Science.gov

Sample records for afferent vagus nerve

  1. Vagus Nerve Stimulation

    PubMed Central

    Howland, Robert H.

    2014-01-01

    The vagus nerve is a major component of the autonomic nervous system, has an important role in the regulation of metabolic homeostasis, and plays a key role in the neuroendocrine-immune axis to maintain homeostasis through its afferent and efferent pathways. Vagus nerve stimulation (VNS) refers to any technique that stimulates the vagus nerve, including manual or electrical stimulation. Left cervical VNS is an approved therapy for refractory epilepsy and for treatment resistant depression. Right cervical VNS is effective for treating heart failure in preclinical studies and a phase II clinical trial. The effectiveness of various forms of non-invasive transcutaneous VNS for epilepsy, depression, primary headaches, and other conditions has not been investigated beyond small pilot studies. The relationship between depression, inflammation, metabolic syndrome, and heart disease might be mediated by the vagus nerve. VNS deserves further study for its potentially favorable effects on cardiovascular, cerebrovascular, metabolic, and other physiological biomarkers associated with depression morbidity and mortality. PMID:24834378

  2. Effect of copper sulphate on the rate of afferent discharge in the gastric branch of the vagus nerve in the rat

    NASA Technical Reports Server (NTRS)

    Niijima, Akira; Jiang, Zheng-Yao; Daunton, Nancy G.; Fox, Robert A.

    1991-01-01

    The afferent nerve activity was recorded from a nerve filament isolated from the peripheral cut end of the gastric branch of the vagus nerve. The gastric perfusion of 4 ml of two different concentrations (0.04 percent and 0.08 percent) of CuSO4 solution provoked an increase in afferent activity. The stimulating effect of the 0.08 percent solution was stronger than that of the 0.04 percent solution, and lasted for a longer period of time. The observations suggest a possible mechanism by which CuSO4 elicits emesis.

  3. [The Importance of Vagus Nerve Afferent in the Formation of Emotions in Attention-Deficit Hyperactivity Disorder Model Rat].

    PubMed

    Hida, Hideki

    2016-06-01

    It is of interest to know how environmental stimuli contribute to the formation of emotion during development. In a rat model of attention-deficit hyperactivity disorder, monosodium L- glutamate (MSG), a taste substance of umami, was administered for 5 weeks during developmental period, followed by emotional behavior tests such as open-field test and social interaction test in adulthood. Although no significant change was observed in anxiety-like behavior, MSG intake caused a reduction in aggressive behavior. Vagotomy under the level of diaphragm resulted in eliminating the MSG effect on aggression, indicating the importance of neuronal activity of the vagus nerve in this effect. Futher studies will focus on futher questions regarding the gut-brain axis such as the change of microbiota and the mechanism of the axis in the brain. PMID:27279161

  4. Schwannomatosis of Cervical Vagus Nerve

    PubMed Central

    Sasi, M. P.

    2016-01-01

    Cervical vagal schwannoma is a rare entity among lesions presenting as a neck mass. They are usually slow-growing benign lesions closely associated with the vagus nerve. They are usually solitary and asymptomatic. Multiple schwannomas occurring in patients without neurofibromatosis (NF) are rare and have recently been referred to as schwannomatosis. Here, we present a case of a neck mass that had imaging features suggestive of vagal schwannoma and was operated upon. Intraoperatively, it was discovered to be a case of multiple vagal cervical schwannoma, all directly related to the right vagus nerve, and could be resected from the nerve in toto preserving the function of the vagus nerve. Final HPR confirmed our pre-op suspicion of vagal schwannomatosis.

  5. Solitary fibrous tumour of the vagus nerve.

    PubMed

    Scholsem, Martin; Scholtes, Felix

    2012-04-01

    We describe the complete removal of a foramen magnum solitary fibrous tumour in a 36-year-old woman. It originated on a caudal vagus nerve rootlet, classically described as the 'cranial' accessory nerve root. This ninth case of immunohistologically confirmed cranial or spinal nerve SFT is the first of the vagus nerve.

  6. Human Vagus Nerve Branching in the Cervical Region

    PubMed Central

    Hammer, Niels; Glätzner, Juliane; Feja, Christine; Kühne, Christian; Meixensberger, Jürgen; Planitzer, Uwe; Schleifenbaum, Stefan; Tillmann, Bernhard N.; Winkler, Dirk

    2015-01-01

    Background Vagus nerve stimulation is increasingly applied to treat epilepsy, psychiatric conditions and potentially chronic heart failure. After implanting vagus nerve electrodes to the cervical vagus nerve, side effects such as voice alterations and dyspnea or missing therapeutic effects are observed at different frequencies. Cervical vagus nerve branching might partly be responsible for these effects. However, vagus nerve branching has not yet been described in the context of vagus nerve stimulation. Materials and Methods Branching of the cervical vagus nerve was investigated macroscopically in 35 body donors (66 cervical sides) in the carotid sheath. After X-ray imaging for determining the vertebral levels of cervical vagus nerve branching, samples were removed to confirm histologically the nerve and to calculate cervical vagus nerve diameters and cross-sections. Results Cervical vagus nerve branching was observed in 29% of all cases (26% unilaterally, 3% bilaterally) and proven histologically in all cases. Right-sided branching (22%) was more common than left-sided branching (12%) and occurred on the level of the fourth and fifth vertebra on the left and on the level of the second to fifth vertebra on the right side. Vagus nerves without branching were significantly larger than vagus nerves with branches, concerning their diameters (4.79 mm vs. 3.78 mm) and cross-sections (7.24 mm2 vs. 5.28 mm2). Discussion Cervical vagus nerve branching is considerably more frequent than described previously. The side-dependent differences of vagus nerve branching may be linked to the asymmetric effects of the vagus nerve. Cervical vagus nerve branching should be taken into account when identifying main trunk of the vagus nerve for implanting electrodes to minimize potential side effects or lacking therapeutic benefits of vagus nerve stimulation. PMID:25679804

  7. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin

    NASA Astrophysics Data System (ADS)

    Borovikova, Lyudmila V.; Ivanova, Svetlana; Zhang, Minghuang; Yang, Huan; Botchkina, Galina I.; Watkins, Linda R.; Wang, Haichao; Abumrad, Naji; Eaton, John W.; Tracey, Kevin J.

    2000-05-01

    Vertebrates achieve internal homeostasis during infection or injury by balancing the activities of proinflammatory and anti-inflammatory pathways. Endotoxin (lipopolysaccharide), produced by all gram-negative bacteria, activates macrophages to release cytokines that are potentially lethal. The central nervous system regulates systemic inflammatory responses to endotoxin through humoral mechanisms. Activation of afferent vagus nerve fibres by endotoxin or cytokines stimulates hypothalamic-pituitary-adrenal anti-inflammatory responses. However, comparatively little is known about the role of efferent vagus nerve signalling in modulating inflammation. Here, we describe a previously unrecognized, parasympathetic anti-inflammatory pathway by which the brain modulates systemic inflammatory responses to endotoxin. Acetylcholine, the principle vagal neurotransmitter, significantly attenuated the release of cytokines (tumour necrosis factor (TNF), interleukin (IL)-1β, IL-6 and IL-18), but not the anti-inflammatory cytokine IL-10, in lipopolysaccharide-stimulated human macrophage cultures. Direct electrical stimulation of the peripheral vagus nerve in vivo during lethal endotoxaemia in rats inhibited TNF synthesis in liver, attenuated peak serum TNF amounts, and prevented the development of shock.

  8. Endocrine tumors associated with the vagus nerve.

    PubMed

    Varoquaux, Arthur; Kebebew, Electron; Sebag, Fréderic; Wolf, Katherine; Henry, Jean-François; Pacak, Karel; Taïeb, David

    2016-09-01

    The vagus nerve (cranial nerve X) is the main nerve of the parasympathetic division of the autonomic nervous system. Vagal paragangliomas (VPGLs) are a prime example of an endocrine tumor associated with the vagus nerve. This rare, neural crest tumor constitutes the second most common site of hereditary head and neck paragangliomas (HNPGLs), most often in relation to mutations in the succinate dehydrogenase complex subunit D (SDHD) gene. The treatment paradigm for VPGL has progressively shifted from surgery to abstention or therapeutic radiation with curative-like outcomes. Parathyroid tissue and parathyroid adenoma can also be found in close association with the vagus nerve in intra or paravagal situations. Vagal parathyroid adenoma can be identified with preoperative imaging or suspected intraoperatively by experienced surgeons. Vagal parathyroid adenomas located in the neck or superior mediastinum can be removed via initial cervicotomy, while those located in the aortopulmonary window require a thoracic approach. This review particularly emphasizes the embryology, molecular genetics, and modern imaging of these tumors. PMID:27406876

  9. [ELECTRIC STIMULATION OF VAGUS NERVE MODULATES A PROPAGATION OF OXYGEN EPILEPSY IN RABBITS].

    PubMed

    Zhilyaev, S Yu; Moskvin, A N; Platonova, T F; Demchenko, I T

    2015-11-01

    The activation of autonomic afferents (achieved through the vagus nerve (VN) electrical stimulation) on CNS O2 toxicity and cardiovascular function was investigated. In conscious rabbits at 5 ATA 02, prodromal signs of CNS O2 toxicity and convulsion latency were determined with and without vagus nerve (VN) stimulation. EEG, ECG and respiration were also recorded. In rabbits at 5 ATA, sympathetic overdrive and specific patterns on the EEG (synchronization of slow-waves), ECG (tachycardia) and respiration (respiratory minute volume increase) preceded motor convulsions. Vagus nerve stimulation increased parasympathetic component of autonomic drive and significantly delayed prodromal signs of oxygen toxicity and convulsion latency. Autonomic afferent input to the brain is a novel target for preventing CNS toxicity in HBO2. PMID:26995956

  10. [Interaction of abdominal vagus and greater splanchnic nerve activities in the nucleus tractus solitarius of the rabbit].

    PubMed

    Zhang, J; Huang, Z S

    1990-12-01

    Experiments were performed on 67 rabbits. Effects of stimulation of the central ends of abdominal vagus and greater splanchnic nerve on arterial blood pressure before and after destruction of nucleus tractus solitarius (NTS) and the unit discharges in the NTS before destruction were observed. As a result, we suggest that both the afferents coming from the abdominal vagus and greater splanchnic nerve not only converge on NTS neurons but also interact with each other. Subthreshold stimulation elicited from one of the afferent fibers suppresses the arterial blood pressure responses caused by the other afferent. Similarly, background stimulation elicited from one afferent can suppress the NTS unit discharges caused by the other afferent. It is much easier for abdominal vagal afferent to inhibit the NTS unit discharges and the arterial blood pressure changes elicited by stimulation of the splanchnic nerve. A possible mechanism of such relationship was discussed. PMID:2293366

  11. Neuroprotective effects of vagus nerve stimulation on traumatic brain injury

    PubMed Central

    Zhou, Long; Lin, Jinhuang; Lin, Junming; Kui, Guoju; Zhang, Jianhua; Yu, Yigang

    2014-01-01

    Previous studies have shown that vagus nerve stimulation can improve the prognosis of traumatic brain injury. The aim of this study was to elucidate the mechanism of the neuroprotective effects of vagus nerve stimulation in rabbits with brain explosive injury. Rabbits with brain explosive injury received continuous stimulation (10 V, 5 Hz, 5 ms, 20 minutes) of the right cervical vagus nerve. Tumor necrosis factor-α, interleukin-1β and interleukin-10 concentrations were detected in serum and brain tissues, and water content in brain tissues was measured. Results showed that vagus nerve stimulation could reduce the degree of brain edema, decrease tumor necrosis factor-α and interleukin-1β concentrations, and increase interleukin-10 concentration after brain explosive injury in rabbits. These data suggest that vagus nerve stimulation may exert neuroprotective effects against explosive injury via regulating the expression of tumor necrosis factor-α, interleukin-1β and interleukin-10 in the serum and brain tissue. PMID:25368644

  12. Vagus nerve stimulation: indications and limitations.

    PubMed

    Ansari, S; Chaudhri, K; Al Moutaery, K A

    2007-01-01

    Vagus nerve stimulation (VNS) is an established treatment for selected patients with medically refractory seizures. Recent studies suggest that VNS could be potentially useful in the treatment of resistant depressive disorder. Although a surgical procedure is required in order to implant the VNS device, the possibility of a long-term benefit largely free of severe side effects could give VNS a privileged place in the management of resistant depression. In addition, VNS appears to affect pain perception in depressed adults; a possible role of VNS in the treatment of severe refractory headache, intractable chronic migraine and cluster headache has also been suggested. VNS is currently investigated in clinical studies, as a potential treatment for essential tremor, cognitive deficits in Alzheimer's disease, anxiety disorders, and bulimia. Finally, other studies explore the potential use of VNS in the treatment of resistant obesity, addictions, sleep disorders, narcolepsy, coma and memory and learning deficits.

  13. Vagus nerve stimulation modulates visceral pain-related affective memory.

    PubMed

    Zhang, Xu; Cao, Bing; Yan, Ni; Liu, Jin; Wang, Jun; Tung, Vivian Oi Vian; Li, Ying

    2013-01-01

    Within a biopsychosocial model of pain, pain is seen as a conscious experience modulated by mental, emotional and sensory mechanisms. Recently, using a rodent visceral pain assay that combines the colorectal distension (CRD) model with the conditioned place avoidance (CPA) paradigms, we measured a learned behavior that directly reflects the affective component of visceral pain, and showed that perigenual anterior cingulate cortex (pACC) activation is critical for memory processing involved in long-term visceral affective state and prediction of aversive stimuli by contextual cue. Electrical vagus nerve stimulation (VNS) has become an established therapy for treatment-resistant epilepsy. VNS has also been shown to enhance memory performance in rats and humans. High-intensity VNS (400 μA) immediately following conditional training significantly increases the CRD-induced CPA scores, and enhanced the pain affective memory retention. In contrast, VNS (400 μA) had no effect on CPA induced by non-nociceptive aversive stimulus (U69,593). Low-intensity VNS (40 μA) had no effect on CRD-induced CPA. Electrophysiological recording showed that VNS (400 μA) had no effect on basal and CRD-induced ACC neuronal firing. Further, VNS did not alter CRD-induced visceral pain responses suggesting high intensity VNS facilitates visceral pain aversive memory independent of sensory discriminative aspects of visceral pain processing. The findings that vagus nerve stimulation facilities visceral pain-related affective memory underscore the importance of memory in visceral pain perception, and support the theory that postprandial factors may act on vagal afferents to modulate ongoing nature of visceral pain-induced affective disorder observed in the clinic, such as irritable bowel syndrome.

  14. Cardiovascular effects of afferent renal nerve stimulation.

    PubMed

    Stella, A; Weaver, L; Golin, R; Genovesi, S; Zanchetti, A

    1987-01-01

    Electrical stimulation of afferent renal nerves elicits an increase in arterial pressure and heart rate. The hypertensive response is presumably due to the widespread activation of the sympathetic nervous system leading to peripheral vasoconstriction. Interestingly, the kidney does not appear involved in this reflex excitatory response to afferent renal nerve stimulation since changes in vascular conductances and excretory functions are equal in both the innervated and denervated kidney, and secondary to changes in renal perfusion pressure. In addition, no changes in renin release from either kidneys are observed during afferent renal nerve stimulation. It is likely that the electrical stimulation of afferent renal nerves activates other reflexes exerting an inhibitory influence on efferent renal nerve activity. Indeed, neural renorenal reflexes which tonically inhibit renal functions have clearly been demonstrated. Furthermore, preferential inhibition of efferent renal nerve activity by cardiopulmonary and sinoaortic receptors has recently been shown during activation of other visceral afferents.

  15. [A case of retroperitoneal schwannoma of the vagus nerve].

    PubMed

    Yoo, Byoung Kwan; Yoo, Kyo Sang; Park, Chul Sung; Lee, Jung Wha; Yoo, Ji Youn; Moon, Joon Ho; Jung, Jae One; Kim, Jong Pyo; Kim, Kyoung Oh; Park, Cheol Hee; Hahn, Tae Ho; Park, Sang Hoon; Kim, Jong Hyeok; Min, Soo Kee; Yang, Dae Hyun; Park, Choong Kee

    2005-10-01

    Schwannomas are benign nerve sheath tumors that originate from any anatomical site. Most schwannomas occur in the head, neck or limbs, but rarely occur in the retroperitoneal space. Furthermore, the schwannoma originating from the vagus nerve of retroperitoneal space is much rare. We experienced a case of retroperitoneal schwannoma of the vagus nerve. A 34-year-old male was referred to our hospital for the evaluation of abdominal mass on ultrasonography. Endoscopic examination revealed submucosal tumor-like lesion on high body of the stomach. Computed tomography (CT) revealed that the stomach was compressed by a solid tumor in the retroperitoneum. On exploratory laparotomy, this mass turned out to be a baseball sized mass in the retroperitoneal space. The mass was excised in an encapsulated state. Histological examination with immunohistochemical stains revealed a schwannoma of the vagus nerve.

  16. Vagus nerve stimulation: predictors of seizure freedom

    PubMed Central

    Janszky, J; Hoppe, M; Behne, F; Tuxhorn, I; Pannek, H; Ebner, A

    2005-01-01

    Objectives: To identify predictive factors for the seizure-free outcome of vagus nerve stimulation (VNS). Methods: All 47 patients who had undergone VNS implantation at one centre and had at least one year of follow up were studied. They underwent complete presurgical evaluation including detailed clinical history, magnetic resonance imaging, and long term video-EEG with ictal and interictal recordings. After implantation, adjustment of stimulation parameters and concomitant antiepileptic drugs were at the discretion of the treating physician. Results: Mean (SD) age of the patients was 22.7 (11.6) years (range 7 to 53). Six patients (13%) became seizure-free after the VNS implantation. Only two variables showed a significant association with the seizure-free outcome: absence of bilateral interictal epileptiform discharges (IED) and presence of malformation of cortical development (MCD). Epilepsy duration showed a non-significant trend towards a negative association with outcome. By logistic regression analysis, only absence of bilateral IED correlated independently with successful VNS treatment (p<0.01, odds ratio = 29.2 (95% confidence interval, 2.4 to 353)). Bilateral IED (independent or bilateral synchronous) was found in one of six seizure-free patients and in 33 of 41 non-seizure-free patients. When bilateral IED were absent, the sensitivity for seizure-free outcome was 0.83 (0.44 to 0.97), and the specificity was 0.80 (0.66 to 0.90). Conclusions: Bilateral IED was independently associated with the outcome of VNS. These results are preliminary because they were based on a small patient population. They may facilitate prospective VNS studies enrolling larger numbers of patients to confirm the results. PMID:15716532

  17. Neuroprotection trek--the next generation: neuromodulation I. Techniques--deep brain stimulation, vagus nerve stimulation, and transcranial magnetic stimulation

    NASA Technical Reports Server (NTRS)

    Andrews, Russell J.

    2003-01-01

    Neuromodulation denotes controlled electrical stimulation of the central or peripheral nervous system. The three forms of neuromodulation described in this paper-deep brain stimulation, vagus nerve stimulation, and transcranial magnetic stimulation-were chosen primarily for their demonstrated or potential clinical usefulness. Deep brain stimulation is a completely implanted technique for improving movement disorders, such as Parkinson's disease, by very focal electrical stimulation of the brain-a technique that employs well-established hardware (electrode and pulse generator/battery). Vagus nerve stimulation is similar to deep brain stimulation in being well-established (for the treatment of refractory epilepsy), completely implanted, and having hardware that can be considered standard at the present time. Vagus nerve stimulation differs from deep brain stimulation, however, in that afferent stimulation of the vagus nerve results in diffuse effects on many regions throughout the brain. Although use of deep brain stimulation for applications beyond movement disorders will no doubt involve placing the stimulating electrode(s) in regions other than the thalamus, subthalamus, or globus pallidus, the use of vagus nerve stimulation for applications beyond epilepsy-for example, depression and eating disorders-is unlikely to require altering the hardware significantly (although stimulation protocols may differ). Transcranial magnetic stimulation is an example of an external or non-implanted, intermittent (at least given the current state of the hardware) stimulation technique, the clinical value of which for neuromodulation and neuroprotection remains to be determined.

  18. Reflex control of inflammation by sympathetic nerves, not the vagus.

    PubMed

    Martelli, D; Yao, S T; McKinley, M J; McAllen, R M

    2014-04-01

    We investigated a neural reflex that controls the strength of inflammatory responses to immune challenge - the inflammatory reflex. In anaesthetized rats challenged with intravenous lipopolysaccharide (LPS, 60 μg kg(-1)), we found strong increases in plasma levels of the key inflammatory mediator tumour necrosis factor α (TNFα) 90 min later. Those levels were unaffected by previous bilateral cervical vagotomy, but were enhanced approximately 5-fold if the greater splanchnic sympathetic nerves had been cut. Sham surgery had no effect, and plasma corticosterone levels were unaffected by nerve sections, so could not explain this result. Electrophysiological recordings demonstrated that efferent neural activity in the splanchnic nerve and its splenic branch was strongly increased by LPS treatment. Splenic nerve activity was dependent on inputs from the splanchnic nerves: vagotomy had no effect on the activity in either nerve. Together, these data demonstrate that immune challenge with this dose of LPS activates a neural reflex that is powerful enough to cause an 80% suppression of the acute systemic inflammatory response. The efferent arm of this reflex is in the splanchnic sympathetic nerves, not the vagi as previously proposed. As with other physiological responses to immune challenge, the afferent pathway is presumptively humoral: the present data show that vagal afferents play no measurable part. Because inflammation sits at the gateway to immune responses, this reflex could play an important role in immune function as well as inflammatory diseases.

  19. Reflex control of inflammation by sympathetic nerves, not the vagus

    PubMed Central

    Martelli, D; Yao, S T; McKinley, M J; McAllen, R M

    2014-01-01

    We investigated a neural reflex that controls the strength of inflammatory responses to immune challenge – the inflammatory reflex. In anaesthetized rats challenged with intravenous lipopolysaccharide (LPS, 60 μg kg−1), we found strong increases in plasma levels of the key inflammatory mediator tumour necrosis factor α (TNFα) 90 min later. Those levels were unaffected by previous bilateral cervical vagotomy, but were enhanced approximately 5-fold if the greater splanchnic sympathetic nerves had been cut. Sham surgery had no effect, and plasma corticosterone levels were unaffected by nerve sections, so could not explain this result. Electrophysiological recordings demonstrated that efferent neural activity in the splanchnic nerve and its splenic branch was strongly increased by LPS treatment. Splenic nerve activity was dependent on inputs from the splanchnic nerves: vagotomy had no effect on the activity in either nerve. Together, these data demonstrate that immune challenge with this dose of LPS activates a neural reflex that is powerful enough to cause an 80% suppression of the acute systemic inflammatory response. The efferent arm of this reflex is in the splanchnic sympathetic nerves, not the vagi as previously proposed. As with other physiological responses to immune challenge, the afferent pathway is presumptively humoral: the present data show that vagal afferents play no measurable part. Because inflammation sits at the gateway to immune responses, this reflex could play an important role in immune function as well as inflammatory diseases. PMID:24421357

  20. Quality of life and seizure outcome after vagus nerve stimulation in children with intractable epilepsy.

    PubMed

    Sherman, Elisabeth M S; Connolly, Mary B; Slick, Daniel J; Eyrl, Kim L; Steinbok, Paul; Farrell, Kevin

    2008-09-01

    This study examined the effect of vagus nerve stimulation on quality of life in children with epilepsy using a validated quality-of-life scale and an empirical technique that accounts for measurement error in assessing individual change (the reliable change index). Participants were 34 children with severe intractable epilepsy who underwent vagus nerve stimulation and 19 children with intractable epilepsy who received medical management. Parent-completed epilepsy-specific and global ratings at baseline and after 1 year indicated that most children had no changes in quality of life following vagus nerve stimulation (52%-77%), similar to the comparison group. There was a trend for decreases to be less common in the vagus nerve stimulation group (14% vs 37%, P < .07), but there was no relation between improved quality of life and seizure control. The results raise questions about the mechanisms that underlie changes in quality of life after vagus nerve stimulation in this group of children. PMID:18474931

  1. Neurilemmoma of the Vagus Nerve in the Poststyloid Parapharyngeal Space.

    PubMed

    Shinohara, Yuji; Matsumoto, Takashi; Kiga, Norifumi; Tojyo, Itaru; Fujita, Shigeyuki

    2016-01-01

    We report a large vagal neurilemmoma in the poststyloid compartment of the parapharyngeal space. A 52-year-old man was referred to our hospital with a feeling of discomfort in the left upper neck. Computed tomography showed a 30mm x 30mm x 40mm mass with inhomogeneous internal enhancement in the left carotid space. Magnetic resonance imaging revealed a 30mm × 30mm × 40mm heterogeneous mass in the area of the bifurcation of the common carotid artery. We gave a provisional diagnosis of neurilemmoma or vagal paraganglioma in the parapharyngeal space preoperatively based on the results of physical examination and imaging. We selected a transcervical-transmandibular approach. Under general anaesthesia, a tumour originating from the vagus nerve was completely extirpated while protecting the internal and external carotid arteries. Although mild postvagotomy dysphagia and hoarseness were seem for 6 months postoperatively, symptoms resolved and the patient showed a satisfactory course without recurrence after 10 years. Histological examination of the excised specimen showed antoni A and antoni B pattern. Positive immunoreactivity for S-100 protein was identified, but negative results were obtained for neuron-specific enolase, chromogranin and neurofilament. The tumour was diagnosed as neurilemmoma of the vagus nerve.

  2. Neurophysiologic intraoperative monitoring of the glossopharyngeal and vagus nerves.

    PubMed

    Singh, Rajdeep; Husain, Aatif M

    2011-12-01

    Neurophysiologic intraoperative monitoring (NIOM) of the glossopharyngeal and vagus nerves (CN IX and X) is often used during surgeries involving the lower brain stem. Although both of these nerves contain sensory, autonomic, and motor fibers, it is the motor fibers that are most amenable to NIOM. CN IX supplies the stylopharyngeus muscle, and CN X supplies striated muscles in the soft palate, pharynx, and larynx. Monitoring of these CN can be performed by monitoring free running and stimulated electromyography (EMG) from the stylopharyngeus muscle (CN IX) and the vocal cords (CN X). Various surface and needle electrodes can be used to monitor these muscle groups. When CN IX is monitored, CN X should also be monitored, as it is often needed to differentiate when CN IX is selectively activated. Data are accumulating noting the use of monitoring these CN in tumor surgeries involving the lower brain stem. PMID:22146360

  3. High-resolution measurement of electrically-evoked vagus nerve activity in the anesthetized dog

    NASA Astrophysics Data System (ADS)

    Yoo, Paul B.; Lubock, Nathan B.; Hincapie, Juan G.; Ruble, Stephen B.; Hamann, Jason J.; Grill, Warren M.

    2013-04-01

    Objective. Not fully understanding the type of axons activated during vagus nerve stimulation (VNS) is one of several factors that limit the clinical efficacy of VNS therapies. The main goal of this study was to characterize the electrical recruitment of both myelinated and unmyelinated fibers within the cervical vagus nerve. Approach. In anesthetized dogs, recording nerve cuff electrodes were implanted on the vagus nerve following surgical excision of the epineurium. Both the vagal electroneurogram (ENG) and laryngeal muscle activity were recorded in response to stimulation of the right vagus nerve. Main results. Desheathing the nerve significantly increased the signal-to-noise ratio of the ENG by 1.2 to 9.9 dB, depending on the nerve fiber type. Repeated VNS following nerve transection or neuromuscular block (1) enabled the characterization of A-fibers, two sub-types of B-fibers, and unmyelinated C-fibers, (2) confirmed the absence of stimulation-evoked reflex compound nerve action potentials in both the ipsilateral and contralateral vagus nerves, and (3) provided evidence of stimulus spillover into muscle tissue surrounding the stimulating electrode. Significance. Given the anatomical similarities between the canine and human vagus nerves, the results of this study provide a template for better understanding the nerve fiber recruitment patterns associated with VNS therapies.

  4. Non-neuronal cardiac cholinergic system influences CNS via the vagus nerve to acquire a stress-refractory propensity.

    PubMed

    Oikawa, Shino; Kai, Yuko; Tsuda, Masayuki; Ohata, Hisayuki; Mano, Asuka; Mizoguchi, Naoko; Sugama, Shuei; Nemoto, Takahiro; Suzuki, Kenji; Kurabayashi, Atsushi; Muramoto, Kazuyo; Kaneda, Makoto; Kakinuma, Yoshihiko

    2016-11-01

    We previously developed cardiac ventricle-specific choline acetyltransferase (ChAT) gene-overexpressing transgenic mice (ChAT tgm), i.e. an in vivo model of the cardiac non-neuronal acetylcholine (NNA) system or non-neuronal cardiac cholinergic system (NNCCS). By using this murine model, we determined that this system was responsible for characteristics of resistance to ischaemia, or hypoxia, via the modulation of cellular energy metabolism and angiogenesis. In line with our previous study, neuronal ChAT-immunoreactivity in the ChAT tgm brains was not altered from that in the wild-type (WT) mice brains; in contrast, the ChAT tgm hearts were the organs with the highest expression of the ChAT transgene. ChAT tgm showed specific traits in a central nervous system (CNS) phenotype, including decreased response to restraint stress, less depressive-like and anxiety-like behaviours and anti-convulsive effects, all of which may benefit the heart. These phenotypes, induced by the activation of cardiac NNCCS, were dependent on the vagus nerve, because vagus nerve stimulation (VS) in WT mice also evoked phenotypes similar to those of ChAT tgm, which display higher vagus nerve discharge frequency; in contrast, lateral vagotomy attenuated these traits in ChAT tgm to levels observed in WT mice. Furthermore, ChAT tgm induced several biomarkers of VS responsible for anti-convulsive and anti-depressive-like effects. These results suggest that the augmentation of the NNCCS transduces an effective and beneficial signal to the afferent pathway, which mimics VS. Therefore, the present study supports our hypothesis that activation of the NNCCS modifies CNS to a more stress-resistant state through vagus nerve activity. PMID:27528769

  5. The central localization of the vagus nerve in the ferret (Mustela putorius furo) and the mink (Mustela vison).

    PubMed

    Ranson, R N; Butler, P J; Taylor, E W

    1993-05-01

    The location of vagal preganglionic neurones (VPN) has been determined in nine ferrets (Mustela putorius furo) and seven mink (M. vison) using neuronal tract-tracing techniques employing horseradish peroxidase (HRP) and wheat-germ agglutinin conjugated HRP (WGA-HRP) mixtures injected into the nodose ganglion of the vagus nerve. Labelled VPN were located ipsilaterally in the dorsal motor nucleus of the vagus (DmnX), nucleus ambiguus (nA), and reticular formation (rf) of the medulla oblongata. In four of the ferrets, labelled VPN were also identified in the nucleus dorsomedialis (ndm) and the nucleus of the spinal accessory nerve (nspa). In a single mink a few labelled cells were observed in the ndm but no labelled VPN were found in the nspa. Labelling of afferent components of the vagus nerve was seen in two ferrets and two mink with the best labelling obtained following an injection of an HRP/WGA-HRP mixture into the nodose ganglion. Labelled afferents were observed to cross the ipsilateral spinal trigeminal tract (SpV) before entering the tractus solitarius (TS) in regions separate from the motor axons which exit the medulla in separate fasicles. Sensory terminal fields were identified bilaterally in the nucleus of the tractus solitarius (nTS) in both species and bilaterally in the area postrema (ap) of the ferret; however, the contralateral labelling was sparse in comparison to the densely labelled ipsilateral nTS/ap. Maximal terminal labelling was seen in regions just rostral and caudal to obex in both species.

  6. Ganglioneuromas involving the hypoglossal nerve and the vagus nerve in a child: Surgical difficulties.

    PubMed

    Bakshi, Jaimanti; Mohammed, Abdul Wadood; Lele, Saudamini; Nada, Ritambra

    2016-02-01

    Ganglioneuromas are benign tumors that arise from the Schwann cells of the autonomic nervous system. They are usually seen in the posterior mediastinum and the paraspinal retroperitoneum in relation to the sympathetic chain. In the head and neck, they are usually related to the cervical sympathetic ganglia or to the ganglion nodosum of the vagus nerve or the hypoglossal nerve. We describe what we believe is the first reported case of multiple ganglioneuromas of the parapharyngeal space in which two separate cranial nerves were involved. The patient was a 10-year-old girl who presented with a 2-year history of a painless and slowly progressive swelling on the left side of her neck and a 1-year history hoarseness. She had no history of relevant trauma or surgery. Intraoperatively, we found two tumors in the left parapharyngeal space-one that had arisen from the hypoglossal nerve and the other from the vagus nerve. Both ganglioneuromas were surgically removed, but the affected nerves had to be sacrificed. Postoperatively, the patient exhibited hypoglossal nerve and vocal fold palsy, but she was asymptomatic. In addition to the case description, we discuss the difficulties we faced during surgical excision. PMID:26930339

  7. Ganglioneuromas involving the hypoglossal nerve and the vagus nerve in a child: Surgical difficulties.

    PubMed

    Bakshi, Jaimanti; Mohammed, Abdul Wadood; Lele, Saudamini; Nada, Ritambra

    2016-02-01

    Ganglioneuromas are benign tumors that arise from the Schwann cells of the autonomic nervous system. They are usually seen in the posterior mediastinum and the paraspinal retroperitoneum in relation to the sympathetic chain. In the head and neck, they are usually related to the cervical sympathetic ganglia or to the ganglion nodosum of the vagus nerve or the hypoglossal nerve. We describe what we believe is the first reported case of multiple ganglioneuromas of the parapharyngeal space in which two separate cranial nerves were involved. The patient was a 10-year-old girl who presented with a 2-year history of a painless and slowly progressive swelling on the left side of her neck and a 1-year history hoarseness. She had no history of relevant trauma or surgery. Intraoperatively, we found two tumors in the left parapharyngeal space-one that had arisen from the hypoglossal nerve and the other from the vagus nerve. Both ganglioneuromas were surgically removed, but the affected nerves had to be sacrificed. Postoperatively, the patient exhibited hypoglossal nerve and vocal fold palsy, but she was asymptomatic. In addition to the case description, we discuss the difficulties we faced during surgical excision.

  8. Intraoperative Vagus Nerve Monitoring: A Transnasal Technique during Skull Base Surgery

    PubMed Central

    Schutt, Christopher A.; Paskhover, Boris; Judson, Benjamin L.

    2014-01-01

    Objectives Intraoperative vagus nerve monitoring during skull base surgery has been reported with the use of an oral nerve monitoring endotracheal tube. However, the intraoral presence of an endotracheal tube can limit exposure by its location in the operative field during transfacial approaches and by limiting superior mobilization of the mandible during transcervical approaches. We describe a transnasal vagus nerve monitoring technique. Design and Participants Ten patients underwent open skull base surgery. Surgical approaches included transcervical (five), transfacial/maxillary swing (three), and double mandibular osteotomy (two). The vagus nerve was identified, stimulated, and monitored in all cases. Main Outcome Measures Intraoperative nerve stimulation, pre- and postoperative vagus nerve function through the use of flexible laryngoscopy in conjunction with assessment of subjective symptoms of hoarseness, voice change, and swallowing difficulty. Results Three patients had extensive involvement of the nerve by tumor with complete postoperative nerve deficit, one patient had a transient deficit following dissection of tumor off of nerve with resolution, and the remaining patients had nerve preservation. One patient experienced minor epistaxis during monitor tube placement that was managed conservatively. Conclusions Transnasal vagal nerve monitoring is a simple method that allows for intraoperative monitoring during nerve preservation surgery without limiting surgical exposure. PMID:25844292

  9. Photostimulation of sensory neurons of the rat vagus nerve

    NASA Astrophysics Data System (ADS)

    Rhee, Albert Y.; Li, Gong; Wells, Jonathon; Kao, Joseph P. Y.

    2008-02-01

    We studied the effect of infrared (IR) stimulation on rat sensory neurons. Primary sensory neurons were prepared by enzymatic dissociation of the inferior (or "nodose") ganglia from the vagus nerves of rats. The 1.85-μm output of a diode laser, delivered through a 200-μm silica fiber, was used for photostimulation. Nodose neurons express the vanilloid receptor, TRPV1, which is a non-selective cation channel that opens in response to significant temperature jumps above 37 C. Opening TRPV1 channels allows entry of cations, including calcium (Ca 2+), into the cell to cause membrane depolarization. Therefore, to monitor TRPV1 activation consequent to photostimulation, we used fura-2, a fluorescent Ca 2+ indicator, to monitor the rise in intracellular Ca 2+ concentration ([Ca 2+]i). Brief trains of 2-msec IR pulses activated TRPV1 rapidly and reversibly, as evidenced by transient rises in [Ca 2+]i (referred to as Ca 2+ transients). Consistent with the Ca 2+ transients arising from influx of Ca 2+, identical photostimulation failed to evoke Ca 2+ responses in the absence of extracellular Ca 2+. Furthermore, the photo-induced Ca 2+ signals were abolished by capsazepine, a specific blocker of TRPV1, indicating that the responses were indeed mediated by TRPV1. We discuss the feasibility of using focal IR stimulation to probe neuronal circuit properties in intact neural tissue, and compare IR stimulation with another photostimulation technique-focal photolytic release of "caged" molecules.

  10. Vagus nerve stimulation mediates protection from kidney ischemia-reperfusion injury through α7nAChR+ splenocytes

    PubMed Central

    Inoue, Tsuyoshi; Abe, Chikara; Sung, Sun-sang J.; Moscalu, Stefan; Jankowski, Jakub; Huang, Liping; Ye, Hong; Guyenet, Patrice G.

    2016-01-01

    The nervous and immune systems interact in complex ways to maintain homeostasis and respond to stress or injury, and rapid nerve conduction can provide instantaneous input for modulating inflammation. The inflammatory reflex referred to as the cholinergic antiinflammatory pathway regulates innate and adaptive immunity, and modulation of this reflex by vagus nerve stimulation (VNS) is effective in various inflammatory disease models, such as rheumatoid arthritis and inflammatory bowel disease. Effectiveness of VNS in these models necessitates the integration of neural signals and α7 nicotinic acetylcholine receptors (α7nAChRs) on splenic macrophages. Here, we sought to determine whether electrical stimulation of the vagus nerve attenuates kidney ischemia-reperfusion injury (IRI), which promotes the release of proinflammatory molecules. Stimulation of vagal afferents or efferents in mice 24 hours before IRI markedly attenuated acute kidney injury (AKI) and decreased plasma TNF. Furthermore, this protection was abolished in animals in which splenectomy was performed 7 days before VNS and IRI. In mice lacking α7nAChR, prior VNS did not prevent IRI. Conversely, adoptive transfer of VNS-conditioned α7nAChR splenocytes conferred protection to recipient mice subjected to IRI. Together, these results demonstrate that VNS-mediated attenuation of AKI and systemic inflammation depends on α7nAChR-positive splenocytes. PMID:27088805

  11. Mechanical Ptosis in Neurofibromatosis Type 1 Heralding the Diagnosis of Right Sided Cervical Vagus Nerve Neurofibroma: A Rare Case Report.

    PubMed

    Mallick, Jyotiranjan; Parija, Sucheta; Panda, Bijnya; Pujahari, Susanta; Jena, Satyaswarup

    2016-06-01

    Neurofibromatosis type 1 (NF1) is an autosomal dominant, multisystem disorder. In NF1, involvement of vagus nerve can occur in the form of neurofibroma. A few cases of neurofibroma of thoracic vagus nerve have been reported while neurofibroma of cervical vagus nerve with NF1 is quite rare. A 19-year-old male came with complaints of decreased vision of both eyes and right sided drooping of eyelid since childhood. He was diagnosed as having NF1 with neurofibroma of right cervical vagus nerve. PMID:27504321

  12. Mechanical Ptosis in Neurofibromatosis Type 1 Heralding the Diagnosis of Right Sided Cervical Vagus Nerve Neurofibroma: A Rare Case Report

    PubMed Central

    Parija, Sucheta; Panda, Bijnya; Pujahari, Susanta; Jena, Satyaswarup

    2016-01-01

    Neurofibromatosis type 1 (NF1) is an autosomal dominant, multisystem disorder. In NF1, involvement of vagus nerve can occur in the form of neurofibroma. A few cases of neurofibroma of thoracic vagus nerve have been reported while neurofibroma of cervical vagus nerve with NF1 is quite rare. A 19-year-old male came with complaints of decreased vision of both eyes and right sided drooping of eyelid since childhood. He was diagnosed as having NF1 with neurofibroma of right cervical vagus nerve. PMID:27504321

  13. Episodic phrenic-inhibitory vagus nerve stimulation paradoxically induces phrenic long-term facilitation in rats

    PubMed Central

    Zhang, Yi; McGuire, Michelle; White, David P; Ling, Liming

    2003-01-01

    All respiratory long-term facilitation (LTF) is induced by inspiratory-excitatory stimulation, suggesting that LTF needs inspiratory augmentation and is the result of a Hebbian mechanism (coincident pre- and post-synaptic activity strengthens synapses). The present study examined the long-term effects of episodic inspiratory-inhibitory vagus nerve stimulation (VNS) on phrenic nerve activity. We hypothesized that episodic VNS would induce phrenic long-term depression. The results are compared with those obtained following serotonin receptor antagonism or episodic carotid sinus nerve stimulation (CSNS). Integrated phrenic neurograms were measured before, during and after three episodes of 5 min VNS (50 Hz, 0.1 ms), each separated by a 5 min interval, at a low (˜50 μA), medium (˜200 μA) or high (˜500 μA) stimulus intensity in anaesthetized, vagotomized, neuromuscularly blocked and artificially ventilated rats. Medium- and high-intensity VNS eliminated rhythmic phrenic activity during VNS, while low-intensity VNS only reduced phrenic burst frequency. At 60 min post-VNS, phrenic amplitude was higher than baseline (35 ± 5 % above baseline, mean ± S.E.M., P < 0.05) in the high-intensity group but not in the low- (−4 ± 4 %) or medium-intensity groups (−10 ± 15 %), or in the high-intensity with methysergide group (4 mg kg−1, I.P.) (−11 ± 5 %). These data, which are inconsistent with our hypothesis, indicate that phrenic-inhibitory VNS induces a serotonin-dependent phrenic LTF similar to that induced by phrenic-excitatory CSNS (33 ± 7 %) and may require activation of high-threshold afferent fibres. These data also suggest that the synapses on phrenic motoneurons do not use the Hebbian mechanism in this LTF, as these motoneurons were suppressed during VNS. PMID:12872010

  14. Electrical vagus nerve stimulation decreases food consumption and weight gain in rats fed a high-fat diet.

    PubMed

    Gil, Krzysztof; Bugajski, A; Thor, P

    2011-12-01

    There is growing evidence that vagus nerve stimulation (VNS) has a suppressive effect on both short- and long-term feeding in animal models. We previously showed that long-term VNS (102 days) with low-frequency electrical impulses (0.05 Hz) decreased food intake and body weight in rats. In the present study, we investigated the effect of high frequency (10 Hz) VNS on feeding behavior and appetite in rats fed a high-fat diet; peptide secretion and other parameters were assessed as well. Adult male Wistar rats were each implanted subcutaneously with a microstimulator (MS) and fed a high-fat diet throughout the entire study period (42 days). The left vagus nerve was stimulated by rectangular electrical pulses (10 ms, 200 mV, 10 Hz, 12 h a day) generated by the MS. Body weight and food intake were measured each morning. At the end of the experimental period, animals were euthanized and blood samples were taken. Serum levels of ghrelin, leptin and nesfatin-1 were assessed using radioimmunoassays. Adipose tissue content was evaluated by weighing epididymal fat pads, which were incised at the time of sacrifice. To determine whether VNS activated the food-related areas of the brain, neuronal c-Fos induction in the nuclei of the solitary tract (NTS) was assessed. Chronic vagus nerve stimulation significantly decreased food intake, body weight gain and epididymal fat pad weight in animals that received VNS compared with control animals. Significant neuronal responses in the NTS were observed following VNS. Finally, serum concentrations of ghrelin were increased, while serum levels of leptin were decreased. Although not significant, serum nesfatin-1 levels were also elevated. These results support the theory that VNS leads to reductions in food intake, body weight gain and adipose tissue by increasing brain satiety signals conducted through the vagal afferents. VNS also evoked a feed-related hormonal response, including elevated blood concentrations of nesfatin-1.

  15. The Role of the Vagus Nerve: Modulation of the Inflammatory Reaction in Murine Polymicrobial Sepsis

    PubMed Central

    Kessler, Wolfram; Diedrich, Stephan; Menges, Pia; Ebker, Tobias; Nielson, Michael; Partecke, Lars Ivo; Traeger, Tobias; Cziupka, Katharina; van der Linde, Julia; Puls, Ralf; Busemann, Alexandra; Heidecke, Claus-Dieter; Maier, Stefan

    2012-01-01

    The particular importance of the vagus nerve for the pathophysiology of peritonitis becomes more and more apparent. In this work we provide evidence for the vagal modulation of inflammation in the murine model of colon ascendens stent peritonitis (CASP). Vagotomy significantly increases mortality in polymicrobial sepsis. This effect is not accounted for by the dilatation of gastric volume following vagotomy. As the stimulation of cholinergic receptors by nicotine has no therapeutic effect, the lack of nicotine is also not the reason for the reduced survival rate. In fact, increased septic mortality is a consequence of the absent modulating influence of the vagus nerve on the immune system: we detected significantly elevated serum corticosterone levels in vagotomised mice 24 h following CASP and a decreased ex vivo TNF-alpha secretion of Kupffer cells upon stimulation with LPS. In conclusion, the vagus nerve has a modulating influence in polymicrobial sepsis by attenuating the immune dysregulation. PMID:22547905

  16. Evaluation of heart rate variability in dogs during standard and microburst vagus nerve stimulation: a pilot study.

    PubMed

    Martlé, Valentine; Bavegems, Valérie; Van Ham, Luc; Boon, Paul; Vonck, Kristl; Raedt, Robrecht; Sys, Stanislas; Bhatti, Sofie

    2014-12-01

    Vagus nerve stimulation (VNS) is an established treatment for epilepsy and depression in human patients, but in both humans and dogs, optimal stimulation parameters remain unknown. Delivering afferent bursts of stimulation may be promising as a means of increasing efficacy, but evaluation of potential effects on the heart due to unavoidable efferent stimulation is required. The present study investigated heart rate variability (HRV) in healthy Beagle dogs treated with 1 h of sham, standard or microburst left-sided VNS in a crossover design. No significant differences were found between the stimulation paradigms for any of the cardiac parameters. Short-term left-sided VNS, including a novel bursting pattern (microburst VNS), had no statistically significant effect on HRV in ambulatory healthy dogs. Studies in a larger number of animals with long-term VNS are recommended.

  17. Chronic migraine headache prevention with noninvasive vagus nerve stimulation

    PubMed Central

    Calhoun, Anne H.; Lipton, Richard B.; Grosberg, Brian M.; Cady, Roger K.; Dorlas, Stefanie; Simmons, Kristy A.; Mullin, Chris; Liebler, Eric J.; Goadsby, Peter J.; Saper, Joel R.

    2016-01-01

    Objective: To evaluate the feasibility, safety, and tolerability of noninvasive vagus nerve stimulation (nVNS) for the prevention of chronic migraine (CM) attacks. Methods: In this first prospective, multicenter, double-blind, sham-controlled pilot study of nVNS in CM prophylaxis, adults with CM (≥15 headache d/mo) entered the baseline phase (1 month) and were subsequently randomized to nVNS or sham treatment (2 months) before receiving open-label nVNS treatment (6 months). The primary endpoints were safety and tolerability. Efficacy endpoints in the intent-to-treat population included change in the number of headache days per 28 days and acute medication use. Results: Fifty-nine participants (mean age, 39.2 years; mean headache frequency, 21.5 d/mo) were enrolled. During the randomized phase, tolerability was similar for nVNS (n = 30) and sham treatment (n = 29). Most adverse events were mild/moderate and transient. Mean changes in the number of headache days were −1.4 (nVNS) and −0.2 (sham) (Δ = 1.2; p = 0.56). Twenty-seven participants completed the open-label phase. For the 15 completers initially assigned to nVNS, the mean change from baseline in headache days after 8 months of treatment was −7.9 (95% confidence interval −11.9 to −3.8; p < 0.01). Conclusions: Therapy with nVNS was well-tolerated with no safety issues. Persistent prophylactic use may reduce the number of headache days in CM; larger sham-controlled studies are needed. ClinicalTrials.gov identifier: NCT01667250. Classification of evidence: This study provides Class II evidence that for patients with CM, nVNS is safe, is well-tolerated, and did not significantly change the number of headache days. This pilot study lacked the precision to exclude important safety issues or benefits of nVNS. PMID:27412146

  18. Optimization of epilepsy treatment with vagus nerve stimulation

    NASA Astrophysics Data System (ADS)

    Uthman, Basim; Bewernitz, Michael; Liu, Chang-Chia; Ghacibeh, Georges

    2007-11-01

    Epilepsy is one of the most common chronic neurological disorders that affects close to 50 million people worldwide. Antiepilepsy drugs (AEDs), the main stay of epilepsy treatment, control seizures in two thirds of patients only. Other therapies include the ketogenic diet, ablative surgery, hormonal treatments and neurostimulation. While other approaches to stimulation of the brain are currently in the experimental phase vagus nerve stimulation (VNS) has been approved by the FDA since July 1997 for the adjunctive treatment of intractable partial onset epilepsy with and without secondary generalization in patients twelve years of age or older. The safety and efficacy of VNS have been proven and duplicated in two subsequent double-blinded controlled studies after two pilot studies demonstrated the feasibility of VNS in man. Long term observational studies confirmed the safety of VNS and that its effectiveness is sustained over time. While AEDs influence seizure thresholds via blockade or modulation of ionic channels, inhibit excitatory neurotransmitters or enhance inhibitory neurotransmitters the exact mechanism of action of VNS is not known. Neuroimaging studies revealed that VNS increases blood flow in certain regions of the brain such as the thalamus. Chemical lesions in the rat brains showed that norepinephrine is an important link in the anticonvulsant effect of VNS. Analysis of cerebrospinal fluid obtained from patients before and after treatment with VNS showed modest decreases in excitatory neurotransmitters. Although Hammond et al. reported no effect of VNS on scalp EEG by visual analysis and Salinsky et al. found no effect of VNS on scalp EEG by spectral analysis, Kuba et al. suggested that VNS reduces interictal epileptiform activity. Further, nonlinear dynamical analysis of the electroencephalogram in the rat and man have reportedly shown predictable changes (decrease in the short term Lyapunov exponent STLmax and T-index) more than an hour prior to the

  19. Vagus nerve stimulation inhibits cytokine production and attenuates disease severity in rheumatoid arthritis

    PubMed Central

    Koopman, Frieda A.; Chavan, Sangeeta S.; Miljko, Sanda; Grazio, Simeon; Sokolovic, Sekib; Schuurman, P. Richard; Mehta, Ashesh D.; Levine, Yaakov A.; Faltys, Michael; Zitnik, Ralph; Tracey, Kevin J.; Tak, Paul P.

    2016-01-01

    Rheumatoid arthritis (RA) is a heterogeneous, prevalent, chronic autoimmune disease characterized by painful swollen joints and significant disabilities. Symptomatic relief can be achieved in up to 50% of patients using biological agents that inhibit tumor necrosis factor (TNF) or other mechanisms of action, but there are no universally effective therapies. Recent advances in basic and preclinical science reveal that reflex neural circuits inhibit the production of cytokines and inflammation in animal models. One well-characterized cytokine-inhibiting mechanism, termed the “inflammatory reflex,” is dependent upon vagus nerve signals that inhibit cytokine production and attenuate experimental arthritis severity in mice and rats. It previously was unknown whether directly stimulating the inflammatory reflex in humans inhibits TNF production. Here we show that an implantable vagus nerve-stimulating device in epilepsy patients inhibits peripheral blood production of TNF, IL-1β, and IL-6. Vagus nerve stimulation (up to four times daily) in RA patients significantly inhibited TNF production for up to 84 d. Moreover, RA disease severity, as measured by standardized clinical composite scores, improved significantly. Together, these results establish that vagus nerve stimulation targeting the inflammatory reflex modulates TNF production and reduces inflammation in humans. These findings suggest that it is possible to use mechanism-based neuromodulating devices in the experimental therapy of RA and possibly other autoimmune and autoinflammatory diseases. PMID:27382171

  20. Electrophysiologic studies of cervical vagus nerve stimulation in humans: II. Evoked potentials.

    PubMed

    Hammond, E J; Uthman, B M; Reid, S A; Wilder, B J

    1992-01-01

    Evidence from studies of experimental animals indicates that electrical stimulation of the vagus nerve not only can alter the EEG but evokes activity in specific brain areas. We report effects of electrical stimulation of the vagus nerve in 9 patients with medically intractable seizures as part of a clinical trial of chronic vagal stimulation for control of epilepsy. The left vagus nerve in the neck was stimulated with a programmable implanted stimulator. Effects of stimulus amplitude, duration, and rate were studied. Noncephalic reference recording of the vagus nerve evoked potential showed some unusual properties: a scalp negative component occurred with a latency of 12 ms, very high amplitude (< or = 60 microV), and widespread scalp distribution. Field distribution studies indicated that this potential was myogenic in origin and generated in the region of the stimulating electrodes in the neck area. Chemically induced muscle paralysis confirmed this observation. Bipolar scalp recording showed several small-amplitude topographically distinct potentials occurring in 30 ms. No effect, either acute or chronic, could be detected on pattern-reversal evoked potentials, auditory brainstem evoked potentials, auditory 40-Hz potentials, or cognitive evoked potentials. PMID:1464258

  1. Vagus nerve stimulation inhibits cytokine production and attenuates disease severity in rheumatoid arthritis.

    PubMed

    Koopman, Frieda A; Chavan, Sangeeta S; Miljko, Sanda; Grazio, Simeon; Sokolovic, Sekib; Schuurman, P Richard; Mehta, Ashesh D; Levine, Yaakov A; Faltys, Michael; Zitnik, Ralph; Tracey, Kevin J; Tak, Paul P

    2016-07-19

    Rheumatoid arthritis (RA) is a heterogeneous, prevalent, chronic autoimmune disease characterized by painful swollen joints and significant disabilities. Symptomatic relief can be achieved in up to 50% of patients using biological agents that inhibit tumor necrosis factor (TNF) or other mechanisms of action, but there are no universally effective therapies. Recent advances in basic and preclinical science reveal that reflex neural circuits inhibit the production of cytokines and inflammation in animal models. One well-characterized cytokine-inhibiting mechanism, termed the "inflammatory reflex," is dependent upon vagus nerve signals that inhibit cytokine production and attenuate experimental arthritis severity in mice and rats. It previously was unknown whether directly stimulating the inflammatory reflex in humans inhibits TNF production. Here we show that an implantable vagus nerve-stimulating device in epilepsy patients inhibits peripheral blood production of TNF, IL-1β, and IL-6. Vagus nerve stimulation (up to four times daily) in RA patients significantly inhibited TNF production for up to 84 d. Moreover, RA disease severity, as measured by standardized clinical composite scores, improved significantly. Together, these results establish that vagus nerve stimulation targeting the inflammatory reflex modulates TNF production and reduces inflammation in humans. These findings suggest that it is possible to use mechanism-based neuromodulating devices in the experimental therapy of RA and possibly other autoimmune and autoinflammatory diseases. PMID:27382171

  2. Protective effects of an interaction between vagus nerve and melatonin on gastric ischemia/reperfusion: the role of oxidative stress

    PubMed Central

    Shahrokhi, Nader; Khaksari, Mohammad; Nourizad, Shahla; Shahrokhi, Nava; Soltani, Zahra; Gholamhosseinian, Ahmad

    2016-01-01

    Objectives: Vagal pathways in gastrointestinal tract are the most important pathways that regulate ischemia/reperfusion (I/R). Gastrointestinal tract is one of the important sources of melatonin production. The aim of this study was to investigate probable protective effect of the interaction between vagus nerve and melatonin after I/R. Materials and methods: This study was performed in male rats that were divided into six groups. Cervical vagus nerve was cut bilaterally after induction of I/R and the right one was stimulated by stimulator. Melatonin or vehicle was injected intraperitoneally. The stomach was removed for histopathological and biochemical investigations. Results: A significant decrease in infiltration of gastric neutrophils and malondialdehyde (MDA) level after I/R was induced by melatonin and was disappeared after vagotomy. The stimulation of vagus nerve significantly enhanced these effects of melatonin. However, a stimulation of vagus nerve alone increased neutrophils infiltration and MDA level. Melatonin significantly increased the activities of catalase, glutathione peroxidase (GPx), superoxide dismutases (SOD). Unlike stimulation of vagus nerve, vagotomy decreased these effects of melatonin. Conclusion: According to these results, it is probable that protective effects of melatonin after I/R may be mediated by vagus nerve. Therefore, there is an interaction between melatonin and vagus nerve in their protective effects. PMID:27096067

  3. Effects of anti-inflammatory vagus nerve stimulation on the cerebral microcirculation in endotoxinemic rats

    PubMed Central

    2012-01-01

    Background In sepsis syndromes the severity of the inflammation triggers microvascular dysfunction and early organ failure. We studied the effects of anti-inflammatory vagus nerve stimulation on the cerebral microcirculatory integrity in an endotoxinemic rat model. Methods In both control and endotoxinemic (5 mg/kg lipopolysaccharide i.v.) rats, the effect of cervical bilateral vagotomy with or without left-sided distal vagus nerve stimulation were compared to non-vagotomized, nonstimulated group (sham). Neurovascular coupling was analyzed by electrical forepaw stimulation, EEG, and cortical laser-Doppler flow recording. Resting cerebral blood flow, evoked potentials and hemodynamic responses, were obtained over a period of 4.5 hours. Regulation of the nitric oxide system (iNOS expression and nitrite/nitrate measurements), cytokines (IFN-γ, TNF-α, IL-6, IL-10), hypoxic and apoptosis signaling molecules (HIF-2α, Bax) were measured at the end of experiments. Results In endotoxinemic rats, vagus nerve stimulation tended to increase anti-inflammatory cytokine levels and resulted in a stabile hemodynamic response (28 ± 13%; versus baseline). Vagotomized animals incurred a pro-inflammatory response (7 ± 4%; P < 0.0001 versus baseline) and produced more HIF-2α than vagotomized vagus nerve stimulated (VNS) animals. Evoked potential amplitudes were stabilized in VNS (15 ± 7 μV; n.s. versus baseline) as compared to vagotomised rats (8 ± 5 μV; P < 0.001 versus baseline). However, no effects were observed on apoptosis markers or nitric oxide levels. Conclusions Vagus nerve stimulation in endotoxinemic rats had a positive effect on neurovascular coupling and stabilized evoked potentials. PMID:22830560

  4. The feeding responses evoked by cholecystokinin are mediated by vagus and splanchnic nerves.

    PubMed

    Brown, Thelma A L; Washington, Martha C; Metcalf, Shannon A; Sayegh, Ayman I

    2011-08-01

    Total or selective branch vagotomy attenuates the reduction of cumulative food intake by cholecystokinin (CCK)-8 and CCK-33 respectively. However, the role of the sympathetic innervation of the gut and the role of the vagus nerve in feeding responses, which include meal size (MS) and intermeal interval (IMI), evoked by CCK-8 and CCK-33 have not been evaluated. Here, we tested the effects of total subdiaphragmatic vagotomy (VGX) and celiaco-mesenteric ganglionectomy (CMGX) on the previous feeding responses by CCK-8 and CCK-33 (0, 1, 3, and 5 nmol/kg given intraperitoneally). We found (1) that both peptides reduced meal size and CCK-8 (5 nmol) and CCK-33 (1 and 3 nmol) prolonged IMI, (2) that VGX attenuated the reduction of MS but failed to attenuate the prolongation of IMI by both peptides and (3) that CMGX attenuated the reduction of meal size by CCK-8 and the prolongation of IMI by both peptides. Therefore, the feeding responses evoked by CCK-8 require intact vagus and splanchnic nerves: the reduction of MS by CCK-33 requires an intact vagus nerve, and the prolongation of IMI requires the splanchnic nerve. These findings demonstrate the differential peripheral neuronal mediation of the feeding responses evoked by CCK-8 and CCK-33. PMID:21745513

  5. Mechano- and thermosensitivity of regenerating cutaneous afferent nerve fibers.

    PubMed

    Jänig, Wilfrid; Grossmann, Lydia; Gorodetskaya, Natalia

    2009-06-01

    Crush lesion of a skin nerve is followed by sprouting of myelinated (A) and unmyelinated (C) afferent fibers into the distal nerve stump. Here, we investigate quantitatively both ongoing activity and activity evoked by mechanical or thermal stimulation of the nerve in 43 A- and 135 C-fibers after crush lesion of the sural nerve using neurophysiological recordings in anesthetized rats. The discharge patterns in the injured afferent nerve fibers and in intact (control) afferent nerve fibers were compared. (1) Almost all (98%) A-fibers were mechanosensitive, some of them exhibited additionally weak cold/heat sensitivity; 7% had ongoing activity. (2) Three patterns of physiologically evoked activity were present in the lesioned C-fibers: (a) C-fibers with type 1 cold sensitivity (low cold threshold, inhibition on heating, high level of ongoing and cold-evoked activity; 23%): almost all of them were mechanoinsensitive and 40% of them were additionally heat-sensitive; (b) C-fibers with type 2 cold sensitivity (high cold threshold, low level of ongoing and cold-evoked activity; 23%). All of them were excited by mechanical and/or heat stimuli; (c) cold-insensitive C-fibers (54%), which were heat- and/or mechanosensitive. (3) The proportions of C-fibers exhibiting these three patterns of discharge to physiological stimuli were almost identical in the population of injured C-fibers and in a population of 91 intact cutaneous C-fibers. 4. Ongoing activity was present in 56% of the lesioned C-fibers. Incidence and rate of ongoing activity were the same in the populations of lesioned and intact type 1 cold-sensitive C-fibers. The incidence (but not rate) of ongoing activity was significantly higher in lesioned type 2 cold-sensitive and cold insensitive C-fibers than in the corresponding populations of intact C-fibers (42/93 fibers vs. 11/72 fibers). PMID:19139872

  6. Novel insights into maladaptive behaviours in Prader–Willi syndrome: serendipitous findings from an open trial of vagus nerve stimulation

    PubMed Central

    McAllister, C. J.; Ring, H. A.; Finer, N.; Kelly, C. L.; Sylvester, K. P.; Fletcher, P. C.; Morrell, N. W.; Garnett, M. R.; Manford, M. R. A.; Holland, A. J.

    2015-01-01

    Abstract Background We report striking and unanticipated improvements in maladaptive behaviours in Prader–Willi syndrome (PWS) during a trial of vagus nerve stimulation (VNS) initially designed to investigate effects on the overeating behaviour. PWS is a genetically determined neurodevelopmental disorder associated with mild–moderate intellectual disability (ID) and social and behavioural difficulties, alongside a characteristic and severe hyperphagia. Methods Three individuals with PWS underwent surgery to implant the VNS device. VNS was switched on 3 months post‐implantation, with an initial 0.25 mA output current incrementally increased to a maximum of 1.5 mA as tolerated by each individual. Participants were followed up monthly. Results Vagal nerve stimulation in these individuals with PWS, within the stimulation parameters used here, was safe and acceptable. However, changes in eating behaviour were equivocal. Intriguingly, unanticipated, although consistent, beneficial effects were reported by two participants and their carers in maladaptive behaviour, temperament and social functioning. These improvements and associated effects on food‐seeking behaviour, but not weight, indicate that VNS may have potential as a novel treatment for such behaviours. Conclusions We propose that these changes are mediated through afferent and efferent vagal projections and their effects on specific neural networks and functioning of the autonomic nervous system and provide new insights into the mechanisms that underpin what are serious and common problems affecting people with IDs more generally. PMID:26018613

  7. Nonpharmacologic care for patients with Lennox-Gastaut syndrome: ketogenic diets and vagus nerve stimulation.

    PubMed

    Kossoff, Eric H W; Shields, W Donald

    2014-09-01

    Individuals with Lennox-Gastaut syndrome (LGS) often do not respond to or become resistant to pharmacologic treatments. Ketogenic diets (KDs) and vagus nerve stimulation (VNS) are nonpharmacologic treatment options for these intractable patients. The classic KD, a high-fat, low-carbohydrate diet with 90% of calories derived from fat, has been used in the treatment of seizures for >90 years. About half of patients with LGS respond to the KD with a >50% reduction in seizures and some patients may achieve a >90% reduction. Vagus nerve stimulation therapy involves a surgically implanted generator that delivers intermittent electrical stimuli to the brain via an electrode wrapped around the left vagus nerve. It is utilized as adjunctive therapy for patients with drug-resistant epilepsy (including patients with LGS) who are not suitable candidates for resective surgery. Similar to the KD, about half of LGS patients respond to VNS therapy, with a >50% reduction in seizures, and the response may improve over time. Both the KD and VNS are options for patients with LGS.

  8. Effect of stimulation of afferent renal nerves on plasma levels of vasopressin

    SciTech Connect

    Caverson, M.M.; Ciriello, J.

    1987-04-01

    Experiments were done in ..cap alpha..-chloralose-anesthetized, paralyzed and artificially ventilated cats with vagus, cervical sympathetic, aortic depressor, and carotid sinus nerves cut bilaterally to investigate the effect of afferent renal nerve (ARN) stimulation on circulating levels of vasopressin (AVP). Electrical stimulation of ARN elicited a pressor response that had two components, a primary (1/sup 0/) component locked in time with the stimulus and a secondary (2/sup 0/) component that had a long onset latency and that outlasted the stimulation period. The 1/sup 0/ and 2/sup 0/ components of the pressor response were largest at stimulation frequencies of 30 and 40 Hz, respectively. Autonomic blockage with hexamethonium bromide and atropine methylbromide abolished the 1/sup 0/ component. Administration of the vasopressin V/sub 1/-vascular receptor antagonist d(CH/sub 2/)/sub 5/ VAVP during autonomic blockade abolished the 2/sup 0/C component. Plasma concentrations of AVP measured by radioimmunoassay increased from control levels of 5.2 +/- 0.9 to 53.6 +/- 18.6 pg/ml during a 5-min period of stimulation of ARN. Plasma AVP levels measured 20-40 min after simulation were not significantly different from control values. These data demonstrate that sensory information originating in the kidney alters the release of vasopressin from the neurohypophysis and suggest that ARN are an important component of the neural circuitry involved in homeostatic mechanisms controlling arterial pressure.

  9. Noninvasive vagus nerve stimulation in the management of cluster headache: clinical evidence and practical experience

    PubMed Central

    Holle-Lee, Dagny; Gaul, Charly

    2016-01-01

    The efficacy of invasive vagal nerve stimulation as well as other invasive neuromodulatory approaches such as deep brain stimulation, occipital nerve stimulation, and ganglion sphenopalatine stimulation has been shown in the treatment of headache disorders in several studies in the past. However, these invasive treatment options were quite costly and often associated with perioperative and postoperative side effects, some severe. As such, they were predominantly restricted to chronic and therapy refractory patients. Transcutaneous vagal nerve stimulation now offers a new, noninvasive neuromodulatory treatment approach. Recently published studies showed encouraging results of noninvasive vagus nerve stimulation (nVNS), especially with respect to cluster headache, with high tolerability and a low rate of side effects; however, randomized controlled trials are needed to prove its efficacy. Further data also indicate therapeutic benefits regarding treatment of migraine and medication overuse headache. This review summarizes current knowledge and personal experiences of nVNS in the treatment of cluster headache. PMID:27134678

  10. Effects of high-frequency alternating current on axonal conduction through the vagus nerve

    NASA Astrophysics Data System (ADS)

    Waataja, Jonathan J.; Tweden, Katherine S.; Honda, Christopher N.

    2011-10-01

    High-frequency alternating current (HFAC) is known to disrupt axonal conduction in peripheral nerves, and HFAC has much potential as a therapeutic approach for a number of pathological conditions. Many previous studies have utilized motor output as a bioassay of effects of HFAC on conduction through medium- to large-diameter motor axons. However, little is known about the effectiveness of HFAC on smaller, more slowly conducting nerve fibres. The present study tested whether HFAC influences axonal conduction through sub-diaphragmatic levels of the rat vagus nerve, which consists almost entirely of small calibre axons. Using an isolated nerve preparation, we tested the effects of HFAC on electrically evoked compound action potentials (CAPs). We found that delivery of charge-balanced HFAC at 5000 Hz for 1 min was effective in producing reversible blockade of axonal conduction. Both Aδ and C components of the vagus CAP were attenuated, and the degree of blockade as well as time to recovery was proportional to the amount of HFAC current delivered. The Aδ waves were more sensitive than C waves to HFAC blockade, but they required more time to recover.

  11. Effects of high-frequency alternating current on axonal conduction through the vagus nerve.

    PubMed

    Waataja, Jonathan J; Tweden, Katherine S; Honda, Christopher N

    2011-10-01

    High-frequency alternating current (HFAC) is known to disrupt axonal conduction in peripheral nerves, and HFAC has much potential as a therapeutic approach for a number of pathological conditions. Many previous studies have utilized motor output as a bioassay of effects of HFAC on conduction through medium- to large-diameter motor axons. However, little is known about the effectiveness of HFAC on smaller, more slowly conducting nerve fibres. The present study tested whether HFAC influences axonal conduction through sub-diaphragmatic levels of the rat vagus nerve, which consists almost entirely of small calibre axons. Using an isolated nerve preparation, we tested the effects of HFAC on electrically evoked compound action potentials (CAPs). We found that delivery of charge-balanced HFAC at 5000 Hz for 1 min was effective in producing reversible blockade of axonal conduction. Both Aδ and C components of the vagus CAP were attenuated, and the degree of blockade as well as time to recovery was proportional to the amount of HFAC current delivered. The Aδ waves were more sensitive than C waves to HFAC blockade, but they required more time to recover. PMID:21918293

  12. Non-Invasive Vagus Nerve Stimulation as Treatment for Trigeminal Allodynia

    PubMed Central

    Oshinsky, Michael L.; Murphy, Angela L.; Hekierski, Hugh; Cooper, Marnie; Simon, Bruce J.

    2014-01-01

    Implanted vagus nerve stimulation (VNS) has been used to treat seizures and depression. In this study, we explore the mechanism of action of non-invasive vagus nerve stimulation (nVNS) for the treatment of trigeminal allodynia. Rats were repeatedly infused with inflammatory mediators directly onto the dura, which leads to chronic trigeminal allodynia. nVNS for 2min decreases periorbital sensitivity in rats with periorbital trigeminal allodynia for up to 3.5hr after stimulation. Using microdialysis, we quantified levels of extracellular neurotransmitters in the trigeminal nucleus caudalis (TNC). Allodynic rats showed a 7.7±0.9 fold increase in extracellular glutamate in the TNC following i.p. administration of the chemical headache trigger, glyceryl trinitrate (GTN; 0.1mg/kg). Allodynic rats, which received nVNS, had only a 2.3±0.4 fold increase in extracellular glutamate following GTN similar to the response in control naive rats. When nVNS was delayed until 120min after GTN treatment, the high levels of glutamate in the TNC were reversed following nVNS. The nVNS stimulation parameters used in this study did not produce significant changes in blood pressure or heart rate. These data suggest that nVNS may be used to treat trigeminal allodynia. PMID:24530613

  13. Transcutaneous Vagus Nerve Stimulation (tVNS) does not increase prosocial behavior in Cyberball

    PubMed Central

    Sellaro, Roberta; Steenbergen, Laura; Verkuil, Bart; van IJzendoorn, Marinus H.; Colzato, Lorenza S.

    2015-01-01

    Emerging research suggests that individuals experience vicarious social pain (i.e., ostracism). It has been proposed that observing ostracism increases activity in the insula and in the prefrontal cortex (PFC), two key brain regions activated by directly experiencing ostracism. Here, we assessed the causal role of the insula and PFC in modulating neural activity in these areas by applying transcutaneous Vagus Nerve Stimulation (tVNS), a new non-invasive and safe method to stimulate the vagus nerve that has been shown to activate the insula and PFC. A single-blind, sham-controlled, within-subjects design was used to assess the effect of on-line (i.e., stimulation overlapping with the critical task) tVNS in healthy young volunteers (n = 24) on the prosocial Cyberball game, a virtual ball-tossing game designed to measure prosocial compensation of ostracism. Active tVNS did not increase prosocial helping behavior toward an ostracized person, as compared to sham (placebo) stimulation. Corroborated by Bayesian inference, we conclude that tVNS does not modulate reactions to vicarious ostracism, as indexed by performance in a Cyberball game. PMID:25972825

  14. Targeting primary afferent nerves for novel antitussive therapy.

    PubMed

    Undem, Bradley J; Carr, Michael J

    2010-01-01

    The best available data support the hypothesis that there are at least two types of vagal nerves responsible for initiating coughing reflexes. One type of nerve conducts action potentials in the A-range and is characterized by rapidly adapting responses to mechanical probing or acidification of the large airway epithelium. Stimulation of these nerves can evoke cough in unconscious experimental animals and humans. These nerves are important in immediate cough evoked by aspiration and as such perform a critical role in airway defense. The other type of primary afferent nerve involved in cough is the vagal C-fiber. Inhalation of selective C-fiber stimulants leads to cough only in conscious animals. In clinical studies, inhalation of a low concentration of a C-fiber stimulant causes an irritating, itchy urge-to-cough sensation that mimics the urge-to-cough sensations associated with respiratory tract infection, post-infection, gastroesophageal reflux disorders, and inflammatory airway diseases. Here we discuss the recent advances in sensory neurobiology that allow for the targeting of vagal C-fibers for novel antitussive therapy. No attempts are made to be all-inclusive with respect to the numerous possible molecular targets being considered to accomplish this goal. Rather, two general strategies are discussed: decreasing generator potential amplitude and decreasing the efficiency by which a generator potential evokes action-potential discharge. For the first category we focus on two targets, transient receptor potential vanilloid 1 and transient receptor potential A1. For the latter category we focus on recent advances in voltage-gated sodium (Na(V)) channel biology.

  15. A Preclinical Study of Laryngeal Motor-Evoked Potentials as a Marker Vagus Nerve Activation.

    PubMed

    Grimonprez, Annelies; Raedt, Robrecht; De Taeye, Leen; Larsen, Lars Emil; Delbeke, Jean; Boon, Paul; Vonck, Kristl

    2015-12-01

    Vagus nerve stimulation (VNS) is a treatment for refractory epilepsy and depression. Previous studies using invasive recording electrodes showed that VNS induces laryngeal motor-evoked potentials (LMEPs) through the co-activation of the recurrent laryngeal nerve and subsequent contractions of the laryngeal muscles. The present study investigates the feasibility of recording LMEPs in chronically VNS-implanted rats, using a minimally-invasive technique, to assess effective current delivery to the nerve and to determine optimal VNS output currents for vagal fiber activation. Three weeks after VNS electrode implantation, signals were recorded using an electromyography (EMG) electrode in the proximity of the laryngeal muscles and a reference electrode on the skull. The VNS output current was gradually ramped up from 0.1 to 1.0 mA in 0.1 mA steps. In 13/27 rats, typical LMEPs were recorded at low VNS output currents (median 0.3 mA, IQR 0.2-0.3 mA). In 11/27 rats, significantly higher output currents were required to evoke electrophysiological responses (median 0.7 mA, IQR 0.5-0.7 mA, p < 0.001). The latencies of these responses deviated significantly from LMEPs (p < 0.05). In 3/27 rats, no electrophysiological responses to simulation were recorded. Minimally invasive LMEP recordings are feasible to assess effective current delivery to the vagus nerve. Furthermore, our results suggest that low output currents are sufficient to activate vagal fibers.

  16. Peripheral vagus nerve stimulation significantly affects lipid composition and protein secondary structure within dopamine-related brain regions in rats.

    PubMed

    Surowka, Artur Dawid; Krygowska-Wajs, Anna; Ziomber, Agata; Thor, Piotr; Chrobak, Adrian Andrzej; Szczerbowska-Boruchowska, Magdalena

    2015-06-01

    Recent immunohistochemical studies point to the dorsal motor nucleus of the vagus nerve as the point of departure of initial changes which are related to the gradual pathological developments in the dopaminergic system. In the light of current investigations, it is likely that biochemical changes within the peripheral nervous system may influence the physiology of the dopaminergic system, suggesting a putative role for it in the development of neurodegenerative disorders. By using Fourier transform infrared microspectroscopy, coupled with statistical analysis, we examined the effect of chronic, unilateral electrical vagus nerve stimulation on changes in lipid composition and in protein secondary structure within dopamine-related brain structures in rats. It was found that the chronic vagal nerve stimulation strongly affects the chain length of fatty acids within the ventral tegmental area, nucleus accumbens, substantia nigra, striatum, dorsal motor nucleus of vagus and the motor cortex. In particular, the level of lipid unsaturation was found significantly increasing in the ventral tegmental area, substantia nigra and motor cortex as a result of vagal nerve stimulation. When it comes to changes in protein secondary structure, we could see that the mesolimbic, mesocortical and nigrostriatal dopaminergic pathways are particularly affected by vagus nerve stimulation. This is due to the co-occurrence of statistically significant changes in the content of non-ordered structure components, alpha helices, beta sheets, and the total area of Amide I. Macromolecular changes caused by peripheral vagus nerve stimulation may highlight a potential connection between the gastrointestinal system and the central nervous system in rat during the development of neurodegenerative disorders.

  17. Peripheral vagus nerve stimulation significantly affects lipid composition and protein secondary structure within dopamine-related brain regions in rats.

    PubMed

    Surowka, Artur Dawid; Krygowska-Wajs, Anna; Ziomber, Agata; Thor, Piotr; Chrobak, Adrian Andrzej; Szczerbowska-Boruchowska, Magdalena

    2015-06-01

    Recent immunohistochemical studies point to the dorsal motor nucleus of the vagus nerve as the point of departure of initial changes which are related to the gradual pathological developments in the dopaminergic system. In the light of current investigations, it is likely that biochemical changes within the peripheral nervous system may influence the physiology of the dopaminergic system, suggesting a putative role for it in the development of neurodegenerative disorders. By using Fourier transform infrared microspectroscopy, coupled with statistical analysis, we examined the effect of chronic, unilateral electrical vagus nerve stimulation on changes in lipid composition and in protein secondary structure within dopamine-related brain structures in rats. It was found that the chronic vagal nerve stimulation strongly affects the chain length of fatty acids within the ventral tegmental area, nucleus accumbens, substantia nigra, striatum, dorsal motor nucleus of vagus and the motor cortex. In particular, the level of lipid unsaturation was found significantly increasing in the ventral tegmental area, substantia nigra and motor cortex as a result of vagal nerve stimulation. When it comes to changes in protein secondary structure, we could see that the mesolimbic, mesocortical and nigrostriatal dopaminergic pathways are particularly affected by vagus nerve stimulation. This is due to the co-occurrence of statistically significant changes in the content of non-ordered structure components, alpha helices, beta sheets, and the total area of Amide I. Macromolecular changes caused by peripheral vagus nerve stimulation may highlight a potential connection between the gastrointestinal system and the central nervous system in rat during the development of neurodegenerative disorders. PMID:25893743

  18. A novel method of selective ablation of afferent renal nerves by periaxonal application of capsaicin

    PubMed Central

    Foss, Jason D.; Wainford, Richard D.; Engeland, William C.; Fink, Gregory D.

    2014-01-01

    Renal denervation has been shown to lower arterial pressure in some hypertensive patients, yet it remains unclear whether this is due to ablation of afferent or efferent renal nerves. To investigate the role of afferent renal nerves in arterial pressure regulation, previous studies have used methods that disrupt both renal and nonrenal afferent signaling. The present study was conducted to develop and validate a technique for selective ablation of afferent renal nerves that does not disrupt other afferent pathways. To do this, we adapted a technique for sensory denervation of the adrenal gland by topical application of capsaicin and tested the hypothesis that exposure of the renal nerves to capsaicin (renal-CAP) causes ablation of afferent but not efferent renal nerves. Renal-CAP had no effect on renal content of the efferent nerve markers tyrosine hydroxylase and norepinephrine; however, the afferent nerve marker, calcitonin gene-related peptide was largely depleted from the kidney 10 days after intervention, but returned to roughly half of control levels by 7 wk postintervention. Moreover, renal-CAP abolished the cardiovascular responses to acute pharmacological stimulation of afferent renal nerves. Renal-CAP rats showed normal weight gain, as well as cardiovascular and fluid balance regulation during dietary sodium loading. To some extent, renal-CAP did blunt the bradycardic response and increase the dipsogenic response to increased salt intake. Lastly, renal-CAP significantly attenuated the development of deoxycorticosterone acetate-salt hypertension. These results demonstrate that renal-CAP effectively causes selective ablation of afferent renal nerves in rats. PMID:25411365

  19. The role of the renal afferent and efferent nerve fibers in heart failure

    PubMed Central

    Booth, Lindsea C.; May, Clive N.; Yao, Song T.

