Science.gov

Sample records for afferent renal nerve

  1. Cardiovascular effects of afferent renal nerve stimulation.

    PubMed

    Stella, A; Weaver, L; Golin, R; Genovesi, S; Zanchetti, A

    1987-01-01

    Electrical stimulation of afferent renal nerves elicits an increase in arterial pressure and heart rate. The hypertensive response is presumably due to the widespread activation of the sympathetic nervous system leading to peripheral vasoconstriction. Interestingly, the kidney does not appear involved in this reflex excitatory response to afferent renal nerve stimulation since changes in vascular conductances and excretory functions are equal in both the innervated and denervated kidney, and secondary to changes in renal perfusion pressure. In addition, no changes in renin release from either kidneys are observed during afferent renal nerve stimulation. It is likely that the electrical stimulation of afferent renal nerves activates other reflexes exerting an inhibitory influence on efferent renal nerve activity. Indeed, neural renorenal reflexes which tonically inhibit renal functions have clearly been demonstrated. Furthermore, preferential inhibition of efferent renal nerve activity by cardiopulmonary and sinoaortic receptors has recently been shown during activation of other visceral afferents.

  2. A novel method of selective ablation of afferent renal nerves by periaxonal application of capsaicin

    PubMed Central

    Foss, Jason D.; Wainford, Richard D.; Engeland, William C.; Fink, Gregory D.

    2014-01-01

    Renal denervation has been shown to lower arterial pressure in some hypertensive patients, yet it remains unclear whether this is due to ablation of afferent or efferent renal nerves. To investigate the role of afferent renal nerves in arterial pressure regulation, previous studies have used methods that disrupt both renal and nonrenal afferent signaling. The present study was conducted to develop and validate a technique for selective ablation of afferent renal nerves that does not disrupt other afferent pathways. To do this, we adapted a technique for sensory denervation of the adrenal gland by topical application of capsaicin and tested the hypothesis that exposure of the renal nerves to capsaicin (renal-CAP) causes ablation of afferent but not efferent renal nerves. Renal-CAP had no effect on renal content of the efferent nerve markers tyrosine hydroxylase and norepinephrine; however, the afferent nerve marker, calcitonin gene-related peptide was largely depleted from the kidney 10 days after intervention, but returned to roughly half of control levels by 7 wk postintervention. Moreover, renal-CAP abolished the cardiovascular responses to acute pharmacological stimulation of afferent renal nerves. Renal-CAP rats showed normal weight gain, as well as cardiovascular and fluid balance regulation during dietary sodium loading. To some extent, renal-CAP did blunt the bradycardic response and increase the dipsogenic response to increased salt intake. Lastly, renal-CAP significantly attenuated the development of deoxycorticosterone acetate-salt hypertension. These results demonstrate that renal-CAP effectively causes selective ablation of afferent renal nerves in rats. PMID:25411365

  3. The role of the renal afferent and efferent nerve fibers in heart failure

    PubMed Central

    Booth, Lindsea C.; May, Clive N.; Yao, Song T.

    2015-01-01

    Renal nerves contain afferent, sensory and efferent, sympathetic nerve fibers. In heart failure (HF) there is an increase in renal sympathetic nerve activity (RSNA), which can lead to renal vasoconstriction, increased renin release and sodium retention. These changes are thought to contribute to renal dysfunction, which is predictive of poor outcome in patients with HF. In contrast, the role of the renal afferent nerves remains largely unexplored in HF. This is somewhat surprising as there are multiple triggers in HF that have the potential to increase afferent nerve activity, including increased venous pressure and reduced kidney perfusion. Some of the few studies investigating renal afferents in HF have suggested that at least the sympatho-inhibitory reno-renal reflex is blunted. In experimentally induced HF, renal denervation, both surgical and catheter-based, has been associated with some improvements in renal and cardiac function. It remains unknown whether the effects are due to removal of the efferent renal nerve fibers or afferent renal nerve fibers, or a combination of both. Here, we review the effects of HF on renal efferent and afferent nerve function and critically assess the latest evidence supporting renal denervation as a potential treatment in HF. PMID:26483699

  4. The renal nerves in chronic heart failure: efferent and afferent mechanisms

    PubMed Central

    Schiller, Alicia M.; Pellegrino, Peter R.; Zucker, Irving H.

    2015-01-01

    The function of the renal nerves has been an area of scientific and medical interest for many years. The recent advent of a minimally invasive catheter-based method of renal denervation has renewed excitement in understanding the afferent and efferent actions of the renal nerves in multiple diseases. While hypertension has been the focus of much this work, less attention has been given to the role of the renal nerves in the development of chronic heart failure (CHF). Recent studies from our laboratory and those of others implicate an essential role for the renal nerves in the development and progression of CHF. Using a rabbit tachycardia model of CHF and surgical unilateral renal denervation, we provide evidence for both renal efferent and afferent mechanisms in the pathogenesis of CHF. Renal denervation prevented the decrease in renal blood flow observed in CHF while also preventing increases in Angiotensin-II receptor protein in the microvasculature of the renal cortex. Renal denervation in CHF also reduced physiological markers of autonomic dysfunction including an improvement in arterial baroreflex function, heart rate variability, and decreased resting cardiac sympathetic tone. Taken together, the renal sympathetic nerves are necessary in the pathogenesis of CHF via both efferent and afferent mechanisms. Additional investigation is warranted to fully understand the role of these nerves and their role as a therapeutic target in CHF. PMID:26300788

  5. Activation of afferent renal nerves modulates RVLM-projecting PVN neurons.

    PubMed

    Xu, Bo; Zheng, Hong; Liu, Xuefei; Patel, Kaushik P

    2015-05-01

    Renal denervation for the treatment of hypertension has proven to be successful; however, the underlying mechanism/s are not entirely clear. To determine if preautonomic neurons in the paraventricular nucleus (PVN) respond to afferent renal nerve (ARN) stimulation, extracellular single-unit recording was used to investigate the contribution of the rostral ventrolateral medulla (RVLM)-projecting PVN (PVN-RVLM) neurons to the response elicited during stimulation of ARN. In 109 spontaneously active neurons recorded in the PVN of anesthetized rats, 25 units were antidromically activated from the RVLM. Among these PVN-RVLM neurons, 84% (21/25) were activated by ARN stimulation. The baseline discharge rate was significantly higher in these neurons than those PVN-RVLM neurons not activated by ARN stimulation (16%, 4/25). The responsiveness of these neurons to baroreflex activation induced by phenylephrine and activation of cardiac sympathetic afferent reflex (CSAR) was also examined. Almost all of the PVN neurons that responded to ARN stimulation were sensitive to baroreflex (95%) and CSAR (100%). The discharge characteristics for nonevoked neurons (not activated by RVLM antidromic stimulation) showed that 23% of these PVN neurons responded to ARN stimulation. All the PVN neurons that responded to ARN stimulation were activated by N-methyl-D-aspartate, and these responses were attenuated by the glutamate receptor blocker AP5. These experiments demonstrated that sensory information originating in the kidney is integrated at the level of preautonomic neurons within the PVN, providing a novel mechanistic insight for use of renal denervation in the modulation of sympathetic outflow in disease states such as hypertension and heart failure.

  6. Effect of stimulation of afferent renal nerves on plasma levels of vasopressin

    SciTech Connect

    Caverson, M.M.; Ciriello, J.

    1987-04-01

    Experiments were done in ..cap alpha..-chloralose-anesthetized, paralyzed and artificially ventilated cats with vagus, cervical sympathetic, aortic depressor, and carotid sinus nerves cut bilaterally to investigate the effect of afferent renal nerve (ARN) stimulation on circulating levels of vasopressin (AVP). Electrical stimulation of ARN elicited a pressor response that had two components, a primary (1/sup 0/) component locked in time with the stimulus and a secondary (2/sup 0/) component that had a long onset latency and that outlasted the stimulation period. The 1/sup 0/ and 2/sup 0/ components of the pressor response were largest at stimulation frequencies of 30 and 40 Hz, respectively. Autonomic blockage with hexamethonium bromide and atropine methylbromide abolished the 1/sup 0/ component. Administration of the vasopressin V/sub 1/-vascular receptor antagonist d(CH/sub 2/)/sub 5/ VAVP during autonomic blockade abolished the 2/sup 0/C component. Plasma concentrations of AVP measured by radioimmunoassay increased from control levels of 5.2 +/- 0.9 to 53.6 +/- 18.6 pg/ml during a 5-min period of stimulation of ARN. Plasma AVP levels measured 20-40 min after simulation were not significantly different from control values. These data demonstrate that sensory information originating in the kidney alters the release of vasopressin from the neurohypophysis and suggest that ARN are an important component of the neural circuitry involved in homeostatic mechanisms controlling arterial pressure.

  7. Renal afferents signaling diuretic activity in the cat.

    PubMed

    Genovesi, S; Pieruzzi, F; Wijnmaalen, P; Centonza, L; Golin, R; Zanchetti, A; Stella, A

    1993-11-01

    Mechanoreceptors and chemoreceptors have been identified inside the kidney, but their functional role is still largely unclear. The aim of this study was to investigate whether changes in urine output could modify the discharge rate of renal afferent fibers. Experiments were performed in anesthetized cats in which afferent renal nerve activity (ARNA) was recorded by standard electrophysiological techniques from a centrally cut renal nerve. Arterial pressure, renal blood flow velocity, urine flow rate, and renal pelvic pressure were also measured. Three diuretic maneuvers were tested in the same cat: intravenous administration of physiological saline (8 to 13 mL/min for 2 minutes), furosemide (1 mg/kg), and atrial natriuretic peptide (ANP, 1 microgram/kg). The three maneuvers increased urine flow rate and pelvic pressure, respectively, 137.0 +/- 20.6% and 136.8 +/- 21.1% (saline), 148.6 +/- 31.7% and 139.6 +/- 43.5% (furosemide), and 75.9 +/- 7.9% and 62.1 +/- 21.2% (ANP) at the time of the maximum response. Arterial pressure slightly increased after saline, did not change after furosemide, and slightly decreased after ANP. Renal blood flow increased after saline and did not change after furosemide and ANP. The three maneuvers increased ARNA by 98.4 +/- 15.2% (saline), 270.7 +/- 100.8% (furosemide), and 59.6 +/- 23.4% (ANP). Changes in ARNA significantly correlate with changes in both pelvic pressure and urine flow rate. Our data demonstrate that increments in urine flow rate increase the firing rate of renal afferent fibers and suggest that (1) pelvic pressure is the major determinant of the neural response, and (2) this increased afferent discharge is due to activation of renal mechanoreceptors.

  8. Renal afferents responsive to chemical and mechanical pelvic stimuli in the rabbit.

    PubMed

    Genovesi, S; Pieruzzi, F; Camisasca, P; Golin, R; Zanchetti, A; Stella, A

    1997-05-01

    1. Afferent nerve fibres sensitive to changes in the renal chemical environment have been found in the rat. To verify the existence of these fibres in the rabbit and their response pattern, afferent renal nerve activity was recorded during pelvic perfusions with NaCl solutions at different concentrations. 2. The experiments were carried out in 13 anaesthetized rabbits. Arterial pressure from a femoral catheter and afferent renal nerve activity from the distal stump of a cut renal nerve bundle were recorded. Three catheters were inserted into the renal pelvis to measure pelvic pressure, to allow pelvic perfusions at constant rates and to drain pelvic fluids. 3. After a control period, the pelvis was perfused with physiological saline (0.14 mol/l for 2 min), followed by one of a series of solutions containing increasing concentrations of NaCl (0.5, 0.75, 1.0 and 1.5 mol/l for 2 min). Pelvic perfusion was performed both at a low (0.2 ml/min) and a high (0.8 ml/min) flow rate for each solution tested. 4. In all animals arterial pressure was not modified during pelvic perfusions. Physiological saline did not change afferent renal nerve activity at the low perfusion rate, but it significantly increased afferent renal nerve activity and pelvic pressure at the high rate. Hypertonic NaCl solutions caused progressive increases in afferent renal nerve activity at both perfusion rates, and these effects were larger at the high perfusion rate. 5. These data demonstrate, in the rabbit, the existence of renal afferent nerves sensitive to discrete changes in pelvic ionic or osmotic concentration. The neural response is enhanced when renal mechano- and chemo-receptors are simultaneously activated.

  9. Role of renal sensory nerves in physiological and pathophysiological conditions

    PubMed Central

    2014-01-01

    Whether activation of afferent renal nerves contributes to the regulation of arterial pressure and sodium balance has been long overlooked. In normotensive rats, activating renal mechanosensory nerves decrease efferent renal sympathetic nerve activity (ERSNA) and increase urinary sodium excretion, an inhibitory renorenal reflex. There is an interaction between efferent and afferent renal nerves, whereby increases in ERSNA increase afferent renal nerve activity (ARNA), leading to decreases in ERSNA by activation of the renorenal reflexes to maintain low ERSNA to minimize sodium retention. High-sodium diet enhances the responsiveness of the renal sensory nerves, while low dietary sodium reduces the responsiveness of the renal sensory nerves, thus producing physiologically appropriate responses to maintain sodium balance. Increased renal ANG II reduces the responsiveness of the renal sensory nerves in physiological and pathophysiological conditions, including hypertension, congestive heart failure, and ischemia-induced acute renal failure. Impairment of inhibitory renorenal reflexes in these pathological states would contribute to the hypertension and sodium retention. When the inhibitory renorenal reflexes are suppressed, excitatory reflexes may prevail. Renal denervation reduces arterial pressure in experimental hypertension and in treatment-resistant hypertensive patients. The fall in arterial pressure is associated with a fall in muscle sympathetic nerve activity, suggesting that increased ARNA contributes to increased arterial pressure in these patients. Although removal of both renal sympathetic and afferent renal sensory nerves most likely contributes to the arterial pressure reduction initially, additional mechanisms may be involved in long-term arterial pressure reduction since sympathetic and sensory nerves reinnervate renal tissue in a similar time-dependent fashion following renal denervation. PMID:25411364

  10. Functions of the Renal Nerves.

    ERIC Educational Resources Information Center

    Koepke, John P.; DiBona, Gerald F.

    1985-01-01

    Discusses renal neuroanatomy, renal vasculature, renal tubules, renin secretion, renorenal reflexes, and hypertension as related to renal nerve functions. Indicates that high intensitites of renal nerve stimulation have produced alterations in several renal functions. (A chart with various stimulations and resultant renal functions and 10-item,…

  11. Afferent pathways of neural reno-renal reflexes controlling sodium and water excretion in the cat.

    PubMed

    Golin, R; Genovesi, S; Stella, A; Zanchetti, A

    1987-08-01

    We have studied the role of afferent renal nerve fibres in anaesthetized cats in mediating the decrease in sodium and water excretion from the contralateral kidney caused by unilateral renal denervation. Transient denervation of one kidney obtained by cooling of the left renal nerves increases contralateral efferent renal nerve activity and decreased sodium and water excretion from the opposite kidney. The results observed in animals with intact neural pathways were compared with those obtained after the left kidney had been selectively deafferentated by cutting the dorsal roots from T9 to L4. Bilateral section of dorsal roots did not affect the increase in sodium and water excretion from the transiently denervated left kidney, but entirely abolished the decrease in sodium and water excretion from the contralateral kidney. Neither the left nor the right dorsal root section alone, affected the response of the contralateral right kidney. Our data demonstrate that afferent renal nerve fibres project bilaterally to the spinal cord and form the afferent branch of the reno-renal reflex by which one kidney can control the function of the opposite one.

  12. Mechano- and thermosensitivity of regenerating cutaneous afferent nerve fibers.

    PubMed

    Jänig, Wilfrid; Grossmann, Lydia; Gorodetskaya, Natalia

    2009-06-01

    Crush lesion of a skin nerve is followed by sprouting of myelinated (A) and unmyelinated (C) afferent fibers into the distal nerve stump. Here, we investigate quantitatively both ongoing activity and activity evoked by mechanical or thermal stimulation of the nerve in 43 A- and 135 C-fibers after crush lesion of the sural nerve using neurophysiological recordings in anesthetized rats. The discharge patterns in the injured afferent nerve fibers and in intact (control) afferent nerve fibers were compared. (1) Almost all (98%) A-fibers were mechanosensitive, some of them exhibited additionally weak cold/heat sensitivity; 7% had ongoing activity. (2) Three patterns of physiologically evoked activity were present in the lesioned C-fibers: (a) C-fibers with type 1 cold sensitivity (low cold threshold, inhibition on heating, high level of ongoing and cold-evoked activity; 23%): almost all of them were mechanoinsensitive and 40% of them were additionally heat-sensitive; (b) C-fibers with type 2 cold sensitivity (high cold threshold, low level of ongoing and cold-evoked activity; 23%). All of them were excited by mechanical and/or heat stimuli; (c) cold-insensitive C-fibers (54%), which were heat- and/or mechanosensitive. (3) The proportions of C-fibers exhibiting these three patterns of discharge to physiological stimuli were almost identical in the population of injured C-fibers and in a population of 91 intact cutaneous C-fibers. 4. Ongoing activity was present in 56% of the lesioned C-fibers. Incidence and rate of ongoing activity were the same in the populations of lesioned and intact type 1 cold-sensitive C-fibers. The incidence (but not rate) of ongoing activity was significantly higher in lesioned type 2 cold-sensitive and cold insensitive C-fibers than in the corresponding populations of intact C-fibers (42/93 fibers vs. 11/72 fibers). PMID:19139872

  13. Targeting primary afferent nerves for novel antitussive therapy.

    PubMed

    Undem, Bradley J; Carr, Michael J

    2010-01-01

    The best available data support the hypothesis that there are at least two types of vagal nerves responsible for initiating coughing reflexes. One type of nerve conducts action potentials in the A-range and is characterized by rapidly adapting responses to mechanical probing or acidification of the large airway epithelium. Stimulation of these nerves can evoke cough in unconscious experimental animals and humans. These nerves are important in immediate cough evoked by aspiration and as such perform a critical role in airway defense. The other type of primary afferent nerve involved in cough is the vagal C-fiber. Inhalation of selective C-fiber stimulants leads to cough only in conscious animals. In clinical studies, inhalation of a low concentration of a C-fiber stimulant causes an irritating, itchy urge-to-cough sensation that mimics the urge-to-cough sensations associated with respiratory tract infection, post-infection, gastroesophageal reflux disorders, and inflammatory airway diseases. Here we discuss the recent advances in sensory neurobiology that allow for the targeting of vagal C-fibers for novel antitussive therapy. No attempts are made to be all-inclusive with respect to the numerous possible molecular targets being considered to accomplish this goal. Rather, two general strategies are discussed: decreasing generator potential amplitude and decreasing the efficiency by which a generator potential evokes action-potential discharge. For the first category we focus on two targets, transient receptor potential vanilloid 1 and transient receptor potential A1. For the latter category we focus on recent advances in voltage-gated sodium (Na(V)) channel biology.

  14. Characterization of Mouse Lumbar Splanchnic and Pelvic Nerve Urinary Bladder Mechanosensory Afferents

    PubMed Central

    Xu, Linjing; Gebhart, G. F.

    2009-01-01

    Sensory information from the urinary bladder is conveyed via lumbar splanchnic (LSN) and sacral pelvic (PN) nerves to the spinal cord. In the present report we compared the mechanosensitive properties of single afferent fibers in these two pathways using an in vitro mouse bladder preparation. Mechanosensitive primary afferents were recorded from the LSN or PN and distinguished based on their response to receptive field stimulation with different mechanical stimuli: probing (160 mg to 2 g), stretch (1–25 g), and stroking of the urothelium (10–1,000 mg). Four different classes of afferent were recorded from the LSN and PN: serosal, muscular, muscular/urothielial, and urothelial. The LSN contained principally serosal and muscular afferents (97% of the total sample), whereas all four afferent classes of afferent were present in the PN (63% of which were muscular afferents). In addition, the respective proportions and receptive field distributions differed between the two pathways. Both low- and high-threshold stretch-sensitive muscular afferents were present in both pathways, and muscular afferents in the PN were shown to sensitize after exposure to an inflammatory soup cocktail. The LSN and PN pathways contain different populations of mechanosensitive afferents capable of detecting a range of mechanical stimuli and individually tuned to detect the type, magnitude, and duration of the stimulus. This knowledge broadens our understanding of the potential roles these two pathways play in conveying mechanical information from the bladder to the spinal cord. PMID:18003875

  15. Peripheral innervation patterns of vestibular nerve afferents in the bullfrog utriculus

    NASA Technical Reports Server (NTRS)

    Baird, Richard A.; Schuff, N. R.

    1994-01-01

    Vestibular nerve afferents innervating the bullfrog utriculus differ in their response dynamics and sensitivity to natural stimulation. They also supply hair cells that differ markedly in hair bundle morphology. To examine the peripheral innervation patterns of individual utricular afferents more closely, afferent fibers were labeled by the extracellular injection of horseradish peroxidase (HRP) into the vestibular nerve after sectioning the vestibular nerve medial to Scarpa's ganglion to allow the degeneration of sympathetic and efferent fibers. The peripheral arborizations of individual afferents were then correlated with the diameters of their parent axons, the regions of the macula they innervate, and the number and type of hair cells they supply. The utriculus is divided by the striola, a narrow zone of distinctive morphology, into media and lateral parts. Utiricular afferents were classified as striolar or extrastriolar according to the epithelial entrance of their parent axons and the location of their terminal fields. In general, striolar afferents had thicker parent axons, fewer subepithelial bifurcations, larger terminal fields, and more synaptic endings than afferents in extrstriolar regions. Afferents in a juxtastriolar zone, immediately adjacent to the medial striola, had innervation patterns transitional between those in the striola and more peripheral parts of the medial extrastriola. moast afferents innervated only a single macular zone. The terminal fields of striolar afferents, with the notable exception of a few afferents with thin parent axons, were generally confined to one side of the striola. Hair cells in the bullfrog utriculus have perviously been classified into four types based on hair bundle morphology. Afferents in the extrastriolar and juxtastriolar zones largely or exclusively innervated Type B hair cells, the predominant hair cell type in the utricular macula. Striolar afferents supplied a mixture of four hair cell types, but largely

  16. Regulation of the renal sympathetic nerves in heart failure

    PubMed Central

    Ramchandra, Rohit; Barrett, Carolyn J.

    2015-01-01

    Heart failure (HF) is a serious debilitating condition with poor survival rates and an increasing level of prevalence. HF is associated with an increase in renal norepinephrine (NE) spillover, which is an independent predictor of mortality in HF patients. The excessive sympatho-excitation that is a hallmark of HF has long-term effects that contribute to disease progression. An increase in directly recorded renal sympathetic nerve activity (RSNA) has also been recorded in animal models of HF. This review will focus on the mechanisms controlling sympathetic nerve activity (SNA) to the kidney during normal conditions and alterations in these mechanisms during HF. In particular the roles of afferent reflexes and central mechanisms will be discussed. PMID:26388778

  17. Differential roles of stretch-sensitive pelvic nerve afferents innervating mouse distal colon and rectum

    PubMed Central

    Brumovsky, Pablo R.; Gebhart, Gerald F.

    2010-01-01

    Information about colorectal distension (i.e., colorectal dilation by increased intraluminal pressure) is primarily encoded by stretch-sensitive colorectal afferents in the pelvic nerve (PN). Despite anatomic differences between rectum and distal colon, little is known about the functional roles of colonic vs. rectal afferents in the PN pathway or the quantitative nature of mechanosensory encoding. We utilized an in vitro mouse colorectum-PN preparation to investigate pressure-encoding characteristics of colorectal afferents. The colorectum with PN attached was dissected, opened longitudinally, and pinned flat in a Sylgard-lined chamber. Action potentials of afferent fibers evoked by circumferential stretch (servo-controlled force actuator) were recorded from the PN. Stretch-sensitive fibers were categorized into the following four groups: colonic muscular, colonic muscular/mucosal, rectal muscular, and rectal muscular/mucosal. Seventy-nine stretch-sensitive PN afferents evenly distributed into the above four groups were studied. Rectal muscular afferents had significantly greater stretch-responses than the other three groups. Virtually all rectal afferents (98%) had low thresholds for response and encoded stimulus intensity into the noxious range without obvious saturation. Most colonic afferents (72%) also had low thresholds (<14 mmHg), but a significant proportion (28%) had high thresholds (>18 mmHg) for response. These high-threshold colonic afferents were sensitized to stretch by inflammatory soup; response threshold was significantly reduced (from 23 to 12 mmHg), and response magnitude significantly increased. These results suggest that the encoding of mechanosensory information differs between colonic and rectal stretch-sensitive PN afferents. Rectal afferents have a wide response range to stretch, whereas high-threshold colonic afferents likely contribute to visceral nociception. PMID:20075141

  18. Differential roles of stretch-sensitive pelvic nerve afferents innervating mouse distal colon and rectum.

    PubMed

    Feng, Bin; Brumovsky, Pablo R; Gebhart, Gerald F

    2010-03-01

    Information about colorectal distension (i.e., colorectal dilation by increased intraluminal pressure) is primarily encoded by stretch-sensitive colorectal afferents in the pelvic nerve (PN). Despite anatomic differences between rectum and distal colon, little is known about the functional roles of colonic vs. rectal afferents in the PN pathway or the quantitative nature of mechanosensory encoding. We utilized an in vitro mouse colorectum-PN preparation to investigate pressure-encoding characteristics of colorectal afferents. The colorectum with PN attached was dissected, opened longitudinally, and pinned flat in a Sylgard-lined chamber. Action potentials of afferent fibers evoked by circumferential stretch (servo-controlled force actuator) were recorded from the PN. Stretch-sensitive fibers were categorized into the following four groups: colonic muscular, colonic muscular/mucosal, rectal muscular, and rectal muscular/mucosal. Seventy-nine stretch-sensitive PN afferents evenly distributed into the above four groups were studied. Rectal muscular afferents had significantly greater stretch-responses than the other three groups. Virtually all rectal afferents (98%) had low thresholds for response and encoded stimulus intensity into the noxious range without obvious saturation. Most colonic afferents (72%) also had low thresholds (<14 mmHg), but a significant proportion (28%) had high thresholds (>18 mmHg) for response. These high-threshold colonic afferents were sensitized to stretch by inflammatory soup; response threshold was significantly reduced (from 23 to 12 mmHg), and response magnitude significantly increased. These results suggest that the encoding of mechanosensory information differs between colonic and rectal stretch-sensitive PN afferents. Rectal afferents have a wide response range to stretch, whereas high-threshold colonic afferents likely contribute to visceral nociception.

  19. Laryngeal and tracheal afferent nerve stimulation evokes swallowing in anaesthetized guinea pigs.

    PubMed

    Tsujimura, Takanori; Udemgba, Chioma; Inoue, Makoto; Canning, Brendan J

    2013-09-15

      We describe swallowing reflexes evoked by laryngeal and tracheal vagal afferent nerve stimulation in anaesthetized guinea pigs. The swallowing reflexes evoked by laryngeal citric acid challenges were abolished by recurrent laryngeal nerve (RLN) transection and mimicked by electrical stimulation of the central cut ends of an RLN. By contrast, the number of swallows evoked by upper airway/pharyngeal distensions was not significantly reduced by RLN transection but they were virtually abolished by superior laryngeal nerve transection. Laryngeal citric acid-evoked swallowing was mimicked by laryngeal capsaicin challenges, implicating transient receptor potential vanilloid 1 (TRPV1)-expressing laryngeal afferent nerves arising from the jugular ganglia. The swallowing evoked by citric acid and capsaicin and evoked by electrical stimulation of either the tracheal or the laryngeal mucosa occurred at stimulation intensities that were typically subthreshold for evoking cough in these animals. Swallowing evoked by airway afferent nerve stimulation also desensitized at a much slower rate than cough. We speculate that swallowing is an essential component of airway protection from aspiration associated with laryngeal and tracheal afferent nerve activation. PMID:23858010

  20. The proportions of sympathetic postganglionic and unmyelinated afferent axons in normal and regenerated cat sural nerves.

    PubMed

    Lisney, S J

    1988-03-01

    Electrophysiological experiments have been carried out to see if the proportions of sympathetic postganglionic and unmyelinated afferent axons in a cutaneous nerve were changed after injury and regeneration. It seemed possible that an alteration in the relative numbers of the two groups of axons could contribute to the aetiology of reflex sympathetic dystrophy, but the experiments provided no evidence for such a change. There were, however, signs of a decrease in axon numbers in the regenerated nerves. PMID:3379252

  1. Device-based approaches for renal nerve ablation for hypertension and beyond

    PubMed Central

    Thorp, Alicia A.; Schlaich, Markus P.

    2015-01-01

    Animal and human studies have demonstrated that chronic activation of renal sympathetic nerves is critical in the pathogenesis and perpetuation of treatment-resistant hypertension. Bilateral renal denervation has emerged as a safe and effective, non-pharmacological treatment for resistant hypertension that involves the selective ablation of efferent and afferent renal nerves to lower blood pressure. However, the most recent and largest randomized controlled trial failed to confirm the primacy of renal denervation over a sham procedure, prompting widespread re-evaluation of the therapy's efficacy. Disrupting renal afferent sympathetic signaling to the hypothalamus with renal denervation lowers central sympathetic tone, which has the potential to confer additional clinical benefits beyond blood pressure control. Specifically, there has been substantial interest in the use of renal denervation as either a primary or adjunct therapy in pathological conditions characterized by central sympathetic overactivity such as renal disease, heart failure and metabolic-associated disorders. Recent findings from pre-clinical and proof-of-concept studies appear promising with renal denervation shown to confer cardiovascular and metabolic benefits, largely independent of changes in blood pressure. This review explores the pathological rationale for targeting sympathetic renal nerves for blood pressure control. Latest developments in renal nerve ablation modalities designed to improve procedural success are discussed along with prospective findings on the efficacy of renal denervation to lower blood pressure in treatment-resistant hypertensive patients. Preliminary evidence in support of renal denervation as a possible therapeutic option in disease states characterized by central sympathetic overactivity is also presented. PMID:26217232

  2. Afferent vagal nerve stimulation resets baroreflex neural arc and inhibits sympathetic nerve activity

    PubMed Central

    Saku, Keita; Kishi, Takuya; Sakamoto, Kazuo; Hosokawa, Kazuya; Sakamoto, Takafumi; Murayama, Yoshinori; Kakino, Takamori; Ikeda, Masataka; Ide, Tomomi; Sunagawa, Kenji

    2014-01-01

    Abstract It has been established that vagal nerve stimulation (VNS) benefits patients and/or animals with heart failure. However, the impact of VNS on sympathetic nerve activity (SNA) remains unknown. In this study, we investigated how vagal afferent stimulation (AVNS) impacts baroreflex control of SNA. In 12 anesthetized Sprague–Dawley rats, we controlled the pressure in isolated bilateral carotid sinuses (CSP), and measured splanchnic SNA and arterial pressure (AP). Under a constant CSP, increasing the voltage of AVNS dose dependently decreased SNA and AP. The averaged maximal inhibition of SNA was ‐28.0 ± 10.3%. To evaluate the dynamic impacts of AVNS on SNA, we performed random AVNS using binary white noise sequences, and identified the transfer function from AVNS to SNA and that from SNA to AP. We also identified transfer functions of the native baroreflex from CSP to SNA (neural arc) and from SNA to AP (peripheral arc). The transfer function from AVNS to SNA strikingly resembled the baroreflex neural arc and the transfer functions of SNA to AP were indistinguishable whether we perturbed ANVS or CSP, indicating that they likely share common central and peripheral neural mechanisms. To examine the impact of AVNS on baroreflex, we changed CSP stepwise and measured SNA and AP responses with or without AVNS. AVNS resets the sigmoidal neural arc downward, but did not affect the linear peripheral arc. In conclusion, AVNS resets the baroreflex neural arc and induces sympathoinhibition in the same manner as the control of SNA and AP by the native baroreflex. PMID:25194023

  3. Impaired excitability of renal afferent innervation after exposure to the inflammatory chemokine CXCL1.

    PubMed

    Ditting, Tilmann; Freisinger, Wolfgang; Rodionova, Kristina; Schatz, Johannes; Lale, Nena; Heinlein, Sonja; Linz, Peter; Ott, Christian; Schmieder, Roland E; Scrogin, Karie E; Veelken, Roland

    2016-03-01

    Recently, we showed that renal afferent neurons exhibit a unique firing pattern, i.e., predominantly sustained firing, upon stimulation. Pathological conditions such as renal inflammation likely alter excitability of renal afferent neurons. Here, we tested whether the proinflammatory chemokine CXCL1 alters the firing pattern of renal afferent neurons. Rat dorsal root ganglion neurons (Th11-L2), retrogradely labeled with dicarbocyanine dye, were incubated with CXCL1 (20 h) or vehicle before patch-clamp recording. The firing pattern of neurons was characterized as tonic, i.e., sustained action potential (AP) firing, or phasic, i.e., <5 APs following current injection. Of the labeled renal afferents treated with vehicle, 58.9% exhibited a tonic firing pattern vs. 7.8%, in unlabeled, nonrenal neurons (P < 0.05). However, after exposure to CXCL1, significantly more phasic neurons were found among labeled renal neurons; hence the occurrence of tonic neurons with sustained firing upon electrical stimulation decreased (35.6 vs. 58.9%, P < 0.05). The firing frequency among tonic neurons was not statistically different between control and CXCL1-treated neurons. However, the lower firing frequency of phasic neurons was even further decreased with CXCL1 exposure [control: 1 AP/600 ms (1-2) vs. CXCL1: 1 AP/600 ms (1-1); P < 0.05; median (25th-75th percentile)]. Hence, CXCL1 shifted the firing pattern of renal afferents from a predominantly tonic to a more phasic firing pattern, suggesting that CXCL1 reduced the sensitivity of renal afferent units upon stimulation.

  4. Facilitation of the swallowing reflex with bilateral afferent input from the superior laryngeal nerve.

    PubMed

    Takahashi, Kojiro; Shingai, Tomio; Saito, Isao; Yamamura, Kensuke; Yamada, Yoshiaki; Kitagawa, Junichi

    2014-03-01

    To determine the cooperative effect of laryngeal afferent signals on the swallowing reflex, we examined whether afferent signals originating from the left and right superior laryngeal nerve (SLN) modulates elicitation of the swallowing reflex in urethane-anesthetized rats. Mylohyoid electromyographic activity was recorded to quantify the swallowing reflex. The onset latency of the swallowing reflex and the time intervals between successive swallows were used to quantify and compare the effects of unilateral and bilateral electrical stimulations of the SLN. The mean latency of the first swallow and the mean time interval between swallows evoked with low frequency stimulation were both significantly different between unilateral and bilateral stimulations of the SLN. These findings suggest that facilitatory effect of afferent signals originating from the SLN bilaterally increase the motoneuronal activity in the medullary swallowing center and enhance the swallowing reflex.

  5. Somatic modulation of spinal reflex bladder activity mediated by nociceptive bladder afferent nerve fibers in cats.

    PubMed

    Xiao, Zhiying; Rogers, Marc J; Shen, Bing; Wang, Jicheng; Schwen, Zeyad; Roppolo, James R; de Groat, William C; Tai, Changfeng

    2014-09-15

    The goal of the present study was to determine if supraspinal pathways are necessary for inhibition of bladder reflex activity induced by activation of somatic afferents in the pudendal or tibial nerve. Cats anesthetized with α-chloralose were studied after acute spinal cord transection at the thoracic T9/T10 level. Dilute (0.25%) acetic acid was used to irritate the bladder, activate nociceptive afferent C-fibers, and trigger spinal reflex bladder contractions (amplitude: 19.3 ± 2.9 cmH2O). Hexamethonium (a ganglionic blocker, intravenously) significantly (P < 0.01) reduced the amplitude of the reflex bladder contractions to 8.5 ± 1.9 cmH2O. Injection of lidocaine (2%, 1-2 ml) into the sacral spinal cord or transection of the sacral spinal roots and spinal cord further reduced the contraction amplitude to 4.2 ± 1.3 cmH2O. Pudendal nerve stimulation (PNS) at frequencies of 0.5-5 Hz and 40 Hz but not at 10-20 Hz inhibited reflex bladder contractions, whereas tibial nerve stimulation (TNS) failed to inhibit bladder contractions at all tested frequencies (0.5-40 Hz). These results indicate that PNS inhibition of nociceptive afferent C-fiber-mediated spinal reflex bladder contractions can occur at the spinal level in the absence of supraspinal pathways, but TNS inhibition requires supraspinal pathways. In addition, this study shows, for the first time, that after acute spinal cord transection reflex bladder contractions can be triggered by activating nociceptive bladder afferent C-fibers using acetic acid irritation. Understanding the sites of action for PNS or TNS inhibition is important for the clinical application of pudendal or tibial neuromodulation to treat bladder dysfunctions.

  6. Somatic modulation of spinal reflex bladder activity mediated by nociceptive bladder afferent nerve fibers in cats.

    PubMed

    Xiao, Zhiying; Rogers, Marc J; Shen, Bing; Wang, Jicheng; Schwen, Zeyad; Roppolo, James R; de Groat, William C; Tai, Changfeng

    2014-09-15

    The goal of the present study was to determine if supraspinal pathways are necessary for inhibition of bladder reflex activity induced by activation of somatic afferents in the pudendal or tibial nerve. Cats anesthetized with α-chloralose were studied after acute spinal cord transection at the thoracic T9/T10 level. Dilute (0.25%) acetic acid was used to irritate the bladder, activate nociceptive afferent C-fibers, and trigger spinal reflex bladder contractions (amplitude: 19.3 ± 2.9 cmH2O). Hexamethonium (a ganglionic blocker, intravenously) significantly (P < 0.01) reduced the amplitude of the reflex bladder contractions to 8.5 ± 1.9 cmH2O. Injection of lidocaine (2%, 1-2 ml) into the sacral spinal cord or transection of the sacral spinal roots and spinal cord further reduced the contraction amplitude to 4.2 ± 1.3 cmH2O. Pudendal nerve stimulation (PNS) at frequencies of 0.5-5 Hz and 40 Hz but not at 10-20 Hz inhibited reflex bladder contractions, whereas tibial nerve stimulation (TNS) failed to inhibit bladder contractions at all tested frequencies (0.5-40 Hz). These results indicate that PNS inhibition of nociceptive afferent C-fiber-mediated spinal reflex bladder contractions can occur at the spinal level in the absence of supraspinal pathways, but TNS inhibition requires supraspinal pathways. In addition, this study shows, for the first time, that after acute spinal cord transection reflex bladder contractions can be triggered by activating nociceptive bladder afferent C-fibers using acetic acid irritation. Understanding the sites of action for PNS or TNS inhibition is important for the clinical application of pudendal or tibial neuromodulation to treat bladder dysfunctions. PMID:25056352

  7. Adenosine triphosphate attenuates renal sympathetic nerve activity through left ventricular chemosensitive receptors.

    PubMed

    Taneyama, C; Benson, K T; Hild, P G; Goto, H

    1997-02-01

    We previously reported that ATP, but not adenosine, administered i.v. attenuates the baroreflex-mediated increase in sympathetic nerve activity in response to arterial hypotension by a vagal afferent mechanism. It was not elucidated in that study which vagal afferent endings are involved. Mongrel dogs were anesthetized with alpha-chloralose, thoracotomy was performed and a 27-gauge hypodermic needle was inserted into the left circumflex coronary artery. The left renal sympathetic nerves were isolated and placed on a bipolar silver electrode for measurement of renal sympathetic nerve activity (RSNA). Dose-response effects of intracoronary or i.v. infusion of ATP (100, 200 or 400 microg/kg/min) on RSNA and mean arterial pressure were studied in neuraxis-intact and cervically vagotomized dogs. RSNA was increased dose-dependently with decreasing mean arterial pressure during the i.v. ATP infusion. Elevation of RSNA was attenuated by higher intracoronary ATP infusion rates, despite the fact that mean arterial pressure was decreased dose-dependently. Left ventricular end-diastolic pressure, however, remained unchanged. This suppression of RSNA by the intracoronary ATP infusion was completely abolished by bilateral cervical vagotomy. Our data suggest that ATP attenuates reflex increases in sympathetic nerve activity by possibly stimulating ventricular chemoreceptors with cardiac vagal afferents. PMID:9023265

  8. Social stress in mice induces urinary bladder overactivity and increases TRPV1 channel-dependent afferent nerve activity

    PubMed Central

    Heppner, Thomas J.; Tykocki, Nathan R.; Erickson, Cuixia Shi; Vizzard, Margaret A.; Nelson, Mark T.

    2015-01-01

    Social stress has been implicated as a cause of urinary bladder hypertrophy and dysfunction in humans. Using a murine model of social stress, we and others have shown that social stress leads to bladder overactivity. Here, we show that social stress leads to bladder overactivity, increased bladder compliance, and increased afferent nerve activity. In the social stress paradigm, 6-wk-old male C57BL/6 mice were exposed for a total of 2 wk, via barrier cage, to a C57BL/6 retired breeder aggressor mouse. We performed conscious cystometry with and without intravesical infusion of the TRPV1 inhibitor capsazepine, and measured pressure-volume relationships and afferent nerve activity during bladder filling using an ex vivo bladder model. Stress leads to a decrease in intermicturition interval and void volume in vivo, which was restored by capsazepine. Ex vivo studies demonstrated that at low pressures, bladder compliance and afferent activity were elevated in stressed bladders compared with unstressed bladders. Capsazepine did not significantly change afferent activity in unstressed mice, but significantly decreased afferent activity at all pressures in stressed bladders. Immunohistochemistry revealed that TRPV1 colocalizes with CGRP to stain nerve fibers in unstressed bladders. Colocalization significantly increased along the same nerve fibers in the stressed bladders. Our results support the concept that social stress induces TRPV1-dependent afferent nerve activity, ultimately leading to the development of overactive bladder symptoms. PMID:26224686

  9. An in vitro method for recording single unit afferent activity from mesenteric nerves innervating isolated segments of rat ileum.

    PubMed

    Sharkey, K A; Cervero, F

    1986-04-01

    A technique has been developed for recording single unit afferent activity from mesenteric nerves in isolated segments of rat distal ileum in vitro. The preparation consists of a 3-cm segment of ileum, containing a single neurovascular bundle, held horizontally in an organ bath. One end of the segment is attached to a tension transducer to record changes in longitudinal tension of the gut muscle and the other is connected to a pressure transducer to record changes in intra-luminal pressure. Electromyographic activity of the smooth muscle is recorded using glass-insulated tungsten microelectrodes inserted in the wall of the gut. Afferent nerve activity is recorded with a monopolar platinum wire electrode from filaments of the mesenteric nerves that run between the artery and vein supplying the segment. This preparation permits the detailed analysis of the electrical activity of intestinal afferent nerve fibres correlated with mechanical and chemical events occurring naturally in the gut or imposed experimentally on it.

  10. Impaired nitric oxide-independent dilation of renal afferent arterioles in spontaneously hypertensive rats.

    PubMed

    Hayashi, K; Matsuda, H; Nagahama, T; Fujiwara, K; Ozawa, Y; Kubota, E; Honda, M; Tokuyama, H; Saruta, T

    1999-03-01

    Sustained hypertension alters vasomotor regulation in various vascular beds. We studied whether nitric oxide (NO)-dependent and NO-independent vasodilator mechanisms are altered in renal microvessels in hypertension. To directly visualize the renal microcirculation, the isolated perfused hydronephrotic rat kidney model was used. After pretreatment with indomethacin (100 micromol/l), afferent arterioles were constricted by norepinephrine (NE) or by increasing renal arterial pressure (i.e., myogenic constriction; from 80 to 180 mmHg). Acetylcholine (ACH) was then added, and the renal microvascular response was assessed by computer-assisted video image analysis. A similar protocol was conducted in the presence of nitro-L-arginine methylester (L-NAME; 100 micromol/l). During NE constriction, ACH caused dose-dependent and sustained vasodilation of the afferent arteriole, similar in magnitude in Wistar-Kyoto rats (WKY) and spontaneously hypertensive rats (SHR). In the presence of L-NAME, ACH (0.01-1 micromol/l) elicited only transient dilation, and the degree of vasodilation was very low in SHR. During myogenic constriction, afferent arterioles from WKY and SHR kidneys responded to ACH with only transient vasodilation, which was unaffected by NO inhibition; the transient vasodilative responses elicited by ACH (0.1-1 micromol/l) were smaller in SHR than in WKY. In conclusion, ACH has both sustained and transient vasodilative effects on the afferent arteriole. Sustained vasodilation is attributed to NO generation, which is similar in WKY and SHR. In contrast, transient vasodilation, mediated by NO-independent vasodilator factors, is impaired in SHR. Deranged vasodilatory mechanisms in hypertension may disturb the renal microcirculation, which may result in renal injury.

  11. The neural signal of angular head position in primary afferent vestibular nerve axons

    PubMed Central

    Loe, P. R.; Tomko, David L.; Werner, G.

    1973-01-01

    1. The relation between discharge frequency and angular head position was determined for a population of regularly discharging single first-order vestibular neurones in the eighth nerve of the barbiturate anaesthetized cat. 2. Each axon had a characteristic head position which was maximally excitatory to it, and a diametrically opposed head position which was minimally excitatory. 3. After correction for phase shifts introduced by the orientation of preferred excitability, discharge rate in statoreceptor afferents varied as a power function of the sine of angular head position with exponents ranging from 0·9 to 1·6. 4. Experimentally determined discharge rates were compared with the predictions of a computer simulation model incorporating the idea that shearing force acting on morphologically polarized receptors is the adequate stimulus for macular receptor cells. 5. This approach permitted the identification of a population of first-order vestibular afferents whose discharge frequency varied with head position as did the magnitude of shear force computed for individual receptors, each most excited in a particular head position. 6. The majority of the spatial orientations of maximal sensitivity defined a surface which is tilted by approximately 30° with reference to the Horsley—Clarke horizontal plane, implying that most statoreceptor afferents are maximally sensitive to position changes when the cat's head is at or near its normal position. ImagesPlate 1Plate 2Plate 3 PMID:4702433

  12. Renal artery nerve distribution and density in the porcine model: biologic implications for the development of radiofrequency ablation therapies.

    PubMed

    Tellez, Armando; Rousselle, Serge; Palmieri, Taylor; Rate, William R; Wicks, Joan; Degrange, Ashley; Hyon, Chelsea M; Gongora, Carlos A; Hart, Randy; Grundy, Will; Kaluza, Greg L; Granada, Juan F

    2013-12-01

    Catheter-based renal artery denervation has demonstrated to be effective in decreasing blood pressure among patients with refractory hypertension. The anatomic distribution of renal artery nerves may influence the safety and efficacy profile of this procedure. We aimed to describe the anatomic distribution and density of periarterial renal nerves in the porcine model. Thirty arterial renal sections were included in the analysis by harvesting a tissue block containing the renal arteries and perirenal tissue from each animal. Each artery was divided into 3 segments (proximal, mid, and distal) and assessed for total number, size, and depth of the nerves according to the location. Nerve counts were greatest proximally (45.62% of the total nerves) and decreased gradually distally (mid, 24.58%; distal, 29.79%). The distribution in nerve size was similar across all 3 sections (∼40% of the nerves, 50-100 μm; ∼30%, 0-50 μm; ∼20%, 100-200 μm; and ∼10%, 200-500 μm). In the arterial segments ∼45% of the nerves were located within 2 mm from the arterial wall whereas ∼52% of all nerves were located within 2.5 mm from the arterial wall. Sympathetic efferent fibers outnumbered sensory afferent fibers overwhelmingly, intermixed within the nerve bundle. In the porcine model, renal artery nerves are seen more frequently in the proximal segment of the artery. Nerve size distribution appears to be homogeneous throughout the artery length. Nerve bundles progress closer to the arterial wall in the distal segments of the artery. This anatomic distribution may have implications for the future development of renal denervation therapies.

  13. Implications for Bidirectional Signaling Between Afferent Nerves and Urothelial Cells—ICI-RS 2014

    PubMed Central

    Kanai, Anthony; Fry, Christopher; Ikeda, Youko; Kullmann, Florenta Aura; Parsons, Brian; Birder, Lori

    2016-01-01

    Aims To present a synopsis of the presentations and discussions from Think Tank I, “Implications for afferent–urothelial bidirectional communication” of the 2014 International Consultation on Incontinence-Research Society (ICI-RS) meeting in Bristol, UK. Methods The participants presented what is new, currently understood or still unknown on afferent–urothelial signaling mechanisms. New avenues of research and experimental methodologies that are or could be employed were presented and discussed. Results It is clear that afferent–urothelial interactions are integral to the regulation of normal bladder function and that its disruption can have detrimental consequences. The urothelium is capable of releasing numerous signaling factors that can affect sensory neurons innervating the suburothelium. However, the understanding of how factors released from urothelial cells and afferent nerve terminals regulate one another is incomplete. Utilization of techniques such as viruses that genetically encode Ca2+ sensors, based on calmodulin and green fluorescent protein, has helped to address the cellular mechanisms involved. Additionally, the epithelial–neuronal interactions in the urethra may also play a significant role in lower urinary tract regulation and merit further investigation. Conclusion The signaling capabilities of the urothelium and afferent nerves are well documented, yet how these signals are integrated to regulate bladder function is unclear. There is unquestionably a need for expanded methodologies to further our understanding of lower urinary tract sensory mechanisms and their contribution to various pathologies. PMID:26872567

  14. Representation of Afferent Signals from Forearm Muscle and Cutaneous Nerves in the Primary Somatosensory Cortex of the Macaque Monkey

    PubMed Central

    Yamada, Hiroshi; Yaguchi, Hiroaki; Tomatsu, Saeka; Takei, Tomohiko; Oya, Tomomichi

    2016-01-01

    Proprioception is one’s overall sense of the relative positions and movements of the various parts of one’s body. The primary somatosensory cortex (SI) is involved in generating the proprioception by receiving peripheral sensory inputs from both cutaneous and muscle afferents. In particular, area 3a receives input from muscle afferents and areas 3b and 1 from cutaneous afferents. However, segregation of two sensory inputs to these cortical areas has not been evaluated quantitatively because of methodological difficulties in distinguishing the incoming signals. To overcome this, we applied electrical stimulation separately to two forearm nerves innervating muscle (deep radial nerve) and skin (superficial radial nerve), and examined the spatiotemporal distribution of sensory evoked potentials (SEPs) in SI of anaesthetized macaques. The SEPs arising from the deep radial nerve were observed exclusively at the bottom of central sulcus (CS), which was identified as area 3a using histological reconstruction. In contrast, SEPs evoked by stimulation of the superficial radial nerve were observed in the superficial part of SI, identified as areas 3b and 1. In addition to these earlier, larger potentials, we also found small and slightly delayed SEPs evoked by cutaneous nerve stimulation in area 3a. Coexistence of the SEPs from both deep and superficial radial nerves suggests that area 3a could integrate muscle and cutaneous signals to shape proprioception. PMID:27701434

  15. An In Vitro Adult Mouse Muscle-nerve Preparation for Studying the Firing Properties of Muscle Afferents

    PubMed Central

    Franco, Joy A.; Kloefkorn, Heidi E.; Hochman, Shawn; Wilkinson, Katherine A.

    2014-01-01

    Muscle sensory neurons innervating muscle spindles and Golgi tendon organs encode length and force changes essential to proprioception. Additional afferent fibers monitor other characteristics of the muscle environment, including metabolite buildup, temperature, and nociceptive stimuli. Overall, abnormal activation of sensory neurons can lead to movement disorders or chronic pain syndromes. We describe the isolation of the extensor digitorum longus (EDL) muscle and nerve for in vitro study of stretch-evoked afferent responses in the adult mouse. Sensory activity is recorded from the nerve with a suction electrode and individual afferents can be analyzed using spike sorting software. In vitro preparations allow for well controlled studies on sensory afferents without the potential confounds of anesthesia or altered muscle perfusion. Here we describe a protocol to identify and test the response of muscle spindle afferents to stretch. Importantly, this preparation also supports the study of other subtypes of muscle afferents, response properties following drug application and the incorporation of powerful genetic approaches and disease models in mice. PMID:25285602

  16. Differential presynaptic control of the synaptic effectiveness of cutaneous afferents evidenced by effects produced by acute nerve section

    PubMed Central

    Rudomin, P; Jiménez, I; Chávez, D

    2013-01-01

    In the anaesthetized cat, the acute section of the saphenous (Saph) and/or the superficial peroneal (SP) nerves was found to produce a long-lasting increase of the field potentials generated in the dorsal horn by stimulation of the medial branch of the sural (mSU) nerve. This facilitation was associated with changes in the level of the tonic primary afferent depolarization (PAD) of the mSU intraspinal terminals. The mSU afferent fibres projecting into Rexed's laminae III–IV were subjected to a tonic PAD that was reduced by the acute section of the SP and/or the Saph nerves. The mSU afferents projecting deeper into the dorsal horn (Rexed's laminae V–VI) were instead subjected to a tonic PAD that was increased after Saph and SP acute nerve section. A differential control of the synaptic effectiveness of the low-threshold cutaneous afferents according to their sites of termination within the dorsal horn is envisaged as a mechanism that allows selective processing of sensory information in response to tactile and nociceptive stimulation or during the execution of different motor tasks. PMID:23478136

  17. Superoxide enhances Ca2+ entry through L-type channels in the renal afferent arteriole.

    PubMed

    Vogel, Paul A; Yang, Xi; Moss, Nicholas G; Arendshorst, William J

    2015-08-01

    Reactive oxygen species regulate cardiovascular and renal function in health and disease. Superoxide participates in acute calcium signaling in afferent arterioles and renal vasoconstriction produced by angiotensin II, endothelin, thromboxane, and pressure-induced myogenic tone. Known mechanisms by which superoxide acts include quenching of nitric oxide and increased ADP ribosyl cyclase/ryanodine-mediated calcium mobilization. The effect(s) of superoxide on other calcium signaling pathways in the renal microcirculation is poorly understood. The present experiments examined the acute effect of superoxide generated by paraquat on calcium entry pathways in isolated rat afferent arterioles. The peak increase in cytosolic calcium concentration caused by KCl (40 mmol/L) was 99±14 nmol/L. The response to this membrane depolarization was mediated exclusively by L-type channels because it was abolished by nifedipine but was unaffected by the T-type channel blocker mibefradil. Paraquat increased superoxide production (dihydroethidium fluorescence), tripled the peak response to KCl to 314±68 nmol/L (P<0.001) and doubled the plateau response. These effects were abolished by tempol and nitroblue tetrazolium, but not by catalase, confirming actions of superoxide and not of hydrogen peroxide. Unaffected by paraquat and superoxide was calcium entry through store-operated calcium channels activated by thapsigargin-induced calcium depletion of sarcoplasmic reticular stores. Also unresponsive to paraquat was ryanodine receptor-mediated calcium-induced calcium release from the sarcoplasmic reticulum. Our results provide new evidence that superoxide enhances calcium entry through L-type channels activated by membrane depolarization in rat cortical afferent arterioles, without affecting calcium entry through store-operated entry or ryanodine receptor-mediated calcium mobilization. PMID:26034201

  18. Effect of synthetic cationic protein on mechanoexcitability of vagal afferent nerve subtypes in guinea pig esophagus.

    PubMed

    Yu, Shaoyong; Ouyang, Ann

    2011-12-01

    Eosinophilic esophagitis is characterized by increased infiltration and degranulation of eosinophils in the esophagus. Whether eosinophil-derived cationic proteins regulate esophageal sensory nerve function is still unknown. Using synthetic cationic protein to investigate such effect, we performed extracellular recordings from vagal nodose or jugular neurons in ex vivo esophageal-vagal preparations with intact nerve endings in the esophagus. Nerve excitabilities were determined by comparing action potentials evoked by esophageal distensions before and after perfusion of synthetic cationic protein poly-L-lysine (PLL) with or without pretreatment with poly-L-glutamic acid (PLGA), which neutralized cationic charges of PLL. Perfusion with PLL did not evoke action potentials in esophageal nodose C fibers but increased their responses to esophageal distension. This potentiation effect lasted for 30 min after washing out of PLL. Pretreatment with PLGA significantly inhibited PLL-induced mechanohyperexcitability of esophageal nodose C fibers. In esophageal nodose Aδ fibers, perfusion with PLL did not evoke action potentials. In contrast to nodose C fibers, both the spontaneous discharges and the responses to esophageal distension in nodose Aδ fibers were decreased by perfusion with PLL, which can be restored after washing out PLL for 30-60 min. Pretreatment with PLGA attenuated PLL-induced decrease in spontaneous discharge and mechanoexcitability of esophageal nodose Aδ fibers. In esophageal jugular C fibers, PLL neither evoked action potentials nor changed their responses to esophageal distension. Collectively, these data demonstrated that synthetic cationic protein did not evoke action potential discharges of esophageal vagal afferents but had distinctive sensitization effects on their responses to esophageal distension.

  19. TRPM8 function and expression in vagal sensory neurons and afferent nerves innervating guinea pig esophagus.

    PubMed

    Yu, Xiaoyun; Hu, Youtian; Ru, Fei; Kollarik, Marian; Undem, Bradley J; Yu, Shaoyong

    2015-03-15

    Sensory transduction in esophageal afferents requires specific ion channels and receptors. TRPM8 is a new member of the transient receptor potential (TRP) channel family and participates in cold- and menthol-induced sensory transduction, but its role in visceral sensory transduction is still less clear. This study aims to determine TRPM8 function and expression in esophageal vagal afferent subtypes. TRPM8 agonist WS-12-induced responses were first determined in nodose and jugular neurons by calcium imaging and then investigated by whole cell patch-clamp recordings in Dil-labeled esophageal nodose and jugular neurons. Extracellular single-unit recordings were performed in nodose and jugular C fiber neurons using ex vivo esophageal-vagal preparations with intact nerve endings in the esophagus. TRPM8 mRNA expression was determined by single neuron RT-PCR in Dil-labeled esophageal nodose and jugular neurons. The TRPM8 agonist WS-12 elicited calcium influx in a subpopulation of jugular but not nodose neurons. WS-12 activated outwardly rectifying currents in esophageal Dil-labeled jugular but not nodose neurons in a dose-dependent manner, which could be inhibited by the TRPM8 inhibitor AMTB. WS-12 selectively evoked action potential discharges in esophageal jugular but not nodose C fibers. Consistently, TRPM8 transcripts were highly expressed in esophageal Dil-labeled TRPV1-positive jugular neurons. In summary, the present study demonstrated a preferential expression and function of TRPM8 in esophageal vagal jugular but not nodose neurons and C fiber subtypes. This provides a distinctive role of TRPM8 in esophageal sensory transduction and may lead to a better understanding of the mechanisms of esophageal sensation and nociception.

  20. Persistent Increase in Blood Pressure After Renal Nerve Stimulation in Accessory Renal Arteries After Sympathetic Renal Denervation.

    PubMed

    de Jong, Mark R; Hoogerwaard, Annemiek F; Gal, Pim; Adiyaman, Ahmet; Smit, Jaap Jan J; Delnoy, Peter Paul H M; Ramdat Misier, Anand R; van Hasselt, Boudewijn A A M; Heeg, Jan-Evert; le Polain de Waroux, Jean-Benoit; Lau, Elizabeth O Y; Staessen, Jan A; Persu, Alexandre; Elvan, Arif

    2016-06-01

    Blood pressure response to renal denervation is highly variable, and the proportion of responders is disappointing. This may be partly because of accessory renal arteries too small for denervation, causing incomplete ablation. Renal nerve stimulation before and after renal denervation is a promising approach to assess completeness of renal denervation and may predict blood pressure response to renal denervation. The objective of the current study was to assess renal nerve stimulation-induced blood pressure increase before and after renal sympathetic denervation in main and accessory renal arteries of anaesthetized patients with drug-resistant hypertension. The study included 21 patients. Nine patients had at least 1 accessory renal artery in which renal denervation was not feasible. Renal nerve stimulation was performed in the main arteries of all patients and in accessory renal arteries of 6 of 9 patients with accessory arteries, both before and after renal sympathetic denervation. Renal nerve stimulation before renal denervation elicited a substantial increase in systolic blood pressure, both in main (25.6±2.9 mm Hg; P<0.001) and accessory (24.3±7.4 mm Hg; P=0.047) renal arteries. After renal denervation, renal nerve stimulation-induced systolic blood pressure increase was blunted in the main renal arteries (Δ systolic blood pressure, 8.6±3.7 mm Hg; P=0.020), but not in the nondenervated renal accessory renal arteries (Δ systolic blood pressure, 27.1±7.6 mm Hg; P=0.917). This residual source of renal sympathetic tone may result in persistent hypertension after ablation and partly account for the large response variability.

  1. Autosomal dominant optic nerve colobomas, vesicoureteral reflux, and renal anomalies

    SciTech Connect

    Schimmenti, L.A.; Pierpont, M.E.; Carpenter, B.L.M.

    1995-11-06

    We describe a father and 3 sons with optic nerve colobomas, vesicoureteral reflux, and renal anomalies. The youngest son had congenital renal failure and ultimately underwent renal transplantation. The father and one son had high frequency hearing loss. There were no other affected relatives. We conclude that the association of optic nerve colobomas, renal anomalies, and vesicoureteral reflux comprises a unique autosomal dominant syndrome. Molecular investigations have determined this disorder to be associated with a single nucleotide deletion in the PAX2 gene. 16 refs., 3 figs.

  2. Identification of Different Types of Spinal Afferent Nerve Endings That Encode Noxious and Innocuous Stimuli in the Large Intestine Using a Novel Anterograde Tracing Technique

    PubMed Central

    Spencer, Nick J.; Kyloh, Melinda; Duffield, Michael

    2014-01-01

    In mammals, sensory stimuli in visceral organs, including those that underlie pain perception, are detected by spinal afferent neurons, whose cell bodies lie in dorsal root ganglia (DRG). One of the major challenges in visceral organs has been how to identify the different types of nerve endings of spinal afferents that transduce sensory stimuli into action potentials. The reason why spinal afferent nerve endings have been so challenging to identify is because no techniques have been available, until now, that can selectively label only spinal afferents, in high resolution. We have utilized an anterograde tracing technique, recently developed in our laboratory, which facilitates selective labeling of only spinal afferent axons and their nerve endings in visceral organs. Mice were anesthetized, lumbosacral DRGs surgically exposed, then injected with dextran-amine. Seven days post-surgery, the large intestine was removed. The characteristics of thirteen types of spinal afferent nerve endings were identified in detail. The greatest proportion of nerve endings was in submucosa (32%), circular muscle (25%) and myenteric ganglia (22%). Two morphologically distinct classes innervated myenteric ganglia. These were most commonly a novel class of intraganglionic varicose endings (IGVEs) and occasionally rectal intraganglionic laminar endings (rIGLEs). Three distinct classes of varicose nerve endings were found to innervate the submucosa and circular muscle, while one class innervated internodal strands, blood vessels, crypts of lieberkuhn, the mucosa and the longitudinal muscle. Distinct populations of sensory endings were CGRP-positive. We present the first complete characterization of the different types of spinal afferent nerve endings in a mammalian visceral organ. The findings reveal an unexpectedly complex array of different types of primary afferent endings that innervate specific layers of the large intestine. Some of the novel classes of nerve endings identified

  3. Relation between discharge regularity and responses to externally applied galvanic currents in vestibular nerve afferents of the squirrel monkey.

    PubMed

    Goldberg, J M; Smith, C E; Fernández, C

    1984-06-01

    Most vestibular nerve afferents can be classified as regularly or irregularly discharging. Two factors are theoretically identified as being potentially responsible for differences in discharge regularity. The first, ascribable to synaptic noise, is the variance (sigma v2) characterizing the transmembrane voltage fluctuations of the axon's spike trigger site, i.e., the place where impulses normally arise. The second factor is the slope (dmuv/dt) of the trigger site's postspike recovery function. Were (dmuv/dt) a major determinant of discharge regularity, the theory predicts that the more irregular the discharge of a unit, the greater should be its sensitivity to externally applied galvanic currents and the faster should be the postspike recovery of its electrical excitability. The predictions would not hold if differences in the discharge regularity between units largely reflected variations in sigma v. To test these predictions, the responses of vestibular nerve afferents to externally applied galvanic currents were studied in the barbiturate-anesthetized squirrel monkey. Current steps of 5-s duration and short (50 microsecond) shocks were delivered by way of the perilymphatic space of the vestibule. Results were similar regardless of which end organ an afferent innervated. The regularity of discharge of each unit was expressed by a normalized coefficient of variation (CV*). The galvanic sensitivity (beta p) of a unit, measured from its response to current steps, was linearly related to discharge regularity (CV*), there being approximately 20-fold variations in both variables across the afferent population. Various geometric factors--including fiber diameter, position of individual axons within the various nerve branches, and the configuration of unmyelinated processes within the sensory epithelium--are unlikely to have made a major contribution to the positive relation between beta P and CV*. The postspike recovery of electrical excitability was measured as

  4. Evidence for the participation of glutamate in reflexes involving afferent, substance P-containing nerve fibres in the rat.

    PubMed

    Juránek, I; Lembeck, F

    1996-01-01

    1. Responses mediated, either peripherally or centrally, by substance P-containing primary afferent C-fibres were investigated in the rat following impairment of axonal transport by colchicine (120 micrograms kg-1, i.p., daily for 3 days), and after treatment with the tachykinin antagonist SR-140333 (10-100 micrograms kg-1, i.v.) or the N-methyl-D-aspartate (NMDA) antagonist MK-801 (100 micrograms kg-1). 2. Peripheral effects mediated by afferent C-fibres were measured by plasma protein extravasation (Evans blue method), following antidromic stimulation of the sciatic nerve, topical application of mustard oil and, as control, i.v. injection of substance P. SR-140333 (100 micrograms kg-1) reduced the effects by 86%, 75% and 74%, respectively. Colchicine reduced the effects of the first two stimuli by 31% and 33% and, as expected not the effect of substance P. The increase of paw skin temperature following capsaicin i.v. was inhibited by SR-140333, but not by colchicine. MK-801 had no effect on the plasma protein extravasation following antidromic sciatic nerve stimulation or on the rise of paw skin temperature induced by capsaicin i.v., thus excluding an effect of MK-801 on peripheral terminals of afferent neurones. 3. Depressor reflexes, which are known to be mediated by capsaicin-sensitive afferent neuones, such as those elicited (A) by a stimulating dose of 30 ng capsaicin i.a., (B) by distension of the ascending colon or (C) by afferent sciatic nerve stimulation were studied. Colchicine significantly reduced depressor reflexes A and B, but had no effect on reflex C. None of the reflexes was affected by SR-140333. MK-801 significantly inhibited all three reflexes. 4. Capsaicin, injected either i.v. (200 micrograms kg-1) or into the nucleus caudatus/putamen (i.c., 30 micrograms), induced an increase in paw skin temperature and a decrease in colon temperature. The rise in fore paw skin temperature (delta t = 2.3 +/- 0.4 degrees C) evoked by capsaicin i.v. was

  5. Effect of copper sulphate on the rate of afferent discharge in the gastric branch of the vagus nerve in the rat

    NASA Technical Reports Server (NTRS)

    Niijima, Akira; Jiang, Zheng-Yao; Daunton, Nancy G.; Fox, Robert A.

    1991-01-01

    The afferent nerve activity was recorded from a nerve filament isolated from the peripheral cut end of the gastric branch of the vagus nerve. The gastric perfusion of 4 ml of two different concentrations (0.04 percent and 0.08 percent) of CuSO4 solution provoked an increase in afferent activity. The stimulating effect of the 0.08 percent solution was stronger than that of the 0.04 percent solution, and lasted for a longer period of time. The observations suggest a possible mechanism by which CuSO4 elicits emesis.

  6. Calcium dynamics underlying the myogenic response of the renal afferent arteriole

    PubMed Central

    Edwards, Aurélie

    2013-01-01

    The renal afferent arteriole reacts to an elevation in blood pressure with an increase in muscle tone and a decrease in luminal diameter. This effect, known as the myogenic response, is believed to stabilize glomerular filtration and to protect the glomerulus from systolic blood pressure increases, especially in hypertension. To study the mechanisms underlying the myogenic response, we developed a mathematical model of intracellular Ca2+ signaling in an afferent arteriole smooth muscle cell. The model represents detailed transmembrane ionic transport, intracellular Ca2+ dynamics, the kinetics of myosin light chain phosphorylation, and the mechanical behavior of the cell. It assumes that the myogenic response is initiated by pressure-induced changes in the activity of nonselective cation channels. Our model predicts spontaneous vasomotion at physiological luminal pressures and KCl- and diltiazem-induced diameter changes comparable to experimental findings. The time-periodic oscillations stem from the dynamic exchange of Ca2+ between the cytosol and the sarcoplasmic reticulum, coupled to the stimulation of Ca2+-activated potassium (KCa) and chloride (ClCa) channels, and the modulation of voltage-activated L-type channels; blocking sarco/endoplasmic reticulum Ca2+ pumps, ryanodine receptors (RyR), KCa, ClCa, or L-type channels abolishes these oscillations. Our results indicate that the profile of the myogenic response is also strongly dependent on the conductance of ClCa and L-type channels, as well as the activity of plasmalemmal Ca2+ pumps. Furthermore, inhibition of KCa is not necessary to induce myogenic contraction. Lastly, our model suggests that the kinetic behavior of L-type channels results in myogenic kinetics that are substantially faster during constriction than during dilation, consistent with in vitro observations (Loutzenhiser R, Bidani A, Chilton L. Circ. Res. 90: 1316–1324, 2002). PMID:24173354

  7. Variation in response dynamics of regular and irregular vestibular-nerve afferents during sinusoidal head rotations and currents in the chinchilla.

    PubMed

    Kim, Kyu-Sung; Minor, Lloyd B; Della Santina, Charles C; Lasker, David M

    2011-05-01

    In mammals, vestibular-nerve afferents that innervate only type I hair cells (calyx-only afferents) respond nearly in phase with head acceleration for high-frequency motion, whereas afferents that innervate both type I and type II (dimorphic) or only type II (bouton-only) hair cells respond more in phase with head velocity. Afferents that exhibit irregular background discharge rates have a larger phase lead re-head velocity than those that fire more regularly. The goal of this study was to investigate the cause of the variation in phase lead between regular and irregular afferents at high-frequency head rotations. Under the assumption that externally applied galvanic currents act directly on the nerve, we derived a transfer function describing the dynamics of a semicircular canal and its hair cells through comparison of responses to sinusoidally modulated head velocity and currents. Responses of all afferents were fit well with a transfer function with one zero (lead term). Best-fit lead terms describing responses to current for each group of afferents were similar to the lead term describing responses to head velocity for regular afferents (0.006 s + 1). This finding indicated that the pre-synaptic and synaptic inputs to regular afferents were likely to be pure velocity transducers. However, the variation in phase lead between regular and irregular afferents could not be explained solely by the ratio of type I to II hair cells (Baird et al 1988), suggesting that the variation was caused by a combination of pre- (type of hair cell) and post-synaptic properties.

  8. Rare human nerve growth factor-β mutation reveals relationship between C-afferent density and acute pain evaluation.

    PubMed

    Perini, Irene; Tavakoli, Mitra; Marshall, Andrew; Minde, Jan; Morrison, India

    2016-08-01

    The rare nerve growth factor-β (NGFB) mutation R221W causes a selective loss of thinly myelinated fibers and especially unmyelinated C-fibers. Carriers of this mutation show altered pain sensation. A subset presents with arthropathic symptoms, with the homozygous most severely affected. The aim of the present study was to investigate the relationship between peripheral afferent loss and pain evaluation by performing a quantification of small-fiber density in the cornea of the carriers, relating density to pain evaluation measures. In vivo corneal confocal microscopy (CCM) was used to quantify C-fiber loss in the cornea of 19 R221W mutation carriers (3 homozygous) and 19 age-matched healthy control subjects. Pain evaluation data via the Situational Pain Questionnaire (SPQ) and the severity of neuropathy based on the Neuropathy Disability Score (NDS) were assessed. Homozygotes, heterozygotes, and control groups differed significantly in corneal C-nerve fiber density, with the homozygotes showing a significant afferent reduction. Importantly, peripheral C-fiber loss correlated negatively with pain evaluation, as revealed by SPQ scores. This study is the first to investigate the contribution of small-fiber density to the perceptual evaluation of pain. It demonstrates that the lower the peripheral small-fiber density, the lower the degree of reported pain intensity, indicating a functional relationship between small-fiber density and higher level pain experience. PMID:27146986

  9. Renal nerves mediate changes in contralateral renal blood flow after extracorporeal shockwave lithotripsy.

    PubMed

    Connors, Bret A; Evan, Andrew P; Willis, Lynn R; Simon, Jay R; Fineberg, Naomi S; Lifshitz, David A; Shalhav, Arieh L; Paterson, Ryan F; Kuo, Ramsay L; Lingeman, James E

    2003-01-01

    Renal blood flow falls in both kidneys following delivery of a clinical dose of shockwaves (SW) (2000 SW, 24 kV, Dornier HM3) to only one kidney. The role of renal nerves in this response was examined in a porcine model of renal denervation. Six-week-old pigs underwent unilateral renal denervation. Nerves along the renal artery of one kidney were identified, sectioned and painted with 10% phenol. Two weeks later the pigs were anesthetized and baseline renal function was determined using inulin and PAH clearances. Animals then had either sham-shockwave lithotripsy (SWL) (group 1), SWL to the innervated kidney (group 2) or SWL to the denervated kidney (group 3). Bilateral renal function was again measured 1 and 4 h after SWL. Both kidneys were then removed for analysis of norepinephrine content to validate the denervation. Renal plasma (RPF) flow was significantly reduced in shocked innervated kidneys (group 2) and shocked denervated kidneys (group 3). RPF was not reduced in the unshocked denervated kidneys of group 2. These observations suggest that renal nerves play a pivotal role in modulating the vascular response of the contralateral unshocked kidney to SWL, but only a partial role, if any, in modulating that response in the shocked kidney.

  10. Losartan increases NO release in afferent arterioles during regression of L-NAME-induced renal damage.

    PubMed

    Helle, Frank; Iversen, Bjarne M; Chatziantoniou, Christos

    2010-05-01

    Inhibition of nitric oxide synthesis (NOS) induces hypertension and heavy proteinuria. Renal structure and function have shown striking improvement after interventions targeting ANG II or endothelin (ET) receptors in rats recovering after long-term NOS inhibition. To search for mechanisms underlying losartan-assisted regression of renal disease in rodents, we measured NO release and contractility to ET in afferent arterioles (AAs) from Sprague-Dawley rats recovering for 2 wk after 4 wk of N(G)-nitro-L-arginine methyl ester treatment. Losartan administration during the recovery period decreased blood pressure (113 ± 4 vs. 146 ± 5 mmHg, P < 0.01), reduced protein/creatinine ratio more (proteinuria decrease: Δ1,836 ± 214 vs. Δ1,024 ± 180 mg/mmol, P < 0.01), and normalized microvascular hypertrophy (AA media/lumen ratio: 1.74 ± 0.05 vs. 2.09 ± 0.08, P < 0.05) compared with no treatment. In diaminofluorescein-FM-loaded AAs from losartan-treated animals, NO release (% of baseline) was increased compared with untreated animals after stimulation with 10(-7) M ACh (118 ± 4 vs. 90 ± 7%, t = 560 s, P < 0.001) and 10(-9) M ET (123 ± 4 vs. 101 ± 5%, t = 560 s, P < 0.001). There was also a blunted contractile response to 10(-7) M ET in AAs from losartan-treated animals compared with untreated animals (Δ4.01 ± 2.9 vs. Δ14.6 ± 1.7 μm, P < 0.01), which disappeared after acute NOS inhibition (Δ10.7 ± 3.7 vs. Δ12.5 ± 2.9 μm, not significant). Contractile dose responses to ET (10(-9), 10(-8), 10(-7) M) were enhanced by NOS inhibition and blunted by exogenous NO (10(-2) mM S-nitroso-N-acetyl-penicillamine) in losartan-treated but not in untreated vessels. Reducing blood pressure similar to losartan with hydralazine did not improve AA hypertrophy, ET-induced contractility, ET-induced NO release, and NO sensitivity. In conclusion, blockade of the local action of ANG II improved endothelial function in AAs, a mechanism that is likely to contribute to the beneficial

  11. Putative role of epithelial sodium channels (ENaC) in the afferent limb of cardio renal reflexes in rats.

    PubMed

    Ditting, Tilmann; Linz, Peter; Hilgers, Karl F; Jung, Oliver; Geiger, Helmut; Veelken, Roland

    2003-11-01

    Recent studies suggest a role of ion channels of the DEG/ENaC family for mechanosensation in different species and in baroreceptor reflex control in rats. We tested the hypothesis that ENaC within the cardiac sensory network are mandatory for mechanosensation. Experiments were performed in male Sprague-Dawley rats, isolated nodose ganglion cells with cardiac afferents and isolated vagus nerves. Epicardial delivery of the amiloride analogue benzamil intended to specifically inhibit ENaC presumably located on cardiac sensory afferents indeed blunted the mechanosensitive (i. e., sympathoinhibition by intravenous volume loading [-32% and -42% in treated groups vs. -67% in controls; n = 7 each; p < 0.05]) as well as-though to a lesser extent-the 5-HT(3)-mediated chemosensitive cardiorenal reflex in vivo in a dose-dependent manner. Using patch clamp technique, however, it turned out that neither amiloride nor benzamil influenced mechanically induced currents in ganglion nodosum cells in vitro, stimulated by hypoosmotic stress. The unspecific stretch activated ion channel blocker gadolinium completely abolished mechanically induced currents, indicating respective cells were mechanosensitive. In isolated vagus nerves benzamil impaired action potentials obtained by electrical stimulation (C-spike amplitude [-33%]; latency [+12%]; n = 8; p < 0.05). Our findings at least cast doubt on ENaC exclusively playing a specific role as mechanotransducers within the cardiac sensory network. Other ion channels might be involved. Furthermore the observed findings in vivo could also be due to unspecific disturbance of afferent signal conduction. PMID:14556084

  12. Activation of GLP-1 receptors on vascular smooth muscle cells reduces the autoregulatory response in afferent arterioles and increases renal blood flow.

    PubMed

    Jensen, Elisa P; Poulsen, Steen S; Kissow, Hannelouise; Holstein-Rathlou, Niels-Henrik; Deacon, Carolyn F; Jensen, Boye L; Holst, Jens J; Sorensen, Charlotte M

    2015-04-15

    Glucagon-like peptide (GLP)-1 has a range of extrapancreatic effects, including renal effects. The mechanisms are poorly understood, but GLP-1 receptors have been identified in the kidney. However, the exact cellular localization of the renal receptors is poorly described. The aim of the present study was to localize renal GLP-1 receptors and describe GLP-1-mediated effects on the renal vasculature. We hypothesized that renal GLP-1 receptors are located in the renal microcirculation and that activation of these affects renal autoregulation and increases renal blood flow. In vivo autoradiography using (125)I-labeled GLP-1, (125)I-labeled exendin-4 (GLP-1 analog), and (125)I-labeled exendin 9-39 (GLP-1 receptor antagonist) was performed in rodents to localize specific GLP-1 receptor binding. GLP-1-mediated effects on blood pressure, renal blood flow (RBF), heart rate, renin secretion, urinary flow rate, and Na(+) and K(+) excretion were investigated in anesthetized rats. Effects of GLP-1 on afferent arterioles were investigated in isolated mouse kidneys. Specific binding of (125)I-labeled GLP-1, (125)I-labeled exendin-4, and (125)I-labeled exendin 9-39 was observed in the renal vasculature, including afferent arterioles. Infusion of GLP-1 increased blood pressure, RBF, and urinary flow rate significantly in rats. Heart rate and plasma renin concentrations were unchanged. Exendin 9-39 inhibited the increase in RBF. In isolated murine kidneys, GLP-1 and exendin-4 significantly reduced the autoregulatory response of afferent arterioles in response to stepwise increases in pressure. We conclude that GLP-1 receptors are located in the renal vasculature, including afferent arterioles. Activation of these receptors reduces the autoregulatory response of afferent arterioles to acute pressure increases and increases RBF in normotensive rats.

  13. Role of the renal sympathetic nerves in renal sodium/potassium handling and renal damage in spontaneously hypertensive rats

    PubMed Central

    Li, Jianling; He, Qiaoling; Wu, Weifeng; Li, Qingjie; Huang, Rongjie; Pan, Xiaofeng; Lai, Wenying

    2016-01-01

    Renal sympathetic nerve activity has an important role in renal disease-associated hypertension and in the modulation of fluid homeostasis. In the present study, changes in renal function and renal sodium/potassium handling were investigated in groups of 12-week-old male, spontaneously hypertensive rats with renal denervation (RDNX group) or sham denervation (sham group). The RDNX group excreted significantly more sodium than the sham group during the 2-week observation period (P<0.05). Following bilateral renal denervation, the fractional lithium excretion was elevated in the RDNX group compared with the sham group, but no significant effect was observed of renal denervation on the fractional distal reabsorption rate of sodium or the fractional excretion of potassium. Furthermore, the glomerular injury score and the wall-to-lumen ratio of the interlobular artery were significantly lower in the RDNX group than in the sham group (P<0.05). In conclusion, the present study indicates an involvement of the renal sympathetic nerves in the regulation of renal tubular sodium reabsorption in spontaneously hypertensive rats and in the renal damage associated with hypertension. PMID:27698757

  14. Role of the renal sympathetic nerves in renal sodium/potassium handling and renal damage in spontaneously hypertensive rats

    PubMed Central

    Li, Jianling; He, Qiaoling; Wu, Weifeng; Li, Qingjie; Huang, Rongjie; Pan, Xiaofeng; Lai, Wenying

    2016-01-01

    Renal sympathetic nerve activity has an important role in renal disease-associated hypertension and in the modulation of fluid homeostasis. In the present study, changes in renal function and renal sodium/potassium handling were investigated in groups of 12-week-old male, spontaneously hypertensive rats with renal denervation (RDNX group) or sham denervation (sham group). The RDNX group excreted significantly more sodium than the sham group during the 2-week observation period (P<0.05). Following bilateral renal denervation, the fractional lithium excretion was elevated in the RDNX group compared with the sham group, but no significant effect was observed of renal denervation on the fractional distal reabsorption rate of sodium or the fractional excretion of potassium. Furthermore, the glomerular injury score and the wall-to-lumen ratio of the interlobular artery were significantly lower in the RDNX group than in the sham group (P<0.05). In conclusion, the present study indicates an involvement of the renal sympathetic nerves in the regulation of renal tubular sodium reabsorption in spontaneously hypertensive rats and in the renal damage associated with hypertension.

