Science.gov

Sample records for affine motion model

  1. Performance comparison of rigid and affine models for motion estimation using ultrasound radio-frequency signals.

    PubMed

    Pan, Xiaochang; Liu, Ke; Shao, Jinghua; Gao, Jing; Huang, Lingyun; Bai, Jing; Luo, Jianwen

    2015-11-01

    Tissue motion estimation is widely used in many ultrasound techniques. Rigid-model-based and nonrigid-modelbased methods are two main groups of space-domain methods of tissue motion estimation. The affine model is one of the commonly used nonrigid models. The performances of the rigid model and affine model have not been compared on ultrasound RF signals, which have been demonstrated to obtain higher accuracy, precision, and resolution in motion estimation compared with B-mode images. In this study, three methods, i.e., the normalized cross-correlation method with rigid model (NCC), the optical flow method with rigid model (OFRM), and the optical flow method with affine model (OFAM), are compared using ultrasound RF signals, rather than the B-mode images used in previous studies. Simulations, phantom, and in vivo experiments are conducted to make the comparison. In the simulations, the root-mean-square errors (RMSEs) of axial and lateral displacements and strains are used to assess the accuracy of motion estimation, and the elastographic signal-tonoise ratio (SNRe) and contrast-to-noise ratio (CNRe) are used to evaluate the quality of axial strain images. In the phantom experiments, the registration error between the pre- and postdeformation RF signals, as well as the SNRe and CNRe of axial strain images, are utilized as the evaluation criteria. In the in vivo experiments, the registration error is used to evaluate the estimation performance. The results show that the affinemodel- based method (i.e., OFAM) obtains the lowest RMSE or registration error and the highest SNRe and CNRe among all the methods. The affine model is demonstrated to be superior to the rigid model in motion estimation based on RF signals.

  2. Fan Affinity Laws from a Collision Model

    ERIC Educational Resources Information Center

    Bhattacharjee, Shayak

    2012-01-01

    The performance of a fan is usually estimated using hydrodynamical considerations. The calculations are long and involved and the results are expressed in terms of three affinity laws. In this paper we use kinetic theory to attack this problem. A hard sphere collision model is used, and subsequently a correction to account for the flow behaviour…

  3. Equations of motion in metric-affine gravity: A covariant unified framework

    NASA Astrophysics Data System (ADS)

    Puetzfeld, Dirk; Obukhov, Yuri N.

    2014-10-01

    We derive the equations of motion of extended deformable bodies in metric-affine gravity. The conservation laws which follow from the invariance of the action under the general coordinate transformations are used as a starting point for the discussion of the dynamics of extended deformable test bodies. By means of a covariant approach, based on Synge's world function, we obtain the master equation of motion for an arbitrary system of coupled conserved currents. This unified framework is then applied to metric-affine gravity. We confirm and extend earlier findings; in particular, we once again demonstrate that it is only possible to detect the post-Riemannian spacetime geometry by ordinary (nonmicrostructured) test bodies if gravity is nonminimally coupled to matter.

  4. Computational Motion Phantoms and Statistical Models of Respiratory Motion

    NASA Astrophysics Data System (ADS)

    Ehrhardt, Jan; Klinder, Tobias; Lorenz, Cristian

    Breathing motion is not a robust and 100 % reproducible process, and inter- and intra-fractional motion variations form an important problem in radiotherapy of the thorax and upper abdomen. A widespread consensus nowadays exists that it would be useful to use prior knowledge about respiratory organ motion and its variability to improve radiotherapy planning and treatment delivery. This chapter discusses two different approaches to model the variability of respiratory motion. In the first part, we review computational motion phantoms, i.e. computerized anatomical and physiological models. Computational phantoms are excellent tools to simulate and investigate the effects of organ motion in radiation therapy and to gain insight into methods for motion management. The second part of this chapter discusses statistical modeling techniques to describe the breathing motion and its variability in a population of 4D images. Population-based models can be generated from repeatedly acquired 4D images of the same patient (intra-patient models) and from 4D images of different patients (inter-patient models). The generation of those models is explained and possible applications of those models for motion prediction in radiotherapy are exemplified. Computational models of respiratory motion and motion variability have numerous applications in radiation therapy, e.g. to understand motion effects in simulation studies, to develop and evaluate treatment strategies or to introduce prior knowledge into the patient-specific treatment planning.

  5. Affine Transform to Reform Pixel Coordinates of EOG Signals for Controlling Robot Manipulators Using Gaze Motions

    PubMed Central

    Rusydi, Muhammad Ilhamdi; Sasaki, Minoru; Ito, Satoshi

    2014-01-01

    Biosignals will play an important role in building communication between machines and humans. One of the types of biosignals that is widely used in neuroscience are electrooculography (EOG) signals. An EOG has a linear relationship with eye movement displacement. Experiments were performed to construct a gaze motion tracking method indicated by robot manipulator movements. Three operators looked at 24 target points displayed on a monitor that was 40 cm in front of them. Two channels (Ch1 and Ch2) produced EOG signals for every single eye movement. These signals were converted to pixel units by using the linear relationship between EOG signals and gaze motion distances. The conversion outcomes were actual pixel locations. An affine transform method is proposed to determine the shift of actual pixels to target pixels. This method consisted of sequences of five geometry processes, which are translation-1, rotation, translation-2, shear and dilatation. The accuracy was approximately 0.86° ± 0.67° in the horizontal direction and 0.54° ± 0.34° in the vertical. This system successfully tracked the gaze motions not only in direction, but also in distance. Using this system, three operators could operate a robot manipulator to point at some targets. This result shows that the method is reliable in building communication between humans and machines using EOGs. PMID:24919013

  6. Affine transform to reform pixel coordinates of EOG signals for controlling robot manipulators using gaze motions.

    PubMed

    Rusydi, Muhammad Ilhamdi; Sasaki, Minoru; Ito, Satoshi

    2014-06-10

    Biosignals will play an important role in building communication between machines and humans. One of the types of biosignals that is widely used in neuroscience are electrooculography (EOG) signals. An EOG has a linear relationship with eye movement displacement. Experiments were performed to construct a gaze motion tracking method indicated by robot manipulator movements. Three operators looked at 24 target points displayed on a monitor that was 40 cm in front of them. Two channels (Ch1 and Ch2) produced EOG signals for every single eye movement. These signals were converted to pixel units by using the linear relationship between EOG signals and gaze motion distances. The conversion outcomes were actual pixel locations. An affine transform method is proposed to determine the shift of actual pixels to target pixels. This method consisted of sequences of five geometry processes, which are translation-1, rotation, translation-2, shear and dilatation. The accuracy was approximately 0.86° ± 0.67° in the horizontal direction and 0.54° ± 0.34° in the vertical. This system successfully tracked the gaze motions not only in direction, but also in distance. Using this system, three operators could operate a robot manipulator to point at some targets. This result shows that the method is reliable in building communication between humans and machines using EOGs.

  7. Affinity based information diffusion model in social networks

    NASA Astrophysics Data System (ADS)

    Liu, Hongli; Xie, Yun; Hu, Haibo; Chen, Zhigao

    2014-12-01

    There is a widespread intuitive sense that people prefer participating in spreading the information in which they are interested. The affinity of people with information disseminated can affect the information propagation in social networks. In this paper, we propose an information diffusion model incorporating the mechanism of affinity of people with information which considers the fitness of affinity values of people with affinity threshold of the information. We find that the final size of information diffusion is affected by affinity threshold of the information, average degree of the network and the probability of people's losing their interest in the information. We also explore the effects of other factors on information spreading by numerical simulations and find that the probabilities of people's questioning and confirming the information can affect the propagation speed, but not the final scope.

  8. Dense Stereo Matching Method Based on Local Affine Model.

    PubMed

    Li, Jie; Shi, Wenxuan; Deng, Dexiang; Jia, Wenyan; Sun, Mingui

    2013-07-01

    A new method for constructing an accurate disparity space image and performing an efficient cost aggregation in stereo matching based on local affine model is proposed in this paper. The key algorithm includes a new self-adapting dissimilarity measurement used for calculating the matching cost and a local affine model used in cost aggregation stage. Different from the traditional region-based methods, which try to change the matching window size or to calculate an adaptive weight to do the aggregation, the proposed method focuses on obtaining the efficient and accurate local affine model to aggregate the cost volume while preserving the disparity discontinuity. Moreover, the local affine model can be extended to the color space. Experimental results demonstrate that the proposed method is able to provide subpixel precision disparity maps compared with some state-of-the-art stereo matching methods. PMID:24163727

  9. Affine group formulation of the Standard Model coupled to gravity

    SciTech Connect

    Chou, Ching-Yi; Ita, Eyo; Soo, Chopin

    2014-04-15

    In this work we apply the affine group formalism for four dimensional gravity of Lorentzian signature, which is based on Klauder’s affine algebraic program, to the formulation of the Hamiltonian constraint of the interaction of matter and all forces, including gravity with non-vanishing cosmological constant Λ, as an affine Lie algebra. We use the hermitian action of fermions coupled to gravitation and Yang–Mills theory to find the density weight one fermionic super-Hamiltonian constraint. This term, combined with the Yang–Mills and Higgs energy densities, are composed with York’s integrated time functional. The result, when combined with the imaginary part of the Chern–Simons functional Q, forms the affine commutation relation with the volume element V(x). Affine algebraic quantization of gravitation and matter on equal footing implies a fundamental uncertainty relation which is predicated upon a non-vanishing cosmological constant. -- Highlights: •Wheeler–DeWitt equation (WDW) quantized as affine algebra, realizing Klauder’s program. •WDW formulated for interaction of matter and all forces, including gravity, as affine algebra. •WDW features Hermitian generators in spite of fermionic content: Standard Model addressed. •Constructed a family of physical states for the full, coupled theory via affine coherent states. •Fundamental uncertainty relation, predicated on non-vanishing cosmological constant.

  10. Feature Matching with Affine-Function Transformation Models.

    PubMed

    Li, Hongsheng; Huang, Xiaolei; Huang, Junzhou; Zhang, Shaoting

    2014-12-01

    Feature matching is an important problem and has extensive uses in computer vision. However, existing feature matching methods support either a specific or a small set of transformation models. In this paper, we propose a unified feature matching framework which supports a large family of transformation models. We call the family of transformation models the affine-function family, in which all transformations can be expressed by affine functions with convex constraints. In this framework, the goal is to recover transformation parameters for every feature point in a template point set to calculate their optimal matching positions in an input image. Given pairwise feature dissimilarity values between all points in the template set and the input image, we create a convex dissimilarity function for each template point. Composition of such convex functions with any transformation model in the affine-function family is shown to have an equivalent convex optimization form that can be optimized efficiently. Four example transformation models in the affine-function family are introduced to show the flexibility of our proposed framework. Our framework achieves 0.0 percent matching errors for both CMU House and Hotel sequences following the experimental setup in [6]. PMID:26353148

  11. Motion transparency: making models of motion perception transparent.

    PubMed

    Snowden; Verstraten

    1999-10-01

    In daily life our visual system is bombarded with motion information. We see cars driving by, flocks of birds flying in the sky, clouds passing behind trees that are dancing in the wind. Vision science has a good understanding of the first stage of visual motion processing, that is, the mechanism underlying the detection of local motions. Currently, research is focused on the processes that occur beyond the first stage. At this level, local motions have to be integrated to form objects, define the boundaries between them, construct surfaces and so on. An interesting, if complicated case is known as motion transparency: the situation in which two overlapping surfaces move transparently over each other. In that case two motions have to be assigned to the same retinal location. Several researchers have tried to solve this problem from a computational point of view, using physiological and psychophysical results as a guideline. We will discuss two models: one uses the traditional idea known as 'filter selection' and the other a relatively new approach based on Bayesian inference. Predictions from these models are compared with our own visual behaviour and that of the neural substrates that are presumed to underlie these perceptions.

  12. Molecular modeling of the affinity chromatography of monoclonal antibodies.

    PubMed

    Paloni, Matteo; Cavallotti, Carlo

    2015-01-01

    Molecular modeling is a methodology that offers the possibility of studying complex systems such as protein-ligand complexes from an atomistic point of view, making available information that can be difficultly obtained from experimental studies. Here, a protocol for the construction of molecular models of the interaction between antibodies and ligands that can be used for an affinity chromatography process is presented. The outlined methodology focuses mostly on the description of a procedure that may be adopted to determine the structure and free energy of interaction between the antibody and the affinity ligand. A procedure to extend the proposed methodology to include the effect of the environment (buffer solution, spacer, support matrix) is also briefly outlined. PMID:25749965

  13. Animal models in motion sickness research

    NASA Technical Reports Server (NTRS)

    Daunton, Nancy G.

    1990-01-01

    Practical information on candidate animal models for motion sickness research and on methods used to elicit and detect motion sickness in these models is provided. Four good potential models for use in motion sickness experiments include the dog, cat, squirrel monkey, and rat. It is concluded that the appropriate use of the animal models, combined with exploitation of state-of-the-art biomedical techniques, should generate a great step forward in the understanding of motion sickness mechanisms and in the development of efficient and effective approaches to its prevention and treatment in humans.

  14. Motion models in attitude estimation

    NASA Technical Reports Server (NTRS)

    Chu, D.; Wheeler, Z.; Sedlak, J.

    1994-01-01

    Attitude estimator use observations from different times to reduce the effects of noise. If the vehicle is rotating, the attitude at one time needs to be propagated to that at another time. If the vehicle measures its angular velocity, attitude propagating entails integrating a rotational kinematics equation only. If a measured angular velocity is not available, torques can be computed and an additional rotational dynamics equation integrated to give the angular velocity. Initial conditions for either of these integrations come from the estimation process. Sometimes additional quantities, such as gyro and torque parameters, are also solved for. Although the partial derivatives of attitude with respect to initial attitude and gyro parameters are well known, the corresponding partial derivatives with respect to initial angular velocity and torque parameters are less familiar. They can be derived and computed numerically in a way that is analogous to that used for the initial attitude and gyro parameters. Previous papers have demonstrated the feasibility of using dynamics models for attitude estimation but have not provided details of how each angular velocity and torque parameters can be estimated. This tutorial paper provides some of that detail, notably how to compute the state transition matrix when closed form expressions are not available. It also attempts to put dynamics estimation in perspective by showing the progression from constant to gyro-propagated to dynamics-propagated attitude motion models. Readers not already familiar with attitude estimation will find this paper an introduction to the subject, and attitude specialists may appreciate the collection of heretofore scattered results brought together in a single place.

  15. Modeling repetitive motions using structured light.

    PubMed

    Xu, Yi; Aliaga, Daniel G

    2010-01-01

    Obtaining models of dynamic 3D objects is an important part of content generation for computer graphics. Numerous methods have been extended from static scenarios to model dynamic scenes. If the states or poses of the dynamic object repeat often during a sequence (but not necessarily periodically), we call such a repetitive motion. There are many objects, such as toys, machines, and humans, undergoing repetitive motions. Our key observation is that when a motion-state repeats, we can sample the scene under the same motion state again but using a different set of parameters; thus, providing more information of each motion state. This enables robustly acquiring dense 3D information difficult for objects with repetitive motions using only simple hardware. After the motion sequence, we group temporally disjoint observations of the same motion state together and produce a smooth space-time reconstruction of the scene. Effectively, the dynamic scene modeling problem is converted to a series of static scene reconstructions, which are easier to tackle. The varying sampling parameters can be, for example, structured-light patterns, illumination directions, and viewpoints resulting in different modeling techniques. Based on this observation, we present an image-based motion-state framework and demonstrate our paradigm using either a synchronized or an unsynchronized structured-light acquisition method.

  16. Local Structural Alignment of RNA with Affine Gap Model

    NASA Astrophysics Data System (ADS)

    Wong, Thomas K. F.; Cheung, Brenda W. Y.; Lam, T. W.; Yiu, S. M.