    2015-01-01

    Renal nerves contain afferent, sensory and efferent, sympathetic nerve fibers. In heart failure (HF) there is an increase in renal sympathetic nerve activity (RSNA), which can lead to renal vasoconstriction, increased renin release and sodium retention. These changes are thought to contribute to renal dysfunction, which is predictive of poor outcome in patients with HF. In contrast, the role of the renal afferent nerves remains largely unexplored in HF. This is somewhat surprising as there are multiple triggers in HF that have the potential to increase afferent nerve activity, including increased venous pressure and reduced kidney perfusion. Some of the few studies investigating renal afferents in HF have suggested that at least the sympatho-inhibitory reno-renal reflex is blunted. In experimentally induced HF, renal denervation, both surgical and catheter-based, has been associated with some improvements in renal and cardiac function. It remains unknown whether the effects are due to removal of the efferent renal nerve fibers or afferent renal nerve fibers, or a combination of both. Here, we review the effects of HF on renal efferent and afferent nerve function and critically assess the latest evidence supporting renal denervation as a potential treatment in HF. PMID:26483699

  20. The therapeutic dilemma of vagus nerve stimulator-induced sleep disordered breathing.

    PubMed

    Upadhyay, Hinesh; Bhat, Sushanth; Gupta, Divya; Mulvey, Martha; Ming, Sue

    2016-01-01

    Intermittent vagus nerve stimulation (VNS) can reduce the frequency of seizures in patients with refractory epilepsy, but can affect respiration in sleep. Untreated obstructive sleep apnea (OSA) can worsen seizure frequency. Unfortunately, OSA and VNS-induced sleep disordered breathing (SDB) may occur in the same patient, leading to a therapeutic dilemma. We report a pediatric patient in whom OSA improved after tonsillectomy, but coexistent VNS-induced SDB persisted. With decrease in VNS output current, patient's SDB improved, but seizure activity exacerbated, which required a return to the original settings. Continuous positive airway pressure titration was attempted, which showed only a partial improvement in apnea-hypopnea index. This case illustrates the need for clinicians to balance seizure control and SDB in patients with VNS. PMID:27168865

  1. The therapeutic dilemma of vagus nerve stimulator-induced sleep disordered breathing

    PubMed Central

    Upadhyay, Hinesh; Bhat, Sushanth; Gupta, Divya; Mulvey, Martha; Ming, Sue

    2016-01-01

    Intermittent vagus nerve stimulation (VNS) can reduce the frequency of seizures in patients with refractory epilepsy, but can affect respiration in sleep. Untreated obstructive sleep apnea (OSA) can worsen seizure frequency. Unfortunately, OSA and VNS-induced sleep disordered breathing (SDB) may occur in the same patient, leading to a therapeutic dilemma. We report a pediatric patient in whom OSA improved after tonsillectomy, but coexistent VNS-induced SDB persisted. With decrease in VNS output current, patient's SDB improved, but seizure activity exacerbated, which required a return to the original settings. Continuous positive airway pressure titration was attempted, which showed only a partial improvement in apnea–hypopnea index. This case illustrates the need for clinicians to balance seizure control and SDB in patients with VNS. PMID:27168865

  2. Rates and Predictors of Seizure Freedom With Vagus Nerve Stimulation for Intractable Epilepsy

    PubMed Central

    Rolston, John D.; Wright, Clinton W.; Hassnain, Kevin H.; Chang, Edward F.

    2015-01-01

    BACKGROUND: Neuromodulation-based treatments have become increasingly important in epilepsy treatment. Most patients with epilepsy treated with neuromodulation do not achieve complete seizure freedom, and, therefore, previous studies of vagus nerve stimulation (VNS) therapy have focused instead on reduction of seizure frequency as a measure of treatment response. OBJECTIVE: To elucidate rates and predictors of seizure freedom with VNS. METHODS: We examined 5554 patients from the VNS therapy Patient Outcome Registry, and also performed a systematic review of the literature including 2869 patients across 78 studies. RESULTS: Registry data revealed a progressive increase over time in seizure freedom after VNS therapy. Overall, 49% of patients responded to VNS therapy 0 to 4 months after implantation (≥50% reduction seizure frequency), with 5.1% of patients becoming seizure-free, while 63% of patients were responders at 24 to 48 months, with 8.2% achieving seizure freedom. On multivariate analysis, seizure freedom was predicted by age of epilepsy onset >12 years (odds ratio [OR], 1.89; 95% confidence interval [CI], 1.38-2.58), and predominantly generalized seizure type (OR, 1.36; 95% CI, 1.01-1.82), while overall response to VNS was predicted by nonlesional epilepsy (OR, 1.38; 95% CI, 1.06-1.81). Systematic literature review results were consistent with the registry analysis: At 0 to 4 months, 40.0% of patients had responded to VNS, with 2.6% becoming seizure-free, while at last follow-up, 60.1% of individuals were responders, with 8.0% achieving seizure freedom. CONCLUSION: Response and seizure freedom rates increase over time with VNS therapy, although complete seizure freedom is achieved in a small percentage of patients. ABBREVIATIONS: AED, antiepileptic drug VNS, vagus nerve stimulation PMID:26645965

  3. [The components of the negative chronotropic effect of the vagus nerve on the heart and a method for their definition].

    PubMed

    Sheĭkh-Zade, Iu R; Cherednik, I L

    1996-01-01

    Stimulation of the peripheral end of the right n.vagus led to synchronizing of the vagal and cardiac rhythms in anesthetised cats. The stimulation of the n.vagus beyond the synchronizing range resulted in the sinus arrhythmia. The negative chronotropic effect of the vagus nerve on the heart was shown to consist of tonic as well as synchronizing components. The latter component did not depend on the heart rate and may be expressed as a difference between the maximal and minimal cardiac cycle during the sinus arrhythmia. The tonic component was determined as a difference between the initial cardiac cycle and the minimal cardiac cycle during the sinus arrhythmia. It seems to be cumulative in nature and to depend on the heart rate.

  4. Vagus nerve stimulation mitigates intrinsic cardiac neuronal and adverse myocyte remodeling postmyocardial infarction

    PubMed Central

    Beaumont, Eric; Southerland, Elizabeth M.; Hardwick, Jean C.; Wright, Gary L.; Ryan, Shannon; Li, Ying; KenKnight, Bruce H.; Armour, J. Andrew

    2015-01-01

    This paper aims to determine whether chronic vagus nerve stimulation (VNS) mitigates myocardial infarction (MI)-induced remodeling of the intrinsic cardiac nervous system (ICNS), along with the cardiac tissue it regulates. Guinea pigs underwent VNS implantation on the right cervical vagus. Two weeks later, MI was produced by ligating the ventral descending coronary artery. VNS stimulation started 7 days post-MI (20 Hz, 0.9 ± 0.2 mA, 14 s on, 48 s off; VNS-MI, n = 7) and was compared with time-matched MI animals with sham VNS (MI n = 7) vs. untreated controls (n = 8). Echocardiograms were performed before and at 90 days post-MI. At termination, IC neuronal intracellular voltage recordings were obtained from whole-mount neuronal plexuses. MI increased left ventricular end systolic volume (LVESV) 30% (P = 0.027) and reduced LV ejection fraction (LVEF) 6.5% (P < 0.001) at 90 days post-MI compared with baseline. In the VNS-MI group, LVESV and LVEF did not differ from baseline. IC neurons showed depolarization of resting membrane potentials and increased input resistance in MI compared with VNS-MI and sham controls (P < 0.05). Neuronal excitability and sensitivity to norepinephrine increased in MI and VNS-MI groups compared with controls (P < 0.05). Synaptic efficacy, as determined by evoked responses to stimulating input axons, was reduced in VNS-MI compared with MI or controls (P < 0.05). VNS induced changes in myocytes, consistent with enhanced glycogenolysis, and blunted the MI-induced increase in the proapoptotic Bcl-2-associated X protein (P < 0.05). VNS mitigates MI-induced remodeling of the ICNS, correspondingly preserving ventricular function via both neural and cardiomyocyte-dependent actions. PMID:26276818

  5. Characterization of Mouse Lumbar Splanchnic and Pelvic Nerve Urinary Bladder Mechanosensory Afferents

    PubMed Central

    Xu, Linjing; Gebhart, G. F.

    2009-01-01

    Sensory information from the urinary bladder is conveyed via lumbar splanchnic (LSN) and sacral pelvic (PN) nerves to the spinal cord. In the present report we compared the mechanosensitive properties of single afferent fibers in these two pathways using an in vitro mouse bladder preparation. Mechanosensitive primary afferents were recorded from the LSN or PN and distinguished based on their response to receptive field stimulation with different mechanical stimuli: probing (160 mg to 2 g), stretch (1–25 g), and stroking of the urothelium (10–1,000 mg). Four different classes of afferent were recorded from the LSN and PN: serosal, muscular, muscular/urothielial, and urothelial. The LSN contained principally serosal and muscular afferents (97% of the total sample), whereas all four afferent classes of afferent were present in the PN (63% of which were muscular afferents). In addition, the respective proportions and receptive field distributions differed between the two pathways. Both low- and high-threshold stretch-sensitive muscular afferents were present in both pathways, and muscular afferents in the PN were shown to sensitize after exposure to an inflammatory soup cocktail. The LSN and PN pathways contain different populations of mechanosensitive afferents capable of detecting a range of mechanical stimuli and individually tuned to detect the type, magnitude, and duration of the stimulus. This knowledge broadens our understanding of the potential roles these two pathways play in conveying mechanical information from the bladder to the spinal cord. PMID:18003875

  6. Signal space separation algorithm and its application on suppressing artifacts caused by vagus nerve stimulation for magnetoencephalography recordings.

    PubMed

    Song, Tao; Cui, Li; Gaa, Kathleen; Feffer, Lori; Taulu, Samu; Lee, Roland R; Huang, Mingxiong

    2009-12-01

    Magnetoencephalography (MEG) has been successfully applied to presurgical epilepsy foci localization and brain functional mapping. Because the neuronal magnetic signals from the brain are extremely weak, MEG measurement requires both low environment noise and the subject/patient being free of artifact-generating metal objects. This strict requirement makes it hard for patients with vagus nerve stimulator, or other similar medical devices, to benefit from the presurgical MEG examinations. Therefore, an approach that can effectively reduce the environmental noise and faithfully recover the brain signals is highly desirable. We applied spatiotemporal signal space separation method, an advanced signal processing approach that can recover bio-magnetic signal from inside the MEG sensor helmet and suppress external disturbance from outside the helmet in empirical MEG measurements, on MEG recordings from normal control subjects and patients who has vagus nerve stimulator. The original MEG recordings were heavily contaminated, and the data could not be assessed. After applying temporal signal space separation, the strong external artifacts from outside the brain were successfully removed, and the neuronal signal from the human brain was faithfully recovered. Both of the goodness-of-fit and 95% confident limit volume confirmed the significant improvement after temporal signal space separation. Hence, temporal signal space separation makes presurgical MEG examinations possible for patients with implanted vagus nerve stimulator or similar medical devices.

  7. Peripheral innervation patterns of vestibular nerve afferents in the bullfrog utriculus

    NASA Technical Reports Server (NTRS)

    Baird, Richard A.; Schuff, N. R.

    1994-01-01

    Vestibular nerve afferents innervating the bullfrog utriculus differ in their response dynamics and sensitivity to natural stimulation. They also supply hair cells that differ markedly in hair bundle morphology. To examine the peripheral innervation patterns of individual utricular afferents more closely, afferent fibers were labeled by the extracellular injection of horseradish peroxidase (HRP) into the vestibular nerve after sectioning the vestibular nerve medial to Scarpa's ganglion to allow the degeneration of sympathetic and efferent fibers. The peripheral arborizations of individual afferents were then correlated with the diameters of their parent axons, the regions of the macula they innervate, and the number and type of hair cells they supply. The utriculus is divided by the striola, a narrow zone of distinctive morphology, into media and lateral parts. Utiricular afferents were classified as striolar or extrastriolar according to the epithelial entrance of their parent axons and the location of their terminal fields. In general, striolar afferents had thicker parent axons, fewer subepithelial bifurcations, larger terminal fields, and more synaptic endings than afferents in extrstriolar regions. Afferents in a juxtastriolar zone, immediately adjacent to the medial striola, had innervation patterns transitional between those in the striola and more peripheral parts of the medial extrastriola. moast afferents innervated only a single macular zone. The terminal fields of striolar afferents, with the notable exception of a few afferents with thin parent axons, were generally confined to one side of the striola. Hair cells in the bullfrog utriculus have perviously been classified into four types based on hair bundle morphology. Afferents in the extrastriolar and juxtastriolar zones largely or exclusively innervated Type B hair cells, the predominant hair cell type in the utricular macula. Striolar afferents supplied a mixture of four hair cell types, but largely

  8. Vagus Nerve Stimulation and Other Neuromodulation Methods for Treatment of Traumatic Brain Injury.

    PubMed

    Neren, Daniel; Johnson, Matthew D; Legon, Wynn; Bachour, Salam P; Ling, Geoffrey; Divani, Afshin A

    2016-04-01

    The objective of this paper is to review the current literature regarding the use of vagus nerve stimulation (VNS) in preclinical models of traumatic brain injury (TBI) as well as discuss the potential role of VNS along with alternative neuromodulation approaches in the treatment of human TBI. Data from previous studies have demonstrated VNS-mediated improvement following TBI in animal models. In these cases, VNS was observed to enhance motor and cognitive recovery, attenuate cerebral edema and inflammation, reduce blood brain barrier breakdown, and confer neuroprotective effects. Yet, the underlying mechanisms by which VNS enhances recovery following TBI remain to be fully elucidated. Several hypotheses have been offered including: a noradrenergic mechanism, reduction in post-TBI seizures and hyper-excitability, anti-inflammatory effects, attenuation of blood-brain barrier breakdown, and cerebral edema. We present other potential mechanisms by which VNS acts including enhancement of synaptic plasticity and recruitment of endogenous neural stem cells, stabilization of intracranial pressure, and interaction with the ghrelin system. In addition, alternative methods for the treatment of TBI including deep brain stimulation, transcranial magnetic stimulation, transcranial direct current stimulation, and focused ultrasound stimulation are discussed. Although the primary source data show that VNS improves TBI outcomes, it remains to be determined if these findings can be translated to clinical settings. PMID:26399249

  9. Laryngeal motility alteration: A missing link between sleep apnea and vagus nerve stimulation for epilepsy.

    PubMed

    Zambrelli, Elena; Saibene, Alberto M; Furia, Francesca; Chiesa, Valentina; Vignoli, Aglaia; Pipolo, Carlotta; Felisati, Giovanni; Canevini, Maria Paola

    2016-01-01

    This study aimed to evaluate the prevalence and the relationship of sleep breathing disorders (SBDs) and laryngeal motility alterations in patients with drug-resistant epilepsy after vagus nerve stimulator (VNS) implantation. Twenty-three consecutive patients with medically refractory epilepsy underwent out-of-center sleep testing before and after VNS implantation. Eighteen eligible subjects underwent endoscopic laryngeal examination post-VNS implantation. Statistical analysis was carried out to assess an association between laryngeal motility alterations and the onset/worsening of SBDs. After VNS implantation, 11 patients showed a new-onset mild/moderate SBD. Half of the patients already affected by obstructive sleep apnea (OSA) showed worsening of SBD. All of the patients with a new-onset OSA had a laryngeal pattern with left vocal cord adduction (LVCA) during VNS stimulation. The association between VNS-induced LVCA and SBD was statistically significant. This study suggests an association between VNS and SBD, hinting to a pivotal role of laryngeal motility alterations. The relationship between SBD and VNS-induced LVCA supports the need to routinely investigate sleep respiratory and laryngeal motility patterns before and after VNS implantation.

  10. Vagus Nerve Stimulation as a Tool to Induce Plasticity in Pathways Relevant for Extinction Learning.

    PubMed

    Childs, Jessica E; Alvarez-Dieppa, Amanda C; McIntyre, Christa K; Kroener, Sven

    2015-08-21

    Extinction describes the process of attenuating behavioral responses to neutral stimuli when they no longer provide the reinforcement that has been maintaining the behavior. There is close correspondence between fear and human anxiety, and therefore studies of extinction learning might provide insight into the biological nature of anxiety-related disorders such as post-traumatic stress disorder, and they might help to develop strategies to treat them. Preclinical research aims to aid extinction learning and to induce targeted plasticity in extinction circuits to consolidate the newly formed memory. Vagus nerve stimulation (VNS) is a powerful approach that provides tight temporal and circuit-specific release of neurotransmitters, resulting in modulation of neuronal networks engaged in an ongoing task. VNS enhances memory consolidation in both rats and humans, and pairing VNS with exposure to conditioned cues enhances the consolidation of extinction learning in rats. Here, we provide a detailed protocol for the preparation of custom-made parts and the surgical procedures required for VNS in rats. Using this protocol we show how VNS can facilitate the extinction of conditioned fear responses in an auditory fear conditioning task. In addition, we provide evidence that VNS modulates synaptic plasticity in the pathway between the infralimbic (IL) medial prefrontal cortex and the basolateral complex of the amygdala (BLA), which is involved in the expression and modulation of extinction memory.

  11. Vagus Nerve Stimulation as a Tool to Induce Plasticity in Pathways Relevant for Extinction Learning

    PubMed Central

    Childs, Jessica E.; Alvarez-Dieppa, Amanda C.; McIntyre, Christa K.; Kroener, Sven

    2015-01-01

    Extinction describes the process of attenuating behavioral responses to neutral stimuli when they no longer provide the reinforcement that has been maintaining the behavior. There is close correspondence between fear and human anxiety, and therefore studies of extinction learning might provide insight into the biological nature of anxiety-related disorders such as post-traumatic stress disorder, and they might help to develop strategies to treat them. Preclinical research aims to aid extinction learning and to induce targeted plasticity in extinction circuits to consolidate the newly formed memory. Vagus nerve stimulation (VNS) is a powerful approach that provides tight temporal and circuit-specific release of neurotransmitters, resulting in modulation of neuronal networks engaged in an ongoing task. VNS enhances memory consolidation in both rats and humans, and pairing VNS with exposure to conditioned cues enhances the consolidation of extinction learning in rats. Here, we provide a detailed protocol for the preparation of custom-made parts and the surgical procedures required for VNS in rats. Using this protocol we show how VNS can facilitate the extinction of conditioned fear responses in an auditory fear conditioning task. In addition, we provide evidence that VNS modulates synaptic plasticity in the pathway between the infralimbic (IL) medial prefrontal cortex and the basolateral complex of the amygdala (BLA), which is involved in the expression and modulation of extinction memory. PMID:26325100

  12. Vagus Nerve Stimulation and Other Neuromodulation Methods for Treatment of Traumatic Brain Injury.

    PubMed

    Neren, Daniel; Johnson, Matthew D; Legon, Wynn; Bachour, Salam P; Ling, Geoffrey; Divani, Afshin A

    2016-04-01

    The objective of this paper is to review the current literature regarding the use of vagus nerve stimulation (VNS) in preclinical models of traumatic brain injury (TBI) as well as discuss the potential role of VNS along with alternative neuromodulation approaches in the treatment of human TBI. Data from previous studies have demonstrated VNS-mediated improvement following TBI in animal models. In these cases, VNS was observed to enhance motor and cognitive recovery, attenuate cerebral edema and inflammation, reduce blood brain barrier breakdown, and confer neuroprotective effects. Yet, the underlying mechanisms by which VNS enhances recovery following TBI remain to be fully elucidated. Several hypotheses have been offered including: a noradrenergic mechanism, reduction in post-TBI seizures and hyper-excitability, anti-inflammatory effects, attenuation of blood-brain barrier breakdown, and cerebral edema. We present other potential mechanisms by which VNS acts including enhancement of synaptic plasticity and recruitment of endogenous neural stem cells, stabilization of intracranial pressure, and interaction with the ghrelin system. In addition, alternative methods for the treatment of TBI including deep brain stimulation, transcranial magnetic stimulation, transcranial direct current stimulation, and focused ultrasound stimulation are discussed. Although the primary source data show that VNS improves TBI outcomes, it remains to be determined if these findings can be translated to clinical settings.

  13. Two-year outcome of vagus nerve stimulation in treatment-resistant depression.

    PubMed

    Bajbouj, Malek; Merkl, Angela; Schlaepfer, Thomas E; Frick, Caroline; Zobel, Astrid; Maier, Wolfgang; O'Keane, Veronica; Corcoran, Ciaran; Adolfsson, Rolf; Trimble, Michael; Rau, Harald; Hoff, Hans-Joachim; Padberg, Frank; Müller-Siecheneder, Florian; Audenaert, Kurt; van den Abbeele, Dirk; Matthews, Keith; Christmas, David; Eljamel, Sam; Heuser, Isabella

    2010-06-01

    One of the major goals of antidepressant treatment is a sustained response and remission of depressive symptoms. Some of the previous studies of vagus nerve stimulation (VNS) have suggested antidepressant effects. Our naturalistic study assessed the efficacy and the safety of VNS in 74 European patients with therapy-resistant major depressive disorder. Psychometric measures were obtained after 3, 12, and 24 months of VNS. Mixed-model repeated-measures analysis of variance revealed a significant reduction (P < or = 0.05) at all the 3 time points in the 28-item Hamilton Rating Scale for Depression (HRSD28) score, the primary outcome measure. After 2 years, 53.1% (26/49) of the patients fulfilled the response criteria (> or =50% reduction in the HRSD28 scores from baseline) and 38.9% (19/49) fulfilled the remission criteria (HRSD28 scores < or = 10). The proportion of patients who fulfilled the remission criteria remained constant as the duration of VNS treatment increased. Voice alteration, cough, and pain were the most frequently reported adverse effects. Two patients committed suicide during the study; no other deaths were reported. No statistically significant differences were seen in the number of concomitant antidepressant medications. The results of this 2-year open-label trial suggest a clinical response and a comparatively benign adverse effect profile among patients with treatment-resistant depression.

  14. Differential roles of stretch-sensitive pelvic nerve afferents innervating mouse distal colon and rectum

    PubMed Central

    Brumovsky, Pablo R.; Gebhart, Gerald F.

    2010-01-01

    Information about colorectal distension (i.e., colorectal dilation by increased intraluminal pressure) is primarily encoded by stretch-sensitive colorectal afferents in the pelvic nerve (PN). Despite anatomic differences between rectum and distal colon, little is known about the functional roles of colonic vs. rectal afferents in the PN pathway or the quantitative nature of mechanosensory encoding. We utilized an in vitro mouse colorectum-PN preparation to investigate pressure-encoding characteristics of colorectal afferents. The colorectum with PN attached was dissected, opened longitudinally, and pinned flat in a Sylgard-lined chamber. Action potentials of afferent fibers evoked by circumferential stretch (servo-controlled force actuator) were recorded from the PN. Stretch-sensitive fibers were categorized into the following four groups: colonic muscular, colonic muscular/mucosal, rectal muscular, and rectal muscular/mucosal. Seventy-nine stretch-sensitive PN afferents evenly distributed into the above four groups were studied. Rectal muscular afferents had significantly greater stretch-responses than the other three groups. Virtually all rectal afferents (98%) had low thresholds for response and encoded stimulus intensity into the noxious range without obvious saturation. Most colonic afferents (72%) also had low thresholds (<14 mmHg), but a significant proportion (28%) had high thresholds (>18 mmHg) for response. These high-threshold colonic afferents were sensitized to stretch by inflammatory soup; response threshold was significantly reduced (from 23 to 12 mmHg), and response magnitude significantly increased. These results suggest that the encoding of mechanosensory information differs between colonic and rectal stretch-sensitive PN afferents. Rectal afferents have a wide response range to stretch, whereas high-threshold colonic afferents likely contribute to visceral nociception. PMID:20075141

  15. Differential roles of stretch-sensitive pelvic nerve afferents innervating mouse distal colon and rectum.

    PubMed

    Feng, Bin; Brumovsky, Pablo R; Gebhart, Gerald F

    2010-03-01

    Information about colorectal distension (i.e., colorectal dilation by increased intraluminal pressure) is primarily encoded by stretch-sensitive colorectal afferents in the pelvic nerve (PN). Despite anatomic differences between rectum and distal colon, little is known about the functional roles of colonic vs. rectal afferents in the PN pathway or the quantitative nature of mechanosensory encoding. We utilized an in vitro mouse colorectum-PN preparation to investigate pressure-encoding characteristics of colorectal afferents. The colorectum with PN attached was dissected, opened longitudinally, and pinned flat in a Sylgard-lined chamber. Action potentials of afferent fibers evoked by circumferential stretch (servo-controlled force actuator) were recorded from the PN. Stretch-sensitive fibers were categorized into the following four groups: colonic muscular, colonic muscular/mucosal, rectal muscular, and rectal muscular/mucosal. Seventy-nine stretch-sensitive PN afferents evenly distributed into the above four groups were studied. Rectal muscular afferents had significantly greater stretch-responses than the other three groups. Virtually all rectal afferents (98%) had low thresholds for response and encoded stimulus intensity into the noxious range without obvious saturation. Most colonic afferents (72%) also had low thresholds (<14 mmHg), but a significant proportion (28%) had high thresholds (>18 mmHg) for response. These high-threshold colonic afferents were sensitized to stretch by inflammatory soup; response threshold was significantly reduced (from 23 to 12 mmHg), and response magnitude significantly increased. These results suggest that the encoding of mechanosensory information differs between colonic and rectal stretch-sensitive PN afferents. Rectal afferents have a wide response range to stretch, whereas high-threshold colonic afferents likely contribute to visceral nociception.

  16. Electrical stimulation of the vagus nerve enhances cognitive and motor recovery following moderate fluid percussion injury in the rat.

    PubMed

    Smith, Douglas C; Modglin, Arlene A; Roosevelt, Rodney W; Neese, Steven L; Jensen, Robert A; Browning, Ronald A; Clough, Richard W

    2005-12-01

    Intermittent, chronically delivered electrical stimulation of the vagus nerve (VNS) is an FDA-approved procedure for the treatment of refractory complex/partial epilepsy in humans. Stimulation of the vagus has also been shown to enhance memory storage processes in laboratory rats and human subjects. Recent evidence suggests that some of these effects of VNS may be due to the activation of neurons in the nucleus locus coeruleus resulting in the release of norepinephrine (NE) throughout the neuraxis. Because antagonism of NE systems has been shown to delay recovery of function following brain damage, it is possible that enhanced release of NE in the CNS may facilitate recovery of function. To evaluate this hypothesis the lateral fluid percussion injury (LFP) model of traumatic brain injury was used and a variety of motor and cognitive behavioral tests were employed to assess recovery in pre-trained stimulated, control, and sham-injured laboratory rats. Two hours following moderate LFP, vagus nerve stimulation (30.0-sec trains of 0.5 mA, 20.0 Hz, biphasic pulses) was initiated. Stimulation continued in each animal's home cage at 30-min intervals for a period of 14 days, with the exception of brief periods when the animals were disconnected for behavioral assessments. Motor behaviors were evaluated every other day following LFP and tests included beam walk, locomotor placing, and skilled forelimb reaching. In each measure an enhanced rate of recovery and /or level of final performance was observed in the VNS-LFP animals compared to nonstimulated LFP controls. Behavior in the Morris water maze was assessed on days 11-14 following injury. Stimulated LFP animals showed significantly shorter latencies to find the hidden platform than did controls. Despite these behavioral effects, neurohistological examination did not reveal significant differences in lesion extent, density of fluorojade positive neurons, reactive astrocytes or numbers of spared neurons in the CA3 subarea

  17. Laryngeal and tracheal afferent nerve stimulation evokes swallowing in anaesthetized guinea pigs.

    PubMed

    Tsujimura, Takanori; Udemgba, Chioma; Inoue, Makoto; Canning, Brendan J

    2013-09-15

      We describe swallowing reflexes evoked by laryngeal and tracheal vagal afferent nerve stimulation in anaesthetized guinea pigs. The swallowing reflexes evoked by laryngeal citric acid challenges were abolished by recurrent laryngeal nerve (RLN) transection and mimicked by electrical stimulation of the central cut ends of an RLN. By contrast, the number of swallows evoked by upper airway/pharyngeal distensions was not significantly reduced by RLN transection but they were virtually abolished by superior laryngeal nerve transection. Laryngeal citric acid-evoked swallowing was mimicked by laryngeal capsaicin challenges, implicating transient receptor potential vanilloid 1 (TRPV1)-expressing laryngeal afferent nerves arising from the jugular ganglia. The swallowing evoked by citric acid and capsaicin and evoked by electrical stimulation of either the tracheal or the laryngeal mucosa occurred at stimulation intensities that were typically subthreshold for evoking cough in these animals. Swallowing evoked by airway afferent nerve stimulation also desensitized at a much slower rate than cough. We speculate that swallowing is an essential component of airway protection from aspiration associated with laryngeal and tracheal afferent nerve activation. PMID:23858010

  18. The antidepressant-like effect of vagus nerve stimulation is mediated through the locus coeruleus.

    PubMed

    Grimonprez, Annelies; Raedt, Robrecht; Portelli, Jeanelle; Dauwe, Ine; Larsen, Lars Emil; Bouckaert, Charlotte; Delbeke, Jean; Carrette, Evelien; Meurs, Alfred; De Herdt, Veerle; Boon, Paul; Vonck, Kristl

    2015-09-01

    It has been shown that vagus nerve stimulation (VNS) has an antidepressant-like effect in the forced swim test. The mechanism of action underlying this effect is incompletely understood, but there is evidence suggesting that the locus coeruleus (LC) may play an important role. In this study, noradrenergic LC neurons were selectively lesioned to test their involvement in the antidepressant-like effect of VNS in the forced swim test. Forced swim test behavior was assessed in rats that were subjected to VNS or sham treatment. In half of the VNS-treated animals, the noradrenergic neurons from the LC were lesioned using the selective neurotoxin DSP-4 [N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride], yielding three experimental arms: sham, VNS and DSP-4-VNS (n = 8 per group). Furthermore, the open field test was performed to evaluate locomotor activity. A dopamine-β-hydroxylase immunostaining was performed to confirm lesioning of noradrenergic LC neurons. VNS significantly reduced the percentage of immobility time in the forced swim test compared to sham treatment (median: 56%, interquartile range: 41% vs. median: 75%, interquartile range: 12%). This antidepressant-like effect of VNS could not be demonstrated in the DSP-4-VNS group (median: 79%, interquartile range: 33%). Locomotor activity in the open field test was not different between the three treatment arms. The absence of hippocampal dopamine-β-hydroxylase immunostaining in the DSP-4-treated rats confirmed the lesioning of noradrenergic neurons originating from the brainstem LC. The results of this study demonstrate that the noradrenergic neurons from the LC play an important role in the antidepressant-like effect of VNS.

  19. Evidence-Based Guideline Update: Vagus Nerve Stimulation for the Treatment of Epilepsy

    PubMed Central

    Morris, George L.; Gloss, David; Buchhalter, Jeffrey; Mack, Kenneth J.; Nickels, Katherine; Harden, Cynthia

    2013-01-01

    OBJECTIVE: To evaluate the evidence since the 1999 assessment regarding efficacy and safety of vagus nerve stimulation (VNS) for epilepsy, currently approved as adjunctive therapy for partial-onset seizures in patients >12 years. METHODS: We reviewed the literature and identified relevant published studies. We classified these studies according to the American Academy of Neurology evidence-based methodology. RESULTS: VNS is associated with a >50% seizure reduction in 55% (95% confidence interval [CI] 50%–59%) of 470 children with partial or generalized epilepsy (13 Class III studies). VNS is associated with a >50% seizure reduction in 55% (95% CI 46%–64%) of 113 patients with Lennox-Gastaut syndrome (LGS) (4 Class III studies). VNS is associated with an increase in ≥50% seizure frequency reduction rates of ~7% from 1 to 5 years postim-plantation (2 Class III studies). VNS is associated with a significant improvement in standard mood scales in 31 adults with epilepsy (2 Class III studies). Infection risk at the VNS implantation site in children is increased relative to that in adults (odds ratio 3.4, 95% CI 1.0–11.2). VNS is possibly effective for seizures (both partial and generalized) in children, for LGS-associated seizures, and for mood problems in adults with epilepsy. VNS may have improved efficacy over time. RECOMMENDATIONS: VNS may be considered for seizures in children, for LGS-associated seizures, and for improving mood in adults with epilepsy (Level C). VNS may be considered to have improved efficacy over time (Level C). Children should be carefully monitored for site infection after VNS implantation. Neurology® 2013;81:1–7 PMID:24348133

  20. Evidence-based guideline update: Vagus nerve stimulation for the treatment of epilepsy

    PubMed Central

    Morris, George L.; Gloss, David; Buchhalter, Jeffrey; Mack, Kenneth J.; Nickels, Katherine; Harden, Cynthia

    2013-01-01

    Objective: To evaluate the evidence since the 1999 assessment regarding efficacy and safety of vagus nerve stimulation (VNS) for epilepsy, currently approved as adjunctive therapy for partial-onset seizures in patients >12 years. Methods: We reviewed the literature and identified relevant published studies. We classified these studies according to the American Academy of Neurology evidence-based methodology. Results: VNS is associated with a >50% seizure reduction in 55% (95% confidence interval [CI] 50%–59%) of 470 children with partial or generalized epilepsy (13 Class III studies). VNS is associated with a >50% seizure reduction in 55% (95% CI 46%–64%) of 113 patients with Lennox-Gastaut syndrome (LGS) (4 Class III studies). VNS is associated with an increase in ≥50% seizure frequency reduction rates of ∼7% from 1 to 5 years postimplantation (2 Class III studies). VNS is associated with a significant improvement in standard mood scales in 31 adults with epilepsy (2 Class III studies). Infection risk at the VNS implantation site in children is increased relative to that in adults (odds ratio 3.4, 95% CI 1.0–11.2). VNS is possibly effective for seizures (both partial and generalized) in children, for LGS-associated seizures, and for mood problems in adults with epilepsy. VNS may have improved efficacy over time. Recommendations: VNS may be considered for seizures in children, for LGS-associated seizures, and for improving mood in adults with epilepsy (Level C). VNS may be considered to have improved efficacy over time (Level C). Children should be carefully monitored for site infection after VNS implantation. PMID:23986299

  1. Muscarinic contribution to the acute cortical effects of vagus nerve stimulation

    NASA Astrophysics Data System (ADS)

    Nichols, Justin A.

    2011-12-01

    Electrical stimulation of the vagus nerve (VNS) has been used to treat more than 60,000 patients with drug-resistant epilepsy and is under investigation as a treatment for several other neurological disorders and conditions. Among these, VNS increases memory performance and enhances recovery of motor and cognitive function in animal models of traumatic brain injury. Recent research indicates that pairing brief VNS with tones multiple-times a day for several weeks induces long-term, input specific cortical plasticity, which can be used to re-normalize the pathological cortical reorganization and eliminate a behavioral correlate of chronic tinnitus in noise exposed rats. Despite the therapeutic potential, the mechanisms of action of VNS remain speculative. In chapter 2 of this dissertation, the acute effects of VNS on cortical synchrony, excitability, and temporal processing are examined. In anesthetized rats implanted with multi-electrode arrays, VNS increased and decorrelated spontaneous multi-unit activity, and suppressed entrainment to repetitive noise burst stimulation at 6 to 8 Hz, but not after systemic administration of the muscarinic antagonist scopolamine. Chapter 3 focuses on VNS-tone pairing induced cortical plasticity. Pairing VNS with a tone one hundred times in anesthetized rats resulted in frequency specific plasticity in 31% of the auditory cortex sites. Half of these sites exhibited a frequency specific increase in firing rate and half exhibited a frequency specific decrease. Muscarinic receptor blockade with scopolamine almost entirely prevented the frequency specific increases, but not decreases. Collectively, these experiments demonstrate the capacity for VNS to not only acutely influence cortical synchrony, and excitability, but to also influence temporal and spectral tuning via muscarinic receptor activation. These results strengthen the hypothesis that acetylcholine and muscarinic receptors are involved in the mechanisms of action of VNS and

  2. Modulation of innate immune response by the vagus nerve in experimental hepatic amebiasis in rats.

    PubMed

    Martínez-Jaimes, Mercedes D; García-Lorenzana, Mario; Muñoz-Ortega, Martin H; Quintanar-Stephano, Andrés; Ávila-Blanco, Manuel E; García-Agueda, Carlos E; Ventura-Juárez, Javier

    2016-10-01

    The parasympathetic nervous system has a crucial role in immunomodulation of the vagus nerve, its structure provides a pathogen detection system, and a negative feedback to the immune system after the pathogenic agent has been eliminated. Amebiasis is a disease caused by the protozoan parasite Entamoeba histolytica, considered the third leading cause of death in the world. The rats are used as a natural resistance model to amoebic liver infection. The aim of this study is to analyze the interaction of Entamoeba histolytica with neutrophils, macrophages, and NK cells in livers of intact and vagotomized rats. Six groups were studied (n = 4): Intact (I), Intact + amoeba (IA), Sham (S), Sham + amoeba (SA), Vagotomized (V) and Vagotomized + amoeba (VA). Animals were sacrificed at 8 h post-inoculation of E. histolytica. Then, livers were obtained and fixed in 4% paraformaldehyde. Tissue liver slides were stained with H-E, PAS and Masson. The best development time for E. histolytica infection was at 8 h. Amoeba was identified with a monoclonal anti-220 kDa E. histolytica lectin. Neutrophils (N) were identified with rabbit anti-human neutrophil myeloperoxidase, macrophages (Mɸ) with anti-CD68 antibody and NK cells (NK) with anti-NK. Stomachs weight and liver glycogen were higher in V. Collagen increased in VA, whereas vascular and neutrophilic areas were decreased. There were fewer N, Mɸ, NK around the amoeba in the following order IA > SA > VA (p < 0.05 between IA and VA). In conclusion, these results suggest that the absence of parasympathetic innervation affects the participation of neutrophils, macrophages and NK cells in the innate immune response, apparently by parasympathetic inhibition on the cellular functions and probably for participation in sympathetic activity. PMID:27466057

  3. Modulation of innate immune response by the vagus nerve in experimental hepatic amebiasis in rats.

    PubMed

    Martínez-Jaimes, Mercedes D; García-Lorenzana, Mario; Muñoz-Ortega, Martin H; Quintanar-Stephano, Andrés; Ávila-Blanco, Manuel E; García-Agueda, Carlos E; Ventura-Juárez, Javier

    2016-10-01

    The parasympathetic nervous system has a crucial role in immunomodulation of the vagus nerve, its structure provides a pathogen detection system, and a negative feedback to the immune system after the pathogenic agent has been eliminated. Amebiasis is a disease caused by the protozoan parasite Entamoeba histolytica, considered the third leading cause of death in the world. The rats are used as a natural resistance model to amoebic liver infection. The aim of this study is to analyze the interaction of Entamoeba histolytica with neutrophils, macrophages, and NK cells in livers of intact and vagotomized rats. Six groups were studied (n = 4): Intact (I), Intact + amoeba (IA), Sham (S), Sham + amoeba (SA), Vagotomized (V) and Vagotomized + amoeba (VA). Animals were sacrificed at 8 h post-inoculation of E. histolytica. Then, livers were obtained and fixed in 4% paraformaldehyde. Tissue liver slides were stained with H-E, PAS and Masson. The best development time for E. histolytica infection was at 8 h. Amoeba was identified with a monoclonal anti-220 kDa E. histolytica lectin. Neutrophils (N) were identified with rabbit anti-human neutrophil myeloperoxidase, macrophages (Mɸ) with anti-CD68 antibody and NK cells (NK) with anti-NK. Stomachs weight and liver glycogen were higher in V. Collagen increased in VA, whereas vascular and neutrophilic areas were decreased. There were fewer N, Mɸ, NK around the amoeba in the following order IA > SA > VA (p < 0.05 between IA and VA). In conclusion, these results suggest that the absence of parasympathetic innervation affects the participation of neutrophils, macrophages and NK cells in the innate immune response, apparently by parasympathetic inhibition on the cellular functions and probably for participation in sympathetic activity.

  4. Cortical edema in moderate fluid percussion brain injury is attenuated by vagus nerve stimulation.

    PubMed

    Clough, R W; Neese, S L; Sherill, L K; Tan, A A; Duke, A; Roosevelt, R W; Browning, R A; Smith, D C

    2007-06-29

    Development of cerebral edema (intracellular and/or extracellular water accumulation) following traumatic brain injury contributes to mortality and morbidity that accompanies brain injury. Chronic intermittent vagus nerve stimulation (VNS) initiated at either 2 h or 24 h (VNS: 30 s train of 0.5 mA, 20 Hz, biphasic pulses every 30 min) following traumatic brain injury enhances recovery of motor and cognitive function in rats in the weeks following brain injury; however, the mechanisms of facilitated recovery are unknown. The present study examines the effects of VNS on development of acute cerebral edema following unilateral fluid percussion brain injury (FPI) in rats, concomitant with assessment of their behavioral recovery. Two hours following FPI, VNS was initiated. Behavioral testing, using both beam walk and locomotor placing tasks, was conducted at 1 and 2 days following FPI. Edema was measured 48 h post-FPI by the customary method of region-specific brain weights before and after complete dehydration. Results of this study replicated that VNS initiated at 2 h after FPI: 1) effectively facilitated the recovery of vestibulomotor function at 2 days after FPI assessed by beam walk performance (P<0.01); and 2) tended to improve locomotor placing performance at the same time point (P=0.18). Most interestingly, results of this study showed that development of edema within the cerebral cortex ipsilateral to FPI was significantly attenuated at 48 h in FPI rats receiving VNS compared with non-VNS FPI rats (P<0.04). Finally, a correlation analysis between beam walk performance and cerebral edema following FPI revealed a significant inverse correlation between behavior performance and cerebral edema. Together, these results suggest that VNS facilitation of motor recovery following experimental brain injury in rats is associated with VNS-mediated attenuation of cerebral edema. PMID:17543463

  5. [A Case of Left Vertebral Artery Aneurysm Showing Evoked Potentials on Bilateral Electrode by the Left Vagus Nerve Stimulation to Electromyographic Tracheal Tube].

    PubMed

    Kadoya, Tatsuo; Uehara, Hirofumi; Yamamoto, Toshinori; Shiraishi, Munehiro; Kinoshita, Yuki; Joyashiki, Takeshi; Enokida, Kengo

    2016-02-01

    Previously, we reported a case of brainstem cavernous hemangioma showing false positive responses to electromyographic tracheal tube (EMG tube). We concluded that the cause was spontaneous respiration accompanied by vocal cord movement. We report a case of left vertebral artery aneurysm showing evoked potentials on bilateral electrodes by the left vagus nerve stimulation to EMG tube. An 82-year-old woman underwent clipping of a left unruptured vertebral artery-posterior inferior cerebellar artery aneurysm. General anesthesia was induced with remifentanil, propofol and suxamethonium, and was maintained with oxygen, air, remifentanil and propofol. We monitored somatosensory evoked potentials, motor evoked potentials, and electromyogram of the vocal cord. When the manipulation reached brainstem and the instrument touched the left vagus nerve, evoked potentials appeared on bilateral electrodes. EMG tube is equipped with two electrodes on both sides. We concluded that the left vagus nerve stimulation generated evoked potentials of the left laryngeal muscles, and they were simultaneously detected as potential difference between two electrodes on both sides. EMG tube is used to identify the vagus nerve. However, it is necessary to bear in mind that each vagus nerve stimulation inevitably generates evoked potentials on bilateral electrodes.

  6. Insulation discontinuity in a vagus nerve stimulator lead: a treatable cause of intolerable stimulation-related symptoms.

    PubMed

    Spitz, Mark C; Winston, Ken R; Maa, Edward H; Ojemann, Steven G

    2010-04-01

    Discontinuity in the silicone insulation over an electrode of a left vagus nerve stimulator (VNS) allowed the aberrant leak of current to the phrenic nerve and other structures. This resulted in ipsilateral diaphragmatic dysfunction, inability to vocalize, and severe radiating pain into the jaw and upper incisor for the duration of each stimulation. The device was explanted and a new device was implanted. All stimulation-related symptoms ceased immediately. A similar discontinuity in the silicone insulation is the likely explanation for several prior reports of poorly understood pains and phrenic nerve stimulation in patients with VNSs. The findings and analysis of this case establish a rationale for consideration of replacement of the VNS lead in all similarly symptomatic patients.

  7. Selective recording of electroneurograms from the left vagus nerve of a dog during stimulation of cardiovascular or respiratory systems.

    PubMed

    Rozman, Janez; Ribaric, Samo

    2007-10-31

    Selective electroneurograms (ENGs) from superficial regions of the left vagus nerve of a dog were recorded with a 33-electrode spiral cuff (cuff) implanted on the nerve at the neck in an adult Beagle dog. The electrodes in the cuff were arranged in thirteen groups of three electrodes (GTE 1-13). To identify the relative positions of the particular nerve regions that innervated the heart and lungs, stimulating pulses (2 mA, 200 micros, 20 Hz) were individually delivered to all thirteen GTEs. It was shown that by delivering stimulating pulses to GTEs 4 and 9, heart rate, blood pressure and respiratory rate were modulated. Precisely, only when the stimuli were delivered to GTE 9, the heart rate began to fall and only when the stimuli were delivered to GTE 4 the rate of breathing decreased. To test the selectivity of recording the above-defined groups GTEs 4 and 9 and randomly chosen GTEs 1 and 7 were simultaneously used as recording GTEs while cardio-vascular or respiratory systems were stimulated by carotid artery compression, epinephrine injection and non-invasive, positive end-pressure ventilation. Results showed that stimulations elicited site-specific changes in ENG power spectra recorded from the superficial regions of the vagus nerve. Power spectrum of the ENG recorded with GTE 9, contained frequencies belonging to the neural activity elicited by compression of the carotid artery and injection of epinephrine. The power spectrum of the ENG recorded with GTE 4, contained frequencies belonging to the neural activity elicited by non-invasive, positive end-expiratory pressure ventilation. We concluded that the multi-electrode nerve cuff enables selective stimulation and recording of nerve activity from internal organs.

  8. On-off closed-loop control of vagus nerve stimulation for the adaptation of heart rate.

    PubMed

    Ugalde, Hector Romero; Le Rolle, Virginie; Bel, Alain; Bonnet, Jean-Luc; Andreu, David; Mabo, Philippe; Carrault, Guy; Hernández, Alfredo I

    2014-01-01

    Vagus nerve stimulation (VNS) is a potential therapeutic approach in a number of clinical applications. Although VNS is commonly delivered in an open-loop approach, it is now recognized that closed-loop approaches may be necessary to optimize the therapy and minimize side effects of neuro-stimulation devices. In this paper, we describe a prototype system for real-time control of the instantaneous heart rate, working synchronously with the heart period. As a first step, an on-off control method has been integrated. The system is evaluated on one sheep with induced heart failure, showing the interest of the proposed approach.

  9. Vagus nerve stimulation: state of the art of stimulation and recording strategies to address autonomic function neuromodulation

    NASA Astrophysics Data System (ADS)

    Guiraud, David; Andreu, David; Bonnet, Stéphane; Carrault, Guy; Couderc, Pascal; Hagège, Albert; Henry, Christine; Hernandez, Alfredo; Karam, Nicole; Le Rolle, Virginie; Mabo, Philippe; Maciejasz, Paweł; Malbert, Charles-Henri; Marijon, Eloi; Maubert, Sandrine; Picq, Chloé; Rossel, Olivier; Bonnet, Jean-Luc

    2016-08-01

    Objective. Neural signals along the vagus nerve (VN) drive many somatic and autonomic functions. The clinical interest of VN stimulation (VNS) is thus potentially huge and has already been demonstrated in epilepsy. However, side effects are often elicited, in addition to the targeted neuromodulation. Approach. This review examines the state of the art of VNS applied to two emerging modulations of autonomic function: heart failure and obesity, especially morbid obesity. Main results. We report that VNS may benefit from improved stimulation delivery using very advanced technologies. However, most of the results from fundamental animal studies still need to be demonstrated in humans.

  10. The proportions of sympathetic postganglionic and unmyelinated afferent axons in normal and regenerated cat sural nerves.

    PubMed

    Lisney, S J

    1988-03-01

    Electrophysiological experiments have been carried out to see if the proportions of sympathetic postganglionic and unmyelinated afferent axons in a cutaneous nerve were changed after injury and regeneration. It seemed possible that an alteration in the relative numbers of the two groups of axons could contribute to the aetiology of reflex sympathetic dystrophy, but the experiments provided no evidence for such a change. There were, however, signs of a decrease in axon numbers in the regenerated nerves. PMID:3379252

  11. A comprehensive review with potential significance during skull base and neck operations, Part II: glossopharyngeal, vagus, accessory, and hypoglossal nerves and cervical spinal nerves 1-4.

    PubMed

    Shoja, Mohammadali M; Oyesiku, Nelson M; Shokouhi, Ghaffar; Griessenauer, Christoph J; Chern, Joshua J; Rizk, Elias B; Loukas, Marios; Miller, Joseph H; Tubbs, R Shane

    2014-01-01

    Knowledge of the possible neural interconnections found between the lower cranial and upper cervical nerves may prove useful to surgeons who operate on the skull base and upper neck regions in order to avoid inadvertent traction or transection. We review the literature regarding the anatomy, function, and clinical implications of the complex neural networks formed by interconnections between the lower cranial and upper cervical nerves. A review of germane anatomic and clinical literature was performed. The review is organized into two parts. Part I discusses the anastomoses between the trigeminal, facial, and vestibulocochlear nerves or their branches and other nerve trunks or branches in the vicinity. Part II deals with the anastomoses between the glossopharyngeal, vagus, accessory and hypoglossal nerves and their branches or between these nerves and the first four cervical spinal nerves; the contribution of the autonomic nervous system to these neural plexuses is also briefly reviewed. Part II is presented in this article. Extensive and variable neural anastomoses exist between the lower cranial nerves and between the upper cervical nerves in such a way that these nerves with their extra-axial communications can be collectively considered a plexus.

  12. The renal nerves in chronic heart failure: efferent and afferent mechanisms

    PubMed Central

    Schiller, Alicia M.; Pellegrino, Peter R.; Zucker, Irving H.

    2015-01-01

    The function of the renal nerves has been an area of scientific and medical interest for many years. The recent advent of a minimally invasive catheter-based method of renal denervation has renewed excitement in understanding the afferent and efferent actions of the renal nerves in multiple diseases. While hypertension has been the focus of much this work, less attention has been given to the role of the renal nerves in the development of chronic heart failure (CHF). Recent studies from our laboratory and those of others implicate an essential role for the renal nerves in the development and progression of CHF. Using a rabbit tachycardia model of CHF and surgical unilateral renal denervation, we provide evidence for both renal efferent and afferent mechanisms in the pathogenesis of CHF. Renal denervation prevented the decrease in renal blood flow observed in CHF while also preventing increases in Angiotensin-II receptor protein in the microvasculature of the renal cortex. Renal denervation in CHF also reduced physiological markers of autonomic dysfunction including an improvement in arterial baroreflex function, heart rate variability, and decreased resting cardiac sympathetic tone. Taken together, the renal sympathetic nerves are necessary in the pathogenesis of CHF via both efferent and afferent mechanisms. Additional investigation is warranted to fully understand the role of these nerves and their role as a therapeutic target in CHF. PMID:26300788

  13. Effects of vagus nerve stimulation in a patient with temporal lobe epilepsy and Asperger syndrome: case report and review of the literature.

    PubMed

    Warwick, Tanya C; Griffith, James; Reyes, Bernardo; Legesse, Benalfew; Evans, Melanie

    2007-03-01

    Seizures are a common comorbidity of autism and occur in as many as 30% of patients. This case report describes a 23-year-old man diagnosed with both Asperger syndrome and bitemporal epilepsy. The patient had behavioral regression that correlated with worsening of his intractable seizures. He subsequently underwent implantation of a vagus nerve stimulation therapy device for his refractory epilepsy. Both his seizures and his behavior were monitored for 6 months. We describe the efficacy of vagus nerve stimulation therapy in reducing seizure severity as well as improving the behavioral components of his Asperger syndrome. We also review the current literature regarding epilepsy in autistic spectrum disorders.

  14. Recovery of function after vagus nerve stimulation initiated 24 hours after fluid percussion brain injury.

    PubMed

    Smith, Douglas C; Tan, Arlene A; Duke, Andrea; Neese, Steven L; Clough, Richard W; Browning, Ronald A; Jensen, Robert A

    2006-10-01

    Recent evidence from our laboratory demonstrated in laboratory rats that stimulation of the vagus nerve (VNS) initiated 2 h after lateral fluid percussion brain injury (FPI) accelerates the rate of recovery on a variety of behavioral and cognitive tests. VNS animals exhibited a level of performance comparable to that of sham-operated uninjured animals by the end of a 2-week testing period. The effectiveness of VNS was further evaluated in the present study in which initiation of stimulation was delayed until 24 h post-injury. Rats were subjected to a moderate FPI and tested on the beam walk, skilled forelimb reaching, locomotor placing, forelimb flexion and Morris water maze tasks for 2 weeks following injury. VNS (30 sec trains of 0.5 mA, 20.0-Hz biphasic pulses) was initiated 24 h post-injury and continued at 30-min intervals for the duration of the study, except for brief periods when the animals were detached for behavioral assessments. Consistent with our previous findings when stimulation was initiated 2 h post-injury, VNS animals showed significantly faster rates of recovery compared to controls. By the last day of testing (day 14 post-injury), the FPI-VNS animals were performing significantly better than the FPI-no-VNS animals and were not significantly different from shams in all motor and sensorimotor tasks. Performance in the Morris water maze indicated that the VNS animals acquired the task more rapidly on days 11-13 post-injury. On day 14, the FPI-VNS animals did not differ in the latency to find the platform from sham controls, whereas the injured controls did; however, the FPI-VNS animals and injured controls were not significantly different. Despite the lack of significant histological differences between the FPI groups, VNS, when initiated 24 h following injury, clearly attenuated the ensuing behavioral deficits and enhanced acquisition of the cognitive task. The results are discussed with respect to the norepinephrine hypothesis. PMID:17020489

  15. Afferent vagal nerve stimulation resets baroreflex neural arc and inhibits sympathetic nerve activity

    PubMed Central

    Saku, Keita; Kishi, Takuya; Sakamoto, Kazuo; Hosokawa, Kazuya; Sakamoto, Takafumi; Murayama, Yoshinori; Kakino, Takamori; Ikeda, Masataka; Ide, Tomomi; Sunagawa, Kenji

    2014-01-01

    Abstract It has been established that vagal nerve stimulation (VNS) benefits patients and/or animals with heart failure. However, the impact of VNS on sympathetic nerve activity (SNA) remains unknown. In this study, we investigated how vagal afferent stimulation (AVNS) impacts baroreflex control of SNA. In 12 anesthetized Sprague–Dawley rats, we controlled the pressure in isolated bilateral carotid sinuses (CSP), and measured splanchnic SNA and arterial pressure (AP). Under a constant CSP, increasing the voltage of AVNS dose dependently decreased SNA and AP. The averaged maximal inhibition of SNA was ‐28.0 ± 10.3%. To evaluate the dynamic impacts of AVNS on SNA, we performed random AVNS using binary white noise sequences, and identified the transfer function from AVNS to SNA and that from SNA to AP. We also identified transfer functions of the native baroreflex from CSP to SNA (neural arc) and from SNA to AP (peripheral arc). The transfer function from AVNS to SNA strikingly resembled the baroreflex neural arc and the transfer functions of SNA to AP were indistinguishable whether we perturbed ANVS or CSP, indicating that they likely share common central and peripheral neural mechanisms. To examine the impact of AVNS on baroreflex, we changed CSP stepwise and measured SNA and AP responses with or without AVNS. AVNS resets the sigmoidal neural arc downward, but did not affect the linear peripheral arc. In conclusion, AVNS resets the baroreflex neural arc and induces sympathoinhibition in the same manner as the control of SNA and AP by the native baroreflex. PMID:25194023

  16. Vagus Nerve Stimulation Alters Phase Synchrony of the Anterior Cingulate Cortex and Facilitates Decision Making in Rats

    PubMed Central

    Cao, Bing; Wang, Jun; Shahed, Mahadi; Jelfs, Beth; Chan, Rosa H. M.; Li, Ying

    2016-01-01

    Vagus nerve stimulation (VNS) can enhance memory and cognitive functions in both rats and humans. Studies have shown that VNS influenced decision-making in epileptic patients. However, the sites of action involved in the cognitive-enhancement are poorly understood. By employing a conscious rat model equipped with vagus nerve cuff electrode, we assess the role of chronic VNS on decision-making in rat gambling task (RGT). Simultaneous multichannel-recordings offer an ideal setup to test the hypothesis that VNS may induce alterations of in both spike-field-coherence and synchronization of theta oscillations across brain areas in the anterior cingulate cortex (ACC) and basolateral amygdala (BLA). Daily VNS, administered immediately following training sessions of RGT, caused an increase in ‘good decision-maker’ rats. Neural spikes in the ACC became synchronized with the ongoing theta oscillations of local field potential (LFP) in BLA following VNS. Moreover, cross-correlation analysis revealed synchronization between the ACC and BLA. Our results provide specific evidence that VNS facilitates decision-making and unveils several important roles for VNS in regulating LFP and spike phases, as well as enhancing spike-phase coherence between key brain areas involved in cognitive performance. These data may serve to provide fundamental notions regarding neurophysiological biomarkers for therapeutic VNS in cognitive impairment. PMID:27731403

  17. Spontaneous efferent activity in branches of the vagus nerve controlling heart rate and ventilation in the dogfish.

    PubMed

    Barrett, D J; Taylor, E W

    1985-07-01

    Efferent activity was recorded from cranial nerves in the decerebrate dogfish (Scyliorhinus canicula) before and after injection of paralysing drugs. The recordings were made from the mandibular (Vth) and glossopharyngeal (IXth) nerves and the branchial (respiratory) and cardiac branches of the vagus (Xth) nerve. All the respiratory branches (Vth, IXth and Xth) and both cardiac branches fired rhythmic bursts of activity, synchronous with ventilation, which continued (at a higher rate) following paralysis, indicating that they originated in the CNS rather than arising reflexly from stimulation of pharyngeal mechanoreceptors. A burst of activity in the Vth nerve was followed by a burst in the IXth then, after a 30-ms delay, simultaneous bursts in the three respiratory branches of the Xth. The bursts in the branchial cardiac branches had a fixed phase relationship with activity in the respiratory branches, the onset of each burst preceding that in the immediately adjacent branch (branchial III), whereas the bursts in the visceral cardiac branches had a variable phase relationship with all other branches. The branchial cardiac branches alone contained units which fired sporadically between the bursts and increased their rate of firing during hypoxia. Both the bursting and non-bursting units responded to mechanical stimulation of the gill area. Separate oscillatory inputs driving the Vth, IXth and Xth respiratory motoneurones and an excitatory input to the bursting cardiac vagal motoneurones from expiratory motoneurones or the respiratory rhythm generator are implied by these relationships. The sporadically firing units in the branchial cardiac nerves clearly receive non-oscillatory inputs.

  18. Facilitation of the swallowing reflex with bilateral afferent input from the superior laryngeal nerve.

    PubMed

    Takahashi, Kojiro; Shingai, Tomio; Saito, Isao; Yamamura, Kensuke; Yamada, Yoshiaki; Kitagawa, Junichi

    2014-03-01

    To determine the cooperative effect of laryngeal afferent signals on the swallowing reflex, we examined whether afferent signals originating from the left and right superior laryngeal nerve (SLN) modulates elicitation of the swallowing reflex in urethane-anesthetized rats. Mylohyoid electromyographic activity was recorded to quantify the swallowing reflex. The onset latency of the swallowing reflex and the time intervals between successive swallows were used to quantify and compare the effects of unilateral and bilateral electrical stimulations of the SLN. The mean latency of the first swallow and the mean time interval between swallows evoked with low frequency stimulation were both significantly different between unilateral and bilateral stimulations of the SLN. These findings suggest that facilitatory effect of afferent signals originating from the SLN bilaterally increase the motoneuronal activity in the medullary swallowing center and enhance the swallowing reflex.

  19. Long-term seizure and psychosocial outcomes of vagus nerve stimulation for intractable epilepsy.

    PubMed

    Wasade, Vibhangini S; Schultz, Lonni; Mohanarangan, Karthik; Gaddam, Aryamaan; Schwalb, Jason M; Spanaki-Varelas, Marianna

    2015-12-01

    Vagus nerve stimulation (VNS) is a widely used adjunctive treatment option for intractable epilepsy. Most studies have demonstrated short-term seizure outcomes, usually for up to 5 years, and thus far, none have reported psychosocial outcomes in adults. We aimed to assess long-term seizure and psychosocial outcomes in patients with intractable epilepsy on VNS therapy for more than 15 years. We identified patients who had VNS implantation for treatment of intractable epilepsy from 1997 to 2013 at our Comprehensive Epilepsy Program and gathered demographics including age at epilepsy onset and VNS implantation, epilepsy type, number of antiepilepsy drugs (AEDs) and seizure frequency before VNS implantation and at the last clinic visit, and the most recent stimulation parameters from electronic medical records (EMR). Phone surveys were conducted by research assistants from May to November 2014 to determine patients' current seizure frequency and psychosocial metrics, including driving, employment status, and use of antidepressants. Seizure outcomes were based on modified Engel classification (I: seizure-free/rare simple partial seizures; II: >90% seizure reduction (SR), III: 50-90% SR, IV: <50% SR; classes I to III (>50% SR)=favorable outcome). A total of 207 patients underwent VNS implantation, 15 of whom were deceased at the time of the phone survey, and 40 had incomplete data for medical abstraction. Of the remaining 152, 90 (59%) were contacted and completed the survey. Of these, 51% were male, with the mean age at epilepsy onset of 9.4 years (range: birth to 60 years). There were 35 (39%) patients with extratemporal epilepsy, 19 (21%) with temporal, 18 (20%) with symptomatic generalized, 5 (6%) with idiopathic generalized, and 13 (14%) with multiple types. Final VNS settings showed 16 (18%) patients with an output current >2 mA and 14 (16%) with rapid cycling. Of the 80 patients with seizure frequency information, 16 (20%) had a modified Engel class I outcome, 14

  20. Long-term seizure and psychosocial outcomes of vagus nerve stimulation for intractable epilepsy.

    PubMed

    Wasade, Vibhangini S; Schultz, Lonni; Mohanarangan, Karthik; Gaddam, Aryamaan; Schwalb, Jason M; Spanaki-Varelas, Marianna

    2015-12-01

    Vagus nerve stimulation (VNS) is a widely used adjunctive treatment option for intractable epilepsy. Most studies have demonstrated short-term seizure outcomes, usually for up to 5 years, and thus far, none have reported psychosocial outcomes in adults. We aimed to assess long-term seizure and psychosocial outcomes in patients with intractable epilepsy on VNS therapy for more than 15 years. We identified patients who had VNS implantation for treatment of intractable epilepsy from 1997 to 2013 at our Comprehensive Epilepsy Program and gathered demographics including age at epilepsy onset and VNS implantation, epilepsy type, number of antiepilepsy drugs (AEDs) and seizure frequency before VNS implantation and at the last clinic visit, and the most recent stimulation parameters from electronic medical records (EMR). Phone surveys were conducted by research assistants from May to November 2014 to determine patients' current seizure frequency and psychosocial metrics, including driving, employment status, and use of antidepressants. Seizure outcomes were based on modified Engel classification (I: seizure-free/rare simple partial seizures; II: >90% seizure reduction (SR), III: 50-90% SR, IV: <50% SR; classes I to III (>50% SR)=favorable outcome). A total of 207 patients underwent VNS implantation, 15 of whom were deceased at the time of the phone survey, and 40 had incomplete data for medical abstraction. Of the remaining 152, 90 (59%) were contacted and completed the survey. Of these, 51% were male, with the mean age at epilepsy onset of 9.4 years (range: birth to 60 years). There were 35 (39%) patients with extratemporal epilepsy, 19 (21%) with temporal, 18 (20%) with symptomatic generalized, 5 (6%) with idiopathic generalized, and 13 (14%) with multiple types. Final VNS settings showed 16 (18%) patients with an output current >2 mA and 14 (16%) with rapid cycling. Of the 80 patients with seizure frequency information, 16 (20%) had a modified Engel class I outcome, 14

  1. Somatic modulation of spinal reflex bladder activity mediated by nociceptive bladder afferent nerve fibers in cats.

    PubMed

    Xiao, Zhiying; Rogers, Marc J; Shen, Bing; Wang, Jicheng; Schwen, Zeyad; Roppolo, James R; de Groat, William C; Tai, Changfeng

    2014-09-15

    The goal of the present study was to determine if supraspinal pathways are necessary for inhibition of bladder reflex activity induced by activation of somatic afferents in the pudendal or tibial nerve. Cats anesthetized with α-chloralose were studied after acute spinal cord transection at the thoracic T9/T10 level. Dilute (0.25%) acetic acid was used to irritate the bladder, activate nociceptive afferent C-fibers, and trigger spinal reflex bladder contractions (amplitude: 19.3 ± 2.9 cmH2O). Hexamethonium (a ganglionic blocker, intravenously) significantly (P < 0.01) reduced the amplitude of the reflex bladder contractions to 8.5 ± 1.9 cmH2O. Injection of lidocaine (2%, 1-2 ml) into the sacral spinal cord or transection of the sacral spinal roots and spinal cord further reduced the contraction amplitude to 4.2 ± 1.3 cmH2O. Pudendal nerve stimulation (PNS) at frequencies of 0.5-5 Hz and 40 Hz but not at 10-20 Hz inhibited reflex bladder contractions, whereas tibial nerve stimulation (TNS) failed to inhibit bladder contractions at all tested frequencies (0.5-40 Hz). These results indicate that PNS inhibition of nociceptive afferent C-fiber-mediated spinal reflex bladder contractions can occur at the spinal level in the absence of supraspinal pathways, but TNS inhibition requires supraspinal pathways. In addition, this study shows, for the first time, that after acute spinal cord transection reflex bladder contractions can be triggered by activating nociceptive bladder afferent C-fibers using acetic acid irritation. Understanding the sites of action for PNS or TNS inhibition is important for the clinical application of pudendal or tibial neuromodulation to treat bladder dysfunctions.

  2. Somatic modulation of spinal reflex bladder activity mediated by nociceptive bladder afferent nerve fibers in cats.

    PubMed

    Xiao, Zhiying; Rogers, Marc J; Shen, Bing; Wang, Jicheng; Schwen, Zeyad; Roppolo, James R; de Groat, William C; Tai, Changfeng

    2014-09-15

    The goal of the present study was to determine if supraspinal pathways are necessary for inhibition of bladder reflex activity induced by activation of somatic afferents in the pudendal or tibial nerve. Cats anesthetized with α-chloralose were studied after acute spinal cord transection at the thoracic T9/T10 level. Dilute (0.25%) acetic acid was used to irritate the bladder, activate nociceptive afferent C-fibers, and trigger spinal reflex bladder contractions (amplitude: 19.3 ± 2.9 cmH2O). Hexamethonium (a ganglionic blocker, intravenously) significantly (P < 0.01) reduced the amplitude of the reflex bladder contractions to 8.5 ± 1.9 cmH2O. Injection of lidocaine (2%, 1-2 ml) into the sacral spinal cord or transection of the sacral spinal roots and spinal cord further reduced the contraction amplitude to 4.2 ± 1.3 cmH2O. Pudendal nerve stimulation (PNS) at frequencies of 0.5-5 Hz and 40 Hz but not at 10-20 Hz inhibited reflex bladder contractions, whereas tibial nerve stimulation (TNS) failed to inhibit bladder contractions at all tested frequencies (0.5-40 Hz). These results indicate that PNS inhibition of nociceptive afferent C-fiber-mediated spinal reflex bladder contractions can occur at the spinal level in the absence of supraspinal pathways, but TNS inhibition requires supraspinal pathways. In addition, this study shows, for the first time, that after acute spinal cord transection reflex bladder contractions can be triggered by activating nociceptive bladder afferent C-fibers using acetic acid irritation. Understanding the sites of action for PNS or TNS inhibition is important for the clinical application of pudendal or tibial neuromodulation to treat bladder dysfunctions. PMID:25056352

  3. Social stress in mice induces urinary bladder overactivity and increases TRPV1 channel-dependent afferent nerve activity

    PubMed Central

    Heppner, Thomas J.; Tykocki, Nathan R.; Erickson, Cuixia Shi; Vizzard, Margaret A.; Nelson, Mark T.

    2015-01-01

    Social stress has been implicated as a cause of urinary bladder hypertrophy and dysfunction in humans. Using a murine model of social stress, we and others have shown that social stress leads to bladder overactivity. Here, we show that social stress leads to bladder overactivity, increased bladder compliance, and increased afferent nerve activity. In the social stress paradigm, 6-wk-old male C57BL/6 mice were exposed for a total of 2 wk, via barrier cage, to a C57BL/6 retired breeder aggressor mouse. We performed conscious cystometry with and without intravesical infusion of the TRPV1 inhibitor capsazepine, and measured pressure-volume relationships and afferent nerve activity during bladder filling using an ex vivo bladder model. Stress leads to a decrease in intermicturition interval and void volume in vivo, which was restored by capsazepine. Ex vivo studies demonstrated that at low pressures, bladder compliance and afferent activity were elevated in stressed bladders compared with unstressed bladders. Capsazepine did not significantly change afferent activity in unstressed mice, but significantly decreased afferent activity at all pressures in stressed bladders. Immunohistochemistry revealed that TRPV1 colocalizes with CGRP to stain nerve fibers in unstressed bladders. Colocalization significantly increased along the same nerve fibers in the stressed bladders. Our results support the concept that social stress induces TRPV1-dependent afferent nerve activity, ultimately leading to the development of overactive bladder symptoms. PMID:26224686

  4. The vagus nerve mediates behavioural depression, but not fever, in response to peripheral immune signals; a functional anatomical analysis.

    PubMed

    Konsman, J P; Luheshi, G N; Bluthé, R M; Dantzer, R

    2000-12-01

    Cytokines act on the brain to induce fever and behavioural depression after infection. Although several mechanisms of cytokine-to-brain communication have been proposed, their physiological significance is unclear. We propose that behavioural depression is mediated by the vagus nerve activating limbic structures, while fever would primarily be due to humoral mechanisms affecting the preoptic area, including interleukin-6 (IL-6) action on the organum vasculosum of the laminae terminalis (OVLT) and induction of prostaglandins. This study assessed the effects of subdiaphragmatic vagotomy in rats on fever, behavioural depression, as measured by the social interaction test, and Fos expression in the brain. These responses were compared with induction of the prostaglandin-producing enzyme cyclooxygenase-2 and the transcription factor Stat3 that translocates after binding of IL-6. Vagotomy blocked behavioural depression after intraperitoneal injection of recombinant rat IL-1beta (25 microg/kg) or lipopolysaccharide (250 microg/kg; LPS) and prevented Fos expression in limbic structures and ventromedial preoptic area, but not in the OVLT. Fever was not affected by vagotomy, but associated with translocation of Stat3 in the OVLT and cyclooxygenase-2 induction around blood vessels. These results indicate that the recently proposed vagal link between the immune system and the brain activates limbic structures to induce behavioural depression after abdominal inflammation. Although the vagus might play a role in fever in response to low doses of LPS by activating the ventromedial preoptic area, it is likely to be overridden during more severe infection by action of circulating IL-6 on the OVLT or prostaglandins induced along blood vessels of the preoptic area.

  5. Intraoperative radiation of canine carotid artery, internal jugular vein, and vagus nerve. Therapeutic applications in the management of advanced head and neck cancers

    SciTech Connect

    Mittal, B.B.; Pelzer, H.; Tsao, C.S.; Ward, W.F.; Johnson, P.; Friedman, C.; Sisson, G.A. Sr.; Kies, M. )

    1990-12-01

    As a step in the application of intraoperative radiotherapy (IORT) for treating advanced head and neck cancers, preliminary information was obtained on the radiation tolerance of the canine common carotid artery, internal jugular vein, and vagus nerve to a single, high-dose electron beam. Both sides of the neck of eight mongrel dogs were operated on to expose an 8-cm segment of common carotid artery, internal jugular vein, and vagus nerve. One side of the neck was irradiated, using escalating doses of 2500, 3500, 4500, and 5500 cGy. The contralateral side of the neck served as the unirradiated control. At 3 and 6 months after IORT, one dog at each dose level was killed. None of the dogs developed carotid bleeding at any time after IORT. Light microscopic investigations using hematoxylin-eosin staining on the common carotid artery and internal jugular vein showed no consistent changes that suggested radiation damage; however, the Masson trichrome stain and hydroxyproline concentration of irradiated common carotid artery indicated an increase in the collagen content of the tunica media. Marked changes in the irradiated vagus nerve were seen, indicating severe demyelination and loss of nerve fibers, which appeared to be radiation-dose dependent. Four patients with advanced recurrent head and neck cancer were treated with surgical resection and IORT without any acute or subacute complications. The role of IORT as a supplement to surgery, external beam irradiation, and chemotherapy in selected patients with advanced head and neck cancer needs further exploration.

  6. An in vitro method for recording single unit afferent activity from mesenteric nerves innervating isolated segments of rat ileum.

    PubMed

    Sharkey, K A; Cervero, F

    1986-04-01

    A technique has been developed for recording single unit afferent activity from mesenteric nerves in isolated segments of rat distal ileum in vitro. The preparation consists of a 3-cm segment of ileum, containing a single neurovascular bundle, held horizontally in an organ bath. One end of the segment is attached to a tension transducer to record changes in longitudinal tension of the gut muscle and the other is connected to a pressure transducer to record changes in intra-luminal pressure. Electromyographic activity of the smooth muscle is recorded using glass-insulated tungsten microelectrodes inserted in the wall of the gut. Afferent nerve activity is recorded with a monopolar platinum wire electrode from filaments of the mesenteric nerves that run between the artery and vein supplying the segment. This preparation permits the detailed analysis of the electrical activity of intestinal afferent nerve fibres correlated with mechanical and chemical events occurring naturally in the gut or imposed experimentally on it.

  7. Vagus nerve stimulation for standardized monitoring: technical notes for conventional and endoscopic thyroidectomy.

    PubMed

    Dionigi, Gianlorenzo; Kim, Hoon Yub; Wu, Che-Wei; Lavazza, Matteo; Ferrari, Cesare; Leotta, Andrea; Spampatti, Sebastiano; Rovera, Francesca; Rausei, Stefano; Boni, Luigi; Chiang, Feng-Yu

    2013-09-01

    Standardization of the intraoperative neuromonitoring (IONM) technique is an essential aspect of modern monitored thyroid surgery. The standardized technique involves vagal nerve stimulation. VN stimulation is useful for technical problem solving, detecting non-recurrent laryngeal nerve (non-RLN), recognizing any recurrent laryngeal nerve (RLN) lesions, and precisely predicting RLN postoperative function. Herein, we present technical notes for the VN identification to achieve the critical view of safety of the VN stimulation with or without dissection. PMID:23860931

  8. Hepatic Branch Vagus Nerve Plays a Critical Role in the Recovery of Post-Ischemic Glucose Intolerance and Mediates a Neuroprotective Effect by Hypothalamic Orexin-A

    PubMed Central

    Harada, Shinichi; Yamazaki, Yui; Koda, Shuichi; Tokuyama, Shogo

    2014-01-01

    Orexin-A (a neuropeptide in the hypothalamus) plays an important role in many physiological functions, including the regulation of glucose metabolism. We have previously found that the development of post-ischemic glucose intolerance is one of the triggers of ischemic neuronal damage, which is suppressed by hypothalamic orexin-A. Other reports have shown that the communication system between brain and peripheral tissues through the autonomic nervous system (sympathetic, parasympathetic and vagus nerve) is important for maintaining glucose and energy metabolism. The aim of this study was to determine the involvement of the hepatic vagus nerve on hypothalamic orexin-A-mediated suppression of post-ischemic glucose intolerance development and ischemic neuronal damage. Male ddY mice were subjected to middle cerebral artery occlusion (MCAO) for 2 h. Intrahypothalamic orexin-A (5 pmol/mouse) administration significantly suppressed the development of post-ischemic glucose intolerance and neuronal damage on day 1 and 3, respectively after MCAO. MCAO-induced decrease of hepatic insulin receptors and increase of hepatic gluconeogenic enzymes on day 1 after was reversed to control levels by orexin-A. This effect was reversed by intramedullary administration of the orexin-1 receptor antagonist, SB334867, or hepatic vagotomy. In the medulla oblongata, orexin-A induced the co-localization of cholin acetyltransferase (cholinergic neuronal marker used for the vagus nerve) with orexin-1 receptor and c-Fos (activated neural cells marker). These results suggest that the hepatic branch vagus nerve projecting from the medulla oblongata plays an important role in the recovery of post-ischemic glucose intolerance and mediates a neuroprotective effect by hypothalamic orexin-A. PMID:24759941

  9. Noninvasive techniques for probing neurocircuitry and treating illness: vagus nerve stimulation (VNS), transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS)

    PubMed Central

    George, Mark S; Aston-Jones, Gary

    2010-01-01

    Although the preceding chapters discuss much of the new knowledge of neurocircuitry of neuropsychiatric diseases, and an invasive approach to treatment, this chapter describes and reviews the noninvasive methods of testing circuit-based theories and treating neuropsychiatric diseases that do not involve implanting electrodes into the brain or on its surface. These techniques are transcranial magnetic stimulation, vagus nerve stimulation, and transcranial direct current stimulation. Two of these approaches have FDA approval as therapies. PMID:19693003

  10. Modulation of Muscle Tone and Sympathovagal Balance in Cervical Dystonia Using Percutaneous Stimulation of the Auricular Vagus Nerve.

    PubMed

    Kampusch, Stefan; Kaniusas, Eugenijus; Széles, Jozsef C

    2015-10-01

    Primary cervical dystonia is characterized by abnormal, involuntary, and sustained contractions of cervical muscles. Current ways of treatment focus on alleviating symptomatic muscle activity. Besides pharmacological treatment, in severe cases patients may receive neuromodulative intervention such as deep brain stimulation. However, these (highly invasive) methods have some major drawbacks. For the first time, percutaneous auricular vagus nerve stimulation (pVNS) was applied in a single case of primary cervical dystonia. Auricular vagus nerve stimulation was already shown to modulate the (autonomous) sympathovagal balance of the body and proved to be an effective treatment in acute and chronic pain, epilepsy, as well as major depression. pVNS effects on cervical dystonia may be hypothesized to rely upon: (i) the alteration of sensory input to the brain, which affects structures involved in the genesis of motoric and nonmotoric dystonic symptoms; and (ii) the alteration of the sympathovagal balance with a sustained impact on involuntary movement control, pain, quality of sleep, and general well-being. The presented data provide experimental evidence that pVNS may be a new alternative and minimally invasive treatment in primary cervical dystonia. One female patient (age 50 years) suffering from therapy refractory cervical dystonia was treated with pVNS over 20 months. Significant improvement in muscle pain, dystonic symptoms, and autonomic regulation as well as a subjective improvement in motility, sleep, and mood were achieved. A subjective improvement in pain recorded by visual analog scale ratings (0-10) was observed from 5.42 to 3.92 (medians). Muscle tone of the mainly affected left and right trapezius muscle in supine position was favorably reduced by about 96%. Significant reduction of muscle tone was also achieved in sitting and standing positions of the patient. Habituation to stimulation leading to reduced stimulation efficiency was observed and

  11. Modulation of Muscle Tone and Sympathovagal Balance in Cervical Dystonia Using Percutaneous Stimulation of the Auricular Vagus Nerve.

    PubMed

    Kampusch, Stefan; Kaniusas, Eugenijus; Széles, Jozsef C

    2015-10-01

    Primary cervical dystonia is characterized by abnormal, involuntary, and sustained contractions of cervical muscles. Current ways of treatment focus on alleviating symptomatic muscle activity. Besides pharmacological treatment, in severe cases patients may receive neuromodulative intervention such as deep brain stimulation. However, these (highly invasive) methods have some major drawbacks. For the first time, percutaneous auricular vagus nerve stimulation (pVNS) was applied in a single case of primary cervical dystonia. Auricular vagus nerve stimulation was already shown to modulate the (autonomous) sympathovagal balance of the body and proved to be an effective treatment in acute and chronic pain, epilepsy, as well as major depression. pVNS effects on cervical dystonia may be hypothesized to rely upon: (i) the alteration of sensory input to the brain, which affects structures involved in the genesis of motoric and nonmotoric dystonic symptoms; and (ii) the alteration of the sympathovagal balance with a sustained impact on involuntary movement control, pain, quality of sleep, and general well-being. The presented data provide experimental evidence that pVNS may be a new alternative and minimally invasive treatment in primary cervical dystonia. One female patient (age 50 years) suffering from therapy refractory cervical dystonia was treated with pVNS over 20 months. Significant improvement in muscle pain, dystonic symptoms, and autonomic regulation as well as a subjective improvement in motility, sleep, and mood were achieved. A subjective improvement in pain recorded by visual analog scale ratings (0-10) was observed from 5.42 to 3.92 (medians). Muscle tone of the mainly affected left and right trapezius muscle in supine position was favorably reduced by about 96%. Significant reduction of muscle tone was also achieved in sitting and standing positions of the patient. Habituation to stimulation leading to reduced stimulation efficiency was observed and

  12. The neural signal of angular head position in primary afferent vestibular nerve axons

    PubMed Central

    Loe, P. R.; Tomko, David L.; Werner, G.

    1973-01-01

    1. The relation between discharge frequency and angular head position was determined for a population of regularly discharging single first-order vestibular neurones in the eighth nerve of the barbiturate anaesthetized cat. 2. Each axon had a characteristic head position which was maximally excitatory to it, and a diametrically opposed head position which was minimally excitatory. 3. After correction for phase shifts introduced by the orientation of preferred excitability, discharge rate in statoreceptor afferents varied as a power function of the sine of angular head position with exponents ranging from 0·9 to 1·6. 4. Experimentally determined discharge rates were compared with the predictions of a computer simulation model incorporating the idea that shearing force acting on morphologically polarized receptors is the adequate stimulus for macular receptor cells. 5. This approach permitted the identification of a population of first-order vestibular afferents whose discharge frequency varied with head position as did the magnitude of shear force computed for individual receptors, each most excited in a particular head position. 6. The majority of the spatial orientations of maximal sensitivity defined a surface which is tilted by approximately 30° with reference to the Horsley—Clarke horizontal plane, implying that most statoreceptor afferents are maximally sensitive to position changes when the cat's head is at or near its normal position. ImagesPlate 1Plate 2Plate 3 PMID:4702433

  13. Blood-Brain Barrier Deterioration and Hippocampal Gene Expression in Polymicrobial Sepsis: An Evaluation of Endothelial MyD88 and the Vagus Nerve.

    PubMed

    Honig, Gerard; Mader, Simone; Chen, Huiyi; Porat, Amit; Ochani, Mahendar; Wang, Ping; Volpe, Bruce T; Diamond, Betty

    2016-01-01

    Systemic infection can initiate or exacerbate central nervous system (CNS) pathology, even in the absence of overt invasion of bacteria into the CNS. Recent epidemiological studies have demonstrated that human survivors of sepsis have an increased risk of long-term neurocognitive decline. There is thus a need for improved understanding of the physiological mechanisms whereby acute sepsis affects the CNS. In particular, MyD88-dependent activation of brain microvascular endothelial cells and a resulting loss of blood-brain barrier integrity have been proposed to play an important role in the effects of systemic inflammation on the CNS. Signaling through the vagus nerve has also been considered to be an important component of CNS responses to systemic infection. Here, we demonstrate that blood-brain barrier permeabilization and hippocampal transcriptional responses during polymicrobial sepsis occur even in the absence of MyD88-dependent signaling in cerebrovascular endothelial cells. We further demonstrate that these transcriptional responses can occur without vagus nerve input. These results suggest that redundant signals mediate CNS responses in sepsis. Either endothelial or vagus nerve activation may be individually sufficient to transmit systemic inflammation to the central nervous system. Transcriptional activation in the forebrain in sepsis may be mediated by MyD88-independent endothelial mechanisms or by non-vagal neuronal pathways. PMID:26790027

  14. Blood-Brain Barrier Deterioration and Hippocampal Gene Expression in Polymicrobial Sepsis: An Evaluation of Endothelial MyD88 and the Vagus Nerve.