  15. Mechanisms mediating renal sympathetic nerve activation in obesity-related hypertension.

    PubMed

    Chen, W; Leo, S; Weng, C; Yang, X; Wu, Y; Tang, X

    2015-04-01

    Excessive renal sympathetic nerve activation may be one of the mechanisms underlying obesity-related hypertension. Impaired baroreflex sensitivity, adipokine disorders-such as leptin, adiponectin, and resistin-activation of the renin-angiotensin system, hyperinsulinemia, insulin resistance, and renal sodium retention present in obesity increase renal sympathetic nerve activity, thus contributing to the development of hypertension. Renal sympathetic denervation reduces both renal sympathetic activity and blood pressure in patients with obesity-related hypertension.

  16. High sensitivity recording of afferent nerve activity using ultra-compliant microchannel electrodes: an acute in vivo validation

    NASA Astrophysics Data System (ADS)

    Minev, Ivan R.; Chew, Daniel J.; Delivopoulos, Evangelos; Fawcett, James W.; Lacour, Stéphanie P.

    2012-04-01

    Neuroprostheses interfaced with transected peripheral nerves are technological routes to control robotic limbs as well as convey sensory feedback to patients suffering from traumatic neural injuries or degenerative diseases. To maximize the wealth of data obtained in recordings, interfacing devices are required to have intrafascicular resolution and provide high signal-to-noise ratio (SNR) recordings. In this paper, we focus on a possible building block of a three-dimensional regenerative implant: a polydimethylsiloxane (PDMS) microchannel electrode capable of highly sensitive recordings in vivo. The PDMS 'micro-cuff' consists of a 3.5 mm long (100 µm × 70 µm cross section) microfluidic channel equipped with five evaporated Ti/Au/Ti electrodes of sub-100 nm thickness. Individual electrodes have average impedance of 640 ± 30 kΩ with a phase angle of -58 ± 1 degrees at 1 kHz and survive demanding mechanical handling such as twisting and bending. In proof-of-principle acute implantation experiments in rats, surgically teased afferent nerve strands from the L5 dorsal root were threaded through the microchannel. Tactile stimulation of the skin was reliably monitored with the three inner electrodes in the device, simultaneously recording signal amplitudes of up to 50 µV under saline immersion. The overall SNR was approximately 4. A small but consistent time lag between the signals arriving at the three electrodes was observed and yields a fibre conduction velocity of 30 m s-1. The fidelity of the recordings was verified by placing the same nerve strand in oil and recording activity with hook electrodes. Our results show that PDMS microchannel electrodes open a promising technological path to 3D regenerative interfaces.

  17. Renal nerves dynamically regulate renal blood flow in conscious, healthy rabbits.

    PubMed

    Schiller, Alicia M; Pellegrino, Peter R; Zucker, Irving H

    2016-01-15

    Despite significant clinical interest in renal denervation as a therapy, the role of the renal nerves in the physiological regulation of renal blood flow (RBF) remains debated. We hypothesized that the renal nerves physiologically regulate beat-to-beat RBF variability (RBFV). This was tested in chronically instrumented, healthy rabbits that underwent either bilateral surgical renal denervation (DDNx) or a sham denervation procedure (INV). Artifact-free segments of RBF and arterial pressure (AP) from calmly resting, conscious rabbits were used to extract RBFV and AP variability for time-domain, frequency-domain, and nonlinear analysis. Whereas steady-state measures of RBF, AP, and heart rate did not statistically differ between groups, DDNx rabbits had greater RBFV than INV rabbits. AP-RBF transfer function analysis showed greater admittance gain in DDNx rabbits than in INV rabbits, particularly in the low-frequency (LF) range where systemic sympathetic vasomotion gives rise to AP oscillations. In the LF range, INV rabbits exhibited a negative AP-RBF phase shift and low coherence, consistent with the presence of an active control system. Neither of these features were present in the LF range of DDNx rabbits, which showed no phase shift and high coherence, consistent with a passive, Ohm's law pressure-flow relationship. Renal denervation did not significantly affect nonlinear RBFV measures of chaos, self-affinity, or complexity, nor did it significantly affect glomerular filtration rate or extracellular fluid volume. Cumulatively, these data suggest that the renal nerves mediate LF renal sympathetic vasomotion, which buffers RBF from LF AP oscillations in conscious, healthy rabbits. PMID:26538235

  18. Renal nerves dynamically regulate renal blood flow in conscious, healthy rabbits.

    PubMed

    Schiller, Alicia M; Pellegrino, Peter R; Zucker, Irving H

    2016-01-15

    Despite significant clinical interest in renal denervation as a therapy, the role of the renal nerves in the physiological regulation of renal blood flow (RBF) remains debated. We hypothesized that the renal nerves physiologically regulate beat-to-beat RBF variability (RBFV). This was tested in chronically instrumented, healthy rabbits that underwent either bilateral surgical renal denervation (DDNx) or a sham denervation procedure (INV). Artifact-free segments of RBF and arterial pressure (AP) from calmly resting, conscious rabbits were used to extract RBFV and AP variability for time-domain, frequency-domain, and nonlinear analysis. Whereas steady-state measures of RBF, AP, and heart rate did not statistically differ between groups, DDNx rabbits had greater RBFV than INV rabbits. AP-RBF transfer function analysis showed greater admittance gain in DDNx rabbits than in INV rabbits, particularly in the low-frequency (LF) range where systemic sympathetic vasomotion gives rise to AP oscillations. In the LF range, INV rabbits exhibited a negative AP-RBF phase shift and low coherence, consistent with the presence of an active control system. Neither of these features were present in the LF range of DDNx rabbits, which showed no phase shift and high coherence, consistent with a passive, Ohm's law pressure-flow relationship. Renal denervation did not significantly affect nonlinear RBFV measures of chaos, self-affinity, or complexity, nor did it significantly affect glomerular filtration rate or extracellular fluid volume. Cumulatively, these data suggest that the renal nerves mediate LF renal sympathetic vasomotion, which buffers RBF from LF AP oscillations in conscious, healthy rabbits.

  19. Sympathetic preganglionic efferent and afferent neurons mediated by the greater splanchnic nerve in rabbit

    NASA Technical Reports Server (NTRS)

    Torigoe, Yasuhiro; Cernucan, Roxana D.; Nishimoto, Jo Ann S.; Blanks, Robert H. I.

    1985-01-01

    As a part of the study of the vestibular-autonomic pathways involved in motion sickness, the location and the morphology of preganglionic sympathetic neurons (PSNs) projecting via the greater splanchnic nerve were examined. Retrograde labeling of neurons was obtained by application of horseradish peroxidase to the cut end of the greater splanchnic nerve. Labeled PSNs were found, ipsilaterally, within the T1 to T11 spinal cord segments, with the highest density of neurons in T6. Most PSNs were located within the intermediolateral column, but a significant portion also occurred within the lateral funiculus, the intercalated region, and the central autonomic area; the proportion of labeling between the four regions depended on the spinal cord segment.

  20. Angiotensin and thromboxane in the enhanced renal adrenergic nerve sensitivity of acute renal failure.

    PubMed Central

    Robinette, J B; Conger, J D

    1990-01-01

    The roles of intrarenal angiotensin (A) and thromboxane (TX) in the vascular hypersensitivity to renal nerve stimulation (RNS) and paradoxical vasoconstriction to renal perfusion pressure (RPP) reduction in the autoregulatory range in 1 wk norepinephrine (NE)-induced acute renal failure (ARF) in rats were investigated. Renal blood flow (RBF) responses were determined before and during intrarenal infusion of an AII and TXA2 antagonist. Saralasin or SQ29548 alone partially corrected the slopes of RBF to RNS and RPP reduction in NE-ARF rats (P less than 0.02). Saralasin + SQ29548 normalized the RBF response to RNS. While combined saralasin + SQ29548 eliminated the vasoconstriction to RPP reduction, similar to the effect of renal denervation, appropriate vasodilatation was not restored. Renal vein norepinephrine efflux during RNS was disproportionately increased in NE-ARF (P less than 0.001) and was suppressed by saralasin + SQ29548 infusion (P less than 0.005). It is concluded that the enhanced sensitivity to RNS and paradoxical vasoconstriction to RPP reduction in 1 wk NE-ARF kidneys are the result of intrarenal TX and AII acceleration of neurotransmitter release to adrenergic nerve activity. PMID:2243129

  1. Endogenous Prostaglandins and Afferent Sensory Nerves in Gastroprotective Effect of Hydrogen Sulfide against Stress-Induced Gastric Lesions

    PubMed Central

    Magierowski, Marcin; Jasnos, Katarzyna; Kwiecien, Slawomir; Drozdowicz, Danuta; Surmiak, Marcin; Strzalka, Malgorzata; Ptak-Belowska, Agata; Wallace, John L.; Brzozowski, Tomasz

    2015-01-01

    Hydrogen sulfide (H2S) plays an important role in human physiology, exerting vasodilatory, neuromodulatory and anti-inflammatory effects. H2S has been implicated in the mechanism of gastrointestinal integrity but whether this gaseous mediator can affect hemorrhagic lesions induced by stress has been little elucidated. We studied the effect of the H2S precursor L-cysteine, H2S-donor NaHS, the H2S synthesizing enzyme (CSE) activity inhibitor- D,L-propargylglycine (PAG) and the gastric H2S production by CSE/CBS/3-MST activity in water immersion and restraint stress (WRS) ulcerogenesis and the accompanying changes in gastric blood flow (GBF). The role of endogenous prostaglandins (PGs) and sensory afferent nerves releasing calcitonin gene-related peptide (CGRP) in the mechanism of gastroprotection induced by H2S was examined in capsaicin-denervated rats and those pretreated with capsazepine to inhibit activity of vanilloid receptors (VR-1). Rats were pretreated with vehicle, NaHS, the donor of H2S and or L-cysteine, the H2S precursor, with or without the concurrent treatment with 1) nonselective (indomethacin) and selective cyclooxygenase (COX)-1 (SC-560) or COX-2 (rofecoxib) inhibitors. The expression of mRNA and protein for COX-1 and COX-2 were analyzed in gastric mucosa pretreated with NaHS with or without PAG. Both NaHS and L-cysteine dose-dependently attenuated severity of WRS-induced gastric lesions and significantly increased GBF. These effects were significantly reduced by pretreatment with PAG and capsaicin denervation. NaHS increased gastric H2S production via CSE/CBS but not 3-MST activity. Inhibition of COX-1 and COX-2 activity significantly diminished NaHS- and L-cysteine-induced protection and hyperemia. NaHS increased expression of COX-1, COX-2 mRNAs and proteins and raised CGRP mRNA expression. These effects of NaHS on COX-1 and COX-2 protein contents were reversed by PAG and capsaicin denervation. We conclude that H2S exerts gastroprotection against

  2. Contribution of afferent pathways to nerve injury-induced spontaneous pain and evoked hypersensitivity.

    PubMed

    King, Tamara; Qu, Chaoling; Okun, Alec; Mercado, Ramon; Ren, Jiyang; Brion, Triza; Lai, Josephine; Porreca, Frank

    2011-09-01

    A predominant complaint in patients with neuropathic pain is spontaneous pain, often described as burning. Recent studies have demonstrated that negative reinforcement can be used to unmask spontaneous neuropathic pain, allowing for mechanistic investigations. Here, ascending pathways that might contribute to evoked and spontaneous components of an experimental neuropathic pain model were explored. Desensitization of TRPV1-positive fibers with systemic resiniferatoxin (RTX) abolished spinal nerve ligation (SNL) injury-induced thermal hypersensitivity and spontaneous pain, but had no effect on tactile hypersensitivity. Ablation of spinal NK-1 receptor-expressing neurons blocked SNL-induced thermal and tactile hypersensitivity as well as spontaneous pain. After nerve injury, upregulation of neuropeptide Y (NPY) is observed almost exclusively in large-diameter fibers, and inactivation of the brainstem target of these fibers in the nucleus gracilis prevents tactile but not thermal hypersensitivity. Blockade of NPY signaling within the nucleus gracilis failed to block SNL-induced spontaneous pain or thermal hyperalgesia while fully reversing tactile hypersensitivity. Moreover, microinjection of NPY into nucleus gracilis produced robust tactile hypersensitivity, but failed to induce conditioned place aversion. These data suggest that spontaneous neuropathic pain and thermal hyperalgesia are mediated by TRPV1-positive fibers and spinal NK-1-positive ascending projections. In contrast, the large-diameter dorsal column projection can mediate nerve injury-induced tactile hypersensitivity, but does not contribute to spontaneous pain. Because inhibition of tactile hypersensitivity can be achieved either by spinal manipulations or by inactivation of signaling within the nucleus gracilis, the enhanced paw withdrawal response evoked by tactile stimulation does not necessarily reflect allodynia.

  3. Differential inhibitory control of semicircular canal nerve afferent-evoked inputs in second-order vestibular neurons by glycinergic and GABAergic circuits.

    PubMed

    Biesdorf, Stefan; Malinvaud, David; Reichenberger, Ingrid; Pfanzelt, Sandra; Straka, Hans

    2008-04-01

    Labyrinthine nerve-evoked monosynaptic excitatory postsynaptic potentials (EPSPs) in second-order vestibular neurons (2 degrees VN) sum with disynaptic inhibitory postsynaptic potentials (IPSPs) that originate from the thickest afferent fibers of the same nerve branch and are mediated by neurons in the ipsilateral vestibular nucleus. Pharmacological properties of the inhibition and the interaction with the afferent excitation were studied by recording monosynaptic responses of phasic and tonic 2 degrees VN in an isolated frog brain after electrical stimulation of individual semicircular canal nerves. Specific transmitter antagonists revealed glycine and GABA(A) receptor-mediated IPSPs with a disynaptic onset only in phasic but not in tonic 2 degrees VN. Compared with GABAergic IPSPs, glycinergic responses in phasic 2 degrees VN have larger amplitudes and a longer duration and reduce early and late components of the afferent nerve-evoked subthreshold activation and spike discharge. The difference in profile of the disynaptic glycinergic and GABAergic inhibition is compatible with the larger number of glycinergic as opposed to GABAergic terminal-like structures on 2 degrees VN. The increase in monosynaptic excitation after a block of the disynaptic inhibition in phasic 2 degrees VN is in part mediated by a N-methyl-d-aspartate receptor-activated component. Although inhibitory inputs were superimposed on monosynaptic EPSPs in tonic 2 degrees VN as well, the much longer latency of these IPSPs excludes a control by short-latency inhibitory feed-forward side-loops as observed in phasic 2 degrees VN. The differential synaptic organization of the inhibitory control of labyrinthine afferent signals in phasic and tonic 2 degrees VN is consistent with the different intrinsic signal processing modes of the two neuronal types and suggests a co-adaptation of intrinsic membrane properties and emerging network properties. PMID:18256163

  4. Augmented activity of the pelvic nerve afferent mediated by TRP channels in dextran sulfate sodium (DSS)-induced colitis of rats.

    PubMed

    Makimura, Yukitoshi; Ito, Koichi; Kuwahara, Masayoshi; Tsubone, Hirokazu

    2012-08-01

    Enteritis has been recognized as a major symptom in domestic animals and human patients suffering from feed and food poisonings. The aim of the present study was to clarify the excitatory mechanism of the pelvic nerve afferent which may influence the occurrence of enteritis in response to nociceptive chemical stimuli of the colon in normal and abnormal rats with colitis induced by dextran sulfate sodium (DSS). The pelvic nerve afferent activity was markedly increased by colonic instillation of solution (0.5 ml) of acetic acid (5-25%) and capsaicin (100 μg/ml). The nerve activity was augmented by colonic instillation of capsaicin to a greater extent in rats with DSS-induced colitis than in normal control rats. This augmented activity by capsaicin was more prominent at one day (DSS-1) than at 8 day (DSS-8) after the administration of DSS. The increased nerve activity caused by capsaicin in DSS-1 and DSS-8 was significantly inhibited by pretreatment with ruthenium red, which is a nonselective inhibitor of TRP channels of unmyelinated C-fibers (nociceptors). In conclusion, it was elucidated that the nociceptive function of the pelvic nerve was largely elevated at one day after DSS-induced colitis and such increased function was mostly mediated by TRP channels.

  5. Studies on the Release of Renin by Direct and Reflex Activation of Renal Sympathetic Nerves.

    ERIC Educational Resources Information Center

    Donald, David E.

    1979-01-01

    Presents data on release of renin during direct and indirect stimulation of renal nerves. Conclusions show that renin release is influenced by change in activity of carotid and cardiopulmonary baroreceptor systems, and excitation of discrete areas of brain and hypothalamus by changes in renal sympathetic nerve. (Author/SA)

  6. Cyclic GMP-dependent and cyclic GMP-independent actions of nitric oxide on the renal afferent arteriole

    PubMed Central

    Trottier, Greg; Triggle, Chris R; O'Neill, Sean K; Loutzenhiser, Rodger

    1998-01-01

    The effects of exogenous NO and endothelial-derived NO (EDNO) on the afferent arteriole were investigated in the in vitro perfused hydronephrotic rat kidney. Vessels were pre-constricted with angiotensin II (0.1–0.3 nM) or KCl (30 mM). NO was infused directly into the renal artery at concentrations ranging from 30–9000 nM. ODQ (10, 30 μM) was administered to examine the effects of guanylyl cyclase inhibition. Kidneys were treated with ibuprofen (10 μM) to avoid actions of prostaglandins.During angiotensin II-induced vasoconstriction, NO elicited vasodilation at concentrations of 30–900 nM (EC50=200 nM) and ODQ caused a 10 fold shift in NO-sensitivity (EC50 1600 nM). During KCl-induced vasoconstriction, NO elicited a maximal dilation of 82±9% at 9000 nM (EC50 2000 nM) and ODQ had no effect. Thus in the presence of ODQ, the NO concentration-response curves for KCl- and angiotensin II-induced vasoconstriction were identical (P>0.2).To assess the possible role of cyclic GMP-independent mechanisms in the actions of EDNO, we compared the effects of L-NAME, ODQ and ODQ+L-NAME on acetylcholine-induced vasodilation. Angiotensin II reduced afferent arteriolar diameters from 16.7±0.5 to 8.1±0.8 microns and acetylcholine fully reversed this effect (16.9±0.5 microns). ODQ restored the angiotensin II response in the presence of acetylcholine (7.1±0.6 microns) and the subsequent addition of L-NAME had no further effect (6.8±0.7 microns). Similarly, L-NAME alone, fully reversed the actions of acetylcholine.Our findings indicate that exogenous NO is capable of eliciting renal afferent arteriolar vasodilation through both cyclic GMP-dependent and cyclic GMP-independent mechanisms. The cyclic GMP-independent action of NO did not require K+ channel activation, as it could be elicited in the presence of 30 mM KCl. Finally, although cyclic GMP-independent effects of exogenous NO could be demonstrated in our model, EDNO appears to act exclusively

  7. Spike rate of multi-unit muscle sympathetic nerve fibers following catheter-based renal nerve ablation

    PubMed Central

    Tank, Jens; Heusser, Karsten; Brinkmann, Julia; Schmidt, Bernhard M.; Menne, Jan; Bauersachs, Johann; Haller, Hermann; Diedrich, André; Jordan, Jens

    2016-01-01

    Patients with treatment-resistant arterial hypertension exhibited profound reductions in single sympathetic vasoconstrictor fiber firing rates following renal nerve ablation. In contrast, integrated multi-unit muscle sympathetic nerve activity (MSNA) changed little or not at all. We hypothesized that conventional MSNA analysis may have missed single fiber discharges, thus, obscuring sympathetic inhibition following renal denervation. We studied patients with difficult to control arterial hypertension (age 45–74 years) before, 6 (n=11), and 12 months (n=8) following renal nerve ablation. Electrocardiogram, respiration, brachial, and finger arterial blood pressure (BP), as well as the MSNA raw MSNA signal were analyzed. We detected MSNA action potential spikes using 2 stage kurtosis wavelet denoising techniques to assess mean, median, and maximum spike rates for each beat-to-beat interval. Supine heart rate and systolic BP did not change at 6 (ΔHR: −2±3 bpm; ΔSBP: 2±9 mmHg) or at 12 months (ΔHR: −1±3 mmHg, ΔSBP: −1±9 mmHg) after renal nerve ablation. Mean burst frequency and mean spike frequency at baseline were 34±3 bursts per minute and 8±1 spikes per sec. Both measurements did not change at 6 months (−1.4±3.6 bursts/minute; −0.6±1.4 spikes per sec) or at 12 months (−2.5±4.0 bursts/minute; −2.0±1.6 spikes per sec) following renal nerve ablation. After renal nerve ablation, BP decreased in 3 out of 11 patients. BP and MSNA spike frequency changes were not correlated (slope=−0.06; p=0.369). Spike rate analysis of multi-unit MSNA neurograms further suggests that profound sympathetic inhibition is not a consistent finding following renal nerve ablation. PMID:26324745

  8. Spike rate of multi-unit muscle sympathetic nerve fibers after catheter-based renal nerve ablation.

    PubMed

    Tank, Jens; Heusser, Karsten; Brinkmann, Julia; Schmidt, Bernhard M; Menne, Jan; Bauersachs, Johann; Haller, Hermann; Diedrich, André; Jordan, Jens

    2015-10-01

    Patients with treatment-resistant arterial hypertension exhibited profound reductions in single sympathetic vasoconstrictor fiber firing rates after renal nerve ablation. In contrast, integrated multi-unit muscle sympathetic nerve activity (MSNA) changed little or not at all. We hypothesized that conventional MSNA analysis may have missed single fiber discharges, thus, obscuring sympathetic inhibition after renal denervation. We studied patients with difficult-to-control arterial hypertension (age 45-74 years) before, 6 (n = 11), and 12 months (n = 8) after renal nerve ablation. Electrocardiogram, respiration, brachial, and finger arterial blood pressure (BP), as well as the MSNA and raw MSNA signals were analyzed. We detected MSNA action-potential spikes using 2 stage kurtosis wavelet denoising techniques to assess mean, median, and maximum spike rates for each beat-to-beat interval. Supine heart rate and systolic BP did not change at 6 (ΔHR: -2 ± 3 bpm; ΔSBP: 2 ± 9 mm Hg) or at 12 months (ΔHR: -1 ± 3 mm Hg, ΔSBP: -1 ± 9 mm Hg) after renal nerve ablation. Mean burst frequency and mean spike frequency at baseline were 34 ± 3 bursts per minute and 8 ± 1 spikes per second. Both measurements did not change at 6 months (-1.4 ± 3.6 bursts/minute; -0.6 ± 1.4 spikes/second) or at 12 months (-2.5 ± 4.0 bursts/minute; -2.0 ± 1.6 spikes/second) after renal nerve ablation. After renal nerve ablation, BP decreased in 3 of 11 patients. BP and MSNA spike frequency changes were not correlated (slope = -0.06; P = .369). Spike rate analysis of multi-unit MSNA neurograms further suggests that profound sympathetic inhibition is not a consistent finding after renal nerve ablation. PMID:26324745

  9. Estradiol alters the chemosensitive cardiac afferent reflex in female rats by augmenting sympathoinhibition and attenuating sympathoexcitation.

    PubMed

    Pinkham, Maximilian I; Barrett, Carolyn J

    2015-06-01

    The chemosensitive cardiac vagal and sympathetic afferent reflexes are implicated in driving pathophysiological changes in sympathetic nerve activity (SNA) in cardiovascular disease states. This study investigated the impact of sex and ovarian hormones on the chemosensitive cardiac afferent reflex. Experiments were performed in anaesthetized, sinoaortic baroreceptor denervated male, female and ovariectomized female (OVX) Wistar rats with either intact cardiac innervation or bilateral vagotomy. To investigate the chemosensitive cardiac afferent reflexes renal SNA, heart rate (HR) and arterial pressure (AP) were recorded before and following application of capsaicin onto the epicardial surface of the left ventricle. Compared to males, ovary-intact females displayed similar cardiac afferent reflex mediated changes in renal SNA albeit with a reduced maximum sympathetic reflex driven increase in renal SNA. In females, ovariectomy significantly attenuated the cardiac vagal afferent reflex mediated inhibition of renal SNA (renal SNA decreased 2 ± 17% in OVX versus -50 ± 4% in ovary-intact females, P < 0.05) and augmented cardiac sympathetic afferent reflex mediated sympathoexcitation (renal SNA increased 91 ± 11% in OVX vs 62 ± 9% in ovary-intact females, P < 0.05) so that overall increases in reflex driven sympathoexcitation were significantly enhanced. Chronic estradiol replacement, but not progesterone replacement, begun at time of ovariectomy restored cardiac afferent reflex responses to be similar as ovary-intact females. Vagal denervation eliminated all group differences. The current findings show ovariectomy in female rats, mimicking menopause in women, results in greater chemosensitive cardiac afferent reflex driven sympathoexcitation and does so, at least partly, via the loss of estradiols actions on the cardiac vagal afferent reflex pathway.

  10. Bipolar spinal cord stimulation attenuates mechanical hypersensitivity at an intensity that activates a small portion of A-fiber afferents in spinal nerve-injured rats.

    PubMed

    Yang, F; Carteret, A F; Wacnik, P W; Chung, C-Y; Xing, L; Dong, X; Meyer, R A; Raja, S N; Guan, Y

    2011-12-29

    Spinal cord stimulation (SCS) is used clinically to treat neuropathic pain states, but the precise mechanism by which it attenuates neuropathic pain remains to be established. The profile of afferent fiber activation during SCS and how it may correlate with the efficacy of SCS-induced analgesia are unclear. After subjecting rats to an L5 spinal nerve ligation (SNL), we implanted a miniature quadripolar electrode similar to that used clinically. Our goal was to determine the population and number of afferent fibers retrogradely activated by SCS in SNL rats by recording the antidromic compound action potential (AP) at the sciatic nerve after examining the ability of bipolar epidural SCS to alleviate mechanical hypersensitivity in this model. Notably, we compared the profiles of afferent fiber activation to SCS between SNL rats that exhibited good SCS-induced analgesia (responders) and those that did not (nonresponders). Additionally, we examined how different contact configurations affect the motor threshold (MoT) and compound AP threshold. Results showed that three consecutive days of SCS treatment (50 Hz, 0.2 ms, 30 min, 80-90% of MoT), but not sham stimulation, gradually alleviated mechanical hypersensitivity in SNL rats. The MoT obtained in the animal behavioral study was significantly less than the Aα/β-threshold of the compound AP determined during electrophysiological recording, suggesting that SCS could attenuate mechanical hypersensitivity with a stimulus intensity that recruits only a small fraction of the A-fiber population in SNL rats. Although both the MoT and compound AP threshold were similar between responders and nonresponders, the size of the compound AP waveform at higher stimulation intensities was larger in the responders, indicating a more efficient activation of the dorsal column structure in responders. PMID:22001681

  11. Enhanced sympathetic activity and cardiac sympathetic afferent reflex in rats with heart failure induced by adriamycin.

    PubMed

    Zhang, Shujuan; Zhang, Feng; Sun, Haijian; Zhou, Yebo; Han, Ying

    2012-11-01

    Our previous studies have shown that the cardiac sympathetic afferent reflex is enhanced in rats with chronic heart failure (CHF) induced by coronary artery ligation and contributes to the over-excitation of sympathetic activity. We sought to determine whether sympathetic activity and cardiac sympathetic afferent reflex were enhanced in adriamycin-induced CHF and whether angiotensin II (Ang II) in the paraventricular nucleus (PVN) was involved in enhancing sympathetic activity and cardiac sympathetic afferent reflex. Heart failure was induced by intraperitoneal injection of adriamycin for six times during 2 weeks (15 mg/kg). Six weeks after the first injection, the rats underwent anesthesia with urethane and α-chloralose. After vagotomy and baroreceptor denervation, cardiac sympathetic afferent reflex was evaluated by renal sympathetic nerve activity and mean arterial pressure (MAP) response to epicardial application of capsaicin (1.0 nmol). The response of MAP to ganglionic blockade with hexamethonium in conscious rats was performed to evaluate sympathetic activity. The renal sympathetic nerve activity and cardiac sympathetic afferent reflex were enhanced in adriamycin rats and the maximum depressor response of MAP induced by hexamethonium was significantly greater in adriamycin rats than that in control rats. Bilateral PVN microinjection of angiotensin II (Ang II) caused larger responses of the cardiac sympathetic afferent reflex, baseline renal sympathetic nerve activity and MAP in adriamycin rats than control rats. These results indicated that both sympathetic activity and cardiac sympathetic afferent reflex were enhanced and Ang II in the PVN was involved in the enhanced sympathetic activity and cardiac sympathetic afferent reflex in rats with adriamycin-induced heart failure. PMID:23554781

  12. Effect of percutaneous renal sympathetic nerve radiofrequency ablation in patients with severe heart failure.

    PubMed

    Dai, Qiming; Lu, Jing; Wang, Benwen; Ma, Genshan

    2015-01-01

    This study aimed to investigate the clinical feasibility and effects of percutaneous renal sympathetic nerve radiofrequency ablation in patients with heart failure. A total of 20 patients with heart failure were enrolled, aged from 47 to 75 years (63±10 years). They were divided into the standard therapy (n = 10), and renal nerve radiofrequency ablation groups (n = 10). There were 15 males and 5 female patients, including 8 ischemic cardiomyopathy, 8 dilated cardiomyopathy, and 8 hypertensive cardiopathy. All of the patients met the criteria of New York Heart Association classes III-IV cardiac function. Patients with diabetes and renal failure were excluded. Percutaneous renal sympathetic nerve radiofrequency ablation was performed on the renal artery wall under X-ray guidance. Serum electrolytes, neurohormones, and 24 h urine volume were recorded 24 h before and after the operation. Echocardiograms were performed to obtain left ventricular ejection fraction at baseline and 6 months. Heart rate, blood pressure, symptoms of dyspnea and edema were also monitored. After renal nerve ablation, 24 h urine volume was increased, while neurohormone levels were decreased compared with those of pre-operation and standard therapy. No obvious change in heart rate or blood pressure was recorded. Symptoms of heart failure were improved in patients after the operation. No complications were recorded in the study. Percutaneous renal sympathetic nerve radiofrequency ablation may be a feasible, safe, and effective treatment for the patients with severe congestive heart failure.

  13. A clinician's perspective of the role of renal sympathetic nerves in hypertension

    PubMed Central

    Briasoulis, Alexandros; Bakris, George L.

    2015-01-01

    The renal sympathetic nerves have significant contribution to the control of different aspects of kidney function. Early animal studies of renal denervation in a large number of different models of hypertension showed that that RDN improved BP control. Recently, data from prospective cohorts and randomized studies showed that renal denervation therapy (RDN) is a safe procedure but is associated with only modest reduction of ambulatory blood pressure (BP) in patients on intensive medical therapy. The main goal of this article is to review the results of preclinical and clinical studies on the contribution of the renal sympathetic nervous system to hypertension and the therapeutic applications of catheter-based renal denervation. PMID:25859218

  14. Roles of estrogen and progesterone in modulating renal nerve function in the rat kidney

    PubMed Central

    Graceli, J.B.; Cicilini, M.A.; Bissoli, N.S.; Abreu, G.R.; Moysés, M.R.

    2013-01-01

    The maintenance of extracellular Na+ and Cl- concentrations in mammals depends, at least in part, on renal function. It has been shown that neural and endocrine mechanisms regulate extracellular fluid volume and transport of electrolytes along nephrons. Studies of sex hormones and renal nerves suggested that sex hormones modulate renal function, although this relationship is not well understood in the kidney. To better understand the role of these hormones on the effects that renal nerves have on Na+ and Cl- reabsorption, we studied the effects of renal denervation and oophorectomy in female rats. Oophorectomized (OVX) rats received 17β-estradiol benzoate (OVE, 2.0 mg·kg-1·day-1, sc) and progesterone (OVP, 1.7 mg·kg-1·day-1, sc). We assessed Na+ and Cl- fractional excretion (FENa+ and FECl-, respectively) and renal and plasma catecholamine release concentrations. FENa+, FECl-, water intake, urinary flow, and renal and plasma catecholamine release levels increased in OVX vs control rats. These effects were reversed by 17β-estradiol benzoate but not by progesterone. Renal denervation did not alter FENa+, FECl-, water intake, or urinary flow values vs controls. However, the renal catecholamine release level was decreased in the OVP (236.6±36.1 ng/g) and denervated rat groups (D: 102.1±15.7; ODE: 108.7±23.2; ODP: 101.1±22.1 ng/g). Furthermore, combining OVX + D (OD: 111.9±25.4) decreased renal catecholamine release levels compared to either treatment alone. OVE normalized and OVP reduced renal catecholamine release levels, and the effects on plasma catecholamine release levels were reversed by ODE and ODP replacement in OD. These data suggest that progesterone may influence catecholamine release levels by renal innervation and that there are complex interactions among renal nerves, estrogen, and progesterone in the modulation of renal function. PMID:23828583

  15. Chronic Kidney Disease As a Potential Indication for Renal Denervation

    PubMed Central

    Sanders, Margreet F.; Blankestijn, Peter J.

    2016-01-01

    Renal denervation is being used as a blood pressure lowering therapy for patients with apparent treatment resistant hypertension. However, this population does not represent a distinct disease condition in which benefit is predictable. In fact, the wide range in effectiveness of renal denervation could be a consequence of this heterogeneous pathogenesis of hypertension. Since renal denervation aims at disrupting sympathetic nerves surrounding the renal arteries, it seems obvious to focus on patients with increased afferent and/or efferent renal sympathetic nerve activity. In this review will be argued, from both a pathophysiological and a clinical point of view, that chronic kidney disease is particularly suited to renal denervation. PMID:27375498

  16. Selective inhibition of vagal afferent nerve pathways regulating cough using Nav 1.7 shRNA silencing in guinea pig nodose ganglia.

    PubMed

    Muroi, Yukiko; Ru, Fei; Chou, Yang-Ling; Carr, Michael J; Undem, Bradley J; Canning, Brendan J

    2013-06-01

    Adeno-associated virus delivery systems and short hairpin RNA (shRNA) were used to selectively silence the voltage-gated sodium channel NaV 1.7 in the nodose ganglia of guinea pigs. The cough reflex in these animals was subsequently assessed. NaV 1.7 shRNA was delivered to the majority of nodose ganglia neurons [50-60% transfection rate determined by green fluorescent protein (GFP) gene cotransfection] and action potential conduction in the nodose vagal nerve fibers, as evaluated using an extracellular recording technique, was markedly and significantly reduced. By contrast, <5% of neurons in the jugular vagal ganglia neurons were transfected, and action potential conduction in the jugular vagal nerve fibers was unchanged. The control virus (with GFP expression) was without effect on action potential discharge and conduction in either ganglia. In vivo, NaV 1.7 silencing in the nodose ganglia nearly abolished cough evoked by mechanically probing the tracheal mucosa in anesthetized guinea pigs. Stimuli such as capsaicin and bradykinin that are known to stimulate both nodose and jugular C-fibers evoked coughing in conscious animals was unaffected by NaV 1.7 silencing in the nodose ganglia. Nodose C-fiber selective stimuli including adenosine, 2-methyl-5-HT, and ATP all failed to evoke coughing upon aerosol challenge. These results indicate that cough is independently regulated by two vagal afferent nerve subtypes in guinea pigs, with nodose Aδ fibers regulating cough evoked mechanically from the trachea and bradykinin- and capsaicin-evoked cough regulated by C-fibers arising from the jugular ganglia.

  17. The somatostatin receptor 4 agonist J-2156 reduces mechanosensitivity of peripheral nerve afferents and spinal neurons in an inflammatory pain model.

    PubMed

    Schuelert, Niklas; Just, Stefan; Kuelzer, Raimund; Corradini, Laura; Gorham, Louise C J; Doods, Henri

    2015-01-01

    Somatostatin (SST) is a peptide hormone that regulates the endocrine system and affects neurotransmission via interaction with G protein-coupled SST receptors and inhibition of the release of different hormones. The aim of this study was to investigate whether the analgesic properties of the selective SSTR4 agonist J-2156 are mediated via peripheral and/or spinal receptors. Effect on mechanical hyperalgesia in the Complete Freund׳s Adjuvant (CFA) model was measured after intraperitoneal application of J-2156. Electrophysiological neuronal recordings were conducted 24 h after injection of CFA or vehicle into the paw of Wistar rats. Mechanosensitivity of peripheral afferents of the saphenous nerve as well as of spinal wide dynamic range (WDR) and nociceptive-specific (NS) neurons were measured after systemic or spinal application of J-2156. In CFA animals J-2156 dose dependently reduced hyperalgesia in behavioral studies. The minimal effective dose was 0.1 mg/kg. Mechanosensitivity of peripheral afferents and spinal neurons was significantly reduced by J-2156. NS neurons were dose dependently inhibited by J-2156 while in WDR neurons only the highest concentration of 100 µM had an effect. In sham controls, J-2156 had no effect on neuronal activity. We demonstrated that J-2156 dose-dependently reduces peripheral and spinal neuronal excitability in the CFA rat model without affecting physiological pain transmission. Given the high concentration of the compound required to inhibit spinal neurons, it is unlikely that the behavioral effect seen in CFA model is mediated centrally. Overall these data demonstrated that the analgesic effect of J-2156 is mediated mainly via peripheral SST4 receptors.

  18. Inputs from regularly and irregularly discharging vestibular nerve afferents to secondary neurons in squirrel monkey vestibular nuclei. III. Correlation with vestibulospinal and vestibuloocular output pathways

    NASA Technical Reports Server (NTRS)

    Boyle, R.; Goldberg, J. M.; Highstein, S. M.

    1992-01-01

    1. A previous study measured the relative contributions made by regularly and irregularly discharging afferents to the monosynaptic vestibular nerve (Vi) input of individual secondary neurons located in and around the superior vestibular nucleus of barbiturate-anesthetized squirrel monkeys. Here, the analysis is extended to more caudal regions of the vestibular nuclei, which are a major source of both vestibuloocular and vestibulospinal pathways. As in the previous study, antidromic stimulation techniques are used to classify secondary neurons as oculomotor or spinal projecting. In addition, spinal-projecting neurons are distinguished by their descending pathways, their termination levels in the spinal cord, and their collateral projections to the IIIrd nucleus. 2. Monosynaptic excitatory postsynaptic potentials (EPSPs) were recorded intracellularly from secondary neurons as shocks of increasing strength were applied to Vi. Shocks were normalized in terms of the threshold (T) required to evoke field potentials in the vestibular nuclei. As shown previously, the relative contribution of irregular afferents to the total monosynaptic Vi input of each secondary neuron can be expressed as a %I index, the ratio (x100) of the relative sizes of the EPSPs evoked by shocks of 4 x T and 16 x T. 3. Antidromic stimulation was used to type secondary neurons as 1) medial vestibulospinal tract (MVST) cells projecting to spinal segments C1 or C6; 2) lateral vestibulospinal tract (LVST) cells projecting to C1, C6; or L1; 3) vestibulooculo-collic (VOC) cells projecting both to the IIIrd nucleus and by way of the MVST to C1 or C6; and 4) vestibuloocular (VOR) neurons projecting to the IIIrd nucleus but not to the spinal cord. Most of the neurons were located in the lateral vestibular nucleus (LV), including its dorsal (dLV) and ventral (vLV) divisions, and adjacent parts of the medial (MV) and descending nuclei (DV). Cells receiving quite different proportions of their direct inputs

  19. Search for a cardiac nociceptor: stimulation by bradykinin of sympathetic afferent nerve endings in the heart of the cat.

    PubMed Central

    Baker, D G; Coleridge, H M; Coleridge, J C; Nerdrum, T

    1980-01-01

    1. We have examined the effect of bradykinin on impulse traffic in sympathetic afferent fibres from the heart, great vessels and pleura, and have attempted to identify cardiac nociceptors that on the basis of their functional characteristics might have a role in the initiation of cardiac pain. 2. In anaesthetized cats, we recorded afferent impulses from 'single-fibre' slips of the left 2nd--5th thoracic rami communicantes and associated chain, and selected fibres arising from endings in the heart, great vessels, pericardium and pleura. We applied bradykinin solution (0 . 1--1 . 0 microgram/ml.) locally to the site of the ending; we also injected bradykinin (0 . 3--1 . 0 microgram/kg) into the left atrium. 3. Afferent endings excited by bradykinin (159 of 191 tested) were of two types. The larger group (140) were primarily mechanoreceptors with A delta of C fibres (mean conduction velocity, 7 . 5 +/- 0 . 6 m/sec). They were very sensitive to light touch. Those located in the heart, great vessels or overlying pleura had a cardiac rhythm of discharge and were stimulated by an increase in blood pressure or cardiac volume. 4. Bradykinin increased mechanoreceptor firing from 0 . 7 +/- to 5 . 0 +/- 0 . 3 (mean +/- S.E. of mean) impulses/sec. Some endings appeared to be stimulated directly by bradykinin, others sensitized by it so that they responded more vigorously to the pulsatile mechanical stimulation associated with the cardiac cycle. 5. The smaller group of eighteen endings, of which ten were in the left ventricle, were primarily chemosensitive. Most had C fibres, a few had A delta fibres (mean conduction velocity, 2 . 3 +/- 0 . 7 m/sec). They were insensitive to light touch. With one exception they never fired with a cardiac rhythm, and even large increases in aortic or left ventricular pressure had little effect on impulse frequency. 6. Chemosensitive endings were stimulated by bradykinin, impulse activity increasing from 0 . 6 to 15 . 6 +/- 1 . 3 impulses/sec and

  20. Recovery of the ipsilateral oculotectal projection following nerve crush in the frog: evidence that retinal afferents make synapses at abnormal tectal locations.

    PubMed

    Adamson, J; Burke, J; Grobstein, P

    1984-10-01

    The ipsilateral oculotectal projection in the frog is a topographic mapping of the binocular part of the visual field of one eye on the ipsilateral tectal lobe. The underlying neuronal circuitry consists of the topographic, crossed retinotectal projection and an intertectal pathway which relays information from a given point in one tectal lobe to the visually corresponding point in the other. During optic nerve regeneration, there is a period when the terminals of retinotectal afferents are found at abnormal locations in the opposite tectal lobe. Whether they form functional synapses at this time is not known. If so, one would expect to observe correlated abnormalities in the ipsilateral oculotectal projection. To determine whether such abnormalities exist, we have made parallel electrophysiological studies of the recovery of the retinotectal and ipsilateral oculotectal projections following crush of one optic nerve. The earliest stage of recovery was characterized by a lack of significant topographic order in the retinotectal projection and by the absence of a physiologically observable ipsilateral projection. Within a short time, the retinotectal projection became topographically organized and a similarly organized ipsilateral projection appeared. While topographic, the retinotectal projection at intermediate times was abnormal in that the multiunit receptive fields recorded at individual tectal loci were greatly enlarged. Multiunit receptive fields were similarly enlarged in the ipsilateral projection. In addition, some ipsilateral fields included areas of visual space not normally represented in the projection. The abnormalities in both projections subsequently disappeared over the same time course. Throughout recovery there was a high correlation between multiunit receptive field sizes in the contralateral tectal lobe and those at visually corresponding points in the ipsilateral tectal lobe. Enlarged multiunit receptive fields in the contralateral tectal lobe

  1. Central beta-adrenergic receptors mediate renal nerve activity during stress in conscious spontaneously hypertensive rats.

    PubMed

    Koepke, J P; DiBona, G F

    1985-01-01

    The effects of intracerebroventricular (i.c.v.) administration of beta-adrenergic receptor antagonists (d,l-propranolol or timolol, 30 micrograms in 2 microL of isotonic saline) on the increased renal sympathetic nerve activity and decreased urinary sodium excretion (UNaV) responses to stressful environmental stimulation (air jet to head) in conscious spontaneously hypertensive rats (SHR) were examined. Before i.c.v. d,l-propranolol or timolol, air stress increased renal activity (68% from 10.6 +/- 2.1 and 63% from 8.2 +/- 0.9 integrator resets/min respectively). In contrast, after i.c.v. d,l-propranolol or timolol in the same conscious SHR, air stress had no effect on renal sympathetic nerve activity (+7% from 8.1 +/- 1.7 and +7% from 5.5 +/- 1.0 integrator resets/min respectively). Air stress decreased UNaV in conscious SHR given i.c.v. saline vehicle (25% from 2.8 +/- 0.5 microEq/min/100 g body weight), but had no effect on effective renal plasma flow or glomerular filtration rate. In contrast, after i.c.v. d,l-propranolol or timolol, air stress had no effect on UNaV (0% from 2.8 +/- 0.5 and +9% from 3.3 +/- 0.3 microEq/min/100 g body weight respectively). Mean arterial pressure increased similarly during air stress with i.c.v. saline-vehicle or beta-adrenergic receptor antagonists. Intravenous administration of the same doses of d,l-propranolol or timolol did not prevent the increased renal sympathetic nerve activity or decreased UNaV responses resulting from air stress. These results suggest that central nervous system beta-adrenergic receptors mediate the increased renal sympathetic nerve activity and decreased UNaV responses resulting from stressful environmental stimulation in conscious SHR.

  2. Species differences in the reflex effects of lingual afferent nerve stimulation on lip blood flow and arterial pressure.

    PubMed

    Koeda, S; Yasuda, M; Izumi, H

    2003-11-01

    We evoked changes in lower lip blood flow and systemic arterial blood pressure by electrically stimulating the central cut end of the lingual nerve in artificially ventilated, urethane-anesthetized, cervically vago-sympathectomized cats, rats, rabbits, and guinea pig. The systemic arterial blood pressure changes were species-dependent: increases in rat, consistent decreases in rabbit and guinea pig, and variable among individuals in cat. In cat and rabbit, lip blood flow increases, which occurred only ipsilaterally to the stimulated nerve and showed no statistically significant correlation with the systemic arterial blood pressure changes. In rat, the ipsilateral lip blood flow increase was markedly greater than the contralateral one, and although there was a significant correlation between each of them and the systemic arterial blood pressure changes, the ipsilateral increase presumably included an active vasodilatation. In guinea pig, lip blood flow decreased on both sides in proportion to the systemic arterial blood pressure reductions. Thus, species variability exists in the sympathetic-mediated systemic arterial blood pressure changes and parasympathetic-mediated lip blood flow responses themselves, and in the relationship between them. PMID:12920546

  3. [The Importance of Vagus Nerve Afferent in the Formation of Emotions in Attention-Deficit Hyperactivity Disorder Model Rat].

    PubMed

    Hida, Hideki

    2016-06-01

    It is of interest to know how environmental stimuli contribute to the formation of emotion during development. In a rat model of attention-deficit hyperactivity disorder, monosodium L- glutamate (MSG), a taste substance of umami, was administered for 5 weeks during developmental period, followed by emotional behavior tests such as open-field test and social interaction test in adulthood. Although no significant change was observed in anxiety-like behavior, MSG intake caused a reduction in aggressive behavior. Vagotomy under the level of diaphragm resulted in eliminating the MSG effect on aggression, indicating the importance of neuronal activity of the vagus nerve in this effect. Futher studies will focus on futher questions regarding the gut-brain axis such as the change of microbiota and the mechanism of the axis in the brain. PMID:27279161

  4. Effect of somatic nerve stimulation on the kidney in intact, vagotomized and carotid sinus-denervated rats.

    PubMed

    Davis, G; Johns, E J

    1991-01-01

    1. The influence of cardiopulmonary and arterial baroreceptors on the renal nerve-dependent functional responses of the kidney to electrical stimulation of somatic afferent nerves was studied in pentobarbitone-anaesthetized rats. 2. Electrical stimulation of the left brachial nerve plexus at 3 Hz, 0.2 ms and 15 V in the intact animals increased blood pressure by 22%, and while renal perfusion pressure was maintained at pre-stimulus levels, renal blood flow and glomerular filtration rate decreased by 14 and 22% respectively. At the same time urine flow rate and absolute and fractional sodium excretion decreased by 36, 42 and 27% respectively. In animals subjected to acute renal nerve section these renal functional responses could not be elicited. 3. Following bilateral vagotomy the systemic and renal haemodynamic responses to brachial nerve stimulation were similar to the intact group. However, urine flow rate and absolute and fractional sodium excretions decreased by 50, 59 and 47% respectively, responses which were significantly greater than in the intact group. 4. In a group of rats in which the carotid sinus nerves had been sectioned, stimulation of the brachial plexus caused reductions of renal blood flow and glomerular filtration rate of the same magnitude as in the intact group; however, urine flow rate and absolute and fractional sodium excretion fell by 51, 60 and 48%, respectively, which were significantly larger than in the intact group. 5. These results demonstrate that the afferent nerve information arising from muscle joints and skin and carried via the brachial plexus caused reflex renal nerve-dependent reductions in renal haemodynamics and an antidiuresis and antinatriuresis. The cardiopulmonary and carotid sinus baroreceptors exert a tonic inhibitory action on these reflex renal responses insofar as they appeared to attenuate the antidiuretic and antinatriuretic responses to somatic afferent nerve stimulation.

  5. TRPA1 mediates amplified sympathetic responsiveness to activation of metabolically sensitive muscle afferents in rats with femoral artery occlusion

    PubMed Central

    Xing, Jihong; Lu, Jian; Li, Jianhua

    2015-01-01

    Autonomic responses to activation of mechanically and metabolically sensitive muscle afferent nerves during static contraction are augmented in rats with femoral artery occlusion. Moreover, metabolically sensitive transient receptor potential cation channel subfamily A, member 1 (TRPA1) has been reported to contribute to sympathetic nerve activity (SNA) and arterial blood pressure (BP) responses evoked by static muscle contraction. Thus, in the present study, we examined the mechanisms by which afferent nerves' TRPA1 plays a role in regulating amplified sympathetic responsiveness due to a restriction of blood flow directed to the hindlimb muscles. Our data show that 24–72 h of femoral artery occlusion (1) upregulates the protein levels of TRPA1 in dorsal root ganglion (DRG) tissues; (2) selectively increases expression of TRPA1 in DRG neurons supplying metabolically sensitive afferent nerves of C-fiber (group IV); and (3) enhances renal SNA and BP responses to AITC (a TRPA1 agonist) injected into the hindlimb muscles. In addition, our data demonstrate that blocking TRPA1 attenuates SNA and BP responses during muscle contraction to a greater degree in ligated rats than those responses in control rats. In contrast, blocking TRPA1 fails to attenuate SNA and BP responses during passive tendon stretch in both groups. Overall, results of this study indicate that alternations in muscle afferent nerves' TRPA1 likely contribute to enhanced sympathetically mediated autonomic responses via the metabolic component of the muscle reflex under circumstances of chronic muscle ischemia. PMID:26441669

  6. Circumferential targeted renal sympathetic nerve denervation with preservation of the renal arterial wall using intra-luminal ultrasound

    NASA Astrophysics Data System (ADS)

    Roth, Austin; Coleman, Leslie; Sakakura, Kenichi; Ladich, Elena; Virmani, Renu

    2015-03-01

    An intra-luminal ultrasound catheter system (ReCor Medical's Paradise System) has been developed to provide circumferential denervation of the renal sympathetic nerves, while preserving the renal arterial intimal and medial layers, in order to treat hypertension. The Paradise System features a cylindrical non-focused ultrasound transducer centered within a balloon that circulates cooling fluid and that outputs a uniform circumferential energy pattern designed to ablate tissues located 1-6 mm from the arterial wall and protect tissues within 1 mm. RF power and cooling flow rate are controlled by the Paradise Generator which can energize transducers in the 8.5-9.5 MHz frequency range. Computer simulations and tissue-mimicking phantom models were used to develop the proper power, cooling flow rate and sonication duration settings to provide consistent tissue ablation for renal arteries ranging from 5-8 mm in diameter. The modulation of these three parameters allows for control over the near-field (border of lesion closest to arterial wall) and far-field (border of lesion farthest from arterial wall, consisting of the adventitial and peri-adventitial spaces) depths of the tissue lesion formed by the absorption of ultrasonic energy and conduction of heat. Porcine studies have confirmed the safety (protected intimal and medial layers) and effectiveness (ablation of 1-6 mm region) of the system and provided near-field and far-field depth data to correlate with bench and computer simulation models. The safety and effectiveness of the Paradise System, developed through computer model, bench and in vivo studies, has been demonstrated in human clinical studies.

  7. Somatosensory evoked potentials (SSEPs); sensory nerve conduction velocity (SNCV) and motor nerve conduction velocity (MNCV) in chronic renal failure.

    PubMed

    Makkar, R K; Kochar, D K

    1994-01-01

    Somatosensory evoked potentials, sensory and motor nerve conduction velocity were studied in 25 patients of chronic renal failure and the results were compared with 15 healthy persons. The values more than +/- 3 S.D. were considered abnormal. SNCV was reduced in 11/25 patients; average reduction being 18 m/s (highly significant, p < 0.001); MNCV was reduced in 11/25 patients, average reduction being 20 m/s (highly significant, p < 0.001). Both SNCV and MNCV in same person were reduced in 6/25 patients. In SSEP N9, N13 and N20 were delayed in almost all the patients (highly significant, p < 0.001). Amplitude of N20 and N13 were reduced in 1 and 4 patients respectively but amplitude of N9 was normal. Out of different IPLS, Ebw-N9 was delayed in 5/25 patients (p < 0.9, insignificant); N9-N13 was delayed in 8/25 patients (p < 0.001, highly significant); N13-N20 was delayed in 1/25 patients (p < 0.01, significant). The evidence of these neurophysiological abnormalities collectively suggest the presence of central-peripheral axonopathy in this disease. PMID:7956880

  8. Short-latency afferent inhibition determined by the sensory afferent volley.

    PubMed

    Bailey, Aaron Z; Asmussen, Michael J; Nelson, Aimee J

    2016-08-01

    Short-latency afferent inhibition (SAI) is characterized by the suppression of the transcranial magnetic stimulation motor evoked potential (MEP) by the cortical arrival of a somatosensory afferent volley. It remains unknown whether the magnitude of SAI reflects changes in the sensory afferent volley, similar to that observed for somatosensory evoked potentials (SEPs). The present study investigated stimulus-response relationships between sensory nerve action potentials (SNAPs), SAI, and SEPs and their interrelatedness. Experiment 1 (n = 23, age 23 ± 1.5 yr) investigated the stimulus-response profile for SEPs and SAI in the flexor carpi radialis muscle after stimulation of the mixed median nerve at the wrist using ∼25%, 50%, 75%, and 100% of the maximum SNAP and at 1.2× and 2.4× motor threshold (the latter equated to 100% of the maximum SNAP). Experiment 2 (n = 20, age 23.1 ± 2 yr) probed SEPs and SAI stimulus-response relationships after stimulation of the cutaneous digital nerve at ∼25%, 50%, 75%, and 100% of the maximum SNAP recorded at the elbow. Results indicate that, for both nerve types, SAI magnitude is dependent on the volume of the sensory afferent volley and ceases to increase once all afferent fibers within the nerve are recruited. Furthermore, for both nerve types, the magnitudes of SAI and SEPs are related such that an increase in excitation within somatosensory cortex is associated with an increase in the magnitude of afferent-induced MEP inhibition. PMID:27226451

  9. Wavelet methods for spike detection in mouse renal sympathetic nerve activity.

    PubMed

    Brychta, Robert J; Tuntrakool, Sunti; Appalsamy, Martin; Keller, Nancy R; Robertson, David; Shiavi, Richard G; Diedrich, André

    2007-01-01

    Abnormal autonomic nerve traffic has been associated with a number of peripheral neuropathies and cardiovascular disorders prompting the development of genetically altered mice to study the genetic and molecular components of these diseases. Autonomic function in mice can be assessed by directly recording sympathetic nerve activity. However, murine sympathetic spikes are typically detected using a manually adjusted voltage threshold and no unsupervised detection methods have been developed for the mouse. Therefore, we tested the performance of several unsupervised spike detection algorithms on simulated murine renal sympathetic nerve recordings, including an automated amplitude discriminator and wavelet-based detection methods which used both the discrete wavelet transform (DWT) and the stationary wavelet transform (SWT) and several wavelet threshold rules. The parameters of the wavelet methods were optimized by comparing basal sympathetic activity to postmortem recordings and recordings made during pharmacological suppression and enhancement of sympathetic activity. In general, SWT methods were found to outperform amplitude discriminators and DWT methods with similar wavelet coefficient thresholding algorithms when presented with simulations with varied mean spike rates and signal-to-noise ratios. A SWT method which estimates the noise level using a "noise-only" wavelet scale and then selectively thresholds scales containing the physiologically important signal information was found to have the most robust spike detection. The proposed noise-level estimation method was also successfully validated during pharmacological interventions.

  10. Wavelet Methods for Spike Detection in Mouse Renal Sympathetic Nerve Activity

    PubMed Central

    Brychta, Robert J.; Tuntrakool, Sunti; Appalsamy, Martin; Keller, Nancy R.; Robertson, David; Shiavi, Richard G.; Diedrich, André

    2007-01-01

    Abnormal autonomic nerve traffic has been associated with a number of peripheral neuropathies and cardiovascular disorders prompting the development of genetically altered mice to study the genetic and molecular components of these diseases. Autonomic function in mice can be assessed by directly recording sympathetic nerve activity. However, murine sympathetic spikes are typically detected using a manually adjusted voltage threshold and no unsupervised detection methods have been developed for the mouse. Therefore, we tested the performance of several unsupervised spike detection algorithms on simulated murine renal sympathetic nerve recordings, including an automated amplitude discriminator and wavelet-based detection methods which used both the discrete wavelet transform (DWT) and the stationary wavelet transform (SWT) and several wavelet threshold rules. The parameters of the wavelet methods were optimized by comparing basal sympathetic activity to postmortem recordings and recordings made during pharmacological suppression and enhancement of sympathetic activity. In general, SWT methods were found to outperform amplitude discriminators and DWT methods with similar wavelet coefficient thresholding algorithms when presented with simulations with varied mean spike rates and signal-to-noise ratios. A SWT method which estimates the noise level using a “noise-only” wavelet scale and then selectively thresholds scales containing the physiologically important signal information was found to have the most robust spike detection. The proposed noise-level estimation method was also successfully validated during pharmacological interventions. PMID:17260859

  11. Paraventricular nucleus is involved in the central pathway of adipose afferent reflex in rats.

    PubMed

    Shi, Zhen; Wang, Yuan-Fang; Wang, Gui-Hua; Wu, Yu-Long; Ma, Chun-Lei

    2016-05-01

    Increasing evidence indicates a link between sympathetic nervous system activation and obesity, but the underlying mechanisms remain elusive. The adipose afferent reflex (AAR) is a sympathoexcitatory reflex that is activated by afferent neurotransmission from the white adipose tissue (WAT). This study aimed to investigate whether the hypothalamic paraventricular nucleus (PVH) is an important component of the central neurocircuitry of the AAR. In anesthetized rats, the discharge activity of individual PVH neurons was recorded in vivo. Activation of WAT afferents was initiated by capsaicin injection, and the AAR was evaluated by monitoring renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) responses. The responses of PVH neurons to activation of WAT afferents were evaluated by c-fos immunoreactivity and the discharge activity of individual PVH neurons, which was recorded using extracellular single-unit recording. After activation of WAT afferents, both individual PVH neuron discharge activity and c-fos immunoreactivity increased. Bilateral selective lesions of the neurons in the PVH with kainic acid abolished the AAR. These results indicate that PVH is an important component of the central neurocircuitry of the AAR. PMID:26963333

  12. Effects of adenosine receptor agonists on efferent renal nerve activity in anesthetized rats.

    PubMed

    Genovesi, S; Pieruzzi, F; Camisasca, P; Ragonesi, G; Protasoni, G; Golin, R; Zanchetti, A; Stella, A

    2000-02-01

    The aim of this study was to investigate the effects of A1 and A2 adenosine-receptor activation on the sympathetic nervous system. The effects on efferent renal nerve activity of selective A1 (CCPA; 2-chloro-N-6-cyclopentyladenosine) and A2 (2HE-NECA; 2-hexynyl-5'-N-ethylcarboxamidoadenosine) adenosine-receptor agonists were studied in anesthetized rats either with intact baroreflexes (intact rats) or with bilateral sinoaortic denervation and vagotomy (denervated rats). After a control period of 5 min, A1 or A2 agonist or vehicle were intravenously infused for 8 min in separate groups of intact or denervated rats, in which arterial pressure and heart rate were continuously recorded. CCPA (5.0 microg/kg/min) and 2HE-NECA (0.7 microg/kg/min) were selected to obtain comparable blood pressure changes over the period of observation. Arterial pressure significantly and equally decreased during the A1 (-41 +/- 8%), and A2 (-35 +/- 5%) agonist administration. Heart rate significantly decreased during A1 agonist infusion, but it did not change during A2 agonist administration. Bilateral sinoaortic denervation and vagotomy did not modify the hemodynamic responses to both drugs. The A1 and A2 administration caused a large and significant increase in efferent renal nerve activity (+66 +/- 22% and +76 +/- 15%, respectively), and this effect was entirely abolished in denervated rats. A linear relation with a significant negative slope between changes in arterial pressure and changes in neural discharge was observed for each treatment. The comparison of the regression slopes showed that the reflex increase of efferent sympathetic activity caused by the administration of both agonists was significantly smaller than the increment induced by equipotent hypotensive dose of sodium nitroprusside (10 microg/kg). These data show that the selective activation of A1 and A2 receptors elicits a reflex increase in efferent renal nerve activity. This neural activation is smaller as compared

  13. Auditory stimulation affects renal sympathetic nerve activity and blood pressure in rats.

    PubMed

    Nakamura, Takuo; Tanida, Mamoru; Niijima, Akira; Hibino, Hiroshi; Shen, Jiao; Nagai, Katsuya

    2007-04-12

    Here, we examined the effects of auditory stimulation at 50 dB with white noise (WN) or music (Traeumerei [TM] by Schumann or Etude by Chopin) on renal sympathetic nerve activity (RSNA) and BP in urethane-anesthetized rats. Auditory stimulation with TM, but not with WN or the Etude, significantly decreased RSNA and BP. Complete bilateral destruction of the cochleae and bilateral lesions of the auditory cortex (AuC) eliminated the effects of TM stimulation on RSNA and BP, but bilateral lesions of primary somatosensory cortex (S1C) had no effect. Bilateral lesions of the hypothalamic suprachiasmatic nucleus (SCN) or intracerebral administration of thioperamide, a histaminergic H3 receptor antagonist, also abolished TM-induced decreases in RSNA and BP. These findings suggest that exposure to music can decrease RSNA and BP through the auditory pathway, histaminergic neurons, and the SCN.

  14. Leptin into the rostral ventral lateral medulla (RVLM) augments renal sympathetic nerve activity and blood pressure

    PubMed Central

    Barnes, Maria J.; McDougal, David H.

    2014-01-01

    Leptin is a hormone released from adipose tissue. While this hormone normally acts to reduce feeding behavior and increase energy expenditure, in obesity, resistance to these effects occurs even though the hormone is released in large amounts. Although leptin no longer works to suppress feeding in the obese, leptin retains its potent effects on other autonomic functions such as blood pressure regulation. Leptin has been associated with hypertension and increased sympathetic autonomic activity. Therefore, leptin is emerging as a major contributor to the hypertensive state observed in obesity. Sympathetic control of blood pressure is maintained principally by autonomic reflex control circuits in the caudal brainstem. The rostral ventral-lateral medulla (RVLM) is the primary regulator of the sympathetic nervous system, sending excitatory fibers to sympathetic preganglionic neurons to regulate sympathetic control over resistance vessels and blood pressure. Previous studies from our laboratory have shown that neurons in the ventral lateral medulla express leptin receptors (ObRb). Our present study using pseudo-rabies multi-synaptic retrograde tract tracing and immunohistochemical methods revealed that neurons within the RVLM that send sympathetic projections to the kidney express leptin receptors. Acute microinjection of leptin (1 and 3 μg; 40 nL) into the RVLM evoked a significant increase in Mean Arterial Pressure (MAP) and renal sympathetic nerve activity (RSNA). When the 3 μg dose of leptin was preceded with a leptin antagonist, (SLAN-4; 1 ng), it attenuated the cardiovascular response of leptin. Taken together, these data suggest that leptin's actions within the RVLM may influence blood pressure and renal sympathetic nerve activity. PMID:25152707

  15. Renal nerves affect rate of achieving sodium balance in spontaneously hypertensive rats.

    PubMed

    Greenberg, S G; Enders, C; Osborn, J L

    1993-07-01

    The spontaneously hypertensive rat (SHR) has an elevated efferent sympathetic nerve activity, suggesting that the renal handling of sodium and water may be altered. This study evaluated the renal neurogenic influence on the rate of achieving sodium balance in adult SHRs and Wistar-Kyoto (WKY) rats after either a step increase or step decrease in fixed sodium intake. Conscious, unrestrained rats with either innervated or denervated kidneys were initially placed on a low-sodium (0.3 mEq/d) or high-sodium (5.0 mEq/d) intake by intravenous infusion. Hourly urinary sodium excretion was determined 24 hours before and 72 hours after sodium intake had been increased from low to high or decreased from high to low. After either step change in fixed sodium intake, both innervated SHRs and innervated WKY rats achieved sodium balance within 24 hours. Similarly, the time course of achieving sodium balance was nearly identical between WKY rats with innervated and denervated kidneys after either switch in sodium intake. In SHRs receiving a step increase in sodium intake, both innervated and denervated kidneys increased urinary sodium excretion equally for 9 hours; however, at this time, innervated SHRs continued to increase sodium excretion rapidly, whereas denervated rats were delayed in a further response. Thus, innervated SHRs achieved sodium balance approximately 18 hours sooner than denervated SHRs. Differences in urinary sodium excretion did not result from concomitant changes in plasma renin activity or mean arterial pressure.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. The expression profile of acid-sensing ion channel (ASIC) subunits ASIC1a, ASIC1b, ASIC2a, ASIC2b, and ASIC3 in the esophageal vagal afferent nerve subtypes

    PubMed Central

    Dusenkova, Svetlana; Ru, Fei; Surdenikova, Lenka; Nassenstein, Christina; Hatok, Jozef; Dusenka, Robert; Banovcin, Peter; Kliment, Jan; Tatar, Milos

    2014-01-01

    Acid-sensing ion channels (ASICs) have been implicated in esophageal acid sensing and mechanotransduction. However, insufficient knowledge of ASIC subunit expression profile in esophageal afferent nerves hampers the understanding of their role. This knowledge is essential because ASIC subunits form heteromultimeric channels with distinct functional properties. We hypothesized that the esophageal putative nociceptive C-fiber nerves (transient receptor potential vanilloid 1, TRPV1-positive) express multiple ASIC subunits and that the ASIC expression profile differs between the nodose TRPV1-positive subtype developmentally derived from placodes and the jugular TRPV1-positive subtype derived from neural crest. We performed single cell RT-PCR on the vagal afferent neurons retrogradely labeled from the esophagus. In the guinea pig, nearly all (90%–95%) nodose and jugular esophageal TRPV1-positive neurons expressed ASICs, most often in a combination (65–75%). ASIC1, ASIC2, and ASIC3 were expressed in 65–75%, 55–70%, and 70%, respectively, of both nodose and jugular TRPV1-positive neurons. The ASIC1 splice variants ASIC1a and ASIC1b and the ASIC2 splice variant ASIC2b were similarly expressed in both nodose and jugular TRPV1-positive neurons. However, ASIC2a was found exclusively in the nodose neurons. In contrast to guinea pig, ASIC3 was almost absent from the mouse vagal esophageal TRPV1-positive neurons. However, ASIC3 was similarly expressed in the nonnociceptive TRPV1-negative (tension mechanoreceptors) neurons in both species. We conclude that the majority of esophageal vagal nociceptive neurons express multiple ASIC subunits. The placode-derived nodose neurons selectively express ASIC2a, known to substantially reduce acid sensitivity of ASIC heteromultimers. ASIC3 is expressed in the guinea pig but not in the mouse vagal esophageal TRPV1-positive neurons, indicating species differences in ASIC expression. PMID:25190475

  17. Asymmetric and Symmetric Dimethylarginine and Sympathetic Nerve Traffic after Renal Denervation in Patients with Resistant Hypertension

    PubMed Central

    Grassi, Guido; Seravalle, Gino; Trevano, Fosca Quarti; Spaziani, Domenico; Scalise, Filippo; Auguadro, Carla; Pizzini, Patrizia; Tripepi, Giovanni; D’Arrigo, Graziella; Mallamaci, Francesca; Mancia, Giuseppe; Zoccali, Carmine

    2015-01-01

    Background and objectives The plasma concentration of the endogenous inhibitor of nitric oxide synthase asymmetric dimethylarginine (ADMA) associates with sympathetic activity in patients with CKD, but the driver of this association is unknown. Design, setting, participants, & measurements In this longitudinal study (follow-up: 2 weeks–6 months), repeated measurements over time of muscle sympathetic nerve activity corrected (MSNAC), plasma levels of ADMA and symmetric dimethylarginine (SDMA), and BP and heart rate were performed in 14 patients with drug-resistant hypertension who underwent bilateral renal denervation (enrolled in 2013 and followed-up until February 2014). Stability of ADMA, SDMA, BP, and MSNAC over time (6 months) was assessed in two historical control groups of patients maintained on stable antihypertensive treatment. Results Time-integrated changes in MSNAC after renal denervation ranged from –40.6% to 10% (average, –15.1%), and these changes were strongly associated with the corresponding changes in plasma ADMA (r= 0.62, P=0.02) and SDMA (r=0.72, P=0.004). Changes in MSNAC went along with simultaneous changes in standardized systolic (r=0.65, P=0.01) and diastolic BP (r=0.61, P=0.02). In the historical control groups, no change in ADMA, SDMA, BP, and MSNAC levels was recorded during a 6-month follow-up. Conclusions In patients with resistant hypertension, changes in sympathetic activity after renal denervation associate with simultaneous changes in plasma levels of the two major endogenous methylarginines, ADMA and SDMA. These observations are compatible with the hypothesis that the sympathetic nervous system exerts an important role in modulating circulating levels of ADMA and SDMA in this condition. PMID:26138262

  18. Enhanced adipose afferent reflex contributes to sympathetic activation in diet-induced obesity hypertension.

    PubMed

    Xiong, Xiao-Qing; Chen, Wei-Wei; Han, Ying; Zhou, Ye-Bo; Zhang, Feng; Gao, Xing-Ya; Zhu, Guo-Qing

    2012-11-01

    We recently found that adipose afferent reflex (AAR) induced by chemical stimulation of white adipose tissue (WAT) increased sympathetic outflow and blood pressure in normal rats. The study was designed to test the hypothesis that AAR contributes to sympathetic activation in obesity hypertension. Male rats were fed with a control diet (12% kcal as fat) or high-fat diet (42% kcal as fat) for 12 weeks to induce obesity hypertension. Stimulation of WAT with capsaicin increased renal sympathetic nerve activity and mean arterial pressure. Both AAR and WAT afferent activity were enhanced in obesity hypertension (OH) compared with obesity nonhypertension (ON) and in ON compared with obesity-resistant or control diet rats. WAT sensory denervation induced by resiniferatoxin caused greater decreases in renal sympathetic nerve activity and mean arterial pressure in OH than ON and in ON than obesity-resistant or control. The depressor effect of resiniferatoxin lasted ≥ 3 weeks in OH. Leptin antagonist in WAT reduced renal sympathetic nerve activity and mean arterial pressure in OH. WAT injection of capsaicin increased plasma renin, angiotensin II, and norepinephrine levels in OH and caused more c-fos expression in paraventricular nucleus in OH than ON and in ON than obesity-resistant or control rats. Inhibiting paraventricular nucleus neurons with lidocaine attenuated renal sympathetic nerve activity in OH and ON, decreased mean arterial pressure in OH, and abolished the capsaicin-induced AAR in all groups. The results indicate that enhanced AAR contributes to sympathetic activation in OH, and paraventricular nucleus plays an important role in the enhanced AAR and sympathetic activation in OH.

  19. Characteristics of renal sympathetic nerve single units in rabbits with angiotensin-induced hypertension.

    PubMed

    Burke, Sandra L; Lukoshkova, Elena V; Head, Geoffrey A

    2016-01-01

    We examined the effect of chronic angiotensin (Ang II)-induced hypertension on activity of postganglionic renal sympathetic units to determine whether altered whole renal nerve activity is due to recruitment or changes in firing frequency. Rabbits were treated with a low (20 ng kg(-1) min(-1), 8 weeks) or high dose (50 ng kg(-1) min(-1), 4 weeks) of Ang II before the experiment under chloralose-urethane anaesthesia. Spontaneously active units were detected from multiunit recordings using an algorithm that separated units by action potential shape using templates that matched spikes within a prescribed standard deviation. Multiunit sympathetic nerve activity was 40% higher in rabbits treated with low-dose Ang II than in sham (P = 0.012) but not different in high-dose Ang II. Resting firing frequency was similar in sham rabbits (1.00 ± 0.09 spikes s(-1), n = 144) and in those treated with high-dose Ang II (1.10 ± 0.08 spikes s(-1), n = 112) but was lower with low-dose Ang II (0.65 ± 0.08 spikes s(-1), n = 149, P < 0.05). Unit firing rhythmicity was linked to the cardiac cycle and was similar in sham and low-dose Ang II groups but 29-32% lower in rabbits treated with high-dose Ang II (P < 0.001). Cardiac linkage followed a similar pattern during hypoxia. All units showed baroreceptor dependency. Baroreflex gain and range were reduced and curves shifted to the right in Ang II groups. Firing frequency during hypoxia increased by +39% in low-dose Ang II and +82% in shams, but the greatest increase was in the high-dose Ang II group (+103%, P(dose) = 0.001). Responses to hypercapnia were similar in all groups. Increases in sympathetic outflow in hypertension caused by low-dose chronic Ang II administration are due to recruitment of neurons, but high-dose Ang II increases firing frequency in response to chemoreceptor stimuli independently of the arterial baroreceptors. PMID:26467849

  20. Complex reinnervation pattern after unilateral renal denervation in rats.

    PubMed

    Rodionova, Kristina; Fiedler, Christian; Guenther, Franziska; Grouzmann, Eric; Neuhuber, Winfried; Fischer, Michael J M; Ott, Christian; Linz, Peter; Freisinger, Wolfgang; Heinlein, Sonja; Schmidt, Stephanie T; Schmieder, Roland E; Amann, Kerstin; Scrogin, Karie; Veelken, Roland; Ditting, Tilmann

    2016-05-01

    Renal denervation (DNX) is a treatment for resistant arterial hypertension. Efferent sympathetic nerves regrow, but reinnervation by renal afferent nerves has only recently been shown in the renal pelvis of rats after unilateral DNX. We examined intrarenal perivascular afferent and sympathetic efferent nerves after unilateral surgical DNX. Tyrosine hydroxylase (TH), CGRP, and smooth muscle actin were identified in kidney sections from 12 Sprague-Dawley rats, to distinguish afferents, efferents, and vasculature. DNX kidneys and nondenervated kidneys were examined 1, 4, and 12 wk after DNX. Tissue levels of CGRP and norepinephrine (NE) were measured with ELISA and mass spectrometry, respectively. DNX decreased TH and CGRP labeling by 90% and 95%, respectively (P < 0.05) within 1 wk. After 12 wk TH and CGRP labeling returned to baseline with a shift toward afferent innervation (P < 0.05). Nondenervated kidneys showed a doubling of both labels within 12 wk (P < 0.05). CGRP content decreased by 72% [3.2 ± 0.3 vs. 0.9 ± 0.2 ng/gkidney; P < 0.05] and NA by 78% [1.1 ± 0.1 vs. 0.2 ± 0.1 pmol/mgkidney; P < 0.05] 1 wk after DNX. After 12 wk, CGRP, but not NE, content in DNX kidneys was fully recovered, with no changes in the nondenervated kidneys. The use of phenol in the DNX procedure did not influence this result. We found morphological reinnervation and transmitter recovery of afferents within 12 wk after DNX. Despite morphological evidence of sympathetic regrowth, NE content did not fully recover. These results suggest a long-term net surplus of afferent influence on the DNX kidney may be contributing to the blood pressure lowering effect of DNX. PMID:26911463

  1. Direct conscious telemetry recordings demonstrate increased renal sympathetic nerve activity in rats with chronic kidney disease

    PubMed Central

    Salman, Ibrahim M.; Sarma Kandukuri, Divya; Harrison, Joanne L.; Hildreth, Cara M.; Phillips, Jacqueline K.

    2015-01-01

    Chronic kidney disease (CKD) is associated with sympathetic hyperactivity and impaired blood pressure control reflex responses, yet direct evidence demonstrating these features of autonomic dysfunction in conscious animals is still lacking. Here we measured renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) using telemetry-based recordings in a rat model of CKD, the Lewis Polycystic Kidney (LPK) rat, and assessed responses to chemoreflex activation and acute stress. Male LPK and Lewis control animals (total n = 16) were instrumented for telemetric recording of RSNA and MAP. At 12–13 weeks-of-age, resting RSNA and MAP, sympathetic and haemodynamic responses to both peripheral (hypoxia: 10% O2) and central chemoreflex (hypercapnia: 7% CO2) activation and acute stress (open-field exposure), were measured. As indicators of renal function, urinary protein (UPro) and creatinine (UCr) levels were assessed. LPK rats had higher resting RSNA (1.2 ± 0.1 vs. 0.6 ± 0.1 μV, p < 0.05) and MAP (151 ± 8 vs. 97 ± 2 mmHg, p < 0.05) compared to Lewis. MAP was negatively correlated with UCr (r = −0.80, p = 0.002) and positively correlated with RSNA (r = 0.66, p = 0.014), with multiple linear regression modeling indicating the strongest correlation was with Ucr. RSNA and MAP responses to activation of the central chemoreflex and open-field stress were reduced in the LPK relative to the Lewis (all p < 0.05). This is the first description of dual conscious telemetry recording of RSNA and MAP in a genetic rodent model of CKD. Elevated RSNA is likely a key contributor to the marked hypertension in this model, while attenuated RSNA and MAP responses to central chemoreflex activation and acute stress in the LPK indicate possible deficits in the neural processing of autonomic outflows evoked by these sympathoexcitatory pathways. PMID:26300784

  2. Arterial baroreceptor reflex control of renal sympathetic nerve activity following chronic myocardial infarction in male, female, and ovariectomized female rats.

    PubMed

    Pinkham, Maximilian I; Whalley, Gillian A; Guild, Sarah-Jane; Malpas, Simon C; Barrett, Carolyn J

    2015-07-15

    There is controversy regarding whether the arterial baroreflex control of renal sympathetic nerve activity (SNA) in heart failure is altered. We investigated the impact of sex and ovarian hormones on changes in the arterial baroreflex control of renal SNA following a chronic myocardial infarction (MI). Renal SNA and arterial pressure were recorded in chloralose-urethane anesthetized male, female, and ovariectomized female (OVX) Wistar rats 6-7 wk postsham or MI surgery. Animals were grouped according to MI size (sham, small and large MI). Ovary-intact females had a lower mortality rate post-MI (24%) compared with both males (38%) and OVX (50%) (P < 0.05). Males and OVX with large MI, but not small MI, displayed an impaired ability of the arterial baroreflex to inhibit renal SNA. As a result, the male large MI group (49 ± 6 vs. 84 ± 5% in male sham group) and OVX large MI group (37 ± 3 vs. 75 ± 5% in OVX sham group) displayed significantly reduced arterial baroreflex range of control of normalized renal SNA (P < 0.05). In ovary-intact females, arterial baroreflex control of normalized renal SNA was unchanged regardless of MI size. In males and OVX there was a significant, positive correlation between left ventricle (LV) ejection fraction and arterial baroreflex range of control of normalized renal SNA, but not absolute renal SNA, that was not evident in ovary-intact females. The current findings demonstrate that the arterial baroreflex control of renal SNA post-MI is preserved in ovary-intact females, and the state of left ventricular dysfunction significantly impacts on the changes in the arterial baroreflex post-MI. PMID:25994953

  3. Arterial baroreceptor reflex control of renal sympathetic nerve activity following chronic myocardial infarction in male, female, and ovariectomized female rats.

