Raffaella; Haggard, Patrick; Bottini, Gabriella; Iannetti, Gian Domenico

    2015-12-01

    Vestibular stimulation has been reported to alleviate central pain. Clinical and physiological studies confirm pervasive interactions between vestibular signals and somatosensory circuits, including nociception. However, the neural mechanisms underlying vestibular-induced analgesia remain unclear, and previous clinical studies cannot rule out explanations based on alternative, non-specific effects such as distraction or placebo. To investigate how vestibular inputs influence nociception, we combined caloric vestibular stimulation (CVS) with psychophysical and electrocortical responses elicited by nociceptive-specific laser stimulation in humans (laser-evoked potentials, LEPs). Cold water CVS applied to the left ear resulted in significantly lower subjective pain intensity for experimental laser pain to the left hand immediately after CVS, relative both to before CVS and to 1 h after CVS. This transient reduction in pain perception was associated with reduced amplitude of all LEP components, including the early N1 wave reflecting the first arrival of nociceptive input to primary somatosensory cortex. We conclude that cold left ear CVS elicits a modulation of both nociceptive processing and pain perception. The analgesic effect induced by CVS could be mediated either by subcortical gating of the ascending nociceptive input, or by direct modulation of the primary somatosensory cortex.

  9. Functional analysis of ultra high information rates conveyed by rat vibrissal primary afferents

    PubMed Central

    Chagas, André M.; Theis, Lucas; Sengupta, Biswa; Stüttgen, Maik C.; Bethge, Matthias; Schwarz, Cornelius

    2013-01-01

    Sensory receptors determine the type and the quantity of information available for perception. Here, we quantified and characterized the information transferred by primary afferents in the rat whisker system using neural system identification. Quantification of “how much” information is conveyed by primary afferents, using the direct method (DM), a classical information theoretic tool, revealed that primary afferents transfer huge amounts of information (up to 529 bits/s). Information theoretic analysis of instantaneous spike-triggered kinematic stimulus features was used to gain functional insight on “what” is coded by primary afferents. Amongst the kinematic variables tested—position, velocity, and acceleration—primary afferent spikes encoded velocity best. The other two variables contributed to information transfer, but only if combined with velocity. We further revealed three additional characteristics that play a role in information transfer by primary afferents. Firstly, primary afferent spikes show preference for well separated multiple stimuli (i.e., well separated sets of combinations of the three instantaneous kinematic variables). Secondly, neurons are sensitive to short strips of the stimulus trajectory (up to 10 ms pre-spike time), and thirdly, they show spike patterns (precise doublet and triplet spiking). In order to deal with these complexities, we used a flexible probabilistic neuron model fitting mixtures of Gaussians to the spike triggered stimulus distributions, which quantitatively captured the contribution of the mentioned features and allowed us to achieve a full functional analysis of the total information rate indicated by the DM. We found that instantaneous position, velocity, and acceleration explained about 50% of the total information rate. Adding a 10 ms pre-spike interval of stimulus trajectory achieved 80–90%. The final 10–20% were found to be due to non-linear coding by spike bursts. PMID:24367295

  10. Excitation of rat colonic afferent fibres by 5-HT3 receptors

    PubMed Central

    Hicks, Gareth A; Coldwell, Jonathan R; Schindler, Marcus; Bland Ward, Philip A; Jenkins, David; Lynn, Penny A; Humphrey, Patrick P A; Blackshaw, L Ashley

    2002-01-01

    The gastrointestinal tract contains most of the body's 5-hydroxytryptamine (5-HT) and releases large amounts after meals or exposure to toxins. Increased 5-HT release occurs in patients with irritable bowel syndrome (IBS) and their peak plasma 5-HT levels correlate with pain episodes. 5-HT3 receptor antagonists reduce symptoms of IBS clinically, but their site of action is unclear and the potential for other therapeutic targets is unexplored. Here we investigated effects of 5-HT on sensory afferents from the colon and the expression of 5-HT3 receptors on their cell bodies in the dorsal root ganglia (DRG). Distal colon, inferior mesenteric ganglion and the lumbar splanchnic nerve bundle (LSN) were placed in a specialized organ bath. Eighty-six single fibres were recorded from the LSN. Three classes of primary afferents were found: 70 high-threshold serosal afferents, four low-threshold muscular afferents and 12 mucosal afferents. Afferent cell bodies were retrogradely labelled from the distal colon to the lumbar DRG, where they were processed for 5-HT3 receptor-like immunoreactivity. Fifty-six percent of colonic afferents responded to 5-HT (between 10−6 and 10−3 M) and 30 % responded to the selective 5-HT3 agonist, 2-methyl-5-HT (between 10−6 and 10−2 M). Responses to 2-methyl-5-HT were blocked by the 5-HT3 receptor antagonist alosetron (2 × 10−7 M), whereas responses to 5-HT were only partly inhibited. Twenty-six percent of L1 DRG cell bodies retrogradely labelled from the colon displayed 5-HT3 receptor-like immunoreactivity. We conclude that colonic sensory neurones expressing 5-HT3 receptors also functionally express the receptors at their peripheral endings. Our data reveal actions of 5-HT on colonic afferent endings via both 5-HT3 and non-5-HT3 receptors. PMID:12411529

  11. Innervation of enteric mast cells by primary spinal afferents in guinea pig and human small intestine.

    PubMed

    Wang, Guo-Du; Wang, Xi-Yu; Liu, Sumei; Qu, Meihua; Xia, Yun; Needleman, Bradley J; Mikami, Dean J; Wood, Jackie D

    2014-10-01

    Mast cells express the substance P (SP) neurokinin 1 receptor and the calcitonin gene-related peptide (CGRP) receptor in guinea pig and human small intestine. Enzyme-linked immunoassay showed that activation of intramural afferents by antidromic electrical stimulation or by capsaicin released SP and CGRP from human and guinea pig intestinal segments. Electrical stimulation of the afferents evoked slow excitatory postsynaptic potentials (EPSPs) in the enteric nervous system. The slow EPSPs were mediated by tachykinin neurokinin 1 and CGRP receptors. Capsaicin evoked slow EPSP-like responses that were suppressed by antagonists for protease-activated receptor 2. Afferent stimulation evoked slow EPSP-like excitation that was suppressed by mast cell-stabilizing drugs. Histamine and mast cell protease II were released by 1) exposure to SP or CGRP, 2) capsaicin, 3) compound 48/80, 4) elevation of mast cell Ca²⁺ by ionophore A23187, and 5) antidromic electrical stimulation of afferents. The mast cell stabilizers cromolyn and doxantrazole suppressed release of protease II and histamine when evoked by SP, CGRP, capsaicin, A23187, electrical stimulation of afferents, or compound 48/80. Neural blockade by tetrodotoxin prevented mast cell protease II release in response to antidromic electrical stimulation of mesenteric afferents. The results support a hypothesis that afferent innervation of enteric mast cells releases histamine and mast cell protease II, both of which are known to act in a diffuse paracrine manner to influence the behavior of enteric nervous system neurons and to elevate the sensitivity of spinal afferent terminals.

  12. Alteration of the mu opioid receptor: Ca2+ channel signaling pathway in a subset of rat sensory neurons following chronic femoral artery occlusion.

    PubMed

    Hassan, Bassil; Kim, Joyce S; Farrag, Mohamed; Kaufman, Marc P; Ruiz-Velasco, Victor

    2014-12-15

    The exercise pressor reflex, a crucial component of the cardiovascular response under physiological and pathophysiological states, is activated via metabolic and mechanical mediators that originate from contracting muscles and stimulate group III and IV afferents. We reported previously that stimulation of mu opioid receptors (MOR), expressed in both afferents, led to a significant attenuation of the reflex in rats whose femoral arteries had been occluded for 72 h. The present study examined the effect of arterial occlusion on the signaling components involved in the opioid-mediated modulation of Ca(2+) channels in rat dorsal root ganglion neurons innervating the triceps surae muscles. We focused on neurons that were transfected with cDNA coding for enhanced green fluorescent protein whose expression is driven by the voltage-gated Na(+) channel 1.8 (Na(V)1.8) promoter region, a channel expressed primarily in nociceptive neurons. With the use of a small interference RNA approach, our results show that the pertussis toxin-sensitive Gα(i3) subunit couples MOR with Ca(2+) channels. We observed a significant leftward shift of the MOR agonist [D-Ala2-N-Me-Phe4-Glycol5]-enkephalin concentration-response relationship in neurons isolated from rats with occluded arteries compared with those that were perfused freely. Femoral occlusion did not affect Ca(2+) channel density or the fraction of the main Ca(2+) channel subtype. Furthermore, Western blotting analysis indicated that the leftward shift did not result from either increased Gα(i3) or MOR expression. Finally, all neurons from both groups exhibited an inward current following exposure of the transient potential receptor vanilloid 1 (TRPV1) agonist, 8-methyl-N-vanillyl-6-nonenamide. These findings suggest that sensory neurons mediating the exercise pressor reflex express Na(V)1.8 and TRPV1 channels, and femoral occlusion alters the MOR pharmacological profile. PMID:25231620

  13. Inflammation increases the excitability of masseter muscle afferents.

    PubMed

    Harriott, A M; Dessem, D; Gold, M S

    2006-08-11

    Temporomandibular disorder is a major health problem associated with chronic orofacial pain in the masticatory muscles and/or temporomandibular joint. Evidence suggests that changes in primary afferents innervating the muscles of mastication may contribute to temporomandibular disorder. However, there has been little systematic study of the mechanisms controlling the excitability of these muscle afferents, nor their response to inflammation. In the present study, we tested the hypotheses that inflammation increases the excitability of sensory neurons innervating the masseter muscle of the rat and that the ionic mechanisms underlying these changes are unique to these neurons. We examined inflammation-induced changes in the excitability of trigeminal ganglia muscle neurons following intramuscular injections of complete Freund's adjuvant. Three days after complete Freund's adjuvant injection acutely dissociated, retrogradely labeled trigeminal ganglia neurons were studied using whole cell patch clamp techniques. Complete Freund's adjuvant-induced inflammation was associated with an increase in neuronal excitability marked by a significant decrease in rheobase and increase in the slope of the stimulus response function assessed with depolarizing current injection. The increase in excitability was associated with significant decreases in the rate of action potential fall and the duration of the action potential afterhyperpolarization. These changes in excitability and action potential waveform were associated with significant shifts in the voltage-dependence of activation and steady-state availability of voltage-gated K(+) current as well as significant decreases in the density of voltage-gated K(+) current subject to steady-state inactivation. These data suggest that K(+) channel subtypes may provide novel targets for the treatment of pain arising from inflamed muscle. These results also support the hypothesis that the underlying mechanisms of pain arising from

  14. Cardiovascular effects of afferent renal nerve stimulation.

    PubMed

    Stella, A; Weaver, L; Golin, R; Genovesi, S; Zanchetti, A

    1987-01-01

    Electrical stimulation of afferent renal nerves elicits an increase in arterial pressure and heart rate. The hypertensive response is presumably due to the widespread activation of the sympathetic nervous system leading to peripheral vasoconstriction. Interestingly, the kidney does not appear involved in this reflex excitatory response to afferent renal nerve stimulation since changes in vascular conductances and excretory functions are equal in both the innervated and denervated kidney, and secondary to changes in renal perfusion pressure. In addition, no changes in renin release from either kidneys are observed during afferent renal nerve stimulation. It is likely that the electrical stimulation of afferent renal nerves activates other reflexes exerting an inhibitory influence on efferent renal nerve activity. Indeed, neural renorenal reflexes which tonically inhibit renal functions have clearly been demonstrated. Furthermore, preferential inhibition of efferent renal nerve activity by cardiopulmonary and sinoaortic receptors has recently been shown during activation of other visceral afferents.

  15. Botulinum toxin in Migraine: Role of transport in trigemino-somatic and trigemino-vascular afferents

    PubMed Central

    Roshni, Ramachandran; Carmen, Lam; Yaksh Tony, L

    2015-01-01

    Migraine secondary to meningeal input is referred to extracranial regions innervated by somatic afferents that project to homologous regions in the trigeminal nucleus caudalis (TNC). Reported efficacy of extracranial botulinum toxin (BoNT) in treating migraine is surprising since a local extracranial effect of BoNT cannot account for its effect upon meningeal input. We hypothesize that intradermal BoNT acts through central transport in somatic afferents. Anesthetized C57Bl/6 mice (male) received unilateral supraorbital (SO) injections of BoNT-B (1.5 U/40 μl) or saline. 3 days later, mice received ipsilateral (ipsi) -SO capsaicin (2.5 μg/30 μl) or meningeal capsaicin (4 μl of 1mg/ml). Pre-treatment with ipsi-SO BONT-B i) decreased nocicsponsive ipsilateral wiping behavior following ipsi-SO capsaicin; ii) produced cleavage of VAMP in the V1 region of ipsi-TG and in TG neurons showing WGA after SO injection; iii) reduced expression of c-fos in ipsi-TNC following ipsi-SO capsaicin; iv) reduced c-fos activation and NK-1 internalization in ipsi-TNC secondary to ipsi-meningeal capsaicin; vi) SO WGA did not label dural afferents. We conclude that BoNT-B is taken up by peripheral afferents and transported to central terminals where it inhibits transmitter release resulting in decreased activation of second order neurons. Further, this study supports the hypothesis that SO BoNT exerts a trans-synaptic action on either the second order neuron (which receives convergent input from the meningeal afferent) or the terminal/TG of the converging meningeal afferent. PMID:25958249

  16. Pharmacologically Distinct Nicotinic Acetylcholine Receptors Drive Efferent-Mediated Excitation in Calyx-Bearing Vestibular Afferents

    PubMed Central

    Kewin, Kevin; Jordan, Paivi M.; Cameron, Peter; Klapczynski, Marcin; McIntosh, J. Michael; Crooks, Peter A.; Dwoskin, Linda P.; Lysakowski, Anna

    2015-01-01

    Electrical stimulation of vestibular efferent neurons rapidly excites the resting discharge of calyx/dimorphic (CD) afferents. In turtle, this excitation arises when acetylcholine (ACh), released from efferent terminals, directly depolarizes calyceal endings by activating nicotinic ACh receptors (nAChRs). Although molecular biological data from the peripheral vestibular system implicate most of the known nAChR subunits, specific information about those contributing to efferent-mediated excitation of CD afferents is lacking. We sought to identify the nAChR subunits that underlie the rapid excitation of CD afferents and whether they differ from α9α10 nAChRs on type II hair cells that drive efferent-mediated inhibition in adjacent bouton afferents. We recorded from CD and bouton afferents innervating the turtle posterior crista during electrical stimulation of vestibular efferents while applying several subtype-selective nAChR agonists and antagonists. The α9α10 nAChR antagonists, α-bungarotoxin and α-conotoxin RgIA, blocked efferent-mediated inhibition in bouton afferents while leaving efferent-mediated excitation in CD units largely intact. Conversely, 5-iodo-A-85380, sazetidine-A, varenicline, α-conotoxin MII, and bPiDDB (N,N-dodecane-1,12-diyl-bis-3-picolinium dibromide) blocked efferent-mediated excitation in CD afferents without affecting efferent-mediated inhibition in bouton afferents. This pharmacological profile suggested that calyceal nAChRs contain α6 and β2, but not α9, nAChR subunits. Selective blockade of efferent-mediated excitation in CD afferents distinguished dimorphic from calyx afferents by revealing type II hair cell input. Dimorphic afferents differed in having higher mean discharge rates and a mean efferent-mediated excitation that was smaller in amplitude yet longer in duration. Molecular biological data demonstrated the expression of α9 in turtle hair cells and α4 and β2 in associated vestibular ganglia. PMID:25716861

  17. Spinal nociceptive transmission by mechanical stimulation of bone marrow

    PubMed Central

    Tanaka, Satoshi; Sekiguchi, Takemi; Sugiyama, Daisuke; Kawamata, Mikito

    2016-01-01

    Background Since bone marrow receives innervation from A-delta and C-fibers and since an increase in intramedullary pressure in bone marrow may induce acute pain in orthopedic patients during surgery and chronic pain in patients with bone marrow edema, skeletal pain may partly originate from bone marrow. Intraosseous lesions, such as osteomyelitis and bone cancer, are also known to produce cutaneous hypersensitivity, which might be referred pain from bone. However, little is known about pain perception in bone marrow and referred pain induced by bone disease. Thus, we carried out an in vivo electrophysiological study and behavioral study to determine whether increased intraosseous pressure of the femur induces acute pain and whether increased intraosseous pressure induces referred pain in the corresponding receptive fields of the skin. Results Intraosseous balloon inflation caused spontaneous pain-related behavior and mechanical hyperalgesia and allodynia in the lumbosacral region. Single neuronal activities of spinal dorsal horn neurons were extracellularly isolated, and then evoked responses to non-noxious and noxious cutaneous stimuli and intraosseous balloon inflation were recorded. Ninety-four spinal dorsal horn neurons, which had somatic receptive fields at the lower back and thigh, were obtained. Sixty-two percent of the wide-dynamic-range neurons (24/39) and 86% of the high-threshold neurons (12/14) responded to intraosseous balloon inflation, while none of the low-threshold neurons (0/41) responded to intraosseous balloon inflation. Spinally administered morphine (1 µg) abolished balloon inflation-induced spontaneous pain-related behavior and mechanical hyperalgesia in awake rats and also suppressed evoked activities of wide-dynamic-range neurons to noxious cutaneous stimulation and intraosseous balloon inflation. Conclusions The results suggest that mechanical stimulation to bone marrow produces nociception, concomitantly producing its referred pain

  18. Eugenol and carvacrol excite first- and second-order trigeminal neurons and enhance their heat-evoked responses.

    PubMed

    Klein, A H; Joe, C L; Davoodi, A; Takechi, K; Carstens, M I; Carstens, E

    2014-06-20

    Eugenol and carvacrol from clove and oregano, respectively, are agonists of the warmth-sensitive transient receptor potential channel TRPV3 and the irritant-sensitive transient receptor potential ankyrin (TRPA)-1. Eugenol and carvacrol induce oral irritation that rapidly desensitizes, accompanied by brief enhancement of innocuous warmth and heat pain in humans. We presently investigated if eugenol and carvacrol activate nociceptive primary afferent and higher order trigeminal neurons and enhance their heat-evoked responses, using calcium imaging of cultured trigeminal ganglion (TG) and dorsal root ganglion (DRG) neurons, and in vivo single-unit recordings in trigeminal subnucleus caudalis (Vc) of rats. Eugenol and carvacrol activated 20-30% of TG and 7-20% of DRG cells, the majority of which additionally responded to menthol, mustard oil and/or capsaicin. TG cell responses to innocuous (39°) and noxious (42 °C) heating were enhanced by eugenol and carvacrol. We identified dorsomedial Vc neurons responsive to noxious heating of the tongue in pentobarbital-anesthetized rats. Eugenol and carvacrol dose-dependently elicited desensitizing responses in 55% and 73% of heat-sensitive units, respectively. Responses to noxious heat were briefly enhanced by eugenol and carvacrol. Many eugenol- and carvacrol-responsive units also responded to menthol, cinnamaldehyde and capsaicin. These data support a peripheral site for eugenol and carvacrol to enhance warmth- and noxious heat-evoked responses of trigeminal neurons, and are consistent with the observation that these agonists briefly enhance warmth and heat pain on the human tongue.

  19. Eugenol and carvacrol excite first- and second-order trigeminal neurons and enhance their heat-evoked responses

    PubMed Central

    Klein, Amanda H.; Joe, Christopher L.; Davoodi, Auva; Takechi, Kenichi; Carstens, Mirela Iodi; Carstens, E

    2014-01-01

    Eugenol and carvacrol from clove and oregano, respectively, are agonists of the warmth-sensitive transient receptor potential channel TRPV3 and the irritant-sensitive TRPA1. Eugenol and carvacrol induce oral irritation that rapidly desensitizes, accompanied by brief enhancement of innocuous warmth and heat pain in humans. We presently investigated if eugenol and carvacrol activate nociceptive primary afferent and higher-order trigeminal neurons and enhance their heat-evoked responses, using calcium imaging of cultured trigeminal ganglion (TG) and dorsal root ganglion (DRG) neurons, and in vivo single-unit recordings in trigeminal subnucleus caudalis (Vc) of rats. Eugenol and carvacrol activated 20-30% of TG and 7-20% of DRG cells, the majority of which additionally responded to menthol, mustard oil and/or capsaicin. TG cell responses to innocuous (39°) and noxious (42°C) heating were enhanced by eugenol and carvacrol. We identified dorsomedial Vc neurons responsive to noxious heating of the tongue in pentobarbital-anesthetized rats. Eugenol and carvacrol dose-dependently elicited desensitizing responses in 55% and 73% of heat-sensitive units, respectively. Responses to noxious heat were briefly enhanced by eugenol and carvacrol. Many eugenol- and carvacrol-responsive units also responded to menthol, cinnamaldehyde and capsaicin. These data support a peripheral site for eugenol and carvacrol to enhance warmth- and noxious heat-evoked responses of trigeminal neurons, and are consistent with the observation that these agonists briefly enhance warmth and heat pain on the human tongue. PMID:24759772

  20. Microsecond-Scale Timing Precision in Rodent Trigeminal Primary Afferents

    PubMed Central

    Bale, Michael R.; Campagner, Dario; Erskine, Andrew

    2015-01-01

    Communication in the nervous system occurs by spikes: the timing precision with which spikes are fired is a fundamental limit on neural information processing. In sensory systems, spike-timing precision is constrained by first-order neurons. We found that spike-timing precision of trigeminal primary afferents in rats and mice is limited both by stimulus speed and by electrophysiological sampling rate. High-speed video of behaving mice revealed whisker velocities of at least 17,000°/s, so we delivered an ultrafast “ping” (>50,000°/s) to single whiskers and sampled primary afferent activity at 500 kHz. Median spike jitter was 17.4 μs; 29% of neurons had spike jitter < 10 μs. These results indicate that the input stage of the trigeminal pathway has extraordinary spike-timing precision and very high potential information capacity. This timing precision ranks among the highest in biology. PMID:25878266

  1. Hydrogen sulfide determines HNO-induced stimulation of trigeminal afferents.

    PubMed

    Wild, Vanessa; Messlinger, Karl; Fischer, Michael J M

    2015-08-18

    Endogenous NO and hydrogen sulfide form HNO, which causes CGRP release via TRPA1 channel activation in sensory nerves. In the present study, stimulation of intact trigeminal afferent neuron preparations with NO donors, Na2S or both was analyzed by measuring CGRP release as an index of mass activation. Combined stimulation was able to activate all parts of the trigeminal system and acted synergistic compared to stimulation with both substances alone. To investigate the contribution of both substances, we varied their ratio and tracked intracellular calcium in isolated neurons. Our results demonstrate that hydrogen sulfide is the rate-limiting factor for HNO formation. CGRP has a key role in migraine pathophysiology and HNO formation at all sites of the trigeminal system should be considered for this novel means of activation.