    PubMed

    Honig, Gerard; Mader, Simone; Chen, Huiyi; Porat, Amit; Ochani, Mahendar; Wang, Ping; Volpe, Bruce T; Diamond, Betty

    2016-01-01

    Systemic infection can initiate or exacerbate central nervous system (CNS) pathology, even in the absence of overt invasion of bacteria into the CNS. Recent epidemiological studies have demonstrated that human survivors of sepsis have an increased risk of long-term neurocognitive decline. There is thus a need for improved understanding of the physiological mechanisms whereby acute sepsis affects the CNS. In particular, MyD88-dependent activation of brain microvascular endothelial cells and a resulting loss of blood-brain barrier integrity have been proposed to play an important role in the effects of systemic inflammation on the CNS. Signaling through the vagus nerve has also been considered to be an important component of CNS responses to systemic infection. Here, we demonstrate that blood-brain barrier permeabilization and hippocampal transcriptional responses during polymicrobial sepsis occur even in the absence of MyD88-dependent signaling in cerebrovascular endothelial cells. We further demonstrate that these transcriptional responses can occur without vagus nerve input. These results suggest that redundant signals mediate CNS responses in sepsis. Either endothelial or vagus nerve activation may be individually sufficient to transmit systemic inflammation to the central nervous system. Transcriptional activation in the forebrain in sepsis may be mediated by MyD88-independent endothelial mechanisms or by non-vagal neuronal pathways.

  15. Blood-Brain Barrier Deterioration and Hippocampal Gene Expression in Polymicrobial Sepsis: An Evaluation of Endothelial MyD88 and the Vagus Nerve

    PubMed Central

    Honig, Gerard; Mader, Simone; Chen, Huiyi; Porat, Amit; Ochani, Mahendar; Wang, Ping; Volpe, Bruce T.; Diamond, Betty

    2016-01-01

    Systemic infection can initiate or exacerbate central nervous system (CNS) pathology, even in the absence of overt invasion of bacteria into the CNS. Recent epidemiological studies have demonstrated that human survivors of sepsis have an increased risk of long-term neurocognitive decline. There is thus a need for improved understanding of the physiological mechanisms whereby acute sepsis affects the CNS. In particular, MyD88-dependent activation of brain microvascular endothelial cells and a resulting loss of blood-brain barrier integrity have been proposed to play an important role in the effects of systemic inflammation on the CNS. Signaling through the vagus nerve has also been considered to be an important component of CNS responses to systemic infection. Here, we demonstrate that blood-brain barrier permeabilization and hippocampal transcriptional responses during polymicrobial sepsis occur even in the absence of MyD88-dependent signaling in cerebrovascular endothelial cells. We further demonstrate that these transcriptional responses can occur without vagus nerve input. These results suggest that redundant signals mediate CNS responses in sepsis. Either endothelial or vagus nerve activation may be individually sufficient to transmit systemic inflammation to the central nervous system. Transcriptional activation in the forebrain in sepsis may be mediated by MyD88-independent endothelial mechanisms or by non-vagal neuronal pathways. PMID:26790027

  16. Implications for Bidirectional Signaling Between Afferent Nerves and Urothelial Cells—ICI-RS 2014

    PubMed Central

    Kanai, Anthony; Fry, Christopher; Ikeda, Youko; Kullmann, Florenta Aura; Parsons, Brian; Birder, Lori

    2016-01-01

    Aims To present a synopsis of the presentations and discussions from Think Tank I, “Implications for afferent–urothelial bidirectional communication” of the 2014 International Consultation on Incontinence-Research Society (ICI-RS) meeting in Bristol, UK. Methods The participants presented what is new, currently understood or still unknown on afferent–urothelial signaling mechanisms. New avenues of research and experimental methodologies that are or could be employed were presented and discussed. Results It is clear that afferent–urothelial interactions are integral to the regulation of normal bladder function and that its disruption can have detrimental consequences. The urothelium is capable of releasing numerous signaling factors that can affect sensory neurons innervating the suburothelium. However, the understanding of how factors released from urothelial cells and afferent nerve terminals regulate one another is incomplete. Utilization of techniques such as viruses that genetically encode Ca2+ sensors, based on calmodulin and green fluorescent protein, has helped to address the cellular mechanisms involved. Additionally, the epithelial–neuronal interactions in the urethra may also play a significant role in lower urinary tract regulation and merit further investigation. Conclusion The signaling capabilities of the urothelium and afferent nerves are well documented, yet how these signals are integrated to regulate bladder function is unclear. There is unquestionably a need for expanded methodologies to further our understanding of lower urinary tract sensory mechanisms and their contribution to various pathologies. PMID:26872567

  17. Adjunctive vagus nerve stimulation for treatment-resistant bipolar disorder: managing device failure or the end of battery life.

    PubMed

    Pardo, José V

    2016-01-01

    The vagus nerve stimulation (VNS) device is used not only to treat refractory seizure disorders but also mood disorders; the latter indication received CE Mark approval in 2001 and Food and Drug Administration approval in 2005. Original estimates for the end of battery life (EOBL) were approximately 6-10 years. Many neuropsychiatric patients have or will soon face EOBL. A patient with severe, life-threatening, treatment-resistant bipolar disorder underwent 9 years of stable remission following 20 months of adjunctive VNS. The device ceased operation at EOBL. Because of logistical issues, re-initiation of VNS was delayed over several months. The patient relapsed with depression, mania and mixed states, and regained remission 17 months after device replacement. This case dictates prudence in managing stable patients in remission with VNS. If the device malfunctions, urgent surgical replacement is warranted with subsequent rapid titration to previous parameters as tolerated. Several months' delay may trigger relapse and prove difficult to re-establish remission. PMID:26951440

  18. Vagus Nerve Stimulation Applied with a Rapid Cycle Has More Profound Influence on Hippocampal Electrophysiology Than a Standard Cycle.

    PubMed

    Larsen, Lars E; Wadman, Wytse J; Marinazzo, Daniele; van Mierlo, Pieter; Delbeke, Jean; Daelemans, Sofie; Sprengers, Mathieu; Thyrion, Lisa; Van Lysebettens, Wouter; Carrette, Evelien; Boon, Paul; Vonck, Kristl; Raedt, Robrecht

    2016-07-01

    Although vagus nerve stimulation (VNS) is widely used, therapeutic mechanisms and optimal stimulation parameters remain elusive. In the present study, we investigated the effect of VNS on hippocampal field activity and compared the efficiency of different VNS paradigms. Hippocampal electroencephalography (EEG) and perforant path dentate field-evoked potentials were acquired before and during VNS in freely moving rats, using 2 VNS duty cycles: a rapid cycle (7 s on, 18 s off) and standard cycle (30 s on, 300 s off) and various output currents. VNS modulated the evoked potentials, reduced total power of the hippocampal EEG, and slowed the theta rhythm. In the hippocampal EEG, theta (4-8 Hz) and high gamma (75-150 Hz) activity displayed strong phase amplitude coupling that was reduced by VNS. Rapid-cycle VNS had a greater effect than standard-cycle VNS on all outcome measures. Using rapid cycle VNS, a maximal effect on EEG parameters was found at 300 μA, beyond which effects saturated. The findings suggest that rapid-cycle VNS produces a more robust outcome than standard cycle VNS and support already existing preclinical evidence that relatively low output currents are sufficient to produce changes in brain physiology and thus likely also therapeutic efficacy. PMID:27102987

  19. The timing and amount of vagus nerve stimulation during rehabilitative training affect post-stroke recovery of forelimb strength

    PubMed Central

    Hays, Seth A.; Khodaparast, Navid; Ruiz, Andrea; Sloan, Andrew M.; Hulsey, Daniel R.; Rennaker, Robert L.; Kilgard, Michael P.

    2014-01-01

    Loss of upper arm strength after stroke is a leading cause of disability. Strategies that can enhance the benefits of rehabilitative training could improve motor function after stroke. Recent studies in a rat model of ischemic stroke demonstrate that vagus nerve stimulation (VNS) paired with rehabilitative training substantially improves recovery of forelimb strength compared to extensive rehabilitative training without VNS. Here we report that the timing and amount of stimulation affect the degree of forelimb strength recovery. Similar amounts of delayed VNS delivered two hours after daily rehabilitative training sessions resulted in significantly less improvement compared to VNS that is paired with identical rehabilitative training. Significantly less recovery also occurred when several-fold more VNS was delivered during rehabilitative training. Both delayed and additional VNS confer moderately improved recovery compared to extensive rehabilitative training without VNS, but fail to enhance recovery to the same degree as VNS that is timed to occur with successful movements. These findings confirm that VNS paired with rehabilitative training holds promise for restoring forelimb strength post-stroke and indicate that both the timing and amount of VNS should be optimized to maximize therapeutic benefits. PMID:24818637

  20. Transcutaneous noninvasive vagus nerve stimulation (tVNS) in the treatment of schizophrenia: a bicentric randomized controlled pilot study.

    PubMed

    Hasan, Alkomiet; Wolff-Menzler, Claus; Pfeiffer, Sebastian; Falkai, Peter; Weidinger, Elif; Jobst, Andrea; Hoell, Imke; Malchow, Berend; Yeganeh-Doost, Peyman; Strube, Wolfgang; Quast, Silke; Müller, Norbert; Wobrock, Thomas

    2015-10-01

    Despite many pharmacological and psychosocial treatment options, schizophrenia remains a debilitating disorder. Thus, new treatment strategies rooted in the pathophysiology of the disorder are needed. Recently, vagus nerve stimulation (VNS) has been proposed as a potential treatment option for various neuropsychiatric disorders including schizophrenia. The objective of this study was to investigate for the first time the feasibility, safety and efficacy of transcutaneous VNS in stable schizophrenia. A bicentric randomized, sham-controlled, double-blind trial was conducted from 2010 to 2012. Twenty schizophrenia patients were randomly assigned to one of two treatment groups. The first group (active tVNS) received daily active stimulation of the left auricle for 26 weeks. The second group (sham tVNS) received daily sham stimulation for 12 weeks followed by 14 weeks of active stimulation. Primary outcome was defined as change in the Positive and Negative Symptom Scale total score between baseline and week 12. Various other secondary measures were assessed to investigate safety and efficacy. The intervention was well tolerated with no relevant adverse effects. We could not observe a statistically significant difference in the improvement of schizophrenia psychopathology during the observation period. Neither psychopathological and neurocognitive measures nor safety measures showed significant differences between study groups. Application of tVNS was well tolerated, but did not improve schizophrenia symptoms in our 26-week trial. While unsatisfactory compliance questions the feasibility of patient-controlled neurostimulation in schizophrenia, the overall pattern of symptom change might warrant further investigations in this population.

  1. Correlation between GABA(A) receptor density and vagus nerve stimulation in individuals with drug-resistant partial epilepsy.

    PubMed

    Marrosu, Francesco; Serra, Alessandra; Maleci, Alberto; Puligheddu, Monica; Biggio, Giovanni; Piga, Mario

    2003-01-01

    Vagus nerve stimulation (VNS) is an important option for the treatment of drug-resistant epilepsy. Through delivery of a battery-supplied intermittent current, VNS protects against seizure development in a manner that correlates experimentally with electrophysiological modifications. However, the mechanism by which VNS inhibits seizures in humans remains unclear. The impairment of gamma-aminobutyric acid (GABA)-mediated neuronal inhibition associated with epilepsy has suggested that GABA(A) receptors might contribute to the therapeutic efficacy of VNS. We have now applied single photon emission computed tomography (SPECT) with the benzodiazepine receptor inverse agonist [123I]iomazenil to examine cortical GABA(A) receptor density (GRD) before and 1 year after implantation of a VNS device in 10 subjects with drug-resistant partial epilepsy. VNS therapeutic responses resulted significantly correlated with the normalization of GRD. Moreover, a comparable control group, scheduled for a possible VNS implant, failed to show significant GRD variations after 1 year of a stable anti-epileptic treatment. These results suggest that VNS may modulate the cortical excitability of brain areas associated with epileptogenesis and that GABA(A) receptor plasticity contributes to this effect.

  2. Vagus Nerve Stimulation Applied with a Rapid Cycle Has More Profound Influence on Hippocampal Electrophysiology Than a Standard Cycle.

    PubMed

    Larsen, Lars E; Wadman, Wytse J; Marinazzo, Daniele; van Mierlo, Pieter; Delbeke, Jean; Daelemans, Sofie; Sprengers, Mathieu; Thyrion, Lisa; Van Lysebettens, Wouter; Carrette, Evelien; Boon, Paul; Vonck, Kristl; Raedt, Robrecht

    2016-07-01

    Although vagus nerve stimulation (VNS) is widely used, therapeutic mechanisms and optimal stimulation parameters remain elusive. In the present study, we investigated the effect of VNS on hippocampal field activity and compared the efficiency of different VNS paradigms. Hippocampal electroencephalography (EEG) and perforant path dentate field-evoked potentials were acquired before and during VNS in freely moving rats, using 2 VNS duty cycles: a rapid cycle (7 s on, 18 s off) and standard cycle (30 s on, 300 s off) and various output currents. VNS modulated the evoked potentials, reduced total power of the hippocampal EEG, and slowed the theta rhythm. In the hippocampal EEG, theta (4-8 Hz) and high gamma (75-150 Hz) activity displayed strong phase amplitude coupling that was reduced by VNS. Rapid-cycle VNS had a greater effect than standard-cycle VNS on all outcome measures. Using rapid cycle VNS, a maximal effect on EEG parameters was found at 300 μA, beyond which effects saturated. The findings suggest that rapid-cycle VNS produces a more robust outcome than standard cycle VNS and support already existing preclinical evidence that relatively low output currents are sufficient to produce changes in brain physiology and thus likely also therapeutic efficacy.

  3. The organization of the brainstem nuclei associated with the vagus nerve in the Agouti (Dasyprocta leporina). A neurohistological study.

    PubMed

    Phillips, C M; Odekunle, A

    2011-01-01

    A total of six adult animals were used for the study. Following anaesthesia via intraperitoneal injection of a mixture of ketamin and bombazine in ratio 2:1, thoracotomy was performed to exteriorize the heart for intracardial perfusion. The perfusion canular was inserted into the left ventricle and animal perfused sequentially with normal saline and 10% formal saline. Following perfusion, craniotomy was performed to remove the entire brain along with the upper segments of the spinal cord. The brain specimen was then dehydrated, cleared and infiltrated with paraffin wax. The specimen was then cut in 15 micron thick serial sections. The sections were then processed for neurohistological analyses using a Nikon microscope to which was attached Nikon camera. Analyses of the sections revealed bilateral representation of the dorsal motor nucleus of the vagus nerve in the medulla oblongata. The nucleus ambiguus, nucleus of the tractus solitarius, hypoglossal nucleus and the area postrema were also identified in the medulla oblongata. The implications of our findings are discussed in the text of the article.

  4. Vagus nerve stimulation balanced disrupted default-mode network and salience network in a postsurgical epileptic patient

    PubMed Central

    Wang, Kailiang; Chai, Qi; Qiao, Hui; Zhang, Jianguo; Liu, Tinghong; Meng, Fangang

    2016-01-01

    Introduction In recent years, treatment of intractable epilepsy has become more challenging, due to an increase in resistance to antiepileptic drugs, as well as diminished success following resection surgery. Here, we present the case of a 19-year old epileptic patient who received vagus nerve stimulation (VNS) following unsuccessful left parietal–occipital lesion-resection surgery, with results indicating an approximate 50% reduction in seizure frequency and a much longer seizure-free interictal phase. Materials and methods Using resting-state functional magnetic resonance imaging, we measured the changes in resting-state brain networks between pre-VNS treatment and 6 months post-VNS, from the perspective of regional and global variations, using regional homogeneity and large-scale functional connectives (seeding posterior cingulate cortex and anterior cingulate cortex), respectively. Results After 6 months of VNS therapy, the resting-state brain networks were slightly reorganized in regional homogeneity, mainly in large-scale functional connectivity, where excessive activation of the salience network was suppressed, while at the same time the suppressed default-mode network was activated. Conclusion With regard to resting-state brain networks, we propose a hypothesis based on this single case study that VNS acts on intractable epilepsy by modulating the balance between salience and default-mode networks through the integral hub of the anterior cingulate cortex. PMID:27785033

  5. Localization of Interictal Epileptiform Activity Using Magnetoencephalography with Synthetic Aperture Magnetometry in Patients with a Vagus Nerve Stimulator

    PubMed Central

    Stapleton-Kotloski, Jennifer R.; Kotloski, Robert J.; Boggs, Jane A.; Popli, Gautam; O’Donovan, Cormac A.; Couture, Daniel E.; Cornell, Cassandra; Godwin, Dwayne W.

    2014-01-01

    Magnetoencephalography (MEG) provides useful and non-redundant information in the evaluation of patients with epilepsy, and in particular, during the pre-surgical evaluation of pharmaco-resistant epilepsy. Vagus nerve stimulation (VNS) is a common treatment for pharmaco-resistant epilepsy. However, interpretation of MEG recordings from patients with a VNS is challenging due to the severe magnetic artifacts produced by the VNS. We used synthetic aperture magnetometry (g2) [SAM(g2)], an adaptive beamformer that maps the excessive kurtosis, to map interictal spikes to the coregistered MRI image, despite the presence of contaminating VNS artifact. We present a series of eight patients with a VNS who underwent MEG recording. Localization of interictal epileptiform activity by SAM(g2) is compared to invasive electrophysiologic monitoring and other localizing approaches. While the raw MEG recordings were uninterpretable, analysis of the recordings with SAM(g2) identified foci of peak kurtosis and source signal activity that was unaffected by the VNS artifact. SAM(g2) analysis of MEG recordings in patients with a VNS produces interpretable results and expands the use of MEG for the pre-surgical evaluation of epilepsy. PMID:25505894

  6. Inhibition of histamine-induced bronchoconstriction in Guinea pig and Swine by pulsed electrical vagus nerve stimulation.

    PubMed

    Hoffmann, Thomas J; Mendez, Steven; Staats, Peter; Emala, Charles W; Guo, Puyun

    2009-10-01

    Objective. Smooth muscle help regulate the diameter of the airways and their constriction can contribute to the pathology of acute asthma attacks. This study sought to determine if applying a specific electrical signal to the vagus nerve (VN) could minimize histamine-induced bronchoconstriction. Methods. Sixteen guinea pigs and three swine were anesthetized and had bipolar electrodes positioned on the cervical VNs. After the animals stabilized, i.v. histamine was titrated to elicit a moderate 2-4 cm H(2) O increase in pulmonary inflation pressure (Ppi). Histamine was then dosed with or without concurrent low voltage VN stimulation. Results. The peak change in Ppi following a histamine challenge was reduced in the guinea pig by VN stimulation (3.4 ± 0.4 vs. 2.1 ± 0.2 cm H(2) O, p < 0.001). The results were confirmed in a limited study in swine and indicate VN treatment is applicable to larger animals. Conclusion. This study suggests that VN stimulation can reduce bronchoconstriction and may prove useful as a rescue therapy in the treatment of acute asthma.

  7. Pressure-induced inhibition of fast axonal transport of proteins in the rabbit vagus nerve in galactose neuropathy: prevention by an aldose reductase inhibitor.

    PubMed

    McLean, W G

    1988-07-01

    Fast and slow anterograde axonal transport and retrograde axonal transport of proteins were studied in the mainly non-myelinated sensory fibres of the vagus nerve of rabbits fed a diet of 50% galactose over a period of 29 days. Galactose feeding had no effect on the rate or protein composition of slow transport nor on the amount of retrogradely transported proteins. There was a slight retardation of fast transported proteins although their composition was unchanged. The galactose feeding led to a significant increase (p less than 0.005) in nerve water content and nerve galactitol but no significant change in myo-inositol. When 20 mm Hg pressure was applied locally to the cervical vagus nerve, fast transported proteins accumulated proximal to the compression zone in the galactose-fed but not in control rabbits. Administration of the aldose reductase inhibitor Statil (ICI 128436) throughout the experiment prevented the increased susceptibility to pressure and the increase in nerve galactitol and water content. The effects of pressure are similar to those found in the streptozotocin-diabetic rat although the underlying mechanisms may differ.

  8. Uptake of locally applied deoxyglucose, glucose and lactate by axons and Schwann cells of rat vagus nerve

    PubMed Central

    Véga, Céline; Martiel, Jean-Louis; Drouhault, Delphine; Burckhart, Marie-France; Coles, Jonathan A

    2003-01-01

    We asked whether, in a steady state, neurons and glial cells both take up glucose sufficient for their energy requirements, or whether glial cells take up a disproportionate amount and transfer metabolic substrate to neurons. A desheathed rat vagus nerve was held crossways in a laminar flow perfusion chamber and stimulated at 2 Hz. 14C-labelled substrate was applied from a micropipette for 5 min over a < 0.6 mm band of the surface of the nerve. After 10-55 min incubation, the nerve was lyophilized and the longitudinal distribution of radioactivity measured. When the weakly metabolizable analogue of glucose, 2-deoxy-[U-14C]d-glucose (*DG), was applied, the profiles of the radioactivity broadened with time, reaching distances several times the mean length of the Schwann cells (0.32 mm; most of the Schwann cells are non-myelinating). The profiles were well fitted by curves calculated for diffusion in a single compartment, the mean diffusion coefficient being 463 ± 34 μm2 s−1 (± s.e.m., n = 16). Applications of *DG were repeated in the presence of the gap junction blocker, carbenoxolone (100 μm). The profiles were now narrower and better fitted with two compartments. One compartment had a coefficient not significantly different from that in the absence of the gap junction blocker (axons), the other compartment had a coefficient of 204 ± 24 μm2 s−1, n = 4. Addition of the gap junction blocker 18-α-glycyrrhetinic acid, or blocking electrical activity with TTX, also reduced longitudinal diffusion. Ascribing the compartment in which diffusion was reduced by these treatments to non-myelinating Schwann cells, we conclude that 78.0 ± 3.6 % (n = 9) of the uptake of *DG was into Schwann cells. This suggests that there was transfer of metabolic substrate from Schwann cells to axons. Local application of [14C]glucose or [14C]lactate led to variable labelling along the length of the nerve, but with both substrates narrow peaks were often present at the application site

  9. Representation of Afferent Signals from Forearm Muscle and Cutaneous Nerves in the Primary Somatosensory Cortex of the Macaque Monkey

    PubMed Central

    Yamada, Hiroshi; Yaguchi, Hiroaki; Tomatsu, Saeka; Takei, Tomohiko; Oya, Tomomichi

    2016-01-01

    Proprioception is one’s overall sense of the relative positions and movements of the various parts of one’s body. The primary somatosensory cortex (SI) is involved in generating the proprioception by receiving peripheral sensory inputs from both cutaneous and muscle afferents. In particular, area 3a receives input from muscle afferents and areas 3b and 1 from cutaneous afferents. However, segregation of two sensory inputs to these cortical areas has not been evaluated quantitatively because of methodological difficulties in distinguishing the incoming signals. To overcome this, we applied electrical stimulation separately to two forearm nerves innervating muscle (deep radial nerve) and skin (superficial radial nerve), and examined the spatiotemporal distribution of sensory evoked potentials (SEPs) in SI of anaesthetized macaques. The SEPs arising from the deep radial nerve were observed exclusively at the bottom of central sulcus (CS), which was identified as area 3a using histological reconstruction. In contrast, SEPs evoked by stimulation of the superficial radial nerve were observed in the superficial part of SI, identified as areas 3b and 1. In addition to these earlier, larger potentials, we also found small and slightly delayed SEPs evoked by cutaneous nerve stimulation in area 3a. Coexistence of the SEPs from both deep and superficial radial nerves suggests that area 3a could integrate muscle and cutaneous signals to shape proprioception. PMID:27701434

  10. An In Vitro Adult Mouse Muscle-nerve Preparation for Studying the Firing Properties of Muscle Afferents

    PubMed Central

    Franco, Joy A.; Kloefkorn, Heidi E.; Hochman, Shawn; Wilkinson, Katherine A.

    2014-01-01

    Muscle sensory neurons innervating muscle spindles and Golgi tendon organs encode length and force changes essential to proprioception. Additional afferent fibers monitor other characteristics of the muscle environment, including metabolite buildup, temperature, and nociceptive stimuli. Overall, abnormal activation of sensory neurons can lead to movement disorders or chronic pain syndromes. We describe the isolation of the extensor digitorum longus (EDL) muscle and nerve for in vitro study of stretch-evoked afferent responses in the adult mouse. Sensory activity is recorded from the nerve with a suction electrode and individual afferents can be analyzed using spike sorting software. In vitro preparations allow for well controlled studies on sensory afferents without the potential confounds of anesthesia or altered muscle perfusion. Here we describe a protocol to identify and test the response of muscle spindle afferents to stretch. Importantly, this preparation also supports the study of other subtypes of muscle afferents, response properties following drug application and the incorporation of powerful genetic approaches and disease models in mice. PMID:25285602

  11. Differential presynaptic control of the synaptic effectiveness of cutaneous afferents evidenced by effects produced by acute nerve section

    PubMed Central

    Rudomin, P; Jiménez, I; Chávez, D

    2013-01-01

    In the anaesthetized cat, the acute section of the saphenous (Saph) and/or the superficial peroneal (SP) nerves was found to produce a long-lasting increase of the field potentials generated in the dorsal horn by stimulation of the medial branch of the sural (mSU) nerve. This facilitation was associated with changes in the level of the tonic primary afferent depolarization (PAD) of the mSU intraspinal terminals. The mSU afferent fibres projecting into Rexed's laminae III–IV were subjected to a tonic PAD that was reduced by the acute section of the SP and/or the Saph nerves. The mSU afferents projecting deeper into the dorsal horn (Rexed's laminae V–VI) were instead subjected to a tonic PAD that was increased after Saph and SP acute nerve section. A differential control of the synaptic effectiveness of the low-threshold cutaneous afferents according to their sites of termination within the dorsal horn is envisaged as a mechanism that allows selective processing of sensory information in response to tactile and nociceptive stimulation or during the execution of different motor tasks. PMID:23478136

  12. Effect of vagus nerve stimulation on electrical kindling in different stages of seizure severity in freely moving cats.

    PubMed

    Magdaleno-Madrigal, Víctor Manuel; Valdés-Cruz, Alejandro; Martínez-Vargas, David; Almazán-Alvarado, Salvador; Fernández-Mas, Rodrigo

    2014-01-01

    Vagus nerve stimulation (VNS) is an adjunctive therapy for treating pharmacoresistant epilepsy. The present study analyze the effect of VNS on the epileptic activity of amygdala kindling (AK) in different seizure severity stages in freely moving cats. Fourteen adult male cats were used and were stereotaxically implanted in both amygdalae, in thalamic reticular nuclei and in prefrontal cortices. AK was developed by the application of 60Hz pulse trains that were one second in duration. VNS was applied the following day after the first stages were reached. This stimulation consisted of 10 pulse trains in the one-hour period (1min on/5min off) prior to AK. AK stimulation continued until all animals reached stage VI. The behavioral changes induced by VNS were transient and bearable. The animals showed relaxation of the nictitating membrane, ipsilateral anisocoria, swallowing and licking. Intermittent VNS application in stage I induced a delay in AK progression. The effect of VNS on the amygdala afterdischarge duration (AD) did not change progressively. VNS in stages II, III, and IV does not have an inhibitory effect on AK, and the AD further exhibited a progressive development. At the end of the generalized seizures, the animals presented with synchronized bilateral discharges of the spike-wave type (3Hz) and a behavioral "staring spell". Our results show that VNS applied during the different stages of seizure severity exerts an anti-epileptogenic effect in stage I but no anti-epileptogenic effect in stages II, III, and IV. These results suggest that VNS applied at stage I of kindling induces a delay of generalized convulsive activity.

  13. Safety, Feasibility, and Efficacy of Vagus Nerve Stimulation Paired With Upper-Limb Rehabilitation After Ischemic Stroke

    PubMed Central

    Pierce, David; Dixit, Anand; Kimberley, Teresa J.; Robertson, Michele; Tarver, Brent; Hilmi, Omar; McLean, John; Forbes, Kirsten; Kilgard, Michael P.; Rennaker, Robert L.; Cramer, Steven C.; Walters, Matthew; Engineer, Navzer

    2016-01-01

    Background and Purpose— Recent animal studies demonstrate that vagus nerve stimulation (VNS) paired with movement induces movement-specific plasticity in motor cortex and improves forelimb function after stroke. We conducted a randomized controlled clinical pilot study of VNS paired with rehabilitation on upper-limb function after ischemic stroke. Methods— Twenty-one participants with ischemic stroke >6 months before and moderate to severe upper-limb impairment were randomized to VNS plus rehabilitation or rehabilitation alone. Rehabilitation consisted of three 2-hour sessions per week for 6 weeks, each involving >400 movement trials. In the VNS group, movements were paired with 0.5-second VNS. The primary objective was to assess safety and feasibility. Secondary end points included change in upper-limb measures (including the Fugl–Meyer Assessment-Upper Extremity). Results— Nine participants were randomized to VNS plus rehabilitation and 11 to rehabilitation alone. There were no serious adverse device effects. One patient had transient vocal cord palsy and dysphagia after implantation. Five had minor adverse device effects including nausea and taste disturbance on the evening of therapy. In the intention-to-treat analysis, the change in Fugl–Meyer Assessment-Upper Extremity scores was not significantly different (between-group difference, 5.7 points; 95% confidence interval, −0.4 to 11.8). In the per-protocol analysis, there was a significant difference in change in Fugl–Meyer Assessment-Upper Extremity score (between-group difference, 6.5 points; 95% confidence interval, 0.4 to 12.6). Conclusions— This study suggests that VNS paired with rehabilitation is feasible and has not raised safety concerns. Additional studies of VNS in adults with chronic stroke will now be performed. Clinical Trial Registration— URL: https://www.clinicaltrials.gov. Unique identifier: NCT01669161. PMID:26645257

  14. Non-invasive vagus nerve stimulation for PREVention and Acute treatment of chronic cluster headache (PREVA): A randomised controlled study

    PubMed Central

    Diener, Hans-Christoph; Silver, Nicholas; Magis, Delphine; Reuter, Uwe; Andersson, Annelie; Liebler, Eric J; Straube, Andreas

    2015-01-01

    Background Chronic cluster headache (CH) is a debilitating disorder for which few well-controlled studies demonstrate effectiveness of available therapies. Non-invasive vagus nerve stimulation (nVNS) was examined as adjunctive prophylactic treatment of chronic CH. Methods PREVA was a prospective, open-label, randomised study that compared adjunctive prophylactic nVNS (n = 48) with standard of care (SoC) alone (control (n = 49)). A two-week baseline phase was followed by a four-week randomised phase (SoC plus nVNS vs control) and a four-week extension phase (SoC plus nVNS). The primary end point was the reduction in the mean number of CH attacks per week. Response rate, abortive medication use and safety/tolerability were also assessed. Results During the randomised phase, individuals in the intent-to-treat population treated with SoC plus nVNS (n = 45) had a significantly greater reduction in the number of attacks per week vs controls (n = 48) (−5.9 vs −2.1, respectively) for a mean therapeutic gain of 3.9 fewer attacks per week (95% CI: 0.5, 7.2; p = 0.02). Higher ≥50% response rates were also observed with SoC plus nVNS (40% (18/45)) vs controls (8.3% (4/48); p < 0.001). No serious treatment-related adverse events occurred. Conclusion Adjunctive prophylactic nVNS is a well-tolerated novel treatment for chronic CH, offering clinical benefits beyond those with SoC. PMID:26391457

  15. The effects of vagus nerve stimulation therapy on patients with intractable seizures and either Landau-Kleffner syndrome or autism.

    PubMed

    Park, Yong D

    2003-06-01

    Acquired and developmental comorbid conditions, including language and behavioral disorders, are often associated with epilepsy. Although the relationship between these disorders is not fully understood, their close association may indicate that they share common features, suggesting that these conditions may respond to the same therapies. Not only has vagus nerve stimulation (VNS) therapy been proven to reduce the frequency of pharmacoresistant seizures in epilepsy patients, but preliminary studies also indicate that VNS therapy may improve neurocognitive performance. On the basis of these findings, we hypothesized that VNS therapy would improve the quality of life of patients with either Landau-Kleffner syndrome (LKS) or autism, independent of its effects on seizures. Data were retrospectively queried from the VNS therapy patient outcome registry (Cyberonics, Inc; Houston, TX, USA). A constant cohort of 6 LKS patients and 59 autistic patients were identified. Among the LKS patients, 3 patients at 6 months experienced at least a 50% reduction in seizure frequency as compared with baseline. Physicians reported quality-of-life improvements in all areas assessed for at least 3 of the 6 children. More than half of the patients with autism (58%) experienced at least a 50% reduction in seizure frequency at 12 months. Improvements in all areas of quality of life monitored were reported for most patients, particularly for alertness (76% at 12 months). Although these preliminary findings are encouraging, a prospective study using standardized measurement tools specific to these disorders and a longer-term follow-up are necessary to better gauge the efficacy of VNS therapy among these patient populations.

  16. Vagus nerve stimulation does not affect spatial memory in fast rats, but has both anti-convulsive and pro-convulsive effects on amygdala-kindled seizures.

    PubMed

    Dedeurwaerdere, S; Gilby, K; Vonck, K; Delbeke, J; Boon, P; McIntyre, D

    2006-07-21

    Vagus nerve stimulation (VNS) is an adjunctive treatment for refractory epilepsy. Using a seizure-prone Fast-kindling rat strain with known comorbid behavioral features, we investigated the effects of VNS on spatial memory, epileptogenesis, kindled seizures and body weight. Electrodes were implanted in both amygdalae and around the left vagus nerve of 17 rats. Following recovery, rats were tested in the Morris water-maze utilizing a fixed platform paradigm. The VNS group received 2 h of stimulation prior to entering the Morris water-maze. Rats were then tested in the kindling paradigm wherein the VNS group received 2 h of stimulation prior to daily kindling stimulation. Finally, the abortive effects of acute VNS against kindling-induced seizures were determined in fully kindled rats by applying VNS immediately after the kindling pulse. Body weight, water consumption and food intake were measured throughout. Memory performance in the Morris water-maze was not different between control and vagus nerve stimulation rats. Similarly, kindling rate was unaffected by antecedent VNS. However, pro-convulsive effects (P<0.05) were noted, when VNS was administered prior to the kindling pulse in fully kindled rats. Yet, paradoxically, VNS showed anti-convulsant effects (P<0.01) in those rats when applied immediately after the kindling stimulus. Body weight was significantly lower throughout kindling (P<0.01) in VNS-treated rats compared with controls, which was associated with reduced food intake (P<0.05), but without difference in water consumption. VNS appears to be devoid of significant cognitive side effects in the Morris water-maze in Fast rats. Although VNS exhibited no prophylactic effect on epileptogenesis or seizure severity when applied prior to the kindling stimulus, it showed significant anti-convulsant effects in fully kindled rats when applied after seizure initiation. Lastly, VNS prevented the weight gain associated with kindling through reduced food intake.

  17. Carotid Space Mass Proximal to Vagus Nerve Causing Asystole and Syncope.

    PubMed

    Leviter, Julie; Wiznia, Daniel H

    2016-01-01

    Manipulation of vagal nerve rootlets, whether surgical or through mass effect of a neoplasm, can result in asystole and hypotension, accompanied by ST depression and right bundle branch block. There are few case reports of a neoplasm causing these effects, and this case describes a patient with such a mass presenting with syncopal episodes. A 43-year-old man with a past medical history of HIV, bipolar disorder, and epilepsy was admitted to the neurology service for a video electroencephalogram (vEEG) to characterize syncopal episodes that were felt to be epileptic in origin. During the study, he experienced symptoms of his typical aura, which correlated with a transient symptomatic high degree AV block on telemetry, and an absence of epileptic findings on vEEG. Magnetic Resonance Imaging (MRI) of the brain showed a mass in the left posterior carotid space at the skull base. The patient underwent permanent dual chamber MRI-compatible pacemaker placement for his heart block. His syncopal episodes resolved, but presyncopal symptoms persisted. We discuss the presentation and treatment of vagal neoplasms. PMID:27516914

  18. Carotid Space Mass Proximal to Vagus Nerve Causing Asystole and Syncope

    PubMed Central

    2016-01-01

    Manipulation of vagal nerve rootlets, whether surgical or through mass effect of a neoplasm, can result in asystole and hypotension, accompanied by ST depression and right bundle branch block. There are few case reports of a neoplasm causing these effects, and this case describes a patient with such a mass presenting with syncopal episodes. A 43-year-old man with a past medical history of HIV, bipolar disorder, and epilepsy was admitted to the neurology service for a video electroencephalogram (vEEG) to characterize syncopal episodes that were felt to be epileptic in origin. During the study, he experienced symptoms of his typical aura, which correlated with a transient symptomatic high degree AV block on telemetry, and an absence of epileptic findings on vEEG. Magnetic Resonance Imaging (MRI) of the brain showed a mass in the left posterior carotid space at the skull base. The patient underwent permanent dual chamber MRI-compatible pacemaker placement for his heart block. His syncopal episodes resolved, but presyncopal symptoms persisted. We discuss the presentation and treatment of vagal neoplasms. PMID:27516914

  19. The role of the vagus nerve in the migrating motor complex and ghrelin- and motilin-induced gastric contraction in suncus.

    PubMed

    Miyano, Yuki; Sakata, Ichiro; Kuroda, Kayuri; Aizawa, Sayaka; Tanaka, Toru; Jogahara, Takamichi; Kurotani, Reiko; Sakai, Takafumi

    2013-01-01

    The upper gastrointestinal (GI) tract undergoes a temporally coordinated cyclic motor pattern known as the migrating motor complex (MMC) in both dogs and humans during the fasted state. Feeding results in replacement of the MMC by a pattern of noncyclic, intermittent contractile activity termed as postprandial contractions. Although the MMC is known to be stimulated by motilin, recent studies have shown that ghrelin, which is from the same peptide family as motilin, is also involved in the regulation of the MMC. In the present study, we investigated the role of the vagus nerve on gastric motility using conscious suncus-a motilin- and ghrelin-producing small animal. During the fasted state, cyclic MMC comprising phases I, II, and III was observed in both sham-operated and vagotomized suncus; however, the duration and motility index (MI) of phase II was significantly decreased in vagotomized animals. Motilin infusion (50 ng·kg(-1)·min(-1) for 10 min) during phase I had induced phase III-like contractions in both sham-operated and vagotomized animals. Ghrelin infusion (0.1, 0.3, 1, 3, or 10 µg·kg(-1)·min(-1) for 10 min) enhanced the amplitude of phase II MMC in sham-operated animals, but not in vagotomized animals. After feeding, phase I was replaced by postprandial contractions, and motilin infusion (50 ng·kg(-1)·min(-1) for 10 min) did not induce phase III-like contractions in sham-operated suncus. However, in vagotomized suncus, feeding did not evoke postprandial contractions, but exogenous motilin injection strongly induced phase III-like contractions, as noted during the phase I period. Thus, the results indicate that ghrelin stimulates phase II of the MMC via the vagus nerve in suncus. Furthermore, the vagus nerve is essential for initiating postprandial contractions, and inhibition of the phase III-like contractions induced by motilin is highly dependent on the vagus nerve. PMID:23724093

  20. Effect of synthetic cationic protein on mechanoexcitability of vagal afferent nerve subtypes in guinea pig esophagus.

    PubMed

    Yu, Shaoyong; Ouyang, Ann

    2011-12-01

    Eosinophilic esophagitis is characterized by increased infiltration and degranulation of eosinophils in the esophagus. Whether eosinophil-derived cationic proteins regulate esophageal sensory nerve function is still unknown. Using synthetic cationic protein to investigate such effect, we performed extracellular recordings from vagal nodose or jugular neurons in ex vivo esophageal-vagal preparations with intact nerve endings in the esophagus. Nerve excitabilities were determined by comparing action potentials evoked by esophageal distensions before and after perfusion of synthetic cationic protein poly-L-lysine (PLL) with or without pretreatment with poly-L-glutamic acid (PLGA), which neutralized cationic charges of PLL. Perfusion with PLL did not evoke action potentials in esophageal nodose C fibers but increased their responses to esophageal distension. This potentiation effect lasted for 30 min after washing out of PLL. Pretreatment with PLGA significantly inhibited PLL-induced mechanohyperexcitability of esophageal nodose C fibers. In esophageal nodose Aδ fibers, perfusion with PLL did not evoke action potentials. In contrast to nodose C fibers, both the spontaneous discharges and the responses to esophageal distension in nodose Aδ fibers were decreased by perfusion with PLL, which can be restored after washing out PLL for 30-60 min. Pretreatment with PLGA attenuated PLL-induced decrease in spontaneous discharge and mechanoexcitability of esophageal nodose Aδ fibers. In esophageal jugular C fibers, PLL neither evoked action potentials nor changed their responses to esophageal distension. Collectively, these data demonstrated that synthetic cationic protein did not evoke action potential discharges of esophageal vagal afferents but had distinctive sensitization effects on their responses to esophageal distension.

  1. TRPM8 function and expression in vagal sensory neurons and afferent nerves innervating guinea pig esophagus.

    PubMed

    Yu, Xiaoyun; Hu, Youtian; Ru, Fei; Kollarik, Marian; Undem, Bradley J; Yu, Shaoyong

    2015-03-15

    Sensory transduction in esophageal afferents requires specific ion channels and receptors. TRPM8 is a new member of the transient receptor potential (TRP) channel family and participates in cold- and menthol-induced sensory transduction, but its role in visceral sensory transduction is still less clear. This study aims to determine TRPM8 function and expression in esophageal vagal afferent subtypes. TRPM8 agonist WS-12-induced responses were first determined in nodose and jugular neurons by calcium imaging and then investigated by whole cell patch-clamp recordings in Dil-labeled esophageal nodose and jugular neurons. Extracellular single-unit recordings were performed in nodose and jugular C fiber neurons using ex vivo esophageal-vagal preparations with intact nerve endings in the esophagus. TRPM8 mRNA expression was determined by single neuron RT-PCR in Dil-labeled esophageal nodose and jugular neurons. The TRPM8 agonist WS-12 elicited calcium influx in a subpopulation of jugular but not nodose neurons. WS-12 activated outwardly rectifying currents in esophageal Dil-labeled jugular but not nodose neurons in a dose-dependent manner, which could be inhibited by the TRPM8 inhibitor AMTB. WS-12 selectively evoked action potential discharges in esophageal jugular but not nodose C fibers. Consistently, TRPM8 transcripts were highly expressed in esophageal Dil-labeled TRPV1-positive jugular neurons. In summary, the present study demonstrated a preferential expression and function of TRPM8 in esophageal vagal jugular but not nodose neurons and C fiber subtypes. This provides a distinctive role of TRPM8 in esophageal sensory transduction and may lead to a better understanding of the mechanisms of esophageal sensation and nociception.

  2. Activation of afferent renal nerves modulates RVLM-projecting PVN neurons.

    PubMed

    Xu, Bo; Zheng, Hong; Liu, Xuefei; Patel, Kaushik P

    2015-05-01

    Renal denervation for the treatment of hypertension has proven to be successful; however, the underlying mechanism/s are not entirely clear. To determine if preautonomic neurons in the paraventricular nucleus (PVN) respond to afferent renal nerve (ARN) stimulation, extracellular single-unit recording was used to investigate the contribution of the rostral ventrolateral medulla (RVLM)-projecting PVN (PVN-RVLM) neurons to the response elicited during stimulation of ARN. In 109 spontaneously active neurons recorded in the PVN of anesthetized rats, 25 units were antidromically activated from the RVLM. Among these PVN-RVLM neurons, 84% (21/25) were activated by ARN stimulation. The baseline discharge rate was significantly higher in these neurons than those PVN-RVLM neurons not activated by ARN stimulation (16%, 4/25). The responsiveness of these neurons to baroreflex activation induced by phenylephrine and activation of cardiac sympathetic afferent reflex (CSAR) was also examined. Almost all of the PVN neurons that responded to ARN stimulation were sensitive to baroreflex (95%) and CSAR (100%). The discharge characteristics for nonevoked neurons (not activated by RVLM antidromic stimulation) showed that 23% of these PVN neurons responded to ARN stimulation. All the PVN neurons that responded to ARN stimulation were activated by N-methyl-D-aspartate, and these responses were attenuated by the glutamate receptor blocker AP5. These experiments demonstrated that sensory information originating in the kidney is integrated at the level of preautonomic neurons within the PVN, providing a novel mechanistic insight for use of renal denervation in the modulation of sympathetic outflow in disease states such as hypertension and heart failure.

  3. Sensitivity Analysis of Vagus Nerve Stimulation Parameters on Acute Cardiac Autonomic Responses: Chronotropic, Inotropic and Dromotropic Effects

    PubMed Central

    Ojeda, David; Le Rolle, Virginie; Romero-Ugalde, Hector M.; Gallet, Clément; Bonnet, Jean-Luc; Henry, Christine; Bel, Alain; Mabo, Philippe; Carrault, Guy; Hernández, Alfredo I.

    2016-01-01

    Although the therapeutic effects of Vagus Nerve Stimulation (VNS) have been recognized in pre-clinical and pilot clinical studies, the effect of different stimulation configurations on the cardiovascular response is still an open question, especially in the case of VNS delivered synchronously with cardiac activity. In this paper, we propose a formal mathematical methodology to analyze the acute cardiac response to different VNS configurations, jointly considering the chronotropic, dromotropic and inotropic cardiac effects. A latin hypercube sampling method was chosen to design a uniform experimental plan, composed of 75 different VNS configurations, with different values for the main parameters (current amplitude, number of delivered pulses, pulse width, interpulse period and the delay between the detected cardiac event and VNS onset). These VNS configurations were applied to 6 healthy, anesthetized sheep, while acquiring the associated cardiovascular response. Unobserved VNS configurations were estimated using a Gaussian process regression (GPR) model. In order to quantitatively analyze the effect of each parameter and their combinations on the cardiac response, the Sobol sensitivity method was applied to the obtained GPR model and inter-individual sensitivity markers were estimated using a bootstrap approach. Results highlight the dominant effect of pulse current, pulse width and number of pulses, which explain respectively 49.4%, 19.7% and 6.0% of the mean global cardiovascular variability provoked by VNS. More interestingly, results also quantify the effect of the interactions between VNS parameters. In particular, the interactions between current and pulse width provoke higher cardiac effects than the changes on the number of pulses alone (between 6 and 25% of the variability). Although the sensitivity of individual VNS parameters seems similar for chronotropic, dromotropic and inotropic responses, the interacting effects of VNS parameters provoke

  4. Therapeutic effect of vagus nerve stimulation on depressive-like behavior, hyperglycemia and insulin receptor expression in Zucker fatty rats.

    PubMed

    Li, Shaoyuan; Zhai, Xu; Rong, Peijing; McCabe, Michael F; Wang, Xing; Zhao, Jingjun; Ben, Hui; Wang, Shuxing

    2014-01-01

    Depression and type 2 diabetes (T2D) are common comorbid diseases and highly prevalent in the clinical setting with an unclarified mechanism. Zucker diabetic fatty (ZDF, fa/fa) rats natively develop T2D with hyperglycemia and hyperinsulinemia. Here we studied whether ZDF rats also innately develop depression, what a correlation is between depression and T2D, whether insulin receptor (IR) expression is involved in, and whether transcutaneous auricular vagus nerve stimulation (taVNS) would be beneficial in amelioration of the comorbidity. Six week old male ZDF and Zucker lean (ZL, fa/+) littermates were randomly divided into naïve (ZDF, n = 6; ZL, n = 7) and taVNS (ZDF-taVNS, n = 8; ZL-taVNS, n = 6) groups. Once daily 30 min-taVNS sessions were administrated under anesthesia for 34 consecutive days in taVNS groups. Blood glucose levels were tested weekly, and plasma glycosylated hemoglobin (HbAlc) level and immobility time in forced swimming test were determined on day 35 in all groups. The expression of insulin receptor (IR) in various tissues was also detected by immunostaining and Western blot. We found that naïve ZDF rats developed hyperglycemia steadily. These ZDF rats showed a strong positive correlation between longer immobility time and higher plasma HbAlC level. Long term taVNS treatment simultaneously prevented the development of depression-like behavior and progression of hyperglycemia in ZDF rats. The expression of IR in various tissues of naïve ZDF rats is lower than in naïve ZL and long-term taVNS treated ZDF rats. Collectively, our results indicate that in ZDF rats, i) depression and T2D develop simultaneously, ii) immobility time and HbAlc concentrations are highly and positively correlated, iii) a low expression of IR may be involved in the comorbidity of depression and T2D, and iv) taVNS is antidiabetic and antidepressive possibly through IR expression upregulation. PMID:25365428

  5. Axonal transport of muscarinic cholinergic receptors in rat vagus nerve: high and low affinity agonist receptors move in opposite directions and differ in nucleotide sensitivity

    SciTech Connect

    Zarbin, M.A.; Wamsley, J.K.; Kuhar, M.J.

    1982-07-01

    The presence and transport of muscarinic cholinergic binding sites have been detected in the rat vagus nerve. These binding sites accumulate both proximal and distal to ligatures in a time-dependent manner. The results of double ligature and colchicine experiments are compatible with the notion that the anterogradely transported binding sites move by fast transport. Most of the sites accumulating proximal to ligatures bind the agonist carbachol with high affinity, while most of the sites accumulating distally bind carbachol with a low affinity. Also, the receptors transported in the anterograde direction are affected by a guanine nucleotide analogue (GppNHp), while those transported in the retrograde direction are less, or not, affected. The bulk of the sites along the unligated nerve trunk bind carbachol with a low affinity and are less sensitive to GppNHp modulation than the anterogradely transported sites. These results suggest that some receptors in the vagus may undergo axonal transport in association with regulatory proteins and that receptor molecules undergo changes in their binding and regulatory properties during their life cycle. These data also support the notion that the high and low affinity agonist form of the muscarinic receptor represent different modulated forms of a single receptor molecule.

  6. Utility of a Novel Biofeedback Device for Within-Breath Modulation of Heart Rate in Rats: A Quantitative Comparison of Vagus Nerve vs. Right Atrial Pacing.

    PubMed

    O'Callaghan, Erin L; Chauhan, Ashok S; Zhao, Le; Lataro, Renata M; Salgado, Helio C; Nogaret, Alain; Paton, Julian F R

    2016-01-01

    In an emerging bioelectronics era, there is a clinical need for physiological devices incorporating biofeedback that permits natural and demand-dependent control in real time. Here, we describe a novel device termed a central pattern generator (CPG) that uses cutting edge analog circuitry producing temporally controlled, electrical stimulus outputs based on the real time integration of physiological feedback. Motivated by the fact that respiratory sinus arrhythmia (RSA), which is the cyclical changes in heart rate every breath, is an essential component of heart rate variability (HRV) (an indicator of cardiac health), we have explored the versatility and efficiency of the CPG for producing respiratory modulation of heart rate in anesthetized, spontaneously breathing rats. Diaphragmatic electromyographic activity was used as the input to the device and its output connected to either the right cervical vagus nerve or the right atrium for pacing heart rate. We found that the CPG could induce respiratory related heart rate modulation that closely mimicked RSA. Whether connected to the vagus nerve or right atrium, the versatility of the device was demonstrated by permitting: (i) heart rate modulation in any phase of the respiratory cycle, (ii) control of the magnitude of heart rate modulation, and (iii) instant adaptation to changes in respiratory frequency. Vagal nerve pacing was only possible following transection of the nerve limiting its effective use chronically. Pacing via the right atrium permitted better flexibility and control of heart rate above its intrinsic level. This investigation now lays the foundation for future studies using this biofeedback technology permitting closer analysis of both the function and dysfunction of RSA. PMID:26869940

  7. Utility of a Novel Biofeedback Device for Within-Breath Modulation of Heart Rate in Rats: A Quantitative Comparison of Vagus Nerve vs. Right Atrial Pacing

    PubMed Central

    O'Callaghan, Erin L.; Chauhan, Ashok S.; Zhao, Le; Lataro, Renata M.; Salgado, Helio C.; Nogaret, Alain; Paton, Julian F. R.

    2016-01-01

    In an emerging bioelectronics era, there is a clinical need for physiological devices incorporating biofeedback that permits natural and demand-dependent control in real time. Here, we describe a novel device termed a central pattern generator (CPG) that uses cutting edge analog circuitry producing temporally controlled, electrical stimulus outputs based on the real time integration of physiological feedback. Motivated by the fact that respiratory sinus arrhythmia (RSA), which is the cyclical changes in heart rate every breath, is an essential component of heart rate variability (HRV) (an indicator of cardiac health), we have explored the versatility and efficiency of the CPG for producing respiratory modulation of heart rate in anesthetized, spontaneously breathing rats. Diaphragmatic electromyographic activity was used as the input to the device and its output connected to either the right cervical vagus nerve or the right atrium for pacing heart rate. We found that the CPG could induce respiratory related heart rate modulation that closely mimicked RSA. Whether connected to the vagus nerve or right atrium, the versatility of the device was demonstrated by permitting: (i) heart rate modulation in any phase of the respiratory cycle, (ii) control of the magnitude of heart rate modulation, and (iii) instant adaptation to changes in respiratory frequency. Vagal nerve pacing was only possible following transection of the nerve limiting its effective use chronically. Pacing via the right atrium permitted better flexibility and control of heart rate above its intrinsic level. This investigation now lays the foundation for future studies using this biofeedback technology permitting closer analysis of both the function and dysfunction of RSA. PMID:26869940

  8. Utility of a Novel Biofeedback Device for Within-Breath Modulation of Heart Rate in Rats: A Quantitative Comparison of Vagus Nerve vs. Right Atrial Pacing.

    PubMed

    O'Callaghan, Erin L; Chauhan, Ashok S; Zhao, Le; Lataro, Renata M; Salgado, Helio C; Nogaret, Alain; Paton, Julian F R

    2016-01-01

    In an emerging bioelectronics era, there is a clinical need for physiological devices incorporating biofeedback that permits natural and demand-dependent control in real time. Here, we describe a novel device termed a central pattern generator (CPG) that uses cutting edge analog circuitry producing temporally controlled, electrical stimulus outputs based on the real time integration of physiological feedback. Motivated by the fact that respiratory sinus arrhythmia (RSA), which is the cyclical changes in heart rate every breath, is an essential component of heart rate variability (HRV) (an indicator of cardiac health), we have explored the versatility and efficiency of the CPG for producing respiratory modulation of heart rate in anesthetized, spontaneously breathing rats. Diaphragmatic electromyographic activity was used as the input to the device and its output connected to either the right cervical vagus nerve or the right atrium for pacing heart rate. We found that the CPG could induce respiratory related heart rate modulation that closely mimicked RSA. Whether connected to the vagus nerve or right atrium, the versatility of the device was demonstrated by permitting: (i) heart rate modulation in any phase of the respiratory cycle, (ii) control of the magnitude of heart rate modulation, and (iii) instant adaptation to changes in respiratory frequency. Vagal nerve pacing was only possible following transection of the nerve limiting its effective use chronically. Pacing via the right atrium permitted better flexibility and control of heart rate above its intrinsic level. This investigation now lays the foundation for future studies using this biofeedback technology permitting closer analysis of both the function and dysfunction of RSA.

  9. Identification of Different Types of Spinal Afferent Nerve Endings That Encode Noxious and Innocuous Stimuli in the Large Intestine Using a Novel Anterograde Tracing Technique

    PubMed Central

    Spencer, Nick J.; Kyloh, Melinda; Duffield, Michael

    2014-01-01

    In mammals, sensory stimuli in visceral organs, including those that underlie pain perception, are detected by spinal afferent neurons, whose cell bodies lie in dorsal root ganglia (DRG). One of the major challenges in visceral organs has been how to identify the different types of nerve endings of spinal afferents that transduce sensory stimuli into action potentials. The reason why spinal afferent nerve endings have been so challenging to identify is because no techniques have been available, until now, that can selectively label only spinal afferents, in high resolution. We have utilized an anterograde tracing technique, recently developed in our laboratory, which facilitates selective labeling of only spinal afferent axons and their nerve endings in visceral organs. Mice were anesthetized, lumbosacral DRGs surgically exposed, then injected with dextran-amine. Seven days post-surgery, the large intestine was removed. The characteristics of thirteen types of spinal afferent nerve endings were identified in detail. The greatest proportion of nerve endings was in submucosa (32%), circular muscle (25%) and myenteric ganglia (22%). Two morphologically distinct classes innervated myenteric ganglia. These were most commonly a novel class of intraganglionic varicose endings (IGVEs) and occasionally rectal intraganglionic laminar endings (rIGLEs). Three distinct classes of varicose nerve endings were found to innervate the submucosa and circular muscle, while one class innervated internodal strands, blood vessels, crypts of lieberkuhn, the mucosa and the longitudinal muscle. Distinct populations of sensory endings were CGRP-positive. We present the first complete characterization of the different types of spinal afferent nerve endings in a mammalian visceral organ. The findings reveal an unexpectedly complex array of different types of primary afferent endings that innervate specific layers of the large intestine. Some of the novel classes of nerve endings identified

  10. Relation between discharge regularity and responses to externally applied galvanic currents in vestibular nerve afferents of the squirrel monkey.

    PubMed

    Goldberg, J M; Smith, C E; Fernández, C

    1984-06-01

    Most vestibular nerve afferents can be classified as regularly or irregularly discharging. Two factors are theoretically identified as being potentially responsible for differences in discharge regularity. The first, ascribable to synaptic noise, is the variance (sigma v2) characterizing the transmembrane voltage fluctuations of the axon's spike trigger site, i.e., the place where impulses normally arise. The second factor is the slope (dmuv/dt) of the trigger site's postspike recovery function. Were (dmuv/dt) a major determinant of discharge regularity, the theory predicts that the more irregular the discharge of a unit, the greater should be its sensitivity to externally applied galvanic currents and the faster should be the postspike recovery of its electrical excitability. The predictions would not hold if differences in the discharge regularity between units largely reflected variations in sigma v. To test these predictions, the responses of vestibular nerve afferents to externally applied galvanic currents were studied in the barbiturate-anesthetized squirrel monkey. Current steps of 5-s duration and short (50 microsecond) shocks were delivered by way of the perilymphatic space of the vestibule. Results were similar regardless of which end organ an afferent innervated. The regularity of discharge of each unit was expressed by a normalized coefficient of variation (CV*). The galvanic sensitivity (beta p) of a unit, measured from its response to current steps, was linearly related to discharge regularity (CV*), there being approximately 20-fold variations in both variables across the afferent population. Various geometric factors--including fiber diameter, position of individual axons within the various nerve branches, and the configuration of unmyelinated processes within the sensory epithelium--are unlikely to have made a major contribution to the positive relation between beta P and CV*. The postspike recovery of electrical excitability was measured as

  11. Evidence for the participation of glutamate in reflexes involving afferent, substance P-containing nerve fibres in the rat.

    PubMed

    Juránek, I; Lembeck, F

    1996-01-01

    1. Responses mediated, either peripherally or centrally, by substance P-containing primary afferent C-fibres were investigated in the rat following impairment of axonal transport by colchicine (120 micrograms kg-1, i.p., daily for 3 days), and after treatment with the tachykinin antagonist SR-140333 (10-100 micrograms kg-1, i.v.) or the N-methyl-D-aspartate (NMDA) antagonist MK-801 (100 micrograms kg-1). 2. Peripheral effects mediated by afferent C-fibres were measured by plasma protein extravasation (Evans blue method), following antidromic stimulation of the sciatic nerve, topical application of mustard oil and, as control, i.v. injection of substance P. SR-140333 (100 micrograms kg-1) reduced the effects by 86%, 75% and 74%, respectively. Colchicine reduced the effects of the first two stimuli by 31% and 33% and, as expected not the effect of substance P. The increase of paw skin temperature following capsaicin i.v. was inhibited by SR-140333, but not by colchicine. MK-801 had no effect on the plasma protein extravasation following antidromic sciatic nerve stimulation or on the rise of paw skin temperature induced by capsaicin i.v., thus excluding an effect of MK-801 on peripheral terminals of afferent neurones. 3. Depressor reflexes, which are known to be mediated by capsaicin-sensitive afferent neuones, such as those elicited (A) by a stimulating dose of 30 ng capsaicin i.a., (B) by distension of the ascending colon or (C) by afferent sciatic nerve stimulation were studied. Colchicine significantly reduced depressor reflexes A and B, but had no effect on reflex C. None of the reflexes was affected by SR-140333. MK-801 significantly inhibited all three reflexes. 4. Capsaicin, injected either i.v. (200 micrograms kg-1) or into the nucleus caudatus/putamen (i.c., 30 micrograms), induced an increase in paw skin temperature and a decrease in colon temperature. The rise in fore paw skin temperature (delta t = 2.3 +/- 0.4 degrees C) evoked by capsaicin i.v. was

  12. Intermittent electrical stimulation of the right cervical vagus nerve in salt-sensitive hypertensive rats: effects on blood pressure, arrhythmias, and ventricular electrophysiology

    PubMed Central

    Annoni, Elizabeth M; Xie, Xueyi; Lee, Steven W; Libbus, Imad; KenKnight, Bruce H; Osborn, John W; Tolkacheva, Elena G

    2015-01-01

    Hypertension (HTN) is the single greatest risk factor for potentially fatal cardiovascular diseases. One cause of HTN is inappropriately increased sympathetic nervous system activity, suggesting that restoring the autonomic nervous balance may be an effective means of HTN treatment. Here, we studied the potential of vagus nerve stimulation (VNS) to treat chronic HTN and cardiac arrhythmias through stimulation of the right cervical vagus nerve in hypertensive rats. Dahl salt-sensitive rats (n = 12) were given a high salt diet to induce HTN. After 6 weeks, rats were randomized into two groups: HTN-Sham and HTN-VNS, in which VNS was provided to HTN-VNS group for 4 weeks. In vivo blood pressure and electrocardiogram activities were monitored continuously by an implantable telemetry system. After 10 weeks, rats were euthanized and their hearts were extracted for ex vivo electrophysiological studies using high-resolution optical mapping. Six weeks of high salt diet significantly increased both mean arterial pressure (MAP) and pulse pressure, demonstrating successful induction of HTN in all rats. After 4 weeks of VNS treatment, the increase in MAP and the number of arrhythmia episodes in HTN-VNS rats was significantly attenuated when compared to those observed in HTN-Sham rats. VNS treatment also induced changes in electrophysiological properties of the heart, such as reduction in action potential duration (APD) during rapid drive pacing, slope of APD restitution, spatial dispersion of APD, and increase in conduction velocity of impulse propagation. Overall, these results provide further evidence for the therapeutic efficacy of VNS in HTN and HTN-related heart diseases. PMID:26265746

  13. Chronic vagus nerve stimulation attenuates vascular endothelial impairments and reduces the inflammatory profile via inhibition of the NF-κB signaling pathway in ovariectomized rats.

    PubMed

    Li, Ping; Liu, Huaipu; Sun, Peng; Wang, Xiaoyu; Wang, Chen; Wang, Ling; Wang, Tinghuai

    2016-02-01

    Vagus nerve stimulation (VNS), a method for activating cholinergic anti-inflammatory pathways, could suppress endothelial activation and minimize tissue injury during inflammation. The aim of this study was to investigate the effects of chronic VNS on endothelial impairments and the inflammatory profile in ovariectomized (OVX) rats. Sprague-Dawley rats (7-8 months old) were randomly assigned to the following four groups: sham-OVX, OVX, OVX+sham-VNS, and OVX+VNS. Throughout the experimental period, the OVX+VNS group received VNS for 3h (20.0 Hz, 1.0 mA, and 10.00 ms pulse width) at the same time every other day. After 12 weeks of VNS, blood samples and thoracic aortas were collected for further analyses. Light microscopy and electron microscopy analyses showed that chronic VNS prevented endothelial swelling, desquamation and even necrosis in the OVX rats. In addition, it obviously improved endothelial function in the OVX rats by restoring the endothelial nitric oxide synthase (e-NOS) and serum endothelin-1 level. Increased expression of cell adhesion molecules (VCAM-1, ICAM-1 and E-selectin) in the thoracic aortas and increases in the levels of circulating cytokines (TNF-α, IL-6, MCP-1, and CINC/KC) were also observed in the OVX rats. Chronic VNS significantly restored these detrimental changes partly by increasing the ACh concentrations in vascular walls and blocking NF-κB pathway activity. The results of this in vivo study have shown that the administration of chronic VNS during, in the early stage of estrogen deficiency, protects OVX rats from endothelial impairments and the inflammatory profile. These findings indicate that activation of the vagus nerve could be a promising supplemental therapy for reducing the risks of suffering from further CVDs in postmenopausal women. PMID:26692419

  14. Automatic Vagus Nerve Stimulation Triggered by Ictal Tachycardia: Clinical Outcomes and Device Performance—The U.S. E‐37 Trial

    PubMed Central

    Afra, Pegah; Macken, Micheal; Minecan, Daniela N.; Bagić, Anto; Benbadis, Selim R.; Helmers, Sandra L.; Sinha, Saurabh R.; Slater, Jeremy; Treiman, David; Begnaud, Jason; Raman, Pradheep; Najimipour, Bita

    2015-01-01

    Objectives The Automatic Stimulation Mode (AutoStim) feature of the Model 106 Vagus Nerve Stimulation (VNS) Therapy System stimulates the left vagus nerve on detecting tachycardia. This study evaluates performance, safety of the AutoStim feature during a 3‐5‐day Epilepsy Monitoring Unit (EMU) stay and long‐ term clinical outcomes of the device stimulating in all modes. Materials and Methods The E‐37 protocol (NCT01846741) was a prospective, unblinded, U.S. multisite study of the AspireSR® in subjects with drug‐resistant partial onset seizures and history of ictal tachycardia. VNS Normal and Magnet Modes stimulation were present at all times except during the EMU stay. Outpatient visits at 3, 6, and 12 months tracked seizure frequency, severity, quality of life, and adverse events. Results Twenty implanted subjects (ages 21–69) experienced 89 seizures in the EMU. 28/38 (73.7%) of complex partial and secondarily generalized seizures exhibited ≥20% increase in heart rate change. 31/89 (34.8%) of seizures were treated by Automatic Stimulation on detection; 19/31 (61.3%) seizures ended during the stimulation with a median time from stimulation onset to seizure end of 35 sec. Mean duty cycle at six‐months increased from 11% to 16%. At 12 months, quality of life and seizure severity scores improved, and responder rate was 50%. Common adverse events were dysphonia (n = 7), convulsion (n = 6), and oropharyngeal pain (n = 3). Conclusions The Model 106 performed as intended in the study population, was well tolerated and associated with clinical improvement from baseline. The study design did not allow determination of which factors were responsible for improvements. PMID:26663671

  15. Variation in response dynamics of regular and irregular vestibular-nerve afferents during sinusoidal head rotations and currents in the chinchilla.

    PubMed

    Kim, Kyu-Sung; Minor, Lloyd B; Della Santina, Charles C; Lasker, David M

    2011-05-01

    In mammals, vestibular-nerve afferents that innervate only type I hair cells (calyx-only afferents) respond nearly in phase with head acceleration for high-frequency motion, whereas afferents that innervate both type I and type II (dimorphic) or only type II (bouton-only) hair cells respond more in phase with head velocity. Afferents that exhibit irregular background discharge rates have a larger phase lead re-head velocity than those that fire more regularly. The goal of this study was to investigate the cause of the variation in phase lead between regular and irregular afferents at high-frequency head rotations. Under the assumption that externally applied galvanic currents act directly on the nerve, we derived a transfer function describing the dynamics of a semicircular canal and its hair cells through comparison of responses to sinusoidally modulated head velocity and currents. Responses of all afferents were fit well with a transfer function with one zero (lead term). Best-fit lead terms describing responses to current for each group of afferents were similar to the lead term describing responses to head velocity for regular afferents (0.006 s + 1). This finding indicated that the pre-synaptic and synaptic inputs to regular afferents were likely to be pure velocity transducers. However, the variation in phase lead between regular and irregular afferents could not be explained solely by the ratio of type I to II hair cells (Baird et al 1988), suggesting that the variation was caused by a combination of pre- (type of hair cell) and post-synaptic properties.

  16. Rare human nerve growth factor-β mutation reveals relationship between C-afferent density and acute pain evaluation.

    PubMed

    Perini, Irene; Tavakoli, Mitra; Marshall, Andrew; Minde, Jan; Morrison, India

    2016-08-01

    The rare nerve growth factor-β (NGFB) mutation R221W causes a selective loss of thinly myelinated fibers and especially unmyelinated C-fibers. Carriers of this mutation show altered pain sensation. A subset presents with arthropathic symptoms, with the homozygous most severely affected. The aim of the present study was to investigate the relationship between peripheral afferent loss and pain evaluation by performing a quantification of small-fiber density in the cornea of the carriers, relating density to pain evaluation measures. In vivo corneal confocal microscopy (CCM) was used to quantify C-fiber loss in the cornea of 19 R221W mutation carriers (3 homozygous) and 19 age-matched healthy control subjects. Pain evaluation data via the Situational Pain Questionnaire (SPQ) and the severity of neuropathy based on the Neuropathy Disability Score (NDS) were assessed. Homozygotes, heterozygotes, and control groups differed significantly in corneal C-nerve fiber density, with the homozygotes showing a significant afferent reduction. Importantly, peripheral C-fiber loss correlated negatively with pain evaluation, as revealed by SPQ scores. This study is the first to investigate the contribution of small-fiber density to the perceptual evaluation of pain. It demonstrates that the lower the peripheral small-fiber density, the lower the degree of reported pain intensity, indicating a functional relationship between small-fiber density and higher level pain experience. PMID:27146986

  17. Morphologic Characterization of Nerves in Whole-Mount Airway Biopsies

    PubMed Central

    Canning, Brendan J.; Merlo-Pich, Emilio; Woodcock, Ashley A.; Smith, Jaclyn A.

    2015-01-01

    Rationale: Neuroplasticity of bronchopulmonary afferent neurons that respond to mechanical and chemical stimuli may sensitize the cough reflex. Afferent drive in cough is carried by the vagus nerve, and vagal afferent nerve terminals have been well defined in animals. Yet, both unmyelinated C fibers and particularly the morphologically distinct, myelinated, nodose-derived mechanoreceptors described in animals are poorly characterized in humans. To date there are no distinctive molecular markers or detailed morphologies available for human bronchopulmonary afferent nerves. Objectives: Morphologic and neuromolecular characterization of the afferent nerves that are potentially involved in cough in humans. Methods: A whole-mount immunofluorescence approach, rarely used in human lung tissue, was used with antibodies specific to protein gene product 9.5 (PGP9.5) and, for the first time in human lung tissue, 200-kD neurofilament subunit. Measurements and Main Results: We have developed a robust technique to visualize fibers consistent with autonomic and C fibers and pulmonary neuroendocrine cells. A group of morphologically distinct, 200-kD neurofilament-immunopositive myelinated afferent fibers, a subpopulation of which did not express PGP9.5, was also identified. Conclusions: PGP9.5-immunonegative nerves are strikingly similar to myelinated airway afferents, the cough receptor, and smooth muscle–associated airway receptors described in rodents. These have never been described in humans. Full description of human airway nerves is critical to the translation of animal studies to the clinical setting. PMID:25906337

  18. Auricular vagus nerve stimulation promotes functional recovery and enhances the post-ischemic angiogenic response in an ischemia/reperfusion rat model.

    PubMed

    Jiang, Ying; Li, Longling; Ma, Jingxi; Zhang, Lina; Niu, Fei; Feng, Tao; Li, Changqing

    2016-07-01

    Electrical stimulation of the vagus nerve, which has been used to treat epilepsy patients since 1997, also enhances long-term restoration after central nervous system (CNS) injury. Angiogenesis is a complex restorative mechanism that occurs in response to ischemic stroke, and it positively affects the recovery of neurological functions in a rat model of stroke. The aims of our study were to determine whether auricular vagus nerve stimulation (aVNS) promoted functional recovery and enhanced angiogenesis in the ischemic boundary following ischemia/reperfusion and to uncover the possible molecular mechanisms that are involved. Adult male Sprague-Dawley (SD) rats underwent transient middle cerebral artery occlusion (tMCAO) surgery and received repeated electrical stimulation of the left cavum concha starting 30 min after ischemia. For the following 21 days, we evaluated functional recovery at different time points using neurological deficit scores, the beam-walking test and the staircase test. The infarct volume was measured using TTC staining at 24 h post reperfusion, neuronal survival in the ischemic penumbra was assessed using hematoxylin and eosin (HE) staining. Microvessel density and endothelial cell proliferation in the ischemic boundary were assessed using immunofluorescence. The expression levels of brain-derived neurotrophic factor (BDNF), endothelial nitric oxide synthase (eNOS) and vascular endothelial growth factor (VEGF) in the ischemic penumbra were also evaluated. Our results showed that aVNS had significant neuroprotective effects and enhanced angiogenesis, which was demonstrated by improvements in the behavioral scores and brain histopathology, including increased levels of microvessel density and endothelial cell proliferation surrounding the infarct area. Furthermore, BDNF, eNOS and VEGF were expressed at higher levels in the I/R + aVNS group than in the I/R group or the I/R + sham aVNS group (p < 0.05). Our findings suggest that repeated a

  19. NON-INVASIVE COMPUTERIZED SYSTEM FOR AUTOMATICALLY INITIATING VAGUS NERVE STIMULATION FOLLOWING PATIENT-SPECIFIC DETECTION OF SEIZURES OR EPILEPTIFORM DISCHARGES

    PubMed Central

    SHOEB, ALI; PANG, TRUDY; GUTTAG, JOHN; SCHACHTER, STEVEN

    2013-01-01

    Objective To demonstrate the feasibility of using a computerized system to detect the onset of a seizure and, in response, initiate Vagus nerve stimulation (VNS) in patients with medically refractory epilepsy. Methods We designed and built a non-invasive, computerized system that automatically initiates VNS following the real-time detection of a pre-identified seizure or epileptiform discharge. The system detects these events through patient-specific analysis of the scalp electroencephalogram (EEG) and electrocardiogram (ECG) signals. Results We evaluated the performance of the system on 5 patients (A–E). For patients A and B the computerized system initiated VNS in response to seizures; for patients C and D the system initiated VNS in response to epileptiform discharges; and for patient E neither seizures nor epileptiform discharges were observed during the evaluation period. During the 81 hour clinical test of the system on patient A, the computerized system detected 5/5 seizures and initiated VNS within 5 seconds of the appearance of ictal discharges in the EEG; VNS did not seem to alter the electrographic or behavioral characteristics of the seizures in this case. During the same testing session the computerized system initiated false stimulations at the rate of 1 false stimulus every 2.5 hours while the subject was at rest and not ambulating. During the 26 hour clinical test of the system on patient B, the computerized system detected 1/1 seizures and initiated VNS within 16 seconds of the appearance of ictal discharges; VNS did not alter the electrographic duration of the seizure but decreased anxiety and increased awareness during the post-seizure recovery phase. During the same testing session the computerized system did not declare any false detections. Significance Initiating Vagus nerve stimulation soon after the onset of a seizure may abort or ameliorate seizure symptoms in some patients; unfortunately, a significant number of patients cannot initiate

  20. TRPV1-dependent regulation of synaptic activity in the mouse dorsal motor nucleus of the vagus nerve

    PubMed Central

    Anwar, Imran J.; Derbenev, Andrei V.

    2013-01-01

    The dorsal motor nucleus of the vagus (DMV) is a key integrative point of the parasympathetic neuronal network localized in the dorsal vagal complex. Activity of neurons in the DMV is closely regulated by synaptic inputs, and regulation of excitatory and inhibitory synapsis by transient receptor potential vanilloid type 1 (TRPV1) has been demonstrated. Activation of TRPV1 by heat, protons, endovanilloids, endocannabinoids, and inflammatory mediators is well established. In our study we hypothesized that TRPV1 contributes to the synaptic transmission of DMV neurons at physiological range of temperature without additional stimuli. Using whole-cell patch-clamp recordings we evaluated the effect of a rapid increase of temperature on excitatory and inhibitory neurotransmission and the contribution of TRPV1 to this response. Rapid increase of temperature from 25 to 37°C increased the frequency of miniature excitatory post-synaptic currents (mEPSC) by 351.7%. The frequency of miniature inhibitory post-synaptic currents (mIPSC) also increased by 184.7%. 5′-iodoresiniferatoxin (5′-iRFT), a selective TRPV1 antagonist, prevented the increase of mEPSC and mIPSC frequency. In summary, our data demonstrate that at physiological range of temperature TRPV1 contributes to presynaptic neurotransmission of DMV neurons. PMID:24379754

  1. Putative roles of neuropeptides in vagal afferent signaling

    PubMed Central

    de Lartigue, Guillaume

    2014-01-01

    The vagus nerve is a major pathway by which information is communicated between the brain and peripheral organs. Sensory neurons of the vagus are located in the nodose ganglia. These vagal afferent neurons innervate the heart, the lung and the gastrointestinal tract, and convey information about peripheral signals to the brain important in the control of cardiovascular tone, respiratory tone, and satiation, respectively. Glutamate is thought to be the primary neurotransmitter involved in conveying all of this information to the brain. It remains unclear how a single neurotransmitter can regulate such an extensive list of physiological functions from a wide range of visceral sites. Many neurotransmitters have been identified in vagal afferent neurons and have been suggested to modulate the physiological functions of glutamate. Specifically, the anorectic peptide transmitters, cocaine and amphetamine regulated transcript (CART) and the orexigenic peptide transmitters, melanin concentrating hormone (MCH) are differentially regulated in vagal afferent neurons and have opposing effects on food intake. Using these two peptides as a model, this review will discuss the potential role of peptide transmitters in providing a more precise and refined modulatory control of the broad physiological functions of glutamate, especially in relation to the control of feeding. PMID:24650553

  2. High sensitivity recording of afferent nerve activity using ultra-compliant microchannel electrodes: an acute in vivo validation

    NASA Astrophysics Data System (ADS)

    Minev, Ivan R.; Chew, Daniel J.; Delivopoulos, Evangelos; Fawcett, James W.; Lacour, Stéphanie P.

    2012-04-01

    Neuroprostheses interfaced with transected peripheral nerves are technological routes to control robotic limbs as well as convey sensory feedback to patients suffering from traumatic neural injuries or degenerative diseases. To maximize the wealth of data obtained in recordings, interfacing devices are required to have intrafascicular resolution and provide high signal-to-noise ratio (SNR) recordings. In this paper, we focus on a possible building block of a three-dimensional regenerative implant: a polydimethylsiloxane (PDMS) microchannel electrode capable of highly sensitive recordings in vivo. The PDMS 'micro-cuff' consists of a 3.5 mm long (100 µm × 70 µm cross section) microfluidic channel equipped with five evaporated Ti/Au/Ti electrodes of sub-100 nm thickness. Individual electrodes have average impedance of 640 ± 30 kΩ with a phase angle of -58 ± 1 degrees at 1 kHz and survive demanding mechanical handling such as twisting and bending. In proof-of-principle acute implantation experiments in rats, surgically teased afferent nerve strands from the L5 dorsal root were threaded through the microchannel. Tactile stimulation of the skin was reliably monitored with the three inner electrodes in the device, simultaneously recording signal amplitudes of up to 50 µV under saline immersion. The overall SNR was approximately 4. A small but consistent time lag between the signals arriving at the three electrodes was observed and yields a fibre conduction velocity of 30 m s-1. The fidelity of the recordings was verified by placing the same nerve strand in oil and recording activity with hook electrodes. Our results show that PDMS microchannel electrodes open a promising technological path to 3D regenerative interfaces.

  3. Transcutaneous auricular vagus nerve stimulation regulates expression of growth differentiation factor 11 and activin-like kinase 5 in cerebral ischemia/reperfusion rats.

    PubMed

    Ma, Jingxi; Zhang, Lina; He, Guoqian; Tan, Xiaodan; Jin, Xinhao; Li, Changqing

    2016-10-15

    Growth differentiation factor 11 (GDF11), as a rejuvenation factor in heterochronic parabiosis, can increase proliferation of primary brain capillary endothelial cells (ECs). However, the angiogenic role of GDF11 in ischemia-induced brain injury is still unclear. There are no previous reports on the spatiotemporal expression of GDF11 in cerebral ischemia/reperfusion (I/R) rats. Our recent work has strongly suggested that transcutaneous auricular vagus nerve stimulation (ta-VNS) reduces infarct size and induces angiogenesis in focal cerebral I/R rats. This study focused on expression of GDF11 and activin-like kinase 5 (ALK5) and the effects of ta-VNS in a rat cerebral I/R model. For ta-VNS, electrical stimulation of the left cavum concha (1h duration) using percutaneous needles was initiated 30min after induction of ischemia. Expression of GDF11 was analyzed by enzyme-linked immunosorbent assay, immunohistochemistry, real-time polymerase chain reaction, and western blot 24h, 3d, and 7d after reperfusion. In addition, neurobehavioral function, EC proliferation, and expression of ALK5 in ECs in the peri-infarct cortex were measured. Results showed that levels of GDF11 were significantly elevated after cerebral I/R, both in plasma and the peri-infarct cerebral cortex. Interestingly, splenic GDF11 levels decreased after ischemia. ALK5 was expressed in ECs in the peri-infarct cerebral cortex where active vessel remodeling was noted. ta-VNS improved neurobehavioral recovery, upregulated cerebral GDF11 and downregulated splenic GDF11, indicating a brain-spleen communication during stroke. ta-VNS also increased expression of ALK5 in ECs and stimulated proliferation of ECs. These results suggest that, after cerebral ischemia, GDF11 redistributes and participates in angiogenesis as an angiogenic factor that acts at least in part through ALK5. GDF11/ALK5 may represent a new potential therapy target for stroke. PMID:27653860

  4. Sympathetic preganglionic efferent and afferent neurons mediated by the greater splanchnic nerve in rabbit

    NASA Technical Reports Server (NTRS)

    Torigoe, Yasuhiro; Cernucan, Roxana D.; Nishimoto, Jo Ann S.; Blanks, Robert H. I.

    1985-01-01

    As a part of the study of the vestibular-autonomic pathways involved in motion sickness, the location and the morphology of preganglionic sympathetic neurons (PSNs) projecting via the greater splanchnic nerve were examined. Retrograde labeling of neurons was obtained by application of horseradish peroxidase to the cut end of the greater splanchnic nerve. Labeled PSNs were found, ipsilaterally, within the T1 to T11 spinal cord segments, with the highest density of neurons in T6. Most PSNs were located within the intermediolateral column, but a significant portion also occurred within the lateral funiculus, the intercalated region, and the central autonomic area; the proportion of labeling between the four regions depended on the spinal cord segment.