    PubMed

    Pinkham, Maximilian I; Whalley, Gillian A; Guild, Sarah-Jane; Malpas, Simon C; Barrett, Carolyn J

    2015-07-15

    There is controversy regarding whether the arterial baroreflex control of renal sympathetic nerve activity (SNA) in heart failure is altered. We investigated the impact of sex and ovarian hormones on changes in the arterial baroreflex control of renal SNA following a chronic myocardial infarction (MI). Renal SNA and arterial pressure were recorded in chloralose-urethane anesthetized male, female, and ovariectomized female (OVX) Wistar rats 6-7 wk postsham or MI surgery. Animals were grouped according to MI size (sham, small and large MI). Ovary-intact females had a lower mortality rate post-MI (24%) compared with both males (38%) and OVX (50%) (P < 0.05). Males and OVX with large MI, but not small MI, displayed an impaired ability of the arterial baroreflex to inhibit renal SNA. As a result, the male large MI group (49 ± 6 vs. 84 ± 5% in male sham group) and OVX large MI group (37 ± 3 vs. 75 ± 5% in OVX sham group) displayed significantly reduced arterial baroreflex range of control of normalized renal SNA (P < 0.05). In ovary-intact females, arterial baroreflex control of normalized renal SNA was unchanged regardless of MI size. In males and OVX there was a significant, positive correlation between left ventricle (LV) ejection fraction and arterial baroreflex range of control of normalized renal SNA, but not absolute renal SNA, that was not evident in ovary-intact females. The current findings demonstrate that the arterial baroreflex control of renal SNA post-MI is preserved in ovary-intact females, and the state of left ventricular dysfunction significantly impacts on the changes in the arterial baroreflex post-MI.

  4. A new technique for the direct demonstration of overlapping cutaneous innervation territories of peptidergic C-fibre afferents of rat hindlimb nerves.

    PubMed

    Dux, M; Jancsó, G

    1994-11-01

    A new technique based on the phenomenon of vascular labelling has been devised for the direct visualisation of overlapping innervation territories of cutaneous nerves. The saphenous, peroneal and sural nerves on one side in anaesthetised rats were exposed, cut centrally and successively stimulated antidromically to induce a neurogenic inflammatory response after an intravenous injection of either a 1% colloidal silver solution or a suspension of 3% Monastral Blue B. Light microscopic examination of transparent preparations of the dorsal hindpaw skin revealed labelled blood vessels of different colours which represented cutaneous territories served by different nerves. Blood vessels labelled with both substances were regarded as areas of overlapping innervation. Such areas were typically localised along the border of adjacent innervation territories. In addition, distinct areas exhibiting double-labelled blood vessels were regularly encountered in regions separate from this border zone. Areas of interest were drawn with the aid of a camera lucida and measured by means of a computerised system. The results indicate a significant, although topographically variable, degree of overlap of these cutaneous innervation areas. This new technique offers a possibility to explore the importance of normally existing overlap in the reinnervation of a denervated skin area by collateral nerve sprouting. PMID:7891461

  5. Endothelial dysfunction and increased responses to renal nerve stimulation in rat kidneys during rhabdomyolysis-induced acute renal failure: role of hydroxyl radical.

    PubMed

    Cil, Onur; Ertunc, Mert; Gucer, Kadri Safak; Ozaltin, Fatih; Iskit, Alper Bektas; Onur, Rustu

    2012-01-01

    Rhabdomyolysis is an important cause of acute renal failure (ARF) and renal vasoconstriction is the main mechanism in the pathogenesis of ARF. Lipid peroxidation due to hydroxyl radical (.OH) formation and redox cycling of myoglobin also have a role. We investigated the disturbance in renal vascular reactivity to reveal the mechanisms leading to ARF. Female Wistar rats (n = 7) were injected with glycerol (10 mL/kg, 50% in saline) intramuscularly to induce rhabdomyolysis, and then the kidneys were isolated and perfused. We investigated acetylcholine (ACh)-induced endothelium-dependent and papaverine (PAP)-induced endothelium-independent vasodilation responses and renal nerve stimulation (RNS)-induced vasoconstrictions. These were also investigated both in rats which received either .OH scavenger, dimethylthiourea (DMTU: 500 mg/kg before glycerol injection and 125 mg/kg 8 h after glycerol injection, n = 7), or myoglobin redox cycling inhibitor, acetaminophen (ApAP: 100 mg/kg 2 h before glycerol injection and 100 mg/kg each 4 h, and 22 h after glycerol injection, n = 7). ACh-induced responses in glycerol group were decreased (p < 0.001), but PAP-induced vasodilation did not change. RNS-induced vasoconstriction in all kidneys was greater (p < 0.001) in glycerol group. DMTU restored both endothelium-dependent vasodilation and RNS-induced vasoconstriction. ApAP had no effect on vascular responses. Both DMTU and ApAP exerted a partial protective effect in renal histology without restoring serum creatinine and blood urea nitrogen (BUN) levels or creatinine clearance. This study showed that endothelial dysfunction and increased vasoconstriction developed during rhabdomyolysis. .OH plays an important role in the development of these vascular responses. These findings suggest that decreased endothelium-dependent vasodilation and augmented renal sympathetic tonus contribute to the development of renal vasoconstriction during rhabdomyolysis-induced ARF.

  6. Differential distribution of muscle and skin sympathetic nerve activity in patients with end-stage renal disease

    PubMed Central

    Park, Jeanie; Campese, Vito M.; Nobakht, Niloofar; Middlekauff, Holly R.

    2008-01-01

    End-stage renal disease (ESRD) is characterized by resting sympathetic overactivity. Baseline muscle sympathetic nerve activity (MSNA), which is governed by baroreflexes and chemoreflexes, is elevated in ESRD. Whether resting skin sympathetic nerve activity (SSNA), which is independent from baroreflex and chemoreflex control, is also elevated has never been reported in renal failure. The purpose of this study was to determine whether sympathetic overactivity of ESRD is generalized to include the skin distribution. We measured sympathetic nerve activity to both muscle and skin using microneurography in eight ESRD patients and eight controls. MSNA was significantly (P = 0.025) greater in ESRD (37.3 ± 3.6 bursts/min) when compared with controls (23.1 ± 4.4 bursts/min). However, SSNA was not elevated in ESRD (ESRD vs. controls, 17.6 ± 2.2 vs. 16.1 ± 1.7 bustst/min, P = 0.61). Similar results were obtained when MSNA was quantified as bursts per 100 heartbeats. We report the novel finding that although sympathetic activity directed to muscle is significantly elevated, activity directed to skin is not elevated in ESRD. The differential distribution of sympathetic outflow to the muscle vs. skin in ESRD is similar to the pattern seen in other disease states characterized by sympathetic overactivity such as heart failure and obesity. PMID:18845779

  7. Differential distribution of muscle and skin sympathetic nerve activity in patients with end-stage renal disease.

    PubMed

    Park, Jeanie; Campese, Vito M; Nobakht, Niloofar; Middlekauff, Holly R

    2008-12-01

    End-stage renal disease (ESRD) is characterized by resting sympathetic overactivity. Baseline muscle sympathetic nerve activity (MSNA), which is governed by baroreflexes and chemoreflexes, is elevated in ESRD. Whether resting skin sympathetic nerve activity (SSNA), which is independent from baroreflex and chemoreflex control, is also elevated has never been reported in renal failure. The purpose of this study was to determine whether sympathetic overactivity of ESRD is generalized to include the skin distribution. We measured sympathetic nerve activity to both muscle and skin using microneurography in eight ESRD patients and eight controls. MSNA was significantly (P = 0.025) greater in ESRD (37.3 +/- 3.6 bursts/min) when compared with controls (23.1 +/- 4.4 bursts/min). However, SSNA was not elevated in ESRD (ESRD vs. controls, 17.6 +/- 2.2 vs. 16.1 +/- 1.7 bustst/min, P = 0.61). Similar results were obtained when MSNA was quantified as bursts per 100 heartbeats. We report the novel finding that although sympathetic activity directed to muscle is significantly elevated, activity directed to skin is not elevated in ESRD. The differential distribution of sympathetic outflow to the muscle vs. skin in ESRD is similar to the pattern seen in other disease states characterized by sympathetic overactivity such as heart failure and obesity.

  8. Mechanism of norepinephrine release elicited by renal nerve stimulation, veratridine and potassium chloride in the isolated rat kidney

    SciTech Connect

    el-Din, M.M.; Malik, K.U.

    1987-10-01

    We have investigated the mechanism by which renal nerve stimulation (RNS), veratridine (Vt) and KCl promote release of norepinephrine in the isolated rat kidney perfused with Tyrode's solution and prelabeled with (/sup 3/H)norepinephrine by examining the overflow of tritium elicited by these stimuli during 1) extracellular Ca++ depletion, 2) alterations in extracellular Na+ concentration and 3) administration of tetrodotoxin, amiloride, LiCl and calcium channel blockers. RNS (1-4 Hz), Vt (15-90 nmol) and KCl (150-500 mumol) produced renal vasoconstriction and enhanced the tritium overflow in a frequency- and concentration-dependent manner, respectively. Omission of Ca++ (1.8 mM) from the perfusion fluid abolished the renal vasoconstriction and the increase in tritium overflow elicited by RNA and KCl and substantially reduced that caused by Vt. Lowering the Na+ concentration in the perfusion medium (from 150 to 25 mM) reduced the overflow of tritium and the renal vasoconstriction caused by RNS (2 Hz) or Vt (45 nmol); the increase in tritium overflow in response to these stimuli was positively correlated with extracellular Na+ (25-150 mM). In contrast, KCl-induced tritium overflow was negatively correlated with extracellular Na+ concentration. Tetrodotoxin (0.3 microM) abolished the effect of RNS and Vt, but not that of KCl, to increase overflow of tritium and to produce renal vasoconstriction. Administration of amiloride (180 microM) enhanced the overflow of tritium but attenuated the associated renal vasoconstriction produced by RNS, Vt and KCl. Replacement of NaCl (75 mM) with equimolar concentration of LiCl enhanced the overflow of tritium elicited by RNS, Vt and KCl; the associated renal vasoconstriction remained unaltered.

  9. Renal glucose release during hypoglycemia is partly controlled by sympathetic nerves – a study in pigs with unilateral surgically denervated kidneys

    PubMed Central

    Bischoff, Sabine J; Schmidt, Martin; Lehmann, Thomas; Schwab, Matthias; Matziolis, Georg; Saemann, Alexander; Schiffner, René

    2015-01-01

    Catecholamines are known to increase renal glucose release during hypoglycemia. The specific extent of the contribution of different sources of catecholamines, endocrine delivery via circulation or release from autonomous sympathetic renal nerves, though, is unknown. We tested the hypothesis that sympathetic renal innervation plays a major role in the regulation of renal gluconeogenesis. For this purpose, instrumented adolescent pigs had one kidney surgically denervated while the other kidney served as a control. A hypoglycemic clamp with arterial blood glucose below 2 mmol/L was maintained for 75 min. Arteriovenous blood glucose difference, inulin clearance, p-aminohippurate clearance, and sodium excretion were measured in intervals of 15 min separately for both kidneys. Blood glucose was lowered to 0.84 ± 0.33 mmol/L for 75 min. The side-dependent renal net glucose release (SGN) decreased significantly after the unilateral ablation of renal nerves. In the linear mixed model, renal denervation had a significant inhibitory effect on renal net glucose release (P = 0.036). The SGN of the ablated kidney decreased by 0.02 mmol/min and was equivalent to 43.3 ± 23.2% of the control (nonablated) kidney in the pigs. This allows the conclusion that renal glucose release is partly controlled by sympathetic nerves. This may be relevant in humans as well, and could explain the increased risk of severe hypoglycemia of patients with diabetes mellitus and autonomous neuropathy. The effects of denervation on renal glucose metabolism should be critically taken into account when considering renal denervation as a therapy in diabetic patients. PMID:26564063

  10. Hemodynamic and neural responses to renal denervation of the nerve to the clipped kidney by cryoablation in two-kidney, one-clip hypertensive rats.

    PubMed

    Rossi, Noreen F; Pajewski, Russell; Chen, Haiping; Littrup, Peter J; Maliszewska-Scislo, Maria

    2016-01-15

    Renal artery stenosis is increasing in prevalence. Angioplasty plus stenting has not proven to be better than medical management. There has been a reluctance to use available denervation methodologies in this condition. We studied conscious, chronically instrumented, two-kidney, one-clip (2K-1C) Goldblatt rats, a model of renovascular hypertension, to test the hypothesis that renal denervation by cryoablation (cryo-DNX) of the renal nerve to the clipped kidney decreases mean arterial pressure (MAP), plasma and tissue ANG II, and contralateral renal sympathetic nerve activity (RSNA). Five-week-old male Sprague-Dawley rats underwent sham (ShC) or right renal artery clipping (2K-1C), placement of telemetry transmitters, and pair-feeding with a 0.4% NaCl diet. After 6 wk, rats were randomly assigned to cryo-DNX or sham cryotreatment (sham DNX) of the renal nerve to the clipped kidney. MAP was elevated in 2K-1C and decreased significantly in both ShC cryo-DNX and 2K-1C cryo-DNX. Tissue norepinephrine was ∼85% lower in cryo-DNX kidneys. Plasma ANG II was higher in 2K-1C sham DNX but not in 2K-1C cryo-DNX vs ShC. Renal tissue ANG II in the clipped kidney decreased after cryo-DNX. Baseline integrated RSNA of the unclipped kidney was threefold higher in 2K-1C versus ShC and decreased in 2K-1C cryo-DNX to values similar to ShC. Maximum reflex response of RSNA to baroreceptor unloading in 2K-1C was lower after cryo-DNX. Thus, denervation by cryoablation of the renal nerve to the clipped kidney decreases not only MAP but also plasma and renal tissue ANG II levels and RSNA to the contralateral kidney in conscious, freely moving 2K-1C rats.

  11. Hemodynamic and neural responses to renal denervation of the nerve to the clipped kidney by cryoablation in two-kidney, one-clip hypertensive rats.

    PubMed

    Rossi, Noreen F; Pajewski, Russell; Chen, Haiping; Littrup, Peter J; Maliszewska-Scislo, Maria

    2016-01-15

    Renal artery stenosis is increasing in prevalence. Angioplasty plus stenting has not proven to be better than medical management. There has been a reluctance to use available denervation methodologies in this condition. We studied conscious, chronically instrumented, two-kidney, one-clip (2K-1C) Goldblatt rats, a model of renovascular hypertension, to test the hypothesis that renal denervation by cryoablation (cryo-DNX) of the renal nerve to the clipped kidney decreases mean arterial pressure (MAP), plasma and tissue ANG II, and contralateral renal sympathetic nerve activity (RSNA). Five-week-old male Sprague-Dawley rats underwent sham (ShC) or right renal artery clipping (2K-1C), placement of telemetry transmitters, and pair-feeding with a 0.4% NaCl diet. After 6 wk, rats were randomly assigned to cryo-DNX or sham cryotreatment (sham DNX) of the renal nerve to the clipped kidney. MAP was elevated in 2K-1C and decreased significantly in both ShC cryo-DNX and 2K-1C cryo-DNX. Tissue norepinephrine was ∼85% lower in cryo-DNX kidneys. Plasma ANG II was higher in 2K-1C sham DNX but not in 2K-1C cryo-DNX vs ShC. Renal tissue ANG II in the clipped kidney decreased after cryo-DNX. Baseline integrated RSNA of the unclipped kidney was threefold higher in 2K-1C versus ShC and decreased in 2K-1C cryo-DNX to values similar to ShC. Maximum reflex response of RSNA to baroreceptor unloading in 2K-1C was lower after cryo-DNX. Thus, denervation by cryoablation of the renal nerve to the clipped kidney decreases not only MAP but also plasma and renal tissue ANG II levels and RSNA to the contralateral kidney in conscious, freely moving 2K-1C rats. PMID:26582638

  12. Different Mode of Afferents Determines the Frequency Range of High Frequency Activities in the Human Brain: Direct Electrocorticographic Comparison between Peripheral Nerve and Direct Cortical Stimulation.

    PubMed

    Kobayashi, Katsuya; Matsumoto, Riki; Matsuhashi, Masao; Usami, Kiyohide; Shimotake, Akihiro; Kunieda, Takeharu; Kikuchi, Takayuki; Mikuni, Nobuhiro; Miyamoto, Susumu; Fukuyama, Hidenao; Takahashi, Ryosuke; Ikeda, Akio

    2015-01-01

    Physiological high frequency activities (HFA) are related to various brain functions. Factors, however, regulating its frequency have not been well elucidated in humans. To validate the hypothesis that different propagation modes (thalamo-cortical vs. cortico-coritcal projections), or different terminal layers (layer IV vs. layer II/III) affect its frequency, we, in the primary somatosensory cortex (SI), compared HFAs induced by median nerve stimulation with those induced by electrical stimulation of the cortex connecting to SI. We employed 6 patients who underwent chronic subdural electrode implantation for presurgical evaluation. We evaluated the HFA power values in reference to the baseline overriding N20 (earliest cortical response) and N80 (late response) of somatosensory evoked potentials (HFA(SEP(N20)) and HFA(SEP(N80))) and compared those overriding N1 and N2 (first and second responses) of cortico-cortical evoked potentials (HFA(CCEP(N1)) and HFA(CCEP(N2))). HFA(SEP(N20)) showed the power peak in the frequency above 200 Hz, while HFA(CCEP(N1)) had its power peak in the frequency below 200 Hz. Different propagation modes and/or different terminal layers seemed to determine HFA frequency. Since HFA(CCEP(N1)) and HFA induced during various brain functions share a similar broadband profile of the power spectrum, cortico-coritcal horizontal propagation seems to represent common mode of neural transmission for processing these functions. PMID:26087042

  13. Intact cutaneous C fibre afferent properties in mechanical and cold neuropathic allodynia

    PubMed Central

    Hulse, Richard; Wynick, David; Donaldson, Lucy F.

    2010-01-01

    Patients with neuropathy, report changes in sensory perception, particularly mechanical and thermal allodynia, and spontaneous pain. Similar sensory changes are seen in experimental neuropathies, in which alteration in primary afferent properties can also be determined. The neural correlate of spontaneous pain is ongoing activity in sensory afferents. Mechanical and heat allodynia are thought to result from lowered activation thresholds in primary afferent and/or central neurones, but the mechanisms underlying cold allodynia are very poorly understood. We investigated nociceptive behaviours and the properties of C and A fibre intact afferents running adjacent to damaged afferents following a partial ligation injury of the saphenous nerve (PSNI). Animals developed mechanical and cold allodynia by 3 days after PSNI. Intact mechanosensitive C fibre afferents developed ongoing activity, and had slower conduction velocities 3 and 7 days following nerve injury, with no change in mechanical threshold. There was a large increase (∼46-fold) in calculated afferent input 3 days after nerve injury, as a result of the ongoing activity in these fibres. Mechano-cooling-sensitive C fibre afferents showed both enhanced cooling-evoked firing, and increased ongoing activity. The afferent barrage associated with mechano-cooling-sensitive afferents was increased 26-fold 7 days after nerve injury. We observed no differences in the properties of intact A fibre mechanosensitive afferents. These studies demonstrate for the first time that the altered nociception seen after PSNI is associated with ongoing activity and enhanced cooling-evoked activity in intact C fibre afferents in the saphenous nerve, with no concurrent alteration in A fibre afferents. PMID:19942464

  14. In vitro Functional Characterization of Mouse Colorectal Afferent Endings

    PubMed Central

    Feng, Bin; Gebhart, G.F.

    2015-01-01

    This video demonstrates in detail an in vitro single-fiber electrophysiological recording protocol using a mouse colorectum-nerve preparation. The approach allows unbiased identification and functional characterization of individual colorectal afferents. Extracellular recordings of propagated action potentials (APs) that originate from one or a few afferent (i.e., single-fiber) receptive fields (RFs) in the colorectum are made from teased nerve fiber fascicles. The colorectum is removed with either the pelvic (PN) or lumbar splanchnic (LSN) nerve attached and opened longitudinally. The tissue is placed in a recording chamber, pinned flat and perfused with oxygenated Krebs solution. Focal electrical stimulation is used to locate the colorectal afferent endings, which are further tested by three distinct mechanical stimuli (blunt probing, mucosal stroking and circumferential stretch) to functionally categorize the afferents into five mechanosensitive classes. Endings responding to none of these mechanical stimuli are categorized as mechanically-insensitive afferents (MIAs). Both mechanosensitive and MIAs can be assessed for sensitization (i.e., enhanced response, reduced threshold, and/or acquisition of mechanosensitivity) by localized exposure of RFs to chemicals (e.g., inflammatory soup (IS), capsaicin, adenosine triphosphate (ATP)). We describe the equipment and colorectum–nerve recording preparation, harvest of colorectum with attached PN or LSN, identification of RFs in the colorectum, single-fiber recording from nerve fascicles, and localized application of chemicals to the RF. In addition, challenges of the preparation and application of standardized mechanical stimulation are also discussed. PMID:25651300

  15. Renal

    MedlinePlus

    ... term "renal" refers to the kidney. For example, renal failure means kidney failure. Related topics: Kidney disease Kidney disease - diet Kidney failure Kidney function tests Renal scan Kidney transplant

  16. Blockage of vibrissae afferents: I. Motor effects.

    PubMed

    Prchal, A; Albarracín, A L; Décima, E E

    2004-02-01

    In the past, it has been proposed that the rat vibrissae play an important role in other hand, postural abnormalities, muscle tone decreases and hypomotility after sensory organ destructions were proposed as evidence supporting the "level setting" or "tonic" hypothesis. This hypothesis postulates that afferent activity, besides its well know transductive functions, sets the excitability state of the central nervous system. We thought the vibrissal system to be a good model to dissect these two postulated roles because vibrissae trimming would annul the transductive function without affecting the integrity of nerve activity. Thus we compare the effects of trimming the whiskers with blocking the vibrissal afferent nerves on two types of motor behavior: activity in an open field and walking over a rope connecting two elevated platforms. We found that only vibrissal afferent blockage (both nerve section and local anaesthesia) produced severe failures in the motor performances studied. These effects could not be fully explained by the abolition of the vibrissae as a sensory modality because cutting the whiskers did not significantly affect the motor performance. These data are discussed in reference to a tonic or general excitatory function of sensory inputs upon the central nervous system. PMID:15143620

  17. Renal Denervation Prevents Immune Cell Activation and Renal Inflammation in Angiotensin II–Induced Hypertension

    PubMed Central

    Xiao, Liang; Kirabo, Annet; Wu, Jing; Saleh, Mohamed A.; Zhu, Linjue; Wang, Feng; Takahashi, Takamune; Loperena, Roxana; Foss, Jason D.; Mernaugh, Raymond L.; Chen, Wei; Roberts, Jackson; Osborn, John W.; Itani, Hana A.; Harrison, David G.

    2015-01-01

    Rationale Inflammation and adaptive immunity plays a crucial role in the development of hypertension. Angiotensin II and likely other hypertensive stimuli activate the central nervous system and promote T cell activation and end-organ damage in peripheral tissues. Objective To determine if renal sympathetic nerves mediate renal inflammation and T cell activation in hypertension. Methods and Results Bilateral renal denervation (RDN) using phenol application to the renal arteries reduced renal norepinephrine (NE) levels and blunted angiotensin II induced hypertension. Bilateral RDN also reduced inflammation, as reflected by decreased accumulation of total leukocytes, T cells and both CD4+ and CD8+ T cells in the kidney. This was associated with a marked reduction in renal fibrosis, albuminuria and nephrinuria. Unilateral RDN, which partly attenuated blood pressure, only reduced inflammation in the denervated kidney, suggesting that this effect is pressure independent. Angiotensin II also increased immunogenic isoketal-protein adducts in renal dendritic cells (DCs) and increased surface expression of costimulation markers and production of IL-1α, IL-1β, and IL-6 from splenic dendritic cells. NE also dose dependently stimulated isoketal formation in cultured DCs. Adoptive transfer of splenic DCs from angiotensin II-treated mice primed T cell activation and hypertension in recipient mice. RDN prevented these effects of hypertension on DCs. In contrast to these beneficial effects of ablating all renal nerves, renal afferent disruption with capsaicin had no effect on blood pressure or renal inflammation. Conclusions Renal sympathetic nerves contribute to dendritic cell activation, subsequent T cell infiltration and end-organ damage in the kidney in the development of hypertension. PMID:26156232

  18. Translational medicine: the antihypertensive effect of renal denervation.

    PubMed

    DiBona, Gerald F; Esler, Murray

    2010-02-01

    Translational medicine is concerned with the translation of research discoveries into clinical applications for the prevention, diagnosis, and treatment of human diseases. Here we briefly review the research concerning the role of the renal sympathetic nerves (efferent and afferent) in the control of renal function, with particular reference to hypertension. The accumulated evidence is compelling for a primary role of the renal innervation in the pathogenesis of hypertension. These research discoveries led to the development of a catheter-based procedure for renal denervation in human subjects. A proof-of-principle study in patients with hypertension resistant to conventional therapy has demonstrated that the procedure is safe and produces renal denervation with sustained lowering of arterial pressure.

  19. Renal reflexes in the regulation of blood pressure and sodium excretion.

    PubMed

    Stella, A; Golin, R; Genovesi, S; Zanchetti, A

    1987-08-01

    The rich innervation of the kidney is distributed to all structures of renal parenchyma thus providing important anatomical support to the functional evidence that the renal nerves can control kidney functions and send signals on the kidney environment to the central nervous system. Efferent renal nerve fibres are known to influence renal haemodynamics by modifying arteriolar vascular tone, renin release by a direct action on juxtaglomerular cells, and the excretion of sodium and water by changing tubular reabsorption of sodium and water at the different tubular levels. Mechano- and chemo-receptors have been shown in the kidney. Afferent fibres connected with renal receptors convey signals to the central nervous system both at spinal and supraspinal levels. The central areas receiving inputs from the kidney are those involved in the control of cardiovascular homeostasis and fluid balance. Activation of renal receptors by the electrical stimulation of renal afferent fibres were found to elicit both excitatory and inhibitory sympathetic responses. Although the existence of excitatory renorenal reflexes has been suggested, electrophysiological and functional data demonstrate that neural renorenal reflexes exert a tonic inhibitory influence on the tubular sodium and water reabsorption and on the secretion of renin from the juxtaglomerular cells.

  20. Long-term sensitization of mechanosensitive and -insensitive afferents in mice with persistent colorectal hypersensitivity

    PubMed Central

    La, Jun-ho; Schwartz, Erica S.; Tanaka, Takahiro; McMurray, Timothy P.; Gebhart, G. F.

    2012-01-01

    Afferent input contributes significantly to the pain and colorectal hypersensitivity that characterize irritable bowel syndrome. In the present study, we investigated the contributions of mechanically sensitive and mechanically insensitive afferents (MIAs; or silent afferents) to colorectal hypersensitivity. The visceromotor response to colorectal distension (CRD; 15–60 mmHg) was recorded in mice before and for weeks after intracolonic treatment with zymosan or saline. After CRD tests, the distal colorectum with the pelvic nerve attached was removed for single-fiber electrophysiological recordings. Colorectal afferent endings were located by electrical stimulation and characterized as mechanosensitive or not by blunt probing, mucosal stroking, and circumferential stretch. Intracolonic zymosan produced persistent colorectal hypersensitivity (>24 days) associated with brief colorectal inflammation. Pelvic nerve muscular-mucosal but not muscular mechanosensitive afferents recorded from mice with colorectal hypersensitivity exhibited persistent sensitization. In addition, the proportion of MIAs (relative to control) was significantly reduced from 27% to 13%, whereas the proportion of serosal afferents was significantly increased from 34% to 53%, suggesting that MIAs acquired mechanosensitivity. PGP9.5 immunostaining revealed no significant loss of colorectal nerve fiber density, suggesting that the reduction in MIAs is not due to peripheral fiber loss after intracolonic zymosan. These results indicate that colorectal MIAs and sensitized muscular-mucosal afferents that respond to stretch contribute significantly to the afferent input that sustains hypersensitivity to CRD, suggesting that targeted management of colorectal afferent input could significantly reduce patients' complaints of pain and hypersensitivity. PMID:22268098

  1. Neuropathic pain: Early spontaneous afferent activity is the trigger

    PubMed Central

    Xie, Wenrui; Strong, Judith A.; Meij, Johanna T.A.; Zhang, Jun-Ming; Yu, Lei

    2005-01-01

    Intractable neuropathic pain often results from nerve injury. One immediate event in damaged nerve is a sustained increase in spontaneous afferent activity, which has a well-established role in ongoing pain. Using two rat models of neuropathic pain, the CCI and SNI models, we show that local, temporary nerve blockade of this afferent activity permanently inhibits the subsequent development of both thermal hyperalgesia and mechanical allodynia. Timing is critical—the nerve blockade must last at least 3–5 days and is effective if started immediately after nerve injury, but not if started at 10 days after injury when neuropathic pain is already established. Effective nerve blockade also prevents subsequent development of spontaneous afferent activity measured electrophysiologically. Similar results were obtained in both pain models, and with two blockade methods (200 mg of a depot form bupivacaine at the injury site, or perfusion of the injured nerve just proximal to the injury site with TTX). These results indicate that early spontaneous afferent fiber activity is the key trigger for the development of pain behaviors, and suggest that spontaneous activity may be required for many of the later changes in the sensory neurons, spinal cord, and brain observed in neuropathic pain models. Many pre-clinical and clinical studies of pre-emptive analgesia have used much shorter duration of blockade, or have not started immediately after the injury. Our results suggest that effective pre-emptive analgesia can be achieved only when nerve block is administered early after injury and lasts several days. PMID:15964687

  2. Activation of NTS A2a adenosine receptors differentially resets baroreflex control of renal vs. adrenal sympathetic nerve activity.

    PubMed

    Ichinose, Tomoko K; O'Leary, Donal S; Scislo, Tadeusz J

    2009-04-01

    The role of nucleus of solitary tract (NTS) A(2a) adenosine receptors in baroreflex mechanisms is controversial. Stimulation of these receptors releases glutamate within the NTS and elicits baroreflex-like decreases in mean arterial pressure (MAP), heart rate (HR), and renal sympathetic nerve activity (RSNA), whereas inhibition of these receptors attenuates HR baroreflex responses. In contrast, stimulation of NTS A(2a) adenosine receptors increases preganglionic adrenal sympathetic nerve activity (pre-ASNA), and the depressor and sympathoinhibitory responses are not markedly affected by sinoaortic denervation and blockade of NTS glutamatergic transmission. To elucidate the role of NTS A(2a) adenosine receptors in baroreflex function, we compared full baroreflex stimulus-response curves for HR, RSNA, and pre-ASNA (intravenous nitroprusside/phenylephrine) before and after bilateral NTS microinjections of selective adenosine A(2a) receptor agonist (CGS-21680; 2.0, 20 pmol/50 nl), selective A(2a) receptor antagonist (ZM-241385; 40 pmol/100 nl), and nonselective A(1) + A(2a) receptor antagonist (8-SPT; 1 nmol/100 nl) in urethane/alpha-chloralose anesthetized rats. Activation of A(2a) receptors decreased the range, upper plateau, and gain of baroreflex-response curves for RSNA, whereas these parameters all increased for pre-ASNA, consistent with direct effects of the agonist on regional sympathetic activity. However, no resetting of baroreflex-response curves along the MAP axis occurred despite the marked decreases in baseline MAP. The antagonists had no marked effects on baseline variables or baroreflex-response functions. We conclude that the activation of NTS A(2a) adenosine receptors differentially alters baroreflex control of HR, RSNA, and pre-ASNA mostly via non-baroreflex mechanism(s), and these receptors have virtually no tonic action on baroreflex control of these sympathetic outputs.

  3. Force-sensitive afferents recruited during stance encode sensory depression in the contralateral swinging limb during locomotion.

    PubMed

    Hochman, Shawn; Hayes, Heather Brant; Speigel, Iris; Chang, Young-Hui

    2013-03-01

    Afferent feedback alters muscle activity during locomotion and must be tightly controlled. As primary afferent depolarization-induced presynaptic inhibition (PAD-PSI) regulates afferent signaling, we investigated hindlimb PAD-PSI during locomotion in an in vitro rat spinal cord-hindlimb preparation. We compared the relation of PAD-PSI, measured as dorsal root potentials (DRPs), to observed ipsilateral and contralateral limb endpoint forces. Afferents activated during stance-phase force strongly and proportionately influenced DRP magnitude in the swinging limb. Responses increased with locomotor frequency. Electrical stimulation of contralateral afferents also preferentially evoked DRPs in the opposite limb during swing (flexion). Nerve lesioning, in conjunction with kinematic results, support a prominent contribution from toe Golgi tendon organ afferents. Thus, force-dependent afferent feedback during stance binds interlimb sensorimotor state to a proportional PAD-PSI in the swinging limb, presumably to optimize interlimb coordination. These results complement known actions of ipsilateral afferents on PAD-PSI during locomotion.

  4. The role of renal denervation in the treatment of heart failure.

    PubMed

    Sobotka, Paul A; Krum, Henry; Böhm, Michael; Francis, Darrel P; Schlaich, Markus P

    2012-06-01

    The heart and kidney interact in terms of hemodynamics and neurohumoral regulatory mechanisms, and this helps to maintain circulatory homeostasis under normal conditions. However, the normal regulatory mechanisms become inappropriate in the setting of congestive heart failure (CHF), and significant renal dysfunction often develops in CHF patients. Activation of renal sympathetic efferent nerves causes renin release, sodium and water retention, and reduced renal blood flow, all hallmarks of the renal manifestations of CHF. An increase in plasma levels of angiotensin II that is mediated in part by renal sympathetic activation has an effect on the central nervous system to further increase global sympathetic tone. Renal sympathetic activity can be assessed clinically by renal norepinephrine spillover, and an increase in renal norepinephrine spillover in CHF predicts reduced survival. In addition to efferent sympathetic activation, activation of renal sensory nerves in CHF may cause a reflex increase in sympathetic tone that contributes to elevated peripheral vascular resistance and vascular remodeling as well as left ventricular remodeling and dysfunction. In animal models of heart failure, surgical renal denervation has been shown to improve both renal and ventricular function. Although surgical renal denervation has long been known to lower blood pressure and improve survival in patients with hypertension, the invasive nature of this approach and its associated complications has limited its appeal. However, a novel catheter-based device has recently been introduced that specifically interrupts both efferent and afferent renal nerves, and there is significant interest in the use of this device to treat both hypertension and CHF. Several ongoing clinical trials are investigating the safety and efficacy of renal denervation in patients with CHF. PMID:22392370

  5. Renal sympathetic nervous system and the effects of denervation on renal arteries

    PubMed Central

    Kannan, Arun; Medina, Raul Ivan; Nagajothi, Nagapradeep; Balamuthusamy, Saravanan

    2014-01-01

    Resistant hypertension is associated with chronic activation of the sympathetic nervous system resulting in various comorbidities. The prevalence of resistant hypertension is often under estimated due to various reasons. Activation of sympathetic nervous system at the renal- as well as systemic- level contributes to the increased level of catecholamines and resulting increase in the blood pressure. This increased activity was demonstrated by increased muscle sympathetic nerve activity and renal and total body noradrenaline spillover. Apart from the hypertension, it is hypothesized to be associated with insulin resistance, congestive heart failure and obstructive sleep apnea. Renal denervation is a novel procedure where the sympathetic afferent and efferent activity is reduced by various techniques and has been used successfully to treat drug-resistant hypertension improvement of various metabolic derangements. Renal denervation has the unique advantage of offering the denervation at the renal level, thus mitigating the systemic side effects. Renal denervation can be done by various techniques including radiofrequency ablation, ultrasound guided ablation and chemical ablation. Various trials evaluated the role of renal denervation in the management of resistant hypertension and have found promising results. More studies are underway to evaluate the role of renal denervation in patients presenting with resistant hypertension in different scenarios. Appropriate patient selection might be the key in determining the effectiveness of the procedure. PMID:25228960

  6. Chicken (Gallus domesticus) inner ear afferents

    NASA Technical Reports Server (NTRS)

    Hara, H.; Chen, X.; Hartsfield, J. F.; Hara, J.; Martin, D.; Fermin, C. D.

    1998-01-01

    Neurons from the vestibular (VG) and the statoacoustic (SAG) ganglion of the chick (Gallus domesticus) were evaluated histologically and morphometrically. Embryos at stages 34 (E8 days), 39 (E13 days) and 44 (E18 days) were sacrificed and temporal bones microdissected. Specimens were embedded in JB-4 methacrylate plastic, and stained with a mixture of 0.2% toluidine blue (TB) and 0.1% basic Fuschin in 25% ethanol or with a mixture of 2% TB and 1% paraphenylenediamine (PDA) for axon and myelin measurement study. Images of the VIIIth nerve were produced by a V150 (R) color imaging system and the contour of 200-300 neuronal bodies (perikarya) was traced directly on a video screen with a mouse in real time. The cross-sectional area of VG perikarya was 67.29 micrometers2 at stage 34 (E8), 128.46 micrometers2 at stage 39 (E13) and 275.85 micrometers2 at stage 44 (E18). The cross-sectional area of SAG perikarya was 62.44 micrometers2 at stage 34 (E8), 102.05 micrometers2 at stage 39 (E13) and 165.02 micrometers2 at stage 44 (E18). A significant cross-sectional area increase of the VG perikarya between stage 39 (E13) and stage 44 (E18) was determined. We randomly measured the cross-sectional area of myelin and axoplasm of hatchling afferent nerves, and found a correspondence between axoplasmic and myelin cross-sectional area in the utricular, saccular and semicircular canal nerve branches of the nerve. The results suggest that the period between stage 34 (E8) and 39 (E13) is a critical period for afferent neuronal development. Physiological and behavioral vestibular properties of developing and maturing hatchlings may change accordingly. The results compliment previous work by other investigators and provide valuable anatomical measures useful to correlate physiological data obtained from stimulation of the whole nerve or its parts.

  7. Perfusion of isolated carotid sinus with hydrogen sulfide attenuated the renal sympathetic nerve activity in anesthetized male rats.

    PubMed

    Guo, Q; Wu, Y; Xue, H; Xiao, L; Jin, S; Wang, R

    2016-07-18

    The purpose of the present study was to define the indirect central effect of hydrogen sulfide (H(2)S) on baroreflex control of sympathetic outflow. Perfusing the isolated carotid sinus with sodium hydrosulfide (NaHS), a H(2)S donor, the effect of H(2)S was measured by recording changes of renal sympathetic nerve activity (RSNA) in anesthetized male rats. Perfusion of isolated carotid sinus with NaHS (25, 50, 100 micromol/l) dose and time-dependently inhibited sympathetic outflow. Preconditioning of glibenclamide (20 micromol/l), a ATP-sensitive K(+) channels (K(ATP)) blocker, the above effect of NaHS was removed. With 1, 4-dihydro-2, 6-dimethyl-5-nitro-4-(2-[trifluoromethyl] phenyl) pyridine-3-carboxylic acid methyl ester (Bay K8644, 500 nmol/l) pretreatment, which is an agonist of L-calcium channels, the effect of NaHS was eliminated. Perfusion of cystathionine gamma-lyase (CSE) inhibitor, DL-propargylglycine (PPG, 200 micromol/l), increased sympathetic outflow. The results show that exogenous H(2)S in the carotid sinus inhibits sympathetic outflow. The effect of H(2)S is attributed to opening K(ATP) channels and closing the L-calcium channels.

  8. Cardiac Sympathetic Afferent Denervation Attenuates Cardiac Remodeling and Improves Cardiovascular Dysfunction in Rats with Heart Failure

    PubMed Central

    Wang, Han-Jun; Wang, Wei; Cornish, Kurtis G.; Rozanski, George J.; Zucker, Irving H.

    2014-01-01

    The enhanced cardiac sympathetic afferent reflex (CSAR) contributes to the exaggerated sympatho-excitation in chronic heart failure (CHF). Increased sympatho-excitation is positively related to mortality in CHF patients. However, the potential beneficial effects of chronic CSAR deletion on cardiac and autonomic function in CHF have not been previously explored. Here we determined the effects of chronic CSAR deletion on cardiac remodeling and autonomic dysfunction in CHF. In order to selectively delete the transient receptor potential vanilloid 1 receptor (TRPV1) -expressing CSAR afferents, epicardial application of resiniferatoxin (RTX, 50 μg/ml), an ultrapotent analogue of capsaicin, was performed during myocardium infarction (MI) surgery in rats. This procedure largely abolished the enhanced CSAR, prevented the exaggerated renal and cardiac sympathetic nerve activity and improved baroreflex sensitivity in CHF rats. Most importantly, we found that epicardial application of RTX largely prevented the elevated LVEDP, lung edema and cardiac hypertrophy, partially reduced left ventricular dimensions in the failing heart and increased cardiac contractile reserve in response to β-adrenergic receptor stimulation with isoproterenol in CHF rats. Molecular evidence showed that RTX attenuated cardiac fibrosis and apoptosis and reduced expression of fibrotic markers and TGF β-receptor I in CHF rats. Pressure - volume loop analysis showed that RTX reduced the end diastolic pressure volume relations in CHF rats indicating improved cardiac compliance. In summary, cardiac sympathetic afferent deletion exhibits protective effects against deleterious cardiac remodeling and autonomic dysfunction in CHF. These data suggest a potential new paradigm and therapeutic potential in the management of CHF. PMID:24980663

  9. Sympathetic nerve-derived ATP regulates renal medullary vasa recta diameter via pericyte cells: a role for regulating medullary blood flow?

    PubMed

    Crawford, C; Wildman, S S P; Kelly, M C; Kennedy-Lydon, T M; Peppiatt-Wildman, C M

    2013-01-01

    Pericyte cells are now known to be a novel locus of blood flow control, being able to regulate capillary diameter via their unique morphology and expression of contractile proteins. We have previously shown that exogenous ATP causes constriction of vasa recta via renal pericytes, acting at a variety of membrane bound P2 receptors on descending vasa recta (DVR), and therefore may be able to regulate medullary blood flow (MBF). Regulation of MBF is essential for appropriate urine concentration and providing essential oxygen and nutrients to this region of high, and variable, metabolic demand. Various sources of endogenous ATP have been proposed, including from epithelial, endothelial, and red blood cells in response to stimuli such as mechanical stimulation, local acidosis, hypoxia, and exposure to various hormones. Extensive sympathetic innervation of the nephron has previously been shown, however the innervation reported has focused around the proximal and distal tubules, and ascending loop of Henle. We hypothesize that sympathetic nerves are an additional source of ATP acting at renal pericytes and therefore regulate MBF. Using a rat live kidney slice model in combination with video imaging and confocal microscopy techniques we firstly show sympathetic nerves in close proximity to vasa recta pericytes in both the outer and inner medulla. Secondly, we demonstrate pharmacological stimulation of sympathetic nerves in situ (by tyramine) evokes pericyte-mediated vasoconstriction of vasa recta capillaries; inhibited by the application of the P2 receptor antagonist suramin. Lastly, tyramine-evoked vasoconstriction of vasa recta by pericytes is significantly less than ATP-evoked vasoconstriction. Sympathetic innervation may provide an additional level of functional regulation in the renal medulla that is highly localized. It now needs to be determined under which physiological/pathophysiological circumstances that sympathetic innervation of renal pericytes is important

  10. Mast cells drive mesenteric afferent signalling during acute intestinal ischaemia

    PubMed Central

    Jiang, Wen; Kirkup, Anthony J; Grundy, David

    2011-01-01

    Abstract Acute intestinal ischaemia stimulates visceral afferent nerves but the mechanisms responsible for this excitation are not fully understood. Mast cells may participate in this process as they are known to signal to mesenteric afferents during intestinal anaphylaxis and contribute to early inflammation and neuronal damage in response to cerebral ischaemia. We therefore hypothesised that mast cells are early responders to acute intestinal ischaemia and their activation initiates rapid signalling to the CNS via the excitation of mesenteric afferents. Primary afferent firing was recorded from a mesenteric nerve bundle supplying a segment of jejunum in anaesthetized adult rats. Acute focal ischaemia was produced by clamping the mesenteric vessels for 8 min, and reperfusion followed removal of the vessel clip. Two episodes of ischaemia–reperfusion (I–R) separated by a 30 min interval were performed. Drugs or their vehicles were administered 10 min before the 2nd I–R episode. Ischaemia caused a reproducible, intense and biphasic afferent firing that was temporally dissociated from the concomitantly triggered complex pattern of intestinal motor activity. The L-type calcium channel blocker, nifedipine, significantly attenuated this afferent firing by a mechanism independent of its action on intestinal tone. Ischaemia-induced afferent firing was also abrogated by the mast cell stabilizer, doxantrazole, and the H1 histamine receptor antagonist, pyrilamine. In contrast, the nicotinic receptor antagonist, hexamethonium, and the N-type calcium channel toxin, ω-conotoxin GVIA, each reduced the ischaemia-evoked motor inhibition but not the concurrent afferent discharge. Similarly, the cyclooxygenase inhibitor, naproxen, had no effect on the ischaemic afferent response but reduced the intestinal tone shortly from the onset of ischaemia to the early period of reperfusion. These data support a critical role for mast cell-derived histamine in the direct chemoexcitation

  11. Differential central projections of vestibular afferents in pigeons

    NASA Technical Reports Server (NTRS)

    Dickman, J. D.; Fang, Q.

    1996-01-01

    The question of whether a differential distribution of vestibular afferent information to central nuclear neurons is present in pigeons was studied using neural tracer compounds. Discrete tracing of afferent fibers innervating the individual semicircular canal and otolith organs was produced by sectioning individual branches of the vestibular nerve that innervate the different receptor organs and applying crystals of horseradish peroxidase, or a horseradish peroxidase/cholera toxin mixture, or a biocytin compound for neuronal uptake and transport. Afferent fibers and their terminal distributions within the brainstem and cerebellum were visualized subsequently. Discrete areas in the pigeon central nervous system that receive primary vestibular input include the superior, dorsal lateral, ventral lateral, medial, descending, and tangential vestibular nuclei; the A and B groups; the intermediate, medial, and lateral cerebellar nuclei; and the nodulus, the uvula, and the paraflocculus. Generally, the vertical canal afferents projected heavily to medial regions in the superior and descending vestibular nuclei as well as the A group. Vertical canal projections to the medial and lateral vestibular nuclei were observed but were less prominent. Horizontal canal projections to the superior and descending vestibular nuclei were much more centrally located than those of the vertical canals. A more substantial projection to the medial and lateral vestibular nuclei was seen with horizontal canal afferents compared to vertical canal fibers. Afferents innervating the utricle and saccule terminated generally in the lateral regions of all vestibular nuclei in areas that were separate from the projections of the semicircular canals. In addition, utricular fibers projected to regions in the vestibular nuclei that overlapped with the horizontal semicircular canal terminal fields, whereas saccular afferents projected to regions that received vertical canal fiber terminations. Lagenar

  12. Roles for the sympathetic nervous system, renal nerves, and CNS melanocortin-4 receptor in the elevated blood pressure in hyperandrogenemic female rats

    PubMed Central

    Maranon, Rodrigo; Lima, Roberta; Spradley, Frank T.; do Carmo, Jussara M.; Zhang, Howei; Smith, Andrew D.; Bui, Elizabeth; Thomas, R. Lucas; Moulana, Mohadetheh; Hall, John E.; Granger, Joey P.

    2015-01-01

    Women with polycystic ovary syndrome (PCOS) have hyperandrogenemia and increased prevalence of risk factors for cardiovascular disease, including elevated blood pressure. We recently characterized a hyperandrogenemic female rat (HAF) model of PCOS [chronic dihydrotestosterone (DHT) beginning at 4 wk of age] that exhibits similar characteristics as women with PCOS. In the present studies we tested the hypotheses that the elevated blood pressure in HAF rats is mediated in part by sympathetic activation, renal nerves, and melanocortin-4 receptor (MC4R) activation. Adrenergic blockade with terazosin and propranolol or renal denervation reduced mean arterial pressure (MAP by telemetry) in HAF rats but not controls. Hypothalamic MC4R expression was higher in HAF rats than controls, and central nervous system MC4R antagonism with SHU-9119 (1 nmol/h icv) reduced MAP in HAF rats. Taking a genetic approach, MC4R null and wild-type (WT) female rats were treated with DHT or placebo from 5 to 16 wk of age. MC4R null rats were obese and had higher MAP than WT control rats, and while DHT increased MAP in WT controls, DHT failed to further increase MAP in MC4R null rats. These data suggest that increases in MAP with chronic hyperandrogenemia in female rats are due, in part, to activation of the sympathetic nervous system, renal nerves, and MC4R and may provide novel insights into the mechanisms responsible for hypertension in women with hyperandrogenemia such as PCOS. PMID:25695289

  13. Primary afferent depolarization and frequency processing in auditory afferents.

    PubMed

    Baden, Tom; Hedwig, Berthold

    2010-11-01

    Presynaptic inhibition is a widespread mechanism modulating the efficiency of synaptic transmission and in sensory pathways is coupled to primary afferent depolarizations. Axonal terminals of bush-cricket auditory afferents received 2-5 mV graded depolarizing inputs, which reduced the amplitude of invading spikes and indicated presynaptic inhibition. These inputs were linked to a picrotoxin-sensitive increase of Ca(2+) in the terminals. Electrophysiological recordings and optical imaging showed that in individual afferents the sound frequency tuning based on spike rates was different from the tuning of the graded primary afferent depolarizations. The auditory neuropil of the bush-cricket Mecopoda elongata is tonotopically organized, with low frequencies represented anteriorly and high frequencies represented posteriorly. In contrast graded depolarizing inputs were tuned to high-frequencies anteriorly and to low-frequencies posteriorly. Furthermore anterior and posterior axonal branches of individual afferents received different levels of primary afferent depolarization depending on sound frequency. The presence of primary afferent depolarization in the afferent terminals indicates that presynaptic inhibition may shape the synaptic transmission of frequency-specific activity to auditory interneurons.

  14. The relationship between the size of a muscle afferent volley and the cerebral potential it produces.

    PubMed Central

    Gandevia, S; Burke, D; McKeon, B

    1982-01-01

    This study examined the relationship between the size of an afferent neural input produced by electrical stimulation of the posterior tibial nerve at the ankle and the size of the early components of the evoked cerebral potential. For five of six subjects the first peak of the afferent neural volley recorded in the popliteal fossa was uncontaminated by either motor efferents or cutaneous afferents. This was established by measuring the conduction times of motor fibres in the posterior tibial nerve and cutaneous fibres in the sural and posterior tibial nerves over the ankle to popliteal fossa segment. It is likely therefore that the first peak of the afferent volley contained predominantly, if not exclusively, activity in rapidly conducting afferents from the small muscles of the foot. The size of the two earliest components of the cerebral potential did not increase in direct proportion to the size of the afferent volley which produced it. The early components of the cerebral potential reached a maximum when the responsible muscle afferent volley was less than 50% of its maximum. PMID:6290605

  15. Characterization of primary afferent spinal innervation of mouse uterus.

    PubMed

    Herweijer, Geraldine; Kyloh, Melinda; Beckett, Elizabeth A H; Dodds, Kelsi N; Spencer, Nick J

    2014-01-01

    The primary afferent innervation of the uterus is incompletely understood. The aim of this study was to identify the location and characteristics of primary afferent neurons that innervate the uterine horn of mice and correlate the different morphological types of putative primary afferent nerve endings, immunoreactive to the sensory marker, calcitonin gene related peptide (CGRP). Using retrograde tracing, injection of 5-10 μL of 1,1'-didodecyl-3,3,3,3'-tetramethylindocarbocyanine perchlorate (DiI) into discrete single sites in each uterine horn revealed a biomodal distribution of sensory neurons in dorsal root ganglia (DRG) with peak labeling occurring between T13-L3 and a second smaller peak between L6-S1. The mean cross sectional area of labeled cells was 463 μm(2) ± s.e.m. A significantly greater proportion of labeled neurons consisted of small cell bodies (<300 μm(2)) in the sacral spinal cord (S2) compared with peak labeling at the lumbar (L2) region. In both sections and whole mount preparations, immunohistochemical staining for CGRP revealed substantial innervation of the uterus by CGRP-positive nerve fibers located primarily at the border between the circular and longitudinal muscle layers (N = 4). The nerve endings were classified into three distinct types: "single," "branching," or "complex," that often aligned preferentially in either the circular or longitudinal axis of the smooth muscles. Complex endings were often associated with mesenteric vessels. We have identified that the cell bodies of primary afferent neurons innervating the mouse uterus lie primarily in DRG at L2 and S1 spinal levels. Also, the greatest density of CGRP immunoreactivity lies within the myometrium, with at least three different morphological types of nerve endings identified. These findings will facilitate further investigations into the mechanisms underlying sensory transduction in mouse uterus. PMID:25120416

  16. Renal denervation in the treatment of resistant hypertension: Dead, alive or surviving?

    PubMed

    Al-Fakhouri, Ahmad; Efeovbokhan, Nephertiti; Nakhla, Rami; Khouzam, Rami N

    2016-10-01

    Hypertension is one of the most common chronic clinical problems encountered by physicians. The prevalence of resistant hypertension is estimated at 9% in the US. Patients with resistant hypertension have been shown to be at higher risk for adverse cardiovascular events, hence the need for greater efforts in improving the treatment of hypertension. The renal sympathetic nerves play an important role in the development of hypertension, mediated via sodium and water retention, increased renin release and alterations in renal blood flow. The proximity of the afferent and efferent renal sympathetic nerves to the adventitia of the renal arteries suggested the feasibility of an endovascular, selective, minimally invasive approach to renal denervation; a potential treatment option for resistant hypertension. While the RAPID, Reduce-HTN, EnligHTN, DENERHTN and Symplicity HTN-1 and -2 studies showed significant benefit of renal denervation in the treatment of resistant hypertension, the results of Oslo RDN, Prague-15 and Symplicity HTN-3 were not so favorable. Future well-designed clinical trials are needed to ascertain the benefits or otherwise of renal denervation in treatment-resistant hypertension. PMID:27614724

  17. Renal denervation in the treatment of resistant hypertension: Dead, alive or surviving?

    PubMed

    Al-Fakhouri, Ahmad; Efeovbokhan, Nephertiti; Nakhla, Rami; Khouzam, Rami N

    2016-10-01

    Hypertension is one of the most common chronic clinical problems encountered by physicians. The prevalence of resistant hypertension is estimated at 9% in the US. Patients with resistant hypertension have been shown to be at higher risk for adverse cardiovascular events, hence the need for greater efforts in improving the treatment of hypertension. The renal sympathetic nerves play an important role in the development of hypertension, mediated via sodium and water retention, increased renin release and alterations in renal blood flow. The proximity of the afferent and efferent renal sympathetic nerves to the adventitia of the renal arteries suggested the feasibility of an endovascular, selective, minimally invasive approach to renal denervation; a potential treatment option for resistant hypertension. While the RAPID, Reduce-HTN, EnligHTN, DENERHTN and Symplicity HTN-1 and -2 studies showed significant benefit of renal denervation in the treatment of resistant hypertension, the results of Oslo RDN, Prague-15 and Symplicity HTN-3 were not so favorable. Future well-designed clinical trials are needed to ascertain the benefits or otherwise of renal denervation in treatment-resistant hypertension.

  18. Effect of Microgravity on Afferent Innervation

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Presentations and publications are: (1) an audiovisual summary web presentation on results from SLM-MIR avian experiments. A color presentation summarizing results from the SLM-MIR and STS-29 avian experiments; (2) color threshold and ratio of S 100B MAP5, NF68/200, GABA and GAD; (3) chicken (Gallus domesticus) inner ear afferents; (4) microgravity in the STS-29 Space Shuttle Discovery affected the vestibular system of chick embryos; (5) expression of S 100B in sensory and secretory cells of the vertebrate inner ear; (6) otoconia biogenesis, phylogeny, composition and functional attributes;(7) the glycan keratin sulfate in inner ear crystals; (8) elliptical-P cells in the avian perilymphatic interface of the tegmentum vasculosum; and (9) LAMP2c and S100B upregulation in brain stem after VIIIth nerve deafferentation.

  19. Neck muscle afferents influence oromotor and cardiorespiratory brainstem neural circuits.

    PubMed

    Edwards, I J; Lall, V K; Paton, J F; Yanagawa, Y; Szabo, G; Deuchars, S A; Deuchars, J

    2015-01-01

    Sensory information arising from the upper neck is important in the reflex control of posture and eye position. It has also been linked to the autonomic control of the cardiovascular and respiratory systems. Whiplash associated disorders (WAD) and cervical dystonia, which involve disturbance to the neck region, can often present with abnormalities to the oromotor, respiratory and cardiovascular systems. We investigated the potential neural pathways underlying such symptoms. Simulating neck afferent activity by electrical stimulation of the second cervical nerve in a working heart brainstem preparation (WHBP) altered the pattern of central respiratory drive and increased perfusion pressure. Tracing central targets of these sensory afferents revealed projections to the intermedius nucleus of the medulla (InM). These anterogradely labelled afferents co-localised with parvalbumin and vesicular glutamate transporter 1 indicating that they are proprioceptive. Anterograde tracing from the InM identified projections to brain regions involved in respiratory, cardiovascular, postural and oro-facial behaviours--the neighbouring hypoglossal nucleus, facial and motor trigeminal nuclei, parabrachial nuclei, rostral and caudal ventrolateral medulla and nucleus ambiguus. In brain slices, electrical stimulation of afferent fibre tracts lateral to the cuneate nucleus monosynaptically excited InM neurones. Direct stimulation of the InM in the WHBP mimicked the response of second cervical nerve stimulation. These results provide evidence of pathways linking upper cervical sensory afferents with CNS areas involved in autonomic and oromotor control, via the InM. Disruption of these neuronal pathways could, therefore, explain the dysphagic and cardiorespiratory abnormalities which may accompany cervical dystonia and WAD. PMID:24595534

  20. A novel role for TRPM8 in visceral afferent function.

    PubMed

    Harrington, Andrea M; Hughes, Patrick A; Martin, Christopher M; Yang, Jing; Castro, Joel; Isaacs, Nicole J; Blackshaw, L Ashley; Brierley, Stuart M

    2011-07-01

    Transient receptor potential ion channel melastatin subtype 8 (TRPM8) is activated by cold temperatures and cooling agents, such as menthol and icilin. Compounds containing peppermint are reported to reduce symptoms of bowel hypersensitivity; however, the underlying mechanisms of action are unclear. Here we determined the role of TRPM8 in colonic sensory pathways. Laser capture microdissection, quantitative reverse transcription-polymerase chain reaction (RT-PCR), immunofluorescence, and retrograde tracing were used to localise TRPM8 to colonic primary afferent neurons. In vitro extracellular single-fibre afferent recordings were used to determine the effect of TRPM8 channel activation on the chemosensory and mechanosensory function of colonic high-threshold afferent fibres. TRPM8 mRNA was present in colonic DRG neurons, whereas TRPM8 protein was present on nerve fibres throughout the wall of the colon. A subpopulation (24%, n=58) of splanchnic serosal and mesenteric afferents tested responded directly to icilin (5 μmol/L). Subsequently, icilin significantly desensitised afferents to mechanical stimulation (P<.0001; n=37). Of the splanchnic afferents responding to icilin, 21 (33%) also responded directly to the TRPV1 agonist capsaicin (3 μmol/L), and icilin reduced the direct chemosensory response to capsaicin. Icilin also prevented mechanosensory desensitization and sensitization induced by capsaicin and the TRPA1 agonist AITC (40 μmol/L), respectively. TRPM8 is present on a select population of colonic high threshold sensory neurons, which may also co-express TRPV1. TRPM8 couples to TRPV1 and TRPA1 to inhibit their downstream chemosensory and mechanosensory actions. PMID:21489690

  1. Determinants of Spatial and Temporal Coding by Semicircular Canal Afferents

    PubMed Central

    Highstein, Stephen M.; Rabbitt, Richard D.; Holstein, Gay R.; Boyle, Richard D.

    2010-01-01

    The vestibular semicircular canals are internal sensors that signal the magnitude, direction, and temporal properties of angular head motion. Fluid mechanics within the 3-canal labyrinth code the direction of movement and integrate angular acceleration stimuli over time. Directional coding is accomplished by decomposition of complex angular accelerations into 3 biomechanical components—one component exciting each of the 3 ampullary organs and associated afferent nerve bundles separately. For low-frequency angular motion stimuli, fluid displacement within each canal is proportional to angular acceleration. At higher frequencies, above the lower corner frequency, real-time integration is accomplished by viscous forces arising from the movement of fluid within the slender lumen of each canal. This results in angular velocity sensitive fluid displacements. Reflecting this, a subset of afferent fibers indeed report angular acceleration to the brain for low frequencies of head movement and report angular velocity for higher frequencies. However, a substantial number of afferent fibers also report angular acceleration, or a signal between acceleration and velocity, even at frequencies where the endolymph displacement is known to follow angular head velocity. These non-velocity-sensitive afferent signals cannot be attributed to canal biomechanics alone. The responses of non-velocity-sensitive cells include a mathematical differentiation (first-order or fractional) imparted by hair-cell and/or afferent complexes. This mathematical differentiation from velocity to acceleration cannot be attributed to hair cell ionic currents, but occurs as a result of the dynamics of synaptic transmission between hair cells and their primary afferent fibers. The evidence for this conclusion is reviewed below. PMID:15845995

  2. The organization of primary afferent depolarization in the isolated spinal cord of the frog

    PubMed Central

    Carpenter, D. O.; Rudomin, P.

    1973-01-01

    1. The organization of primary afferent depolarization (PAD) produced by excitation of peripheral sensory and motor nerves was studied in the frog cord isolated with hind limb nerves. 2. Dorsal root potentials from sensory fibres (DR-DRPs) were evoked on stimulation of most sensory nerves, but were largest from cutaneous, joint and flexor muscle afferents. With single shock stimulation the largest cutaneous and joint afferent fibres gave DR-DRPs, but potentials from muscle nerves resulted from activation of sensory fibres with thresholds to electrical stimulation higher than 1·2-1·5 times the threshold of the most excitable fibres in the nerve. This suggests that PAD from muscle afferents is probably due to excitation of extrafusal receptors. 3. Dorsal root potentials produced by antidromic activation of motor fibres (VR-DRPs) were larger from extensor muscles and smaller or absent from flexor muscles. The VR-DRPs were produced by activation of the lowest threshold motor fibres. 4. Three types of interactions were found between test and conditioning DRPs from the same or different nerves. With maximal responses occlusion was usually pronounced. At submaximal levels linear summation occurred. Near threshold the conditioning stimulus frequently resulted in a large facilitation of the test DRP. All three types of interactions were found with two DR-DRPs, two VR-DRPs or one DR-DRP and one VR-DRP. 5. The excitability of sensory nerve terminals from most peripheral nerves was increased during the DR-DRP. The magnitude of the excitability increase varied roughly with the magnitude of the DR-DRP evoked by the conditioning stimulus. 6. There was a marked excitability increase of cutaneous and extensor muscle afferent terminals during the VR-DRP. Flexor muscle afferent terminals often showed no excitability changes to ventral root stimulation. In those experiments where afferent terminals from flexor muscles did show an excitability increase, the effects were smaller than

  3. Morphologic Characterization of Nerves in Whole-Mount Airway Biopsies

    PubMed Central

    Canning, Brendan J.; Merlo-Pich, Emilio; Woodcock, Ashley A.; Smith, Jaclyn A.

    2015-01-01

    Rationale: Neuroplasticity of bronchopulmonary afferent neurons that respond to mechanical and chemical stimuli may sensitize the cough reflex. Afferent drive in cough is carried by the vagus nerve, and vagal afferent nerve terminals have been well defined in animals. Yet, both unmyelinated C fibers and particularly the morphologically distinct, myelinated, nodose-derived mechanoreceptors described in animals are poorly characterized in humans. To date there are no distinctive molecular markers or detailed morphologies available for human bronchopulmonary afferent nerves. Objectives: Morphologic and neuromolecular characterization of the afferent nerves that are potentially involved in cough in humans. Methods: A whole-mount immunofluorescence approach, rarely used in human lung tissue, was used with antibodies specific to protein gene product 9.5 (PGP9.5) and, for the first time in human lung tissue, 200-kD neurofilament subunit. Measurements and Main Results: We have developed a robust technique to visualize fibers consistent with autonomic and C fibers and pulmonary neuroendocrine cells. A group of morphologically distinct, 200-kD neurofilament-immunopositive myelinated afferent fibers, a subpopulation of which did not express PGP9.5, was also identified. Conclusions: PGP9.5-immunonegative nerves are strikingly similar to myelinated airway afferents, the cough receptor, and smooth muscle–associated airway receptors described in rodents. These have never been described in humans. Full description of human airway nerves is critical to the translation of animal studies to the clinical setting. PMID:25906337

  4. Transfer characteristics of the hair cell's afferent synapse

    NASA Astrophysics Data System (ADS)

    Keen, Erica C.; Hudspeth, A. J.

    2006-04-01

    The sense of hearing depends on fast, finely graded neurotransmission at the ribbon synapses connecting hair cells to afferent nerve fibers. The processing that occurs at this first chemical synapse in the auditory pathway determines the quality and extent of the information conveyed to the central nervous system. Knowledge of the synapse's input-output function is therefore essential for understanding how auditory stimuli are encoded. To investigate the transfer function at the hair cell's synapse, we developed a preparation of the bullfrog's amphibian papilla. In the portion of this receptor organ representing stimuli of 400-800 Hz, each afferent nerve fiber forms several synaptic terminals onto one to three hair cells. By performing simultaneous voltage-clamp recordings from presynaptic hair cells and postsynaptic afferent fibers, we established that the rate of evoked vesicle release, as determined from the average postsynaptic current, depends linearly on the amplitude of the presynaptic Ca2+ current. This result implies that, for receptor potentials in the physiological range, the hair cell's synapse transmits information with high fidelity. auditory system | exocytosis | glutamate | ribbon synapse | synaptic vesicle

  5. Functional recovery of anterior semicircular canal afferents following hair cell regeneration in birds

    NASA Technical Reports Server (NTRS)

    Boyle, Richard; Highstein, Stephen M.; Carey, John P.; Xu, Jinping

    2002-01-01

    Streptomycin sulfate (1.2 g/kg i.m.) was administered for 5 consecutive days to 5-7-day-old white Leghorn chicks; this causes damage to semicircular canal hair cells that ultimately regenerate to reform the sensory epithelium. During the recovery period, electrophysiological recordings were taken sequentially from anterior semicircular canal primary afferents using an indentation stimulus of the canal that has been shown to mimic rotational stimulation. Chicks were assigned to an early (14-18 days; n = 8), intermediate (28-34 days; n = 5), and late (38-58 days; n = 4) period based on days after treatment. Seven untreated chicks, 15-67 days old, provided control data. An absence of background and indent-induced discharge was the prominent feature of afferents in the early period: only "silent" afferents were encountered in 5/8 experiments. In several of these chicks, fascicles of afferent fibers were seen extending up to the epithelium that was void of hair cells, and intra- and extracellular biocytin labeling revealed afferent processes penetrating into the supporting cell layer of the crista. In 3/8 chicks 74 afferents could be characterized, and they significantly differed from controls (n = 130) by having a lower discharge rate and a negligible response to canal stimulation. In the intermediate period there was considerable variability in discharge properties of 121 afferents, but as a whole the number of "silent" fibers in the canal nerve diminished, the background rate increased, and a response to canal stimulation detected. Individually biocytin-labeled afferents had normal-appearing terminal specializations in the sensory epithelium by 28 days poststreptomycin. In the late period, afferents (n = 58) remained significantly different from controls in background discharge properties and response gain. The evidence suggests that a considerable amount of variability exists between chicks in the return of vestibular afferent function following ototoxic injury and

  6. Leptin acts in the forebrain to differentially influence baroreflex control of lumbar, renal, and splanchnic sympathetic nerve activity and heart rate.

    PubMed

    Li, Baoxin; Shi, Zhigang; Cassaglia, Priscila A; Brooks, Virginia L

    2013-04-01

    Although leptin is known to increase sympathetic nerve activity (SNA), we tested the hypothesis that leptin also enhances baroreflex control of SNA and heart rate (HR). Using α-chloralose anesthetized male rats, mean arterial pressure (MAP), HR, lumbar SNA (LSNA), splanchnic SNA (SSNA), and renal SNA (RSNA) were recorded before and for 2 hours after lateral cerebroventricular leptin or artificial cerebrospinal fluid administration. Baroreflex function was assessed using a 4-parameter sigmoidal fit of HR and SNA responses to slow ramp (3-5 minutes) changes in MAP, induced by intravenous infusion of nitroprusside and phenylephrine. Leptin (3 μg) increased (P<0.05) basal LSNA, SSNA, RSNA, HR, and MAP, and the LSNA, SSNA, RSNA, and HR baroreflex maxima. Leptin also increased gain of baroreflex control of LSNA and RSNA, but not of SSNA or HR. The elevations in HR were eliminated by pretreatment with methscopalamine, to block parasympathetic nerve activity; however, after cardiac sympathetic blockade with atenolol, leptin still increased basal HR and MAP and the HR baroreflex maximum and minimum. Leptin (1.5 μg) also increased LSNA and enhanced LSNA baroreflex gain and maximum, but did not alter MAP, HR, or the HR baroreflex. Lateral cerebroventricular artificial cerebrospinal fluid had no effects. Finally, to test whether leptin acts in the brain stem, leptin (3 μg) was infused into the 4th ventricle; however, no significant changes were observed. In conclusion, leptin acts in the forebrain to differentially influence baroreflex control of LSNA, RSNA, SSNA, and HR, with the latter action mediated via suppression of parasympathetic nerve activity. PMID:23424232

  7. Attenuation by alpha,beta-methylenadenosine-5'-triphosphate of periarterial nerve stimulation-induced renal vasoconstriction is not due to desensitization of purinergic receptors.

    PubMed

    Sehic, E; Ruan, Y; Malik, K U

    1994-11-01

    We investigated in the isolated rat kidney the modulation of vasoconstrictor responses to ATP (0.05-0.5 mumol), renal nerve stimulation (RNS) (0.5-10.0 Hz), norepinephrine (NE) (0.15-0.9 nmol), angiotensin II (2 pmol) and arginine vasopressin (3 pmol) by alpha,beta-methylenadenosine-5'-triphosphate (alpha beta mATP) infused at 6 microM (Procedure I) or for short intervals (5 min) at a low concentration (60 nM) gradually increased to 6 microM to reduce the dramatic initial vasoconstriction (Procedure II). Infusion of alpha beta mATP (Procedure I) produced a marked, transient rise in perfusion pressure of 146 to 198 mm Hg that returned to basal level within 10 min and thereafter inhibited the vasoconstrictor response to ATP, RNS (0.5-6.0 Hz), NE, angiotensin II and arginine vasopressin. Infusion of alpha beta mATP by Procedure II produced a smaller maximal transient increase in perfusion pressure (< 100 mm Hg) and reduced the vasoconstrictor responses to RNS at 0.5 to 2.0 Hz and to the lower dose of NE (0.15 nmol) only. ATP infusion reduced the vasoconstrictor response to both RNS and NE. In animals pretreated with reserpine, the effect of RNS to produce vasoconstriction was inhibited. These data suggest that ATP does not contribute to the renal vasoconstrictor response elicited by RNS, and that attenuation of renal vasoconstrictor responses by alpha beta mATP is not due to desensitization of purinergic receptors. PMID:7965821

  8. Vagus Nerve Stimulation

    PubMed Central

    Howland, Robert H.

    2014-01-01

    The vagus nerve is a major component of the autonomic nervous system, has an important role in the regulation of metabolic homeostasis, and plays a key role in the neuroendocrine-immune axis to maintain homeostasis through its afferent and efferent pathways. Vagus nerve stimulation (VNS) refers to any technique that stimulates the vagus nerve, including manual or electrical stimulation. Left cervical VNS is an approved therapy for refractory epilepsy and for treatment resistant depression. Right cervical VNS is effective for treating heart failure in preclinical studies and a phase II clinical trial. The effectiveness of various forms of non-invasive transcutaneous VNS for epilepsy, depression, primary headaches, and other conditions has not been investigated beyond small pilot studies. The relationship between depression, inflammation, metabolic syndrome, and heart disease might be mediated by the vagus nerve. VNS deserves further study for its potentially favorable effects on cardiovascular, cerebrovascular, metabolic, and other physiological biomarkers associated with depression morbidity and mortality. PMID:24834378

  9. Primary afferent fibers establish dye-coupled connections in the frog central nervous system.

    PubMed

    Bácskai, Timea; Matesz, Clara

    Neurobiotin and Lucifer yellow, indicators of gap junctional coupling, were applied to primary afferent fibers of the frog. Following application of tracers to cervical or lumbar dorsal root fibers, a large number of labeled granule cells were detected in the corpus cerebelli, the brainstem, and the spinal cord. The vestibular nerve was found to be in dye-coupled connection with the granule cells of the auricular lobe of the cerebellum. After application of the tracers to the trigeminal nerve, elicited dye-coupled neurons located mainly in the termination area of the descending limb of the mesencephalic trigeminal nucleus. In control experiments with biotinylated dextrane amine, only primary afferent fibers were labeled. Our results suggest that gap junctional coupling exists between primary afferent fibers and their postsynaptic targets in the frog.

  10. International expert consensus statement: Percutaneous transluminal renal denervation for the treatment of resistant hypertension.

    PubMed

    Schlaich, Markus P; Schmieder, Roland E; Bakris, George; Blankestijn, Peter J; Böhm, Michael; Campese, Vito M; Francis, Darrel P; Grassi, Guido; Hering, Dagmara; Katholi, Richard; Kjeldsen, Sverre; Krum, Henry; Mahfoud, Felix; Mancia, Giuseppe; Messerli, Franz H; Narkiewicz, Krzysztof; Parati, Gianfranco; Rocha-Singh, Krishna J; Ruilope, Luis M; Rump, Lars C; Sica, Domenic A; Sobotka, Paul A; Tsioufis, Costas; Vonend, Oliver; Weber, Michael A; Williams, Bryan; Zeller, Thomas; Esler, Murray D

    2013-12-01

    Catheter-based radiofrequency ablation technology to disrupt both efferent and afferent renal nerves has recently been introduced to clinical medicine after the demonstration of significant systolic and diastolic blood pressure reductions. Clinical trial data available thus far have been obtained primarily in patients with resistant hypertension, defined as standardized systolic clinic blood pressure ≥ 160 mm Hg (or ≥ 150 mm Hg in patients with type 2 diabetes) despite appropriate pharmacologic treatment with at least 3 antihypertensive drugs, including a diuretic agent. Accordingly, these criteria and blood pressure thresholds should be borne in mind when selecting patients for renal nerve ablation. Secondary forms of hypertension and pseudoresistance, such as nonadherence to medication, intolerance of medication, and white coat hypertension, should have been ruled out, and 24-h ambulatory blood pressure monitoring is mandatory in this context. Because there are theoretical concerns with regard to renal safety, selected patients should have preserved renal function, with an estimated glomerular filtration rate ≥ 45 ml/min/1.73 m(2). Optimal periprocedural management of volume status and medication regimens at specialized and experienced centers equipped with adequate infrastructure to cope with potential procedural complications will minimize potential patient risks. Long-term safety and efficacy data are limited to 3 years of follow-up in small patient cohorts, so efforts to monitor treated patients are crucial to define the long-term performance of the procedure. Although renal nerve ablation could have beneficial effects in other conditions characterized by elevated renal sympathetic nerve activity, its potential use for such indications should currently be limited to formal research studies of its safety and efficacy.

  11. Interleukin-1β sensitizes abdominal visceral afferents of cats to ischaemia and histamine

    PubMed Central

    Fu, Liang-Wu; Longhurst, John C

    1999-01-01

    produced during brief abdominal ischaemia contributes to activation of visceral afferents during ischaemia, at least in part, by sensitizing the afferent nerve endings to ischaemia. Our data also show that exogenous IL-1β sensitizes visceral afferents to histamine. PMID:10562349

  12. Putative roles of neuropeptides in vagal afferent signaling

    PubMed Central

    de Lartigue, Guillaume

    2014-01-01

    The vagus nerve is a major pathway by which information is communicated between the brain and peripheral organs. Sensory neurons of the vagus are located in the nodose ganglia. These vagal afferent neurons innervate the heart, the lung and the gastrointestinal tract, and convey information about peripheral signals to the brain important in the control of cardiovascular tone, respiratory tone, and satiation, respectively. Glutamate is thought to be the primary neurotransmitter involved in conveying all of this information to the brain. It remains unclear how a single neurotransmitter can regulate such an extensive list of physiological functions from a wide range of visceral sites. Many neurotransmitters have been identified in vagal afferent neurons and have been suggested to modulate the physiological functions of glutamate. Specifically, the anorectic peptide transmitters, cocaine and amphetamine regulated transcript (CART) and the orexigenic peptide transmitters, melanin concentrating hormone (MCH) are differentially regulated in vagal afferent neurons and have opposing effects on food intake. Using these two peptides as a model, this review will discuss the potential role of peptide transmitters in providing a more precise and refined modulatory control of the broad physiological functions of glutamate, especially in relation to the control of feeding. PMID:24650553

  13. Utricular afferents: morphology of peripheral terminals

    PubMed Central

    Huwe, J. A.; Logan, G. J.; Williams, B.; Rowe, M. H.

    2015-01-01

    The utricle provides critical information about spatiotemporal properties of head movement. It comprises multiple subdivisions whose functional roles are poorly understood. We previously identified four subdivisions in turtle utricle, based on hair bundle structure and mechanics, otoconial membrane structure and hair bundle coupling, and immunoreactivity to calcium-binding proteins. Here we ask whether these macular subdivisions are innervated by distinctive populations of afferents to help us understand the role each subdivision plays in signaling head movements. We quantified the morphology of 173 afferents and identified six afferent classes, which differ in structure and macular locus. Calyceal and dimorphic afferents innervate one striolar band. Bouton afferents innervate a second striolar band; they have elongated terminals and the thickest processes and axons of all bouton units. Bouton afferents in lateral (LES) and medial (MES) extrastriolae have small-diameter axons but differ in collecting area, bouton number, and hair cell contacts (LES >> MES). A fourth, distinctive population of bouton afferents supplies the juxtastriola. These results, combined with our earlier findings on utricular hair cells and the otoconial membrane, suggest the hypotheses that MES and calyceal afferents encode head movement direction with high spatial resolution and that MES afferents are well suited to signal three-dimensional head orientation and striolar afferents to signal head movement onset. PMID:25632074

  14. Upregulation of α1-adrenoceptors on cutaneous nerve fibres after partial sciatic nerve ligation and in complex regional pain syndrome type II.

    PubMed

    Drummond, Peter D; Drummond, Eleanor S; Dawson, Linda F; Mitchell, Vanessa; Finch, Philip M; Vaughan, Christopher W; Phillips, Jacqueline K

    2014-03-01

    After peripheral nerve injury, nociceptive afferents acquire an abnormal excitability to adrenergic agents, possibly due to an enhanced expression of α1-adrenoceptors (α1-ARs) on these nerve fibres. To investigate this in the present study, changes in α1-AR expression on nerve fibres in the skin and sciatic nerve trunk were assessed using immunohistochemistry in an animal model of neuropathic pain involving partial ligation of the sciatic nerve. In addition, α1-AR expression on nerve fibres was examined in painful and unaffected skin of patients who developed complex regional pain syndrome (CRPS) after a peripheral nerve injury (CRPS type II). Four days after partial ligation of the sciatic nerve, α1-AR expression was greater on dermal nerve fibres that survived the injury than on dermal nerve fibres after sham surgery. This heightened α1-AR expression was observed on nonpeptidergic nociceptive afferents in the injured sciatic nerve, dermal nerve bundles, and the papillary dermis. Heightened expression of α1-AR in dermal nerve bundles after peripheral nerve injury also colocalized with neurofilament 200, a marker of myelinated nerve fibres. In each patient examined, α1-AR expression was greater on nerve fibres in skin affected by CRPS than in unaffected skin from the same patient or from pain-free controls. Together, these findings provide compelling evidence for an upregulation of α1-ARs on cutaneous nociceptive afferents after peripheral nerve injury. Activation of these receptors by circulating or locally secreted catecholamines might contribute to chronic pain in CRPS type II.

  15. Central projections of the wing afferents in the hawkmoth, Agrius convolvuli.

    PubMed

    Ando, Noriyasu; Wang, Hao; Shirai, Koji; Kiguchi, Kenji; Kanzaki, Ryohei

    2011-11-01

    Flight behaviors in various insect species are closely correlated with their mechanical and neuronal properties. Compared to locusts and flies which have been intensively studied, moths have "intermediate" properties in terms of the neurogenic muscle activations, power generation by indirect muscles, and two-winged-insect-like flapping behavior. Despite these unique characteristics, little is known about the neuronal mechanisms of flight control in moths. We investigated projections of the wing mechanosensory afferents in the central nervous system (CNS) of the hawkmoth, Agrius convolvuli, because the mechanosensory proprioceptive feedback has an essential role for flight control and would be presumably optimized for insect species. We conducted anterograde staining of nine afferent nerves from the fore- and hindwings. All of these afferents projected into the prothoracic, mesothoracic and metathoracic ganglia (TG1, 2 and 3) and had ascending fibers to the head ganglia. Prominent projection areas in the TG1-3 and suboesophageal ganglion (SOG) were common between the forewing, hindwing and contralateral forewing afferents, suggesting that information from different wings are converged at multiple levels presumably for coordinating wing flapping. On the other hand, differences of projections between the fore- and hindwing afferents were observed especially in projection areas of the tegulae in the TG1 and contralateral projections of the anterior forewing nerve in the TGs and SOG, which would reflect functional differences between corresponding mechanoreceptors on each wing. Afferents comprising groups of the campaniform sensilla at the wing bases had prominent ascending pathways to the SOG, resembling the head-neck motor system for gaze control in flies. Double staining of the wing afferents and flight or neck motoneurons also indicated potential connectivity between them. Our results suggest multiple roles of the wing proprioceptive feedback for flight and provide

  16. Effects of hemodialysis on macular and retinal nerve fiber layer thicknesses in non-diabetic patients with end stage renal failure

    PubMed Central

    Atilgan, Cemile U.; Guven, Dilek; Akarsu, Ozge P.; Sakaci, Tamer; Sendul, Selam Y.; Baydar, Yasemin; Atilgan, Kadir G.; Turker, Ibrahim C.