  2. Modeling the spinal pudendo-vesical reflex for bladder control by pudendal afferent stimulation.

    PubMed

    McGee, Meredith J; Grill, Warren M

    2016-06-01

    Electrical stimulation of the pudendal nerve (PN) is a promising approach to restore continence and micturition following bladder dysfunction resulting from neurological disease or injury. Although the pudendo-vesical reflex and its physiological properties are well established, there is limited understanding of the specific neural mechanisms that mediate this reflex. We sought to develop a computational model of the spinal neural network that governs the reflex bladder response to PN stimulation. We implemented and validated a neural network architecture based on previous neuroanatomical and electrophysiological studies. Using synaptically-connected integrate and fire model neurons, we created a network model with realistic spiking behavior. The model produced expected sacral parasympathetic nucleus (SPN) neuron firing rates from prescribed neural inputs and predicted bladder activation and inhibition with different frequencies of pudendal afferent stimulation. In addition, the model matched experimental results from previous studies of temporal patterns of pudendal afferent stimulation and selective pharmacological blockade of inhibitory neurons. The frequency- and pattern-dependent effects of pudendal afferent stimulation were determined by changes in firing rate of spinal interneurons, suggesting that neural network interactions at the lumbosacral level can mediate the bladder response to different frequencies or temporal patterns of pudendal afferent stimulation. Further, the anatomical structure of excitatory and inhibitory interneurons in the network model was necessary and sufficient to reproduce the critical features of the pudendo-vesical reflex, and this model may prove useful to guide development of novel, more effective electrical stimulation techniques for bladder control. PMID:26968615

  3. Trigemino-hypoglossal somatic reflex in the pharmacological studies of nociception in orofacial area.

    PubMed

    Zubrzycki, Marek; Janecka, Anna; Zubrzycka, Maria

    2015-01-01

    Disorders involving the orofacial area represent a major medical and social problem. They are a consequence of central nociceptive processes associated with stimulation of the trigeminal nerve nucleus. A rat model of trigeminal pain, utilizing tongue jerks evoked by electrical tooth pulp stimulation during perfusion of the cerebral ventricles with various neuropeptide solutions, can be used in the pharmacological studies of nociception in orofacial area. The investigated neuropeptides diffuse through the cerebroventricular lining producing an analgesic effect either directly, through the trigemino-hypoglossal reflex arc neurons or indirectly through the periaqueductal central gray, raphe nuclei or locus coeruleus neurons. The aim of this review is to present the effect of pharmacological activity of various neuropeptides affecting the transmission of the sensory information from the orofacial area on the example of trigemino-hypoglossal reflex in rats. PMID:26581382

  4. Monitoring depth of anesthesia: from consciousness to nociception. A window on subcortical brain activity.

    PubMed

    Constant, Isabelle; Sabourdin, Nada

    2015-01-01

    Anesthesia results from several inhibitor processes, which interact to lead to loss of consciousness, amnesia, immobility, and analgesia. The anesthetic agents act on the whole brain, the cortical and subcortical areas according to their receptor targets. The conscious processes are rather integrated at the level of the cortical neuronal network, while the nonconscious processes such as the nociception or implicit memory require subcortical processing. A reliable and meaningful monitoring of depth of anesthesia should provide assessment of these different processes. Besides the EEG monitoring which gives mainly information on cortical anesthetic effects, it would be relevant to have also a subcortical feedback allowing an assessment of nociception. Several devices have been proposed in this last decade, to give us an idea of the analgesia/nociception balance. Up to now, most of them are based on the assessment of the autonomic response to noxious stimulation. Among the emerging clinical devices, we can mention those which assess vascular sympathetic response (skin conductance), cardiac and vascular sympathetic response (surgical pleth index), parasympathetic cardiac response (analgesia nociception index), and finally the pupillometry which is based on the assessment of the pupillary reflex dilatation induced by nociceptive stimulations. Basically, the skin conductance might be the most adapted to assess the stress in the awake or sedated neonate, while the performances of this method appear disappointing under anesthesia. The surgical pleth index is still poorly investigated in children. The analgesia nociception index showed promising results in adults, which have to be confirmed, especially in children and in infants, and lastly pupillometry, which can be considered as reliable and reactive in children as in adults, but which is still sometimes complicated in its use. PMID:25410376

  5. Characterization of sacral interneurons that mediate activation of locomotor pattern generators by sacrocaudal afferent input.

    PubMed

    Etlin, Alex; Finkel, Eran; Mor, Yoav; O'Donovan, Michael J; Anglister, Lili; Lev-Tov, Aharon

    2013-01-01

    Identification of the neural pathways involved in retraining the spinal central pattern generators (CPGs) by afferent input in the absence of descending supraspinal control is feasible in isolated rodent spinal cords where the locomotor CPGs are potently activated by sacrocaudal afferent (SCA) input. Here we study the involvement of sacral neurons projecting rostrally through the ventral funiculi (VF) in activation of the CPGs by sensory stimulation. Fluorescent labeling and immunostaining showed that VF neurons are innervated by primary afferents immunoreactive for vesicular glutamate transporters 1 and 2 and by intraspinal neurons. Calcium imaging revealed that 55% of the VF neurons were activated by SCA stimulation. The activity of VF neurons and the sacral and lumbar CPGs was abolished when non-NMDA receptors in the sacral segments were blocked by the antagonist CNQX. When sacral NMDA receptors were blocked by APV, the sacral CPGs were suppressed, VF neurons with nonrhythmic activity were recruited and a moderate-drive locomotor rhythm developed during SCA stimulation. In contrast, when the sacral CPGs were activated by SCA stimulation, rhythmic and nonrhythmic VF neurons were recruited and the locomotor rhythm was most powerful. The activity of 73 and 27% of the rhythmic VF neurons was in-phase with the ipsilateral and contralateral motor output, respectively. Collectively, our studies indicate that sacral VF neurons serve as a major link between SCA and the hindlimb CPGs and that the ability of SCA to induce stepping can be enhanced by the sacral CPGs. The nature of the ascending drive to lumbar CPGs, the identity of subpopulations of VF neurons, and their potential role in activating the locomotor rhythm are discussed. PMID:23303951

  6. Touch inhibits subcortical and cortical nociceptive responses

    PubMed Central

    Mancini, Flavia; Beaumont, Anne-Lise; Hu, Li; Haggard, Patrick; Iannetti, Gian Domenico D.

    2015-01-01

    Abstract The neural mechanisms of the powerful analgesia induced by touching a painful body part are controversial. A long tradition of neurophysiologic studies in anaesthetized spinal animals indicate that touch can gate nociceptive input at spinal level. In contrast, recent studies in awake humans have suggested that supraspinal mechanisms can be sufficient to drive touch-induced analgesia. To investigate this issue, we evaluated the modulation exerted by touch on established electrophysiologic markers of nociceptive function at both subcortical and cortical levels in humans. Aδ and C skin nociceptors were selectively activated by high-power laser pulses. As markers of subcortical and cortical function, we recorded the laser blink reflex, which is generated by brainstem circuits before the arrival of nociceptive signals at the cortex, and laser-evoked potentials, which reflect neural activity of a wide array of cortical areas. If subcortical nociceptive responses are inhibited by concomitant touch, supraspinal mechanisms alone are unlikely to be sufficient to drive touch-induced analgesia. Touch induced a clear analgesic effect, suppressed the laser blink reflex, and inhibited both Aδ-fibre and C-fibre laser-evoked potentials. Thus, we conclude that touch-induced analgesia is likely to be mediated by a subcortical gating of the ascending nociceptive input, which in turn results in a modulation of cortical responses. Hence, supraspinal mechanisms alone are not sufficient to mediate touch-induced analgesia. PMID:26058037

  7. Inhibitory control of nociceptive responses of trigeminal spinal nucleus cells by somatosensory corticofugal projection in rat.

    PubMed

    Malmierca, E; Martin, Y B; Nuñez, A

    2012-09-27

    The caudal division of the trigeminal spinal nucleus (Sp5C) is an important brainstem relay station of orofacial pain transmission. The aim of the present study was to examine the effect of cortical electrical stimulation on nociceptive responses in Sp5C neurons. Extracellular recordings were performed in the Sp5C nucleus by tungsten microelectrodes in urethane-anesthetized Sprague-Dawley rats. Nociceptive stimulation was produced by application of capsaicin cream on the whisker pad or by constriction of the infraorbital nerve. Capsaicin application evoked a long-lasting increase in the spontaneous firing rate from 1.4±0.2 to 3.4±0.6 spikes/s. Non-noxious tactile responses from stimuli delivered to the receptive field (RF) center decreased 5 min. after capsaicin application (from 2.3±0.1 to 1.6±0.1 spikes/stimulus) while responses from the whisker located at the RF periphery increased (from 1.3±0.2 to 2.0±0.1 spikes/stimulus under capsaicin). Electrical train stimulation of the primary (S1) or secondary (S2) somatosensory cortical areas reduced the increase in the firing rate evoked by capsaicin. Also, S1, but not S2, cortical stimulation reduced the increase in non-noxious tactile responses from the RF periphery. Inhibitory cortical effects were mediated by the activation of GABAergic and glycinergic neurons because they were blocked by bicuculline or strychnine. The S1 and S2 cortical stimulation also inhibited Sp5C neurons in animals with constriction of the infraorbital nerve. Consequently, the corticofugal projection from S1 and S2 cortical areas modulates nociceptive responses of Sp5C neurons and may control the transmission of nociceptive sensory stimulus.

  8. Morphological, biophysical and synaptic properties of glutamatergic neurons of the mouse spinal dorsal horn

    PubMed Central

    Punnakkal, Pradeep; Schoultz, Carolin; Haenraets, Karen; Wildner, Hendrik; Zeilhofer, Hanns Ulrich

    2014-01-01

    Interneurons of the spinal dorsal horn are central to somatosensory and nociceptive processing. A mechanistic understanding of their function depends on profound knowledge of their intrinsic properties and their integration into dorsal horn circuits. Here, we have used BAC transgenic mice expressing enhanced green fluorescent protein (eGFP) under the control of the vesicular glutamate transporter (vGluT2) gene (vGluT2::eGFP mice) to perform a detailed electrophysiological and morphological characterisation of excitatory dorsal horn neurons, and to compare their properties to those of GABAergic (Gad67::eGFP tagged) and glycinergic (GlyT2::eGFP tagged) neurons. vGluT2::eGFP was detected in about one-third of all excitatory dorsal horn neurons and, as demonstrated by the co-expression of vGluT2::eGFP with different markers of subtypes of glutamatergic neurons, probably labelled a representative fraction of these neurons. Three types of dendritic tree morphologies (vertical, central, and radial), but no islet cell-type morphology, were identified in vGluT2::eGFP neurons. vGluT2::eGFP neurons had more depolarised action potential thresholds and longer action potential durations than inhibitory neurons, while no significant differences were found for the resting membrane potential, input resistance, cell capacitance and after-hyperpolarisation. Delayed firing and single action potential firing were the single most prevalent firing patterns in vGluT2::eGFP neurons of the superficial and deep dorsal horn, respectively. By contrast, tonic firing prevailed in inhibitory interneurons of the dorsal horn. Capsaicin-induced synaptic inputs were detected in about half of the excitatory and inhibitory neurons, and occurred more frequently in superficial than in deep dorsal horn neurons. Primary afferent-evoked (polysynaptic) inhibitory inputs were found in the majority of glutamatergic and glycinergic neurons, but only in less than half of the GABAergic population. Excitatory

  9. The optimal neural strategy for a stable motor task requires a compromise between level of muscle cocontraction and synaptic gain of afferent feedback

    PubMed Central

    Dideriksen, Jakob L.; Negro, Francesco

    2015-01-01

    Increasing joint stiffness by cocontraction of antagonist muscles and compensatory reflexes are neural strategies to minimize the impact of unexpected perturbations on movement. Combining these strategies, however, may compromise steadiness, as elements of the afferent input to motor pools innervating antagonist muscles are inherently negatively correlated. Consequently, a high afferent gain and active contractions of both muscles may imply negatively correlated neural drives to the muscles and thus an unstable limb position. This hypothesis was systematically explored with a novel computational model of the peripheral nervous system and the mechanics of one limb. Two populations of motor neurons received synaptic input from descending drive, spinal interneurons, and afferent feedback. Muscle force, simulated based on motor unit activity, determined limb movement that gave rise to afferent feedback from muscle spindles and Golgi tendon organs. The results indicated that optimal steadiness was achieved with low synaptic gain of the afferent feedback. High afferent gains during cocontraction implied increased levels of common drive in the motor neuron outputs, which were negatively correlated across the two populations, constraining instability of the limb. Increasing the force acting on the joint and the afferent gain both effectively minimized the impact of an external perturbation, and suboptimal adjustment of the afferent gain could be compensated by muscle cocontraction. These observations show that selection of the strategy for a given contraction implies a compromise between steadiness and effectiveness of compensations to perturbations. This indicates that a task-dependent selection of neural strategy for steadiness is necessary when acting in different environments. PMID:26203102

  10. The optimal neural strategy for a stable motor task requires a compromise between level of muscle cocontraction and synaptic gain of afferent feedback.

    PubMed

    Dideriksen, Jakob L; Negro, Francesco; Farina, Dario

    2015-09-01

    Increasing joint stiffness by cocontraction of antagonist muscles and compensatory reflexes are neural strategies to minimize the impact of unexpected perturbations on movement. Combining these strategies, however, may compromise steadiness, as elements of the afferent input to motor pools innervating antagonist muscles are inherently negatively correlated. Consequently, a high afferent gain and active contractions of both muscles may imply negatively correlated neural drives to the muscles and thus an unstable limb position. This hypothesis was systematically explored with a novel computational model of the peripheral nervous system and the mechanics of one limb. Two populations of motor neurons received synaptic input from descending drive, spinal interneurons, and afferent feedback. Muscle force, simulated based on motor unit activity, determined limb movement that gave rise to afferent feedback from muscle spindles and Golgi tendon organs. The results indicated that optimal steadiness was achieved with low synaptic gain of the afferent feedback. High afferent gains during cocontraction implied increased levels of common drive in the motor neuron outputs, which were negatively correlated across the two populations, constraining instability of the limb. Increasing the force acting on the joint and the afferent gain both effectively minimized the impact of an external perturbation, and suboptimal adjustment of the afferent gain could be compensated by muscle cocontraction. These observations show that selection of the strategy for a given contraction implies a compromise between steadiness and effectiveness of compensations to perturbations. This indicates that a task-dependent selection of neural strategy for steadiness is necessary when acting in different environments.

  11. Organization of sensory input to the nociceptive-specific cutaneous trunk muscle reflex in rat, an effective experimental system for examining nociception and plasticity

    PubMed Central

    Petruska, Jeffrey C.; Barker, Darrell F.; Garraway, Sandra M.; Trainer, Robert; Fransen, James W.; Seidman, Peggy A.; Soto, Roy G.; Mendell, Lorne M.; Johnson, Richard D.

    2013-01-01

    Detailed characterization of neural circuitries furthers our understanding of how nervous systems perform specific functions and enables the use of those systems to test hypotheses. We have characterized the sensory input to the cutaneous trunk muscle (CTM; also cutaneus trunci (rat) or cutaneus maximus (mouse)) reflex (CTMR), which manifests as a puckering of the dorsal thoracolumbar skin and is selectively driven by noxious stimuli. CTM electromyography (EMG) and neurogram recordings in naïve rats revealed that CTMR responses were elicited by natural stimuli and electrical stimulation of all segments from C4 to L6, a much greater extent of segmental drive to the CTMR than previously described. Stimulation of some subcutaneous paraspinal tissue can also elicit this reflex. Using a selective neurotoxin, we also demonstrate differential drive of the CTMR by trkA-expressing and non-expressing small diameter afferents. These observations highlight aspects of the organization of the CTMR system which make it attractive for studies of nociception and anesthesiology and plasticity of primary afferents, motoneurons, and the propriospinal system. We use the CTMR system to qualitatively and quantitatively demonstrate that experimental pharmacological treatments can be compared to controls applied either to the contralateral side or to another segment, with the remaining segments providing controls for systemic or other treatment effects. These data indicate the potential for using the CTMR system as both an invasive and non-invasive quantitative assessment tool providing improved statistical power and reduced animal use. PMID:23983104

  12. Distribution of primary afferent fibres in the cochlear nuclei. A silver and horseradish peroxidase (HRP) study.

    PubMed Central

    Merchan, M A; Collia, F P; Merchan, J A; Saldana, E

    1985-01-01

    Horseradish peroxidase, when injected intracochlearly, is transported transganglionically to the brain stem cochlear nuclei, thus providing an excellent method for tracing the central projection of the spiral ganglion neurons. Silver impregnation using the Cajal-de Castro method, which stains axons even when inside the bone, was used as a reference technique. The combination of both procedures led to the following conclusions. Primary cochlear afferents are found only in the ventral zone of the dorsal cochlear nucleus. In this area they cover the deep and fusiform cell layers. The molecular layer shows no HRP label. The higher concentration of primary cochlear afferents in the ventral cochlear nucleus appears in its central zone; wide areas in this nucleus are not labelled at all. A thin bundle of primary cochlear afferents runs parallel to, and beneath, the granular region. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:4077711

  13. Primary afferent fibers establish dye-coupled connections in the frog central nervous system.

    PubMed

    Bácskai, Timea; Matesz, Clara

    Neurobiotin and Lucifer yellow, indicators of gap junctional coupling, were applied to primary afferent fibers of the frog. Following application of tracers to cervical or lumbar dorsal root fibers, a large number of labeled granule cells were detected in the corpus cerebelli, the brainstem, and the spinal cord. The vestibular nerve was found to be in dye-coupled connection with the granule cells of the auricular lobe of the cerebellum. After application of the tracers to the trigeminal nerve, elicited dye-coupled neurons located mainly in the termination area of the descending limb of the mesencephalic trigeminal nucleus. In control experiments with biotinylated dextrane amine, only primary afferent fibers were labeled. Our results suggest that gap junctional coupling exists between primary afferent fibers and their postsynaptic targets in the frog.

  14. Nociceptive Local Field Potentials Recorded from the Human Insula Are Not Specific for Nociception.

    PubMed

    Liberati, Giulia; Klöcker, Anne; Safronova, Marta M; Ferrão Santos, Susana; Ribeiro Vaz, Jose-Geraldo; Raftopoulos, Christian; Mouraux, André

    2016-01-01

    The insula, particularly its posterior portion, is often regarded as a primary cortex for pain. However, this interpretation is largely based on reverse inference, and a specific involvement of the insula in pain has never been demonstrated. Taking advantage of the high spatiotemporal resolution of direct intracerebral recordings, we investigated whether the human insula exhibits local field potentials (LFPs) specific for pain. Forty-seven insular sites were investigated. Participants received brief stimuli belonging to four different modalities (nociceptive, vibrotactile, auditory, and visual). Both nociceptive stimuli and non-nociceptive vibrotactile, auditory, and visual stimuli elicited consistent LFPs in the posterior and anterior insula, with matching spatial distributions. Furthermore, a blind source separation procedure showed that nociceptive LFPs are largely explained by multimodal neural activity also contributing to non-nociceptive LFPs. By revealing that LFPs elicited by nociceptive stimuli reflect activity unrelated to nociception and pain, our results confute the widespread assumption that these brain responses are a signature for pain perception and its modulation. PMID:26734726

  15. Nociception, pain, negative moods and behavior selection

    PubMed Central

    Baliki, Marwan N.; Apkarian, A. Vania

    2015-01-01

    Recent neuroimaging studies suggest that the brain adapts with pain, as well as imparts risk for developing chronic pain. Within this context we revisit the concepts for nociception, acute and chronic pain, and negative moods relative to behavior selection. We redefine nociception as the mechanism protecting the organism from injury; while acute pain as failure of avoidant behavior; and a mesolimbic threshold process that gates the transformation of nociceptive activity to conscious pain. Adaptations in this threshold process are envisioned to be critical for development of chronic pain. We deconstruct chronic pain into four distinct phases, each with specific mechanisms; and outline current state of knowledge regarding these mechanisms: The limbic brain imparting risk, while mesolimbic learning processes reorganizing the neocortex into a chronic pain state. Moreover, pain and negative moods are envisioned as a continuum of aversive behavioral learning, which enhance survival by protecting against threats. PMID:26247858

  16. The Role of the Paratrigeminal Nucleus in Vagal Afferent Evoked Respiratory Reflexes: A Neuroanatomical and Functional Study in Guinea Pigs

    PubMed Central

    Driessen, Alexandria K.; Farrell, Michael J.; Mazzone, Stuart B.; McGovern, Alice E.