    Predicting new non-coding RNAs (ncRNAs) of a family can be done by aligning the potential candidate with a member of the family with known sequence and secondary structure. Existing tools either only consider the sequence similarity or cannot handle local alignment with gaps. In this paper, we consider the problem of finding the optimal local structural alignment between a query RNA sequence (with known secondary structure) and a target sequence (with unknown secondary structure) with the affine gap penalty model. We provide the algorithm to solve the problem. Based on a preliminary experiment, we show that there are ncRNA families in which considering local structural alignment with gap penalty model can identify real hits more effectively than using global alignment or local alignment without gap penalty model.

  17. Ground Motion Modeling in the Eastern Caucasus

    NASA Astrophysics Data System (ADS)

    Pitarka, Arben; Gok, Rengin; Yetirmishli, Gurban; Ismayilova, Saida; Mellors, Robert

    2016-08-01

    In this study, we analyzed the performance of a preliminary three-dimensional (3D) velocity model of the Eastern Caucasus covering most of the Azerbaijan. The model was developed in support to long-period ground motion simulations and seismic hazard assessment from regional earthquakes in Azerbaijan. The model's performance was investigated by simulating ground motion from the damaging Mw 5.9, 2012 Zaqatala earthquake, which was well recorded throughout the region by broadband seismic instruments. In our simulations, we use a parallelized finite-difference method of fourth-order accuracy. The comparison between the simulated and recorded ground motion velocity in the modeled period range of 3-20 s shows that in general, the 3D velocity model performs well. Areas in which the model needs improvements are located mainly in the central part of the Kura basin and in the Caspian Sea coastal areas. Comparisons of simulated ground motion using our 3D velocity model and corresponding 1D regional velocity model were used to locate areas with strong 3D wave propagation effects. In areas with complex underground structure, the 1D model fails to produce the observed ground motion amplitude and duration, and spatial extend of ground motion amplification caused by wave propagation effects.

  18. LCD motion blur: modeling, analysis, and algorithm.

    PubMed

    Chan, Stanley H; Nguyen, Truong Q

    2011-08-01

    Liquid crystal display (LCD) devices are well known for their slow responses due to the physical limitations of liquid crystals. Therefore, fast moving objects in a scene are often perceived as blurred. This effect is known as the LCD motion blur. In order to reduce LCD motion blur, an accurate LCD model and an efficient deblurring algorithm are needed. However, existing LCD motion blur models are insufficient to reflect the limitation of human-eye-tracking system. Also, the spatiotemporal equivalence in LCD motion blur models has not been proven directly in the discrete 2-D spatial domain, although it is widely used. There are three main contributions of this paper: modeling, analysis, and algorithm. First, a comprehensive LCD motion blur model is presented, in which human-eye-tracking limits are taken into consideration. Second, a complete analysis of spatiotemporal equivalence is provided and verified using real video sequences. Third, an LCD motion blur reduction algorithm is proposed. The proposed algorithm solves an l(1)-norm regularized least-squares minimization problem using a subgradient projection method. Numerical results show that the proposed algorithm gives higher peak SNR, lower temporal error, and lower spatial error than motion-compensated inverse filtering and Lucy-Richardson deconvolution algorithm, which are two state-of-the-art LCD deblurring algorithms. PMID:21292596

  19. Describing high-dimensional dynamics with low-dimensional piecewise affine models: applications to renewable energy.

    PubMed

    Hirata, Yoshito; Aihara, Kazuyuki

    2012-06-01

    We introduce a low-dimensional description for a high-dimensional system, which is a piecewise affine model whose state space is divided by permutations. We show that the proposed model tends to predict wind speeds and photovoltaic outputs for the time scales from seconds to 100 s better than by global affine models. In addition, computations using the piecewise affine model are much faster than those of usual nonlinear models such as radial basis function models.

  20. Biophysical Modeling of Respiratory Organ Motion

    NASA Astrophysics Data System (ADS)

    Werner, René

    Methods to estimate respiratory organ motion can be divided into two groups: biophysical modeling and image registration. In image registration, motion fields are directly extracted from 4D ({D}+{t}) image sequences, often without concerning knowledge about anatomy and physiology in detail. In contrast, biophysical approaches aim at identification of anatomical and physiological aspects of breathing dynamics that are to be modeled. In the context of radiation therapy, biophysical modeling of respiratory organ motion commonly refers to the framework of continuum mechanics and elasticity theory, respectively. Underlying ideas and corresponding boundary value problems of those approaches are described in this chapter, along with a brief comparison to image registration-based motion field estimation.

  1. Tending to Change: Toward a Situated Model of Affinity Spaces

    ERIC Educational Resources Information Center

    Bommarito, Dan

    2014-01-01

    The concept of affinity spaces, a theoretical construct used to analyze literate activity from a spatial perspective, has gained popularity among scholars of literacy studies and, particularly, video-game studies. This article seeks to expand current notions of affinity spaces by identifying key assumptions that have limited researchers'…

  2. Computationally efficient video restoration for Nyquist sampled imaging sensors combining an affine-motion-based temporal Kalman filter and adaptive Wiener filter.

    PubMed

    Rucci, Michael; Hardie, Russell C; Barnard, Kenneth J

    2014-05-01

    In this paper, we present a computationally efficient video restoration algorithm to address both blur and noise for a Nyquist sampled imaging system. The proposed method utilizes a temporal Kalman filter followed by a correlation-model based spatial adaptive Wiener filter (AWF). The Kalman filter employs an affine background motion model and novel process-noise variance estimate. We also propose and demonstrate a new multidelay temporal Kalman filter designed to more robustly treat local motion. The AWF is a spatial operation that performs deconvolution and adapts to the spatially varying residual noise left in the Kalman filter stage. In image areas where the temporal Kalman filter is able to provide significant noise reduction, the AWF can be aggressive in its deconvolution. In other areas, where less noise reduction is achieved with the Kalman filter, the AWF balances the deconvolution with spatial noise reduction. In this way, the Kalman filter and AWF work together effectively, but without the computational burden of full joint spatiotemporal processing. We also propose a novel hybrid system that combines a temporal Kalman filter and BM3D processing. To illustrate the efficacy of the proposed methods, we test the algorithms on both simulated imagery and video collected with a visible camera.

  3. Locust Collective Motion and Its Modeling.

    PubMed

    Ariel, Gil; Ayali, Amir

    2015-12-01

    Over the past decade, technological advances in experimental and animal tracking techniques have motivated a renewed theoretical interest in animal collective motion and, in particular, locust swarming. This review offers a comprehensive biological background followed by comparative analysis of recent models of locust collective motion, in particular locust marching, their settings, and underlying assumptions. We describe a wide range of recent modeling and simulation approaches, from discrete agent-based models of self-propelled particles to continuous models of integro-differential equations, aimed at describing and analyzing the fascinating phenomenon of locust collective motion. These modeling efforts have a dual role: The first views locusts as a quintessential example of animal collective motion. As such, they aim at abstraction and coarse-graining, often utilizing the tools of statistical physics. The second, which originates from a more biological perspective, views locust swarming as a scientific problem of its own exceptional merit. The main goal should, thus, be the analysis and prediction of natural swarm dynamics. We discuss the properties of swarm dynamics using the tools of statistical physics, as well as the implications for laboratory experiments and natural swarms. Finally, we stress the importance of a combined-interdisciplinary, biological-theoretical effort in successfully confronting the challenges that locusts pose at both the theoretical and practical levels. PMID:26656851

  4. Locust Collective Motion and Its Modeling

    PubMed Central

    Ariel, Gil; Ayali, Amir

    2015-01-01

    Over the past decade, technological advances in experimental and animal tracking techniques have motivated a renewed theoretical interest in animal collective motion and, in particular, locust swarming. This review offers a comprehensive biological background followed by comparative analysis of recent models of locust collective motion, in particular locust marching, their settings, and underlying assumptions. We describe a wide range of recent modeling and simulation approaches, from discrete agent-based models of self-propelled particles to continuous models of integro-differential equations, aimed at describing and analyzing the fascinating phenomenon of locust collective motion. These modeling efforts have a dual role: The first views locusts as a quintessential example of animal collective motion. As such, they aim at abstraction and coarse-graining, often utilizing the tools of statistical physics. The second, which originates from a more biological perspective, views locust swarming as a scientific problem of its own exceptional merit. The main goal should, thus, be the analysis and prediction of natural swarm dynamics. We discuss the properties of swarm dynamics using the tools of statistical physics, as well as the implications for laboratory experiments and natural swarms. Finally, we stress the importance of a combined-interdisciplinary, biological-theoretical effort in successfully confronting the challenges that locusts pose at both the theoretical and practical levels. PMID:26656851

  5. Locust Collective Motion and Its Modeling.

    PubMed

    Ariel, Gil; Ayali, Amir

    2015-12-01

    Over the past decade, technological advances in experimental and animal tracking techniques have motivated a renewed theoretical interest in animal collective motion and, in particular, locust swarming. This review offers a comprehensive biological background followed by comparative analysis of recent models of locust collective motion, in particular locust marching, their settings, and underlying assumptions. We describe a wide range of recent modeling and simulation approaches, from discrete agent-based models of self-propelled particles to continuous models of integro-differential equations, aimed at describing and analyzing the fascinating phenomenon of locust collective motion. These modeling efforts have a dual role: The first views locusts as a quintessential example of animal collective motion. As such, they aim at abstraction and coarse-graining, often utilizing the tools of statistical physics. The second, which originates from a more biological perspective, views locust swarming as a scientific problem of its own exceptional merit. The main goal should, thus, be the analysis and prediction of natural swarm dynamics. We discuss the properties of swarm dynamics using the tools of statistical physics, as well as the implications for laboratory experiments and natural swarms. Finally, we stress the importance of a combined-interdisciplinary, biological-theoretical effort in successfully confronting the challenges that locusts pose at both the theoretical and practical levels.

  6. PREDICTING ER BINDING AFFINITY FOR EDC RANKING AND PRIORITIZATION: MODEL II

    EPA Science Inventory

    The training set used to derive a common reactivity pattern (COREPA) model for estrogen receptor (ER) binding affinity in Model I (see Abstract I in this series) was extended to include 47 rat estrogen receptor (rER) relative binding affinity (RBA) measurements in addition to the...

  7. Ground Motion Prediction Models for Caucasus Region

    NASA Astrophysics Data System (ADS)

    Jorjiashvili, Nato; Godoladze, Tea; Tvaradze, Nino; Tumanova, Nino

    2016-04-01

    Ground motion prediction models (GMPMs) relate ground motion intensity measures to variables describing earthquake source, path, and site effects. Estimation of expected ground motion is a fundamental earthquake hazard assessment. The most commonly used parameter for attenuation relation is peak ground acceleration or spectral acceleration because this parameter gives useful information for Seismic Hazard Assessment. Since 2003 development of Georgian Digital Seismic Network has started. In this study new GMP models are obtained based on new data from Georgian seismic network and also from neighboring countries. Estimation of models is obtained by classical, statistical way, regression analysis. In this study site ground conditions are additionally considered because the same earthquake recorded at the same distance may cause different damage according to ground conditions. Empirical ground-motion prediction models (GMPMs) require adjustment to make them appropriate for site-specific scenarios. However, the process of making such adjustments remains a challenge. This work presents a holistic framework for the development of a peak ground acceleration (PGA) or spectral acceleration (SA) GMPE that is easily adjustable to different seismological conditions and does not suffer from the practical problems associated with adjustments in the response spectral domain.

  8. Ciliary motion modeling, and dynamic multicilia interactions

    PubMed Central

    Gueron, Shay; Liron, Nadav

    1992-01-01

    This paper presents a rigorous and accurate modeling tool for ciliary motion. The hydrodynamics analysis, originally suggested by Lighthill (1975), has been modified to remove computational problems. This approach is incorporated into a moment-balance model of ciliary motion in place of the previously used hydrodynamic analyses, known as Resistive Force Theory. The method is also developed to include the effect of a plane surface at the base of the cilium, and the effect of the flow fields produced by neighboring cilia. These extensions were not possible with previous work using the Resistive Force Theory hydrodynamics. Performing reliable simulations of a single cilium as well as modeling multicilia interactions is now possible. The result is a general method which could now be used for detailed modeling of the mechanisms for generating ciliary beat patterns and patterns of metachronal interactions in arrays of cilia. A computer animation technique was designed and applied to display the results. PMID:19431847

  9. Mathematical model accurately predicts protein release from an affinity-based delivery system.

    PubMed

    Vulic, Katarina; Pakulska, Malgosia M; Sonthalia, Rohit; Ramachandran, Arun; Shoichet, Molly S

    2015-01-10

    Affinity-based controlled release modulates the delivery of protein or small molecule therapeutics through transient dissociation/association. To understand which parameters can be used to tune release, we used a mathematical model based on simple binding kinetics. A comprehensive asymptotic analysis revealed three characteristic regimes for therapeutic release from affinity-based systems. These regimes can be controlled by diffusion or unbinding kinetics, and can exhibit release over either a single stage or two stages. This analysis fundamentally changes the way we think of controlling release from affinity-based systems and thereby explains some of the discrepancies in the literature on which parameters influence affinity-based release. The rate of protein release from affinity-based systems is determined by the balance of diffusion of the therapeutic agent through the hydrogel and the dissociation kinetics of the affinity pair. Equations for tuning protein release rate by altering the strength (KD) of the affinity interaction, the concentration of binding ligand in the system, the rate of dissociation (koff) of the complex, and the hydrogel size and geometry, are provided. We validated our model by collapsing the model simulations and the experimental data from a recently described affinity release system, to a single master curve. Importantly, this mathematical analysis can be applied to any single species affinity-based system to determine the parameters required for a desired release profile. PMID:25449806

  10. Generalized cranking model for collective nuclear motion

    NASA Astrophysics Data System (ADS)

    Kunz, J.; Nix, J. R.

    1984-09-01

    The Inglis cranking model is generalized to take into account effects of any velocity dependence present in the single-particle potential and the reaction of the pairing field to the collective motion. The generalized model is applied to translations, rotations and some special types of vibrations. Some of our results and our numerical calculations are obtained with a harmonic-oscillator single-particle potential. Unlike the inertia calculated with the Inglis cranking model, the inertia calculated with the generalized cranking model is independent of the effective mass and approaches the irrotational value in the limit of large pairing.

  11. Mathematical modelling of animate and intentional motion.

    PubMed Central

    Rittscher, Jens; Blake, Andrew; Hoogs, Anthony; Stein, Gees

    2003-01-01

    Our aim is to enable a machine to observe and interpret the behaviour of others. Mathematical models are employed to describe certain biological motions. The main challenge is to design models that are both tractable and meaningful. In the first part we will describe how computer vision techniques, in particular visual tracking, can be applied to recognize a small vocabulary of human actions in a constrained scenario. Mainly the problems of viewpoint and scale invariance need to be overcome to formalize a general framework. Hence the second part of the article is devoted to the question whether a particular human action should be captured in a single complex model or whether it is more promising to make extensive use of semantic knowledge and a collection of low-level models that encode certain motion primitives. Scene context plays a crucial role if we intend to give a higher-level interpretation rather than a low-level physical description of the observed motion. A semantic knowledge base is used to establish the scene context. This approach consists of three main components: visual analysis, the mapping from vision to language and the search of the semantic database. A small number of robust visual detectors is used to generate a higher-level description of the scene. The approach together with a number of results is presented in the third part of this article. PMID:12689374

  12. Blind watermark algorithm on 3D motion model based on wavelet transform

    NASA Astrophysics Data System (ADS)

    Qi, Hu; Zhai, Lang

    2013-12-01

    With the continuous development of 3D vision technology, digital watermark technology, as the best choice for copyright protection, has fused with it gradually. This paper proposed a blind watermark plan of 3D motion model based on wavelet transform, and made it loaded into the Vega real-time visual simulation system. Firstly, put 3D model into affine transform, and take the distance from the center of gravity to the vertex of 3D object in order to generate a one-dimensional discrete signal; then make this signal into wavelet transform to change its frequency coefficients and embed watermark, finally generate 3D motion model with watermarking. In fixed affine space, achieve the robustness in translation, revolving and proportion transforms. The results show that this approach has better performances not only in robustness, but also in watermark- invisibility.