    2016-01-01

    Objectives: To evaluate the thicknesses of retinal nerve fiber layer (RNFL) and macula by fourier-domain (FD) optical coherence tomography (OCT) in non-diabetic patients with end-stage-renal-failure (ESRF) undergoing hemodialysis (HD). Methods: This is a prospective and observational study. Both eyes of 20 patients receiving HD (group 1) and 34 control patients (group 2) were evaluated by FD-OCT. Macular and RNFL thicknesses were compared between groups and their correlation with age, duration of HD, and gender were examined. In group 1, macular and RNFL thicknesses were evaluated before and shortly after HD in the first day, first and sixth months. Results: In group 1, pre-HD temporal, inferior, average RNFL thicknesses were thinner than group 2. This thinning did not correlate with duration of HD, age and gender. Pre-HD macular thicknesses were thinner than group 2. These thinnings did not correlate with age, but the thinnings at superior, nasal and average thickness correlated negatively with duration of HD. Nasal, temporal, and average macular thicknesses were thinner in female patients. The thickenings of RNFL and macula that were observed in the after HD first day and first month did not showed consistency in the sixth month except superior quadrant RNFL. Conclusion: Macular and RNFL thicknesses of patients receiving HD were less than the normal population. Age has no effect on these thinnings. The duration of HD affects more than gender. Hemodialysis session causes a consistent increase in superior quadrant RNFL. PMID:27279510

  17. Excitation of rat colonic afferent fibres by 5-HT3 receptors

    PubMed Central

    Hicks, Gareth A; Coldwell, Jonathan R; Schindler, Marcus; Bland Ward, Philip A; Jenkins, David; Lynn, Penny A; Humphrey, Patrick P A; Blackshaw, L Ashley

    2002-01-01

    The gastrointestinal tract contains most of the body's 5-hydroxytryptamine (5-HT) and releases large amounts after meals or exposure to toxins. Increased 5-HT release occurs in patients with irritable bowel syndrome (IBS) and their peak plasma 5-HT levels correlate with pain episodes. 5-HT3 receptor antagonists reduce symptoms of IBS clinically, but their site of action is unclear and the potential for other therapeutic targets is unexplored. Here we investigated effects of 5-HT on sensory afferents from the colon and the expression of 5-HT3 receptors on their cell bodies in the dorsal root ganglia (DRG). Distal colon, inferior mesenteric ganglion and the lumbar splanchnic nerve bundle (LSN) were placed in a specialized organ bath. Eighty-six single fibres were recorded from the LSN. Three classes of primary afferents were found: 70 high-threshold serosal afferents, four low-threshold muscular afferents and 12 mucosal afferents. Afferent cell bodies were retrogradely labelled from the distal colon to the lumbar DRG, where they were processed for 5-HT3 receptor-like immunoreactivity. Fifty-six percent of colonic afferents responded to 5-HT (between 10−6 and 10−3 M) and 30 % responded to the selective 5-HT3 agonist, 2-methyl-5-HT (between 10−6 and 10−2 M). Responses to 2-methyl-5-HT were blocked by the 5-HT3 receptor antagonist alosetron (2 × 10−7 M), whereas responses to 5-HT were only partly inhibited. Twenty-six percent of L1 DRG cell bodies retrogradely labelled from the colon displayed 5-HT3 receptor-like immunoreactivity. We conclude that colonic sensory neurones expressing 5-HT3 receptors also functionally express the receptors at their peripheral endings. Our data reveal actions of 5-HT on colonic afferent endings via both 5-HT3 and non-5-HT3 receptors. PMID:12411529

  18. Altered colorectal afferent function associated with TNBS-induced visceral hypersensitivity in mice.

    PubMed

    Feng, Bin; La, Jun-Ho; Tanaka, Takahiro; Schwartz, Erica S; McMurray, Timothy P; Gebhart, G F

    2012-10-01

    Inflammation of the distal bowel is often associated with abdominal pain and hypersensitivity, but whether and which colorectal afferents contribute to the hypersensitivity is unknown. Using a mouse model of 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis, we investigated colorectal hypersensitivity following intracolonic TNBS and associated changes in colorectum and afferent functions. C57BL/6 mice were treated intracolonically with TNBS or saline. Visceromotor responses to colorectal distension (15-60 mmHg) were recorded over 8 wk in TNBS- and saline-treated (control) mice. In other mice treated with TNBS or saline, colorectal inflammation was assessed by myeloperoxidase assay and immunohistological staining. In vitro single-fiber recordings were conducted on both TNBS and saline-treated mice to assess colorectal afferent function. Mice exhibited significant colorectal hypersensitivity through day 14 after TNBS treatment that resolved by day 28 with no resensitization through day 56. TNBS induced a neutrophil- and macrophage-based colorectal inflammation as well as loss of nerve fibers, all of which resolved by days 14-28. Single-fiber recordings revealed a net increase in afferent drive from stretch-sensitive colorectal afferents at day 14 post-TNBS and reduced proportions of mechanically insensitive afferents (MIAs) at days 14-28. Intracolonic TNBS-induced colorectal inflammation was associated with the development and recovery of hypersensitivity in mice, which correlated with a transient increase and recovery of sensitization of stretch-sensitive colorectal afferents and MIAs. These results indicate that the development and maintenance of colorectal hypersensitivity following inflammation are mediated by peripheral drive from stretch-sensitive colorectal afferents and a potential contribution from MIAs.

  19. Altered colorectal afferent function associated with TNBS-induced visceral hypersensitivity in mice

    PubMed Central

    La, Jun-Ho; Tanaka, Takahiro; Schwartz, Erica S.; McMurray, Timothy P.; Gebhart, G. F.

    2012-01-01

    Inflammation of the distal bowel is often associated with abdominal pain and hypersensitivity, but whether and which colorectal afferents contribute to the hypersensitivity is unknown. Using a mouse model of 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis, we investigated colorectal hypersensitivity following intracolonic TNBS and associated changes in colorectum and afferent functions. C57BL/6 mice were treated intracolonically with TNBS or saline. Visceromotor responses to colorectal distension (15–60 mmHg) were recorded over 8 wk in TNBS- and saline-treated (control) mice. In other mice treated with TNBS or saline, colorectal inflammation was assessed by myeloperoxidase assay and immunohistological staining. In vitro single-fiber recordings were conducted on both TNBS and saline-treated mice to assess colorectal afferent function. Mice exhibited significant colorectal hypersensitivity through day 14 after TNBS treatment that resolved by day 28 with no resensitization through day 56. TNBS induced a neutrophil- and macrophage-based colorectal inflammation as well as loss of nerve fibers, all of which resolved by days 14–28. Single-fiber recordings revealed a net increase in afferent drive from stretch-sensitive colorectal afferents at day 14 post-TNBS and reduced proportions of mechanically insensitive afferents (MIAs) at days 14–28. Intracolonic TNBS-induced colorectal inflammation was associated with the development and recovery of hypersensitivity in mice, which correlated with a transient increase and recovery of sensitization of stretch-sensitive colorectal afferents and MIAs. These results indicate that the development and maintenance of colorectal hypersensitivity following inflammation are mediated by peripheral drive from stretch-sensitive colorectal afferents and a potential contribution from MIAs. PMID:22859364

  20. Activation of guanylate cyclase-C attenuates stretch responses and sensitization of mouse colorectal afferents

    PubMed Central

    Feng, Bin; Kiyatkin, Michael E.; La, Jun-Ho; Ge, Pei; Solinga, Robert; Silos-Santiago, Inmaculada; Gebhart, G.F.

    2013-01-01

    Irritable bowel syndrome (IBS) is characterized by altered bowel habits, persistent pain and discomfort, and typically colorectal hypersensitivity. Linaclotide, a peripherally-restricted 14-amino acid peptide approved for the treatment of IBS with constipation, relieves constipation and reduces IBS-associated pain in these patients presumably by activation of guanylate cyclase-C (GC-C), which stimulates production and release of cyclic guanosine monophosphate (cGMP) from intestinal epithelial cells. We investigated whether activation of GC-C by the endogenous agonist uroguanylin or the primary downstream effector of that activation, cGMP, directly modulates responses and sensitization of mechanosensitive colorectal primary afferents. The distal 2 cm of mouse colorectum with attached pelvic nerve was harvested, pinned flat mucosal side up for in vitro single-fiber recordings and the encoding properties of mechanosensitive afferents (serosal, mucosal, muscular and muscular-mucosal) to probing and circumferential stretch studied. Both cGMP (10–300μM) and uroguanylin (1–1000nM) applied directly to colorectal receptive endings significantly reduced responses of muscular and muscular-mucosal afferents to stretch; serosal and mucosal afferents were not affected. Sensitized responses (i.e., increased responses to stretch) of muscular and muscular-mucosal afferents were reversed by cGMP, returning responses to stretch to control. Blocking the transport of cGMP from colorectal epithelia by probenecid, a mechanism validated by studies in cultured intestinal T84 cells, abolished the inhibitory effect of uroguanylin on muscular-mucosal afferents. These results suggest that GC-C agonists like linaclotide alleviate colorectal pain and hypersensitivity by dampening stretch-sensitive afferent mechanosensitivity and normalizing afferent sensitization. PMID:23739979

  1. Myelinated Afferents Are Involved in Pathology of the Spontaneous Electrical Activity and Mechanical Hyperalgesia of Myofascial Trigger Spots in Rats

    PubMed Central

    2015-01-01

    Myofascial trigger points (MTrPs) are common causes for chronic pain. Myelinated afferents were considered to be related with muscular pain, and our clinical researches indicated they might participate in the pathology of MTrPs. Here, we applied myofascial trigger spots (MTrSs, equal to MTrPs in human) of rats to further investigate role of myelinated afferents. Modified pyridine-silver staining revealed more nerve endings at MTrSs than non-MTrSs (P < 0.01), and immunohistochemistry with Neurofilament 200 indicated more myelinated afferents existed in MTrSs (P < 0.01). Spontaneous electrical activity (SEA) recordings at MTrSs showed that specific block of myelinated afferents in sciatic nerve with tetrodotoxin (TTX) led to significantly decreased SEA (P < 0.05). Behavioral assessment showed that mechanical pain thresholds (MPTs) of MTrSs were lower than those of non-MTrSs (P < 0.01). Block of myelinated afferents by intramuscular TTX injection increased MPTs of MTrSs significantly (P < 0.01), while MPTs of non-MTrSs first decreased (P < 0.05) and then increased (P > 0.05). 30 min after the injection, MPTs at MTrSs were significantly lower than those of non-MTrSs (P < 0.01). Therefore, we concluded that proliferated myelinated afferents existed at MTrSs, which were closely related to pathology of SEA and mechanical hyperalgesia of MTrSs. PMID:26064165

  2. [Interaction of abdominal vagus and greater splanchnic nerve activities in the nucleus tractus solitarius of the rabbit].

    PubMed

    Zhang, J; Huang, Z S

    1990-12-01

    Experiments were performed on 67 rabbits. Effects of stimulation of the central ends of abdominal vagus and greater splanchnic nerve on arterial blood pressure before and after destruction of nucleus tractus solitarius (NTS) and the unit discharges in the NTS before destruction were observed. As a result, we suggest that both the afferents coming from the abdominal vagus and greater splanchnic nerve not only converge on NTS neurons but also interact with each other. Subthreshold stimulation elicited from one of the afferent fibers suppresses the arterial blood pressure responses caused by the other afferent. Similarly, background stimulation elicited from one afferent can suppress the NTS unit discharges caused by the other afferent. It is much easier for abdominal vagal afferent to inhibit the NTS unit discharges and the arterial blood pressure changes elicited by stimulation of the splanchnic nerve. A possible mechanism of such relationship was discussed. PMID:2293366

  3. Skeletal muscle afferent regulation of bioassayable growth hormone in the rat pituitary

    NASA Technical Reports Server (NTRS)

    Gosselink, K. L.; Grindeland, R. E.; Roy, R. R.; Zhong, H.; Bigbee, A. J.; Grossman, E. J.; Edgerton, V. R.

    1998-01-01

    There are forms of growth hormone (GH) in the plasma and pituitary of the rat and in the plasma of humans that are undetected by presently available immunoassays (iGH) but can be measured by bioassay (bGH). Although the regulation of iGH release is well documented, the mechanism(s) of bGH release is unclear. On the basis of changes in bGH and iGH secretion in rats that had been exposed to microgravity conditions, we hypothesized that neural afferents play a role in regulating the release of these hormones. To examine whether bGH secretion can be modulated by afferent input from skeletal muscle, the proximal or distal ends of severed hindlimb fast muscle nerves were stimulated ( approximately 2 times threshold) in anesthetized rats. Plasma bGH increased approximately 250%, and pituitary bGH decreased approximately 60% after proximal nerve trunk stimulation. The bGH response was independent of muscle mass or whether the muscles were flexors or extensors. Distal nerve stimulation had little or no effect on plasma or pituitary bGH. Plasma iGH concentrations were unchanged after proximal nerve stimulation. Although there may be multiple regulatory mechanisms of bGH, the present results demonstrate that the activation of low-threshold afferents from fast skeletal muscles can play a regulatory role in the release of bGH, but not iGH, from the pituitary in anesthetized rats.

  4. Merkel cells transduce and encode tactile stimuli to drive Aβ-afferent impulses

    PubMed Central

    Ikeda, Ryo; Cha, Myeounghoon; Ling, Jennifer; Jia, Zhanfeng; Coyle, Dennis; Gu, Jianguo G.

    2014-01-01

    SUMMARY Sensory systems for detecting tactile stimuli have evolved from touch-sensing nerves in invertebrates to complicated tactile end-organs in mammals. Merkel discs are tactile end-organs consisting of Merkel cells and Aβ-afferent nerve endings, and are localized in fingertips, whisker hair follicles and other touch-sensitive spots. Merkel discs transduce touch into slowly adapting impulses to enable tactile discrimination, but their transduction and encoding mechanisms remain unknown. Using rat whisker hair follicles, we show that Merkel cells rather than Aβ-afferent nerve endings are primary sites of tactile transduction, and identify the Piezo2 ion channel as the Merkel cell mechanical transducer. Piezo2 transduces tactile stimuli into Ca2+-action potentials in Merkel cells, which drive Aβ-afferent nerve endings to fire slowly adapting impulses. We further demonstrate that Piezo2 and Ca2+-action potentials in Merkel cells are required for behavioral tactile responses. Our findings provide insights into how tactile end-organs function and have clinical implications for tactile dysfunctions. PMID:24746027

  5. A quantitative study of the central projection patterns of unmyelinated ventral root afferents in the cat.

    PubMed Central

    Häbler, H J; Jänig, W; Koltzenburg, M; McMahon, S B

    1990-01-01

    1. The ventral roots of the spinal cord contain a large number of unmyelinated primary afferent neurones. There is some controversy, however, about the function of these fibres and the route of their central projection. Here we have used electrophysiological techniques to quantify the central projection patterns of these neurones in the segment S2 of adult chloralose-anaesthesized cats. 2. A total of 1185 single unmyelinated units were recorded in small filaments isolated from intact and de-efferented ventral roots or intact dorsal roots of the segment S2 in nineteen cats. The projection patterns of these neurones were tested using supramaximal electrical stimulation of the pelvic and pudendal nerve (the main tributaries of the spinal nerve of this segment) and of the segmental companion root (dorsal or ventral as appropriate). 3. The principal finding of this study is that 85% of unmyelinated afferent axons in the ventral root are direct and exclusive projections. They constitute a separate class of afferents which is only capable of transmitting information from the periphery via the ventral roots. However, the proportion of these fibres that enter the central nervous system is unknown and it seems likely that some of them peter out as they approach the spinal cord and end blindly. The functional role of such afferents remains obscure. 4. For the remaining 15% of unmyelinated ventral root afferents, a projection into the segmental dorsal root was found. The majority of those fibres (about two-thirds) are primary afferent neurones innervating the pia mater. Some of these units had a small spot-like receptive field and responded to mechanical stimuli such as pressure and stretch of the root. They did not have axon projections in a peripheral nerve. 5. A few (5%) unmyelinated ventral root fibres are collateral branches of normal primary afferents projecting through the dorsal root. These trifurcating neurones are a small population which make up only some 0.5% of

  6. Integration of aortic nerve inputs in hypertensive rats.

    PubMed

    Zhang, J; Mifflin, S W

    2000-01-01

    The integration of arterial baroreceptor afferent inputs was studied in renal wrap hypertensive (HT) and normotensive (NT) rats. In anesthetized and paralyzed rats, aortic nerve (AN)-evoked depressor responses were reduced in HT compared with NT rats (P<0.05). We tested the hypothesis that the attenuated baroreflex was associated with altered integration of baroreceptor inputs within the nucleus of the solitary tract. Based on onset latency and the ability of monosynaptic neurons (MSNs) to respond to each of 2 AN stimuli separated by 5 ms, cells in HT and NT rats were divided into 3 groups: short-latency MSNs (SLMSNs), long-latency MSNs (LLMSNs), and polysynaptic neurons (PSNs). A higher percentage of PSNs (73% versus 61%) and a lower percentage of SLMSNs (20% versus 27%) or LLMSNs (7% versus 12%) were found in HT rats (P<0.05). In addition, in HT compared with NT rats, the AN onset latency was greater in PSNs (29. 9+/-1.1 versus 26.7+/-0.8 ms) but not in SLMSNs (5.0+/-0.5 versus 5. 0+/-0.3 ms) or LLMSNs (22.9+/-1.2 versus 24.1+/-0.7 ms) (P<0.05). Finally, in HT compared with NT rats, the number of PSNs responding to a single AN stimulus with multiple action potentials was increased (40% versus 19%) (P<0.05). This was not observed in SLMSNs (26% versus 13%) or LLMSNs (12% versus 18%). The results indicate that renal wrap hypertension is associated with reduced AN-evoked depressor responses. There also were alterations in the integration of AN afferent inputs within the nucleus of the solitary tract, and these alterations were most marked in the PSN population.

  7. Short latency activation of pyramidal tract cells by Group I afferent volleys in the cat

    PubMed Central

    Swett, John E.; Bourassa, Charles M.

    1967-01-01

    1. The contralateral bulbar pyramids were explored with low impedance micro-electrodes in cats anaesthetized with chloralose to reveal the effect of Group I afferent volleys (deep radial nerve of the forelimb) on pyramidal tract (Pt) cells. 2. Low rate (0·5/sec) stimulation of Group I afferents produced small responses (5-30 μV) in the bulbar pyramid which could be detected only with response averaging methods. The responses appeared with an initial latency of 7·0-11·2 msec and reached peak amplitude in 15·7 msec (mean latency). The pyramidal tract origin of the potential was demonstrated by its depression at stimulus rates above 1-2 sec and its disappearance at rates above 4/sec. 3. Recordings of neurones in the Group I cortical projection zone of the posterior sigmoid gyrus revealed that several types of cells, including Pt cells, were activated by Group I afferent volleys. 4. Pt cells responding to Group I afferent volleys frequently received convergent actions from low threshold cutaneous nerve volleys. 5. Averaged response recordings from electrodes positioned in the medial portions of the lateral funiculus of the spinal cord at the level of C2, revealed a response to Group I afferent volleys as early as 7·4 msec which possessed the same characteristics as the relayed response to Group I in the bulbar pyramids. Some Pt cells, activated by Group I volleys orthodromically, could also be antidromically activated by stimulation of the recording site in C2. 6. It was concluded that group I afferent volleys can influence, after short latencies, Pt and non-Pt cells and that some of these Pt cells gave rise to axons incorporated in the corticospinal tract. PMID:16992239

  8. Cerebral, subcortical, and cerebellar activation evoked by selective stimulation of muscle and cutaneous afferents: an fMRI study

    PubMed Central

    Wardman, Daniel L.; Gandevia, Simon C.; Colebatch, James G.

    2014-01-01

    Abstract We compared the brain areas that showed significant flow changes induced by selective stimulation of muscle and cutaneous afferents using fMRI BOLD imaging. Afferents arising from the right hand were studied in eight volunteers with electrical stimulation of the digital nerve of the index finger and over the motor point of the FDI muscle. Both methods evoked areas of significant activation cortically, subcortically, and in the cerebellum. Selective muscle afferent stimulation caused significant activation in motor‐related areas. It also caused significantly greater activation within the contralateral precentral gyrus, insula, and within the ipsilateral cerebellum as well as greater areas of reduced blood flow when compared to the cutaneous stimuli. We demonstrated separate precentral and postcentral foci of excitation with muscle afferent stimulation. We conclude, contrary to the findings with evoked potentials, that muscle afferents evoke more widespread cortical, subcortical, and cerebellar activation than do cutaneous afferents. This emphasizes the importance, for studies of movement, of matching the kinematic aspects in order to avoid the results being confounded by alterations in muscle afferent activation. The findings are consistent with clinical observations of the movement consequences of sensory loss and may also be the basis for the contribution of disturbed sensorimotor processing to disorders of movement. PMID:24771687

  9. Single low-threshold afferents innervating the skin of the human foot modulate ongoing muscle activity in the upper limbs.

    PubMed

    Bent, Leah R; Lowrey, Catherine R

    2013-03-01

    We have shown for the first time that single cutaneous afferents in the foot dorsum have significant reflex coupling to motoneurons supplying muscles in the upper limb, particularly posterior deltoid and triceps brachii. These observations strengthen what we know from whole nerve stimulation, that skin on the foot and ankle can contribute to the modulation of interlimb muscles in distant innervation territories. The current work provides evidence of the mechanism behind the reflex, where one single skin afferent can evoke a reflex response, rather than a population. Nineteen of forty-one (46%) single cutaneous afferents isolated in the dorsum or plantar surface of the foot elicited a significant modulation of muscle activity in the upper limb. Identification of single afferents in this reflex indicates the strength of the connection and, ultimately, the importance of foot skin in interlimb coordination. The median response magnitude was 2.29% of background EMG, and the size of the evoked response did not significantly differ among the four mechanoreceptor classes (P > 0.1). Interestingly, although the distribution of afferents types did not differ across the foot dorsum, there was a significantly greater coupling response from receptors located on the medial aspect of the foot dorsum (P < 0.01). Furthermore, the most consistent coupling with upper limb muscles was demonstrated by type I afferents (fast and slowly adapting). This work contributes to the current literature on receptor specificity, supporting the view that individual classes of cutaneous afferents may subserve specific roles in kinesthesia, reflexes, and tactile perception.

  10. The unsilent majority-TRPV1 drives "spontaneous" transmission of unmyelinated primary afferents within cardiorespiratory NTS.

    PubMed

    Andresen, Michael C; Hofmann, Mackenzie E; Fawley, Jessica A

    2012-12-15

    Cranial primary afferent sensory neurons figure importantly in homeostatic control of visceral organ systems. Of the two broad classes of visceral afferents, the role of unmyelinated or C-type class remains poorly understood. This review contrasts key aspects of peripheral discharge properties of C-fiber afferents and their glutamate transmission mechanisms within the solitary tract nucleus (NTS). During normal prevailing conditions, most information arrives at the NTS through myelinated A-type nerves. However, most of visceral afferent axons (75-90%) in NTS are unmyelinated, C-type axons. Centrally, C-type solitary tract (ST) afferent terminals have presynaptic transient receptor potential vanilloid type 1 (TRPV1) receptors. Capsaicin activation of TRPV1 blocks phasic or synchronous release of glutamate but facilitates release of glutamate from a separate pool of vesicles. This TRPV1-operated pool of vesicles is active at normal temperatures and is responsible for actively driving a 10-fold higher release of glutamate at TRPV1 compared with TRPV1- terminals even in the absence of afferent action potentials. This novel TRPV1 mechanism is responsible for an additional asynchronous release of glutamate that is not present in myelinated terminals. The NTS is rich with presynaptic G protein-coupled receptors, and the implications of TRPV1-operated glutamate offer unique targets for signaling in C-type sensory afferent terminals from neuropeptides, inflammatory mediators, lipid metabolites, cytokines, and cannabinoids. From a homeostatic view, this combination could have broad implications for integration in chronic pathological disturbances in which the numeric dominance of C-type endings and TRPV1 would broadly disturb multisystem control mechanisms.

  11. Meningeal afferent signaling and the pathophysiology of migraine.

    PubMed

    Burgos-Vega, Carolina; Moy, Jamie; Dussor, Gregory

    2015-01-01

    Migraine is the most common neurological disorder. Attacks are complex and consist of multiple phases but are most commonly characterized by intense, unilateral, throbbing headache. The pathophysiology contributing to migraine is poorly understood and the disorder is not well managed with currently available therapeutics, often rendering patients disabled during attacks. The mechanisms most likely to contribute to the pain phase of migraine require activation of trigeminal afferent signaling from the cranial meninges and subsequent relay of nociceptive information into the central nervous system in a region of the dorsal brainstem known as the trigeminal nucleus caudalis. Events leading to activation of meningeal afferents are unclear, but nerve endings within this tissue are mechanosensitive and also express a variety of ion channels including acid-sensing ion channels and transient receptor-potential channels. These properties may provide clues into the pathophysiology of migraine by suggesting that decreased extracellular pH and environmental irritant exposure in the meninges contributes to headache. Neuroplasticity is also likely to play a role in migraine given that attacks are triggered by routine events that are typically nonnoxious in healthy patients and clear evidence of sensitization occurs during an attack. Where and how plasticity develops is also not clear but may include events directly on the afferents and/or within the TNC. Among the mediators potentially contributing to plasticity, calcitonin gene-related peptide has received the most attention within the migraine field but other mechanisms may also contribute. Ultimately, greater understanding of the molecules and mechanisms contributing to migraine will undoubtedly lead to better therapeutics and relief for the large number of patients across the globe who suffer from this highly disabling neurological disorder.

  12. Morphophysiology of synaptic transmission between type I hair cells and vestibular primary afferents. An intracellular study employing horseradish peroxidase in the lizard, Calotes versicolor.

    PubMed

    Schessel, D A; Ginzberg, R; Highstein, S M

    1991-03-22

    Intracellular records with glass microelectrodes filled with horseradish peroxidase (HRP) were taken from primary afferents of the horizontal semicircular canal in the lizard, Calotes versicolor. A coefficient of variation (CV) of the interspike intervals of spontaneous action potentials (APs) was calculated and correlated with the terminal morphologies of afferents within the canal crista. Irregular fibers with CV greater than 0.4 always correlated with a nerve chalice or calyx afferent terminal expansion surrounding one or more type I hair cells; more regular fibers with CV less than 0.4 always correlated with a dimorphic or bouton only terminal expansion of afferents. Afferents with a CV greater than 0.4 demonstrated miniature excitatory postsynaptic potentials (mEPSPs) that summated to initiate APs. APs were blocked by tetrodotoxin and mEPSP frequency was modulated by caloric stimulation. Cobalt application reversibly blocked mEPSPs. Electron microscopic examination of physiologically studied afferents with CV greater than 0.4 revealed synaptic profiles consisting of typical synaptic bodies and synaptic vesicles in the type I hair cell presynaptic to the nerve chalice. Examples of the interspike baseline in regular and irregular afferents suggest differential modes of impulse initiation in these two fiber types.

  13. Hydrogen sulfide determines HNO-induced stimulation of trigeminal afferents.

    PubMed

    Wild, Vanessa; Messlinger, Karl; Fischer, Michael J M

    2015-08-18

    Endogenous NO and hydrogen sulfide form HNO, which causes CGRP release via TRPA1 channel activation in sensory nerves. In the present study, stimulation of intact trigeminal afferent neuron preparations with NO donors, Na2S or both was analyzed by measuring CGRP release as an index of mass activation. Combined stimulation was able to activate all parts of the trigeminal system and acted synergistic compared to stimulation with both substances alone. To investigate the contribution of both substances, we varied their ratio and tracked intracellular calcium in isolated neurons. Our results demonstrate that hydrogen sulfide is the rate-limiting factor for HNO formation. CGRP has a key role in migraine pathophysiology and HNO formation at all sites of the trigeminal system should be considered for this novel means of activation.

  14. One year follow-up effect of renal sympathetic denervation in patients with resistant hypertension

    PubMed Central

    Pourmoghaddas, Masoud; Khosravi, Alireza; Akhbari, Mohammadreza; Akbari, Mojtaba; Pourbehi, Mohamadreza; Ziaei, Fereshteh; Salehizade, Leila; Sistan, Nahid; Esmaeili, Masoumeh; Bidram, Peyman

    2016-01-01

    BACKGROUND Resistant hypertension is a common clinical problem of blood pressure that is not controlled despite the simultaneous application of multiple antihypertensive agents. Ablation of renal afferent nerves has been applied and proved to decrease hypertension and injuries produced by severe sympathetic hyperactivity. The main objective of this study was to investigate the long-term effect of renal artery sympathetic ablation and its complications in patients with treatment-resistant hypertension. METHODS In this prospective study which done between March 2012 and November 2013, 30 patients with resistant arterial hypertension despite treatment with ≥3 antihypertensive drugs-were randomly enrolled in this self-control clinical study in Isfahan, Iran. The patients were treated with the renal denervation procedure; the femoral artery was accessed with the standard endovascular technique and the Symplicity catheter was advanced into the renal artery and connected to a radiofrequency generator. Before and 12 months after renal denervation procedure waist, body mass index (BMI), systolic blood pressure (SBP), diastolic blood pressure (DBP), metabolic syndrome, fasting blood sugar (FBS), high-density lipoprotein (HDL), and triglyceride were measured in all patients. RESULTS Both mean SBP and DBP were significantly decreased, 12 months after renal denervation (P < 0.001). The frequency of metabolic syndrome was not significantly different after renal denervation in compare to baseline (P = 0.174). Furthermore, a significant decreased in FBS and triglyceride was observed in compare to baseline (P = 0.001). CONCLUSION This study highlighted the role of renal sympathetic denervation as a modern and secure catheter-based method for sustained reduction hypertension in treatment-resistant cases. PMID:27429632

  15. Xanthine oxidase, but not neutrophils, contributes to activation of cardiac sympathetic afferents during myocardial ischaemia in cats

    PubMed Central

    Tjen-A-Looi, Stephanie C; Fu, Liang-Wu; Longhurst, John C

    2002-01-01

    Activation of cardiac sympathetic afferents during myocardial ischaemia causes angina and induces important cardiovascular reflex responses. Reactive oxygen species (ROS) are important chemical stimuli of cardiac afferents during and after ischaemia. Iron-catalysed Fenton chemistry constitutes one mechanism of production of hydroxyl radicals. Another potential source of these species is xanthine oxidase-catalysed oxidation of purines. Polymorphonuclear leukocytes (PMNs) also contribute to the production of ROS in some conditions. The present study tested the hypothesis that both xanthine oxidase-catalysed oxidation of purines and neutrophils provide a source of ROS sufficient to activate cardiac afferents during ischaemia. We recorded single-unit activity of cardiac afferents innervating the ventricles recorded from the left thoracic sympathetic chain (T1-5) of anaesthetized cats to identify the afferents' responses to ischaemia. The role of xanthine oxidase in activation of these afferents was determined by infusion of oxypurinol (10 mg kg−1, i.v.), an inhibitor of xanthine oxidase. The importance of neutrophils as a potential source of ROS in the activation of cardiac afferents during ischaemia was assessed by the infusion of a polyclonal antibody (3 mg ml−1 kg−1, i.v.) raised in rabbits immunized with cat PMNs. This antibody decreased the number of circulating PMNs and, to a smaller extent, platelets. Since previous data suggest that platelets release serotonin (5-HT), which activates cardiac afferents through a serotonin receptor (subtype 3,5-HT3 receptor) mechanism, before treatment with the antibody in another group, we blocked 5-HT3 receptors on sensory nerve endings with tropisetron (300 μg kg−1, i.v.). We observed that oxypurinol significantly decreased the activity of cardiac afferents during myocardial ischaemia from 1.5 ± 0.4 to 0.8 ± 0.4 impulses s−1. Similarly, the polyclonal antibody significantly reduced the discharge frequency of

  16. Short-latency projections to the cat cerebral cortex from skin and muscle afferents in the contralateral forelimb

    PubMed Central

    Oscarsson, O.; Rosén, I.

    1966-01-01

    1. The potentials evoked in the first sensorimotor area on stimulation of muscle and skin nerves in the contralateral forelimb were recorded in preparations with either the dorsal funiculus (DF) or the spinocervical tract (SCT) interrupted. 2. The short-latency, surface-positive potentials in these preparations are mediated by the remaining path, either the DF or SCT. 3. Cutaneous afferents project through both paths to two discrete areas which correspond to the classical sensory and motor cortices (Fig. 10 A and B). The projection areas are not identical: the DF path seems to activate most effectively the sensory cortex; and the SCT path, most effectively the motor cortex. 4. The potentials evoked from cutaneous nerves have a similar latency in the two areas. On stimulation of the superficial radial nerve the latency was about 4·5 msec in preparations with intact DF, and about 5·3 msec in preparations with intact SCT. 5. High threshold muscle afferents project to the same areas as the cutaneous afferents. 6. Group I muscle afferents project, exclusively through the DF path, to an area distinct from the two cutaneous projection areas (Fig. 10C). It occupies a caudal part of the motor cortex and an intermediate zone between the sensory and motor cortices. 7. The projection areas are compared with the recent cytoarchitectonic map of Hassler & Muhs-Clement (1964) (Fig. 10D). 8. It is suggested that the afferent projections to the motor cortex and the intermediate zone are used in the integration of movements elicited from the cortex. The general similarity in the organization of afferent paths to the motor cortex and the cerebellum is pointed out. PMID:5937410

  17. Characterization of silent afferents in the pelvic and splanchnic innervations of the mouse colorectum.

    PubMed

    Feng, Bin; Gebhart, G F

    2011-01-01

    Hypersensitivity in inflammatory/irritable bowel syndrome is contributed to in part by changes in the receptive properties of colorectal afferent endings, likely including mechanically insensitive afferents (MIAs; silent afferents) that have the ability to acquire mechanosensitivity. The proportion and attributes of colorectal MIAs, however, have not previously been characterized. The distal ∼3 cm of colorectum with either pelvic (PN) or lumbar splanchnic (LSN) nerve attached was removed, opened longitudinally, pinned flat in a recording chamber, and perfused with oxygenated Krebs solution. Colorectal receptive endings were located by electrical stimulation and characterized as mechanosensitive or not by blunt probing, mucosal stroking, and circumferential stretch. MIA endings were tested for response to and acquisition of mechanosensitivity by localized exposure to an inflammatory soup (IS). Colorectal afferents were also tested with twin-pulse and repetitive electrical stimulation paradigms. PN MIAs represented 23% of 211 afferents studied, 71% (30/42) of which acquired mechanosensitivity after application of IS to their receptive ending. LSN MIAs represented 33% of 156 afferents studied, only 23% (11/48) of which acquired mechanosensitivity after IS exposure. Mechanosensitive PN endings uniformly exhibited significant twin-pulse slowing whereas LSN endings showed no significant twin-pulse difference. PN MIAs displayed significantly greater activity-dependent slowing than LSN MIAs. In conclusion, significant proportions of MIAs are present in the colorectal innervation; significantly more in the PN than LSN acquire mechanosensitivity in an inflammatory environment. This knowledge contributes to our understanding of the possible roles of MIAs in colon-related disorders like inflammatory/irritable bowel syndrome. PMID:21071510

  18. Characterization of silent afferents in the pelvic and splanchnic innervations of the mouse colorectum

    PubMed Central

    Gebhart, G. F.

    2011-01-01

    Hypersensitivity in inflammatory/irritable bowel syndrome is contributed to in part by changes in the receptive properties of colorectal afferent endings, likely including mechanically insensitive afferents (MIAs; silent afferents) that have the ability to acquire mechanosensitivity. The proportion and attributes of colorectal MIAs, however, have not previously been characterized. The distal ∼3 cm of colorectum with either pelvic (PN) or lumbar splanchnic (LSN) nerve attached was removed, opened longitudinally, pinned flat in a recording chamber, and perfused with oxygenated Krebs solution. Colorectal receptive endings were located by electrical stimulation and characterized as mechanosensitive or not by blunt probing, mucosal stroking, and circumferential stretch. MIA endings were tested for response to and acquisition of mechanosensitivity by localized exposure to an inflammatory soup (IS). Colorectal afferents were also tested with twin-pulse and repetitive electrical stimulation paradigms. PN MIAs represented 23% of 211 afferents studied, 71% (30/42) of which acquired mechanosensitivity after application of IS to their receptive ending. LSN MIAs represented 33% of 156 afferents studied, only 23% (11/48) of which acquired mechanosensitivity after IS exposure. Mechanosensitive PN endings uniformly exhibited significant twin-pulse slowing whereas LSN endings showed no significant twin-pulse difference. PN MIAs displayed significantly greater activity-dependent slowing than LSN MIAs. In conclusion, significant proportions of MIAs are present in the colorectal innervation; significantly more in the PN than LSN acquire mechanosensitivity in an inflammatory environment. This knowledge contributes to our understanding of the possible roles of MIAs in colon-related disorders like inflammatory/irritable bowel syndrome. PMID:21071510

  19. Effects of ankle extensor muscle afferent inputs on hip abductor and adductor activity in the decerebrate walking cat.

    PubMed

    Bolton, D A E; Misiaszek, J E

    2012-12-01

    Electrical stimulation of the lateral gastrocnemius-soleus (LGS) nerve at group I afferent strength leads to adaptations in the amplitude and timing of extensor muscle activity during walking in the decerebrate cat. Such afferent feedback in the stance leg might result from a delay in stance onset of the opposite leg. Concomitant adaptations in hip abductor and adductor activity would then be expected to maintain lateral stability and balance until the opposite leg is able to support the body. As many hip abductors and adductors are also hip extensors, we hypothesized that stimulation of the LGS nerve at group I afferent strength would produce increased activation and prolonged burst duration in hip abductor and adductor muscles in the premammillary decerebrate walking cat. LGS nerve stimulation during the extensor phase of the locomotor cycle consistently increased burst amplitude of the gluteus medius and adductor femoris muscles, but not pectineus or gracilis. In addition, LGS stimulation prolonged the burst duration of both gluteus medius and adductor femoris. Unexpectedly, long-duration LGS stimulus trains resulted in two distinct outcomes on the hip abductor and adductor bursting pattern: 1) a change of burst duration and timing similar to medial gastrocnemius; or 2) to continue rhythmically bursting uninterrupted. These results indicate that activation of muscle afferents from ankle extensors contributes to the regulation of activity of some hip abductor and adductor muscles, but not all. These results have implications for understanding the neural control of stability during locomotion, as well as the organization of spinal locomotor networks. PMID:22972967

  20. Piezo2 expression in corneal afferent neurons.

    PubMed

    Bron, Romke; Wood, Rhiannon J; Brock, James A; Ivanusic, Jason J

    2014-09-01

    Recently, a novel class of mechanically sensitive channels has been identified and have been called Piezo channels. In this study, we explored Piezo channel expression in sensory neurons supplying the guinea pig corneal epithelium, which have well-defined modalities in this species. We hypothesized that a proportion of corneal afferent neurons express Piezo2, and that these neurons are neurochemically distinct from corneal polymodal nociceptors or cold-sensing neurons. We used a combination of retrograde tracing to identify corneal afferent neurons and double label in situ hybridization and/or immunohistochemistry to determine their molecular and/or neurochemical profile. We found that Piezo2 expression occurs in ∼26% of trigeminal ganglion neurons and 30% of corneal afferent neurons. Piezo2 corneal afferent neurons are almost exclusively non-calcitonin gene-related peptide (CGRP)-immunoreactive (-IR), medium- to large-sized neurons that are NF200-IR, suggesting they are not corneal polymodal nociceptors. There was no coexpression of Piezo2 and transient receptor potential cation channel subfamily M member 8 (TRPM8) transcripts in any corneal afferent neurons, further suggesting that Piezo2 is not expressed in corneal cold-sensing neurons. We also noted that TRPM8-IR or CGRP-IR corneal afferent neurons are almost entirely small and lack NF200-IR. Piezo2 expression occurs in a neurochemically distinct subpopulation of corneal afferent neurons that are not polymodal nociceptors or cold-sensing neurons, and is likely confined to a subpopulation of pure mechano-nociceptors in the cornea. This provides the first evidence in an in vivo system that Piezo2 is a strong candidate for a channel that transduces noxious mechanical stimuli.

  1. Regeneration of normal afferent input does not eliminate aberrant synaptic connections of an identified auditory interneuron in the cricket, Teleogryllus oceanicus.

    PubMed

    Pallas, S L; Hoy, R R

    1986-06-15

    In the cricket, Teleogryllus oceanicus, the dendritic arborizations of an identified auditory interneuron (Int-1) are normally restricted to the ipsilateral auditory neuropile; unilateral deafferentation causes the medial portion of the dendritic field to sprout across the midline and make functional connections with the contralateral auditory neuropile (Hoy et al., '78: Soc. Neurosci. Abstr. 4:115, '85: Proc. Natl. Acad. Sci. USA 82:7772-7786; Hoy and Moiseff, '79: Soc. Neurosci. Abstr. 5:163). We have found that regeneration of the auditory afferents also results in an aberrant pattern of innervation of Int-1. Crickets were unilaterally deafferented during postembryonic development by crushing or cutting the auditory nerve. Regeneration of afferent-to-Int-1 connections was tested behaviorally. Of 86 nerve-crushed crickets tested as adults in the behavioral assay, 66% showed functional regeneration of the afferents. Similar results were obtained from the nerve-cut group. However, morphological investigations demonstrated that most of the regenerates still retained the aberrant contralateral dendritic projection. Electrophysiological recordings from these Int-1s showed that not only are some of them driven by their regenerated auditory afferents (the normal pathway) but that they retain their excitability via their contralateral dendrites (the aberrant pathway). This demonstrates that reinnervation of Int-1 by its normal afferent pool neither causes retraction nor prevents the formation of connections made with foreign, contralateral afferents. When the contralateral afferent pool was removed after Int-1 had sprouted, the sprouts remained present, but preliminary results suggest that if the contralateral afferents are removed before Int-1 is deafferented, sprouts are not formed. The results are discussed in relation to the roles of competition and conservation of membrane area in controlling synapse formation.

  2. Combined genetic and pharmacological inhibition of TRPV1 and P2X3 attenuates colorectal hypersensitivity and afferent sensitization

    PubMed Central

    Kiyatkin, Michael E.; Feng, Bin; Schwartz, Erica S.

    2013-01-01

    The ligand-gated channels transient receptor potential vanilloid 1 (TRPV1) and P2X3 have been reported to facilitate colorectal afferent neuron sensitization, thus contributing to organ hypersensitivity and pain. In the present study, we hypothesized that TRPV1 and P2X3 cooperate to modulate colorectal nociception and afferent sensitivity. To test this hypothesis, we employed TRPV1-P2X3 double knockout (TPDKO) mice and channel-selective pharmacological antagonists and evaluated combined channel contributions to behavioral responses to colorectal distension (CRD) and afferent fiber responses to colorectal stretch. Baseline responses to CRD were unexpectedly greater in TPDKO compared with control mice, but zymosan-produced CRD hypersensitivity was absent in TPDKO mice. Relative to control mice, proportions of mechanosensitive and -insensitive pelvic nerve afferent classes were not different in TPDKO mice. Responses of mucosal and serosal class afferents to mechanical probing were unaffected, whereas responses of muscular (but not muscular/mucosal) afferents to stretch were significantly attenuated in TPDKO mice; sensitization of both muscular and muscular/mucosal afferents by inflammatory soup was also significantly attenuated. In pharmacological studies, the TRPV1 antagonist A889425 and P2X3 antagonist TNP-ATP, alone and in combination, applied onto stretch-sensitive afferent endings attenuated responses to stretch; combined antagonism produced greater attenuation. In the aggregate, these observations suggest that 1) genetic manipulation of TRPV1 and P2X3 leads to reduction in colorectal mechanosensation peripherally and compensatory changes and/or disinhibition of other channels centrally, 2) combined pharmacological antagonism produces more robust attenuation of mechanosensation peripherally than does antagonism of either channel alone, and 3) the relative importance of these channels appears to be enhanced in colorectal hypersensitivity. PMID:23989007

  3. Combined genetic and pharmacological inhibition of TRPV1 and P2X3 attenuates colorectal hypersensitivity and afferent sensitization.

    PubMed

    Kiyatkin, Michael E; Feng, Bin; Schwartz, Erica S; Gebhart, G F

    2013-11-01

    The ligand-gated channels transient receptor potential vanilloid 1 (TRPV1) and P2X3 have been reported to facilitate colorectal afferent neuron sensitization, thus contributing to organ hypersensitivity and pain. In the present study, we hypothesized that TRPV1 and P2X3 cooperate to modulate colorectal nociception and afferent sensitivity. To test this hypothesis, we employed TRPV1-P2X3 double knockout (TPDKO) mice and channel-selective pharmacological antagonists and evaluated combined channel contributions to behavioral responses to colorectal distension (CRD) and afferent fiber responses to colorectal stretch. Baseline responses to CRD were unexpectedly greater in TPDKO compared with control mice, but zymosan-produced CRD hypersensitivity was absent in TPDKO mice. Relative to control mice, proportions of mechanosensitive and -insensitive pelvic nerve afferent classes were not different in TPDKO mice. Responses of mucosal and serosal class afferents to mechanical probing were unaffected, whereas responses of muscular (but not muscular/mucosal) afferents to stretch were significantly attenuated in TPDKO mice; sensitization of both muscular and muscular/mucosal afferents by inflammatory soup was also significantly attenuated. In pharmacological studies, the TRPV1 antagonist A889425 and P2X3 antagonist TNP-ATP, alone and in combination, applied onto stretch-sensitive afferent endings attenuated responses to stretch; combined antagonism produced greater attenuation. In the aggregate, these observations suggest that 1) genetic manipulation of TRPV1 and P2X3 leads to reduction in colorectal mechanosensation peripherally and compensatory changes and/or disinhibition of other channels centrally, 2) combined pharmacological antagonism produces more robust attenuation of mechanosensation peripherally than does antagonism of either channel alone, and 3) the relative importance of these channels appears to be enhanced in colorectal hypersensitivity.

  4. Afferent Connectivity of the Zebrafish Habenulae

    PubMed Central

    Turner, Katherine J.; Hawkins, Thomas A.; Yáñez, Julián; Anadón, Ramón; Wilson, Stephen W.; Folgueira, Mónica

    2016-01-01

    The habenulae are bilateral nuclei located in the dorsal diencephalon that are conserved across vertebrates. Here we describe the main afferents to the habenulae in larval and adult zebrafish. We observe afferents from the subpallium, nucleus rostrolateralis, posterior tuberculum, posterior hypothalamic lobe, median raphe; we also see asymmetric afferents from olfactory bulb to the right habenula, and from the parapineal to the left habenula. In addition, we find afferents from a ventrolateral telencephalic nucleus that neurochemical and hodological data identify as the ventral entopeduncular nucleus (vENT), confirming and extending observations of Amo et al. (2014). Fate map and marker studies suggest that vENT originates from the diencephalic prethalamic eminence and extends into the lateral telencephalon from 48 to 120 hour post-fertilization (hpf). No afferents to the habenula were observed from the dorsal entopeduncular nucleus (dENT). Consequently, we confirm that the vENT (and not the dENT) should be considered as the entopeduncular nucleus “proper” in zebrafish. Furthermore, comparison with data in other vertebrates suggests that the vENT is a conserved basal ganglia nucleus, being homologous to the entopeduncular nucleus of mammals (internal segment of the globus pallidus of primates) by both embryonic origin and projections, as previously suggested by Amo et al. (2014). PMID:27199671

  5. Vestibular afferent responses to microrotational stimuli

    NASA Technical Reports Server (NTRS)

    Myers, Steven F.; Lewis, Edwin R.

    1991-01-01

    Intracellular microelectrode recording/labeling techniques were used to investigate vestibular afferent responses in the bullfrog, to very small amplitude (less than 5 deg p-p) sinusoidal rotations in the vertical plane over the frequency range of 0.063-4 Hz. Robust responses to peak accelerations as low as 0.031 deg/sec per sec were obtained from units subsequently traced to either the central portion of the anterior canal crista or the striolar region of the utricle. All of these microrotationally sensitive afferent neurons had irregular resting discharge rates, and the majority had transfer ratios (relative to rotational velocity) of 1-40 spikes/sec per deg/sec. Individual utricular afferent velocity transfer ratios were nearly constant over the frequency range of 0.125-4 Hz. Canal units displayed decreasing response transfer ratios as stimulus frequencies increased. These findings indicate that, although utricular striolar and central crista afferent velocity transfer ratios to microrotations were very similar, utricular striolar afferent neurons were more faithful sensors of very small amplitude rotational velocity in the vertical plane.

  6. Identification of bladder and colon afferents in the nodose ganglia of male rats.

    PubMed

    Herrity, April N; Rau, Kristofer K; Petruska, Jeffrey C; Stirling, David P; Hubscher, Charles H

    2014-11-01

    The sensory neurons innervating the urinary bladder and distal colon project to similar regions of the central nervous system and often are affected simultaneously by various diseases and disorders, including spinal cord injury. Anatomical and physiological commonalities between the two organs involve the participation of shared spinally derived pathways, allowing mechanisms of communication between the bladder and colon. Prior electrophysiological data from our laboratory suggest that the bladder also may receive sensory innervation from a nonspinal source through the vagus nerve, which innervates the distal colon as well. The present study therefore aimed to determine whether anatomical evidence exists for vagal innervation of the male rat urinary bladder and to assess whether those vagal afferents also innervate the colon. Additionally, the relative contribution to bladder and colon sensory innervation of spinal and vagal sources was determined. By using lipophilic tracers, neurons that innervated the bladder and colon in both the nodose ganglia (NG) and L6/S1 and L1/L2 dorsal root ganglia (DRG) were quantified. Some single vagal and spinal neurons provided dual innervation to both organs. The proportions of NG afferents labeled from the bladder did not differ from spinal afferents labeled from the bladder when considering the collective population of total neurons from either group. Our results demonstrate evidence for vagal innervation of the bladder and colon and suggest that dichotomizing vagal afferents may provide a neural mechanism for cross-talk between the organs. PMID:24845615

  7. Modeling the spinal pudendo-vesical reflex for bladder control by pudendal afferent stimulation.

    PubMed

    McGee, Meredith J; Grill, Warren M

    2016-06-01

    Electrical stimulation of the pudendal nerve (PN) is a promising approach to restore continence and micturition following bladder dysfunction resulting from neurological disease or injury. Although the pudendo-vesical reflex and its physiological properties are well established, there is limited understanding of the specific neural mechanisms that mediate this reflex. We sought to develop a computational model of the spinal neural network that governs the reflex bladder response to PN stimulation. We implemented and validated a neural network architecture based on previous neuroanatomical and electrophysiological studies. Using synaptically-connected integrate and fire model neurons, we created a network model with realistic spiking behavior. The model produced expected sacral parasympathetic nucleus (SPN) neuron firing rates from prescribed neural inputs and predicted bladder activation and inhibition with different frequencies of pudendal afferent stimulation. In addition, the model matched experimental results from previous studies of temporal patterns of pudendal afferent stimulation and selective pharmacological blockade of inhibitory neurons. The frequency- and pattern-dependent effects of pudendal afferent stimulation were determined by changes in firing rate of spinal interneurons, suggesting that neural network interactions at the lumbosacral level can mediate the bladder response to different frequencies or temporal patterns of pudendal afferent stimulation. Further, the anatomical structure of excitatory and inhibitory interneurons in the network model was necessary and sufficient to reproduce the critical features of the pudendo-vesical reflex, and this model may prove useful to guide development of novel, more effective electrical stimulation techniques for bladder control. PMID:26968615

  8. Allodynia mediated by C-tactile afferents in human hairy skin

    PubMed Central

    Nagi, Saad S; Rubin, Troy K; Chelvanayagam, David K; Macefield, Vaughan G; Mahns, David A

    2011-01-01

    Abstract We recently showed a contribution of low-threshold cutaneous mechanoreceptors to vibration-evoked changes in the perception of muscle pain. Neutral-touch stimulation (vibration) of the hairy skin during underlying muscle pain evoked an overall increase in pain intensity, i.e. allodynia. This effect appeared to be dependent upon cutaneous afferents, as allodynia was abolished by intradermal anaesthesia. However, it remains unclear whether allodynia results from activation of a single class of cutaneous afferents or the convergence of inputs from multiple classes. Intriguingly, no existing human study has examined the contribution of C-tactile (CT) afferents to allodynia. Detailed psychophysical observations were made in 29 healthy subjects (18 males and 11 females). Sustained muscle pain was induced by infusing hypertonic saline (HS: 5%) into tibialis anterior muscle (TA). Sinusoidal vibration (200 Hz–200 μm) was applied to the hairy skin overlying TA. Pain ratings were recorded using a visual analogue scale (VAS). In order to evaluate the role of myelinated and unmyelinated cutaneous afferents in the expression of vibration-evoked allodynia, compression block of the sciatic nerve, and low-dose intradermal anaesthesia (Xylocaine 0.25%) were used, respectively. In addition, the modulation of muscle pain by gentle brushing (1.0 and 3.0 cm s−1) – known to excite CT fibres – was examined. Brushing stimuli were applied to the hairy skin with all fibres intact and following the blockade of myelinated afferents. During tonic muscle pain (VAS 4–6), vibration evoked a significant and reproducible increase in muscle pain (allodynia) that persisted following compression of myelinated afferents. During compression block, the sense of vibration was abolished, but the vibration-evoked allodynia persisted. In contrast, selective anaesthesia of unmyelinated cutaneous afferents abolished the allodynia, whereas the percept of vibration remained unaffected

  9. Psychoactive bacteria Lactobacillus rhamnosus (JB-1) elicits rapid frequency facilitation in vagal afferents.

    PubMed

    Perez-Burgos, Azucena; Wang, Bingxian; Mao, Yu-Kang; Mistry, Bhavik; McVey Neufeld, Karen-Anne; Bienenstock, John; Kunze, Wolfgang

    2013-01-15

    Mounting evidence supports the influence of the gut microbiome on the local enteric nervous system and its effects on brain chemistry and relevant behavior. Vagal afferents are involved in some of these effects. We previously showed that ingestion of the probiotic bacterium Lactobacillus rhamnosus (JB-1) caused extensive neurochemical changes in the brain and behavior that were abrogated by prior vagotomy. Because information can be transmitted to the brain via primary afferents encoded as neuronal spike trains, our goal was to record those induced by JB-1 in vagal afferents in the mesenteric nerve bundle and thus determine the nature of the signals sent to the brain. Male Swiss Webster mice jejunal segments were cannulated ex vivo, and serosal and luminal compartments were perfused separately. Bacteria were added intraluminally. We found no evidence for translocation of labeled bacteria across the epithelium during the experiment. We recorded extracellular multi- and single-unit neuronal activity with glass suction pipettes. Within minutes of application, JB-1 increased the constitutive single- and multiunit firing rate of the mesenteric nerve bundle, but Lactobacillus salivarius (a negative control) or media alone were ineffective. JB-1 significantly augmented multiunit discharge responses to an intraluminal distension pressure of 31 hPa. Prior subdiaphragmatic vagotomy abolished all of the JB-1-evoked effects. This detailed exploration of the neuronal spike firing that encodes behavioral signaling to the brain may be useful to identify effective psychoactive bacteria and thereby offer an alternative new perspective in the field of psychiatry and comorbid conditions.

  10. Changes in nerve function and nerve fibre structure induced by acute, graded compression.

    PubMed Central

    Rydevik, B; Nordborg, C

    1980-01-01

    Rabbit tibial nerves were subjected to direct, acute graded compression by means of an inflatable compression chamber. The acute and long term effects of 50, 200 and 400 mmHg applied for two hours on nerve function and nerve fibre structure were investigated. A pressure of 50 mmHg applied for two hours induced only minimal or no acute deterioration of maximal conduction velocity and nerve fibre structure. Conduction velocity was gradually reduced during compression at 200-400 mmHg pressure for two hours and in those cases the recovery of nerve conduction after pressure release was incomplete. Ultrastructural analysis revealed pronounced, early nerve fibre damage in these nerves. Three weeks after compression, nerves compressed at 50 mmHg for two hours had normal afferent and motor conduction velocity, although there were morphological signs of slight nerve fibre damage. Nerves compressed at 200 mmHg for two hours exhibited reduction of conduction velocity only at the level of compression, in contrast to the nerves compressed at 400 mmHg for two hours in which conduction velocity was reduced both at the level of compression and distal to the compressed segment. Morphologically, the nerves compressed at 200-400 mmHg for two hours showed varying degrees of demyelination and axonal degeneration three weeks after compression. Images PMID:7217952

  11. Detection thresholds of macaque otolith afferents.

    PubMed

    Yu, Xiong-Jie; Dickman, J David; Angelaki, Dora E

    2012-06-13

    The vestibular system is our sixth sense and is important for spatial perception functions, yet the sensory detection and discrimination properties of vestibular neurons remain relatively unexplored. Here we have used signal detection theory to measure detection thresholds of otolith afferents using 1 Hz linear accelerations delivered along three cardinal axes. Direction detection thresholds were measured by comparing mean firing rates centered on response peak and trough (full-cycle thresholds) or by comparing peak/trough firing rates with spontaneous activity (half-cycle thresholds). Thresholds were similar for utricular and saccular afferents, as well as for lateral, fore/aft, and vertical motion directions. When computed along the preferred direction, full-cycle direction detection thresholds were 7.54 and 3.01 cm/s(2) for regular and irregular firing otolith afferents, respectively. Half-cycle thresholds were approximately double, with excitatory thresholds being half as large as inhibitory thresholds. The variability in threshold among afferents was directly related to neuronal gain and did not depend on spike count variance. The exact threshold values depended on both the time window used for spike count analysis and the filtering method used to calculate mean firing rate, although differences between regular and irregular afferent thresholds were independent of analysis parameters. The fact that minimum thresholds measured in macaque otolith afferents are of the same order of magnitude as human behavioral thresholds suggests that the vestibular periphery might determine the limit on our ability to detect or discriminate small differences in head movement, with little noise added during downstream processing.

  12. Patterns of saccular afferent innervation in sciaenids.

    PubMed

    Selckmann, G M; Ramcharitar, J

    2013-09-01

    In this study, saccular afferent arborization patterns in Atlantic croaker Micropogonias undulatus, red drum Sciaenops ocellatus and spot Leiostomus xanthurus were characterized. Leiostomus xanthurus showed the simplest configuration while M. undulatus displayed the most complex. In addition, hair-cell densities at sites sampled along the rostro-caudal axis of the saccular epithelia correlated with the observed patterns of arborization. PMID:23991887

  13. Cortical Presynaptic Control of Dorsal Horn C–Afferents in the Rat

    PubMed Central

    Martínez-Lorenzana, Guadalupe; Condés-Lara, Miguel; Rojas-Piloni, Gerardo

    2013-01-01

    Lamina 5 sensorimotor cortex pyramidal neurons project to the spinal cord, participating in the modulation of several modalities of information transmission. A well-studied mechanism by which the corticospinal projection modulates sensory information is primary afferent depolarization, which has been characterized in fast muscular and cutaneous, but not in slow-conducting nociceptive skin afferents. Here we investigated whether the inhibition of nociceptive sensory information, produced by activation of the sensorimotor cortex, involves a direct presynaptic modulation of C primary afferents. In anaesthetized male Wistar rats, we analyzed the effects of sensorimotor cortex activation on post tetanic potentiation (PTP) and the paired pulse ratio (PPR) of dorsal horn field potentials evoked by C–fiber stimulation in the sural (SU) and sciatic (SC) nerves. We also explored the time course of the excitability changes in nociceptive afferents produced by cortical stimulation. We observed that the development of PTP was completely blocked when C-fiber tetanic stimulation was paired with cortex stimulation. In addition, sensorimotor cortex activation by topical administration of bicuculline (BIC) produced a reduction in the amplitude of C–fiber responses, as well as an increase in the PPR. Furthermore, increases in the intraspinal excitability of slow-conducting fiber terminals, produced by sensorimotor cortex stimulation, were indicative of primary afferent depolarization. Topical administration of BIC in the spinal cord blocked the inhibition of C–fiber neuronal responses produced by cortical stimulation. Dorsal horn neurons responding to sensorimotor cortex stimulation also exhibited a peripheral receptive field and responded to stimulation of fast cutaneous myelinated fibers. Our results suggest that corticospinal inhibition of nociceptive responses is due in part to a modulation of the excitability of primary C–fibers by means of GABAergic inhibitory

  14. Cortical presynaptic control of dorsal horn C-afferents in the rat.

    PubMed

    Moreno-López, Yunuen; Pérez-Sánchez, Jimena; Martínez-Lorenzana, Guadalupe; Condés-Lara, Miguel; Rojas-Piloni, Gerardo

    2013-01-01

    Lamina 5 sensorimotor cortex pyramidal neurons project to the spinal cord, participating in the modulation of several modalities of information transmission. A well-studied mechanism by which the corticospinal projection modulates sensory information is primary afferent depolarization, which has been characterized in fast muscular and cutaneous, but not in slow-conducting nociceptive skin afferents. Here we investigated whether the inhibition of nociceptive sensory information, produced by activation of the sensorimotor cortex, involves a direct presynaptic modulation of C primary afferents. In anaesthetized male Wistar rats, we analyzed the effects of sensorimotor cortex activation on post tetanic potentiation (PTP) and the paired pulse ratio (PPR) of dorsal horn field potentials evoked by C-fiber stimulation in the sural (SU) and sciatic (SC) nerves. We also explored the time course of the excitability changes in nociceptive afferents produced by cortical stimulation. We observed that the development of PTP was completely blocked when C-fiber tetanic stimulation was paired with cortex stimulation. In addition, sensorimotor cortex activation by topical administration of bicuculline (BIC) produced a reduction in the amplitude of C-fiber responses, as well as an increase in the PPR. Furthermore, increases in the intraspinal excitability of slow-conducting fiber terminals, produced by sensorimotor cortex stimulation, were indicative of primary afferent depolarization. Topical administration of BIC in the spinal cord blocked the inhibition of C-fiber neuronal responses produced by cortical stimulation. Dorsal horn neurons responding to sensorimotor cortex stimulation also exhibited a peripheral receptive field and responded to stimulation of fast cutaneous myelinated fibers. Our results suggest that corticospinal inhibition of nociceptive responses is due in part to a modulation of the excitability of primary C-fibers by means of GABAergic inhibitory interneurons

  15. Experimental and computational evidence for an essential role of NaV1.6 in spike initiation at stretch-sensitive colorectal afferent endings.

    PubMed

    Feng, Bin; Zhu, Yi; La, Jun-Ho; Wills, Zachary P; Gebhart, G F

    2015-04-01

    Stretch-sensitive afferents comprise ∼33% of the pelvic nerve innervation of mouse colorectum, which are activated by colorectal distension and encode visceral nociception. Stretch-sensitive colorectal afferent endings respond tonically to stepped or ramped colorectal stretch, whereas dissociated colorectal dorsal root ganglion neurons generally fail to spike repetitively upon stepped current stimulation. The present study investigated this difference in the neural encoding characteristics between the soma and afferent ending using pharmacological approaches in an in vitro mouse colon-nerve preparation and complementary computational simulations. Immunohistological staining and Western blots revealed the presence of voltage-gated sodium channel (NaV) 1.6 and NaV1.7 at sensory neuronal endings in mouse colorectal tissue. Responses of stretch-sensitive colorectal afferent endings were significantly reduced by targeting NaV1.6 using selective antagonists (μ-conotoxin GIIIa and μ-conotoxin PIIIa) or tetrodotoxin. In contrast, neither selective NaV1.8 (A803467) nor NaV1.7 (ProTX-II) antagonists attenuated afferent responses to stretch. Computational simulation of a colorectal afferent ending that incorporated independent Markov models for NaV1.6 and NaV1.7, respectively, recapitulated the experimental findings, suggesting a necessary role for NaV1.6 in encoding tonic spiking by stretch-sensitive afferents. In addition, computational simulation of a dorsal root ganglion soma showed that, by adding a NaV1.6 conductance, a single-spiking neuron was converted into a tonic spiking one. These results suggest a mechanism/channel to explain the difference in neural encoding characteristics between afferent somata and sensory endings, likely caused by differential expression of ion channels (e.g., NaV1.6) at different parts of the neuron. PMID:25652923

  16. Experimental and computational evidence for an essential role of NaV1.6 in spike initiation at stretch-sensitive colorectal afferent endings

    PubMed Central

    Zhu, Yi; La, Jun-Ho; Wills, Zachary P.; Gebhart, G. F.

    2015-01-01

    Stretch-sensitive afferents comprise ∼33% of the pelvic nerve innervation of mouse colorectum, which are activated by colorectal distension and encode visceral nociception. Stretch-sensitive colorectal afferent endings respond tonically to stepped or ramped colorectal stretch, whereas dissociated colorectal dorsal root ganglion neurons generally fail to spike repetitively upon stepped current stimulation. The present study investigated this difference in the neural encoding characteristics between the soma and afferent ending using pharmacological approaches in an in vitro mouse colon-nerve preparation and complementary computational simulations. Immunohistological staining and Western blots revealed the presence of voltage-gated sodium channel (NaV) 1.6 and NaV1.7 at sensory neuronal endings in mouse colorectal tissue. Responses of stretch-sensitive colorectal afferent endings were significantly reduced by targeting NaV1.6 using selective antagonists (μ-conotoxin GIIIa and μ-conotoxin PIIIa) or tetrodotoxin. In contrast, neither selective NaV1.8 (A803467) nor NaV1.7 (ProTX-II) antagonists attenuated afferent responses to stretch. Computational simulation of a colorectal afferent ending that incorporated independent Markov models for NaV1.6 and NaV1.7, respectively, recapitulated the experimental findings, suggesting a necessary role for NaV1.6 in encoding tonic spiking by stretch-sensitive afferents. In addition, computational simulation of a dorsal root ganglion soma showed that, by adding a NaV1.6 conductance, a single-spiking neuron was converted into a tonic spiking one. These results suggest a mechanism/channel to explain the difference in neural encoding characteristics between afferent somata and sensory endings, likely caused by differential expression of ion channels (e.g., NaV1.6) at different parts of the neuron. PMID:25652923

  17. Effects of extensor and flexor group I afferent volleys on the excitability of individual soleus motoneurones in man

    PubMed Central

    Ashby, Peter; Labelle, Keith

    1977-01-01

    The contour of the postsynaptic potential (PSP) produced in a neurone by an afferent volley can be derived from the contour of the post-stimulus time histogram (PSTH) of that neurone when it is discharging rhythmically. In the present study the PSTH of the firing of individual soleus motor units after stimulation of the popliteal or peroneal nerve was used to explore the effects of extensor and flexor group I afferent volleys on the excitability of single soleus motoneurones in man. Extensor group I volleys resulted in an early peak of increased impulse density in the PSTH of 75% of soleus motoneurones. The latency suggests an analogy with the Ia EPSP. The mean duration of the peak of increased impulse density, equivalent to the rise time of the EPSP, was 3.6 ms. Flexor group I volleys result in a period of reduced impulse density in the PSTH of five out of nine soleus motoneurones. The latency suggests an analogy with the Ia IPSP. We conclude that this method could be used to explore the afferent connections to single motoneurones in man and to derive some of the characteristics of the postsynaptic potentials from a variety of afferent nerve fibres in single human motoneurones. PMID:599368

  18. Renal arteriography

    MedlinePlus

    Renal angiogram; Angiography - kidney; Renal angiography; Renal artery stenosis - arteriography ... Renal arteriography is often needed to help decide on the best treatment after other tests are done ...

  19. Nerve biopsy

    MedlinePlus

    ... Loss of axon tissue Metabolic neuropathies Necrotizing vasculitis Sarcoidosis Risks Allergic reaction to the local anesthetic Discomfort ... Neurosarcoidosis Peripheral neuropathy Primary amyloidosis Radial nerve dysfunction Sarcoidosis Tibial nerve dysfunction Update Date 6/1/2015 ...

  20. Renal denervation in heart failure with normal left ventricular ejection fraction. Rationale and design of the DIASTOLE (DenervatIon of the renAl Sympathetic nerves in hearT failure with nOrmal Lv Ejection fraction) trial.

    PubMed

    Verloop, Willemien L; Beeftink, Martine M A; Nap, Alex; Bots, Michiel L; Velthuis, Birgitta K; Appelman, Yolande E; Cramer, Maarten-Jan; Agema, Willem R P; Scholtens, Asbjorn M; Doevendans, Pieter A; Allaart, Cor P; Voskuil, Michiel

    2013-12-01

    Aim Increasing evidence suggests an important role for hyperactivation of the sympathetic nervous system (SNS) in the clinical phenomena of heart failure with normal LVEF (HFNEF) and hypertension. Moreover, the level of renal sympathetic activation is directly related to the severity of heart failure. Since percutaneous renal denervation (pRDN) has been shown to be effective in modulating elevated SNS activity in patients with hypertension, it can be hypothesized that pRDN has a positive effect on HFNEF. The DIASTOLE trial will investigate whether renal sympathetic denervation influences parameters of HFNEF. Methods DIASTOLE is a multicentre, randomized controlled trial. Sixty patients, diagnosed with HFNEF and treated for hypertension, will be randomly allocated in a 1:1 ratio to undergo renal denervation on top of medical treatment (n = 30) or to maintain medical treatment alone (n = 30). The primary objective is to investigate the efficacy of pRDN by means of pulsed wave Doppler echocardiographic parameters. Secondary objectives include safety of pRDN and a comparison of changes in the following parameters after pRDN: LV mass, LV volume, LVEF, and left atrial volume as determined by magnetic resonance imaging. Also, MIBG (metaiodobenzylguanidine) uptake and washout, BNP levels, blood pressure, heart rate variability, exercise capacity, and quality of life will be assessed. Perspective DIASTOLE is a randomized controlled trial evaluating renal denervation as a treatment option for HFNEF. The results of the current trial will provide important information regarding the treatment of HFNEF, and therefore may have major impact on future therapeutic strategies. Trail registration NCT01583881.

  1. Changes in vagal afferent drive alter tracheobronchial coughing in anesthetized cats.

    PubMed

    Simera, Michal; Poliacek, Ivan; Veternik, Marcel; Babalova, Lucia; Kotmanova, Zuzana; Jakus, Jan

    2016-08-01

    Unilateral cooling of the vagus nerve (<5°C, blocking mainly conductivity of myelinated fibers) and unilateral vagotomy were employed to reduce cough afferent drive in order to evaluate the effects of these interventions on the temporal features of the cough reflex. Twenty pentobarbitone anesthetized, spontaneously breathing cats were used. Cough was induced by mechanical stimulation of the tracheobronchial airways. The number of coughs during vagal cooling was significantly decreased (p<0.001). Inspiratory cough efforts were reduced by approximately 30% (p<0.001) and expiratory motor drive by more than 80% (p<0.001). Temporal analysis showed prolonged inspiratory and expiratory phases, the total cycle duration, its active portion, and the interval between maxima of the diaphragm and the abdominal activity during coughing (p<0.001). There was no significant difference in the average effects on the cough reflex between cooling of the left or the right vagus nerve. Compared to control, vagal cooling produced no significant difference in heart rate and mean arterial blood pressure (p>0.05), however, cold block of vagal conduction reduced respiratory rate (p<0.001). Unilateral vagotomy significantly reduced cough number, cough-related diaphragmatic activity, and relative values of maximum expiratory esophageal pressure (all p<0.05). Our results indicate that reduced cough afferent drive (lower responsiveness) markedly attenuates the motor drive to respiratory pump muscles during coughing and alters cough temporal features. Differences in the effects of unilateral vagal cooling and vagotomy on coughing support an inhibitory role of sensory afferents that are relatively unaffected by cooling of the vagus nerve to 5°C on mechanically induced cough. PMID:27184303

  2. Renal ischemic injury affects renal hemodynamics and excretory functions in Sprague Dawley rats: involvement of renal sympathetic tone.

    PubMed

    Salman, Ibrahim M; Sattar, Munavvar A; Abdullah, Nor A; Ameer, Omar Z; Yam, Mun F; Kaur, Gurjeet; Hye Khan, Md Abdul; Johns, Edward J

    2010-01-01

    The role of renal sympathetic nerves in the pathogenesis of ischemic acute renal failure (ARF) and the immediate changes in the renal excretory functions following renal ischemia were investigated. Two groups of male Sprague Dawley (SD) rats were anesthetized (pentobarbitone sodium, 60 mg kg(-1) i.p.) and subjected to unilateral renal ischemia by clamping the left renal artery for 30 min followed by reperfusion. In group 1, the renal nerves were electrically stimulated and the responses in the renal blood flow (RBF) and renal vascular resistance (RVR) were recorded, while group 2 was used to study the early changes in the renal functions following renal ischemia. In post-ischemic animals, basal RBF and the renal vasoconstrictor reperfusion to renal nerve stimulation (RNS) were significantly lower (all p < 0.05 vs. control). Mean arterial pressure (MAP), basal RVR, urine flow rate (UFR), absolute and fractional excretions of sodium (U(Na)V and FE(Na)), and potassium (U(K)V and FE(K)) were higher in ARF rats (all p < 0.05 vs. control). Post-ischemic animals showed markedly lower glomerular filtration rate (GFR) (p < 0.05 vs. control). No appreciable differences were observed in urinary sodium to potassium ratio (U(Na)/U(K)) during the early reperfusion phase of renal ischemia (p > 0.05 vs. control). The data suggest an immediate involvement of renal sympathetic nerve action in the pathogenesis of ischemic ARF primarily through altered renal hemodynamics. Diuresis, natriuresis, and kaliuresis due to impaired renal tubular functions are typical responses to renal ischemia and of comparable magnitudes.

  3. Improved bladder emptying in urinary retention by electrical stimulation of pudendal afferents

    NASA Astrophysics Data System (ADS)

    Peng, Chih-Wei; Chen, Jia-Jin Jason; Cheng, Chen-Li; Grill, Warren M.

    2008-06-01

    Urinary retention is the inability to empty the bladder completely, and may result from bladder hypocontractility, increases in outlet resistance or both. Chronic urinary retention can lead to several urological complications and is often refractory to pharmacologic, behavioral and surgical treatments. We sought to determine whether electrical stimulation of sensory fibers in the pudendal nerve could engage an augmenting reflex and thereby improve bladder emptying in an animal model of urinary retention. We measured the efficiency of bladder emptying with and without concomitant electrical stimulation of pudendal nerve afferents in urethane-anesthetized rats. Voiding efficiency (VE = voided volume/initial volume) was reduced from 72 ± 7% to 29 ± 7% following unilateral transection of the sensory branch of the pudendal nerve (UST) and from 70 ± 5% to 18 ± 4% following bilateral transection (BST). Unilateral electrical stimulation of the proximal transected sensory pudendal nerve during distention-evoked voiding contractions significantly improved VE. Low-intensity stimulation at frequencies of 1-50 Hz increased VE to 40-51% following UST and to 39-49% following BST, while high-intensity stimulation was ineffective at increasing VE. The increase in VE was mediated by increases in the duration of distention-evoked voiding bladder contractions, rather than increases in contraction amplitude. These results are consistent with an essential role for pudendal sensory feedback in efficient bladder emptying, and raise the possibility that electrical activation of pudendal nerve afferents may provide a new approach to restore efficient bladder emptying in persons with urinary retention.

  4. Spinal inhibition of phrenic motoneurones by stimulation of afferents from leg muscle in the cat: blockade by strychnine.

    PubMed

    Eldridge, F L; Millhorn, D E; Waldrop, T

    1987-08-01

    1. Phrenic nerve responses to stimulation of calf muscle receptors or their afferents were studied in paralysed high (C1) spinal cats whose phrenic nerve activity was evoked by activation of the intercostal-to-phrenic reflex. End-tidal PCO2 was maintained at a constant level by means of a servo-controlled ventilator. 2. Physical stimulation of calf muscles or electrical stimulation of the tibial nerve uniformly caused inhibition of phrenic activity evoked by facilitatory conditioning stimuli. The degree of inhibition gradually decreased as muscle stimulation continued, and there was a post-stimulus augmentation of phrenic activity. 3. Pre-treatment with subconvulsive doses of strychnine, an antagonist of the neurotransmitter glycine, partially or completely blocked the inhibitory effects on phrenic activity of muscle-afferent stimulation. The blockade was reversible with time. 4. Pre-treatment with a subconvulsive dose of bicuculline, an antagonist of the neurotransmitter gamma-aminobutyric acid (GABA), had no effect on the inhibitory mechanism. 5. We conclude that glycine is an important transmitter of the inhibition of phrenic motoneurones induced by muscle-afferent stimulation, but that GABA is not involved in this inhibitory mechanism. PMID:3681723

  5. Pain processing by spinal microcircuits: afferent combinatorics.

    PubMed

    Prescott, Steven A; Ratté, Stéphanie

    2012-08-01

    Pain, itch, heat, cold, and touch represent different percepts arising from somatosensory input. How stimuli give rise to these percepts has been debated for over a century. Recent work supports the view that primary afferents are highly specialized to transduce and encode specific stimulus modalities. However, cross-modal interactions (e.g. inhibition or exacerbation of pain by touch) support convergence rather than specificity in central circuits. We outline how peripheral specialization together with central convergence could enable spinal microcircuits to combine inputs from distinctly specialized, co-activated afferents and to modulate the output signals thus formed through computations like normalization. These issues will be discussed alongside recent advances in our understanding of microcircuitry in the superficial dorsal horn.

  6. Pain processing by spinal microcircuits: afferent combinatorics.

    PubMed

    Prescott, Steven A; Ratté, Stéphanie

    2012-08-01

    Pain, itch, heat, cold, and touch represent different percepts arising from somatosensory input. How stimuli give rise to these percepts has been debated for over a century. Recent work supports the view that primary afferents are highly specialized to transduce and encode specific stimulus modalities. However, cross-modal interactions (e.g. inhibition or exacerbation of pain by touch) support convergence rather than specificity in central circuits. We outline how peripheral specialization together with central convergence could enable spinal microcircuits to combine inputs from distinctly specialized, co-activated afferents and to modulate the output signals thus formed through computations like normalization. These issues will be discussed alongside recent advances in our understanding of microcircuitry in the superficial dorsal horn. PMID:22409855

  7. Sympatho-renal interactions.

    PubMed

    Zanchetti, A; Stella, A

    1987-10-01

    The renal nerves appear to be involved in the control of cardiovascular homeostasis and volume balance both in physiological and in pathological conditions such as experimental hypertension. Anatomical and electrophysiological evidence suggests that the kidney has a diffuse sensory innervation connected with areas in the brain and spinal cord that are known to regulate cardiovascular functions by both neural and humoral mechanisms. The demonstration of the existence of neural reno-renal reflexes controlling several renal functions indicates that a functional balance between the two kidneys exists and may play an important role in the moment-to-moment control of kidney functions.

  8. Development, plasticity and modulation of visceral afferents

    PubMed Central

    Christianson, Julie A.; Bielefeldt, Klaus; Altier, Christophe; Cenac, Nicolas; Davis, Brian M.; Gebhart, Gerald F.; High, Karin W.; Kollarik, Marian; Randich, Alan; Undem, Brad; Vergnolle, Nathalie

    2010-01-01

    Visceral pain is the most common reason for doctor visits in the US. Like somatic pain, virtually all visceral pain sensations begin with the activation of primary sensory neurons innervating the viscera and/or the blood vessels associated with these structures. Visceral afferents also play a central role in tissue homeostasis. Recent studies show that in addition to monitoring the state of the viscera, they perform efferent functions through the release of small molecules (e.g. peptides like CGRP) that can drive inflammation, thereby contributing to the development of visceral pathologies (e.g. diabetes Razavi, R., Chan, Y., Afifiyan, F.N., Liu, X.J., Wan, X., Yantha, J., Tsui, H., Tang, L., Tsai, S., Santamaria, P., Driver, J.P., Serreze, D., Salter, M.W., Dosch, H.M., 2006. TRPV1+ sensory neurons control beta cell stress and islet inflammation in autoimmune diabetes, Cell 127 1123–1135). Visceral afferents are heterogeneous with respect to their anatomy, neurochemistry and function. They are also highly plastic in that their cellular environment continuously influences their response properties. This plasticity makes them susceptible to long-term changes that may contribute significantly to the development of persistent pain states such as those associated with irritable bowel syndrome, pancreatitis, and visceral cancers. This review examines recent insights into visceral afferent anatomy and neurochemistry and how neonatal insults can affect the function of these neurons in the adult. New approaches to the treatment of visceral pain, which focus on primary afferents, will also be discussed. PMID:19150371

  9. Three-dimensional Reconstruction of Peripheral Nerve Internal Fascicular Groups

    PubMed Central

    Zhong, Yingchun; Wang, Liping; Dong, Jianghui; Zhang, Yi; Luo, Peng; Qi, Jian; Liu, Xiaolin; Xian, Cory J.