  5. Endogenous Prostaglandins and Afferent Sensory Nerves in Gastroprotective Effect of Hydrogen Sulfide against Stress-Induced Gastric Lesions

    PubMed Central

    Magierowski, Marcin; Jasnos, Katarzyna; Kwiecien, Slawomir; Drozdowicz, Danuta; Surmiak, Marcin; Strzalka, Malgorzata; Ptak-Belowska, Agata; Wallace, John L.; Brzozowski, Tomasz

    2015-01-01

    Hydrogen sulfide (H2S) plays an important role in human physiology, exerting vasodilatory, neuromodulatory and anti-inflammatory effects. H2S has been implicated in the mechanism of gastrointestinal integrity but whether this gaseous mediator can affect hemorrhagic lesions induced by stress has been little elucidated. We studied the effect of the H2S precursor L-cysteine, H2S-donor NaHS, the H2S synthesizing enzyme (CSE) activity inhibitor- D,L-propargylglycine (PAG) and the gastric H2S production by CSE/CBS/3-MST activity in water immersion and restraint stress (WRS) ulcerogenesis and the accompanying changes in gastric blood flow (GBF). The role of endogenous prostaglandins (PGs) and sensory afferent nerves releasing calcitonin gene-related peptide (CGRP) in the mechanism of gastroprotection induced by H2S was examined in capsaicin-denervated rats and those pretreated with capsazepine to inhibit activity of vanilloid receptors (VR-1). Rats were pretreated with vehicle, NaHS, the donor of H2S and or L-cysteine, the H2S precursor, with or without the concurrent treatment with 1) nonselective (indomethacin) and selective cyclooxygenase (COX)-1 (SC-560) or COX-2 (rofecoxib) inhibitors. The expression of mRNA and protein for COX-1 and COX-2 were analyzed in gastric mucosa pretreated with NaHS with or without PAG. Both NaHS and L-cysteine dose-dependently attenuated severity of WRS-induced gastric lesions and significantly increased GBF. These effects were significantly reduced by pretreatment with PAG and capsaicin denervation. NaHS increased gastric H2S production via CSE/CBS but not 3-MST activity. Inhibition of COX-1 and COX-2 activity significantly diminished NaHS- and L-cysteine-induced protection and hyperemia. NaHS increased expression of COX-1, COX-2 mRNAs and proteins and raised CGRP mRNA expression. These effects of NaHS on COX-1 and COX-2 protein contents were reversed by PAG and capsaicin denervation. We conclude that H2S exerts gastroprotection against

  6. Vagal afferent projections to lobule VIIa of the rabbit cerebellar vermis related to cardiovascular control.

    PubMed

    Kondo, M; Sears, T A; Sadakane, K; Nisimaru, N

    1998-02-01

    In decerebrate rabbits we recorded simultaneously field potentials in lobule VIIa of the vermal cerebellar cortex and the vagal compound action potentials (vCAPs) proximally in the vagus nerve following electrical stimulation distally in the same nerve at different intensities. Four principal components of the vCAP were distinguished based on their peak conduction velocities. Their velocities were component I, 67-100 m/s; II, 28-50 m/s; III, 6-28 m/s, IV, 0.4-1.3 m/s. A collision test based on stimulating the recurrent laryngeal nerve identified component I and sub-component IIa of the vCAP as being due to the motor fibres of the descending limb of the nerve. The field potentials evoked in lobule VIIa by electrical stimulation of the cervical vagus nerve were climbing fibre responses as judged by the characteristics of their lamina profile and their response to high frequency stimulation. These field potentials in lobule VIIa correlated most closely with the component III of the vCAP; particularly with a sub-component IIIa of the vagus. Based on the investigations by Evans and Murray (1954) (Histological and functional studies on the fibre composition of the vagus nerve of the rabbit. J. Anat. (Lond.) 88, 320-337) in the rabbit, and by Paintal (1963) (Vagal afferent fibres. Ergeb. Physiol. 52, 74-156) and Mei (1970) (Cardiovascular and respiratory vagal mechanoreceptors in the cat. Exp. Brain Res. 11, 480-501) in the cat, component III is most likely to be due to receptors from the heart and a part of the pulmonary stretch receptors.

  7. Contribution of afferent pathways to nerve injury-induced spontaneous pain and evoked hypersensitivity.

    PubMed

    King, Tamara; Qu, Chaoling; Okun, Alec; Mercado, Ramon; Ren, Jiyang; Brion, Triza; Lai, Josephine; Porreca, Frank

    2011-09-01

    A predominant complaint in patients with neuropathic pain is spontaneous pain, often described as burning. Recent studies have demonstrated that negative reinforcement can be used to unmask spontaneous neuropathic pain, allowing for mechanistic investigations. Here, ascending pathways that might contribute to evoked and spontaneous components of an experimental neuropathic pain model were explored. Desensitization of TRPV1-positive fibers with systemic resiniferatoxin (RTX) abolished spinal nerve ligation (SNL) injury-induced thermal hypersensitivity and spontaneous pain, but had no effect on tactile hypersensitivity. Ablation of spinal NK-1 receptor-expressing neurons blocked SNL-induced thermal and tactile hypersensitivity as well as spontaneous pain. After nerve injury, upregulation of neuropeptide Y (NPY) is observed almost exclusively in large-diameter fibers, and inactivation of the brainstem target of these fibers in the nucleus gracilis prevents tactile but not thermal hypersensitivity. Blockade of NPY signaling within the nucleus gracilis failed to block SNL-induced spontaneous pain or thermal hyperalgesia while fully reversing tactile hypersensitivity. Moreover, microinjection of NPY into nucleus gracilis produced robust tactile hypersensitivity, but failed to induce conditioned place aversion. These data suggest that spontaneous neuropathic pain and thermal hyperalgesia are mediated by TRPV1-positive fibers and spinal NK-1-positive ascending projections. In contrast, the large-diameter dorsal column projection can mediate nerve injury-induced tactile hypersensitivity, but does not contribute to spontaneous pain. Because inhibition of tactile hypersensitivity can be achieved either by spinal manipulations or by inactivation of signaling within the nucleus gracilis, the enhanced paw withdrawal response evoked by tactile stimulation does not necessarily reflect allodynia.

  8. Differential inhibitory control of semicircular canal nerve afferent-evoked inputs in second-order vestibular neurons by glycinergic and GABAergic circuits.

    PubMed

    Biesdorf, Stefan; Malinvaud, David; Reichenberger, Ingrid; Pfanzelt, Sandra; Straka, Hans

    2008-04-01

    Labyrinthine nerve-evoked monosynaptic excitatory postsynaptic potentials (EPSPs) in second-order vestibular neurons (2 degrees VN) sum with disynaptic inhibitory postsynaptic potentials (IPSPs) that originate from the thickest afferent fibers of the same nerve branch and are mediated by neurons in the ipsilateral vestibular nucleus. Pharmacological properties of the inhibition and the interaction with the afferent excitation were studied by recording monosynaptic responses of phasic and tonic 2 degrees VN in an isolated frog brain after electrical stimulation of individual semicircular canal nerves. Specific transmitter antagonists revealed glycine and GABA(A) receptor-mediated IPSPs with a disynaptic onset only in phasic but not in tonic 2 degrees VN. Compared with GABAergic IPSPs, glycinergic responses in phasic 2 degrees VN have larger amplitudes and a longer duration and reduce early and late components of the afferent nerve-evoked subthreshold activation and spike discharge. The difference in profile of the disynaptic glycinergic and GABAergic inhibition is compatible with the larger number of glycinergic as opposed to GABAergic terminal-like structures on 2 degrees VN. The increase in monosynaptic excitation after a block of the disynaptic inhibition in phasic 2 degrees VN is in part mediated by a N-methyl-d-aspartate receptor-activated component. Although inhibitory inputs were superimposed on monosynaptic EPSPs in tonic 2 degrees VN as well, the much longer latency of these IPSPs excludes a control by short-latency inhibitory feed-forward side-loops as observed in phasic 2 degrees VN. The differential synaptic organization of the inhibitory control of labyrinthine afferent signals in phasic and tonic 2 degrees VN is consistent with the different intrinsic signal processing modes of the two neuronal types and suggests a co-adaptation of intrinsic membrane properties and emerging network properties. PMID:18256163

  9. Changes in vagal afferent drive alter tracheobronchial coughing in anesthetized cats.

    PubMed

    Simera, Michal; Poliacek, Ivan; Veternik, Marcel; Babalova, Lucia; Kotmanova, Zuzana; Jakus, Jan

    2016-08-01

    Unilateral cooling of the vagus nerve (<5°C, blocking mainly conductivity of myelinated fibers) and unilateral vagotomy were employed to reduce cough afferent drive in order to evaluate the effects of these interventions on the temporal features of the cough reflex. Twenty pentobarbitone anesthetized, spontaneously breathing cats were used. Cough was induced by mechanical stimulation of the tracheobronchial airways. The number of coughs during vagal cooling was significantly decreased (p<0.001). Inspiratory cough efforts were reduced by approximately 30% (p<0.001) and expiratory motor drive by more than 80% (p<0.001). Temporal analysis showed prolonged inspiratory and expiratory phases, the total cycle duration, its active portion, and the interval between maxima of the diaphragm and the abdominal activity during coughing (p<0.001). There was no significant difference in the average effects on the cough reflex between cooling of the left or the right vagus nerve. Compared to control, vagal cooling produced no significant difference in heart rate and mean arterial blood pressure (p>0.05), however, cold block of vagal conduction reduced respiratory rate (p<0.001). Unilateral vagotomy significantly reduced cough number, cough-related diaphragmatic activity, and relative values of maximum expiratory esophageal pressure (all p<0.05). Our results indicate that reduced cough afferent drive (lower responsiveness) markedly attenuates the motor drive to respiratory pump muscles during coughing and alters cough temporal features. Differences in the effects of unilateral vagal cooling and vagotomy on coughing support an inhibitory role of sensory afferents that are relatively unaffected by cooling of the vagus nerve to 5°C on mechanically induced cough. PMID:27184303

  10. Augmented activity of the pelvic nerve afferent mediated by TRP channels in dextran sulfate sodium (DSS)-induced colitis of rats.

    PubMed

    Makimura, Yukitoshi; Ito, Koichi; Kuwahara, Masayoshi; Tsubone, Hirokazu

    2012-08-01

    Enteritis has been recognized as a major symptom in domestic animals and human patients suffering from feed and food poisonings. The aim of the present study was to clarify the excitatory mechanism of the pelvic nerve afferent which may influence the occurrence of enteritis in response to nociceptive chemical stimuli of the colon in normal and abnormal rats with colitis induced by dextran sulfate sodium (DSS). The pelvic nerve afferent activity was markedly increased by colonic instillation of solution (0.5 ml) of acetic acid (5-25%) and capsaicin (100 μg/ml). The nerve activity was augmented by colonic instillation of capsaicin to a greater extent in rats with DSS-induced colitis than in normal control rats. This augmented activity by capsaicin was more prominent at one day (DSS-1) than at 8 day (DSS-8) after the administration of DSS. The increased nerve activity caused by capsaicin in DSS-1 and DSS-8 was significantly inhibited by pretreatment with ruthenium red, which is a nonselective inhibitor of TRP channels of unmyelinated C-fibers (nociceptors). In conclusion, it was elucidated that the nociceptive function of the pelvic nerve was largely elevated at one day after DSS-induced colitis and such increased function was mostly mediated by TRP channels.

  11. Putative role of epithelial sodium channels (ENaC) in the afferent limb of cardio renal reflexes in rats.

    PubMed

    Ditting, Tilmann; Linz, Peter; Hilgers, Karl F; Jung, Oliver; Geiger, Helmut; Veelken, Roland

    2003-11-01

    Recent studies suggest a role of ion channels of the DEG/ENaC family for mechanosensation in different species and in baroreceptor reflex control in rats. We tested the hypothesis that ENaC within the cardiac sensory network are mandatory for mechanosensation. Experiments were performed in male Sprague-Dawley rats, isolated nodose ganglion cells with cardiac afferents and isolated vagus nerves. Epicardial delivery of the amiloride analogue benzamil intended to specifically inhibit ENaC presumably located on cardiac sensory afferents indeed blunted the mechanosensitive (i. e., sympathoinhibition by intravenous volume loading [-32% and -42% in treated groups vs. -67% in controls; n = 7 each; p < 0.05]) as well as-though to a lesser extent-the 5-HT(3)-mediated chemosensitive cardiorenal reflex in vivo in a dose-dependent manner. Using patch clamp technique, however, it turned out that neither amiloride nor benzamil influenced mechanically induced currents in ganglion nodosum cells in vitro, stimulated by hypoosmotic stress. The unspecific stretch activated ion channel blocker gadolinium completely abolished mechanically induced currents, indicating respective cells were mechanosensitive. In isolated vagus nerves benzamil impaired action potentials obtained by electrical stimulation (C-spike amplitude [-33%]; latency [+12%]; n = 8; p < 0.05). Our findings at least cast doubt on ENaC exclusively playing a specific role as mechanotransducers within the cardiac sensory network. Other ion channels might be involved. Furthermore the observed findings in vivo could also be due to unspecific disturbance of afferent signal conduction. PMID:14556084

  12. Bipolar spinal cord stimulation attenuates mechanical hypersensitivity at an intensity that activates a small portion of A-fiber afferents in spinal nerve-injured rats.

    PubMed

    Yang, F; Carteret, A F; Wacnik, P W; Chung, C-Y; Xing, L; Dong, X; Meyer, R A; Raja, S N; Guan, Y

    2011-12-29

    Spinal cord stimulation (SCS) is used clinically to treat neuropathic pain states, but the precise mechanism by which it attenuates neuropathic pain remains to be established. The profile of afferent fiber activation during SCS and how it may correlate with the efficacy of SCS-induced analgesia are unclear. After subjecting rats to an L5 spinal nerve ligation (SNL), we implanted a miniature quadripolar electrode similar to that used clinically. Our goal was to determine the population and number of afferent fibers retrogradely activated by SCS in SNL rats by recording the antidromic compound action potential (AP) at the sciatic nerve after examining the ability of bipolar epidural SCS to alleviate mechanical hypersensitivity in this model. Notably, we compared the profiles of afferent fiber activation to SCS between SNL rats that exhibited good SCS-induced analgesia (responders) and those that did not (nonresponders). Additionally, we examined how different contact configurations affect the motor threshold (MoT) and compound AP threshold. Results showed that three consecutive days of SCS treatment (50 Hz, 0.2 ms, 30 min, 80-90% of MoT), but not sham stimulation, gradually alleviated mechanical hypersensitivity in SNL rats. The MoT obtained in the animal behavioral study was significantly less than the Aα/β-threshold of the compound AP determined during electrophysiological recording, suggesting that SCS could attenuate mechanical hypersensitivity with a stimulus intensity that recruits only a small fraction of the A-fiber population in SNL rats. Although both the MoT and compound AP threshold were similar between responders and nonresponders, the size of the compound AP waveform at higher stimulation intensities was larger in the responders, indicating a more efficient activation of the dorsal column structure in responders. PMID:22001681

  13. Identification of bladder and colon afferents in the nodose ganglia of male rats.

    PubMed

    Herrity, April N; Rau, Kristofer K; Petruska, Jeffrey C; Stirling, David P; Hubscher, Charles H

    2014-11-01

    The sensory neurons innervating the urinary bladder and distal colon project to similar regions of the central nervous system and often are affected simultaneously by various diseases and disorders, including spinal cord injury. Anatomical and physiological commonalities between the two organs involve the participation of shared spinally derived pathways, allowing mechanisms of communication between the bladder and colon. Prior electrophysiological data from our laboratory suggest that the bladder also may receive sensory innervation from a nonspinal source through the vagus nerve, which innervates the distal colon as well. The present study therefore aimed to determine whether anatomical evidence exists for vagal innervation of the male rat urinary bladder and to assess whether those vagal afferents also innervate the colon. Additionally, the relative contribution to bladder and colon sensory innervation of spinal and vagal sources was determined. By using lipophilic tracers, neurons that innervated the bladder and colon in both the nodose ganglia (NG) and L6/S1 and L1/L2 dorsal root ganglia (DRG) were quantified. Some single vagal and spinal neurons provided dual innervation to both organs. The proportions of NG afferents labeled from the bladder did not differ from spinal afferents labeled from the bladder when considering the collective population of total neurons from either group. Our results demonstrate evidence for vagal innervation of the bladder and colon and suggest that dichotomizing vagal afferents may provide a neural mechanism for cross-talk between the organs. PMID:24845615

  14. Vagus nerve stimulation therapy: 2-year prospective open-label study of 40 subjects with refractory epilepsy and low IQ who are living in long-term care facilities.

    PubMed

    Huf, Roger L; Mamelak, Adam; Kneedy-Cayem, Kara

    2005-05-01

    Treating seizures among patients with mental retardation/developmental disabilities (MR/DD) is difficult owing in large part to the presence of additional comorbidities and the resulting need for polytherapy. Therefore, a nonpharmacological treatment option is needed for this population. This prospective, open-label study documented the long-term outcome of 40 low-IQ (<70) patients living in long-term care facilities who received vagus nerve stimulation (VNS) therapy for pharmacoresistant epilepsy. Subjects were seen every 1 to 3 months by their neurologist (R.H.). Seizure frequency, antiepileptic medication, and quality-of-life information were documented preimplantation and quarterly thereafter through 2 years. The surgery and therapy were well tolerated. Seizures were reduced by at least 50% for 11 subjects. Antiepileptic medications were reduced from 3.3 per subject at baseline to an average of 2.3 per subject after 2 years. According to caregiver reports, overall quality of life improved for the majority of subjects; also, using the Client Development Evaluation Report (CDER), statistically significant improvements were reported at both 1 and 2 years in attention span, word usage, clarity of speech, standing balance, washing dishes, and household chores. VNS is a viable treatment option for low-IQ patients with pharmacoresistant epilepsy who are living in long-term care facilities. PMID:15820352

  15. Selective inhibition of vagal afferent nerve pathways regulating cough using Nav 1.7 shRNA silencing in guinea pig nodose ganglia.

    PubMed

    Muroi, Yukiko; Ru, Fei; Chou, Yang-Ling; Carr, Michael J; Undem, Bradley J; Canning, Brendan J

    2013-06-01

    Adeno-associated virus delivery systems and short hairpin RNA (shRNA) were used to selectively silence the voltage-gated sodium channel NaV 1.7 in the nodose ganglia of guinea pigs. The cough reflex in these animals was subsequently assessed. NaV 1.7 shRNA was delivered to the majority of nodose ganglia neurons [50-60% transfection rate determined by green fluorescent protein (GFP) gene cotransfection] and action potential conduction in the nodose vagal nerve fibers, as evaluated using an extracellular recording technique, was markedly and significantly reduced. By contrast, <5% of neurons in the jugular vagal ganglia neurons were transfected, and action potential conduction in the jugular vagal nerve fibers was unchanged. The control virus (with GFP expression) was without effect on action potential discharge and conduction in either ganglia. In vivo, NaV 1.7 silencing in the nodose ganglia nearly abolished cough evoked by mechanically probing the tracheal mucosa in anesthetized guinea pigs. Stimuli such as capsaicin and bradykinin that are known to stimulate both nodose and jugular C-fibers evoked coughing in conscious animals was unaffected by NaV 1.7 silencing in the nodose ganglia. Nodose C-fiber selective stimuli including adenosine, 2-methyl-5-HT, and ATP all failed to evoke coughing upon aerosol challenge. These results indicate that cough is independently regulated by two vagal afferent nerve subtypes in guinea pigs, with nodose Aδ fibers regulating cough evoked mechanically from the trachea and bradykinin- and capsaicin-evoked cough regulated by C-fibers arising from the jugular ganglia.

  16. The somatostatin receptor 4 agonist J-2156 reduces mechanosensitivity of peripheral nerve afferents and spinal neurons in an inflammatory pain model.

    PubMed

    Schuelert, Niklas; Just, Stefan; Kuelzer, Raimund; Corradini, Laura; Gorham, Louise C J; Doods, Henri

    2015-01-01

    Somatostatin (SST) is a peptide hormone that regulates the endocrine system and affects neurotransmission via interaction with G protein-coupled SST receptors and inhibition of the release of different hormones. The aim of this study was to investigate whether the analgesic properties of the selective SSTR4 agonist J-2156 are mediated via peripheral and/or spinal receptors. Effect on mechanical hyperalgesia in the Complete Freund׳s Adjuvant (CFA) model was measured after intraperitoneal application of J-2156. Electrophysiological neuronal recordings were conducted 24 h after injection of CFA or vehicle into the paw of Wistar rats. Mechanosensitivity of peripheral afferents of the saphenous nerve as well as of spinal wide dynamic range (WDR) and nociceptive-specific (NS) neurons were measured after systemic or spinal application of J-2156. In CFA animals J-2156 dose dependently reduced hyperalgesia in behavioral studies. The minimal effective dose was 0.1 mg/kg. Mechanosensitivity of peripheral afferents and spinal neurons was significantly reduced by J-2156. NS neurons were dose dependently inhibited by J-2156 while in WDR neurons only the highest concentration of 100 µM had an effect. In sham controls, J-2156 had no effect on neuronal activity. We demonstrated that J-2156 dose-dependently reduces peripheral and spinal neuronal excitability in the CFA rat model without affecting physiological pain transmission. Given the high concentration of the compound required to inhibit spinal neurons, it is unlikely that the behavioral effect seen in CFA model is mediated centrally. Overall these data demonstrated that the analgesic effect of J-2156 is mediated mainly via peripheral SST4 receptors.

  17. Inputs from regularly and irregularly discharging vestibular nerve afferents to secondary neurons in squirrel monkey vestibular nuclei. III. Correlation with vestibulospinal and vestibuloocular output pathways

    NASA Technical Reports Server (NTRS)

    Boyle, R.; Goldberg, J. M.; Highstein, S. M.

    1992-01-01

    1. A previous study measured the relative contributions made by regularly and irregularly discharging afferents to the monosynaptic vestibular nerve (Vi) input of individual secondary neurons located in and around the superior vestibular nucleus of barbiturate-anesthetized squirrel monkeys. Here, the analysis is extended to more caudal regions of the vestibular nuclei, which are a major source of both vestibuloocular and vestibulospinal pathways. As in the previous study, antidromic stimulation techniques are used to classify secondary neurons as oculomotor or spinal projecting. In addition, spinal-projecting neurons are distinguished by their descending pathways, their termination levels in the spinal cord, and their collateral projections to the IIIrd nucleus. 2. Monosynaptic excitatory postsynaptic potentials (EPSPs) were recorded intracellularly from secondary neurons as shocks of increasing strength were applied to Vi. Shocks were normalized in terms of the threshold (T) required to evoke field potentials in the vestibular nuclei. As shown previously, the relative contribution of irregular afferents to the total monosynaptic Vi input of each secondary neuron can be expressed as a %I index, the ratio (x100) of the relative sizes of the EPSPs evoked by shocks of 4 x T and 16 x T. 3. Antidromic stimulation was used to type secondary neurons as 1) medial vestibulospinal tract (MVST) cells projecting to spinal segments C1 or C6; 2) lateral vestibulospinal tract (LVST) cells projecting to C1, C6; or L1; 3) vestibulooculo-collic (VOC) cells projecting both to the IIIrd nucleus and by way of the MVST to C1 or C6; and 4) vestibuloocular (VOR) neurons projecting to the IIIrd nucleus but not to the spinal cord. Most of the neurons were located in the lateral vestibular nucleus (LV), including its dorsal (dLV) and ventral (vLV) divisions, and adjacent parts of the medial (MV) and descending nuclei (DV). Cells receiving quite different proportions of their direct inputs

  18. Search for a cardiac nociceptor: stimulation by bradykinin of sympathetic afferent nerve endings in the heart of the cat.

    PubMed Central

    Baker, D G; Coleridge, H M; Coleridge, J C; Nerdrum, T

    1980-01-01

    1. We have examined the effect of bradykinin on impulse traffic in sympathetic afferent fibres from the heart, great vessels and pleura, and have attempted to identify cardiac nociceptors that on the basis of their functional characteristics might have a role in the initiation of cardiac pain. 2. In anaesthetized cats, we recorded afferent impulses from 'single-fibre' slips of the left 2nd--5th thoracic rami communicantes and associated chain, and selected fibres arising from endings in the heart, great vessels, pericardium and pleura. We applied bradykinin solution (0 . 1--1 . 0 microgram/ml.) locally to the site of the ending; we also injected bradykinin (0 . 3--1 . 0 microgram/kg) into the left atrium. 3. Afferent endings excited by bradykinin (159 of 191 tested) were of two types. The larger group (140) were primarily mechanoreceptors with A delta of C fibres (mean conduction velocity, 7 . 5 +/- 0 . 6 m/sec). They were very sensitive to light touch. Those located in the heart, great vessels or overlying pleura had a cardiac rhythm of discharge and were stimulated by an increase in blood pressure or cardiac volume. 4. Bradykinin increased mechanoreceptor firing from 0 . 7 +/- to 5 . 0 +/- 0 . 3 (mean +/- S.E. of mean) impulses/sec. Some endings appeared to be stimulated directly by bradykinin, others sensitized by it so that they responded more vigorously to the pulsatile mechanical stimulation associated with the cardiac cycle. 5. The smaller group of eighteen endings, of which ten were in the left ventricle, were primarily chemosensitive. Most had C fibres, a few had A delta fibres (mean conduction velocity, 2 . 3 +/- 0 . 7 m/sec). They were insensitive to light touch. With one exception they never fired with a cardiac rhythm, and even large increases in aortic or left ventricular pressure had little effect on impulse frequency. 6. Chemosensitive endings were stimulated by bradykinin, impulse activity increasing from 0 . 6 to 15 . 6 +/- 1 . 3 impulses/sec and

  19. Recovery of the ipsilateral oculotectal projection following nerve crush in the frog: evidence that retinal afferents make synapses at abnormal tectal locations.

    PubMed

    Adamson, J; Burke, J; Grobstein, P

    1984-10-01

    The ipsilateral oculotectal projection in the frog is a topographic mapping of the binocular part of the visual field of one eye on the ipsilateral tectal lobe. The underlying neuronal circuitry consists of the topographic, crossed retinotectal projection and an intertectal pathway which relays information from a given point in one tectal lobe to the visually corresponding point in the other. During optic nerve regeneration, there is a period when the terminals of retinotectal afferents are found at abnormal locations in the opposite tectal lobe. Whether they form functional synapses at this time is not known. If so, one would expect to observe correlated abnormalities in the ipsilateral oculotectal projection. To determine whether such abnormalities exist, we have made parallel electrophysiological studies of the recovery of the retinotectal and ipsilateral oculotectal projections following crush of one optic nerve. The earliest stage of recovery was characterized by a lack of significant topographic order in the retinotectal projection and by the absence of a physiologically observable ipsilateral projection. Within a short time, the retinotectal projection became topographically organized and a similarly organized ipsilateral projection appeared. While topographic, the retinotectal projection at intermediate times was abnormal in that the multiunit receptive fields recorded at individual tectal loci were greatly enlarged. Multiunit receptive fields were similarly enlarged in the ipsilateral projection. In addition, some ipsilateral fields included areas of visual space not normally represented in the projection. The abnormalities in both projections subsequently disappeared over the same time course. Throughout recovery there was a high correlation between multiunit receptive field sizes in the contralateral tectal lobe and those at visually corresponding points in the ipsilateral tectal lobe. Enlarged multiunit receptive fields in the contralateral tectal lobe

  20. Species differences in the reflex effects of lingual afferent nerve stimulation on lip blood flow and arterial pressure.

    PubMed

    Koeda, S; Yasuda, M; Izumi, H

    2003-11-01

    We evoked changes in lower lip blood flow and systemic arterial blood pressure by electrically stimulating the central cut end of the lingual nerve in artificially ventilated, urethane-anesthetized, cervically vago-sympathectomized cats, rats, rabbits, and guinea pig. The systemic arterial blood pressure changes were species-dependent: increases in rat, consistent decreases in rabbit and guinea pig, and variable among individuals in cat. In cat and rabbit, lip blood flow increases, which occurred only ipsilaterally to the stimulated nerve and showed no statistically significant correlation with the systemic arterial blood pressure changes. In rat, the ipsilateral lip blood flow increase was markedly greater than the contralateral one, and although there was a significant correlation between each of them and the systemic arterial blood pressure changes, the ipsilateral increase presumably included an active vasodilatation. In guinea pig, lip blood flow decreased on both sides in proportion to the systemic arterial blood pressure reductions. Thus, species variability exists in the sympathetic-mediated systemic arterial blood pressure changes and parasympathetic-mediated lip blood flow responses themselves, and in the relationship between them. PMID:12920546

  1. [Effects of afferent vagal stimulation and distention of the upper digestive tract on the micturition reflex and activity of the pontine micturition center in dogs].

    PubMed

    Moda, Y

    1992-12-01

    (1) The study was performed to elucidate the effects of afferent vagal stimulation and distension of the digestive tract on the micturition reflex in 21 acute decerebrate dogs immobilized with gallamine. Electrical stimulation of the central cut end of the cervical vagus nerve with high voltage (17.5-25 V) and moderate frequency (10-50 Hz) elicited in most cases inhibition of the periodic bladder contractions and of outflows of the pelvic vesical branch which were induced by a sustained intravesical pressure of 10-15 cmH2O. Distension of the thoracic esophagus, the stomach, and the duodenum also induced inhibition of the bladder contractions and of the pelvic outflow to the bladder. Such inhibitions were abolished after bilateral cervical vagotomies except a few cases of distension of the duodenum. (2) Another series of experiments were undertaken to clear the effect of afferent vagal stimulation on the electrical activity of the pontine micturition center in 10 acute decerebrate dogs. By means of an extracellular glass microelectrode method, unitary discharges synchronized with the grouping discharges in the pelvic vesical branch with a rhythm of 2.2-2.5 Hz were recorded from the pontine micturition center in the dorsolateral pontine tegmentum. Such a type of discharges was detected in 6 of 59 units which discharged by afferent stimulation of the pelvic vesical branch. This type of discharges was inhibited by afferent vagal stimulation at the supradiaphragmatic level. From these results, it may be concluded that the afferent pathway of the bladder relaxation reflex induced by distension of the upper digestive tract is mainly involved in the vagal nerves, but in some cases of the strong distension of the duodenum, the pathway is in splanchnic nerves, and that inhibition of the bladder contraction after stimulation of vagal nerve is induced by suppression of the pontine micturition centers.

  2. Vagus Nerve Stimulation for Treating Epilepsy

    MedlinePlus

    ... is the world’s largest association of neurologists and neuroscience professionals. Neurologists are doctors who identify and treat ... in these children. It also affects thinking and learning ability. Weak evidence shows VNS may help as ...

  3. [Vagus nerve stimulation in patients with migraine].

    PubMed

    Mosqueira, Antonio J; López-Manzanares, Lydia; Canneti, Beatrice; Barroso, Alejandro; García-Navarrete, Eduardo; Valdivia, Antonio; Vivancos, José

    2013-07-16

    Introduccion. La estimulacion del nervio vago (ENV) esta aprobada para el tratamiento de la epilepsia refractaria cuando no es posible cirugia resectiva, con una eficacia bien establecida. Series publicadas sugieren un efecto beneficioso de la ENV en la migraña. Objetivos. Determinar el grado de mejoria de la cefalea en pacientes migrañosos a los que se les habia implantado una ENV para tratamiento de la epilepsia refractaria y evaluar que variables se asocian a mayor posibilidad de exito con esta medida. Pacientes y metodos. Estudio observacional y retrospectivo desde el 1 de enero de 1999 hasta el 31 de diciembre de 2010. Se contacto telefonicamente con los pacientes con ENV para epilepsia refractaria, seleccionando a aquellos que cumplian los criterios de la Sociedad Internacional de Cefaleas para la migraña. Se recogieron edad, genero, año de implantacion, edad de inicio de la epilepsia y la migraña, mejoria de crisis y de migraña, presencia de aura migrañosa y coexistencia de sindrome ansiosodepresivo. Se contacto con 94 pacientes con ENV y se selecciono a 13 pacientes migrañosos. Resultados. Tras la implantacion de la ENV, se observo una disminucion de al menos el 50% de los episodios de migraña en nueve pacientes (69%) (p = 0,004), asi como una disminucion del numero de episodios de migraña en aquellos pacientes que tambien habian reducido sus crisis epilepticas (p = 0,012). No se observaron asociaciones estadisticamente significativas en cuanto al sexo, edad, tiempo de evolucion, existencia de aura migrañosa o coexistencia de sindrome ansiosodepresivo. Conclusiones. La ENV podria resultar beneficiosa en pacientes con migraña, especialmente en casos de dificil control. Debido al tipo estudio, hay que tomar estas conclusiones con precaucion. Seran necesarios estudios clinicos prospectivos antes de llevarse a la practica clinica habitual.

  4. Short-latency afferent inhibition determined by the sensory afferent volley.

    PubMed

    Bailey, Aaron Z; Asmussen, Michael J; Nelson, Aimee J

    2016-08-01

    Short-latency afferent inhibition (SAI) is characterized by the suppression of the transcranial magnetic stimulation motor evoked potential (MEP) by the cortical arrival of a somatosensory afferent volley. It remains unknown whether the magnitude of SAI reflects changes in the sensory afferent volley, similar to that observed for somatosensory evoked potentials (SEPs). The present study investigated stimulus-response relationships between sensory nerve action potentials (SNAPs), SAI, and SEPs and their interrelatedness. Experiment 1 (n = 23, age 23 ± 1.5 yr) investigated the stimulus-response profile for SEPs and SAI in the flexor carpi radialis muscle after stimulation of the mixed median nerve at the wrist using ∼25%, 50%, 75%, and 100% of the maximum SNAP and at 1.2× and 2.4× motor threshold (the latter equated to 100% of the maximum SNAP). Experiment 2 (n = 20, age 23.1 ± 2 yr) probed SEPs and SAI stimulus-response relationships after stimulation of the cutaneous digital nerve at ∼25%, 50%, 75%, and 100% of the maximum SNAP recorded at the elbow. Results indicate that, for both nerve types, SAI magnitude is dependent on the volume of the sensory afferent volley and ceases to increase once all afferent fibers within the nerve are recruited. Furthermore, for both nerve types, the magnitudes of SAI and SEPs are related such that an increase in excitation within somatosensory cortex is associated with an increase in the magnitude of afferent-induced MEP inhibition. PMID:27226451

  5. [Central projections of the rat superior laryngeal nerve].

    PubMed

    Pascual-Font, A; Maranillo, E; Merchán, A; Vázquez, T; Safiudo, J R; Valderrama-Canales, F

    2006-01-01

    Laryngeal nerves contain the fibres that control the laryngeal function. On the rat, the studies on the functional components and the real origin of the fibres conveyed by the superior laryngeal nerve (SLN) are few. No one of such works were developed using biotinylated dextrane amines (BDA), a powerful tool for tracing neural pathways. The aim of our study was to identify by using BDA, in the rat, the nuclei of real origin of the fibres of the SLN, knowing in this way the functional components of this nerve. The study has been developed in 11 adult male Sprague-Dawley rats, applying the BDA into the damaged SLN. The results obtained in all the animals shown that the rat SLN carries efferent fibres originated within the ipsilateral nucleus ambiguous (NA) and dorsal nucleus of the vagus (DNV), and that afferent fibres reach the tractus solitari and the nucleus tractus solitari. So, in the rat, the SLN seems to convey efferent fibres from the NA and DNV and, probably, all the laryngeal afferent fibres.

  6. The expression profile of acid-sensing ion channel (ASIC) subunits ASIC1a, ASIC1b, ASIC2a, ASIC2b, and ASIC3 in the esophageal vagal afferent nerve subtypes

    PubMed Central

    Dusenkova, Svetlana; Ru, Fei; Surdenikova, Lenka; Nassenstein, Christina; Hatok, Jozef; Dusenka, Robert; Banovcin, Peter; Kliment, Jan; Tatar, Milos

    2014-01-01

    Acid-sensing ion channels (ASICs) have been implicated in esophageal acid sensing and mechanotransduction. However, insufficient knowledge of ASIC subunit expression profile in esophageal afferent nerves hampers the understanding of their role. This knowledge is essential because ASIC subunits form heteromultimeric channels with distinct functional properties. We hypothesized that the esophageal putative nociceptive C-fiber nerves (transient receptor potential vanilloid 1, TRPV1-positive) express multiple ASIC subunits and that the ASIC expression profile differs between the nodose TRPV1-positive subtype developmentally derived from placodes and the jugular TRPV1-positive subtype derived from neural crest. We performed single cell RT-PCR on the vagal afferent neurons retrogradely labeled from the esophagus. In the guinea pig, nearly all (90%–95%) nodose and jugular esophageal TRPV1-positive neurons expressed ASICs, most often in a combination (65–75%). ASIC1, ASIC2, and ASIC3 were expressed in 65–75%, 55–70%, and 70%, respectively, of both nodose and jugular TRPV1-positive neurons. The ASIC1 splice variants ASIC1a and ASIC1b and the ASIC2 splice variant ASIC2b were similarly expressed in both nodose and jugular TRPV1-positive neurons. However, ASIC2a was found exclusively in the nodose neurons. In contrast to guinea pig, ASIC3 was almost absent from the mouse vagal esophageal TRPV1-positive neurons. However, ASIC3 was similarly expressed in the nonnociceptive TRPV1-negative (tension mechanoreceptors) neurons in both species. We conclude that the majority of esophageal vagal nociceptive neurons express multiple ASIC subunits. The placode-derived nodose neurons selectively express ASIC2a, known to substantially reduce acid sensitivity of ASIC heteromultimers. ASIC3 is expressed in the guinea pig but not in the mouse vagal esophageal TRPV1-positive neurons, indicating species differences in ASIC expression. PMID:25190475

  7. Effects of levodropropizine on vagal afferent C-fibres in the cat.

    PubMed Central

    Shams, H.; Daffonchio, L.; Scheid, P.

    1996-01-01

    1. Levodropropizine (LVDP) is an effective antitussive drug. Its effects on single-unit discharge of vagal afferent C-fibres were tested in anaesthetized cats to assess whether an inhibition of vagal C-fibres is involved in its antitussive properties. Vagal C-fibres, identified by their response to phenylbiguanide (PBG), were recorded via suction electrodes from the distal part of the cut vagus. Based on their response to lung inflation, C-fibres were classified as pulmonary (19 fibres) or non-pulmonary (6 fibres). 2. PBG increased the discharge rate of both C-fibre types and activated a respiratory reflex causing apnoea. This reflex was abolished when the second vagus nerve was cut as well, while PBG-mediated stimulation of the C-fibres was not affected by vagotomy. 3. LVDP was administered intravenously and the C-fibre response to PBG was compared with that before administration of the drug. LVDP reduced both the duration of apnoea and the response of the C-fibre to PBG. 4. Comparison of the C-fibre responses to PBG and to a mixture of PBG and LVDP revealed that the period of apnoea was shortened and the discharge rate of the C-fibre reduced when LVDP was present. 5. The LVDP-induced inhibition of the C-fibre response to PBG was on average 50% in pulmonary and 25% in non-pulmonary fibres. 6. These results suggest that LVDP significantly reduces the response of vagal C-fibres to chemical stimuli. It is, thus, likely that the antitussive effect of LVDP is mediated through its inhibitory action on C-fibres. PMID:8851501

  8. A new technique for the direct demonstration of overlapping cutaneous innervation territories of peptidergic C-fibre afferents of rat hindlimb nerves.

    PubMed

    Dux, M; Jancsó, G

    1994-11-01

    A new technique based on the phenomenon of vascular labelling has been devised for the direct visualisation of overlapping innervation territories of cutaneous nerves. The saphenous, peroneal and sural nerves on one side in anaesthetised rats were exposed, cut centrally and successively stimulated antidromically to induce a neurogenic inflammatory response after an intravenous injection of either a 1% colloidal silver solution or a suspension of 3% Monastral Blue B. Light microscopic examination of transparent preparations of the dorsal hindpaw skin revealed labelled blood vessels of different colours which represented cutaneous territories served by different nerves. Blood vessels labelled with both substances were regarded as areas of overlapping innervation. Such areas were typically localised along the border of adjacent innervation territories. In addition, distinct areas exhibiting double-labelled blood vessels were regularly encountered in regions separate from this border zone. Areas of interest were drawn with the aid of a camera lucida and measured by means of a computerised system. The results indicate a significant, although topographically variable, degree of overlap of these cutaneous innervation areas. This new technique offers a possibility to explore the importance of normally existing overlap in the reinnervation of a denervated skin area by collateral nerve sprouting. PMID:7891461

  9. [Round table discussion. Ulcer - vagus - gastrin].

    PubMed

    1976-03-01

    1. Both gastrin and the vagus nerve play a part in the pathogenesis of the duodenal ulcer. Which of these two factors is of greater significance--this problem is still subject to discussion as is the question whether other factors such as duodenal neutralization are more important than hitherto assumed. 2. At this time no reliable and harmless drugs that speed up the healing of duodenal ulcers and prevent relapses are yet available. Candidates for this are H2 receptor blockers, prostaglandines and possibly substances resembling secretin. 3. Only some of the participants considered it necessary to do endoscopic and radiological follow-ups in duodenal ulcers. 4. Proximal gastric vagotomy for the treatment of duodenal ulcers is still undergoing clinical trials. At present this method should only be used by surgeons with a special interest in gastric surgery who also dispose of the technology and the staff for careful postoperative checks on these patients. The advantages of proximal gastric vagotomy consist in sparing truncation, low mortality and good functional results. 5. In gastric ulcers--contrary to duodenal ones--malignancy should always be suspected. If medical treatment does not lead to complete remission within a few months, surgery must be performed. 6. Many surgeons still prefer resection to vagotomy and excision in the management of gastric ulcers.

  10. Risk of postprandial insulin resistance: the liver/vagus rapport.

    PubMed

    Macedo, Maria Paula; Lima, Inês S; Gaspar, Joana M; Afonso, Ricardo A; Patarrão, Rita S; Kim, Young-Bum; Ribeiro, Rogério T

    2014-03-01

    Ingestion of a meal is the greatest challenge faced by glucose homeostasis. The surge of nutrients has to be disposed quickly, as high concentrations in the bloodstream may have pathophysiological effects, and also properly, as misplaced reserves may induce problems in affected tissues. Thus, loss of the ability to adequately dispose of ingested nutrients can be expected to lead to glucose intolerance, and favor the development of pathologies. Achieving interplay of several organs is of upmost importance to maintain effectively postprandial glucose clearance, with the liver being responsible of orchestrating global glycemic control. This dogmatic role of the liver in postprandial insulin sensitivity is tightly associated with the vagus nerve. Herein, we uncover the behaviour of metabolic pathways determined by hepatic parasympathetic function status, in physiology and in pathophysiology. Likewise, the inquiry expands to address the impact of a modern lifestyle, especially one's feeding habits, on the hepatic parasympathetic nerve control of glucose metabolism.

  11. Neuromuscular ultrasound of cranial nerves.

    PubMed

    Tawfik, Eman A; Walker, Francis O; Cartwright, Michael S

    2015-04-01

    Ultrasound of cranial nerves is a novel subdomain of neuromuscular ultrasound (NMUS) which may provide additional value in the assessment of cranial nerves in different neuromuscular disorders. Whilst NMUS of peripheral nerves has been studied, NMUS of cranial nerves is considered in its initial stage of research, thus, there is a need to summarize the research results achieved to date. Detailed scanning protocols, which assist in mastery of the techniques, are briefly mentioned in the few reference textbooks available in the field. This review article focuses on ultrasound scanning techniques of the 4 accessible cranial nerves: optic, facial, vagus and spinal accessory nerves. The relevant literatures and potential future applications are discussed.

  12. Different Mode of Afferents Determines the Frequency Range of High Frequency Activities in the Human Brain: Direct Electrocorticographic Comparison between Peripheral Nerve and Direct Cortical Stimulation.

    PubMed

    Kobayashi, Katsuya; Matsumoto, Riki; Matsuhashi, Masao; Usami, Kiyohide; Shimotake, Akihiro; Kunieda, Takeharu; Kikuchi, Takayuki; Mikuni, Nobuhiro; Miyamoto, Susumu; Fukuyama, Hidenao; Takahashi, Ryosuke; Ikeda, Akio

    2015-01-01

    Physiological high frequency activities (HFA) are related to various brain functions. Factors, however, regulating its frequency have not been well elucidated in humans. To validate the hypothesis that different propagation modes (thalamo-cortical vs. cortico-coritcal projections), or different terminal layers (layer IV vs. layer II/III) affect its frequency, we, in the primary somatosensory cortex (SI), compared HFAs induced by median nerve stimulation with those induced by electrical stimulation of the cortex connecting to SI. We employed 6 patients who underwent chronic subdural electrode implantation for presurgical evaluation. We evaluated the HFA power values in reference to the baseline overriding N20 (earliest cortical response) and N80 (late response) of somatosensory evoked potentials (HFA(SEP(N20)) and HFA(SEP(N80))) and compared those overriding N1 and N2 (first and second responses) of cortico-cortical evoked potentials (HFA(CCEP(N1)) and HFA(CCEP(N2))). HFA(SEP(N20)) showed the power peak in the frequency above 200 Hz, while HFA(CCEP(N1)) had its power peak in the frequency below 200 Hz. Different propagation modes and/or different terminal layers seemed to determine HFA frequency. Since HFA(CCEP(N1)) and HFA induced during various brain functions share a similar broadband profile of the power spectrum, cortico-coritcal horizontal propagation seems to represent common mode of neural transmission for processing these functions. PMID:26087042

  13. Neural mechanism of gastric motility regulation by electroacupuncture at RN12 and BL21: A paraventricular hypothalamic nucleus-dorsal vagal complex-vagus nerve-gastric channel pathway

    PubMed Central

    Wang, Hao; Liu, Wen-Jian; Shen, Guo-Ming; Zhang, Meng-Ting; Huang, Shun; He, Ying

    2015-01-01

    in the DVC and the PVN, and increase the levels of gastrointestinal hormones and their receptors in the PVN and gastric antrum to regulate gastric motility. CONCLUSION: EA at RN12 and BL21 regulates gastric motility, which may be achieved through the PVN-DVC-vagus-gastric neural pathway. PMID:26730159

  14. Intact cutaneous C fibre afferent properties in mechanical and cold neuropathic allodynia

    PubMed Central

    Hulse, Richard; Wynick, David; Donaldson, Lucy F.

    2010-01-01

    Patients with neuropathy, report changes in sensory perception, particularly mechanical and thermal allodynia, and spontaneous pain. Similar sensory changes are seen in experimental neuropathies, in which alteration in primary afferent properties can also be determined. The neural correlate of spontaneous pain is ongoing activity in sensory afferents. Mechanical and heat allodynia are thought to result from lowered activation thresholds in primary afferent and/or central neurones, but the mechanisms underlying cold allodynia are very poorly understood. We investigated nociceptive behaviours and the properties of C and A fibre intact afferents running adjacent to damaged afferents following a partial ligation injury of the saphenous nerve (PSNI). Animals developed mechanical and cold allodynia by 3 days after PSNI. Intact mechanosensitive C fibre afferents developed ongoing activity, and had slower conduction velocities 3 and 7 days following nerve injury, with no change in mechanical threshold. There was a large increase (∼46-fold) in calculated afferent input 3 days after nerve injury, as a result of the ongoing activity in these fibres. Mechano-cooling-sensitive C fibre afferents showed both enhanced cooling-evoked firing, and increased ongoing activity. The afferent barrage associated with mechano-cooling-sensitive afferents was increased 26-fold 7 days after nerve injury. We observed no differences in the properties of intact A fibre mechanosensitive afferents. These studies demonstrate for the first time that the altered nociception seen after PSNI is associated with ongoing activity and enhanced cooling-evoked activity in intact C fibre afferents in the saphenous nerve, with no concurrent alteration in A fibre afferents. PMID:19942464

  15. In vitro Functional Characterization of Mouse Colorectal Afferent Endings

    PubMed Central

    Feng, Bin; Gebhart, G.F.

    2015-01-01

    This video demonstrates in detail an in vitro single-fiber electrophysiological recording protocol using a mouse colorectum-nerve preparation. The approach allows unbiased identification and functional characterization of individual colorectal afferents. Extracellular recordings of propagated action potentials (APs) that originate from one or a few afferent (i.e., single-fiber) receptive fields (RFs) in the colorectum are made from teased nerve fiber fascicles. The colorectum is removed with either the pelvic (PN) or lumbar splanchnic (LSN) nerve attached and opened longitudinally. The tissue is placed in a recording chamber, pinned flat and perfused with oxygenated Krebs solution. Focal electrical stimulation is used to locate the colorectal afferent endings, which are further tested by three distinct mechanical stimuli (blunt probing, mucosal stroking and circumferential stretch) to functionally categorize the afferents into five mechanosensitive classes. Endings responding to none of these mechanical stimuli are categorized as mechanically-insensitive afferents (MIAs). Both mechanosensitive and MIAs can be assessed for sensitization (i.e., enhanced response, reduced threshold, and/or acquisition of mechanosensitivity) by localized exposure of RFs to chemicals (e.g., inflammatory soup (IS), capsaicin, adenosine triphosphate (ATP)). We describe the equipment and colorectum–nerve recording preparation, harvest of colorectum with attached PN or LSN, identification of RFs in the colorectum, single-fiber recording from nerve fascicles, and localized application of chemicals to the RF. In addition, challenges of the preparation and application of standardized mechanical stimulation are also discussed. PMID:25651300

  16. The central projections of the laryngeal nerves in the rat.

    PubMed

    Pascual-Font, Arán; Hernández-Morato, Ignacio; McHanwell, Stephen; Vázquez, Teresa; Maranillo, Eva; Sañudo, Jose; Valderrama-Canales, Francisco J

    2011-08-01

    The larynx serves respiratory, protective, and phonatory functions. The motor and sensory innervation to the larynx controlling these functions is provided by the superior laryngeal nerve (SLN) and the recurrent laryngeal nerve (RLN). Classical studies state that the SLN innervates the cricothyroid muscle and provides sensory innervation to the supraglottic cavity, whereas the RLN supplies motor innervation to the remaining intrinsic laryngeal muscles and sensory innervation to the infraglottic cavity, but recent data suggest a more complex anatomical and functional organisation. The current neuroanatomical tracing study was undertaken to provide a comprehensive description of the central brainstem connections of the axons within the SLN and the RLN, including those neurons that innervate the larynx. The study has been carried out in 41 adult male Sprague-Dawley rats. The central projections of the laryngeal nerves were labelled following application of biotinylated dextran amines onto the SLN, the RLN or both. The most remarkable result of the study is that in the rat the RLN does not contain any afferent axons from the larynx, in contrast to the pattern observed in many other species including man. The RLN supplied only special visceromotor innervation to the intrinsic muscles of the larynx from motoneurons in the nucleus ambiguus (Amb). All the afferent axons innervating the larynx are contained within the SLN, and reach the nucleus of the solitary tract. The SLN also contained secretomotor efferents originating from motoneurons in the dorsal motor nucleus of the vagus, and special visceral efferent fibres from the Amb. In conclusion, the present study shows that in the rat the innervation of the larynx differs in significant ways from that described in other species.

  17. The central projections of the laryngeal nerves in the rat

    PubMed Central

    Pascual-Font, Arán; Hernández-Morato, Ignacio; McHanwell, Stephen; Vázquez, Teresa; Maranillo, Eva; Sañudo, Jose; Valderrama-Canales, Francisco J

    2011-01-01

    The larynx serves respiratory, protective, and phonatory functions. The motor and sensory innervation to the larynx controlling these functions is provided by the superior laryngeal nerve (SLN) and the recurrent laryngeal nerve (RLN). Classical studies state that the SLN innervates the cricothyroid muscle and provides sensory innervation to the supraglottic cavity, whereas the RLN supplies motor innervation to the remaining intrinsic laryngeal muscles and sensory innervation to the infraglottic cavity, but recent data suggest a more complex anatomical and functional organisation. The current neuroanatomical tracing study was undertaken to provide a comprehensive description of the central brainstem connections of the axons within the SLN and the RLN, including those neurons that innervate the larynx. The study has been carried out in 41 adult male Sprague–Dawley rats. The central projections of the laryngeal nerves were labelled following application of biotinylated dextran amines onto the SLN, the RLN or both. The most remarkable result of the study is that in the rat the RLN does not contain any afferent axons from the larynx, in contrast to the pattern observed in many other species including man. The RLN supplied only special visceromotor innervation to the intrinsic muscles of the larynx from motoneurons in the nucleus ambiguus (Amb). All the afferent axons innervating the larynx are contained within the SLN, and reach the nucleus of the solitary tract. The SLN also contained secretomotor efferents originating from motoneurons in the dorsal motor nucleus of the vagus, and special visceral efferent fibres from the Amb. In conclusion, the present study shows that in the rat the innervation of the larynx differs in significant ways from that described in other species. PMID:21599662

  18. Blockage of vibrissae afferents: I. Motor effects.

    PubMed

    Prchal, A; Albarracín, A L; Décima, E E

    2004-02-01

    In the past, it has been proposed that the rat vibrissae play an important role in other hand, postural abnormalities, muscle tone decreases and hypomotility after sensory organ destructions were proposed as evidence supporting the "level setting" or "tonic" hypothesis. This hypothesis postulates that afferent activity, besides its well know transductive functions, sets the excitability state of the central nervous system. We thought the vibrissal system to be a good model to dissect these two postulated roles because vibrissae trimming would annul the transductive function without affecting the integrity of nerve activity. Thus we compare the effects of trimming the whiskers with blocking the vibrissal afferent nerves on two types of motor behavior: activity in an open field and walking over a rope connecting two elevated platforms. We found that only vibrissal afferent blockage (both nerve section and local anaesthesia) produced severe failures in the motor performances studied. These effects could not be fully explained by the abolition of the vibrissae as a sensory modality because cutting the whiskers did not significantly affect the motor performance. These data are discussed in reference to a tonic or general excitatory function of sensory inputs upon the central nervous system. PMID:15143620

  19. Stimulation of raphe (obscurus) nucleus causes long-term potentiation of phrenic nerve activity in cat.

    PubMed

    Millhorn, D E

    1986-12-01

    1. The respiratory response, measured as integrated phrenic nerve activity, during and for up to an hour following 10 min of continuous electrical stimulation of raphe obscurus was quantitated in anaesthetized, artificially ventilated cats whose carotid sinus nerves and vagus nerves had been cut. End-tidal PCO2 and body temperature were kept constant with servocontrollers. 2. Stimulation of raphe obscurus caused a significant increase in both phrenic tidal activity and respiratory frequency that persisted following cessation of the stimulus. This persistent facilitation is referred to as 'long-term potentiation' of respiration. 3. Control stimulations in the parenchyma of the medulla oblongata failed to stimulate respiration and cause the long-term potentiation. 4. Both the direct facilitatory effects of raphe obscurus stimulation on phrenic nerve activity and the long-term potentiation of respiration following the stimulus were prevented by pre-treating cats with methysergide, a serotonin receptor antagonist. 5. The results are discussed in terms of the raphe obscurus being the potential source of the long-term potentiation of respiration that occurs following stimulation of carotid body afferents (Millhorn, Eldridge & Waldrop, 1980a, b). PMID:3114470

  20. Long-term sensitization of mechanosensitive and -insensitive afferents in mice with persistent colorectal hypersensitivity

    PubMed Central

    La, Jun-ho; Schwartz, Erica S.; Tanaka, Takahiro; McMurray, Timothy P.; Gebhart, G. F.

    2012-01-01

    Afferent input contributes significantly to the pain and colorectal hypersensitivity that characterize irritable bowel syndrome. In the present study, we investigated the contributions of mechanically sensitive and mechanically insensitive afferents (MIAs; or silent afferents) to colorectal hypersensitivity. The visceromotor response to colorectal distension (CRD; 15–60 mmHg) was recorded in mice before and for weeks after intracolonic treatment with zymosan or saline. After CRD tests, the distal colorectum with the pelvic nerve attached was removed for single-fiber electrophysiological recordings. Colorectal afferent endings were located by electrical stimulation and characterized as mechanosensitive or not by blunt probing, mucosal stroking, and circumferential stretch. Intracolonic zymosan produced persistent colorectal hypersensitivity (>24 days) associated with brief colorectal inflammation. Pelvic nerve muscular-mucosal but not muscular mechanosensitive afferents recorded from mice with colorectal hypersensitivity exhibited persistent sensitization. In addition, the proportion of MIAs (relative to control) was significantly reduced from 27% to 13%, whereas the proportion of serosal afferents was significantly increased from 34% to 53%, suggesting that MIAs acquired mechanosensitivity. PGP9.5 immunostaining revealed no significant loss of colorectal nerve fiber density, suggesting that the reduction in MIAs is not due to peripheral fiber loss after intracolonic zymosan. These results indicate that colorectal MIAs and sensitized muscular-mucosal afferents that respond to stretch contribute significantly to the afferent input that sustains hypersensitivity to CRD, suggesting that targeted management of colorectal afferent input could significantly reduce patients' complaints of pain and hypersensitivity. PMID:22268098

  1. Neuropathic pain: Early spontaneous afferent activity is the trigger

    PubMed Central

    Xie, Wenrui; Strong, Judith A.; Meij, Johanna T.A.; Zhang, Jun-Ming; Yu, Lei

    2005-01-01

    Intractable neuropathic pain often results from nerve injury. One immediate event in damaged nerve is a sustained increase in spontaneous afferent activity, which has a well-established role in ongoing pain. Using two rat models of neuropathic pain, the CCI and SNI models, we show that local, temporary nerve blockade of this afferent activity permanently inhibits the subsequent development of both thermal hyperalgesia and mechanical allodynia. Timing is critical—the nerve blockade must last at least 3–5 days and is effective if started immediately after nerve injury, but not if started at 10 days after injury when neuropathic pain is already established. Effective nerve blockade also prevents subsequent development of spontaneous afferent activity measured electrophysiologically. Similar results were obtained in both pain models, and with two blockade methods (200 mg of a depot form bupivacaine at the injury site, or perfusion of the injured nerve just proximal to the injury site with TTX). These results indicate that early spontaneous afferent fiber activity is the key trigger for the development of pain behaviors, and suggest that spontaneous activity may be required for many of the later changes in the sensory neurons, spinal cord, and brain observed in neuropathic pain models. Many pre-clinical and clinical studies of pre-emptive analgesia have used much shorter duration of blockade, or have not started immediately after the injury. Our results suggest that effective pre-emptive analgesia can be achieved only when nerve block is administered early after injury and lasts several days. PMID:15964687

  2. Force-sensitive afferents recruited during stance encode sensory depression in the contralateral swinging limb during locomotion.

    PubMed

    Hochman, Shawn; Hayes, Heather Brant; Speigel, Iris; Chang, Young-Hui

    2013-03-01

    Afferent feedback alters muscle activity during locomotion and must be tightly controlled. As primary afferent depolarization-induced presynaptic inhibition (PAD-PSI) regulates afferent signaling, we investigated hindlimb PAD-PSI during locomotion in an in vitro rat spinal cord-hindlimb preparation. We compared the relation of PAD-PSI, measured as dorsal root potentials (DRPs), to observed ipsilateral and contralateral limb endpoint forces. Afferents activated during stance-phase force strongly and proportionately influenced DRP magnitude in the swinging limb. Responses increased with locomotor frequency. Electrical stimulation of contralateral afferents also preferentially evoked DRPs in the opposite limb during swing (flexion). Nerve lesioning, in conjunction with kinematic results, support a prominent contribution from toe Golgi tendon organ afferents. Thus, force-dependent afferent feedback during stance binds interlimb sensorimotor state to a proportional PAD-PSI in the swinging limb, presumably to optimize interlimb coordination. These results complement known actions of ipsilateral afferents on PAD-PSI during locomotion.

  3. Chicken (Gallus domesticus) inner ear afferents

    NASA Technical Reports Server (NTRS)

    Hara, H.; Chen, X.; Hartsfield, J. F.; Hara, J.; Martin, D.; Fermin, C. D.

    1998-01-01

    Neurons from the vestibular (VG) and the statoacoustic (SAG) ganglion of the chick (Gallus domesticus) were evaluated histologically and morphometrically. Embryos at stages 34 (E8 days), 39 (E13 days) and 44 (E18 days) were sacrificed and temporal bones microdissected. Specimens were embedded in JB-4 methacrylate plastic, and stained with a mixture of 0.2% toluidine blue (TB) and 0.1% basic Fuschin in 25% ethanol or with a mixture of 2% TB and 1% paraphenylenediamine (PDA) for axon and myelin measurement study. Images of the VIIIth nerve were produced by a V150 (R) color imaging system and the contour of 200-300 neuronal bodies (perikarya) was traced directly on a video screen with a mouse in real time. The cross-sectional area of VG perikarya was 67.29 micrometers2 at stage 34 (E8), 128.46 micrometers2 at stage 39 (E13) and 275.85 micrometers2 at stage 44 (E18). The cross-sectional area of SAG perikarya was 62.44 micrometers2 at stage 34 (E8), 102.05 micrometers2 at stage 39 (E13) and 165.02 micrometers2 at stage 44 (E18). A significant cross-sectional area increase of the VG perikarya between stage 39 (E13) and stage 44 (E18) was determined. We randomly measured the cross-sectional area of myelin and axoplasm of hatchling afferent nerves, and found a correspondence between axoplasmic and myelin cross-sectional area in the utricular, saccular and semicircular canal nerve branches of the nerve. The results suggest that the period between stage 34 (E8) and 39 (E13) is a critical period for afferent neuronal development. Physiological and behavioral vestibular properties of developing and maturing hatchlings may change accordingly. The results compliment previous work by other investigators and provide valuable anatomical measures useful to correlate physiological data obtained from stimulation of the whole nerve or its parts.

  4. Renal afferents responsive to chemical and mechanical pelvic stimuli in the rabbit.

    PubMed

    Genovesi, S; Pieruzzi, F; Camisasca, P; Golin, R; Zanchetti, A; Stella, A

    1997-05-01

    1. Afferent nerve fibres sensitive to changes in the renal chemical environment have been found in the rat. To verify the existence of these fibres in the rabbit and their response pattern, afferent renal nerve activity was recorded during pelvic perfusions with NaCl solutions at different concentrations. 2. The experiments were carried out in 13 anaesthetized rabbits. Arterial pressure from a femoral catheter and afferent renal nerve activity from the distal stump of a cut renal nerve bundle were recorded. Three catheters were inserted into the renal pelvis to measure pelvic pressure, to allow pelvic perfusions at constant rates and to drain pelvic fluids. 3. After a control period, the pelvis was perfused with physiological saline (0.14 mol/l for 2 min), followed by one of a series of solutions containing increasing concentrations of NaCl (0.5, 0.75, 1.0 and 1.5 mol/l for 2 min). Pelvic perfusion was performed both at a low (0.2 ml/min) and a high (0.8 ml/min) flow rate for each solution tested. 4. In all animals arterial pressure was not modified during pelvic perfusions. Physiological saline did not change afferent renal nerve activity at the low perfusion rate, but it significantly increased afferent renal nerve activity and pelvic pressure at the high rate. Hypertonic NaCl solutions caused progressive increases in afferent renal nerve activity at both perfusion rates, and these effects were larger at the high perfusion rate. 5. These data demonstrate, in the rabbit, the existence of renal afferent nerves sensitive to discrete changes in pelvic ionic or osmotic concentration. The neural response is enhanced when renal mechano- and chemo-receptors are simultaneously activated.

  5. Mast cells drive mesenteric afferent signalling during acute intestinal ischaemia

    PubMed Central

    Jiang, Wen; Kirkup, Anthony J; Grundy, David

    2011-01-01

    Abstract Acute intestinal ischaemia stimulates visceral afferent nerves but the mechanisms responsible for this excitation are not fully understood. Mast cells may participate in this process as they are known to signal to mesenteric afferents during intestinal anaphylaxis and contribute to early inflammation and neuronal damage in response to cerebral ischaemia. We therefore hypothesised that mast cells are early responders to acute intestinal ischaemia and their activation initiates rapid signalling to the CNS via the excitation of mesenteric afferents. Primary afferent firing was recorded from a mesenteric nerve bundle supplying a segment of jejunum in anaesthetized adult rats. Acute focal ischaemia was produced by clamping the mesenteric vessels for 8 min, and reperfusion followed removal of the vessel clip. Two episodes of ischaemia–reperfusion (I–R) separated by a 30 min interval were performed. Drugs or their vehicles were administered 10 min before the 2nd I–R episode. Ischaemia caused a reproducible, intense and biphasic afferent firing that was temporally dissociated from the concomitantly triggered complex pattern of intestinal motor activity. The L-type calcium channel blocker, nifedipine, significantly attenuated this afferent firing by a mechanism independent of its action on intestinal tone. Ischaemia-induced afferent firing was also abrogated by the mast cell stabilizer, doxantrazole, and the H1 histamine receptor antagonist, pyrilamine. In contrast, the nicotinic receptor antagonist, hexamethonium, and the N-type calcium channel toxin, ω-conotoxin GVIA, each reduced the ischaemia-evoked motor inhibition but not the concurrent afferent discharge. Similarly, the cyclooxygenase inhibitor, naproxen, had no effect on the ischaemic afferent response but reduced the intestinal tone shortly from the onset of ischaemia to the early period of reperfusion. These data support a critical role for mast cell-derived histamine in the direct chemoexcitation

  6. Differential central projections of vestibular afferents in pigeons

    NASA Technical Reports Server (NTRS)

    Dickman, J. D.; Fang, Q.

    1996-01-01

    The question of whether a differential distribution of vestibular afferent information to central nuclear neurons is present in pigeons was studied using neural tracer compounds. Discrete tracing of afferent fibers innervating the individual semicircular canal and otolith organs was produced by sectioning individual branches of the vestibular nerve that innervate the different receptor organs and applying crystals of horseradish peroxidase, or a horseradish peroxidase/cholera toxin mixture, or a biocytin compound for neuronal uptake and transport. Afferent fibers and their terminal distributions within the brainstem and cerebellum were visualized subsequently. Discrete areas in the pigeon central nervous system that receive primary vestibular input include the superior, dorsal lateral, ventral lateral, medial, descending, and tangential vestibular nuclei; the A and B groups; the intermediate, medial, and lateral cerebellar nuclei; and the nodulus, the uvula, and the paraflocculus. Generally, the vertical canal afferents projected heavily to medial regions in the superior and descending vestibular nuclei as well as the A group. Vertical canal projections to the medial and lateral vestibular nuclei were observed but were less prominent. Horizontal canal projections to the superior and descending vestibular nuclei were much more centrally located than those of the vertical canals. A more substantial projection to the medial and lateral vestibular nuclei was seen with horizontal canal afferents compared to vertical canal fibers. Afferents innervating the utricle and saccule terminated generally in the lateral regions of all vestibular nuclei in areas that were separate from the projections of the semicircular canals. In addition, utricular fibers projected to regions in the vestibular nuclei that overlapped with the horizontal semicircular canal terminal fields, whereas saccular afferents projected to regions that received vertical canal fiber terminations. Lagenar

  7. Primary afferent depolarization and frequency processing in auditory afferents.

    PubMed

    Baden, Tom; Hedwig, Berthold

    2010-11-01

    Presynaptic inhibition is a widespread mechanism modulating the efficiency of synaptic transmission and in sensory pathways is coupled to primary afferent depolarizations. Axonal terminals of bush-cricket auditory afferents received 2-5 mV graded depolarizing inputs, which reduced the amplitude of invading spikes and indicated presynaptic inhibition. These inputs were linked to a picrotoxin-sensitive increase of Ca(2+) in the terminals. Electrophysiological recordings and optical imaging showed that in individual afferents the sound frequency tuning based on spike rates was different from the tuning of the graded primary afferent depolarizations. The auditory neuropil of the bush-cricket Mecopoda elongata is tonotopically organized, with low frequencies represented anteriorly and high frequencies represented posteriorly. In contrast graded depolarizing inputs were tuned to high-frequencies anteriorly and to low-frequencies posteriorly. Furthermore anterior and posterior axonal branches of individual afferents received different levels of primary afferent depolarization depending on sound frequency. The presence of primary afferent depolarization in the afferent terminals indicates that presynaptic inhibition may shape the synaptic transmission of frequency-specific activity to auditory interneurons.

  8. The relationship between the size of a muscle afferent volley and the cerebral potential it produces.

    PubMed Central

    Gandevia, S; Burke, D; McKeon, B

    1982-01-01

    This study examined the relationship between the size of an afferent neural input produced by electrical stimulation of the posterior tibial nerve at the ankle and the size of the early components of the evoked cerebral potential. For five of six subjects the first peak of the afferent neural volley recorded in the popliteal fossa was uncontaminated by either motor efferents or cutaneous afferents. This was established by measuring the conduction times of motor fibres in the posterior tibial nerve and cutaneous fibres in the sural and posterior tibial nerves over the ankle to popliteal fossa segment. It is likely therefore that the first peak of the afferent volley contained predominantly, if not exclusively, activity in rapidly conducting afferents from the small muscles of the foot. The size of the two earliest components of the cerebral potential did not increase in direct proportion to the size of the afferent volley which produced it. The early components of the cerebral potential reached a maximum when the responsible muscle afferent volley was less than 50% of its maximum. PMID:6290605

  9. Characterization of primary afferent spinal innervation of mouse uterus.

    PubMed

    Herweijer, Geraldine; Kyloh, Melinda; Beckett, Elizabeth A H; Dodds, Kelsi N; Spencer, Nick J

    2014-01-01

    The primary afferent innervation of the uterus is incompletely understood. The aim of this study was to identify the location and characteristics of primary afferent neurons that innervate the uterine horn of mice and correlate the different morphological types of putative primary afferent nerve endings, immunoreactive to the sensory marker, calcitonin gene related peptide (CGRP). Using retrograde tracing, injection of 5-10 μL of 1,1'-didodecyl-3,3,3,3'-tetramethylindocarbocyanine perchlorate (DiI) into discrete single sites in each uterine horn revealed a biomodal distribution of sensory neurons in dorsal root ganglia (DRG) with peak labeling occurring between T13-L3 and a second smaller peak between L6-S1. The mean cross sectional area of labeled cells was 463 μm(2) ± s.e.m. A significantly greater proportion of labeled neurons consisted of small cell bodies (<300 μm(2)) in the sacral spinal cord (S2) compared with peak labeling at the lumbar (L2) region. In both sections and whole mount preparations, immunohistochemical staining for CGRP revealed substantial innervation of the uterus by CGRP-positive nerve fibers located primarily at the border between the circular and longitudinal muscle layers (N = 4). The nerve endings were classified into three distinct types: "single," "branching," or "complex," that often aligned preferentially in either the circular or longitudinal axis of the smooth muscles. Complex endings were often associated with mesenteric vessels. We have identified that the cell bodies of primary afferent neurons innervating the mouse uterus lie primarily in DRG at L2 and S1 spinal levels. Also, the greatest density of CGRP immunoreactivity lies within the myometrium, with at least three different morphological types of nerve endings identified. These findings will facilitate further investigations into the mechanisms underlying sensory transduction in mouse uterus. PMID:25120416

  10. Injury of the peripheral cranial nerves during carotid endarterectomy.

    PubMed

    Theodotou, B; Mahaley, M S

    1985-01-01

    The incidence of local nerve injury among 192 consecutive carotid endarterectomies in 162 patients between 1977-1983 was determined from review of the medical records. Two facial nerve, 5 hypoglossal nerve, and 2 vagus nerve injuries were discovered for a total incidence of 4.7%. Only the 2 facial nerve injuries failed to improve over 2 years. Followup ranged from 1 to 60 months in this group of patients. Careful attention to details of tissue dissection at surgery should lower the incidence of nerve injury during carotid endarterectomy. PMID:4049454

  11. Effect of Microgravity on Afferent Innervation

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Presentations and publications are: (1) an audiovisual summary web presentation on results from SLM-MIR avian experiments. A color presentation summarizing results from the SLM-MIR and STS-29 avian experiments; (2) color threshold and ratio of S 100B MAP5, NF68/200, GABA and GAD; (3) chicken (Gallus domesticus) inner ear afferents; (4) microgravity in the STS-29 Space Shuttle Discovery affected the vestibular system of chick embryos; (5) expression of S 100B in sensory and secretory cells of the vertebrate inner ear; (6) otoconia biogenesis, phylogeny, composition and functional attributes;(7) the glycan keratin sulfate in inner ear crystals; (8) elliptical-P cells in the avian perilymphatic interface of the tegmentum vasculosum; and (9) LAMP2c and S100B upregulation in brain stem after VIIIth nerve deafferentation.

  12. Neck muscle afferents influence oromotor and cardiorespiratory brainstem neural circuits.

    PubMed

    Edwards, I J; Lall, V K; Paton, J F; Yanagawa, Y; Szabo, G; Deuchars, S A; Deuchars, J

    2015-01-01

    Sensory information arising from the upper neck is important in the reflex control of posture and eye position. It has also been linked to the autonomic control of the cardiovascular and respiratory systems. Whiplash associated disorders (WAD) and cervical dystonia, which involve disturbance to the neck region, can often present with abnormalities to the oromotor, respiratory and cardiovascular systems. We investigated the potential neural pathways underlying such symptoms. Simulating neck afferent activity by electrical stimulation of the second cervical nerve in a working heart brainstem preparation (WHBP) altered the pattern of central respiratory drive and increased perfusion pressure. Tracing central targets of these sensory afferents revealed projections to the intermedius nucleus of the medulla (InM). These anterogradely labelled afferents co-localised with parvalbumin and vesicular glutamate transporter 1 indicating that they are proprioceptive. Anterograde tracing from the InM identified projections to brain regions involved in respiratory, cardiovascular, postural and oro-facial behaviours--the neighbouring hypoglossal nucleus, facial and motor trigeminal nuclei, parabrachial nuclei, rostral and caudal ventrolateral medulla and nucleus ambiguus. In brain slices, electrical stimulation of afferent fibre tracts lateral to the cuneate nucleus monosynaptically excited InM neurones. Direct stimulation of the InM in the WHBP mimicked the response of second cervical nerve stimulation. These results provide evidence of pathways linking upper cervical sensory afferents with CNS areas involved in autonomic and oromotor control, via the InM. Disruption of these neuronal pathways could, therefore, explain the dysphagic and cardiorespiratory abnormalities which may accompany cervical dystonia and WAD. PMID:24595534

  13. A novel role for TRPM8 in visceral afferent function.

    PubMed

    Harrington, Andrea M; Hughes, Patrick A; Martin, Christopher M; Yang, Jing; Castro, Joel; Isaacs, Nicole J; Blackshaw, L Ashley; Brierley, Stuart M

    2011-07-01

    Transient receptor potential ion channel melastatin subtype 8 (TRPM8) is activated by cold temperatures and cooling agents, such as menthol and icilin. Compounds containing peppermint are reported to reduce symptoms of bowel hypersensitivity; however, the underlying mechanisms of action are unclear. Here we determined the role of TRPM8 in colonic sensory pathways. Laser capture microdissection, quantitative reverse transcription-polymerase chain reaction (RT-PCR), immunofluorescence, and retrograde tracing were used to localise TRPM8 to colonic primary afferent neurons. In vitro extracellular single-fibre afferent recordings were used to determine the effect of TRPM8 channel activation on the chemosensory and mechanosensory function of colonic high-threshold afferent fibres. TRPM8 mRNA was present in colonic DRG neurons, whereas TRPM8 protein was present on nerve fibres throughout the wall of the colon. A subpopulation (24%, n=58) of splanchnic serosal and mesenteric afferents tested responded directly to icilin (5 μmol/L). Subsequently, icilin significantly desensitised afferents to mechanical stimulation (P<.0001; n=37). Of the splanchnic afferents responding to icilin, 21 (33%) also responded directly to the TRPV1 agonist capsaicin (3 μmol/L), and icilin reduced the direct chemosensory response to capsaicin. Icilin also prevented mechanosensory desensitization and sensitization induced by capsaicin and the TRPA1 agonist AITC (40 μmol/L), respectively. TRPM8 is present on a select population of colonic high threshold sensory neurons, which may also co-express TRPV1. TRPM8 couples to TRPV1 and TRPA1 to inhibit their downstream chemosensory and mechanosensory actions. PMID:21489690

  14. Determinants of Spatial and Temporal Coding by Semicircular Canal Afferents

    PubMed Central

    Highstein, Stephen M.; Rabbitt, Richard D.; Holstein, Gay R.; Boyle, Richard D.

    2010-01-01

    The vestibular semicircular canals are internal sensors that signal the magnitude, direction, and temporal properties of angular head motion. Fluid mechanics within the 3-canal labyrinth code the direction of movement and integrate angular acceleration stimuli over time. Directional coding is accomplished by decomposition of complex angular accelerations into 3 biomechanical components—one component exciting each of the 3 ampullary organs and associated afferent nerve bundles separately. For low-frequency angular motion stimuli, fluid displacement within each canal is proportional to angular acceleration. At higher frequencies, above the lower corner frequency, real-time integration is accomplished by viscous forces arising from the movement of fluid within the slender lumen of each canal. This results in angular velocity sensitive fluid displacements. Reflecting this, a subset of afferent fibers indeed report angular acceleration to the brain for low frequencies of head movement and report angular velocity for higher frequencies. However, a substantial number of afferent fibers also report angular acceleration, or a signal between acceleration and velocity, even at frequencies where the endolymph displacement is known to follow angular head velocity. These non-velocity-sensitive afferent signals cannot be attributed to canal biomechanics alone. The responses of non-velocity-sensitive cells include a mathematical differentiation (first-order or fractional) imparted by hair-cell and/or afferent complexes. This mathematical differentiation from velocity to acceleration cannot be attributed to hair cell ionic currents, but occurs as a result of the dynamics of synaptic transmission between hair cells and their primary afferent fibers. The evidence for this conclusion is reviewed below. PMID:15845995

  15. Injury to the Superior Laryngeal Branch of the Vagus During Thyroidectomy: Lesson or Myth?

    PubMed Central

    Crookes, Peter F.; Recabaren, James A.

    2001-01-01

    Objective To examine the historical evidence that the thyroidectomy performed on operatic soprano Amelita Galli-Curci was responsible for the abrupt termination of her career. Summary Background Data The superior laryngeal branch of the vagus nerve may be injured during thyroidectomy, producing vocal defects more subtle than those found after recurrent nerve injury. It is widely believed that Galli-Curci suffered superior laryngeal nerve injury during her thyroidectomy by Arnold Kegel, MD, in 1935, resulting in the termination of her career. Methods The authors examined contemporary press reviews after surgery, conducted interviews with colleagues and relatives of the surgeon, and compared the career of Galli-Curci with that of other singers. Results Evidence against the prevailing view is to be found in the fact that she continued to perform acceptably after surgery, her continued friendly relationship with the surgeon for years afterward, the absence of the typical effects of superior laryngeal nerve injury, and the presence of other explanations for the gradual decline in her vocal abilities (documentation of deterioration before surgery, physiologic changes in the larynx comparable to those found in most other famous sopranos who retire at about the same age or earlier, and the possible development of myxedema). Conclusions The story should no longer be perpetuated in surgical textbooks and papers. PMID:11303143

  16. The organization of primary afferent depolarization in the isolated spinal cord of the frog

    PubMed Central

    Carpenter, D. O.; Rudomin, P.

    1973-01-01

    1. The organization of primary afferent depolarization (PAD) produced by excitation of peripheral sensory and motor nerves was studied in the frog cord isolated with hind limb nerves. 2. Dorsal root potentials from sensory fibres (DR-DRPs) were evoked on stimulation of most sensory nerves, but were largest from cutaneous, joint and flexor muscle afferents. With single shock stimulation the largest cutaneous and joint afferent fibres gave DR-DRPs, but potentials from muscle nerves resulted from activation of sensory fibres with thresholds to electrical stimulation higher than 1·2-1·5 times the threshold of the most excitable fibres in the nerve. This suggests that PAD from muscle afferents is probably due to excitation of extrafusal receptors. 3. Dorsal root potentials produced by antidromic activation of motor fibres (VR-DRPs) were larger from extensor muscles and smaller or absent from flexor muscles. The VR-DRPs were produced by activation of the lowest threshold motor fibres. 4. Three types of interactions were found between test and conditioning DRPs from the same or different nerves. With maximal responses occlusion was usually pronounced. At submaximal levels linear summation occurred. Near threshold the conditioning stimulus frequently resulted in a large facilitation of the test DRP. All three types of interactions were found with two DR-DRPs, two VR-DRPs or one DR-DRP and one VR-DRP. 5. The excitability of sensory nerve terminals from most peripheral nerves was increased during the DR-DRP. The magnitude of the excitability increase varied roughly with the magnitude of the DR-DRP evoked by the conditioning stimulus. 6. There was a marked excitability increase of cutaneous and extensor muscle afferent terminals during the VR-DRP. Flexor muscle afferent terminals often showed no excitability changes to ventral root stimulation. In those experiments where afferent terminals from flexor muscles did show an excitability increase, the effects were smaller than

  17. Enhanced sympathetic activity and cardiac sympathetic afferent reflex in rats with heart failure induced by adriamycin.