  13. Modelling motions within the organ of Corti

    NASA Astrophysics Data System (ADS)

    Ni, Guangjian; Baumgart, Johannes; Elliott, Stephen

    2015-12-01

    Most cochlear models used to describe the basilar membrane vibration along the cochlea are concerned with macromechanics, and often assume that the organ of Corti moves as a single unit, ignoring the individual motion of different components. New experimental technologies provide the opportunity to measure the dynamic behaviour of different components within the organ of Corti, but only for certain types of excitation. It is thus still difficult to directly measure every aspect of cochlear dynamics, particularly for acoustic excitation of the fully active cochlea. The present work studies the dynamic response of a model of the cross-section of the cochlea, at the microscopic level, using the finite element method. The elastic components are modelled with plate elements and the perilymph and endolymph are modelled with inviscid fluid elements. The individual motion of each component within the organ of Corti is calculated with dynamic pressure loading on the basilar membrane and the motions of the experimentally accessible parts are compared with measurements. The reticular lamina moves as a stiff plate, without much bending, and is pivoting around a point close to the region of the inner hair cells, as observed experimentally. The basilar membrane shows a slightly asymmetric mode shape, with maximum displacement occurring between the second-row and the third-row of the outer hair cells. The dynamics responses is also calculated, and compared with experiments, when driven by the outer hair cells. The receptance of the basilar membrane motion and of the deflection of the hair bundles of the outer hair cells is thus obtained, when driven either acoustically or electrically. In this way, the fully active linear response of the basilar membrane to acoustic excitation can be predicted by using a linear superposition of the calculated receptances and a defined gain function for the outer hair cell feedback.

  14. Synthesis of nonlinear discrete control systems via time-delay affine Takagi-Sugeno fuzzy models.

    PubMed

    Chang, Wen-Jer; Chang, Wei

    2005-04-01

    The affine Takagi-Sugeno (TS) fuzzy model played a more important role in nonlinear control because it can be used to approximate the nonlinear systems more than the homogeneous TS fuzzy models. Besides, it is known that the time delays exist in physical systems and the previous works did not consider the time delay effects in the analysis of affine TS fuzzy models. Hence a parallel distributed compensation based fuzzy controller design issue for discrete time-delay affine TS fuzzy models is considered in this paper. The time-delay effect is considered in the discrete affine TS fuzzy models and the stabilization issue is developed for the nonlinear time-delay systems. Finally, a numerical simulation for a time-delayed nonlinear truck-trailer system is given to show the applications of the present approach.

  15. PREDICTING ER BINDING AFFINITY FOR EDC RANKING AND PRIORITIZATION: MODEL I

    EPA Science Inventory

    A Common Reactivity Pattern (COREPA) model, based on consideration of multiple energetically reasonable conformations of flexible chemicals was developed using a training set of 232 rat estrogen receptor (rER) relative binding affinity (RBA) measurements. The training set include...

  16. Mathematical modeling of the low and high affinity arabinose transport systems in Escherichia coli.

    PubMed

    Yildirim, Necmettin

    2012-04-01

    A mathematical model was developed for the low and high affinity arabinose transport systems in E. coli. The model is a system of three ordinary differential equations and takes the dynamics of mRNAs for the araE and araFGH proteins and the internal arabinose into account. Special attention was paid to estimate the model parameters from the literature. Our analysis and simulations suggest that the high affinity transport system helps the low affinity transport system to respond to high concentration of extracellular arabinose faster, whereas the high affinity transport system responds to a small amount of extracellular arabinose. Steady state analysis of the model also predicts that there is a regime for the extracellular concentration of arabinose where the arabinose system can show bistable behavior.

  17. Abnormal behaviors detection using particle motion model

    NASA Astrophysics Data System (ADS)

    Chen, Yutao; Zhang, Hong; Cheng, Feiyang; Yuan, Ding; You, Yuhu

    2015-03-01

    Human abnormal behaviors detection is one of the most challenging tasks in the video surveillance for the public security control. Interaction Energy Potential model is an effective and competitive method published recently to detect abnormal behaviors, but their model of abnormal behaviors is not accurate enough, so it has some limitations. In order to solve this problem, we propose a novel Particle Motion model. Firstly, we extract the foreground to improve the accuracy of interest points detection since the complex background usually degrade the effectiveness of interest points detection largely. Secondly, we detect the interest points using the graphics features. Here, the movement of each human target can be represented by the movements of detected interest points of the target. Then, we track these interest points in videos to record their positions and velocities. In this way, the velocity angles, position angles and distance between each two points can be calculated. Finally, we proposed a Particle Motion model to calculate the eigenvalue of each frame. An adaptive threshold method is proposed to detect abnormal behaviors. Experimental results on the BEHAVE dataset and online videos show that our method could detect fight and robbery events effectively and has a promising performance.

  18. Joint PET-MR respiratory motion models for clinical PET motion correction

    NASA Astrophysics Data System (ADS)

    Manber, Richard; Thielemans, Kris; Hutton, Brian F.; Wan, Simon; McClelland, Jamie; Barnes, Anna; Arridge, Simon; Ourselin, Sébastien; Atkinson, David

    2016-09-01

    Patient motion due to respiration can lead to artefacts and blurring in positron emission tomography (PET) images, in addition to quantification errors. The integration of PET with magnetic resonance (MR) imaging in PET-MR scanners provides complementary clinical information, and allows the use of high spatial resolution and high contrast MR images to monitor and correct motion-corrupted PET data. In this paper we build on previous work to form a methodology for respiratory motion correction of PET data, and show it can improve PET image quality whilst having minimal impact on clinical PET-MR protocols. We introduce a joint PET-MR motion model, using only 1 min per PET bed position of simultaneously acquired PET and MR data to provide a respiratory motion correspondence model that captures inter-cycle and intra-cycle breathing variations. In the model setup, 2D multi-slice MR provides the dynamic imaging component, and PET data, via low spatial resolution framing and principal component analysis, provides the model surrogate. We evaluate different motion models (1D and 2D linear, and 1D and 2D polynomial) by computing model-fit and model-prediction errors on dynamic MR images on a data set of 45 patients. Finally we apply the motion model methodology to 5 clinical PET-MR oncology patient datasets. Qualitative PET reconstruction improvements and artefact reduction are assessed with visual analysis, and quantitative improvements are calculated using standardised uptake value (SUVpeak and SUVmax) changes in avid lesions. We demonstrate the capability of a joint PET-MR motion model to predict respiratory motion by showing significantly improved image quality of PET data acquired before the motion model data. The method can be used to incorporate motion into the reconstruction of any length of PET acquisition, with only 1 min of extra scan time, and with no external hardware required.

  19. A mechanical model for guided motion of mammalian cells

    NASA Astrophysics Data System (ADS)

    Bitter, P.; Beck, K. L.; Lenz, P.

    2015-12-01

    We introduce a generic, purely mechanical model for environment-sensitive motion of mammalian cells that is applicable to chemotaxis, haptotaxis, and durotaxis as modes of motility. It is able to theoretically explain all relevant experimental observations, in particular, the high efficiency of motion, the behavior on inhomogeneous substrates, and the fixation of the lagging pole during motion. Furthermore, our model predicts that efficiency of motion in following a gradient depends on cell geometry (with more elongated cells being more efficient).

  20. Disorder, pre-stress and non-affinity in polymer 8-chain models

    NASA Astrophysics Data System (ADS)

    Cioroianu, Adrian R.; Spiesz, Ewa M.; Storm, Cornelis

    2016-04-01

    To assess the role of single-chain elasticity, non-affine strain fields and pre-stressed reference states we present and discuss the results of numerical and analytical analyses of a modified 8-chain Arruda-Boyce model for cross-linked polymer networks. This class of models has proved highly successful in modeling the finite-strain response of flexible rubbers. We extend it to include the effects of spatial disorder and the associated non-affinity, and use it to assess the validity of replacing the constituent chain's nonlinear elastic response with equivalent linear, Hookean springs. Surprisingly, we find that even in the regime of linear response, the full polymer model gives very different results from its linearized counterpart, even though none of the chains are stretched beyond their linear regime. We demonstrate that this effect is due to the fact that the polymer models are under considerable pre-stress in their ground state. We show that pre-stress strongly suppresses non-affinity in these unit cell models, resulting in a marked stiffening of the bulk response. Polymer networks with some degree of flexibility are thus intrinsically prestressed, and one effect of such prestresses is to reduce non-affine deformations. Combined, these findings may help explain why fully affine mechanical models, in many cases, predict the bulk mechanical response of disordered polymer networks so well.

  1. An Inexpensive Mechanical Model for Projectile Motion

    ERIC Educational Resources Information Center

    Kagan, David

    2011-01-01

    As experienced physicists, we see the beauty and simplicity of projectile motion. It is merely the superposition of uniform linear motion along the direction of the initial velocity vector and the downward motion due to the constant acceleration of gravity. We see the kinematic equations as just the mathematical machinery to perform the…

  2. Atomic Models for Motional Stark Effects Diagnostics

    SciTech Connect

    Gu, M F; Holcomb, C; Jayakuma, J; Allen, S; Pablant, N A; Burrell, K

    2007-07-26

    We present detailed atomic physics models for motional Stark effects (MSE) diagnostic on magnetic fusion devices. Excitation and ionization cross sections of the hydrogen or deuterium beam traveling in a magnetic field in collisions with electrons, ions, and neutral gas are calculated in the first Born approximation. The density matrices and polarization states of individual Stark-Zeeman components of the Balmer {alpha} line are obtained for both beam into plasma and beam into gas models. A detailed comparison of the model calculations and the MSE polarimetry and spectral intensity measurements obtained at the DIII-D tokamak is carried out. Although our beam into gas models provide a qualitative explanation for the larger {pi}/{sigma} intensity ratios and represent significant improvements over the statistical population models, empirical adjustment factors ranging from 1.0-2.0 must still be applied to individual line intensities to bring the calculations into full agreement with the observations. Nevertheless, we demonstrate that beam into gas measurements can be used successfully as calibration procedures for measuring the magnetic pitch angle through {pi}/{sigma} intensity ratios. The analyses of the filter-scan polarization spectra from the DIII-D MSE polarimetry system indicate unknown channel and time dependent light contaminations in the beam into gas measurements. Such contaminations may be the main reason for the failure of beam into gas calibration on MSE polarimetry systems.

  3. Modelling the motion of particles around choanoflagellates

    NASA Astrophysics Data System (ADS)

    Orme, Belinda; Pettitt, Michala; Otto, Steve; Blake, John

    2001-11-01

    The three-dimensional particle paths due to a helical beat pattern of the flagellum of a sessile choanoflagellate, Salpingoeca Amphoridium (SA), are modelled and compared against experimental observations. The organism's main components are a flagellum and cell body which are situated above a substrate such that the interaction between these entities is crucial in determining the fluid flow around the choanoflagellate. The flow of fluid in the organism's environment can be characterised as Stokes flow and a flow field analogous to one created by the flagellum is generated by a distribution of stokeslets and dipoles along a helical curve. The model describing the flow considers interactions between a slender flagellum, an infinite flat plane (modelling the substrate) and a sphere (modelling the cell body). The use of image systems appropriate to Green's functions for a sphere and plane boundary are described. The computations depict particle paths representing passive tracers from experiments and their motion illustrates overall flow patterns. Figures are presented comparing recorded experimental data with numerically generated results for a number of particle paths. The principal results show good agreement between the experiments and theory.

  4. Head Motion Modeling for Human Behavior Analysis in Dyadic Interaction

    PubMed Central

    Xiao, Bo; Georgiou, Panayiotis; Baucom, Brian; Narayanan, Shrikanth S.

    2015-01-01

    This paper presents a computational study of head motion in human interaction, notably of its role in conveying interlocutors’ behavioral characteristics. Head motion is physically complex and carries rich information; current modeling approaches based on visual signals, however, are still limited in their ability to adequately capture these important properties. Guided by the methodology of kinesics, we propose a data driven approach to identify typical head motion patterns. The approach follows the steps of first segmenting motion events, then parametrically representing the motion by linear predictive features, and finally generalizing the motion types using Gaussian mixture models. The proposed approach is experimentally validated using video recordings of communication sessions from real couples involved in a couples therapy study. In particular we use the head motion model to classify binarized expert judgments of the interactants’ specific behavioral characteristics where entrainment in head motion is hypothesized to play a role: Acceptance, Blame, Positive, and Negative behavior. We achieve accuracies in the range of 60% to 70% for the various experimental settings and conditions. In addition, we describe a measure of motion similarity between the interaction partners based on the proposed model. We show that the relative change of head motion similarity during the interaction significantly correlates with the expert judgments of the interactants’ behavioral characteristics. These findings demonstrate the effectiveness of the proposed head motion model, and underscore the promise of analyzing human behavioral characteristics through signal processing methods. PMID:26557047

  5. Modeling Student Thinking about Motion in Tutorial

    NASA Astrophysics Data System (ADS)

    Frank, Brian W.; Scherr, R. E.

    2006-12-01

    In an ongoing study, we are analyzing students’ conceptual resources for understanding motion. Previous work used results of surveys, written questions, and interviews to infer the nature of students’ ideas. Video of students working together in tutorial groups now allows us to access the details of their reasoning as they express themselves to their peers. We present examples of students in the algebra-based introductory physics course at the University of Maryland analyzing segments of ticker tape to develop an understanding of constant, instantaneous, and average speeds. The most commonly observed resources involve direct and indirect relationships among speed, distance, and time. Various constructions of ideas built from these resources led to both correct and incorrect accounts of the physical phenomena. We characterize the nature of these various constructions based on a model of student thinking as arising from the activation of conceptual resources, analyze shifts in student reasoning, and discuss the strengths and weaknesses of the resources model in accounting for student performance.

  6. Coriolis effects and motion sickness modelling.

    PubMed

    Bles, W

    1998-11-15

    Coriolis effects are notorious in relation to disorientation and motion sickness in aircrew. A review is provided of experimental data on these Coriolis effects, including the modulatory effects of adding visual or somatosensory rotatory motion information. A vector analysis of the consequences of head movements during somatosensory, visual and/or vestibular rotatory motion stimulation revealed that the more the sensed angular velocity vector after the head movements is aligned with the gravitoinertial force vector, the less nauseating effects are experienced. It is demonstrated that this is a special case of the subjective vertical conflict theory on motion sickness that assumes that motion sickness may be provoked if a discrepancy is detected between the subjective vertical and the sensed vertical as determined on the basis of incoming sensory information.

  7. Modeling Local Interactions during the Motion of Cyanobacteria

    PubMed Central

    Galante, Amanda; Wisen, Susanne; Bhaya, Devaki; Levy, Doron

    2012-01-01

    Synechocystis sp., a common unicellular freshwater cyanobacterium, has been used as a model organism to study phototaxis, an ability to move in the direction of a light source. This microorganism displays a number of additional characteristics such as delayed motion, surface dependence, and a quasi-random motion, where cells move in a seemingly disordered fashion instead of in the direction of the light source, a global force on the system. These unexplained motions are thought to be modulated by local interactions between cells such as intercellular communication. In this paper, we consider only local interactions of these phototactic cells in order to mathematically model this quasi-random motion. We analyze an experimental data set to illustrate the presence of quasi-random motion and then derive a stochastic dynamic particle system modeling interacting phototactic cells. The simulations of our model are consistent with experimentally observed phototactic motion. PMID:22713858

  8. A dynamic styrofoam-ball model for simulating molecular motion

    NASA Astrophysics Data System (ADS)

    Mak, Se-yuen; Cheung, Derek

    2001-01-01

    In this paper we introduce a simple styrofoam-ball model that can be used for simulating molecular motion in all three states. As the foam balls are driven by a vibrator that is in turn driven by a signal generator, the frequency and the amplitude of vibration can be adjusted independently. Thus, the model is appropriate for simulating molecular motion in the liquid state, which is a combination of vibration and meandering motion.