    2015-01-01

    Peripheral nerves are important pathways for receiving afferent sensory impulses and sending out efferent motor instructions, as carried out by sensory nerve fibers and motor nerve fibers. It has remained a great challenge to functionally reconnect nerve internal fiber bundles (or fascicles) in nerve repair. One possible solution may be to establish a 3D nerve fascicle visualization system. This study described the key technology of 3D peripheral nerve fascicle reconstruction. Firstly, fixed nerve segments were embedded with position lines, cryostat-sectioned continuously, stained and imaged histologically. Position line cross-sections were identified using a trained support vector machine method, and the coordinates of their central pixels were obtained. Then, nerve section images were registered using the bilinear method, and edges of fascicles were extracted using an improved gradient vector flow snake method. Subsequently, fascicle types were identified automatically using the multi-directional gradient and second-order gradient method. Finally, a 3D virtual model of internal fascicles was obtained after section images were processed. This technique was successfully applied for 3D reconstruction for the median nerve of the hand-wrist and cubital fossa regions and the gastrocnemius nerve. This nerve internal fascicle 3D reconstruction technology would be helpful for aiding peripheral nerve repair and virtual surgery. PMID:26596642

  10. Analysis of afferent responses from isolated semicircular canal of the guitarfish using rotational acceleration white-noise inputs. I. Correlation of response dynamics with receptor innervation.

    PubMed

    O'Leary, D P; Dunn, R F

    1976-05-01

    The small-signal linear characteristics of afferent responses from the isolated semicircular canal were described by the use of white-noise rotational acceleration inputs. The results, based on cross-correlation analysis, showed a striking and systematic variation in linear system impulse response characteristics from afferents which innervated different regions of the receptor. Afferents from centrally located nerve bundles innervating the crest region of the crista exhibited an initial maximum response amplitude followed by a rapid decay. In contrast, afferents from extreme rostral and caudal nerve bundles innervating the crista slopes exhibited an initial rise up to a low-amplitude maximum followed by a slower decay. These results imply that the afferents innervating a single canal do not merely carry redundant information concerning current head acceleration, but could be considered an ensemble of specific classes of filters that are tuned individually to specific classes of head movements. On the basis of these considerations, a new hypothesis of matched filter detection was proposed as relevant to information processing and dynamic control in central vestibular pathways. PMID:948010

  11. Spatial convergence and divergence between cutaneous afferent axons and dorsal horn cells are not constant.

    PubMed

    Brown, P B; Harton, P; Millecchia, R; Lawson, J; Kunjara-Na-Ayudhya, T; Stephens, S; Miller, M A; Hicks, L; Culberson, J

    2000-05-01

    We have proposed a quantitative model of the development of dorsal horn cell receptive fields (RFs) and somatotopic organization (Brown et al. [1997] Somatosens. Motor Res. 14:93-106). One component of that model is a hypothesis that convergence and divergence of connections between low-threshold primary afferent mechanoreceptive axons and dorsal horn cells are invariant over skin location and dorsal horn location. The more limited, and more easily tested, hypothesis that spatial convergence and divergence between cutaneous mechanoreceptors and dorsal horn cell are constant was examined. Spatial divergence is the number of dorsal horn cells whose RFs overlap the RF center of a primary afferent, and spatial convergence is the number of afferent RF centers that lie within the RF of a dorsal horn cell. Innervation density was determined as a function of location on the hindlimb by using peripheral nerve recording and axon counting. A descriptive model of dorsal horn cell receptive fields (Brown et al. [1998] J. Neurophysiol. 31:833-848) was used to simulate RFs of the entire dorsal horn cell population in order to estimate RF area and map scale as a function of location on the hindlimb. Previously reported correlations among innervation density, map scale, and RF size were confirmed. However, these correlations were not linear. The hypothesis that spatial convergence and divergence are constant was rejected. The previously proposed model of development of dorsal horn cell somatotopy and RF geometries must be revised to take variable spatial convergence and divergence into account. PMID:10754502

  12. ATP decreases mechanical sensitivity of muscle thin-fiber afferents in rats.

    PubMed

    Matsuda, Teru; Kubo, Asako; Taguchi, Toru; Mizumura, Kazue

    2015-08-01

    ATP is an energy rich substance contained in cells in the order of mM. It is released when cells are damaged and when muscle is compressed or contracted. Subcutaneous injection of ATP induces pain-related behavior and hyperalgesia to mechanical and heat stimulation in rats. However, the effects of ATP in muscle have not been fully studied. In the present study we examined the effects of ATP on muscle C-fiber afferent activities using single fiber recordings, and on nociceptive behavior. Muscle C-fiber activities were recorded in vitro using extensor digitorum longus muscle-common peroneal nerve preparations excised from rats deeply anesthetized with pentobarbital. ATP (100 μM and 1 mM, but not 1 μM) superfused for 5 min before the mechanical stimulation suppressed the mechanical responses of muscle thin fibers irrespective of whether they excited the fiber. This suppressive effect was reversed by P2X receptor antagonists PPADS (100 μM) and suramin (300 μM). We also found that subcutaneous injection of ATP (10 mM) induced nociceptive behavior, whereas intramuscular injection had no effect. These findings showed that effects of ATP on muscle afferents differ from those on cutaneous afferents.

  13. Netrin-1 Contributes to Myelinated Afferent Fiber Sprouting and Neuropathic Pain.

    PubMed

    Wu, Cai-Hua; Yuan, Xiao-Cui; Gao, Fang; Li, Hong-Ping; Cao, Jie; Liu, Yan-Shen; Yu, Wei; Tian, Bo; Meng, Xian-Fang; Shi, Jing; Pan, Hui-Lin; Li, Man

    2016-10-01

    Netrin-1 is a neuronal guidance molecule implicated in the development of spinal cord neurons and cortical neurons. In the adult spinal cord, UNC5H (repulsive receptor of netrin-1), but not deleted in colorectal cancer (DCC) (attractive receptor of netrin-1), constitutes a major mode of netrin-1 signal transduction, which may be involved in axon repulsion and inhibits neurite outgrowth. Abnormal sprouting of myelinated afferent fibers in the spinal dorsal horn can cause mechanical allodynia associated with postherpetic neuralgia (PHN, Shingles) and other neuropathic pains. However, whether netrin-1 participates in sprouting of myelinated afferent fibers and mechanical allodynia remains unknown. In an ultropotent TRPV1 agonist resiniferatoxin (RTX)-induced PHN-like model, RTX treatment for 6 weeks increased netrin-1 expression in dorsal horn neurons, including NK-1-positive projection neurons. In human neuroblastoma SH-SY5Y cells, we found that TRPV1 antagonist capsazepine antagonized RTX-induced upregulation of netrin-1. After RTX treatment, UNC5H2 expression was gradually decreased, whereas DCC expression was significantly increased. Silencing netrin-1 in the spinal dorsal horn significantly attenuated RTX-induced mechanical allodynia and sprouting of myelinated fibers into the spinal lamina II. Our results suggest that RTX treatment upregulates netrin-1 expression through activation of TRPV1 receptors and change UNC5H2-rich spinal dorsal horn into a growth-permissive environment by increasing DCC expression, thus enhancing the sprouting of myelinated afferent nerves. Netrin-1 may be targeted for reducing primary afferent sprouting and mechanical allodynia in PHN and other neuropathic pain conditions. PMID:26482371

  14. ACTIVATION OF TRPA1 ON DURAL AFFERENTS: A POTENTIAL MECHANISM OF HEADACHE PAIN

    PubMed Central

    Edelmayer, Rebecca M.; Le, Larry N.; Yan, Jin; Wei, Xiaomei; Nassini, Romina; Materazzi, Serena; Preti, Delia; Appendino, Giovanni; Geppetti, Pierangelo; Dodick, David W.; Vanderah, Todd W.; Porreca, Frank; Dussor, Gregory

    2012-01-01

    Activation of transient receptor potential ankyrin-1 (TRPA1) on meningeal nerve endings has been suggested to contribute to environmental irritant-induced headache but this channel may also contribute to other forms of headache such as migraine. The preclinical studies described here examined functional expression of TRPA1 on dural afferents and investigated whether activation of TRPA1 contributes to headache-like behaviors. Whole-cell patch-clamp recordings were performed in vitro using two TRPA1 agonists, mustard oil (MO) and the environmental irritant umbellulone (UMB), on dural-projecting trigeminal ganglion neurons. Application of MO and UMB to dural afferents produced TRPA1-like currents in approximately 42% and 38% of cells, respectively. Using an established in vivo behavioral model of migraine-related allodynia, dural application of MO and UMB produced robust time-related tactile facial and hindpaw allodynia that was attenuated by pretreatment with the TRPA1 antagonist HC-030031. Additionally, MO or UMB were applied to the dura and exploratory activity was monitored for 30 minutes using an automated open-field activity chamber. Dural MO and UMB decreased the number of vertical rearing episodes and the time spent rearing in comparison to vehicle treated animals. This change in activity was prevented in rats pretreated with HC-030031 as well as sumatriptan, a clinically effective anti-migraine agent. These data indicate that TRPA1 is expressed on a substantial fraction of dural afferents and activation of meningeal TRPA1 produces behaviors consistent with those seen in patients during migraine attacks. Further, they suggest that activation of meningeal TRPA1 via endogenous or exogenous mechanisms can lead to afferent signaling and headache. PMID:22809691

  15. Immune derived opioidergic inhibition of viscerosensory afferents is decreased in Irritable Bowel Syndrome patients.

    PubMed

    Hughes, Patrick A; Moretta, Melissa; Lim, Amanda; Grasby, Dallas J; Bird, Daniel; Brierley, Stuart M; Liebregts, Tobias; Adam, Birgit; Blackshaw, L Ashley; Holtmann, Gerald; Bampton, Peter; Hoffmann, Peter; Andrews, Jane M; Zola, Heddy; Krumbiegel, Doreen

    2014-11-01

    Alterations in the neuro-immune axis contribute toward viscerosensory nerve sensitivity and symptoms in Irritable Bowel Syndrome (IBS). Inhibitory factors secreted from immune cells inhibit colo-rectal afferents in health, and loss of this inhibition may lead to hypersensitivity and symptoms. We aimed to determine the immune cell type(s) responsible for opioid secretion in humans and whether this is altered in patients with IBS. The β-endorphin content of specific immune cell lineages in peripheral blood and colonic mucosal biopsies were compared between healthy subjects (HS) and IBS patients. Peripheral blood mononuclear cell (PBMC) supernatants from HS and IBS patients were applied to colo-rectal sensory afferent endings in mice with post-inflammatory chronic visceral hypersensitivity (CVH). β-Endorphin was identified predominantly in monocyte/macrophages relative to T or B cells in human PBMC and colonic lamina propria. Monocyte derived β-endorphin levels and colonic macrophage numbers were lower in IBS patients than healthy subjects. PBMC supernatants from healthy subjects had greater inhibitory effects on colo-rectal afferent mechanosensitivity than those from IBS patients. The inhibitory effects of PBMC supernatants were more prominent in CVH mice compared to healthy mice due to an increase in μ-opioid receptor expression in dorsal root ganglia neurons in CVH mice. Monocyte/macrophages are the predominant immune cell type responsible for β-endorphin secretion in humans. IBS patients have lower monocyte derived β-endorphin levels than healthy subjects, causing less inhibition of colonic afferent endings. Consequently, altered immune function contributes toward visceral hypersensitivity in IBS. PMID:25063707

  16. Netrin-1 Contributes to Myelinated Afferent Fiber Sprouting and Neuropathic Pain.

    PubMed

    Wu, Cai-Hua; Yuan, Xiao-Cui; Gao, Fang; Li, Hong-Ping; Cao, Jie; Liu, Yan-Shen; Yu, Wei; Tian, Bo; Meng, Xian-Fang; Shi, Jing; Pan, Hui-Lin; Li, Man

    2016-10-01

    Netrin-1 is a neuronal guidance molecule implicated in the development of spinal cord neurons and cortical neurons. In the adult spinal cord, UNC5H (repulsive receptor of netrin-1), but not deleted in colorectal cancer (DCC) (attractive receptor of netrin-1), constitutes a major mode of netrin-1 signal transduction, which may be involved in axon repulsion and inhibits neurite outgrowth. Abnormal sprouting of myelinated afferent fibers in the spinal dorsal horn can cause mechanical allodynia associated with postherpetic neuralgia (PHN, Shingles) and other neuropathic pains. However, whether netrin-1 participates in sprouting of myelinated afferent fibers and mechanical allodynia remains unknown. In an ultropotent TRPV1 agonist resiniferatoxin (RTX)-induced PHN-like model, RTX treatment for 6 weeks increased netrin-1 expression in dorsal horn neurons, including NK-1-positive projection neurons. In human neuroblastoma SH-SY5Y cells, we found that TRPV1 antagonist capsazepine antagonized RTX-induced upregulation of netrin-1. After RTX treatment, UNC5H2 expression was gradually decreased, whereas DCC expression was significantly increased. Silencing netrin-1 in the spinal dorsal horn significantly attenuated RTX-induced mechanical allodynia and sprouting of myelinated fibers into the spinal lamina II. Our results suggest that RTX treatment upregulates netrin-1 expression through activation of TRPV1 receptors and change UNC5H2-rich spinal dorsal horn into a growth-permissive environment by increasing DCC expression, thus enhancing the sprouting of myelinated afferent nerves. Netrin-1 may be targeted for reducing primary afferent sprouting and mechanical allodynia in PHN and other neuropathic pain conditions.

  17. Interganglionic segregation of distinct vagal afferent fibre phenotypes in guinea-pig airways.

    PubMed Central

    Ricco, M M; Kummer, W; Biglari, B; Myers, A C; Undem, B J

    1996-01-01

    1. The present study addressed the hypothesis that jugular and nodose vagal ganglia contain the somata of functionally and anatomically distinct airway afferent fibres. 2. Anatomical investigations were performed by injecting guinea-pig airways with the neuronal tracer Fast Blue. The animals were killed 7 days later, and the ganglia were removed and immunostained with antisera against substance P (SP) and neurofilament protein (NF). In the nodose ganglion, NF-immunoreactive neurones accounted for about 98% of the Fast Blue-labelled cells while in the jugular ganglion they accounted for approximately 48%. SP and NF immunoreactivity was never (n = 100) observed in the same cell suggesting that the antisera labelled distinct populations. 3. Electrophysiological investigations were performed using an in vitro guinea-pig tracheal and bronchial preparation with intact afferent vagal pathways, including nodose and jugular ganglia. Action potentials arriving from single airway afferent nerve endings were monitored extracellularly using a glass microelectrode positioned near neuronal cell bodies in either ganglion. 4. The nodose ganglion contained the somata of mainly fast-conducting tracheal A delta fibres whereas the jugular ganglion contained equal numbers of C fibre and A delta fibre tracheal afferent somata. The nodose A delta neurones adapted rapidly to mechanical stimulation, had relatively low mechanical thresholds, were not activated by capsaicin and adapted rapidly to a hyperosmotic stimulus. By contrast, jugular A delta and C fibres adapted slowly to mechanical stimulation, were often activated by capsaicin, had higher mechanical thresholds and displayed a slow adaptation to a hyperosmotic stimulus. 5. The anatomical, physiological and pharmacological data provide evidence to support the contention that the vagal ganglionic source of the fibre supplying the airways ultimately dictates its neurochemical and physiological phenotype. Images Figure 1 PMID:8910234

  18. [Effects of afferent vagal stimulation and distention of the upper digestive tract on the micturition reflex and activity of the pontine micturition center in dogs].

    PubMed

    Moda, Y

    1992-12-01

    (1) The study was performed to elucidate the effects of afferent vagal stimulation and distension of the digestive tract on the micturition reflex in 21 acute decerebrate dogs immobilized with gallamine. Electrical stimulation of the central cut end of the cervical vagus nerve with high voltage (17.5-25 V) and moderate frequency (10-50 Hz) elicited in most cases inhibition of the periodic bladder contractions and of outflows of the pelvic vesical branch which were induced by a sustained intravesical pressure of 10-15 cmH2O. Distension of the thoracic esophagus, the stomach, and the duodenum also induced inhibition of the bladder contractions and of the pelvic outflow to the bladder. Such inhibitions were abolished after bilateral cervical vagotomies except a few cases of distension of the duodenum. (2) Another series of experiments were undertaken to clear the effect of afferent vagal stimulation on the electrical activity of the pontine micturition center in 10 acute decerebrate dogs. By means of an extracellular glass microelectrode method, unitary discharges synchronized with the grouping discharges in the pelvic vesical branch with a rhythm of 2.2-2.5 Hz were recorded from the pontine micturition center in the dorsolateral pontine tegmentum. Such a type of discharges was detected in 6 of 59 units which discharged by afferent stimulation of the pelvic vesical branch. This type of discharges was inhibited by afferent vagal stimulation at the supradiaphragmatic level. From these results, it may be concluded that the afferent pathway of the bladder relaxation reflex induced by distension of the upper digestive tract is mainly involved in the vagal nerves, but in some cases of the strong distension of the duodenum, the pathway is in splanchnic nerves, and that inhibition of the bladder contraction after stimulation of vagal nerve is induced by suppression of the pontine micturition centers.

  19. Oligosynaptic inhibition of group I afferents between the brachioradialis and flexor carpi radialis in humans.

    PubMed

    Kobayashi, Shinji; Hayashi, Masahiro; Shinozaki, Katsuhiro; Nito, Mitsuhiro; Hashizume, Wataru; Miyasaka, Takuji; Shindo, Masaomi; Naito, Akira

    2016-09-01

    Spinal reflex arcs mediated by low threshold afferents between the brachioradialis (BR) and flexor carpi radialis (FCR) were studied in eleven healthy human subjects using a post-stimulus time-histogram method. Electrical conditioning stimuli (ES) to the radial nerve branch innervating BR with the intensity below the motor threshold (MT) induced an early and significant trough (inhibition) in 32/85 FCR motor units (MUs) in 9/9 subjects. Such inhibition was never provoked by cutaneous stimulation. The central synaptic delay (CSD) of the inhibition was approximately 1.1ms longer than that of the homonymous FCR facilitation. ES to the median nerve branch innervating FCR with the intensity below MT induced an inhibition in 27/71 BR-MUs in 10/10 subjects. CSD of the inhibition was about 1.1ms longer than that of the homonymous BR facilitation. These findings suggest that inhibition between BR and FCR exists in humans. Group I afferents seem to mediate the inhibition through an oligo(di or tri)-synaptic path. PMID:26996830

  20. Voltage-gated Na(+) channels in chemoreceptor afferent neurons--potential roles and changes with development.

    PubMed

    Donnelly, David F

    2013-01-01

    Carotid body chemoreceptors increase their action potential (AP) activity in response to a decrease in arterial oxygen tension and this response increases in the post-natal period. The initial transduction site is likely the glomus cell which responds to hypoxia with an increase in intracellular calcium and secretion of multiple neurotransmitters. Translation of this secretion to AP spiking levels is determined by the excitability of the afferent nerve terminals that is largely determined by the voltage-dependence of activation of Na(+) channels. In this review, we examine the biophysical characteristics of Na(+) channels present at the soma of chemoreceptor afferent neurons with the assumption that similar channels are present at nerve terminals. The voltage dependence of this current is consistent with a single Na(+) channel isoform with activation around the resting potential and with about 60-70% of channels in the inactive state around the resting potential. Channel openings, due to transitions from inactive/open or closed/open states, may serve to amplify external depolarizing events or generate, by themselves, APs. Over the first two post-natal weeks, the Na(+) channel activation voltage shifts to more negative potentials, thus enhancing the amplifying action of Na(+) channels on depolarization events and increasing membrane noise generated by channel transitions. This may be a significant contributor to maturation of chemoreceptor activity in the post-natal period.

  1. An afferent explanation for sexual dimorphism in the aortic baroreflex of rat.

    PubMed

    Santa Cruz Chavez, Grace C; Li, Bai-Yan; Glazebrook, Patricia A; Kunze, Diana L; Schild, John H

    2014-09-15

    Sex differences in baroreflex (BRx) function are well documented. Hormones likely contribute to this dimorphism, but many functional aspects remain unresolved. Our lab has been investigating a subset of vagal sensory neurons that constitute nearly 50% of the total population of myelinated aortic baroreceptors (BR) in female rats but less than 2% in male rats. Termed "Ah," this unique phenotype has many of the nonoverlapping electrophysiological properties and chemical sensitivities of both myelinated A-type and unmyelinated C-type BR afferents. In this study, we utilize three distinct experimental protocols to determine if Ah-type barosensory afferents underlie, at least in part, the sex-related differences in BRx function. Electron microscopy of the aortic depressor nerve (ADN) revealed that female rats have less myelin (P < 0.03) and a smaller fiber cross-sectional area (P < 0.05) per BR fiber than male rats. Electrical stimulation of the ADN evoked compound action potentials and nerve conduction profiles that were markedly different (P < 0.01, n = 7 females and n = 9 males). Selective activation of ADN myelinated fibers evoked a BRx-mediated depressor response that was 3-7 times greater in female (n = 16) than in male (n = 17) rats. Interestingly, the most striking hemodynamic difference was functionally dependent upon the rate of myelinated barosensory fiber activation. Only 5-10 Hz of stimulation evoked a rapid, 20- to 30-mmHg reduction in arterial pressure of female rats, whereas rates of 50 Hz or higher were required to elicit a comparable depressor response from male rats. Collectively, our experimental results are suggestive of an alternative myelinated baroreceptor afferent pathway in females that may account for, at least in part, the noted sex-related differences in autonomic control of cardiovascular function.

  2. Afferent innervation patterns of the saccule in pigeons

    NASA Technical Reports Server (NTRS)

    Zakir, M.; Huss, D.; Dickman, J. D.

    2003-01-01

    The innervation patterns of vestibular saccular afferents were quantitatively investigated in pigeons using biotinylated dextran amine as a neural tracer and three-dimensional computer reconstruction. Type I hair cells were found throughout a large portion of the macula, with the highest density observed in the striola. Type II hair cells were located throughout the macula, with the highest density in the extrastriola. Three classes of afferent innervation patterns were observed, including calyx, dimorph, and bouton units, with 137 afferents being anatomically reconstructed and used for quantitative comparisons. Calyx afferents were located primarily in the striola, innervated a number of type I hair cells, and had small innervation areas. Most calyx afferent terminal fields were oriented parallel to the anterior-posterior axis and the morphological polarization reversal line. Dimorph afferents were located throughout the macula, contained fewer type I hair cells in a calyceal terminal than calyx afferents and had medium sized innervation areas. Bouton afferents were restricted to the extrastriola, with multi-branching fibers and large innervation areas. Most of the dimorph and bouton afferents had innervation fields that were oriented dorso-ventrally but were parallel to the neighboring reversal line. The organizational morphology of the saccule was found to be distinctly different from that of the avian utricle or lagena otolith organs and appears to represent a receptor organ undergoing evolutionary adaptation toward sensing linear motion in terrestrial and aerial species.

  3. High-frequency dynamics of regularly discharging canal afferents provide a linear signal for angular vestibuloocular reflexes.

    PubMed

    Hullar, T E; Minor, L B

    1999-10-01

    Regularly discharging vestibular-nerve afferents innervating the semicircular canals were recorded extracellularly in anesthetized chinchillas undergoing high-frequency, high-velocity sinusoidal rotations. In the range from 2 to 20 Hz, with peak velocities of 151 degrees/s at 6 Hz and 52 degrees/s at 20 Hz, 67/70 (96%) maintained modulated discharge throughout the sinusoidal stimulus cycle without inhibitory cutoff or excitatory saturation. These afferents showed little harmonic distortion, no dependence of sensitivity on peak amplitude of stimulation, and no measurable half-cycle asymmetry. A transfer function fitting the data predicts no change in sensitivity (gain) of regularly discharging afferents over the frequencies tested but shows a phase lead with regard to head velocity increasing from 0 degrees at 2 Hz to 30 degrees at 20 Hz. These results indicate that regularly discharging afferents provide a plausible signal to drive the angular vestibuloocular reflex (VOR) even during high-frequency head motion but are not a likely source for nonlinearities present in the VOR. PMID:10515990

  4. Neuronal activity of the cat supraoptic nucleus is influenced by muscle small-diameter afferent (groups III and IV) receptors.

    PubMed

    Kannan, H; Yamashita, H; Koizumi, K; Brooks, C M

    1988-08-01

    In anesthetized cats, responses of single neurosecretory neurons of the supraoptic nucleus to activation of muscle receptors were investigated. Electrical stimulation (1-3 pulses at 200 Hz) of group III and IV pure muscle afferents (gastrocnemius nerve) evoked excitation of greater than 50% of supraoptic nucleus neurons (n = 50), whereas stimulation of group Ia or Ib fibers was ineffective. Baroreceptor stimulation inhibited 95% of these supraoptic nucleus neurons that responded to activation of muscle afferents. Excitation of receptors in the gastrocnemius muscle by intra-arterial injection of chemicals (NaCl, KCl, and bradykinin) increased firing rates of most (84%, 74%, and 80%, respectively) neurosecretary neurons. The magnitude of the excitatory response was dose dependent--bradykinin being the most effective. The response disappeared after muscle denervation. When the gastrocnemius muscle alone was contracted phasically by ventral root stimulation, discharges of the supraoptic nucleus neurons increased, whereas quick stretch of the muscle had no effect. We conclude that activation of muscle receptors by chemical or mechanical stimulus can directly excite neurosecretory neurons in the supraoptic nucleus and that afferent impulses are carried by polymodal fibers of small diameter but not by the largest afferents (group I) from the muscle. The results may relate to increased concentrations of plasma vasopressin during exercise.

  5. Reflex control of inflammation by sympathetic nerves, not the vagus.

    PubMed

    Martelli, D; Yao, S T; McKinley, M J; McAllen, R M

    2014-04-01

    We investigated a neural reflex that controls the strength of inflammatory responses to immune challenge - the inflammatory reflex. In anaesthetized rats challenged with intravenous lipopolysaccharide (LPS, 60 μg kg(-1)), we found strong increases in plasma levels of the key inflammatory mediator tumour necrosis factor α (TNFα) 90 min later. Those levels were unaffected by previous bilateral cervical vagotomy, but were enhanced approximately 5-fold if the greater splanchnic sympathetic nerves had been cut. Sham surgery had no effect, and plasma corticosterone levels were unaffected by nerve sections, so could not explain this result. Electrophysiological recordings demonstrated that efferent neural activity in the splanchnic nerve and its splenic branch was strongly increased by LPS treatment. Splenic nerve activity was dependent on inputs from the splanchnic nerves: vagotomy had no effect on the activity in either nerve. Together, these data demonstrate that immune challenge with this dose of LPS activates a neural reflex that is powerful enough to cause an 80% suppression of the acute systemic inflammatory response. The efferent arm of this reflex is in the splanchnic sympathetic nerves, not the vagi as previously proposed. As with other physiological responses to immune challenge, the afferent pathway is presumptively humoral: the present data show that vagal afferents play no measurable part. Because inflammation sits at the gateway to immune responses, this reflex could play an important role in immune function as well as inflammatory diseases.

  6. Reflex control of inflammation by sympathetic nerves, not the vagus

    PubMed Central

    Martelli, D; Yao, S T; McKinley, M J; McAllen, R M

    2014-01-01

    We investigated a neural reflex that controls the strength of inflammatory responses to immune challenge – the inflammatory reflex. In anaesthetized rats challenged with intravenous lipopolysaccharide (LPS, 60 μg kg−1), we found strong increases in plasma levels of the key inflammatory mediator tumour necrosis factor α (TNFα) 90 min later. Those levels were unaffected by previous bilateral cervical vagotomy, but were enhanced approximately 5-fold if the greater splanchnic sympathetic nerves had been cut. Sham surgery had no effect, and plasma corticosterone levels were unaffected by nerve sections, so could not explain this result. Electrophysiological recordings demonstrated that efferent neural activity in the splanchnic nerve and its splenic branch was strongly increased by LPS treatment. Splenic nerve activity was dependent on inputs from the splanchnic nerves: vagotomy had no effect on the activity in either nerve. Together, these data demonstrate that immune challenge with this dose of LPS activates a neural reflex that is powerful enough to cause an 80% suppression of the acute systemic inflammatory response. The efferent arm of this reflex is in the splanchnic sympathetic nerves, not the vagi as previously proposed. As with other physiological responses to immune challenge, the afferent pathway is presumptively humoral: the present data show that vagal afferents play no measurable part. Because inflammation sits at the gateway to immune responses, this reflex could play an important role in immune function as well as inflammatory diseases. PMID:24421357

  7. Towards determining the afferent sites of perception feedback on residual arms of amputees with transcutaneous electrical stimulation.

    PubMed

    Wang, Hui; Fang, Peng; Tian, Lan; Zheng, Yue; Zhou, Hui; Li, Guanglin; Zhang, Xiufeng

    2015-01-01

    The coordination and combination of motion and sensation are critical to realize a natural and precise control of prosthetic hands. Transcutaneous electrical stimulation (TES) is one of possible methods to develop an intuitive perception feedback for limb amputees. However, the perception afferent sites would be a critical issue that is still unexplored in depth. This paper reports a preliminary study on using somatosensory evoked potentials (SEP) to determine the proper afferent sites of perceptions on residual arms of transradial amputees. In this study, two transradial amputees with phantom finger perception (PFP) were recruited and SEP for the stimulation of median nerves and ulnar nerves were recorded and analyzed. PFP distribution maps on subjects' stumps were obtained by mechanical stimulations performed manually. Electrical stimulation was then applied to some selected sites on the stumps of their residual arms with surface electrodes to evoke SEP. In the experiments, SEP were successfully recorded, which means that the proposed method might be a suitable approach for localizing the afferent sites of perceptions, and could provide technique support for possible intuitive neural feedback for limb amputees in future work.

  8. [Renal denervation for the treatment of resistant hypertension: definition, patient selection and description of the procedure. 2012 Position paper of the Italian Society of Hypertension].

    PubMed

    Volpe, Massimo; Agabiti-Rosei, Enrico; Ambrosioni, Ettore; Cottone, Santina; Cuspidi, Cesare; Borghi, Claudio; De Luca, Nicola; Fallo, Francesco; Ferri, Claudio; Mancia, Giuseppe; Morganti, Alberto; Muiesan, Maria Lorenza; Sarzani, Riccardo; Sechi, Leonardo; Tocci, Giuliano; Virdis, Agostino

    2012-12-01

    Hypertension is responsible for a relevant burden of cardiovascular morbidity and mortality worldwide. Although several appropriate and integrated pharmacological strategies are available, blood pressure control still remains largely unsatisfactory. Failure to achieve effective blood pressure control in treated hypertensive patients may have a substantial impact on overall cardiovascular risk, since it significantly increases the risk of both macrovascular and microvascular complications. Hypertension is arbitrarily defined as "resistant" or "refractory" when recommended blood pressure goals (clinic blood pressure <140/90 mmHg, or <130/80 mmHg in patients with type 2 diabetes mellitus) are not achieved, despite changes in lifestyle and treatment with adequate doses of at least three antihypertensive drugs from different classes, including a diuretic. A new non-pharmacological option for the treatment of patients with resistant hypertension has recently become available. Renal sympathetic denervation is a minimally invasive procedure performed via femoral access that uses radiofrequency catheter ablation to disable renal sympathetic afferent and efferent nerves. It results in isolation of renal parenchymal and juxtaglomerular cells from the abnormal enhancement of renal adrenergic nerve activity. The present position paper of the Italian Society of Hypertension provides a diagnostic and therapeutic approach to the early identification and effective clinical management of patients with resistant hypertension, who may be candidates for renal denervation. These indications may have important implications not only from a clinical viewpoint but also from an economic perspective. The accurate identification of patients with resistant hypertension and the appropriate selection of patients eligible for this procedure may help improve blood pressure control and reduce the risk of cardiovascular and cerebrovascular complications in these patients.

  9. [The stimulating effects of contralateral glossopharyngeal and hypoglossal afferent fibers on the glossopharyngeo-hypoglossal reflex activities in the frog].

    PubMed

    Murayama, N

    1991-01-01

    American Bullfrogs, Rana catesbiana, immobilized with suxamethonium chloride (20 mg/kg b. w., i. p.), were used. By stimulating the glossopharyngeal (IX) nerve, reflex activities, composed of early (10-20 ms in latency) and late (greater than 20 ms) components, were evoked in both protoractor branch (P. br.) and retractor branch (R. br.) of the ipsilateral hypoglossal (XII) nerve. Contralateral IXth nerve stimulation increased the reflex activities of both components in the P. br. elicited ipsilaterally by the homonymous nerve. Whereas, it increased the reflex activities of the early component in the R. br. but, decreased that of the late component. On the other hand, stimulation of P. br. in the contralateral XIIth nerve increased the activities of both components in the P. br. and those of the late component in the R. br., but did not affect the activities of the early component in the R. br. The time course of these effects was similar to that by contralateral IXth nerve stimulation. The present findings strongly suggest the existence of afferent fibers in the XIIth nerve. PMID:1770456

  10. Perineural capsaicin induces the uptake and transganglionic transport of choleratoxin B subunit by nociceptive C-fiber primary afferent neurons.

    PubMed

    Oszlács, O; Jancsó, G; Kis, G; Dux, M; Sántha, P

    2015-12-17

    The distribution of spinal primary afferent terminals labeled transganglionically with the choleratoxin B subunit (CTB) or its conjugates changes profoundly after perineural treatment with capsaicin. Injection of CTB conjugated with horseradish peroxidase (HRP) into an intact nerve labels somatotopically related areas in the ipsilateral dorsal horn with the exceptions of the marginal zone and the substantia gelatinosa, whereas injection of this tracer into a capsaicin-pretreated nerve also results in massive labeling of these most superficial layers of the dorsal horn. The present study was initiated to clarify the role of C-fiber primary afferent neurons in this phenomenon. In L5 dorsal root ganglia, analysis of the size frequency distribution of neurons labeled after injection of CTB-HRP into the ipsilateral sciatic nerve treated previously with capsaicin or resiniferatoxin revealed a significant increase in the proportion of small neurons. In the spinal dorsal horn, capsaicin or resiniferatoxin pretreatment resulted in intense CTB-HRP labeling of the marginal zone and the substantia gelatinosa. Electron microscopic histochemistry disclosed a dramatic, ∼10-fold increase in the proportion of CTB-HRP-labeled unmyelinated dorsal root axons following perineural capsaicin or resiniferatoxin. The present results indicate that CTB-HRP labeling of C-fiber dorsal root ganglion neurons and their central terminals after perineural treatment with vanilloid compounds may be explained by their phenotypic switch rather than a sprouting response of thick myelinated spinal afferents which, in an intact nerve, can be labeled selectively with CTB-HRP. The findings also suggest a role for GM1 ganglioside in the modulation of nociceptor function and pain.

  11. Effects of stimulation of vesical afferents on colonic motility in cats.

    PubMed

    Bouvier, M; Grimaud, J C; Abysique, A

    1990-05-01

    The effects of distension and isovolumetric contraction of urinary bladder on colonic motility were studied in anesthetized cats. Distension and contraction of the urinary bladder induced an inhibition of spontaneous colonic electromyographic activity and a decrease in the amplitudes of the excitatory junction potentials evoked in the colon by stimulation of the distal end of the parasympathetic nerve fibers. This inhibition was blocked by guanethidine and phentolamine. Reversely, vesical emptying resulted in an increase in colonic motility, abolished by atropine, and an increase in the amplitude of the excitatory junction potentials. Both excitatory and inhibitory reflexes disappeared after hexamethonium. The inhibitory effects of bladder distension were abolished by bilateral section of the lumbar ventral or dorsal spinal roots and after bilateral section of the lumbar colonic or hypogastric nerves. These results indicate (a) that the vesical afferents responsible for the inhibitory and excitatory reflexes run in the hypogastric and pelvic nerves respectively and (b) that the inhibitory and excitatory effects are caused by the activation of sympathetic and parasympathetic efferent nerve fibers, respectively. The supraspinal nervous structures were not implicated in these reflexes because they persisted in spinal cats.

  12. Effects of renal denervation on sympathetic activation, blood pressure, and glucose metabolism in patients with resistant hypertension.

    PubMed

    Schlaich, Markus P; Hering, Dagmara; Sobotka, Paul; Krum, Henry; Lambert, Gavin W; Lambert, Elisabeth; Esler, Murray D

    2012-01-01

    Increased central sympathetic drive is a hallmark of several important clinical conditions including essential hypertension, heart failure, chronic kidney disease, and insulin resistance. Afferent signaling from the kidneys has been identified as an important contributor to elevated central sympathetic drive and increased sympathetic outflow to the kidney and other organs is crucially involved in cardiovascular control. While the resultant effects on renal hemodynamic parameters, sodium and water retention, and renin release are particularly relevant for both acute and long term regulation of blood pressure, increased sympathetic outflow to other vascular beds may facilitate further adverse consequences of sustained sympathetic activation such as insulin resistance, which is commonly associated with hypertension. Recent clinical studies using catheter-based radiofrequency ablation technology to achieve functional renal denervation in patients with resistant hypertension have identified the renal nerves as therapeutic target and have helped to further expose the sympathetic link between hypertension and insulin resistance. Initial data from two clinical trials and several smaller mechanistic clinical studies indicate that this novel approach may indeed provide a safe and effective treatment alternative for resistant hypertension and some of its adverse consequences.

  13. Nerve conduction

    MedlinePlus

    ... fascicles) that contain hundreds of individual nerve fibers (neurons). Neurons consist of dendrites, axon, and cell body. The ... tree-like structures that receive signals from other neurons and from special sensory cells that sense the ...

  14. Vagal afferent projections to lobule VIIa of the rabbit cerebellar vermis related to cardiovascular control.

    PubMed

    Kondo, M; Sears, T A; Sadakane, K; Nisimaru, N

    1998-02-01

    In decerebrate rabbits we recorded simultaneously field potentials in lobule VIIa of the vermal cerebellar cortex and the vagal compound action potentials (vCAPs) proximally in the vagus nerve following electrical stimulation distally in the same nerve at different intensities. Four principal components of the vCAP were distinguished based on their peak conduction velocities. Their velocities were component I, 67-100 m/s; II, 28-50 m/s; III, 6-28 m/s, IV, 0.4-1.3 m/s. A collision test based on stimulating the recurrent laryngeal nerve identified component I and sub-component IIa of the vCAP as being due to the motor fibres of the descending limb of the nerve. The field potentials evoked in lobule VIIa by electrical stimulation of the cervical vagus nerve were climbing fibre responses as judged by the characteristics of their lamina profile and their response to high frequency stimulation. These field potentials in lobule VIIa correlated most closely with the component III of the vCAP; particularly with a sub-component IIIa of the vagus. Based on the investigations by Evans and Murray (1954) (Histological and functional studies on the fibre composition of the vagus nerve of the rabbit. J. Anat. (Lond.) 88, 320-337) in the rabbit, and by Paintal (1963) (Vagal afferent fibres. Ergeb. Physiol. 52, 74-156) and Mei (1970) (Cardiovascular and respiratory vagal mechanoreceptors in the cat. Exp. Brain Res. 11, 480-501) in the cat, component III is most likely to be due to receptors from the heart and a part of the pulmonary stretch receptors.

  15. Effects of acid on vagal nociceptive afferent subtypes in guinea pig esophagus.

    PubMed

    Yu, Xiaoyun; Hu, Youtian; Yu, Shaoyong

    2014-08-15

    Acid reflux-induced heartburn and noncardiac chest pain are processed peripherally by sensory nerve endings in the wall of the esophagus, but the underlying mechanism is still unclear. This study aims to determine the effects of acid on esophageal vagal nociceptive afferent subtypes. Extracellular single-unit recordings were performed in guinea pig vagal nodose or jugular C fiber neurons by using ex vivo esophageal-vagal preparations with intact nerve endings in the esophagus. We recorded action potentials (AP) of esophageal nodose or jugular C fibers evoked by acid perfusion and compared esophageal distension-evoked AP before and after acid perfusion. Acid perfusion for 30 min (pH range 7.4 to 5.8) did not evoke AP in nodose C fibers but significantly decreased their responses to esophageal distension, which could be recovered after washing out acid for 90 min. In jugular C fibers, acid perfusion not only evoked AP but also inhibited their responses to esophageal distension, which were not recovered after washing out acid for 120 min. Lower concentration of capsaicin perfusion mimicked acid-induced effects in nodose and jugular C fibers. Pretreatment with TRPV1 antagonist AMG9810, but not acid-sensing ion channel (ASIC) inhibitor amiloride, significantly inhibited acid-induced effects in nodose and jugular C fiber. These results demonstrate that esophageal vagal nociceptive afferent nerve subtypes display distinctive responses to acid. Acid activates jugular, but not nodose, C fibers and inhibits both of their responses to esophageal distension. These effects are mediated mainly through TRPV1. This inhibitory effect is a novel finding and may contribute to esophageal sensory/motor dysfunction in acid reflux diseases.

  16. Integrated phrenic responses to carotid afferent stimulation in adult rats following perinatal hyperoxia.

    PubMed Central

    Ling, L; Olson, E B; Vidruk, E H; Mitchell, G S

    1997-01-01

    1. Hypoxic ventilatory responses are greatly attenuated in adult rats exposed to moderate hyperoxia (60% O2) during the first month of life (perinatal treated rats). The present study was designed to test the hypothesis that perinatal hyperoxia impairs central integration of carotid chemoreceptor afferent inputs, thereby diminishing the hypoxic ventilatory response. 2. Time-dependent phrenic nerve responses to electrical stimulation of the carotid sinus nerve (CSN) and steady-state relationships between CSN stimulation frequency and phrenic nerve output were compared in control and perinatal treated rats. The rats were urethane anaesthetized, vagotomized, paralysed and artificially ventilated. End-tidal CO2 was monitored and maintained at isocapnic levels; arterial blood gases were determined. 3. Two stimulation protocols were used: (1) three 2 min episodes of CSN stimulation (20 Hz, 0.2 ms duration, 3 x threshold), separated by 5 min intervals; and (2) nine 45 s episodes of CSN stimulation with stimulus frequencies ranging from 0.5 to 20 Hz (0.2 ms duration, 3 x threshold), separated by 4 min intervals. 4. The mean threshold currents to elicit phrenic responses were similar between groups. Burst frequency (f, burst min-1), peak amplitude of integrated phrenic activity (integral of Phr), and minute phrenic activity (integral of Phr x f) during and after CSN stimulation were not distinguishable between groups in either protocol at any time or at any stimulus intensity (P > 0.05). 5. Perinatal hyperoxia does not alter temporal or steady-state phrenic responses to CSN stimulation, suggesting that the central integration of carotid chemoreceptor afferent inputs is not impaired in perinatal treated rats. It is speculated that carotid chemoreceptors per se are impaired in perinatal treated rats. PMID:9161991

  17. Response properties of pigeon otolith afferents to linear acceleration

    NASA Technical Reports Server (NTRS)

    Si, X.; Angelaki, D. E.; Dickman, J. D.

    1997-01-01

    In the present study, the sensitivity to sinusoidal linear accelerations in the plane of the utricular macula was tested in afferents. The head orientation relative to the translation axis was varied in order to determine the head position that elicited the maximal and minimal responses for each afferent. The response gain and phase values obtained to 0.5-Hz and 2-Hz linear acceleration stimuli were then plotted as a function of head orientation and a modified cosine function was fit to the data. From the best-fit cosine function, the predicted head orientations that would produce the maximal and minimal response gains were estimated. The estimated maximum response gains to linear acceleration in the utricular plane for the afferents varied between 75 and 1420 spikes s-1 g-1. The mean maximal gains for all afferents to 0.5-Hz and 2-Hz sinusoidal linear acceleration stimuli were 282 and 367 spikes s-1 g-1, respectively. The minimal response gains were essentially zero for most units. The response phases always led linear acceleration and remained constant for each afferent, regardless of head orientation. These response characteristics indicate that otolith afferents are cosine tuned and behave as one-dimensional linear accelerometers. The directions of maximal sensitivity to linear acceleration for the afferents varied throughout the plane of the utricle; however, most vectors were directed out of the opposite ear near the interaural axis. The response dynamics of the afferents were tested using stimulus frequencies ranging between 0.25 Hz and 10 Hz (0.1 g peak acceleration). Across stimulus frequencies, most afferents had increasing gains and constant phase values. These dynamic properties for individual afferents were fit with a simple transfer function that included three parameters: a mechanical time constant, a gain constant, and a fractional order distributed adaptation operator.

  18. Electrical potentials from the eye and optic nerve of Strombus: effects of electrical stimulation of the optic nerve.

    PubMed

    Gillary, H L

    1977-02-01

    1. Photic stimulation of the mature eye of Strombus can evoke in the optic nerve 'on' activity in numerous small afferent fibres and repetitive 'off' bursts of afferent impulses in a smaller number of larger fibres. 2. Synchronous invasion of the eye by electrically evoked impulses in small optic nerve fibres (apparently the 'on' afferents, antidromically activated) can evoke a burst of impulses in the larger 'off' fibres which propagate away from the eye. Invasion of the eye via one branch of optic nerve can evoke an answering burst in another branch. 3. Such electrically evoked bursts are similar to light-evoked 'off' bursts with respect to their impulse composition, their ability to be inhibited by illumination of the eye, and their susceptibility to MgCl2 anaesthesia. 4. Invasion of the eye by a train of repetitive electrically evoked impulses in the absence of photic stimulation can give rise to repetitive 'off' bursts as well as concomitant oscillatory potentials in the eye which are similar to those normally evoked by cessation of a photic stimulus. 5. The electrically evoked 'off' bursts appear to be caused by an excitatory rebound following the cessation of inhibitory synaptic input from photoreceptors which can be antidromically activated by electrical stimulation of the optic nerve. 6. The experimental results suggest that the rhythmic discharge of the 'off' fibres evoked by the cessation of a photic stimulus is mediated by the abrupt decrease of inhibitory synaptic input from the receptors. PMID:192827

  19. Renal denervation and hypertension.

    PubMed

    Schlaich, Markus P; Krum, Henry; Sobotka, Paul A; Esler, Murray D

    2011-06-01

    Essential hypertension remains one of the biggest challenges in medicine with an enormous impact on both individual and society levels. With the exception of relatively rare monogenetic forms of hypertension, there is now general agreement that the condition is multifactorial in nature and hence requires therapeutic approaches targeting several aspects of the underlying pathophysiology. Accordingly, all major guidelines promote a combination of lifestyle interventions and combination pharmacotherapy to reach target blood pressure (BP) levels in order to reduce overall cardiovascular risk in affected patients. Although this approach works for many, it fails in a considerable number of patients for various reasons including drug-intolerance, noncompliance, physician inertia, and others, leaving them at unacceptably high cardiovascular risk. The quest for additional therapeutic approaches to safely and effectively manage hypertension continues and expands to the reappraisal of older concepts such as renal denervation. Based on the robust preclinical and clinical data surrounding the role of renal sympathetic nerves in various aspects of BP control very recent efforts have led to the development of a novel catheter-based approach using radiofrequency (RF) energy to selectively target and disrupt the renal nerves. The available evidence from the limited number of uncontrolled hypertensive patients in whom renal denervation has been performed are auspicious and indicate that the procedure has a favorable safety profile and is associated with a substantial and presumably sustained BP reduction. Although promising, a myriad of questions are far from being conclusively answered and require our concerted research efforts to explore the full potential and possible risks of this approach. Here we briefly review the science surrounding renal denervation, summarize the current data on safety and efficacy of renal nerve ablation, and discuss some of the open questions that need

  20. Gait phase detection from sciatic nerve recordings in functional electrical stimulation systems for foot drop correction.

    PubMed

    Chu, Jun-Uk; Song, Kang-Il; Han, Sungmin; Lee, Soo Hyun; Kang, Ji Yoon; Hwang, Dosik; Suh, Jun-Kyo Francis; Choi, Kuiwon; Youn, Inchan

    2013-05-01

    Cutaneous afferent activities recorded by a nerve cuff electrode have been used to detect the stance phase in a functional electrical stimulation system for foot drop correction. However, the implantation procedure was difficult, as the cuff electrode had to be located on the distal branches of a multi-fascicular nerve to exclude muscle afferent and efferent activities. This paper proposes a new gait phase detection scheme that can be applied to a proximal nerve root that includes cutaneous afferent fibers as well as muscle afferent and efferent fibers. To test the feasibility of this scheme, electroneurogram (ENG) signals were measured from the rat sciatic nerve during treadmill walking at several speeds, and the signal properties of the sciatic nerve were analyzed for a comparison with kinematic data from the ankle joint. On the basis of these experiments, a wavelet packet transform was tested to define a feature vector from the sciatic ENG signals according to the gait phases. We also propose a Gaussian mixture model (GMM) classifier and investigate whether it could be used successfully to discriminate feature vectors into the stance and swing phases. In spite of no significant differences in the rectified bin-integrated values between the stance and swing phases, the sciatic ENG signals could be reliably classified using the proposed wavelet packet transform and GMM classification methods.

  1. Nerve Demyelination Increases Metabotropic Glutamate Receptor Subtype 5 Expression in Peripheral Painful Mononeuropathy

    PubMed Central

    Ko, Miau-Hwa; Hsieh, Yu-Lin; Hsieh, Sung-Tsang; Tseng, To-Jung

    2015-01-01

    Wallerian degeneration or nerve demyelination, arising from spinal nerve compression, is thought to bring on chronic neuropathic pain. The widely distributed metabotropic glutamate receptor subtype 5 (mGluR5) is involved in modulating nociceptive transmission. The purpose of this study was to investigate the potential effects of mGluR5 on peripheral hypersensitivities after chronic constriction injury (CCI). Sprague-Dawley rats were operated on with four loose ligatures around the sciatic nerve to induce thermal hyperalgesia and mechanical allodynia. Primary afferents in dermis after CCI exhibited progressive decreases, defined as partial cutaneous denervation; importantly, mGluR5 expressions in primary afferents were statistically increased. CCI-induced neuropathic pain behaviors through the intraplantar injections of 2-methyl-6-(phenylethynyl)-pyridine (MPEP), a selective mGluR5 antagonist, were dose-dependently attenuated. Furthermore, the most increased mGluR5 expressions in primary afferents surrounded by reactive Schwann cells were observed at the distal CCI stumps of sciatic nerves. In conclusion, these results suggest that nerve demyelination results in the increases of mGluR5 expression in injured primary afferents after CCI; and further suggest that mGluR5 represents a main therapeutic target in developing pharmacological strategies to prevent peripheral hypersensitivities. PMID:25739080

  2. Effects of changing skin mechanics on the differential sensitivity to surface compliance by tactile afferents in the human finger pad

    PubMed Central

    Hudson, Kathryn M.; Condon, Melia; Ackerley, Rochelle; McGlone, Francis; Olausson, Håkan; Birznieks, Ingvars

    2015-01-01

    It is not known how changes in skin mechanics affect the responses of cutaneous mechanoreceptors in the finger pads to compression forces. We used venous occlusion to change the stiffness of the fingers and investigated whether this influenced the firing of low-threshold mechanoreceptors to surfaces of differing stiffness. Unitary recordings were made from 10 slowly adapting type I (SAI), 10 fast adapting type I (FAI) and 9 slowly adapting type II (SAII) units via tungsten microelectrodes inserted into the median nerve at the wrist. A servo-controlled stimulator applied ramp-and-hold forces (1, 2, and 4 N) at a constant loading and unloading rate (2 N/s) via a flat 2.5-cm-diameter silicone disk over the center of the finger pad. Nine silicone disks (objects), varying in compliance, were used. Venous occlusion, produced by inflating a sphygmomanometer cuff around the upper arm to 40 ± 5 mmHg, was used to induce swelling of the fingers and increase the compliance of the finger pulp. Venous occlusion had no effect on the firing rates of the SAI afferents, nor on the slopes of the relationship between mean firing rate and object compliance at each amplitude, but did significantly reduce the slopes for the FAI afferents. Although the SAII afferents possess a poor capacity to encode changes in object compliance, mean firing rates were significantly lower during venous occlusion. The finding that venous occlusion had no effect on the firing properties of SAI afferents indicates that these afferents preserve their capacity to encode changes in object compliance, despite changes in skin mechanics. PMID:26269550

  3. Effects of changing skin mechanics on the differential sensitivity to surface compliance by tactile afferents in the human finger pad.

    PubMed

    Hudson, Kathryn M; Condon, Melia; Ackerley, Rochelle; McGlone, Francis; Olausson, Håkan; Macefield, Vaughan G; Birznieks, Ingvars

    2015-10-01

    It is not known how changes in skin mechanics affect the responses of cutaneous mechanoreceptors in the finger pads to compression forces. We used venous occlusion to change the stiffness of the fingers and investigated whether this influenced the firing of low-threshold mechanoreceptors to surfaces of differing stiffness. Unitary recordings were made from 10 slowly adapting type I (SAI), 10 fast adapting type I (FAI) and 9 slowly adapting type II (SAII) units via tungsten microelectrodes inserted into the median nerve at the wrist. A servo-controlled stimulator applied ramp-and-hold forces (1, 2, and 4 N) at a constant loading and unloading rate (2 N/s) via a flat 2.5-cm-diameter silicone disk over the center of the finger pad. Nine silicone disks (objects), varying in compliance, were used. Venous occlusion, produced by inflating a sphygmomanometer cuff around the upper arm to 40 ± 5 mmHg, was used to induce swelling of the fingers and increase the compliance of the finger pulp. Venous occlusion had no effect on the firing rates of the SAI afferents, nor on the slopes of the relationship between mean firing rate and object compliance at each amplitude, but did significantly reduce the slopes for the FAI afferents. Although the SAII afferents possess a poor capacity to encode changes in object compliance, mean firing rates were significantly lower during venous occlusion. The finding that venous occlusion had no effect on the firing properties of SAI afferents indicates that these afferents preserve their capacity to encode changes in object compliance, despite changes in skin mechanics.

  4. Static γ-motoneurones couple group Ia and II afferents of single muscle spindles in anaesthetised and decerebrate cats

    PubMed Central

    Gladden, M H; Matsuzaki, H

    2002-01-01

    Ideas about the functions of static γ-motoneurones are based on the responses of primary and secondary endings to electrical stimulation of single static γ-axons, usually at high frequencies. We compared these effects with the actions of spontaneously active γ-motoneurones. In anaesthetised cats, afferents and efferents were recorded in intramuscular nerve branches to single muscle spindles. The occurrence of γ-spikes, identified by a spike shape recognition system, was linked to video-taped contractions of type-identified intrafusal fibres in the dissected muscle spindles. When some static γ-motoneurones were active at low frequency (< 15 Hz) they coupled the firing of group Ia and II afferents. Activity of other static γ-motoneurones which tensed the intrafusal fibres appeared to enhance this effect. Under these conditions the secondary ending responded at shorter latency than the primary ending. In another series of experiments on decerebrate cats, responses of primary and secondary endings of single muscle spindles to activation of γ-motoneurones by natural stimuli were compared with their responses to electrical stimulation of single γ-axons supplying the same spindle. Electrical stimulation mimicked the natural actions of γ-motoneurones on either the primary or the secondary ending, but not on both together. However, γ-activity evoked by natural stimuli coupled the firing of afferents with the muscle at constant length, and also when it was stretched. Analysis showed that the timing and tightness of this coupling determined the degree of summation of excitatory postsynaptic potentials (EPSPs) evoked by each afferent in α-motoneurones and interneurones contacted by terminals of both endings, and thus the degree of facilitation of reflex actions of group II afferents. PMID:12181298

  5. Effects of changing skin mechanics on the differential sensitivity to surface compliance by tactile afferents in the human finger pad.

    PubMed

    Hudson, Kathryn M; Condon, Melia; Ackerley, Rochelle; McGlone, Francis; Olausson, Håkan; Macefield, Vaughan G; Birznieks, Ingvars

    2015-10-01

    It is not known how changes in skin mechanics affect the responses of cutaneous mechanoreceptors in the finger pads to compression forces. We used venous occlusion to change the stiffness of the fingers and investigated whether this influenced the firing of low-threshold mechanoreceptors to surfaces of differing stiffness. Unitary recordings were made from 10 slowly adapting type I (SAI), 10 fast adapting type I (FAI) and 9 slowly adapting type II (SAII) units via tungsten microelectrodes inserted into the median nerve at the wrist. A servo-controlled stimulator applied ramp-and-hold forces (1, 2, and 4 N) at a constant loading and unloading rate (2 N/s) via a flat 2.5-cm-diameter silicone disk over the center of the finger pad. Nine silicone disks (objects), varying in compliance, were used. Venous occlusion, produced by inflating a sphygmomanometer cuff around the upper arm to 40 ± 5 mmHg, was used to induce swelling of the fingers and increase the compliance of the finger pulp. Venous occlusion had no effect on the firing rates of the SAI afferents, nor on the slopes of the relationship between mean firing rate and object compliance at each amplitude, but did significantly reduce the slopes for the FAI afferents. Although the SAII afferents possess a poor capacity to encode changes in object compliance, mean firing rates were significantly lower during venous occlusion. The finding that venous occlusion had no effect on the firing properties of SAI afferents indicates that these afferents preserve their capacity to encode changes in object compliance, despite changes in skin mechanics. PMID:26269550

  6. Dendritic HCN Channels Shape Excitatory Postsynaptic Potentials at the Inner Hair Cell Afferent Synapse in the Mammalian Cochlea

    PubMed Central

    Yi, Eunyoung; Roux, Isabelle

    2010-01-01

    Synaptic transmission at the inner hair cell (IHC) afferent synapse, the first synapse in the auditory pathway, is specialized for rapid and reliable signaling. Here we investigated the properties of a hyperpolarization-activated current (Ih), expressed in the afferent dendrite of auditory nerve fibers, and its role in shaping postsynaptic activity. We used whole cell patch-clamp recordings from afferent dendrites directly where they contact the IHC in excised postnatal rat cochlear turns. Excitatory postsynaptic potentials (EPSPs) of variable amplitude (1–35 mV) were found with 10–90% rise times of about 1 ms and time constants of decay of about 5 ms at room temperature. Current–voltage relations recorded in afferent dendrites revealed Ih. The pharmacological profile and reversal potential (−45 mV) indicated that Ih is mediated by hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channels. The HCN channel subunits HCN1, HCN2, and HCN4 were found to be expressed in afferent dendrites using immunolabeling. Raising intracellular cAMP levels sped up the activation kinetics, increased the magnitude of Ih and shifted the half activation voltage (Vhalf) to more positive values (−104 ± 3 to −91 ± 2 mV). Blocking Ih with 50 μM ZD7288 resulted in hyperpolarization of the resting membrane potential (∼4 mV) and slowing the decay of the EPSP by 47%, suggesting that Ih is active at rest and shortens EPSPs, thereby potentially improving rapid and reliable signaling at this first synapse in the auditory pathway. PMID:20220080

  7. Dendritic HCN channels shape excitatory postsynaptic potentials at the inner hair cell afferent synapse in the mammalian cochlea.

    PubMed

    Yi, Eunyoung; Roux, Isabelle; Glowatzki, Elisabeth

    2010-05-01

    Synaptic transmission at the inner hair cell (IHC) afferent synapse, the first synapse in the auditory pathway, is specialized for rapid and reliable signaling. Here we investigated the properties of a hyperpolarization-activated current (I(h)), expressed in the afferent dendrite of auditory nerve fibers, and its role in shaping postsynaptic activity. We used whole cell patch-clamp recordings from afferent dendrites directly where they contact the IHC in excised postnatal rat cochlear turns. Excitatory postsynaptic potentials (EPSPs) of variable amplitude (1-35 mV) were found with 10-90% rise times of about 1 ms and time constants of decay of about 5 ms at room temperature. Current-voltage relations recorded in afferent dendrites revealed I(h). The pharmacological profile and reversal potential (-45 mV) indicated that I(h) is mediated by hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channels. The HCN channel subunits HCN1, HCN2, and HCN4 were found to be expressed in afferent dendrites using immunolabeling. Raising intracellular cAMP levels sped up the activation kinetics, increased the magnitude of I(h) and shifted the half activation voltage (V(half)) to more positive values (-104 +/- 3 to -91 +/- 2 mV). Blocking I(h) with 50 microM ZD7288 resulted in hyperpolarization of the resting membrane potential (approximately 4 mV) and slowing the decay of the EPSP by 47%, suggesting that I(h) is active at rest and shortens EPSPs, thereby potentially improving rapid and reliable signaling at this first synapse in the auditory pathway.

  8. Circadian variation in gastric vagal afferent mechanosensitivity.

    PubMed

    Kentish, Stephen J; Frisby, Claudine L; Kennaway, David J; Wittert, Gary A; Page, Amanda J

    2013-12-01

    Food intake is coordinated to cellular metabolism by clock gene expression with a master clock in the suprachiasmatic nucleus synchronized by light exposure. Gastric vagal afferents play a role in regulating food intake, but it is unknown whether they exhibit circadian variation in their mechanosensitivity. We aimed to determine whether gastric vagal afferents express clock genes and whether their response to mechanical stimuli oscillates throughout the light/dark cycle. Nodose ganglia were collected from 8-week-old female C57BL/6 mice every 3 h starting at lights off (1800 h) to quantify Bmal1, Per1, Per2, and Nr1d1 mRNA by qRT-PCR. Additionally in vitro single-fiber recordings of gastric vagal mechanoreceptors were taken at all time points. Per1, Per2, Bmal1, and Nr1d1 mRNA is expressed in the nodose ganglia and levels oscillated over a 24 h period. In mice fed ad libitum, gastric content was 3 times higher at 0000 h and 0300 h than 1200 h. The response of tension receptors to 3 g stretch was reduced by up to 70% at 2100 h, 0000 h, and 0300 h compared with 1200 h. Gastric mucosal receptor response to stroking with a 50 mg von Frey hair was 3 times greater at 1200 h and 1500 h than the response at 0000 h. Similar findings were obtained in mice fasted for 6 h or maintained in darkness for 3 d before study. Therefore, these changes do not result from food intake or the light/dark cycle. Thus, gastric vagal mechanoreceptors display circadian rhythm, which may act to control food intake differentially at different times of the day. PMID:24305819

  9. Catheter-Based Radiofrequency Renal Denervation: Location Effects on Renal Norepinephrine

    PubMed Central

    Zhang, Yongxing; Hata, Cary; Narciso, Irvin; Hall, Michael E.; Hall, John E.

    2015-01-01

    BACKGROUND Clinical studies indicate that blood pressure (BP)-lowering effects of radiofrequency (RF) renal denervation (RD) are sustained for up to 2 years, although a recent clinical trial failed to find a major effect compared to sham treatment. In most previous studies, the efficacy of RD has not been assessed. The current study determined whether RD in different regions of the renal artery causes different degrees of RD as assessed with renal norepinephrine (NE) levels. METHODS AND RESULTS Unilateral RD was performed on 14 pigs divided into 3 groups: RD near the ostium, in the main renal artery near the bifurcation, and in extrarenal branches of the renal artery. After 2 weeks post-RD, the pigs were euthanized, renal cortex tissue was collected for NE measurement, and renal arteries were prepared for histological analysis. Renal NE decreased by 12% with RD at the ostium, 45% with RD near the bifurcation in the main renal artery, and 74% when RD was performed in extrarenal artery branches. The number of renal nerves was greatest in extrarenal branches and in the main artery compared to the ostium and the average distance from the lumen was greatest for nerves at the ostium and least at the branches. CONCLUSIONS RF RD lowers renal NE more significantly when performed in branches of the renal artery closer to the kidney. Increased efficacy of RF RD in extrarenal arterial branches may be due to the greater number of nerves in close proximity to the artery lumen in the branches. PMID:25576624

  10. Angiotensin-(1-7) enhances the effects of angiotensin II on the cardiac sympathetic afferent reflex and sympathetic activity in rostral ventrolateral medulla in renovascular hypertensive rats.

    PubMed

    Li, Peng; Zhang, Feng; Sun, Hai-Jian; Zhang, Feng; Han, Ying

    2015-11-01

    Excessive sympathetic activity propels the pathogenesis and progression of organ damage in hypertension. Enhanced cardiac sympathetic afferent reflex (CSAR) is involved in sympathetic activation in hypertension. Given the important role of the renin-angiotensin (Ang) system in regulating sympathetic outflow and cardiovascular activity, the present study aimed to investigate the roles of Ang-(1-7) in Ang II-induced CSAR and the sympathetic activation responses in the rostral ventrolateral medulla (RVLM) of hypertensive rats. The two-kidney one-clip (2K1C) method was used to induce renovascular hypertension. Responses of renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) to epicardial application of capsaicin were used to evaluate the CSAR in sinoaortic-denervated and cervical-vagotomized rats with anesthesia. Both Ang II and Ang-(1-7) in the RVLM caused greater increases in RSNA and MAP in 2K1C rats than in sham-operated (sham) rats and enhanced CSAR independently. RVLM pretreatment with Ang-(1-7) dose dependently augmented the effects of Ang II on RSNA, MAP, and CSAR in 2K1C rats. Mas receptor antagonist A-779 in the RVLM exhibited more powerful inhibitory effects on RSNA, MAP, and CSAR than the Ang II type 1 (AT1) receptor antagonist losartan. The expression of both the AT1 receptor and Mas receptor proteins in the RVLM increased, but neither the Ang II nor Ang-(1-7) levels in the RVLM changed significantly in the 2K1C rats compared with the sham rats. These results indicate that Ang-(1-7) in the RVLM enhances the CSAR and sympathetic output not only by itself but also through enhancing the effects of Ang II in renovascular hypertensive rats. Both endogenous Ang-(1-7) and Ang II in the RVLM contribute to the enhanced CSAR and sympathetic activation in renovascular hypertension.

  11. Cationic influences upon synaptic transmission at the hair cell-afferent fiber synapse of the frog

    NASA Technical Reports Server (NTRS)

    Cochran, S. L.

    1995-01-01

    The concentrations of inorganic cations (K+, Na+, and Ca2+) bathing the isolated frog labyrinth were varied in order to assess their role in influencing and mediating synaptic transmission at the hair cell-afferent fiber synapse. Experiments employed intracellular recordings of synaptic activity from VIIIth nerve afferents. Recordings were digitized continuously at 50 kHz, and excitatory postsynaptic potentials were detected and parameters quantified by computer algorithms. Particular attention was focused on cationic effects upon excitatory postsynaptic potential frequency of occurrence and excitatory postsynaptic potential amplitude, in order to discriminate between pre- and postsynaptic actions. Because the small size of afferents preclude long term stable recordings, alterations in cationic concentrations were applied transiently and their peak effects on synaptic activity were assessed. Increases in extracellular K+ concentration of a few millimolar produced a large increase in the frequency of occurrence of excitatory postsynaptic potentials with little change in amplitude, indicating that release of transmitter from the hair cell is tightly coupled to its membrane potential. Increasing extracellular Na+ concentration resulted in an increase in excitatory postsynaptic potential amplitude with no significant change in excitatory postsynaptic potential frequency of occurrence, suggesting that the transmitter-gated subsynaptic channel conducts Na+ ions. Decreases in extracellular Ca2+ concentration had little effect upon excitatory postsynaptic potential frequency, but increased excitatory postsynaptic potential frequency and amplitude. These findings suggest that at higher concentrations Ca2+ act presynaptically to prevent transmitter release and postsynaptically to prevent Na+ influx during the generation of the excitatory postsynaptic potential. The influences of these ions on synaptic activity at this synapse are remarkably similar to those reported at the

  12. Unmyelinated type II afferent neurons report cochlear damage

    PubMed Central

    Liu, Chang; Glowatzki, Elisabeth; Fuchs, Paul Albert

    2015-01-01

    In the mammalian cochlea, acoustic information is carried to the brain by the predominant (95%) large-diameter, myelinated type I afferents, each of which is postsynaptic to a single inner hair cell. The remaining thin, unmyelinated type II afferents extend hundreds of microns along the cochlear duct to contact many outer hair cells. Despite this extensive arbor, type II afferents are weakly activated by outer hair cell transmitter release and are insensitive to sound. Intriguingly, type II afferents remain intact in damaged regions of the cochlea. Here, we show that type II afferents are activated when outer hair cells are damaged. This response depends on both ionotropic (P2X) and metabotropic (P2Y) purinergic receptors, binding ATP released from nearby supporting cells in response to hair cell damage. Selective activation of P2Y receptors increased type II afferent excitability by the closure of KCNQ-type potassium channels, a potential mechanism for the painful hypersensitivity (that we term “noxacusis” to distinguish from hyperacusis without pain) that can accompany hearing loss. Exposure to the KCNQ channel activator retigabine suppressed the type II fiber’s response to hair cell damage. Type II afferents may be the cochlea’s nociceptors, prompting avoidance of further damage to the irreparable inner ear. PMID:26553995

  13. Renal artery denervation for treating resistant hypertension : definition of the disease, patient selection and description of the procedure.

    PubMed

    Volpe, Massimo; Rosei, Enrico Agabiti; Ambrosioni, Ettore; Cottone, Santina; Cuspidi, Cesare; Borghi, Claudio; De Luca, Nicola; Fallo, Francesco; Ferri, Claudio; Mancia, Giuseppe; Morganti, Alberto; Muiesan, Maria Lorenza; Sarzani, Riccardo; Sechi, Leonardo; Tocci, Giuliano; Virdis, Agostino

    2012-12-01

    Arterial hypertension is responsible for a significant burden of cardiovascular morbidity and mortality, worldwide. Although several rational and integrated pharmacological strategies are available, the control of high blood pressure still remains largely unsatisfactory. Failure to achieve effective blood pressure control in treated hypertensive patients may have a substantial impact on individual global cardiovascular risk, since it significantly increases the risk of developing hypertension-related macrovascular and microvascular complications. Arterial hypertension is arbitrarily defined as 'resistant' or 'refractory' when the recommended blood pressure goals (clinic blood pressure below 140/90 mmHg or below 130/80 mmHg in patients with type 2 diabetes mellitus or nephropathy) are not achieved in the presence of a therapeutic strategy that includes lifestyle changes and at least three classes of antihypertensive drugs, including a diuretic, at adequate doses. Recently, an innovative non-pharmacological option has become available for treating resistant hypertension. Sympathetic denervation of renal arteries is a minimally invasive procedure that is performed via percutaneous access from the femoral artery. It consists of radiofrequency ablation of the afferent and efferent nerves of the renal sympathetic nervous system, with consequent isolation of renal parenchymal and juxtaglomerular structures from abnormal stimulation of the efferent adrenergic system. The present position paper of the Italian Society of Hypertension (SIIA) offers a diagnostic and therapeutic approach for the proper identification and effective clinical management of patients with resistant hypertension, who are candidates for renal artery denervation. These indications may have important implications not only from a clinical point of view, but also from an economic point of view, since a proper identification of patients with true resistant hypertension and an accurate selection of patients

  14. Micromotional studies of utricular and canal afferents

    NASA Technical Reports Server (NTRS)

    Lewis, Edwin R.

    1989-01-01

    The long-range goal of this research was to refine our understanding of the sensitivity of the vestibular components of the ear to very-low-amplitude motion, especially, the role of gravity in this sensitivity. We focused on the American bullfrog--a common animal subject for vestibular sensory research. Our principal experimental method was to apply precise, sinusoidal microrotational stimuli to an anesthetized animal subject, to record the resulting responses in an individual vestibular nerve fiber from the intact ear, and to use intracellular dye to trace the fiber and thus identify the vestibular sensor that gave rise to it. In this way, we were able to identify specific micromotional sensitivities and to associate those sensitivities definitely with specific sensors. Furthermore, by recording from nerve fibers after they leave the intact inner-ear cavity, we were able to achieve these identifications without interrupting the delicate micromechanics of the inner ear. We were especially concerned with the relative roles of the utricle and the anterior semicircular canal in the sensing of microrotational motion of the head about horizontal axes, and with the role of gravity in mediating that sensing process in the utricle. The functional characterization of individual nerve fibers was accomplished with a conventional analytical tool, the cycle histogram, in which the nerve impulse rate was plotted against the phase of the sinusoidal stimulus.

  15. The pattern of excitation of human lower limb motoneurones by probable group II muscle afferents.

    PubMed

    Simonetta-Moreau, M; Marque, P; Marchand-Pauvert, V; Pierrot-Deseilligny, E

    1999-05-15

    1. Heteronymous group II effects were investigated in the human lower limb. Changes in firing probability of single motor units in quadriceps (Q), biceps (Bi), semitendinosus (ST), gastrocnemius medialis (GM) and tibialis anterior (TA) were studied after electrical stimuli between 1 and 3 times motor threshold (MT) applied to common peroneal (CP), superficial (SP) and deep (DP) peroneal, Bi and GM nerves in those nerve-muscle combinations without recurrent inhibition. 2. Stimulation of the CP and Bi nerves evoked in almost all of the explored Q motor units a biphasic excitation with a low-threshold early peak, attributable to non-monosynaptic group I excitation, and a higher threshold late peak. When the CP nerve was cooled (or the stimulation applied to a distal branch, DP), the increase in latency was greater for the late than for the early peak, indicating that the late excitation is due to stimulation of afferents with a slower conduction velocity than group I fibres, presumably in the group II range. In ST motor units the group II excitation elicited by stimulation of the GM and SP nerves was particularly large and frequent, and the non-monosynaptic group I excitation was often replaced by an inhibition. 3. A late group II-induced excitation from CP to Q motoneurones and from GM and SP to ST motoneurones was also observed when using the H reflex as a test. 4. The electrical threshold and conduction velocity of the largest diameter fibres evoking the group II excitation were estimated to be 2.1 and 0.65 times those of the fastest Ia afferents, respectively. In the combinations tested in the present investigation the group II input seemed to be primarily of muscle origin. 5. The potent heteronymous group II excitation of motoneurones of both flexors and extensors of the knee contrasted with the absence of a group II effect from DP to GM and from GM to TA. In none of the combinations explored was there any evidence for group II inhibition of motoneurones. The

  16. Forebrain organization representing baroreceptor gating of somatosensory afferents within the cortical autonomic network.

    PubMed

    Goswami, Ruma; Frances, Maria Fernanda; Steinback, Craig Douglas; Shoemaker, J Kevin

    2012-07-01

    Somatosensory afferents are represented within the cortical autonomic network (CAN). However, the representation of somatosensory afferents, and the consequent cardiovascular effects, may be modified by levels of baroreceptor input. Thus, we examined the cortical regions involved with processing somatosensory inputs during baroreceptor unloading. Neuroimaging sessions (functional magnetic resonance imaging [fMRI]) recorded brain activity during 30 mmHg lower-body negative pressure (LBNP) alone and combined with somatosensory stimulation (LBNP+SS) of the forearm (n = 14). Somatosensory processing was also assessed during increased sympathetic outflow via end-expiratory apnea. Heart rate (HR), blood pressure (BP), cardiac output (Q), and muscle sympathetic nerve activity (MSNA) were recorded during the same protocols in a separate laboratory session. SS alone had no effect on any cardiovascular or MSNA variable at rest. Measures of HR, BP, and Q during LBNP were not different compared with LBNP+SS. The rise in MSNA burst frequency was attenuated during LBNP+SS versus LBNP alone (8 vs. 12 bursts/min, respectively, P < 0.05). SS did not affect the change in MSNA during apnea. Activations within the insula and dorsal anterior cingulate cortex (ACC) observed during LBNP were not seen during LBNP+SS. Anterior insula and ACC activations occurring during apnea were not modified by SS. Thus, the absence of insular and dorsal ACC activity during LBNP+SS along with an attenuation of MSNA burst frequency suggest sympathoinhibitory effects of sensory stimulation during decreased baroreceptor input by a mechanism that includes conjoint insula-dorsal ACC regulation. These findings reveal that the level of baroreceptor input influences the forebrain organization of somatosensory afferents. PMID:22514285

  17. P2X3 antagonists: novel therapeutics for afferent sensitization and chronic pain.

    PubMed

    Ford, Anthony P

    2012-05-01

    SUMMARY Despite decades of innovation and effort, the pharmaceutical needs of countless patients with chronic pain remain underserved. Effective and safe treatments must clearly come from novel approaches, yet targets and molecules selected hitherto have returned little benefit. Antagonism of P2X3 purinoceptors on pain-conveying nerves is a highly novel approach, and compounds from this class are advancing into patient studies. P2X3 channels are found in C- and Aδ-primary afferent neurons in most tissues, and are strikingly specific to pain detection. P2X3 antagonists block peripheral activation of these fibers via ATP, released from most cells by inflammation, injury, stress and distension, and clearly provide an alternative pharmacological mechanism to attenuate pain signals. P2X3 is also expressed presynaptically at central spinal terminals of afferent neurons, where ATP further sensitizes painful signals en route to the brain. The selectivity of P2X3 expression allows hope of a lower potential for adverse effects in brain, gut and cardiovascular tissues - limiting factors for most analgesics. P2X3 receptor-mediated sensitization has been implicated in rodent models in inflammatory, visceral, neuropathic and cancer pain states, as well as in airways hyper-reactivity, migraine and visceral organ irritability. Although we are often reminded that the effects of new medicines can translate poorly into clinical effectiveness, the broad efficacy seen following P2X3 inhibition in rodent models strengthens the prospect that an unprecedented mechanism to counter sensitization of afferent pathways may offer some merciful relief to millions of patients struggling daily with persistent discomfort and pain.

  18. Directional sound sensitivity in utricular afferents in the toadfish Opsanus tau.

    PubMed

    Maruska, Karen P; Mensinger, Allen F

    2015-06-01

    The inner ear of fishes contains three paired otolithic end organs, the saccule, lagena and utricle, which function as biological accelerometers. The saccule is the largest otolith in most fishes and much of our current understanding on auditory function in this diverse group of vertebrates is derived from anatomical and neurophysiological studies on this end organ. In contrast, less is known about how the utricle contributes to auditory functions. In this study, chronically implanted electrodes were used, along with neural telemetry or tethers to record primary afferent responses from the utricular nerve in free-ranging and naturally behaving oyster toadfish Opsanus tau Linnaeus. The hypothesis was that the utricle plays a role in detecting underwater sounds, including conspecific vocalizations, and exhibits directional sensitivity. Utricular afferents responded best to low frequency (80-200 Hz) pure tones and to playbacks of conspecific boatwhistles and grunts (80-180 Hz fundamental frequency), with the majority of the units (∼75%) displaying a clear, directional response, which may allow the utricle to contribute to sound detection and localization during social interactions. Responses were well within the sound intensity levels of toadfish vocalization (approximately 140 SPL dBrms re. 1 µPa with fibers sensitive to thresholds of approximately 120 SPL dBrms re. 1 µPa). Neurons were also stimulated by self-generated body movements such as opercular movements and swimming. This study is the first to investigate underwater sound-evoked response properties of primary afferents from the utricle of an unrestrained/unanesthetized free-swimming teleost fish. These data provide experimental evidence that the utricle has an auditory function, and can contribute to directional hearing to facilitate sound localization. PMID:25883378

  19. Influences of laryngeal afferent inputs on intralaryngeal muscle activity during vocalization in the cat.

    PubMed

    Shiba, K; Yoshida, K; Nakajima, Y; Konno, A

    1997-01-01

    The present study was undertaken to elucidate the possible role of the laryngeal afferent inputs in the regulation of intralaryngeal muscle activity during vocalization. We studied the influences of airflow and/or pressure applied to the larynx on intralaryngeal muscle activity during vocalization in ketamine-anesthetized cats. Vocalization was induced by airflow applied to the upper airway, which was isolated from the lower airway, during pontine call site stimulation. When the upper airway was open to the atmosphere through the nostrils and mouth, the airflow increased not only the vocal fold adductor and tensor activities but also the duration of these activities. The adductor and tensor activities were increased suddenly at a critical subglottic pressure level equivalent to the subglottic pressure threshold for vocalization. These effects were significantly reduced by sectioning of the internal branch of the superior laryngeal nerve or by lidocaine application to the laryngeal mucosa. Sustained pressure applied to the isolated upper airway, when the mouth and nostrils were occluded, did not affect adductor or tensor activities. These results indicate that the afferent inputs evoked by vocal fold stretching or vibration play an important role in the motor control of intralaryngeal and respiratory muscles during vocalization.

  20. Peripheral Nerve Disorders

    MedlinePlus

    ... spinal cord. Like static on a telephone line, peripheral nerve disorders distort or interrupt the messages between the brain ... body. There are more than 100 kinds of peripheral nerve disorders. They can affect one nerve or many nerves. ...

  1. Nerve biopsy (image)

    MedlinePlus

    Nerve biopsy is the removal of a small piece of nerve for examination. Through a small incision, a sample ... is removed and examined under a microscope. Nerve biopsy may be performed to identify nerve degeneration, identify ...

  2. [The cerebral control of afferent somatosensory projections].

    PubMed

    Petrenko, E V; Orlova, T V; Liubimov, N N

    1993-09-01

    Cortical and dorsal column nuclei somatosensory evoked potentials (SEP) induced by electrical stimulation of the median nerve were recorded and analysed in 16 healthy volunteers practising transcendental meditation (TM) for two years. The records were performed before and during TM. The SEP changes during TM consisted of an increase in early SEP components amplitude. There were no changes in early SEP components peak latencies during TM.

  3. Capsaicin-like activity of some natural pungent substances on peripheral endings of visceral primary afferents.

    PubMed

    Patacchini, R; Maggi, C A; Meli, A

    1990-07-01

    1. The effects of some naturally occurring pungent substances, piperine, mustard oil, eugenol and curcumin, were compared to those of capsaicin in the rat isolated urinary bladder. 2. All test compounds dose-dependently contracted the rat bladder and produced desensitization toward capsaicin (1 mumol/l). Development of cross-tachyphylaxis among the natural pungent substances on one hand and capsaicin on the other, suggested a common site of action on visceral primary afferents. 3. Contractile responses to piperine, mustard oil and eugenol were partially tetrodotoxin and ruthenium red-sensitive, suggesting that activation of sensory terminals by these agents takes place indirectly, as well as by a direct action on sensory receptors. 4. The presence of the secondary acrylamide linkage (present in the backbone of capsaicin, but not in that of test compounds) does not appear to be essential to produce desensitization of sensory nerve terminals.