    2015-01-01

    The respiratory tree receives sensory innervation from the jugular and nodose vagal sensory ganglia. Neurons of these ganglia are derived from embryologically distinct origins and as such demonstrate differing molecular, neurochemical and physiological phenotypes. Furthermore, whereas nodose afferent neurons project to the nucleus of the solitary tract (nTS), recent neuroanatomical studies in rats suggest that jugular neurons have their central terminations in the paratrigeminal nucleus (Pa5). In the present study we confirm that guinea pigs demonstrate a comparable distinction between the brainstem terminations of nodose and jugular ganglia afferents. Thus, microinjection of fluorescently conjugated cholera toxin B (CT-B) neural tracers into the caudal nTS and Pa5 resulted in highly specific retrograde labeling of neurons in the nodose and jugular ganglia, respectively. Whereas, nodose neurons more often expressed 160 KD neurofilament proteins and the alpha3 subunit of Na+/K+ ATPase, significantly more jugular neurons expressed the neuropeptides substance P (SP) and, especially, Calcitonin Gene-Related Peptide (CGRP). Indeed, terminal fibers in the Pa5 compared to the nTS were characterized by their significantly greater expression of CGRP, further supporting the notion that jugular afferents project to trigeminal-related brainstem regions. Electrical stimulation of the guinea pig larynx following selective surgical denervation of the nodose afferent innervation to the larynx (leaving intact the jugular innervation) resulted in stimulus dependent respiratory slowing and eventual apnea. This jugular ganglia neuron mediated response was unaffected by bilateral microinjections of the GABAA agonist muscimol into the nTS, but was abolished by muscimol injected into the Pa5. Taken together these data confirm that jugular and nodose vagal ganglia afferent neurons innervate distinct central circuits and support the notion that multiple peripheral and central pathways

  17. Differential presynaptic control of the synaptic effectiveness of cutaneous afferents evidenced by effects produced by acute nerve section

    PubMed Central

    Rudomin, P; Jiménez, I; Chávez, D

    2013-01-01

    In the anaesthetized cat, the acute section of the saphenous (Saph) and/or the superficial peroneal (SP) nerves was found to produce a long-lasting increase of the field potentials generated in the dorsal horn by stimulation of the medial branch of the sural (mSU) nerve. This facilitation was associated with changes in the level of the tonic primary afferent depolarization (PAD) of the mSU intraspinal terminals. The mSU afferent fibres projecting into Rexed's laminae III–IV were subjected to a tonic PAD that was reduced by the acute section of the SP and/or the Saph nerves. The mSU afferents projecting deeper into the dorsal horn (Rexed's laminae V–VI) were instead subjected to a tonic PAD that was increased after Saph and SP acute nerve section. A differential control of the synaptic effectiveness of the low-threshold cutaneous afferents according to their sites of termination within the dorsal horn is envisaged as a mechanism that allows selective processing of sensory information in response to tactile and nociceptive stimulation or during the execution of different motor tasks. PMID:23478136

  18. Proteomic Analysis Uncovers Novel Actions of the Neurosecretory Protein VGF in Nociceptive Processing

    PubMed Central

    Riedl, Maureen S.; Braun, Patrick D.; Kitto, Kelley F.; Roiko, Samuel A.; Anderson, Lorraine B.; Honda, Christopher N.; Fairbanks, Carolyn A.; Vulchanova, Lucy

    2009-01-01

    Peripheral tissue injury is associated with changes in protein expression in sensory neurons that may contribute to abnormal nociceptive processing. We used cultured dorsal root ganglion (DRG) neurons as a model of axotomized neurons to investigate early changes in protein expression following nerve injury. Comparing protein levels immediately after DRG dissociation and 24 h later by proteomic differential expression analysis, we found a substantial increase in the levels of the neurotrophin-inducible protein VGF (non-acronymic), a putative neuropeptide precursor. In a rodent model of nerve injury, VGF levels were increased within 24 h in both injured and uninjured DRG neurons, and the increase persisted for at least 7 days. VGF was also upregulated 24 h following hind-paw inflammation. To determine whether peptides derived from proteolytic processing of VGF participate in nociceptive signaling, we examined the spinal effects of AQEE-30 and LQEQ-19, potential proteolytic products previously shown to be bioactive. Each peptide evoked dose-dependent thermal hyperalgesia that required activation of the mitogen-activated protein kinase (MAPK) p38. In addition, LQEQ-19 induced p38 phosphorylation in spinal microglia when injected intrathecally and in the BV-2 microglial cell line when applied in vitro. In summary, our results demonstrate rapid upregulation of VGF in sensory neurons after nerve injury and inflammation and activation of microglial p38 by VGF peptides. Therefore, VGF peptides released from sensory neurons may participate in activation of spinal microglia following peripheral tissue injury. PMID:19846725

  19. The unsilent majority-TRPV1 drives "spontaneous" transmission of unmyelinated primary afferents within cardiorespiratory NTS.

    PubMed

    Andresen, Michael C; Hofmann, Mackenzie E; Fawley, Jessica A

    2012-12-15

    Cranial primary afferent sensory neurons figure importantly in homeostatic control of visceral organ systems. Of the two broad classes of visceral afferents, the role of unmyelinated or C-type class remains poorly understood. This review contrasts key aspects of peripheral discharge properties of C-fiber afferents and their glutamate transmission mechanisms within the solitary tract nucleus (NTS). During normal prevailing conditions, most information arrives at the NTS through myelinated A-type nerves. However, most of visceral afferent axons (75-90%) in NTS are unmyelinated, C-type axons. Centrally, C-type solitary tract (ST) afferent terminals have presynaptic transient receptor potential vanilloid type 1 (TRPV1) receptors. Capsaicin activation of TRPV1 blocks phasic or synchronous release of glutamate but facilitates release of glutamate from a separate pool of vesicles. This TRPV1-operated pool of vesicles is active at normal temperatures and is responsible for actively driving a 10-fold higher release of glutamate at TRPV1 compared with TRPV1- terminals even in the absence of afferent action potentials. This novel TRPV1 mechanism is responsible for an additional asynchronous release of glutamate that is not present in myelinated terminals. The NTS is rich with presynaptic G protein-coupled receptors, and the implications of TRPV1-operated glutamate offer unique targets for signaling in C-type sensory afferent terminals from neuropeptides, inflammatory mediators, lipid metabolites, cytokines, and cannabinoids. From a homeostatic view, this combination could have broad implications for integration in chronic pathological disturbances in which the numeric dominance of C-type endings and TRPV1 would broadly disturb multisystem control mechanisms.

  20. Peripheral and central alterations affecting spinal nociceptive processing and pain at adulthood in rats exposed to neonatal maternal deprivation.

    PubMed

    Juif, Pierre-Eric; Salio, Chiara; Zell, Vivien; Melchior, Meggane; Lacaud, Adrien; Petit-Demouliere, Nathalie; Ferrini, Francesco; Darbon, Pascal; Hanesch, Ulrike; Anton, Fernand; Merighi, Adalberto; Lelièvre, Vincent; Poisbeau, Pierrick

    2016-08-01

    The nociceptive system of rodents is not fully developed and functional at birth. Specifically, C fibers transmitting peripheral nociceptive information establish synaptic connections in the spinal cord already during the embryonic period that only become fully functional after birth. Here, we studied the consequences of neonatal maternal deprivation (NMD, 3 h/day, P2-P12) on the functional establishment of C fiber-mediated neurotransmission in spinal cord and of pain-related behavior. In vivo recording revealed that C fiber-mediated excitation of spinal cord neurons could be observed at P14 only in control but not in NMD rats. NMD was associated with a strong alteration in the expression of growth factors controlling C nociceptor maturation as well as two-pore domain K+ channels known to set nociceptive thresholds. In good agreement, C-type sensory neurons from NMD animals appeared to be hypoexcitable but functionally connected to spinal neurons, especially those expressing TRPV1 receptors. In vivo and in vitro recordings of lamina II spinal neurons at P14 revealed that the NMD-related lack of C fiber-evoked responses resulted from an inhibitory barrage in the spinal cord dorsal horn. Eventually, C-type sensory-spinal processing could be recovered after a delay of about 10 days in NMD animals. However, animals remained hypersensitive to noxious stimulus up to P100 and this might be due to an excessive expression of Nav1.8 transcripts in DRG neurons. Together, our data provide evidence for a deleterious impact of perinatal stress exposure on the maturation of the sensory-spinal nociceptive system that may contribute to the nociceptive hypersensitivity in early adulthood. PMID:27285721

  1. Aminergic and cholinergic afferents to REM sleep induction regions of the pontine reticular formation in the rat.

    PubMed

    Semba, K

    1993-04-22

    Microinjection of cholinergic agonists in a dorsolateral part of the mesopontine tegmentum has been shown to induce a rapid eye movement (REM) sleep-like state. Physiological evidence indicates that not only acetylcholine but also various amine transmitters, including those implicated in behavioral state regulation, affect neuronal activity in this region of the pontine reticular formation. In the present study, sources of select aminergic and cholinergic inputs to this REM sleep induction zone were identified and quantitatively analyzed by using fluorescence retrograde tracing combined with immunofluorescence in the rat. In addition to previously demonstrated cholinergic projections from the pedunculopontine and laterodorsal tegmental nuclei, the REM sleep induction zone received various aminergic inputs that originated in widely distributed regions of the brainstem and hypothalamus. Serotoninergic afferents represented a mean of 44% of all aminergic/cholinergic source neurons projecting to the REM sleep induction zone, which was comparable to the mean percentage of 39% represented by cholinergic afferent neurons. The serotoninergic afferents originated from the raphe nuclei at all brainstem levels, with heavier projections from the pontine than from the medullary raphe nuclei. Unexpectedly, an additional major serotoninergic input was provided by serotoninergic neurons in the nucleus prosupralemniscus (B9). Noradrenergic afferent neurons represented a mean of 14% of all aminergic/cholinergic source neurons, which was only about one-third of the mean percentage of either cholinergic or serotoninergic source neurons. These noradrenergic projection neurons were located not only in the locus ceruleus (8%) but also in the lateral tegmentum, including the A5 (4%) and A7 (2%) cell groups. Histaminergic neurons in the tuberomammillary hypothalamic nucleus represented a minor group of afferent neurons (3%), and a still smaller input came from adrenergic C1 neurons. The

  2. Cortical spreading depression induces oxidative stress in the trigeminal nociceptive system.

    PubMed

    Shatillo, A; Koroleva, K; Giniatullina, R; Naumenko, N; Slastnikova, A A; Aliev, R R; Bart, G; Atalay, M; Gu, C; Khazipov, R; Davletov, B; Grohn, O; Giniatullin, R

    2013-12-01

    Indirect evidence suggests the increased production of reactive oxygen species (ROS) in migraine pathophysiology. In the current study we measured lipid peroxidation product in the rat cortex, trigeminal ganglia and meninges after the induction of cortical spreading depression (CSD), a phenomenon known to be associated with migraine aura, and tested nociceptive firing triggered by ROS in trigeminal nerves ex vivo. Application of KCl to dura mater in anesthetized rats induced several waves of CSD recorded by an extracellular electrode in the cortex. Following CSD, samples of cortex (affected regions were identified with blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI)), meninges from left and right hemispheres and trigeminal ganglia were taken for biochemical analysis. We found that CSD increased the level of the lipid peroxidation product malondialdehyde (MDA) in the ipsilateral cerebral cortex and meninges, but also in both ipsi- and contralateral trigeminal ganglia. In order to test the pro-nociceptive action of ROS, we applied the mild oxidant hydrogen peroxide to isolated rat hemiskull preparations including preserved trigeminal innervations. Application of hydrogen peroxide to meninges transiently enhanced electrical spiking activity of trigeminal nerves showing a pro-nociceptive action of ROS. In the presence of hydrogen peroxide trigeminal nerves still responded to capsaicin by burst of spiking activity indicating integrity of neuronal structures. The action of hydrogen peroxide was mediated by TRPA1 receptors as it was abolished by the specific TRPA1 antagonist TCS-5861528. Using dorsal root ganglion sensory neurons as test system we found that hydrogen peroxide promoted the release of the migraine mediator calcitonin gene-related peptide (CGRP), which we previously identified as a trigger of delayed sensitization of trigeminal neurons. Our data suggest that, after CSD, oxidative stress spreads downstream within the

  3. Role of peripheral purinoceptors in the development of bee venom-induced nociception: a behavioural and electrophysiological study in rats.

    PubMed

    Li, Li; Luo, Rong; Fan, Pei; Guo, Yuan; Wang, Hui-Sheng; Ma, Shao-Jie; Zhao, Yan

    2014-11-01

    Colocalization of purinergic P2X and P2Y receptors in dorsal root ganglion sensory neurons implies that these receptors play an integrative role in the nociceptive transmission process under inflammatory conditions. In the present study, behavioural and in vivo electrophysiological methods were used to examine the peripheral role of P2 receptors in the persistent nociceptive responses induced by subcutaneous bee venom injection (2 mg/mL) in. Sprague-Dawley rats Local pretreatment with the wide-spectrum P2 receptor antagonist pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid (PPADS; 1 mmol/L, 50 μL) 10 min prior to s.c. bee venom injection significantly suppressed the duration of spontaneous nociceptive lifting/licking behaviour, inhibited mechanical hyperalgesia and decreased the firing of spinal dorsal horn wide dynamic range neurons in response to bee venom, without affecting primary thermal and mirror-image hyperalgesia. The localized antinociceptive action of PPADS was not due to a systemic effect, because application of the same dose of PPADS to the contralateral side was not effective. The results suggest that activation of peripheral P2 receptors is involved in the induction of nociceptive responses, mechanical hyperalgesia and the excitation of sensory spinal neurons. PMID:25115823

  4. Netrin-1 Contributes to Myelinated Afferent Fiber Sprouting and Neuropathic Pain.

    PubMed

    Wu, Cai-Hua; Yuan, Xiao-Cui; Gao, Fang; Li, Hong-Ping; Cao, Jie; Liu, Yan-Shen; Yu, Wei; Tian, Bo; Meng, Xian-Fang; Shi, Jing; Pan, Hui-Lin; Li, Man

    2016-10-01

    Netrin-1 is a neuronal guidance molecule implicated in the development of spinal cord neurons and cortical neurons. In the adult spinal cord, UNC5H (repulsive receptor of netrin-1), but not deleted in colorectal cancer (DCC) (attractive receptor of netrin-1), constitutes a major mode of netrin-1 signal transduction, which may be involved in axon repulsion and inhibits neurite outgrowth. Abnormal sprouting of myelinated afferent fibers in the spinal dorsal horn can cause mechanical allodynia associated with postherpetic neuralgia (PHN, Shingles) and other neuropathic pains. However, whether netrin-1 participates in sprouting of myelinated afferent fibers and mechanical allodynia remains unknown. In an ultropotent TRPV1 agonist resiniferatoxin (RTX)-induced PHN-like model, RTX treatment for 6 weeks increased netrin-1 expression in dorsal horn neurons, including NK-1-positive projection neurons. In human neuroblastoma SH-SY5Y cells, we found that TRPV1 antagonist capsazepine antagonized RTX-induced upregulation of netrin-1. After RTX treatment, UNC5H2 expression was gradually decreased, whereas DCC expression was significantly increased. Silencing netrin-1 in the spinal dorsal horn significantly attenuated RTX-induced mechanical allodynia and sprouting of myelinated fibers into the spinal lamina II. Our results suggest that RTX treatment upregulates netrin-1 expression through activation of TRPV1 receptors and change UNC5H2-rich spinal dorsal horn into a growth-permissive environment by increasing DCC expression, thus enhancing the sprouting of myelinated afferent nerves. Netrin-1 may be targeted for reducing primary afferent sprouting and mechanical allodynia in PHN and other neuropathic pain conditions. PMID:26482371

  5. Netrin-1 Contributes to Myelinated Afferent Fiber Sprouting and Neuropathic Pain.

    PubMed

    Wu, Cai-Hua; Yuan, Xiao-Cui; Gao, Fang; Li, Hong-Ping; Cao, Jie; Liu, Yan-Shen; Yu, Wei; Tian, Bo; Meng, Xian-Fang; Shi, Jing; Pan, Hui-Lin; Li, Man

    2016-10-01

    Netrin-1 is a neuronal guidance molecule implicated in the development of spinal cord neurons and cortical neurons. In the adult spinal cord, UNC5H (repulsive receptor of netrin-1), but not deleted in colorectal cancer (DCC) (attractive receptor of netrin-1), constitutes a major mode of netrin-1 signal transduction, which may be involved in axon repulsion and inhibits neurite outgrowth. Abnormal sprouting of myelinated afferent fibers in the spinal dorsal horn can cause mechanical allodynia associated with postherpetic neuralgia (PHN, Shingles) and other neuropathic pains. However, whether netrin-1 participates in sprouting of myelinated afferent fibers and mechanical allodynia remains unknown. In an ultropotent TRPV1 agonist resiniferatoxin (RTX)-induced PHN-like model, RTX treatment for 6 weeks increased netrin-1 expression in dorsal horn neurons, including NK-1-positive projection neurons. In human neuroblastoma SH-SY5Y cells, we found that TRPV1 antagonist capsazepine antagonized RTX-induced upregulation of netrin-1. After RTX treatment, UNC5H2 expression was gradually decreased, whereas DCC expression was significantly increased. Silencing netrin-1 in the spinal dorsal horn significantly attenuated RTX-induced mechanical allodynia and sprouting of myelinated fibers into the spinal lamina II. Our results suggest that RTX treatment upregulates netrin-1 expression through activation of TRPV1 receptors and change UNC5H2-rich spinal dorsal horn into a growth-permissive environment by increasing DCC expression, thus enhancing the sprouting of myelinated afferent nerves. Netrin-1 may be targeted for reducing primary afferent sprouting and mechanical allodynia in PHN and other neuropathic pain conditions.

  6. Evidence for a peripheral origin of the tonic nociceptive response to subcutaneous formalin.

    PubMed

    Dallel, R; Raboisson, P; Clavelou, P; Saade, M; Woda, A

    1995-04-01

    The orofacial formalin test in the rat is a valid and reliable model of nociception and is sensitive to various classes of analgesic drugs. The noxious stimulus consists in an injection of diluted formalin (2.5% in saline) into the upper lip. The behavioural nociceptive response is measured in terms of the amount of time the animal spends rubbing the injected area. Two distinct periods of intense rubbing activity can be identified, a first phase occurring in the first 3 min and a second phase lasting from 12 to 39 min after formalin injection. The present study verified the peripheral origin of the first phase of the formalin response and examined whether the second phase is produced by peripheral activation of afferent fibres and/or by a phenomenon of central facilitation induced by the neural activity that occurs during the first phase. This was determined by assessing the effect of a local anaesthetic agent (lidocaine) administered into the formalin injection site, before or after the first phase of the formalin response. Local injection of 50 microliters of lidocaine prior to formalin completely abolished the first phase of the formalin response but this blockade did not significantly influence the appearance and development of the second phase. Thus, the primary afferent activity that normally occurs during the first phase of the formalin response is not a prerequisite for the expression of the second phase. A higher dose of lidocaine (150 microliters) induced, in addition, inhibition of the first part of the second phase.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. [Selective histochemical identification of neuronal cell populations using fucose-specific lectins].

    PubMed

    Akkuratov, E G; Nozdrachev, A D

    2004-01-01

    We studied lectin histochemical properties of structures of caudal ganglia of the vagus nerve and ganglion of the trigeminal nerve in white rats using fucose-specific conjugates to peroxidase. Morphological samples were processed on a computer video analyzer. Metrical and optical indices of the afferent neurons were analyzed. The obtained data demonstrate different topography of glycoconjugates in the afferent ganglia. Application of recent image processing techniques allows revealing neuron populations in afferent ganglia of rats undetectable by standard morphological techniques.