  9. System matrix modelling of externally tracked motion

    PubMed Central

    Rahmim, Arman; Cheng, Ju-Chieh; Dinelle, Katie; Shilov, Mikhail; Segars, W. Paul; Rousset, Olivier G.; Tsui, Benjamin M.W.; Wong, Dean F.; Sossi, Vesna

    2010-01-01

    Background and aim In high-resolution emission tomography imaging, even small patient movements can considerably degrade image quality. The aim of this work was to develop a general approach to motion-corrected reconstruction of motion-contaminated data in the case of rigid motion (particularly brain imaging) which would be applicable to any PET scanner in the field, without specialized data-acquisition requirements. Methods Assuming the ability to externally track subject motion during scanning (e.g., using the Polaris camera), we proposed to incorporate the measured rigid motion information into the system matrix of the expectation maximization reconstruction algorithm. Furthermore, we noted and developed a framework to incorporate the additional effect of motion on modifying the attenuation factors. A new mathematical brain phantom was developed and used along with elaborate combined Simset/GATE simulations to compare the proposed framework with the cases of no motion correction. Results and conclusion Clear qualitative and quantitative improvements were observed when incorporating the proposed framework. The method is very practical to implement for any scanner in the field, not requiring any hardware modifications or access to the list-mode acquisition capability. PMID:18458606

  10. Inter-fraction variations in respiratory motion models

    NASA Astrophysics Data System (ADS)

    McClelland, J. R.; Hughes, S.; Modat, M.; Qureshi, A.; Ahmad, S.; Landau, D. B.; Ourselin, S.; Hawkes, D. J.

    2011-01-01

    Respiratory motion can vary dramatically between the planning stage and the different fractions of radiotherapy treatment. Motion predictions used when constructing the radiotherapy plan may be unsuitable for later fractions of treatment. This paper presents a methodology for constructing patient-specific respiratory motion models and uses these models to evaluate and analyse the inter-fraction variations in the respiratory motion. The internal respiratory motion is determined from the deformable registration of Cine CT data and related to a respiratory surrogate signal derived from 3D skin surface data. Three different models for relating the internal motion to the surrogate signal have been investigated in this work. Data were acquired from six lung cancer patients. Two full datasets were acquired for each patient, one before the course of radiotherapy treatment and one at the end (approximately 6 weeks later). Separate models were built for each dataset. All models could accurately predict the respiratory motion in the same dataset, but had large errors when predicting the motion in the other dataset. Analysis of the inter-fraction variations revealed that most variations were spatially varying base-line shifts, but changes to the anatomy and the motion trajectories were also observed.

  11. A depictive neural model for the representation of motion verbs.

    PubMed

    Rao, Sunil; Aleksander, Igor

    2011-11-01

    In this paper, we present a depictive neural model for the representation of motion verb semantics in neural models of visual awareness. The problem of modelling motion verb representation is shown to be one of function application, mapping a set of given input variables defining the moving object and the path of motion to a defined output outcome in the motion recognition context. The particular function-applicative implementation and consequent recognition model design presented are seen as arising from a noun-adjective recognition model enabling the recognition of colour adjectives as applied to a set of shapes representing objects to be recognised. The presence of such a function application scheme and a separately implemented position identification and path labelling scheme are accordingly shown to be the primitives required to enable the design and construction of a composite depictive motion verb recognition scheme. Extensions to the presented design to enable the representation of transitive verbs are also discussed.

  12. Biomechanical interpretation of a free-breathing lung motion model

    NASA Astrophysics Data System (ADS)

    Zhao, Tianyu; White, Benjamin; Moore, Kevin L.; Lamb, James; Yang, Deshan; Lu, Wei; Mutic, Sasa; Low, Daniel A.

    2011-12-01

    The purpose of this paper is to develop a biomechanical model for free-breathing motion and compare it to a published heuristic five-dimensional (5D) free-breathing lung motion model. An ab initio biomechanical model was developed to describe the motion of lung tissue during free breathing by analyzing the stress-strain relationship inside lung tissue. The first-order approximation of the biomechanical model was equivalent to a heuristic 5D free-breathing lung motion model proposed by Low et al in 2005 (Int. J. Radiat. Oncol. Biol. Phys. 63 921-9), in which the motion was broken down to a linear expansion component and a hysteresis component. To test the biomechanical model, parameters that characterize expansion, hysteresis and angles between the two motion components were reported independently and compared between two models. The biomechanical model agreed well with the heuristic model within 5.5% in the left lungs and 1.5% in the right lungs for patients without lung cancer. The biomechanical model predicted that a histogram of angles between the two motion components should have two peaks at 39.8° and 140.2° in the left lungs and 37.1° and 142.9° in the right lungs. The data from the 5D model verified the existence of those peaks at 41.2° and 148.2° in the left lungs and 40.1° and 140° in the right lungs for patients without lung cancer. Similar results were also observed for the patients with lung cancer, but with greater discrepancies. The maximum-likelihood estimation of hysteresis magnitude was reported to be 2.6 mm for the lung cancer patients. The first-order approximation of the biomechanical model fit the heuristic 5D model very well. The biomechanical model provided new insights into breathing motion with specific focus on motion trajectory hysteresis.

  13. Building Mathematical Models of Simple Harmonic and Damped Motion.

    ERIC Educational Resources Information Center

    Edwards, Thomas

    1995-01-01

    By developing a sequence of mathematical models of harmonic motion, shows that mathematical models are not right or wrong, but instead are better or poorer representations of the problem situation. (MKR)

  14. An SF1 affinity model to identify branch point sequences in human introns

    PubMed Central

    Pastuszak, Alexander W.; Joachimiak, Marcin P.; Blanchette, Marco; Rio, Donald C.; Brenner, Steven E.; Frankel, Alan D.

    2011-01-01

    Splicing factor 1 (SF1) binds to the branch point sequence (BPS) of mammalian introns and is believed to be important for the splicing of some, but not all, introns. To help identify BPSs, particularly those that depend on SF1, we generated a BPS profile model in which SF1 binding affinity data, validated by branch point mapping, were iteratively incorporated into computational models. We searched a data set of 117 499 human introns for best matches to the SF1 Affinity Model above a threshold, and counted the number of matches at each intronic position. After subtracting a background value, we found that 87.9% of remaining high-scoring matches identified were located in a region upstream of 3′-splice sites where BPSs are typically found. Since U2AF65 recognizes the polypyrimidine tract (PPT) and forms a cooperative RNA complex with SF1, we combined the SF1 model with a PPT model computed from high affinity binding sequences for U2AF65. The combined model, together with binding site location constraints, accurately identified introns bound by SF1 that are candidates for SF1-dependent splicing. PMID:21071404

  15. A simple model for strong ground motions and response spectra

    USGS Publications Warehouse

    Safak, Erdal; Mueller, Charles; Boatwright, John

    1988-01-01

    A simple model for the description of strong ground motions is introduced. The model shows that response spectra can be estimated by using only four parameters of the ground motion, the RMS acceleration, effective duration and two corner frequencies that characterize the effective frequency band of the motion. The model is windowed band-limited white noise, and is developed by studying the properties of two functions, cumulative squared acceleration in the time domain, and cumulative squared amplitude spectrum in the frequency domain. Applying the methods of random vibration theory, the model leads to a simple analytical expression for the response spectra. The accuracy of the model is checked by using the ground motion recordings from the aftershock sequences of two different earthquakes and simulated accelerograms. The results show that the model gives a satisfactory estimate of the response spectra.

  16. Joint model of motion and anatomy for PET image reconstruction

    SciTech Connect

    Qiao Feng; Pan Tinsu; Clark, John W. Jr.; Mawlawi, Osama

    2007-12-15

    Anatomy-based positron emission tomography (PET) image enhancement techniques have been shown to have the potential for improving PET image quality. However, these techniques assume an accurate alignment between the anatomical and the functional images, which is not always valid when imaging the chest due to respiratory motion. In this article, we present a joint model of both motion and anatomical information by integrating a motion-incorporated PET imaging system model with an anatomy-based maximum a posteriori image reconstruction algorithm. The mismatched anatomical information due to motion can thus be effectively utilized through this joint model. A computer simulation and a phantom study were conducted to assess the efficacy of the joint model, whereby motion and anatomical information were either modeled separately or combined. The reconstructed images in each case were compared to corresponding reference images obtained using a quadratic image prior based maximum a posteriori reconstruction algorithm for quantitative accuracy. Results of these studies indicated that while modeling anatomical information or motion alone improved the PET image quantitation accuracy, a larger improvement in accuracy was achieved when using the joint model. In the computer simulation study and using similar image noise levels, the improvement in quantitation accuracy compared to the reference images was 5.3% and 19.8% when using anatomical or motion information alone, respectively, and 35.5% when using the joint model. In the phantom study, these results were 5.6%, 5.8%, and 19.8%, respectively. These results suggest that motion compensation is important in order to effectively utilize anatomical information in chest imaging using PET. The joint motion-anatomy model presented in this paper provides a promising solution to this problem.

  17. QSAR modeling of globulin binding affinity of corticosteroids using AM1 calculations.

    PubMed

    De, Kakali; Sengupta, Chandana; Roy, Kunal

    2004-06-15

    A quantitative structure-activity analysis of binding affinity of a series of 30 steroids for corticosteroid-binding globulin was performed using Wang-Ford charges of the non-hydrogen common atoms obtained from molecular electrostatic potential surface of AM1 optimized energy-minimized geometries of the compounds. Attempts were made to include lipophilicity (logP) and molar refractivity (MR) values of the whole molecules in the multivariate relations. The final relations were subjected to 'leave-one-out' cross-validation to check their predictive potential. It was found from the study that the charges of different atoms of the steroid nucleus [atoms 3, 4, 5 (ring A), 8, 9 (fusion points of rings B and C) and 16 (ring D)] contribute significantly to the binding affinity. This suggests the importance of these atoms/sites for the globulin binding affinity, which is also supported by previous reports on structure-activity relations of corticosteroids. Further, molar refractivity shows parabolic relation with the binding affinity, which indicates the possibility of dispersion interactions. The statistical qualities of the final equations generated in the present study (predicted variance 77-82%; explained variance 83-87%) are better than those of some of the previously reported models.

  18. Ground motion data for International Collider models

    SciTech Connect

    Volk, J.T.; LeBrun, P.; Shiltsev, V.; Singatulin, S.; /Fermilab

    2007-11-01

    The proposed location for the International Linear Collider (ILC) in the Americas region is Fermilab in Batavia Illinois. If built at this location the tunnels would be located in the Galena Platteville shale at a depth of 100 or more meters below the surface. Studies using hydro static water levels and seismometers have been conducted in the MINOS hall and the LaFrange Mine in North Aurora Illinois to determine the level of ground motion. Both these locations are in the Galena Platteville shale and indicate the typical ground motion to be expected for the ILC. The data contains both natural and cultural noise. Coefficients for the ALT law are determined. Seismic measurements at the surface and 100 meters below the surface are presented.

  19. Unsteady aerodynamic modeling for arbitrary motions

    NASA Technical Reports Server (NTRS)

    Edwards, J. W.; Ashley, H.; Breakwell, J. V.

    1977-01-01

    A study is presented on the unsteady aerodynamic loads due to arbitrary motions of a thin wing and their adaptation for the calculation of response and true stability of aeroelastic modes. In an Appendix, the use of Laplace transform techniques and the generalized Theodorsen function for two-dimensional incompressible flow is reviewed. New applications of the same approach are shown also to yield airloads valid for quite general small motions. Numerical results are given for the two-dimensional supersonic case. Previously proposed approximate methods, starting from simple harmonic unsteady theory, are evaluated by comparison with exact results obtained by the present approach. The Laplace inversion integral is employed to separate the loads into 'rational' and 'nonrational' parts, of which only the former are involved in aeroelastic stability of the wing. Among other suggestions for further work, it is explained how existing aerodynamic computer programs may be adapted in a fairly straightforward fashion to deal with arbitrary transients.

  20. On a PCA-based lung motion model

    NASA Astrophysics Data System (ADS)

    Li, Ruijiang; Lewis, John H.; Jia, Xun; Zhao, Tianyu; Liu, Weifeng; Wuenschel, Sara; Lamb, James; Yang, Deshan; Low, Daniel A.; Jiang, Steve B.

    2011-09-01

    Respiration-induced organ motion is one of the major uncertainties in lung cancer radiotherapy and is crucial to be able to accurately model the lung motion. Most work so far has focused on the study of the motion of a single point (usually the tumor center of mass), and much less work has been done to model the motion of the entire lung. Inspired by the work of Zhang et al (2007 Med. Phys. 34 4772-81), we believe that the spatiotemporal relationship of the entire lung motion can be accurately modeled based on principle component analysis (PCA) and then a sparse subset of the entire lung, such as an implanted marker, can be used to drive the motion of the entire lung (including the tumor). The goal of this work is twofold. First, we aim to understand the underlying reason why PCA is effective for modeling lung motion and find the optimal number of PCA coefficients for accurate lung motion modeling. We attempt to address the above important problems both in a theoretical framework and in the context of real clinical data. Second, we propose a new method to derive the entire lung motion using a single internal marker based on the PCA model. The main results of this work are as follows. We derived an important property which reveals the implicit regularization imposed by the PCA model. We then studied the model using two mathematical respiratory phantoms and 11 clinical 4DCT scans for eight lung cancer patients. For the mathematical phantoms with cosine and an even power (2n) of cosine motion, we proved that 2 and 2n PCA coefficients and eigenvectors will completely represent the lung motion, respectively. Moreover, for the cosine phantom, we derived the equivalence conditions for the PCA motion model and the physiological 5D lung motion model (Low et al 2005 Int. J. Radiat. Oncol. Biol. Phys. 63 921-9). For the clinical 4DCT data, we demonstrated the modeling power and generalization performance of the PCA model. The average 3D modeling error using PCA was within 1

  1. A true polar wander model for Neoproterozoic plate motions

    SciTech Connect

    Ripperdan, R.L. )

    1992-01-01

    Recent paleogeographic reconstructions for the interval 750--500 Ma (Neoproterozoic to Late Cambrian) require rapid rates of plate motion and/or rotation around an equatorial Euler pole to accommodate reconstructions for the Early Paleozoic. Motions of this magnitude appear to be very uncommon during the Phanerozoic. A model for plate motions based on the hypothesis that discrete intervals of rapid true polar wander (RTPW) occurred during the Neoproterozoic can account for the paleogeographic changes with minimum amounts of plate motion. The model uses the paleogeographic reconstructions of Hoffman (1991). The following constraints were applied during derivation of the model: (1) relative motions between major continental units were restricted to be combinations of great circle or small circle translations with Euler poles of rotation = spin axis; (2) maximum rates of relative translational plate motion were 0.2 m/yr. Based on these constraints, two separate sets of synthetic plate motion trajectories were determined. The sequence of events in both can be summarized as: (1) A rapid true polar wander event of ca 90[degree] rafting a supercontinent to the spin axis; (2) breakup of the polar supercontinent into two fragments, one with the Congo, West Africa, Amazonia, and Baltica cratons, the other with the Laurentia, East Gondwana, and Kalahari cratons; (3) great circle motion of the blocks towards the equator; (4) small circle motion leading to amalgamation of Gondwana and separation of Laurentia and Baltica. In alternative 1, rifting initiates between East Antarctica and Laurentia and one episode of RTPW is required. Alternative 2 requires two episodes of RTPW; and that rifting occurred first along the eastern margin and later along the western margin of Laurentia. Synthetic plate motion trajectories are compared to existing paleomagnetic and geological data, and implications of the model for paleoclimatic changes during the Neoproterozoic are discussed.