    PubMed

    Zhang, Shujuan; Zhang, Feng; Sun, Haijian; Zhou, Yebo; Han, Ying

    2012-11-01

    Our previous studies have shown that the cardiac sympathetic afferent reflex is enhanced in rats with chronic heart failure (CHF) induced by coronary artery ligation and contributes to the over-excitation of sympathetic activity. We sought to determine whether sympathetic activity and cardiac sympathetic afferent reflex were enhanced in adriamycin-induced CHF and whether angiotensin II (Ang II) in the paraventricular nucleus (PVN) was involved in enhancing sympathetic activity and cardiac sympathetic afferent reflex. Heart failure was induced by intraperitoneal injection of adriamycin for six times during 2 weeks (15 mg/kg). Six weeks after the first injection, the rats underwent anesthesia with urethane and α-chloralose. After vagotomy and baroreceptor denervation, cardiac sympathetic afferent reflex was evaluated by renal sympathetic nerve activity and mean arterial pressure (MAP) response to epicardial application of capsaicin (1.0 nmol). The response of MAP to ganglionic blockade with hexamethonium in conscious rats was performed to evaluate sympathetic activity. The renal sympathetic nerve activity and cardiac sympathetic afferent reflex were enhanced in adriamycin rats and the maximum depressor response of MAP induced by hexamethonium was significantly greater in adriamycin rats than that in control rats. Bilateral PVN microinjection of angiotensin II (Ang II) caused larger responses of the cardiac sympathetic afferent reflex, baseline renal sympathetic nerve activity and MAP in adriamycin rats than control rats. These results indicated that both sympathetic activity and cardiac sympathetic afferent reflex were enhanced and Ang II in the PVN was involved in the enhanced sympathetic activity and cardiac sympathetic afferent reflex in rats with adriamycin-induced heart failure. PMID:23554781

  18. HPA axis and vagus nervous function are involved in impaired insulin secretion of MSG-obese rats.

    PubMed

    Miranda, Rosiane A; Torrezan, Rosana; de Oliveira, Júlio C; Barella, Luiz F; da Silva Franco, Claudinéia C; Lisboa, Patrícia C; Moura, Egberto G; Mathias, Paulo C F

    2016-07-01

    Neuroendocrine dysfunctions such as the hyperactivity of the vagus nerve and hypothalamus-pituitary-adrenal (HPA) axis greatly contribute to obesity and hyperinsulinemia; however, little is known about these dysfunctions in the pancreatic β-cells of obese individuals. We used a hypothalamic-obesity model obtained by neonatal treatment with monosodium l-glutamate (MSG) to induce obesity. To assess the role of the HPA axis and vagal tonus in the genesis of hypercorticosteronemia and hyperinsulinemia in an adult MSG-obese rat model, bilateral adrenalectomy (ADX) and subdiaphragmatic vagotomy (VAG) alone or combined surgeries (ADX-VAG) were performed. To study glucose-induced insulin secretion (GIIS) and the cholinergic insulinotropic process, pancreatic islets were incubated with different glucose concentrations with or without oxotremorine-M, a selective agonist of the M3 muscarinic acetylcholine receptor (M3AChR) subtype. Protein expression of M3AChR in pancreatic islets, corticosteronemia, and vagus nerve activity was also evaluated. Surgeries reduced 80% of the body weight gain. Fasting glucose and insulin were reduced both by ADX and ADX-VAG, whereas VAG was only associated with hyperglycemia. The serum insulin post-glucose stimulation was lower in all animals that underwent an operation. Vagal activity was decreased by 50% in ADX rats. In the highest glucose concentration, both surgeries reduced GIIS by 50%, whereas ADX-VAG decreased by 70%. Additionally, M3AChR activity was recovered by the individual surgeries. M3AChR protein expression was reduced by ADX. Both the adrenal gland and vagus nerve contribute to the hyperinsulinemia in the MSG model, although adrenal is more crucial as it appears to modulate parasympathetic activity and M3AChR expression in obesity.

  19. Arterial supply of the lower cranial nerves: a comprehensive review.

    PubMed

    Hendrix, Philipp; Griessenauer, Christoph J; Foreman, Paul; Loukas, Marios; Fisher, Winfield S; Rizk, Elias; Shoja, Mohammadali M; Tubbs, R Shane

    2014-01-01

    The lower cranial nerves receive their arterial supply from an intricate network of tributaries derived from the external carotid, internal carotid, and vertebrobasilar territories. A contemporary, comprehensive literature review of the vascular supply of the lower cranial nerves was performed. The vascular supply to the trigeminal, facial, vestibulocochlear, glossopharyngeal, vagus, spinal accessory, and hypoglossal nerves are illustrated with a special emphasis on clinical issues. Frequently the external carotid, internal carotid, and vertebrobasilar territories all contribute to the vascular supply of an individual cranial nerve along its course. Understanding of the vasculature of the lower cranial nerves is of great relevance for skull base surgery.

  20. Transfer characteristics of the hair cell's afferent synapse

    NASA Astrophysics Data System (ADS)

    Keen, Erica C.; Hudspeth, A. J.

    2006-04-01

    The sense of hearing depends on fast, finely graded neurotransmission at the ribbon synapses connecting hair cells to afferent nerve fibers. The processing that occurs at this first chemical synapse in the auditory pathway determines the quality and extent of the information conveyed to the central nervous system. Knowledge of the synapse's input-output function is therefore essential for understanding how auditory stimuli are encoded. To investigate the transfer function at the hair cell's synapse, we developed a preparation of the bullfrog's amphibian papilla. In the portion of this receptor organ representing stimuli of 400-800 Hz, each afferent nerve fiber forms several synaptic terminals onto one to three hair cells. By performing simultaneous voltage-clamp recordings from presynaptic hair cells and postsynaptic afferent fibers, we established that the rate of evoked vesicle release, as determined from the average postsynaptic current, depends linearly on the amplitude of the presynaptic Ca2+ current. This result implies that, for receptor potentials in the physiological range, the hair cell's synapse transmits information with high fidelity. auditory system | exocytosis | glutamate | ribbon synapse | synaptic vesicle

  1. Functional recovery of anterior semicircular canal afferents following hair cell regeneration in birds

    NASA Technical Reports Server (NTRS)

    Boyle, Richard; Highstein, Stephen M.; Carey, John P.; Xu, Jinping

    2002-01-01

    Streptomycin sulfate (1.2 g/kg i.m.) was administered for 5 consecutive days to 5-7-day-old white Leghorn chicks; this causes damage to semicircular canal hair cells that ultimately regenerate to reform the sensory epithelium. During the recovery period, electrophysiological recordings were taken sequentially from anterior semicircular canal primary afferents using an indentation stimulus of the canal that has been shown to mimic rotational stimulation. Chicks were assigned to an early (14-18 days; n = 8), intermediate (28-34 days; n = 5), and late (38-58 days; n = 4) period based on days after treatment. Seven untreated chicks, 15-67 days old, provided control data. An absence of background and indent-induced discharge was the prominent feature of afferents in the early period: only "silent" afferents were encountered in 5/8 experiments. In several of these chicks, fascicles of afferent fibers were seen extending up to the epithelium that was void of hair cells, and intra- and extracellular biocytin labeling revealed afferent processes penetrating into the supporting cell layer of the crista. In 3/8 chicks 74 afferents could be characterized, and they significantly differed from controls (n = 130) by having a lower discharge rate and a negligible response to canal stimulation. In the intermediate period there was considerable variability in discharge properties of 121 afferents, but as a whole the number of "silent" fibers in the canal nerve diminished, the background rate increased, and a response to canal stimulation detected. Individually biocytin-labeled afferents had normal-appearing terminal specializations in the sensory epithelium by 28 days poststreptomycin. In the late period, afferents (n = 58) remained significantly different from controls in background discharge properties and response gain. The evidence suggests that a considerable amount of variability exists between chicks in the return of vestibular afferent function following ototoxic injury and

  2. Cranial Nerves IX, X, XI, and XII

    PubMed Central

    Sanders, Richard D.

    2010-01-01

    This article concludes the series on cranial nerves, with review of the final four (IX–XII). To summarize briefly, the most important and common syndrome caused by a disorder of the glossopharyngeal nerve (craniel nerve IX) is glossopharyngeal neuralgia. Also, swallowing function occasionally is compromised in a rare but disabling form of tardive dyskinesia called tardive dystonia, because the upper motor portion of the glossopharyngel nerve projects to the basal ganglia and can be affected by lesions in the basal ganglia. Vagus nerve funtion (craniel nerve X) can be compromised in schizophrenia, bulimia, obesity, and major depression. A cervical lesion to the nerve roots of the spinal accessory nerve (craniel nerve XI) can cause a cervical dystonia, which sometimes is misdiagnosed as a dyskinesia related to neuroleptic use. Finally, unilateral hypoglossal (craniel nerve XII) nerve palsy is one of the most common mononeuropathies caused by brain metastases. Supranuclear lesions of cranial nerve XII are involved in pseudobulbar palsy and ALS, and lower motor neuron lesions of cranial nerve XII can also be present in bulbar palsy and in ALS patients who also have lower motor neuron involvement. This article reviews these and other syndromes related to cranial nerves IX through XII that might be seen by psychiatry. PMID:20532157

  3. Renal afferents signaling diuretic activity in the cat.

    PubMed

    Genovesi, S; Pieruzzi, F; Wijnmaalen, P; Centonza, L; Golin, R; Zanchetti, A; Stella, A

    1993-11-01

    Mechanoreceptors and chemoreceptors have been identified inside the kidney, but their functional role is still largely unclear. The aim of this study was to investigate whether changes in urine output could modify the discharge rate of renal afferent fibers. Experiments were performed in anesthetized cats in which afferent renal nerve activity (ARNA) was recorded by standard electrophysiological techniques from a centrally cut renal nerve. Arterial pressure, renal blood flow velocity, urine flow rate, and renal pelvic pressure were also measured. Three diuretic maneuvers were tested in the same cat: intravenous administration of physiological saline (8 to 13 mL/min for 2 minutes), furosemide (1 mg/kg), and atrial natriuretic peptide (ANP, 1 microgram/kg). The three maneuvers increased urine flow rate and pelvic pressure, respectively, 137.0 +/- 20.6% and 136.8 +/- 21.1% (saline), 148.6 +/- 31.7% and 139.6 +/- 43.5% (furosemide), and 75.9 +/- 7.9% and 62.1 +/- 21.2% (ANP) at the time of the maximum response. Arterial pressure slightly increased after saline, did not change after furosemide, and slightly decreased after ANP. Renal blood flow increased after saline and did not change after furosemide and ANP. The three maneuvers increased ARNA by 98.4 +/- 15.2% (saline), 270.7 +/- 100.8% (furosemide), and 59.6 +/- 23.4% (ANP). Changes in ARNA significantly correlate with changes in both pelvic pressure and urine flow rate. Our data demonstrate that increments in urine flow rate increase the firing rate of renal afferent fibers and suggest that (1) pelvic pressure is the major determinant of the neural response, and (2) this increased afferent discharge is due to activation of renal mechanoreceptors.

  4. Primary afferent fibers establish dye-coupled connections in the frog central nervous system.

    PubMed

    Bácskai, Timea; Matesz, Clara

    Neurobiotin and Lucifer yellow, indicators of gap junctional coupling, were applied to primary afferent fibers of the frog. Following application of tracers to cervical or lumbar dorsal root fibers, a large number of labeled granule cells were detected in the corpus cerebelli, the brainstem, and the spinal cord. The vestibular nerve was found to be in dye-coupled connection with the granule cells of the auricular lobe of the cerebellum. After application of the tracers to the trigeminal nerve, elicited dye-coupled neurons located mainly in the termination area of the descending limb of the mesencephalic trigeminal nucleus. In control experiments with biotinylated dextrane amine, only primary afferent fibers were labeled. Our results suggest that gap junctional coupling exists between primary afferent fibers and their postsynaptic targets in the frog.

  5. Extrinsic cardiac nerve segments in the domestic dog (Canis familiaris- Linnaeus, 1758). Comparative study in young and adult dogs.

    PubMed

    Brugnaro, M; De Souza, R R; Ribeiro, A A C M

    2003-08-01

    In this paper, important connections between the two main contingents of the autonomic nervous system, intrinsic and extrinsic visceral plexus were analysed. Concerning heart innervation, the territories of extrinsic innervation are very important in the treatment of congenital or acquired cardiopathy, thoracic neoplasia and aortic arch persistence, among others. This research compared young and adult extrinsic cardiac innervation and described the surgical anatomic nerve segments. Animals were perfused with a 10% formaldehyde solution in PBS (0.1 m) (pH 7.4) and submitted to macro- and meso-scopic dissection immersed in 60% acetic acid alcoholic solution and 20% hydrogen peroxide aqueous solution. The nerve segments were assigned as: right vagus nerve segment, left vagus nerve segment, right middle cervical ganglion segment, left middle cervical ganglion segment, right caudal laryngeal nerve segment, left caudal laryngeal nerve segment, right phrenic nerve segment and left phrenic nerve segment.

  6. Interleukin-1β sensitizes abdominal visceral afferents of cats to ischaemia and histamine

    PubMed Central

    Fu, Liang-Wu; Longhurst, John C

    1999-01-01

    produced during brief abdominal ischaemia contributes to activation of visceral afferents during ischaemia, at least in part, by sensitizing the afferent nerve endings to ischaemia. Our data also show that exogenous IL-1β sensitizes visceral afferents to histamine. PMID:10562349

  7. Estradiol alters the chemosensitive cardiac afferent reflex in female rats by augmenting sympathoinhibition and attenuating sympathoexcitation.

    PubMed

    Pinkham, Maximilian I; Barrett, Carolyn J

    2015-06-01

    The chemosensitive cardiac vagal and sympathetic afferent reflexes are implicated in driving pathophysiological changes in sympathetic nerve activity (SNA) in cardiovascular disease states. This study investigated the impact of sex and ovarian hormones on the chemosensitive cardiac afferent reflex. Experiments were performed in anaesthetized, sinoaortic baroreceptor denervated male, female and ovariectomized female (OVX) Wistar rats with either intact cardiac innervation or bilateral vagotomy. To investigate the chemosensitive cardiac afferent reflexes renal SNA, heart rate (HR) and arterial pressure (AP) were recorded before and following application of capsaicin onto the epicardial surface of the left ventricle. Compared to males, ovary-intact females displayed similar cardiac afferent reflex mediated changes in renal SNA albeit with a reduced maximum sympathetic reflex driven increase in renal SNA. In females, ovariectomy significantly attenuated the cardiac vagal afferent reflex mediated inhibition of renal SNA (renal SNA decreased 2 ± 17% in OVX versus -50 ± 4% in ovary-intact females, P < 0.05) and augmented cardiac sympathetic afferent reflex mediated sympathoexcitation (renal SNA increased 91 ± 11% in OVX vs 62 ± 9% in ovary-intact females, P < 0.05) so that overall increases in reflex driven sympathoexcitation were significantly enhanced. Chronic estradiol replacement, but not progesterone replacement, begun at time of ovariectomy restored cardiac afferent reflex responses to be similar as ovary-intact females. Vagal denervation eliminated all group differences. The current findings show ovariectomy in female rats, mimicking menopause in women, results in greater chemosensitive cardiac afferent reflex driven sympathoexcitation and does so, at least partly, via the loss of estradiols actions on the cardiac vagal afferent reflex pathway.

  8. On the vagal cardiac nerves, with special reference to the early evolution of the head-trunk interface.

    PubMed

    Higashiyama, Hiroki; Hirasawa, Tatsuya; Oisi, Yasuhiro; Sugahara, Fumiaki; Hyodo, Susumu; Kanai, Yoshiakira; Kuratani, Shigeru

    2016-09-01

    The vagus nerve, or the tenth cranial nerve, innervates the heart in addition to other visceral organs, including the posterior visceral arches. In amniotes, the anterior and posterior cardiac branches arise from the branchial and intestinal portions of the vagus nerve to innervate the arterial and venous poles of the heart, respectively. The evolution of this innervation pattern has yet to be elucidated, due mainly to the lack of morphological data on the vagus in basal vertebrates. To investigate this topic, we observed the vagus nerves of the lamprey (Lethenteron japonicum), elephant shark (Callorhinchus milii), and mouse (Mus musculus), focusing on the embryonic patterns of the vagal branches in the venous pole. In the lamprey, no vagus branch was found in the venous pole throughout development, whereas the arterial pole was innervated by a branch from the branchial portion. In contrast, the vagus innervated the arterial and venous poles in the mouse and elephant shark. Based on the morphological patterns of these branches, the venous vagal branches of the mouse and elephant shark appear to belong to the intestinal part of the vagus, implying that the cardiac nerve pattern is conserved among crown gnathostomes. Furthermore, we found a topographical shift of the structures adjacent to the venous pole (i.e., the hypoglossal nerve and pronephros) between the extant gnathostomes and lamprey. Phylogenetically, the lamprey morphology is likely to be the ancestral condition for vertebrates, suggesting that the evolution of the venous branch occurred early in the gnathostome lineage, in parallel with the remodeling of the head-trunk interfacial domain during the acquisition of the neck. J. Morphol. 277:1146-1158, 2016. © 2016 Wiley Periodicals, Inc. PMID:27216138

  9. Sex differences in morphometric aspects of the peripheral nerves and related diseases

    PubMed Central

    Moriyama, Hiroshi; Hayashi, Shogo; Inoue, Yuriko; Itoh, Masahiro; Otsuka, Naruhito

    2016-01-01

    BACKGROUND: The elucidation of the relationship between the morphology of the peripheral nerves and the diseases would be valuable in developing new medical treatments on the assumption that characteristics of the peripheral nerves in females are different from those in males. METHODS: We used 13 kinds of the peripheral nerve. The materials were obtained from 10 Japanese female and male cadavers. We performed a morphometric analysis of nerve fibers. We estimated the total number of myelinated axons, and calculated the average transverse area and average circularity ratio of myelinated axons in the peripheral nerves. RESULTS: There was no statistically significant difference in the total number, average transverse area, or average circularity ratio of myelinated axons between the female and male specimens except for the total number of myelinated axons in the vestibular nerve and the average circularity ratio of myelinated axons in the vagus nerve. CONCLUSIONS: The lower number of myelinated axons in the female vestibular nerve may be one of the reasons why vestibular disorders have a female preponderance. Moreover, the higher average circularity ratio of myelinated axons in the male vagus nerve may be one reason why vagus nerve activity to modulate pain has a male preponderance. PMID:27589511

  10. Morphological characteristics of the cranial root of the accessory nerve.

    PubMed

    Liu, Hong-Fu; Won, Hyung-Sun; Chung, In-Hyuk; Kim, In-Beom; Han, Seung-Ho

    2014-11-01

    There has been the controversy surrounding the cranial root (CR) of the accessory nerve. This study was performed to clarify the morphological characteristics of the CR in the cranial cavity. Fifty sides of 25 adult cadaver heads were used. The accessory nerve was easily distinguished from the vagus nerve by the dura mater in the jugular foramen in 80% of 50 specimens. The trunk of the accessory nerve from the spinal cord penetrated the dura mater at various distances before entering the jugular foramen. In 20% of the specimens there was no dural boundary. In these cases, the uppermost cranial rootlet of the accessory nerve could be identified by removing the dura mater around the jugular foramen where it joined to the trunk of the accessory nerve at the superior vagal ganglion. The cranial rootlet was formed by union of two to four short filaments emerging from the medulla oblongata (66%) and emerged single, without filament (34%), and usually joined the trunk of the accessory nerve directly before the jugular foramen. The mean number of rootlets of the CR was 4.9 (range 2-9) above the cervicomedullary junction. The CR of the accessory nerve was composed of two to nine rootlets, which were formed by the union of two to four short filaments and joined the spinal root of the accessory nerve. The CR is morphologically distinct from the vagus nerve, confirming its existence.

  11. Schwannoma originating from lower cranial nerves: report of 4 cases.

    PubMed

    Oyama, Hirofumi; Kito, Akira; Maki, Hideki; Hattori, Kenichi; Noda, Tomoyuki; Wada, Kentaro

    2012-02-01

    Four cases of schwannoma originating from the lower cranial nerves are presented. Case 1 is a schwannoma of the vagus nerve in the parapharyngeal space. The operation was performed by the transcervical approach. Although the tumor capsule was not dissected from the vagus nerve, hoarseness and dysphagia happened transiently after the operation. Case 2 is a schwannoma in the jugular foramen. The operation was performed by the infralabyrinthine approach. Although only the intracapsular tumor was enucleated, facial palsy, hoarseness, dysphagia and paresis of the deltoid muscle occurred transiently after the operation. The patient's hearing had also slightly deteriorated. Case 3 is a dumbbell-typed schwannoma originating from the hypoglossal nerve. The hypoglossal canal was markedly enlarged by the tumor. As the hypoglossal nerves were embedded in the tumor, the tumor around the hypoglossal nerves was not resected. The tumor was significantly enlarged for a while after stereotactic irradiation. Case 4 is an intracranial cystic schwannoma originating from the IXth or Xth cranial nerves. The tumor was resected through the cerebello-medullary fissure. The tumor capsule attached to the brain stem was not removed. Hoarseness and dysphagia happened transiently after the operation. Cranial nerve palsy readily occurs after the removal of the schwannoma originating from the lower cranial nerves. Mechanical injury caused by retraction, extension and compression of the nerve and heat injury during the drilling of the petrous bone should be cautiously avoided.

  12. Motonuclear changes after cranial nerve injury and regeneration.

    PubMed

    Fernandez, E; Pallini, R; Lauretti, L; La Marca, F; Scogna, A; Rossi, G F

    1997-09-01

    Little is known about the mechanisms at play in nerve regeneration after nerve injury. Personal studies are reported regarding motonuclear changes after regeneration of injured cranial nerves, in particular of the facial and oculomotor nerves, as well as the influence that the natural molecule acetyl-L-carnitine (ALC) has on post-axotomy cranial nerve motoneuron degeneration after facial and vagus nerve lesions. Adult and newborn animal models were used. Massive motoneuron response after nerve section and reconstruction was observed in the motonuclei of all nerves studied. ALC showed to have significant neuroprotective effects on the degeneration of axotomized motoneurons. Complex quantitative, morphological and somatotopic nuclear changes occurred that sustain new hypotheses regarding the capacities of motoneurons to regenerate and the possibilities of new neuron proliferation. The particularities of such observations are described and discussed.

  13. Utricular afferents: morphology of peripheral terminals

    PubMed Central

    Huwe, J. A.; Logan, G. J.; Williams, B.; Rowe, M. H.

    2015-01-01

    The utricle provides critical information about spatiotemporal properties of head movement. It comprises multiple subdivisions whose functional roles are poorly understood. We previously identified four subdivisions in turtle utricle, based on hair bundle structure and mechanics, otoconial membrane structure and hair bundle coupling, and immunoreactivity to calcium-binding proteins. Here we ask whether these macular subdivisions are innervated by distinctive populations of afferents to help us understand the role each subdivision plays in signaling head movements. We quantified the morphology of 173 afferents and identified six afferent classes, which differ in structure and macular locus. Calyceal and dimorphic afferents innervate one striolar band. Bouton afferents innervate a second striolar band; they have elongated terminals and the thickest processes and axons of all bouton units. Bouton afferents in lateral (LES) and medial (MES) extrastriolae have small-diameter axons but differ in collecting area, bouton number, and hair cell contacts (LES >> MES). A fourth, distinctive population of bouton afferents supplies the juxtastriola. These results, combined with our earlier findings on utricular hair cells and the otoconial membrane, suggest the hypotheses that MES and calyceal afferents encode head movement direction with high spatial resolution and that MES afferents are well suited to signal three-dimensional head orientation and striolar afferents to signal head movement onset. PMID:25632074

  14. Upregulation of α1-adrenoceptors on cutaneous nerve fibres after partial sciatic nerve ligation and in complex regional pain syndrome type II.

    PubMed

    Drummond, Peter D; Drummond, Eleanor S; Dawson, Linda F; Mitchell, Vanessa; Finch, Philip M; Vaughan, Christopher W; Phillips, Jacqueline K

    2014-03-01

    After peripheral nerve injury, nociceptive afferents acquire an abnormal excitability to adrenergic agents, possibly due to an enhanced expression of α1-adrenoceptors (α1-ARs) on these nerve fibres. To investigate this in the present study, changes in α1-AR expression on nerve fibres in the skin and sciatic nerve trunk were assessed using immunohistochemistry in an animal model of neuropathic pain involving partial ligation of the sciatic nerve. In addition, α1-AR expression on nerve fibres was examined in painful and unaffected skin of patients who developed complex regional pain syndrome (CRPS) after a peripheral nerve injury (CRPS type II). Four days after partial ligation of the sciatic nerve, α1-AR expression was greater on dermal nerve fibres that survived the injury than on dermal nerve fibres after sham surgery. This heightened α1-AR expression was observed on nonpeptidergic nociceptive afferents in the injured sciatic nerve, dermal nerve bundles, and the papillary dermis. Heightened expression of α1-AR in dermal nerve bundles after peripheral nerve injury also colocalized with neurofilament 200, a marker of myelinated nerve fibres. In each patient examined, α1-AR expression was greater on nerve fibres in skin affected by CRPS than in unaffected skin from the same patient or from pain-free controls. Together, these findings provide compelling evidence for an upregulation of α1-ARs on cutaneous nociceptive afferents after peripheral nerve injury. Activation of these receptors by circulating or locally secreted catecholamines might contribute to chronic pain in CRPS type II.

  15. Central projections of the wing afferents in the hawkmoth, Agrius convolvuli.

    PubMed

    Ando, Noriyasu; Wang, Hao; Shirai, Koji; Kiguchi, Kenji; Kanzaki, Ryohei

    2011-11-01

    Flight behaviors in various insect species are closely correlated with their mechanical and neuronal properties. Compared to locusts and flies which have been intensively studied, moths have "intermediate" properties in terms of the neurogenic muscle activations, power generation by indirect muscles, and two-winged-insect-like flapping behavior. Despite these unique characteristics, little is known about the neuronal mechanisms of flight control in moths. We investigated projections of the wing mechanosensory afferents in the central nervous system (CNS) of the hawkmoth, Agrius convolvuli, because the mechanosensory proprioceptive feedback has an essential role for flight control and would be presumably optimized for insect species. We conducted anterograde staining of nine afferent nerves from the fore- and hindwings. All of these afferents projected into the prothoracic, mesothoracic and metathoracic ganglia (TG1, 2 and 3) and had ascending fibers to the head ganglia. Prominent projection areas in the TG1-3 and suboesophageal ganglion (SOG) were common between the forewing, hindwing and contralateral forewing afferents, suggesting that information from different wings are converged at multiple levels presumably for coordinating wing flapping. On the other hand, differences of projections between the fore- and hindwing afferents were observed especially in projection areas of the tegulae in the TG1 and contralateral projections of the anterior forewing nerve in the TGs and SOG, which would reflect functional differences between corresponding mechanoreceptors on each wing. Afferents comprising groups of the campaniform sensilla at the wing bases had prominent ascending pathways to the SOG, resembling the head-neck motor system for gaze control in flies. Double staining of the wing afferents and flight or neck motoneurons also indicated potential connectivity between them. Our results suggest multiple roles of the wing proprioceptive feedback for flight and provide

  16. Excitation of rat colonic afferent fibres by 5-HT3 receptors

    PubMed Central

    Hicks, Gareth A; Coldwell, Jonathan R; Schindler, Marcus; Bland Ward, Philip A; Jenkins, David; Lynn, Penny A; Humphrey, Patrick P A; Blackshaw, L Ashley

    2002-01-01

    The gastrointestinal tract contains most of the body's 5-hydroxytryptamine (5-HT) and releases large amounts after meals or exposure to toxins. Increased 5-HT release occurs in patients with irritable bowel syndrome (IBS) and their peak plasma 5-HT levels correlate with pain episodes. 5-HT3 receptor antagonists reduce symptoms of IBS clinically, but their site of action is unclear and the potential for other therapeutic targets is unexplored. Here we investigated effects of 5-HT on sensory afferents from the colon and the expression of 5-HT3 receptors on their cell bodies in the dorsal root ganglia (DRG). Distal colon, inferior mesenteric ganglion and the lumbar splanchnic nerve bundle (LSN) were placed in a specialized organ bath. Eighty-six single fibres were recorded from the LSN. Three classes of primary afferents were found: 70 high-threshold serosal afferents, four low-threshold muscular afferents and 12 mucosal afferents. Afferent cell bodies were retrogradely labelled from the distal colon to the lumbar DRG, where they were processed for 5-HT3 receptor-like immunoreactivity. Fifty-six percent of colonic afferents responded to 5-HT (between 10−6 and 10−3 M) and 30 % responded to the selective 5-HT3 agonist, 2-methyl-5-HT (between 10−6 and 10−2 M). Responses to 2-methyl-5-HT were blocked by the 5-HT3 receptor antagonist alosetron (2 × 10−7 M), whereas responses to 5-HT were only partly inhibited. Twenty-six percent of L1 DRG cell bodies retrogradely labelled from the colon displayed 5-HT3 receptor-like immunoreactivity. We conclude that colonic sensory neurones expressing 5-HT3 receptors also functionally express the receptors at their peripheral endings. Our data reveal actions of 5-HT on colonic afferent endings via both 5-HT3 and non-5-HT3 receptors. PMID:12411529

  17. Altered colorectal afferent function associated with TNBS-induced visceral hypersensitivity in mice.

    PubMed

    Feng, Bin; La, Jun-Ho; Tanaka, Takahiro; Schwartz, Erica S; McMurray, Timothy P; Gebhart, G F

    2012-10-01

    Inflammation of the distal bowel is often associated with abdominal pain and hypersensitivity, but whether and which colorectal afferents contribute to the hypersensitivity is unknown. Using a mouse model of 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis, we investigated colorectal hypersensitivity following intracolonic TNBS and associated changes in colorectum and afferent functions. C57BL/6 mice were treated intracolonically with TNBS or saline. Visceromotor responses to colorectal distension (15-60 mmHg) were recorded over 8 wk in TNBS- and saline-treated (control) mice. In other mice treated with TNBS or saline, colorectal inflammation was assessed by myeloperoxidase assay and immunohistological staining. In vitro single-fiber recordings were conducted on both TNBS and saline-treated mice to assess colorectal afferent function. Mice exhibited significant colorectal hypersensitivity through day 14 after TNBS treatment that resolved by day 28 with no resensitization through day 56. TNBS induced a neutrophil- and macrophage-based colorectal inflammation as well as loss of nerve fibers, all of which resolved by days 14-28. Single-fiber recordings revealed a net increase in afferent drive from stretch-sensitive colorectal afferents at day 14 post-TNBS and reduced proportions of mechanically insensitive afferents (MIAs) at days 14-28. Intracolonic TNBS-induced colorectal inflammation was associated with the development and recovery of hypersensitivity in mice, which correlated with a transient increase and recovery of sensitization of stretch-sensitive colorectal afferents and MIAs. These results indicate that the development and maintenance of colorectal hypersensitivity following inflammation are mediated by peripheral drive from stretch-sensitive colorectal afferents and a potential contribution from MIAs.

  18. Altered colorectal afferent function associated with TNBS-induced visceral hypersensitivity in mice

    PubMed Central

    La, Jun-Ho; Tanaka, Takahiro; Schwartz, Erica S.; McMurray, Timothy P.; Gebhart, G. F.

    2012-01-01

    Inflammation of the distal bowel is often associated with abdominal pain and hypersensitivity, but whether and which colorectal afferents contribute to the hypersensitivity is unknown. Using a mouse model of 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis, we investigated colorectal hypersensitivity following intracolonic TNBS and associated changes in colorectum and afferent functions. C57BL/6 mice were treated intracolonically with TNBS or saline. Visceromotor responses to colorectal distension (15–60 mmHg) were recorded over 8 wk in TNBS- and saline-treated (control) mice. In other mice treated with TNBS or saline, colorectal inflammation was assessed by myeloperoxidase assay and immunohistological staining. In vitro single-fiber recordings were conducted on both TNBS and saline-treated mice to assess colorectal afferent function. Mice exhibited significant colorectal hypersensitivity through day 14 after TNBS treatment that resolved by day 28 with no resensitization through day 56. TNBS induced a neutrophil- and macrophage-based colorectal inflammation as well as loss of nerve fibers, all of which resolved by days 14–28. Single-fiber recordings revealed a net increase in afferent drive from stretch-sensitive colorectal afferents at day 14 post-TNBS and reduced proportions of mechanically insensitive afferents (MIAs) at days 14–28. Intracolonic TNBS-induced colorectal inflammation was associated with the development and recovery of hypersensitivity in mice, which correlated with a transient increase and recovery of sensitization of stretch-sensitive colorectal afferents and MIAs. These results indicate that the development and maintenance of colorectal hypersensitivity following inflammation are mediated by peripheral drive from stretch-sensitive colorectal afferents and a potential contribution from MIAs. PMID:22859364

  19. Activation of guanylate cyclase-C attenuates stretch responses and sensitization of mouse colorectal afferents

    PubMed Central

    Feng, Bin; Kiyatkin, Michael E.; La, Jun-Ho; Ge, Pei; Solinga, Robert; Silos-Santiago, Inmaculada; Gebhart, G.F.

    2013-01-01

    Irritable bowel syndrome (IBS) is characterized by altered bowel habits, persistent pain and discomfort, and typically colorectal hypersensitivity. Linaclotide, a peripherally-restricted 14-amino acid peptide approved for the treatment of IBS with constipation, relieves constipation and reduces IBS-associated pain in these patients presumably by activation of guanylate cyclase-C (GC-C), which stimulates production and release of cyclic guanosine monophosphate (cGMP) from intestinal epithelial cells. We investigated whether activation of GC-C by the endogenous agonist uroguanylin or the primary downstream effector of that activation, cGMP, directly modulates responses and sensitization of mechanosensitive colorectal primary afferents. The distal 2 cm of mouse colorectum with attached pelvic nerve was harvested, pinned flat mucosal side up for in vitro single-fiber recordings and the encoding properties of mechanosensitive afferents (serosal, mucosal, muscular and muscular-mucosal) to probing and circumferential stretch studied. Both cGMP (10–300μM) and uroguanylin (1–1000nM) applied directly to colorectal receptive endings significantly reduced responses of muscular and muscular-mucosal afferents to stretch; serosal and mucosal afferents were not affected. Sensitized responses (i.e., increased responses to stretch) of muscular and muscular-mucosal afferents were reversed by cGMP, returning responses to stretch to control. Blocking the transport of cGMP from colorectal epithelia by probenecid, a mechanism validated by studies in cultured intestinal T84 cells, abolished the inhibitory effect of uroguanylin on muscular-mucosal afferents. These results suggest that GC-C agonists like linaclotide alleviate colorectal pain and hypersensitivity by dampening stretch-sensitive afferent mechanosensitivity and normalizing afferent sensitization. PMID:23739979

  20. TRPA1 mediates amplified sympathetic responsiveness to activation of metabolically sensitive muscle afferents in rats with femoral artery occlusion

    PubMed Central

    Xing, Jihong; Lu, Jian; Li, Jianhua

    2015-01-01

    Autonomic responses to activation of mechanically and metabolically sensitive muscle afferent nerves during static contraction are augmented in rats with femoral artery occlusion. Moreover, metabolically sensitive transient receptor potential cation channel subfamily A, member 1 (TRPA1) has been reported to contribute to sympathetic nerve activity (SNA) and arterial blood pressure (BP) responses evoked by static muscle contraction. Thus, in the present study, we examined the mechanisms by which afferent nerves' TRPA1 plays a role in regulating amplified sympathetic responsiveness due to a restriction of blood flow directed to the hindlimb muscles. Our data show that 24–72 h of femoral artery occlusion (1) upregulates the protein levels of TRPA1 in dorsal root ganglion (DRG) tissues; (2) selectively increases expression of TRPA1 in DRG neurons supplying metabolically sensitive afferent nerves of C-fiber (group IV); and (3) enhances renal SNA and BP responses to AITC (a TRPA1 agonist) injected into the hindlimb muscles. In addition, our data demonstrate that blocking TRPA1 attenuates SNA and BP responses during muscle contraction to a greater degree in ligated rats than those responses in control rats. In contrast, blocking TRPA1 fails to attenuate SNA and BP responses during passive tendon stretch in both groups. Overall, results of this study indicate that alternations in muscle afferent nerves' TRPA1 likely contribute to enhanced sympathetically mediated autonomic responses via the metabolic component of the muscle reflex under circumstances of chronic muscle ischemia. PMID:26441669

  1. Myelinated Afferents Are Involved in Pathology of the Spontaneous Electrical Activity and Mechanical Hyperalgesia of Myofascial Trigger Spots in Rats

    PubMed Central

    2015-01-01

    Myofascial trigger points (MTrPs) are common causes for chronic pain. Myelinated afferents were considered to be related with muscular pain, and our clinical researches indicated they might participate in the pathology of MTrPs. Here, we applied myofascial trigger spots (MTrSs, equal to MTrPs in human) of rats to further investigate role of myelinated afferents. Modified pyridine-silver staining revealed more nerve endings at MTrSs than non-MTrSs (P < 0.01), and immunohistochemistry with Neurofilament 200 indicated more myelinated afferents existed in MTrSs (P < 0.01). Spontaneous electrical activity (SEA) recordings at MTrSs showed that specific block of myelinated afferents in sciatic nerve with tetrodotoxin (TTX) led to significantly decreased SEA (P < 0.05). Behavioral assessment showed that mechanical pain thresholds (MPTs) of MTrSs were lower than those of non-MTrSs (P < 0.01). Block of myelinated afferents by intramuscular TTX injection increased MPTs of MTrSs significantly (P < 0.01), while MPTs of non-MTrSs first decreased (P < 0.05) and then increased (P > 0.05). 30 min after the injection, MPTs at MTrSs were significantly lower than those of non-MTrSs (P < 0.01). Therefore, we concluded that proliferated myelinated afferents existed at MTrSs, which were closely related to pathology of SEA and mechanical hyperalgesia of MTrSs. PMID:26064165

  2. Skeletal muscle afferent regulation of bioassayable growth hormone in the rat pituitary

    NASA Technical Reports Server (NTRS)

    Gosselink, K. L.; Grindeland, R. E.; Roy, R. R.; Zhong, H.; Bigbee, A. J.; Grossman, E. J.; Edgerton, V. R.

    1998-01-01

    There are forms of growth hormone (GH) in the plasma and pituitary of the rat and in the plasma of humans that are undetected by presently available immunoassays (iGH) but can be measured by bioassay (bGH). Although the regulation of iGH release is well documented, the mechanism(s) of bGH release is unclear. On the basis of changes in bGH and iGH secretion in rats that had been exposed to microgravity conditions, we hypothesized that neural afferents play a role in regulating the release of these hormones. To examine whether bGH secretion can be modulated by afferent input from skeletal muscle, the proximal or distal ends of severed hindlimb fast muscle nerves were stimulated ( approximately 2 times threshold) in anesthetized rats. Plasma bGH increased approximately 250%, and pituitary bGH decreased approximately 60% after proximal nerve trunk stimulation. The bGH response was independent of muscle mass or whether the muscles were flexors or extensors. Distal nerve stimulation had little or no effect on plasma or pituitary bGH. Plasma iGH concentrations were unchanged after proximal nerve stimulation. Although there may be multiple regulatory mechanisms of bGH, the present results demonstrate that the activation of low-threshold afferents from fast skeletal muscles can play a regulatory role in the release of bGH, but not iGH, from the pituitary in anesthetized rats.

  3. Merkel cells transduce and encode tactile stimuli to drive Aβ-afferent impulses

    PubMed Central

    Ikeda, Ryo; Cha, Myeounghoon; Ling, Jennifer; Jia, Zhanfeng; Coyle, Dennis; Gu, Jianguo G.

    2014-01-01

    SUMMARY Sensory systems for detecting tactile stimuli have evolved from touch-sensing nerves in invertebrates to complicated tactile end-organs in mammals. Merkel discs are tactile end-organs consisting of Merkel cells and Aβ-afferent nerve endings, and are localized in fingertips, whisker hair follicles and other touch-sensitive spots. Merkel discs transduce touch into slowly adapting impulses to enable tactile discrimination, but their transduction and encoding mechanisms remain unknown. Using rat whisker hair follicles, we show that Merkel cells rather than Aβ-afferent nerve endings are primary sites of tactile transduction, and identify the Piezo2 ion channel as the Merkel cell mechanical transducer. Piezo2 transduces tactile stimuli into Ca2+-action potentials in Merkel cells, which drive Aβ-afferent nerve endings to fire slowly adapting impulses. We further demonstrate that Piezo2 and Ca2+-action potentials in Merkel cells are required for behavioral tactile responses. Our findings provide insights into how tactile end-organs function and have clinical implications for tactile dysfunctions. PMID:24746027

  4. Afferent pathways of neural reno-renal reflexes controlling sodium and water excretion in the cat.

    PubMed

    Golin, R; Genovesi, S; Stella, A; Zanchetti, A

    1987-08-01

    We have studied the role of afferent renal nerve fibres in anaesthetized cats in mediating the decrease in sodium and water excretion from the contralateral kidney caused by unilateral renal denervation. Transient denervation of one kidney obtained by cooling of the left renal nerves increases contralateral efferent renal nerve activity and decreased sodium and water excretion from the opposite kidney. The results observed in animals with intact neural pathways were compared with those obtained after the left kidney had been selectively deafferentated by cutting the dorsal roots from T9 to L4. Bilateral section of dorsal roots did not affect the increase in sodium and water excretion from the transiently denervated left kidney, but entirely abolished the decrease in sodium and water excretion from the contralateral kidney. Neither the left nor the right dorsal root section alone, affected the response of the contralateral right kidney. Our data demonstrate that afferent renal nerve fibres project bilaterally to the spinal cord and form the afferent branch of the reno-renal reflex by which one kidney can control the function of the opposite one.

  5. A quantitative study of the central projection patterns of unmyelinated ventral root afferents in the cat.

    PubMed Central

    Häbler, H J; Jänig, W; Koltzenburg, M; McMahon, S B

    1990-01-01

    1. The ventral roots of the spinal cord contain a large number of unmyelinated primary afferent neurones. There is some controversy, however, about the function of these fibres and the route of their central projection. Here we have used electrophysiological techniques to quantify the central projection patterns of these neurones in the segment S2 of adult chloralose-anaesthesized cats. 2. A total of 1185 single unmyelinated units were recorded in small filaments isolated from intact and de-efferented ventral roots or intact dorsal roots of the segment S2 in nineteen cats. The projection patterns of these neurones were tested using supramaximal electrical stimulation of the pelvic and pudendal nerve (the main tributaries of the spinal nerve of this segment) and of the segmental companion root (dorsal or ventral as appropriate). 3. The principal finding of this study is that 85% of unmyelinated afferent axons in the ventral root are direct and exclusive projections. They constitute a separate class of afferents which is only capable of transmitting information from the periphery via the ventral roots. However, the proportion of these fibres that enter the central nervous system is unknown and it seems likely that some of them peter out as they approach the spinal cord and end blindly. The functional role of such afferents remains obscure. 4. For the remaining 15% of unmyelinated ventral root afferents, a projection into the segmental dorsal root was found. The majority of those fibres (about two-thirds) are primary afferent neurones innervating the pia mater. Some of these units had a small spot-like receptive field and responded to mechanical stimuli such as pressure and stretch of the root. They did not have axon projections in a peripheral nerve. 5. A few (5%) unmyelinated ventral root fibres are collateral branches of normal primary afferents projecting through the dorsal root. These trifurcating neurones are a small population which make up only some 0.5% of

  6. Short latency activation of pyramidal tract cells by Group I afferent volleys in the cat

    PubMed Central

    Swett, John E.; Bourassa, Charles M.

    1967-01-01

    1. The contralateral bulbar pyramids were explored with low impedance micro-electrodes in cats anaesthetized with chloralose to reveal the effect of Group I afferent volleys (deep radial nerve of the forelimb) on pyramidal tract (Pt) cells. 2. Low rate (0·5/sec) stimulation of Group I afferents produced small responses (5-30 μV) in the bulbar pyramid which could be detected only with response averaging methods. The responses appeared with an initial latency of 7·0-11·2 msec and reached peak amplitude in 15·7 msec (mean latency). The pyramidal tract origin of the potential was demonstrated by its depression at stimulus rates above 1-2 sec and its disappearance at rates above 4/sec. 3. Recordings of neurones in the Group I cortical projection zone of the posterior sigmoid gyrus revealed that several types of cells, including Pt cells, were activated by Group I afferent volleys. 4. Pt cells responding to Group I afferent volleys frequently received convergent actions from low threshold cutaneous nerve volleys. 5. Averaged response recordings from electrodes positioned in the medial portions of the lateral funiculus of the spinal cord at the level of C2, revealed a response to Group I afferent volleys as early as 7·4 msec which possessed the same characteristics as the relayed response to Group I in the bulbar pyramids. Some Pt cells, activated by Group I volleys orthodromically, could also be antidromically activated by stimulation of the recording site in C2. 6. It was concluded that group I afferent volleys can influence, after short latencies, Pt and non-Pt cells and that some of these Pt cells gave rise to axons incorporated in the corticospinal tract. PMID:16992239

  7. Cerebral, subcortical, and cerebellar activation evoked by selective stimulation of muscle and cutaneous afferents: an fMRI study

    PubMed Central

    Wardman, Daniel L.; Gandevia, Simon C.; Colebatch, James G.

    2014-01-01

    Abstract We compared the brain areas that showed significant flow changes induced by selective stimulation of muscle and cutaneous afferents using fMRI BOLD imaging. Afferents arising from the right hand were studied in eight volunteers with electrical stimulation of the digital nerve of the index finger and over the motor point of the FDI muscle. Both methods evoked areas of significant activation cortically, subcortically, and in the cerebellum. Selective muscle afferent stimulation caused significant activation in motor‐related areas. It also caused significantly greater activation within the contralateral precentral gyrus, insula, and within the ipsilateral cerebellum as well as greater areas of reduced blood flow when compared to the cutaneous stimuli. We demonstrated separate precentral and postcentral foci of excitation with muscle afferent stimulation. We conclude, contrary to the findings with evoked potentials, that muscle afferents evoke more widespread cortical, subcortical, and cerebellar activation than do cutaneous afferents. This emphasizes the importance, for studies of movement, of matching the kinematic aspects in order to avoid the results being confounded by alterations in muscle afferent activation. The findings are consistent with clinical observations of the movement consequences of sensory loss and may also be the basis for the contribution of disturbed sensorimotor processing to disorders of movement. PMID:24771687

  8. Single low-threshold afferents innervating the skin of the human foot modulate ongoing muscle activity in the upper limbs.

    PubMed

    Bent, Leah R; Lowrey, Catherine R

    2013-03-01

    We have shown for the first time that single cutaneous afferents in the foot dorsum have significant reflex coupling to motoneurons supplying muscles in the upper limb, particularly posterior deltoid and triceps brachii. These observations strengthen what we know from whole nerve stimulation, that skin on the foot and ankle can contribute to the modulation of interlimb muscles in distant innervation territories. The current work provides evidence of the mechanism behind the reflex, where one single skin afferent can evoke a reflex response, rather than a population. Nineteen of forty-one (46%) single cutaneous afferents isolated in the dorsum or plantar surface of the foot elicited a significant modulation of muscle activity in the upper limb. Identification of single afferents in this reflex indicates the strength of the connection and, ultimately, the importance of foot skin in interlimb coordination. The median response magnitude was 2.29% of background EMG, and the size of the evoked response did not significantly differ among the four mechanoreceptor classes (P > 0.1). Interestingly, although the distribution of afferents types did not differ across the foot dorsum, there was a significantly greater coupling response from receptors located on the medial aspect of the foot dorsum (P < 0.01). Furthermore, the most consistent coupling with upper limb muscles was demonstrated by type I afferents (fast and slowly adapting). This work contributes to the current literature on receptor specificity, supporting the view that individual classes of cutaneous afferents may subserve specific roles in kinesthesia, reflexes, and tactile perception.

  9. The unsilent majority-TRPV1 drives "spontaneous" transmission of unmyelinated primary afferents within cardiorespiratory NTS.

    PubMed

    Andresen, Michael C; Hofmann, Mackenzie E; Fawley, Jessica A

    2012-12-15

    Cranial primary afferent sensory neurons figure importantly in homeostatic control of visceral organ systems. Of the two broad classes of visceral afferents, the role of unmyelinated or C-type class remains poorly understood. This review contrasts key aspects of peripheral discharge properties of C-fiber afferents and their glutamate transmission mechanisms within the solitary tract nucleus (NTS). During normal prevailing conditions, most information arrives at the NTS through myelinated A-type nerves. However, most of visceral afferent axons (75-90%) in NTS are unmyelinated, C-type axons. Centrally, C-type solitary tract (ST) afferent terminals have presynaptic transient receptor potential vanilloid type 1 (TRPV1) receptors. Capsaicin activation of TRPV1 blocks phasic or synchronous release of glutamate but facilitates release of glutamate from a separate pool of vesicles. This TRPV1-operated pool of vesicles is active at normal temperatures and is responsible for actively driving a 10-fold higher release of glutamate at TRPV1 compared with TRPV1- terminals even in the absence of afferent action potentials. This novel TRPV1 mechanism is responsible for an additional asynchronous release of glutamate that is not present in myelinated terminals. The NTS is rich with presynaptic G protein-coupled receptors, and the implications of TRPV1-operated glutamate offer unique targets for signaling in C-type sensory afferent terminals from neuropeptides, inflammatory mediators, lipid metabolites, cytokines, and cannabinoids. From a homeostatic view, this combination could have broad implications for integration in chronic pathological disturbances in which the numeric dominance of C-type endings and TRPV1 would broadly disturb multisystem control mechanisms.

  10. Paraventricular nucleus is involved in the central pathway of adipose afferent reflex in rats.

    PubMed

    Shi, Zhen; Wang, Yuan-Fang; Wang, Gui-Hua; Wu, Yu-Long; Ma, Chun-Lei

    2016-05-01

    Increasing evidence indicates a link between sympathetic nervous system activation and obesity, but the underlying mechanisms remain elusive. The adipose afferent reflex (AAR) is a sympathoexcitatory reflex that is activated by afferent neurotransmission from the white adipose tissue (WAT). This study aimed to investigate whether the hypothalamic paraventricular nucleus (PVH) is an important component of the central neurocircuitry of the AAR. In anesthetized rats, the discharge activity of individual PVH neurons was recorded in vivo. Activation of WAT afferents was initiated by capsaicin injection, and the AAR was evaluated by monitoring renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) responses. The responses of PVH neurons to activation of WAT afferents were evaluated by c-fos immunoreactivity and the discharge activity of individual PVH neurons, which was recorded using extracellular single-unit recording. After activation of WAT afferents, both individual PVH neuron discharge activity and c-fos immunoreactivity increased. Bilateral selective lesions of the neurons in the PVH with kainic acid abolished the AAR. These results indicate that PVH is an important component of the central neurocircuitry of the AAR. PMID:26963333

  11. Hyperinsulinemia Potentiates Airway Responsiveness to Parasympathetic Nerve Stimulation in Obese Rats

    PubMed Central

    Jacoby, David B.; Fryer, Allison D.

    2014-01-01

    Obesity is a substantial risk factor for developing asthma, but the molecular mechanisms underlying this relationship are unclear. We tested the role of insulin in airway responsiveness to nerve stimulation using rats genetically prone or resistant to diet-induced obesity. Airway response to vagus nerve stimulation and airway M2 and M3 muscarinic receptor function were measured in obese-prone and -resistant rats with high or low circulating insulin. The effects of insulin on nerve-mediated human airway smooth muscle contraction and human M2 muscarinic receptor function were tested in vitro. Our data show that increased vagally mediated bronchoconstriction in obesity is associated with hyperinsulinemia and loss of inhibitory M2 muscarinic receptor function on parasympathetic nerves. Obesity did not induce airway inflammation or increase airway wall thickness. Smooth muscle contraction to acetylcholine was not increased, indicating that hyperresponsiveness is mediated at the level of airway nerves. Reducing serum insulin with streptozotocin protected neuronal M2 receptor function and prevented airway hyperresponsiveness to vagus nerve stimulation in obese rats. Replacing insulin restored dysfunction of neuronal M2 receptors and airway hyperresponsiveness to vagus nerve stimulation in streptozotocin-treated obese rats. Treatment with insulin caused loss of M2 receptor function, resulting in airway hyperresponsiveness to vagus nerve stimulation in obese-resistant rats, and inhibited human neuronal M2 receptor function in vitro. This study shows that it is not obesity per se but hyperinsulinemia accompanying obesity that potentiates vagally induced bronchoconstriction by inhibiting neuronal M2 muscarinic receptors and increasing acetylcholine release from airway parasympathetic nerves. PMID:24605871

  12. Brain stem convergence of pelvic viscerosomatic inputs via spinal and vagal afferents.

    PubMed

    Hubscher, Charles H; Kaddumi, Ezidin G; Johnson, Richard D

    2004-06-01

    Single medullary reticular formation (MRF) neurons receive ascending spinal inputs from multiple somatic and pelvic visceral territories. MRF neurons were examined for responses to both pelvic (PN) and vagus (abdominal branches: VAG-abd) nerve stimulation, which dually innervate certain pelvic viscera. Recordings in 12 urethane-anesthetized male rats were performed. Of 121 PN-responsive MRF neurons, 50% responded to VAG-abd. Twenty-seven (22%) responded to colonic distention. All 121 neurons responded to noxious stimulation of somatic territories, including many areas outside the perigenital region (including the hindpaws, ears, face). These data demonstrate input originating from different spinal and cranial nerves. The functional significance of this viscerosomatic convergence to MRF is unknown, but could relate to sensory/autonomic integration for coordinating multiple bodily functions, including reproductive and eliminative events.

  13. The VAGUS insight into psychosis scale – Self-report & clinician-rated versions

    PubMed Central

    Gerretsen, Philip; Remington, Gary; Borlido, Carol; Quilty, Lena; Hassan, Sabrina; Polsinelli, Gina; Teo, Celine; Mar, Wanna; Simon, Regina; Menon, Mahesh; Pothier, David D.; Nakajima, Shinichiro; Caravaggio, Fernando; Mamo, David C.; Rajji, Tarek K.; Mulsant, Benoit H.; Deluca, Vincenzo; Ganguli, Rohan; Pollock, Bruce G.; Graff-Guerrero, Ariel

    2015-01-01

    The aim of this study was to develop self-report and clinician-rated versions of an insight scale that would be easy to administer, sensitive to small changes, and inclusive of the core dimensions of clinical insight into psychosis. Ten-item self-report (VAGUS-SR) and five-item clinician-rated (VAGUS-CR) scales were designed to measure the dimensions of insight into psychosis and evaluated in 215 and 140 participants, respectively (www.vagusonline.com). Tests of reliability and validity were performed. Both the VAGUS-SR and VAGUS-CR showed good internal consistency and reliability. They demonstrated good convergent and discriminant validity. Both versions were strongly correlated with one another and with the Schedule for the Assessment of Insight and Birchwood Insight Scale. Exploratory factor analyses identified three possible latent components of insight. The VAGUS-CR and VAGUS-SR are valid, reliable and easy to administer. They are build on previous insight scales with separate clinician-rated and self-report versions. The VAGUS-SR exhibited a multidimensional factor structure. Using a 10-point Likert scale for each item, the VAGUS has the capacity to detect small, temporally sensitive changes in insight, which is essential for intervention studies with neurostimulation or rapidly acting medications. PMID:25246410

  14. Meningeal afferent signaling and the pathophysiology of migraine.

    PubMed

    Burgos-Vega, Carolina; Moy, Jamie; Dussor, Gregory

    2015-01-01

    Migraine is the most common neurological disorder. Attacks are complex and consist of multiple phases but are most commonly characterized by intense, unilateral, throbbing headache. The pathophysiology contributing to migraine is poorly understood and the disorder is not well managed with currently available therapeutics, often rendering patients disabled during attacks. The mechanisms most likely to contribute to the pain phase of migraine require activation of trigeminal afferent signaling from the cranial meninges and subsequent relay of nociceptive information into the central nervous system in a region of the dorsal brainstem known as the trigeminal nucleus caudalis. Events leading to activation of meningeal afferents are unclear, but nerve endings within this tissue are mechanosensitive and also express a variety of ion channels including acid-sensing ion channels and transient receptor-potential channels. These properties may provide clues into the pathophysiology of migraine by suggesting that decreased extracellular pH and environmental irritant exposure in the meninges contributes to headache. Neuroplasticity is also likely to play a role in migraine given that attacks are triggered by routine events that are typically nonnoxious in healthy patients and clear evidence of sensitization occurs during an attack. Where and how plasticity develops is also not clear but may include events directly on the afferents and/or within the TNC. Among the mediators potentially contributing to plasticity, calcitonin gene-related peptide has received the most attention within the migraine field but other mechanisms may also contribute. Ultimately, greater understanding of the molecules and mechanisms contributing to migraine will undoubtedly lead to better therapeutics and relief for the large number of patients across the globe who suffer from this highly disabling neurological disorder.

  15. Morphophysiology of synaptic transmission between type I hair cells and vestibular primary afferents. An intracellular study employing horseradish peroxidase in the lizard, Calotes versicolor.

    PubMed

    Schessel, D A; Ginzberg, R; Highstein, S M

    1991-03-22

    Intracellular records with glass microelectrodes filled with horseradish peroxidase (HRP) were taken from primary afferents of the horizontal semicircular canal in the lizard, Calotes versicolor. A coefficient of variation (CV) of the interspike intervals of spontaneous action potentials (APs) was calculated and correlated with the terminal morphologies of afferents within the canal crista. Irregular fibers with CV greater than 0.4 always correlated with a nerve chalice or calyx afferent terminal expansion surrounding one or more type I hair cells; more regular fibers with CV less than 0.4 always correlated with a dimorphic or bouton only terminal expansion of afferents. Afferents with a CV greater than 0.4 demonstrated miniature excitatory postsynaptic potentials (mEPSPs) that summated to initiate APs. APs were blocked by tetrodotoxin and mEPSP frequency was modulated by caloric stimulation. Cobalt application reversibly blocked mEPSPs. Electron microscopic examination of physiologically studied afferents with CV greater than 0.4 revealed synaptic profiles consisting of typical synaptic bodies and synaptic vesicles in the type I hair cell presynaptic to the nerve chalice. Examples of the interspike baseline in regular and irregular afferents suggest differential modes of impulse initiation in these two fiber types.

  16. Benign anatomical mistakes: the correct anatomical term for the recurrent laryngeal nerve.

    PubMed

    Mirilas, Petros; Skandalakis, John E

    2002-01-01

    The term recurrent laryngeal nerve has been adopted by Nomina Anatomica (1989) and Terminologia Anatomica (1998) to describe this vagus branch from its origin, its turn dorsally around the subclavian artery and the aortic arch, and its cranial pathway until it reaches its terminal organs in the neck. However, there is still much confusion, and either the terms inferior and recurrent laryngeal nerve are used interchangeably or inferior laryngeal nerve is considered the terminal branch of the recurrent laryngeal nerve. We hereby feel that it is necessary to reassess the term and we propose the term inferior laryngeal nerve for the entire nerve under consideration, from its origin from the vagus nerve to its destinations, including tracheal, esophageal, and pharyngeal branches. If the term superior laryngeal nerve is a given, standard and accepted term in the anatomical terminology, then logically the term inferior laryngeal nerve should also be accepted, as opposed to it. Of course the upward travel of the inferior laryngeal nerve is "recurrent". When nonrecurrence is encountered together with an arteria lusoria, a retroesophageal right subclavian artery or a right aortic arch, we consider that the term nonrecurrent inferior laryngeal nerve should be used to describe the deviation from the normal.

  17. Apolipoprotein AIV requires cholecystokinin and vagal nerves to suppress food intake.

    PubMed

    Lo, Chunmin C; Langhans, Wolfgang; Georgievsky, Maria; Arnold, Myrtha; Caldwell, Jody L; Cheng, Stacy; Liu, Min; Woods, Stephen C; Tso, Patrick

    2012-12-01

    Apolipoprotein AIV (apo AIV) and cholecystokinin (CCK) are gastrointestinal satiation signals that are stimulated by fat consumption. Previous studies have demonstrated that peripheral apo AIV cannot cross the blood-brain barrier. In the present study, we hypothesized that peripheral apo AIV uses a CCK-dependent system and intact vagal nerves to relay its satiation signal to the hindbrain. To test this hypothesis, CCK-knockout (CCK-KO) mice and Long-Evan rats that had undergone subdiaphragmatic vagal deafferentation (SDA) were used. Intraperitoneal administration of apo AIV at 100 or 200 μg/kg suppressed food intake of wild-type (WT) mice at 30, 60, and 90 min. In contrast, the same dose did not reduce food intake in the CCK-KO mice. Blockade of the CCK 1 receptor by lorglumide, a CCK 1 receptor antagonist, attenuated apo AIV-induced satiation. Apo AIV at 100 μg/kg reduced food intake in SHAM rats but not in SDA rats. Furthermore, apo AIV elicited an increase in c-Fos-positive cells in the nucleus of the solitary tract (NTS), area postrema, dorsal motor nucleus of the vagus, and adjacent areas of WT mice but elicited only an attenuated increase in these same regions in CCK-KO mice. Apo AIV-induced c-Fos positive cells in the NTS and area postrema of WT mice were reduced by lorglumide. Lastly, apo AIV increased c-Fos positive cells in the NTS of SHAM rats but not in SDA rats. These observations imply that peripheral apo AIV requires an intact CCK system and vagal afferents to activate neurons in the hindbrain to reduce food intake.

  18. Hydrogen sulfide determines HNO-induced stimulation of trigeminal afferents.

    PubMed

    Wild, Vanessa; Messlinger, Karl; Fischer, Michael J M

    2015-08-18

    Endogenous NO and hydrogen sulfide form HNO, which causes CGRP release via TRPA1 channel activation in sensory nerves. In the present study, stimulation of intact trigeminal afferent neuron preparations with NO donors, Na2S or both was analyzed by measuring CGRP release as an index of mass activation. Combined stimulation was able to activate all parts of the trigeminal system and acted synergistic compared to stimulation with both substances alone. To investigate the contribution of both substances, we varied their ratio and tracked intracellular calcium in isolated neurons. Our results demonstrate that hydrogen sulfide is the rate-limiting factor for HNO formation. CGRP has a key role in migraine pathophysiology and HNO formation at all sites of the trigeminal system should be considered for this novel means of activation.

  19. Gastroduodenal ulcer treated by pylorus and pyloric vagus-preservinggastrectomy

    PubMed Central

    Lu, Yun-Fu; Zhang, Xin-Xin; Zhao, Ge; Zhu, Qing-Hua

    1999-01-01

    AIM To evaluate the curative effect of pylorus and pyloric vagus-preserving gastrectomy (PPVPG) on peptic ulcer. METHODS Treating 132 cases of GU and DU with PPVPG, and com parative studies made with 24 cases treated with Billroth I (B I) and 20 cases with Billroth II (B II); advantages and shortcomings evaluated. RESULTS Not a single death after PPVPG. No recurrence of the disorder in the subsequent follow-up for an average of 6.5 years. Curative effect (visik I-&-II) 97.7%. Acidity reduction similar to that found in B I and B II, but 97.7% of the B I and all B II cases having more than second degree intestinal fluid reflux, in contrast to 7.1% in PPVPG cases. Dumping syndrome occurred in the B I and B II cases, none in PPVPG cases. With regard to gastric emptying, food digestion, absorption, body weight and life quality, PPVPG proved to be superior to Billroth procedure. CONCLUSION PPVPG has the advantages of conventional Billroth gastrectomy in reducing acid, removing ulcer focus, and at the same time preserves the pylorus and pyloric vagus for maintaining the normal gastric physiological function. Dumping syndrome, intestinal fluid reflux and other complications of conventional gastrectomy may be avoided. PMID:11819417

  20. Nonrecurrent Laryngeal Nerve in the Era of Intraoperative Nerve Monitoring

    PubMed Central

    Gurleyik, Gunay

    2016-01-01

    Nonrecurrent laryngeal nerve (non-RLN) is an anatomical variation increasing the risk of vocal cord palsy. Prediction and early identification of non-RLN may minimize such a risk of injury. This study assessed the effect of intraoperative neuromonitoring (IONM) on the detection of non-RLN. A total of 462 (236 right) nerves in 272 patients were identified and totally exposed, and all intraoperative steps of IONM were sequentially applied on the vagus nerve (VN) and RLN. Right predissection VN stimulation at a distal point did not create a sound signal in three cases (3/236; 1.27%). Proximal dissection of the right VN under IONM guidance established a proximal point, creating a positive signal. The separation point of non-RLN from VN was discovered in all three patients. Non-RLNs were exposed from separation to laryngeal entry. Positive IONM signals were obtained after resection of thyroid lobes, and postoperative period was uneventful in patients with non-RLN. Absence of distal VN signal is a precise predictor of the non-RLN. IONM-guided proximal dissection of the right VN leads to identification of the non-RLN. The prediction of non-RLN by the absence of the VN signal at an early stage of surgery may prevent or minimize the risk of nerve injury.

  1. Role of renal sensory nerves in physiological and pathophysiological conditions

    PubMed Central

    2014-01-01

    Whether activation of afferent renal nerves contributes to the regulation of arterial pressure and sodium balance has been long overlooked. In normotensive rats, activating renal mechanosensory nerves decrease efferent renal sympathetic nerve activity (ERSNA) and increase urinary sodium excretion, an inhibitory renorenal reflex. There is an interaction between efferent and afferent renal nerves, whereby increases in ERSNA increase afferent renal nerve activity (ARNA), leading to decreases in ERSNA by activation of the renorenal reflexes to maintain low ERSNA to minimize sodium retention. High-sodium diet enhances the responsiveness of the renal sensory nerves, while low dietary sodium reduces the responsiveness of the renal sensory nerves, thus producing physiologically appropriate responses to maintain sodium balance. Increased renal ANG II reduces the responsiveness of the renal sensory nerves in physiological and pathophysiological conditions, including hypertension, congestive heart failure, and ischemia-induced acute renal failure. Impairment of inhibitory renorenal reflexes in these pathological states would contribute to the hypertension and sodium retention. When the inhibitory renorenal reflexes are suppressed, excitatory reflexes may prevail. Renal denervation reduces arterial pressure in experimental hypertension and in treatment-resistant hypertensive patients. The fall in arterial pressure is associated with a fall in muscle sympathetic nerve activity, suggesting that increased ARNA contributes to increased arterial pressure in these patients. Although removal of both renal sympathetic and afferent renal sensory nerves most likely contributes to the arterial pressure reduction initially, additional mechanisms may be involved in long-term arterial pressure reduction since sympathetic and sensory nerves reinnervate renal tissue in a similar time-dependent fashion following renal denervation. PMID:25411364

  2. Xanthine oxidase, but not neutrophils, contributes to activation of cardiac sympathetic afferents during myocardial ischaemia in cats

    PubMed Central

    Tjen-A-Looi, Stephanie C; Fu, Liang-Wu; Longhurst, John C

    2002-01-01

    Activation of cardiac sympathetic afferents during myocardial ischaemia causes angina and induces important cardiovascular reflex responses. Reactive oxygen species (ROS) are important chemical stimuli of cardiac afferents during and after ischaemia. Iron-catalysed Fenton chemistry constitutes one mechanism of production of hydroxyl radicals. Another potential source of these species is xanthine oxidase-catalysed oxidation of purines. Polymorphonuclear leukocytes (PMNs) also contribute to the production of ROS in some conditions. The present study tested the hypothesis that both xanthine oxidase-catalysed oxidation of purines and neutrophils provide a source of ROS sufficient to activate cardiac afferents during ischaemia. We recorded single-unit activity of cardiac afferents innervating the ventricles recorded from the left thoracic sympathetic chain (T1-5) of anaesthetized cats to identify the afferents' responses to ischaemia. The role of xanthine oxidase in activation of these afferents was determined by infusion of oxypurinol (10 mg kg−1, i.v.), an inhibitor of xanthine oxidase. The importance of neutrophils as a potential source of ROS in the activation of cardiac afferents during ischaemia was assessed by the infusion of a polyclonal antibody (3 mg ml−1 kg−1, i.v.) raised in rabbits immunized with cat PMNs. This antibody decreased the number of circulating PMNs and, to a smaller extent, platelets. Since previous data suggest that platelets release serotonin (5-HT), which activates cardiac afferents through a serotonin receptor (subtype 3,5-HT3 receptor) mechanism, before treatment with the antibody in another group, we blocked 5-HT3 receptors on sensory nerve endings with tropisetron (300 μg kg−1, i.v.). We observed that oxypurinol significantly decreased the activity of cardiac afferents during myocardial ischaemia from 1.5 ± 0.4 to 0.8 ± 0.4 impulses s−1. Similarly, the polyclonal antibody significantly reduced the discharge frequency of

  3. Short-latency projections to the cat cerebral cortex from skin and muscle afferents in the contralateral forelimb

    PubMed Central

    Oscarsson, O.; Rosén, I.

    1966-01-01

    1. The potentials evoked in the first sensorimotor area on stimulation of muscle and skin nerves in the contralateral forelimb were recorded in preparations with either the dorsal funiculus (DF) or the spinocervical tract (SCT) interrupted. 2. The short-latency, surface-positive potentials in these preparations are mediated by the remaining path, either the DF or SCT. 3. Cutaneous afferents project through both paths to two discrete areas which correspond to the classical sensory and motor cortices (Fig. 10 A and B). The projection areas are not identical: the DF path seems to activate most effectively the sensory cortex; and the SCT path, most effectively the motor cortex. 4. The potentials evoked from cutaneous nerves have a similar latency in the two areas. On stimulation of the superficial radial nerve the latency was about 4·5 msec in preparations with intact DF, and about 5·3 msec in preparations with intact SCT. 5. High threshold muscle afferents project to the same areas as the cutaneous afferents. 6. Group I muscle afferents project, exclusively through the DF path, to an area distinct from the two cutaneous projection areas (Fig. 10C). It occupies a caudal part of the motor cortex and an intermediate zone between the sensory and motor cortices. 7. The projection areas are compared with the recent cytoarchitectonic map of Hassler & Muhs-Clement (1964) (Fig. 10D). 8. It is suggested that the afferent projections to the motor cortex and the intermediate zone are used in the integration of movements elicited from the cortex. The general similarity in the organization of afferent paths to the motor cortex and the cerebellum is pointed out. PMID:5937410

  4. Characterization of silent afferents in the pelvic and splanchnic innervations of the mouse colorectum.

    PubMed

    Feng, Bin; Gebhart, G F

    2011-01-01

    Hypersensitivity in inflammatory/irritable bowel syndrome is contributed to in part by changes in the receptive properties of colorectal afferent endings, likely including mechanically insensitive afferents (MIAs; silent afferents) that have the ability to acquire mechanosensitivity. The proportion and attributes of colorectal MIAs, however, have not previously been characterized. The distal ∼3 cm of colorectum with either pelvic (PN) or lumbar splanchnic (LSN) nerve attached was removed, opened longitudinally, pinned flat in a recording chamber, and perfused with oxygenated Krebs solution. Colorectal receptive endings were located by electrical stimulation and characterized as mechanosensitive or not by blunt probing, mucosal stroking, and circumferential stretch. MIA endings were tested for response to and acquisition of mechanosensitivity by localized exposure to an inflammatory soup (IS). Colorectal afferents were also tested with twin-pulse and repetitive electrical stimulation paradigms. PN MIAs represented 23% of 211 afferents studied, 71% (30/42) of which acquired mechanosensitivity after application of IS to their receptive ending. LSN MIAs represented 33% of 156 afferents studied, only 23% (11/48) of which acquired mechanosensitivity after IS exposure. Mechanosensitive PN endings uniformly exhibited significant twin-pulse slowing whereas LSN endings showed no significant twin-pulse difference. PN MIAs displayed significantly greater activity-dependent slowing than LSN MIAs. In conclusion, significant proportions of MIAs are present in the colorectal innervation; significantly more in the PN than LSN acquire mechanosensitivity in an inflammatory environment. This knowledge contributes to our understanding of the possible roles of MIAs in colon-related disorders like inflammatory/irritable bowel syndrome. PMID:21071510

  5. Characterization of silent afferents in the pelvic and splanchnic innervations of the mouse colorectum

    PubMed Central

    Gebhart, G. F.

    2011-01-01

    Hypersensitivity in inflammatory/irritable bowel syndrome is contributed to in part by changes in the receptive properties of colorectal afferent endings, likely including mechanically insensitive afferents (MIAs; silent afferents) that have the ability to acquire mechanosensitivity. The proportion and attributes of colorectal MIAs, however, have not previously been characterized. The distal ∼3 cm of colorectum with either pelvic (PN) or lumbar splanchnic (LSN) nerve attached was removed, opened longitudinally, pinned flat in a recording chamber, and perfused with oxygenated Krebs solution. Colorectal receptive endings were located by electrical stimulation and characterized as mechanosensitive or not by blunt probing, mucosal stroking, and circumferential stretch. MIA endings were tested for response to and acquisition of mechanosensitivity by localized exposure to an inflammatory soup (IS). Colorectal afferents were also tested with twin-pulse and repetitive electrical stimulation paradigms. PN MIAs represented 23% of 211 afferents studied, 71% (30/42) of which acquired mechanosensitivity after application of IS to their receptive ending. LSN MIAs represented 33% of 156 afferents studied, only 23% (11/48) of which acquired mechanosensitivity after IS exposure. Mechanosensitive PN endings uniformly exhibited significant twin-pulse slowing whereas LSN endings showed no significant twin-pulse difference. PN MIAs displayed significantly greater activity-dependent slowing than LSN MIAs. In conclusion, significant proportions of MIAs are present in the colorectal innervation; significantly more in the PN than LSN acquire mechanosensitivity in an inflammatory environment. This knowledge contributes to our understanding of the possible roles of MIAs in colon-related disorders like inflammatory/irritable bowel syndrome. PMID:21071510

  6. Main trajectories of nerves that traverse and surround the tympanic cavity in the rat

    PubMed Central

    WEIJNEN, J. A. W. M.; SURINK, S.; VERSTRALEN, M. J. M.; MOERKERKEN, A.; DE BREE, G. J.; BLEYS, R. L. A. W.

    2000-01-01

    To guide surgery of nerves that traverse and surround the tympanic cavity in the rat, anatomical illustrations are required that are topographically correct. In this study, maps of this area are presented, extending from the superior cervical ganglion to the otic ganglion. They were derived from observations that were made during dissections using a ventral approach. Major blood vessels, bones, transected muscles of the tongue and neck and supra and infrahyoid muscles serve as landmarks in the illustrations. The course of the mandibular, facial, glossopharyngeal, vagus, accessory and hypoglossal nerves with their branches, and components of the sympathetic system, are shown and discussed with reference to data available in the literature. Discrepancies in this literature can be clarified and new data are presented on the trajectories of several nerves. The course of the tympanic nerve was established. This nerve originates from the glossopharyngeal nerve, enters the tympanic cavity, crosses the promontory, passes the tensor tympani muscle dorsally, and continues its route intracranially to the otic ganglion as the lesser petrosal nerve after intersecting with the greater petrosal nerve. Auricular branches of the glossopharyngeal and of the vagus nerve were noted. We also observed a pterygopalatine branch of the internal carotid nerve, that penetrates the tympanic cavity and courses across the promontory. PMID:11005717

  7. α-Synuclein pathology in the cranial and spinal nerves in Lewy body disease.

    PubMed

    Nakamura, Keiko; Mori, Fumiaki; Tanji, Kunikazu; Miki, Yasuo; Toyoshima, Yasuko; Kakita, Akiyoshi; Takahashi, Hitoshi; Yamada, Masahito; Wakabayashi, Koichi

    2016-06-01

    Accumulation of phosphorylated α-synuclein in neurons and glial cells is a histological hallmark of Lewy body disease (LBD) and multiple system atrophy (MSA). Recently, filamentous aggregations of phosphorylated α-synuclein have been reported in the cytoplasm of Schwann cells, but not in axons, in the peripheral nervous system in MSA, mainly in the cranial and spinal nerve roots. Here we conducted an immunohistochemical investigation of the cranial and spinal nerves and dorsal root ganglia of patients with LBD. Lewy axons were found in the oculomotor, trigeminal and glossopharyngeal-vagus nerves, but not in the hypoglossal nerve. The glossopharyngeal-vagus nerves were most frequently affected, with involvement in all of 20 subjects. In the spinal nerve roots, Lewy axons were found in all of the cases examined. Lewy axons in the anterior nerves were more frequent and numerous in the thoracic and sacral segments than in the cervical and lumbar segments. On the other hand, axonal lesions in the posterior spinal nerve roots appeared to increase along a cervical-to-sacral gradient. Although Schwann cell cytoplasmic inclusions were found in the spinal nerves, they were only minimal. In the dorsal root ganglia, axonal lesions were seldom evident. These findings indicate that α-synuclein pathology in the peripheral nerves is axonal-predominant in LBD, whereas it is restricted to glial cells in MSA.

  8. Effects of ankle extensor muscle afferent inputs on hip abductor and adductor activity in the decerebrate walking cat.

    PubMed

    Bolton, D A E; Misiaszek, J E

    2012-12-01

    Electrical stimulation of the lateral gastrocnemius-soleus (LGS) nerve at group I afferent strength leads to adaptations in the amplitude and timing of extensor muscle activity during walking in the decerebrate cat. Such afferent feedback in the stance leg might result from a delay in stance onset of the opposite leg. Concomitant adaptations in hip abductor and adductor activity would then be expected to maintain lateral stability and balance until the opposite leg is able to support the body. As many hip abductors and adductors are also hip extensors, we hypothesized that stimulation of the LGS nerve at group I afferent strength would produce increased activation and prolonged burst duration in hip abductor and adductor muscles in the premammillary decerebrate walking cat. LGS nerve stimulation during the extensor phase of the locomotor cycle consistently increased burst amplitude of the gluteus medius and adductor femoris muscles, but not pectineus or gracilis. In addition, LGS stimulation prolonged the burst duration of both gluteus medius and adductor femoris. Unexpectedly, long-duration LGS stimulus trains resulted in two distinct outcomes on the hip abductor and adductor bursting pattern: 1) a change of burst duration and timing similar to medial gastrocnemius; or 2) to continue rhythmically bursting uninterrupted. These results indicate that activation of muscle afferents from ankle extensors contributes to the regulation of activity of some hip abductor and adductor muscles, but not all. These results have implications for understanding the neural control of stability during locomotion, as well as the organization of spinal locomotor networks. PMID:22972967

  9. Piezo2 expression in corneal afferent neurons.

    PubMed

    Bron, Romke; Wood, Rhiannon J; Brock, James A; Ivanusic, Jason J

    2014-09-01

    Recently, a novel class of mechanically sensitive channels has been identified and have been called Piezo channels. In this study, we explored Piezo channel expression in sensory neurons supplying the guinea pig corneal epithelium, which have well-defined modalities in this species. We hypothesized that a proportion of corneal afferent neurons express Piezo2, and that these neurons are neurochemically distinct from corneal polymodal nociceptors or cold-sensing neurons. We used a combination of retrograde tracing to identify corneal afferent neurons and double label in situ hybridization and/or immunohistochemistry to determine their molecular and/or neurochemical profile. We found that Piezo2 expression occurs in ∼26% of trigeminal ganglion neurons and 30% of corneal afferent neurons. Piezo2 corneal afferent neurons are almost exclusively non-calcitonin gene-related peptide (CGRP)-immunoreactive (-IR), medium- to large-sized neurons that are NF200-IR, suggesting they are not corneal polymodal nociceptors. There was no coexpression of Piezo2 and transient receptor potential cation channel subfamily M member 8 (TRPM8) transcripts in any corneal afferent neurons, further suggesting that Piezo2 is not expressed in corneal cold-sensing neurons. We also noted that TRPM8-IR or CGRP-IR corneal afferent neurons are almost entirely small and lack NF200-IR. Piezo2 expression occurs in a neurochemically distinct subpopulation of corneal afferent neurons that are not polymodal nociceptors or cold-sensing neurons, and is likely confined to a subpopulation of pure mechano-nociceptors in the cornea. This provides the first evidence in an in vivo system that Piezo2 is a strong candidate for a channel that transduces noxious mechanical stimuli.

  10. Regeneration of normal afferent input does not eliminate aberrant synaptic connections of an identified auditory interneuron in the cricket, Teleogryllus oceanicus.

    PubMed

    Pallas, S L; Hoy, R R

    1986-06-15

    In the cricket, Teleogryllus oceanicus, the dendritic arborizations of an identified auditory interneuron (Int-1) are normally restricted to the ipsilateral auditory neuropile; unilateral deafferentation causes the medial portion of the dendritic field to sprout across the midline and make functional connections with the contralateral auditory neuropile (Hoy et al., '78: Soc. Neurosci. Abstr. 4:115, '85: Proc. Natl. Acad. Sci. USA 82:7772-7786; Hoy and Moiseff, '79: Soc. Neurosci. Abstr. 5:163). We have found that regeneration of the auditory afferents also results in an aberrant pattern of innervation of Int-1. Crickets were unilaterally deafferented during postembryonic development by crushing or cutting the auditory nerve. Regeneration of afferent-to-Int-1 connections was tested behaviorally. Of 86 nerve-crushed crickets tested as adults in the behavioral assay, 66% showed functional regeneration of the afferents. Similar results were obtained from the nerve-cut group. However, morphological investigations demonstrated that most of the regenerates still retained the aberrant contralateral dendritic projection. Electrophysiological recordings from these Int-1s showed that not only are some of them driven by their regenerated auditory afferents (the normal pathway) but that they retain their excitability via their contralateral dendrites (the aberrant pathway). This demonstrates that reinnervation of Int-1 by its normal afferent pool neither causes retraction nor prevents the formation of connections made with foreign, contralateral afferents. When the contralateral afferent pool was removed after Int-1 had sprouted, the sprouts remained present, but preliminary results suggest that if the contralateral afferents are removed before Int-1 is deafferented, sprouts are not formed. The results are discussed in relation to the roles of competition and conservation of membrane area in controlling synapse formation.

  11. Differential fiber-specific block of nerve conduction in mammalian peripheral nerves using kilohertz electrical stimulation

    PubMed Central

    Patel, Yogi A.

    2015-01-01

    Kilohertz electrical stimulation (KES) has been shown to induce repeatable and reversible nerve conduction block in animal models. In this study, we characterized the ability of KES stimuli to selectively block specific components of stimulated nerve activity using in vivo preparations of the rat sciatic and vagus nerves. KES stimuli in the frequency range of 5–70 kHz and amplitudes of 0.1–3.0 mA were applied. Compound action potentials were evoked using either electrical or sensory stimulation, and block of components was assessed through direct nerve recordings and muscle force measurements. Distinct observable components of the compound action potential had unique conduction block thresholds as a function of frequency of KES. The fast component, which includes motor activity, had a monotonically increasing block threshold as a function of the KES frequency. The slow component, which includes sensory activity, showed a nonmonotonic block threshold relationship with increasing KES frequency. The distinct trends with frequency of the two components enabled selective block of one component with an appropriate choice of frequency and amplitude. These trends in threshold of the two components were similar when studying electrical stimulation and responses of the sciatic nerve, electrical stimulation and responses of the vagus nerve, and sensorimotor stimulation and responses of the sciatic nerve. This differential blocking effect of KES on specific fibers can extend the applications of KES conduction block to selective block and stimulation of neural signals for neuromodulation as well as selective control of neural circuits underlying sensorimotor function. PMID:25878155

  12. Combined genetic and pharmacological inhibition of TRPV1 and P2X3 attenuates colorectal hypersensitivity and afferent sensitization

    PubMed Central

    Kiyatkin, Michael E.; Feng, Bin; Schwartz, Erica S.