  8. DAMGO modulates two-pore domain K+ channels in the substantia gelatinosa neurons of rat spinal cord

    PubMed Central

    Cho, Pyung Sun; Lee, Han Kyu; Lee, Sang Hoon; Im, Jay Zoon

    2016-01-01

    The analgesic mechanism of opioids is known to decrease the excitability of substantia gelatinosa (SG) neurons receiving the synaptic inputs from primary nociceptive afferent fiber by increasing inwardly rectifying K+ current. In this study, we examined whether a µ-opioid agonist, [D-Ala2,N-Me-Phe4, Gly5-ol]-enkephalin (DAMGO), affects the two-pore domain K+ channel (K2P) current in rat SG neurons using a slice whole-cell patch clamp technique. Also we confirmed which subtypes of K2P channels were associated with DAMGO-induced currents, measuring the expression of K2P channel in whole spinal cord and SG region. DAMGO caused a robust hyperpolarization and outward current in the SG neurons, which developed almost instantaneously and did not show any time-dependent inactivation. Half of the SG neurons exhibited a linear I~V relationship of the DAMGO-induced current, whereas rest of the neurons displayed inward rectification. In SG neurons with a linear I~V relationship of DAMGO-induced current, the reversal potential was close to the K+ equilibrium potentials. The mRNA expression of TWIK (tandem of pore domains in a weak inwardly rectifying K+ channel) related acid-sensitive K+ channel (TASK) 1 and 3 was found in the SG region and a low pH (6.4) significantly blocked the DAMGO-induced K+ current. Taken together, the DAMGO-induced hyperpolarization at resting membrane potential and subsequent decrease in excitability of SG neurons can be carried by the two-pore domain K+ channel (TASK1 and 3) in addition to inwardly rectifying K+ channel. PMID:27610039

  9. DAMGO modulates two-pore domain K(+) channels in the substantia gelatinosa neurons of rat spinal cord.

    PubMed

    Cho, Pyung Sun; Lee, Han Kyu; Lee, Sang Hoon; Im, Jay Zoon; Jung, Sung Jun

    2016-09-01

    The analgesic mechanism of opioids is known to decrease the excitability of substantia gelatinosa (SG) neurons receiving the synaptic inputs from primary nociceptive afferent fiber by increasing inwardly rectifying K(+) current. In this study, we examined whether a µ-opioid agonist, [D-Ala2,N-Me-Phe4, Gly5-ol]-enkephalin (DAMGO), affects the two-pore domain K(+) channel (K2P) current in rat SG neurons using a slice whole-cell patch clamp technique. Also we confirmed which subtypes of K2P channels were associated with DAMGO-induced currents, measuring the expression of K2P channel in whole spinal cord and SG region. DAMGO caused a robust hyperpolarization and outward current in the SG neurons, which developed almost instantaneously and did not show any time-dependent inactivation. Half of the SG neurons exhibited a linear I~V relationship of the DAMGO-induced current, whereas rest of the neurons displayed inward rectification. In SG neurons with a linear I~V relationship of DAMGO-induced current, the reversal potential was close to the K(+) equilibrium potentials. The mRNA expression of TWIK (tandem of pore domains in a weak inwardly rectifying K(+) channel) related acid-sensitive K(+) channel (TASK) 1 and 3 was found in the SG region and a low pH (6.4) significantly blocked the DAMGO-induced K(+) current. Taken together, the DAMGO-induced hyperpolarization at resting membrane potential and subsequent decrease in excitability of SG neurons can be carried by the two-pore domain K(+) channel (TASK1 and 3) in addition to inwardly rectifying K(+) channel. PMID:27610039

  10. DAMGO modulates two-pore domain K(+) channels in the substantia gelatinosa neurons of rat spinal cord.

    PubMed

    Cho, Pyung Sun; Lee, Han Kyu; Lee, Sang Hoon; Im, Jay Zoon; Jung, Sung Jun

    2016-09-01

    The analgesic mechanism of opioids is known to decrease the excitability of substantia gelatinosa (SG) neurons receiving the synaptic inputs from primary nociceptive afferent fiber by increasing inwardly rectifying K(+) current. In this study, we examined whether a µ-opioid agonist, [D-Ala2,N-Me-Phe4, Gly5-ol]-enkephalin (DAMGO), affects the two-pore domain K(+) channel (K2P) current in rat SG neurons using a slice whole-cell patch clamp technique. Also we confirmed which subtypes of K2P channels were associated with DAMGO-induced currents, measuring the expression of K2P channel in whole spinal cord and SG region. DAMGO caused a robust hyperpolarization and outward current in the SG neurons, which developed almost instantaneously and did not show any time-dependent inactivation. Half of the SG neurons exhibited a linear I~V relationship of the DAMGO-induced current, whereas rest of the neurons displayed inward rectification. In SG neurons with a linear I~V relationship of DAMGO-induced current, the reversal potential was close to the K(+) equilibrium potentials. The mRNA expression of TWIK (tandem of pore domains in a weak inwardly rectifying K(+) channel) related acid-sensitive K(+) channel (TASK) 1 and 3 was found in the SG region and a low pH (6.4) significantly blocked the DAMGO-induced K(+) current. Taken together, the DAMGO-induced hyperpolarization at resting membrane potential and subsequent decrease in excitability of SG neurons can be carried by the two-pore domain K(+) channel (TASK1 and 3) in addition to inwardly rectifying K(+) channel.

  11. DAMGO modulates two-pore domain K+ channels in the substantia gelatinosa neurons of rat spinal cord

    PubMed Central

    Cho, Pyung Sun; Lee, Han Kyu; Lee, Sang Hoon; Im, Jay Zoon

    2016-01-01

    The analgesic mechanism of opioids is known to decrease the excitability of substantia gelatinosa (SG) neurons receiving the synaptic inputs from primary nociceptive afferent fiber by increasing inwardly rectifying K+ current. In this study, we examined whether a µ-opioid agonist, [D-Ala2,N-Me-Phe4, Gly5-ol]-enkephalin (DAMGO), affects the two-pore domain K+ channel (K2P) current in rat SG neurons using a slice whole-cell patch clamp technique. Also we confirmed which subtypes of K2P channels were associated with DAMGO-induced currents, measuring the expression of K2P channel in whole spinal cord and SG region. DAMGO caused a robust hyperpolarization and outward current in the SG neurons, which developed almost instantaneously and did not show any time-dependent inactivation. Half of the SG neurons exhibited a linear I~V relationship of the DAMGO-induced current, whereas rest of the neurons displayed inward rectification. In SG neurons with a linear I~V relationship of DAMGO-induced current, the reversal potential was close to the K+ equilibrium potentials. The mRNA expression of TWIK (tandem of pore domains in a weak inwardly rectifying K+ channel) related acid-sensitive K+ channel (TASK) 1 and 3 was found in the SG region and a low pH (6.4) significantly blocked the DAMGO-induced K+ current. Taken together, the DAMGO-induced hyperpolarization at resting membrane potential and subsequent decrease in excitability of SG neurons can be carried by the two-pore domain K+ channel (TASK1 and 3) in addition to inwardly rectifying K+ channel.

  12. Self-injurious behavior in neurodevelopmental disorders: relevance of nociceptive and immune mechanisms.

    PubMed

    Symons, Frank J

    2011-04-01

    Self-injurious behavior (SIB) among individuals with intellectual and related neurodevelopmental disorders (IDD) is a clinical challenge and scientific puzzle. The physiological mechanisms regulating the sensory components of SIB remain a mystery with no clear understanding of the underlying pathophysiology. The central dogma regarding sensory processing in general and pain in particular among individuals with IDD and chronic SIB is that sensory processing is reduced and pain is absent or blunted. In this paper, recent findings challenging some of the conventional wisdom regarding pain and sensory function among individuals with IDD and SIB are reviewed. It seems that at least a subgroup of individuals with IDD and chronic SIB may be in a physiological state similar to neuropathic pain in which hyperalgesia is mediated by plasticity mechanisms regulating inflammatory, immune, and nociceptive systems. In response to repeated tissue damage associated with chronic self-injury, innate immune cells may be producing pro-inflammatory and pro-nociceptive cytokines that act on the brain to cause sickness-like behavior and sensitize primary sensory nerve afferents contributing to pain hypersensitivity (i.e., hyperalgesia). PMID:21237197

  13. A New Population of Parvocellular Oxytocin Neurons Controlling Magnocellular Neuron Activity and Inflammatory Pain Processing.

    PubMed

    Eliava, Marina; Melchior, Meggane; Knobloch-Bollmann, H Sophie; Wahis, Jérôme; da Silva Gouveia, Miriam; Tang, Yan; Ciobanu, Alexandru Cristian; Triana del Rio, Rodrigo; Roth, Lena C; Althammer, Ferdinand; Chavant, Virginie; Goumon, Yannick; Gruber, Tim; Petit-Demoulière, Nathalie; Busnelli, Marta; Chini, Bice; Tan, Linette L; Mitre, Mariela; Froemke, Robert C; Chao, Moses V; Giese, Günter; Sprengel, Rolf; Kuner, Rohini; Poisbeau, Pierrick; Seeburg, Peter H; Stoop, Ron; Charlet, Alexandre; Grinevich, Valery

    2016-03-16

    Oxytocin (OT) is a neuropeptide elaborated by the hypothalamic paraventricular (PVN) and supraoptic (SON) nuclei. Magnocellular OT neurons of these nuclei innervate numerous forebrain regions and release OT into the blood from the posterior pituitary. The PVN also harbors parvocellular OT cells that project to the brainstem and spinal cord, but their function has not been directly assessed. Here, we identified a subset of approximately 30 parvocellular OT neurons, with collateral projections onto magnocellular OT neurons and neurons of deep layers of the spinal cord. Evoked OT release from these OT neurons suppresses nociception and promotes analgesia in an animal model of inflammatory pain. Our findings identify a new population of OT neurons that modulates nociception in a two tier process: (1) directly by release of OT from axons onto sensory spinal cord neurons and inhibiting their activity and (2) indirectly by stimulating OT release from SON neurons into the periphery.

  14. A New Population of Parvocellular Oxytocin Neurons Controlling Magnocellular Neuron Activity and Inflammatory Pain Processing.

    PubMed

    Eliava, Marina; Melchior, Meggane; Knobloch-Bollmann, H Sophie; Wahis, Jérôme; da Silva Gouveia, Miriam; Tang, Yan; Ciobanu, Alexandru Cristian; Triana del Rio, Rodrigo; Roth, Lena C; Althammer, Ferdinand; Chavant, Virginie; Goumon, Yannick; Gruber, Tim; Petit-Demoulière, Nathalie; Busnelli, Marta; Chini, Bice; Tan, Linette L; Mitre, Mariela; Froemke, Robert C; Chao, Moses V; Giese, Günter; Sprengel, Rolf; Kuner, Rohini; Poisbeau, Pierrick; Seeburg, Peter H; Stoop, Ron; Charlet, Alexandre; Grinevich, Valery

    2016-03-16

    Oxytocin (OT) is a neuropeptide elaborated by the hypothalamic paraventricular (PVN) and supraoptic (SON) nuclei. Magnocellular OT neurons of these nuclei innervate numerous forebrain regions and release OT into the blood from the posterior pituitary. The PVN also harbors parvocellular OT cells that project to the brainstem and spinal cord, but their function has not been directly assessed. Here, we identified a subset of approximately 30 parvocellular OT neurons, with collateral projections onto magnocellular OT neurons and neurons of deep layers of the spinal cord. Evoked OT release from these OT neurons suppresses nociception and promotes analgesia in an animal model of inflammatory pain. Our findings identify a new population of OT neurons that modulates nociception in a two tier process: (1) directly by release of OT from axons onto sensory spinal cord neurons and inhibiting their activity and (2) indirectly by stimulating OT release from SON neurons into the periphery. PMID:26948889

  15. Afferent Connectivity of the Zebrafish Habenulae

    PubMed Central

    Turner, Katherine J.; Hawkins, Thomas A.; Yáñez, Julián; Anadón, Ramón; Wilson, Stephen W.; Folgueira, Mónica

    2016-01-01

    The habenulae are bilateral nuclei located in the dorsal diencephalon that are conserved across vertebrates. Here we describe the main afferents to the habenulae in larval and adult zebrafish. We observe afferents from the subpallium, nucleus rostrolateralis, posterior tuberculum, posterior hypothalamic lobe, median raphe; we also see asymmetric afferents from olfactory bulb to the right habenula, and from the parapineal to the left habenula. In addition, we find afferents from a ventrolateral telencephalic nucleus that neurochemical and hodological data identify as the ventral entopeduncular nucleus (vENT), confirming and extending observations of Amo et al. (2014). Fate map and marker studies suggest that vENT originates from the diencephalic prethalamic eminence and extends into the lateral telencephalon from 48 to 120 hour post-fertilization (hpf). No afferents to the habenula were observed from the dorsal entopeduncular nucleus (dENT). Consequently, we confirm that the vENT (and not the dENT) should be considered as the entopeduncular nucleus “proper” in zebrafish. Furthermore, comparison with data in other vertebrates suggests that the vENT is a conserved basal ganglia nucleus, being homologous to the entopeduncular nucleus of mammals (internal segment of the globus pallidus of primates) by both embryonic origin and projections, as previously suggested by Amo et al. (2014). PMID:27199671

  16. Interaction of a combination of morphine and ketamine on the nociceptive flexion reflex in human volunteers.

    PubMed

    Bossard, Anne-Elisabeth; Guirimand, Frédéric; Fletcher, Dominique; Gaude-Joindreau, Valérie; Chauvin, Marcel; Bouhassira, Didier

    2002-07-01

    Experimental studies in animals have suggested that a combination of morphine and N-methyl-D-aspartate (NMDA) receptor antagonists may have additive or synergistic analgesic effects. To further study the nature of the interaction between these two classes of analgesic agents, we analyzed the effects of morphine, ketamine and their combination on electrophysiological recordings of the nociceptive flexion RIII reflex in 12 healthy volunteers. Morphine (0.1 mg/kg), ketamine (0.1 mg/kg followed by 4 microg/kg/min) or their combination were administered intravenously according to a double-blind, placebo controlled and cross-over design. The RIII reflex was recorded from the biceps femoris and elicited by electrical stimulation of the sural nerve. The effects of the drugs were tested on: (1) the stimulus-response curves of the reflex up to the tolerance threshold (frequency of stimulation: 0.1Hz); (2) the progressive increase of the reflex and painful sensations (i.e. wind-up phenomenon) induced by a series of 15 electrical stimuli at a frequency of 1Hz (intensity: 20% above threshold). The stimulus-response curve of the nociceptive RIII reflex was significantly reduced after injection of a combination of ketamine and morphine, but was not modified when placebo or each of the active drugs was administered alone. The wind-up of the RIII reflex and painful sensation was not significantly altered after the injection of placebo, ketamine, morphine or their combination. In conclusion, the present electrophysiological results in humans demonstrate a synergistic interaction between morphine and ketamine, which tends to confirm the interest of using this type of combination in the clinical context. The differential effects observed on the recruitment curve and wind-up indicate, however, that the mechanisms of the interaction between opiates and NMDA receptor antagonists are not univocal but depend on the modality of activation of the nociceptive afferents. PMID:12098616

  17. Peripheral and spinal mechanisms of nociception in a rat reserpine-induced pain model.

    PubMed

    Taguchi, Toru; Katanosaka, Kimiaki; Yasui, Masaya; Hayashi, Koei; Yamashita, Mai; Wakatsuki, Koji; Kiyama, Hiroshi; Yamanaka, Akihiro; Mizumura, Kazue

    2015-03-01

    Chronic widespread pain is a serious medical problem, yet the mechanisms of nociception and pain are poorly understood. Using a reserpine-induced pain model originally reported as a putative animal model for fibromyalgia, this study was undertaken to examine the following: (1) expression of several ion channels responsible for pain, mechanotransduction, and generation/propagation of action potentials in the dorsal root ganglion (DRG), (2) activities of peripheral nociceptive afferents, and (3) alterations in spinal microglial cells. A significant increase in mRNA expression of the acid-sensing ion channel (ASIC)-3 was detected in the DRG, and the behavioral mechanical hyperalgesia was significantly reversed by subcutaneous injection of APETx2, a selective blocker of ASIC3. Single-fiber recordings in vitro revealed facilitated mechanical responses of mechanoresponsive C-fibers both in the skin and muscle although the proportion of mechanoresponsive C-nociceptors was paradoxically decreased. In the spinal dorsal horn, microglial cells labeled with Iba1 immunoreactivity was activated, especially in laminae I-II where the nociceptive input is mainly processed compared with the other laminae. The activated microglia and behavioral hyperalgesia were significantly tranquilized by intraperitoneal injection of minocycline. These results suggest that the increase in ASIC3 in the DRG facilitated mechanical response of the remaining C-nociceptors and that activated spinal microglia may direct to intensify pain in this model. Pain may be further amplified by reserpine-induced dysfunction of the descending pain inhibitory system and by the decrease in peripheral drive to this system resulting from a reduced proportion of mechanoresponsive C-nociceptors.

  18. Irregular primary otolith afferents from the guinea pig utricular and saccular maculae respond to both bone conducted vibration and to air conducted sound.

    PubMed

    Curthoys, Ian S; Vulovic, Vedran; Sokolic, Ljiljana; Pogson, Jacob; Burgess, Ann M

    2012-10-01

    This study sought to identify in guinea pig the peripheral sense organ of origin of otolith irregular primary vestibular afferent neurons having a very sensitive response to both air-conducted sound (ACS) and bone-conducted vibration (BCV). Neurons responding to both types of stimuli were labelled by juxtacellular labelling by neurobiotin. Whole mounts of the maculae showed that some vestibular afferents activated by both ACS and BCV originate from the utricular macula and some from the saccular macula - there is no "afferent specificity" by one sense organ for ACS and the other for BCV - instead some afferents from both sense organs have sensitive responses to both stimuli. The clinical implication of this result is that differential evaluation of the functional status of the utricular and saccular maculae cannot rely on stimulus type (ACS vs BCV), however the differential motor projections of the utricular and saccular maculae allow for differential evaluation of each sense organ.

  19. Irregular primary otolith afferents from the guinea pig utricular and saccular maculae respond to both bone conducted vibration and to air conducted sound.

    PubMed

    Curthoys, Ian S; Vulovic, Vedran; Sokolic, Ljiljana; Pogson, Jacob; Burgess, Ann M

    2012-10-01

    This study sought to identify in guinea pig the peripheral sense organ of origin of otolith irregular primary vestibular afferent neurons having a very sensitive response to both air-conducted sound (ACS) and bone-conducted vibration (BCV). Neurons responding to both types of stimuli were labelled by juxtacellular labelling by neurobiotin. Whole mounts of the maculae showed that some vestibular afferents activated by both ACS and BCV originate from the utricular macula and some from the saccular macula - there is no "afferent specificity" by one sense organ for ACS and the other for BCV - instead some afferents from both sense organs have sensitive responses to both stimuli. The clinical implication of this result is that differential evaluation of the functional status of the utricular and saccular maculae cannot rely on stimulus type (ACS vs BCV), however the differential motor projections of the utricular and saccular maculae allow for differential evaluation of each sense organ. PMID:22814095

  20. Neuropeptidergic Signaling and Active Feeding State Inhibit Nociception in Caenorhabditis elegans

    PubMed Central

    Ezcurra, Marina; Walker, Denise S.; Beets, Isabel; Swoboda, Peter

    2016-01-01

    Food availability and nutritional status are important cues affecting behavioral states. Here we report that, in Caenorhabditis elegans, a cascade of dopamine and neuropeptide signaling acts to inhibit nociception in food-poor environments. In the absence of food, animals show decreased sensitivity and increased adaptation to soluble repellents sensed by the polymodal ASH nociceptors. The effects of food on adaptation are affected by dopamine and neuropeptide signaling; dopamine acts via the DOP-1 receptor to decrease adaptation on food, whereas the neuropeptide receptors NPR-1 and NPR-2 act to increase adaptation off food. NPR-1 and NPR-2 function cell autonomously in the ASH neurons to increase adaptation off food, whereas the DOP-1 receptor controls neuropeptide release from interneurons that modulate ASH activity indirectly. These results indicate that feeding state modulates nociception through the interaction of monoamine and neuropeptide signaling pathways. PMID:26985027

  1. Neuropeptidergic Signaling and Active Feeding State Inhibit Nociception in Caenorhabditis elegans.

    PubMed

    Ezcurra, Marina; Walker, Denise S; Beets, Isabel; Swoboda, Peter; Schafer, William R

    2016-03-16

    Food availability and nutritional status are important cues affecting behavioral states. Here we report that, in Caenorhabditis elegans, a cascade of dopamine and neuropeptide signaling acts to inhibit nociception in food-poor environments. In the absence of food, animals show decreased sensitivity and increased adaptation to soluble repellents sensed by the polymodal ASH nociceptors. The effects of food on adaptation are affected by dopamine and neuropeptide signaling; dopamine acts via the DOP-1 receptor to decrease adaptation on food, whereas the neuropeptide receptors NPR-1 and NPR-2 act to increase adaptation off food. NPR-1 and NPR-2 function cell autonomously in the ASH neurons to increase adaptation off food, whereas the DOP-1 receptor controls neuropeptide release from interneurons that modulate ASH activity indirectly. These results indicate that feeding state modulates nociception through the interaction of monoamine and neuropeptide signaling pathways.