  2. Analysis of models for curvature driven motion of interfaces

    NASA Astrophysics Data System (ADS)

    Swartz, Drew E.

    Interfacial energies frequently appear in models arising in materials science and engineering. To dissipate energy in these systems, the interfaces will often move by a curvature dependent velocity. The present work details the mathematical analysis of some models for curvature dependent motion of interfaces. In particular we focus on two types, thresholding schemes and phase field models. With regard to thresholding schemes, we give a new proof of the convergence of the Merriman-Bence-Osher thresholding algorithm to motion by mean curvature. This new proof does not rely on the scheme satisfying a comparison principle. The technique shows promise in proving the convergence of thresholding schemes for more general motions, such as fourth-order motions and motions of higher codimension interfaces. The application of the proof technique to these more general schemes is discussed, along with rigorous consistency estimates. With regard to phase-field models, we examine the L 2-gradient flow of a second order gradient model for phase transitions, introduced by Fonseca and Mantegazza. In the case of radial symmetry we demonstrate that the diffuse interfacial dynamics converge to motion by mean curvature as the width of the interface decreases to zero. This is in accordance with the first-order Allen-Cahn model for phase transitions. But unlike the Allen-Cahn model, the gradient flow for the Fonseca-Mantegazza model is a fourth-order parabolic PDE. This creates new and novel difficulties in its analysis.

  3. A kinematic model for Bayesian tracking of cyclic human motion

    NASA Astrophysics Data System (ADS)

    Greif, Thomas; Lienhart, Rainer

    2010-01-01

    We introduce a two-dimensional kinematic model for cyclic motions of humans, which is suitable for the use as temporal prior in any Bayesian tracking framework. This human motion model is solely based on simple kinematic properties: the joint accelerations. Distributions of joint accelerations subject to the cycle progress are learned from training data. We present results obtained by applying the introduced model to the cyclic motion of backstroke swimming in a Kalman filter framework that represents the posterior distribution by a Gaussian. We experimentally evaluate the sensitivity of the motion model with respect to the frequency and noise level of assumed appearance-based pose measurements by simulating various fidelities of the pose measurements using ground truth data.

  4. Modeling rate sensitivity of exercise transient responses to limb motion.

    PubMed

    Yamashiro, Stanley M; Kato, Takahide

    2014-10-01

    Transient responses of ventilation (V̇e) to limb motion can exhibit predictive characteristics. In response to a change in limb motion, a rapid change in V̇e is commonly observed with characteristics different than during a change in workload. This rapid change has been attributed to a feed-forward or adaptive response. Rate sensitivity was explored as a specific hypothesis to explain predictive V̇e responses to limb motion. A simple model assuming an additive feed-forward summation of V̇e proportional to the rate of change of limb motion was studied. This model was able to successfully account for the adaptive phase correction observed during human sinusoidal changes in limb motion. Adaptation of rate sensitivity might also explain the reduction of the fast component of V̇e responses previously reported following sudden exercise termination. Adaptation of the fast component of V̇e response could occur by reduction of rate sensitivity. Rate sensitivity of limb motion was predicted by the model to reduce the phase delay between limb motion and V̇e response without changing the steady-state response to exercise load. In this way, V̇e can respond more quickly to an exercise change without interfering with overall feedback control. The asymmetry between responses to an incremental and decremental ramp change in exercise can also be accounted for by the proposed model. Rate sensitivity leads to predicted behavior, which resembles responses observed in exercise tied to expiratory reserve volume.

  5. Maximum-Entropy Models of Sequenced Immune Repertoires Predict Antigen-Antibody Affinity

    PubMed Central

    Marcatili, Paolo; Pagnani, Andrea

    2016-01-01

    The immune system has developed a number of distinct complex mechanisms to shape and control the antibody repertoire. One of these mechanisms, the affinity maturation process, works in an evolutionary-like fashion: after binding to a foreign molecule, the antibody-producing B-cells exhibit a high-frequency mutation rate in the genome region that codes for the antibody active site. Eventually, cells that produce antibodies with higher affinity for their cognate antigen are selected and clonally expanded. Here, we propose a new statistical approach based on maximum entropy modeling in which a scoring function related to the binding affinity of antibodies against a specific antigen is inferred from a sample of sequences of the immune repertoire of an individual. We use our inference strategy to infer a statistical model on a data set obtained by sequencing a fairly large portion of the immune repertoire of an HIV-1 infected patient. The Pearson correlation coefficient between our scoring function and the IC50 neutralization titer measured on 30 different antibodies of known sequence is as high as 0.77 (p-value 10−6), outperforming other sequence- and structure-based models. PMID:27074145

  6. Effects of yaw and pitch motion on model attitude measurements

    NASA Technical Reports Server (NTRS)

    Tcheng, Ping; Tripp, John S.; Finley, Tom D.

    1995-01-01

    This report presents a theoretical analysis of the dynamic effects of angular motion in yaw and pitch on model attitude measurements in which inertial sensors were used during wind tunnel tests. A technique is developed to reduce the error caused by these effects. The analysis shows that a 20-to-1 reduction in model attitude measurement error caused by angular motion is possible with this technique.

  7. Constants of motion of the four-particle Calogero model

    SciTech Connect

    Saghatelian, A.

    2012-10-15

    We present the explicit expressions of the complete set of constants of motion of four-particle Calogero model with excluded center of mass, i.e. of the A{sub 3} rational Calogero model. Then we find the constants of motion of its spherical part, defining two-dimensional 12-center spherical oscillator, with the force centers located at the vertexes of cuboctahedron.

  8. Modeling the binding affinity of structurally diverse industrial chemicals to carbon using the artificial intelligence approaches.

    PubMed

    Gupta, Shikha; Basant, Nikita; Rai, Premanjali; Singh, Kunwar P

    2015-11-01

    Binding affinity of chemical to carbon is an important characteristic as it finds vast industrial applications. Experimental determination of the adsorption capacity of diverse chemicals onto carbon is both time and resource intensive, and development of computational approaches has widely been advocated. In this study, artificial intelligence (AI)-based ten different qualitative and quantitative structure-property relationship (QSPR) models (MLPN, RBFN, PNN/GRNN, CCN, SVM, GEP, GMDH, SDT, DTF, DTB) were established for the prediction of the adsorption capacity of structurally diverse chemicals to activated carbon following the OECD guidelines. Structural diversity of the chemicals and nonlinear dependence in the data were evaluated using the Tanimoto similarity index and Brock-Dechert-Scheinkman statistics. The generalization and prediction abilities of the constructed models were established through rigorous internal and external validation procedures performed employing a wide series of statistical checks. In complete dataset, the qualitative models rendered classification accuracies between 97.04 and 99.93%, while the quantitative models yielded correlation (R(2)) values of 0.877-0.977 between the measured and the predicted endpoint values. The quantitative prediction accuracies for the higher molecular weight (MW) compounds (class 4) were relatively better than those for the low MW compounds. Both in the qualitative and quantitative models, the Polarizability was the most influential descriptor. Structural alerts responsible for the extreme adsorption behavior of the compounds were identified. Higher number of carbon and presence of higher halogens in a molecule rendered higher binding affinity. Proposed QSPR models performed well and outperformed the previous reports. A relatively better performance of the ensemble learning models (DTF, DTB) may be attributed to the strengths of the bagging and boosting algorithms which enhance the predictive accuracies. The

  9. Understanding the detailed motion of a model bacterium

    NASA Astrophysics Data System (ADS)

    Thawani, Akanksha; Tirumkudulu, Mahesh

    2014-11-01

    Inspired by the motion of flagellated bacteria such as Escherichia coli and Bacillus subtilis, we have built a macroscopic model bacterium, in order to investigate the intricate aspects of their motion which cannot be visualized under a microscope. The flagellated rod shaped cells were approximated with a spherical head attached to a rigid metal helix, via a plastic hook. The motion of model bacterium was observed in a high viscosity silicone oil to replicate the low Reynolds number flow conditions. A significant wobble was observed even in the absence of an off-axis flagellum. We suspect that the flexibility in the hook connecting the head and flagellum is the cause for wobble, since wobble was observed to increase significantly with hook-flexibility. The motion of the model bacterium was predicted using the Slender Body theory of Lighthill, and was compared with the measured trajectories.

  10. Probabilistic approach for predicting periodic orbits in piecewise affine differential models.

    PubMed

    Chaves, Madalena; Farcot, Etienne; Gouzé, Jean-Luc

    2013-06-01

    Piecewise affine models provide a qualitative description of the dynamics of a system, and are often used to study genetic regulatory networks. The state space of a piecewise affine system is partitioned into hyperrectangles, which can be represented as nodes in a directed graph, so that the system's trajectories follow a path in a transition graph. This paper proposes and compares two definitions of probability of transition between two nodes A and B of the graph, based on the volume of the initial conditions on the hyperrectangle A whose trajectories cross to B. The parameters of the system can thus be compared to the observed transitions between two hyperrectangles. This property may become useful to identify sets of parameters for which the system yields a desired periodic orbit with a high probability, or to predict the most likely periodic orbit given a set of parameters, as illustrated by a gene regulatory system composed of two intertwined negative loops.

  11. A deformation of quantum affine algebra in squashed Wess-Zumino-Novikov-Witten models

    SciTech Connect

    Kawaguchi, Io; Yoshida, Kentaroh

    2014-06-01

    We proceed to study infinite-dimensional symmetries in two-dimensional squashed Wess-Zumino-Novikov-Witten models at the classical level. The target space is given by squashed S³ and the isometry is SU(2){sub L}×U(1){sub R}. It is known that SU(2){sub L} is enhanced to a couple of Yangians. We reveal here that an infinite-dimensional extension of U(1){sub R} is a deformation of quantum affine algebra, where a new deformation parameter is provided with the coefficient of the Wess-Zumino term. Then we consider the relation between the deformed quantum affine algebra and the pair of Yangians from the viewpoint of the left-right duality of monodromy matrices. The integrable structure is also discussed by computing the r/s-matrices that satisfy the extended classical Yang-Baxter equation. Finally, two degenerate limits are discussed.

  12. Neurons compute internal models of the physical laws of motion.

    PubMed

    Angelaki, Dora E; Shaikh, Aasef G; Green, Andrea M; Dickman, J David

    2004-07-29

    A critical step in self-motion perception and spatial awareness is the integration of motion cues from multiple sensory organs that individually do not provide an accurate representation of the physical world. One of the best-studied sensory ambiguities is found in visual processing, and arises because of the inherent uncertainty in detecting the motion direction of an untextured contour moving within a small aperture. A similar sensory ambiguity arises in identifying the actual motion associated with linear accelerations sensed by the otolith organs in the inner ear. These internal linear accelerometers respond identically during translational motion (for example, running forward) and gravitational accelerations experienced as we reorient the head relative to gravity (that is, head tilt). Using new stimulus combinations, we identify here cerebellar and brainstem motion-sensitive neurons that compute a solution to the inertial motion detection problem. We show that the firing rates of these populations of neurons reflect the computations necessary to construct an internal model representation of the physical equations of motion. PMID:15282606

  13. Modeling of reverse osmosis in the presence of strong solute-membrane affinity

    SciTech Connect

    Mehdizadeh, H.; Dickson, J.M. )

    1993-03-01

    Modeling of reverse osmosis in the presence of strong solute-membrane affinity has always been a challenge due to the complexity of the solute-solvent-membrane interactions and the resultant effect on membrane performance. Most transport models, including all models treating membranes as nonporous and those based on irreversible thermodynamics, are unable to describe or to predict all of the phenomena associated with this case. Recently, the modified surface force-pore flow model has been derived and used to describe the performance of reverse osmosis membranes for solutes which are rejected from the membrane. In the present work, this model is extended to a more general form which can describe the solute-membrane affinity case. For illustration, the extended model, with five adjustable parameters, is used to describe the performance for cellulose acetate membranes and dilute aqueous solutions of toluene, cumene, and p-chlorophenol (data from literature). The model is reasonably consistent with the data. Simulation results of the extended model are also shown.

  14. New Fennoscandian shield empirical ground motion characterization models

    NASA Astrophysics Data System (ADS)

    Vuorinen, Tommi; Tiira, Timo; Lund, Björn

    2015-04-01

    The Fennoscandian shield is a seismically quiet area with a scarcity of strong earthquakes and, consequently, an area lacking strong motion data. This lack of empirical strong motion data and the subsequent lack of advanced stochastic and theoretical models of seismic response limit the ground motion prediction equation (GMPE) development for the region. In order to create GMPEs targeted for the Fennoscandian shield, we take advantage of the comparatively large ground motion database and use a more direct empirical approach which does not rely on pre-existing models and simulations of the Fennoscandian seismicity. We present here the resulting two GMPEs, which were created by applying the empirical ground motion data derived from 2239 earthquakes observed at 88 recording stations to an existing attenuation relationship. The first model developed is an empirical model which relies on an existing predetermined GMPE with the constant coefficients of the model fitted to our regional dataset by using a simple unweighted non-linear least-squares regression. The second model is a so-called referenced empirical model which relies on modifying the ground motion prediction produced by an existing GMPE by multiplying it with a function of certain seismological parameters. Within the magnitude-distance range of the dataset, the resulting equations model the peak ground accelerations (PGA) and spectral accelerations (SA) reasonably well. Residuals of the ground-motion prediction display no clear trend with regards to either magnitude or distance. We further assess the limits of usability of the GMPEs by applying them to an independent regional earthquake and to various external events that have occurred in a similar stable continental area. We also discuss the limitations of the empirical methods used in creating the models and the constraints imposed by the available source data.

  15. Motion.

    ERIC Educational Resources Information Center

    Brand, Judith, Ed.

    2002-01-01

    This issue of Exploratorium Magazine focuses on the topic of motion. Contents include: (1) "First Word" (Zach Tobias); (2) "Cosmic Collisions" (Robert Irion); (3) "The Mobile Cell" (Karen E. Kalumuck); (4) "The Paths of Paths" (Steven Vogel); (5) "Fragments" (Pearl Tesler); (6) "Moving Pictures" (Amy Snyder); (7) "Plants on the Go" (Katharine…

  16. Satellite attitude motion models for capture and retrieval investigations

    NASA Technical Reports Server (NTRS)

    Cochran, John E., Jr.; Lahr, Brian S.

    1986-01-01

    The primary purpose of this research is to provide mathematical models which may be used in the investigation of various aspects of the remote capture and retrieval of uncontrolled satellites. Emphasis has been placed on analytical models; however, to verify analytical solutions, numerical integration must be used. Also, for satellites of certain types, numerical integration may be the only practical or perhaps the only possible method of solution. First, to provide a basis for analytical and numerical work, uncontrolled satellites were categorized using criteria based on: (1) orbital motions, (2) external angular momenta, (3) internal angular momenta, (4) physical characteristics, and (5) the stability of their equilibrium states. Several analytical solutions for the attitude motions of satellite models were compiled, checked, corrected in some minor respects and their short-term prediction capabilities were investigated. Single-rigid-body, dual-spin and multi-rotor configurations are treated. To verify the analytical models and to see how the true motion of a satellite which is acted upon by environmental torques differs from its corresponding torque-free motion, a numerical simulation code was developed. This code contains a relatively general satellite model and models for gravity-gradient and aerodynamic torques. The spacecraft physical model for the code and the equations of motion are given. The two environmental torque models are described.