    2013-01-01

    The ligand-gated channels transient receptor potential vanilloid 1 (TRPV1) and P2X3 have been reported to facilitate colorectal afferent neuron sensitization, thus contributing to organ hypersensitivity and pain. In the present study, we hypothesized that TRPV1 and P2X3 cooperate to modulate colorectal nociception and afferent sensitivity. To test this hypothesis, we employed TRPV1-P2X3 double knockout (TPDKO) mice and channel-selective pharmacological antagonists and evaluated combined channel contributions to behavioral responses to colorectal distension (CRD) and afferent fiber responses to colorectal stretch. Baseline responses to CRD were unexpectedly greater in TPDKO compared with control mice, but zymosan-produced CRD hypersensitivity was absent in TPDKO mice. Relative to control mice, proportions of mechanosensitive and -insensitive pelvic nerve afferent classes were not different in TPDKO mice. Responses of mucosal and serosal class afferents to mechanical probing were unaffected, whereas responses of muscular (but not muscular/mucosal) afferents to stretch were significantly attenuated in TPDKO mice; sensitization of both muscular and muscular/mucosal afferents by inflammatory soup was also significantly attenuated. In pharmacological studies, the TRPV1 antagonist A889425 and P2X3 antagonist TNP-ATP, alone and in combination, applied onto stretch-sensitive afferent endings attenuated responses to stretch; combined antagonism produced greater attenuation. In the aggregate, these observations suggest that 1) genetic manipulation of TRPV1 and P2X3 leads to reduction in colorectal mechanosensation peripherally and compensatory changes and/or disinhibition of other channels centrally, 2) combined pharmacological antagonism produces more robust attenuation of mechanosensation peripherally than does antagonism of either channel alone, and 3) the relative importance of these channels appears to be enhanced in colorectal hypersensitivity. PMID:23989007

  13. Combined genetic and pharmacological inhibition of TRPV1 and P2X3 attenuates colorectal hypersensitivity and afferent sensitization.

    PubMed

    Kiyatkin, Michael E; Feng, Bin; Schwartz, Erica S; Gebhart, G F

    2013-11-01

    The ligand-gated channels transient receptor potential vanilloid 1 (TRPV1) and P2X3 have been reported to facilitate colorectal afferent neuron sensitization, thus contributing to organ hypersensitivity and pain. In the present study, we hypothesized that TRPV1 and P2X3 cooperate to modulate colorectal nociception and afferent sensitivity. To test this hypothesis, we employed TRPV1-P2X3 double knockout (TPDKO) mice and channel-selective pharmacological antagonists and evaluated combined channel contributions to behavioral responses to colorectal distension (CRD) and afferent fiber responses to colorectal stretch. Baseline responses to CRD were unexpectedly greater in TPDKO compared with control mice, but zymosan-produced CRD hypersensitivity was absent in TPDKO mice. Relative to control mice, proportions of mechanosensitive and -insensitive pelvic nerve afferent classes were not different in TPDKO mice. Responses of mucosal and serosal class afferents to mechanical probing were unaffected, whereas responses of muscular (but not muscular/mucosal) afferents to stretch were significantly attenuated in TPDKO mice; sensitization of both muscular and muscular/mucosal afferents by inflammatory soup was also significantly attenuated. In pharmacological studies, the TRPV1 antagonist A889425 and P2X3 antagonist TNP-ATP, alone and in combination, applied onto stretch-sensitive afferent endings attenuated responses to stretch; combined antagonism produced greater attenuation. In the aggregate, these observations suggest that 1) genetic manipulation of TRPV1 and P2X3 leads to reduction in colorectal mechanosensation peripherally and compensatory changes and/or disinhibition of other channels centrally, 2) combined pharmacological antagonism produces more robust attenuation of mechanosensation peripherally than does antagonism of either channel alone, and 3) the relative importance of these channels appears to be enhanced in colorectal hypersensitivity.

  14. 9 -Tetrahydrocannabinol: effects on mammalian nonmyelinated nerve fibers.

    PubMed

    Byck, R; Ritchie, J M

    1973-04-01

    Delta(9)-Tetrahydrocannabinol can be applied to tissue in vitro by dissolving it in Pluronic F68 and ethanol. It causes a decrease in size of the compound action potential of the nonmnyelinated fibers of the vagus nerve of the rabbit. This effect appears to be dose-related and chloride-dependent. Effects on other measurable parameters of nerve function seem to be minimal. Although the amounts required seem to be higher than those required to produce hallucinogenic effects in man, this effect is consistent with other work on Delta(9)-tetrahydrocannabinol and may ultimately account for a significant portion of the pharmacological activity of this drug.

  15. Afferent Connectivity of the Zebrafish Habenulae

    PubMed Central

    Turner, Katherine J.; Hawkins, Thomas A.; Yáñez, Julián; Anadón, Ramón; Wilson, Stephen W.; Folgueira, Mónica

    2016-01-01

    The habenulae are bilateral nuclei located in the dorsal diencephalon that are conserved across vertebrates. Here we describe the main afferents to the habenulae in larval and adult zebrafish. We observe afferents from the subpallium, nucleus rostrolateralis, posterior tuberculum, posterior hypothalamic lobe, median raphe; we also see asymmetric afferents from olfactory bulb to the right habenula, and from the parapineal to the left habenula. In addition, we find afferents from a ventrolateral telencephalic nucleus that neurochemical and hodological data identify as the ventral entopeduncular nucleus (vENT), confirming and extending observations of Amo et al. (2014). Fate map and marker studies suggest that vENT originates from the diencephalic prethalamic eminence and extends into the lateral telencephalon from 48 to 120 hour post-fertilization (hpf). No afferents to the habenula were observed from the dorsal entopeduncular nucleus (dENT). Consequently, we confirm that the vENT (and not the dENT) should be considered as the entopeduncular nucleus “proper” in zebrafish. Furthermore, comparison with data in other vertebrates suggests that the vENT is a conserved basal ganglia nucleus, being homologous to the entopeduncular nucleus of mammals (internal segment of the globus pallidus of primates) by both embryonic origin and projections, as previously suggested by Amo et al. (2014). PMID:27199671

  16. Vestibular afferent responses to microrotational stimuli

    NASA Technical Reports Server (NTRS)

    Myers, Steven F.; Lewis, Edwin R.

    1991-01-01

    Intracellular microelectrode recording/labeling techniques were used to investigate vestibular afferent responses in the bullfrog, to very small amplitude (less than 5 deg p-p) sinusoidal rotations in the vertical plane over the frequency range of 0.063-4 Hz. Robust responses to peak accelerations as low as 0.031 deg/sec per sec were obtained from units subsequently traced to either the central portion of the anterior canal crista or the striolar region of the utricle. All of these microrotationally sensitive afferent neurons had irregular resting discharge rates, and the majority had transfer ratios (relative to rotational velocity) of 1-40 spikes/sec per deg/sec. Individual utricular afferent velocity transfer ratios were nearly constant over the frequency range of 0.125-4 Hz. Canal units displayed decreasing response transfer ratios as stimulus frequencies increased. These findings indicate that, although utricular striolar and central crista afferent velocity transfer ratios to microrotations were very similar, utricular striolar afferent neurons were more faithful sensors of very small amplitude rotational velocity in the vertical plane.

  17. Modeling the spinal pudendo-vesical reflex for bladder control by pudendal afferent stimulation.

    PubMed

    McGee, Meredith J; Grill, Warren M

    2016-06-01

    Electrical stimulation of the pudendal nerve (PN) is a promising approach to restore continence and micturition following bladder dysfunction resulting from neurological disease or injury. Although the pudendo-vesical reflex and its physiological properties are well established, there is limited understanding of the specific neural mechanisms that mediate this reflex. We sought to develop a computational model of the spinal neural network that governs the reflex bladder response to PN stimulation. We implemented and validated a neural network architecture based on previous neuroanatomical and electrophysiological studies. Using synaptically-connected integrate and fire model neurons, we created a network model with realistic spiking behavior. The model produced expected sacral parasympathetic nucleus (SPN) neuron firing rates from prescribed neural inputs and predicted bladder activation and inhibition with different frequencies of pudendal afferent stimulation. In addition, the model matched experimental results from previous studies of temporal patterns of pudendal afferent stimulation and selective pharmacological blockade of inhibitory neurons. The frequency- and pattern-dependent effects of pudendal afferent stimulation were determined by changes in firing rate of spinal interneurons, suggesting that neural network interactions at the lumbosacral level can mediate the bladder response to different frequencies or temporal patterns of pudendal afferent stimulation. Further, the anatomical structure of excitatory and inhibitory interneurons in the network model was necessary and sufficient to reproduce the critical features of the pudendo-vesical reflex, and this model may prove useful to guide development of novel, more effective electrical stimulation techniques for bladder control. PMID:26968615

  18. Allodynia mediated by C-tactile afferents in human hairy skin

    PubMed Central

    Nagi, Saad S; Rubin, Troy K; Chelvanayagam, David K; Macefield, Vaughan G; Mahns, David A

    2011-01-01

    Abstract We recently showed a contribution of low-threshold cutaneous mechanoreceptors to vibration-evoked changes in the perception of muscle pain. Neutral-touch stimulation (vibration) of the hairy skin during underlying muscle pain evoked an overall increase in pain intensity, i.e. allodynia. This effect appeared to be dependent upon cutaneous afferents, as allodynia was abolished by intradermal anaesthesia. However, it remains unclear whether allodynia results from activation of a single class of cutaneous afferents or the convergence of inputs from multiple classes. Intriguingly, no existing human study has examined the contribution of C-tactile (CT) afferents to allodynia. Detailed psychophysical observations were made in 29 healthy subjects (18 males and 11 females). Sustained muscle pain was induced by infusing hypertonic saline (HS: 5%) into tibialis anterior muscle (TA). Sinusoidal vibration (200 Hz–200 μm) was applied to the hairy skin overlying TA. Pain ratings were recorded using a visual analogue scale (VAS). In order to evaluate the role of myelinated and unmyelinated cutaneous afferents in the expression of vibration-evoked allodynia, compression block of the sciatic nerve, and low-dose intradermal anaesthesia (Xylocaine 0.25%) were used, respectively. In addition, the modulation of muscle pain by gentle brushing (1.0 and 3.0 cm s−1) – known to excite CT fibres – was examined. Brushing stimuli were applied to the hairy skin with all fibres intact and following the blockade of myelinated afferents. During tonic muscle pain (VAS 4–6), vibration evoked a significant and reproducible increase in muscle pain (allodynia) that persisted following compression of myelinated afferents. During compression block, the sense of vibration was abolished, but the vibration-evoked allodynia persisted. In contrast, selective anaesthesia of unmyelinated cutaneous afferents abolished the allodynia, whereas the percept of vibration remained unaffected

  19. Psychoactive bacteria Lactobacillus rhamnosus (JB-1) elicits rapid frequency facilitation in vagal afferents.

    PubMed

    Perez-Burgos, Azucena; Wang, Bingxian; Mao, Yu-Kang; Mistry, Bhavik; McVey Neufeld, Karen-Anne; Bienenstock, John; Kunze, Wolfgang

    2013-01-15

    Mounting evidence supports the influence of the gut microbiome on the local enteric nervous system and its effects on brain chemistry and relevant behavior. Vagal afferents are involved in some of these effects. We previously showed that ingestion of the probiotic bacterium Lactobacillus rhamnosus (JB-1) caused extensive neurochemical changes in the brain and behavior that were abrogated by prior vagotomy. Because information can be transmitted to the brain via primary afferents encoded as neuronal spike trains, our goal was to record those induced by JB-1 in vagal afferents in the mesenteric nerve bundle and thus determine the nature of the signals sent to the brain. Male Swiss Webster mice jejunal segments were cannulated ex vivo, and serosal and luminal compartments were perfused separately. Bacteria were added intraluminally. We found no evidence for translocation of labeled bacteria across the epithelium during the experiment. We recorded extracellular multi- and single-unit neuronal activity with glass suction pipettes. Within minutes of application, JB-1 increased the constitutive single- and multiunit firing rate of the mesenteric nerve bundle, but Lactobacillus salivarius (a negative control) or media alone were ineffective. JB-1 significantly augmented multiunit discharge responses to an intraluminal distension pressure of 31 hPa. Prior subdiaphragmatic vagotomy abolished all of the JB-1-evoked effects. This detailed exploration of the neuronal spike firing that encodes behavioral signaling to the brain may be useful to identify effective psychoactive bacteria and thereby offer an alternative new perspective in the field of psychiatry and comorbid conditions.

  20. Changes in nerve function and nerve fibre structure induced by acute, graded compression.

    PubMed Central

    Rydevik, B; Nordborg, C

    1980-01-01

    Rabbit tibial nerves were subjected to direct, acute graded compression by means of an inflatable compression chamber. The acute and long term effects of 50, 200 and 400 mmHg applied for two hours on nerve function and nerve fibre structure were investigated. A pressure of 50 mmHg applied for two hours induced only minimal or no acute deterioration of maximal conduction velocity and nerve fibre structure. Conduction velocity was gradually reduced during compression at 200-400 mmHg pressure for two hours and in those cases the recovery of nerve conduction after pressure release was incomplete. Ultrastructural analysis revealed pronounced, early nerve fibre damage in these nerves. Three weeks after compression, nerves compressed at 50 mmHg for two hours had normal afferent and motor conduction velocity, although there were morphological signs of slight nerve fibre damage. Nerves compressed at 200 mmHg for two hours exhibited reduction of conduction velocity only at the level of compression, in contrast to the nerves compressed at 400 mmHg for two hours in which conduction velocity was reduced both at the level of compression and distal to the compressed segment. Morphologically, the nerves compressed at 200-400 mmHg for two hours showed varying degrees of demyelination and axonal degeneration three weeks after compression. Images PMID:7217952

  1. Detection thresholds of macaque otolith afferents.

    PubMed

    Yu, Xiong-Jie; Dickman, J David; Angelaki, Dora E

    2012-06-13

    The vestibular system is our sixth sense and is important for spatial perception functions, yet the sensory detection and discrimination properties of vestibular neurons remain relatively unexplored. Here we have used signal detection theory to measure detection thresholds of otolith afferents using 1 Hz linear accelerations delivered along three cardinal axes. Direction detection thresholds were measured by comparing mean firing rates centered on response peak and trough (full-cycle thresholds) or by comparing peak/trough firing rates with spontaneous activity (half-cycle thresholds). Thresholds were similar for utricular and saccular afferents, as well as for lateral, fore/aft, and vertical motion directions. When computed along the preferred direction, full-cycle direction detection thresholds were 7.54 and 3.01 cm/s(2) for regular and irregular firing otolith afferents, respectively. Half-cycle thresholds were approximately double, with excitatory thresholds being half as large as inhibitory thresholds. The variability in threshold among afferents was directly related to neuronal gain and did not depend on spike count variance. The exact threshold values depended on both the time window used for spike count analysis and the filtering method used to calculate mean firing rate, although differences between regular and irregular afferent thresholds were independent of analysis parameters. The fact that minimum thresholds measured in macaque otolith afferents are of the same order of magnitude as human behavioral thresholds suggests that the vestibular periphery might determine the limit on our ability to detect or discriminate small differences in head movement, with little noise added during downstream processing.

  2. Low-level transcutaneous electrical vagus nerve stimulation suppresses atrial fibrillation

    PubMed Central

    Stavrakis, Stavros; Humphrey, Mary Beth; Scherlag, Benjamin J.; Hu, Yanqing; Jackman, Warren M.; Nakagawa, Hiroshi; Lockwood, Deborah; Lazzara, Ralph; Po, Sunny S.

    2015-01-01

    BACKGROUND Transcutaneous low-level tragus electrical stimulation (LLTS) suppresses atrial fibrillation (AF) in canines. OBJECTIVES We examined the antiarrhythmic and anti-inflammatory effects of LLTS in humans. METHODS Patients with paroxysmal AF who presented for AF ablation, were randomized to either 1 hour of LLTS (n = 20) or sham control (n = 20). Attaching a flat metal clip onto the tragus produced LLTS (20 Hz) in the right ear (50% lower than the voltage slowing the sinus rate). Under general anesthesia, AF was induced by burst atrial pacing at baseline and after 1 hour of LLTS or sham. Blood samples from the coronary sinus and the femoral vein were collected at those time points and then analyzed for inflammatory cytokines, including tumor necrosis factor (TNF)-α and C-reactive protein (CRP), using a multiplex immunoassay. RESULTS There were no differences in baseline characteristics between the 2 groups. Pacing-induced AF duration decreased significantly by 6.3 ± 1.9 min compared to baseline in the LLTS group, but not in the controls (p = 0.002 for comparison between groups). AF cycle length increased significantly from baseline by 28.8 ± 6.5 ms in the LLTS group, but not in controls (p = 0.0002 for comparison between groups). Systemic (femoral vein) but not coronary sinus TNF-α and CRP levels decreased significantly only in the LLTS group. CONCLUSIONS LLTS suppresses AF and decreases inflammatory cytokines in patients with paroxysmal AF. Our results support the emerging paradigm of neuromodulation to treat AF. PMID:25744003

  3. Surgical anatomy of the retroperitoneal spaces, Part IV: retroperitoneal nerves.

    PubMed

    Mirilas, Petros; Skandalakis, John E

    2010-03-01

    We present surgicoanatomical topographic relations of nerves and plexuses in the retroperitoneal space: 1) six named parietal nerves, branches of the lumbar plexus: iliohypogastric, ilioinguinal, genitofemoral, lateral femoral cutaneous, obturator, femoral. 2) The sacral plexus is formed by the lumbosacral trunk, ventral rami of S1-S3, and part of S4; the remainder of S4 joining the coccygeal plexus. From this plexus originate the superior gluteal nerve, which passes backward through the greater sciatic foramen above the piriformis muscle; the inferior gluteal nerve also courses through the greater sciatic foramen, but below the piriformis; 3) sympathetic trunks: right and left lumbar sympathetic trunks, which comprise four interconnected ganglia, and the pelvic chains; 4) greater, lesser, and least thoracic splanchnic nerves (sympathetic), which pass the diaphragm and join celiac ganglia; 5) four lumbar splanchnic nerves (sympathetic), which arise from lumbar sympathetic ganglia; 6) pelvic splanchnic nerves (nervi erigentes), providing parasympathetic innervation to the descending colon and pelvic splanchna; and 7) autonomic (prevertebral) plexuses, formed by the vagus nerves, splanchnic nerves, and ganglia (celiac, superior mesenteric, aorticorenal). They include sympathetic, parasympathetic, and sensory (mainly pain) fibers. The autonomic plexuses comprise named parts: aortic, superior mesenteric, inferior mesenteric, superior hypogastric, and inferior hypogastric (hypogastric nerves).

  4. Patterns of saccular afferent innervation in sciaenids.

    PubMed

    Selckmann, G M; Ramcharitar, J

    2013-09-01

    In this study, saccular afferent arborization patterns in Atlantic croaker Micropogonias undulatus, red drum Sciaenops ocellatus and spot Leiostomus xanthurus were characterized. Leiostomus xanthurus showed the simplest configuration while M. undulatus displayed the most complex. In addition, hair-cell densities at sites sampled along the rostro-caudal axis of the saccular epithelia correlated with the observed patterns of arborization. PMID:23991887

  5. Cortical Presynaptic Control of Dorsal Horn C–Afferents in the Rat

    PubMed Central

    Martínez-Lorenzana, Guadalupe; Condés-Lara, Miguel; Rojas-Piloni, Gerardo

    2013-01-01

    Lamina 5 sensorimotor cortex pyramidal neurons project to the spinal cord, participating in the modulation of several modalities of information transmission. A well-studied mechanism by which the corticospinal projection modulates sensory information is primary afferent depolarization, which has been characterized in fast muscular and cutaneous, but not in slow-conducting nociceptive skin afferents. Here we investigated whether the inhibition of nociceptive sensory information, produced by activation of the sensorimotor cortex, involves a direct presynaptic modulation of C primary afferents. In anaesthetized male Wistar rats, we analyzed the effects of sensorimotor cortex activation on post tetanic potentiation (PTP) and the paired pulse ratio (PPR) of dorsal horn field potentials evoked by C–fiber stimulation in the sural (SU) and sciatic (SC) nerves. We also explored the time course of the excitability changes in nociceptive afferents produced by cortical stimulation. We observed that the development of PTP was completely blocked when C-fiber tetanic stimulation was paired with cortex stimulation. In addition, sensorimotor cortex activation by topical administration of bicuculline (BIC) produced a reduction in the amplitude of C–fiber responses, as well as an increase in the PPR. Furthermore, increases in the intraspinal excitability of slow-conducting fiber terminals, produced by sensorimotor cortex stimulation, were indicative of primary afferent depolarization. Topical administration of BIC in the spinal cord blocked the inhibition of C–fiber neuronal responses produced by cortical stimulation. Dorsal horn neurons responding to sensorimotor cortex stimulation also exhibited a peripheral receptive field and responded to stimulation of fast cutaneous myelinated fibers. Our results suggest that corticospinal inhibition of nociceptive responses is due in part to a modulation of the excitability of primary C–fibers by means of GABAergic inhibitory

  6. Cortical presynaptic control of dorsal horn C-afferents in the rat.

    PubMed

    Moreno-López, Yunuen; Pérez-Sánchez, Jimena; Martínez-Lorenzana, Guadalupe; Condés-Lara, Miguel; Rojas-Piloni, Gerardo

    2013-01-01

    Lamina 5 sensorimotor cortex pyramidal neurons project to the spinal cord, participating in the modulation of several modalities of information transmission. A well-studied mechanism by which the corticospinal projection modulates sensory information is primary afferent depolarization, which has been characterized in fast muscular and cutaneous, but not in slow-conducting nociceptive skin afferents. Here we investigated whether the inhibition of nociceptive sensory information, produced by activation of the sensorimotor cortex, involves a direct presynaptic modulation of C primary afferents. In anaesthetized male Wistar rats, we analyzed the effects of sensorimotor cortex activation on post tetanic potentiation (PTP) and the paired pulse ratio (PPR) of dorsal horn field potentials evoked by C-fiber stimulation in the sural (SU) and sciatic (SC) nerves. We also explored the time course of the excitability changes in nociceptive afferents produced by cortical stimulation. We observed that the development of PTP was completely blocked when C-fiber tetanic stimulation was paired with cortex stimulation. In addition, sensorimotor cortex activation by topical administration of bicuculline (BIC) produced a reduction in the amplitude of C-fiber responses, as well as an increase in the PPR. Furthermore, increases in the intraspinal excitability of slow-conducting fiber terminals, produced by sensorimotor cortex stimulation, were indicative of primary afferent depolarization. Topical administration of BIC in the spinal cord blocked the inhibition of C-fiber neuronal responses produced by cortical stimulation. Dorsal horn neurons responding to sensorimotor cortex stimulation also exhibited a peripheral receptive field and responded to stimulation of fast cutaneous myelinated fibers. Our results suggest that corticospinal inhibition of nociceptive responses is due in part to a modulation of the excitability of primary C-fibers by means of GABAergic inhibitory interneurons

  7. Experimental and computational evidence for an essential role of NaV1.6 in spike initiation at stretch-sensitive colorectal afferent endings.

    PubMed

    Feng, Bin; Zhu, Yi; La, Jun-Ho; Wills, Zachary P; Gebhart, G F

    2015-04-01

    Stretch-sensitive afferents comprise ∼33% of the pelvic nerve innervation of mouse colorectum, which are activated by colorectal distension and encode visceral nociception. Stretch-sensitive colorectal afferent endings respond tonically to stepped or ramped colorectal stretch, whereas dissociated colorectal dorsal root ganglion neurons generally fail to spike repetitively upon stepped current stimulation. The present study investigated this difference in the neural encoding characteristics between the soma and afferent ending using pharmacological approaches in an in vitro mouse colon-nerve preparation and complementary computational simulations. Immunohistological staining and Western blots revealed the presence of voltage-gated sodium channel (NaV) 1.6 and NaV1.7 at sensory neuronal endings in mouse colorectal tissue. Responses of stretch-sensitive colorectal afferent endings were significantly reduced by targeting NaV1.6 using selective antagonists (μ-conotoxin GIIIa and μ-conotoxin PIIIa) or tetrodotoxin. In contrast, neither selective NaV1.8 (A803467) nor NaV1.7 (ProTX-II) antagonists attenuated afferent responses to stretch. Computational simulation of a colorectal afferent ending that incorporated independent Markov models for NaV1.6 and NaV1.7, respectively, recapitulated the experimental findings, suggesting a necessary role for NaV1.6 in encoding tonic spiking by stretch-sensitive afferents. In addition, computational simulation of a dorsal root ganglion soma showed that, by adding a NaV1.6 conductance, a single-spiking neuron was converted into a tonic spiking one. These results suggest a mechanism/channel to explain the difference in neural encoding characteristics between afferent somata and sensory endings, likely caused by differential expression of ion channels (e.g., NaV1.6) at different parts of the neuron. PMID:25652923

  8. Experimental and computational evidence for an essential role of NaV1.6 in spike initiation at stretch-sensitive colorectal afferent endings

    PubMed Central

    Zhu, Yi; La, Jun-Ho; Wills, Zachary P.; Gebhart, G. F.

    2015-01-01

    Stretch-sensitive afferents comprise ∼33% of the pelvic nerve innervation of mouse colorectum, which are activated by colorectal distension and encode visceral nociception. Stretch-sensitive colorectal afferent endings respond tonically to stepped or ramped colorectal stretch, whereas dissociated colorectal dorsal root ganglion neurons generally fail to spike repetitively upon stepped current stimulation. The present study investigated this difference in the neural encoding characteristics between the soma and afferent ending using pharmacological approaches in an in vitro mouse colon-nerve preparation and complementary computational simulations. Immunohistological staining and Western blots revealed the presence of voltage-gated sodium channel (NaV) 1.6 and NaV1.7 at sensory neuronal endings in mouse colorectal tissue. Responses of stretch-sensitive colorectal afferent endings were significantly reduced by targeting NaV1.6 using selective antagonists (μ-conotoxin GIIIa and μ-conotoxin PIIIa) or tetrodotoxin. In contrast, neither selective NaV1.8 (A803467) nor NaV1.7 (ProTX-II) antagonists attenuated afferent responses to stretch. Computational simulation of a colorectal afferent ending that incorporated independent Markov models for NaV1.6 and NaV1.7, respectively, recapitulated the experimental findings, suggesting a necessary role for NaV1.6 in encoding tonic spiking by stretch-sensitive afferents. In addition, computational simulation of a dorsal root ganglion soma showed that, by adding a NaV1.6 conductance, a single-spiking neuron was converted into a tonic spiking one. These results suggest a mechanism/channel to explain the difference in neural encoding characteristics between afferent somata and sensory endings, likely caused by differential expression of ion channels (e.g., NaV1.6) at different parts of the neuron. PMID:25652923

  9. Perineural tumor spread - Interconnection between spinal and cranial nerves.

    PubMed

    Kozić, Duško; Njagulj, Vesna; Gaćeša, Jelena Popadić; Semnic, Robert; Prvulović, Nataša

    2012-12-15

    The secondary neoplastic involvement of the cervical plexus in patients with head and neck malignancies is extremely rare. MR examination of the neck revealed the diffuse neoplastic infiltration of the right C2 root, in a 57-year-old patient with several months long pain in the right ear region and a history of the tongue squamous cell carcinoma. Associated perineural tumor spread and consequent distal involvement of great auricular nerve and vagus nerve were evident. Best of our knowledge, this is the first reported involvement of the cervical plexus in patients with head and neck cancers, associated with the clearly documented interconnection between the cervical plexus and cranial nerves via great auricular nerve.

  10. Effects of extensor and flexor group I afferent volleys on the excitability of individual soleus motoneurones in man

    PubMed Central

    Ashby, Peter; Labelle, Keith

    1977-01-01

    The contour of the postsynaptic potential (PSP) produced in a neurone by an afferent volley can be derived from the contour of the post-stimulus time histogram (PSTH) of that neurone when it is discharging rhythmically. In the present study the PSTH of the firing of individual soleus motor units after stimulation of the popliteal or peroneal nerve was used to explore the effects of extensor and flexor group I afferent volleys on the excitability of single soleus motoneurones in man. Extensor group I volleys resulted in an early peak of increased impulse density in the PSTH of 75% of soleus motoneurones. The latency suggests an analogy with the Ia EPSP. The mean duration of the peak of increased impulse density, equivalent to the rise time of the EPSP, was 3.6 ms. Flexor group I volleys result in a period of reduced impulse density in the PSTH of five out of nine soleus motoneurones. The latency suggests an analogy with the Ia IPSP. We conclude that this method could be used to explore the afferent connections to single motoneurones in man and to derive some of the characteristics of the postsynaptic potentials from a variety of afferent nerve fibres in single human motoneurones. PMID:599368

  11. Nerve biopsy

    MedlinePlus

    ... Loss of axon tissue Metabolic neuropathies Necrotizing vasculitis Sarcoidosis Risks Allergic reaction to the local anesthetic Discomfort ... Neurosarcoidosis Peripheral neuropathy Primary amyloidosis Radial nerve dysfunction Sarcoidosis Tibial nerve dysfunction Update Date 6/1/2015 ...

  12. The Involvement of Parasympathetic and Sympathetic Nerve in the Inflammatory Reflex.

    PubMed

    Pereira, Mariana Rodrigues; Leite, Paulo Emílio Corrêa

    2016-09-01

    Production of inflammatory cytokines plays important roles in the response against tissue injury and in host defense. Alterations in the production of inflammatory cytokines may cause local or systemic inflammatory imbalance, culminating in organ failure or lethal systemic inflammation. The cholinergic anti-inflammatory pathway has been implicated as an important mechanism to regulate inflammation of targeted tissue. In this review, we discuss important advances, conflicting and controversial findings regarding the involvement of parasympathetic vagus and sympathetic splenic nerve through acetylcholine (ACh) release and α7 nicotinic acetylcholine receptor (nAChRα7) activation in the spleen. In addition, we address the involvement of cholinergic control of inflammation in other organs innerved by the vagus nerve such as gut, liver, kidney and lung, and independent of parasympathetic innervations such as skin and skeletal muscle. Then, other structures and mechanisms independent of vagus or splenic nerve may be involved in this process, such as local cells and motor neurons producing ACh. Altogether, the convergence of these findings may contribute to current anti-inflammatory strategies involving selective drug-targeting and electrical nerve stimulation. J. Cell. Physiol. 231: 1862-1869, 2016. © 2016 Wiley Periodicals, Inc.

  13. Improved bladder emptying in urinary retention by electrical stimulation of pudendal afferents

    NASA Astrophysics Data System (ADS)

    Peng, Chih-Wei; Chen, Jia-Jin Jason; Cheng, Chen-Li; Grill, Warren M.

    2008-06-01

    Urinary retention is the inability to empty the bladder completely, and may result from bladder hypocontractility, increases in outlet resistance or both. Chronic urinary retention can lead to several urological complications and is often refractory to pharmacologic, behavioral and surgical treatments. We sought to determine whether electrical stimulation of sensory fibers in the pudendal nerve could engage an augmenting reflex and thereby improve bladder emptying in an animal model of urinary retention. We measured the efficiency of bladder emptying with and without concomitant electrical stimulation of pudendal nerve afferents in urethane-anesthetized rats. Voiding efficiency (VE = voided volume/initial volume) was reduced from 72 ± 7% to 29 ± 7% following unilateral transection of the sensory branch of the pudendal nerve (UST) and from 70 ± 5% to 18 ± 4% following bilateral transection (BST). Unilateral electrical stimulation of the proximal transected sensory pudendal nerve during distention-evoked voiding contractions significantly improved VE. Low-intensity stimulation at frequencies of 1-50 Hz increased VE to 40-51% following UST and to 39-49% following BST, while high-intensity stimulation was ineffective at increasing VE. The increase in VE was mediated by increases in the duration of distention-evoked voiding bladder contractions, rather than increases in contraction amplitude. These results are consistent with an essential role for pudendal sensory feedback in efficient bladder emptying, and raise the possibility that electrical activation of pudendal nerve afferents may provide a new approach to restore efficient bladder emptying in persons with urinary retention.

  14. Spinal inhibition of phrenic motoneurones by stimulation of afferents from leg muscle in the cat: blockade by strychnine.

    PubMed

    Eldridge, F L; Millhorn, D E; Waldrop, T

    1987-08-01

    1. Phrenic nerve responses to stimulation of calf muscle receptors or their afferents were studied in paralysed high (C1) spinal cats whose phrenic nerve activity was evoked by activation of the intercostal-to-phrenic reflex. End-tidal PCO2 was maintained at a constant level by means of a servo-controlled ventilator. 2. Physical stimulation of calf muscles or electrical stimulation of the tibial nerve uniformly caused inhibition of phrenic activity evoked by facilitatory conditioning stimuli. The degree of inhibition gradually decreased as muscle stimulation continued, and there was a post-stimulus augmentation of phrenic activity. 3. Pre-treatment with subconvulsive doses of strychnine, an antagonist of the neurotransmitter glycine, partially or completely blocked the inhibitory effects on phrenic activity of muscle-afferent stimulation. The blockade was reversible with time. 4. Pre-treatment with a subconvulsive dose of bicuculline, an antagonist of the neurotransmitter gamma-aminobutyric acid (GABA), had no effect on the inhibitory mechanism. 5. We conclude that glycine is an important transmitter of the inhibition of phrenic motoneurones induced by muscle-afferent stimulation, but that GABA is not involved in this inhibitory mechanism. PMID:3681723

  15. Synaptic transmission in the superior cervical ganglion of the cat after reinnervation by vagus fibres

    PubMed Central

    Ceccarelli, B.; Clementi, F.; Mantegazza, P.

    1971-01-01

    1. A vagus-sympathetic anastomosis was performed in the cat by connecting end to end the cranial trunk of the vagus to the cranial end of the cervical sympathetic trunk, both severed under the ganglia. 2. Forty to sixty days after the anastomosis, the ocular signs of sympathetic paralysis (such as myosis and prolapse of the nictitating membrane) which had developed shortly after the operation, had completely disappeared, thus suggesting the recovery of synaptic transmission in the ganglion. In case of plain preganglionic denervation after the same period the ocular signs of cervical sympathetic paralysis were still present. 3. Contraction of the nictitating membrane could be induced by electrical stimulation of both the vagus preanastomotic and the sympathetic postanastomotic—preganglionic trunks. Ganglionic blocking agents induced the blockade of the `new' ganglionic synaptic function, while nicotine and pilocarpine provoked a marked contraction of the nictitating membrane. 4. Electron microscopy showed that the preganglionic regeneration of vagus fibers resulted in the formation of new synapses, mainly of axodendritic type, identical to normal ganglionic synapses. Moreover, after cutting the preanastomotic trunk of the vagus, these new ganglionic presynaptic profiles degenerated, thus proving their vagal origin. 5. During restoration of the synaptic contacts readjustment of dendritic tips occurred. ImagesText-fig. 2Fig. 9Fig. 10Fig. 11Fig. 12Fig. 13Fig. 16Fig. 17Fig. 14Fig. 15Fig. 1Fig. 2Fig. 3Fig. 4Fig. 5Fig. 7Fig. 8 PMID:4326851

  16. Diagnostic nerve ultrasound in Charcot-Marie-Tooth disease type 1B.

    PubMed

    Cartwright, Michael S; Brown, Martin E; Eulitt, Patrick; Walker, Francis O; Lawson, Victoria H; Caress, James B

    2009-07-01

    Ultrasound is emerging as a useful tool for evaluation of neuromuscular conditions, because it can provide high-resolution anatomic information to complement electrodiagnostic data. There have been few studies in which ultrasound was used to assess the peripheral nerves of individuals with Charcot-Marie-Tooth (CMT) disease and none involving CMT type 1B. In this study we compared nerve cross-sectional area in individuals from a single large family with CMT 1B with normal, healthy controls. We also assessed for cranial nerve enlargement in those with CMT 1B with cranial neuropathies compared to those with CMT 1B without cranial neuropathies. Individuals with CMT 1B have significantly larger median and vagus nerves than healthy controls, but no difference was seen in cranial nerve size between those with versus those without cranial neuropathies. This is the first study to characterize the ultrasonographic findings in the peripheral nerves of individuals with CMT 1B.

  17. Cranial nerve injuries with supraglottic airway devices: a systematic review of published case reports and series.

    PubMed

    Thiruvenkatarajan, V; Van Wijk, R M; Rajbhoj, A

    2015-03-01

    Cranial nerve injuries are unusual complications of supraglottic airway use. Branches of the trigeminal, glossopharyngeal, vagus and the hypoglossal nerve may all be injured. We performed a systematic review of published case reports and case series of cranial nerve injury from the use of supraglottic airway devices. Lingual nerve injury was the most commonly reported (22 patients), followed by recurrent laryngeal (17 patients), hypoglossal (11 patients), glossopharyngeal (three patients), inferior alveolar (two patients) and infra-orbital (one patient). Injury is generally thought to result from pressure neuropraxia. Contributing factors may include: an inappropriate size or misplacement of the device; patient position; overinflation of the device cuff; and poor technique. Injuries other than to the recurrent laryngeal nerve are usually mild and self-limiting. Understanding the diverse presentation of cranial nerve injuries helps to distinguish them from other complications and assists in their management. PMID:25376257

  18. Pain processing by spinal microcircuits: afferent combinatorics.

    PubMed

    Prescott, Steven A; Ratté, Stéphanie

    2012-08-01

    Pain, itch, heat, cold, and touch represent different percepts arising from somatosensory input. How stimuli give rise to these percepts has been debated for over a century. Recent work supports the view that primary afferents are highly specialized to transduce and encode specific stimulus modalities. However, cross-modal interactions (e.g. inhibition or exacerbation of pain by touch) support convergence rather than specificity in central circuits. We outline how peripheral specialization together with central convergence could enable spinal microcircuits to combine inputs from distinctly specialized, co-activated afferents and to modulate the output signals thus formed through computations like normalization. These issues will be discussed alongside recent advances in our understanding of microcircuitry in the superficial dorsal horn.

  19. Pain processing by spinal microcircuits: afferent combinatorics.

    PubMed

    Prescott, Steven A; Ratté, Stéphanie

    2012-08-01

    Pain, itch, heat, cold, and touch represent different percepts arising from somatosensory input. How stimuli give rise to these percepts has been debated for over a century. Recent work supports the view that primary afferents are highly specialized to transduce and encode specific stimulus modalities. However, cross-modal interactions (e.g. inhibition or exacerbation of pain by touch) support convergence rather than specificity in central circuits. We outline how peripheral specialization together with central convergence could enable spinal microcircuits to combine inputs from distinctly specialized, co-activated afferents and to modulate the output signals thus formed through computations like normalization. These issues will be discussed alongside recent advances in our understanding of microcircuitry in the superficial dorsal horn. PMID:22409855

  20. Development, plasticity and modulation of visceral afferents

    PubMed Central

    Christianson, Julie A.; Bielefeldt, Klaus; Altier, Christophe; Cenac, Nicolas; Davis, Brian M.; Gebhart, Gerald F.; High, Karin W.; Kollarik, Marian; Randich, Alan; Undem, Brad; Vergnolle, Nathalie

    2010-01-01

    Visceral pain is the most common reason for doctor visits in the US. Like somatic pain, virtually all visceral pain sensations begin with the activation of primary sensory neurons innervating the viscera and/or the blood vessels associated with these structures. Visceral afferents also play a central role in tissue homeostasis. Recent studies show that in addition to monitoring the state of the viscera, they perform efferent functions through the release of small molecules (e.g. peptides like CGRP) that can drive inflammation, thereby contributing to the development of visceral pathologies (e.g. diabetes Razavi, R., Chan, Y., Afifiyan, F.N., Liu, X.J., Wan, X., Yantha, J., Tsui, H., Tang, L., Tsai, S., Santamaria, P., Driver, J.P., Serreze, D., Salter, M.W., Dosch, H.M., 2006. TRPV1+ sensory neurons control beta cell stress and islet inflammation in autoimmune diabetes, Cell 127 1123–1135). Visceral afferents are heterogeneous with respect to their anatomy, neurochemistry and function. They are also highly plastic in that their cellular environment continuously influences their response properties. This plasticity makes them susceptible to long-term changes that may contribute significantly to the development of persistent pain states such as those associated with irritable bowel syndrome, pancreatitis, and visceral cancers. This review examines recent insights into visceral afferent anatomy and neurochemistry and how neonatal insults can affect the function of these neurons in the adult. New approaches to the treatment of visceral pain, which focus on primary afferents, will also be discussed. PMID:19150371

  1. Three-dimensional Reconstruction of Peripheral Nerve Internal Fascicular Groups

    PubMed Central

    Zhong, Yingchun; Wang, Liping; Dong, Jianghui; Zhang, Yi; Luo, Peng; Qi, Jian; Liu, Xiaolin; Xian, Cory J.

    2015-01-01

    Peripheral nerves are important pathways for receiving afferent sensory impulses and sending out efferent motor instructions, as carried out by sensory nerve fibers and motor nerve fibers. It has remained a great challenge to functionally reconnect nerve internal fiber bundles (or fascicles) in nerve repair. One possible solution may be to establish a 3D nerve fascicle visualization system. This study described the key technology of 3D peripheral nerve fascicle reconstruction. Firstly, fixed nerve segments were embedded with position lines, cryostat-sectioned continuously, stained and imaged histologically. Position line cross-sections were identified using a trained support vector machine method, and the coordinates of their central pixels were obtained. Then, nerve section images were registered using the bilinear method, and edges of fascicles were extracted using an improved gradient vector flow snake method. Subsequently, fascicle types were identified automatically using the multi-directional gradient and second-order gradient method. Finally, a 3D virtual model of internal fascicles was obtained after section images were processed. This technique was successfully applied for 3D reconstruction for the median nerve of the hand-wrist and cubital fossa regions and the gastrocnemius nerve. This nerve internal fascicle 3D reconstruction technology would be helpful for aiding peripheral nerve repair and virtual surgery. PMID:26596642

  2. Analysis of afferent responses from isolated semicircular canal of the guitarfish using rotational acceleration white-noise inputs. I. Correlation of response dynamics with receptor innervation.

    PubMed

    O'Leary, D P; Dunn, R F

    1976-05-01

    The small-signal linear characteristics of afferent responses from the isolated semicircular canal were described by the use of white-noise rotational acceleration inputs. The results, based on cross-correlation analysis, showed a striking and systematic variation in linear system impulse response characteristics from afferents which innervated different regions of the receptor. Afferents from centrally located nerve bundles innervating the crest region of the crista exhibited an initial maximum response amplitude followed by a rapid decay. In contrast, afferents from extreme rostral and caudal nerve bundles innervating the crista slopes exhibited an initial rise up to a low-amplitude maximum followed by a slower decay. These results imply that the afferents innervating a single canal do not merely carry redundant information concerning current head acceleration, but could be considered an ensemble of specific classes of filters that are tuned individually to specific classes of head movements. On the basis of these considerations, a new hypothesis of matched filter detection was proposed as relevant to information processing and dynamic control in central vestibular pathways. PMID:948010

  3. Spatial convergence and divergence between cutaneous afferent axons and dorsal horn cells are not constant.

    PubMed

    Brown, P B; Harton, P; Millecchia, R; Lawson, J; Kunjara-Na-Ayudhya, T; Stephens, S; Miller, M A; Hicks, L; Culberson, J

    2000-05-01

    We have proposed a quantitative model of the development of dorsal horn cell receptive fields (RFs) and somatotopic organization (Brown et al. [1997] Somatosens. Motor Res. 14:93-106). One component of that model is a hypothesis that convergence and divergence of connections between low-threshold primary afferent mechanoreceptive axons and dorsal horn cells are invariant over skin location and dorsal horn location. The more limited, and more easily tested, hypothesis that spatial convergence and divergence between cutaneous mechanoreceptors and dorsal horn cell are constant was examined. Spatial divergence is the number of dorsal horn cells whose RFs overlap the RF center of a primary afferent, and spatial convergence is the number of afferent RF centers that lie within the RF of a dorsal horn cell. Innervation density was determined as a function of location on the hindlimb by using peripheral nerve recording and axon counting. A descriptive model of dorsal horn cell receptive fields (Brown et al. [1998] J. Neurophysiol. 31:833-848) was used to simulate RFs of the entire dorsal horn cell population in order to estimate RF area and map scale as a function of location on the hindlimb. Previously reported correlations among innervation density, map scale, and RF size were confirmed. However, these correlations were not linear. The hypothesis that spatial convergence and divergence are constant was rejected. The previously proposed model of development of dorsal horn cell somatotopy and RF geometries must be revised to take variable spatial convergence and divergence into account. PMID:10754502

  4. ATP decreases mechanical sensitivity of muscle thin-fiber afferents in rats.

    PubMed

    Matsuda, Teru; Kubo, Asako; Taguchi, Toru; Mizumura, Kazue

    2015-08-01

    ATP is an energy rich substance contained in cells in the order of mM. It is released when cells are damaged and when muscle is compressed or contracted. Subcutaneous injection of ATP induces pain-related behavior and hyperalgesia to mechanical and heat stimulation in rats. However, the effects of ATP in muscle have not been fully studied. In the present study we examined the effects of ATP on muscle C-fiber afferent activities using single fiber recordings, and on nociceptive behavior. Muscle C-fiber activities were recorded in vitro using extensor digitorum longus muscle-common peroneal nerve preparations excised from rats deeply anesthetized with pentobarbital. ATP (100 μM and 1 mM, but not 1 μM) superfused for 5 min before the mechanical stimulation suppressed the mechanical responses of muscle thin fibers irrespective of whether they excited the fiber. This suppressive effect was reversed by P2X receptor antagonists PPADS (100 μM) and suramin (300 μM). We also found that subcutaneous injection of ATP (10 mM) induced nociceptive behavior, whereas intramuscular injection had no effect. These findings showed that effects of ATP on muscle afferents differ from those on cutaneous afferents.

  5. Histomorphogenesis of cranial nerves in Huso huso larvae

    PubMed Central

    Tavighi, Sherma; Saadatfar, Zohreh; Shojaei, Bahador; Behnam Rassouli, Morteza

    2016-01-01

    In this study the cranial nerves development of H. huso are explained from 1 to 54-days-old (1, 3, 6, 15, 21 and 54 days). Despite all the researches on fish brain, there are no study on nerves evolution on H. huso during their larvae life. For this research 40 samples of larvae H. huso were obtained (from each age, about six samples were selected). The specimens were maintained in fiberglass tank, then histological samples were taken from tissues and stained with hematoxylin and eosin for general histological studies using light microscope. According to the results, on 1 and 3-days-old, no nerve was observed. The terminal nerve and their dendrites were observed around the nasal cavity and the axons projected to different areas in forebrain especially around olfactory bulb diffusely, on 6-day-old fish. Also, olfactory, optic, oculomotor, trochlear, trigeminal, lateral line and vagus nerves were detected on 6-day-old fish, however two parts of lateral line nerve were separated on 54-day-old. Three nerves, profundus, facial and octaval were observed on 54-day-old, however, up to this age, epiphysial nerve was not observed. PMID:27482355

  6. Histomorphogenesis of cranial nerves in Huso huso larvae.

    PubMed

    Tavighi, Sherma; Saadatfar, Zohreh; Shojaei, Bahador; Behnam Rassouli, Morteza

    2016-01-01

    In this study the cranial nerves development of H. huso are explained from 1 to 54-days-old (1, 3, 6, 15, 21 and 54 days). Despite all the researches on fish brain, there are no study on nerves evolution on H. huso during their larvae life. For this research 40 samples of larvae H. huso were obtained (from each age, about six samples were selected). The specimens were maintained in fiberglass tank, then histological samples were taken from tissues and stained with hematoxylin and eosin for general histological studies using light microscope. According to the results, on 1 and 3-days-old, no nerve was observed. The terminal nerve and their dendrites were observed around the nasal cavity and the axons projected to different areas in forebrain especially around olfactory bulb diffusely, on 6-day-old fish. Also, olfactory, optic, oculomotor, trochlear, trigeminal, lateral line and vagus nerves were detected on 6-day-old fish, however two parts of lateral line nerve were separated on 54-day-old. Three nerves, profundus, facial and octaval were observed on 54-day-old, however, up to this age, epiphysial nerve was not observed. PMID:27482355

  7. Histomorphogenesis of cranial nerves in Huso huso larvae.

    PubMed

    Tavighi, Sherma; Saadatfar, Zohreh; Shojaei, Bahador; Behnam Rassouli, Morteza

    2016-01-01

    In this study the cranial nerves development of H. huso are explained from 1 to 54-days-old (1, 3, 6, 15, 21 and 54 days). Despite all the researches on fish brain, there are no study on nerves evolution on H. huso during their larvae life. For this research 40 samples of larvae H. huso were obtained (from each age, about six samples were selected). The specimens were maintained in fiberglass tank, then histological samples were taken from tissues and stained with hematoxylin and eosin for general histological studies using light microscope. According to the results, on 1 and 3-days-old, no nerve was observed. The terminal nerve and their dendrites were observed around the nasal cavity and the axons projected to different areas in forebrain especially around olfactory bulb diffusely, on 6-day-old fish. Also, olfactory, optic, oculomotor, trochlear, trigeminal, lateral line and vagus nerves were detected on 6-day-old fish, however two parts of lateral line nerve were separated on 54-day-old. Three nerves, profundus, facial and octaval were observed on 54-day-old, however, up to this age, epiphysial nerve was not observed.

  8. The lower cranial nerves: IX, X, XI, XII.

    PubMed

    Sarrazin, J-L; Toulgoat, F; Benoudiba, F

    2013-10-01

    The lower cranial nerves innervate the pharynx and larynx by the glossopharyngeal (CN IX) and vagus (CN X) (mixed) nerves, and provide motor innervation of the muscles of the neck by the accessory nerve (CN XI) and the tongue by the hypoglossal nerve (CN XII). The symptomatology provoked by an anomaly is often discrete and rarely in the forefront. As with all cranial nerves, the context and clinical examinations, in case of suspicion of impairment of the lower cranial nerves, are determinant in guiding the imaging. In fact, the impairment may be located in the brain stem, in the peribulbar cisterns, in the foramens or even in the deep spaces of the face. The clinical localization of the probable seat of the lesion helps in choosing the adapted protocol in MRI and eventually completes it with a CT-scan. In the bulb, the intra-axial pathology is dominated by brain ischemia (in particular, with Wallenberg syndrome) and multiple sclerosis. Cisternal pathology is tumoral with two tumors, schwannoma and meningioma. The occurrence is much lower than in the cochleovestibular nerves as well as the leptomeningeal nerves (infectious, inflammatory or tumoral). Finally, foramen pathology is tumoral with, outside of the usual schwannomas and meningiomas, paragangliomas. For radiologists, fairly hesitant to explore these lower cranial pairs, it is necessary to be familiar with (or relearn) the anatomy, master the exploratory technique and be aware of the diagnostic possibilities.

  9. Surgical outcomes of lateral approach for jugular foramen schwannoma: postoperative facial nerve and lower cranial nerve functions.

    PubMed

    Cho, Yang-Sun; So, Yoon Kyoung; Park, Kwan; Baek, Chung-Hwan; Jeong, Han-Sin; Hong, Sung Hwa; Chung, Won-Ho

    2009-01-01

    The lateral surgical approach to jugular foramen schwannomas (JFS) may result in complications such as temporary facial nerve palsy (FNP) and hearing loss due to the complicated anatomical location. Ten patients with JFS surgically treated by variable methods of lateral approach were retrospectively reviewed with emphasis on surgical methods, postoperative FNP, and lower cranial nerve status. Gross total removal of the tumors was achieved in eight patients. Facial nerves were rerouted at the first genu (1G) in six patients and at the second genu in four patients. FNP of House-Brackmann (HB) grade III or worse developed immediately postoperatively in six patients regardless of the extent of rerouting. The FNP of HB grade III persisted for more than a year in one patient managed with rerouting at 1G. Among the lower cranial nerves, the vagus nerve was most frequently paralyzed preoperatively and lower cranial nerve palsies were newly developed in two patients. The methods of the surgical approach to JFS can be modified depending on the size and location of tumors to reduce injury of the facial nerve and loss of hearing. Careful manipulation and caution are also required for short facial nerve rerouting as well as for long rerouting to avoid immediately postoperative FNP.

  10. [Selective histochemical identification of neuronal cell populations using fucose-specific lectins].

    PubMed

    Akkuratov, E G; Nozdrachev, A D

    2004-01-01

    We studied lectin histochemical properties of structures of caudal ganglia of the vagus nerve and ganglion of the trigeminal nerve in white rats using fucose-specific conjugates to peroxidase. Morphological samples were processed on a computer video analyzer. Metrical and optical indices of the afferent neurons were analyzed. The obtained data demonstrate different topography of glycoconjugates in the afferent ganglia. Application of recent image processing techniques allows revealing neuron populations in afferent ganglia of rats undetectable by standard morphological techniques.

  11. Plexin a4 expression in adult rat cranial nerves.

    PubMed

    Gutekunst, Claire-Anne; Gross, Robert E

    2014-11-01

    PlexinsA1-A4 participate in class 3 semaphorin signaling as co-receptors to neuropilin 1 and 2. PlexinA4 is the latest member of the PlexinA subfamily to be identified. In previous studies, we described the expression of PlexinA4 in the brain and spinal cord of the adult rat. Here, antibodies to PlexinA4 were used to reveal immunolabeling in most of the cranial nerve surveyed. Labeling was found in the olfactory, optic, oculomotor, trochlear, trigeminal, abducens, facial, vestibulocochlear, glossopharyngeal, vagus, and hypoglossal nerves. This is the first detailed description of the cellular and subcellular distribution of PlexinA4 in the adult cranial nerves. The findings will set the basis for future studies on the potential role of PlexinA4 in regeneration and repair of the adult central and peripheral nervous system.

  12. Netrin-1 Contributes to Myelinated Afferent Fiber Sprouting and Neuropathic Pain.

    PubMed

    Wu, Cai-Hua; Yuan, Xiao-Cui; Gao, Fang; Li, Hong-Ping; Cao, Jie; Liu, Yan-Shen; Yu, Wei; Tian, Bo; Meng, Xian-Fang; Shi, Jing; Pan, Hui-Lin; Li, Man

    2016-10-01

    Netrin-1 is a neuronal guidance molecule implicated in the development of spinal cord neurons and cortical neurons. In the adult spinal cord, UNC5H (repulsive receptor of netrin-1), but not deleted in colorectal cancer (DCC) (attractive receptor of netrin-1), constitutes a major mode of netrin-1 signal transduction, which may be involved in axon repulsion and inhibits neurite outgrowth. Abnormal sprouting of myelinated afferent fibers in the spinal dorsal horn can cause mechanical allodynia associated with postherpetic neuralgia (PHN, Shingles) and other neuropathic pains. However, whether netrin-1 participates in sprouting of myelinated afferent fibers and mechanical allodynia remains unknown. In an ultropotent TRPV1 agonist resiniferatoxin (RTX)-induced PHN-like model, RTX treatment for 6 weeks increased netrin-1 expression in dorsal horn neurons, including NK-1-positive projection neurons. In human neuroblastoma SH-SY5Y cells, we found that TRPV1 antagonist capsazepine antagonized RTX-induced upregulation of netrin-1. After RTX treatment, UNC5H2 expression was gradually decreased, whereas DCC expression was significantly increased. Silencing netrin-1 in the spinal dorsal horn significantly attenuated RTX-induced mechanical allodynia and sprouting of myelinated fibers into the spinal lamina II. Our results suggest that RTX treatment upregulates netrin-1 expression through activation of TRPV1 receptors and change UNC5H2-rich spinal dorsal horn into a growth-permissive environment by increasing DCC expression, thus enhancing the sprouting of myelinated afferent nerves. Netrin-1 may be targeted for reducing primary afferent sprouting and mechanical allodynia in PHN and other neuropathic pain conditions. PMID:26482371

  13. ACTIVATION OF TRPA1 ON DURAL AFFERENTS: A POTENTIAL MECHANISM OF HEADACHE PAIN

    PubMed Central

    Edelmayer, Rebecca M.; Le, Larry N.; Yan, Jin; Wei, Xiaomei; Nassini, Romina; Materazzi, Serena; Preti, Delia; Appendino, Giovanni; Geppetti, Pierangelo; Dodick, David W.; Vanderah, Todd W.; Porreca, Frank; Dussor, Gregory

    2012-01-01

    Activation of transient receptor potential ankyrin-1 (TRPA1) on meningeal nerve endings has been suggested to contribute to environmental irritant-induced headache but this channel may also contribute to other forms of headache such as migraine. The preclinical studies described here examined functional expression of TRPA1 on dural afferents and investigated whether activation of TRPA1 contributes to headache-like behaviors. Whole-cell patch-clamp recordings were performed in vitro using two TRPA1 agonists, mustard oil (MO) and the environmental irritant umbellulone (UMB), on dural-projecting trigeminal ganglion neurons. Application of MO and UMB to dural afferents produced TRPA1-like currents in approximately 42% and 38% of cells, respectively. Using an established in vivo behavioral model of migraine-related allodynia, dural application of MO and UMB produced robust time-related tactile facial and hindpaw allodynia that was attenuated by pretreatment with the TRPA1 antagonist HC-030031. Additionally, MO or UMB were applied to the dura and exploratory activity was monitored for 30 minutes using an automated open-field activity chamber. Dural MO and UMB decreased the number of vertical rearing episodes and the time spent rearing in comparison to vehicle treated animals. This change in activity was prevented in rats pretreated with HC-030031 as well as sumatriptan, a clinically effective anti-migraine agent. These data indicate that TRPA1 is expressed on a substantial fraction of dural afferents and activation of meningeal TRPA1 produces behaviors consistent with those seen in patients during migraine attacks. Further, they suggest that activation of meningeal TRPA1 via endogenous or exogenous mechanisms can lead to afferent signaling and headache. PMID:22809691

  14. Immune derived opioidergic inhibition of viscerosensory afferents is decreased in Irritable Bowel Syndrome patients.

    PubMed

    Hughes, Patrick A; Moretta, Melissa; Lim, Amanda; Grasby, Dallas J; Bird, Daniel; Brierley, Stuart M; Liebregts, Tobias; Adam, Birgit; Blackshaw, L Ashley; Holtmann, Gerald; Bampton, Peter; Hoffmann, Peter; Andrews, Jane M; Zola, Heddy; Krumbiegel, Doreen

    2014-11-01

    Alterations in the neuro-immune axis contribute toward viscerosensory nerve sensitivity and symptoms in Irritable Bowel Syndrome (IBS). Inhibitory factors secreted from immune cells inhibit colo-rectal afferents in health, and loss of this inhibition may lead to hypersensitivity and symptoms. We aimed to determine the immune cell type(s) responsible for opioid secretion in humans and whether this is altered in patients with IBS. The β-endorphin content of specific immune cell lineages in peripheral blood and colonic mucosal biopsies were compared between healthy subjects (HS) and IBS patients. Peripheral blood mononuclear cell (PBMC) supernatants from HS and IBS patients were applied to colo-rectal sensory afferent endings in mice with post-inflammatory chronic visceral hypersensitivity (CVH). β-Endorphin was identified predominantly in monocyte/macrophages relative to T or B cells in human PBMC and colonic lamina propria. Monocyte derived β-endorphin levels and colonic macrophage numbers were lower in IBS patients than healthy subjects. PBMC supernatants from healthy subjects had greater inhibitory effects on colo-rectal afferent mechanosensitivity than those from IBS patients. The inhibitory effects of PBMC supernatants were more prominent in CVH mice compared to healthy mice due to an increase in μ-opioid receptor expression in dorsal root ganglia neurons in CVH mice. Monocyte/macrophages are the predominant immune cell type responsible for β-endorphin secretion in humans. IBS patients have lower monocyte derived β-endorphin levels than healthy subjects, causing less inhibition of colonic afferent endings. Consequently, altered immune function contributes toward visceral hypersensitivity in IBS. PMID:25063707

  15. Netrin-1 Contributes to Myelinated Afferent Fiber Sprouting and Neuropathic Pain.

    PubMed

    Wu, Cai-Hua; Yuan, Xiao-Cui; Gao, Fang; Li, Hong-Ping; Cao, Jie; Liu, Yan-Shen; Yu, Wei; Tian, Bo; Meng, Xian-Fang; Shi, Jing; Pan, Hui-Lin; Li, Man

    2016-10-01

    Netrin-1 is a neuronal guidance molecule implicated in the development of spinal cord neurons and cortical neurons. In the adult spinal cord, UNC5H (repulsive receptor of netrin-1), but not deleted in colorectal cancer (DCC) (attractive receptor of netrin-1), constitutes a major mode of netrin-1 signal transduction, which may be involved in axon repulsion and inhibits neurite outgrowth. Abnormal sprouting of myelinated afferent fibers in the spinal dorsal horn can cause mechanical allodynia associated with postherpetic neuralgia (PHN, Shingles) and other neuropathic pains. However, whether netrin-1 participates in sprouting of myelinated afferent fibers and mechanical allodynia remains unknown. In an ultropotent TRPV1 agonist resiniferatoxin (RTX)-induced PHN-like model, RTX treatment for 6 weeks increased netrin-1 expression in dorsal horn neurons, including NK-1-positive projection neurons. In human neuroblastoma SH-SY5Y cells, we found that TRPV1 antagonist capsazepine antagonized RTX-induced upregulation of netrin-1. After RTX treatment, UNC5H2 expression was gradually decreased, whereas DCC expression was significantly increased. Silencing netrin-1 in the spinal dorsal horn significantly attenuated RTX-induced mechanical allodynia and sprouting of myelinated fibers into the spinal lamina II. Our results suggest that RTX treatment upregulates netrin-1 expression through activation of TRPV1 receptors and change UNC5H2-rich spinal dorsal horn into a growth-permissive environment by increasing DCC expression, thus enhancing the sprouting of myelinated afferent nerves. Netrin-1 may be targeted for reducing primary afferent sprouting and mechanical allodynia in PHN and other neuropathic pain conditions.

  16. Interganglionic segregation of distinct vagal afferent fibre phenotypes in guinea-pig airways.

    PubMed Central

    Ricco, M M; Kummer, W; Biglari, B; Myers, A C; Undem, B J

    1996-01-01

    1. The present study addressed the hypothesis that jugular and nodose vagal ganglia contain the somata of functionally and anatomically distinct airway afferent fibres. 2. Anatomical investigations were performed by injecting guinea-pig airways with the neuronal tracer Fast Blue. The animals were killed 7 days later, and the ganglia were removed and immunostained with antisera against substance P (SP) and neurofilament protein (NF). In the nodose ganglion, NF-immunoreactive neurones accounted for about 98% of the Fast Blue-labelled cells while in the jugular ganglion they accounted for approximately 48%. SP and NF immunoreactivity was never (n = 100) observed in the same cell suggesting that the antisera labelled distinct populations. 3. Electrophysiological investigations were performed using an in vitro guinea-pig tracheal and bronchial preparation with intact afferent vagal pathways, including nodose and jugular ganglia. Action potentials arriving from single airway afferent nerve endings were monitored extracellularly using a glass microelectrode positioned near neuronal cell bodies in either ganglion. 4. The nodose ganglion contained the somata of mainly fast-conducting tracheal A delta fibres whereas the jugular ganglion contained equal numbers of C fibre and A delta fibre tracheal afferent somata. The nodose A delta neurones adapted rapidly to mechanical stimulation, had relatively low mechanical thresholds, were not activated by capsaicin and adapted rapidly to a hyperosmotic stimulus. By contrast, jugular A delta and C fibres adapted slowly to mechanical stimulation, were often activated by capsaicin, had higher mechanical thresholds and displayed a slow adaptation to a hyperosmotic stimulus. 5. The anatomical, physiological and pharmacological data provide evidence to support the contention that the vagal ganglionic source of the fibre supplying the airways ultimately dictates its neurochemical and physiological phenotype. Images Figure 1 PMID:8910234

  17. Enhanced adipose afferent reflex contributes to sympathetic activation in diet-induced obesity hypertension.

    PubMed

    Xiong, Xiao-Qing; Chen, Wei-Wei; Han, Ying; Zhou, Ye-Bo; Zhang, Feng; Gao, Xing-Ya; Zhu, Guo-Qing

    2012-11-01

    We recently found that adipose afferent reflex (AAR) induced by chemical stimulation of white adipose tissue (WAT) increased sympathetic outflow and blood pressure in normal rats. The study was designed to test the hypothesis that AAR contributes to sympathetic activation in obesity hypertension. Male rats were fed with a control diet (12% kcal as fat) or high-fat diet (42% kcal as fat) for 12 weeks to induce obesity hypertension. Stimulation of WAT with capsaicin increased renal sympathetic nerve activity and mean arterial pressure. Both AAR and WAT afferent activity were enhanced in obesity hypertension (OH) compared with obesity nonhypertension (ON) and in ON compared with obesity-resistant or control diet rats. WAT sensory denervation induced by resiniferatoxin caused greater decreases in renal sympathetic nerve activity and mean arterial pressure in OH than ON and in ON than obesity-resistant or control. The depressor effect of resiniferatoxin lasted ≥ 3 weeks in OH. Leptin antagonist in WAT reduced renal sympathetic nerve activity and mean arterial pressure in OH. WAT injection of capsaicin increased plasma renin, angiotensin II, and norepinephrine levels in OH and caused more c-fos expression in paraventricular nucleus in OH than ON and in ON than obesity-resistant or control rats. Inhibiting paraventricular nucleus neurons with lidocaine attenuated renal sympathetic nerve activity in OH and ON, decreased mean arterial pressure in OH, and abolished the capsaicin-induced AAR in all groups. The results indicate that enhanced AAR contributes to sympathetic activation in OH, and paraventricular nucleus plays an important role in the enhanced AAR and sympathetic activation in OH.

  18. Oligosynaptic inhibition of group I afferents between the brachioradialis and flexor carpi radialis in humans.

    PubMed

    Kobayashi, Shinji; Hayashi, Masahiro; Shinozaki, Katsuhiro; Nito, Mitsuhiro; Hashizume, Wataru; Miyasaka, Takuji; Shindo, Masaomi; Naito, Akira

    2016-09-01

    Spinal reflex arcs mediated by low threshold afferents between the brachioradialis (BR) and flexor carpi radialis (FCR) were studied in eleven healthy human subjects using a post-stimulus time-histogram method. Electrical conditioning stimuli (ES) to the radial nerve branch innervating BR with the intensity below the motor threshold (MT) induced an early and significant trough (inhibition) in 32/85 FCR motor units (MUs) in 9/9 subjects. Such inhibition was never provoked by cutaneous stimulation. The central synaptic delay (CSD) of the inhibition was approximately 1.1ms longer than that of the homonymous FCR facilitation. ES to the median nerve branch innervating FCR with the intensity below MT induced an inhibition in 27/71 BR-MUs in 10/10 subjects. CSD of the inhibition was about 1.1ms longer than that of the homonymous BR facilitation. These findings suggest that inhibition between BR and FCR exists in humans. Group I afferents seem to mediate the inhibition through an oligo(di or tri)-synaptic path. PMID:26996830

  19. Voltage-gated Na(+) channels in chemoreceptor afferent neurons--potential roles and changes with development.

    PubMed

    Donnelly, David F

    2013-01-01

    Carotid body chemoreceptors increase their action potential (AP) activity in response to a decrease in arterial oxygen tension and this response increases in the post-natal period. The initial transduction site is likely the glomus cell which responds to hypoxia with an increase in intracellular calcium and secretion of multiple neurotransmitters. Translation of this secretion to AP spiking levels is determined by the excitability of the afferent nerve terminals that is largely determined by the voltage-dependence of activation of Na(+) channels. In this review, we examine the biophysical characteristics of Na(+) channels present at the soma of chemoreceptor afferent neurons with the assumption that similar channels are present at nerve terminals. The voltage dependence of this current is consistent with a single Na(+) channel isoform with activation around the resting potential and with about 60-70% of channels in the inactive state around the resting potential. Channel openings, due to transitions from inactive/open or closed/open states, may serve to amplify external depolarizing events or generate, by themselves, APs. Over the first two post-natal weeks, the Na(+) channel activation voltage shifts to more negative potentials, thus enhancing the amplifying action of Na(+) channels on depolarization events and increasing membrane noise generated by channel transitions. This may be a significant contributor to maturation of chemoreceptor activity in the post-natal period.

  20. An afferent explanation for sexual dimorphism in the aortic baroreflex of rat.

    PubMed

    Santa Cruz Chavez, Grace C; Li, Bai-Yan; Glazebrook, Patricia A; Kunze, Diana L; Schild, John H

    2014-09-15

    Sex differences in baroreflex (BRx) function are well documented. Hormones likely contribute to this dimorphism, but many functional aspects remain unresolved. Our lab has been investigating a subset of vagal sensory neurons that constitute nearly 50% of the total population of myelinated aortic baroreceptors (BR) in female rats but less than 2% in male rats. Termed "Ah," this unique phenotype has many of the nonoverlapping electrophysiological properties and chemical sensitivities of both myelinated A-type and unmyelinated C-type BR afferents. In this study, we utilize three distinct experimental protocols to determine if Ah-type barosensory afferents underlie, at least in part, the sex-related differences in BRx function. Electron microscopy of the aortic depressor nerve (ADN) revealed that female rats have less myelin (P < 0.03) and a smaller fiber cross-sectional area (P < 0.05) per BR fiber than male rats. Electrical stimulation of the ADN evoked compound action potentials and nerve conduction profiles that were markedly different (P < 0.01, n = 7 females and n = 9 males). Selective activation of ADN myelinated fibers evoked a BRx-mediated depressor response that was 3-7 times greater in female (n = 16) than in male (n = 17) rats. Interestingly, the most striking hemodynamic difference was functionally dependent upon the rate of myelinated barosensory fiber activation. Only 5-10 Hz of stimulation evoked a rapid, 20- to 30-mmHg reduction in arterial pressure of female rats, whereas rates of 50 Hz or higher were required to elicit a comparable depressor response from male rats. Collectively, our experimental results are suggestive of an alternative myelinated baroreceptor afferent pathway in females that may account for, at least in part, the noted sex-related differences in autonomic control of cardiovascular function.

  1. Afferent innervation patterns of the saccule in pigeons

    NASA Technical Reports Server (NTRS)

    Zakir, M.; Huss, D.; Dickman, J. D.

    2003-01-01

    The innervation patterns of vestibular saccular afferents were quantitatively investigated in pigeons using biotinylated dextran amine as a neural tracer and three-dimensional computer reconstruction. Type I hair cells were found throughout a large portion of the macula, with the highest density observed in the striola. Type II hair cells were located throughout the macula, with the highest density in the extrastriola. Three classes of afferent innervation patterns were observed, including calyx, dimorph, and bouton units, with 137 afferents being anatomically reconstructed and used for quantitative comparisons. Calyx afferents were located primarily in the striola, innervated a number of type I hair cells, and had small innervation areas. Most calyx afferent terminal fields were oriented parallel to the anterior-posterior axis and the morphological polarization reversal line. Dimorph afferents were located throughout the macula, contained fewer type I hair cells in a calyceal terminal than calyx afferents and had medium sized innervation areas. Bouton afferents were restricted to the extrastriola, with multi-branching fibers and large innervation areas. Most of the dimorph and bouton afferents had innervation fields that were oriented dorso-ventrally but were parallel to the neighboring reversal line. The organizational morphology of the saccule was found to be distinctly different from that of the avian utricle or lagena otolith organs and appears to represent a receptor organ undergoing evolutionary adaptation toward sensing linear motion in terrestrial and aerial species.

  2. High-frequency dynamics of regularly discharging canal afferents provide a linear signal for angular vestibuloocular reflexes.

    PubMed

    Hullar, T E; Minor, L B

    1999-10-01

    Regularly discharging vestibular-nerve afferents innervating the semicircular canals were recorded extracellularly in anesthetized chinchillas undergoing high-frequency, high-velocity sinusoidal rotations. In the range from 2 to 20 Hz, with peak velocities of 151 degrees/s at 6 Hz and 52 degrees/s at 20 Hz, 67/70 (96%) maintained modulated discharge throughout the sinusoidal stimulus cycle without inhibitory cutoff or excitatory saturation. These afferents showed little harmonic distortion, no dependence of sensitivity on peak amplitude of stimulation, and no measurable half-cycle asymmetry. A transfer function fitting the data predicts no change in sensitivity (gain) of regularly discharging afferents over the frequencies tested but shows a phase lead with regard to head velocity increasing from 0 degrees at 2 Hz to 30 degrees at 20 Hz. These results indicate that regularly discharging afferents provide a plausible signal to drive the angular vestibuloocular reflex (VOR) even during high-frequency head motion but are not a likely source for nonlinearities present in the VOR. PMID:10515990

  3. Neuronal activity of the cat supraoptic nucleus is influenced by muscle small-diameter afferent (groups III and IV) receptors.

    PubMed

    Kannan, H; Yamashita, H; Koizumi, K; Brooks, C M

    1988-08-01

    In anesthetized cats, responses of single neurosecretory neurons of the supraoptic nucleus to activation of muscle receptors were investigated. Electrical stimulation (1-3 pulses at 200 Hz) of group III and IV pure muscle afferents (gastrocnemius nerve) evoked excitation of greater than 50% of supraoptic nucleus neurons (n = 50), whereas stimulation of group Ia or Ib fibers was ineffective. Baroreceptor stimulation inhibited 95% of these supraoptic nucleus neurons that responded to activation of muscle afferents. Excitation of receptors in the gastrocnemius muscle by intra-arterial injection of chemicals (NaCl, KCl, and bradykinin) increased firing rates of most (84%, 74%, and 80%, respectively) neurosecretary neurons. The magnitude of the excitatory response was dose dependent--bradykinin being the most effective. The response disappeared after muscle denervation. When the gastrocnemius muscle alone was contracted phasically by ventral root stimulation, discharges of the supraoptic nucleus neurons increased, whereas quick stretch of the muscle had no effect. We conclude that activation of muscle receptors by chemical or mechanical stimulus can directly excite neurosecretory neurons in the supraoptic nucleus and that afferent impulses are carried by polymodal fibers of small diameter but not by the largest afferents (group I) from the muscle. The results may relate to increased concentrations of plasma vasopressin during exercise.

  4. Towards determining the afferent sites of perception feedback on residual arms of amputees with transcutaneous electrical stimulation.

    PubMed

    Wang, Hui; Fang, Peng; Tian, Lan; Zheng, Yue; Zhou, Hui; Li, Guanglin; Zhang, Xiufeng

    2015-01-01

    The coordination and combination of motion and sensation are critical to realize a natural and precise control of prosthetic hands. Transcutaneous electrical stimulation (TES) is one of possible methods to develop an intuitive perception feedback for limb amputees. However, the perception afferent sites would be a critical issue that is still unexplored in depth. This paper reports a preliminary study on using somatosensory evoked potentials (SEP) to determine the proper afferent sites of perceptions on residual arms of transradial amputees. In this study, two transradial amputees with phantom finger perception (PFP) were recruited and SEP for the stimulation of median nerves and ulnar nerves were recorded and analyzed. PFP distribution maps on subjects' stumps were obtained by mechanical stimulations performed manually. Electrical stimulation was then applied to some selected sites on the stumps of their residual arms with surface electrodes to evoke SEP. In the experiments, SEP were successfully recorded, which means that the proposed method might be a suitable approach for localizing the afferent sites of perceptions, and could provide technique support for possible intuitive neural feedback for limb amputees in future work.

  5. [The stimulating effects of contralateral glossopharyngeal and hypoglossal afferent fibers on the glossopharyngeo-hypoglossal reflex activities in the frog].

    PubMed

    Murayama, N

    1991-01-01

    American Bullfrogs, Rana catesbiana, immobilized with suxamethonium chloride (20 mg/kg b. w., i. p.), were used. By stimulating the glossopharyngeal (IX) nerve, reflex activities, composed of early (10-20 ms in latency) and late (greater than 20 ms) components, were evoked in both protoractor branch (P. br.) and retractor branch (R. br.) of the ipsilateral hypoglossal (XII) nerve. Contralateral IXth nerve stimulation increased the reflex activities of both components in the P. br. elicited ipsilaterally by the homonymous nerve. Whereas, it increased the reflex activities of the early component in the R. br. but, decreased that of the late component. On the other hand, stimulation of P. br. in the contralateral XIIth nerve increased the activities of both components in the P. br. and those of the late component in the R. br., but did not affect the activities of the early component in the R. br. The time course of these effects was similar to that by contralateral IXth nerve stimulation. The present findings strongly suggest the existence of afferent fibers in the XIIth nerve. PMID:1770456

  6. Perineural capsaicin induces the uptake and transganglionic transport of choleratoxin B subunit by nociceptive C-fiber primary afferent neurons.

    PubMed

    Oszlács, O; Jancsó, G; Kis, G; Dux, M; Sántha, P

    2015-12-17

    The distribution of spinal primary afferent terminals labeled transganglionically with the choleratoxin B subunit (CTB) or its conjugates changes profoundly after perineural treatment with capsaicin. Injection of CTB conjugated with horseradish peroxidase (HRP) into an intact nerve labels somatotopically related areas in the ipsilateral dorsal horn with the exceptions of the marginal zone and the substantia gelatinosa, whereas injection of this tracer into a capsaicin-pretreated nerve also results in massive labeling of these most superficial layers of the dorsal horn. The present study was initiated to clarify the role of C-fiber primary afferent neurons in this phenomenon. In L5 dorsal root ganglia, analysis of the size frequency distribution of neurons labeled after injection of CTB-HRP into the ipsilateral sciatic nerve treated previously with capsaicin or resiniferatoxin revealed a significant increase in the proportion of small neurons. In the spinal dorsal horn, capsaicin or resiniferatoxin pretreatment resulted in intense CTB-HRP labeling of the marginal zone and the substantia gelatinosa. Electron microscopic histochemistry disclosed a dramatic, ∼10-fold increase in the proportion of CTB-HRP-labeled unmyelinated dorsal root axons following perineural capsaicin or resiniferatoxin. The present results indicate that CTB-HRP labeling of C-fiber dorsal root ganglion neurons and their central terminals after perineural treatment with vanilloid compounds may be explained by their phenotypic switch rather than a sprouting response of thick myelinated spinal afferents which, in an intact nerve, can be labeled selectively with CTB-HRP. The findings also suggest a role for GM1 ganglioside in the modulation of nociceptor function and pain.

  7. Effects of stimulation of vesical afferents on colonic motility in cats.

    PubMed

    Bouvier, M; Grimaud, J C; Abysique, A

    1990-05-01

    The effects of distension and isovolumetric contraction of urinary bladder on colonic motility were studied in anesthetized cats. Distension and contraction of the urinary bladder induced an inhibition of spontaneous colonic electromyographic activity and a decrease in the amplitudes of the excitatory junction potentials evoked in the colon by stimulation of the distal end of the parasympathetic nerve fibers. This inhibition was blocked by guanethidine and phentolamine. Reversely, vesical emptying resulted in an increase in colonic motility, abolished by atropine, and an increase in the amplitude of the excitatory junction potentials. Both excitatory and inhibitory reflexes disappeared after hexamethonium. The inhibitory effects of bladder distension were abolished by bilateral section of the lumbar ventral or dorsal spinal roots and after bilateral section of the lumbar colonic or hypogastric nerves. These results indicate (a) that the vesical afferents responsible for the inhibitory and excitatory reflexes run in the hypogastric and pelvic nerves respectively and (b) that the inhibitory and excitatory effects are caused by the activation of sympathetic and parasympathetic efferent nerve fibers, respectively. The supraspinal nervous structures were not implicated in these reflexes because they persisted in spinal cats.

  8. Nerve conduction

    MedlinePlus

    ... fascicles) that contain hundreds of individual nerve fibers (neurons). Neurons consist of dendrites, axon, and cell body. The ... tree-like structures that receive signals from other neurons and from special sensory cells that sense the ...

  9. Effects of acid on vagal nociceptive afferent subtypes in guinea pig esophagus.

    PubMed

    Yu, Xiaoyun; Hu, Youtian; Yu, Shaoyong

    2014-08-15

    Acid reflux-induced heartburn and noncardiac chest pain are processed peripherally by sensory nerve endings in the wall of the esophagus, but the underlying mechanism is still unclear. This study aims to determine the effects of acid on esophageal vagal nociceptive afferent subtypes. Extracellular single-unit recordings were performed in guinea pig vagal nodose or jugular C fiber neurons by using ex vivo esophageal-vagal preparations with intact nerve endings in the esophagus. We recorded action potentials (AP) of esophageal nodose or jugular C fibers evoked by acid perfusion and compared esophageal distension-evoked AP before and after acid perfusion. Acid perfusion for 30 min (pH range 7.4 to 5.8) did not evoke AP in nodose C fibers but significantly decreased their responses to esophageal distension, which could be recovered after washing out acid for 90 min. In jugular C fibers, acid perfusion not only evoked AP but also inhibited their responses to esophageal distension, which were not recovered after washing out acid for 120 min. Lower concentration of capsaicin perfusion mimicked acid-induced effects in nodose and jugular C fibers. Pretreatment with TRPV1 antagonist AMG9810, but not acid-sensing ion channel (ASIC) inhibitor amiloride, significantly inhibited acid-induced effects in nodose and jugular C fiber. These results demonstrate that esophageal vagal nociceptive afferent nerve subtypes display distinctive responses to acid. Acid activates jugular, but not nodose, C fibers and inhibits both of their responses to esophageal distension. These effects are mediated mainly through TRPV1. This inhibitory effect is a novel finding and may contribute to esophageal sensory/motor dysfunction in acid reflux diseases.

  10. Integrated phrenic responses to carotid afferent stimulation in adult rats following perinatal hyperoxia.

    PubMed Central

    Ling, L; Olson, E B; Vidruk, E H; Mitchell, G S

    1997-01-01

    1. Hypoxic ventilatory responses are greatly attenuated in adult rats exposed to moderate hyperoxia (60% O2) during the first month of life (perinatal treated rats). The present study was designed to test the hypothesis that perinatal hyperoxia impairs central integration of carotid chemoreceptor afferent inputs, thereby diminishing the hypoxic ventilatory response. 2. Time-dependent phrenic nerve responses to electrical stimulation of the carotid sinus nerve (CSN) and steady-state relationships between CSN stimulation frequency and phrenic nerve output were compared in control and perinatal treated rats. The rats were urethane anaesthetized, vagotomized, paralysed and artificially ventilated. End-tidal CO2 was monitored and maintained at isocapnic levels; arterial blood gases were determined. 3. Two stimulation protocols were used: (1) three 2 min episodes of CSN stimulation (20 Hz, 0.2 ms duration, 3 x threshold), separated by 5 min intervals; and (2) nine 45 s episodes of CSN stimulation with stimulus frequencies ranging from 0.5 to 20 Hz (0.2 ms duration, 3 x threshold), separated by 4 min intervals. 4. The mean threshold currents to elicit phrenic responses were similar between groups. Burst frequency (f, burst min-1), peak amplitude of integrated phrenic activity (integral of Phr), and minute phrenic activity (integral of Phr x f) during and after CSN stimulation were not distinguishable between groups in either protocol at any time or at any stimulus intensity (P > 0.05). 5. Perinatal hyperoxia does not alter temporal or steady-state phrenic responses to CSN stimulation, suggesting that the central integration of carotid chemoreceptor afferent inputs is not impaired in perinatal treated rats. It is speculated that carotid chemoreceptors per se are impaired in perinatal treated rats. PMID:9161991

  11. Response properties of pigeon otolith afferents to linear acceleration

    NASA Technical Reports Server (NTRS)

    Si, X.; Angelaki, D. E.; Dickman, J. D.