  2. Experimental evidence for alleviating nociceptive hypersensitivity by single application of capsaicin.

    PubMed

    Ma, Xiao-Li; Zhang, Fang-Xiong; Dong, Fei; Bao, Lan; Zhang, Xu

    2015-04-22

    The single application of high-concentration of capsaicin has been used as an analgesic therapy of persistent pain. However, its effectiveness and underlying mechanisms remain to be further evaluated with experimental approaches. The present study provided evidence showing that the single application of capsaicin dose-dependently alleviated nociceptive hypersensitivity, and reduced the action potential firing in small-diameter neurons of the dorsal root ganglia (DRG) in rats and mice. Pre-treatment with capsaicin reduced formalin-induced acute nocifensive behavior after a brief hyperalgesia in rats and mice. The inhibitory effects of capsaicin were calcium-dependent, and mediated by the capsaicin receptor (transient receptor potential vanilloid type-1). We further found that capsaicin exerted inhibitory effects on the persistent nociceptive hypersensitivity induced by peripheral inflammation and nerve injury. Thus, these results support the long-lasting and inhibitory effects of topical capsaicin on persistent pain, and the clinic use of capsaicin as a pain therapy.

  3. Neuropeptidergic Signaling and Active Feeding State Inhibit Nociception in Caenorhabditis elegans.

    PubMed

    Ezcurra, Marina; Walker, Denise S; Beets, Isabel; Swoboda, Peter; Schafer, William R

    2016-03-16

    Food availability and nutritional status are important cues affecting behavioral states. Here we report that, in Caenorhabditis elegans, a cascade of dopamine and neuropeptide signaling acts to inhibit nociception in food-poor environments. In the absence of food, animals show decreased sensitivity and increased adaptation to soluble repellents sensed by the polymodal ASH nociceptors. The effects of food on adaptation are affected by dopamine and neuropeptide signaling; dopamine acts via the DOP-1 receptor to decrease adaptation on food, whereas the neuropeptide receptors NPR-1 and NPR-2 act to increase adaptation off food. NPR-1 and NPR-2 function cell autonomously in the ASH neurons to increase adaptation off food, whereas the DOP-1 receptor controls neuropeptide release from interneurons that modulate ASH activity indirectly. These results indicate that feeding state modulates nociception through the interaction of monoamine and neuropeptide signaling pathways. PMID:26985027

  4. Gravity stress elevates the nociceptive threshold level with immunohistochemical changes in the rat brain

    NASA Astrophysics Data System (ADS)

    Kumei, Yasuhiro; Shimokawa, Reiko; Kimoto, Mari; Kawauchi, Yasuko; Shimokawa, Hitoyata; Makita, Koshi; Ohya, Keiichi; Toda, Kazuo

    2001-08-01

    Young Wistar male rats were exposed to 2G hypergravity by continuous centrifugation for 15 minutes. The nociceptive threshold was measured by using the von Frey type filament on the rat skin surfaces after hypergravity exposure. Following the hypergravity exposure, rats were sacrificed with anesthesia, then perfused and fixed for immunohistochemical examination. The 2G hypergravity elevated the nociceptive threshold up to 2-fold and induced analgesic effects on rats that remained for 2 hours after termination of centrifugation. Expression of Fos-immunoreactive proteins was prominently induced by 2G hypergravity in the arcuate nucleas and the paraventricular nucleus of the hypothalamus. The 15-minute flash exposure to 2G hypergravity induced pain suppression in rats, which might be attributed to change of neuronal activity in rat hypothalamus.

  5. Trigeminal nociceptive transmission in migraineurs predicts migraine attacks.

    PubMed

    Stankewitz, Anne; Aderjan, David; Eippert, Falk; May, Arne

    2011-02-01

    Several lines of evidence suggest a major role of the trigeminovascular system in the pathogenesis of migraine. Using functional magnetic resonance imaging (fMRI), we compared brain responses during trigeminal pain processing in migraine patients with those of healthy control subjects. The main finding is that the activity of the spinal trigeminal nuclei in response to nociceptive stimulation showed a cycling behavior over the migraine interval. Although interictal (i.e., outside of attack) migraine patients revealed lower activations in the spinal trigeminal nuclei compared with controls, preictal (i.e., shortly before attack) patients showed activity similar to controls, which demonstrates that the trigeminal activation level increases over the pain-free migraine interval. Remarkably, the distance to the next headache attack was predictable by the height of the signal intensities in the spinal nuclei. Migraine patients scanned during the acute spontaneous migraine attack showed significantly lower signal intensities in the trigeminal nuclei compared with controls, demonstrating activity levels similar to interictal patients. Additionally we found-for the first time using fMRI-that migraineurs showed a significant increase in activation of dorsal parts of the pons, previously coined "migraine generator." Unlike the dorsal pons activation usually linked to migraine attacks, the gradient-like activity following nociceptive stimulation in the spinal trigeminal neurons likely reflects a raise in susceptibility of the brain to generate the next attack, as these areas increase their activity long before headache starts. This oscillating behavior may be a key player in the generation of migraine headache, whereas attack-specific pons activations are most likely a secondary event.

  6. Interganglionic segregation of distinct vagal afferent fibre phenotypes in guinea-pig airways.

    PubMed Central

    Ricco, M M; Kummer, W; Biglari, B; Myers, A C; Undem, B J

    1996-01-01

    1. The present study addressed the hypothesis that jugular and nodose vagal ganglia contain the somata of functionally and anatomically distinct airway afferent fibres. 2. Anatomical investigations were performed by injecting guinea-pig airways with the neuronal tracer Fast Blue. The animals were killed 7 days later, and the ganglia were removed and immunostained with antisera against substance P (SP) and neurofilament protein (NF). In the nodose ganglion, NF-immunoreactive neurones accounted for about 98% of the Fast Blue-labelled cells while in the jugular ganglion they accounted for approximately 48%. SP and NF immunoreactivity was never (n = 100) observed in the same cell suggesting that the antisera labelled distinct populations. 3. Electrophysiological investigations were performed using an in vitro guinea-pig tracheal and bronchial preparation with intact afferent vagal pathways, including nodose and jugular ganglia. Action potentials arriving from single airway afferent nerve endings were monitored extracellularly using a glass microelectrode positioned near neuronal cell bodies in either ganglion. 4. The nodose ganglion contained the somata of mainly fast-conducting tracheal A delta fibres whereas the jugular ganglion contained equal numbers of C fibre and A delta fibre tracheal afferent somata. The nodose A delta neurones adapted rapidly to mechanical stimulation, had relatively low mechanical thresholds, were not activated by capsaicin and adapted rapidly to a hyperosmotic stimulus. By contrast, jugular A delta and C fibres adapted slowly to mechanical stimulation, were often activated by capsaicin, had higher mechanical thresholds and displayed a slow adaptation to a hyperosmotic stimulus. 5. The anatomical, physiological and pharmacological data provide evidence to support the contention that the vagal ganglionic source of the fibre supplying the airways ultimately dictates its neurochemical and physiological phenotype. Images Figure 1 PMID:8910234

  7. Optogenetics reveal delayed afferent synaptogenesis on grafted human-induced pluripotent stem cell-derived neural progenitors.

    PubMed

    Avaliani, Natalia; Sørensen, Andreas Toft; Ledri, Marco; Bengzon, Johan; Koch, Philipp; Brüstle, Oliver; Deisseroth, Karl; Andersson, My; Kokaia, Merab

    2014-12-01

    Reprogramming of somatic cells into pluripotency stem cell state has opened new opportunities in cell replacement therapy and disease modeling in a number of neurological disorders. It still remains unknown, however, to what degree the grafted human-induced pluripotent stem cells (hiPSCs) differentiate into a functional neuronal phenotype and if they integrate into the host circuitry. Here, we present a detailed characterization of the functional properties and synaptic integration of hiPSC-derived neurons grafted in an in vitro model of hyperexcitable epileptic tissue, namely organotypic hippocampal slice cultures (OHSCs), and in adult rats in vivo. The hiPSCs were first differentiated into long-term self-renewing neuroepithelial stem (lt-NES) cells, which are known to form primarily GABAergic neurons. When differentiated in OHSCs for 6 weeks, lt-NES cell-derived neurons displayed neuronal properties such as tetrodotoxin-sensitive sodium currents and action potentials (APs), as well as both spontaneous and evoked postsynaptic currents, indicating functional afferent synaptic inputs. The grafted cells had a distinct electrophysiological profile compared to host cells in the OHSCs with higher input resistance, lower resting membrane potential, and APs with lower amplitude and longer duration. To investigate the origin of synaptic afferents to the grafted lt-NES cell-derived neurons, the host neurons were transduced with Channelrhodopsin-2 (ChR2) and optogenetically activated by blue light. Simultaneous recordings of synaptic currents in grafted lt-NES cell-derived neurons using whole-cell patch-clamp technique at 6 weeks after grafting revealed limited synaptic connections from host neurons. Longer differentiation times, up to 24 weeks after grafting in vivo, revealed more mature intrinsic properties and extensive synaptic afferents from host neurons to the lt-NES cell-derived neurons, suggesting that these cells require extended time for differentiation

  8. Short latency activation of pyramidal tract cells by Group I afferent volleys in the cat

    PubMed Central

    Swett, John E.; Bourassa, Charles M.

    1967-01-01

    1. The contralateral bulbar pyramids were explored with low impedance micro-electrodes in cats anaesthetized with chloralose to reveal the effect of Group I afferent volleys (deep radial nerve of the forelimb) on pyramidal tract (Pt) cells. 2. Low rate (0·5/sec) stimulation of Group I afferents produced small responses (5-30 μV) in the bulbar pyramid which could be detected only with response averaging methods. The responses appeared with an initial latency of 7·0-11·2 msec and reached peak amplitude in 15·7 msec (mean latency). The pyramidal tract origin of the potential was demonstrated by its depression at stimulus rates above 1-2 sec and its disappearance at rates above 4/sec. 3. Recordings of neurones in the Group I cortical projection zone of the posterior sigmoid gyrus revealed that several types of cells, including Pt cells, were activated by Group I afferent volleys. 4. Pt cells responding to Group I afferent volleys frequently received convergent actions from low threshold cutaneous nerve volleys. 5. Averaged response recordings from electrodes positioned in the medial portions of the lateral funiculus of the spinal cord at the level of C2, revealed a response to Group I afferent volleys as early as 7·4 msec which possessed the same characteristics as the relayed response to Group I in the bulbar pyramids. Some Pt cells, activated by Group I volleys orthodromically, could also be antidromically activated by stimulation of the recording site in C2. 6. It was concluded that group I afferent volleys can influence, after short latencies, Pt and non-Pt cells and that some of these Pt cells gave rise to axons incorporated in the corticospinal tract. PMID:16992239

  9. Changes in nociceptive reflex facilitation during carrageenan-induced arthritis.

    PubMed

    Herrero, J F; Cervero, F

    1996-04-22

    Facilitation of neuronal responses induced by repetitive electrical stimulation of C-fibres (wind-up) is thought to be a substrate of hyperalgesia. There is little information on how these responses are in turn modified during hyperalgesia, and the extent to which hyperalgesic states also induce a facilitation of the neuronal responses mediated by A-fibres. The current study was undertaken in order to evaluate the effects of peripheral inflammation and stimulus presentation on the facilitation of nociceptive reflexes. Flexor reflexes, recorded as single motor units, were evoked in rats by cycles of low and high frequency electrical stimulation with pulse durations of 0.2, 0.5 and 2 ms. Responses were studied in control and inflammatory conditions, using the carrageenan-induced mono-arthritis model. The results show that the facilitation of late (C-fibre mediated) responses was proportional to the pulse duration of stimulation, as well as to the stimulation frequency. Facilitation was always higher when animals were subjected to inflammation. In inflammatory conditions, facilitation of reflexes was observed not only for late (C-fibre mediated) but also for early (A-fibre mediated) reflex responses. However, the facilitation of these early responses was not proportional to the intensity of stimulation. Thus, in arthritic animals, late (C-fibre mediated) flexion reflexes elicited from the skin, are facilitated and early (A-fibre mediated) reflexes are not only facilitated but, in addition, show a novel wind-up phenomenon.

  10. Afferent Inputs to Neurotransmitter-Defined Cell Types in the Ventral Tegmental Area.

    PubMed

    Faget, Lauren; Osakada, Fumitaka; Duan, Jinyi; Ressler, Reed; Johnson, Alexander B; Proudfoot, James A; Yoo, Ji Hoon; Callaway, Edward M; Hnasko, Thomas S

    2016-06-21

    The ventral tegmental area (VTA) plays a central role in the neural circuit control of behavioral reinforcement. Though considered a dopaminergic nucleus, the VTA contains substantial heterogeneity in neurotransmitter type, containing also GABA and glutamate neurons. Here, we used a combinatorial viral approach to transsynaptically label afferents to defined VTA dopamine, GABA, or glutamate neurons. Surprisingly, we find that these populations received qualitatively similar inputs, with dominant and comparable projections from the lateral hypothalamus, raphe, and ventral pallidum. However, notable differences were observed, with striatal regions and globus pallidus providing a greater share of input to VTA dopamine neurons, cortical input preferentially on to glutamate neurons, and GABA neurons receiving proportionally more input from the lateral habenula and laterodorsal tegmental nucleus. By comparing inputs to each of the transmitter-defined VTA cell types, this study sheds important light on the systems-level organization of diverse inputs to VTA.

  11. The roles of sodium channels in nociception: implications for mechanisms of pain

    PubMed Central

    Cummins, Theodore R; Sheets, Patrick L; Waxman, Stephen G

    2007-01-01

    Understanding the role of voltage-gated sodium channels in nociception may provide important insights into pain mechanisms. Voltage-gated sodium channels are critically important for electrogenesis and nerve impulse conduction, and a target for important clinically relevant analgesics such as lidocaine. Furthermore, within the last decade studies have shown that certain sodium channel isoforms are predominantly expressed in peripheral sensory neurons associated with pain sensation, and that the expression and functional properties of voltage-gated sodium channels in peripheral sensory neurons can be dynamically regulated following axonal injury or peripheral inflammation. These data suggest that specific voltage-gated sodium channels may play crucial roles in nociception. Experiments with transgenic mice lines have clearly implicated Nav1.7, Nav1.8 and Nav1.9 in inflammatory, and possibly neuropathic, pain. However the most convincing and perhaps most exciting results regarding the role of voltage-gated sodium channels has come out recently from studies on human inherited disorders of nociception. Point mutations in Nav1.7 have been identified in patients with two distinct autosomal dominant severe chronic pain syndromes. Electrophysiological experiments indicate that these pain-associated mutations cause small yet significant changes in the gating properties of voltage-gated sodium channels that are likely to contribute substantially to the development of chronic pain. Equally exciting, a recent study has indicated that recessive mutations in Nav1.7 that eliminate functional current can result in an apparent complete, and possibly specific, indifference to pain in humans, suggesting that isoform specific blockers could be very effective in treating pain. In this review we will examine what is known about the roles of voltage-gated sodium channels in nociception. PMID:17766042

  12. Psychoactive bacteria Lactobacillus rhamnosus (JB-1) elicits rapid frequency facilitation in vagal afferents.

    PubMed

    Perez-Burgos, Azucena; Wang, Bingxian; Mao, Yu-Kang; Mistry, Bhavik; McVey Neufeld, Karen-Anne; Bienenstock, John; Kunze, Wolfgang

    2013-01-15

    Mounting evidence supports the influence of the gut microbiome on the local enteric nervous system and its effects on brain chemistry and relevant behavior. Vagal afferents are involved in some of these effects. We previously showed that ingestion of the probiotic bacterium Lactobacillus rhamnosus (JB-1) caused extensive neurochemical changes in the brain and behavior that were abrogated by prior vagotomy. Because information can be transmitted to the brain via primary afferents encoded as neuronal spike trains, our goal was to record those induced by JB-1 in vagal afferents in the mesenteric nerve bundle and thus determine the nature of the signals sent to the brain. Male Swiss Webster mice jejunal segments were cannulated ex vivo, and serosal and luminal compartments were perfused separately. Bacteria were added intraluminally. We found no evidence for translocation of labeled bacteria across the epithelium during the experiment. We recorded extracellular multi- and single-unit neuronal activity with glass suction pipettes. Within minutes of application, JB-1 increased the constitutive single- and multiunit firing rate of the mesenteric nerve bundle, but Lactobacillus salivarius (a negative control) or media alone were ineffective. JB-1 significantly augmented multiunit discharge responses to an intraluminal distension pressure of 31 hPa. Prior subdiaphragmatic vagotomy abolished all of the JB-1-evoked effects. This detailed exploration of the neuronal spike firing that encodes behavioral signaling to the brain may be useful to identify effective psychoactive bacteria and thereby offer an alternative new perspective in the field of psychiatry and comorbid conditions.

  13. Histamine (H3) receptors modulate the excitatory amino acid receptor response of the vestibular afferents.

    PubMed

    Chávez, Hortencia; Vega, Rosario; Soto, Enrique

    2005-12-01

    Although the effectiveness of histamine-related drugs in the treatment of peripheral and central vestibular disorders may be explained by their action on the vestibular nuclei, it has also been shown that antivertigo effects can take place at the peripheral level. In this work, we examined the actions of H3 histaminergic agonists and antagonists on the afferent neuron electrical discharge in the isolated inner ear of the axolotl. Our results indicate that H3 antagonists such as thioperamide, clobenpropit, and betahistine (BH) decreased the electrical discharge of afferent neurons by interfering with the postsynaptic response to excitatory amino acid agonists. These results lend further support to the idea that the antivertigo action of histamine-related drugs may be caused, at least in part, by a decrease in the sensory input from the vestibular endorgans. The present data show that the inhibitory action of the afferent neurons discharge previously described for BH is not restricted to this molecule but is also shared by other H3 antagonists.

  14. Activation of intestinal spinal afferent endings by changes in intra-mesenteric arterial pressure

    PubMed Central

    Humenick, A; Chen, B N; Wiklendt, L; Spencer, N J; Zagorodnyuk, V P; Dinning, P G; Costa, M; Brookes, S J H

    2015-01-01

    Spinal sensory neurons innervate many large blood vessels throughout the body. Their activation causes the hallmarks of neurogenic inflammation: vasodilatation through the release of the neuropeptide calcitonin gene-related peptide and plasma extravasation via tachykinins. The same vasodilator afferent neurons show mechanical sensitivity, responding to crushing, compression or axial stretch of blood vessels – responses which activate pain pathways and which can be modified by cell damage and inflammation. In the present study, we tested whether spinal afferent axons ending on branching mesenteric arteries (‘vascular afferents’) are sensitive to increased intravascular pressure. From a holding pressure of 5 mmHg, distension to 20, 40, 60 or 80 mmHg caused graded, slowly adapting increases in firing of vascular afferents. Many of the same afferent units showed responses to axial stretch, which summed with responses evoked by raised pressure. Many vascular afferents were also sensitive to raised temperature, capsaicin and/or local compression with von Frey hairs. However, responses to raised pressure in single, isolated vessels were negligible, suggesting that the adequate stimulus is distortion of the arterial arcade rather than distension per se. Increasing arterial pressure often triggered peristaltic contractions in the neighbouring segment of intestine, an effect that was mimicked by acute exposure to capsaicin (1 μm) and which was reduced after desensitisation to capsaicin. These results indicate that sensory fibres with perivascular endings are sensitive to pressure-induced distortion of branched arteries, in addition to compression and axial stretch, and that they contribute functional inputs to enteric motor circuits. PMID:26010893

  15. Isolation of TRPV1 independent mechanisms of spontaneous and asynchronous glutamate release at primary afferent to NTS synapses

    PubMed Central

    Fenwick, Axel J.; Wu, Shaw-wen; Peters, James H.