  17. New Models of Mechanisms for the Motion Transformation

    NASA Astrophysics Data System (ADS)

    Petrović, Tomislav; Ivanov, Ivan

    In this paper two new mechanisms for the motion transformations are presented: screw mechanism for the transformation of one-way circular into two-way linear motion with impulse control and worm-planetary gear train with extremely height gear ratio. Both mechanisms represent new models of construction solutions for which patent protection has been achieved. These mechanisms are based on the application of the differential gearbox with two degrees of freedom. They are characterized by series of kinematic impacts at motion transformation and the possibility of temporary or permanent changes in the structure by subtracting the redundant degree of freedom. Thus the desired characteristic of the motion transformation is achieved. For each mechanism separately the principles of motion and transformation are described and the basic equations that describe the interdependence of geometric and kinematic and kinetic parameters of the system dynamics are given. The basic principles of controlling new mechanisms for motion transformation have been pointed to and the basic constructional performances which may find practical application have been given. The physical models of new systems of motion transformation have been designed and their operation has been presented. Performed experimental researches confirmed the theoretical results and very favorable kinematic characteristics of the mechanisms.

  18. The Long Decay Model of One-Dimensional Projectile Motion

    ERIC Educational Resources Information Center

    Lattery, Mark Joseph

    2008-01-01

    This article introduces a research study on student model formation and development in introductory mechanics. As a point of entry, I present a detailed analysis of the Long Decay Model of one-dimensional projectile motion. This model has been articulated by Galileo ("in De Motu") and by contemporary students. Implications for instruction are…

  19. Microarrays as Model Biosensor Platforms to Investigate the Structure and Affinity of Aptamers

    PubMed Central

    Martin, Jennifer A.; Chushak, Yaroslav; Chávez, Jorge L.; Hagen, Joshua A.; Kelley-Loughnane, Nancy

    2016-01-01

    Immobilization of nucleic acid aptamer recognition elements selected free in solution onto the surface of biosensor platforms has proven challenging. This study investigated the binding of multiple aptamer/target pairs immobilized on a commercially available microarray as a model system mimicking biosensor applications. The results indicate a minimum distance (linker length) from the surface and thymine nucleobase linker provides reproducible binding across varying conditions. An indirect labeling method, where the target was labeled with a biotin followed by a brief Cy3-streptavidin incubation, provided a higher signal-to-noise ratio and over two orders of magnitude improvement in limit of detection, compared to direct Cy3-protein labeling. We also showed that the affinities of the aptamer/target interaction can change between direct and indirect labeling and conditions to optimize for the highest fluorescence intensity will increase the sensitivity of the assay but will not change the overall affinity. Additionally, some sequences which did not initially bind demonstrated binding when conditions were optimized. These results, in combination with studies demonstrating enhanced binding in nonselection buffers, provided insights into the structure and affinity of aptamers critical for biosensor applications and allowed for generalizations in starting conditions for researchers wishing to investigate aptamers on a microarray surface. PMID:27042344

  20. Bouncing ball dynamics: Simple model of motion of the table and sinusoidal motion

    NASA Astrophysics Data System (ADS)

    Okniński, Andrzej; Radziszewski, Bogusław

    2014-10-01

    Nonlinear dynamics of a bouncing ball moving vertically in a gravitational field and colliding with a moving limiter is considered and the Poincar\\'e map, describing evolution from an impact to the next impact, is described. Displacement of the table is approximated in one period by four cubic polynomials. Results obtained for this model are used to elucidate dynamics of the standard model of bouncing ball with sinusoidal motion of the limiter.

  1. Pendulum models of ponytail motion during walking and running

    NASA Astrophysics Data System (ADS)

    Plaut, Raymond H.; Virgin, Lawrence N.

    2013-08-01

    Steady-state motions of a woman's ponytail during level, straight, walking and running are examined. Based on reported data, formulas have been developed for the relationship of the forward speed to the frequencies of vertical and sideways motion of the head, and of the form of that motion. The ponytail is modeled as a compound pendulum or a multi-bar pendulum with 2, 3, or 5 rigid bars. Motions in the vertical plane perpendicular to the direction of progression are analyzed. Rotational springs and dashpots are placed at the joints, and aerodynamic damping (air drag) is included. Attention is focused on the variation of the amplitudes of the bars as the woman's walking speed and then running speed increase. An example of three-dimensional motions of a spherical-pendulum model also is included. Experiments were conducted on a double pendulum with parabolic applied motion at the top. The damping is modeled by rotational friction (i.e., a constant resisting moment at the top and internal joints), and the numerical results agree well with the test data.

  2. Dynamic modeling of lung tumor motion during respiration

    NASA Astrophysics Data System (ADS)

    Kyriakou, E.; McKenzie, D. R.

    2011-05-01

    A dynamic finite element model of the lung that incorporates a simplified geometry with realistic lung material properties has been developed. Observations of lung motion from respiratory-gated computed tomography were used to provide a database against which the predictions of the model are assessed. Data from six patients presenting with lung tumors were processed to give sagittal sections of the lung containing the tumor as a function of the breathing phase. Statistical shape modeling was used to outline the diaphragm, the tumor volume and the thoracic wall at each breathing phase. The motion of the tumor in the superior-inferior direction was plotted against the diaphragm displacement. The finite element model employed a simplified geometry in which the lung material fills a rectangular volume enabling two-dimensional coordinates to be used. The diaphragm is represented as a piston, driving the motion. Plots of lung displacement against diaphragm displacement form hysteresis loops that are a sensitive indicator of the characteristics of the motion. The key parameters of lung material that determine the motion are the density and elastic properties of lung material and the airway permeability. The model predictions of the hysteresis behavior agreed well with observation only when lung material is modeled as viscoelastic. The key material parameters are suggested for use as prognostic indicators of the progression of disease and of changes arising from the response of the lung to radiation treatment.

  3. Illusory self-motion and motion sickness: a model for brain-gut interactions and nausea.

    PubMed

    Koch, K L

    1999-08-01

    Motion sickness provides a unique setting for the study of nausea. Studies of illusory self-motion have linked nausea and objective measures of gastric dysrhythmias and the stress hormones vasopressin and epinephrine. Electrogastrographic methods utilize Ag-AgCl electrodes placed on the abdominal surface in the epigastric region to record electrogastrograms (EGGs), a noninvasive measure of gastric myoelectrical activity. The EGG frequencies of interest are the normal range (2.4-3.6 cpm), tachygastrias (3.6-9.9 cpm), and bradygastrias (1.0-2.4 cpm), and duodenal respiratory frequencies (10.0-15.0 cpm). Illusory self-motion or vection is produced with a rotating drum. Minutes before vection-induced nausea is reported, the baseline EGG signal shifts into tachygastrias or mixed tachygastrias and bradygastrias. Quantitative analyses show that the percentage of power in the tachygastria range correlates with the intensity of nausea. Plasma vasopressin levels correlate positively with intensity of nausea. Asian subjects have higher intensity nausea and higher vasopressin levels compared with Caucasian subjects, indicating a potential genetic susceptibility to vection-induced motion sickness and nausea. Vection-induced motion sickness represents an experimental model of acute-onset nausea with accompanying symptoms such as headache, drowsiness, cold sweating, and fatigue. Illusory self-motion is a purely central nervous system (visual-vestibular) stimulation that evokes dramatic shifts in gastric electrical activity and significant release of the posterior pituitary hormone vasopressin. Central nervous systems pathways that evoke gastric dysrhythmias and release vasopressin may also have a pathophysiologic role in the cyclic vomiting syndrome.

  4. A model describing vestibular detection of body sway motion.

    NASA Technical Reports Server (NTRS)

    Nashner, L. M.

    1971-01-01

    An experimental technique was developed which facilitated the formulation of a quantitative model describing vestibular detection of body sway motion in a postural response mode. All cues, except vestibular ones, which gave a subject an indication that he was beginning to sway, were eliminated using a specially designed two-degree-of-freedom platform; body sway was then induced and resulting compensatory responses at the ankle joints measured. Hybrid simulation compared the experimental results with models of the semicircular canals and utricular otolith receptors. Dynamic characteristics of the resulting canal model compared closely with characteristics of models which describe eye movement and subjective responses to body rotational motions. The average threshold level, in the postural response mode, however, was considerably lower. Analysis indicated that the otoliths probably play no role in the initial detection of body sway motion.

  5. The Moon Also Rises: Investigating Celestial Motion Models.

    ERIC Educational Resources Information Center

    Barton, Andrea M.

    2001-01-01

    Introduces a high school science curriculum that embodies inquiry-based genetics, evolution, and astronomy. Presents two astronomy units of scientific modeling. The first activity involves a black box to explain a hidden mechanism's effect on the outflow of water. The second activity involves the development of celestial motion models to explain…

  6. Prediction of Plate Motions and Stresses from Global Dynamic Models

    NASA Astrophysics Data System (ADS)

    Ghosh, A.; Holt, W. E.

    2011-12-01

    Predicting plate motions correctly has been a challenge for global dynamic models. In addition to predicting plate motions, a successful model must also explain the following features: plate rigidity, plate boundary zone deformation, as well as intraplate stress patterns and deformation. In this study we show that, given constraints from shallow lithosphere structure, history of subduction, and first order features from whole mantle tomography, it is possible to achieve a high level of accuracy in predicting plate motions and lithosphere deformation within plate boundary zones. Best-fit dynamic models presently provide an RMS velocity misfit of global surface motions (compared at 63,000 spaced points in the GSRM NNR model [Kreemer et al., 2006]) of order 1 cm/yr. We explore the relative contribution of shallow lithosphere structure vs. whole mantle convection in affecting surface deformation as well as plate motions. We show that shallow lithosphere structure that includes topography and lateral density variations in the lithosphere is an integral part of global force balance. Its inclusion in geodynamic models is essential in order to match observations of surface motions and stresses, particularly within continental zones of deformation. We also argue that stiff slabs may not be as important as has been previously claimed in controlling plate motion and lithosphere deformation. An important result of this study is the calibration of absolute stress magnitudes in the lithosphere, verified through benchmarking using whole mantle convection models. Given additional constraints of the matching of surface motions, we also calibrate the absolute effective lithosphere viscosities. Best-fit models require plates with effective viscosities of order 1023 Pa-s, with plate boundary zones possessing effective viscosities 1-3 orders of magnitude weaker. Given deviatoric stress magnitudes within the lithosphere of order 10 - 60 MPa, our global models predict less than 2 mm

  7. Elements of an improved model of debris‐flow motion

    USGS Publications Warehouse

    Iverson, Richard M.

    2009-01-01

    A new depth‐averaged model of debris‐flow motion describes simultaneous evolution of flow velocity and depth, solid and fluid volume fractions, and pore‐fluid pressure. Non‐hydrostatic pore‐fluid pressure is produced by dilatancy, a state‐dependent property that links the depth‐averaged shear rate and volumetric strain rate of the granular phase. Pore‐pressure changes caused by shearing allow the model to exhibit rate‐dependent flow resistance, despite the fact that the basal shear traction involves only rate‐independent Coulomb friction. An analytical solution of simplified model equations shows that the onset of downslope motion can be accelerated or retarded by pore‐pressure change, contingent on whether dilatancy is positive or negative. A different analytical solution shows that such effects will likely be muted if downslope motion continues long enough, because dilatancy then evolves toward zero, and volume fractions and pore pressure concurrently evolve toward steady states.

  8. Turbulent motion of mass flows. Mathematical modeling

    NASA Astrophysics Data System (ADS)

    Eglit, Margarita; Yakubenko, Alexander; Yakubenko, Tatiana

    2016-04-01

    New mathematical models for unsteady turbulent mass flows, e.g., dense snow avalanches and landslides, are presented. Such models are important since most of large scale flows are turbulent. In addition to turbulence, the two other important points are taken into account: the entrainment of the underlying material by the flow and the nonlinear rheology of moving material. The majority of existing models are based on the depth-averaged equations and the turbulent character of the flow is accounted by inclusion of drag proportional to the velocity squared. In this paper full (not depth-averaged) equations are used. It is assumed that basal entrainment takes place if the bed friction equals the shear strength of the underlying layer (Issler D, M. Pastor Peréz. 2011). The turbulent characteristics of the flow are calculated using a three-parameter differential model (Lushchik et al., 1978). The rheological properties of moving material are modeled by one of the three types of equations: 1) Newtonian fluid with high viscosity, 2) power-law fluid and 3) Bingham fluid. Unsteady turbulent flows down long homogeneous slope are considered. The flow dynamical parameters and entrainment rate behavior in time as well as their dependence on properties of moving and underlying materials are studied numerically. REFERENCES M.E. Eglit and A.E. Yakubenko, 2014. Numerical modeling of slope flows entraining bottom material. Cold Reg. Sci. Technol., 108, 139-148 Margarita E. Eglit and Alexander E. Yakubenko, 2016. The effect of bed material entrainment and non-Newtonian rheology on dynamics of turbulent slope flows. Fluid Dynamics, 51(3) Issler D, M. Pastor Peréz. 2011. Interplay of entrainment and rheology in snow avalanches; a numerical study. Annals of Glaciology, 52(58), 143-147 Lushchik, V.G., Paveliev, A.A. , and Yakubenko, A.E., 1978. Three-parameter model of shear turbulence. Fluid Dynamics, 13, (3), 350-362

  9. Determining range information from self-motion: the template model

    NASA Astrophysics Data System (ADS)

    Sobey, Peter J.

    1991-02-01

    Insects use a relatively simple visual system to navigate and avoid obstacles. In particular they use self motion to determine the range to objects by the angular velocities of the contrasts across the retina array. Adopting principles learnt from studying insect behaviour and neurophysiology we have modelled aspects of the motion detection mechanism of an insect visual system into a means of categorising edges and computing their motion and thus determining range. Copying insect motion perception a camera is scanned across a scene and a temporal sequence of line images captured. The 8-bit grey scale image is immediately reduced to a 1og23 1. 6 bit image by saturating the contrast. Behind each pixel one state is formed by increasing intensity one by decreasing intensity and a third is indeterminate. Pairs of receptors at two consecutive times forming a 2 by 2 template in space-time give a finite number of combinations of which it is found that only a small subset provide useful motion information. Combinations of selected templates results in a distribution of template responses that is amenable to analysis by the Hough transform. Running the model on real scenes reveals the value of lateral inhibition as well as insights into the effect of different edge types and the use of parallax. The model suggests a possible new neurophysiological construction that can be copied in hardware to provide a fast means inferring 3-d structure in a scene where the observer is moving with a known velocity. 1.

  10. Current plate motions. [continental groupings and global modelling

    NASA Technical Reports Server (NTRS)

    Demets, C.; Gordon, R. G.; Argus, D. F.; Stein, S.

    1990-01-01

    A global plate motion model, named NUVEL-1, which describes current plate motions between 12 rigid plates is described, with special attention given to the method, data, and assumptions used. Tectonic implications of the patterns that emerged from the results are discussed. It is shown that wide plate boundary zones can form not only within the continental lithosphere but also within the oceanic lithosphere; e.g., between the Indian and Australian plates and between the North American and South American plates. Results of the model also suggest small but significant diffuse deformation of the oceanic lithosphere, which may be confined to small awkwardly shaped salients of major plates.

  11. Designing the optimal convolution kernel for modeling the motion blur

    NASA Astrophysics Data System (ADS)

    Jelinek, Jan

    2011-06-01

    Motion blur acts on an image like a two dimensional low pass filter, whose spatial frequency characteristic depends both on the trajectory of the relative motion between the scene and the camera and on the velocity vector variation along it. When motion during exposure is permitted, the conventional, static notions of both the image exposure and the scene-toimage mapping become unsuitable and must be revised to accommodate the image formation dynamics. This paper develops an exact image formation model for arbitrary object-camera relative motion with arbitrary velocity profiles. Moreover, for any motion the camera may operate in either continuous or flutter shutter exposure mode. Its result is a convolution kernel, which is optimally designed for both the given motion and sensor array geometry, and hence permits the most accurate computational undoing of the blurring effects for the given camera required in forensic and high security applications. The theory has been implemented and a few examples are shown in the paper.

  12. Physiological model of motion analysis for machine vision

    NASA Astrophysics Data System (ADS)

    Young, Richard A.; Lesperance, Ronald M.