  4. Sustained sympathetic and blood pressure reduction 1 year after renal denervation in patients with resistant hypertension.

    PubMed

    Hering, Dagmara; Marusic, Petra; Walton, Antony S; Lambert, Elisabeth A; Krum, Henry; Narkiewicz, Krzysztof; Lambert, Gavin W; Esler, Murray D; Schlaich, Markus P

    2014-07-01

    Renal denervation (RDN) reduces muscle sympathetic nerve activity (MSNA) and blood pressure (BP) in resistant hypertension. Although a persistent BP-lowering effect has been demonstrated, the long-term effect on MSNA remains elusive. We investigated whether RDN influences MSNA over time. Office BP and MSNA were obtained at baseline, 3, 6, and 12 months after RDN in 35 patients with resistant hypertension. Office BP averaged 166±22/88±19 mm Hg, despite the use of an average of 4.8±2.1 antihypertensive drugs. Baseline MSNA was 51±11 bursts/min ≈2- to 3-fold higher than the level observed in healthy controls. Mean office systolic and diastolic BP significantly decreased by -12.6±18.3/-6.5±9.2, -16.1±25.6/-8.6±12.9, and -21.2±29.1/-11.1±12.9 mm Hg (P<0.001 for both systolic BP and diastolic BP) with RDN at 3-, 6-, and 12-month follow-up, respectively. MSNA was reduced by -8±12, -6±12, and -6±11 bursts/min (P<0.01) at 3-, 6-, and 12-month follow-up. The reduction in MSNA was maintained, despite a progressive fall in BP over time. No such changes were observed in 7 control subjects at 6-month follow-up. These findings confirm previous reports on the favorable effects of RDN on elevated BP and demonstrate sustained reduction of central sympathetic outflow ≤1-year follow-up in patients with resistant hypertension and high baseline MSNA. These observations are compatible with the hypothesis of a substantial contribution of afferent renal nerve signaling to increased BP in resistant hypertension and argue against a relevant reinnervation at 1 year after procedure.

  5. Can loss of muscle spindle afferents explain the ataxic gait in Riley-Day syndrome?

    PubMed

    Macefield, Vaughan G; Norcliffe-Kaufmann, Lucy; Gutiérrez, Joel; Axelrod, Felicia B; Kaufmann, Horacio

    2011-11-01

    The Riley-Day syndrome is the most common of the hereditary sensory and autonomic neuropathies (Type III). Among the well-recognized clinical features are reduced pain and temperature sensation, absent deep tendon reflexes and a progressively ataxic gait. To explain the latter we tested the hypothesis that muscle spindles, or their afferents, are absent in hereditary sensory and autonomic neuropathy III by attempting to record from muscle spindle afferents from a nerve supplying the leg in 10 patients. For comparison we also recorded muscle spindles from 15 healthy subjects and from two patients with hereditary sensory and autonomic neuropathy IV, who have profound sensory disturbances but no ataxia. Tungsten microelectrodes were inserted percutaneously into fascicles of the common peroneal nerve at the fibular head. Intraneural stimulation within muscle fascicles evoked twitches at normal stimulus currents (10-30 µA), and deep pain (which often referred) at high intensities (1 mA). Microneurographic recordings from muscle fascicles revealed a complete absence of spontaneously active muscle spindles in patients with hereditary sensory and autonomic neuropathy III; moreover, responses to passive muscle stretch could not be observed. Conversely, muscle spindles appeared normal in patients with hereditary sensory and autonomic neuropathy IV, with mean firing rates of spontaneously active endings being similar to those recorded from healthy controls. Intraneural stimulation within cutaneous fascicles evoked paraesthesiae in the fascicular innervation territory at normal stimulus intensities, but cutaneous pain was never reported during high-intensity stimulation in any of the patients. Microneurographic recordings from cutaneous fascicles revealed the presence of normal large-diameter cutaneous mechanoreceptors in hereditary sensory and autonomic neuropathy III. Our results suggest that the complete absence of functional muscle spindles in these patients explains

  6. Neonatal inflammation and primary afferent terminal plasticity in the rat dorsal horn.

    PubMed

    Walker, Suellen M; Meredith-Middleton, Jacqueta; Cooke-Yarborough, Claire; Fitzgerald, Maria

    2003-09-01

    Abnormal or excessive activity related to pain and injury in early life may alter normal synaptic development and lead to changes in somatosensory processing. The aim of the current study was to define the critical factors that determine long-term plasticity in spinal cord afferent terminals following neonatal inflammation. Hindpaw inflammation was produced in neonatal rat pups with 5 or 25 microl 2% carrageenan, and 5 or 25 microl complete Freund's adjuvant (CFA). All groups displayed a clear inflammatory response that recovered in 2 weeks in all but the 25 microl CFA group, who had persistent chronic inflammation confirmed by histological examination of the paw at 8 weeks. The 25 microl CFA group was also the only group that displayed a significant expansion of the sciatic and saphenous nerve terminal field in lamina II of the dorsal horn at 8 weeks, using wheat-germ agglutinin-horse radish peroxidase transganglionic labelling. This effect was not accompanied by changes in dorsal root ganglion (DRG) cell number, expression of activating transcription factor 3 (ATF3), or alterations in calcitonin gene related peptide (CGRP) or isolectin B4 binding; and was not mimicked by partial nerve damage. No long-term change in mechanical or thermal behavioural sensory thresholds was seen in any group. Lower dose CFA caused an acute, reversible expansion of terminal fields in lamina II in neonatal animals, while CFA did not produce this effect in adults. The duration and effect of neonatal inflammation is therefore dependent on the type and volume of inflammatory agent used. The expansion of afferent terminals in lamina II following neonatal CFA inflammation is maintained into adulthood if the inflammation is also maintained, as seen following 25 microl CFA. This effect is not seen in adult animals, emphasising the plasticity of the nervous system early in development.

  7. Mechanosensory transduction of vagal and baroreceptor afferents revealed by study of isolated nodose neurons in culture.

    PubMed

    Snitsarev, Vladislav; Whiteis, Carol A; Abboud, Francois M; Chapleau, Mark W

    2002-06-28

    Changes in arterial pressure and blood volume are sensed by baroreceptor and vagal afferent nerves innervating aorta and heart with soma in nodose ganglia. The inability to measure membrane potential at the nerve terminals has limited our understanding of mechanosensory transduction. Goals of the present study were to: (1) Characterize membrane potential and action potential responses to mechanical stimulation of isolated nodose sensory neurons in culture; and (2) Determine whether the degenerin/epithelial sodium channel (DEG/ENaC) blocker amiloride selectively blocks mechanically induced depolarization without suppressing membrane excitability. Membrane potential of isolated rat nodose neurons was measured with sharp microelectrodes. Mechanical stimulation with buffer ejected from a micropipette (5, 10, 20 psi) depolarized 6 of 10 nodose neurons (60%) in an intensity-dependent manner. The depolarization evoked action potentials in 4 of the 6 neurons. Amiloride (1 microM) essentially abolished mechanically induced depolarization (15 +/- 4 mV during control vs. 1 +/- 2 mV during amiloride with 20-psi stimulation, n = 6) and action potential discharge. In contrast, amiloride did not inhibit the frequency of action potential discharge in response to depolarizing current injection (n = 6). In summary, mechanical stimulation depolarizes and triggers action potentials in a subpopulation of nodose sensory neurons in culture. The DEG/ENaC blocker amiloride at a concentration of 1 microM inhibits responses to mechanical stimulation without suppressing membrane excitability. The results support the hypothesis that DEG/ENaC subunits are components of mechanosensitive ion channels on vagal afferent and baroreceptor neurons. PMID:12144042

  8. Resistance of a crayfish sensory interneurone to hyperinnervation by acceptable afferents.

    PubMed Central

    Krasne, F B; Lee, S H

    1982-01-01

    1. Intact normal innervation of muscle fibres and other peripheral targets usually prevents regenerating nerves from forming synapses with the targets. Whether intact innervation similarly prevents synapse formation on central target neurones has rarely been tested. This question was examined here for interneurone A of the crayfish last abdominal ganglion. 2. Interneurone A normally receives synaptic input from mechanoreceptor neurones distributed over the side of the tailfan ipsilateral to interneurone A's axon and unilateral dendrites. When the five nerve roots carrying mechanoreceptor axons of one side are cut and central and peripheral ends of one or more are sutured together, regeneration and reinnervation of interneurone A occurs over some two to six weeks. If peripheral ends of roots from the 'wrong' (contralateral) side of the body are sutured to ipsilateral central stumps, they also form connexions with interneurone A. When roots from the two sides of the body are simultaneously tied to a central stump, functional connexion formation occurs equally well for afferents from both sides. Therefore, roots of the two sides seem to be equivalent in their ability to reinnervate interneurone A. 3. If peripheral ends of roots from one side of the tailfan are tied to roots on the intact opposite side of the body, the cut axons appear to grow into the last ganglion but usually do not form functional synapses there. The intact innervation therefore seems to exclude further innervation by other acceptable afferents. 4. It is known that mechanoreceptors are added to the tailfan at moult. Exclusion of extra innervation often broke down partially in animals that moulted during the present experiments. This suggests the possibility that synapse formation or exchange may be controlled by moult-inducing hormones. PMID:7153906

  9. Dual Modulation of Nociception and Cardiovascular Reflexes during Peripheral Ischemia through P2Y1 Receptor-Dependent Sensitization of Muscle Afferents

    PubMed Central

    Queme, Luis F.; Ross, Jessica L.; Lu, Peilin; Hudgins, Renita C.

    2016-01-01

    Numerous musculoskeletal pain disorders are based in dysfunction of peripheral perfusion and are often comorbid with altered cardiovascular responses to muscle contraction/exercise. We have recently found in mice that 24 h peripheral ischemia induced by a surgical occlusion of the brachial artery (BAO) induces increased paw-guarding behaviors, mechanical hypersensitivity, and decreased grip strength. These behavioral changes corresponded to increased heat sensitivity as well as an increase in the numbers of chemosensitive group III/IV muscle afferents as assessed by an ex vivo forepaw muscles/median and ulnar nerves/dorsal root ganglion (DRG)/spinal cord (SC) recording preparation. Behaviors also corresponded to specific upregulation of the ADP-responsive P2Y1 receptor in the DRGs. Since group III/IV muscle afferents have separately been associated with regulating muscle nociception and exercise pressor reflexes (EPRs), and P2Y1 has been linked to heat responsiveness and phenotypic switching in cutaneous afferents, we sought to determine whether upregulation of P2Y1 was responsible for the observed alterations in muscle afferent function, leading to modulation of muscle pain-related behaviors and EPRs after BAO. Using an afferent-specific siRNA knockdown strategy, we found that inhibition of P2Y1 during BAO not only prevented the increased mean blood pressure after forced exercise, but also significantly reduced alterations in pain-related behaviors. Selective P2Y1 knockdown also prevented the increased firing to heat stimuli and the BAO-induced phenotypic switch in chemosensitive muscle afferents, potentially through regulating membrane expression of acid sensing ion channel 3. These results suggest that enhanced P2Y1 in muscle afferents during ischemic-like conditions may dually regulate muscle nociception and cardiovascular reflexes. SIGNIFICANCE STATEMENT Our current results suggest that P2Y1 modulates heat responsiveness and chemosensation in muscle afferents

  10. Fiber diameter distributions in the chinchilla's ampullary nerves

    NASA Technical Reports Server (NTRS)

    Hoffman, Larry F.; Honrubia, Vicente

    2002-01-01

    A morphometric study of the chinchilla's ampullary nerves was conducted to produce an unbiased accounting of the diameter distribution of their constituent fibers. Diameter analyses were determined from 1 microm plastic-embedded nerve sections taken at a plane immediately proximal to the sensory epithelium. We found these nerves to be composed of 2094+/-573 fibers, having diameters that ranged from 0.5 to 8 microm. The distributions of diameters were positively skewed, where approximately 75% of the fibers were found to have diameters less than 3.5 microm. An analysis of the spatial distribution of diameters within the nerve section revealed that the lateralmost areas of the nerve contained larger fractions of fibers within the smallest diameter quintiles, and the central area harbored greater proportions of the larger diameter quintiles. However, significant fractions of all quintiles were found in all areas. These data were integrated with available data of Fernandez et al. (1998) to produce diameter estimates of calyx, dimorphic, and bouton morphology subpopulations. In view of a general relationship between diameter, innervation locus, and an afferent's physiologic characteristics, these data provide the basis for developing a perspective for the in situ distribution of afferent response dynamics.

  11. Neural responses from the filiform receptor neuron afferents of the wind-sensitive cercal system in three cockroach species.

    PubMed

    Olsen, Anne C K; Triblehorn, Jeffrey D

    2014-09-01

    The wind-sensitive insect cercal system is involved in many important behaviors, such as initiating terrestrial escape responses and providing sensory feedback during flight. The occurrence of these behaviors vary in cockroach species Periplaneta americana (strong terrestrial response and flight), Blaberus craniifer (weak terrestrial response and flight), and Gromphodorhina portentosa (no terrestrial response and no flight). A previous study focusing on wind-sensitive interneuron (WSI) responses demonstrated that variations in sensory processing of wind information accompany these behavioral differences. In this study, we recorded extracellularly from the cercal nerve to characterize filiform afferent population responses to different wind velocities to investigate how sensory processing differs across these species at the initial encoding of wind. We compared these results and responses from the WSI population to examine information transfer at the first synapse. Our main results were: (1) G. portentosa had the weakest responses of the three species over the stimulus duration and possessed the smallest cerci with the least filiform hair receptors of the three species; (2) B. craniifer filiform responses were similar to or greater than P. americana responses even though B. craniifer possessed smaller cerci with less filiform hair receptors than P. americana; (3) the greater filiform afferent responses in B. craniifer, including a larger amplitude second positive peak compared to the other two species, suggest more synchronous activity between filiform afferents in this species; (4) the transfer of information at the first synapse appears to be similar in both P. americana and G. portentosa, but different in B. craniifer.

  12. Activation of CB1 inhibits NGF-induced sensitization of TRPV1 in adult mouse afferent neurons.

    PubMed

    Wang, Z-Y; McDowell, T; Wang, P; Alvarez, R; Gomez, T; Bjorling, D E

    2014-09-26

    Transient receptor potential vanilloid 1 (TRPV1)-containing afferent neurons convey nociceptive signals and play an essential role in pain sensation. Exposure to nerve growth factor (NGF) rapidly increases TRPV1 activity (sensitization). In the present study, we investigated whether treatment with the selective cannabinoid receptor 1 (CB1) agonist arachidonyl-2'-chloroethylamide (ACEA) affects NGF-induced sensitization of TRPV1 in adult mouse dorsal root ganglion (DRG) afferent neurons. We found that CB1, NGF receptor tyrosine kinase A (trkA), and TRPV1 are present in cultured adult mouse small- to medium-sized afferent neurons and treatment with NGF (100ng/ml) for 30 min significantly increased the number of neurons that responded to capsaicin (as indicated by increased intracellular Ca(2 +) concentration). Pretreatment with the CB1 agonist ACEA (10nM) inhibited the NGF-induced response, and this effect of ACEA was reversed by a selective CB1 antagonist. Further, pretreatment with ACEA inhibited NGF-induced phosphorylation of AKT. Blocking PI3 kinase activity also attenuated the NGF-induced increase in the number of neurons that responded to capsaicin. Our results indicate that the analgesic effect of CB1 activation may in part be due to inhibition of NGF-induced sensitization of TRPV1 and also that the effect of CB1 activation is at least partly mediated by attenuation of NGF-induced increased PI3 signaling.

  13. Neural responses from the filiform receptor neuron afferents of the wind-sensitive cercal system in three cockroach species

    PubMed Central

    Olsen, Anne C.K.; Triblehorn, Jeffrey D.

    2014-01-01

    The wind-sensitive insect cercal system is involved in many important behaviors, such as initiating terrestrial escape responses and providing sensory feedback during flight. The occurrence of these behaviors vary in cockroach species Periplaneta americana (strong terrestrial response and flight), Blaberus craniifer (weak terrestrial response and flight), and Gromphodorhina portentosa (no terrestrial response and no flight). A previous study focusing on wind-sensitive interneuron (WSI) responses demonstrated that variations in sensory processing of wind information accompany these behavioral differences. In this study, we recorded extracellurlarly from the cercal nerve to characterize filiform afferent population responses to different wind velocities to investigate how sensory processing differs across these species at the initial encoding of wind. We compared these results and responses from the WSI population to examine information transfer at the first synapse. Our main results were: 1) G portentosa had the weakest responses of the three species over the stimulus duration and possessed the smallest cerci with the least filiform hair receptors of the three species; 2) B. craniifer filiform responses were similar to or greater than P. americana responses even though B. craniifer possessed smaller cerci with less filiform hair receptors than P. americana; 3) the greater filiform afferent responses in B. craniifer, including a larger amplitude second positive peak compared to the other two species, suggest more synchronous activity between filiform afferents in this species; 4) the transfer of information at the first synapse appears to be similar in both P. americana and G. portentosa, but different in B. craniifer. PMID:25046275

  14. Morphology of the rat cochlear primary afferents during prenatal development: a Cajal's reduced silver and rapid Golgi study.

    PubMed Central

    Angulo, A; Merchán, J A; Merchán, M A

    1990-01-01

    In this study, we analyse the process of spatial organisation of the cochlear root related to the morphological and topographical changes in the CN during the prenatal development of Wistar rats, placing special emphasis on aspects of the latero-medial distribution of the cochlear afferents. A total of 35 embryos from 8 Wistar rats was employed, corresponding to embryonic days 14, 16, 18 and 20. Twenty of these embryos were studied by the Cajal's reduced silver stain and 15 by the rapid Golgi method (osmium dichromate method). The otocyst, the vestibulo-cochlear ganglion and vestibulo-cochlear nerve were first observed at embryonic Day 14 (E14). At E16, a sharp separation between the cochlear and vestibular roots was distinguished. The final position of the primary afferents and their main branches (anterior and posterior) in the CN was observed at E18 and E20, when the total number of cochlear turns had been formed. The cochlear afferents coming from the apical coil, the last to be incorporated into the cochlear root, project their posterior branches at the bifurcation towards more medial portions of the PVCN and their anterior branches towards the more lateral regions of the AVCN. Images Fig. 1 Fig. 2 Fig. 3(Cont.) Fig. 3 Fig. 4 Fig. 5(Cont.) Fig. 5 PMID:1691163

  15. Physiological identification of morphologically distinct afferent classes innervating the cristae ampullares of the squirrel monkey

    NASA Technical Reports Server (NTRS)

    Lysakowski, A.; Minor, L. B.; Fernandez, C.; Goldberg, J. M.

    1995-01-01

    1. Semicircular-canal afferents in the squirrel monkey were characterized by their resting discharge, discharge regularity, sensitivity to galvanic currents delivered to the ear (beta *), the gain (g2Hz), and phase lead (phi 2Hz) of their response to 2-Hz sinusoidal head rotations, and their antidromic conduction velocity. Discharge regularity was measured by a normalized coefficient of variation (CV*); the higher the CV*, the more irregular the discharge. g2Hz and phi 2Hz were expressed relative to angular head velocity. 2. These physiological measures were used in an attempt to discern the discharge properties of the three morphological classes of afferents innervating the crista. Presumed bouton (B) fibers were identified as slowly conducting afferents. Presumed calyx (C) fibers were recognized by their irregular discharge and low rotational gains. The remaining fibers were considered to be dimorphic (D) units. Single letters (B, C, and D) are used to emphasize that the classification is based on circumstantial evidence and may be wrong for individual fibers. Of the 125 identified fibers, 13 (10%) were B units, 36 (29%) were C units, and 76 (61%) were D units. 3. B units were regularly discharging D units ranged from regularly to irregularly discharging. C units were the most irregularly discharging afferents encountered. The mean resting discharge for the entire sample was 74 spikes/s. Resting rates were similar for regularly discharging B and D units and higher than those for irregularly discharging C and D units. 4. Except for their lower conduction velocities, the discharge properties of B units are indistinguishable from those of regularly discharging D units. Many of the discharge properties of B and D units vary with discharge regularity. There is a strong, positive relation when beta *, g2Hz, or phi 2Hz is plotted against CV*. For beta * or phi 2Hz, C units conform to the relation for B and D units. In contrast, values of g2Hz for C units are three to

  16. Afferent innervation of the utricular macula in pigeons

    NASA Technical Reports Server (NTRS)

    Si, Xiaohong; Zakir, Mridha Md; Dickman, J. David

    2003-01-01

    Biotinylated dextran amine (BDA) was used to retrogradely label afferents innervating the utricular macula in adult pigeons. The pigeon utriclar macula consists of a large rectangular-shaped neuroepithelium with a dorsally curved anterior edge and an extended medioposterior tail. The macula could be demarcated into several regions based on cytoarchitectural differences. The striola occupied 30% of the macula and contained a large density of type I hair cells with fewer type II hair cells. Medial and lateral extrastriola zones were located outside the striola and contained only type II hair cells. A six- to eight-cell-wide band of type II hair cells existed near the center of the striola. The reversal line marked by the morphological polarization of hair cells coursed throughout the epithelium, near the peripheral margin, and through the center of the type II band. Calyx afferents innervated type I hair cells with calyceal terminals that contained between 2 and 15 receptor cells. Calyx afferents were located only in the striola region, exclusive of the type II band, had small total fiber innervation areas and low innervation densities. Dimorph afferents innervated both type I and type II hair cells with calyceal and bouton terminals and were primarily located in the striola region. Dimorph afferents had smaller calyceal terminals with few type I hair cells, extended fiber branches with bouton terminals and larger innervation areas. Bouton afferents innervated only type II hair cells in the extrastriola and type II band regions. Bouton afferents innervating the type II band had smaller terminal fields with fewer bouton terminals and smaller innervation areas than fibers located in the extrastriolar zones. Bouton afferents had the most bouton terminals on the longest fibers, the largest innervation areas with the highest innervation densities of all afferents. Among all afferents, smaller terminal innervation fields were observed in the striola and large fields were

  17. Chronic recruitment of primary afferent neurons by microstimulation in the feline dorsal root ganglia

    NASA Astrophysics Data System (ADS)

    Fisher, Lee E.; Ayers, Christopher A.; Ciollaro, Mattia; Ventura, Valérie; Weber, Douglas J.; Gaunt, Robert A.

    2014-06-01

    Objective. This study describes results of primary afferent neural microstimulation experiments using microelectrode arrays implanted chronically in the lumbar dorsal root ganglia (DRG) of four cats. The goal was to test the stability and selectivity of these microelectrode arrays as a potential interface for restoration of somatosensory feedback after damage to the nervous system such as amputation. Approach. A five-contact nerve-cuff electrode implanted on the sciatic nerve was used to record the antidromic compound action potential response to DRG microstimulation (2-15 µA biphasic pulses, 200 µs cathodal pulse width), and the threshold for eliciting a response was tracked over time. Recorded responses were segregated based on conduction velocity to determine thresholds for recruiting Group I and Group II/Aβ primary afferent fibers. Main results. Thresholds were initially low (5.1 ± 2.3 µA for Group I and 6.3 ± 2.0 µA for Group II/Aβ) and increased over time. Additionally the number of electrodes with thresholds less than or equal to 15 µA decreased over time. Approximately 12% of tested electrodes continued to elicit responses at 15 µA up to 26 weeks after implantation. Higher stimulation intensities (up to 30 µA) were tested in one cat at 23 weeks post-implantation yielding responses on over 20 additional electrodes. Within the first six weeks after implantation, approximately equal numbers of electrodes elicited only Group I or Group II/Aβ responses at threshold, but the relative proportion of Group II/Aβ responses decreased over time. Significance. These results suggest that it is possible to activate Group I or Group II/Aβ primary afferent fibers in isolation with penetrating microelectrode arrays implanted in the DRG, and that those responses can be elicited up to 26 weeks after implantation, although it may be difficult to achieve a consistent response day-to-day with currently available electrode technology. The DRG are compelling targets

  18. TRPV4 mediates afferent pathways in the urinary bladder. A spinal c-fos study showing TRPV1 related adaptations in the TRPV4 knockout mouse.

    PubMed

    Janssen, Dick A W; Hoenderop, Joost G; Heesakkers, John P F A; Schalken, Jack A

    2016-10-01

    The role of transient receptor potential vanilloid subtype 4 (TRPV4) channels in urinary bladder afferent neural pathways was investigated using spinal c-fos measurements in mice. Anesthetized wild type and TRPV4 knockout (-/-) mice underwent noxious bladder distention and treatment with either intravesical instillation with lipopolysaccharide (LPS), or the TRPV1 agonist resiniferatoxin (RTX), vehicle or an intraperitoneal injected TRPV4 antagonist (HC067047). Mice underwent paraformaldehyde perfusion for rapid fixation and L6-S1 spinal cord sections were removed followed by immunohistochemical staining for c-fos. A number of c-fos expressing neurons in the dorsal horns of L6-S1 spinal cord transections were quantified. Groups were compared using univariate ANOVA. Even with the absence of bladder inflammation on H&E, the TRPV4 -/- mice still have a significant twofold higher c-fos expression (n = 39, SD 2) after noxious bladder distention compared to wild type mice (n = 20, SD 3). A twofold increase in c-fos expression was observed after LPS treatment in wild types (n = 42, SD 5), but no increase was seen in TRPV4 -/- mice (n = 42, SD 2). After desensitization of primary afferent C-nerve fibers with RTX, c-fos expression in TRPV4-/- mice decreased significantly (threefold) (n = 12, SD 4). Results imply that TRPV4 channels are important for bladder afferent signaling. TRPV4 -/- mice bladders generate more noxious sensory output, which is predominantly mediated through TRPV1 expressing high threshold nerve fibers. This study reveals TRPV1 related adaptive changes in afferent pathways of the TRPV4 -/- mouse. We propose that this effect is caused by a congenital impairment of low threshold nerves that mediate normal bladder filling sensations. PMID:27491796

  19. TRPV4 mediates afferent pathways in the urinary bladder. A spinal c-fos study showing TRPV1 related adaptations in the TRPV4 knockout mouse.

    PubMed

    Janssen, Dick A W; Hoenderop, Joost G; Heesakkers, John P F A; Schalken, Jack A

    2016-10-01

    The role of transient receptor potential vanilloid subtype 4 (TRPV4) channels in urinary bladder afferent neural pathways was investigated using spinal c-fos measurements in mice. Anesthetized wild type and TRPV4 knockout (-/-) mice underwent noxious bladder distention and treatment with either intravesical instillation with lipopolysaccharide (LPS), or the TRPV1 agonist resiniferatoxin (RTX), vehicle or an intraperitoneal injected TRPV4 antagonist (HC067047). Mice underwent paraformaldehyde perfusion for rapid fixation and L6-S1 spinal cord sections were removed followed by immunohistochemical staining for c-fos. A number of c-fos expressing neurons in the dorsal horns of L6-S1 spinal cord transections were quantified. Groups were compared using univariate ANOVA. Even with the absence of bladder inflammation on H&E, the TRPV4 -/- mice still have a significant twofold higher c-fos expression (n = 39, SD 2) after noxious bladder distention compared to wild type mice (n = 20, SD 3). A twofold increase in c-fos expression was observed after LPS treatment in wild types (n = 42, SD 5), but no increase was seen in TRPV4 -/- mice (n = 42, SD 2). After desensitization of primary afferent C-nerve fibers with RTX, c-fos expression in TRPV4-/- mice decreased significantly (threefold) (n = 12, SD 4). Results imply that TRPV4 channels are important for bladder afferent signaling. TRPV4 -/- mice bladders generate more noxious sensory output, which is predominantly mediated through TRPV1 expressing high threshold nerve fibers. This study reveals TRPV1 related adaptive changes in afferent pathways of the TRPV4 -/- mouse. We propose that this effect is caused by a congenital impairment of low threshold nerves that mediate normal bladder filling sensations.

  20. Selective impact of Tau loss on nociceptive primary afferents and pain sensation.

    PubMed

    Sotiropoulos, Ioannis; Lopes, André T; Pinto, Vitor; Lopes, Sofia; Carlos, Sara; Duarte-Silva, Sara; Neves-Carvalho, Andreia; Pinto-Ribeiro, Filipa; Pinheiro, Sara; Fernandes, Rui; Almeida, Armando; Sousa, Nuno; Leite-Almeida, Hugo

    2014-11-01

    Tau protein hyperphosphorylation and consequent malfunction are hallmarks of Alzheimer's disease pathology; importantly, pain perception is diminished in these patients. In physiological conditions, Tau contributes to cytoskeletal dynamics and in this way, influences a number of cellular mechanisms including axonal trafficking, myelination and synaptic plasticity, processes that are also implicated in pain perception. However, there is no in vivo evidence clarifying the role of Tau in nociception. Thus, we tested Tau-null (Tau-/-) and Tau+/+ mice for acute thermal pain (Hargreaves' test), acute and tonic inflammatory pain (formalin test) and mechanical allodynia (Von Frey test). We report that Tau-/- animals presented a decreased response to acute noxious stimuli when compared to Tau+/+ while their pain-related behavior is augmented under tonic painful stimuli. This increased reactivity to tonic pain was accompanied by enhanced formalin-evoked c-fos staining of second order nociceptive neurons at Tau-null dorsal horn. In addition, we analyzed the primary afferents conveying nociceptive signals, estimating sciatic nerve fiber density, myelination and nerve conduction. Ultrastructural analysis revealed a decreased C-fiber density in the sciatic nerve of Tau-null mice and a hypomyelination of myelinated fibers (Aδ-fibers) - also confirmed by western blot analysis - followed by altered conduction properties of Tau-null sciatic nerves. To our knowledge, this is the first in vivo study that demonstrates that Tau depletion negatively affects the main systems conveying nociceptive information to the CNS, adding to our knowledge about Tau function(s) that might also be relevant for understanding peripheral neurological deficits in different Tauopathies.

  1. Criticality and degeneracy in injury-induced changes in primary afferent excitability and the implications for neuropathic pain

    PubMed Central

    Ratté, Stéphanie; Zhu, Yi; Lee, Kwan Yeop; Prescott, Steven A

    2014-01-01

    Neuropathic pain remains notoriously difficult to treat despite numerous drug targets. Here, we offer a novel explanation for this intractability. Computer simulations predicted that qualitative changes in primary afferent excitability linked to neuropathic pain arise through a switch in spike initiation dynamics when molecular pathologies reach a tipping point (criticality), and that this tipping point can be reached via several different molecular pathologies (degeneracy). We experimentally tested these predictions by pharmacologically blocking native conductances and/or electrophysiologically inserting virtual conductances. Multiple different manipulations successfully reproduced or reversed neuropathic changes in primary afferents from naïve or nerve-injured rats, respectively, thus confirming the predicted criticality and its degenerate basis. Degeneracy means that several different molecular pathologies are individually sufficient to cause hyperexcitability, and because several such pathologies co-occur after nerve injury, that no single pathology is uniquely necessary. Consequently, single-target-drugs can be circumvented by maladaptive plasticity in any one of several ion channels. DOI: http://dx.doi.org/10.7554/eLife.02370.001 PMID:24692450

  2. Histaminergic afferent system in the cerebellum: structure and function.

    PubMed

    Li, Bin; Zhu, Jing-Ning; Wang, Jian-Jun

    2014-01-01

    Histaminergic afferent system of the cerebellum, having been considered as an essential component of the direct hypothalamocerebellar circuits, originates from the tuberomammillary nucleus in the hypothalamus. Unlike the mossy fibers and climbing fibers, the histaminergic afferent fibers, a third type of cerebellar afferents, extend fine varicose fibers throughout the cerebellar cortex and nuclei. Histamine receptors, belonging to the family of G protein-coupled receptors, are widely present in the cerebellum. Through these histamine receptors, histamine directly excites Purkinje cells and granule cells in the cerebellar cortex, as well as the cerebellar nuclear neurons. Therefore, the histaminergic afferents parallelly modulate these dominant components in the cerebellar circuitry and consequently influence the final output of the cerebellum. In this way, the histaminergic afferent system actively participates in the cerebellum-mediated motor balance and coordination and nonsomatic functions. Accordingly, histaminergic reagents may become potential drugs for clinical treatment of cerebellar ataxia and other cerebellar disease. On the other hand, considering the hypothalamus is a high regulatory center for autonomic and visceral activities, the hypothalamocerebellar histaminergic fibers/projections, bridging the nonsomatic center to somatic structure, may play a critical role in the somatic-nonsomatic integration.

  3. Thermal nociceptive properties of trigeminal afferent neurons in rats

    PubMed Central

    2010-01-01

    Background Although nociceptive afferents innervating the body have been heavily studied form many years, much less attention has been paid to trigeminal afferent biology. In particular, very little is known concerning trigeminal nociceptor responses to heat, and almost nothing in the rat. This study uses a highly controlled and reproducible diode laser stimulator to investigate the activation of trigeminal afferents to noxious skin heating. Results The results of this experiment demonstrate that trigeminal thermonociceptors are distinct from themonociceptors innervating the limbs. Trigeminal nociceptors have considerably slower action potential conduction velocities and lower temperature thresholds than somatic afferent neurons. On the other hand, nociceptors innervating both tissue areas separate into those that respond to short pulse, high rate skin heating and those that respond to long pulse, low rate skin heating. Conclusions This paper provides the first description in the literature of the in vivo properties of thermonociceptors in rats. These finding of two separate populations aligns with the separation between C and A-delta thermonociceptors innervating the paw, but have significant differences in terms of temperature threshold and average conduction velocities. An understanding of the temperature response properties of afferent neurons innervating the paw skin have been critical in many mechanistic discoveries, some leading to new pain therapies. A clear understanding of trigeminal nociceptors may be similarly useful in the investigation of trigeminal pain mechanisms and potential therapies. PMID:20609212

  4. Gut vagal afferents differentially modulate innate anxiety and learned fear.

    PubMed

    Klarer, Melanie; Arnold, Myrtha; Günther, Lydia; Winter, Christine; Langhans, Wolfgang; Meyer, Urs

    2014-05-21

    Vagal afferents are an important neuronal component of the gut-brain axis allowing bottom-up information flow from the viscera to the CNS. In addition to its role in ingestive behavior, vagal afferent signaling has been implicated modulating mood and affect, including distinct forms of anxiety and fear. Here, we used a rat model of subdiaphragmatic vagal deafferentation (SDA), the most complete and selective vagal deafferentation method existing to date, to study the consequences of complete disconnection of abdominal vagal afferents on innate anxiety, conditioned fear, and neurochemical parameters in the limbic system. We found that compared with Sham controls, SDA rats consistently displayed reduced innate anxiety-like behavior in three procedures commonly used in preclinical rodent models of anxiety, namely the elevated plus maze test, open field test, and food neophobia test. On the other hand, SDA rats exhibited increased expression of auditory-cued fear conditioning, which specifically emerged as attenuated extinction of conditioned fear during the tone re-exposure test. The behavioral manifestations in SDA rats were associated with region-dependent changes in noradrenaline and GABA levels in key areas of the limbic system, but not with functional alterations in the hypothalamus-pituitary-adrenal grand stress. Our study demonstrates that innate anxiety and learned fear are both subjected to visceral modulation through abdominal vagal afferents, possibly via changing limbic neurotransmitter systems. These data add further weight to theories emphasizing an important role of afferent visceral signals in the regulation of emotional behavior.

  5. Semicircular Canal Geometry, Afferent Sensitivity And Animal Behavior

    PubMed Central

    Hullar, Timothy A.

    2008-01-01

    The geometry of the semicircular canals has been used in evolutionary studies to predict the behaviors of extinct animals. These predictions have relied on an assumption that the responses of the canals can be determined from their dimensions, and that an organism’s behavior can be determined from these responses. However, the relationship between a canal’s sensitivity and its size is not well known. An intraspecies comparison among canal responses in each of three species (cat, squirrel monkey, and pigeon) was undertaken to evaluate various models of canal function and determine how their dimensions may be related to afferent physiology. All models predicted the responses of the cat afferents, but the models performed less well for squirrel monkey and pigeon. Possible causes for this discrepancy include incorrectly assuming that afferent responses accurately represent canal function, or errors in current biophysical models of the canals. These findings leave open the question as to how reliably canal anatomy can be used to estimate afferent responses and how closely afferent responses are related to behavior. Other labyrinthine features—such as orientation of the horizontal canal, which is reliably held near earth-horizontal across many species—may be better to use when extrapolating the posture and related behavior of extinct animals from labyrinthine morphology. PMID:16550591

  6. The correlated blanching of synaptic bodies and reduction in afferent firing rates caused by transmitter-depleting agents in the frog semicircular canal

    NASA Technical Reports Server (NTRS)

    Guth, P.; Norris, C.; Fermin, C. D.; Pantoja, M.

    1993-01-01

    Synaptic bodies (SBs) associated with rings of synaptic vesicles and well-defined, pre- and post-synaptic membrane structures are indicators of maturity in most hair cell-afferent nerve junctions. The role of the SBs remains elusive despite several experiments showing that they may be involved in storage of neurotransmitter. Our results demonstrate that SBs of the adult posterior semicircular canal (SCC) cristae hair cells become less electron dense following incubation of the SCC with the transmitter-depleting drug tetrabenazine (TBZ). Objective quantification and comparison of the densities of the SBs in untreated and TBZ-treated frog SCC demonstrated that TBZ significantly decreased the electron density of SBs. This reduction in electron density was accompanied by a reduction in firing rates of afferent fibers innervating the posterior SCC. A second transmitter-depleting drug, guanethidine, previously shown to reduce the electron density of hair cell SBs, also reduced the firing rates of afferent fibers innervating the posterior SCC. In contrast, the electron density of dense granules (DG), similar in size and shape to synaptic bodies (SB) in hair cells, did not change after incubation in TBZ, thus indicating that granules and SBs are not similar in regard to their electron density. The role of SBs in synaptic transmission and the transmitter, if any, stored in the SBs remain unknown. Nonetheless, the association of the lessening of electron density with a reduction in afferent firing rate provides impetus for the further investigation of the SB's role in neurotransmission.

  7. [ELECTRIC STIMULATION OF VAGUS NERVE MODULATES A PROPAGATION OF OXYGEN EPILEPSY IN RABBITS].

    PubMed

    Zhilyaev, S Yu; Moskvin, A N; Platonova, T F; Demchenko, I T

    2015-11-01

    The activation of autonomic afferents (achieved through the vagus nerve (VN) electrical stimulation) on CNS O2 toxicity and cardiovascular function was investigated. In conscious rabbits at 5 ATA 02, prodromal signs of CNS O2 toxicity and convulsion latency were determined with and without vagus nerve (VN) stimulation. EEG, ECG and respiration were also recorded. In rabbits at 5 ATA, sympathetic overdrive and specific patterns on the EEG (synchronization of slow-waves), ECG (tachycardia) and respiration (respiratory minute volume increase) preceded motor convulsions. Vagus nerve stimulation increased parasympathetic component of autonomic drive and significantly delayed prodromal signs of oxygen toxicity and convulsion latency. Autonomic afferent input to the brain is a novel target for preventing CNS toxicity in HBO2. PMID:26995956

  8. Effects of stimulus intensity, cervical cord tractotomies and cerebellectomy on somatosensory evoked potentials from skin and muscle afferents of cat hind limb.

    PubMed

    Schieppati, M; Ducati, A

    1981-04-01

    The somatosensory evoked potentials (SEPs) recorded from the sensory cortex were investigated by using graded stimulation of skin and muscle nerves from contralateral hind limb in the cat. Sections were made of the middle cervical cord to assess the pathways involved in mediating SEPs evoked by large and small diameter fibers. Dorsal column (DC) section caused a decrease of SEPs from skin group I afferents, and a small increase in those from group I muscle afferents. A subsequent section of dorso-lateral fasciculus (DLF) further decreased SEPs from skin and eliminated SEPs from muscle, evoked at low stimulus intensity. When the stimulus recruited group III fibres, SEPs were still present after DC and DLF section, both from skin and muscle nerves. Section of ALT in addition to DC confirmed a major role played by DLF (mainly spino-cervical tract of Morin) in transmitting impulses from muscle afferents; the role of DLF in mediating potentials evoked from skin is less remarkable than that of DC. Cerebellectomy did not change any SEP, however evoked. Previous results in the literature are discussed, taking into account the methodologies employed by various authors, and the possible interactions among pathways mediating SEPs.

  9. Adipose afferent reflex: sympathetic activation and obesity hypertension.

    PubMed

    Xiong, X-Q; Chen, W-W; Zhu, G-Q

    2014-03-01

    Excessive sympathetic activity contributes to the pathogenesis of hypertension and the progression of the related organ damage. Adipose afferent reflex (AAR) is a sympatho-excitatory reflex that the afferent activity from white adipose tissue (WAT) increases sympathetic outflow and blood pressure. Hypothalamic paraventricular nucleus (PVN or PVH) is one of the central sites in the control of the AAR, and ionotropic glutamate receptors in the nucleus mediate the AAR. The AAR is enhanced in obesity and obesity hypertension. Enhanced WAT afferent activity and AAR contribute to the excessive sympathetic activation and hypertension in obesity. Blockage of the AAR attenuates the excessive sympathetic activity and hypertension. Leptin may be one of sensors in the WAT for the AAR, and is involved in the enhanced AAR in obesity and hypertension. This review focuses on the neuroanatomical basis and physiological functions of the AAR, and the important role of the enhanced AAR in the pathogenesis of obesity hypertension.

  10. [Central projections of the rat recurrent laryngeal nerve].

    PubMed

    Pascual-Font, A; Maranillo, E; Merchán, A; Vázquez, T; Sañudo, J R; Valderrama-Canales, F J

    2006-01-01

    Laryngeal nerves contain the fibres that control the laryngeal function. The studies carried out on the rat with the purpose of having a better knowledge of the functional components and the real origin of the fibres conveyed by the recurrent laryngeal nerve (RLN) are few and in disagreement. No one of such papers were developed using biotinylated dextrane amines (BDA), a powerful tool for tracing neural pathways. The aim of our study was to identify in the rat using BDA, the nuclei of real origin of the fibres of the RLN, knowing in this way the functional components of this nerve. The study has been developed in 31 adult male Sprague-Dawley rats, applying the BDA into the lesioned RLN. The results obtained in all the animals show that the rat's RLN does not contain afferent fibres, whereas the efferent fibres were originated within the ipsilateral nucleus ambiguus (NA). So, in the rat, the RLN seems to contain exclusively efferent fibres, probably been the superior laryngeal nerve who conveyed the afferent fibres.

  11. The afferent pupillary defect in acute optic neuritis.

    PubMed Central

    Ellis, C J

    1979-01-01

    Twenty-two patients with acute optic neuritis were studied by the techniques of infrared pupillometry and visual evoked responses (VER) to pattern reversal. A relative afferent pupillary defect was found in all cases and the magnitude of this defect was found to be related to the amplitude, but not to the latency, of the VER. During follow-up the afferent defect was found to remain persistently abnormal while other methods of clinical evaluation could not demonstrate abnormality reliably. The amplitude of the VER also remained low. PMID:501365

  12. Electrical stimulation of low-threshold afferent fibers induces a prolonged synaptic depression in lamina II dorsal horn neurons to high-threshold afferent inputs in mice.

    PubMed

    Sdrulla, Andrei D; Xu, Qian; He, Shao-Qiu; Tiwari, Vinod; Yang, Fei; Zhang, Chen; Shu, Bin; Shechter, Ronen; Raja, Srinivasa N; Wang, Yun; Dong, Xinzhong; Guan, Yun

    2015-06-01

    Electrical stimulation of low-threshold Aβ-fibers (Aβ-ES) is used clinically to treat neuropathic pain conditions that are refractory to pharmacotherapy. However, it is unclear how Aβ-ES modulates synaptic responses to high-threshold afferent inputs (C-, Aδ-fibers) in superficial dorsal horn. Substantia gelatinosa (SG) (lamina II) neurons are important for relaying and modulating converging spinal nociceptive inputs. We recorded C-fiber-evoked excitatory postsynaptic currents (eEPSCs) in spinal cord slices in response to paired-pulse test stimulation (500 μA, 0.1 millisecond, 400 milliseconds apart). We showed that 50-Hz and 1000-Hz, but not 4-Hz, Aβ-ES (10 μA, 0.1 millisecond, 5 minutes) induced prolonged inhibition of C-fiber eEPSCs in SG neurons in naive mice. Furthermore, 50-Hz Aβ-ES inhibited both monosynaptic and polysynaptic forms of C-fiber eEPSC in naive mice and mice that had undergone spinal nerve ligation (SNL). The paired-pulse ratio (amplitude second eEPSC/first eEPSC) increased only in naive mice after 50-Hz Aβ-ES, suggesting that Aβ-ES may inhibit SG neurons by different mechanisms under naive and nerve-injured conditions. Finally, 50-Hz Aβ-ES inhibited both glutamatergic excitatory and GABAergic inhibitory interneurons, which were identified by fluorescence in vGlut2-Td and glutamic acid decarboxylase-green fluorescent protein transgenic mice after SNL. These findings show that activities in Aβ-fibers lead to frequency-dependent depression of synaptic transmission in SG neurons in response to peripheral noxious inputs. However, 50-Hz Aβ-ES failed to induce cell-type-selective inhibition in SG neurons. The physiologic implication of this novel form of synaptic depression for pain modulation by Aβ-ES warrants further investigation. PMID:25974163

  13. Nerve Impulses in Plants

    ERIC Educational Resources Information Center

    Blatt, F. J.

    1974-01-01

    Summarizes research done on the resting and action potential of nerve impulses, electrical excitation of nerve cells, electrical properties of Nitella, and temperature effects on action potential. (GS)

  14. Trafficking of Na+/Ca2+ exchanger to the site of persistent inflammation in nociceptive afferents.

    PubMed

    Scheff, Nicole N; Gold, Michael S

    2015-06-01

    Persistent inflammation results in an increase in the amplitude and duration of depolarization-evoked Ca(2+) transients in putative nociceptive afferents. Previous data indicated that these changes were the result of neither increased neuronal excitability nor an increase in the amplitude of depolarization. Subsequent data also ruled out an increase in voltage-gated Ca(2+) currents and recruitment of Ca(2+)-induced Ca(2+) release. Parametric studies indicated that the inflammation-induced increase in the duration of the evoked Ca(2+) transient required a relatively large and long-lasting increase in the concentration of intracellular Ca(2+) implicating the Na(+)/Ca(2+) exchanger (NCX), a major Ca(2+) extrusion mechanism activated with high intracellular Ca(2+) loads. The contribution of NCX to the inflammation-induced increase in the evoked Ca(2+) transient in rat sensory neurons was tested using fura-2 AM imaging and electrophysiological recordings. Changes in NCX expression and protein were assessed with real-time PCR and Western blot analysis, respectively. An inflammation-induced decrease in NCX activity was observed in a subpopulation of putative nociceptive neurons innervating the site of inflammation. The time course of the decrease in NCX activity paralleled that of the inflammation-induced changes in nociceptive behavior. The change in NCX3 in the cell body was associated with a decrease in NCX3 protein in the ganglia, an increase in the peripheral nerve (sciatic) yet no change in the central root. This single response to inflammation is associated with changes in at least three different segments of the primary afferent, all of which are likely to contribute to the dynamic response to persistent inflammation. PMID:26041911

  15. Trafficking of Na+/Ca2+ exchanger to the site of persistent inflammation in nociceptive afferents.

    PubMed

    Scheff, Nicole N; Gold, Michael S

    2015-06-01

    Persistent inflammation results in an increase in the amplitude and duration of depolarization-evoked Ca(2+) transients in putative nociceptive afferents. Previous data indicated that these changes were the result of neither increased neuronal excitability nor an increase in the amplitude of depolarization. Subsequent data also ruled out an increase in voltage-gated Ca(2+) currents and recruitment of Ca(2+)-induced Ca(2+) release. Parametric studies indicated that the inflammation-induced increase in the duration of the evoked Ca(2+) transient required a relatively large and long-lasting increase in the concentration of intracellular Ca(2+) implicating the Na(+)/Ca(2+) exchanger (NCX), a major Ca(2+) extrusion mechanism activated with high intracellular Ca(2+) loads. The contribution of NCX to the inflammation-induced increase in the evoked Ca(2+) transient in rat sensory neurons was tested using fura-2 AM imaging and electrophysiological recordings. Changes in NCX expression and protein were assessed with real-time PCR and Western blot analysis, respectively. An inflammation-induced decrease in NCX activity was observed in a subpopulation of putative nociceptive neurons innervating the site of inflammation. The time course of the decrease in NCX activity paralleled that of the inflammation-induced changes in nociceptive behavior. The change in NCX3 in the cell body was associated with a decrease in NCX3 protein in the ganglia, an increase in the peripheral nerve (sciatic) yet no change in the central root. This single response to inflammation is associated with changes in at least three different segments of the primary afferent, all of which are likely to contribute to the dynamic response to persistent inflammation.

  16. Severe hypoxia affects exercise performance independently of afferent feedback and peripheral fatigue.

    PubMed

    Millet, Guillaume Y; Muthalib, Makii; Jubeau, Marc; Laursen, Paul B; Nosaka, Kazunori

    2012-04-01

    To test the hypothesis that hypoxia centrally affects performance independently of afferent feedback and peripheral fatigue, we conducted two experiments under complete vascular occlusion of the exercising muscle under different systemic O(2) environmental conditions. In experiment 1, 12 subjects performed repeated submaximal isometric contractions of the elbow flexor to exhaustion (RCTE) with inspired O(2) fraction fixed at 9% (severe hypoxia, SevHyp), 14% (moderate hypoxia, ModHyp), 21% (normoxia, Norm), or 30% (hyperoxia, Hyper). The number of contractions (performance), muscle (biceps brachii), and prefrontal near-infrared spectroscopy (NIRS) parameters and high-frequency paired-pulse (PS100) evoked responses to electrical muscle stimulation were monitored. In experiment 2, 10 subjects performed another RCTE in SevHyp and Norm conditions in which the number of contractions, biceps brachii electromyography responses to electrical nerve stimulation (M wave), and transcranial magnetic stimulation responses (motor-evoked potentials, MEP, and cortical silent period, CSP) were recorded. Performance during RCTE was significantly reduced by 10-15% in SevHyp (arterial O(2) saturation, SpO(2) = ∼75%) compared with ModHyp (SpO(2) = ∼90%) or Norm/Hyper (SpO(2) > 97%). Performance reduction in SevHyp occurred despite similar 1) metabolic (muscle NIRS parameters) and functional (changes in PS100 and M wave) muscle states and 2) MEP and CSP responses, suggesting comparable corticospinal excitability and spinal and cortical inhibition between SevHyp and Norm. It is concluded that, in SevHyp, performance and central drive can be altered independently of afferent feedback and peripheral fatigue. It is concluded that submaximal performance in SevHyp is partly reduced by a mechanism related directly to brain oxygenation. PMID:22323647

  17. Ventral Tegmental Area Afferents and Drug-Dependent Behaviors

    PubMed Central

    Oliva, Idaira; Wanat, Matthew J.

    2016-01-01

    Drug-related behaviors in both humans and rodents are commonly thought to arise from aberrant learning processes. Preclinical studies demonstrate that the acquisition and expression of many drug-dependent behaviors involves the ventral tegmental area (VTA), a midbrain structure comprised of dopamine, GABA, and glutamate neurons. Drug experience alters the excitatory and inhibitory synaptic input onto VTA dopamine neurons, suggesting a critical role for VTA afferents in mediating the effects of drugs. In this review, we present evidence implicating the VTA in drug-related behaviors, highlight the diversity of neuronal populations in the VTA, and discuss the behavioral effects of selectively manipulating VTA afferents. Future experiments are needed to determine which VTA afferents and what neuronal populations in the VTA mediate specific drug-dependent behaviors. Further studies are also necessary for identifying the afferent-specific synaptic alterations onto dopamine and non-dopamine neurons in the VTA following drug administration. The identification of neural circuits and adaptations involved with drug-dependent behaviors can highlight potential neural targets for pharmacological and deep brain stimulation interventions to treat substance abuse disorders. PMID:27014097

  18. Changes in monkey horizontal semicircular canal afferent responses after spaceflight

    NASA Technical Reports Server (NTRS)

    Correia, M. J.; Perachio, A. A.; Dickman, J. D.; Kozlovskaia, I. B.; Sirota, M. G.; Iakushin, S. B.; Beloozerova, I. N.

    1992-01-01

    Extracellular responses from single horizontal semicircular canal afferents in two rhesus monkeys were studied after recovery from a 14-day biosatellite (Cosmos 2044) orbital spaceflight. On the 1st postflight day, the mean gain for 9 different horizontal canal afferents, tested using one or several different passive yaw rotation waveforms, was nearly twice that for 20 horizontal canal afferents similarly tested during preflight and postflight control studies. Adaptation of the afferent response to passive yaw rotation on the 1st postflight day was also greater. These results suggest that at least one component of the vestibular end organ (the semicircular canals) is transiently modified after exposure to 14 days of microgravity. It is unclear whether the changes are secondary to other effects of microgravity, such as calcium loss, or an adaptive response. If the response is adaptive, then this report is the first evidence that the response of the vestibular end organ may be modified (presumably by the central nervous system via efferent connections) after prolonged unusual vestibular stimulation. If this is the case, the sites of plasticity of vestibular responses may not be exclusively within central nervous system vestibular structures, as previously believed.

  19. Correlation between afferent rearrangements and behavioral deficits after local excitotoxic insult in the mammalian vestibule: a rat model of vertigo symptoms

    PubMed Central

    Travo, Cécile; Saleur, Aurélie; Broussy, Audrey; Brugeaud, Aurore; Chabbert, Christian

    2016-01-01

    ABSTRACT Damage to inner ear afferent terminals is believed to result in many auditory and vestibular dysfunctions. The sequence of afferent injuries and repair, as well as their correlation with vertigo symptoms, remains poorly documented. In particular, information on the changes that take place at the primary vestibular endings during the first hours following a selective insult is lacking. In the present study, we combined histological analysis with behavioral assessments of vestibular function in a rat model of unilateral vestibular excitotoxic insult. Excitotoxicity resulted in an immediate but transient alteration of the balance function that was resolved within a week. Concomitantly, vestibular primary afferents underwent a sequence of structural changes followed by spontaneous repair. Within the first two hours after the insult, a first phase of pronounced vestibular dysfunction coincided with extensive swelling of afferent terminals. In the next 24 h, a second phase of significant but incomplete reduction of the vestibular dysfunction was accompanied by a resorption of swollen terminals and fiber retraction. Eventually, within 1 week, a third phase of complete balance restoration occurred. The slow and progressive withdrawal of the balance dysfunction correlated with full reconstitution of nerve terminals. Competitive re-innervation by afferent and efferent terminals that mimicked developmental synaptogenesis resulted in full re-afferentation of the sensory epithelia. By deciphering the sequence of structural alterations that occur in the vestibule during selective excitotoxic impairment, this study offers new understanding of how a vestibular insult develops in the vestibule and how it governs the heterogeneity of vertigo symptoms. PMID:27483344

  20. Renal perfusion scintiscan

    MedlinePlus

    Renal perfusion scintigraphy; Radionuclide renal perfusion scan; Perfusion scintiscan - renal; Scintiscan - renal perfusion ... supply the kidneys. This is a condition called renal artery stenosis. Significant renal artery stenosis may be ...

  1. Predicted effects of nitric oxide and superoxide on the vasoactivity of the afferent arteriole.

    PubMed

    Layton, Anita T; Edwards, Aurélie

    2015-10-15

    We expanded a published mathematical model of an afferent arteriole smooth muscle cell in rat kidney (Edwards A, Layton, AT. Am J Physiol Renal Physiol 306: F34-F48, 2014) to understand how nitric oxide (NO) and superoxide (O(2)(-)) modulate the arteriolar diameter and its myogenic response. The present model includes the kinetics of NO and O(2)(-) formation, diffusion, and reaction. Also included are the effects of NO and its second messenger cGMP on cellular Ca²⁺ uptake and efflux, Ca²⁺-activated K⁺ currents, and myosin light chain phosphatase activity. The model considers as well pressure-induced increases in O(2)(-) production, O(2)(-)-mediated regulation of L-type Ca²⁺ channel conductance, and increased O(2)(-) production in spontaneous hypertensive rats (SHR). Our results indicate that elevated O(2)(-) production in SHR is sufficient to account for observed differences between normotensive and hypertensive rats in the response of the afferent arteriole to NO synthase inhibition, Tempol, and angiotensin II at baseline perfusion pressures. In vitro, whether the myogenic response is stronger in SHR remains uncertain. Our model predicts that if mechanosensitive cation channels are not modulated by O(2)(-), then fractional changes in diameter induced by pressure elevations should be smaller in SHR than in normotensive rats. Our results also suggest that most NO diffuses out of the smooth muscle cell without being consumed, whereas most O(2)(-) is scavenged, by NO and superoxide dismutase. Moreover, the predicted effects of superoxide on arteriolar constriction are not predominantly due to its scavenging of NO. PMID:26180238

  2. Predicted effects of nitric oxide and superoxide on the vasoactivity of the afferent arteriole.

    PubMed

    Layton, Anita T; Edwards, Aurélie

    2015-10-15

    We expanded a published mathematical model of an afferent arteriole smooth muscle cell in rat kidney (Edwards A, Layton, AT. Am J Physiol Renal Physiol 306: F34-F48, 2014) to understand how nitric oxide (NO) and superoxide (O(2)(-)) modulate the arteriolar diameter and its myogenic response. The present model includes the kinetics of NO and O(2)(-) formation, diffusion, and reaction. Also included are the effects of NO and its second messenger cGMP on cellular Ca²⁺ uptake and efflux, Ca²⁺-activated K⁺ currents, and myosin light chain phosphatase activity. The model considers as well pressure-induced increases in O(2)(-) production, O(2)(-)-mediated regulation of L-type Ca²⁺ channel conductance, and increased O(2)(-) production in spontaneous hypertensive rats (SHR). Our results indicate that elevated O(2)(-) production in SHR is sufficient to account for observed differences between normotensive and hypertensive rats in the response of the afferent arteriole to NO synthase inhibition, Tempol, and angiotensin II at baseline perfusion pressures. In vitro, whether the myogenic response is stronger in SHR remains uncertain. Our model predicts that if mechanosensitive cation channels are not modulated by O(2)(-), then fractional changes in diameter induced by pressure elevations should be smaller in SHR than in normotensive rats. Our results also suggest that most NO diffuses out of the smooth muscle cell without being consumed, whereas most O(2)(-) is scavenged, by NO and superoxide dismutase. Moreover, the predicted effects of superoxide on arteriolar constriction are not predominantly due to its scavenging of NO.

  3. Secondary optic nerve tumors.

    PubMed

    Christmas, N J; Mead, M D; Richardson, E P; Albert, D M

    1991-01-01

    Secondary tumors of the optic nerve are more common than primary optic nerve tumors. The involvement of the optic nerve may arise from direct invasion from intraocular malignancies, from hematopoietic malignancy, from meningeal carcinomatosis, or from distant primary tumors. Orbital tumors rarely invade the optic nerve, and brain tumors involve it only in their late stages.

  4. Intact subepidermal nerve fibers mediate mechanical hypersensitivity via the activation of protein kinase C gamma in spared nerve injury

    PubMed Central

    Ko, Miau-Hwa; Yang, Ming-Ling; Youn, Su-Chung; Tseng, To-Jung

    2016-01-01

    Background Spared nerve injury is an important neuropathic pain model for investigating the role of intact primary afferents in the skin on pain hypersensitivity. However, potential cellular mechanisms remain poorly understood. In phosphoinositide-3 kinase pathway, pyruvate dehydrogenase kinase 1 (PDK1) participates in the regulation of neuronal plasticity for central sensitization. The downstream cascades of PDK1 include: (1) protein kinase C gamma (PKCγ) controls the trafficking and phosphorylation of ionotropic glutamate receptor; (2) protein kinase B (Akt)/the mammalian target of rapamycin (mTOR) signaling is responsible for local protein synthesis. Under these statements, we therefore hypothesized that an increase of PKCγ activation and mTOR-dependent PKCγ synthesis in intact primary afferents after SNI might contribute to pain hypersensitivity. Results The variants of spared nerve injury were performed in Sprague-Dawley rats by transecting any two of the three branches of the sciatic nerve, leaving only one branch intact. Following SNIt (spared tibial branch), mechanical hyperalgesia and mechanical allodynia, but not thermal hyperalgesia, were significantly induced. In the first footpad, normal epidermal innervations were verified by the protein gene product 9.5 (PGP9.5)- and growth-associated protein 43 (GAP43)-immunoreactive (IR) intraepidermal nerve fibers (IENFs) densities. Furthermore, the rapid increases of phospho-PKCγ- and phospho-mTOR-IR subepidermal nerve fibers (SENFs) areas were distinct gathered from the results of PGP9.5-, GAP43-, and neurofilament 200 (NF200)-IR SENFs areas. The efficacy of PKC inhibitor (GF 109203X) or mTOR complex 1 inhibitor (rapamycin) for attenuating mechanical hyperalgesia and mechanical allodynia by intraplantar injection was dose-dependent. Conclusions From results obtained in this study, we strongly recommend that the intact SENFs persistently increase PKCγ activation and mTOR-dependent PKCγ synthesis participate

  5. A role for nociceptive, myelinated nerve fibers in itch sensation.

    PubMed

    Ringkamp, Matthias; Schepers, Raf J; Shimada, Steven G; Johanek, Lisa M; Hartke, Timothy V; Borzan, Jasenka; Shim, Beom; LaMotte, Robert H; Meyer, Richard A

    2011-10-19

    Despite its clinical importance, the underlying neural mechanisms of itch sensation are poorly understood. In many diseases, pruritus is not effectively treated with antihistamines, indicating the involvement of nonhistaminergic mechanisms. To investigate the role of small myelinated afferents in nonhistaminergic itch, we tested, in psychophysical studies in humans, the effect of a differential nerve block on itch produced by intradermal insertion of spicules from the pods of a cowhage plant (Mucuna pruriens). Electrophysiological experiments in anesthetized monkey were used to investigate the responsiveness of cutaneous, nociceptive, myelinated afferents to different chemical stimuli (cowhage spicules, histamine, capsaicin). Our results provide several lines of evidence for an important role of myelinated fibers in cowhage-induced itch: (1) a selective conduction block in myelinated fibers substantially reduces itch in a subgroup of subjects with A-fiber-dominated itch, (2) the time course of itch sensation differs between subjects with A-fiber- versus C-fiber-dominated itch, (3) cowhage activates a subpopulation of myelinated and unmyelinated afferents in monkey, (4) the time course of the response to cowhage is different in myelinated and unmyelinated fibers, (5) the time of peak itch sensation for subjects with A-fiber-dominated itch matches the time for peak response in myelinated fibers, and (6) the time for peak itch sensation for subjects with C-fiber-dominated itch matches the time for the peak response in unmyelinated fibers. These findings demonstrate that activity in nociceptive, myelinated afferents contributes to cowhage-induced sensations, and that nonhistaminergic itch is mediated through activity in both unmyelinated and myelinated afferents. PMID:22016517

  6. Short-interval intracortical inhibition is modulated by high-frequency peripheral mixed nerve stimulation.

    PubMed

    Murakami, Takenobu; Sakuma, Kenji; Nomura, Takashi; Nakashima, Kenji

    2007-06-01

    Cortical excitability can be modulated by manipulation of afferent input. We investigated the influence of peripheral mixed nerve stimulation on the excitability of the motor cortex. Motor evoked potentials (MEPs), short-interval intracortical inhibition (SICI) and intracortical facilitation (ICF) in the right abductor pollicis brevis (APB), extensor carpi radialis (ECR) and first dorsal interosseous (FDI) muscles were evaluated using paired-pulse transcranial magnetic stimulation (TMS) before and after high-frequency peripheral mixed nerve stimulation (150 Hz, 30 min) over the right median nerve at the wrist. The MEP amplitude and SICI of the APB muscle decreased transiently 0-10 min after the intervention, whereas the ICF did not change. High-frequency peripheral mixed nerve stimulation reduced the excitability of the motor cortex. The decrement in the SICI, which reflects the function of GABA(A)ergic inhibitory interneurons, might compensate for the reduced motor cortical excitability after high-frequency peripheral mixed nerve stimulation.

  7. Physiological and anatomical characteristics of primary vestibular afferent neurons in the bullfrog.

    PubMed

    Honrubia, V; Sitko, S; Kimm, J; Betts, W; Schwartz, I

    1981-01-01

    Intracellular recordings were made in the VIIIth nerve of the bullfrog (Rana catesbiana) to measure the membrane characteristics and obtain records of spontaneous and evoked spike activity of primary semicircular canal afferents. Physiological stimulation of the canals was achieved by rotating the preparation on a servomotor driven turntable with the animals' head centered in the rotational axis. The responses of each neuron to sinusoidal rotations at frequencies of 0.05Hz, 0.5Hz and for impulsive accelerations of 400 deg/sec2 were obtained. Membrane characteristics measured included the cell resting and action potential amplitude, and spike-activation threshold for applied currents. Physiologically characterized neurons were injected with horseradish peroxidase by applying pneumatic pressure and/or iontophoretic currents to the micropipettes containing 5% HRP in 1 M KCI. Following survival times of 12--48 h, the VIIIth nerve and attached vestibular end organ was removed for histochemical processing using a diaminobenzidine procedure to visualize the HRP reaction product. Light microscopy was used to discern the anatomical features of the neurons and to trace their peripheral dendritic trajectories from the ganglion to their termination(s) in the crista. Our studies have revealed that the bullfrog's primary vestibular afferents are characterized by a broad range of soma and axon diameters which correspond to an equally broad range of spontaneous and evoked activity characteristics. The largest neurons had more irregular spontaneous firing rates and consistently exhibited the greatest gain and smallest phase shifts with respect to head acceleration. These neurons consistently terminated at or near the central region of the crista. On the other hand, the smallest neurons were characterized by having the most regular spontaneous discharge patterns, the lowest gains, and greatest phase shifts with respect to head acceleration. Our findings are thus consistent with the

  8. Implantable electrode for recording nerve signals in awake animals

    NASA Technical Reports Server (NTRS)

    Ninomiya, I.; Yonezawa, Y.; Wilson, M. F.

    1976-01-01

    An implantable electrode assembly consisting of collagen and metallic electrodes was constructed to measure simultaneously neural signals from the intact nerve and bioelectrical noises in awake animals. Mechanical artifacts, due to bodily movement, were negligibly small. The impedance of the collagen electrodes, measured in awake cats 6-7 days after implantation surgery, ranged from 39.8-11.5 k ohms at a frequency range of 20-5 kHz. Aortic nerve activity and renal nerve activity, measured in awake conditions using the collagen electrode, showed grouped activity synchronous with the cardiac cycle. Results indicate that most of the renal nerve activity was from postganglionic sympathetic fibers and was inhibited by the baroceptor reflex in the same cardiac cycle.

  9. Reconstruction of atonic bladder innervation after spinal cord injury: A bladder reflex arc with afferent and efferent pathways.

    PubMed

    He, Jun; Li, Guitao; Luo, Dixin; Sun, Hongtao; Qi, Yong; Li, Yiyi; Jin, Xunjie

    2015-11-01

    Background Establishing bladder reflex arcs only with the efferent pathway to induce micturition after spinal cord injury (SCI) has been successful. However, the absence of sensory function and micturition desires can lead to serious complications. Objectives To reconstruct a bladder reflex arc with both afferent and efferent pathways to achieve atonic bladder innervation after SCI. Methods A reflex arc was established by microanastomosis of the S2 dorsal root to the peripheral process of the L5 dorsal ganglion and the L5 ventral root to the S2 ventral root. The functions of the reflex arc were evaluated using electrophysiology, wheat germ agglutinin-horseradish peroxidase (WGA-HRP) tracing, and calcitonin gene-related peptide (CGRP) immunocytochemistry analysis. Hind-paw motion was evaluated by CatWalk gait. Results Compound action potentials and compound muscle action potentials were recorded at the right L5 dorsal root following electrical stimulation of right S2 dorsal root. Similar to the control side, these were not significantly different before or after the spinal cord destruction between L6 and S4. WGA-HRP tracing and CGRP immunocytochemistry showed that construction of the afferent and efferent pathways of the bladder reflex arc encouraged axonal regeneration of motor and sensory nerves, which then made contact with the anterior and posterior horns of the spinal cord, ultimately reestablishing axoplasmic transportation. Gait analysis showed that at 3 months following the operation, only the regularity index was significantly different as compared with 1 day before the operation, other parameters showing no difference. Conclusion Bladder reflex arc with the afferent and efferent pathways reconstructs the micturition function without great influence on the motion of leg.

  10. Thresholds of cutaneous afferents related to perceptual threshold across the human foot sole.

    PubMed

    Strzalkowski, Nicholas D J; Mildren, Robyn L; Bent, Leah R

    2015-10-01

    Perceptual thresholds are known to vary across the foot sole, despite a reported even distribution in cutaneous afferents. Skin mechanical properties have been proposed to account for these differences; however, a direct relationship between foot sole afferent firing, perceptual threshold, and skin mechanical properties has not been previously investigated. Using the technique of microneurography, we recorded the monofilament firing thresholds of cutaneous afferents and associated perceptual thresholds across the foot sole. In addition, receptive field hardness measurements were taken to investigate the influence of skin hardness on these threshold measures. Afferents were identified as fast adapting [FAI (n = 48) or FAII (n = 13)] or slowly adapting [SAI (n = 21) or SAII (n = 20)], and were grouped based on receptive field location (heel, arch, metatarsals, toes). Overall, perceptual thresholds were found to most closely align with firing thresholds of FA afferents. In contrast, SAI and SAII afferent firing thresholds were found to be significantly higher than perceptual thresholds and are not thought to mediate monofilament perceptual threshold across the foot sole. Perceptual thresholds and FAI afferent firing thresholds were significantly lower in the arch compared with other regions, and skin hardness was found to positively correlate with both FAI and FAII afferent firing and perceptual thresholds. These data support a perceptual influence of skin hardness, which is likely the result of elevated FA afferent firing threshold at harder foot sole sites. The close coupling between FA afferent firing and perceptual threshold across foot sole indicates that small changes in FA afferent firing can influence perceptual thresholds.

  11. [Central projections of the rat superior laryngeal nerve].

    PubMed

    Pascual-Font, A; Maranillo, E; Merchán, A; Vázquez, T; Safiudo, J R; Valderrama-Canales, F

    2006-01-01

    Laryngeal nerves contain the fibres that control the laryngeal function. On the rat, the studies on the functional components and the real origin of the fibres conveyed by the superior laryngeal nerve (SLN) are few. No one of such works were developed using biotinylated dextrane amines (BDA), a powerful tool for tracing neural pathways. The aim of our study was to identify by using BDA, in the rat, the nuclei of real origin of the fibres of the SLN, knowing in this way the functional components of this nerve. The study has been developed in 11 adult male Sprague-Dawley rats, applying the BDA into the damaged SLN. The results obtained in all the animals shown that the rat SLN carries efferent fibres originated within the ipsilateral nucleus ambiguous (NA) and dorsal nucleus of the vagus (DNV), and that afferent fibres reach the tractus solitari and the nucleus tractus solitari. So, in the rat, the SLN seems to convey efferent fibres from the NA and DNV and, probably, all the laryngeal afferent fibres.

  12. The subtype of alpha-adrenoceptor involved in the neural control of renal tubular sodium reabsorption in the rabbit.

    PubMed Central

    Hesse, I F; Johns, E J

    1984-01-01

    A study was undertaken in pentobarbitone anaesthetized rabbits, undergoing a saline diuresis, to determine the subtype of alpha-adrenoceptor mediating renal tubular sodium reabsorption. Stimulation of the renal nerves at low rates, to cause an 11% fall in renal blood flow, did not change glomerular filtration rate but significantly reduced urine flow rate, and absolute and fractional sodium excretions by approximately 40%. These responses were reproducible in different groups of animals and with time. Renal nerve stimulation during an intra-renal arterial infusion of prazosin, to block alpha 1-adrenoceptors, had no effect on the renal haemodynamic response but completely abolished the reductions in urine flow rate, and absolute and fractional sodium excretion. During intra-renal arterial infusion of yohimbine, to block renal alpha 2-adrenoceptors, stimulation of the renal nerves to cause similar renal haemodynamic changes resulted in significantly larger reductions in urine flow rate, and absolute and fractional sodium excretion of about 52-58%. These results indicate that in the rabbit alpha 1-adrenoceptors are present on the renal tubules, which mediate the increase in sodium reabsorption caused by renal nerve stimulation. They further suggest the presence of presynaptic alpha 2-adrenoceptors on those nerves innervating the renal tubules. PMID:6086915

  13. Renal denervation: Not as easy as it looks.

    PubMed

    Esler, Murray

    2015-04-29

    Renal sympathetic denervation with intravascular radiofrequency catheters in hypertensive patients is less effective than anticipated, owing to radio frequency energy being applied to a part of the renal artery where the nerves are at the greatest distance from the aortic lumen and to distortion of energy distribution and temperature gradients by regional tissue anatomical variations (Tzafriri et al., this issue).

  14. Sciatic nerve regeneration through alginate with tubulation or nontubulation repair in cat.

    PubMed

    Sufan, W; Suzuki, Y; Tanihara, M; Ohnishi, K; Suzuki, K; Endo, K; Nishimura, Y

    2001-03-01

    A novel material for nerve regeneration, alginate, was employed in both tubulation and nontubulation repair of a long peripheral nerve defect injury. Twelve cats underwent severing of the right sciatic nerve to generate a 50-mm gap, which was treated by tubulation repair (n = 6) or nontubulation repair (n = 6). In the tubulation group, a nerve conduit consisting of polyglycolic acid mesh tube filled with alginate sponge was implanted into the gap and the tube was sutured to both nerve stumps. In the nontubulation group, the nerve defect was repaired by a simple interpolation of two pieces of alginate sponge without any suture. The animals in both groups exhibited similar recovery of locomotor function. Three months postoperatively, successful axonal elongation and reinnervation in both the afferent and efferent systems were detected by electrophysiological examinations. Intracellular electrical activity was also recorded, which is directly indicative of continuity of the regenerated nerve and restoration of the spinal reflex circuit. Eight months after operation, many regenerated myelinated axons with fascicular organization by perineurial cells were observed within the gap, peroneal and tibial branches were found in both groups, while no alginate residue was found within the regenerated nerves. In morphometric analysis of the axon density and diameter, there were no significant differences between the two groups. These results suggest that alginate is a potent material for promoting peripheral nerve regeneration. It can also be concluded that the nontubulation method is a possible repair approach for peripheral nerve defect injury.

  15. Macrophage-Colony Stimulating Factor Derived from Injured Primary Afferent Induces Proliferation of Spinal Microglia and Neuropathic Pain in Rats.

    PubMed

    Okubo, Masamichi; Yamanaka, Hiroki; Kobayashi, Kimiko; Dai, Yi; Kanda, Hirosato; Yagi, Hideshi; Noguchi, Koichi

    2016-01-01

    Peripheral nerve injury induces proliferation of microglia in the spinal cord, which can contribute to neuropathic pain conditions. However, candidate molecules for proliferation of spinal microglia after injury in rats remain unclear. We focused on the colony-stimulating factors (CSFs) and interleukin-34 (IL-34) that are involved in the proliferation of the mononuclear phagocyte lineage. We examined the expression of mRNAs for macrophage-CSF (M-CSF), granulocyte macrophage-CSF (GM-CSF), granulocyte-CSF (G-CSF) and IL-34 in the dorsal root ganglion (DRG) and spinal cord after spared nerve injury (SNI) in rats. RT-PCR and in situ hybridization revealed that M-CSF and IL-34, but not GM- or G-CSF, mRNAs were constitutively expressed in the DRG, and M-CSF robustly increased in injured-DRG neurons. M-CSF receptor mRNA was expressed in naive rats and increased in spinal microglia following SNI. Intrathecal injection of M-CSF receptor inhibitor partially but significantly reversed the proliferation of spinal microglia and in early phase of neuropathic pain induced by SNI. Furthermore, intrathecal injection of recombinant M-CSF induced microglial proliferation and mechanical allodynia. Here, we demonstrate that M-CSF is a candidate molecule derived from primary afferents that induces proliferation of microglia in the spinal cord and leads to induction of neuropathic pain after peripheral nerve injury in rats.

  16. Macrophage-Colony Stimulating Factor Derived from Injured Primary Afferent Induces Proliferation of Spinal Microglia and Neuropathic Pain in Rats.

    PubMed

    Okubo, Masamichi; Yamanaka, Hiroki; Kobayashi, Kimiko; Dai, Yi; Kanda, Hirosato; Yagi, Hideshi; Noguchi, Koichi

    2016-01-01

    Peripheral nerve injury induces proliferation of microglia in the spinal cord, which can contribute to neuropathic pain conditions. However, candidate molecules for proliferation of spinal microglia after injury in rats remain unclear. We focused on the colony-stimulating factors (CSFs) and interleukin-34 (IL-34) that are involved in the proliferation of the mononuclear phagocyte lineage. We examined the expression of mRNAs for macrophage-CSF (M-CSF), granulocyte macrophage-CSF (GM-CSF), granulocyte-CSF (G-CSF) and IL-34 in the dorsal root ganglion (DRG) and spinal cord after spared nerve injury (SNI) in rats. RT-PCR and in situ hybridization revealed that M-CSF and IL-34, but not GM- or G-CSF, mRNAs were constitutively expressed in the DRG, and M-CSF robustly increased in injured-DRG neurons. M-CSF receptor mRNA was expressed in naive rats and increased in spinal microglia following SNI. Intrathecal injection of M-CSF receptor inhibitor partially but significantly reversed the proliferation of spinal microglia and in early phase of neuropathic pain induced by SNI. Furthermore, intrathecal injection of recombinant M-CSF induced microglial proliferation and mechanical allodynia. Here, we demonstrate that M-CSF is a candidate molecule derived from primary afferents that induces proliferation of microglia in the spinal cord and leads to induction of neuropathic pain after peripheral nerve injury in rats. PMID:27071004

  17. Macrophage-Colony Stimulating Factor Derived from Injured Primary Afferent Induces Proliferation of Spinal Microglia and Neuropathic Pain in Rats

    PubMed Central

    Okubo, Masamichi; Yamanaka, Hiroki; Kobayashi, Kimiko; Dai, Yi; Kanda, Hirosato; Yagi, Hideshi; Noguchi, Koichi

    2016-01-01

    Peripheral nerve injury induces proliferation of microglia in the spinal cord, which can contribute to neuropathic pain conditions. However, candidate molecules for proliferation of spinal microglia after injury in rats remain unclear. We focused on the colony-stimulating factors (CSFs) and interleukin-34 (IL-34) that are involved in the proliferation of the mononuclear phagocyte lineage. We examined the expression of mRNAs for macrophage-CSF (M-CSF), granulocyte macrophage-CSF (GM-CSF), granulocyte-CSF (G-CSF) and IL-34 in the dorsal root ganglion (DRG) and spinal cord after spared nerve injury (SNI) in rats. RT-PCR and in situ hybridization revealed that M-CSF and IL-34, but not GM- or G-CSF, mRNAs were constitutively expressed in the DRG, and M-CSF robustly increased in injured-DRG neurons. M-CSF receptor mRNA was expressed in naive rats and increased in spinal microglia following SNI. Intrathecal injection of M-CSF receptor inhibitor partially but significantly reversed the proliferation of spinal microglia and in early phase of neuropathic pain induced by SNI. Furthermore, intrathecal injection of recombinant M-CSF induced microglial proliferation and mechanical allodynia. Here, we demonstrate that M-CSF is a candidate molecule derived from primary afferents that induces proliferation of microglia in the spinal cord and leads to induction of neuropathic pain after peripheral nerve injury in rats. PMID:27071004

  18. Electrophysiological study in the infraorbital nerve of the rat: Spontaneous and evoked activity

    NASA Astrophysics Data System (ADS)

    Albarracín, A. L.; Farfán, F. D.; Felice, C. J.

    2007-11-01

    In this work we present some studies in the afferent nerve of the rat vibrissae. Studies on spontaneous activity (SA) in this sensorial system are of long data. Nevertheless, SA recordings in the nerve of a single vibrissa have not been made until present. In this work, we use an algorithm based on signal decomposition with Continuous Wavelet Transform (CWT) to analyse the discharges of two nerves. The action potentials of both nerves were detected and the firing rates were calculated. These results suggest that the firing rate of one vibrissa innervation is low considering that this nerve contains hundred of fibers. In addition, we present preliminary studies suggesting important effects of the hair shaft length in the afferent discharge during the vibrissae movements. The experiments consisted in recording the nerve activity after the vibrissae were sectioned at two different levels. The results showed important differences in the signal energy contents. It suggests that the hair shaft length would produce a differential activation of the mechanoreceptors located in the vibrissae follicle.