    2014-01-01

    Cranial visceral afferents contained within the solitary tract (ST) contact second-order neurons in the nucleus of the solitary tract (NTS) and release the excitatory amino acid glutamate via three distinct exocytosis pathways; synchronous, asynchronous, and spontaneous release. The presence of TRPV1 in the central terminals of a majority of ST afferents conveys activity-dependent asynchronous glutamate release and provides a temperature sensitive calcium conductance which largely determines the rate of spontaneous vesicle fusion. TRPV1 is present in unmyelinated C-fiber afferents and these facilitated forms of glutamate release may underlie the relative strength of C-fibers in activating autonomic reflex pathways. However, pharmacological blockade of TRPV1 signaling eliminates only ~50% of the asynchronous profile and attenuates the temperature sensitivity of spontaneous release indicating additional thermosensitive calcium influx pathways may exist which mediate these forms of vesicle release. In the present study we isolate the contribution of TRPV1 independent forms of glutamate release at ST-NTS synapses. We found ST afferent innervation at NTS neurons and synchronous vesicle release from TRPV1 KO mice was not different to control animals; however, only half of TRPV1 KO ST afferents completely lacked asynchronous glutamate release. Further, temperature driven spontaneous rates of vesicle release were not different from 33 to 37°C between control and TRPV1 KO afferents. These findings suggest additional temperature dependent mechanisms controlling asynchronous and thermosensitive spontaneous release at physiological temperatures, possibly mediated by additional thermosensitive TRP channels in primary afferent terminals. PMID:24550768

  16. TRPV1 and TRPA1 Mediate Peripheral Nitric Oxide-Induced Nociception in Mice

    PubMed Central

    Miyamoto, Takashi; Dubin, Adrienne E.; Petrus, Matt J.; Patapoutian, Ardem

    2009-01-01

    Nitric oxide (NO) can induce acute pain in humans and plays an important role in pain sensitization caused by inflammation and injury in animal models. There is evidence that NO acts both in the central nervous system via a cyclic GMP pathway and in the periphery on sensory neurons through unknown mechanisms. It has recently been suggested that TRPV1 and TRPA1, two polymodal ion channels that sense noxious stimuli impinging on peripheral nociceptors, are activated by NO in heterologous systems. Here, we investigate the relevance of this activation. We demonstrate that NO donors directly activate TRPV1 and TRPA1 in isolated inside-out patch recordings. Cultured primary sensory neurons display both TRPV1- and TRPA1-dependent responses to NO donors. BH4, an essential co-factor for NO production, causes activation of a subset of DRG neurons as assayed by calcium imaging, and this activation is at least partly dependent on nitric oxide synthase activity. We show that BH4-induced calcium influx is ablated in DRG neurons from TRPA1/TRPV1 double knockout mice, suggesting that production of endogenous levels of NO can activate these ion channels. In behavioral assays, peripheral NO-induced nociception is compromised when TRPV1 and TRPA1 are both ablated. These results provide genetic evidence that the peripheral nociceptive action of NO is mediated by both TRPV1 and TRPA1. PMID:19893614

  17. Changes in the nitric oxide system in the shore crab Hemigrapsus sanguineus (Crustacea, Decapoda) CNS induced by a nociceptive stimulus.

    PubMed

    Dyuizen, Inessa V; Kotsyuba, Elena P; Lamash, Nina E

    2012-08-01

    Using NADPH-diaphorase (NADPH-d) histochemistry, inducible nitric oxide synthase (iNOS)-immunohistochemistry and immunoblotting, we characterized the nitric oxide (NO)-producing neurons in the brain and thoracic ganglion of a shore crab subjected to a nociceptive chemical stimulus. Formalin injection into the cheliped evoked specific nociceptive behavior and neurochemical responses in the brain and thoracic ganglion of experimental animals. Within 5-10 min of injury, the NADPH-d activity increased mainly in the neuropils of the olfactory lobes and the lateral antenna I neuropil on the side of injury. Later, the noxious-induced expression of NADPH-d and iNOS was detected in neurons of the brain, as well as in segmental motoneurons and interneurons of the thoracic ganglion. Western blotting analysis showed that an iNOS antiserum recognized a band at 120 kDa, in agreement with the expected molecular mass of the protein. The increase in nitrergic activity induced by nociceptive stimulation suggests that the NO signaling system may modulate nociceptive behavior in crabs.

  18. Decoding of the spike timing of primary afferents during voluntary arm movements in monkeys

    PubMed Central

    Umeda, Tatsuya; Watanabe, Hidenori; Sato, Masa-aki; Kawato, Mitsuo; Isa, Tadashi; Nishimura, Yukio

    2014-01-01

    Understanding the mechanisms of encoding forelimb kinematics in the activity of peripheral afferents is essential for developing a somatosensory neuroprosthesis. To investigate whether the spike timing of dorsal root ganglion (DRG) neurons could be estimated from the forelimb kinematics of behaving monkeys, we implanted two multi-electrode arrays chronically in the DRGs at the level of the cervical segments in two monkeys. Neuronal activity during voluntary reach-to-grasp movements were recorded simultaneously with the trajectories of hand/arm movements, which were tracked in three-dimensional space using a motion capture system. Sixteen and 13 neurons, including muscle spindles, skin receptors, and tendon organ afferents, were recorded in the two monkeys, respectively. We were able to reconstruct forelimb joint kinematics from the temporal firing pattern of a subset of DRG neurons using sparse linear regression (SLiR) analysis, suggesting that DRG neuronal ensembles encoded information about joint kinematics. Furthermore, we estimated the spike timing of the DRG neuronal ensembles from joint kinematics using an integrate-and-fire model (IF) incorporating the SLiR algorithm. The temporal change of firing frequency of a subpopulation of neurons was reconstructed precisely from forelimb kinematics using the SLiR. The estimated firing pattern of the DRG neuronal ensembles encoded forelimb joint angles and velocities as precisely as the originally recorded neuronal activity. These results suggest that a simple model can be used to generate an accurate estimate of the spike timing of DRG neuronal ensembles from forelimb joint kinematics, and is useful for designing a proprioceptive decoder in a brain machine interface. PMID:24860416

  19. Convergence of sensory inputs upon projection neurons of somatosensory cortex.

    PubMed

    Zarzecki, P; Wiggin, D M

    1982-01-01

    Cortico-cortical neurons and pyramidal tract neurons of the cat were tested for convergent inputs from forelimb afferents. Neurons were recorded in cortical areas 1, 2, and 3a. Consideration was given to both suprathreshold and subthreshold inputs evoked by electrical stimulation of forelimb nerves. Individual cortico-cortical neurons and also pyramidal tract neurons were characterized by convergence of multiple somatosensory inputs from different regions of skin, from several muscle groups, and between group I deep afferents and low threshold cutaneous afferents. Certain patterns of afferent input varied with cytoarchitectonic area. There was, however, no difference between area 3a and areas 1-2 in the incidence of cross-modality convergence in the form of input from cutaneous and also deep nerves. Many of the inputs were subthreshold. Arguments are presented that these inputs, though subthreshold, must be considered for a role in cortical information processing. The convergent nature of the sensory inputs is discussed in relation to the proposed specificities of cortical columns. The patterns of afferent inputs reaching cortico-cortical neurons seem to be appropriate for them to have a role in the formation of sensory fields of motor cortex neurons. PT neurons of somatosensory cortex have possible roles as modifiers of ascending sensory systems, however, the convergent input which these PT neurons receive argues against a simple relationship between the modality of peripheral stimuli influencing them and the modality of the ascending tract neurons under their descending control. PMID:7140889

  20. Relationships among metabolic homeostasis, diet, and peripheral afferent neuron biology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It is well-established that food intake behavior and energy balance are regulated by cross-talk between peripheral organ systems and the central nervous system (CNS), for instance through the actions of peripherally-derived leptin on hindbrain and hypothalamic loci. Diet- or obesity-associated dist...

  1. Proteinase-activated receptor-1 activation presynaptically enhances spontaneous glutamatergic excitatory transmission in adult rat substantia gelatinosa neurons.

    PubMed

    Fujita, T; Liu, T; Nakatsuka, T; Kumamoto, E

    2009-07-01

    Proteinase-activated receptors (PARs) have a unique activation mechanism in that a proteolytically exposed N-terminal region acts as a tethered ligand. A potential impact of PAR on sensory processing has not been fully examined yet. Here we report that synthetic peptides with sequences corresponding to PAR ligands enhance glutamatergic excitatory transmission in substantia gelatinosa (SG) neurons of adult rat spinal cord slices by using the whole cell patch-clamp technique. The frequency of spontaneous excitatory postsynaptic current (EPSC) was increased by PAR-1 agonist SFLLRN-NH2 (by 47% at 1 microM) with small increases by PAR-2 and -4 agonists (SLIGKV-NH2 and GYPGQV-OH, respectively; at >3 microM); there was no change in its amplitude or in holding current at -70 mV. The PAR-1 peptide action was inhibited by PAR-1 antagonist YFLLRNP-OH. TFLLR-NH2, an agonist which is more selective to PAR-1 than SFLLRN-NH2, dose-dependently increased spontaneous EPSC frequency (EC50=0.32 microM). A similar presynaptic effect was produced by PAR-1 activating proteinase thrombin in a manner sensitive to YFLLRNP-OH. The PAR-1 peptide action was resistant to tetrodotoxin and inhibited in Ca2+-free solution. Primary-afferent monosynaptically evoked EPSC amplitudes were unaffected by PAR-1 agonist. These results indicate that PAR-1 activation increases the spontaneous release of L-glutamate onto SG neurons from nerve terminals in a manner dependent on extracellular Ca2+. Considering that sensory processing within the SG plays a pivotal role in regulating nociceptive transmission to the spinal dorsal horn, the PAR-1-mediated glutamatergic transmission enhancement could be involved in a positive modulation of nociceptive transmission. PMID:19420120

  2. Patterns of saccular afferent innervation in sciaenids.

    PubMed

    Selckmann, G M; Ramcharitar, J

    2013-09-01

    In this study, saccular afferent arborization patterns in Atlantic croaker Micropogonias undulatus, red drum Sciaenops ocellatus and spot Leiostomus xanthurus were characterized. Leiostomus xanthurus showed the simplest configuration while M. undulatus displayed the most complex. In addition, hair-cell densities at sites sampled along the rostro-caudal axis of the saccular epithelia correlated with the observed patterns of arborization. PMID:23991887

  3. Compartmental modeling of rat macular primary afferents from three-dimensional reconstructions of transmission electron micrographs of serial sections.

    PubMed

    Chimento, T C; Doshay, D G; Ross, M D

    1994-05-01

    1. We cut serial sections through the medial part of the rat vestibular macula for transmission electron microscopic (TEM) examination, computer-assisted three-dimensional (3-D) reconstruction, and compartmental modeling. The ultrastructural research showed that many primary vestibular neurons have an unmyelinated segment, often branched, that extends between the heminode [putative site of the spike initiation zone (SIZ)] and the expanded terminal(s) (calyx, calyces). These segments, termed the neuron branches, and the calyces frequently have spinelike processes of various dimensions that morphologically are afferent, efferent, or reciprocal to other macular neural elements. The purpose of this research was to determine whether morphometric data obtained ultrastructurally were essential to compartmental models [i.e., they influenced action potential (AP) generation, latency, or amplitude] or whether afferent parts could be collapsed into more simple units without markedly affecting results. We used the compartmental modeling program NEURON for this research. 2. In the first set of simulations we studied the relative importance of small variations in process morphology on distant depolarization. A process was placed midway along an isolated piece of a passive neuron branch. The dimensions of the four processes corresponded to actual processes in the serial sections. A synapse, placed on the head of each process, was activated and depolarization was recorded at the end of the neuron branch. When we used 5 nS synaptic conductance, depolarization varied by 3 mV. In a systematic study over a representative range of stem dimensions, depolarization varied by 15.7 mV. Smaller conductances produced smaller effects. Increasing membrane resistivity from 5,000 to 50,000 omega cm2 had no significant effect. 3. In a second series of simulations, using whole primary afferents, we examined the combined effects of process location and afferent morphology on depolarization magnitude

  4. Role of primary afferents in the developmental regulation of motor axon synapse numbers on Renshaw cells.

    PubMed

    Siembab, Valerie C; Gomez-Perez, Laura; Rotterman, Travis M; Shneider, Neil A; Alvarez, Francisco J

    2016-06-15

    Motor function in mammalian species depends on the maturation of spinal circuits formed by a large variety of interneurons that regulate motoneuron firing and motor output. Interneuron activity is in turn modulated by the organization of their synaptic inputs, but the principles governing the development of specific synaptic architectures unique to each premotor interneuron are unknown. For example, Renshaw cells receive, at least in the neonate, convergent inputs from sensory afferents (likely Ia) and motor axons, raising the question of whether they interact during Renshaw cell development. In other well-studied neurons, such as Purkinje cells, heterosynaptic competition between inputs from different sources shapes synaptic organization. To examine the possibility that sensory afferents modulate synaptic maturation on developing Renshaw cells, we used three animal models in which afferent inputs in the ventral horn are dramatically reduced (ER81(-/-) knockout), weakened (Egr3(-/-) knockout), or strengthened (mlcNT3(+/-) transgenic). We demonstrate that increasing the strength of sensory inputs on Renshaw cells prevents their deselection and reduces motor axon synaptic density, and, in contrast, absent or diminished sensory afferent inputs correlate with increased densities of motor axons synapses. No effects were observed on other glutamatergic inputs. We conclude that the early strength of Ia synapses influences their maintenance or weakening during later development and that heterosynaptic influences from sensory synapses during early development regulates the density and organization of motor inputs on mature Renshaw cells. PMID:26660356

  5. Short-latency afferent inhibition determined by the sensory afferent volley.

    PubMed

    Bailey, Aaron Z; Asmussen, Michael J; Nelson, Aimee J

    2016-08-01

    Short-latency afferent inhibition (SAI) is characterized by the suppression of the transcranial magnetic stimulation motor evoked potential (MEP) by the cortical arrival of a somatosensory afferent volley. It remains unknown whether the magnitude of SAI reflects changes in the sensory afferent volley, similar to that observed for somatosensory evoked potentials (SEPs). The present study investigated stimulus-response relationships between sensory nerve action potentials (SNAPs), SAI, and SEPs and their interrelatedness. Experiment 1 (n = 23, age 23 ± 1.5 yr) investigated the stimulus-response profile for SEPs and SAI in the flexor carpi radialis muscle after stimulation of the mixed median nerve at the wrist using ∼25%, 50%, 75%, and 100% of the maximum SNAP and at 1.2× and 2.4× motor threshold (the latter equated to 100% of the maximum SNAP). Experiment 2 (n = 20, age 23.1 ± 2 yr) probed SEPs and SAI stimulus-response relationships after stimulation of the cutaneous digital nerve at ∼25%, 50%, 75%, and 100% of the maximum SNAP recorded at the elbow. Results indicate that, for both nerve types, SAI magnitude is dependent on the volume of the sensory afferent volley and ceases to increase once all afferent fibers within the nerve are recruited. Furthermore, for both nerve types, the magnitudes of SAI and SEPs are related such that an increase in excitation within somatosensory cortex is associated with an increase in the magnitude of afferent-induced MEP inhibition. PMID:27226451

  6. Tracing and 3-dimensional representation of the primary afferents from the moth ear.

    PubMed

    Zhemchuzhnikov, Mikhail K; Pfuhl, Gerit; Berg, Bente G

    2014-05-01

    Heliothine moths perceive acoustic information via two auditory sensory neurons only. Previous cobalt staining experiments have described the projection pattern of the two auditory neurons, called the A1 and the A2 cell, plus one additional neuron, the so-called B cell, up to the prothorax. We have obtained new and improved data about the projection pattern of the three sensory afferents by means of fluorescent staining experiments combined with scanning confocal microscopy. The present data show the fine structure of each sensory axon that arises from the moth ear and its ascending pathway relative to that of the others. In accordance with the previous data, the A2 auditory cell was found to extend projections in the pterothorax only. A novel finding is that terminal branches of the A2 cell cross the midline. The staining pattern of the two remaining neurons, the A1 and B cell, which project tightly together in the thoracic ganglia, differ somewhat from that previously described. As demonstrated here, one of these two neurons, the A1 cell, terminates in the prothoracic ganglion whereas the other, the B cell, projects further on via the cervical connectives to the subesophageal ganglion. The current data, therefore, indicate that none of the auditory afferents in the heliothine moth projects to the brain.

  7. Relationship between BDNF expression in major striatal afferents, striatum morphology and motor behavior in the R6/2 mouse model of Huntington's disease.

    PubMed

    Samadi, P; Boutet, A; Rymar, V V; Rawal, K; Maheux, J; Kvann, J-C; Tomaszewski, M; Beaubien, F; Cloutier, J F; Levesque, D; Sadikot, A F

    2013-02-01

    Patients with Huntington's disease (HD) and transgenic mouse models of HD show neuronal loss in the striatum as a major feature, which contributes to cognitive and motor manifestations. Reduced expression of the neurotrophin brain-derived neurotrophic factor (BDNF) in striatal afferents may play a role in neuronal loss. How progressive loss of BDNF expression in different cortical or subcortical afferents contributes to striatal atrophy and behavioral dysfunction in HD is not known, and may best be determined in animal models. We compared age-dependent alterations of BDNF mRNA expression in major striatal afferents from the cerebral cortex, thalamus and midbrain in the R6/2 transgenic mouse model of HD. Corresponding changes in striatal morphology were quantified using unbiased stereology. Changes in motor behavior were measured using an open field, grip strength monitor, limb clasping and a rotarod apparatus. BDNF expression in cortical limbic and midbrain striatal afferents is reduced by age 4 weeks, prior to onset of motor abnormalities. BDNF expression in motor cortex and thalamic afferents is reduced by 6 weeks, coinciding with early motor dysfunction and reduced striatum volume. BDNF loss in afferents progresses until death at 13-15 weeks, correlating with progressive striatal neuronal loss and motor abnormalities. Mutant huntingtin protein expression in R6/2 mice results in progressive loss of BDNF in both cortical and subcortical striatal afferents. BDNF loss in limbic and dopaminergic striatal inputs may contribute to cognitive/psychiatric dysfunction in HD. Subsequent BDNF loss in cortical motor and thalamic afferents may accelerate striatal degeneration, resulting in progressive involuntary movements. PMID:23006318

  8. Sensory neuron subpopulation-specific dysregulation of intracellular calcium in a rat model of chemotherapy-induced peripheral neuropathy

    PubMed Central

    Yilmaz, E; Gold, MS

    2015-01-01

    The purpose of the present study was to test the prediction that the unique manifestation of chemotherapeutic-induced peripheral neuropathy (CIPN) would be reflected in a specific pattern of changes in the regulation of the intracellular Ca2+ concentration ([Ca2+]i) in subpopulations of cutaneous neurons. To test this prediction, we characterized the pattern of changes in mechanical nociceptive threshold associated with paclitaxel administration (2 mg/kg, iv, every other day for four days), as well as the impact of target of innervation and paclitaxel treatment on the regulation of [Ca2+]i in subpopulations of putative nociceptive and non-nociceptive neurons. Neurons innervating the glabrous and hairy skin of the hindpaw as well as the thigh were identified with retrograde tracers, and fura-2 was used to assess changes in [Ca2+]i. Paclitaxel was associated with a persistent decrease in mechanical nociceptive threshold in response to stimuli applied to the glabrous skin of the hindpaw, but not the hairy skin of the hindpaw or the thigh. However, in both putative nociceptive and non-nociceptive neurons, resting [Ca2+]i was significantly lower in neurons innervating the thigh after treatment. The magnitude of the depolarization-evoked Ca2+ transient was also lower in putative non-nociceptive thigh neurons. More interestingly, while paclitaxel had no detectable influence on either resting or depolarization-evoked Ca2+ transients in putative non-nociceptive neurons, in putative nociceptive neurons there was a subpopulation- specific decrease in the duration of the evoked Ca2+ transient that was largely restricted to neurons innervating the glabrous skin. These results suggest that peripheral nerve length alone, does not account for the selective distribution of CIPN symptoms. Rather, they suggest the symptoms of CIPN reflect an interaction between the toxic actions of the therapeutic and unique properties of the neurons deleteriously impacted. PMID:25982563

  9. Cannabinoids Inhibit Acid-Sensing Ion Channel Currents in Rat Dorsal Root Ganglion Neurons

    PubMed Central

    Qiu, Chun-Yu; Cai, Qi; Zou, Pengcheng; Wu, Heming; Hu, Wang-Ping

    2012-01-01

    Local acidosis has been found in various pain-generating conditions such as inflammation and tissue injury. Cannabinoids exert a powerful inhibitory control over pain initiation via peripheral cognate receptors. However, the peripheral molecular targets responsible for the antinociceptive effects of cannabinoids are still poorly understood. Here, we have found that WIN55,212-2, a cannabinoid receptor agonist, inhibits the activity of native acid-sensing ion channels (ASICs) in rat dorsal root ganglion (DRG) neurons. WIN55,212-2 dose-dependently inhibited proton-gated currents mediated by ASICs. WIN55,212-2 shifted the proton concentration–response curve downwards, with an decrease of 48.6±3.7% in the maximum current response but with no significant change in the EC50 value. The inhibition of proton-gated current induced by WIN55,212-2 was almost completely blocked by the selective CB1 receptor antagonist AM 281, but not by the CB2 receptor antagonist AM630. Pretreatment of forskolin, an AC activator, and the addition of cAMP also reversed the inhibition of WIN55,212-2. Moreover, WIN55,212-2 altered acid-evoked excitability of rat DRG neurons and decreased the number of action potentials induced by acid stimuli. Finally, WIN55,212-2 attenuated nociceptive responses to injection of acetic acid in rats. These results suggest that WIN55,212-2 inhibits the activity of ASICs via CB1 receptor and cAMP dependent pathway in rat primary sensory neurons. Thus, cannabinoids can exert their analgesic action by interaction with ASICs in the primary afferent neurons, which was novel analgesic mechanism of cannabinoids. PMID:23029075

  10. Thermoreception and Nociception of the Skin: A Classic Paper of Bessou and Perl and Analyses of Thermal Sensitivity during a Student Laboratory Exercise

    ERIC Educational Resources Information Center

    Kuhtz-Buschbeck, Johann P.; Andresen, Wiebke; Gobel, Stephan; Gilster, Rene; Stick, Carsten

    2010-01-01

    About four decades ago, Perl and collaborators were the first ones who unambiguously identified specifically nociceptive neurons in the periphery. In their classic work, they recorded action potentials from single C-fibers of a cutaneous nerve in cats while applying carefully graded stimuli to the skin (Bessou P, Perl ER. Response of cutaneous…

  11. Synaptic Conversion of Chloride-Dependent Synapses in Spinal Nociceptive Circuits: Roles in Neuropathic Pain

    PubMed Central

    Cooper, Mark S.; Przebinda, Adam S.