    1993-09-01

    We studied the spatio-temporal shape of `receptive fields' of simple cells in the monkey visual cortex. Receptive fields are maps of the regions in space and time that affect a cell's electrical responses. Fields with no change in shape over time responded to all directions of motion; fields with changing shape over time responded to only some directions of motion. A Gaussian Derivative (GD) model fit these fields well, in a transformed variable space that aligned the centers and principal axes of the field and model in space-time. The model accounts for fields that vary in orientation, location, spatial scale, motion properties, and number of lobes. The model requires only ten parameters (the minimum possible) to describe fields in two dimensions of space and one of time. A difference-of-offset-Gaussians (DOOG) provides a plausible physiological means to form GD model fields. Because of its simplicity, the GD model improves the efficiency of machine vision systems for analyzing motion. An implementation produced robust local estimates of the direction and speed of moving objects in real scenes.

  13. Modeling Broadband motions from the Tohoku earthquake

    NASA Astrophysics Data System (ADS)

    Li, D.; Chu, R.; Graves, R. W.; Helmberger, D. V.; Clayton, R. W.

    2011-12-01

    The 2011 M9 Tohoku earthquake produced an extraordinary dataset of over 2000 broadband regional and teleseismic records. While considerable progress has been made in modeling the longer period (>3 s) waveforms, the shorter periods (1-3 s) prove more difficult. Since modeling high frequency waveforms in 3D is computationally expensive, we follow the approach proposed by Helmberger and Vidale (1988), which interfaces the Cagniard-de Hoop analytical source description with a 2D numerical code to account for earthquake radiation patterns. We extend this method to a staggered grid finite difference code, which is stable in the presence of water. The code adapts the Convolutional PML boundary condition, and uses the "following the wavefront" technique and multiple GPUs, which significantly reduces computing time. We test our method against existing 1D and 3D codes, and examine the effects of slab structure, ocean bathymetry and local basins in an attempt to better explain the observed shorter period response.

  14. A Bayesian model of stereopsis depth and motion direction discrimination.

    PubMed

    Read, J C A

    2002-02-01

    The extraction of stereoscopic depth from retinal disparity, and motion direction from two-frame kinematograms, requires the solution of a correspondence problem. In previous psychophysical work [Read and Eagle (2000) Vision Res 40: 3345-3358], we compared the performance of the human stereopsis and motion systems with correlated and anti-correlated stimuli. We found that, although the two systems performed similarly for narrow-band stimuli, broadband anti-correlated kinematograms produced a strong perception of reversed motion, whereas the stereograms appeared merely rivalrous. I now model these psychophysical data with a computational model of the correspondence problem based on the known properties of visual cortical cells. Noisy retinal images are filtered through a set of Fourier channels tuned to different spatial frequencies and orientations. Within each channel, a Bayesian analysis incorporating a prior preference for small disparities is used to assess the probability of each possible match. Finally, information from the different channels is combined to arrive at a judgement of stimulus disparity. Each model system--stereopsis and motion--has two free parameters: the amount of noise they are subject to, and the strength of their preference for small disparities. By adjusting these parameters independently for each system, qualitative matches are produced to psychophysical data, for both correlated and anti-correlated stimuli, across a range of spatial frequency and orientation bandwidths. The motion model is found to require much higher noise levels and a weaker preference for small disparities. This makes the motion model more tolerant of poor-quality reverse-direction false matches encountered with anti-correlated stimuli, matching the strong perception of reversed motion that humans experience with these stimuli. In contrast, the lower noise level and tighter prior preference used with the stereopsis model means that it performs close to chance with

  15. Modelling the motion of particles around choanoflagellates

    NASA Astrophysics Data System (ADS)

    Orme, B. A. A.; Blake, J. R.; Otto, S. R.

    2003-01-01

    The three-dimensional particle paths due to a helical beat pattern of the flagellum of a sessile choanoflagellate, Salpingoeca Amphoridium (SA), are modelled and compared to the experimental observations of Pettitt (2001). The organism’s main components are a flagellum and a cell body which are situated above a substrate such that the interaction between these entities is crucial in determining the fluid flow around the choanoflagellate. This flow of fluid can be characterized as Stokes flow and a flow field analogous to one created by the flagellum is generated by a distribution of stokeslets and dipoles along a helical curve.

  16. Domain-wall motion in random potential and hysteresis modeling

    SciTech Connect

    Pasquale, M.; Basso, V.; Bertotti, G.; Jiles, D.C.; Bi, Y.

    1998-06-01

    Two different approaches to hysteresis modeling are compared using a common ground based on energy relations, defined in terms of dissipated and stored energy. Using the Preisach model and assuming that magnetization is mainly due to domain-wall motion, one can derive the expression of magnetization along a major loop typical of the Jiles{endash}Atherton model and then extend its validity to cases where mean-field effects and reversible contributions are present. {copyright} {ital 1998 American Institute of Physics.}

  17. A high and low noise model for strong motion accelerometers

    NASA Astrophysics Data System (ADS)

    Clinton, J. F.; Cauzzi, C.; Olivieri, M.

    2010-12-01

    We present reference noise models for high-quality strong motion accelerometer installations. We use continuous accelerometer data acquired by the Swiss Seismological Service (SED) since 2006 and other international high-quality accelerometer network data to derive very broadband (50Hz-100s) high and low noise models. The proposed noise models are compared to the Peterson (1993) low and high noise models designed for broadband seismometers; the datalogger self-noise; background noise levels at existing Swiss strong motion stations; and typical earthquake signals recorded in Switzerland and worldwide. The standard strong motion station operated by the SED consists of a Kinemetrics Episensor (2g clip level; flat acceleration response from 200 Hz to DC; <155dB dynamic range) coupled with a 24-bit Nanometrics Taurus datalogger. The proposed noise models are based on power spectral density (PSD) noise levels for each strong motion station computed via PQLX (McNamara and Buland, 2004) from several years of continuous recording. The 'Accelerometer Low Noise Model', ALNM, is dominated by instrument noise from the sensor and datalogger. The 'Accelerometer High Noise Model', AHNM, reflects 1) at high frequencies the acceptable site noise in urban areas, 2) at mid-periods the peak microseismal energy, as determined by the Peterson High Noise Model and 3) at long periods the maximum noise observed from well insulated sensor / datalogger systems placed in vault quality sites. At all frequencies, there is at least one order of magnitude between the ALNM and the AHNM; at high frequencies (> 1Hz) this extends to 2 orders of magnitude. This study provides remarkable confirmation of the capability of modern strong motion accelerometers to record low-amplitude ground motions with seismic observation quality. In particular, an accelerometric station operating at the ALNM is capable of recording the full spectrum of near source earthquakes, out to 100 km, down to M2. Of particular

  18. Multilevel and motion model-based ultrasonic speckle tracking algorithms.

    PubMed

    Yeung, F; Levinson, S F; Parker, K J

    1998-03-01

    A multilevel motion model-based approach to ultrasonic speckle tracking has been developed that addresses the inherent trade-offs associated with traditional single-level block matching (SLBM) methods. The multilevel block matching (MLBM) algorithm uses variable matching block and search window sizes in a coarse-to-fine scheme, preserving the relative immunity to noise associated with the use of a large matching block while preserving the motion field detail associated with the use of a small matching block. To decrease further the sensitivity of the multilevel approach to noise, speckle decorrelation and false matches, a smooth motion model-based block matching (SMBM) algorithm has been implemented that takes into account the spatial inertia of soft tissue elements. The new algorithms were compared to SLBM through a series of experiments involving manual translation of soft tissue phantoms, motion field computer simulations of rotation, compression and shear deformation, and an experiment involving contraction of human forearm muscles. Measures of tracking accuracy included mean squared tracking error, peak signal-to-noise ratio (PSNR) and blinded observations of optical flow. Measures of tracking efficiency included the number of sum squared difference calculations and the computation time. In the phantom translation experiments, the SMBM algorithm successfully matched the accuracy of SLBM using both large and small matching blocks while significantly reducing the number of computations and computation time when a large matching block was used. For the computer simulations, SMBM yielded better tracking accuracies and spatial resolution when compared with SLBM using a large matching block. For the muscle experiment, SMBM outperformed SLBM both in terms of PSNR and observations of optical flow. We believe that the smooth motion model-based MLBM approach represents a meaningful development in ultrasonic soft tissue motion measurement. PMID:9587997

  19. The proton-neutron symplectic model of nuclear collective motions

    NASA Astrophysics Data System (ADS)

    Ganev, H. G.

    2016-06-01

    The proton-neutron symplectic model of nuclear collective motion is presented. It is shown that it appears as a natural multi-major-shell extension of the generalized proton- neutron SU(3) scheme which includes rotations with intrinsic vortex as well as monopole, quadrupole and dipole giant resonance vibrational degrees of freedom.

  20. Surrogate-driven deformable motion model for organ motion tracking in particle radiation therapy

    NASA Astrophysics Data System (ADS)

    Fassi, Aurora; Seregni, Matteo; Riboldi, Marco; Cerveri, Pietro; Sarrut, David; Battista Ivaldi, Giovanni; Tabarelli de Fatis, Paola; Liotta, Marco; Baroni, Guido

    2015-02-01

    The aim of this study is the development and experimental testing of a tumor tracking method for particle radiation therapy, providing the daily respiratory dynamics of the patient’s thoraco-abdominal anatomy as a function of an external surface surrogate combined with an a priori motion model. The proposed tracking approach is based on a patient-specific breathing motion model, estimated from the four-dimensional (4D) planning computed tomography (CT) through deformable image registration. The model is adapted to the interfraction baseline variations in the patient’s anatomical configuration. The driving amplitude and phase parameters are obtained intrafractionally from a respiratory surrogate signal derived from the external surface displacement. The developed technique was assessed on a dataset of seven lung cancer patients, who underwent two repeated 4D CT scans. The first 4D CT was used to build the respiratory motion model, which was tested on the second scan. The geometric accuracy in localizing lung lesions, mediated over all breathing phases, ranged between 0.6 and 1.7 mm across all patients. Errors in tracking the surrounding organs at risk, such as lungs, trachea and esophagus, were lower than 1.3 mm on average. The median absolute variation in water equivalent path length (WEL) within the target volume did not exceed 1.9 mm-WEL for simulated particle beams. A significant improvement was achieved compared with error compensation based on standard rigid alignment. The present work can be regarded as a feasibility study for the potential extension of tumor tracking techniques in particle treatments. Differently from current tracking methods applied in conventional radiotherapy, the proposed approach allows for the dynamic localization of all anatomical structures scanned in the planning CT, thus providing complete information on density and WEL variations required for particle beam range adaptation.

  1. Molecular Diffusive Motion in a Monolayer of a Model Lubricant

    NASA Astrophysics Data System (ADS)

    Diama, A.; Criswell, L.; Mo, H.; Taub, H.; Herwig, K. W.; Hansen, F. Y.; Volkmann, U. G.; Dimeo, R.; Neumann, D.

    2003-03-01

    Squalane (C_30H_62), a branched alkane of intermediate length consisting of a tetracosane backbone (n-C_24H_50 or C24) and six symmetrically placed methyl sidegroups, is frequently taken as a model lubricant. We have conducted quasielastic neutron scattering (QNS) experiments to investigate the diffusive motion on different time scales in a squalane monolayer adsorbed on the (0001) surfaces of an exfoliated graphite substrate. Unlike tetracosane, high-energy resolution spectra (time scale ˜0.1 - 4 ns) at temperatures of 215 K and 230 K show the energy width of the QNS to have a maximum near Q = 1.2 ÅThis nonmonotonic Q dependence suggests a more complicated diffusive motion than the simple rotation about the long molecular axis believed to occur in a C24 monolayer at this temperature. Lower-energy-resolution spectra (time scale ˜4 - 40 ps) show evidence of two types of diffusive motion whose rates have opposite temperature dependences. The rate of the faster motion decreases as the monolayer is heated, and we speculate that it is due to hindered rotation of the methyl groups. The rate of the slower motion increases with temperature and may involve both uniaxial rotation and translational diffusion. Our experimental results will be compared with molecular dynamics simulations.

  2. Copper binding to soil fulvic and humic acids: NICA-Donnan modeling and conditional affinity spectra.

    PubMed

    Xu, Jinling; Tan, Wenfeng; Xiong, Juan; Wang, Mingxia; Fang, Linchuan; Koopal, Luuk K

    2016-07-01

    Binding of Cu(II) to soil fulvic acid (JGFA), soil humic acids (JGHA, JLHA), and lignite-based humic acid (PAHA) was investigated through NICA-Donnan modeling and conditional affinity spectrum (CAS). It is to extend the knowledge of copper binding by soil humic substances (HS) both in respect of enlarging the database of metal ion binding to HS and obtaining a good insight into Cu binding to the functional groups of FA and HA by using the NICA-Donnan model to unravel the intrinsic and conditional affinity spectra. Results showed that Cu binding to HS increased with increasing pH and decreasing ionic strength. The amount of Cu bound to the HAs was larger than the amount bound to JGFA. Milne's generic parameters did not provide satisfactory predictions for the present soil HS samples, while material-specific NICA-Donnan model parameters described and predicted Cu binding to the HS well. Both the 'low' and 'high' concentration fitting procedures indicated a substantial bidentate structure of the Cu complexes with HS. By means of CAS underlying NICA isotherm, which was scarcely used, the nature of the binding at different solution conditions for a given sample and the differences in binding mode were illustrated. It was indicated that carboxylic group played an indispensable role in Cu binding to HS in that the carboxylic CAS had stronger conditional affinity than the phenolic distribution due to its large degree of proton dissociation. The fact was especially true for JGFA and JLHA which contain much larger amount of carboxylic groups, and the occupation of phenolic sites by Cu was negligible. Comparable amounts of carboxylic and phenolic groups on PAHA and JGHA, increased the occupation of phenolic type sites by Cu. The binding strength of PAHA-Cu and JGHA-Cu was stronger than that of JGFA-Cu and JLHA-Cu. The presence of phenolic groups increased the chance of forming more stable complexes, such as the salicylate-Cu or catechol-Cu type structures. PMID:27061366

  3. Machine Visual Motion Detection Modeled On Vertebrate Retina

    NASA Astrophysics Data System (ADS)

    Blackburn, M. R.; Nguyen, H. G.; Kaomea, P. K.

    1988-12-01

    Real-time motion analysis would be very useful for autonomous undersea vehicle (AUV) navigation, target tracking, homing, and obstacle avoidance. The perception of motion is well developed in animals from insects to man, providing solutions to similar problems. We have therefore applied a model of the motion analysis subnetwork in the vertebrate retina to visual navigation in the AUV. The model is currently implemented in the C programming language as a discrete- time serial approximation of a continuous-time parallel process. Running on an IBM-PC/AT with digitized video camera images, the system can detect and describe motion in a 16 by 16 receptor field at the rate of 4 updates per second. The system responds accurately with direction and speed information to images moving across the visual field at velocities less than 8 degrees of visual angle per second at signal-to-noise ratios greater than 3. The architecture is parallel and its sparse connections do not require long-term modifications. The model is thus appropriate for implementation in VLSI optoelectronics.