  19. Octreotide inhibits capsaicin-induced activation of C and Aδ afferent fibres in rat hairy skin in vivo.

    PubMed

    Wang, Jun; Cao, Dong-Yuan; Guo, Yuan; Ma, Shao-Jie; Luo, Rong; Pickar, Joel G; Zhao, Yan

    2011-08-01

    1. The present study investigated whether the somatostatin receptor (SSTR) agonist, octreotide, could inhibit the activation of dorsal skin afferent fibres induced by local injection of capsaicin in the rat. 2. Single unit activity from Aδ mechano-heat sensitive (AMH; n = 41) and C mechano-heat sensitive (CMH; n = 30) afferents was recorded after their isolation in thin filaments from the dorsal cutaneous nerve branches. The effect of subcutaneous octreotide injection on the change in discharge rate and mechanical threshold induced by capsaicin was determined. 3. Capsaicin (0.05%) injection into the edge of the receptive field of both AMH and CMH units increased their discharge rate and decreased their mechanical threshold. Pre-injection of octreotide inhibited these responses, and co-application of SSTR antagonist, cyclosomatostatin, reversed the inhibitory effect of octreotide. 4. The present study provides electrophysiological evidence that the signal evoked by the somatostatin receptor inhibits the activation and mechanical sensitization evoked by capsaicin in the terminals in small-diameter sensory neurons.

  20. Nerve Injuries in Athletes.

    PubMed

    Collins, K; Storey, M; Peterson, K; Nutter, P

    1988-01-01

    In brief: Nerve injuries in athletes may be serious and may delay or prevent an athlete's return to his or her sport. Over a two-year period, the authors evaluated the condition of 65 patients who had entrapments of a nerve or nerve root, documented with electromyography. They describe four case histories: Two patients had radial nerve entrapments, one caused by baseball pitching and the other by kayaking; one football player had combined suprascapular neuropathy and upper trunk brachial plexopathy; and one patient had carpal tunnel syndrome of a median nerve secondary to rowing. Sports-related peripheral nerve lesions of the lower extremity were not seen during the study period. Based on a literature review, the nerve injuries discussed represent the spectrum of nerve entrapments likely to be seen in US clinics. The authors conclude that peripheral nerve lesions should be considered in the differential diagnosis of sports injuries, particularly at the shoulder, elbow, and wrist.

  1. Distinct recurrent versus afferent dynamics in cortical visual processing.

    PubMed

    Reinhold, Kimberly; Lien, Anthony D; Scanziani, Massimo

    2015-12-01

    How intracortical recurrent circuits in mammalian sensory cortex influence dynamics of sensory representation is not understood. Previous methods could not distinguish the relative contributions of recurrent circuits and thalamic afferents to cortical dynamics. We accomplish this by optogenetically manipulating thalamus and cortex. Over the initial 40 ms of visual stimulation, excitation from recurrent circuits in visual cortex progressively increased to exceed direct thalamocortical excitation. Even when recurrent excitation exceeded thalamic excitation, upon silencing thalamus, sensory-evoked activity in cortex decayed rapidly, with a time constant of 10 ms, which is similar to a neuron's integration time window. In awake mice, this cortical decay function predicted the time-locking of cortical activity to thalamic input at frequencies <15 Hz and attenuation of the cortical response to higher frequencies. Under anesthesia, depression at thalamocortical synapses disrupted the fidelity of sensory transmission. Thus, we determine dynamics intrinsic to cortical recurrent circuits that transform afferent input in time.

  2. Coding of stimuli by ampullary afferents in Gnathonemus petersii.

    PubMed

    Engelmann, J; Gertz, S; Goulet, J; Schuh, A; von der Emde, G

    2010-10-01

    Weakly electric fish use electroreception for both active and passive electrolocation and for electrocommunication. While both active and passive electrolocation systems are prominent in weakly electric Mormyriform fishes, knowledge of their passive electrolocation ability is still scarce. To better estimate the contribution of passive electric sensing to the orientation toward electric stimuli in weakly electric fishes, we investigated frequency tuning applying classical input-output characterization and stimulus reconstruction methods to reveal the encoding capabilities of ampullary receptor afferents. Ampullary receptor afferents were most sensitive (threshold: 40 μV/cm) at low frequencies (<10 Hz) and appear to be tuned to a mix of amplitude and slope of the input signals. The low-frequency tuning was corroborated by behavioral experiments, but behavioral thresholds were one order of magnitude higher. The integration of simultaneously recorded afferents of similar frequency-tuning resulted in strongly enhanced signal-to-noise ratios and increased mutual information rates but did not increase the range of frequencies detectable by the system. Theoretically the neuronal integration of input from receptors experiencing opposite polarities of a stimulus (left and right side of the fish) was shown to enhance encoding of such stimuli, including an increase of bandwidth. Covariance and coherence analysis showed that spiking of ampullary afferents is sufficiently explained by the spike-triggered average, i.e., receptors respond to a single linear feature of the stimulus. Our data support the notion of a division of labor of the active and passive electrosensory systems in weakly electric fishes based on frequency tuning. Future experiments will address the role of central convergence of ampullary input that we expect to lead to higher sensitivity and encoding power of the system. PMID:20685928

  3. Phase relation changes between the firings of alpha and gamma-motoneurons and muscle spindle afferents in the sacral micturition centre during continence functions in brain-dead human and patients with spinal cord injury.

    PubMed

    Schalow, G

    2010-01-01

    1. Single-nerve fibre action potentials (APs) were recorded with 2 pairs of wire electrodes from lower sacral nerve roots during surgery in patients with spinal cord injury and in a brain-dead human. Conduction velocity distribution histograms were constructed for afferent and efferent fibres, nerve fibre groups were identified and simultaneous impulse patterns of alpha and gamma-motoneurons and secondary muscle spindle afferents (SP2) were constructed. Temporal relations between afferent and efferent APs were analyzed by interspike interval (II) and phase relation changes to explore the coordinated self-organization of somatic and parasympathetic neuronal networks in the sacral micturition centre during continence functions under physiologic (brain-dead) and pathophysiologic conditions (spinal cord injury). 2. In a paraplegic with hyperreflexia of the bladder, urinary bladder stretch (S1) and tension receptor afferents (ST) fired already when the bladder was empty, and showed a several times higher bladder afferent activity increase upon retrograde bladder filling than observed in the brain-dead individual. Two alpha2-motoneurons (FR) innervating the external bladder sphincter were already oscillatory firing to generate high activity levels when the bladder was empty. They showed activity levels with no bladder filling, comparable to those measured at a bladder filling of 600 ml in the brain-dead individual. A bladder storage volume of 600 ml was thus lost in the paraplegic, due to a too high bladder afferent input to the sacral micturition center, secondary to inflammation and hypertrophy of the detrusor. 3. In a brain-dead human, 2 phase relations existed per oscillation period of 160 ms between the APs of a sphincteric oscillatory firing alpha2-motoneuron, a dynamic fusimotor and a secondary muscle spindle afferent fibre. Following stimulation of mainly somatic afferent fibres, the phase relations changed only little. 4. In a paraplegic with dyssynergia of the

  4. Subcortical afferent connections of the amygdala in the monkey

    NASA Technical Reports Server (NTRS)

    Mehler, W. R.

    1980-01-01

    The cells of origin of the afferent connections of the amygdala in the rhesus and squirrel monkeys are determined according to the retrograde axonal transport of the enzyme horseradish peroxidase injected into various quadrants of the amygdala. Analysis of the distribution of enzyme-labeled cells reveals afferent amygdalar connections with the ipsilateral halves of the midline nucleus paraventricularis thalami and both the parvo- and magnocellular parts of the nucleus subparafascicularis in the dorsal thalamus, all the subdivisions of the midline nucleus centralis complex, the nucleus reuniens ventralis and the nucleus interventralis. The largest populations of enzyme-labeled cells in the hypothalamus are found to lie in the middle and posterior parts of the ipsilateral, lateral hypothalamus and the ventromedial hypothalamic nucleus, with scattered cells in the supramammillary and dorsomedial nuclei and the posterior hypothalamic area, Tsai's ventral tegmental area, the rostral and caudal subdivisions of the nucleus linearis in the midbrain and the dorsal raphe nucleus. The most conspicuous subdiencephalic source of amygdalar afferent connections is observed to be the pars lateralis of the nucleus parabrachialis in the dorsolateral pontine tegmentum, with a few labeled cells differentiated from pigmented cells in the locus coeruleus.

  5. Neck afferent involvement in cardiovascular control during movement

    NASA Technical Reports Server (NTRS)

    Bolton, P. S.; Ray, C. A.

    2000-01-01

    It is well established that labyrinth and neck afferent information contributes to the regulation of somatomotor function during movement and changes in posture. There is also convincing evidence that the vestibular system participates in the modulation of sympathetic outflow and cardiovascular function during changes in posture, presumably to prevent orthostatic hypotension. However, the labyrinth organs do not provide any signals concerning body movements with respect to the head. In contrast, the neck receptors, particularly muscle spindles, are well located and suited to provide information about changes in body position with respect to the head and vestibular signals. Studies in the cat suggest that neck afferent information may modulate the vestibulosympathetic reflex responses to head-neck movements. There is some evidence in the cat to suggest involvement of low threshold mechanoreceptors. However, human studies do not indicate that low threshold mechanoreceptors in the neck modulate cardiovascular responses. The human studies are consistent with the studies in the cat in that they demonstrate the importance of otolith activation in mediating cardiovascular and sympathetic responses to changes in posture. This paper briefly reviews the current experimental evidence concerning the involvement of neck afferent information in the modulation of cardiovascular control during movement and changes in posture.

  6. Electrophysiology of the afferent innervation of the penis of the domestic ram.

    PubMed Central

    Cottrell, D F; Iggo, A; Kitchell, R L

    1978-01-01

    1. The discharge of impulses in afferent fibres dissected from the dorsal nerve of the penis of chloralose-anaesthetized rams was recorded electrophysiologically during controlled natural stimulation of the surgically exposed penis maintained at body temperature and mechanically stabilized in a plaster of Paris mould. 2. Fifty-eight slowly adapting mechanorecptor units were examined and their pressure, velocity and displacement thresholds were determined. Units often responded best to integumental stretch. Few had resting discharges. During a sustained perpendicularly applied displacement most units adapted to silence within 1.5 min. The units were classified into types from an analysis of their adapted impulse trains in response to a sustained mechanical stimulus. 3. Twenty-five mechanoreceptive units had rapidly adapting responses. Most units had typical rapid adapting characteristics and discharged impulses only during the dynamic phase of the application of the displacement. A subgroup had intermediate adapting characteristics, and discharged intermittently during steady displacement of the integument. 4. The mechanical sensitivity of most receptors altered when the temperature of the receptive field was changed with a positive correlation in eleven units, a negative correlation in six. Six slowly adapting units were thermally insensitive. Twelve rapidly adapting units were tested. Six had a positive thermal correlation and four a negative correlation. 5. The conduction velocities of axons of mechanoreceptor units in the dorsal nerve of the penis were in the Aalpha range (12--77 msec-1). 6. Two specific warm and five specific cold units were found. The conduction velocities of the axons supplying warm receptors were 45.4 msec-1 (one unit) and those for cold receptors were 7.5, 7.8, 30, 45.5, 48.7 msec-1. 7. No correlation could be found between the receptor submodality and the profuse receptor end bulb population demonstrated histologically. PMID:722579

  7. Asymmetric Macular Structural Damage Is Associated With Relative Afferent Pupillary Defects in Patients With Glaucoma

    PubMed Central

    Gracitelli, Carolina P. B.; Tatham, Andrew J.; Zangwill, Linda M.; Weinreb, Robert N.; Abe, Ricardo Y.; Diniz-Filho, Alberto; Paranhos, Augusto; Baig, Saif; Medeiros, Felipe A.

    2016-01-01

    Purpose We examined the relationship between relative afferent pupillary defects (RAPDs) and macular structural damage measured by macular thickness and macular ganglion cell-inner plexiform layer (mGCIPL) thickness in patients with glaucoma. Methods A cross-sectional study was done of 106 glaucoma patients and 85 healthy individuals from the Diagnostic Innovations in Glaucoma Study. All subjects underwent standard automated perimetry (SAP) and optic nerve and macular imaging using Cirrus Spectral Domain Optical Coherence Tomography (SDOCT). Glaucoma was defined as repeatable abnormal SAP or progressive glaucomatous changes on stereo photographs. Pupil responses were assessed using an automated pupillometer, which records the magnitude of RAPD (RAPD score), with additional RAPD scores recorded for each of a series of colored stimuli (blue, red, green, and yellow). The relationship between RAPD score and intereye differences (right minus left eye) in circumpapillary retinal nerve fiber layer (cpRNFL) thickness, mGCIPL, macular thickness, and SAP mean deviation (MD), was examined using linear regression. Results There was fair correlation between RAPD score and asymmetric macular structural damage measured by intereye difference in mGCIPL thickness (R2 = 0.285, P < 0.001). The relationship between RAPD score and intereye difference in macular thickness was weaker (R2 = 0.167, P < 0.001). Intereye difference in cpRNFL thickness (R2 = 0.350, P < 0.001) and SAP MD (R2 = 0.594, P < 0.001) had stronger association with RAPD scores compared to intereye difference in mGCIPL and macular thickness. Conclusions Objective assessment of pupillary responses using a pupillometer was associated with asymmetric macular structural damage in patients with glaucoma. PMID:27064394

  8. Central projections of antennular chemosensory and mechanosensory afferents in the brain of the terrestrial hermit crab (Coenobita clypeatus; Coenobitidae, Anomura)

    PubMed Central

    Tuchina, Oksana; Koczan, Stefan; Harzsch, Steffen; Rybak, Jürgen; Wolff, Gabriella; Strausfeld, Nicholas J.; Hansson, Bill S.

    2015-01-01

    The Coenobitidae (Decapoda, Anomura, Paguroidea) is a taxon of hermit crabs that includes two genera with a fully terrestrial life style as adults. Previous studies have shown that Coenobitidae have evolved a sense of spatial odor localization that is behaviorally highly relevant. Here, we examined the central olfactory pathway of these animals by analyzing central projections of the antennular nerve of Coenobita clypeatus, combining backfilling of the nerve with dextran-coupled dye, Golgi impregnations and three-dimensional reconstruction of the primary olfactory center, the antennular lobe. The principal pattern of putative olfactory sensory afferents in C. clypeatus is in many aspects similar to what have been established for aquatic decapod crustaceans, such as the spiny lobster Panulirus argus. However, there are also obvious differences that may, or may not represent adaptations related to a terrestrial lifestyle. In C. clypeatus, the antennular lobe dominates the deutocerebrum, having more than one thousand allantoid-shaped subunits. We observed two distinct patterns of sensory neuron innervation: putative olfactory afferents from the aesthetascs either supply the cap/subcap region of the subunits or they extend through its full depth. Our data also demonstrate that any one sensory axon can supply input to several subunits. Putative chemosensory (non-aesthetasc) and mechanosensory axons represent a different pathway and innervate the lateral and median antennular neuropils. Hence, we suggest that the chemosensory input in C. clypeatus might be represented via a dual pathway: aesthetascs target the antennular lobe, and bimodal sensilla target the lateral antennular neuropil and median antennular neuropil. The present data is compared to related findings in other decapod crustaceans. PMID:26236202

  9. Central projections of antennular chemosensory and mechanosensory afferents in the brain of the terrestrial hermit crab (Coenobita clypeatus; Coenobitidae, Anomura).

    PubMed

    Tuchina, Oksana; Koczan, Stefan; Harzsch, Steffen; Rybak, Jürgen; Wolff, Gabriella; Strausfeld, Nicholas J; Hansson, Bill S

    2015-01-01

    The Coenobitidae (Decapoda, Anomura, Paguroidea) is a taxon of hermit crabs that includes two genera with a fully terrestrial life style as adults. Previous studies have shown that Coenobitidae have evolved a sense of spatial odor localization that is behaviorally highly relevant. Here, we examined the central olfactory pathway of these animals by analyzing central projections of the antennular nerve of Coenobita clypeatus, combining backfilling of the nerve with dextran-coupled dye, Golgi impregnations and three-dimensional reconstruction of the primary olfactory center, the antennular lobe. The principal pattern of putative olfactory sensory afferents in C. clypeatus is in many aspects similar to what have been established for aquatic decapod crustaceans, such as the spiny lobster Panulirus argus. However, there are also obvious differences that may, or may not represent adaptations related to a terrestrial lifestyle. In C. clypeatus, the antennular lobe dominates the deutocerebrum, having more than one thousand allantoid-shaped subunits. We observed two distinct patterns of sensory neuron innervation: putative olfactory afferents from the aesthetascs either supply the cap/subcap region of the subunits or they extend through its full depth. Our data also demonstrate that any one sensory axon can supply input to several subunits. Putative chemosensory (non-aesthetasc) and mechanosensory axons represent a different pathway and innervate the lateral and median antennular neuropils. Hence, we suggest that the chemosensory input in C. clypeatus might be represented via a dual pathway: aesthetascs target the antennular lobe, and bimodal sensilla target the lateral antennular neuropil and median antennular neuropil. The present data is compared to related findings in other decapod crustaceans. PMID:26236202

  10. Neural encoding schemes of tactile information in afferent activity of the vibrissal system.

    PubMed

    Farfán, Fernando D; Albarracín, Ana L; Felice, Carmelo J

    2013-02-01

    When rats acquire sensory information by actively moving their vibrissae, a neural code is manifested at different levels of the sensory system. Behavioral studies in tactile discrimination agree that rats can distinguish different roughness surfaces by whisking their vibrissae. The present study explores the existence of neural encoding in the afferent activity of one vibrissal nerve. Two neural encoding schemes based on "events" were proposed (cumulative event count and median inter-event time). The events were detected by using an event detection algorithm based on multiscale decomposition of the signal (Continuous Wavelet Transform). The encoding schemes were quantitatively evaluated through the maximum amount of information which was obtained by the Shannon's mutual information formula. Moreover, the effect of difference distances between rat snout and swept surfaces on the information values was also studied. We found that roughness information was encoded by events of 0.8 ms duration in the cumulative event count and event of 1.0 to 1.6 ms duration in the median inter-event count. It was also observed that an extreme decrease of the distance between rat snout and swept surfaces significantly reduces the information values and the capacity to discriminate among the sweep situations.

  11. Ascending auditory interneurons in the cricket Teleogryllus commodus (Walker): comparative physiology and direct connections with afferents.

    PubMed

    Hennig, R M

    1988-05-01

    Ascending auditory interneurons of the cricket, Teleogryllus commodus (Walker), were investigated using simultaneous intracellular and extracellular recording in order to identify units which had previously been characterized only by extracellular recording. The morphology and physiology of the large adapting unit (LAU: Fig. 1) and of the small tonic unit (STU: Fig. 2) of Teleogryllus correspond well to those of the ascending neuron 2 (AN2) and the ascending neuron 1 (AN1) of Gryllus (Figs. 1, 2), respectively. A summary of the ascending auditory interneurons described by various authors in 5 species of crickets is presented in order to establish common identities. Physiological evidence for direct connections between auditory afferents and the ascending auditory interneurons AN1 (STU) and AN2 (LAU) is presented. Simultaneous intracellular recordings from receptors and interneurons in response to sound as well as the activity of auditory interneurons upon electrical stimulation of the tympanal nerve reveal short and constant latencies of receptor-evoked synaptic activity in AN1 (STU) and AN2 (LAU).

  12. Response of hip joint afferent fibers to pressure and vibration in the cat.

    PubMed

    Aloisi, A M; Carli, G; Rossi, A

    1988-07-19

    Mechanical properties of 33 slowly adapting and 8 quickly adapting capsule receptors of the hip joint were investigated. All the slowly adapting receptors identified were of a limited range, discharging only when the femur was rotated to its limit of movement. They behaved as single-spot high-threshold pressure receptors as shown by the von Frey's hairs. In addition they showed a low sensitivity to vibratory stimuli applied perpendicularly to their receptive field. Only 14 out of 33 units were found to discharge following vibration; 11 could be driven 1:1 at different frequencies. There was a general trend to be entrained at lower amplitudes for higher frequencies of vibration. A positive correlation between the pressure threshold and both activation angle and vibration threshold was found. The mechanical properties of all the quickly adapting capsule receptors were found to be similar to those described in other tissues. Finally, unlike joint receptors, slowly adapting muscle afferents travelling in the same hip articular nerve were highly sensitive to pressure and vibratory stimuli.

  13. KCa1.1 is potential marker for distinguishing Ah-type baroreceptor neurons in NTS and contributes to sex-specific presynaptic neurotransmission in baroreflex afferent pathway.

    PubMed

    Zhang, Yu-Yao; Yan, Zhen-Yu; Qu, Mei-Yu; Guo, Xin-Jing; Li, Guo; Lu, Xiao-Long; Liu, Yang; Ban, Tao; Sun, Hong-Li; Qiao, Guo-Fen; Li, Bai-Yan

    2015-09-14

    Sexual-dimorphic neurocontrol of circulation has been described in baroreflex due largely to the function of myelinated Ah-type baroreceptor neurons (BRNs, 1st-order) in nodose. However, it remains unclear if sex- and afferent-specific neurotransmission could also be observed in the central synapses within nucleus of solitary track (NTS, 2nd-order). According to the principle of no mixed neurotransmission among afferents and differentiation of Ah- and A-types to iberiotoxin (IbTX) observed in nodose, the 2nd-order Ah-type BRNs are highly expected. To test this hypothesis, the excitatory post-synaptic currents (EPSCs) were recorded in identified 2nd-order BRNs before and after IbTX using brain slice and whole-cell patch. These results showed that, in male rats, the dynamics of EPSCs in capsaicin-sensitive C-types were dramatically altered by IbTX, but not in capsaicin-insensitive A-types. Interestingly, near 50% capsaicin-insensitive neurons in females showed similar effects to C-types, suggesting the existence of Ah-types in NTS, which may be the likely reason why the females had lower blood pressure and higher sensitivity to aortic depressor nerve stimulation via KCa1.1-mediated presynaptic glutamate release from Ah-type afferent terminals.

  14. Peripheral μ-opioid receptor mediated inhibition of calcium signaling and action potential-evoked calcium fluorescent transients in primary afferent CGRP nociceptive terminals.

    PubMed

    Baillie, Landon D; Schmidhammer, Helmut; Mulligan, Sean J

    2015-06-01

    While μ-opioid receptor (MOR) agonists remain the most powerful analgesics for the treatment of severe pain, serious adverse side effects that are secondary to their central nervous system actions pose substantial barriers to therapeutic use. Preclinical and clinical evidence suggest that peripheral MORs play an important role in opioid analgesia, particularly under inflammatory conditions. However, the mechanisms of peripheral MOR signaling in primary afferent pain fibres remain to be established. We have recently introduced a novel ex vivo optical imaging approach that, for the first time, allows the study of physiological functioning within individual peripheral nociceptive fibre free nerve endings in mice. In the present study, we found that MOR activation in selectively identified, primary afferent CGRP nociceptive terminals caused inhibition of N-type Ca(2+) channel signaling and suppression of action potential-evoked Ca(2+) fluorescent transients mediated by 'big conductance' Ca(2+)-activated K(+) channels (BKCa). In the live animal, we showed that the peripherally acting MOR agonist HS-731 produced analgesia and that BKCa channels were the major effectors of the peripheral MOR signaling. We have identified two key molecular transducers of MOR activation that mediate significant inhibition of nociceptive signaling in primary afferent terminals. Understanding the mechanisms of peripheral MOR signaling may promote the development of pathway selective μ-opioid drugs that offer improved therapeutic profiles for achieving potent analgesia while avoiding serious adverse central side effects. PMID:25721395

  15. Vestibular afferent responses to linear accelerations in the alert squirrel monkey

    NASA Technical Reports Server (NTRS)

    Somps, Christopher J.; Schor, Robert H.; Tomko, David L.

    1994-01-01

    The spontaneous activity of 40 otolith afferents and 44 canal afferents was recorded in 4 alert, intact squirrel monkeys. Polarization vectors and response properties of otolith afferents were determined during static re-orientations relative to gravity and during Earth-horizontal, sinusoidal, linear oscillations. Canal afferents were tested for sensitivity to linear accelerations. For regular otolith afferents, a significant correlation between upright discharge rate and sensitivity to dynamic acceleration in the horizontal plane was observed. This correlation was not present in irregular units. The sensitivity of otolith afferents to both static tilts and dynamic linear acceleration was much greater in irregularly discharging units than in regularly discharging units. The spontaneous activity and static and dynamic response properties of regularly discharging otolith afferents were similar to those reported in barbiturate-anesthetized squirrel monkeys. Irregular afferents also had similar dynamic response properties when compared to anesthetized monkeys. However, this sample of irregular afferents in alert animals had higher resting discharge rates and greater sensitivity to static tilts. The majority of otolith polarization vectors were oriented near the horizontal in the plane of the utricular maculae; however, directions of maximum sensitivity were different during dynamic and static testing. Canal afferents were not sensitive to static tilts or linear oscillations of the head.

  16. A computational model for estimating recruitment of primary afferent fibers by intraneural stimulation in the dorsal root ganglia

    NASA Astrophysics Data System (ADS)

    Bourbeau, D. J.; Hokanson, J. A.; Rubin, J. E.; Weber, D. J.

    2011-10-01

    Primary afferent microstimulation has been proposed as a method for activating cutaneous and muscle afferent fibers to restore tactile and proprioceptive feedback after limb loss or peripheral neuropathy. Large populations of primary afferent fibers can be accessed directly by implanting microelectrode arrays in the dorsal root ganglia (DRG), which provide a compact and stable target for stimulating a diverse group of sensory fibers. To gain insight into factors affecting the number and types of primary afferents activated, we developed a computational model that simulates the recruitment of fibers in the feline L7 DRG. The model comprises two parts. The first part is a single-fiber model used to describe the current-distance relation and was based on the McIntyre-Richardson-Grill model for excitability. The second part uses the results of the singe-fiber model and published data on fiber size distributions to predict the probability of recruiting a given number of fibers as a function of stimulus intensity. The range of intensities over which exactly one fiber was recruited was approximately 0.5-5 µA (0.1-1 nC per phase); the stimulus intensity at which the probability of recruiting exactly one fiber was maximized was 2.3 µA. However, at 2.3 µA, it was also possible to recruit up to three fibers, albeit with a lower probability. Stimulation amplitudes up to 6 µA were tested with the population model, which showed that as the amplitude increased, the number of fibers recruited increased exponentially. The distribution of threshold amplitudes predicted by the model was similar to that previously reported by in vivo experimentation. Finally, the model suggested that medium diameter fibers (7.3-11.5 µm) may be recruited with much greater probability than large diameter fibers (12.8-16 µm). This model may be used to efficiently test a range of stimulation parameters and nerve morphologies to complement results from electrophysiology experiments and to aid in the

  17. Common peroneal nerve dysfunction

    MedlinePlus

    ... toe-out movements Tests of nerve activity include: Electromyography (EMG, a test of electrical activity in muscles) Nerve ... Peroneal neuropathy. In: Preston DC, Shapiro BE, eds. Electromyography and Neuromuscular Disorders . 3rd ed. Philadelphia, PA: Elsevier; ...

  18. Nerve conduction velocity

    MedlinePlus

    ... to measure the speed of the nerve signals. Electromyography (recording from needles placed into the muscles) is ... Often, the nerve conduction test is followed by electromyography (EMG). In this test, needles are placed into ...

  19. Electromechanical Nerve Stimulator

    NASA Technical Reports Server (NTRS)

    Tcheng, Ping; Supplee, Frank H., Jr.; Prass, Richard L.

    1993-01-01

    Nerve stimulator applies and/or measures precisely controlled force and/or displacement to nerve so response of nerve measured. Consists of three major components connected in tandem: miniature probe with spherical tip; transducer; and actuator. Probe applies force to nerve, transducer measures force and sends feedback signal to control circuitry, and actuator positions force transducer and probe. Separate box houses control circuits and panel. Operator uses panel to select operating mode and parameters. Stimulator used in research to characterize behavior of nerve under various conditions of temperature, anesthesia, ventilation, and prior damage to nerve. Also used clinically to assess damage to nerve from disease or accident and to monitor response of nerve during surgery.

  20. Nerve Injuries in Athletes.

    ERIC Educational Resources Information Center

    Collins, Kathryn; And Others

    1988-01-01

    Over a two-year period this study evaluated the condition of 65 athletes with nerve injuries. These injuries represent the spectrum of nerve injuries likely to be encountered in sports medicine clinics. (Author/MT)

  1. Renal denervation by intravascular ultrasound: Preliminary in vivo study

    NASA Astrophysics Data System (ADS)

    Sinelnikov, Yegor; McClain, Steve; Zou, Yong; Smith, David; Warnking, Reinhard

    2012-10-01

    Ultrasound denervation has recently become a subject of intense research in connection with the treatment of complex medical conditions including neurological conditions, development of pain management, reproduction of skin sensation, neuropathic pain and spasticity. The objective of this study is to investigate the use of intravascular ultrasound to produce nerve damage in renal sympathetic nerves without significant injury to the renal artery. This technique may potentially be used to treat various medical conditions, such as hypertension. The study was approved by the Institutional Animal Care and Use Committee. Ultrasound was applied to renal nerves of the swine model for histopathological evaluation. Therapeutic ultrasound energy was delivered circumferentially by an intravascular catheter maneuvered into the renal arteries. Fluoroscopic imaging was conducted pre-and post-ultrasound treatment. Animals were recovered and euthanized up to 30 hours post procedure, followed by necropsy and tissue sample collection. Histopathological examination showed evidence of extensive damage to renal nerves, characterized by nuclear pyknosis, hyalinization of stroma and multifocal hemorrhages, with little or no damage to renal arteries. This study demonstrates the feasibility of intravascular ultrasound as a minimally invasive renal denervation technique. Further studies are necessary to evaluate the long-term safety and efficacy of this technique and its related clinical significance.

  2. Synaptic ultrastructure changes in trigeminocervical complex posttrigeminal nerve injury.

    PubMed

    Park, John; Trinh, Van Nancy; Sears-Kraxberger, Ilse; Li, Kang-Wu; Steward, Oswald; Luo, Z David

    2016-02-01

    Trigeminal nerves collecting sensory information from the orofacial area synapse on second-order neurons in the dorsal horn of subnucleus caudalis and cervical C1/C2 spinal cord (Vc/C2, or trigeminocervical complex), which is critical for sensory information processing. Injury to the trigeminal nerves may cause maladaptive changes in synaptic connectivity that plays an important role in chronic pain development. Here we examined whether injury to the infraorbital nerve, a branch of the trigeminal nerves, led to synaptic ultrastructural changes when the injured animals have developed neuropathic pain states. Transmission electron microscopy was used to examine synaptic profiles in Vc/C2 at 3 weeks postinjury, corresponding to the time of peak behavioral hypersensitivity following chronic constriction injury to the infraorbital nerve (CCI-ION). Using established criteria, synaptic profiles were classified as associated with excitatory (R-), inhibitory (F-), and primary afferent (C-) terminals. Each type was counted within the superficial dorsal horn of the Vc/C2 and the means from each rat were compared between sham and injured animals; synaptic contact length was also measured. The overall analysis indicates that rats with orofacial pain states had increased numbers and decreased mean synaptic length of R-profiles within the Vc/C2 superficial dorsal horn (lamina I) 3 weeks post-CCI-ION. Increases in the number of excitatory synapses in the superficial dorsal horn of Vc/C2 could lead to enhanced activation of nociceptive pathways, contributing to the development of orofacial pain states.

  3. Optic Nerve Injury in a Patient with Chronic Allergic Conjunctivitis

    PubMed Central

    Hazin, Ribhi; Elia, Christopher J.; Putruss, Maria; Bazzi, Amanda

    2014-01-01

    Manipulation of the optic nerve can lead to irreversible vision changes. We present a patient with a past medical history of skin allergy and allergic conjunctivitis (AC) who presented with insidious unexplained unilateral vision loss. Physical exam revealed significant blepharospasm, mild lid edema, bulbar conjunctival hyperemia, afferent pupillary defect, and slight papillary hypertrophy. Slit lamp examination demonstrated superior and inferior conjunctival scarring as well as superior corneal scarring but no signs of external trauma or neurological damage were noted. Conjunctival cultures and cytologic evaluation demonstrated significant eosinophilic infiltration. Subsequent ophthalmoscopic examination revealed optic nerve atrophy. Upon further questioning, the patient admitted to vigorous itching of the affected eye for many months. Given the presenting symptoms, history, and negative ophthalmological workup, it was determined that the optic nerve atrophy was likely secondary to digital pressure from vigorous itching. Although AC can be a significant source of decreased vision via corneal ulceration, no reported cases have ever described AC-induced vision loss of this degree from vigorous itching and chronic pressure leading to optic nerve damage. Despite being self-limiting in nature, allergic conjunctivitis should be properly managed as extreme cases can result in mechanical compression of the optic nerve and compromise vision. PMID:25317346

  4. Deletion of the murine ATP/UTP receptor P2Y2 alters mechanical and thermal response properties in polymodal cutaneous afferents.

    PubMed

    Molliver, Derek C; Rau, Kristofer K; Jankowski, Michael P; Soneji, Deepak J; Baumbauer, Kyle M; Koerber, H Richard

    2016-09-22

    P2Y2 is a member of the P2Y family of G protein-coupled nucleotide receptors that is widely co-expressed with TRPV1 in peripheral sensory neurons of the dorsal root ganglia. To characterize P2Y2 function in cutaneous afferents, intracellular recordings from mouse sensory neurons were made using an ex vivo preparation in which hindlimb skin, saphenous nerve, dorsal root ganglia and spinal cord are dissected intact. The peripheral response properties of individual cutaneous C-fibers were analyzed using digitally controlled mechanical and thermal stimuli in male P2Y2(+/+) and P2Y2(-/-) mice. Selected sensory neurons were labeled with Neurobiotin and further characterized by immunohistochemistry. In wildtype preparations, C-fibers responding to both mechanical and thermal stimuli (CMH or CMHC) preferentially bound the lectin marker IB4 and were always immunonegative for TRPV1. Conversely, cells that fired robustly to noxious heat, but were insensitive to mechanical stimuli, were TRPV1-positive and IB4-negative. P2Y2 gene deletion resulted in reduced firing by TRPV1-negative CMH fibers to a range of heat stimuli. However, we also identified an atypical population of IB4-negative, TRPV1-positive CMH fibers. Compared to wildtype CMH fibers, these TRPV1-positive neurons exhibited lower firing rates in response to mechanical stimulation, but had increased firing to noxious heat (43-51°C). Collectively, these results demonstrate that P2Y2 contributes to response properties of cutaneous afferents, as P2Y2 deletion reduces responsiveness of conventional unmyelinated polymodal afferents to heat and appears to result in the acquisition of mechanical responsiveness in a subset of TRPV1-expressing afferents. PMID:27393251

  5. Deletion of the murine ATP/UTP receptor P2Y2 alters mechanical and thermal response properties in polymodal cutaneous afferents.

    PubMed

    Molliver, Derek C; Rau, Kristofer K; Jankowski, Michael P; Soneji, Deepak J; Baumbauer, Kyle M; Koerber, H Richard

    2016-09-22

    P2Y2 is a member of the P2Y family of G protein-coupled nucleotide receptors that is widely co-expressed with TRPV1 in peripheral sensory neurons of the dorsal root ganglia. To characterize P2Y2 function in cutaneous afferents, intracellular recordings from mouse sensory neurons were made using an ex vivo preparation in which hindlimb skin, saphenous nerve, dorsal root ganglia and spinal cord are dissected intact. The peripheral response properties of individual cutaneous C-fibers were analyzed using digitally controlled mechanical and thermal stimuli in male P2Y2(+/+) and P2Y2(-/-) mice. Selected sensory neurons were labeled with Neurobiotin and further characterized by immunohistochemistry. In wildtype preparations, C-fibers responding to both mechanical and thermal stimuli (CMH or CMHC) preferentially bound the lectin marker IB4 and were always immunonegative for TRPV1. Conversely, cells that fired robustly to noxious heat, but were insensitive to mechanical stimuli, were TRPV1-positive and IB4-negative. P2Y2 gene deletion resulted in reduced firing by TRPV1-negative CMH fibers to a range of heat stimuli. However, we also identified an atypical population of IB4-negative, TRPV1-positive CMH fibers. Compared to wildtype CMH fibers, these TRPV1-positive neurons exhibited lower firing rates in response to mechanical stimulation, but had increased firing to noxious heat (43-51°C). Collectively, these results demonstrate that P2Y2 contributes to response properties of cutaneous afferents, as P2Y2 deletion reduces responsiveness of conventional unmyelinated polymodal afferents to heat and appears to result in the acquisition of mechanical responsiveness in a subset of TRPV1-expressing afferents.

  6. The projection and synaptic organisation of NTS afferent connections with presympathetic neurons, GABA and nNOS neurons in the paraventricular nucleus of the hypothalamus.

    PubMed

    Affleck, V S; Coote, J H; Pyner, S

    2012-09-01

    Elevated sympathetic nerve activity, strongly associated with cardiovascular disease, is partly generated from the presympathetic neurons of the paraventricular nucleus of the hypothalamus (PVN). The PVN-presympathetic neurons regulating cardiac and vasomotor sympathetic activity receive information about cardiovascular status from receptors in the heart and circulation. These receptors signal changes via afferent neurons terminating in the nucleus tractus solitarius (NTS), some of which may result in excitation or inhibition of PVN-presympathetic neurons. Understanding the anatomy and neurochemistry of NTS afferent connections within the PVN could provide important clues to the impairment in homeostasis cardiovascular control associated with disease. Transynaptic labelling has shown the presence of neuronal nitric oxide synthase (nNOS)-containing neurons and GABA interneurons that terminate on presympathetic PVN neurons any of which may be the target for NTS afferents. So far NTS connections to these diverse neuronal pools have not been demonstrated and were investigated in this study. Anterograde (biotin dextran amine - BDA) labelling of the ascending projection from the NTS and retrograde (fluorogold - FG or cholera toxin B subunit - CTB) labelling of PVN presympathetic neurons combined with immunohistochemistry for GABA and nNOS was used to identify the terminal neuronal targets of the ascending projection from the NTS. It was shown that NTS afferent terminals are apposed to either PVN-GABA interneurons or to nitric oxide producing neurons or even directly to presympathetic neurons. Furthermore, there was evidence that some NTS axons were positive for vesicular glutamate transporter 2 (vGLUT2). The data provide an anatomical basis for the different functions of cardiovascular receptors that mediate their actions via the NTS-PVN pathways.

  7. Distal nerve entrapment following nerve repair.

    PubMed

    Schoeller, T; Otto, A; Wechselberger, G; Pommer, B; Papp, C

    1998-04-01

    Failure of nerve repair or poor functional outcome after reconstruction can be influenced by various causes. Besides improper microsurgical technique, fascicular malalignment and unphysiologic tension, we found in our clinical series that a subclinical nerve compression distal to the repair site can seriously impair regeneration. We concluded that the injured nerve, whether from trauma or microsurgical intervention, could be more susceptible to distal entrapment in the regenerative stage because of its disturbed microcirculation, swelling and the increase of regenerating axons followed by increased nerve volume. In two cases we found the regenerating nerve entrapped at pre-existing anatomical sites of narrowing resulting in impaired functional recovery. In both cases the surgical therapy was decompression of the distal entrapped nerve and this was followed by continued regeneration. Thorough clinical and electrophysiologic follow-up is necessary to detect such adverse compression effects and to distinguish between the various causes of failed regeneration. Under certain circumstances primary preventive decompression may be beneficial if performed at the time of nerve coaptation.

  8. Effects of intratympanic gentamicin on vestibular afferents and hair cells in the chinchilla.

    PubMed

    Hirvonen, Timo P; Minor, Lloyd B; Hullar, Timothy E; Carey, John P

    2005-02-01

    Gentamicin is toxic to vestibular hair cells, but its effects on vestibular afferents have not been defined. We treated anesthetized chinchillas with one injection of gentamicin (26.7 mg/ml) into the middle ear and made extracellular recordings from afferents after 5-25 (early) or 90-115 days (late). The relative proportions of regular, intermediate, and irregular afferents did not change after treatment. The spontaneous firing rate of regular afferents was lower (P < 0.001) on the treated side (early: 44.3 +/- 16.3; late: 33.9 +/- 13.2 spikes x s(-1)) than on the untreated side (54.9 +/- 16.8 spikes x s(-1)). Spontaneous rates of irregular and intermediate afferents did not change. The majority of treated afferents did not measurably respond to tilt or rotation (82% in the early group, 76% in the late group). Those that did respond had abnormally low sensitivities (P < 0.001). Treated canal units that responded to rotation had mean sensitivities only 5-7% of the values for untreated canal afferents. Treated otolith afferents had mean sensitivities 23-28% of the values for untreated otolith units. Sensitivity to externally applied galvanic currents was unaffected for all afferents. Intratympanic gentamicin treatment reduced the histological density of all hair cells by 57% (P = 0.04). The density of hair cells with calyx endings was reduced by 99% (P = 0.03), although some remaining hair cells had other features suggestive of type I morphology. Type II hair cell density was not significantly reduced. These findings suggest that a single intratympanic gentamicin injection causes partial damage and loss of vestibular hair cells, particularly type I hair cells or their calyceal afferent endings, does not damage the afferent spike initiation zones, and preserves enough hair cell synaptic activity to drive the spontaneous activity of vestibular afferents.

  9. How many hair follicles are innervated by one afferent axon? A confocal microscopic analysis of palisade endings in the auricular skin of thy1-YFP transgenic mouse.

    PubMed

    Suzuki, Maasa; Ebara, Satomi; Koike, Taro; Tonomura, Sotatsu; Kumamoto, Kenzo

    2012-01-01

    Hairs are known as a sensory apparatus for touch. Their follicles are innervated predominantly by palisade endings composed of longitudinal and circumferential lanceolate endings. However, little is known as to how their original primary neurons make up a part of the ending. In this study, innervation of the palisade endings was investigated in the auricular skin of thy1-YFP transgenic mouse. Major observations were 1) Only a small portion of PGP9.5-immunopositive axons showed YFP-positivity, 2) All of thy1-YFP-positive sensory axons were thick and myelinated, 3) Individual thy1-YFP-positive trunk axons innervated 4-54 hair follicles, 4) Most palisade endings had a gap of lanceolate ending arrangement, 5) PGP9.5-immunopositive 10-32 longitudinal lanceolate endings were closely arranged. Only a part of them were thy1-YFP-positive axons that originated from 1-3 afferents, and 6) Single nerve bundles of the dermal nerve network included both bidirectional afferents. Palisade endings innervated by multiple sensory neurons might be highly sensitive to hair movement.

  10. Differential ATF3 expression in dorsal root ganglion neurons reveals the profile of primary afferents engaged by diverse noxious chemical stimuli

    PubMed Central

    Bráz, João M.; Basbaum, Allan I.

    2010-01-01

    Although transgenic and knockout mice have helped delineate the mechanisms of action of diverse noxious compounds, it is still difficult to determine unequivocally the subpopulations of primary afferent nociceptor that these molecules engage. As most noxious stimuli lead to tissue and/or nerve injury, here we used induction of activating transcription factor 3 (ATF3), a reliable marker of nerve injury, to assess the populations of primary afferent fibers that are activated after peripheral administration of noxious chemical stimuli. In wild-type mice, hindpaw injections of capsaicin, formalin, mustard oil or menthol induce expression of ATF3 in distinct subpopulations of sensory neurons. Interestingly, even though these noxious chemicals are thought to act through subtypes of transient receptor potential (TRP) channels, all compounds also induced ATF3 in neurons that appear not to express the expected TRP channel subtypes. On the other hand, capsaicin failed to induce ATF3 in mice lacking TRPV1, indicating that TRPV1 is required for both the direct and indirect induction of ATF3 in sensory neurons. By contrast, only low doses of formalin or mustard oil failed to induce ATF3 in TRPA1 null mice, indicating that injections of high doses (>0.5%) of formalin or mustard oil recruit both TRPA1 and non-TRPA1 expressing primary afferent fibers. Finally, peripheral injection of menthol, a TRPM8 receptor agonist, induced ATF3 in a wide variety of sensory neurons, but in a TRPM8-independent manner. We conclude that purportedly selective agonists can activate a heterogeneous population of sensory neurons, which ultimately could contribute to the behavioral responses evoked. PMID:20605331

  11. Kv1 channels and neural processing in vestibular calyx afferents.

    PubMed

    Meredith, Frances L; Kirk, Matthew E; Rennie, Katherine J

    2015-01-01

    Potassium-selective ion channels are important for accurate transmission of signals from auditory and vestibular sensory end organs to their targets in the central nervous system. During different gravity conditions, astronauts experience altered input signals from the peripheral vestibular system resulting in sensorimotor dysfunction. Adaptation to altered sensory input occurs, but it is not explicitly known whether this involves synaptic modifications within the vestibular epithelia. Future investigations of such potential plasticity require a better understanding of the electrophysiological mechanisms underlying the known heterogeneity of afferent discharge under normal conditions. This study advances this understanding by examining the role of the Kv1 potassium channel family in mediating action potentials in specialized vestibular afferent calyx endings in the gerbil crista and utricle. Pharmacological agents selective for different sub-types of Kv1 channels were tested on membrane responses in whole cell recordings in the crista. Kv1 channels sensitive to α-dendrotoxin and dendrotoxin-K were found to prevail in the central regions, whereas K(+) channels sensitive to margatoxin, which blocks Kv1.3 and 1.6 channels, were more prominent in peripheral regions. Margatoxin-sensitive currents showed voltage-dependent inactivation. Dendrotoxin-sensitive currents showed no inactivation and dampened excitability in calyces in central neuroepithelial regions. The differential distribution of Kv1 potassium channels in vestibular afferents supports their importance in accurately relaying gravitational and head movement signals through specialized lines to the central nervous system. Pharmacological modulation of specific groups of K(+) channels could help alleviate vestibular dysfunction on earth and in space. PMID:26082693

  12. Heat pulse excitability of vestibular hair cells and afferent neurons.

    PubMed

    Rabbitt, Richard D; Brichta, Alan M; Tabatabaee, Hessam; Boutros, Peter J; Ahn, JoongHo; Della Santina, Charles C; Poppi, Lauren A; Lim, Rebecca

    2016-08-01

    In the present study we combined electrophysiology with optical heat pulse stimuli to examine thermodynamics of membrane electrical excitability in mammalian vestibular hair cells and afferent neurons. We recorded whole cell currents in mammalian type II vestibular hair cells using an excised preparation (mouse) and action potentials (APs) in afferent neurons in vivo (chinchilla) in response to optical heat pulses applied to the crista (ΔT ≈ 0.25°C per pulse). Afferent spike trains evoked by heat pulse stimuli were diverse and included asynchronous inhibition, asynchronous excitation, and/or phase-locked APs synchronized to each infrared heat pulse. Thermal responses of membrane currents responsible for APs in ganglion neurons were strictly excitatory, with Q10 ≈ 2. In contrast, hair cells responded with a mix of excitatory and inhibitory currents. Excitatory hair cell membrane currents included a thermoelectric capacitive current proportional to the rate of temperature rise (dT/dt) and an inward conduction current driven by ΔT An iberiotoxin-sensitive inhibitory conduction current was also evoked by ΔT, rising in <3 ms and decaying with a time constant of ∼24 ms. The inhibitory component dominated whole cell currents in 50% of hair cells at -68 mV and in 67% of hair cells at -60 mV. Responses were quantified and described on the basis of first principles of thermodynamics. Results identify key molecular targets underlying heat pulse excitability in vestibular sensory organs and provide quantitative methods for rational application of optical heat pulses to examine protein biophysics and manipulate cellular excitability. PMID:27226448

  13. Renal denervation for treatment of drug-resistant hypertension.

    PubMed

    Esler, Murray

    2015-02-01

    At the seven-year anniversary of the first catheter-based renal denervation procedure for resistant hypertension, it is timely to reflect on the past, present, and future of the development and clinical application of this treatment. Unresolved procedural and technical questions are central: How much renal denervation is optimal? How can this level of denervation be achieved? What test for denervation can be applied in renal denervation trials? Will renal denervation show a "class effect," with the different energy forms now used for renal nerve ablation producing equivalent blood pressure lowering? When I have assessed renal denervation efficacy, using measurements of the spillover of norepinephrine from the renal sympathetic nerves to plasma, the only test validated to this point, denervation was found to be incomplete and non-uniform between patients. It is probable that the degree of denervation has commonly been suboptimal in renal denervation trials; this criticism applying with special force to the Symplicity HTN-3 trial, where the proceduralists, although expert interventional cardiologists, had no prior experience with the renal denervation technique. Recently presented results from the Symplicity HTN-3 trial confirm that renal denervation was not achieved effectively or consistently. Given this, and other difficulties in the execution of the trial relating to drug adherence, an idea mooted is that the US pivotal trial of the future may be in younger, untreated patients.

  14. Atheroembolic renal disease

    MedlinePlus

    Renal disease - atheroembolic; Cholesterol embolization syndrome; Atheroemboli - renal; Atherosclerotic disease - renal ... disorder of the arteries. It occurs when fat, cholesterol, and other substances build up in the walls ...

  15. A combined TMS-EEG study of short-latency afferent inhibition in the motor and dorsolateral prefrontal cortex.

    PubMed

    Noda, Yoshihiro; Cash, Robin F H; Zomorrodi, Reza; Dominguez, Luis Garcia; Farzan, Faranak; Rajji, Tarek K; Barr, Mera S; Chen, Robert; Daskalakis, Zafiris J; Blumberger, Daniel M

    2016-09-01

    Combined transcranial magnetic stimulation and electroencephalography (TMS-EEG) enables noninvasive neurophysiological investigation of the human cortex. A TMS paradigm of short-latency afferent inhibition (SAI) is characterized by attenuation of the motor-evoked potential (MEP) and modulation of N100 of the TMS-evoked potential (TEP) when TMS is delivered to motor cortex (M1) following median nerve stimulation. SAI is a marker of cholinergic activity in the motor cortex; however, the SAI has not been tested from the prefrontal cortex. We aimed to explore the effect of SAI in dorsolateral prefrontal cortex (DLPFC). SAI was examined in 12 healthy subjects with median nerve stimulation and TMS delivered to M1 and DLPFC at interstimulus intervals (ISIs) relative to the individual N20 latency. SAI in M1 was tested at the optimal ISI of N20 + 2 ms. SAI in DLPFC was investigated at a range of ISI from N20 + 2 to N20 + 20 ms to explore its temporal profile. For SAI in M1, the attenuation of MEP amplitude was correlated with an increase of TEP N100 from the left central area. A similar spatiotemporal neural signature of SAI in DLPFC was observed with a marked increase of N100 amplitude. SAI in DLPFC was maximal at ISI N20 + 4 ms at the left frontal area. These findings establish the neural signature of SAI in DLPFC. Future studies could explore whether DLPFC-SAI is neurophysiological marker of cholinergic dysfunction in cognitive disorders.

  16. Renal Autoregulation in Health and Disease

    PubMed Central

    Carlström, Mattias; Wilcox, Christopher S.; Arendshorst, William J.

    2015-01-01

    Intrarenal autoregulatory mechanisms maintain renal blood flow (RBF) and glomerular filtration rate (GFR) independent of renal perfusion pressure (RPP) over a defined range (80–180 mmHg). Such autoregulation is mediated largely by the myogenic and the macula densa-tubuloglomerular feedback (MD-TGF) responses that regulate preglomerular vasomotor tone primarily of the afferent arteriole. Differences in response times allow separation of these mechanisms in the time and frequency domains. Mechanotransduction initiating the myogenic response requires a sensing mechanism activated by stretch of vascular smooth muscle cells (VSMCs) and coupled to intracellular signaling pathways eliciting plasma membrane depolarization and a rise in cytosolic free calcium concentration ([Ca2+]i). Proposed mechanosensors include epithelial sodium channels (ENaC), integrins, and/or transient receptor potential (TRP) channels. Increased [Ca2+]i occurs predominantly by Ca2+ influx through L-type voltage-operated Ca2+ channels (VOCC). Increased [Ca2+]i activates inositol trisphosphate receptors (IP3R) and ryanodine receptors (RyR) to mobilize Ca2+ from sarcoplasmic reticular stores. Myogenic vasoconstriction is sustained by increased Ca2+ sensitivity, mediated by protein kinase C and Rho/Rho-kinase that favors a positive balance between myosin light-chain kinase and phosphatase. Increased RPP activates MD-TGF by transducing a signal of epithelial MD salt reabsorption to adjust afferent arteriolar vasoconstriction. A combination of vascular and tubular mechanisms, novel to the kidney, provides for high autoregulatory efficiency that maintains RBF and GFR, stabilizes sodium excretion, and buffers transmission of RPP to sensitive glomerular capillaries, thereby protecting against hypertensive barotrauma. A unique aspect of the myogenic response in the renal vasculature is modulation of its strength and speed by the MD-TGF and by a connecting tubule glomerular feedback (CT-GF) mechanism

  17. Renal autoregulation in health and disease.

    PubMed

    Carlström, Mattias; Wilcox, Christopher S; Arendshorst, William J

    2015-04-01

    Intrarenal autoregulatory mechanisms maintain renal blood flow (RBF) and glomerular filtration rate (GFR) independent of renal perfusion pressure (RPP) over a defined range (80-180 mmHg). Such autoregulation is mediated largely by the myogenic and the macula densa-tubuloglomerular feedback (MD-TGF) responses that regulate preglomerular vasomotor tone primarily of the afferent arteriole. Differences in response times allow separation of these mechanisms in the time and frequency domains. Mechanotransduction initiating the myogenic response requires a sensing mechanism activated by stretch of vascular smooth muscle cells (VSMCs) and coupled to intracellular signaling pathways eliciting plasma membrane depolarization and a rise in cytosolic free calcium concentration ([Ca(2+)]i). Proposed mechanosensors include epithelial sodium channels (ENaC), integrins, and/or transient receptor potential (TRP) channels. Increased [Ca(2+)]i occurs predominantly by Ca(2+) influx through L-type voltage-operated Ca(2+) channels (VOCC). Increased [Ca(2+)]i activates inositol trisphosphate receptors (IP3R) and ryanodine receptors (RyR) to mobilize Ca(2+) from sarcoplasmic reticular stores. Myogenic vasoconstriction is sustained by increased Ca(2+) sensitivity, mediated by protein kinase C and Rho/Rho-kinase that favors a positive balance between myosin light-chain kinase and phosphatase. Increased RPP activates MD-TGF by transducing a signal of epithelial MD salt reabsorption to adjust afferent arteriolar vasoconstriction. A combination of vascular and tubular mechanisms, novel to the kidney, provides for high autoregulatory efficiency that maintains RBF and GFR, stabilizes sodium excretion, and buffers transmission of RPP to sensitive glomerular capillaries, thereby protecting against hypertensive barotrauma. A unique aspect of the myogenic response in the renal vasculature is modulation of its strength and speed by the MD-TGF and by a connecting tubule glomerular feedback (CT

  18. Diving and exercise: the interaction of trigeminal receptors and muscle metaboreceptors on muscle sympathetic nerve activity in humans.

    PubMed

    Fisher, James P; Fernandes, Igor A; Barbosa, Thales C; Prodel, Eliza; Coote, John H; Nóbrega, Antonio Claudio L; Vianna, Lauro C

    2015-03-01

    Swimming involves muscular activity and submersion, creating a conflict of autonomic reflexes elicited by the trigeminal receptors and skeletal muscle afferents. We sought to determine the autonomic cardiovascular responses to separate and concurrent stimulation of the trigeminal cutaneous receptors and metabolically sensitive skeletal muscle afferents (muscle metaboreflex). In eight healthy men (30 ± 2 yr) muscle sympathetic nerve activity (MSNA; microneurography), mean arterial pressure (MAP; Finometer), femoral artery blood flow (duplex Doppler ultrasonography), and femoral vascular conductance (femoral artery blood flow/MAP) were assessed during the following three experimental conditions: 1) facial cooling (trigeminal nerve stimulation), 2) postexercise ischemia (PEI; muscle metaboreflex activation) following isometric handgrip, and 3) trigeminal nerve stimulation with concurrent PEI. Trigeminal nerve stimulation produced significant increases in MSNA total activity (Δ347 ± 167%) and MAP (Δ21 ± 5%) and a reduction in femoral artery vascular conductance (Δ-17 ± 9%). PEI also evoked significant increases in MSNA total activity (Δ234 ± 83%) and MAP (Δ36 ± 4%) and a slight nonsignificant reduction in femoral artery vascular conductance (Δ-9 ± 12%). Trigeminal nerve stimulation with concurrent PEI evoked changes in MSNA total activity (Δ341 ± 96%), MAP (Δ39 ± 4%), and femoral artery vascular conductance (Δ-20 ± 9%) that were similar to those evoked by either separate trigeminal nerve stimulation or separate PEI. Thus, excitatory inputs from the trigeminal nerve and metabolically sensitive skeletal muscle afferents do not summate algebraically in eliciting a MSNA and cardiovascular response but rather exhibit synaptic occlusion, suggesting a high degree of convergent inputs on output neurons. PMID:25527781

  19. Nerve injury reduces responses of hypoglossal motoneurones to baseline and chemoreceptor-modulated inspiratory drive in the adult rat

    PubMed Central

    González-Forero, David; Portillo, Federico; Sunico, Carmen R; Moreno-López, Bernardo

    2004-01-01

    The effects of peripheral nerve lesions on the membrane and synaptic properties of motoneurones have been extensively studied. However, minimal information exists about how these alterations finally influence discharge activity and motor output under physiological afferent drive. The aim of this work was to evaluate the effect of hypoglossal (XIIth) nerve crushing on hypoglossal motoneurone (HMN) discharge in response to the basal inspiratory afferent drive and its chemosensory modulation by CO2. The evolution of the lesion was assessed by recording the compound muscle action potential evoked by XIIth nerve stimulation, which was lost on crushing and then recovered gradually to control values from the second to fourth weeks post-lesion. Basal inspiratory activities recorded 7 days post-injury in the nerve proximal to the lesion site, and in the nucleus, were reduced by 51.6% and 35.8%, respectively. Single unit antidromic latencies were lengthened by lesion, and unusually high stimulation intensities were frequently required to elicit antidromic spikes. Likewise, inspiratory modulation of unitary discharge under conditions in which chemoreceptor drive was varied by altering end-tidal CO2 was reduced by more than 60%. Although the general recruitment scheme was preserved after XIIth nerve lesion, we noticed an increased proportion of low-threshold units and a reduced recruitment gain across the physiological range. Immunohistochemical staining of synaptophysin in the hypoglossal nuclei revealed significant reductions of this synaptic marker after nerve injury. Morphological and functional alterations recovered with muscle re-innervation. Thus, we report here that nerve lesion induced changes in the basal activity and discharge modulation of HMNs, concurrent with the loss of afferent inputs. Nevertheless, we suggest that an increase in membrane excitability, reported by others, and in the proportion of low-threshold units, could serve to preserve minimal electrical

  20. Diving and exercise: the interaction of trigeminal receptors and muscle metaboreceptors on muscle sympathetic nerve activity in humans.

    PubMed

    Fisher, James P; Fernandes, Igor A; Barbosa, Thales C; Prodel, Eliza; Coote, John H; Nóbrega, Antonio Claudio L; Vianna, Lauro C

    2015-03-01

    Swimming involves muscular activity and submersion, creating a conflict of autonomic reflexes elicited by the trigeminal receptors and skeletal muscle afferents. We sought to determine the autonomic cardiovascular responses to separate and concurrent stimulation of the trigeminal cutaneous receptors and metabolically sensitive skeletal muscle afferents (muscle metaboreflex). In eight healthy men (30 ± 2 yr) muscle sympathetic nerve activity (MSNA; microneurography), mean arterial pressure (MAP; Finometer), femoral artery blood flow (duplex Doppler ultrasonography), and femoral vascular conductance (femoral artery blood flow/MAP) were assessed during the following three experimental conditions: 1) facial cooling (trigeminal nerve stimulation), 2) postexercise ischemia (PEI; muscle metaboreflex activation) following isometric handgrip, and 3) trigeminal nerve stimulation with concurrent PEI. Trigeminal nerve stimulation produced significant increases in MSNA total activity (Δ347 ± 167%) and MAP (Δ21 ± 5%) and a reduction in femoral artery vascular conductance (Δ-17 ± 9%). PEI also evoked significant increases in MSNA total activity (Δ234 ± 83%) and MAP (Δ36 ± 4%) and a slight nonsignificant reduction in femoral artery vascular conductance (Δ-9 ± 12%). Trigeminal nerve stimulation with concurrent PEI evoked changes in MSNA total activity (Δ341 ± 96%), MAP (Δ39 ± 4%), and femoral artery vascular conductance (Δ-20 ± 9%) that were similar to those evoked by either separate trigeminal nerve stimulation or separate PEI. Thus, excitatory inputs from the trigeminal nerve and metabolically sensitive skeletal muscle afferents do not summate algebraically in eliciting a MSNA and cardiovascular response but rather exhibit synaptic occlusion, suggesting a high degree of convergent inputs on output neurons.

  1. [Muscle afferent block for the treatment of writer's cramp].

    PubMed

    Sawamoto, N; Kaji, R; Katayama, M; Kubori, T; Kimura, J

    1995-11-01

    A 29-year-old man suffered from dystonic writer's cramp for over three years. When he wrote, typed and did other tasks using right hand, dystonic involuntary movement triggered medial rotation of the arm, wrist extension and shoulder elevation. Medication, biofeedback, and botulinum injection were performed without much success. We tried to block the sensory input from muscles by using lidocaine and ethanol. We made injections of 0.5% lidocaine 50ml and 99% ethanol 5ml into muscles with abnormal activity at the frequency of twice a week for about six months. After the treatment, dystonic movement was remarkably improved and he was then able to write, type and perform other tasks with the right hand. Side effects included pain of the injection site, nausea and dizziness, which lasted for a few hours. This "muscle afferent block" did not cause muscle weakness. We speculate that muscle afferent plays a pivotal role in dystonia so that its blocking may be of clinical use.

  2. Interactions between visceral afferent signaling and stimulus processing.

    PubMed

    Critchley, Hugo D; Garfinkel, Sarah N

    2015-01-01

    Visceral afferent signals to the brain influence thoughts, feelings and behavior. Here we highlight the findings of a set of empirical investigations in humans concerning body-mind interaction that focus on how feedback from states of autonomic arousal shapes cognition and emotion. There is a longstanding debate regarding the contribution of the body to mental processes. Recent theoretical models broadly acknowledge the role of (autonomically-mediated) physiological arousal to emotional, social and motivational behaviors, yet the underlying mechanisms are only partially characterized. Neuroimaging is overcoming this shortfall; first, by demonstrating correlations between autonomic change and discrete patterns of evoked, and task-independent, neural activity; second, by mapping the central consequences of clinical perturbations in autonomic response and; third, by probing how dynamic fluctuations in peripheral autonomic state are integrated with perceptual, cognitive and emotional processes. Building on the notion that an important source of the brain's representation of physiological arousal is derived from afferent information from arterial baroreceptors, we have exploited the phasic nature of these signals to show their differential contribution to the processing of emotionally-salient stimuli. This recent work highlights the facilitation at neural and behavioral levels of fear and threat processing that contrasts with the more established observations of the inhibition of central pain processing during baroreceptors activation. The implications of this body-brain-mind axis are discussed. PMID:26379481

  3. Cross-Modal Calibration of Vestibular Afference for Human Balance.

    PubMed

    Héroux, Martin E; Law, Tammy C Y; Fitzpatrick, Richard C; Blouin, Jean-Sébastien

    2015-01-01

    To determine how the vestibular sense controls balance, we used instantaneous head angular velocity to drive a galvanic vestibular stimulus so that afference would signal that head movement was faster or slower than actual. In effect, this changed vestibular afferent gain. This increased sway 4-fold when subjects (N = 8) stood without vision. However, after a 240 s conditioning period with stable balance achieved through reliable visual or somatosensory cues, sway returned to normal. An equivalent galvanic stimulus unrelated to sway (not driven by head motion) was equally destabilising but in this situation the conditioning period of stable balance did not reduce sway. Reflex muscle responses evoked by an independent, higher bandwidth vestibular stimulus were initially reduced in amplitude by the galvanic stimulus but returned to normal levels after the conditioning period, contrary to predictions that they would decrease after adaptation to increased sensory gain and increase after adaptation to decreased sensory gain. We conclude that an erroneous vestibular signal of head motion during standing has profound effects on balance control. If it is unrelated to current head motion, the CNS has no immediate mechanism of ignoring the vestibular signal to reduce its influence on destabilising balance. This result is inconsistent with sensory reweighting based on disturbances. The increase in sway with increased sensory gain is also inconsistent with a simple feedback model of vestibular reflex action. Thus, we propose that recalibration of a forward sensory model best explains the reinterpretation of an altered reafferent signal of head motion during stable balance. PMID:25894558

  4. Spontaneous hyperactivity in the auditory midbrain: relationship to afferent input.

    PubMed

    Robertson, Donald; Bester, Christofer; Vogler, Darryl; Mulders, Wilhelmina H A M

    2013-01-01

    Hyperactivity in the form of increased spontaneous firing rates of single neurons develops in the guinea pig inferior colliculus (IC) after unilateral loud sound exposures that result in behavioural signs of tinnitus. The hyperactivity is found in those parts of the topographic frequency map in the IC where neurons possess characteristic frequencies (CFs) closely related to the region in the cochlea where lasting sensitivity changes occur as a result of the loud sound exposure. The observed hyperactivity could be endogenous to the IC, or it could be driven by hyperactivity at lower stages of the auditory pathway. In addition to the dorsal cochlear nucleus (DCN) hyperactivity reported by others, specific cell types in the ventral cochlear nucleus (VCN) also show hyperactivity in this animal model suggesting that increased drive from several regions of the lower brainstem could contribute to the observed hyperactivity in the midbrain. In addition, spontaneous afferent drive from the cochlea itself is necessary for the maintenance of hyperactivity up to about 8 weeks post cochlear trauma. After 8 weeks however, IC hyperactivity becomes less dependent on cochlear input, suggesting that central neurons transition from a state of hyperexcitability to a state in which they generate their own endogenous firing. The results suggest that there might be a "therapeutic window" for early-onset tinnitus, using treatments that reduce cochlear afferent firing. PMID:22349094

  5. Cross-Modal Calibration of Vestibular Afference for Human Balance

    PubMed Central

    Héroux, Martin E; Law, Tammy C. Y.; Fitzpatrick, Richard C.; Blouin, Jean-Sébastien

    2015-01-01

    To determine how the vestibular sense controls balance, we used instantaneous head angular velocity to drive a galvanic vestibular stimulus so that afference would signal that head movement was faster or slower than actual. In effect, this changed vestibular afferent gain. This increased sway 4-fold when subjects (N = 8) stood without vision. However, after a 240 s conditioning period with stable balance achieved through reliable visual or somatosensory cues, sway returned to normal. An equivalent galvanic stimulus unrelated to sway (not driven by head motion) was equally destabilising but in this situation the conditioning period of stable balance did not reduce sway. Reflex muscle responses evoked by an independent, higher bandwidth vestibular stimulus were initially reduced in amplitude by the galvanic stimulus but returned to normal levels after the conditioning period, contrary to predictions that they would decrease after adaptation to increased sensory gain and increase after adaptation to decreased sensory gain. We conclude that an erroneous vestibular signal of head motion during standing has profound effects on balance control. If it is unrelated to current head motion, the CNS has no immediate mechanism of ignoring the vestibular signal to reduce its influence on destabilising balance. This result is inconsistent with sensory reweighting based on disturbances. The increase in sway with increased sensory gain is also inconsistent with a simple feedback model of vestibular reflex action. Thus, we propose that recalibration of a forward sensory model best explains the reinterpretation of an altered reafferent signal of head motion during stable balance. PMID:25894558

  6. Interactions between visceral afferent signaling and stimulus processing

    PubMed Central

    Critchley, Hugo D.; Garfinkel, Sarah N.

    2015-01-01

    Visceral afferent signals to the brain influence thoughts, feelings and behavior. Here we highlight the findings of a set of empirical investigations in humans concerning body-mind interaction that focus on how feedback from states of autonomic arousal shapes cognition and emotion. There is a longstanding debate regarding the contribution of the body to mental processes. Recent theoretical models broadly acknowledge the role of (autonomically-mediated) physiological arousal to emotional, social and motivational behaviors, yet the underlying mechanisms are only partially characterized. Neuroimaging is overcoming this shortfall; first, by demonstrating correlations between autonomic change and discrete patterns of evoked, and task-independent, neural activity; second, by mapping the central consequences of clinical perturbations in autonomic response and; third, by probing how dynamic fluctuations in peripheral autonomic state are integrated with perceptual, cognitive and emotional processes. Building on the notion that an important source of the brain's representation of physiological arousal is derived from afferent information from arterial baroreceptors, we have exploited the phasic nature of these signals to show their differential contribution to the processing of emotionally-salient stimuli. This recent work highlights the facilitation at neural and behavioral levels of fear and threat processing that contrasts with the more established observations of the inhibition of central pain processing during baroreceptors activation. The implications of this body-brain-mind axis are discussed. PMID:26379481

  7. Microsecond-Scale Timing Precision in Rodent Trigeminal Primary Afferents

    PubMed Central

    Bale, Michael R.; Campagner, Dario; Erskine, Andrew

    2015-01-01

    Communication in the nervous system occurs by spikes: the timing precision with which spikes are fired is a fundamental limit on neural information processing. In sensory systems, spike-timing precision is constrained by first-order neurons. We found that spike-timing precision of trigeminal primary afferents in rats and mice is limited both by stimulus speed and by electrophysiological sampling rate. High-speed video of behaving mice revealed whisker velocities of at least 17,000°/s, so we delivered an ultrafast “ping” (>50,000°/s) to single whiskers and sampled primary afferent activity at 500 kHz. Median spike jitter was 17.4 μs; 29% of neurons had spike jitter < 10 μs. These results indicate that the input stage of the trigeminal pathway has extraordinary spike-timing precision and very high potential information capacity. This timing precision ranks among the highest in biology. PMID:25878266

  8. Methodological Standardization for the Preclinical Evaluation of Renal Sympathetic Denervation

    PubMed Central

    Sakakura, Kenichi; Ladich, Elena; Edelman, Elazer R.; Markham, Peter; Stanley, James R.L.; Keating, John; Kolodgie, Frank D.; Virmani, Renu; Joner, Michael

    2015-01-01

    Transcatheter ablation of renal autonomic nerves is a viable option for the treatment of resistent arterial hypertension; however, structured preclinical evaluation with standardization of analytical procedures remains a clear gap in this field. Here we discuss the topics relevant to the preclinical model for the evaluation of renal denervation (RDN) devices and report methodologies and criteria towards standardization of the safety and efficacy assessment, including histopathological evaluations of the renal artery, peri-arterial nerves, and associated peri-adventitial tissues. The preclinical swine renal artery model can be used effectively to assess both the safety and efficacy of RDN technologies. Assessment of the efficacy of RDN modalities primarily focuses on the determination of the depth of penetration of treatment-related injury (eg, necrosis) of the peri-arterial tissues and its relationship (ie, location and distance) and affect on the associated renal nerves and the correlation thereof with proxy biomarkers including renal norepinephrine concentrations and nerve-specific immunohistochemical stains (eg, tyrosine hydroxylase). The safety evaluation of RDN technologies involves assessing for adverse effects on tissues local to the site of treatment (ie, on the arterial wall) as well as tissues at a distance (eg, soft tissue, veins, arterial branches, skeletal muscle, adrenal gland, ureters). Increasing experience will help to create a standardized means of examining all arterial beds subject to ablative energy and in doing so enable us to proceed to optimize development and assessment of these emerging technologies. PMID:25240550

  9. Angiotensin II receptors in rabbit renal preglomerular vessels

    SciTech Connect

    Brown, G.P.; Venuto, R.C. )

    1988-07-01

    Controversy exists regarding the specific sites within the renal microcirculation affected by angiotensin II (ANG II). Under some conditions, ANG II can elicit direct vasoconstrictor responses in the preglomerular vessels and efferent arterioles. These experiments were designed to evaluate the binding of {sup 125}I-ANG II in preglomerular vessels. Arcuate and interlobular arteries, with attached proximal segments of afferent arterioles, were microdissected from rabbit renal cortexes. A membrane preparation was obtained from the pooled freshly dissected vessels and utilized in an ANG II radioreceptor assay on the same day. The dissociation of bound ANG II was enhanced in the presence of a nonhydrolyzable analogue of GTP. Linear Scatchard plots were obtained, indicating the presence of a single class of high-affinity binding sites. In conclusion, there is a single class of specific ANG II receptors in preglomerular vessels. The K{sub D} and N are similar, but the binding inhibition potencies of selected ANG analogues differ in renal and extrarenal vascular tissues. Intrarenal vascular receptors also appear to differ from glomerular receptors. Furthermore, these data support the concept that ANG II may affect renal vascular resistance at sites proximal to the distal afferent arterioles.

  10. Activation of the galanin receptor 2 in the periphery reverses nerve injury-induced allodynia

    PubMed Central

    2011-01-01

    Background Galanin is expressed at low levels in the intact sensory neurons of the dorsal root ganglia with a dramatic increase after peripheral nerve injury. The neuropeptide is also expressed in primary afferent terminals in the dorsal horn, spinal inter-neurons and in a number of brain regions known to modulate nociception. Intrathecal administration of galanin modulates sensory responses in a dose-dependent manner with inhibition at high doses. To date it is unclear which of the galanin receptors mediates the anti-nociceptive effects of the neuropeptide and whether their actions are peripherally and/or centrally mediated. In the present study we investigated the effects of direct administration into the receptive field of galanin and the galanin receptor-2/3-agonist Gal2-11 on nociceptive primary afferent mechanical responses in intact rats and mice and in the partial saphenous nerve injury (PSNI) model of neuropathic pain. Results Exogenous galanin altered the responses of mechano-nociceptive C-fibre afferents in a dose-dependent manner in both naive and nerve injured animals, with low concentrations facilitating and high concentrations markedly inhibiting mechano-nociceptor activity. Further, use of the galanin fragment Gal2-11 confirmed that the effects of galanin were mediated by activation of galanin receptor-2 (GalR2). The inhibitory effects of peripheral GalR2 activation were further supported by our demonstration that after PSNI, mechano-sensitive nociceptors in galanin over-expressing transgenic mice had significantly higher thresholds than in wild type animals, associated with a marked reduction in spontaneous neuronal firing and C-fibre barrage into the spinal cord. Conclusions These findings are consistent with the hypothesis that the high level of endogenous galanin in injured primary afferents activates peripheral GalR2, which leads to an increase in C-fibre mechanical activation thresholds and a marked reduction in evoked and ongoing nociceptive

  11. The Furcal Nerve Revisited

    PubMed Central

    Dabke, Harshad V.

    2014-01-01

    Atypical sciatica and discrepancy between clinical presentation and imaging findings is a dilemma for treating surgeon in management of lumbar disc herniation. It also constitutes ground for failed back surgery and potential litigations thereof. Furcal nerve (Furcal = forked) is an independent nerve with its own ventral and dorsal branches (rootlets) and forms a link nerve that connects lumbar and sacral plexus. Its fibers branch out to be part of femoral and obturator nerves in-addition to the lumbosacral trunk. It is most commonly found at L4 level and is the most common cause of atypical presentation of radiculopathy/sciatica. Very little is published about the furcal nerve and many are unaware of its existence. This article summarizes all the existing evidence about furcal nerve in English literature in an attempt to create awareness and offer insight about this unique entity to fellow colleagues/professionals involved in spine care. PMID:25317309

  12. Possible involvement of convergent nociceptive input to medullary dorsal horn neurons in intraoral hyperalgesia following peripheral nerve injury.

    PubMed

    Terayama, Ryuji; Tsuchiya, Hiroki; Omura, Shinji; Maruhama, Kotaro; Mizutani, Masahide; Iida, Seiji; Sugimoto, Tomosada

    2015-04-01

    Previous studies demonstrated that the number of c-Fos protein-like immunoreactive (c-Fos-IR) neurons in the medullary dorsal horn (MDH) evoked by noxious stimulation was increased after peripheral nerve injury, and such increase has been proposed to reflect the development of neuropathic pain state. The aim of this study was to examine the MDH for convergent collateral primary afferent input to second order neurons deafferented by peripheral nerve injury, and to explore a possibility of its contribution to the c-Fos hyperinducibility. Double immunofluorescence labeling for c-Fos and phosphorylated extracellular signal-regulated kinase (p-ERK) was performed to detect convergent synaptic input. c-Fos expression and the phosphorylation of ERK were induced by the intraoral application of capsaicin and by electrical stimulation of the inferior alveolar nerve (IAN), respectively. The number of c-Fos-IR neurons in the MDH induced by the intraoral application of capsaicin was increased after IAN injury, whereas the number of p-ERK immunoreactive neurons remained unchanged. The number of double-labeled neurons, that presumably received convergent primary afferent input from the lingual nerve and the IAN, was significantly increased after IAN injury. These results indicated that convergent primary nociceptive input through neighboring intact nerves may contribute to the c-Fos hyperinducibility in the MDH and the pathogenesis of neuropathic pain following trigeminal nerve injury. PMID:25407627

  13. Renal Denervation in Moderate to Severe CKD

    PubMed Central

    Hering, Dagmara; Mahfoud, Felix; Walton, Antony S.; Krum, Henry; Lambert, Gavin W.; Lambert, Elisabeth A.; Sobotka, Paul A.; Böhm, Michael; Cremers, Bodo; Esler, Murray D.

    2012-01-01

    Sympathetic activation contributes to the progression of CKD and is associated with adverse cardiovascular outcomes. Ablation of renal sympathetic nerves reduces sympathetic nerve activity and BP in patients with resistant hypertension and preserved renal function, but whether this approach is safe and effective in patients with an estimated GFR (eGFR) < 45 ml/min per 1.73 m2 is unknown. We performed bilateral renal denervation in 15 patients with resistant hypertension and stage 3–4 CKD (mean eGFR, 31 ml/min per 1.73 m2). We used CO2 angiography in six patients to minimize exposure to contrast agents. Estimated GFR remained unchanged after the procedure, irrespective of the use of CO2 angiography. Mean baseline BP ± SD was 174±22/91±16 mmHg despite the use of 5.6±1.3 antihypertensive drugs. Mean changes in office systolic and diastolic BP at 1, 3, 6, and 12 months were −34/−14, −25/−11, −32/−15, and −33/−19 mmHg, respectively. Night-time ambulatory BP significantly decreased (P<0.05), restoring a more physiologic dipping pattern. In conclusion, this study suggests a favorable short-term safety profile and beneficial BP effects of catheter-based renal nerve ablation in patients with stage 3–4 CKD and resistant hypertension. PMID:22595301

  14. Presynaptic inhibition of soleus Ia afferents does not vary with center of pressure displacements during upright standing.

    PubMed

    Johannsson, J; Duchateau, J; Baudry, S

    2015-07-01

    The present work was designed to investigate the presynaptic modulation of soleus Ia afferents with the position and the direction of the displacement of the center of pressure (CoP) during unperturbed upright standing and exaggerated CoP displacements in young adults. Hoffmann (H) reflex was evoked in the soleus by stimulating the tibial nerve at the knee level. Modulation of Ia presynaptic inhibition was assessed by conditioning the H reflex with fibular nerve (D1 inhibition) and femoral nerve (heteronymous facilitation) stimulation. Leg muscle activity was assessed by electromyography (EMG). The results indicate that in unperturbed standing and exaggerated CoP displacements, the H-reflex amplitude was greater during forward than backward CoP direction (p<0.05). However, the amplitude of the conditioned H reflex (expressed relative to unconditioned H reflex) did not vary with CoP displacement, regardless of the experimental condition. The soleus EMG was greater during forward than backward CoP direction and during anterior than posterior position in both experimental conditions (p<0.05). The modulation of the unconditioned H reflex with CoP direction was positively associated with the corresponding changes in soleus EMG (r(2)>0.34). The tibialis anterior EMG did not change during unperturbed standing, but was greater for backward than forward CoP direction during exaggerated CoP displacements. In this experimental condition, soleus EMG was negatively associated with tibialis anterior EMG (r(2)=0.81). These results indicate that Ia presynaptic inhibition is not modulated with CoP direction and position, but rather suggest that CoP displacements induced changes in excitability of the soleus motor neuron pool. PMID:25869621

  15. Microstimulation of primary afferent neurons in the L7 dorsal root ganglia using multielectrode arrays in anesthetized cats: thresholds and recruitment properties

    NASA Astrophysics Data System (ADS)

    Gaunt, R. A.; Hokanson, J. A.; Weber, D. J.

    2009-10-01

    Current research in motor neural prosthetics has focused primarily on issues related to the extraction of motor command signals from the brain (e.g. brain-machine interfaces) to direct the motion of prosthetic limbs. Patients using these types of systems could benefit from a somatosensory neural interface that conveys natural tactile and kinesthetic sensations for the prosthesis. Electrical microstimulation within the dorsal root ganglia (DRG) has been proposed as one method to accomplish this, yet little is known about the recruitment properties of electrical microstimulation in activating nerve fibers in this structure. Current-controlled microstimulation pulses in the range of 1-15 µA (200 µs, leading cathodic pulse) were delivered to the L7 DRG in four anesthetized cats using penetrating microelectrode arrays. Evoked responses and their corresponding conduction velocities (CVs) were measured in the sciatic nerve with a 5-pole nerve cuff electrode arranged as two adjacent tripoles. It was found that in 76% of the 69 electrodes tested, the stimulus threshold was less than or equal to 3 µA, with the lowest recorded threshold being 1.1 µA. The CVs of afferents recruited at threshold had a bimodal distribution with peaks at 70 m s-1 and 85 m s-1. In 53% of cases, the CV of the response at threshold was slower (i.e. smaller diameter fiber) than the CVs of responses observed at increasing stimulation amplitudes. In summary, we found that microstimulation applied through penetrating microelectrodes in the DRG provides selective recruitment of afferent fibers from a range of sensory modalities (as identified by CVs) at very low stimulation intensities. We conclude that the DRG may serve as an attractive location from which to introduce surrogate somatosensory feedback into the nervous system.