    2011-01-01

    Electrophysiological conversion of chloride-dependent synapses from inhibitory to excitatory function, as a result of aberrant neuronal chloride homeostasis, is a known mechanism for the genesis of neuropathic pain. This paper examines theoretically how this type of synaptic conversion can disrupt circuit logic in spinal nociceptive circuits. First, a mathematical scaling factor is developed to represent local aberration in chloride electrochemical driving potential. Using this mathematical scaling factor, electrophysiological symbols are developed to represent the magnitude of synaptic conversion within nociceptive circuits. When inserted into a nociceptive circuit diagram, these symbols assist in understanding the generation of neuropathic pain associated with the collapse of transmembrane chloride gradients. A more generalized scaling factor is also derived to represent the interplay of chloride and bicarbonate driving potentials on the function of GABAergic and glycinergic synapses. These mathematical and symbolic representations of synaptic conversion help illustrate the critical role that anion driving potentials play in the transduction of pain. Using these representations, we discuss ramifications of glial-mediated synaptic conversion in the genesis, and treatment, of neuropathic pain. PMID:22110931

  12. Encoding of mechanical nociception differs in the adult and infant brain

    PubMed Central

    Fabrizi, Lorenzo; Verriotis, Madeleine; Williams, Gemma; Lee, Amy; Meek, Judith; Olhede, Sofia; Fitzgerald, Maria

    2016-01-01

    Newborn human infants display robust pain behaviour and specific cortical activity following noxious skin stimulation, but it is not known whether brain processing of nociceptive information differs in infants and adults. Imaging studies have emphasised the overlap between infant and adult brain connectome architecture, but electrophysiological analysis of infant brain nociceptive networks can provide further understanding of the functional postnatal development of pain perception. Here we hypothesise that the human infant brain encodes noxious information with different neuronal patterns compared to adults. To test this we compared EEG responses to the same time-locked noxious skin lance in infants aged 0–19 days (n = 18, clinically required) and adults aged 23–48 years (n = 21). Time-frequency analysis revealed that while some features of adult nociceptive network activity are present in infants at longer latencies, including beta-gamma oscillations, infants display a distinct, long latency, noxious evoked 18-fold energy increase in the fast delta band (2–4 Hz) that is absent in adults. The differences in activity between infants and adults have a widespread topographic distribution across the brain. These data support our hypothesis and indicate important postnatal changes in the encoding of mechanical pain in the human brain. PMID:27345331

  13. A pro-nociceptive phenotype unmasked in mice lacking fatty-acid amide hydrolase

    PubMed Central

    Carey, Lawrence M; Slivicki, Richard A; Leishman, Emma; Cornett, Ben; Mackie, Ken; Bradshaw, Heather

    2016-01-01

    Fatty-acid amide hydrolase (FAAH) is the major enzyme responsible for degradation of anandamide, an endocannabinoid. Pharmacological inhibition or genetic deletion of FAAH (FAAH KO) produces antinociception in preclinical pain models that is largely attributed to anandamide-induced activation of cannabinoid receptors. However, FAAH metabolizes a wide range of structurally related, biologically active lipid signaling molecules whose functions remain largely unknown. Some of these endogenous lipids, including anandamide itself, may exert pro-nociceptive effects under certain conditions. In our study, FAAH KO mice exhibited a characteristic analgesic phenotype in the tail flick test and in both formalin and carrageenan models of inflammatory nociception. Nonetheless, intradermal injection of the transient receptor potential channel V1 (TRPV1) agonist capsaicin increased nocifensive behavior as well as mechanical and heat hypersensitivity in FAAH KO relative to wild-type mice. This pro-nociceptive phenotype was accompanied by increases in capsaicin-evoked Fos-like immunoreactive (FLI) cells in spinal dorsal horn regions implicated in nociceptive processing and was attenuated by CB1 (AM251) and TRPV1 (AMG9810) antagonists. When central sensitization was established, FAAH KO mice displayed elevated levels of anandamide, other fatty-acid amides, and endogenous TRPV1 agonists in both paw skin and lumbar spinal cord relative to wild-type mice. Capsaicin decreased spinal cord 2-AG levels and increased arachidonic acid and prostaglandin E2 levels in both spinal cord and paw skin irrespective of genotype. Our studies identify a previously unrecognized pro-nociceptive phenotype in FAAH KO mice that was unmasked by capsaicin challenge. The heightened nociceptive response was mediated by CB1 and TRPV1 receptors and accompanied by enhanced spinal neuronal activation. Moreover, genetic deletion of FAAH has a profound impact on the peripheral and central lipidome. Thus, genetic

  14. Role of spinal metabotropic glutamate receptor 5 in pudendal inhibition of the nociceptive bladder reflex in cats.

    PubMed

    Reese, Jeremy N; Rogers, Marc J; Xiao, Zhiying; Shen, Bing; Wang, Jicheng; Schwen, Zeyad; Roppolo, James R; de Groat, William C; Tai, Changfeng

    2015-04-15

    This study examined the role of spinal metabotropic glutamate receptor 5 (mGluR5) in the nociceptive C-fiber afferent-mediated spinal bladder reflex and in the inhibtion of this reflex by pudendal nerve stimulation (PNS). In α-chloralose-anesthetized cats after spinal cord transection at the T9/T10 level, intravesical infusion of 0.25% acetic acid irritated the bladder, activated nociceptive C-fiber afferents, and induced spinal reflex bladder contractions of low amplitude (<50 cmH2O) and short duration (<20 s) at a smaller bladder capacity ∼80% of saline control capacity. PNS significantly (P < 0.01) increased bladder capacity from 85.5 ± 10.1 to 137.3 ± 14.1 or 148.2 ± 11.2% at 2T or 4T stimulation, respectively, where T is the threshold intensity for PNS to induce anal twitch. MTEP {3-[(2-methyl-4-thiazolyl)ethynyl]pyridine; 3 mg/kg iv, a selective mGluR5 antagonist} completely removed the PNS inhibition and significantly (P < 0.05) increased bladder capacity from 71.8 ± 9.9 to 94.0 ± 13.9% of saline control, but it did not change the bladder contraction amplitude. After propranolol (3 mg/kg iv, a β1/β2-adrenergic receptor antagonist) treatment, PNS inhibition remained but MTEP significantly (P < 0.05) reduced the bladder contraction amplitude from 18.6 ± 2.1 to 6.6 ± 1.2 cmH2O and eliminated PNS inhibition. At the end of experiments, hexamethonium (10 mg/kg iv, a ganglionic blocker) significantly (P < 0.05) reduced the bladder contraction amplitude from 20.9 ± 3.2 to 8.1 ± 1.5 cmH2O on average demonstrating that spinal reflexes were responsible for a major component of the contractions. This study shows that spinal mGluR5 plays an important role in the nociceptive C-fiber afferent-mediated spinal bladder reflex and in pudendal inhibition of this spinal reflex.

  15. Role of spinal metabotropic glutamate receptor 5 in pudendal inhibition of the nociceptive bladder reflex in cats.

    PubMed

    Reese, Jeremy N; Rogers, Marc J; Xiao, Zhiying; Shen, Bing; Wang, Jicheng; Schwen, Zeyad; Roppolo, James R; de Groat, William C; Tai, Changfeng

    2015-04-15

    This study examined the role of spinal metabotropic glutamate receptor 5 (mGluR5) in the nociceptive C-fiber afferent-mediated spinal bladder reflex and in the inhibtion of this reflex by pudendal nerve stimulation (PNS). In α-chloralose-anesthetized cats after spinal cord transection at the T9/T10 level, intravesical infusion of 0.25% acetic acid irritated the bladder, activated nociceptive C-fiber afferents, and induced spinal reflex bladder contractions of low amplitude (<50 cmH2O) and short duration (<20 s) at a smaller bladder capacity ∼80% of saline control capacity. PNS significantly (P < 0.01) increased bladder capacity from 85.5 ± 10.1 to 137.3 ± 14.1 or 148.2 ± 11.2% at 2T or 4T stimulation, respectively, where T is the threshold intensity for PNS to induce anal twitch. MTEP {3-[(2-methyl-4-thiazolyl)ethynyl]pyridine; 3 mg/kg iv, a selective mGluR5 antagonist} completely removed the PNS inhibition and significantly (P < 0.05) increased bladder capacity from 71.8 ± 9.9 to 94.0 ± 13.9% of saline control, but it did not change the bladder contraction amplitude. After propranolol (3 mg/kg iv, a β1/β2-adrenergic receptor antagonist) treatment, PNS inhibition remained but MTEP significantly (P < 0.05) reduced the bladder contraction amplitude from 18.6 ± 2.1 to 6.6 ± 1.2 cmH2O and eliminated PNS inhibition. At the end of experiments, hexamethonium (10 mg/kg iv, a ganglionic blocker) significantly (P < 0.05) reduced the bladder contraction amplitude from 20.9 ± 3.2 to 8.1 ± 1.5 cmH2O on average demonstrating that spinal reflexes were responsible for a major component of the contractions. This study shows that spinal mGluR5 plays an important role in the nociceptive C-fiber afferent-mediated spinal bladder reflex and in pudendal inhibition of this spinal reflex. PMID:25673810

  16. Nucleotide homeostasis and purinergic nociceptive signaling in rat meninges in migraine-like conditions.

    PubMed

    Yegutkin, Gennady G; Guerrero-Toro, Cindy; Kilinc, Erkan; Koroleva, Kseniya; Ishchenko, Yevheniia; Abushik, Polina; Giniatullina, Raisa; Fayuk, Dmitriy; Giniatullin, Rashid

    2016-09-01

    Extracellular ATP is suspected to contribute to migraine pain but regulatory mechanisms controlling pro-nociceptive purinergic mechanisms in the meninges remain unknown. We studied the peculiarities of metabolic and signaling pathways of ATP and its downstream metabolites in rat meninges and in cultured trigeminal cells exposed to the migraine mediator calcitonin gene-related peptide (CGRP). Under resting conditions, meningeal ATP and ADP remained at low nanomolar levels, whereas extracellular AMP and adenosine concentrations were one-two orders higher. CGRP increased ATP and ADP levels in meninges and trigeminal cultures and reduced adenosine concentration in trigeminal cells. Degradation rates for exogenous nucleotides remained similar in control and CGRP-treated meninges, indicating that CGRP triggers nucleotide release without affecting nucleotide-inactivating pathways. Lead nitrate-based enzyme histochemistry of whole mount meninges revealed the presence of high ATPase, ADPase, and AMPase activities, primarily localized in the medial meningeal artery. ATP and ADP induced large intracellular Ca(2+) transients both in neurons and in glial cells whereas AMP and adenosine were ineffective. In trigeminal glia, ATP partially operated via P2X7 receptors. ATP, but not other nucleotides, activated nociceptive spikes in meningeal trigeminal nerve fibers providing a rationale for high degradation rate of pro-nociceptive ATP. Pro-nociceptive effect of ATP in meningeal nerves was reproduced by α,β-meATP operating via P2X3 receptors. Collectively, extracellular ATP, which level is controlled by CGRP, can persistently activate trigeminal nerves in meninges which considered as the origin site of migraine headache. These data are consistent with the purinergic hypothesis of migraine pain and suggest new targets against trigeminal pain.

  17. Nociceptive stimuli enhance anesthetic-induced neuroapoptosis in the rat developing brain.

    PubMed

    Shu, Yi; Zhou, Zhaowei; Wan, Yanjie; Sanders, Robert D; Li, Min; Pac-Soo, Chen Knien; Maze, Mervyn; Ma, Daqing

    2012-02-01

    Anesthetic-induced neurodegeneration in the developing brain has been well documented. However, the experiments carried out so far do not include surgical conditions. This proof of concept study was designed to investigate the impact of nociceptive stimuli on anesthetic induced neuroapoptosis in the rat developing brain. Separate cohorts of 7-day-old Sprague-Dawley rat pups were randomly assigned to six groups: Naïve (room air); Anesthesia alone (70% nitrous oxide and 0.75% isoflurane for 6 h); Formalin injection alone (subcutaneous injection with 10 μL 5% formalin into the left hind paw); Anesthesia+formalin injection; Surgical incision (to the left hind paw) alone; Anesthesia+surgical incision. Apoptosis (Caspase-3) and neuronal activation (c-Fos) in the brain and spinal cord section, and cortical TNF-α and IL-1β were measured with in situ immunostaining and western blot respectively. Cognition was tested using Trace Fear conditioning 40 days after the insult. Prolonged anesthesia caused widespread apoptosis in the central nervous system compared to naïve animals. Nociceptive stimulation with formalin (F) or surgical incision (S) increased the injury in the brain cortex (F: 60% or S: 40% increase) and spinal cord (F: 80% vs. S: 50% increase) respectively. Both nociceptive stimuli further augmented cognitive impairment induced by the anesthetics when assessed 40 days later. The activated pain pathway and the increased expression of the pro-inflammatory cytokine, IL-1β, in the cortex may be responsible for the enhanced neuroapoptosis. Nociceptive stimulation and prolonged anesthesia produced significantly more apoptosis than prolonged anesthesia alone when administered to neonates during the synaptogenic period. PMID:22075165

  18. Pain processing by spinal microcircuits: afferent combinatorics.

    PubMed

    Prescott, Steven A; Ratté, Stéphanie

    2012-08-01

    Pain, itch, heat, cold, and touch represent different percepts arising from somatosensory input. How stimuli give rise to these percepts has been debated for over a century. Recent work supports the view that primary afferents are highly specialized to transduce and encode specific stimulus modalities. However, cross-modal interactions (e.g. inhibition or exacerbation of pain by touch) support convergence rather than specificity in central circuits. We outline how peripheral specialization together with central convergence could enable spinal microcircuits to combine inputs from distinctly specialized, co-activated afferents and to modulate the output signals thus formed through computations like normalization. These issues will be discussed alongside recent advances in our understanding of microcircuitry in the superficial dorsal horn.

  19. Pain processing by spinal microcircuits: afferent combinatorics.

    PubMed

    Prescott, Steven A; Ratté, Stéphanie

    2012-08-01

    Pain, itch, heat, cold, and touch represent different percepts arising from somatosensory input. How stimuli give rise to these percepts has been debated for over a century. Recent work supports the view that primary afferents are highly specialized to transduce and encode specific stimulus modalities. However, cross-modal interactions (e.g. inhibition or exacerbation of pain by touch) support convergence rather than specificity in central circuits. We outline how peripheral specialization together with central convergence could enable spinal microcircuits to combine inputs from distinctly specialized, co-activated afferents and to modulate the output signals thus formed through computations like normalization. These issues will be discussed alongside recent advances in our understanding of microcircuitry in the superficial dorsal horn. PMID:22409855

  20. Fine-grained nociceptive maps in primary somatosensory cortex

    PubMed Central

    Mancini, Flavia; Haggard, Patrick; Iannetti, Gian Domenico; Longo, Matthew R.; Sereno, Martin I.

    2012-01-01

    Topographic maps of the receptive surface are a fundamental feature of neural organization in many sensory systems. While touch is finely mapped in the cerebral cortex, it remains controversial how precise any cortical nociceptive map may be. Given that nociceptive innervation density is relatively low on distal skin regions such as the digits, one might conclude that the nociceptive system lacks fine representation of these regions. Indeed, only gross spatial organization of nociceptive maps has been reported so far. However, here we reveal the existence of fine-grained somatotopy for nociceptive inputs to the digits in human primary somatosensory cortex (SI). Using painful nociceptive-selective laser stimuli to the hand, and phase-encoded fMRI analysis methods, we observed somatotopic maps of the digits in contralateral SI. These nociceptive maps were highly aligned with maps of non-painful tactile stimuli, suggesting comparable cortical representations for, and possible interactions between, mechanoreceptive and nociceptive signals. Our findings may also be valuable for future studies tracking the timecourse and the spatial pattern of plastic changes in cortical organization involved in chronic pain. PMID:23197708

  1. Social feeding in Caenorhabditis elegans is induced by neurons that detect aversive stimuli

    PubMed Central

    de Bono, Mario; Tobin, David M.; Davis, M. Wayne; Avery, Leon; Bargmann, Cornelia I.

    2014-01-01

    Natural Caenorhabditis elegans isolates exhibit either social or solitary feeding on bacteria. We show here that social feeding is induced by nociceptive neurons that detect adverse or stressful conditions. Ablation of the nociceptive neurons ASH and ADL transforms social animals into solitary feeders. Social feeding is probably due to the sensation of noxious chemicals by ASH and ADL neurons; it requires the genes ocr-2 and osm-9, which encode TRP-related transduction channels, and odr-4 and odr-8, which are required to localize sensory chemoreceptors to cilia. Other sensory neurons may suppress social feeding, as social feeding in ocr-2 and odr-4 mutants is restored by mutations in osm-3, a gene required for the development of 26 ciliated sensory neurons. Our data suggest a model for regulation of social feeding by opposing sensory inputs: aversive inputs to nociceptive neurons promote social feeding, whereas antagonistic inputs from neurons that express osm-3 inhibit aggregation. PMID:12410303

  2. Blockage of vibrissae afferents: I. Motor effects.

    PubMed

    Prchal, A; Albarracín, A L; Décima, E E

    2004-02-01

    In the past, it has been proposed that the rat vibrissae play an important role in other hand, postural abnormalities, muscle tone decreases and hypomotility after sensory organ destructions were proposed as evidence supporting the "level setting" or "tonic" hypothesis. This hypothesis postulates that afferent activity, besides its well know transductive functions, sets the excitability state of the central nervous system. We thought the vibrissal system to be a good model to dissect these two postulated roles because vibrissae trimming would annul the transductive function without affecting the integrity of nerve activity. Thus we compare the effects of trimming the whiskers with blocking the vibrissal afferent nerves on two types of motor behavior: activity in an open field and walking over a rope connecting two elevated platforms. We found that only vibrissal afferent blockage (both nerve section and local anaesthesia) produced severe failures in the motor performances studied. These effects could not be fully explained by the abolition of the vibrissae as a sensory modality because cutting the whiskers did not significantly affect the motor performance. These data are discussed in reference to a tonic or general excitatory function of sensory inputs upon the central nervous system. PMID:15143620

  3. Central connectivity of the chorda tympani afferent terminals in the rat rostral nucleus of the solitary tract.

    PubMed

    Park, Sook Kyung; Lee, Dae Seop; Bae, Jin Young; Bae, Yong Chul

    2016-03-01

    The rostral nucleus of the solitary tract (rNST) receives gustatory input via chorda tympani (CT) afferents from the anterior two-thirds of the tongue and transmits it to higher brain regions. To help understand how the gustatory information is processed at the 1st relay nucleus of the brain stem, we investigated the central connectivity of the CT afferent terminals in the central subdivision of the rat rNST through retrograde labeling with horseradish peroxidase, immunogold staining for GABA, glycine, and glutamate, and quantitative ultrastructural analysis. Most CT afferents were small myelinated fibers (<5 µm(2) in cross-sectional area) and made simple synaptic arrangements with 1-2 postsynaptic dendrites. It suggests that the gustatory signal is relayed to a specific group of neurons with a small degree of synaptic divergence. The volume of the identified synaptic boutons was positively correlated with their mitochondrial volume and active zone area, and also with the number of their postsynaptic dendrites. One-fourth of the boutons received synapses from GABA-immunopositive presynaptic profiles, 27 % of which were also glycine-immunopositive. These results suggest that the gustatory information mediated by CT afferents to the rNST is processed in a simple and specific manner. They also suggest that the minority of CT afferents are presynaptically modulated by GABA- and/or glycine-mediated mechanism.

  4. Resting Discharge Patterns of Macular Primary Afferents in Otoconia-Deficient Mice

    PubMed Central

    Jones, S. M.; Hoffman, L. F.

    2008-01-01

    Vestibular primary afferents in the normal mammal are spontaneously active. The consensus hypothesis states that such discharge patterns are independent of stimulation and depend instead on excitation by vestibular hair cells due to background release of synaptic neurotransmitter. In the case of otoconial sensory receptors, it is difficult to test the independence of resting discharge from natural tonic stimulation by gravity. We examined this question by studying discharge patterns of single vestibular primary afferent neurons in the absence of gravity stimulation using two mutant strains of mice that lack otoconia (OTO−; head tilt, het-Nox3, and tilted, tlt-Otop1). Our findings demonstrated that macular primary afferent neurons exhibit robust resting discharge activity in OTO− mice. Spike interval coefficient of variation (CV = SD/mean spike interval) values reflected both regular and irregular discharge patterns in OTO− mice, and the range of values for rate-normalized CV was similar to mice and other mammals with intact otoconia although there were proportionately fewer irregular fibers. Mean discharge rates were slightly higher in otoconia-deficient strains even after accounting for proportionately fewer irregular fibers [OTO− = 75.4 ± 31.1(113) vs OTO+ = 68.1 ± 28.5(143) in sp/s]. These results confirm the hypothesis that resting activity in macular primary afferents occurs in the absence of ambient stimulation. The robust discharge rates are interesting in that they may reflect the presence of a functionally ‘up-regulated’ tonic excitatory process in the absence of natural sensory stimulation. PMID:18661184

  5. Modulation of visceral hypersensitivity by glial cell line-derived neurotrophic factor family receptor α-3 in colorectal afferents

    PubMed Central

    Shinoda, M.; Feng, B.; Albers, K. M.; Gebhart, G. F.