    1997-01-01

    In the present study, the sensitivity to sinusoidal linear accelerations in the plane of the utricular macula was tested in afferents. The head orientation relative to the translation axis was varied in order to determine the head position that elicited the maximal and minimal responses for each afferent. The response gain and phase values obtained to 0.5-Hz and 2-Hz linear acceleration stimuli were then plotted as a function of head orientation and a modified cosine function was fit to the data. From the best-fit cosine function, the predicted head orientations that would produce the maximal and minimal response gains were estimated. The estimated maximum response gains to linear acceleration in the utricular plane for the afferents varied between 75 and 1420 spikes s-1 g-1. The mean maximal gains for all afferents to 0.5-Hz and 2-Hz sinusoidal linear acceleration stimuli were 282 and 367 spikes s-1 g-1, respectively. The minimal response gains were essentially zero for most units. The response phases always led linear acceleration and remained constant for each afferent, regardless of head orientation. These response characteristics indicate that otolith afferents are cosine tuned and behave as one-dimensional linear accelerometers. The directions of maximal sensitivity to linear acceleration for the afferents varied throughout the plane of the utricle; however, most vectors were directed out of the opposite ear near the interaural axis. The response dynamics of the afferents were tested using stimulus frequencies ranging between 0.25 Hz and 10 Hz (0.1 g peak acceleration). Across stimulus frequencies, most afferents had increasing gains and constant phase values. These dynamic properties for individual afferents were fit with a simple transfer function that included three parameters: a mechanical time constant, a gain constant, and a fractional order distributed adaptation operator.

  12. Electrical potentials from the eye and optic nerve of Strombus: effects of electrical stimulation of the optic nerve.

    PubMed

    Gillary, H L

    1977-02-01

    1. Photic stimulation of the mature eye of Strombus can evoke in the optic nerve 'on' activity in numerous small afferent fibres and repetitive 'off' bursts of afferent impulses in a smaller number of larger fibres. 2. Synchronous invasion of the eye by electrically evoked impulses in small optic nerve fibres (apparently the 'on' afferents, antidromically activated) can evoke a burst of impulses in the larger 'off' fibres which propagate away from the eye. Invasion of the eye via one branch of optic nerve can evoke an answering burst in another branch. 3. Such electrically evoked bursts are similar to light-evoked 'off' bursts with respect to their impulse composition, their ability to be inhibited by illumination of the eye, and their susceptibility to MgCl2 anaesthesia. 4. Invasion of the eye by a train of repetitive electrically evoked impulses in the absence of photic stimulation can give rise to repetitive 'off' bursts as well as concomitant oscillatory potentials in the eye which are similar to those normally evoked by cessation of a photic stimulus. 5. The electrically evoked 'off' bursts appear to be caused by an excitatory rebound following the cessation of inhibitory synaptic input from photoreceptors which can be antidromically activated by electrical stimulation of the optic nerve. 6. The experimental results suggest that the rhythmic discharge of the 'off' fibres evoked by the cessation of a photic stimulus is mediated by the abrupt decrease of inhibitory synaptic input from the receptors. PMID:192827

  13. Gait phase detection from sciatic nerve recordings in functional electrical stimulation systems for foot drop correction.

    PubMed

    Chu, Jun-Uk; Song, Kang-Il; Han, Sungmin; Lee, Soo Hyun; Kang, Ji Yoon; Hwang, Dosik; Suh, Jun-Kyo Francis; Choi, Kuiwon; Youn, Inchan

    2013-05-01

    Cutaneous afferent activities recorded by a nerve cuff electrode have been used to detect the stance phase in a functional electrical stimulation system for foot drop correction. However, the implantation procedure was difficult, as the cuff electrode had to be located on the distal branches of a multi-fascicular nerve to exclude muscle afferent and efferent activities. This paper proposes a new gait phase detection scheme that can be applied to a proximal nerve root that includes cutaneous afferent fibers as well as muscle afferent and efferent fibers. To test the feasibility of this scheme, electroneurogram (ENG) signals were measured from the rat sciatic nerve during treadmill walking at several speeds, and the signal properties of the sciatic nerve were analyzed for a comparison with kinematic data from the ankle joint. On the basis of these experiments, a wavelet packet transform was tested to define a feature vector from the sciatic ENG signals according to the gait phases. We also propose a Gaussian mixture model (GMM) classifier and investigate whether it could be used successfully to discriminate feature vectors into the stance and swing phases. In spite of no significant differences in the rectified bin-integrated values between the stance and swing phases, the sciatic ENG signals could be reliably classified using the proposed wavelet packet transform and GMM classification methods.

  14. Nerve Demyelination Increases Metabotropic Glutamate Receptor Subtype 5 Expression in Peripheral Painful Mononeuropathy

    PubMed Central

    Ko, Miau-Hwa; Hsieh, Yu-Lin; Hsieh, Sung-Tsang; Tseng, To-Jung

    2015-01-01

    Wallerian degeneration or nerve demyelination, arising from spinal nerve compression, is thought to bring on chronic neuropathic pain. The widely distributed metabotropic glutamate receptor subtype 5 (mGluR5) is involved in modulating nociceptive transmission. The purpose of this study was to investigate the potential effects of mGluR5 on peripheral hypersensitivities after chronic constriction injury (CCI). Sprague-Dawley rats were operated on with four loose ligatures around the sciatic nerve to induce thermal hyperalgesia and mechanical allodynia. Primary afferents in dermis after CCI exhibited progressive decreases, defined as partial cutaneous denervation; importantly, mGluR5 expressions in primary afferents were statistically increased. CCI-induced neuropathic pain behaviors through the intraplantar injections of 2-methyl-6-(phenylethynyl)-pyridine (MPEP), a selective mGluR5 antagonist, were dose-dependently attenuated. Furthermore, the most increased mGluR5 expressions in primary afferents surrounded by reactive Schwann cells were observed at the distal CCI stumps of sciatic nerves. In conclusion, these results suggest that nerve demyelination results in the increases of mGluR5 expression in injured primary afferents after CCI; and further suggest that mGluR5 represents a main therapeutic target in developing pharmacological strategies to prevent peripheral hypersensitivities. PMID:25739080

  15. Effects of changing skin mechanics on the differential sensitivity to surface compliance by tactile afferents in the human finger pad

    PubMed Central

    Hudson, Kathryn M.; Condon, Melia; Ackerley, Rochelle; McGlone, Francis; Olausson, Håkan; Birznieks, Ingvars

    2015-01-01

    It is not known how changes in skin mechanics affect the responses of cutaneous mechanoreceptors in the finger pads to compression forces. We used venous occlusion to change the stiffness of the fingers and investigated whether this influenced the firing of low-threshold mechanoreceptors to surfaces of differing stiffness. Unitary recordings were made from 10 slowly adapting type I (SAI), 10 fast adapting type I (FAI) and 9 slowly adapting type II (SAII) units via tungsten microelectrodes inserted into the median nerve at the wrist. A servo-controlled stimulator applied ramp-and-hold forces (1, 2, and 4 N) at a constant loading and unloading rate (2 N/s) via a flat 2.5-cm-diameter silicone disk over the center of the finger pad. Nine silicone disks (objects), varying in compliance, were used. Venous occlusion, produced by inflating a sphygmomanometer cuff around the upper arm to 40 ± 5 mmHg, was used to induce swelling of the fingers and increase the compliance of the finger pulp. Venous occlusion had no effect on the firing rates of the SAI afferents, nor on the slopes of the relationship between mean firing rate and object compliance at each amplitude, but did significantly reduce the slopes for the FAI afferents. Although the SAII afferents possess a poor capacity to encode changes in object compliance, mean firing rates were significantly lower during venous occlusion. The finding that venous occlusion had no effect on the firing properties of SAI afferents indicates that these afferents preserve their capacity to encode changes in object compliance, despite changes in skin mechanics. PMID:26269550

  16. Effects of changing skin mechanics on the differential sensitivity to surface compliance by tactile afferents in the human finger pad.

    PubMed

    Hudson, Kathryn M; Condon, Melia; Ackerley, Rochelle; McGlone, Francis; Olausson, Håkan; Macefield, Vaughan G; Birznieks, Ingvars

    2015-10-01

    It is not known how changes in skin mechanics affect the responses of cutaneous mechanoreceptors in the finger pads to compression forces. We used venous occlusion to change the stiffness of the fingers and investigated whether this influenced the firing of low-threshold mechanoreceptors to surfaces of differing stiffness. Unitary recordings were made from 10 slowly adapting type I (SAI), 10 fast adapting type I (FAI) and 9 slowly adapting type II (SAII) units via tungsten microelectrodes inserted into the median nerve at the wrist. A servo-controlled stimulator applied ramp-and-hold forces (1, 2, and 4 N) at a constant loading and unloading rate (2 N/s) via a flat 2.5-cm-diameter silicone disk over the center of the finger pad. Nine silicone disks (objects), varying in compliance, were used. Venous occlusion, produced by inflating a sphygmomanometer cuff around the upper arm to 40 ± 5 mmHg, was used to induce swelling of the fingers and increase the compliance of the finger pulp. Venous occlusion had no effect on the firing rates of the SAI afferents, nor on the slopes of the relationship between mean firing rate and object compliance at each amplitude, but did significantly reduce the slopes for the FAI afferents. Although the SAII afferents possess a poor capacity to encode changes in object compliance, mean firing rates were significantly lower during venous occlusion. The finding that venous occlusion had no effect on the firing properties of SAI afferents indicates that these afferents preserve their capacity to encode changes in object compliance, despite changes in skin mechanics.

  17. Static γ-motoneurones couple group Ia and II afferents of single muscle spindles in anaesthetised and decerebrate cats

    PubMed Central

    Gladden, M H; Matsuzaki, H

    2002-01-01

    Ideas about the functions of static γ-motoneurones are based on the responses of primary and secondary endings to electrical stimulation of single static γ-axons, usually at high frequencies. We compared these effects with the actions of spontaneously active γ-motoneurones. In anaesthetised cats, afferents and efferents were recorded in intramuscular nerve branches to single muscle spindles. The occurrence of γ-spikes, identified by a spike shape recognition system, was linked to video-taped contractions of type-identified intrafusal fibres in the dissected muscle spindles. When some static γ-motoneurones were active at low frequency (< 15 Hz) they coupled the firing of group Ia and II afferents. Activity of other static γ-motoneurones which tensed the intrafusal fibres appeared to enhance this effect. Under these conditions the secondary ending responded at shorter latency than the primary ending. In another series of experiments on decerebrate cats, responses of primary and secondary endings of single muscle spindles to activation of γ-motoneurones by natural stimuli were compared with their responses to electrical stimulation of single γ-axons supplying the same spindle. Electrical stimulation mimicked the natural actions of γ-motoneurones on either the primary or the secondary ending, but not on both together. However, γ-activity evoked by natural stimuli coupled the firing of afferents with the muscle at constant length, and also when it was stretched. Analysis showed that the timing and tightness of this coupling determined the degree of summation of excitatory postsynaptic potentials (EPSPs) evoked by each afferent in α-motoneurones and interneurones contacted by terminals of both endings, and thus the degree of facilitation of reflex actions of group II afferents. PMID:12181298

  18. Effects of changing skin mechanics on the differential sensitivity to surface compliance by tactile afferents in the human finger pad.

    PubMed

    Hudson, Kathryn M; Condon, Melia; Ackerley, Rochelle; McGlone, Francis; Olausson, Håkan; Macefield, Vaughan G; Birznieks, Ingvars

    2015-10-01

    It is not known how changes in skin mechanics affect the responses of cutaneous mechanoreceptors in the finger pads to compression forces. We used venous occlusion to change the stiffness of the fingers and investigated whether this influenced the firing of low-threshold mechanoreceptors to surfaces of differing stiffness. Unitary recordings were made from 10 slowly adapting type I (SAI), 10 fast adapting type I (FAI) and 9 slowly adapting type II (SAII) units via tungsten microelectrodes inserted into the median nerve at the wrist. A servo-controlled stimulator applied ramp-and-hold forces (1, 2, and 4 N) at a constant loading and unloading rate (2 N/s) via a flat 2.5-cm-diameter silicone disk over the center of the finger pad. Nine silicone disks (objects), varying in compliance, were used. Venous occlusion, produced by inflating a sphygmomanometer cuff around the upper arm to 40 ± 5 mmHg, was used to induce swelling of the fingers and increase the compliance of the finger pulp. Venous occlusion had no effect on the firing rates of the SAI afferents, nor on the slopes of the relationship between mean firing rate and object compliance at each amplitude, but did significantly reduce the slopes for the FAI afferents. Although the SAII afferents possess a poor capacity to encode changes in object compliance, mean firing rates were significantly lower during venous occlusion. The finding that venous occlusion had no effect on the firing properties of SAI afferents indicates that these afferents preserve their capacity to encode changes in object compliance, despite changes in skin mechanics. PMID:26269550

  19. Dendritic HCN Channels Shape Excitatory Postsynaptic Potentials at the Inner Hair Cell Afferent Synapse in the Mammalian Cochlea

    PubMed Central

    Yi, Eunyoung; Roux, Isabelle

    2010-01-01

    Synaptic transmission at the inner hair cell (IHC) afferent synapse, the first synapse in the auditory pathway, is specialized for rapid and reliable signaling. Here we investigated the properties of a hyperpolarization-activated current (Ih), expressed in the afferent dendrite of auditory nerve fibers, and its role in shaping postsynaptic activity. We used whole cell patch-clamp recordings from afferent dendrites directly where they contact the IHC in excised postnatal rat cochlear turns. Excitatory postsynaptic potentials (EPSPs) of variable amplitude (1–35 mV) were found with 10–90% rise times of about 1 ms and time constants of decay of about 5 ms at room temperature. Current–voltage relations recorded in afferent dendrites revealed Ih. The pharmacological profile and reversal potential (−45 mV) indicated that Ih is mediated by hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channels. The HCN channel subunits HCN1, HCN2, and HCN4 were found to be expressed in afferent dendrites using immunolabeling. Raising intracellular cAMP levels sped up the activation kinetics, increased the magnitude of Ih and shifted the half activation voltage (Vhalf) to more positive values (−104 ± 3 to −91 ± 2 mV). Blocking Ih with 50 μM ZD7288 resulted in hyperpolarization of the resting membrane potential (∼4 mV) and slowing the decay of the EPSP by 47%, suggesting that Ih is active at rest and shortens EPSPs, thereby potentially improving rapid and reliable signaling at this first synapse in the auditory pathway. PMID:20220080

  20. Dendritic HCN channels shape excitatory postsynaptic potentials at the inner hair cell afferent synapse in the mammalian cochlea.

    PubMed

    Yi, Eunyoung; Roux, Isabelle; Glowatzki, Elisabeth

    2010-05-01

    Synaptic transmission at the inner hair cell (IHC) afferent synapse, the first synapse in the auditory pathway, is specialized for rapid and reliable signaling. Here we investigated the properties of a hyperpolarization-activated current (I(h)), expressed in the afferent dendrite of auditory nerve fibers, and its role in shaping postsynaptic activity. We used whole cell patch-clamp recordings from afferent dendrites directly where they contact the IHC in excised postnatal rat cochlear turns. Excitatory postsynaptic potentials (EPSPs) of variable amplitude (1-35 mV) were found with 10-90% rise times of about 1 ms and time constants of decay of about 5 ms at room temperature. Current-voltage relations recorded in afferent dendrites revealed I(h). The pharmacological profile and reversal potential (-45 mV) indicated that I(h) is mediated by hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channels. The HCN channel subunits HCN1, HCN2, and HCN4 were found to be expressed in afferent dendrites using immunolabeling. Raising intracellular cAMP levels sped up the activation kinetics, increased the magnitude of I(h) and shifted the half activation voltage (V(half)) to more positive values (-104 +/- 3 to -91 +/- 2 mV). Blocking I(h) with 50 microM ZD7288 resulted in hyperpolarization of the resting membrane potential (approximately 4 mV) and slowing the decay of the EPSP by 47%, suggesting that I(h) is active at rest and shortens EPSPs, thereby potentially improving rapid and reliable signaling at this first synapse in the auditory pathway.

  1. Circadian variation in gastric vagal afferent mechanosensitivity.

    PubMed

    Kentish, Stephen J; Frisby, Claudine L; Kennaway, David J; Wittert, Gary A; Page, Amanda J

    2013-12-01

    Food intake is coordinated to cellular metabolism by clock gene expression with a master clock in the suprachiasmatic nucleus synchronized by light exposure. Gastric vagal afferents play a role in regulating food intake, but it is unknown whether they exhibit circadian variation in their mechanosensitivity. We aimed to determine whether gastric vagal afferents express clock genes and whether their response to mechanical stimuli oscillates throughout the light/dark cycle. Nodose ganglia were collected from 8-week-old female C57BL/6 mice every 3 h starting at lights off (1800 h) to quantify Bmal1, Per1, Per2, and Nr1d1 mRNA by qRT-PCR. Additionally in vitro single-fiber recordings of gastric vagal mechanoreceptors were taken at all time points. Per1, Per2, Bmal1, and Nr1d1 mRNA is expressed in the nodose ganglia and levels oscillated over a 24 h period. In mice fed ad libitum, gastric content was 3 times higher at 0000 h and 0300 h than 1200 h. The response of tension receptors to 3 g stretch was reduced by up to 70% at 2100 h, 0000 h, and 0300 h compared with 1200 h. Gastric mucosal receptor response to stroking with a 50 mg von Frey hair was 3 times greater at 1200 h and 1500 h than the response at 0000 h. Similar findings were obtained in mice fasted for 6 h or maintained in darkness for 3 d before study. Therefore, these changes do not result from food intake or the light/dark cycle. Thus, gastric vagal mechanoreceptors display circadian rhythm, which may act to control food intake differentially at different times of the day. PMID:24305819

  2. Anastomoses between lower cranial and upper cervical nerves: a comprehensive review with potential significance during skull base and neck operations, part I: trigeminal, facial, and vestibulocochlear nerves.

    PubMed

    Shoja, Mohammadali M; Oyesiku, Nelson M; Griessenauer, Christoph J; Radcliff, Virginia; Loukas, Marios; Chern, Joshua J; Benninger, Brion; Rozzelle, Curtis J; Shokouhi, Ghaffar; Tubbs, R Shane

    2014-01-01

    Descriptions of the anatomy of the neural communications among the cranial nerves and their branches is lacking in the literature. Knowledge of the possible neural interconnections found among these nerves may prove useful to surgeons who operate in these regions to avoid inadvertent traction or transection. We review the literature regarding the anatomy, function, and clinical implications of the complex neural networks formed by interconnections among the lower cranial and upper cervical nerves. A review of germane anatomic and clinical literature was performed. The review is organized in two parts. Part I concerns the anastomoses between the trigeminal, facial, and vestibulocochlear nerves or their branches with any other nerve trunk or branch in the vicinity. Part II concerns the anastomoses among the glossopharyngeal, vagus, accessory and hypoglossal nerves and their branches or among these nerves and the first four cervical spinal nerves; the contribution of the autonomic nervous system to these neural plexuses is also briefly reviewed. Part I is presented in this article. An extensive anastomotic network exists among the lower cranial nerves. Knowledge of such neural intercommunications is important in diagnosing and treating patients with pathology of the skull base.

  3. Cationic influences upon synaptic transmission at the hair cell-afferent fiber synapse of the frog

    NASA Technical Reports Server (NTRS)

    Cochran, S. L.

    1995-01-01

    The concentrations of inorganic cations (K+, Na+, and Ca2+) bathing the isolated frog labyrinth were varied in order to assess their role in influencing and mediating synaptic transmission at the hair cell-afferent fiber synapse. Experiments employed intracellular recordings of synaptic activity from VIIIth nerve afferents. Recordings were digitized continuously at 50 kHz, and excitatory postsynaptic potentials were detected and parameters quantified by computer algorithms. Particular attention was focused on cationic effects upon excitatory postsynaptic potential frequency of occurrence and excitatory postsynaptic potential amplitude, in order to discriminate between pre- and postsynaptic actions. Because the small size of afferents preclude long term stable recordings, alterations in cationic concentrations were applied transiently and their peak effects on synaptic activity were assessed. Increases in extracellular K+ concentration of a few millimolar produced a large increase in the frequency of occurrence of excitatory postsynaptic potentials with little change in amplitude, indicating that release of transmitter from the hair cell is tightly coupled to its membrane potential. Increasing extracellular Na+ concentration resulted in an increase in excitatory postsynaptic potential amplitude with no significant change in excitatory postsynaptic potential frequency of occurrence, suggesting that the transmitter-gated subsynaptic channel conducts Na+ ions. Decreases in extracellular Ca2+ concentration had little effect upon excitatory postsynaptic potential frequency, but increased excitatory postsynaptic potential frequency and amplitude. These findings suggest that at higher concentrations Ca2+ act presynaptically to prevent transmitter release and postsynaptically to prevent Na+ influx during the generation of the excitatory postsynaptic potential. The influences of these ions on synaptic activity at this synapse are remarkably similar to those reported at the

  4. Unmyelinated type II afferent neurons report cochlear damage

    PubMed Central

    Liu, Chang; Glowatzki, Elisabeth; Fuchs, Paul Albert

    2015-01-01

    In the mammalian cochlea, acoustic information is carried to the brain by the predominant (95%) large-diameter, myelinated type I afferents, each of which is postsynaptic to a single inner hair cell. The remaining thin, unmyelinated type II afferents extend hundreds of microns along the cochlear duct to contact many outer hair cells. Despite this extensive arbor, type II afferents are weakly activated by outer hair cell transmitter release and are insensitive to sound. Intriguingly, type II afferents remain intact in damaged regions of the cochlea. Here, we show that type II afferents are activated when outer hair cells are damaged. This response depends on both ionotropic (P2X) and metabotropic (P2Y) purinergic receptors, binding ATP released from nearby supporting cells in response to hair cell damage. Selective activation of P2Y receptors increased type II afferent excitability by the closure of KCNQ-type potassium channels, a potential mechanism for the painful hypersensitivity (that we term “noxacusis” to distinguish from hyperacusis without pain) that can accompany hearing loss. Exposure to the KCNQ channel activator retigabine suppressed the type II fiber’s response to hair cell damage. Type II afferents may be the cochlea’s nociceptors, prompting avoidance of further damage to the irreparable inner ear. PMID:26553995

  5. Micromotional studies of utricular and canal afferents

    NASA Technical Reports Server (NTRS)

    Lewis, Edwin R.

    1989-01-01

    The long-range goal of this research was to refine our understanding of the sensitivity of the vestibular components of the ear to very-low-amplitude motion, especially, the role of gravity in this sensitivity. We focused on the American bullfrog--a common animal subject for vestibular sensory research. Our principal experimental method was to apply precise, sinusoidal microrotational stimuli to an anesthetized animal subject, to record the resulting responses in an individual vestibular nerve fiber from the intact ear, and to use intracellular dye to trace the fiber and thus identify the vestibular sensor that gave rise to it. In this way, we were able to identify specific micromotional sensitivities and to associate those sensitivities definitely with specific sensors. Furthermore, by recording from nerve fibers after they leave the intact inner-ear cavity, we were able to achieve these identifications without interrupting the delicate micromechanics of the inner ear. We were especially concerned with the relative roles of the utricle and the anterior semicircular canal in the sensing of microrotational motion of the head about horizontal axes, and with the role of gravity in mediating that sensing process in the utricle. The functional characterization of individual nerve fibers was accomplished with a conventional analytical tool, the cycle histogram, in which the nerve impulse rate was plotted against the phase of the sinusoidal stimulus.

  6. The pattern of excitation of human lower limb motoneurones by probable group II muscle afferents.

    PubMed

    Simonetta-Moreau, M; Marque, P; Marchand-Pauvert, V; Pierrot-Deseilligny, E

    1999-05-15

    1. Heteronymous group II effects were investigated in the human lower limb. Changes in firing probability of single motor units in quadriceps (Q), biceps (Bi), semitendinosus (ST), gastrocnemius medialis (GM) and tibialis anterior (TA) were studied after electrical stimuli between 1 and 3 times motor threshold (MT) applied to common peroneal (CP), superficial (SP) and deep (DP) peroneal, Bi and GM nerves in those nerve-muscle combinations without recurrent inhibition. 2. Stimulation of the CP and Bi nerves evoked in almost all of the explored Q motor units a biphasic excitation with a low-threshold early peak, attributable to non-monosynaptic group I excitation, and a higher threshold late peak. When the CP nerve was cooled (or the stimulation applied to a distal branch, DP), the increase in latency was greater for the late than for the early peak, indicating that the late excitation is due to stimulation of afferents with a slower conduction velocity than group I fibres, presumably in the group II range. In ST motor units the group II excitation elicited by stimulation of the GM and SP nerves was particularly large and frequent, and the non-monosynaptic group I excitation was often replaced by an inhibition. 3. A late group II-induced excitation from CP to Q motoneurones and from GM and SP to ST motoneurones was also observed when using the H reflex as a test. 4. The electrical threshold and conduction velocity of the largest diameter fibres evoking the group II excitation were estimated to be 2.1 and 0.65 times those of the fastest Ia afferents, respectively. In the combinations tested in the present investigation the group II input seemed to be primarily of muscle origin. 5. The potent heteronymous group II excitation of motoneurones of both flexors and extensors of the knee contrasted with the absence of a group II effect from DP to GM and from GM to TA. In none of the combinations explored was there any evidence for group II inhibition of motoneurones. The

  7. Recurrent largngeal nerve paralysis: a laryngographic and computed tomographic study

    SciTech Connect

    Agha, F.P.

    1983-07-01

    Vocal cord paralysis is a relatively common entity, usually resulting from a pathologic process of the vagus nerve or its recurrent larynegeal branch. It is rarely caused by intralargngeal lesions. Four teen patients with recurrent laryngeal nerve paralysis (RLNP) were evaluated by laryngography, computed tomography (CT), or both. In the evaluation of the paramedian cord, CT was limited in its ability to differentiate between tumor or RLNP as the cause of the fixed cord, but it yielded more information than laryngography on the structural abnormalities of the larynx and pre-epiglottic and paralaryngeal spaces. Laryngography revealed distinct features of RLNP and is the procedure of choice for evaluation of functional abnormalities of the larynx until further experience with faster CT scanners and dynamic scanning of the larynx is gained.

  8. Forebrain organization representing baroreceptor gating of somatosensory afferents within the cortical autonomic network.

    PubMed

    Goswami, Ruma; Frances, Maria Fernanda; Steinback, Craig Douglas; Shoemaker, J Kevin

    2012-07-01

    Somatosensory afferents are represented within the cortical autonomic network (CAN). However, the representation of somatosensory afferents, and the consequent cardiovascular effects, may be modified by levels of baroreceptor input. Thus, we examined the cortical regions involved with processing somatosensory inputs during baroreceptor unloading. Neuroimaging sessions (functional magnetic resonance imaging [fMRI]) recorded brain activity during 30 mmHg lower-body negative pressure (LBNP) alone and combined with somatosensory stimulation (LBNP+SS) of the forearm (n = 14). Somatosensory processing was also assessed during increased sympathetic outflow via end-expiratory apnea. Heart rate (HR), blood pressure (BP), cardiac output (Q), and muscle sympathetic nerve activity (MSNA) were recorded during the same protocols in a separate laboratory session. SS alone had no effect on any cardiovascular or MSNA variable at rest. Measures of HR, BP, and Q during LBNP were not different compared with LBNP+SS. The rise in MSNA burst frequency was attenuated during LBNP+SS versus LBNP alone (8 vs. 12 bursts/min, respectively, P < 0.05). SS did not affect the change in MSNA during apnea. Activations within the insula and dorsal anterior cingulate cortex (ACC) observed during LBNP were not seen during LBNP+SS. Anterior insula and ACC activations occurring during apnea were not modified by SS. Thus, the absence of insular and dorsal ACC activity during LBNP+SS along with an attenuation of MSNA burst frequency suggest sympathoinhibitory effects of sensory stimulation during decreased baroreceptor input by a mechanism that includes conjoint insula-dorsal ACC regulation. These findings reveal that the level of baroreceptor input influences the forebrain organization of somatosensory afferents. PMID:22514285

  9. P2X3 antagonists: novel therapeutics for afferent sensitization and chronic pain.

    PubMed

    Ford, Anthony P

    2012-05-01

    SUMMARY Despite decades of innovation and effort, the pharmaceutical needs of countless patients with chronic pain remain underserved. Effective and safe treatments must clearly come from novel approaches, yet targets and molecules selected hitherto have returned little benefit. Antagonism of P2X3 purinoceptors on pain-conveying nerves is a highly novel approach, and compounds from this class are advancing into patient studies. P2X3 channels are found in C- and Aδ-primary afferent neurons in most tissues, and are strikingly specific to pain detection. P2X3 antagonists block peripheral activation of these fibers via ATP, released from most cells by inflammation, injury, stress and distension, and clearly provide an alternative pharmacological mechanism to attenuate pain signals. P2X3 is also expressed presynaptically at central spinal terminals of afferent neurons, where ATP further sensitizes painful signals en route to the brain. The selectivity of P2X3 expression allows hope of a lower potential for adverse effects in brain, gut and cardiovascular tissues - limiting factors for most analgesics. P2X3 receptor-mediated sensitization has been implicated in rodent models in inflammatory, visceral, neuropathic and cancer pain states, as well as in airways hyper-reactivity, migraine and visceral organ irritability. Although we are often reminded that the effects of new medicines can translate poorly into clinical effectiveness, the broad efficacy seen following P2X3 inhibition in rodent models strengthens the prospect that an unprecedented mechanism to counter sensitization of afferent pathways may offer some merciful relief to millions of patients struggling daily with persistent discomfort and pain.

  10. Cardiac Sympathetic Afferent Denervation Attenuates Cardiac Remodeling and Improves Cardiovascular Dysfunction in Rats with Heart Failure

    PubMed Central

    Wang, Han-Jun; Wang, Wei; Cornish, Kurtis G.; Rozanski, George J.; Zucker, Irving H.

    2014-01-01

    The enhanced cardiac sympathetic afferent reflex (CSAR) contributes to the exaggerated sympatho-excitation in chronic heart failure (CHF). Increased sympatho-excitation is positively related to mortality in CHF patients. However, the potential beneficial effects of chronic CSAR deletion on cardiac and autonomic function in CHF have not been previously explored. Here we determined the effects of chronic CSAR deletion on cardiac remodeling and autonomic dysfunction in CHF. In order to selectively delete the transient receptor potential vanilloid 1 receptor (TRPV1) -expressing CSAR afferents, epicardial application of resiniferatoxin (RTX, 50 μg/ml), an ultrapotent analogue of capsaicin, was performed during myocardium infarction (MI) surgery in rats. This procedure largely abolished the enhanced CSAR, prevented the exaggerated renal and cardiac sympathetic nerve activity and improved baroreflex sensitivity in CHF rats. Most importantly, we found that epicardial application of RTX largely prevented the elevated LVEDP, lung edema and cardiac hypertrophy, partially reduced left ventricular dimensions in the failing heart and increased cardiac contractile reserve in response to β-adrenergic receptor stimulation with isoproterenol in CHF rats. Molecular evidence showed that RTX attenuated cardiac fibrosis and apoptosis and reduced expression of fibrotic markers and TGF β-receptor I in CHF rats. Pressure - volume loop analysis showed that RTX reduced the end diastolic pressure volume relations in CHF rats indicating improved cardiac compliance. In summary, cardiac sympathetic afferent deletion exhibits protective effects against deleterious cardiac remodeling and autonomic dysfunction in CHF. These data suggest a potential new paradigm and therapeutic potential in the management of CHF. PMID:24980663

  11. Directional sound sensitivity in utricular afferents in the toadfish Opsanus tau.

    PubMed

    Maruska, Karen P; Mensinger, Allen F

    2015-06-01

    The inner ear of fishes contains three paired otolithic end organs, the saccule, lagena and utricle, which function as biological accelerometers. The saccule is the largest otolith in most fishes and much of our current understanding on auditory function in this diverse group of vertebrates is derived from anatomical and neurophysiological studies on this end organ. In contrast, less is known about how the utricle contributes to auditory functions. In this study, chronically implanted electrodes were used, along with neural telemetry or tethers to record primary afferent responses from the utricular nerve in free-ranging and naturally behaving oyster toadfish Opsanus tau Linnaeus. The hypothesis was that the utricle plays a role in detecting underwater sounds, including conspecific vocalizations, and exhibits directional sensitivity. Utricular afferents responded best to low frequency (80-200 Hz) pure tones and to playbacks of conspecific boatwhistles and grunts (80-180 Hz fundamental frequency), with the majority of the units (∼75%) displaying a clear, directional response, which may allow the utricle to contribute to sound detection and localization during social interactions. Responses were well within the sound intensity levels of toadfish vocalization (approximately 140 SPL dBrms re. 1 µPa with fibers sensitive to thresholds of approximately 120 SPL dBrms re. 1 µPa). Neurons were also stimulated by self-generated body movements such as opercular movements and swimming. This study is the first to investigate underwater sound-evoked response properties of primary afferents from the utricle of an unrestrained/unanesthetized free-swimming teleost fish. These data provide experimental evidence that the utricle has an auditory function, and can contribute to directional hearing to facilitate sound localization. PMID:25883378

  12. Influences of laryngeal afferent inputs on intralaryngeal muscle activity during vocalization in the cat.

    PubMed

    Shiba, K; Yoshida, K; Nakajima, Y; Konno, A

    1997-01-01

    The present study was undertaken to elucidate the possible role of the laryngeal afferent inputs in the regulation of intralaryngeal muscle activity during vocalization. We studied the influences of airflow and/or pressure applied to the larynx on intralaryngeal muscle activity during vocalization in ketamine-anesthetized cats. Vocalization was induced by airflow applied to the upper airway, which was isolated from the lower airway, during pontine call site stimulation. When the upper airway was open to the atmosphere through the nostrils and mouth, the airflow increased not only the vocal fold adductor and tensor activities but also the duration of these activities. The adductor and tensor activities were increased suddenly at a critical subglottic pressure level equivalent to the subglottic pressure threshold for vocalization. These effects were significantly reduced by sectioning of the internal branch of the superior laryngeal nerve or by lidocaine application to the laryngeal mucosa. Sustained pressure applied to the isolated upper airway, when the mouth and nostrils were occluded, did not affect adductor or tensor activities. These results indicate that the afferent inputs evoked by vocal fold stretching or vibration play an important role in the motor control of intralaryngeal and respiratory muscles during vocalization.

  13. Peripheral Nerve Disorders

    MedlinePlus

    ... spinal cord. Like static on a telephone line, peripheral nerve disorders distort or interrupt the messages between the brain ... body. There are more than 100 kinds of peripheral nerve disorders. They can affect one nerve or many nerves. ...

  14. Nerve biopsy (image)

    MedlinePlus

    Nerve biopsy is the removal of a small piece of nerve for examination. Through a small incision, a sample ... is removed and examined under a microscope. Nerve biopsy may be performed to identify nerve degeneration, identify ...

  15. [The cerebral control of afferent somatosensory projections].

    PubMed

    Petrenko, E V; Orlova, T V; Liubimov, N N

    1993-09-01

    Cortical and dorsal column nuclei somatosensory evoked potentials (SEP) induced by electrical stimulation of the median nerve were recorded and analysed in 16 healthy volunteers practising transcendental meditation (TM) for two years. The records were performed before and during TM. The SEP changes during TM consisted of an increase in early SEP components amplitude. There were no changes in early SEP components peak latencies during TM.

  16. Capsaicin-like activity of some natural pungent substances on peripheral endings of visceral primary afferents.

    PubMed

    Patacchini, R; Maggi, C A; Meli, A

    1990-07-01

    1. The effects of some naturally occurring pungent substances, piperine, mustard oil, eugenol and curcumin, were compared to those of capsaicin in the rat isolated urinary bladder. 2. All test compounds dose-dependently contracted the rat bladder and produced desensitization toward capsaicin (1 mumol/l). Development of cross-tachyphylaxis among the natural pungent substances on one hand and capsaicin on the other, suggested a common site of action on visceral primary afferents. 3. Contractile responses to piperine, mustard oil and eugenol were partially tetrodotoxin and ruthenium red-sensitive, suggesting that activation of sensory terminals by these agents takes place indirectly, as well as by a direct action on sensory receptors. 4. The presence of the secondary acrylamide linkage (present in the backbone of capsaicin, but not in that of test compounds) does not appear to be essential to produce desensitization of sensory nerve terminals.

  17. Can loss of muscle spindle afferents explain the ataxic gait in Riley-Day syndrome?

    PubMed

    Macefield, Vaughan G; Norcliffe-Kaufmann, Lucy; Gutiérrez, Joel; Axelrod, Felicia B; Kaufmann, Horacio

    2011-11-01

    The Riley-Day syndrome is the most common of the hereditary sensory and autonomic neuropathies (Type III). Among the well-recognized clinical features are reduced pain and temperature sensation, absent deep tendon reflexes and a progressively ataxic gait. To explain the latter we tested the hypothesis that muscle spindles, or their afferents, are absent in hereditary sensory and autonomic neuropathy III by attempting to record from muscle spindle afferents from a nerve supplying the leg in 10 patients. For comparison we also recorded muscle spindles from 15 healthy subjects and from two patients with hereditary sensory and autonomic neuropathy IV, who have profound sensory disturbances but no ataxia. Tungsten microelectrodes were inserted percutaneously into fascicles of the common peroneal nerve at the fibular head. Intraneural stimulation within muscle fascicles evoked twitches at normal stimulus currents (10-30 µA), and deep pain (which often referred) at high intensities (1 mA). Microneurographic recordings from muscle fascicles revealed a complete absence of spontaneously active muscle spindles in patients with hereditary sensory and autonomic neuropathy III; moreover, responses to passive muscle stretch could not be observed. Conversely, muscle spindles appeared normal in patients with hereditary sensory and autonomic neuropathy IV, with mean firing rates of spontaneously active endings being similar to those recorded from healthy controls. Intraneural stimulation within cutaneous fascicles evoked paraesthesiae in the fascicular innervation territory at normal stimulus intensities, but cutaneous pain was never reported during high-intensity stimulation in any of the patients. Microneurographic recordings from cutaneous fascicles revealed the presence of normal large-diameter cutaneous mechanoreceptors in hereditary sensory and autonomic neuropathy III. Our results suggest that the complete absence of functional muscle spindles in these patients explains

  18. Neonatal inflammation and primary afferent terminal plasticity in the rat dorsal horn.

    PubMed

    Walker, Suellen M; Meredith-Middleton, Jacqueta; Cooke-Yarborough, Claire; Fitzgerald, Maria

    2003-09-01

    Abnormal or excessive activity related to pain and injury in early life may alter normal synaptic development and lead to changes in somatosensory processing. The aim of the current study was to define the critical factors that determine long-term plasticity in spinal cord afferent terminals following neonatal inflammation. Hindpaw inflammation was produced in neonatal rat pups with 5 or 25 microl 2% carrageenan, and 5 or 25 microl complete Freund's adjuvant (CFA). All groups displayed a clear inflammatory response that recovered in 2 weeks in all but the 25 microl CFA group, who had persistent chronic inflammation confirmed by histological examination of the paw at 8 weeks. The 25 microl CFA group was also the only group that displayed a significant expansion of the sciatic and saphenous nerve terminal field in lamina II of the dorsal horn at 8 weeks, using wheat-germ agglutinin-horse radish peroxidase transganglionic labelling. This effect was not accompanied by changes in dorsal root ganglion (DRG) cell number, expression of activating transcription factor 3 (ATF3), or alterations in calcitonin gene related peptide (CGRP) or isolectin B4 binding; and was not mimicked by partial nerve damage. No long-term change in mechanical or thermal behavioural sensory thresholds was seen in any group. Lower dose CFA caused an acute, reversible expansion of terminal fields in lamina II in neonatal animals, while CFA did not produce this effect in adults. The duration and effect of neonatal inflammation is therefore dependent on the type and volume of inflammatory agent used. The expansion of afferent terminals in lamina II following neonatal CFA inflammation is maintained into adulthood if the inflammation is also maintained, as seen following 25 microl CFA. This effect is not seen in adult animals, emphasising the plasticity of the nervous system early in development.

  19. Mechanosensory transduction of vagal and baroreceptor afferents revealed by study of isolated nodose neurons in culture.

    PubMed

    Snitsarev, Vladislav; Whiteis, Carol A; Abboud, Francois M; Chapleau, Mark W

    2002-06-28

    Changes in arterial pressure and blood volume are sensed by baroreceptor and vagal afferent nerves innervating aorta and heart with soma in nodose ganglia. The inability to measure membrane potential at the nerve terminals has limited our understanding of mechanosensory transduction. Goals of the present study were to: (1) Characterize membrane potential and action potential responses to mechanical stimulation of isolated nodose sensory neurons in culture; and (2) Determine whether the degenerin/epithelial sodium channel (DEG/ENaC) blocker amiloride selectively blocks mechanically induced depolarization without suppressing membrane excitability. Membrane potential of isolated rat nodose neurons was measured with sharp microelectrodes. Mechanical stimulation with buffer ejected from a micropipette (5, 10, 20 psi) depolarized 6 of 10 nodose neurons (60%) in an intensity-dependent manner. The depolarization evoked action potentials in 4 of the 6 neurons. Amiloride (1 microM) essentially abolished mechanically induced depolarization (15 +/- 4 mV during control vs. 1 +/- 2 mV during amiloride with 20-psi stimulation, n = 6) and action potential discharge. In contrast, amiloride did not inhibit the frequency of action potential discharge in response to depolarizing current injection (n = 6). In summary, mechanical stimulation depolarizes and triggers action potentials in a subpopulation of nodose sensory neurons in culture. The DEG/ENaC blocker amiloride at a concentration of 1 microM inhibits responses to mechanical stimulation without suppressing membrane excitability. The results support the hypothesis that DEG/ENaC subunits are components of mechanosensitive ion channels on vagal afferent and baroreceptor neurons. PMID:12144042

  20. Resistance of a crayfish sensory interneurone to hyperinnervation by acceptable afferents.

    PubMed Central

    Krasne, F B; Lee, S H

    1982-01-01

    1. Intact normal innervation of muscle fibres and other peripheral targets usually prevents regenerating nerves from forming synapses with the targets. Whether intact innervation similarly prevents synapse formation on central target neurones has rarely been tested. This question was examined here for interneurone A of the crayfish last abdominal ganglion. 2. Interneurone A normally receives synaptic input from mechanoreceptor neurones distributed over the side of the tailfan ipsilateral to interneurone A's axon and unilateral dendrites. When the five nerve roots carrying mechanoreceptor axons of one side are cut and central and peripheral ends of one or more are sutured together, regeneration and reinnervation of interneurone A occurs over some two to six weeks. If peripheral ends of roots from the 'wrong' (contralateral) side of the body are sutured to ipsilateral central stumps, they also form connexions with interneurone A. When roots from the two sides of the body are simultaneously tied to a central stump, functional connexion formation occurs equally well for afferents from both sides. Therefore, roots of the two sides seem to be equivalent in their ability to reinnervate interneurone A. 3. If peripheral ends of roots from one side of the tailfan are tied to roots on the intact opposite side of the body, the cut axons appear to grow into the last ganglion but usually do not form functional synapses there. The intact innervation therefore seems to exclude further innervation by other acceptable afferents. 4. It is known that mechanoreceptors are added to the tailfan at moult. Exclusion of extra innervation often broke down partially in animals that moulted during the present experiments. This suggests the possibility that synapse formation or exchange may be controlled by moult-inducing hormones. PMID:7153906

  1. Dual Modulation of Nociception and Cardiovascular Reflexes during Peripheral Ischemia through P2Y1 Receptor-Dependent Sensitization of Muscle Afferents

    PubMed Central

    Queme, Luis F.; Ross, Jessica L.; Lu, Peilin; Hudgins, Renita C.

    2016-01-01

    Numerous musculoskeletal pain disorders are based in dysfunction of peripheral perfusion and are often comorbid with altered cardiovascular responses to muscle contraction/exercise. We have recently found in mice that 24 h peripheral ischemia induced by a surgical occlusion of the brachial artery (BAO) induces increased paw-guarding behaviors, mechanical hypersensitivity, and decreased grip strength. These behavioral changes corresponded to increased heat sensitivity as well as an increase in the numbers of chemosensitive group III/IV muscle afferents as assessed by an ex vivo forepaw muscles/median and ulnar nerves/dorsal root ganglion (DRG)/spinal cord (SC) recording preparation. Behaviors also corresponded to specific upregulation of the ADP-responsive P2Y1 receptor in the DRGs. Since group III/IV muscle afferents have separately been associated with regulating muscle nociception and exercise pressor reflexes (EPRs), and P2Y1 has been linked to heat responsiveness and phenotypic switching in cutaneous afferents, we sought to determine whether upregulation of P2Y1 was responsible for the observed alterations in muscle afferent function, leading to modulation of muscle pain-related behaviors and EPRs after BAO. Using an afferent-specific siRNA knockdown strategy, we found that inhibition of P2Y1 during BAO not only prevented the increased mean blood pressure after forced exercise, but also significantly reduced alterations in pain-related behaviors. Selective P2Y1 knockdown also prevented the increased firing to heat stimuli and the BAO-induced phenotypic switch in chemosensitive muscle afferents, potentially through regulating membrane expression of acid sensing ion channel 3. These results suggest that enhanced P2Y1 in muscle afferents during ischemic-like conditions may dually regulate muscle nociception and cardiovascular reflexes. SIGNIFICANCE STATEMENT Our current results suggest that P2Y1 modulates heat responsiveness and chemosensation in muscle afferents

  2. Fiber diameter distributions in the chinchilla's ampullary nerves

    NASA Technical Reports Server (NTRS)

    Hoffman, Larry F.; Honrubia, Vicente

    2002-01-01

    A morphometric study of the chinchilla's ampullary nerves was conducted to produce an unbiased accounting of the diameter distribution of their constituent fibers. Diameter analyses were determined from 1 microm plastic-embedded nerve sections taken at a plane immediately proximal to the sensory epithelium. We found these nerves to be composed of 2094+/-573 fibers, having diameters that ranged from 0.5 to 8 microm. The distributions of diameters were positively skewed, where approximately 75% of the fibers were found to have diameters less than 3.5 microm. An analysis of the spatial distribution of diameters within the nerve section revealed that the lateralmost areas of the nerve contained larger fractions of fibers within the smallest diameter quintiles, and the central area harbored greater proportions of the larger diameter quintiles. However, significant fractions of all quintiles were found in all areas. These data were integrated with available data of Fernandez et al. (1998) to produce diameter estimates of calyx, dimorphic, and bouton morphology subpopulations. In view of a general relationship between diameter, innervation locus, and an afferent's physiologic characteristics, these data provide the basis for developing a perspective for the in situ distribution of afferent response dynamics.

  3. Neural responses from the filiform receptor neuron afferents of the wind-sensitive cercal system in three cockroach species.

    PubMed

    Olsen, Anne C K; Triblehorn, Jeffrey D

    2014-09-01

    The wind-sensitive insect cercal system is involved in many important behaviors, such as initiating terrestrial escape responses and providing sensory feedback during flight. The occurrence of these behaviors vary in cockroach species Periplaneta americana (strong terrestrial response and flight), Blaberus craniifer (weak terrestrial response and flight), and Gromphodorhina portentosa (no terrestrial response and no flight). A previous study focusing on wind-sensitive interneuron (WSI) responses demonstrated that variations in sensory processing of wind information accompany these behavioral differences. In this study, we recorded extracellularly from the cercal nerve to characterize filiform afferent population responses to different wind velocities to investigate how sensory processing differs across these species at the initial encoding of wind. We compared these results and responses from the WSI population to examine information transfer at the first synapse. Our main results were: (1) G. portentosa had the weakest responses of the three species over the stimulus duration and possessed the smallest cerci with the least filiform hair receptors of the three species; (2) B. craniifer filiform responses were similar to or greater than P. americana responses even though B. craniifer possessed smaller cerci with less filiform hair receptors than P. americana; (3) the greater filiform afferent responses in B. craniifer, including a larger amplitude second positive peak compared to the other two species, suggest more synchronous activity between filiform afferents in this species; (4) the transfer of information at the first synapse appears to be similar in both P. americana and G. portentosa, but different in B. craniifer.

  4. Activation of CB1 inhibits NGF-induced sensitization of TRPV1 in adult mouse afferent neurons.

    PubMed

    Wang, Z-Y; McDowell, T; Wang, P; Alvarez, R; Gomez, T; Bjorling, D E

    2014-09-26

    Transient receptor potential vanilloid 1 (TRPV1)-containing afferent neurons convey nociceptive signals and play an essential role in pain sensation. Exposure to nerve growth factor (NGF) rapidly increases TRPV1 activity (sensitization). In the present study, we investigated whether treatment with the selective cannabinoid receptor 1 (CB1) agonist arachidonyl-2'-chloroethylamide (ACEA) affects NGF-induced sensitization of TRPV1 in adult mouse dorsal root ganglion (DRG) afferent neurons. We found that CB1, NGF receptor tyrosine kinase A (trkA), and TRPV1 are present in cultured adult mouse small- to medium-sized afferent neurons and treatment with NGF (100ng/ml) for 30 min significantly increased the number of neurons that responded to capsaicin (as indicated by increased intracellular Ca(2 +) concentration). Pretreatment with the CB1 agonist ACEA (10nM) inhibited the NGF-induced response, and this effect of ACEA was reversed by a selective CB1 antagonist. Further, pretreatment with ACEA inhibited NGF-induced phosphorylation of AKT. Blocking PI3 kinase activity also attenuated the NGF-induced increase in the number of neurons that responded to capsaicin. Our results indicate that the analgesic effect of CB1 activation may in part be due to inhibition of NGF-induced sensitization of TRPV1 and also that the effect of CB1 activation is at least partly mediated by attenuation of NGF-induced increased PI3 signaling.

  5. Neural responses from the filiform receptor neuron afferents of the wind-sensitive cercal system in three cockroach species

    PubMed Central

    Olsen, Anne C.K.; Triblehorn, Jeffrey D.

    2014-01-01

    The wind-sensitive insect cercal system is involved in many important behaviors, such as initiating terrestrial escape responses and providing sensory feedback during flight. The occurrence of these behaviors vary in cockroach species Periplaneta americana (strong terrestrial response and flight), Blaberus craniifer (weak terrestrial response and flight), and Gromphodorhina portentosa (no terrestrial response and no flight). A previous study focusing on wind-sensitive interneuron (WSI) responses demonstrated that variations in sensory processing of wind information accompany these behavioral differences. In this study, we recorded extracellurlarly from the cercal nerve to characterize filiform afferent population responses to different wind velocities to investigate how sensory processing differs across these species at the initial encoding of wind. We compared these results and responses from the WSI population to examine information transfer at the first synapse. Our main results were: 1) G portentosa had the weakest responses of the three species over the stimulus duration and possessed the smallest cerci with the least filiform hair receptors of the three species; 2) B. craniifer filiform responses were similar to or greater than P. americana responses even though B. craniifer possessed smaller cerci with less filiform hair receptors than P. americana; 3) the greater filiform afferent responses in B. craniifer, including a larger amplitude second positive peak compared to the other two species, suggest more synchronous activity between filiform afferents in this species; 4) the transfer of information at the first synapse appears to be similar in both P. americana and G. portentosa, but different in B. craniifer. PMID:25046275

  6. Morphology of the rat cochlear primary afferents during prenatal development: a Cajal's reduced silver and rapid Golgi study.

    PubMed Central

    Angulo, A; Merchán, J A; Merchán, M A

    1990-01-01

    In this study, we analyse the process of spatial organisation of the cochlear root related to the morphological and topographical changes in the CN during the prenatal development of Wistar rats, placing special emphasis on aspects of the latero-medial distribution of the cochlear afferents. A total of 35 embryos from 8 Wistar rats was employed, corresponding to embryonic days 14, 16, 18 and 20. Twenty of these embryos were studied by the Cajal's reduced silver stain and 15 by the rapid Golgi method (osmium dichromate method). The otocyst, the vestibulo-cochlear ganglion and vestibulo-cochlear nerve were first observed at embryonic Day 14 (E14). At E16, a sharp separation between the cochlear and vestibular roots was distinguished. The final position of the primary afferents and their main branches (anterior and posterior) in the CN was observed at E18 and E20, when the total number of cochlear turns had been formed. The cochlear afferents coming from the apical coil, the last to be incorporated into the cochlear root, project their posterior branches at the bifurcation towards more medial portions of the PVCN and their anterior branches towards the more lateral regions of the AVCN. Images Fig. 1 Fig. 2 Fig. 3(Cont.) Fig. 3 Fig. 4 Fig. 5(Cont.) Fig. 5 PMID:1691163

  7. Physiological identification of morphologically distinct afferent classes innervating the cristae ampullares of the squirrel monkey

    NASA Technical Reports Server (NTRS)

    Lysakowski, A.; Minor, L. B.; Fernandez, C.; Goldberg, J. M.

    1995-01-01

    1. Semicircular-canal afferents in the squirrel monkey were characterized by their resting discharge, discharge regularity, sensitivity to galvanic currents delivered to the ear (beta *), the gain (g2Hz), and phase lead (phi 2Hz) of their response to 2-Hz sinusoidal head rotations, and their antidromic conduction velocity. Discharge regularity was measured by a normalized coefficient of variation (CV*); the higher the CV*, the more irregular the discharge. g2Hz and phi 2Hz were expressed relative to angular head velocity. 2. These physiological measures were used in an attempt to discern the discharge properties of the three morphological classes of afferents innervating the crista. Presumed bouton (B) fibers were identified as slowly conducting afferents. Presumed calyx (C) fibers were recognized by their irregular discharge and low rotational gains. The remaining fibers were considered to be dimorphic (D) units. Single letters (B, C, and D) are used to emphasize that the classification is based on circumstantial evidence and may be wrong for individual fibers. Of the 125 identified fibers, 13 (10%) were B units, 36 (29%) were C units, and 76 (61%) were D units. 3. B units were regularly discharging D units ranged from regularly to irregularly discharging. C units were the most irregularly discharging afferents encountered. The mean resting discharge for the entire sample was 74 spikes/s. Resting rates were similar for regularly discharging B and D units and higher than those for irregularly discharging C and D units. 4. Except for their lower conduction velocities, the discharge properties of B units are indistinguishable from those of regularly discharging D units. Many of the discharge properties of B and D units vary with discharge regularity. There is a strong, positive relation when beta *, g2Hz, or phi 2Hz is plotted against CV*. For beta * or phi 2Hz, C units conform to the relation for B and D units. In contrast, values of g2Hz for C units are three to

  8. Afferent innervation of the utricular macula in pigeons

    NASA Technical Reports Server (NTRS)

    Si, Xiaohong; Zakir, Mridha Md; Dickman, J. David

    2003-01-01

    Biotinylated dextran amine (BDA) was used to retrogradely label afferents innervating the utricular macula in adult pigeons. The pigeon utriclar macula consists of a large rectangular-shaped neuroepithelium with a dorsally curved anterior edge and an extended medioposterior tail. The macula could be demarcated into several regions based on cytoarchitectural differences. The striola occupied 30% of the macula and contained a large density of type I hair cells with fewer type II hair cells. Medial and lateral extrastriola zones were located outside the striola and contained only type II hair cells. A six- to eight-cell-wide band of type II hair cells existed near the center of the striola. The reversal line marked by the morphological polarization of hair cells coursed throughout the epithelium, near the peripheral margin, and through the center of the type II band. Calyx afferents innervated type I hair cells with calyceal terminals that contained between 2 and 15 receptor cells. Calyx afferents were located only in the striola region, exclusive of the type II band, had small total fiber innervation areas and low innervation densities. Dimorph afferents innervated both type I and type II hair cells with calyceal and bouton terminals and were primarily located in the striola region. Dimorph afferents had smaller calyceal terminals with few type I hair cells, extended fiber branches with bouton terminals and larger innervation areas. Bouton afferents innervated only type II hair cells in the extrastriola and type II band regions. Bouton afferents innervating the type II band had smaller terminal fields with fewer bouton terminals and smaller innervation areas than fibers located in the extrastriolar zones. Bouton afferents had the most bouton terminals on the longest fibers, the largest innervation areas with the highest innervation densities of all afferents. Among all afferents, smaller terminal innervation fields were observed in the striola and large fields were

  9. Chronic recruitment of primary afferent neurons by microstimulation in the feline dorsal root ganglia

    NASA Astrophysics Data System (ADS)

    Fisher, Lee E.; Ayers, Christopher A.; Ciollaro, Mattia; Ventura, Valérie; Weber, Douglas J.; Gaunt, Robert A.

    2014-06-01

    Objective. This study describes results of primary afferent neural microstimulation experiments using microelectrode arrays implanted chronically in the lumbar dorsal root ganglia (DRG) of four cats. The goal was to test the stability and selectivity of these microelectrode arrays as a potential interface for restoration of somatosensory feedback after damage to the nervous system such as amputation. Approach. A five-contact nerve-cuff electrode implanted on the sciatic nerve was used to record the antidromic compound action potential response to DRG microstimulation (2-15 µA biphasic pulses, 200 µs cathodal pulse width), and the threshold for eliciting a response was tracked over time. Recorded responses were segregated based on conduction velocity to determine thresholds for recruiting Group I and Group II/Aβ primary afferent fibers. Main results. Thresholds were initially low (5.1 ± 2.3 µA for Group I and 6.3 ± 2.0 µA for Group II/Aβ) and increased over time. Additionally the number of electrodes with thresholds less than or equal to 15 µA decreased over time. Approximately 12% of tested electrodes continued to elicit responses at 15 µA up to 26 weeks after implantation. Higher stimulation intensities (up to 30 µA) were tested in one cat at 23 weeks post-implantation yielding responses on over 20 additional electrodes. Within the first six weeks after implantation, approximately equal numbers of electrodes elicited only Group I or Group II/Aβ responses at threshold, but the relative proportion of Group II/Aβ responses decreased over time. Significance. These results suggest that it is possible to activate Group I or Group II/Aβ primary afferent fibers in isolation with penetrating microelectrode arrays implanted in the DRG, and that those responses can be elicited up to 26 weeks after implantation, although it may be difficult to achieve a consistent response day-to-day with currently available electrode technology. The DRG are compelling targets

  10. TRPV4 mediates afferent pathways in the urinary bladder. A spinal c-fos study showing TRPV1 related adaptations in the TRPV4 knockout mouse.

    PubMed

    Janssen, Dick A W; Hoenderop, Joost G; Heesakkers, John P F A; Schalken, Jack A

    2016-10-01

    The role of transient receptor potential vanilloid subtype 4 (TRPV4) channels in urinary bladder afferent neural pathways was investigated using spinal c-fos measurements in mice. Anesthetized wild type and TRPV4 knockout (-/-) mice underwent noxious bladder distention and treatment with either intravesical instillation with lipopolysaccharide (LPS), or the TRPV1 agonist resiniferatoxin (RTX), vehicle or an intraperitoneal injected TRPV4 antagonist (HC067047). Mice underwent paraformaldehyde perfusion for rapid fixation and L6-S1 spinal cord sections were removed followed by immunohistochemical staining for c-fos. A number of c-fos expressing neurons in the dorsal horns of L6-S1 spinal cord transections were quantified. Groups were compared using univariate ANOVA. Even with the absence of bladder inflammation on H&E, the TRPV4 -/- mice still have a significant twofold higher c-fos expression (n = 39, SD 2) after noxious bladder distention compared to wild type mice (n = 20, SD 3). A twofold increase in c-fos expression was observed after LPS treatment in wild types (n = 42, SD 5), but no increase was seen in TRPV4 -/- mice (n = 42, SD 2). After desensitization of primary afferent C-nerve fibers with RTX, c-fos expression in TRPV4-/- mice decreased significantly (threefold) (n = 12, SD 4). Results imply that TRPV4 channels are important for bladder afferent signaling. TRPV4 -/- mice bladders generate more noxious sensory output, which is predominantly mediated through TRPV1 expressing high threshold nerve fibers. This study reveals TRPV1 related adaptive changes in afferent pathways of the TRPV4 -/- mouse. We propose that this effect is caused by a congenital impairment of low threshold nerves that mediate normal bladder filling sensations. PMID:27491796

  11. TRPV4 mediates afferent pathways in the urinary bladder. A spinal c-fos study showing TRPV1 related adaptations in the TRPV4 knockout mouse.

    PubMed

    Janssen, Dick A W; Hoenderop, Joost G; Heesakkers, John P F A; Schalken, Jack A

    2016-10-01

    The role of transient receptor potential vanilloid subtype 4 (TRPV4) channels in urinary bladder afferent neural pathways was investigated using spinal c-fos measurements in mice. Anesthetized wild type and TRPV4 knockout (-/-) mice underwent noxious bladder distention and treatment with either intravesical instillation with lipopolysaccharide (LPS), or the TRPV1 agonist resiniferatoxin (RTX), vehicle or an intraperitoneal injected TRPV4 antagonist (HC067047). Mice underwent paraformaldehyde perfusion for rapid fixation and L6-S1 spinal cord sections were removed followed by immunohistochemical staining for c-fos. A number of c-fos expressing neurons in the dorsal horns of L6-S1 spinal cord transections were quantified. Groups were compared using univariate ANOVA. Even with the absence of bladder inflammation on H&E, the TRPV4 -/- mice still have a significant twofold higher c-fos expression (n = 39, SD 2) after noxious bladder distention compared to wild type mice (n = 20, SD 3). A twofold increase in c-fos expression was observed after LPS treatment in wild types (n = 42, SD 5), but no increase was seen in TRPV4 -/- mice (n = 42, SD 2). After desensitization of primary afferent C-nerve fibers with RTX, c-fos expression in TRPV4-/- mice decreased significantly (threefold) (n = 12, SD 4). Results imply that TRPV4 channels are important for bladder afferent signaling. TRPV4 -/- mice bladders generate more noxious sensory output, which is predominantly mediated through TRPV1 expressing high threshold nerve fibers. This study reveals TRPV1 related adaptive changes in afferent pathways of the TRPV4 -/- mouse. We propose that this effect is caused by a congenital impairment of low threshold nerves that mediate normal bladder filling sensations.

  12. Selective impact of Tau loss on nociceptive primary afferents and pain sensation.

    PubMed

    Sotiropoulos, Ioannis; Lopes, André T; Pinto, Vitor; Lopes, Sofia; Carlos, Sara; Duarte-Silva, Sara; Neves-Carvalho, Andreia; Pinto-Ribeiro, Filipa; Pinheiro, Sara; Fernandes, Rui; Almeida, Armando; Sousa, Nuno; Leite-Almeida, Hugo

    2014-11-01

    Tau protein hyperphosphorylation and consequent malfunction are hallmarks of Alzheimer's disease pathology; importantly, pain perception is diminished in these patients. In physiological conditions, Tau contributes to cytoskeletal dynamics and in this way, influences a number of cellular mechanisms including axonal trafficking, myelination and synaptic plasticity, processes that are also implicated in pain perception. However, there is no in vivo evidence clarifying the role of Tau in nociception. Thus, we tested Tau-null (Tau-/-) and Tau+/+ mice for acute thermal pain (Hargreaves' test), acute and tonic inflammatory pain (formalin test) and mechanical allodynia (Von Frey test). We report that Tau-/- animals presented a decreased response to acute noxious stimuli when compared to Tau+/+ while their pain-related behavior is augmented under tonic painful stimuli. This increased reactivity to tonic pain was accompanied by enhanced formalin-evoked c-fos staining of second order nociceptive neurons at Tau-null dorsal horn. In addition, we analyzed the primary afferents conveying nociceptive signals, estimating sciatic nerve fiber density, myelination and nerve conduction. Ultrastructural analysis revealed a decreased C-fiber density in the sciatic nerve of Tau-null mice and a hypomyelination of myelinated fibers (Aδ-fibers) - also confirmed by western blot analysis - followed by altered conduction properties of Tau-null sciatic nerves. To our knowledge, this is the first in vivo study that demonstrates that Tau depletion negatively affects the main systems conveying nociceptive information to the CNS, adding to our knowledge about Tau function(s) that might also be relevant for understanding peripheral neurological deficits in different Tauopathies.

  13. Criticality and degeneracy in injury-induced changes in primary afferent excitability and the implications for neuropathic pain

    PubMed Central

    Ratté, Stéphanie; Zhu, Yi; Lee, Kwan Yeop; Prescott, Steven A

    2014-01-01

    Neuropathic pain remains notoriously difficult to treat despite numerous drug targets. Here, we offer a novel explanation for this intractability. Computer simulations predicted that qualitative changes in primary afferent excitability linked to neuropathic pain arise through a switch in spike initiation dynamics when molecular pathologies reach a tipping point (criticality), and that this tipping point can be reached via several different molecular pathologies (degeneracy). We experimentally tested these predictions by pharmacologically blocking native conductances and/or electrophysiologically inserting virtual conductances. Multiple different manipulations successfully reproduced or reversed neuropathic changes in primary afferents from naïve or nerve-injured rats, respectively, thus confirming the predicted criticality and its degenerate basis. Degeneracy means that several different molecular pathologies are individually sufficient to cause hyperexcitability, and because several such pathologies co-occur after nerve injury, that no single pathology is uniquely necessary. Consequently, single-target-drugs can be circumvented by maladaptive plasticity in any one of several ion channels. DOI: http://dx.doi.org/10.7554/eLife.02370.001 PMID:24692450

  14. Histaminergic afferent system in the cerebellum: structure and function.

    PubMed

    Li, Bin; Zhu, Jing-Ning; Wang, Jian-Jun

    2014-01-01

    Histaminergic afferent system of the cerebellum, having been considered as an essential component of the direct hypothalamocerebellar circuits, originates from the tuberomammillary nucleus in the hypothalamus. Unlike the mossy fibers and climbing fibers, the histaminergic afferent fibers, a third type of cerebellar afferents, extend fine varicose fibers throughout the cerebellar cortex and nuclei. Histamine receptors, belonging to the family of G protein-coupled receptors, are widely present in the cerebellum. Through these histamine receptors, histamine directly excites Purkinje cells and granule cells in the cerebellar cortex, as well as the cerebellar nuclear neurons. Therefore, the histaminergic afferents parallelly modulate these dominant components in the cerebellar circuitry and consequently influence the final output of the cerebellum. In this way, the histaminergic afferent system actively participates in the cerebellum-mediated motor balance and coordination and nonsomatic functions. Accordingly, histaminergic reagents may become potential drugs for clinical treatment of cerebellar ataxia and other cerebellar disease. On the other hand, considering the hypothalamus is a high regulatory center for autonomic and visceral activities, the hypothalamocerebellar histaminergic fibers/projections, bridging the nonsomatic center to somatic structure, may play a critical role in the somatic-nonsomatic integration.

  15. Thermal nociceptive properties of trigeminal afferent neurons in rats

    PubMed Central

    2010-01-01

    Background Although nociceptive afferents innervating the body have been heavily studied form many years, much less attention has been paid to trigeminal afferent biology. In particular, very little is known concerning trigeminal nociceptor responses to heat, and almost nothing in the rat. This study uses a highly controlled and reproducible diode laser stimulator to investigate the activation of trigeminal afferents to noxious skin heating. Results The results of this experiment demonstrate that trigeminal thermonociceptors are distinct from themonociceptors innervating the limbs. Trigeminal nociceptors have considerably slower action potential conduction velocities and lower temperature thresholds than somatic afferent neurons. On the other hand, nociceptors innervating both tissue areas separate into those that respond to short pulse, high rate skin heating and those that respond to long pulse, low rate skin heating. Conclusions This paper provides the first description in the literature of the in vivo properties of thermonociceptors in rats. These finding of two separate populations aligns with the separation between C and A-delta thermonociceptors innervating the paw, but have significant differences in terms of temperature threshold and average conduction velocities. An understanding of the temperature response properties of afferent neurons innervating the paw skin have been critical in many mechanistic discoveries, some leading to new pain therapies. A clear understanding of trigeminal nociceptors may be similarly useful in the investigation of trigeminal pain mechanisms and potential therapies. PMID:20609212

  16. Gut vagal afferents differentially modulate innate anxiety and learned fear.

    PubMed

    Klarer, Melanie; Arnold, Myrtha; Günther, Lydia; Winter, Christine; Langhans, Wolfgang; Meyer, Urs

    2014-05-21

    Vagal afferents are an important neuronal component of the gut-brain axis allowing bottom-up information flow from the viscera to the CNS. In addition to its role in ingestive behavior, vagal afferent signaling has been implicated modulating mood and affect, including distinct forms of anxiety and fear. Here, we used a rat model of subdiaphragmatic vagal deafferentation (SDA), the most complete and selective vagal deafferentation method existing to date, to study the consequences of complete disconnection of abdominal vagal afferents on innate anxiety, conditioned fear, and neurochemical parameters in the limbic system. We found that compared with Sham controls, SDA rats consistently displayed reduced innate anxiety-like behavior in three procedures commonly used in preclinical rodent models of anxiety, namely the elevated plus maze test, open field test, and food neophobia test. On the other hand, SDA rats exhibited increased expression of auditory-cued fear conditioning, which specifically emerged as attenuated extinction of conditioned fear during the tone re-exposure test. The behavioral manifestations in SDA rats were associated with region-dependent changes in noradrenaline and GABA levels in key areas of the limbic system, but not with functional alterations in the hypothalamus-pituitary-adrenal grand stress. Our study demonstrates that innate anxiety and learned fear are both subjected to visceral modulation through abdominal vagal afferents, possibly via changing limbic neurotransmitter systems. These data add further weight to theories emphasizing an important role of afferent visceral signals in the regulation of emotional behavior.

  17. Semicircular Canal Geometry, Afferent Sensitivity And Animal Behavior

    PubMed Central

    Hullar, Timothy A.

    2008-01-01

    The geometry of the semicircular canals has been used in evolutionary studies to predict the behaviors of extinct animals. These predictions have relied on an assumption that the responses of the canals can be determined from their dimensions, and that an organism’s behavior can be determined from these responses. However, the relationship between a canal’s sensitivity and its size is not well known. An intraspecies comparison among canal responses in each of three species (cat, squirrel monkey, and pigeon) was undertaken to evaluate various models of canal function and determine how their dimensions may be related to afferent physiology. All models predicted the responses of the cat afferents, but the models performed less well for squirrel monkey and pigeon. Possible causes for this discrepancy include incorrectly assuming that afferent responses accurately represent canal function, or errors in current biophysical models of the canals. These findings leave open the question as to how reliably canal anatomy can be used to estimate afferent responses and how closely afferent responses are related to behavior. Other labyrinthine features—such as orientation of the horizontal canal, which is reliably held near earth-horizontal across many species—may be better to use when extrapolating the posture and related behavior of extinct animals from labyrinthine morphology. PMID:16550591

  18. The correlated blanching of synaptic bodies and reduction in afferent firing rates caused by transmitter-depleting agents in the frog semicircular canal

    NASA Technical Reports Server (NTRS)

    Guth, P.; Norris, C.; Fermin, C. D.; Pantoja, M.

    1993-01-01

    Synaptic bodies (SBs) associated with rings of synaptic vesicles and well-defined, pre- and post-synaptic membrane structures are indicators of maturity in most hair cell-afferent nerve junctions. The role of the SBs remains elusive despite several experiments showing that they may be involved in storage of neurotransmitter. Our results demonstrate that SBs of the adult posterior semicircular canal (SCC) cristae hair cells become less electron dense following incubation of the SCC with the transmitter-depleting drug tetrabenazine (TBZ). Objective quantification and comparison of the densities of the SBs in untreated and TBZ-treated frog SCC demonstrated that TBZ significantly decreased the electron density of SBs. This reduction in electron density was accompanied by a reduction in firing rates of afferent fibers innervating the posterior SCC. A second transmitter-depleting drug, guanethidine, previously shown to reduce the electron density of hair cell SBs, also reduced the firing rates of afferent fibers innervating the posterior SCC. In contrast, the electron density of dense granules (DG), similar in size and shape to synaptic bodies (SB) in hair cells, did not change after incubation in TBZ, thus indicating that granules and SBs are not similar in regard to their electron density. The role of SBs in synaptic transmission and the transmitter, if any, stored in the SBs remain unknown. Nonetheless, the association of the lessening of electron density with a reduction in afferent firing rate provides impetus for the further investigation of the SB's role in neurotransmission.

  19. Intraoperative monitoring of lower cranial nerves in skull base surgery: technical report and review of 123 monitored cases.

    PubMed

    Topsakal, Cahide; Al-Mefty, Ossama; Bulsara, Ketan R; Williford, Veronica S

    2008-01-01

    The fundamental goal of skull base surgery is tumor removal with preservation of neurological function. Injury to the lower cranial nerves (LCN; CN 9-12) profoundly affects a patient's quality of life. Although intraoperative cranial nerve monitoring (IOM) is widely practiced for other cranial nerves, literature addressing the LCN is scant. We examined the utility of IOM of the LCN in a large patient series. One hundred twelve patients underwent 123 skull base operations with IOM between January 1994 to December 1999. The vagus nerve (n=37), spinal accessory nerve (n=118), and the hypoglossal nerve (n=83) were monitored intraoperatively. Electromyography (EMG) and compound muscle action potentials (CMAP) were recorded from the relevant muscles after electrical stimulation. This data was evaluated retrospectively. Patients who underwent IOM tended to have larger tumors with more intricate involvement of the lower cranial nerves. Worsening of preoperative lower cranial nerve function was seen in the monitored and unmonitored groups. With the use of IOM in the high risk group, LCN injury was reduced to a rate equivalent to that of the lower risk group (p>0.05). The immediate feedback obtained with IOM may prevent injury to the LCN due to surgical manipulation. It can also help identify the course of a nerve in patients with severely distorted anatomy. These factors may facilitate gross total tumor resection with cranial nerve preservation. The incidence of high false positive and negative CMAP and the variability in CMAP amplitude and threshold can vary depending on individual and technical factors.

  20. Vagus nerve stimulation attenuates myocardial ischemia/reperfusion injury by inhibiting the expression of interleukin-17A

    PubMed Central

    YI, CHUNFENG; ZHANG, CHANGJIANG; HU, XIAORONG; LI, YUANHONG; JIANG, HONG; XU, WEIPAN; LU, JIAJIA; LIAO, YUANXI; MA, RUISONG; LI, XUEFEI; WANG, JICHUN

    2016-01-01

    Interleukin (IL)-17A has an important role in myocardial ischemia/reperfusion (I/R) injury, and vagal stimulation (VS) has been demonstrated to exert cardioprotective effects. The present study aimed to investigate the effects of VS on a rat model of myocardial I/R injury, and detected an association between VS and IL-17A. Anesthetized rats underwent VS (2 msec; 10 Hz) or were treated with anti-IL-17A neutralized monoclonal antibodies (mAbs) (200 µg; iv), and subjected to ischemia for 30 min prior to 4 h reperfusion. The following parameters were measured: Infarct size; lactate dehydrogenase (LDH), creatine kinase (CK), malondialdehyde (MDA), superoxide dismutase (SOD) and caspase-3 activity levels; tumor necrosis factor (TNF)-α and IL-6 expression levels; and the percentage of terminal deoxynucleotidyl-transferase mediated dUTP nick-end labeling (TUNEL) positive cells. High mobility group box 1 protein (HMGB1) and IL-17A expression levels were assessed by immunoblotting. Following 4 h reperfusion, VS was able to significantly decrease the infarct size and the activity levels of LDH and CK (P<0.05). Furthermore, VS administration significantly suppressed the increased MDA and decreased SOD activity levels, and significantly reduced caspase-3 activity and the percentage of TUNEL-positive cells (P<0.05). Treatment with anti-IL-17A mAbs demonstrated the same effects as VS. Furthermore, VS was able to significantly inhibit the increased expression levels of TNF-α, IL-6, HMGB1 and IL-17A induced by I/R (P<0.05). The results of the present study suggested that VS may attenuate myocardial I/R injury by reducing the expression of inflammatory cytokines, oxidative stress and the apoptosis of cardiomyocytes. Furthermore, VS may induce cardioprotective effects, which may be associated with the inhibition of IL-17A expression. PMID:26889235

  1. [Retrospective analysis of the effect of a vagus nerve stimulator implanted in paediatric patients with refractory epilepsy].

    PubMed

    Fuentes-Pita, P; Gomez-Lado, C; Dacruz, D; Eiris-Punal, J; Prieto-Gonzalez, A; Castro-Gago, M

    2016-07-01

    Introduccion. El estimulador vagal es una alternativa terapeutica en los pacientes con epilepsia refractaria al tratamiento con farmacos antiepilepticos que no son candidatos a cirugia de reseccion. Objetivo. Analizar la eficacia del estimulador vagal en los pacientes pediatricos de nuestro centro. Pacientes y metodos. Conjunto de 13 pacientes implantados entre los años 2008 y 2013. Se registro la frecuencia de crisis previa a la implantacion, al año, a los dos años y al final del seguimiento. Asimismo, se recogio el numero de farmacos antiepilepticos utilizados, de forma cualitativa la mejoria conductual y el cambio en la intensidad de las crisis, asi como la aparicion de efectos secundarios y la retirada o no del dispositivo. Resultados. Al año, a los dos años y al final del seguimiento se habia producido una reduccion en el numero de crisis del 61%, 66,7% y 69%, respectivamente, y uno de los pacientes se encontro libre de crisis a los dos años. Al final del seguimiento, un 23% de los que habian disminuido sus crisis habia experimentado una reduccion superior al 90%. De forma independiente al efecto sobre el numero de crisis, el 77% de los pacientes presento una mejoria en la intensidad y duracion de las crisis, y ese mismo porcentaje mostro una mejoria conductual. Los efectos secundarios aparecieron en un 30,7% de los pacientes y fueron de intensidad leve. Conclusiones. A pesar del pequeño tamaño de la muestra, nuestros resultados indican que el estimulador vagal tiene una eficacia relevante en la poblacion pediatrica farmacorresistente, tanto sobre la frecuencia e intensidad de las crisis como sobre la conducta.

  2. Evaluation of Insecticides Susceptibility and Malaria Vector Potential of Anopheles annularis s.l. and Anopheles vagus in Assam, India.

    PubMed

    Dhiman, Sunil; Yadav, Kavita; Rabha, Bipul; Goswami, Diganta; Hazarika, S; Tyagi, Varun

    2016-01-01

    During the recent past, development of DDT resistance and reduction to pyrethroid susceptibility among the malaria vectors has posed a serious challenge in many Southeast Asian countries including India. Current study presents the insecticide susceptibility and knock-down data of field collected Anopheles annularis sensu lato and An. vagus mosquito species from endemic areas of Assam in northeast India. Anopheles annularis s.l. and An. vagus adult females were collected from four randomly selected sentinel sites in Orang primary health centre (OPHC) and Balipara primary health centre (BPHC) areas, and used for testing susceptibility to DDT, malathion, deltamethrin and lambda-cyhalothrin. After insecticide susceptibility tests, mosquitoes were subjected to VectorTest™ assay kits to detect the presence of malaria sporozoite in the mosquitoes. An. annularis s.l. was completely susceptible to deltamethrin, lambda-cyhalothrin and malathion in both the study areas. An. vagus was highly susceptible to deltamethrin in both the areas, but exhibited reduced susceptibility to lambda-cyhalothrin in BPHC. Both the species were resistant to DDT and showed very high KDT50 and KDT99 values for DDT. Probit model used to calculate the KDT50 and KDT99 values did not display normal distribution of percent knock-down with time for malathion in both the mosquito species in OPHC (p<0.05) and An. vagus in BPHC (χ2 = 25.3; p = 0.0), and also for deltamethrin to An. vagus in BPHC area (χ2 = 15.4; p = 0.004). Minimum infection rate (MIR) of Plasmodium sporozoite for An. vagus was 0.56 in OPHC and 0.13 in BPHC, while for An. annularis MIR was found to be 0.22 in OPHC. Resistance management strategies should be identified to delay the expansion of resistance. Testing of field caught Anopheles vectors from different endemic areas for the presence of malaria sporozoite may be useful to ensure their role in malaria transmission.

  3. Evaluation of Insecticides Susceptibility and Malaria Vector Potential of Anopheles annularis s.l. and Anopheles vagus in Assam, India

    PubMed Central

    Dhiman, Sunil; Yadav, Kavita; Rabha, Bipul; Goswami, Diganta; Hazarika, S.; Tyagi, Varun

    2016-01-01

    During the recent past, development of DDT resistance and reduction to pyrethroid susceptibility among the malaria vectors has posed a serious challenge in many Southeast Asian countries including India. Current study presents the insecticide susceptibility and knock-down data of field collected Anopheles annularis sensu lato and An. vagus mosquito species from endemic areas of Assam in northeast India. Anopheles annularis s.l. and An. vagus adult females were collected from four randomly selected sentinel sites in Orang primary health centre (OPHC) and Balipara primary health centre (BPHC) areas, and used for testing susceptibility to DDT, malathion, deltamethrin and lambda-cyhalothrin. After insecticide susceptibility tests, mosquitoes were subjected to VectorTest™ assay kits to detect the presence of malaria sporozoite in the mosquitoes. An. annularis s.l. was completely susceptible to deltamethrin, lambda-cyhalothrin and malathion in both the study areas. An. vagus was highly susceptible to deltamethrin in both the areas, but exhibited reduced susceptibility to lambda-cyhalothrin in BPHC. Both the species were resistant to DDT and showed very high KDT50 and KDT99 values for DDT. Probit model used to calculate the KDT50 and KDT99 values did not display normal distribution of percent knock-down with time for malathion in both the mosquito species in OPHC (p<0.05) and An. vagus in BPHC (χ2 = 25.3; p = 0.0), and also for deltamethrin to An. vagus in BPHC area (χ2 = 15.4; p = 0.004). Minimum infection rate (MIR) of Plasmodium sporozoite for An. vagus was 0.56 in OPHC and 0.13 in BPHC, while for An. annularis MIR was found to be 0.22 in OPHC. Resistance management strategies should be identified to delay the expansion of resistance. Testing of field caught Anopheles vectors from different endemic areas for the presence of malaria sporozoite may be useful to ensure their role in malaria transmission. PMID:27010649

  4. Evaluation of Insecticides Susceptibility and Malaria Vector Potential of Anopheles annularis s.l. and Anopheles vagus in Assam, India.