  16. Effects of levodropropizine on vagal afferent C-fibres in the cat.

    PubMed Central

    Shams, H.; Daffonchio, L.; Scheid, P.

    1996-01-01

    1. Levodropropizine (LVDP) is an effective antitussive drug. Its effects on single-unit discharge of vagal afferent C-fibres were tested in anaesthetized cats to assess whether an inhibition of vagal C-fibres is involved in its antitussive properties. Vagal C-fibres, identified by their response to phenylbiguanide (PBG), were recorded via suction electrodes from the distal part of the cut vagus. Based on their response to lung inflation, C-fibres were classified as pulmonary (19 fibres) or non-pulmonary (6 fibres). 2. PBG increased the discharge rate of both C-fibre types and activated a respiratory reflex causing apnoea. This reflex was abolished when the second vagus nerve was cut as well, while PBG-mediated stimulation of the C-fibres was not affected by vagotomy. 3. LVDP was administered intravenously and the C-fibre response to PBG was compared with that before administration of the drug. LVDP reduced both the duration of apnoea and the response of the C-fibre to PBG. 4. Comparison of the C-fibre responses to PBG and to a mixture of PBG and LVDP revealed that the period of apnoea was shortened and the discharge rate of the C-fibre reduced when LVDP was present. 5. The LVDP-induced inhibition of the C-fibre response to PBG was on average 50% in pulmonary and 25% in non-pulmonary fibres. 6. These results suggest that LVDP significantly reduces the response of vagal C-fibres to chemical stimuli. It is, thus, likely that the antitussive effect of LVDP is mediated through its inhibitory action on C-fibres. PMID:8851501

  17. Evidence for the tonic inhibition of spinal pain by nicotinic cholinergic transmission through primary afferents

    PubMed Central

    Matsumoto, Misaki; Xie, Weijiao; Inoue, Makoto; Ueda, Hiroshi

    2007-01-01

    Background We have proposed that nerve injury-specific loss of spinal tonic cholinergic inhibition may play a role in the analgesic effects of nicotinic acetylcholine receptor (nAChR) agonists on neuropathic pain. However, the tonic cholinergic inhibition of pain remains to be well characterized. Results Here, we show that choline acetyltransferase (ChAT) signals were localized not only in outer dorsal horn fibers (lamina I–III) and motor neurons in the spinal cord, but also in the vast majority of neurons in the dorsal root ganglion (DRG). When mice were treated with an antisense oligodeoxynucleotide (AS-ODN) against ChAT, which decreased ChAT signals in the dorsal horn and DRG, but not in motor neurons, they showed a significant decrease in nociceptive thresholds in paw pressure and thermal paw withdrawal tests. Furthermore, in a novel electrical stimulation-induced paw withdrawal (EPW) test, the thresholds for stimulation through C-, Aδ- and Aβ-fibers were all decreased by AS-ODN-pretreatments. The administration of nicotine (10 nmol i.t.) induced a recovery of the nociceptive thresholds, decreased by the AS-ODN, in the mechanical, thermal and EPW tests. However, nicotine had no effects in control mice or treated with a mismatch scramble (MS)-ODN in all of these nociception tests. Conclusion These findings suggest that primary afferent cholinergic neurons produce tonic inhibition of spinal pain through nAChR activation, and that intrathecal administration of nicotine rescues the loss of tonic cholinergic inhibition. PMID:18088441

  18. Effects of afferent volleys from the limbs on the discharge patterns of interpositus neurones in cats anaesthetized with alpha-chloralose.

    PubMed Central

    Armstrong, D M; Cogdell, B; Harvey, R

    1975-01-01

    1. In cats anaesthetized with alpha-chloralose, micro-electrodes have been used to record the discharge patterns of single neurones in the region of the nucleus interpositus. 2. Almost all cells tested could be antidromically invaded following electrical stimulation of the contralateral red nucleus, showing that they were cerebellar efferent neurones. 3. A little over half of the interpositus neurones were spontaneously active, usually at rates of less than 20 impulses/sec. 4. About 40% of the cells had no spontaneous activity, although they gave brisk responses to electrical stimulation of cutaneous nerves. Such silent units were encountered most frequently in the earlier stages of an experiment, but a number were found more than 15 hr after the beginning of an experiment. 5. Stimulation of cutaneous and mixed nerves of the fore and hind limbs provoked impulse discharges of the cells and also produced phases of deceleration of the resting discharge of spontaneously firing cells. 6. The typical response of an interpositus neurone consisted of a short latency (6-35 msec) discharge, usually separated from a long latency (50-500 msec) discharge by a period of inhibition or return to the resting discharge rate. The two phases of excitation appeared to be independently generated, since in a number of cells one phase appeared without the other. In addition, the later phase of excitation was abolished in all cells tested by a small dose of pentobarbitone which produced very little effect on the earlier phase. The long latency response was quantitatively much greater, sometimes consisting of 50 or more impulses in a response which lasted several hundred msec, but was very variable from one trial to another. 7. The long latency discharge and sometimes the preceding inhibition could readily be mimicked by single shock stimulation of the region of the contralateral inferior olive. Short latency discharges were, however, rarely evoked by olivary stimulation. 8. It is suggested

  19. Interaction between cardiac sympathetic afferent reflex and chemoreflex is mediated by the NTS AT1 receptors in heart failure.

    PubMed

    Wang, Wei-Zhong; Gao, Lie; Wang, Han-Jun; Zucker, Irving H; Wang, Wei

    2008-09-01

    Several sympathoexcitatory reflexes, such as the cardiac sympathetic afferent reflex (CSAR) and arterial chemoreflex, are significantly augmented and contribute to elevated sympathetic outflow in chronic heart failure (CHF). This study was undertaken to investigate the interaction between the CSAR and the chemoreflex in CHF and to further identify the involvement of angiotensin II type 1 receptors (AT1Rs) in the nucleus of the tractus solitarius (NTS) in this interaction. CHF was induced in rats by coronary ligation. Acute experiments were performed in anesthetized rats. The chemoreflex-induced increase in cardiovascular responses was significantly greater in CHF than in sham-operated rats after either chemical or electrical activation of the CSAR. The inhibition of the CSAR by epicardial lidocaine reduced the chemoreflex-induced effects in CHF rats but not in sham-operated rats. Bilateral NTS injection of the AT1R antagonist losartan (10 and 100 pmol) dose-dependently decreased basal sympathetic nerve activity in CHF but not in sham-operated rats. This procedure also abolished the CSAR-induced enhancement of the chemoreflex. The discharge and chemosensitivity of NTS chemosensitive neurons were significantly increased following the stimulation of the CSAR in sham-operated and CHF rats, whereas CSAR inhibition by epicardial lidocaine significantly attenuated chemosensitivity of NTS neurons in CHF but not in sham-operated rats. Finally, the protein expression of AT1R in the NTS was significantly higher in CHF than in sham-operated rats. These results demonstrate that the enhanced cardiac sympathetic afferent input contributes to an excitatory effect of chemoreflex function in CHF, which is mediated by an NTS-AT1R-dependent mechanism.

  20. Renal organogenesis

    PubMed Central

    2011-01-01

    The increasing prevalence of chronic kidney disease in the absence of new treatment modalities has become a strong driver for innovation in nephrology. An increasing understanding of stem cell biology has kindled the prospects of regenerative options for kidney disease. However, the kidney itself is not a regenerative organ, as all the nephrons are formed during embryonic development. Here, we will investigate advances in the molecular genetics of renal organogenesis, including what this can tell us about lineage relationships, and discuss how this may serve to inform us about both the normal processes of renal repair and options for regenerative therapies. PMID:22198432

  1. [Renal disease].

    PubMed

    Espinosa-Cuevas, María de Los Ángeles

    2016-09-01

    Chronic renal failure in its various stages, requires certain nutritional restrictions associated with the accumulation of minerals and waste products that cannot be easily eliminated by the kidneys. Some of these restrictions modify the intake of proteins, sodium, and phosphorus. Milk and dairy products are sources of these nutrients. This article aims to inform the reader about the benefits including milk and dairy products relying on a scientific and critical view according to the clinical conditions and the stage of renal disease in which the patient is. PMID:27603894

  2. [Renal disease].

    PubMed

    Espinosa-Cuevas, María de Los Ángeles

    2016-09-01

    Chronic renal failure in its various stages, requires certain nutritional restrictions associated with the accumulation of minerals and waste products that cannot be easily eliminated by the kidneys. Some of these restrictions modify the intake of proteins, sodium, and phosphorus. Milk and dairy products are sources of these nutrients. This article aims to inform the reader about the benefits including milk and dairy products relying on a scientific and critical view according to the clinical conditions and the stage of renal disease in which the patient is.

  3. Muscle afferent potential (`A-wave') in the surface electromyogram of a phasic stretch reflex in normal humans

    PubMed Central

    Clarke, Alex. M.; Michie, Patricia T.; Glue, Leonard C. T.

    1972-01-01

    The experiments reported in this paper tested the hypothesis that the afferent potential elicited by a tendon tap in an isometrically recorded phasic stretch reflex can be detected in the surface EMG of normal humans when appropriate techniques are used. These techniques involved (1) training the subjects to relax mentally and physically so that the EMG was silent before and immediately after the diphasic MAP which reflects a highly synchronous discharge of afferent impulses from low threshold muscle stretch receptors after a tendon tap, and (2) using a data retrieval computer to summate stimulus-locked potentials in the EMG over a series of 16 samples using taps of uniform peak force and duration on the Achilles tendon to elicit the tendon jerk in the calf muscles. A discrete, diphasic potential (`A-wave') was recorded from EMG electrodes placed on the surface of the skin over the medial gastrocnemius muscle. The `A-wave' afferent potential had the opposite polarity to the corresponding efferent MAP. Under control conditions of relaxation the `A-wave' had a latency after the onset of the tap of 2 msec, the peak to peak amplitude was of the order of 5 μV and the duration was in the range of 6 to 10 msec. Further experiments were conducted to show that the `A-wave' (1) was not an artefact of the instrumentation used, (2) had a threshold at low intensities of stimulation, and (3) could be reliably augmented by using a Jendrassik manoeuvre compared with the potential observed during control (relaxation) conditions. The results support the conclusion that the `A-wave' emanates from the pool of muscle spindles which discharges impulses along group Ia nerve fibres in response to the phasic stretch stimulus because the primary ending of the spindles is known to initiate the stretch reflex and the spindles can be sensitized by fusimotor impulses so that their threshold is lowered as a result of a Jendrassik manoeuvre. The finding has important implications for the

  4. Glomerular thrombi in renal allografts associated with cyclosporin treatment.

    PubMed Central

    Neild, G H; Reuben, R; Hartley, R B; Cameron, J S

    1985-01-01

    We have found glomerular capillary thrombi or afferent arteriolar thrombosis in eight renal biopsy specimens from seven renal allograft recipients. All patients were receiving cyclosporin and prednisolone. Biopsies were performed either routinely one and four weeks after transplantation or during periods of renal dysfunction. None of the patients whose biopsy material contained glomerular thrombi was considered, in retrospect, to have been undergoing rejection at the time of biopsy. Thrombi consisted of finely granular material partially obstructing glomerular capillaries. By light microscopy the staining characteristics of the thrombi were compatible with platelet-fibrin aggregates, and this was confirmed by immunoperoxidase examination. Such thrombi have not previously been seen in biopsy material from patients treated with prednisolone and azathioprine, except rarely associated with acute vascular injection. In none of these patients was there haematological evidence of the haemolytic uraemic syndrome as has been reported in bone marrow recipients treated with cyclosporin. Images PMID:3882763

  5. Treg engage lymphotoxin beta receptor for afferent lymphatic transendothelial migration

    PubMed Central

    Brinkman, C. Colin; Iwami, Daiki; Hritzo, Molly K.; Xiong, Yanbao; Ahmad, Sarwat; Simon, Thomas; Hippen, Keli L.; Blazar, Bruce R.; Bromberg, Jonathan S.

    2016-01-01

    Regulatory T cells (Tregs) are essential to suppress unwanted immunity or inflammation. After islet allo-transplant Tregs must migrate from blood to allograft, then via afferent lymphatics to draining LN to protect allografts. Here we show that Tregs but not non-Treg T cells use lymphotoxin (LT) during migration from allograft to draining LN, and that LT deficiency or blockade prevents normal migration and allograft protection. Treg LTαβ rapidly modulates cytoskeletal and membrane structure of lymphatic endothelial cells; dependent on VCAM-1 and non-canonical NFκB signalling via LTβR. These results demonstrate a form of T-cell migration used only by Treg in tissues that serves an important role in their suppressive function and is a unique therapeutic focus for modulating suppression. PMID:27323847

  6. Inferior alveolar nerve repositioning.

    PubMed

    Louis, P J

    2001-09-01

    Nerve repositioning is a viable alternative for patients with an atrophic edentulous posterior mandible. Patients, however, should be informed of the potential risks of neurosensory disturbance. Documentation of the patient's baseline neurosensory function should be performed with a two-point discrimination test or directional brush stroke test preoperatively and postoperatively. Recovery of nerve function should be expected in 3 to 6 months. The potential for mandibular fracture when combining nerve repositioning with implant placement also should be discussed with the patient. This can be avoided by minimizing the amount of buccal cortical plate removal during localization of the nerve and maintaining the integrity of the inferior cortex of the mandible. Additionally, avoid overseating the implant, thus avoiding stress along the inferior border of the mandible. The procedure does allow for the placement of longer implants, which should improve implant longevity. Patients undergoing this procedure have expressed overall satisfaction with the results. Nerve repositioning also can be used to preserve the inferior alveolar nerve during resection of benign tumors or cysts of the mandible. This procedure allows the surgeon to maintain nerve function in situations in which the nerve would otherwise have to be resected. PMID:11665379

  7. Cryotherapy and nerve palsy.

    PubMed

    Drez, D; Faust, D C; Evans, J P

    1981-01-01

    Ice application is one of the most extensively used treatments for athletic injuries. Frostbite is a recognized danger. Five cases of nerve palsy resulting from ice application are reported here. These palsies were temporary. They usually resolve spontaneously without any significant sequelae. This complication can be avoided by not using ice for more than 30 minutes and by guarding superficial nerves in the area.

  8. Imaging the cranial nerves.

    PubMed

    Parry, Andrew T; Volk, Holger A

    2011-01-01

    An understanding of the normal course of the cranial nerves (CN) is essential when interpreting images of patients with cranial neuropathies. CN foramina are depicted best using computed X-ray tomography, but the nerves are depicted best using magnetic resonance imaging. The function and anatomy of the CN in the dog are reviewed and selected examples of lesions affecting the CN are illustrated.

  9. [Sciatic nerve intraneural perineurioma].

    PubMed

    Bonhomme, Benjamin; Poussange, Nicolas; Le Collen, Philippe; Fabre, Thierry; Vital, Anne; Lepreux, Sébastien

    2015-12-01

    Intraneural perineurioma is a benign tumor developed from the perineurium and responsible for localized nerve hypertrophy. This uncommon tumor is characterized by a proliferation of perineural cells with a "pseudo-onion bulb" pattern. We report a sciatic nerve intraneural perineurioma in a 39-year-old patient. PMID:26586011

  10. Optic Nerve Decompression

    MedlinePlus

    ... canals). The optic nerve is the “nerve of vision” and extends from the brain, through your skull, and into your eye. A ... limited to, the following: loss of vision, double vision, inadequate ... leakage of brain fluid (CSF), meningitis, nasal bleeding, infection of the ...

  11. The central projections of the laryngeal nerves in the rat.

    PubMed

    Pascual-Font, Arán; Hernández-Morato, Ignacio; McHanwell, Stephen; Vázquez, Teresa; Maranillo, Eva; Sañudo, Jose; Valderrama-Canales, Francisco J

    2011-08-01

    The larynx serves respiratory, protective, and phonatory functions. The motor and sensory innervation to the larynx controlling these functions is provided by the superior laryngeal nerve (SLN) and the recurrent laryngeal nerve (RLN). Classical studies state that the SLN innervates the cricothyroid muscle and provides sensory innervation to the supraglottic cavity, whereas the RLN supplies motor innervation to the remaining intrinsic laryngeal muscles and sensory innervation to the infraglottic cavity, but recent data suggest a more complex anatomical and functional organisation. The current neuroanatomical tracing study was undertaken to provide a comprehensive description of the central brainstem connections of the axons within the SLN and the RLN, including those neurons that innervate the larynx. The study has been carried out in 41 adult male Sprague-Dawley rats. The central projections of the laryngeal nerves were labelled following application of biotinylated dextran amines onto the SLN, the RLN or both. The most remarkable result of the study is that in the rat the RLN does not contain any afferent axons from the larynx, in contrast to the pattern observed in many other species including man. The RLN supplied only special visceromotor innervation to the intrinsic muscles of the larynx from motoneurons in the nucleus ambiguus (Amb). All the afferent axons innervating the larynx are contained within the SLN, and reach the nucleus of the solitary tract. The SLN also contained secretomotor efferents originating from motoneurons in the dorsal motor nucleus of the vagus, and special visceral efferent fibres from the Amb. In conclusion, the present study shows that in the rat the innervation of the larynx differs in significant ways from that described in other species.

  12. The central projections of the laryngeal nerves in the rat

    PubMed Central

    Pascual-Font, Arán; Hernández-Morato, Ignacio; McHanwell, Stephen; Vázquez, Teresa; Maranillo, Eva; Sañudo, Jose; Valderrama-Canales, Francisco J

    2011-01-01

    The larynx serves respiratory, protective, and phonatory functions. The motor and sensory innervation to the larynx controlling these functions is provided by the superior laryngeal nerve (SLN) and the recurrent laryngeal nerve (RLN). Classical studies state that the SLN innervates the cricothyroid muscle and provides sensory innervation to the supraglottic cavity, whereas the RLN supplies motor innervation to the remaining intrinsic laryngeal muscles and sensory innervation to the infraglottic cavity, but recent data suggest a more complex anatomical and functional organisation. The current neuroanatomical tracing study was undertaken to provide a comprehensive description of the central brainstem connections of the axons within the SLN and the RLN, including those neurons that innervate the larynx. The study has been carried out in 41 adult male Sprague–Dawley rats. The central projections of the laryngeal nerves were labelled following application of biotinylated dextran amines onto the SLN, the RLN or both. The most remarkable result of the study is that in the rat the RLN does not contain any afferent axons from the larynx, in contrast to the pattern observed in many other species including man. The RLN supplied only special visceromotor innervation to the intrinsic muscles of the larynx from motoneurons in the nucleus ambiguus (Amb). All the afferent axons innervating the larynx are contained within the SLN, and reach the nucleus of the solitary tract. The SLN also contained secretomotor efferents originating from motoneurons in the dorsal motor nucleus of the vagus, and special visceral efferent fibres from the Amb. In conclusion, the present study shows that in the rat the innervation of the larynx differs in significant ways from that described in other species. PMID:21599662

  13. Inflammation increases the excitability of masseter muscle afferents.

    PubMed

    Harriott, A M; Dessem, D; Gold, M S

    2006-08-11

    Temporomandibular disorder is a major health problem associated with chronic orofacial pain in the masticatory muscles and/or temporomandibular joint. Evidence suggests that changes in primary afferents innervating the muscles of mastication may contribute to temporomandibular disorder. However, there has been little systematic study of the mechanisms controlling the excitability of these muscle afferents, nor their response to inflammation. In the present study, we tested the hypotheses that inflammation increases the excitability of sensory neurons innervating the masseter muscle of the rat and that the ionic mechanisms underlying these changes are unique to these neurons. We examined inflammation-induced changes in the excitability of trigeminal ganglia muscle neurons following intramuscular injections of complete Freund's adjuvant. Three days after complete Freund's adjuvant injection acutely dissociated, retrogradely labeled trigeminal ganglia neurons were studied using whole cell patch clamp techniques. Complete Freund's adjuvant-induced inflammation was associated with an increase in neuronal excitability marked by a significant decrease in rheobase and increase in the slope of the stimulus response function assessed with depolarizing current injection. The increase in excitability was associated with significant decreases in the rate of action potential fall and the duration of the action potential afterhyperpolarization. These changes in excitability and action potential waveform were associated with significant shifts in the voltage-dependence of activation and steady-state availability of voltage-gated K(+) current as well as significant decreases in the density of voltage-gated K(+) current subject to steady-state inactivation. These data suggest that K(+) channel subtypes may provide novel targets for the treatment of pain arising from inflamed muscle. These results also support the hypothesis that the underlying mechanisms of pain arising from

  14. Ulnar nerve tuberculoma.

    PubMed

    Ramesh Chandra, V V; Prasad, Bodapati Chandramowliswara; Varaprasad, Gangumolu

    2013-01-01

    The authors report a very rare case of tuberculoma involving the ulnar nerve. The patient, a 7-year-old girl, presented with swelling over the medial aspect of her right forearm just below the elbow joint, with features of ulnar nerve palsy, including paresthesias along the little and ring fingers and claw hand deformity. There was a history of trauma and contact with a contagious case of tuberculosis. There were no other signs of tuberculosis. At surgical exploration the ulnar nerve was found to be thickened, and on opening the sheath there was evidence of caseous material enclosed in a fibrous capsule compressing and displacing the nerve fibers. The lesion, along with the capsule, was subtotally removed using curettage, and a part of the capsule that was densely adherent to the nerve fibers was left in the patient. Histopathological examination of the specimen was consistent with tuberculoma. The patient received adequate antitubercular treatment and showed significant improvement.

  15. Peripheral nerve stimulation: definition.

    PubMed

    Abejón, David; Pérez-Cajaraville, Juan

    2011-01-01

    Recently, there has been a tremendous evolution in the field of neurostimulation, both from the technological point of view and from development of the new and different indications. In some areas, such as peripheral nerve stimulation, there has been a boom in recent years due to the variations in the surgical technique and the improved results documented by in multiple published papers. All this makes imperative the need to classify and define the different types of stimulation that are used today. The confusion arises when attempting to describe peripheral nerve stimulation and subcutaneous stimulation. Peripheral nerve stimulation, in its pure definition, involves implanting a lead on a nerve, with the aim to produce paresthesia along the entire trajectory of the stimulated nerve.

  16. Changes in the frequency of swallowing during electrical stimulation of superior laryngeal nerve in rats.

    PubMed

    Tsuji, Kojun; Tsujimura, Takanori; Magara, Jin; Sakai, Shogo; Nakamura, Yuki; Inoue, Makoto

    2015-02-01

    The aim of the present study was to investigate the adaptation of the swallowing reflex in terms of reduced swallowing reflex initiation following continuous superior laryngeal nerve stimulation. Forty-four male Sprague Dawley rats were anesthetized with urethane. To identify swallowing, electromyographic activity of the left mylohyoid and thyrohyoid muscles was recorded. To evoke the swallowing response, the superior laryngeal nerve (SLN), recurrent laryngeal nerve, or cortical swallowing area was electrically stimulated. Repetitive swallowing evoked by continuous SLN stimulation was gradually reduced, and this reduction was dependent on the resting time duration between stimulations. Prior SLN stimulation also suppressed subsequent swallowing initiation. The reduction in evoked swallows induced by recurrent laryngeal nerve or cortical swallowing area stimulation was less than that following superior laryngeal nerve stimulation. Decerebration had no effect on the reduction in evoked swallows. Prior subthreshold stimulation reduced subsequent initiation of swallowing, suggesting that there was no relationship between swallowing movement evoked by prior stimulation and the subsequent reduction in swallowing initiation. Overall, these data suggest that reduced sensory afferent nerve firing and/or trans-synaptic responses, as well as part of the brainstem central pattern generator, are involved in adaptation of the swallowing reflex following continuous stimulation of swallow-inducing peripheral nerves and cortical areas.

  17. Responses of nerve fibres of the rat saphenous nerve neuroma to mechanical and chemical stimulation: an in vitro study

    PubMed Central

    Rivera, Luis; Gallar, Juana; Pozo, Miguel Angel; Belmonte, Carlos

    2000-01-01

    The response of neuroma nerve endings to different stimuli was studied in a saphenous nerve neuroma preparation in vitro. Electrical activity was recorded from 141 single fibres dissected of saphenous nerve. One-third (27 %) displayed spontaneous activity. Based on their response to mechanical and chemical stimuli, neuroma nerve fibres were classified as mechanosensory fibres (47.5 %), mechanically insensitive chemosensory fibres (17.0 %), polymodal nociceptor fibres (28.4 %) and unresponsive fibres (7.1 %). Mechanosensory and polymodal neuroma endings responded to von Frey hair stimulation either with a few impulses (phasic units) or a sustained discharge (tonic units). Polymodal units were additionally activated by at least one of the following stimuli: acidic solutions; a combination of bradykinin, prostaglandin E2, serotonin, substance P and histamine (all at 1 μM) plus 7 mm KCl (inflammatory soup); 600 mm NaCl and capsaicin. Low pH solutions increased the firing discharge of polymodal endings proportionally to the proton concentration. The ‘inflammatory soup’ evoked a firing response characterized by the absence of tachyphylaxis, which appeared when its components were applied separately. Both stimuli sensitized polymodal fibres to mechanical stimulation. Hypertonic NaCl (600 mm) and capsaicin (3.3 mm) induced a prolonged discharge that outlasted the stimulus duration. Mechanically insensitive chemosensory neuroma fibres exhibited responses to chemical stimuli analogous to polymodal fibres. They became mechanically sensitive after chemical stimulation. These findings show that neuroma nerve endings in the rat saphenous nerve neuroma in vitro are functionally heterogeneous and exhibit properties reminiscent of those in intact mechanosensory, polymodal and ‘silent’ nociceptor sensory afferents, including their sensitization by algesic chemicals. PMID:10970431

  18. Hair cell tufts and afferent innervation of the bullfrog crista ampullaris

    NASA Technical Reports Server (NTRS)

    Myers, Steven F.; Lewis, Edwin R.

    1990-01-01

    Within the bullfrog semicircular canal crista, hair cell tuft types were defined and mapped with the aid of scanning electron microscopy. Dye-filled planar afferent axons had mean distal axonal diameters of 1.6-4.9 microns, highly branched arbors, and contacted 11-24 hair cells. Dye-filled isthmus afferent axons had mean distal axonal diameters of 1.8-7.9 microns, with either small or large field arbors contacting 4-9 or 25-31 hair cells. The estimated mean number of contacts per innervated hair cell was 2.2 for planar and 1.3 for isthmus afferent neurons. Data on evoked afferent responses were available only for isthmus units that were observed to respond to our microrotational stimuli. Of 21 such afferent neurons, eight were successfully dye-filled. Within this sample, high-gain units had large field arbors and lower-gain units had small field arbors. The sensitivity of each afferent neuron was analyzed in terms of noise equivalent input (NEI), the stimulus amplitude for which the afferent response amplitude is just equivalent to the rms deviation of the instantaneous spike rate. NEI for isthmus units varied from 0.63 to 8.2 deg/s; the mean was 3.2 deg/s.

  19. Novel Afferent Terminal Structure in the Crista Ampullaris of the Goldfish, Carassius auratus

    NASA Technical Reports Server (NTRS)

    Lanford, Pamela J.; Popper, Arthur N.

    1996-01-01

    Using transmission electron microscopy, we have identified a new type of afferent terminal structure in the crista ampullaris of the goldfish Carassius auratus. In addition to the bouton-type afferent terminals previously described in the ear of this species, the crista also contained enlarged afferent terminals that enveloped a portion of the basolateral hair cell membrane. The hair cell membrane was evaginated and protruded into the afferent terminal in a glove-and-finger configuration. The membranes of the two cells were regularly aligned in the protruded region of the contact and had a distinct symmetrical electron density. The electron-dense profiles of these contacts were easily identified and were present in every crista sampled. In some cases, efferent terminals synapsed onto the afferents at a point where the hair cell protruded into the terminal. The ultrastructural similarities of the goldfish crista afferents to calyx afferents found in amniotes (birds, reptiles, and mammals) are discussed. The results of the study support the hypothesis that structural variation in the vertebrate inner ear may have evolved much earlier in evolution than previously supposed.

  20. Organization of afferents to the striatopallidal systems in the fire-bellied toad Bombina orientalis.

    PubMed

    Ramsay, Zachary J; Laberge, Frédéric

    2014-11-01

    The cerebral hemispheres of amphibians display paired dorsal and ventral striatum (commonly referred to as striatum proper and nucleus accumbens, respectively). Each striatal region is proposed to be closely associated with a pallidal structure located caudal to it to form a striatopallidal system. In the present study, afferents to the dorsal and ventral striatopallidal systems of the fire-bellied toad (Bombina orientalis) were investigated using the neuronal tracer biocytin. A quantitative analysis of the topographical distribution of afferent neurons from the thalamus and posterior tubercle/ventral tegmentum was emphasised. The main results show that inputs to the two striatopallidal systems originate from distinct dorsal thalamic nuclei, with dorsal and ventral striatopallidal afferent neurons favouring strongly the lateral/central and anterior thalamic nuclei, respectively. However, afferent neuron distribution in the dorsal thalamus does not differ in the rostrocaudal axis of the brain. Afferent neurons from the posterior tubercle and ventral tegmentum, on the other hand, are organised topographically along the rostrocaudal axis. About 85 % of afferent neurons to the dorsal striatopallidal system are located rostrally in the posterior tubercle, while 75 % of afferent neurons to the ventral striatopallidal system are found more caudally in the ventral tegmentum. This difference is statistically significant and confirms the presence of distinct mesostriatal pathways in an amphibian. These findings demonstrate that an amphibian brain displays striatopallidal systems integrating parallel streams of sensory information potentially under the influence of distinct ascending mesostriatal pathways.

  1. Technetium-99m HIDA hepatobiliary scanning in evaluation of afferent loop syndrome

    SciTech Connect

    Sivelli, R.; Farinon, A.M.; Sianesi, M.; Percudani, M.; Ugolotti, G.; Calbiani, B.

    1984-08-01

    A study of 118 patients, operated on with Billroth II gastrectomy for peptic disease and affected by postgastrectomy syndromes, was carried out. Fifty patients were investigated by means of technetium-99m HIDA hepatobiliary scanning. In 18 patients, in whom an afferent loop syndrome was clinically suspected, hepatobiliary scanning demonstrated an altered afferent loop emptying in 8 and atonic distension of the gallbladder without afferent loop motility changes in 10. Among the patients in the first group, four were treated with a biliary diversion surgical procedure and in the second group, two patients underwent cholecystectomy. Our findings indicate that biliary vomiting, right upper abdominal pain pyrosis, and biliary diarrhea in Billroth II gastrectomized patients are not always pathognomonic symptoms of afferent loop syndrome. Technetium-99m HIDA hepatobiliary scanning represents the only diagnostic means of afferent loop syndrome definition. A differential diagnosis of abnormal afferent loop emptying and gallbladder dyskinesia is necessary for the management planning of these patients, and furthermore, when a surgical treatment is required, biliary diversion with Roux-Y anastomosis or Braun's biliary diversion seems the treatment of choice for afferent loop syndrome, whereas cholecystectomy represents the best procedure for atonic distension of the gallbladder.

  2. Frequency response properties of primary afferent neurons in the posterior lateral line system of larval zebrafish

    PubMed Central

    Levi, Rafael; Akanyeti, Otar; Ballo, Aleksander

    2014-01-01

    The ability of fishes to detect water flow with the neuromasts of their lateral line system depends on the physiology of afferent neurons as well as the hydrodynamic environment. Using larval zebrafish (Danio rerio), we measured the basic response properties of primary afferent neurons to mechanical deflections of individual superficial neuromasts. We used two types of stimulation protocols. First, we used sine wave stimulation to characterize the response properties of the afferent neurons. The average frequency-response curve was flat across stimulation frequencies between 0 and 100 Hz, matching the filtering properties of a displacement detector. Spike rate increased asymptotically with frequency, and phase locking was maximal between 10 and 60 Hz. Second, we used pulse train stimulation to analyze the maximum spike rate capabilities. We found that afferent neurons could generate up to 80 spikes/s and could follow a pulse train stimulation rate of up to 40 pulses/s in a reliable and precise manner. Both sine wave and pulse stimulation protocols indicate that an afferent neuron can maintain their evoked activity for longer durations at low stimulation frequencies than at high frequencies. We found one type of afferent neuron based on spontaneous activity patterns and discovered a correlation between the level of spontaneous and evoked activity. Overall, our results establish the baseline response properties of lateral line primary afferent neurons in larval zebrafish, which is a crucial step in understanding how vertebrate mechanoreceptive systems sense and subsequently process information from the environment. PMID:25355959

  3. Distribution of presumptive chemosensory afferents with FMRFamide- or substance P-like immunoreactivity in decapod crustaceans.

    PubMed

    Schmidt, M

    1997-01-23

    In five species of decapod crustaceans--Cherax destructor (crayfish), Carcinus maenas (crab), Homarus americanus (clawed lobster), Eriocheir sinensis (crab), Macrobrachium rosenbergii (shrimp)--immunocytochemical stainings revealed the presence of sensory afferents with FMRFamide-like immunoreactivity in the central nervous system. These afferents were extremely thin, very numerous, and innervated all sensory neuropils except the optic and olfactory lobes. In their target neuropils they gave rise to condensed net- or ball-like terminal structures. Only in Homarus americanus but not in any other studied species immunocytochemistry revealed a separate, non-overlapping class of sensory afferents with substance P-like immunoreactivity. Also the afferents with substance P-like immunoreactivity were very thin and numerous, innervated all sensory neuropils except optic and olfactory lobes, and gave rise to condensed terminal structures. From their morphological characteristics it can be concluded that likely both classes of afferents are chemosensory. The substance P-like immunoreactivity suggests a link with the nociceptor afferents of vertebrates, with which both classes of afferents share several other morphological features.

  4. Modulation of vagal afferent excitation and reduction of food intake by leptin and cholecystokinin.

    PubMed

    Peters, James H; Simasko, Steven M; Ritter, Robert C

    2006-11-30

    The gut-peptide, cholecystokinin (CCK), reduces food intake by acting at CCK-1 receptors on vagal afferent neurons, whereas the feeding effects of the adipokine hormone, leptin, are associated primarily with its action on receptors (ObRb) in the hypothalamus. Recently, however, ObRb mRNA has been reported in vagal afferent neurons, some of which also express CCK-1 receptor, suggesting that leptin, alone or in cooperation with CCK, might activate vagal afferent neurons, and influence food intake via a vagal route. To evaluate these possibilities we have been examining the cellular and behavioral effects of leptin and CCK on vagal afferent neurons. In cultured vagal afferent neurons leptin and CCK evoked short latency, transient depolarizations, often leading to action potentials, and increases in cytosolic calcium. There was a much higher prevalence of CCK and leptin sensitivity amongst cultured vagal afferent neurons that innervate stomach or duodenum than there was in the overall vagal afferent population. Furthermore, almost all leptin-responsive gastric and duodenal vagal afferents also were sensitive to CCK. Leptin, infused into the upper GI tract arterial supply, reduced meal size, and enhanced satiation evoked by CCK. These results indicate that vagal afferent neurons are activated by leptin, and that this activation is likely to participate in meal termination, perhaps by enhancing vagal sensitivity to CCK. Our findings are consistent with the view that leptin and CCK exert their influence on food intake by accessing multiple neural systems (viscerosensory, motivational, affective and motor) at multiple points along the neuroaxis. PMID:16872644

  5. Purinergic nerves and receptors.

    PubMed

    Burnstock, G

    1980-01-01

    The presence of a non-cholinergic, non-adrenergic component in the vertebrate autonomic nervous system is now well established. Evidence that ATP is the transmitter released from some of these nerves (called "purinergic') includes: (a) synthesis and storage of ATP in nerves: (b) release of ATP from the nerves when they are stimulated; (c) exogenously applied ATP mimicking the action of nerve-released transmitter; (d) the presence of ectoenzymes which inactivate ATP; (e) drugs which produce similar blocking or potentiating effects on the response to exogenously applied ATP and nerve stimulation. A basis for distinguishing two types of purinergic receptors has been proposed according to four criteria: relative potencies of agonists, competitive antagonists, changes in levels of cAMP and induction of prostaglandin synthesis. Thus P1 purinoceptors are most sensitive to adenosine, are competitively blocked by methylxanthines and their occupation leads to changes in cAMP accumulation; while P2 purinoceptors are most sensitive to ATP, are blocked (although not competitively) by quinidine, 2-substituted imidazolines, 2,2'-pyridylisatogen and apamin, and their occupation leads to production of prostaglandin. P2 purinoceptors mediate responses of smooth muscle to ATP released from purinergic nerves, while P1 purinoceptors mediate the presynaptic actions of adenosine on adrenergic, cholinergic and purinergic nerve terminals. PMID:6108568

  6. Renal denervation for hypertension: observations and predictions of a founder.

    PubMed

    Esler, Murray

    2014-05-01

    The 6-year anniversary of the first catheter-based renal denervation procedure for resistant hypertension has passed, and the 3-year follow-up results of the Symplicity HTN-1 are now published. At the 'end of the beginning', it is timely to reflect on the observations to-date for this revolutionary therapy, and to predict the next phase in its development and clinical application in hypertension treatment. In essence, on observations to hand, the procedure is efficacious and seems safe and durable. But will the blood pressure lowering truly be permanent (or might it be cancelled out by renal sympathetic nerve regrowth)? How can patient selection for the renal denervation procedure be optimized, given that some patients do not respond with a blood pressure fall? Will blood pressure lowering with renal denervation reduce the rate of clinical cardiovascular endpoints? Will long-term safety be acceptable? Can milder hypertension be cured? And there are unresolved procedural and technical questions: how much renal denervation is optimal; is unilateral denervation, now commonly used, beneficial; will renal denervation show a 'class effect', with the different energy forms now used for renal nerve ablation producing equivalent blood pressure lowering? At the 12-year anniversary, I expect these questions will be answered, and catheter-based renal denervation will have an established clinical role in the care of patients with severe grades of hypertension. Less certain is the common prediction of its application in early, mild hypertension, in parallel with, or even before anti-hypertensive drug prescribing.

  7. Enterolith Causing Afferent Loop Obstruction: A Case Report and Literature Review

    SciTech Connect

    Lee, Michael C.; Bui, James T.; Knuttinen, M-Grace; Gaba, Ron C.; Scott Helton, W.; Owens, Charles A.

    2009-09-15

    Enterolith formation is a rare cause of afferent limb obstruction following Billroth II gastrectomy and Roux-en-Y hepaticojejunostomy surgery. A case of ascending cholangitis caused by an enterolith incarcerated in the afferent loop of a 15-year-old Roux-en-Y hepaticojejunostomy was emergently decompressed under direct ultrasound guidance prior to surgery. This is the thirteenth reported case of an enterolith causing afferent loop obstruction. A discussion of our management approach and a review of the relevant literature are presented.

  8. Intraparotid facial nerve neurofibroma.

    PubMed

    Sullivan, M J; Babyak, J W; Kartush, J M

    1987-02-01

    Neurogenic neoplasms of the intraparotid facial nerve are uncommon and are usually diagnosed intraoperatively by tissue biopsy. Fifty-six cases of primary neurogenic neoplasms involving the facial nerve have been reported. The majority of these have been schwannomas. A case of a solitary neurofibroma involving the main trunk of the facial nerve is presented. Schwannomas and neurofibromas have distinct histological features which must be considered prior to the management of these tumors. The management of neurogenic tumors associated with normal facial function is a particularly difficult problem. A new approach for the diagnosis and management of neurogenic neoplasms is described utilizing electroneurography. PMID:3807626

  9. Radial Nerve Tendon Transfers.

    PubMed

    Cheah, Andre Eu-Jin; Etcheson, Jennifer; Yao, Jeffrey

    2016-08-01

    Radial nerve palsy typically occurs as a result of trauma or iatrogenic injury and leads to the loss of wrist extension, finger extension, thumb extension, and a reduction in grip strength. In the absence of nerve recovery, reconstruction of motor function involves tendon transfer surgery. The most common donor tendons include the pronator teres, wrist flexors, and finger flexors. The type of tendon transfer is classified based on the donor for the extensor digitorum communis. Good outcomes have been reported for most methods of radial nerve tendon transfers as is typical for positional tendon transfers not requiring significant power. PMID:27387076

  10. High Ulnar Nerve Injuries: Nerve Transfers to Restore Function.

    PubMed

    Patterson, Jennifer Megan M

    2016-05-01

    Peripheral nerve injuries are challenging problems. Nerve transfers are one of many options available to surgeons caring for these patients, although they do not replace tendon transfers, nerve graft, or primary repair in all patients. Distal nerve transfers for the treatment of high ulnar nerve injuries allow for a shorter reinnervation period and improved ulnar intrinsic recovery, which are critical to function of the hand. PMID:27094893

  11. Reduced lipolysis response to adipose afferent reflex involved in impaired activation of adrenoceptor-cAMP-PKA-hormone sensitive lipase pathway in obesity

    PubMed Central

    Ding, Lei; Zhang, Feng; Zhao, Ming-Xia; Ren, Xing-Sheng; Chen, Qi; Li, Yue-Hua; Kang, Yu-Ming; Zhu, Guo-Qing

    2016-01-01

    Chemical stimulation of white adipose tissue (WAT) causes adipose afferent reflex (AAR) and sympathetic activation. This study is to investigate the effects of AAR on lipolysis and the mechanisms of attenuated lipolysis response to enhanced AAR in obesity. Obesity was caused by high-fat diet for 12 weeks in rats. AAR was induced by injection of capsaicin into inguinal WAT or electrical stimulation of epididymal WAT afferent nerve. AAR caused sympathetic activation, which was enhanced in obesity rats. AAR increased cAMP levels and PKA activity, promoted hormone sensitive lipase (HSL) and perilipin phosphorylation, and increased lipolysis in WAT, which were attenuated in obesity rats. PKA activity, cAMP, perilipin and β-adrenoceptor levels were reduced, while HSL was upregulated in adipocytes from obesity rats. In primary adipocytes, isoproterenol increased cAMP levels and PKA activity, promoted HSL and perilipin phosphorylation, and increased lipolysis, which were attenuated in obesity rats. The attenuated effects of isoproterenol in adipocytes from obesity rats were prevented by a cAMP analogue dbcAMP. The results indicate that reduced lipolysis response to enhanced AAR in obesity is attributed to the impaired activation of β-adrenoceptor-cAMP-PKA-HSL pathway. Increased cAMP level in adipocytes rectifies the attenuated lipolysis in obesity. PMID:27694818

  12. Involvement of afferent neurons in the pathogenesis of endotoxin-induced ileus in mice: role of CGRP and TRPV1 receptors.

    PubMed

    De Winter, Benedicte Y; Bredenoord, Albert J; Van Nassauw, Luc; De Man, Joris G; De Schepper, Heiko U; Timmermans, Jean-Pierre; Pelckmans, Paul A

    2009-08-01

    Activation of neuronal reflex pathways by inflammatory mediators is postulated as an important pathogenic mechanism in postoperative ileus. In this study, we investigated the involvement of afferent neurons and more specifically the role of the transient receptor potential vanilloid receptor type 1 (TRPV1) and calcitonin gene-related peptide (CGRP) in endotoxin-induced motility disturbances in mice. Mice were injected with either lipopolysaccharides (LPS) or saline (control) and pre-treated with hexamethonium (blocker of neuronal transmission), capsaicin (neurotoxin), CGRP 8-37 (CGRP antagonist) or BCTC (TRPV1 receptor antagonist). We measured gastric emptying and intestinal transit of Evans blue next to rectal temperature and a global sickness behaviour scale. In vehicle-treated mice, LPS significantly delayed gastric emptying, small intestinal transit and rectal temperature while the sickness behaviour scale was increased. Hexamethonium, capsaicin, CGRP8-37 and BCTC all reversed the endotoxin-induced delay in gastric emptying and significantly reduced the delay in intestinal transit without effect on the endotoxin-induced decrease in rectal temperature and increase in sickness behaviour scale. Our findings provide evidence for the involvement of afferent nerves in the pathogenesis of endotoxin-induced motility disturbances in mice mediated via CGRP and TRPV1 receptors. Blockade of CGRP and TRPV1 receptors may offer a novel strategy for the treatment of endotoxin-induced ileus.

  13. Facial Nerve Neuroma Management

    PubMed Central

    Weber, Peter C.; Osguthorpe, J. David

    1998-01-01

    Three facial nerve neuromas were identified in the academic year 1994-1995. Each case illustrates different management dilemmas. One patient with a grade III facial nerve palsy had a small geniculate ganglion neuroma with the dilemma of decompression versus resection clear nerve section margins. The second patient underwent facial neuroma resection with cable graft reconstruction, but the permanent sections were positive. The last patient had a massive neuroma in which grafting versus other facial reconstructive options were considered. These three cases illustrate some of the major controversies in facial nerve neuroma management. We discuss our decision-making plan and report our results. ImagesFigure 1Figure 2Figure 3Figure 4Figure 5 PMID:17171043

  14. Diabetes and nerve damage

    MedlinePlus

    Diabetic neuropathy; Diabetes - neuropathy; Diabetes - peripheral neuropathy ... In people with diabetes, the body's nerves can be damaged by decreased blood flow and a high blood sugar level. This condition is ...

  15. Sacral nerve stimulation.

    PubMed

    Matzel, K E; Stadelmaier, U; Besendörfer, M

    2004-01-01

    The current concept of recruiting residual function of an inadequate pelvic organ by electrostimulation involves stimulation of the sacral spinal nerves at the level of the sacral canal. The rationale for applying SNS to fecal incontinence was based on clinical observations of its effect on bowel habits and anorectal continence function in urologic patients (increased anorectal angulation and anal canal closure pressure) and on anatomic considerations: dissection demonstrated a dual peripheral nerve supply of the striated pelvic floor muscles that govern these functions. Because the sacral spinal nerve site is the most distal common location of this dual nerve supply, stimulating here can elicit both functions. Since the first application of SNS in fecal incontinence in 1994, this technique has been improved, the patient selection process modified, and the spectrum of indications expanded. At present SNS has been applied in more than 1300 patients with fecal incontinence limited.

  16. Degenerative Nerve Diseases

    MedlinePlus

    Degenerative nerve diseases affect many of your body's activities, such as balance, movement, talking, breathing, and heart function. Many of these diseases are genetic. Sometimes the cause is a medical ...

  17. Damaged axillary nerve (image)

    MedlinePlus

    Conditions associated with axillary nerve dysfunction include fracture of the humerus (upper arm bone), pressure from casts or splints, and improper use of crutches. Other causes include systemic disorders that cause neuritis (inflammation of ...

  18. Iatrogenic accessory nerve injury.

    PubMed Central

    London, J.; London, N. J.; Kay, S. P.

    1996-01-01

    Accessory nerve injury produces considerable disability. The nerve is most frequently damaged as a complication of radical neck dissection, cervical lymph node biopsy and other surgical procedures. The problem is frequently compounded by a failure to recognise the error immediately after surgery when surgical repair has the greatest chance of success. We present cases which outline the risk of accessory nerve injury, the spectrum of clinical presentations and the problems produced by a failure to recognise the deficit. Regional anatomy, consequences of nerve damage and management options are discussed. Diagnostic biopsy of neck nodes should not be undertaken as a primary investigation and, when indicated, surgery in this region should be performed by suitably trained staff under well-defined conditions. Awareness of iatrogenic injury and its consequences would avoid delays in diagnosis and treatment. Images Figure 2 PMID:8678450

  19. Femoral nerve dysfunction

    MedlinePlus

    Neuropathy - femoral nerve; Femoral neuropathy ... Craig EJ, Clinchot DM. Femoral neuropathy. In: Frontera WR, Silver JK, Rizzo TD Jr, eds. Essentials of Physical Medicine and Rehabilitation: Musculoskeletal Disorders, Pain, and Rehabilitation . 3rd ...

  20. Diabetic Nerve Problems

    MedlinePlus

    ... the wrong times. This damage is called diabetic neuropathy. Over half of people with diabetes get it. ... change positions quickly Your doctor will diagnose diabetic neuropathy with a physical exam and nerve tests. Controlling ...

  1. Lower cranial nerves.

    PubMed

    Soldatos, Theodoros; Batra, Kiran; Blitz, Ari M; Chhabra, Avneesh

    2014-02-01

    Imaging evaluation of cranial neuropathies requires thorough knowledge of the anatomic, physiologic, and pathologic features of the cranial nerves, as well as detailed clinical information, which is necessary for tailoring the examinations, locating the abnormalities, and interpreting the imaging findings. This article provides clinical, anatomic, and radiological information on lower (7th to 12th) cranial nerves, along with high-resolution magnetic resonance images as a guide for optimal imaging technique, so as to improve the diagnosis of cranial neuropathy.

  2. Functional specializations of primary auditory afferents on the Mauthner cells: interactions between membrane and synaptic properties.

    PubMed

    Curti, Sebastian; Pereda, Alberto E

    2010-01-01

    Primary auditory afferents are usually perceived as passive, timing-preserving, lines of communication. Contrasting this view, a special class of auditory afferents to teleost Mauthner cells, a command neuron that organizes tail-flip escape responses, undergoes potentiation of their mixed (electrical and chemical) synapses in response to high frequency cellular activity. This property is likely to represent a mechanism of input sensitization as these neurons provide the Mauthner cell with essential information for the initiation of an escape response. We review here the anatomical and physiological specializations of these identifiable auditory afferents. In particular, we discuss how their membrane and synaptic properties act in concert to more efficaciously activate the Mauthner cells. The striking functional specializations of these neurons suggest that primary auditory afferents might be capable of more sophisticated contributions to auditory processing than has been generally recognized. PMID:19941953

  3. Functional role of unmyelinated tactile afferents in human hairy skin: sympathetic response and perceptual localization.

    PubMed

    Olausson, Håkan; Cole, Jonathan; Rylander, Karin; McGlone, Francis; Lamarre, Yves; Wallin, B Gunnar; Krämer, Heidrun; Wessberg, Johan; Elam, Mikael; Bushnell, M Catherine; Vallbo, Ake

    2008-01-01

    In addition to A-beta fibres the human hairy skin has unmyelinated (C) fibres responsive to light touch. Previous functional magnetic resonance imaging (fMRI) studies in a subject with a neuronopathy who specifically lacks A-beta afferents indicated that tactile C afferents (CT) activate insular cortex, whereas no response was seen in somatosensory areas 1 and 2. Psychophysical tests suggested that CT afferents give rise to an inconsistent perception of weak and pleasant touch. By examining two neuronopathy subjects as well as control subjects we have now demonstrated that CT stimulation can elicit a sympathetic skin response. Further, the neuronopathy subjects' ability to localize stimuli which activate CT afferents was very poor but above chance level. The findings support the interpretation that the CT system is well suited to underpin affective rather than discriminative functions of tactile sensations.

  4. Inter-hemispheric plasticity in patients with median nerve injury.

    PubMed

    Fornander, Lotta; Nyman, Torbjörn; Hansson, Thomas; Brismar, Tom; Engström, Maria

    2016-08-15

    Peripheral nerve injuries result in reorganization within the contralateral hemisphere. Furthermore, recent animal and human studies have suggested that the plastic changes in response to peripheral nerve injury also include several areas of the ipsilateral hemisphere. The objective of this study was to map the inter-hemispheric plasticity in response to median nerve injury, to investigate normal differences in contra- and ipsilateral activation, and to study the impact of event-related or blocked functional magnetic resonance imaging (fMRI) design on ipsilateral activation. Four patients with median nerve injury at the wrist (injured and epineurally sutured >2 years earlier) and ten healthy volunteers were included. 3T fMRI was used to map the hemodynamic response to brain activity during tactile stimulation of the fingers, and a laterality index (LI) was calculated. Stimulation of Digits II-III of the injured hand resulted in a reduction in contralateral activation in the somatosensory area SI. Patients had a lower LI (0.21±0.15) compared to healthy controls (0.60±0.26) indicating greater ipsilateral activation of the primary somatosensory cortex. The spatial dispersion of the coordinates for areas SI and SII was larger in the ipsilateral than in the contralateral hemisphere in the healthy controls, and was increased in the contralateral hemisphere of the patients compared to the healthy controls. There was no difference in LI between the event-related and blocked paradigms. In conclusion, patients with median nerve injury have increased ipsilateral SI area activation, and spatially more dispersed contralateral SI activation during tactile stimulation of their injured hand. In normal subjects ipsilateral activation has larger spatial distribution than the contralateral. Previous findings in patients performed with the blocked fMRI paradigm were confirmed. The increase in ipsilateral SI activation may be due to an interhemispheric disinhibition associated with

  5. Recent advances in research on nitrergic nerve-mediated vasodilatation.

    PubMed

    Toda, Noboru; Okamura, Tomio

    2015-06-01

    Cerebral vascular resistance and blood flow were widely considered to be regulated solely by tonic innervation of vasoconstrictor adrenergic nerves. However, pieces of evidence suggesting that parasympathetic nitrergic nerve activation elicits vasodilatation in dog and monkey cerebral arteries were found in 1990. Nitric oxide (NO) as a neurotransmitter liberated from parasympathetic postganglionic neurons decreases cerebral vascular tone and resistance and increases cerebral blood flow, which overcome vasoconstrictor responses to norepinephrine liberated from adrenergic nerves. Functional roles of nitrergic vasodilator nerves are found also in peripheral vasculature, including pulmonary, renal, mesenteric, hepatic, ocular, uterine, nasal, skeletal muscle, and cutaneous arteries and veins; however, adrenergic nerve-induced vasoconstriction is evidently greater than nitrergic vasodilatation in these vasculatures. In coronary arteries, neurogenic NO-mediated vasodilatation is not clearly noted; however, vasodilatation is induced by norepinephrine released from adrenergic nerves that activates β1-adrenoceptors. Impaired actions of NO liberated from the endothelium and nitrergic neurons are suggested to participate in cerebral hypoperfusion, leading to brain dysfunction, like that in Alzheimer's disease. Nitrergic neural dysfunction participates in impaired circulation in peripheral organs and tissues and also in systemic blood pressure increase. NO and vasodilator peptides, as sensory neuromediators, are involved in neurogenic vasodilatation in the skin. Functioning of nitrergic vasodilator nerves is evidenced not only in a variety of mammals, including humans and monkeys, but also in non-mammals. The present review article includes recent advances in research on the functional importance of nitrergic nerves concerning the control of cerebral blood flow, as well as other regions, and vascular resistance. Although information is still insufficient, the nitrergic nerve

  6. Pharmacologically Distinct Nicotinic Acetylcholine Receptors Drive Efferent-Mediated Excitation in Calyx-Bearing Vestibular Afferents

    PubMed Central

    Kewin, Kevin; Jordan, Paivi M.; Cameron, Peter; Klapczynski, Marcin; McIntosh, J. Michael; Crooks, Peter A.; Dwoskin, Linda P.; Lysakowski, Anna

    2015-01-01

    Electrical stimulation of vestibular efferent neurons rapidly excites the resting discharge of calyx/dimorphic (CD) afferents. In turtle, this excitation arises when acetylcholine (ACh), released from efferent terminals, directly depolarizes calyceal endings by activating nicotinic ACh receptors (nAChRs). Although molecular biological data from the peripheral vestibular system implicate most of the known nAChR subunits, specific information about those contributing to efferent-mediated excitation of CD afferents is lacking. We sought to identify the nAChR subunits that underlie the rapid excitation of CD afferents and whether they differ from α9α10 nAChRs on type II hair cells that drive efferent-mediated inhibition in adjacent bouton afferents. We recorded from CD and bouton afferents innervating the turtle posterior crista during electrical stimulation of vestibular efferents while applying several subtype-selective nAChR agonists and antagonists. The α9α10 nAChR antagonists, α-bungarotoxin and α-conotoxin RgIA, blocked efferent-mediated inhibition in bouton afferents while leaving efferent-mediated excitation in CD units largely intact. Conversely, 5-iodo-A-85380, sazetidine-A, varenicline, α-conotoxin MII, and bPiDDB (N,N-dodecane-1,12-diyl-bis-3-picolinium dibromide) blocked efferent-mediated excitation in CD afferents without affecting efferent-mediated inhibition in bouton afferents. This pharmacological profile suggested that calyceal nAChRs contain α6 and β2, but not α9, nAChR subunits. Selective blockade of efferent-mediated excitation in CD afferents distinguished dimorphic from calyx afferents by revealing type II hair cell input. Dimorphic afferents differed in having higher mean discharge rates and a mean efferent-mediated excitation that was smaller in amplitude yet longer in duration. Molecular biological data demonstrated the expression of α9 in turtle hair cells and α4 and β2 in associated vestibular ganglia. PMID:25716861

  7. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin

    NASA Astrophysics Data System (ADS)

    Borovikova, Lyudmila V.; Ivanova, Svetlana; Zhang, Minghuang; Yang, Huan; Botchkina, Galina I.; Watkins, Linda R.; Wang, Haichao; Abumrad, Naji; Eaton, John W.; Tracey, Kevin J.

    2000-05-01

    Vertebrates achieve internal homeostasis during infection or injury by balancing the activities of proinflammatory and anti-inflammatory pathways. Endotoxin (lipopolysaccharide), produced by all gram-negative bacteria, activates macrophages to release cytokines that are potentially lethal. The central nervous system regulates systemic inflammatory responses to endotoxin through humoral mechanisms. Activation of afferent vagus nerve fibres by endotoxin or cytokines stimulates hypothalamic-pituitary-adrenal anti-inflammatory responses. However, comparatively little is known about the role of efferent vagus nerve signalling in modulating inflammation. Here, we describe a previously unrecognized, parasympathetic anti-inflammatory pathway by which the brain modulates systemic inflammatory responses to endotoxin. Acetylcholine, the principle vagal neurotransmitter, significantly attenuated the release of cytokines (tumour necrosis factor (TNF), interleukin (IL)-1β, IL-6 and IL-18), but not the anti-inflammatory cytokine IL-10, in lipopolysaccharide-stimulated human macrophage cultures. Direct electrical stimulation of the peripheral vagus nerve in vivo during lethal endotoxaemia in rats inhibited TNF synthesis in liver, attenuated peak serum TNF amounts, and prevented the development of shock.

  8. Genetic and pharmacological evidence for low-abundance TRPV3 expression in primary vagal afferent neurons.

    PubMed

    Wu, Shaw-Wen; Lindberg, Jonathan E M; Peters, James H

    2016-05-01

    Primary vagal afferent neurons express a multitude of thermosensitive ion channels. Within this family of ion channels, the heat-sensitive capsaicin receptor (TRPV1) greatly influences vagal afferent signaling by determining the threshold for action-potential initiation at the peripheral endings, while controlling temperature-sensitive forms of glutamate release at central vagal terminals. Genetic deletion of TRPV1 does not completely eliminate these temperature-dependent effects, suggesting involvement of additional thermosensitive ion channels. The warm-sensitive, calcium-permeable, ion channel TRPV3 is commonly expressed with TRPV1; however, the extent to which TRPV3 is found in vagal afferent neurons is unknown. Here, we begin to characterize the genetic and functional expression of TRPV3 in vagal afferent neurons using molecular biology (RT-PCR and RT-quantitative PCR) in whole nodose and isolated neurons and fluorescent calcium imaging on primary cultures of nodose ganglia neurons. We confirmed low-level TRPV3 expression in vagal afferent neurons and observed direct activation with putative TRPV3 agonists eugenol, ethyl vanillin (EVA), and farnesyl pyrophosphate (FPP). Agonist activation stimulated neurons also containing TRPV1 and was blocked by ruthenium red. FPP sensitivity overlapped with EVA and eugenol but represented the smallest percentage of vagal afferent neurons, and it was the only agonist that did not stimulate neurons from TRPV3(-/-1) mice, suggesting FPP has the highest selectivity. Further, FPP was predictive of enhanced responses to capsaicin, EVA, and eugenol in rats. From our results, we conclude TRPV3 is expressed in a discrete subpopulation of vagal afferent neurons and may contribute to vagal afferent signaling either directly or in combination with TRPV1. PMID:26843581

  9. Influence of map scale on primary afferent terminal field geometry in cat dorsal horn.

    PubMed

    Millecchia, R J; Pubols, L M; Sonty, R V; Culberson, J L; Gladfelter, W E; Brown, P B

    1991-09-01

    1. Thirty-one physiologically identified primary afferent fibers were labeled intracellularly with horseradish peroxidase (HRP). 2. A computer analysis was used to determine whether the distribution of cutaneous mechanoreceptive afferent terminals varies as a function of location within the dorsal horn somatotopic map. 3. An analysis of the geometry of the projections of these afferents has shown that 1) terminal arbors have a greater mediolateral width within the region of the foot representation than lateral to it, 2) terminal arbors have larger length-to-width ratios outside the foot representation than within it, and 3) the orientation of terminal arbors near the boundary of the foot representation reflects the angle of the boundary. Previous attribution of mediolateral width variations to primary afferent type are probably in error, although there appear to be genuine variations of longitudinal extent as a function of primary afferent type. 4. Nonuniform terminal distributions represent the first of a three-component process underlying assembly of the monosynaptic portions of cell receptive fields (RFs) and the somatotopic map. The other two components consist of the elaboration of cell dendritic trees and the establishment of selective connections. 5. The variation of primary afferent terminal distributions with map location is not an absolute requirement for development of the map; for example, the RFs of postsynaptic cells could be assembled with the use of a uniform terminal distribution for all afferents, everywhere in the map, as long as cell dendrites penetrate the appropriate portions of the presynaptic neuropil and receive connections only from afferent axons contributing to their RFs.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1753281

  10. Innervation of enteric mast cells by primary spinal afferents in guinea pig and human small intestine.

    PubMed

    Wang, Guo-Du; Wang, Xi-Yu; Liu, Sumei; Qu, Meihua; Xia, Yun; Needleman, Bradley J; Mikami, Dean J; Wood, Jackie D

    2014-10-01

    Mast cells express the substance P (SP) neurokinin 1 receptor and the calcitonin gene-related peptide (CGRP) receptor in guinea pig and human small intestine. Enzyme-linked immunoassay showed that activation of intramural afferents by antidromic electrical stimulation or by capsaicin released SP and CGRP from human and guinea pig intestinal segments. Electrical stimulation of the afferents evoked slow excitatory postsynaptic potentials (EPSPs) in the enteric nervous system. The slow EPSPs were mediated by tachykinin neurokinin 1 and CGRP receptors. Capsaicin evoked slow EPSP-like responses that were suppressed by antagonists for protease-activated receptor 2. Afferent stimulation evoked slow EPSP-like excitation that was suppressed by mast cell-stabilizing drugs. Histamine and mast cell protease II were released by 1) exposure to SP or CGRP, 2) capsaicin, 3) compound 48/80, 4) elevation of mast cell Ca²⁺ by ionophore A23187, and 5) antidromic electrical stimulation of afferents. The mast cell stabilizers cromolyn and doxantrazole suppressed release of protease II and histamine when evoked by SP, CGRP, capsaicin, A23187, electrical stimulation of afferents, or compound 48/80. Neural blockade by tetrodotoxin prevented mast cell protease II release in response to antidromic electrical stimulation of mesenteric afferents. The results support a hypothesis that afferent innervation of enteric mast cells releases histamine and mast cell protease II, both of which are known to act in a diffuse paracrine manner to influence the behavior of enteric nervous system neurons and to elevate the sensitivity of spinal afferent terminals.

  11. Renal cell carcinoma

    MedlinePlus

    Renal cancer; Kidney cancer; Hypernephroma; Adenocarcinoma of renal cells; Cancer - kidney ... ed. Philadelphia, PA: Elsevier; 2016:chap 57. National Cancer Institute: PDQ renal cell cancer treatment. Bethesda, MD: National Cancer Institute. ...

  12. Linear Path Integration Deficits in Patients with Abnormal Vestibular Afference

    PubMed Central

    Arthur, Joeanna C.; Kortte, Kathleen B.; Shelhamer, Mark; Schubert, Michael C.

    2014-01-01

    Effective navigation requires the ability to keep track of one’s location and maintain orientation during linear and angular displacements. Path integration is the process of updating the representation of body position by integrating internally-generated self-motion signals over time (e.g., walking in the dark). One major source of input to path integration is vestibular afference. We tested patients with reduced vestibular function (unilateral vestibular hypofunction, UVH), patients with aberrant vestibular function (benign paroxysmal positional vertigo, BPPV), and healthy participants (controls) on two linear path integration tasks: experimenter-guided walking and target-directed walking. The experimenter-guided walking task revealed a systematic underestimation of self-motion signals in UVH patients compared to the other groups. However, we did not find any difference in the distance walked between the UVH group and the control group for the target-directed walking task. Results from neuropsychological testing and clinical balance measures suggest that the errors in experimenter-guided walking were not attributable to cognitive and/or balance impairments. We conclude that impairment in linear path integration in UVH patients stem from deficits in self-motion perception. Importantly, our results also suggest that patients with a UVH deficit do not lose their ability to walk accurately without vision to a memorized target location. PMID:22726251

  13. Afference copy as a quantitative neurophysiological model for consciousness.

    PubMed

    Cornelis, Hugo; Coop, Allan D

    2014-06-01

    Consciousness is a topic of considerable human curiosity with a long history of philosophical analysis and debate. We consider there is nothing particularly complicated about consciousness when viewed as a necessary process of the vertebrate nervous system. Here, we propose a physiological "explanatory gap" is created during each present moment by the temporal requirements of neuronal activity. The gap extends from the time exteroceptive and proprioceptive stimuli activate the nervous system until they emerge into consciousness. During this "moment", it is impossible for an organism to have any conscious knowledge of the ongoing evolution of its environment. In our schematic model, a mechanism of "afference copy" is employed to bridge the explanatory gap with consciously experienced percepts. These percepts are fabricated from the conjunction of the cumulative memory of previous relevant experience and the given stimuli. They are structured to provide the best possible prediction of the expected content of subjective conscious experience likely to occur during the period of the gap. The model is based on the proposition that the neural circuitry necessary to support consciousness is a product of sub/preconscious reflexive learning and recall processes. Based on a review of various psychological and neurophysiological findings, we develop a framework which contextualizes the model and briefly discuss further implications. PMID:25012715

  14. Afference copy as a quantitative neurophysiological model for consciousness.

    PubMed

    Cornelis, Hugo; Coop, Allan D

    2014-06-01

    Consciousness is a topic of considerable human curiosity with a long history of philosophical analysis and debate. We consider there is nothing particularly complicated about consciousness when viewed as a necessary process of the vertebrate nervous system. Here, we propose a physiological "explanatory gap" is created during each present moment by the temporal requirements of neuronal activity. The gap extends from the time exteroceptive and proprioceptive stimuli activate the nervous system until they emerge into consciousness. During this "moment", it is impossible for an organism to have any conscious knowledge of the ongoing evolution of its environment. In our schematic model, a mechanism of "afference copy" is employed to bridge the explanatory gap with consciously experienced percepts. These percepts are fabricated from the conjunction of the cumulative memory of previous relevant experience and the given stimuli. They are structured to provide the best possible prediction of the expected content of subjective conscious experience likely to occur during the period of the gap. The model is based on the proposition that the neural circuitry necessary to support consciousness is a product of sub/preconscious reflexive learning and recall processes. Based on a review of various psychological and neurophysiological findings, we develop a framework which contextualizes the model and briefly discuss further implications.

  15. Cytosolic calcium regulation in rat afferent vagal neurons during anoxia.

    PubMed

    Henrich, Michael; Buckler, Keith J

    2013-12-01

    Sensory neurons are able to detect tissue ischaemia and both transmit information to the brainstem as well as release local vasoactive mediators. Their ability to sense tissue ischaemia is assumed to be primarily mediated through proton sensing ion channels, lack of oxygen however may also affect sensory neuron function. In this study we investigated the effects of anoxia on isolated capsaicin sensitive neurons from rat nodose ganglion. Acute anoxia triggered a reversible increase in [Ca2+]i that was mainly due to Ca2+-efflux from FCCP sensitive stores and from caffeine and CPA sensitive ER stores. Prolonged anoxia resulted in complete depletion of ER Ca2+-stores. Mitochondria were partially depolarised by acute anoxia but mitochondrial Ca2+-uptake/buffering during voltage-gated Ca2+-influx was unaffected. The process of Ca2+-release from mitochondria and cytosolic Ca2+-clearance following Ca2+ influx was however significantly slowed. Anoxia was also found to inhibit SERCA activity and, to a lesser extent, PMCA activity. Hence, anoxia has multiple influences on [Ca2+]i homeostasis in vagal afferent neurons, including depression of ATP-driven Ca2+-pumps, modulation of the kinetics of mitochondrial Ca2+ buffering/release and Ca2+-release from, and depletion of, internal Ca2+-stores. These effects are likely to influence sensory neuronal function during ischaemia. PMID:24189167

  16. The fibre spectrum of the chorda nerve in the chicken (Gallus gallus var. domesticus).

    PubMed Central

    Gentle, M J; Clark, J S

    1985-01-01

    Using transmission electron microscopy, the numbers and diameters of all nerve fibres were studied in the chorda tympani nerve of the domestic fowl. The mean diameter of the whole nerve was 64.6 micron and contained 203-407 (mean 302) myelinated and 205-345 (mean 265.6) unmyelinated fibres. Of the myelinated fibres (including sheath) 95% were in the range 0.5-3 micron in diameter and 94% of the unmyelinated fibres ranged from 0.2 to 0.9 micron in diameter. After section of the facial nerve within the facial canal, there was a marked reduction in the number of myelinated fibres present in the chorda tympani nerve (range 12-160, mean 103) but a less marked reduction in the unmyelinated fibres (range 94-362, mean 223). The loss of myelinated fibres was not confined to any one fibre size whereas the loss of unmyelinated fibres was mainly in the smaller fibres (range 0.1-0.5 micron). Since facial nerve section results in degeneration of efferent fibres it would seem that a large proportion of the afferent fibres are unmyelinated. PMID:4066464

  17. Sympathetic modulation of sensory nerve activity with age: human and rodent skin models.

    PubMed

    Khalil, Z; LeVasseur, S; Merhi, M; Helme, R D

    1997-11-01

    1. Sensory nerves serve an afferent role and mediate neurogenic components of inflammation and tissue repair via an axon reflex release of sensory peptides at sites of injury. Dysfunction of these nerves with age could contribute to delayed tissue healing. 2. Complementary animal and human skin models were used in the present studies to investigate changes in the modulation of sensory nerve function by sympathetic efferents during ageing. Laser Doppler flowmetry was used to monitor neurogenic skin vascular responses. 3. The animal model used skin of the hind footpad of anaesthetized rats combined with electrical stimulation of the sciatic nerve, while the human model comprised capsaicin electrophoresis to the volar surface of the forearm. Sympathetic modulation was effected by systemic phentolamine pretreatment in animals and local application in the human model. 4. The results obtained from the human model confirmed the reported decline in sensory nerve function and showed no change in sympathetic modulation with age. The results from the animal model confirm and expand results obtained from the human model. 5. The use of low (5 Hz) and high (15 Hz) frequency electrical stimulation (20 V, 2 ms for 1 min) revealed a preferential response of aged sensory nerves to low-frequency electrical stimulation parameters with differential sympathetic modulation that is dependent on the frequency of stimulation.

  18. Cortical Brain Mapping of Peripheral Nerves Using Functional Magnetic Resonance Imaging in a Rodent Model

    PubMed Central

    Cho, Younghoon R.; Jones, Seth R.; Pawela, Christopher P.; Li, Rupeng; Kao, Dennis S.; Schulte, Marie L.; Runquist, Matthew L.; Yan, Ji-Geng; Hudetz, Anthony G.; Jaradeh, Safwan S.; Hyde, James S.; Matloub, Hani S.

    2008-01-01

    The regions of the body have cortical and subcortical representation in proportion to their degree of innervation. The rat forepaw has been studied extensively in recent years using functional magnetic resonance imaging (fMRI)—typically by stimulation using electrodes directly inserted into the skin of the forepaw. Here, we stimulate using surgically implanted electrodes. A major distinction is that stimulation of the skin of the forepaw is mostly sensory, whereas direct nerve stimulation reveals not only the sensory system but also deep brain structures associated with motor activity. In this paper, we seek to define both the motor and sensory cortical and subcortical representations associated with the four major nerves of the rodent upper extremity. We electrically stimulated each nerve (median, ulnar, radial, and musculocutaneous) during fMRI acquisition using a 9.4T Bruker scanner. A current level of 0.5-1.0 mA and a frequency of 5 Hz were used while keeping the duration constant. A distinct pattern of cortical activation was found for each nerve that can be correlated with known sensorimotor afferent and efferent pathways to the rat forepaw. This direct nerve stimulation rat model can provide insight into peripheral nerve injury. PMID:18924070

  19. Renal neurohormonal regulation in heart failure decompensation.

    PubMed

    Jönsson, Sofia; Agic, Mediha Becirovic; Narfström, Fredrik; Melville, Jacqueline M; Hultström, Michael

    2014-09-01

    Decompensation in heart failure occurs when the heart fails to balance venous return with cardiac output, leading to fluid congestion and contributing to mortality. Decompensated heart failure can cause acute kidney injury (AKI), which further increases mortality. Heart failure activates signaling systems that are deleterious to kidneys such as renal sympathetic nerve activity (RSNA), renin-angiotensin-aldosterone system, and vasopressin secretion. All three reduce renal blood flow (RBF) and increase tubular sodium reabsorption, which may increase renal oxygen consumption causing AKI through renal tissue hypoxia. Vasopressin contributes to venous congestion through aquaporin-mediated water retention. Additional water retention may be mediated through vasopressin-induced medullary urea transport and hyaluronan but needs further study. In addition, there are several systems that could protect the kidneys and reduce fluid retention such as natriuretic peptides, prostaglandins, and nitric oxide. However, the effect of natriuretic peptides and nitric oxide are blunted in decompensation, partly due to oxidative stress. This review considers how neurohormonal signaling in heart failure drives fluid retention by the kidneys and thus exacerbates decompensation. It further identifies areas where there is limited data, such as signaling systems 20-HETE, purines, endothelin, the role of renal water retention mechanisms for congestion, and renal hypoxia in AKI during heart failure.

  20. Renal Sympathetic Denervation: Hibernation or Resurrection?

    PubMed

    Papademetriou, Vasilios; Doumas, Michael; Tsioufis, Costas

    2016-01-01

    The most current versions of renal sympathetic denervation have been invented as minimally invasive approaches for the management of drug-resistant hypertension. The anatomy, physiology and pathophysiology of renal sympathetic innervation provide a strong background supporting an important role of the renal nerves in the regulation of blood pressure (BP) and volume. In addition, historical data with surgical sympathectomy and experimental data with surgical renal denervation indicate a beneficial effect on BP levels. Early clinical studies with transcatheter radiofrequency ablation demonstrated impressive BP reduction, accompanied by beneficial effects in target organ damage and other disease conditions characterized by sympathetic overactivity. However, the failure of the SYMPLICITY 3 trial to meet its primary efficacy end point raised a lot of concerns and put the field of renal denervation into hibernation. This review aims to translate basic research into clinical practice by presenting the anatomical and physiological basis for renal sympathetic denervation, critically discussing the past and present knowledge in this field, where we stand now, and also speculating about the future of the intervention and potential directions for research. PMID:27287994

  1. Color threshold and ratio of S100 beta, MAP5, NF68/200, GABA & GAD. I. Distribution in inner ear afferents

    NASA Technical Reports Server (NTRS)

    Fermin, C. D.; Martin, D. S.; Hara, H.

    1997-01-01

    Afferents of chick embryos (Gallus domesticus) VIIIth nerve were examined at E3, E6, E9, E13, El7, and hatching (NH) for anti-S100 beta, anti-MAP5, anti-GABA, anti-GAD and anti-NF68/200 stain. Different ages were processed together to determine if the distribution of these antibodies changed during synaptogenesis and myelination. Color thresholding showed that saturation of pixels changed for S100 beta only 5%, for NF68/200 10%, and for MAP5, 10%, between E9-NH. Color ratio of NF68/200 over MAP5 was 1.00 at E13 and 0.25 at E16 and NH. S100 beta, GABA and GAD were co-expressed on nerve endings at the edge of the maculae and center of the cristae, whereas hair cells in the center of the maculae expressed either S100 beta or GABA, but not both. S100 beta/NF68/200 shared antigenic sites on the chalices, but NF68/200 expression was higher than S100 beta in the chalices at hatching. MAP5 was expressed in more neurons than NF68/200 at E11, whereas NF68/200 was more abundant than MAP5 at hatching. The results suggest that: 1) the immunoexpression of these neuronal proteins is modulated concomitantly with the establishment of afferent synapses and myelination; 2) S100 beta may serve a neurotrophic function in the chalices where it is co-expressed with the neurotransmitter GABA and its synthesizing enzyme GAD.

  2. Habenular and other midbrain raphe afferents demonstrated by a modified retrograde tracing technique.

    PubMed

    Aghajanian, G K; Wang, R Y

    1977-02-18

    Afferents to th midbrain dorsal and median raphe nuclei in the rat were studied by means of the horseradish peroxidase (HRP) retrograde transport method. The HRP was given by means of a modified iontophoretic delivery technique. This technique permitted an efficient and localized deposition of a high concentration of HRP into the raphe nuclei. Afferents to the raphe as determined by this method could be categorized into 2 classes; those exclusively to the raphe and those also positive for adjacent reticular formation. The most striking afferent area to the raphe, both in terms of selectivity and density, was the lateral habenula. This result is in accord with previous studies using degeneration methods which indicate an habenular projection to the raphe area. There were afferents exclusively positive for the dorsal raphe nucleus emanating from the nucleus of the solitary tract. Most other raphe afferent areas were also positive for the reticular formation (e.g;, prefrontal cortex, medial forebrain bundle, preoptic nuclei, and reticular formation). The existence of a major afferent system from the lateral habenula to the midbrain raphe is consistent with the concept of a "dorsal pathway" which might be responsible for relaying information from forebrain limbic structures to the "midbrain limbic areas".

  3. Classification of longissimus lumborum muscle spindle afferents in the anaesthetized cat.

    PubMed

    Durbaba, R; Taylor, A; Ellaway, P H; Rawlinson, S

    2006-03-01

    Recordings have been made from 127 single muscle spindle afferents from the longissimus lumborum muscles of anaesthetized cats. They have been characterized by their responses to passive muscle stretch and the effects of succinylcholine (SCh) and by their sensitivity to vibration. The use of SCh permitted the assessment for each afferent of the influence of bag1 (b1) and bag2 (b2) intrafusal muscle fibres. From this, on the assumption that all afferents were affected by chain (c) fibres, they were classified in four groups: b1b2c (41.9%), b2c (51.4%), b1c (1.3%) and c (5.4%). All the afferents with b1 influence were able to respond one to one to vibration at frequencies above 100 Hz and were considered to belong to primary endings. On the basis of the vibration test, 64% of the b2c type afferents appeared to be primaries and 36% secondaries. Of the units classified as primaries, 41% were designated as b2c and would not therefore be able to respond to dynamic fusimotor activity. The significance of this relatively high proportion of b2c-type spindle primary afferents is discussed in relation to the specialized postural function of the back muscles.

  4. Purinergic 2 receptor blockade prevents the responses of group IV afferents to post-contraction circulatory occlusion

    PubMed Central

    Kindig, Angela E; Hayes, Shawn G; Kaufman, Marc P

    2007-01-01

    ATP, by activating purinergic 2 (P2) receptors on group III and IV afferents, is thought to evoke the metabolic component of the exercise pressor reflex. Previously we have shown that injection of PPADS, a P2 receptor antagonist, into the arterial supply of skeletal muscle of decerebrated cats attenuated the responses of group III and IV afferents to static contraction while the muscles were freely perfused. We have now tested the hypothesis that injection of PPADS (10 mg kg−1) attenuated the responses of group III (n = 13) and group IV afferents (n = 9) to post-contraction circulatory occlusion. In the present study, we found that PPADS attenuated the group III afferent responses to static contraction during circulatory occlusion (P < 0.05). Likewise, PPADS abolished the group IV afferent responses to static contraction during occlusion (P = 0.001). During a 1 minute period of post-contraction circulatory occlusion, four of the 13 group III afferents and eight of the nine group IV afferents maintained their increased discharge. A Fischer's exact probability test revealed that more group IV afferents than group III afferents were stimulated by post-contraction circulatory occlusion (P < 0.02). In addition, the nine group IV afferents increased their mean discharge rate over baseline levels during the post-contraction circulatory occlusion period, whereas the 13 group III afferents did not (P < 0.05). PPADS abolished this post-contraction increase in discharge by the group IV afferents (P < 0.05). Our findings suggest that P2 receptors on group IV afferents play a role in evoking the metabolic component of the exercise pressor reflex. PMID:17038431

  5. Communications Between the Facial Nerve and the Vestibulocochlear Nerve, the Glossopharyngeal Nerve, and the Cervical Plexus.

    PubMed

    Hwang, Kun; Song, Ju Sung; Yang, Su Cheol

    2015-10-01

    The aim of this review is to elucidate the communications between the facial nerves or facial nerve and neighboring nerves: the vestibulocochlear nerve, the glossopharyngeal nerve, and the cervical plexus.In a PubMed search, 832 articles were sear