    2011-01-01

    Irritable bowel syndrome is characterized by colorectal hypersensitivity and contributed to by sensitized mechanosensitive primary afferents and recruitment of mechanoinsensitive (silent) afferents. Neurotrophic factors are well known to orchestrate dynamic changes in the properties of sensory neurons. Although pain modulation by proteins in the glial cell line-derived neurotrophic factor (GDNF) family has been documented in various pathophysiological states, their role in colorectal hypersensitivity remains unexplored. Therefore, we investigated the involvement of the GDNF family receptor α-3 (GFRα3) signaling in visceral hypersensitivity by quantifying visceromotor responses (VMR) to colorectal distension before and after intracolonic treatment with 2,4,6-trinitrobenzene sulfonic acid (TNBS). Baseline responses to colorectal distension did not differ between C57BL/6 and GFRα3 knockout (KO) mice. Relative to intracolonic saline treatment, TNBS significantly enhanced the VMR to colorectal distension in C57BL/6 mice 2, 7, 10, and 14 days posttreatment, whereas TNBS-induced visceral hypersensitivity was significantly suppressed in GFRα3 KO mice. The proportion of GFRα3 immunopositive thoracolumbar and lumbosacral colorectal dorsal root ganglion neurons was significantly elevated 2 days after TNBS treatment. In single fiber recordings, responses to circumferential stretch of colorectal afferent endings in C57BL/6 mice were significantly increased (sensitized) after exposure to an inflammatory soup, whereas responses to stretch did not sensitize in GFRα3 KO mice. These findings suggest that enhanced GFRα3 signaling in visceral afferents may contribute to development of colorectal hypersensitivity. PMID:21193524

  6. Effects of extensor and flexor group I afferent volleys on the excitability of individual soleus motoneurones in man

    PubMed Central

    Ashby, Peter; Labelle, Keith

    1977-01-01

    The contour of the postsynaptic potential (PSP) produced in a neurone by an afferent volley can be derived from the contour of the post-stimulus time histogram (PSTH) of that neurone when it is discharging rhythmically. In the present study the PSTH of the firing of individual soleus motor units after stimulation of the popliteal or peroneal nerve was used to explore the effects of extensor and flexor group I afferent volleys on the excitability of single soleus motoneurones in man. Extensor group I volleys resulted in an early peak of increased impulse density in the PSTH of 75% of soleus motoneurones. The latency suggests an analogy with the Ia EPSP. The mean duration of the peak of increased impulse density, equivalent to the rise time of the EPSP, was 3.6 ms. Flexor group I volleys result in a period of reduced impulse density in the PSTH of five out of nine soleus motoneurones. The latency suggests an analogy with the Ia IPSP. We conclude that this method could be used to explore the afferent connections to single motoneurones in man and to derive some of the characteristics of the postsynaptic potentials from a variety of afferent nerve fibres in single human motoneurones. PMID:599368

  7. Steady-state evoked potentials to tag specific components of nociceptive cortical processing.

    PubMed

    Colon, Elisabeth; Nozaradan, Sylvie; Legrain, Valery; Mouraux, André

    2012-03-01

    Studies have shown that the periodic repetition of a stimulus induces, at certain stimulation frequencies, a sustained electro-cortical response of corresponding frequency, referred to as steady-state evoked potential (SSEP). Using infrared laser stimulation, we recently showed that SSEPs can be used to explore nociceptive cortical processing. Here, we implemented a novel approach to elicit such responses, using a periodic intra-epidermal electrical stimulation of cutaneous Aδ-nociceptors (Aδ-SSEPs). Using a wide range of frequencies (3-43 Hz), we compared the scalp topographies and temporal dynamics of these Aδ-SSEPs to the Aβ-SSEPs elicited by non-nociceptive transcutaneous electrical stimulation, as well as to the transient ERPs elicited by the onsets of the 10-s stimulation trains, applied to the left and right hand. At 3 Hz, we found that the topographies of Aβ- and Aδ-SSEPs were both maximal at the scalp vertex, and resembled closely that of the late P2 wave of transient ERPs, suggesting activity originating from the same neuronal populations. The responses also showed marked habituation, suggesting that they were mainly related to unspecific, attention-related processes. In contrast, at frequencies >3 Hz, the topographies of Aβ- and Aδ-SSEPs were markedly different. Aβ-SSEPs were maximal over the contralateral parietal region, whereas Aδ-SSEPs were maximal over midline frontal regions, thus indicating an entrainment of distinct neuronal populations. Furthermore, the responses showed no habituation, suggesting more obligatory and specific stages of sensory processing. Taken together, our results indicate that Aβ- and Aδ-SSEPs offer a unique opportunity to study the cortical representation of nociception and touch. PMID:22197788

  8. Synaptic and network consequences of monosynaptic nociceptive inputs of parabrachial nucleus origin in the central amygdala

    PubMed Central

    Sugimura, Yae K.; Takahashi, Yukari; Watabe, Ayako M.

    2016-01-01

    A large majority of neurons in the superficial layer of the dorsal horn projects to the lateral parabrachial nucleus (LPB). LPB neurons then project to the capsular part of the central amygdala (CeA; CeC), a key structure underlying the nociception-emotion link. LPB-CeC synaptic transmission is enhanced in various pain models by using electrical stimulation of putative fibers of LPB origin in brain slices. However, this approach has limitations for examining direct monosynaptic connections devoid of directly stimulating fibers from other structures and local GABAergic neurons. To overcome these limitations, we infected the LPB of rats with an adeno-associated virus vector expressing channelrhodopsin-2 and prepared coronal and horizontal brain slices containing the amygdala. We found that blue light stimulation resulted in monosynaptic excitatory postsynaptic currents (EPSCs), with very small latency fluctuations, followed by a large polysynaptic inhibitory postsynaptic current in CeC neurons, regardless of the firing pattern type. Intraplantar formalin injection at 24 h before slice preparation significantly increased EPSC amplitude in late firing-type CeC neurons. These results indicate that direct monosynaptic glutamatergic inputs from the LPB not only excite CeC neurons but also regulate CeA network signaling through robust feed-forward inhibition, which is under plastic modulation in response to persistent inflammatory pain. PMID:26888105

  9. Systemic morphine treatment induces changes in firing patterns and responses of nociceptive afferent fibers in mouse glabrous skin.

    PubMed

    Hogan, Dale; Baker, Alyssa L; Morón, Jose A; Carlton, Susan M

    2013-11-01

    Patients receiving opioids for pain may experience decreased effectiveness of the drug and even abnormal pain sensitivity-hyperalgesia and/or allodynia. We hypothesized that peripheral nociceptor hyperexcitability contributes to opioid-induced hyperalgesia and tested this using an in vitro mouse glabrous skin-nerve preparation. Mice were injected intraperitoneally with escalating doses of morphine (5, 8, 10, 15 mg/kg) or saline every 12 hours for 48 hours and killed approximately 12 hours after the last injection. Receptive fields of nociceptors were tested for mechanical, heat, and cold sensitivity. Activity was also measured during an initial 2-minute period and during 5-minute periods between stimuli. Aberrant activity was common in fibers from morphine-treated mice but rare in saline-treated mice. Resting background activity was elevated in C-fibers from morphine-treated mice. Both C- and Aδ-fibers had afterdischarge in response to mechanical, heat, and/or cold stimulation of the skin as well as spontaneous, unevoked activity. Compared to saline, morphine treatment increased the proportion of fibers displaying polymodal rather than mechanical-only responses. A significant increase in Aδ-mechanoreceptive fibers responding to cold accounted for most of this change. In agreement with this, morphine-treated mice showed increased sensitivity in the cold tail flick test. In morphine-treated mice, aberrant activity and hyperexcitability of nociceptors could contribute to increased pain sensitivity. Importantly, this activity is likely driving central sensitization, a phenomenon contributing to abnormal sensory processing and chronic pain. If similar changes occur in human patients, aberrant nociceptor activity is likely to be interpreted as pain and could contribute to opioid-induced hyperalgesia.

  10. Afferent innervation patterns of the saccule in pigeons

    NASA Technical Reports Server (NTRS)

    Zakir, M.; Huss, D.; Dickman, J. D.

    2003-01-01

    The innervation patterns of vestibular saccular afferents were quantitatively investigated in pigeons using biotinylated dextran amine as a neural tracer and three-dimensional computer reconstruction. Type I hair cells were found throughout a large portion of the macula, with the highest density observed in the striola. Type II hair cells were located throughout the macula, with the highest density in the extrastriola. Three classes of afferent innervation patterns were observed, including calyx, dimorph, and bouton units, with 137 afferents being anatomically reconstructed and used for quantitative comparisons. Calyx afferents were located primarily in the striola, innervated a number of type I hair cells, and had small innervation areas. Most calyx afferent terminal fields were oriented parallel to the anterior-posterior axis and the morphological polarization reversal line. Dimorph afferents were located throughout the macula, contained fewer type I hair cells in a calyceal terminal than calyx afferents and had medium sized innervation areas. Bouton afferents were restricted to the extrastriola, with multi-branching fibers and large innervation areas. Most of the dimorph and bouton afferents had innervation fields that were oriented dorso-ventrally but were parallel to the neighboring reversal line. The organizational morphology of the saccule was found to be distinctly different from that of the avian utricle or lagena otolith organs and appears to represent a receptor organ undergoing evolutionary adaptation toward sensing linear motion in terrestrial and aerial species.

  11. Eugenol and carvacrol excite first- and second-order trigeminal neurons and enhance their heat-evoked responses.

    PubMed

    Klein, A H; Joe, C L; Davoodi, A; Takechi, K; Carstens, M I; Carstens, E

    2014-06-20

    Eugenol and carvacrol from clove and oregano, respectively, are agonists of the warmth-sensitive transient receptor potential channel TRPV3 and the irritant-sensitive transient receptor potential ankyrin (TRPA)-1. Eugenol and carvacrol induce oral irritation that rapidly desensitizes, accompanied by brief enhancement of innocuous warmth and heat pain in humans. We presently investigated if eugenol and carvacrol activate nociceptive primary afferent and higher order trigeminal neurons and enhance their heat-evoked responses, using calcium imaging of cultured trigeminal ganglion (TG) and dorsal root ganglion (DRG) neurons, and in vivo single-unit recordings in trigeminal subnucleus caudalis (Vc) of rats. Eugenol and carvacrol activated 20-30% of TG and 7-20% of DRG cells, the majority of which additionally responded to menthol, mustard oil and/or capsaicin. TG cell responses to innocuous (39°) and noxious (42 °C) heating were enhanced by eugenol and carvacrol. We identified dorsomedial Vc neurons responsive to noxious heating of the tongue in pentobarbital-anesthetized rats. Eugenol and carvacrol dose-dependently elicited desensitizing responses in 55% and 73% of heat-sensitive units, respectively. Responses to noxious heat were briefly enhanced by eugenol and carvacrol. Many eugenol- and carvacrol-responsive units also responded to menthol, cinnamaldehyde and capsaicin. These data support a peripheral site for eugenol and carvacrol to enhance warmth- and noxious heat-evoked responses of trigeminal neurons, and are consistent with the observation that these agonists briefly enhance warmth and heat pain on the human tongue. PMID:24759772

  12. Reduced expression of SynGAP, a neuronal GTPase-activating protein, enhances capsaicin-induced peripheral sensitization

    PubMed Central

    Duarte, Djane Braz; Duan, Jian-Hong; Nicol, Grant D.; Vasko, Michael R.

    2011-01-01

    Synaptic GTPase-activating protein (SynGAP) is a neuronal-specific Ras/Rap-GAP that increases the hydrolysis rate of GTP to GDP, converting Ras/Rap from the active into the inactive form. The Ras protein family modulates a wide range of cellular pathways including those involved in sensitization of sensory neurons. Since GAPs regulate Ras activity, SynGAP might be an important regulator of peripheral sensitization and pain. Therefore, we evaluated excitability, stimulus-evoked release of the neuropeptide calcitonin gene-related peptide (CGRP), and nociception from wild-type (WT) mice and those with a heterozygous mutation of the SynGAP gene (SynGAP+/−). Our results demonstrate that SynGAP is expressed in primary afferent sensory neurons and that the capsaicin-stimulated CGRP release from spinal cord slices was two-fold higher from SynGAP+/− mice than that observed from WT mouse tissue, consistent with an increase in expression of the capsaicin receptor, transient receptor potential cation channel subfamily V member 1 (TRPV1), in SynGAP+/− dorsal root ganglia. However, there was no difference between the two genotypes in potassium-stimulated release of CGRP, the number of action potentials generated by a ramp of depolarizing current, or mechanical hypernociception elicited by intraplantar injection of capsaicin. In contrast, capsaicin-induced thermal hypernociception occurred at lower doses of capsaicin and had a longer duration in SynGAP+/− mice than WT mice. These results provide the first evidence that SynGAP is an important regulator of neuropeptide release from primary sensory neurons and can modulate capsaicin-induced hypernociception, demonstrating the importance of GAP regulation in signaling pathways that play a role in peripheral sensitization. PMID:21525372

  13. Mast Cell-Mediated Mechanisms of Nociception

    PubMed Central

    Aich, Anupam; Afrin, Lawrence B.; Gupta, Kalpna

    2015-01-01

    Mast cells are tissue-resident immune cells that release immuno-modulators, chemo-attractants, vasoactive compounds, neuropeptides and growth factors in response to allergens and pathogens constituting a first line of host defense. The neuroimmune interface of immune cells modulating synaptic responses has been of increasing interest, and mast cells have been proposed as key players in orchestrating inflammation-associated pain pathobiology due to their proximity to both vasculature and nerve fibers. Molecular underpinnings of mast cell-mediated pain can be disease-specific. Understanding such mechanisms is critical for developing disease-specific targeted therapeutics to improve analgesic outcomes. We review molecular mechanisms that may contribute to nociception in a disease-specific manner. PMID:26690128

  14. Spinal modulation of nociception by music.

    PubMed

    Roy, M; Lebuis, A; Hugueville, L; Peretz, I; Rainville, P

    2012-07-01

    Numerous studies have demonstrated the capacity of music to modulate pain. However, the neurophysiological mechanisms responsible for this phenomenon remain unknown. In order to assess the involvement of descending modulatory mechanisms in the modulation of pain by music, we evaluated the effects of musical excerpts conveying different emotions (pleasant-stimulating, pleasant-relaxing, unpleasant-stimulating) on the spinally mediated nociceptive flexion reflex (or RIII), as well as on pain ratings and skin conductance responses. The RIII reflex and pain ratings were increased during the listening of unpleasant music compared with pleasant music, suggesting the involvement of descending pain-modulatory mechanisms in the effects of musical emotions on pain. There were no significant differences between the pleasant-stimulating and pleasant-relaxing musical condition, indicating that the arousal of music had little influence on pain processing.

  15. An integrated study of heart pain and behavior in freely moving rats (using fos as a marker for neuronal activation).

    PubMed

    Albutaihi, Ibrahim A M; DeJongste, Mike J L; Ter Horst, Gert J

    2004-01-01

    The awareness in specific brain centers of angina pectoris most often results from ischemic episodes in the heart. These ischemic episodes induce the release of a collage of chemicals that activate chemosensitive and mechanoreceptive receptors in the heart, which in turn excite receptors of the sympathetic afferent pathways. Ascending pain signals from these fibers result in the activation of the brain centers which are involved in the perception and integration of cardiac pain. Cytochemical studies of the nervous system provide the opportunity to identify these areas at the cellular level. In the present investigation, cardiac nociception was studied in the brains and the spinal cords of rats, using Fos protein as a marker of neuronal activation, following the application of pain-inducing chemicals to the heart. Induction of myocardial pain in conscious rats was achieved by infusion of bradykinin (0.5 microg) or capsaicin (5 microg) into the pericardial sac. During pain stimulation, the rats demonstrated pain behavior, in conjunction with alterations in heart rate and blood pressure. The cerebral Fos expression pattern was studied 2 h after pain stimulation. In contrast to the control group, increased Fos expression was found following the use of both capsaicin and bradykinin in a variety of areas of the brain. Bradykinin, but not capsaicin, induced Fos expression in the upper thoracic and upper cervical spinal cord; these segments are the sites where cardiac sympathetic fibers terminate. This finding suggests that these two chemicals use two different pathways, and provides extra evidence for the role of the vagus nerve in the transmission of cardiac nociception. Different cerebral areas showed an increase in the c-fos activity following pericardial application of pain-inducing chemicals. The role of these cerebral areas in the integration of cardiac pain is discussed in relation to the identified pathways which transmit cardiac pain. PMID:15305089

  16. Augmented activity of the pelvic nerve afferent mediated by TRP channels in dextran sulfate sodium (DSS)-induced colitis of rats.

    PubMed

    Makimura, Yukitoshi; Ito, Koichi; Kuwahara, Masayoshi; Tsubone, Hirokazu

    2012-08-01

    Enteritis has been recognized as a major symptom in domestic animals and human patients suffering from feed and food poisonings. The aim of the present study was to clarify the excitatory mechanism of the pelvic nerve afferent which may influence the occurrence of enteritis in response to nociceptive chemical stimuli of the colon in normal and abnormal rats with colitis induced by dextran sulfate sodium (DSS). The pelvic nerve afferent activity was markedly increased by colonic instillation of solution (0.5 ml) of acetic acid (5-25%) and capsaicin (100 μg/ml). The nerve activity was augmented by colonic instillation of capsaicin to a greater extent in rats with DSS-induced colitis than in normal control rats. This augmented activity by capsaicin was more prominent at one day (DSS-1) than at 8 day (DSS-8) after the administration of DSS. The increased nerve activity caused by capsaicin in DSS-1 and DSS-8 was significantly inhibited by pretreatment with ruthenium red, which is a nonselective inhibitor of TRP channels of unmyelinated C-fibers (nociceptors). In conclusion, it was elucidated that the nociceptive function of the pelvic nerve was largely elevated at one day after DSS-induced colitis and such increased function was mostly mediated by TRP channels.

  17. Transient, afferent input-dependent, postnatal niche for neural progenitor cells in the cochlear nucleus.

    PubMed

    Volkenstein, Stefan; Oshima, Kazuo; Sinkkonen, Saku T; Corrales, C Eduardo; Most, Sam P; Chai, Renjie; Jan, Taha A; van Amerongen, Renée; Cheng, Alan G; Heller, Stefan

    2013-08-27

    In the cochlear nucleus (CN), the first central relay of the auditory pathway, the survival of neurons during the first weeks after birth depends on afferent innervation from the cochlea. Although input-dependent neuron survival has been extensively studied in the CN, neurogenesis has not been evaluated as a possible mechanism of postnatal plasticity. Here we show that new neurons are born in the CN during the critical period of postnatal plasticity. Coincidently, we found a population of neural progenitor cells that are controlled by a complex interplay of Wnt, Notch, and TGFβ/BMP signaling, in which low levels of TGFβ/BMP signaling are permissive for progenitor proliferation that is promoted by Wnt and Notch activation. We further show that cells with activated Wnt signaling reside in the CN and that these cells have high propensity for neurosphere formation. Cochlear ablation resulted in diminishment of progenitors and Wnt/β-catenin-active cells, suggesting that the neonatal CN maintains an afferent innervation-dependent population of progenitor cells that display active canonical Wnt signaling.

  18. Transient, afferent input-dependent, postnatal niche for neural progenitor cells in the cochlear nucleus

    PubMed Central

    Volkenstein, Stefan; Oshima, Kazuo; Sinkkonen, Saku T.; Corrales, C. Eduardo; Most, Sam P.; Chai, Renjie; Jan, Taha A.; van Amerongen, Renée; Cheng, Alan G.; Heller, Stefan

    2013-01-01

    In the cochlear nucleus (CN), the first central relay of the auditory pathway, the survival of neurons during the first weeks after birth depends on afferent innervation from the cochlea. Although input-dependent neuron survival has been extensively studied in the CN, neurogenesis has not been evaluated as a possible mechanism of postnatal plasticity. Here we show that new neurons are born in the CN during the critical period of postnatal plasticity. Coincidently, we found a population of neural progenitor cells that are controlled by a complex interplay of Wnt, Notch, and TGFβ/BMP signaling, in which low levels of TGFβ/BMP signaling are permissive for progenitor proliferation that is promoted by Wnt and Notch activation. We further show that cells with activated Wnt signaling reside in the CN and that these cells have high propensity for neurosphere formation. Cochlear ablation resulted in diminishment of progenitors and Wnt/β-catenin-active cells, suggesting that the neonatal CN maintains an afferent innervation-dependent population of progenitor cells that display active canonical Wnt signaling. PMID:23940359

  19. Transcriptional changes in sensory ganglia associated with primary afferent axon collateral sprouting in spared dermatome model

    PubMed Central

    Harrison, Benjamin J.; Venkat, Gayathri; H