    PubMed

    Dhiman, Sunil; Yadav, Kavita; Rabha, Bipul; Goswami, Diganta; Hazarika, S; Tyagi, Varun

    2016-01-01

    During the recent past, development of DDT resistance and reduction to pyrethroid susceptibility among the malaria vectors has posed a serious challenge in many Southeast Asian countries including India. Current study presents the insecticide susceptibility and knock-down data of field collected Anopheles annularis sensu lato and An. vagus mosquito species from endemic areas of Assam in northeast India. Anopheles annularis s.l. and An. vagus adult females were collected from four randomly selected sentinel sites in Orang primary health centre (OPHC) and Balipara primary health centre (BPHC) areas, and used for testing susceptibility to DDT, malathion, deltamethrin and lambda-cyhalothrin. After insecticide susceptibility tests, mosquitoes were subjected to VectorTest™ assay kits to detect the presence of malaria sporozoite in the mosquitoes. An. annularis s.l. was completely susceptible to deltamethrin, lambda-cyhalothrin and malathion in both the study areas. An. vagus was highly susceptible to deltamethrin in both the areas, but exhibited reduced susceptibility to lambda-cyhalothrin in BPHC. Both the species were resistant to DDT and showed very high KDT50 and KDT99 values for DDT. Probit model used to calculate the KDT50 and KDT99 values did not display normal distribution of percent knock-down with time for malathion in both the mosquito species in OPHC (p<0.05) and An. vagus in BPHC (χ2 = 25.3; p = 0.0), and also for deltamethrin to An. vagus in BPHC area (χ2 = 15.4; p = 0.004). Minimum infection rate (MIR) of Plasmodium sporozoite for An. vagus was 0.56 in OPHC and 0.13 in BPHC, while for An. annularis MIR was found to be 0.22 in OPHC. Resistance management strategies should be identified to delay the expansion of resistance. Testing of field caught Anopheles vectors from different endemic areas for the presence of malaria sporozoite may be useful to ensure their role in malaria transmission. PMID:27010649

  5. Effects of stimulus intensity, cervical cord tractotomies and cerebellectomy on somatosensory evoked potentials from skin and muscle afferents of cat hind limb.

    PubMed

    Schieppati, M; Ducati, A

    1981-04-01

    The somatosensory evoked potentials (SEPs) recorded from the sensory cortex were investigated by using graded stimulation of skin and muscle nerves from contralateral hind limb in the cat. Sections were made of the middle cervical cord to assess the pathways involved in mediating SEPs evoked by large and small diameter fibers. Dorsal column (DC) section caused a decrease of SEPs from skin group I afferents, and a small increase in those from group I muscle afferents. A subsequent section of dorso-lateral fasciculus (DLF) further decreased SEPs from skin and eliminated SEPs from muscle, evoked at low stimulus intensity. When the stimulus recruited group III fibres, SEPs were still present after DC and DLF section, both from skin and muscle nerves. Section of ALT in addition to DC confirmed a major role played by DLF (mainly spino-cervical tract of Morin) in transmitting impulses from muscle afferents; the role of DLF in mediating potentials evoked from skin is less remarkable than that of DC. Cerebellectomy did not change any SEP, however evoked. Previous results in the literature are discussed, taking into account the methodologies employed by various authors, and the possible interactions among pathways mediating SEPs.

  6. Adipose afferent reflex: sympathetic activation and obesity hypertension.

    PubMed

    Xiong, X-Q; Chen, W-W; Zhu, G-Q

    2014-03-01

    Excessive sympathetic activity contributes to the pathogenesis of hypertension and the progression of the related organ damage. Adipose afferent reflex (AAR) is a sympatho-excitatory reflex that the afferent activity from white adipose tissue (WAT) increases sympathetic outflow and blood pressure. Hypothalamic paraventricular nucleus (PVN or PVH) is one of the central sites in the control of the AAR, and ionotropic glutamate receptors in the nucleus mediate the AAR. The AAR is enhanced in obesity and obesity hypertension. Enhanced WAT afferent activity and AAR contribute to the excessive sympathetic activation and hypertension in obesity. Blockage of the AAR attenuates the excessive sympathetic activity and hypertension. Leptin may be one of sensors in the WAT for the AAR, and is involved in the enhanced AAR in obesity and hypertension. This review focuses on the neuroanatomical basis and physiological functions of the AAR, and the important role of the enhanced AAR in the pathogenesis of obesity hypertension.

  7. [Central projections of the rat recurrent laryngeal nerve].

    PubMed

    Pascual-Font, A; Maranillo, E; Merchán, A; Vázquez, T; Sañudo, J R; Valderrama-Canales, F J

    2006-01-01

    Laryngeal nerves contain the fibres that control the laryngeal function. The studies carried out on the rat with the purpose of having a better knowledge of the functional components and the real origin of the fibres conveyed by the recurrent laryngeal nerve (RLN) are few and in disagreement. No one of such papers were developed using biotinylated dextrane amines (BDA), a powerful tool for tracing neural pathways. The aim of our study was to identify in the rat using BDA, the nuclei of real origin of the fibres of the RLN, knowing in this way the functional components of this nerve. The study has been developed in 31 adult male Sprague-Dawley rats, applying the BDA into the lesioned RLN. The results obtained in all the animals show that the rat's RLN does not contain afferent fibres, whereas the efferent fibres were originated within the ipsilateral nucleus ambiguus (NA). So, in the rat, the RLN seems to contain exclusively efferent fibres, probably been the superior laryngeal nerve who conveyed the afferent fibres.

  8. Electrochemical and Electrophysiological Performance of Platinum Electrodes Within the Ninety-Nine-Electrode Stimulating Nerve Cuff.

    PubMed

    Pečlin, Polona; Mehle, Andraž; Karpe, Blaž; Rozman, Janez

    2015-10-01

    The trend in neural prostheses using selective nerve stimulation for electrical stimulation therapies is headed toward single-part systems having a large number of working electrodes (WEs), each of which selectively stimulate neural tissue or record neural response (NR). The present article reviews the electrochemical and electrophysiological performance of platinum WE within a ninety-nine-electrode spiral cuff for selective nerve stimulation and recording of peripheral nerves, with a focus on the vagus nerve (VN). The electrochemical properties of the WE were studied in vitro using the electrochemical impedance spectroscopy (EIS) technique. The equivalent circuit model (ECM) of the interface between the WE and neural tissue was extracted from the EIS data and simulated in the time domain using a preset current stimulus. Electrophysiological performance of in-space and fiber-type highly selective vagus nerve stimulation (VNS) was tested using an isolated segment of a porcine VN and carotid artery as a reference. A quasitrapezoidal current-controlled pulse (stimulus) was applied to the VN or arterial segment using an appointed group of three electrodes (triplet). The triplet and stimulus were configured to predominantly stimulate B-fibers and minimize the stimulation of A-fibers. The EIS results revealed capacitive charge transfer predominance, which is a highly desirable property. Electrophysiological performance testing indicated the potential existence of certain parameters and waveforms of the stimulus for which the contribution of the A-fibers to the NR decreased slightly and that of the B-fibers increased slightly. Findings show that the design of the stimulating electrodes, based on the EIS and ECM results, could act as a useful tool for nerve cuff development.

  9. The afferent pupillary defect in acute optic neuritis.

    PubMed Central

    Ellis, C J

    1979-01-01

    Twenty-two patients with acute optic neuritis were studied by the techniques of infrared pupillometry and visual evoked responses (VER) to pattern reversal. A relative afferent pupillary defect was found in all cases and the magnitude of this defect was found to be related to the amplitude, but not to the latency, of the VER. During follow-up the afferent defect was found to remain persistently abnormal while other methods of clinical evaluation could not demonstrate abnormality reliably. The amplitude of the VER also remained low. PMID:501365

  10. Electrical stimulation of low-threshold afferent fibers induces a prolonged synaptic depression in lamina II dorsal horn neurons to high-threshold afferent inputs in mice.

    PubMed

    Sdrulla, Andrei D; Xu, Qian; He, Shao-Qiu; Tiwari, Vinod; Yang, Fei; Zhang, Chen; Shu, Bin; Shechter, Ronen; Raja, Srinivasa N; Wang, Yun; Dong, Xinzhong; Guan, Yun

    2015-06-01

    Electrical stimulation of low-threshold Aβ-fibers (Aβ-ES) is used clinically to treat neuropathic pain conditions that are refractory to pharmacotherapy. However, it is unclear how Aβ-ES modulates synaptic responses to high-threshold afferent inputs (C-, Aδ-fibers) in superficial dorsal horn. Substantia gelatinosa (SG) (lamina II) neurons are important for relaying and modulating converging spinal nociceptive inputs. We recorded C-fiber-evoked excitatory postsynaptic currents (eEPSCs) in spinal cord slices in response to paired-pulse test stimulation (500 μA, 0.1 millisecond, 400 milliseconds apart). We showed that 50-Hz and 1000-Hz, but not 4-Hz, Aβ-ES (10 μA, 0.1 millisecond, 5 minutes) induced prolonged inhibition of C-fiber eEPSCs in SG neurons in naive mice. Furthermore, 50-Hz Aβ-ES inhibited both monosynaptic and polysynaptic forms of C-fiber eEPSC in naive mice and mice that had undergone spinal nerve ligation (SNL). The paired-pulse ratio (amplitude second eEPSC/first eEPSC) increased only in naive mice after 50-Hz Aβ-ES, suggesting that Aβ-ES may inhibit SG neurons by different mechanisms under naive and nerve-injured conditions. Finally, 50-Hz Aβ-ES inhibited both glutamatergic excitatory and GABAergic inhibitory interneurons, which were identified by fluorescence in vGlut2-Td and glutamic acid decarboxylase-green fluorescent protein transgenic mice after SNL. These findings show that activities in Aβ-fibers lead to frequency-dependent depression of synaptic transmission in SG neurons in response to peripheral noxious inputs. However, 50-Hz Aβ-ES failed to induce cell-type-selective inhibition in SG neurons. The physiologic implication of this novel form of synaptic depression for pain modulation by Aβ-ES warrants further investigation. PMID:25974163

  11. Nerve Impulses in Plants

    ERIC Educational Resources Information Center

    Blatt, F. J.

    1974-01-01

    Summarizes research done on the resting and action potential of nerve impulses, electrical excitation of nerve cells, electrical properties of Nitella, and temperature effects on action potential. (GS)

  12. Trafficking of Na+/Ca2+ exchanger to the site of persistent inflammation in nociceptive afferents.

    PubMed

    Scheff, Nicole N; Gold, Michael S

    2015-06-01

    Persistent inflammation results in an increase in the amplitude and duration of depolarization-evoked Ca(2+) transients in putative nociceptive afferents. Previous data indicated that these changes were the result of neither increased neuronal excitability nor an increase in the amplitude of depolarization. Subsequent data also ruled out an increase in voltage-gated Ca(2+) currents and recruitment of Ca(2+)-induced Ca(2+) release. Parametric studies indicated that the inflammation-induced increase in the duration of the evoked Ca(2+) transient required a relatively large and long-lasting increase in the concentration of intracellular Ca(2+) implicating the Na(+)/Ca(2+) exchanger (NCX), a major Ca(2+) extrusion mechanism activated with high intracellular Ca(2+) loads. The contribution of NCX to the inflammation-induced increase in the evoked Ca(2+) transient in rat sensory neurons was tested using fura-2 AM imaging and electrophysiological recordings. Changes in NCX expression and protein were assessed with real-time PCR and Western blot analysis, respectively. An inflammation-induced decrease in NCX activity was observed in a subpopulation of putative nociceptive neurons innervating the site of inflammation. The time course of the decrease in NCX activity paralleled that of the inflammation-induced changes in nociceptive behavior. The change in NCX3 in the cell body was associated with a decrease in NCX3 protein in the ganglia, an increase in the peripheral nerve (sciatic) yet no change in the central root. This single response to inflammation is associated with changes in at least three different segments of the primary afferent, all of which are likely to contribute to the dynamic response to persistent inflammation. PMID:26041911

  13. Trafficking of Na+/Ca2+ exchanger to the site of persistent inflammation in nociceptive afferents.

    PubMed

    Scheff, Nicole N; Gold, Michael S

    2015-06-01

    Persistent inflammation results in an increase in the amplitude and duration of depolarization-evoked Ca(2+) transients in putative nociceptive afferents. Previous data indicated that these changes were the result of neither increased neuronal excitability nor an increase in the amplitude of depolarization. Subsequent data also ruled out an increase in voltage-gated Ca(2+) currents and recruitment of Ca(2+)-induced Ca(2+) release. Parametric studies indicated that the inflammation-induced increase in the duration of the evoked Ca(2+) transient required a relatively large and long-lasting increase in the concentration of intracellular Ca(2+) implicating the Na(+)/Ca(2+) exchanger (NCX), a major Ca(2+) extrusion mechanism activated with high intracellular Ca(2+) loads. The contribution of NCX to the inflammation-induced increase in the evoked Ca(2+) transient in rat sensory neurons was tested using fura-2 AM imaging and electrophysiological recordings. Changes in NCX expression and protein were assessed with real-time PCR and Western blot analysis, respectively. An inflammation-induced decrease in NCX activity was observed in a subpopulation of putative nociceptive neurons innervating the site of inflammation. The time course of the decrease in NCX activity paralleled that of the inflammation-induced changes in nociceptive behavior. The change in NCX3 in the cell body was associated with a decrease in NCX3 protein in the ganglia, an increase in the peripheral nerve (sciatic) yet no change in the central root. This single response to inflammation is associated with changes in at least three different segments of the primary afferent, all of which are likely to contribute to the dynamic response to persistent inflammation.

  14. Severe hypoxia affects exercise performance independently of afferent feedback and peripheral fatigue.

    PubMed

    Millet, Guillaume Y; Muthalib, Makii; Jubeau, Marc; Laursen, Paul B; Nosaka, Kazunori

    2012-04-01

    To test the hypothesis that hypoxia centrally affects performance independently of afferent feedback and peripheral fatigue, we conducted two experiments under complete vascular occlusion of the exercising muscle under different systemic O(2) environmental conditions. In experiment 1, 12 subjects performed repeated submaximal isometric contractions of the elbow flexor to exhaustion (RCTE) with inspired O(2) fraction fixed at 9% (severe hypoxia, SevHyp), 14% (moderate hypoxia, ModHyp), 21% (normoxia, Norm), or 30% (hyperoxia, Hyper). The number of contractions (performance), muscle (biceps brachii), and prefrontal near-infrared spectroscopy (NIRS) parameters and high-frequency paired-pulse (PS100) evoked responses to electrical muscle stimulation were monitored. In experiment 2, 10 subjects performed another RCTE in SevHyp and Norm conditions in which the number of contractions, biceps brachii electromyography responses to electrical nerve stimulation (M wave), and transcranial magnetic stimulation responses (motor-evoked potentials, MEP, and cortical silent period, CSP) were recorded. Performance during RCTE was significantly reduced by 10-15% in SevHyp (arterial O(2) saturation, SpO(2) = ∼75%) compared with ModHyp (SpO(2) = ∼90%) or Norm/Hyper (SpO(2) > 97%). Performance reduction in SevHyp occurred despite similar 1) metabolic (muscle NIRS parameters) and functional (changes in PS100 and M wave) muscle states and 2) MEP and CSP responses, suggesting comparable corticospinal excitability and spinal and cortical inhibition between SevHyp and Norm. It is concluded that, in SevHyp, performance and central drive can be altered independently of afferent feedback and peripheral fatigue. It is concluded that submaximal performance in SevHyp is partly reduced by a mechanism related directly to brain oxygenation. PMID:22323647

  15. Ventral Tegmental Area Afferents and Drug-Dependent Behaviors

    PubMed Central

    Oliva, Idaira; Wanat, Matthew J.

    2016-01-01

    Drug-related behaviors in both humans and rodents are commonly thought to arise from aberrant learning processes. Preclinical studies demonstrate that the acquisition and expression of many drug-dependent behaviors involves the ventral tegmental area (VTA), a midbrain structure comprised of dopamine, GABA, and glutamate neurons. Drug experience alters the excitatory and inhibitory synaptic input onto VTA dopamine neurons, suggesting a critical role for VTA afferents in mediating the effects of drugs. In this review, we present evidence implicating the VTA in drug-related behaviors, highlight the diversity of neuronal populations in the VTA, and discuss the behavioral effects of selectively manipulating VTA afferents. Future experiments are needed to determine which VTA afferents and what neuronal populations in the VTA mediate specific drug-dependent behaviors. Further studies are also necessary for identifying the afferent-specific synaptic alterations onto dopamine and non-dopamine neurons in the VTA following drug administration. The identification of neural circuits and adaptations involved with drug-dependent behaviors can highlight potential neural targets for pharmacological and deep brain stimulation interventions to treat substance abuse disorders. PMID:27014097

  16. Changes in monkey horizontal semicircular canal afferent responses after spaceflight

    NASA Technical Reports Server (NTRS)

    Correia, M. J.; Perachio, A. A.; Dickman, J. D.; Kozlovskaia, I. B.; Sirota, M. G.; Iakushin, S. B.; Beloozerova, I. N.

    1992-01-01

    Extracellular responses from single horizontal semicircular canal afferents in two rhesus monkeys were studied after recovery from a 14-day biosatellite (Cosmos 2044) orbital spaceflight. On the 1st postflight day, the mean gain for 9 different horizontal canal afferents, tested using one or several different passive yaw rotation waveforms, was nearly twice that for 20 horizontal canal afferents similarly tested during preflight and postflight control studies. Adaptation of the afferent response to passive yaw rotation on the 1st postflight day was also greater. These results suggest that at least one component of the vestibular end organ (the semicircular canals) is transiently modified after exposure to 14 days of microgravity. It is unclear whether the changes are secondary to other effects of microgravity, such as calcium loss, or an adaptive response. If the response is adaptive, then this report is the first evidence that the response of the vestibular end organ may be modified (presumably by the central nervous system via efferent connections) after prolonged unusual vestibular stimulation. If this is the case, the sites of plasticity of vestibular responses may not be exclusively within central nervous system vestibular structures, as previously believed.

  17. Correlation between afferent rearrangements and behavioral deficits after local excitotoxic insult in the mammalian vestibule: a rat model of vertigo symptoms

    PubMed Central

    Travo, Cécile; Saleur, Aurélie; Broussy, Audrey; Brugeaud, Aurore; Chabbert, Christian

    2016-01-01

    ABSTRACT Damage to inner ear afferent terminals is believed to result in many auditory and vestibular dysfunctions. The sequence of afferent injuries and repair, as well as their correlation with vertigo symptoms, remains poorly documented. In particular, information on the changes that take place at the primary vestibular endings during the first hours following a selective insult is lacking. In the present study, we combined histological analysis with behavioral assessments of vestibular function in a rat model of unilateral vestibular excitotoxic insult. Excitotoxicity resulted in an immediate but transient alteration of the balance function that was resolved within a week. Concomitantly, vestibular primary afferents underwent a sequence of structural changes followed by spontaneous repair. Within the first two hours after the insult, a first phase of pronounced vestibular dysfunction coincided with extensive swelling of afferent terminals. In the next 24 h, a second phase of significant but incomplete reduction of the vestibular dysfunction was accompanied by a resorption of swollen terminals and fiber retraction. Eventually, within 1 week, a third phase of complete balance restoration occurred. The slow and progressive withdrawal of the balance dysfunction correlated with full reconstitution of nerve terminals. Competitive re-innervation by afferent and efferent terminals that mimicked developmental synaptogenesis resulted in full re-afferentation of the sensory epithelia. By deciphering the sequence of structural alterations that occur in the vestibule during selective excitotoxic impairment, this study offers new understanding of how a vestibular insult develops in the vestibule and how it governs the heterogeneity of vertigo symptoms. PMID:27483344

  18. Secondary optic nerve tumors.

    PubMed

    Christmas, N J; Mead, M D; Richardson, E P; Albert, D M

    1991-01-01

    Secondary tumors of the optic nerve are more common than primary optic nerve tumors. The involvement of the optic nerve may arise from direct invasion from intraocular malignancies, from hematopoietic malignancy, from meningeal carcinomatosis, or from distant primary tumors. Orbital tumors rarely invade the optic nerve, and brain tumors involve it only in their late stages.

  19. Intact subepidermal nerve fibers mediate mechanical hypersensitivity via the activation of protein kinase C gamma in spared nerve injury

    PubMed Central

    Ko, Miau-Hwa; Yang, Ming-Ling; Youn, Su-Chung; Tseng, To-Jung

    2016-01-01

    Background Spared nerve injury is an important neuropathic pain model for investigating the role of intact primary afferents in the skin on pain hypersensitivity. However, potential cellular mechanisms remain poorly understood. In phosphoinositide-3 kinase pathway, pyruvate dehydrogenase kinase 1 (PDK1) participates in the regulation of neuronal plasticity for central sensitization. The downstream cascades of PDK1 include: (1) protein kinase C gamma (PKCγ) controls the trafficking and phosphorylation of ionotropic glutamate receptor; (2) protein kinase B (Akt)/the mammalian target of rapamycin (mTOR) signaling is responsible for local protein synthesis. Under these statements, we therefore hypothesized that an increase of PKCγ activation and mTOR-dependent PKCγ synthesis in intact primary afferents after SNI might contribute to pain hypersensitivity. Results The variants of spared nerve injury were performed in Sprague-Dawley rats by transecting any two of the three branches of the sciatic nerve, leaving only one branch intact. Following SNIt (spared tibial branch), mechanical hyperalgesia and mechanical allodynia, but not thermal hyperalgesia, were significantly induced. In the first footpad, normal epidermal innervations were verified by the protein gene product 9.5 (PGP9.5)- and growth-associated protein 43 (GAP43)-immunoreactive (IR) intraepidermal nerve fibers (IENFs) densities. Furthermore, the rapid increases of phospho-PKCγ- and phospho-mTOR-IR subepidermal nerve fibers (SENFs) areas were distinct gathered from the results of PGP9.5-, GAP43-, and neurofilament 200 (NF200)-IR SENFs areas. The efficacy of PKC inhibitor (GF 109203X) or mTOR complex 1 inhibitor (rapamycin) for attenuating mechanical hyperalgesia and mechanical allodynia by intraplantar injection was dose-dependent. Conclusions From results obtained in this study, we strongly recommend that the intact SENFs persistently increase PKCγ activation and mTOR-dependent PKCγ synthesis participate

  20. A role for nociceptive, myelinated nerve fibers in itch sensation.

    PubMed

    Ringkamp, Matthias; Schepers, Raf J; Shimada, Steven G; Johanek, Lisa M; Hartke, Timothy V; Borzan, Jasenka; Shim, Beom; LaMotte, Robert H; Meyer, Richard A

    2011-10-19

    Despite its clinical importance, the underlying neural mechanisms of itch sensation are poorly understood. In many diseases, pruritus is not effectively treated with antihistamines, indicating the involvement of nonhistaminergic mechanisms. To investigate the role of small myelinated afferents in nonhistaminergic itch, we tested, in psychophysical studies in humans, the effect of a differential nerve block on itch produced by intradermal insertion of spicules from the pods of a cowhage plant (Mucuna pruriens). Electrophysiological experiments in anesthetized monkey were used to investigate the responsiveness of cutaneous, nociceptive, myelinated afferents to different chemical stimuli (cowhage spicules, histamine, capsaicin). Our results provide several lines of evidence for an important role of myelinated fibers in cowhage-induced itch: (1) a selective conduction block in myelinated fibers substantially reduces itch in a subgroup of subjects with A-fiber-dominated itch, (2) the time course of itch sensation differs between subjects with A-fiber- versus C-fiber-dominated itch, (3) cowhage activates a subpopulation of myelinated and unmyelinated afferents in monkey, (4) the time course of the response to cowhage is different in myelinated and unmyelinated fibers, (5) the time of peak itch sensation for subjects with A-fiber-dominated itch matches the time for peak response in myelinated fibers, and (6) the time for peak itch sensation for subjects with C-fiber-dominated itch matches the time for the peak response in unmyelinated fibers. These findings demonstrate that activity in nociceptive, myelinated afferents contributes to cowhage-induced sensations, and that nonhistaminergic itch is mediated through activity in both unmyelinated and myelinated afferents. PMID:22016517

  1. Adenosine triphosphate attenuates renal sympathetic nerve activity through left ventricular chemosensitive receptors.

    PubMed

    Taneyama, C; Benson, K T; Hild, P G; Goto, H

    1997-02-01

    We previously reported that ATP, but not adenosine, administered i.v. attenuates the baroreflex-mediated increase in sympathetic nerve activity in response to arterial hypotension by a vagal afferent mechanism. It was not elucidated in that study which vagal afferent endings are involved. Mongrel dogs were anesthetized with alpha-chloralose, thoracotomy was performed and a 27-gauge hypodermic needle was inserted into the left circumflex coronary artery. The left renal sympathetic nerves were isolated and placed on a bipolar silver electrode for measurement of renal sympathetic nerve activity (RSNA). Dose-response effects of intracoronary or i.v. infusion of ATP (100, 200 or 400 microg/kg/min) on RSNA and mean arterial pressure were studied in neuraxis-intact and cervically vagotomized dogs. RSNA was increased dose-dependently with decreasing mean arterial pressure during the i.v. ATP infusion. Elevation of RSNA was attenuated by higher intracoronary ATP infusion rates, despite the fact that mean arterial pressure was decreased dose-dependently. Left ventricular end-diastolic pressure, however, remained unchanged. This suppression of RSNA by the intracoronary ATP infusion was completely abolished by bilateral cervical vagotomy. Our data suggest that ATP attenuates reflex increases in sympathetic nerve activity by possibly stimulating ventricular chemoreceptors with cardiac vagal afferents. PMID:9023265

  2. Short-interval intracortical inhibition is modulated by high-frequency peripheral mixed nerve stimulation.

    PubMed

    Murakami, Takenobu; Sakuma, Kenji; Nomura, Takashi; Nakashima, Kenji

    2007-06-01

    Cortical excitability can be modulated by manipulation of afferent input. We investigated the influence of peripheral mixed nerve stimulation on the excitability of the motor cortex. Motor evoked potentials (MEPs), short-interval intracortical inhibition (SICI) and intracortical facilitation (ICF) in the right abductor pollicis brevis (APB), extensor carpi radialis (ECR) and first dorsal interosseous (FDI) muscles were evaluated using paired-pulse transcranial magnetic stimulation (TMS) before and after high-frequency peripheral mixed nerve stimulation (150 Hz, 30 min) over the right median nerve at the wrist. The MEP amplitude and SICI of the APB muscle decreased transiently 0-10 min after the intervention, whereas the ICF did not change. High-frequency peripheral mixed nerve stimulation reduced the excitability of the motor cortex. The decrement in the SICI, which reflects the function of GABA(A)ergic inhibitory interneurons, might compensate for the reduced motor cortical excitability after high-frequency peripheral mixed nerve stimulation.

  3. Physiological and anatomical characteristics of primary vestibular afferent neurons in the bullfrog.

    PubMed

    Honrubia, V; Sitko, S; Kimm, J; Betts, W; Schwartz, I

    1981-01-01

    Intracellular recordings were made in the VIIIth nerve of the bullfrog (Rana catesbiana) to measure the membrane characteristics and obtain records of spontaneous and evoked spike activity of primary semicircular canal afferents. Physiological stimulation of the canals was achieved by rotating the preparation on a servomotor driven turntable with the animals' head centered in the rotational axis. The responses of each neuron to sinusoidal rotations at frequencies of 0.05Hz, 0.5Hz and for impulsive accelerations of 400 deg/sec2 were obtained. Membrane characteristics measured included the cell resting and action potential amplitude, and spike-activation threshold for applied currents. Physiologically characterized neurons were injected with horseradish peroxidase by applying pneumatic pressure and/or iontophoretic currents to the micropipettes containing 5% HRP in 1 M KCI. Following survival times of 12--48 h, the VIIIth nerve and attached vestibular end organ was removed for histochemical processing using a diaminobenzidine procedure to visualize the HRP reaction product. Light microscopy was used to discern the anatomical features of the neurons and to trace their peripheral dendritic trajectories from the ganglion to their termination(s) in the crista. Our studies have revealed that the bullfrog's primary vestibular afferents are characterized by a broad range of soma and axon diameters which correspond to an equally broad range of spontaneous and evoked activity characteristics. The largest neurons had more irregular spontaneous firing rates and consistently exhibited the greatest gain and smallest phase shifts with respect to head acceleration. These neurons consistently terminated at or near the central region of the crista. On the other hand, the smallest neurons were characterized by having the most regular spontaneous discharge patterns, the lowest gains, and greatest phase shifts with respect to head acceleration. Our findings are thus consistent with the

  4. Cardiovascular afferents cause the release of 5-HT in the nucleus tractus solitarii; this release is regulated by the low- (PMAT) not the high-affinity transporter (SERT)

    PubMed Central

    Hosford, Patrick S; Millar, Julian; Ramage, Andrew G

    2015-01-01

    Key points The nucleus tractus solitarii (NTS) integrates visceral afferent information essential for cardiovascular haemostasis. Using fast-cyclic voltammetry in anaesthetized rats, 5-HT (serotonin) release was detected in NTS in response to activation of these afferents. Removal of 5-HT from the extracellular space is usually regulated by the low-capacity, high-affinity 5-HT transporter (5-HTT/SERT). The present data demonstrate that 5-HT removal in the NTS is regulated by the plasma membrane monoamine transporter (PMAT), a high-capacity, low-affinity transporter. The present data also demonstrate that the 5-HT released by afferent activation comes from at least two different sources. It is suggested that one of these sources is the afferents themselves. These results demonstrate a physiological role for the low-affinity uptake transporter in the regulation of 5-HT concentration in NTS. Abstract The nucleus tractus solitarii (NTS) integrates inputs from cardiovascular afferents and thus is crucial for cardiovascular homeostasis. These afferents primarily release glutamate, although 5-HT has also been shown to play a role in their actions. Using fast-cyclic voltammetry, an increase in 5-HT concentrations (range 12–50 nm) could be detected in the NTS in anaesthetized rats in response to electrical stimulation of the vagus and activation of cardiopulmonary, chemo- and baroreceptor reflexes. This 5-HT signal was not potentiated by the serotonin transporter (SERT) or the noradrenaline transporter (NET) inhibitors citalopram and desipramine (1 mg kg−1). However, decynium-22 (600 μg kg−1), an organic cation 3 transporter (OCT3)/plasma membrane monoamine transporter (PMAT) inhibitor, increased the 5-HT signal by 111 ± 21% from 29 ± 10 nm. The effectiveness of these inhibitors was tested against the removal time of 5-HT and noradrenaline applied by microinjection to the NTS. Citalopram and decynium-22 attenuated the removal of 5-HT but not

  5. Reconstruction of atonic bladder innervation after spinal cord injury: A bladder reflex arc with afferent and efferent pathways.

    PubMed

    He, Jun; Li, Guitao; Luo, Dixin; Sun, Hongtao; Qi, Yong; Li, Yiyi; Jin, Xunjie

    2015-11-01

    Background Establishing bladder reflex arcs only with the efferent pathway to induce micturition after spinal cord injury (SCI) has been successful. However, the absence of sensory function and micturition desires can lead to serious complications. Objectives To reconstruct a bladder reflex arc with both afferent and efferent pathways to achieve atonic bladder innervation after SCI. Methods A reflex arc was established by microanastomosis of the S2 dorsal root to the peripheral process of the L5 dorsal ganglion and the L5 ventral root to the S2 ventral root. The functions of the reflex arc were evaluated using electrophysiology, wheat germ agglutinin-horseradish peroxidase (WGA-HRP) tracing, and calcitonin gene-related peptide (CGRP) immunocytochemistry analysis. Hind-paw motion was evaluated by CatWalk gait. Results Compound action potentials and compound muscle action potentials were recorded at the right L5 dorsal root following electrical stimulation of right S2 dorsal root. Similar to the control side, these were not significantly different before or after the spinal cord destruction between L6 and S4. WGA-HRP tracing and CGRP immunocytochemistry showed that construction of the afferent and efferent pathways of the bladder reflex arc encouraged axonal regeneration of motor and sensory nerves, which then made contact with the anterior and posterior horns of the spinal cord, ultimately reestablishing axoplasmic transportation. Gait analysis showed that at 3 months following the operation, only the regularity index was significantly different as compared with 1 day before the operation, other parameters showing no difference. Conclusion Bladder reflex arc with the afferent and efferent pathways reconstructs the micturition function without great influence on the motion of leg.

  6. Thresholds of cutaneous afferents related to perceptual threshold across the human foot sole.

    PubMed

    Strzalkowski, Nicholas D J; Mildren, Robyn L; Bent, Leah R

    2015-10-01

    Perceptual thresholds are known to vary across the foot sole, despite a reported even distribution in cutaneous afferents. Skin mechanical properties have been proposed to account for these differences; however, a direct relationship between foot sole afferent firing, perceptual threshold, and skin mechanical properties has not been previously investigated. Using the technique of microneurography, we recorded the monofilament firing thresholds of cutaneous afferents and associated perceptual thresholds across the foot sole. In addition, receptive field hardness measurements were taken to investigate the influence of skin hardness on these threshold measures. Afferents were identified as fast adapting [FAI (n = 48) or FAII (n = 13)] or slowly adapting [SAI (n = 21) or SAII (n = 20)], and were grouped based on receptive field location (heel, arch, metatarsals, toes). Overall, perceptual thresholds were found to most closely align with firing thresholds of FA afferents. In contrast, SAI and SAII afferent firing thresholds were found to be significantly higher than perceptual thresholds and are not thought to mediate monofilament perceptual threshold across the foot sole. Perceptual thresholds and FAI afferent firing thresholds were significantly lower in the arch compared with other regions, and skin hardness was found to positively correlate with both FAI and FAII afferent firing and perceptual thresholds. These data support a perceptual influence of skin hardness, which is likely the result of elevated FA afferent firing threshold at harder foot sole sites. The close coupling between FA afferent firing and perceptual threshold across foot sole indicates that small changes in FA afferent firing can influence perceptual thresholds.

  7. Sciatic nerve regeneration through alginate with tubulation or nontubulation repair in cat.

    PubMed

    Sufan, W; Suzuki, Y; Tanihara, M; Ohnishi, K; Suzuki, K; Endo, K; Nishimura, Y

    2001-03-01

    A novel material for nerve regeneration, alginate, was employed in both tubulation and nontubulation repair of a long peripheral nerve defect injury. Twelve cats underwent severing of the right sciatic nerve to generate a 50-mm gap, which was treated by tubulation repair (n = 6) or nontubulation repair (n = 6). In the tubulation group, a nerve conduit consisting of polyglycolic acid mesh tube filled with alginate sponge was implanted into the gap and the tube was sutured to both nerve stumps. In the nontubulation group, the nerve defect was repaired by a simple interpolation of two pieces of alginate sponge without any suture. The animals in both groups exhibited similar recovery of locomotor function. Three months postoperatively, successful axonal elongation and reinnervation in both the afferent and efferent systems were detected by electrophysiological examinations. Intracellular electrical activity was also recorded, which is directly indicative of continuity of the regenerated nerve and restoration of the spinal reflex circuit. Eight months after operation, many regenerated myelinated axons with fascicular organization by perineurial cells were observed within the gap, peroneal and tibial branches were found in both groups, while no alginate residue was found within the regenerated nerves. In morphometric analysis of the axon density and diameter, there were no significant differences between the two groups. These results suggest that alginate is a potent material for promoting peripheral nerve regeneration. It can also be concluded that the nontubulation method is a possible repair approach for peripheral nerve defect injury.

  8. Macrophage-Colony Stimulating Factor Derived from Injured Primary Afferent Induces Proliferation of Spinal Microglia and Neuropathic Pain in Rats.

    PubMed

    Okubo, Masamichi; Yamanaka, Hiroki; Kobayashi, Kimiko; Dai, Yi; Kanda, Hirosato; Yagi, Hideshi; Noguchi, Koichi

    2016-01-01

    Peripheral nerve injury induces proliferation of microglia in the spinal cord, which can contribute to neuropathic pain conditions. However, candidate molecules for proliferation of spinal microglia after injury in rats remain unclear. We focused on the colony-stimulating factors (CSFs) and interleukin-34 (IL-34) that are involved in the proliferation of the mononuclear phagocyte lineage. We examined the expression of mRNAs for macrophage-CSF (M-CSF), granulocyte macrophage-CSF (GM-CSF), granulocyte-CSF (G-CSF) and IL-34 in the dorsal root ganglion (DRG) and spinal cord after spared nerve injury (SNI) in rats. RT-PCR and in situ hybridization revealed that M-CSF and IL-34, but not GM- or G-CSF, mRNAs were constitutively expressed in the DRG, and M-CSF robustly increased in injured-DRG neurons. M-CSF receptor mRNA was expressed in naive rats and increased in spinal microglia following SNI. Intrathecal injection of M-CSF receptor inhibitor partially but significantly reversed the proliferation of spinal microglia and in early phase of neuropathic pain induced by SNI. Furthermore, intrathecal injection of recombinant M-CSF induced microglial proliferation and mechanical allodynia. Here, we demonstrate that M-CSF is a candidate molecule derived from primary afferents that induces proliferation of microglia in the spinal cord and leads to induction of neuropathic pain after peripheral nerve injury in rats.

  9. Macrophage-Colony Stimulating Factor Derived from Injured Primary Afferent Induces Proliferation of Spinal Microglia and Neuropathic Pain in Rats.

    PubMed

    Okubo, Masamichi; Yamanaka, Hiroki; Kobayashi, Kimiko; Dai, Yi; Kanda, Hirosato; Yagi, Hideshi; Noguchi, Koichi

    2016-01-01

    Peripheral nerve injury induces proliferation of microglia in the spinal cord, which can contribute to neuropathic pain conditions. However, candidate molecules for proliferation of spinal microglia after injury in rats remain unclear. We focused on the colony-stimulating factors (CSFs) and interleukin-34 (IL-34) that are involved in the proliferation of the mononuclear phagocyte lineage. We examined the expression of mRNAs for macrophage-CSF (M-CSF), granulocyte macrophage-CSF (GM-CSF), granulocyte-CSF (G-CSF) and IL-34 in the dorsal root ganglion (DRG) and spinal cord after spared nerve injury (SNI) in rats. RT-PCR and in situ hybridization revealed that M-CSF and IL-34, but not GM- or G-CSF, mRNAs were constitutively expressed in the DRG, and M-CSF robustly increased in injured-DRG neurons. M-CSF receptor mRNA was expressed in naive rats and increased in spinal microglia following SNI. Intrathecal injection of M-CSF receptor inhibitor partially but significantly reversed the proliferation of spinal microglia and in early phase of neuropathic pain induced by SNI. Furthermore, intrathecal injection of recombinant M-CSF induced microglial proliferation and mechanical allodynia. Here, we demonstrate that M-CSF is a candidate molecule derived from primary afferents that induces proliferation of microglia in the spinal cord and leads to induction of neuropathic pain after peripheral nerve injury in rats. PMID:27071004

  10. Macrophage-Colony Stimulating Factor Derived from Injured Primary Afferent Induces Proliferation of Spinal Microglia and Neuropathic Pain in Rats

    PubMed Central

    Okubo, Masamichi; Yamanaka, Hiroki; Kobayashi, Kimiko; Dai, Yi; Kanda, Hirosato; Yagi, Hideshi; Noguchi, Koichi

    2016-01-01

    Peripheral nerve injury induces proliferation of microglia in the spinal cord, which can contribute to neuropathic pain conditions. However, candidate molecules for proliferation of spinal microglia after injury in rats remain unclear. We focused on the colony-stimulating factors (CSFs) and interleukin-34 (IL-34) that are involved in the proliferation of the mononuclear phagocyte lineage. We examined the expression of mRNAs for macrophage-CSF (M-CSF), granulocyte macrophage-CSF (GM-CSF), granulocyte-CSF (G-CSF) and IL-34 in the dorsal root ganglion (DRG) and spinal cord after spared nerve injury (SNI) in rats. RT-PCR and in situ hybridization revealed that M-CSF and IL-34, but not GM- or G-CSF, mRNAs were constitutively expressed in the DRG, and M-CSF robustly increased in injured-DRG neurons. M-CSF receptor mRNA was expressed in naive rats and increased in spinal microglia following SNI. Intrathecal injection of M-CSF receptor inhibitor partially but significantly reversed the proliferation of spinal microglia and in early phase of neuropathic pain induced by SNI. Furthermore, intrathecal injection of recombinant M-CSF induced microglial proliferation and mechanical allodynia. Here, we demonstrate that M-CSF is a candidate molecule derived from primary afferents that induces proliferation of microglia in the spinal cord and leads to induction of neuropathic pain after peripheral nerve injury in rats. PMID:27071004

  11. Electrophysiological study in the infraorbital nerve of the rat: Spontaneous and evoked activity

    NASA Astrophysics Data System (ADS)

    Albarracín, A. L.; Farfán, F. D.; Felice, C. J.

    2007-11-01

    In this work we present some studies in the afferent nerve of the rat vibrissae. Studies on spontaneous activity (SA) in this sensorial system are of long data. Nevertheless, SA recordings in the nerve of a single vibrissa have not been made until present. In this work, we use an algorithm based on signal decomposition with Continuous Wavelet Transform (CWT) to analyse the discharges of two nerves. The action potentials of both nerves were detected and the firing rates were calculated. These results suggest that the firing rate of one vibrissa innervation is low considering that this nerve contains hundred of fibers. In addition, we present preliminary studies suggesting important effects of the hair shaft length in the afferent discharge during the vibrissae movements. The experiments consisted in recording the nerve activity after the vibrissae were sectioned at two different levels. The results showed important differences in the signal energy contents. It suggests that the hair shaft length would produce a differential activation of the mechanoreceptors located in the vibrissae follicle.

  12. Octreotide inhibits capsaicin-induced activation of C and Aδ afferent fibres in rat hairy skin in vivo.

    PubMed

    Wang, Jun; Cao, Dong-Yuan; Guo, Yuan; Ma, Shao-Jie; Luo, Rong; Pickar, Joel G; Zhao, Yan

    2011-08-01

    1. The present study investigated whether the somatostatin receptor (SSTR) agonist, octreotide, could inhibit the activation of dorsal skin afferent fibres induced by local injection of capsaicin in the rat. 2. Single unit activity from Aδ mechano-heat sensitive (AMH; n = 41) and C mechano-heat sensitive (CMH; n = 30) afferents was recorded after their isolation in thin filaments from the dorsal cutaneous nerve branches. The effect of subcutaneous octreotide injection on the change in discharge rate and mechanical threshold induced by capsaicin was determined. 3. Capsaicin (0.05%) injection into the edge of the receptive field of both AMH and CMH units increased their discharge rate and decreased their mechanical threshold. Pre-injection of octreotide inhibited these responses, and co-application of SSTR antagonist, cyclosomatostatin, reversed the inhibitory effect of octreotide. 4. The present study provides electrophysiological evidence that the signal evoked by the somatostatin receptor inhibits the activation and mechanical sensitization evoked by capsaicin in the terminals in small-diameter sensory neurons.

  13. Effect of somatic nerve stimulation on the kidney in intact, vagotomized and carotid sinus-denervated rats.

    PubMed

    Davis, G; Johns, E J

    1991-01-01

    1. The influence of cardiopulmonary and arterial baroreceptors on the renal nerve-dependent functional responses of the kidney to electrical stimulation of somatic afferent nerves was studied in pentobarbitone-anaesthetized rats. 2. Electrical stimulation of the left brachial nerve plexus at 3 Hz, 0.2 ms and 15 V in the intact animals increased blood pressure by 22%, and while renal perfusion pressure was maintained at pre-stimulus levels, renal blood flow and glomerular filtration rate decreased by 14 and 22% respectively. At the same time urine flow rate and absolute and fractional sodium excretion decreased by 36, 42 and 27% respectively. In animals subjected to acute renal nerve section these renal functional responses could not be elicited. 3. Following bilateral vagotomy the systemic and renal haemodynamic responses to brachial nerve stimulation were similar to the intact group. However, urine flow rate and absolute and fractional sodium excretions decreased by 50, 59 and 47% respectively, responses which were significantly greater than in the intact group. 4. In a group of rats in which the carotid sinus nerves had been sectioned, stimulation of the brachial plexus caused reductions of renal blood flow and glomerular filtration rate of the same magnitude as in the intact group; however, urine flow rate and absolute and fractional sodium excretion fell by 51, 60 and 48%, respectively, which were significantly larger than in the intact group. 5. These results demonstrate that the afferent nerve information arising from muscle joints and skin and carried via the brachial plexus caused reflex renal nerve-dependent reductions in renal haemodynamics and an antidiuresis and antinatriuresis. The cardiopulmonary and carotid sinus baroreceptors exert a tonic inhibitory action on these reflex renal responses insofar as they appeared to attenuate the antidiuretic and antinatriuretic responses to somatic afferent nerve stimulation.

  14. Nerve Injuries in Athletes.

    PubMed

    Collins, K; Storey, M; Peterson, K; Nutter, P

    1988-01-01

    In brief: Nerve injuries in athletes may be serious and may delay or prevent an athlete's return to his or her sport. Over a two-year period, the authors evaluated the condition of 65 patients who had entrapments of a nerve or nerve root, documented with electromyography. They describe four case histories: Two patients had radial nerve entrapments, one caused by baseball pitching and the other by kayaking; one football player had combined suprascapular neuropathy and upper trunk brachial plexopathy; and one patient had carpal tunnel syndrome of a median nerve secondary to rowing. Sports-related peripheral nerve lesions of the lower extremity were not seen during the study period. Based on a literature review, the nerve injuries discussed represent the spectrum of nerve entrapments likely to be seen in US clinics. The authors conclude that peripheral nerve lesions should be considered in the differential diagnosis of sports injuries, particularly at the shoulder, elbow, and wrist.

  15. Distinct recurrent versus afferent dynamics in cortical visual processing.

    PubMed

    Reinhold, Kimberly; Lien, Anthony D; Scanziani, Massimo

    2015-12-01

    How intracortical recurrent circuits in mammalian sensory cortex influence dynamics of sensory representation is not understood. Previous methods could not distinguish the relative contributions of recurrent circuits and thalamic afferents to cortical dynamics. We accomplish this by optogenetically manipulating thalamus and cortex. Over the initial 40 ms of visual stimulation, excitation from recurrent circuits in visual cortex progressively increased to exceed direct thalamocortical excitation. Even when recurrent excitation exceeded thalamic excitation, upon silencing thalamus, sensory-evoked activity in cortex decayed rapidly, with a time constant of 10 ms, which is similar to a neuron's integration time window. In awake mice, this cortical decay function predicted the time-locking of cortical activity to thalamic input at frequencies <15 Hz and attenuation of the cortical response to higher frequencies. Under anesthesia, depression at thalamocortical synapses disrupted the fidelity of sensory transmission. Thus, we determine dynamics intrinsic to cortical recurrent circuits that transform afferent input in time.

  16. Coding of stimuli by ampullary afferents in Gnathonemus petersii.

    PubMed

    Engelmann, J; Gertz, S; Goulet, J; Schuh, A; von der Emde, G

    2010-10-01

    Weakly electric fish use electroreception for both active and passive electrolocation and for electrocommunication. While both active and passive electrolocation systems are prominent in weakly electric Mormyriform fishes, knowledge of their passive electrolocation ability is still scarce. To better estimate the contribution of passive electric sensing to the orientation toward electric stimuli in weakly electric fishes, we investigated frequency tuning applying classical input-output characterization and stimulus reconstruction methods to reveal the encoding capabilities of ampullary receptor afferents. Ampullary receptor afferents were most sensitive (threshold: 40 μV/cm) at low frequencies (<10 Hz) and appear to be tuned to a mix of amplitude and slope of the input signals. The low-frequency tuning was corroborated by behavioral experiments, but behavioral thresholds were one order of magnitude higher. The integration of simultaneously recorded afferents of similar frequency-tuning resulted in strongly enhanced signal-to-noise ratios and increased mutual information rates but did not increase the range of frequencies detectable by the system. Theoretically the neuronal integration of input from receptors experiencing opposite polarities of a stimulus (left and right side of the fish) was shown to enhance encoding of such stimuli, including an increase of bandwidth. Covariance and coherence analysis showed that spiking of ampullary afferents is sufficiently explained by the spike-triggered average, i.e., receptors respond to a single linear feature of the stimulus. Our data support the notion of a division of labor of the active and passive electrosensory systems in weakly electric fishes based on frequency tuning. Future experiments will address the role of central convergence of ampullary input that we expect to lead to higher sensitivity and encoding power of the system. PMID:20685928

  17. Phase relation changes between the firings of alpha and gamma-motoneurons and muscle spindle afferents in the sacral micturition centre during continence functions in brain-dead human and patients with spinal cord injury.

    PubMed

    Schalow, G

    2010-01-01

    1. Single-nerve fibre action potentials (APs) were recorded with 2 pairs of wire electrodes from lower sacral nerve roots during surgery in patients with spinal cord injury and in a brain-dead human. Conduction velocity distribution histograms were constructed for afferent and efferent fibres, nerve fibre groups were identified and simultaneous impulse patterns of alpha and gamma-motoneurons and secondary muscle spindle afferents (SP2) were constructed. Temporal relations between afferent and efferent APs were analyzed by interspike interval (II) and phase relation changes to explore the coordinated self-organization of somatic and parasympathetic neuronal networks in the sacral micturition centre during continence functions under physiologic (brain-dead) and pathophysiologic conditions (spinal cord injury). 2. In a paraplegic with hyperreflexia of the bladder, urinary bladder stretch (S1) and tension receptor afferents (ST) fired already when the bladder was empty, and showed a several times higher bladder afferent activity increase upon retrograde bladder filling than observed in the brain-dead individual. Two alpha2-motoneurons (FR) innervating the external bladder sphincter were already oscillatory firing to generate high activity levels when the bladder was empty. They showed activity levels with no bladder filling, comparable to those measured at a bladder filling of 600 ml in the brain-dead individual. A bladder storage volume of 600 ml was thus lost in the paraplegic, due to a too high bladder afferent input to the sacral micturition center, secondary to inflammation and hypertrophy of the detrusor. 3. In a brain-dead human, 2 phase relations existed per oscillation period of 160 ms between the APs of a sphincteric oscillatory firing alpha2-motoneuron, a dynamic fusimotor and a secondary muscle spindle afferent fibre. Following stimulation of mainly somatic afferent fibres, the phase relations changed only little. 4. In a paraplegic with dyssynergia of the

  18. Subcortical afferent connections of the amygdala in the monkey

    NASA Technical Reports Server (NTRS)

    Mehler, W. R.

    1980-01-01

    The cells of origin of the afferent connections of the amygdala in the rhesus and squirrel monkeys are determined according to the retrograde axonal transport of the enzyme horseradish peroxidase injected into various quadrants of the amygdala. Analysis of the distribution of enzyme-labeled cells reveals afferent amygdalar connections with the ipsilateral halves of the midline nucleus paraventricularis thalami and both the parvo- and magnocellular parts of the nucleus subparafascicularis in the dorsal thalamus, all the subdivisions of the midline nucleus centralis complex, the nucleus reuniens ventralis and the nucleus interventralis. The largest populations of enzyme-labeled cells in the hypothalamus are found to lie in the middle and posterior parts of the ipsilateral, lateral hypothalamus and the ventromedial hypothalamic nucleus, with scattered cells in the supramammillary and dorsomedial nuclei and the posterior hypothalamic area, Tsai's ventral tegmental area, the rostral and caudal subdivisions of the nucleus linearis in the midbrain and the dorsal raphe nucleus. The most conspicuous subdiencephalic source of amygdalar afferent connections is observed to be the pars lateralis of the nucleus parabrachialis in the dorsolateral pontine tegmentum, with a few labeled cells differentiated from pigmented cells in the locus coeruleus.

  19. Neck afferent involvement in cardiovascular control during movement

    NASA Technical Reports Server (NTRS)

    Bolton, P. S.; Ray, C. A.

    2000-01-01

    It is well established that labyrinth and neck afferent information contributes to the regulation of somatomotor function during movement and changes in posture. There is also convincing evidence that the vestibular system participates in the modulation of sympathetic outflow and cardiovascular function during changes in posture, presumably to prevent orthostatic hypotension. However, the labyrinth organs do not provide any signals concerning body movements with respect to the head. In contrast, the neck receptors, particularly muscle spindles, are well located and suited to provide information about changes in body position with respect to the head and vestibular signals. Studies in the cat suggest that neck afferent information may modulate the vestibulosympathetic reflex responses to head-neck movements. There is some evidence in the cat to suggest involvement of low threshold mechanoreceptors. However, human studies do not indicate that low threshold mechanoreceptors in the neck modulate cardiovascular responses. The human studies are consistent with the studies in the cat in that they demonstrate the importance of otolith activation in mediating cardiovascular and sympathetic responses to changes in posture. This paper briefly reviews the current experimental evidence concerning the involvement of neck afferent information in the modulation of cardiovascular control during movement and changes in posture.

  20. Electrophysiology of the afferent innervation of the penis of the domestic ram.

    PubMed Central

    Cottrell, D F; Iggo, A; Kitchell, R L

    1978-01-01

    1. The discharge of impulses in afferent fibres dissected from the dorsal nerve of the penis of chloralose-anaesthetized rams was recorded electrophysiologically during controlled natural stimulation of the surgically exposed penis maintained at body temperature and mechanically stabilized in a plaster of Paris mould. 2. Fifty-eight slowly adapting mechanorecptor units were examined and their pressure, velocity and displacement thresholds were determined. Units often responded best to integumental stretch. Few had resting discharges. During a sustained perpendicularly applied displacement most units adapted to silence within 1.5 min. The units were classified into types from an analysis of their adapted impulse trains in response to a sustained mechanical stimulus. 3. Twenty-five mechanoreceptive units had rapidly adapting responses. Most units had typical rapid adapting characteristics and discharged impulses only during the dynamic phase of the application of the displacement. A subgroup had intermediate adapting characteristics, and discharged intermittently during steady displacement of the integument. 4. The mechanical sensitivity of most receptors altered when the temperature of the receptive field was changed with a positive correlation in eleven units, a negative correlation in six. Six slowly adapting units were thermally insensitive. Twelve rapidly adapting units were tested. Six had a positive thermal correlation and four a negative correlation. 5. The conduction velocities of axons of mechanoreceptor units in the dorsal nerve of the penis were in the Aalpha range (12--77 msec-1). 6. Two specific warm and five specific cold units were found. The conduction velocities of the axons supplying warm receptors were 45.4 msec-1 (one unit) and those for cold receptors were 7.5, 7.8, 30, 45.5, 48.7 msec-1. 7. No correlation could be found between the receptor submodality and the profuse receptor end bulb population demonstrated histologically. PMID:722579

  1. Asymmetric Macular Structural Damage Is Associated With Relative Afferent Pupillary Defects in Patients With Glaucoma

    PubMed Central

    Gracitelli, Carolina P. B.; Tatham, Andrew J.; Zangwill, Linda M.; Weinreb, Robert N.; Abe, Ricardo Y.; Diniz-Filho, Alberto; Paranhos, Augusto; Baig, Saif; Medeiros, Felipe A.

    2016-01-01

    Purpose We examined the relationship between relative afferent pupillary defects (RAPDs) and macular structural damage measured by macular thickness and macular ganglion cell-inner plexiform layer (mGCIPL) thickness in patients with glaucoma. Methods A cross-sectional study was done of 106 glaucoma patients and 85 healthy individuals from the Diagnostic Innovations in Glaucoma Study. All subjects underwent standard automated perimetry (SAP) and optic nerve and macular imaging using Cirrus Spectral Domain Optical Coherence Tomography (SDOCT). Glaucoma was defined as repeatable abnormal SAP or progressive glaucomatous changes on stereo photographs. Pupil responses were assessed using an automated pupillometer, which records the magnitude of RAPD (RAPD score), with additional RAPD scores recorded for each of a series of colored stimuli (blue, red, green, and yellow). The relationship between RAPD score and intereye differences (right minus left eye) in circumpapillary retinal nerve fiber layer (cpRNFL) thickness, mGCIPL, macular thickness, and SAP mean deviation (MD), was examined using linear regression. Results There was fair correlation between RAPD score and asymmetric macular structural damage measured by intereye difference in mGCIPL thickness (R2 = 0.285, P < 0.001). The relationship between RAPD score and intereye difference in macular thickness was weaker (R2 = 0.167, P < 0.001). Intereye difference in cpRNFL thickness (R2 = 0.350, P < 0.001) and SAP MD (R2 = 0.594, P < 0.001) had stronger association with RAPD scores compared to intereye difference in mGCIPL and macular thickness. Conclusions Objective assessment of pupillary responses using a pupillometer was associated with asymmetric macular structural damage in patients with glaucoma. PMID:27064394

  2. Central projections of antennular chemosensory and mechanosensory afferents in the brain of the terrestrial hermit crab (Coenobita clypeatus; Coenobitidae, Anomura)

    PubMed Central

    Tuchina, Oksana; Koczan, Stefan; Harzsch, Steffen; Rybak, Jürgen; Wolff, Gabriella; Strausfeld, Nicholas J.; Hansson, Bill S.

    2015-01-01

    The Coenobitidae (Decapoda, Anomura, Paguroidea) is a taxon of hermit crabs that includes two genera with a fully terrestrial life style as adults. Previous studies have shown that Coenobitidae have evolved a sense of spatial odor localization that is behaviorally highly relevant. Here, we examined the central olfactory pathway of these animals by analyzing central projections of the antennular nerve of Coenobita clypeatus, combining backfilling of the nerve with dextran-coupled dye, Golgi impregnations and three-dimensional reconstruction of the primary olfactory center, the antennular lobe. The principal pattern of putative olfactory sensory afferents in C. clypeatus is in many aspects similar to what have been established for aquatic decapod crustaceans, such as the spiny lobster Panulirus argus. However, there are also obvious differences that may, or may not represent adaptations related to a terrestrial lifestyle. In C. clypeatus, the antennular lobe dominates the deutocerebrum, having more than one thousand allantoid-shaped subunits. We observed two distinct patterns of sensory neuron innervation: putative olfactory afferents from the aesthetascs either supply the cap/subcap region of the subunits or they extend through its full depth. Our data also demonstrate that any one sensory axon can supply input to several subunits. Putative chemosensory (non-aesthetasc) and mechanosensory axons represent a different pathway and innervate the lateral and median antennular neuropils. Hence, we suggest that the chemosensory input in C. clypeatus might be represented via a dual pathway: aesthetascs target the antennular lobe, and bimodal sensilla target the lateral antennular neuropil and median antennular neuropil. The present data is compared to related findings in other decapod crustaceans. PMID:26236202

  3. Central projections of antennular chemosensory and mechanosensory afferents in the brain of the terrestrial hermit crab (Coenobita clypeatus; Coenobitidae, Anomura).

    PubMed

    Tuchina, Oksana; Koczan, Stefan; Harzsch, Steffen; Rybak, Jürgen; Wolff, Gabriella; Strausfeld, Nicholas J; Hansson, Bill S

    2015-01-01

    The Coenobitidae (Decapoda, Anomura, Paguroidea) is a taxon of hermit crabs that includes two genera with a fully terrestrial life style as adults. Previous studies have shown that Coenobitidae have evolved a sense of spatial odor localization that is behaviorally highly relevant. Here, we examined the central olfactory pathway of these animals by analyzing central projections of the antennular nerve of Coenobita clypeatus, combining backfilling of the nerve with dextran-coupled dye, Golgi impregnations and three-dimensional reconstruction of the primary olfactory center, the antennular lobe. The principal pattern of putative olfactory sensory afferents in C. clypeatus is in many aspects similar to what have been established for aquatic decapod crustaceans, such as the spiny lobster Panulirus argus. However, there are also obvious differences that may, or may not represent adaptations related to a terrestrial lifestyle. In C. clypeatus, the antennular lobe dominates the deutocerebrum, having more than one thousand allantoid-shaped subunits. We observed two distinct patterns of sensory neuron innervation: putative olfactory afferents from the aesthetascs either supply the cap/subcap region of the subunits or they extend through its full depth. Our data also demonstrate that any one sensory axon can supply input to several subunits. Putative chemosensory (non-aesthetasc) and mechanosensory axons represent a different pathway and innervate the lateral and median antennular neuropils. Hence, we suggest that the chemosensory input in C. clypeatus might be represented via a dual pathway: aesthetascs target the antennular lobe, and bimodal sensilla target the lateral antennular neuropil and median antennular neuropil. The present data is compared to related findings in other decapod crustaceans. PMID:26236202

  4. Neural encoding schemes of tactile information in afferent activity of the vibrissal system.

    PubMed

    Farfán, Fernando D; Albarracín, Ana L; Felice, Carmelo J

    2013-02-01

    When rats acquire sensory information by actively moving their vibrissae, a neural code is manifested at different levels of the sensory system. Behavioral studies in tactile discrimination agree that rats can distinguish different roughness surfaces by whisking their vibrissae. The present study explores the existence of neural encoding in the afferent activity of one vibrissal nerve. Two neural encoding schemes based on "events" were proposed (cumulative event count and median inter-event time). The events were detected by using an event detection algorithm based on multiscale decomposition of the signal (Continuous Wavelet Transform). The encoding schemes were quantitatively evaluated through the maximum amount of information which was obtained by the Shannon's mutual information formula. Moreover, the effect of difference distances between rat snout and swept surfaces on the information values was also studied. We found that roughness information was encoded by events of 0.8 ms duration in the cumulative event count and event of 1.0 to 1.6 ms duration in the median inter-event count. It was also observed that an extreme decrease of the distance between rat snout and swept surfaces significantly reduces the information values and the capacity to discriminate among the sweep situations.

  5. Ascending auditory interneurons in the cricket Teleogryllus commodus (Walker): comparative physiology and direct connections with afferents.

    PubMed

    Hennig, R M

    1988-05-01

    Ascending auditory interneurons of the cricket, Teleogryllus commodus (Walker), were investigated using simultaneous intracellular and extracellular recording in order to identify units which had previously been characterized only by extracellular recording. The morphology and physiology of the large adapting unit (LAU: Fig. 1) and of the small tonic unit (STU: Fig. 2) of Teleogryllus correspond well to those of the ascending neuron 2 (AN2) and the ascending neuron 1 (AN1) of Gryllus (Figs. 1, 2), respectively. A summary of the ascending auditory interneurons described by various authors in 5 species of crickets is presented in order to establish common identities. Physiological evidence for direct connections between auditory afferents and the ascending auditory interneurons AN1 (STU) and AN2 (LAU) is presented. Simultaneous intracellular recordings from receptors and interneurons in response to sound as well as the activity of auditory interneurons upon electrical stimulation of the tympanal nerve reveal short and constant latencies of receptor-evoked synaptic activity in AN1 (STU) and AN2 (LAU).

  6. Response of hip joint afferent fibers to pressure and vibration in the cat.

    PubMed

    Aloisi, A M; Carli, G; Rossi, A

    1988-07-19

    Mechanical properties of 33 slowly adapting and 8 quickly adapting capsule receptors of the hip joint were investigated. All the slowly adapting receptors identified were of a limited range, discharging only when the femur was rotated to its limit of movement. They behaved as single-spot high-threshold pressure receptors as shown by the von Frey's hairs. In addition they showed a low sensitivity to vibratory stimuli applied perpendicularly to their receptive field. Only 14 out of 33 units were found to discharge following vibration; 11 could be driven 1:1 at different frequencies. There was a general trend to be entrained at lower amplitudes for higher frequencies of vibration. A positive correlation between the pressure threshold and both activation angle and vibration threshold was found. The mechanical properties of all the quickly adapting capsule receptors were found to be similar to those described in other tissues. Finally, unlike joint receptors, slowly adapting muscle afferents travelling in the same hip articular nerve were highly sensitive to pressure and vibratory stimuli.

  7. KCa1.1 is potential marker for distinguishing Ah-type baroreceptor neurons in NTS and contributes to sex-specific presynaptic neurotransmission in baroreflex afferent pathway.

    PubMed

    Zhang, Yu-Yao; Yan, Zhen-Yu; Qu, Mei-Yu; Guo, Xin-Jing; Li, Guo; Lu, Xiao-Long; Liu, Yang; Ban, Tao; Sun, Hong-Li; Qiao, Guo-Fen; Li, Bai-Yan

    2015-09-14

    Sexual-dimorphic neurocontrol of circulation has been described in baroreflex due largely to the function of myelinated Ah-type baroreceptor neurons (BRNs, 1st-order) in nodose. However, it remains unclear if sex- and afferent-specific neurotransmission could also be observed in the central synapses within nucleus of solitary track (NTS, 2nd-order). According to the principle of no mixed neurotransmission among afferents and differentiation of Ah- and A-types to iberiotoxin (IbTX) observed in nodose, the 2nd-order Ah-type BRNs are highly expected. To test this hypothesis, the excitatory post-synaptic currents (EPSCs) were recorded in identified 2nd-order BRNs before and after IbTX using brain slice and whole-cell patch. These results showed that, in male rats, the dynamics of EPSCs in capsaicin-sensitive C-types were dramatically altered by IbTX, but not in capsaicin-insensitive A-types. Interestingly, near 50% capsaicin-insensitive neurons in females showed similar effects to C-types, suggesting the existence of Ah-types in NTS, which may be the likely reason why the females had lower blood pressure and higher sensitivity to aortic depressor nerve stimulation via KCa1.1-mediated presynaptic glutamate release from Ah-type afferent terminals.

  8. Peripheral μ-opioid receptor mediated inhibition of calcium signaling and action potential-evoked calcium fluorescent transients in primary afferent CGRP nociceptive terminals.

    PubMed

    Baillie, Landon D; Schmidhammer, Helmut; Mulligan, Sean J

    2015-06-01

    While μ-opioid receptor (MOR) agonists remain the most powerful analgesics for the treatment of severe pain, serious adverse side effects that are secondary to their central nervous system actions pose substantial barriers to therapeutic use. Preclinical and clinical evidence suggest that peripheral MORs play an important role in opioid analgesia, particularly under inflammatory conditions. However, the mechanisms of peripheral MOR signaling in primary afferent pain fibres remain to be established. We have recently introduced a novel ex vivo optical imaging approach that, for the first time, allows the study of physiological functioning within individual peripheral nociceptive fibre free nerve endings in mice. In the present study, we found that MOR activation in selectively identified, primary afferent CGRP nociceptive terminals caused inhibition of N-type Ca(2+) channel signaling and suppression of action potential-evoked Ca(2+) fluorescent transients mediated by 'big conductance' Ca(2+)-activated K(+) channels (BKCa). In the live animal, we showed that the peripherally acting MOR agonist HS-731 produced analgesia and that BKCa channels were the major effectors of the peripheral MOR signaling. We have identified two key molecular transducers of MOR activation that mediate significant inhibition of nociceptive signaling in primary afferent terminals. Understanding the mechanisms of peripheral MOR signaling may promote the development of pathway selective μ-opioid drugs that offer improved therapeutic profiles for achieving potent analgesia while avoiding serious adverse central side effects. PMID:25721395

  9. Vestibular afferent responses to linear accelerations in the alert squirrel monkey

    NASA Technical Reports Server (NTRS)

    Somps, Christopher J.; Schor, Robert H.; Tomko, David L.

    1994-01-01

    The spontaneous activity of 40 otolith afferents and 44 canal afferents was recorded in 4 alert, intact squirrel monkeys. Polarization vectors and response properties of otolith afferents were determined during static re-orientations relative to gravity and during Earth-horizontal, sinusoidal, linear oscillations. Canal afferents were tested for sensitivity to linear accelerations. For regular otolith afferents, a significant correlation between upright discharge rate and sensitivity to dynamic acceleration in the horizontal plane was observed. This correlation was not present in irregular units. The sensitivity of otolith afferents to both static tilts and dynamic linear acceleration was much greater in irregularly discharging units than in regularly discharging units. The spontaneous activity and static and dynamic response properties of regularly discharging otolith afferents were similar to those reported in barbiturate-anesthetized squirrel monkeys. Irregular afferents also had similar dynamic response properties when compared to anesthetized monkeys. However, this sample of irregular afferents in alert animals had higher resting discharge rates and greater sensitivity to static tilts. The majority of otolith polarization vectors were oriented near the horizontal in the plane of the utricular maculae; however, directions of maximum sensitivity were different during dynamic and static testing. Canal afferents were not sensitive to static tilts or linear oscillations of the head.

  10. A computational model for estimating recruitment of primary afferent fibers by intraneural stimulation in the dorsal root ganglia

    NASA Astrophysics Data System (ADS)

    Bourbeau, D. J.; Hokanson, J. A.; Rubin, J. E.; Weber, D. J.

    2011-10-01

    Primary afferent microstimulation has been proposed as a method for activating cutaneous and muscle afferent fibers to restore tactile and proprioceptive feedback after limb loss or peripheral neuropathy. Large populations of primary afferent fibers can be accessed directly by implanting microelectrode arrays in the dorsal root ganglia (DRG), which provide a compact and stable target for stimulating a diverse group of sensory fibers. To gain insight into factors affecting the number and types of primary afferents activated, we developed a computational model that simulates the recruitment of fibers in the feline L7 DRG. The model comprises two parts. The first part is a single-fiber model used to describe the current-distance relation and was based on the McIntyre-Richardson-Grill model for excitability. The second part uses the results of the singe-fiber model and published data on fiber size distributions to predict the probability of recruiting a given number of fibers as a function of stimulus intensity. The range of intensities over which exactly one fiber was recruited was approximately 0.5-5 µA (0.1-1 nC per phase); the stimulus intensity at which the probability of recruiting exactly one fiber was maximized was 2.3 µA. However, at 2.3 µA, it was also possible to recruit up to three fibers, albeit with a lower probability. Stimulation amplitudes up to 6 µA were tested with the population model, which showed that as the amplitude increased, the number of fibers recruited increased exponentially. The distribution of threshold amplitudes predicted by the model was similar to that previously reported by in vivo experimentation. Finally, the model suggested that medium diameter fibers (7.3-11.5 µm) may be recruited with much greater probability than large diameter fibers (12.8-16 µm). This model may be used to efficiently test a range of stimulation parameters and nerve morphologies to complement results from electrophysiology experiments and to aid in the

  11. Common peroneal nerve dysfunction

    MedlinePlus

    ... toe-out movements Tests of nerve activity include: Electromyography (EMG, a test of electrical activity in muscles) Nerve ... Peroneal neuropathy. In: Preston DC, Shapiro BE, eds. Electromyography and Neuromuscular Disorders . 3rd ed. Philadelphia, PA: Elsevier; ...

  12. Nerve conduction velocity

    MedlinePlus

    ... to measure the speed of the nerve signals. Electromyography (recording from needles placed into the muscles) is ... Often, the nerve conduction test is followed by electromyography (EMG). In this test, needles are placed into ...

  13. Electromechanical Nerve Stimulator

    NASA Technical Reports Server (NTRS)

    Tcheng, Ping; Supplee, Frank H., Jr.; Prass, Richard L.

    1993-01-01

    Nerve stimulator applies and/or measures precisely controlled force and/or displacement to nerve so response of nerve measured. Consists of three major components connected in tandem: miniature probe with spherical tip; transducer; and actuator. Probe applies force to nerve, transducer measures force and sends feedback signal to control circuitry, and actuator positions force transducer and probe. Separate box houses control circuits and panel. Operator uses panel to select operating mode and parameters. Stimulator used in research to characterize behavior of nerve under various conditions of temperature, anesthesia, ventilation, and prior damage to nerve. Also used clinically to assess damage to nerve from disease or accident and to monitor response of nerve during surgery.

  14. Nerve Injuries in Athletes.

    ERIC Educational Resources Information Center

    Collins, Kathryn; And Others

    1988-01-01

    Over a two-year period this study evaluated the condition of 65 athletes with nerve injuries. These injuries represent the spectrum of nerve injuries likely to be encountered in sports medicine clinics. (Author/MT)

  15. Synaptic ultrastructure changes in trigeminocervical complex posttrigeminal nerve injury.

    PubMed

    Park, John; Trinh, Van Nancy; Sears-Kraxberger, Ilse; Li, Kang-Wu; Steward, Oswald; Luo, Z David

    2016-02-01

    Trigeminal nerves collecting sensory information from the orofacial area synapse on second-order neurons in the dorsal horn of subnucleus caudalis and cervical C1/C2 spinal cord (Vc/C2, or trigeminocervical complex), which is critical for sensory information processing. Injury to the trigeminal nerves may cause maladaptive changes in synaptic connectivity that plays an important role in chronic pain development. Here we examined whether injury to the infraorbital nerve, a branch of the trigeminal nerves, led to synaptic ultrastructural changes when the injured animals have developed neuropathic pain states. Transmission electron microscopy was used to examine synaptic profiles in Vc/C2 at 3 weeks postinjury, corresponding to the time of peak behavioral hypersensitivity following chronic constriction injury to the infraorbital nerve (CCI-ION). Using established criteria, synaptic profiles were classified as associated with excitatory (R-), inhibitory (F-), and primary afferent (C-) terminals. Each type was counted within the superficial dorsal horn of the Vc/C2 and the means from each rat were compared between sham and injured animals; synaptic contact length was also measured. The overall analysis indicates that rats with orofacial pain states had increased numbers and decreased mean synaptic length of R-profiles within the Vc/C2 superficial dorsal horn (lamina I) 3 weeks post-CCI-ION. Increases in the number of excitatory synapses in the superficial dorsal horn of Vc/C2 could lead to enhanced activation of nociceptive pathways, contributing to the development of orofacial pain states.

  16. Optic Nerve Injury in a Patient with Chronic Allergic Conjunctivitis

    PubMed Central

    Hazin, Ribhi; Elia, Christopher J.; Putruss, Maria; Bazzi, Amanda

    2014-01-01

    Manipulation of the optic nerve can lead to irreversible vision changes. We present a patient with a past medical history of skin allergy and allergic conjunctivitis (AC) who presented with insidious unexplained unilateral vision loss. Physical exam revealed significant blepharospasm, mild lid edema, bulbar conjunctival hyperemia, afferent pupillary defect, and slight papillary hypertrophy. Slit lamp examination demonstrated superior and inferior conjunctival scarring as well as superior corneal scarring but no signs of external trauma or neurological damage were noted. Conjunctival cultures and cytologic evaluation demonstrated significant eosinophilic infiltration. Subsequent ophthalmoscopic examination revealed optic nerve atrophy. Upon further questioning, the patient admitted to vigorous itching of the affected eye for many months. Given the presenting symptoms, history, and negative ophthalmological workup, it was determined that the optic nerve atrophy was likely secondary to digital pressure from vigorous itching. Although AC can be a significant source of decreased vision via corneal ulceration, no reported cases have ever described AC-induced vision loss of this degree from vigorous itching and chronic pressure leading to optic nerve damage. Despite being self-limiting in nature, allergic conjunctivitis should be properly managed as extreme cases can result in mechanical compression of the optic nerve and compromise vision. PMID:25317346

  17. Morphological abnormalities of embryonic cranial nerves after in utero exposure to valproic acid: implications for the pathogenesis of autism with multiple developmental anomalies.

    PubMed

    Tashiro, Yasura; Oyabu, Akiko; Imura, Yoshio; Uchida, Atsuko; Narita, Naoko; Narita, Masaaki

    2011-06-01

    Autism is often associated with multiple developmental anomalies including asymmetric facial palsy. In order to establish the etiology of autism with facial palsy, research into developmental abnormalities of the peripheral facial nerves is necessary. In the present study, to investigate the development of peripheral cranial nerves for use in an animal model of autism, rat embryos were treated with valproic acid (VPA) in utero and their cranial nerves were visualized by immunostaining. Treatment with VPA after embryonic day 9 had a significant effect on the peripheral fibers of several cranial nerves. Following VPA treatment, immunoreactivity within the trigeminal, facial, glossopharyngeal and vagus nerves was significantly reduced. Additionally, abnormal axonal pathways were observed in the peripheral facial nerves. Thus, the morphology of several cranial nerves, including the facial nerve, can be affected by prenatal VPA exposure as early as E13. Our findings indicate that disruption of early facial nerve development is involved in the etiology of asymmetric facial palsy, and may suggest a link to the etiology of autism.

  18. Deletion of the murine ATP/UTP receptor P2Y2 alters mechanical and thermal response properties in polymodal cutaneous afferents.

    PubMed

    Molliver, Derek C; Rau, Kristofer K; Jankowski, Michael P; Soneji, Deepak J; Baumbauer, Kyle M; Koerber, H Richard

    2016-09-22

    P2Y2 is a member of the P2Y family of G protein-coupled nucleotide receptors that is widely co-expressed with TRPV1 in peripheral sensory neurons of the dorsal root ganglia. To characterize P2Y2 function in cutaneous afferents, intracellular recordings from mouse sensory neurons were made using an ex vivo preparation in which hindlimb skin, saphenous nerve, dorsal root ganglia and spinal cord are dissected intact. The peripheral response properties of individual cutaneous C-fibers were analyzed using digitally controlled mechanical and thermal stimuli in male P2Y2(+/+) and P2Y2(-/-) mice. Selected sensory neurons were labeled with Neurobiotin and further characterized by immunohistochemistry. In wildtype preparations, C-fibers responding to both mechanical and thermal stimuli (CMH or CMHC) preferentially bound the lectin marker IB4 and were always immunonegative for TRPV1. Conversely, cells that fired robustly to noxious heat, but were insensitive to mechanical stimuli, were TRPV1-positive and IB4-negative. P2Y2 gene deletion resulted in reduced firing by TRPV1-negative CMH fibers to a range of heat stimuli. However, we also identified an atypical population of IB4-negative, TRPV1-positive CMH fibers. Compared to wildtype CMH fibers, these TRPV1-positive neurons exhibited lower firing rates in response to mechanical stimulation, but had increased firing to noxious heat (43-51°C). Collectively, these results demonstrate that P2Y2 contributes to response properties of cutaneous afferents, as P2Y2 deletion reduces responsiveness of conventional unmyelinated polymodal afferents to heat and appears to result in the acquisition of mechanical responsiveness in a subset of TRPV1-expressing afferents. PMID:27393251

  19. Deletion of the murine ATP/UTP receptor P2Y2 alters mechanical and thermal response properties in polymodal cutaneous afferents.

    PubMed

    Molliver, Derek C; Rau, Kristofer K; Jankowski, Michael P; Soneji, Deepak J; Baumbauer, Kyle M; Koerber, H Richard

    2016-09-22

    P2Y2 is a member of the P2Y family of G protein-coupled nucleotide receptors that is widely co-expressed with TRPV1 in peripheral sensory neurons of the dorsal root ganglia. To characterize P2Y2 function in cutaneous afferents, intracellular recordings from mouse sensory neurons were made using an ex vivo preparation in which hindlimb skin, saphenous nerve, dorsal root ganglia and spinal cord are dissected intact. The peripheral response properties of individual cutaneous C-fibers were analyzed using digitally controlled mechanical and thermal stimuli in male P2Y2(+/+) and P2Y2(-/-) mice. Selected sensory neurons were labeled with Neurobiotin and further characterized by immunohistochemistry. In wildtype preparations, C-fibers responding to both mechanical and thermal stimuli (CMH or CMHC) preferentially bound the lectin marker IB4 and were always immunonegative for TRPV1. Conversely, cells that fired robustly to noxious heat, but were insensitive to mechanical stimuli, were TRPV1-positive and IB4-negative. P2Y2 gene deletion resulted in reduced firing by TRPV1-negative CMH fibers to a range of heat stimuli. However, we also identified an atypical population of IB4-negative, TRPV1-positive CMH fibers. Compared to wildtype CMH fibers, these TRPV1-positive neurons exhibited lower firing rates in response to mechanical stimulation, but had increased firing to noxious heat (43-51°C). Collectively, these results demonstrate that P2Y2 contributes to response properties of cutaneous afferents, as P2Y2 deletion reduces responsiveness of conventional unmyelinated polymodal afferents to heat and appears to result in the acquisition of mechanical responsiveness in a subset of TRPV1-expressing afferents.

  20. The projection and synaptic organisation of NTS afferent connections with presympathetic neurons, GABA and nNOS neurons in the paraventricular nucleus of the hypothalamus.

    PubMed

    Affleck, V S; Coote, J H; Pyner, S

    2012-09-01

    Elevated sympathetic nerve activity, strongly associated with cardiovascular disease, is partly generated from the presympathetic neurons of the paraventricular nucleus of the hypothalamus (PVN). The PVN-presympathetic neurons regulating cardiac and vasomotor sympathetic activity receive information about cardiovascular status from receptors in the heart and circulation. These receptors signal changes via afferent neurons terminating in the nucleus tractus solitarius (NTS), some of which may result in excitation or inhibition of PVN-presympathetic neurons. Understanding the anatomy and neurochemistry of NTS afferent connections within the PVN could provide important clues to the impairment in homeostasis cardiovascular control associated with disease. Transynaptic labelling has shown the presence of neuronal nitric oxide synthase (nNOS)-containing neurons and GABA interneurons that terminate on presympathetic PVN neurons any of which may be the target for NTS afferents. So far NTS connections to these diverse neuronal pools have not been demonstrated and were investigated in this study. Anterograde (biotin dextran amine - BDA) labelling of the ascending projection from the NTS and retrograde (fluorogold - FG or cholera toxin B subunit - CTB) labelling of PVN presympathetic neurons combined with immunohistochemistry for GABA and nNOS was used to identify the terminal neuronal targets of the ascending projection from the NTS. It was shown that NTS afferent terminals are apposed to either PVN-GABA interneurons or to nitric oxide producing neurons or even directly to presympathetic neurons. Furthermore, there was evidence that some NTS axons were positive for vesicular glutamate transporter 2 (vGLUT2). The data provide an anatomical basis for the different functions of cardiovascular receptors that mediate their actions via the NTS-PVN pathways.

  1. Distal nerve entrapment following nerve repair.

    PubMed

    Schoeller, T; Otto, A; Wechselberger, G; Pommer, B; Papp, C

    1998-04-01

    Failure of nerve repair or poor functional outcome after reconstruction can be influenced by various causes. Besides improper microsurgical technique, fascicular malalignment and unphysiologic tension, we found in our clinical series that a subclinical nerve compression distal to the repair site can seriously impair regeneration. We concluded that the injured nerve, whether from trauma or microsurgical intervention, could be more susceptible to distal entrapment in the regenerative stage because of its disturbed microcirculation, swelling and the increase of regenerating axons followed by increased nerve volume. In two cases we found the regenerating nerve entrapped at pre-existing anatomical sites of narrowing resulting in impaired functional recovery. In both cases the surgical therapy was decompression of the distal entrapped nerve and this was followed by continued regeneration. Thorough clinical and electrophysiologic follow-up is necessary to detect such adverse compression effects and to distinguish between the various causes of failed regeneration. Under certain circumstances primary preventive decompression may be beneficial if performed at the time of nerve coaptation.