  4. A personalized biomechanical model for respiratory motion prediction.

    PubMed

    Fuerst, B; Mansi, T; Zhang, Jianwen; Khurd, P; Declerck, J; Boettger, T; Navab, Nassir; Bayouth, J; Comaniciu, Dorin; Kamen, A

    2012-01-01

    Time-resolved imaging of the thorax or abdominal area is affected by respiratory motion. Nowadays, one-dimensional respiratory surrogates are used to estimate the current state of the lung during its cycle, but with rather poor results. This paper presents a framework to predict the 3D lung motion based on a patient-specific finite element model of respiratory mechanics estimated from two CT images at end of inspiration (EI) and end of expiration (EE). We first segment the lung, thorax and sub-diaphragm organs automatically using a machine-learning algorithm. Then, a biomechanical model of the lung, thorax and sub-diaphragm is employed to compute the 3D respiratory motion. Our model is driven by thoracic pressures, estimated automatically from the EE and EI images using a trust-region approach. Finally, lung motion is predicted by modulating the thoracic pressures. The effectiveness of our approach is evaluated by predicting lung deformation during exhale on five DIR-Lab datasets. Several personalization strategies are tested, showing that an average error of 3.88 +/- 1.54 mm in predicted landmark positions can be achieved. Since our approach is generative, it may constitute a 3D surrogate information for more accurate medical image reconstruction and patient respiratory analysis. PMID:23286176

  5. Multiscale model for photoinduced molecular motion in azo polymers.

    PubMed

    Juan, Mathieu L; Plain, Jérôme; Bachelot, Renaud; Royer, Pascal; Gray, Stephen K; Wiederrecht, Gary P

    2009-06-23

    Light-induced isomerization processes in azobenzene-containing polymers produce mass transport that is of much interest for nanoscale imaging and lithography. Yet, despite the development of numerous models to simulate the mass transport mechanism, no model precisely describes all the experimental observations. We develop a new statistical approach that correctly reproduces light-driven mass motion in azobenzene-containing polymers with a high degree of accuracy. Comparisons with experiments show that our model predicts the nanoscale topographic modifications for many different incident field configurations, including optical near-fields produced by plasmonic structures with complex polarization states. In particular, the model allows the detailed molecular motions that lead to these topographic modifications to be identified.

  6. Analysis of unstable modes distinguishes mathematical models of flagellar motion

    PubMed Central

    Bayly, P. V.; Wilson, K. S.

    2015-01-01

    The mechanisms underlying the coordinated beating of cilia and flagella remain incompletely understood despite the fundamental importance of these organelles. The axoneme (the cytoskeletal structure of cilia and flagella) consists of microtubule doublets connected by passive and active elements. The motor protein dynein is known to drive active bending, but dynein activity must be regulated to generate oscillatory, propulsive waveforms. Mathematical models of flagellar motion generate quantitative predictions that can be analysed to test hypotheses concerning dynein regulation. One approach has been to seek periodic solutions to the linearized equations of motion. However, models may simultaneously exhibit both periodic and unstable modes. Here, we investigate the emergence and coexistence of unstable and periodic modes in three mathematical models of flagellar motion, each based on a different dynein regulation hypothesis: (i) sliding control; (ii) curvature control and (iii) control by interdoublet separation (the ‘geometric clutch’ (GC)). The unstable modes predicted by each model are used to critically evaluate the underlying hypothesis. In particular, models of flagella with ‘sliding-controlled’ dynein activity admit unstable modes with non-propulsive, retrograde (tip-to-base) propagation, sometimes at the same parameter values that lead to periodic, propulsive modes. In the presence of these retrograde unstable modes, stable or periodic modes have little influence. In contrast, unstable modes of the GC model exhibit switching at the base and propulsive base-to-tip propagation. PMID:25833248

  7. Developments in Ground-Motion Modeling in Eastern North America

    NASA Astrophysics Data System (ADS)

    Atkinson, G. M.; Boore, D. M.

    2012-12-01

    Recent well-recorded earthquakes in Eastern North America (ENA) have led us to re-evaluate concepts that have been "standard fare" in the development of ground-motion prediction equations (GMPEs) for ENA for decades, including all published GMPEs that are used in current practice (e.g. Atkinson and Boore, 2011, 2006, 1995; Pezeshk et al., 2011; Campbell, 2003; Toro et al., 1997, etc.). Assumptions common to all ENA GMPEs that may not be true include the following. (1) Typical ENA stress drops, in the context of a Brune model representation of the source spectrum, are in the range of 150-300 bars, with the exception of occasional high-stress events like the 1988 Saguenay earthquake. (2) Attenuation of ground motions can be modeled with a frequency-independent geometric spreading function, either bilinear or trilinear in shape (e.g. Street and Turcotte, 1975; Herrmann and Kijko, 1983; Atkinson and Mereu, 1992; Atkinson, 2004; Boatwright and Seekins, 2011), and an associated frequency-dependent anelastic attenuation term related to the regional Quality factor. The use of a bilinear or trilinear form models the transition from geometric spreading of body waves at close distances to slower surface-wave-type spreading at regional distances. We use ground-motion recordings from recent ENA events to re-examine these basic tenets of GMPE development, in light of constraints on the problem provided at low frequencies by seismic moment, and at high frequencies by stresses inferred from Empirical Greens Function (EGF) analysis. We find strong evidence, in both ground-motion data and from the constraints, that geometric attenuation may be frequency dependent. Moreover, EGF stress drops may be very high (>500 bars) - but they do not lead to particularly large high-frequency ground motions, at least at distances for which we have observations. More complex models of ENA source and attenuation processes appear to be required in order to reconcile our growing ground-motion database

  8. Affinity comparison of different THCA synthase to CBGA using modeling computational approaches.

    PubMed

    Alaoui, Moulay Abdelaziz El; Ibrahimi, Azeddine; Semlali, Oussama; Tarhda, Zineb; Marouane, Melloul; Najwa, Alaoui; Soulaymani, Abdelmajid; Fahime, Elmostafa El

    2014-01-01

    The Δ(9-)Tetrahydrocannabinol (THCA) is the primary psychoactive compound of Cannabis Sativa. It is produced by Δ(1-) Tetrahydrocannabinolic acid synthase (THCA) which catalyzes the oxidative cyclization of cannabigerolic acid (CBGA) the precursor of the THCA. In this study, we were interested by the three dimensional structure of THCA synthase protein. Generation of models were done by MODELLER v9.11 and homology modeling with Δ1-tetrahydrocannabinolic acid (THCA) synthase X ray structure (PDB code 3VTE) on the basis of sequences retrieved from GenBank. Procheck, Errat, and Verify 3D tools were used to verify the reliability of the six 3D models obtained, the overall quality factor and the Prosa Z-score were also used to check the quality of the six modeled proteins. The RMSDs for C-alpha atoms, main-chain atoms, side-chain atoms and all atoms between the modeled structures and the corresponding template ranged between 0.290 Å-1.252 Å, reflecting the good quality of the obtained models. Our study of the CBGA-THCA synthase docking demonstrated that the active site pocket was successfully recognized using computational approach. The interaction energy of CBGA computed in 'fiber types' proteins ranged between -4.1 95 kcal/mol and -5.95 kcal/mol whereas in the 'drug type' was about -7.02 kcal/mol to -7.16 kcal/mol, which maybe indicate the important role played by the interaction energy of CBGA in the determination of the THCA level in Cannabis Sativa L. varieties. Finally, we have proposed an experimental design in order to explore the binding energy source of ligand-enzyme in Cannabis Sativa and the production level of the THCA in the absence of any information regarding the correlation between the enzyme affinity and THCA level production. This report opens the doors to more studies predicting the binding site pocket with accuracy from the perspective of the protein affinity and THCA level produced in Cannabis Sativa.

  9. Modeling sensory conflict and motion sickness in artificial gravity

    NASA Astrophysics Data System (ADS)

    Elias, Paul Z.; Jarchow, Thomas; Young, Laurence R.

    2008-01-01

    It is necessary to characterize the vestibular response associated with head movements for various centrifuge rotation rates if one is to explore short-radius centrifugation as a viable form of artificial gravity for future spaceflights. An existing motion sickness model was modified to design an adaptation protocol to facilitate head movements at a centrifuge speed of 30 rpm. Modification involved addition of a quantitative sensory conflict model to serve as the input to the motion sickness model. Sensory conflict in this context was based on the dynamics of head movements during centrifugation as well as a previously developed transfer function relating angular accelerations to semicircular canal firing rates. Additionally, an adaptation parameter based on comparison between model predictions and previous experimental results was added. A 3-day incremental adaptation protocol was conducted in which 16 subjects successfully made 30 yaw head movements during rotation at 30 rpm on day 3. Motion sickness results showed good agreement with model predictions and demonstrated the feasibility of adaptation to increasingly high rotation rates.

  10. Innovative modeling of Tuned Liquid Column Damper motion

    NASA Astrophysics Data System (ADS)

    Di Matteo, A.; Lo Iacono, F.; Navarra, G.; Pirrotta, A.

    2015-06-01

    In this paper a new model for the liquid motion within a Tuned Liquid Column Damper (TLCD) device is developed, based on the mathematical tool of fractional calculus. Although the increasing use of these devices for structural vibration control, it is shown that existing model does not always lead to accurate prediction of the liquid motion. A better model is then needed for accurate simulation of the behavior of TLCD systems. As regards, it has been demonstrated how correctly including the first linear liquid sloshing mode, through the equivalent mechanical analogy well established in literature, produces numerical results that highly match the corresponding experimental ones. Since the apparent effect of sloshing is the deviation of the natural frequency from the theoretical one, the authors propose a fractional differential equation of motion. The latter choice is supported by the fact that the introduction a fractional derivative of order α alters simultaneously both the resonant frequency and the degree of damping of the system. It will be shown, through an extensive experimental analysis, how the proposed model accurately describes liquid surface displacements.

  11. A discrete impulsive model for random heating and Brownian motion

    NASA Astrophysics Data System (ADS)

    Ramshaw, John D.

    2010-01-01

    The energy of a mechanical system subjected to a random force with zero mean increases irreversibly and diverges with time in the absence of friction or dissipation. This random heating effect is usually encountered in phenomenological theories formulated in terms of stochastic differential equations, the epitome of which is the Langevin equation of Brownian motion. We discuss a simple discrete impulsive model that captures the essence of random heating and Brownian motion. The model may be regarded as a discrete analog of the Langevin equation, although it is developed ab initio. Its analysis requires only simple algebraic manipulations and elementary averaging concepts, but no stochastic differential equations (or even calculus). The irreversibility in the model is shown to be a consequence of a natural causal stochastic condition that is closely analogous to Boltzmann's molecular chaos hypothesis in the kinetic theory of gases. The model provides a simple introduction to several ostensibly more advanced topics, including random heating, molecular chaos, irreversibility, Brownian motion, the Langevin equation, and fluctuation-dissipation theorems.

  12. On modeling animal movements using Brownian motion with measurement error.

    PubMed

    Pozdnyakov, Vladimir; Meyer, Thomas; Wang, Yu-Bo; Yan, Jun

    2014-02-01

    Modeling animal movements with Brownian motion (or more generally by a Gaussian process) has a long tradition in ecological studies. The recent Brownian bridge movement model (BBMM), which incorporates measurement errors, has been quickly adopted by ecologists because of its simplicity and tractability. We discuss some nontrivial properties of the discrete-time stochastic process that results from observing a Brownian motion with added normal noise at discrete times. In particular, we demonstrate that the observed sequence of random variables is not Markov. Consequently the expected occupation time between two successively observed locations does not depend on just those two observations; the whole path must be taken into account. Nonetheless, the exact likelihood function of the observed time series remains tractable; it requires only sparse matrix computations. The likelihood-based estimation procedure is described in detail and compared to the BBMM estimation.

  13. Quantum Brownian motion model for the stock market

    NASA Astrophysics Data System (ADS)

    Meng, Xiangyi; Zhang, Jian-Wei; Guo, Hong

    2016-06-01

    It is believed by the majority today that the efficient market hypothesis is imperfect because of market irrationality. Using the physical concepts and mathematical structures of quantum mechanics, we construct an econophysical framework for the stock market, based on which we analogously map massive numbers of single stocks into a reservoir consisting of many quantum harmonic oscillators and their stock index into a typical quantum open system-a quantum Brownian particle. In particular, the irrationality of stock transactions is quantitatively considered as the Planck constant within Heisenberg's uncertainty relationship of quantum mechanics in an analogous manner. We analyze real stock data of Shanghai Stock Exchange of China and investigate fat-tail phenomena and non-Markovian behaviors of the stock index with the assistance of the quantum Brownian motion model, thereby interpreting and studying the limitations of the classical Brownian motion model for the efficient market hypothesis from a new perspective of quantum open system dynamics.

  14. Affinity Chromatography.

    ERIC Educational Resources Information Center

    Gray, Gary R.

    1980-01-01

    Presents selected recent advances in immobilization chemistry which have important connections to affinity chromatography. Discusses ligand immobilization and support modification. Cites 51 references. (CS)

  15. Spatially Enhanced Differential RNA Methylation Analysis from Affinity-Based Sequencing Data with Hidden Markov Model

    PubMed Central

    Zhang, Yu-Chen; Zhang, Shao-Wu; Liu, Lian; Liu, Hui; Zhang, Lin; Cui, Xiaodong; Huang, Yufei; Meng, Jia

    2015-01-01

    With the development of new sequencing technology, the entire N6-methyl-adenosine (m6A) RNA methylome can now be unbiased profiled with methylated RNA immune-precipitation sequencing technique (MeRIP-Seq), making it possible to detect differential methylation states of RNA between two conditions, for example, between normal and cancerous tissue. However, as an affinity-based method, MeRIP-Seq has yet provided base-pair resolution; that is, a single methylation site determined from MeRIP-Seq data can in practice contain multiple RNA methylation residuals, some of which can be regulated by different enzymes and thus differentially methylated between two conditions. Since existing peak-based methods could not effectively differentiate multiple methylation residuals located within a single methylation site, we propose a hidden Markov model (HMM) based approach to address this issue. Specifically, the detected RNA methylation site is further divided into multiple adjacent small bins and then scanned with higher resolution using a hidden Markov model to model the dependency between spatially adjacent bins for improved accuracy. We tested the proposed algorithm on both simulated data and real data. Result suggests that the proposed algorithm clearly outperforms existing peak-based approach on simulated systems and detects differential methylation regions with higher statistical significance on real dataset. PMID:26301253

  16. 2d Affine XY-Spin Model/4d Gauge Theory Duality and Deconfinement

    SciTech Connect

    Anber, Mohamed M.; Poppitz, Erich; Unsal, Mithat; /SLAC /Stanford U., Phys. Dept. /San Francisco State U.

    2012-08-16

    We introduce a duality between two-dimensional XY-spin models with symmetry-breaking perturbations and certain four-dimensional SU(2) and SU(2) = Z{sub 2} gauge theories, compactified on a small spatial circle R{sup 1,2} x S{sup 1}, and considered at temperatures near the deconfinement transition. In a Euclidean set up, the theory is defined on R{sup 2} x T{sup 2}. Similarly, thermal gauge theories of higher rank are dual to new families of 'affine' XY-spin models with perturbations. For rank two, these are related to models used to describe the melting of a 2d crystal with a triangular lattice. The connection is made through a multi-component electric-magnetic Coulomb gas representation for both systems. Perturbations in the spin system map to topological defects in the gauge theory, such as monopole-instantons or magnetic bions, and the vortices in the spin system map to the electrically charged W-bosons in field theory (or vice versa, depending on the duality frame). The duality permits one to use the two-dimensional technology of spin systems to study the thermal deconfinement and discrete chiral transitions in four-dimensional SU(N{sub c}) gauge theories with n{sub f} {ge} 1 adjoint Weyl fermions.

  17. Elements of an improved model of debris-flow motion

    USGS Publications Warehouse

    Iverson, R.M.

    2009-01-01

    A new depth-averaged model of debris-flow motion describes simultaneous evolution of flow velocity and depth, solid and fluid volume fractions, and pore-fluid pressure. Non-hydrostatic pore-fluid pressure is produced by dilatancy, a state-dependent property that links the depth-averaged shear rate and volumetric strain rate of the granular phase. Pore-pressure changes caused by shearing allow the model to exhibit rate-dependent flow resistance, despite the fact that the basal shear traction involves only rate-independent Coulomb friction. An analytical solution of simplified model equations shows that the onset of downslope motion can be accelerated or retarded by pore-pressure change, contingent on whether dilatancy is positive or negative. A different analytical solution shows that such effects will likely be muted if downslope motion continues long enough, because dilatancy then evolves toward zero, and volume fractions and pore pressure concurrently evolve toward steady states. ?? 2009 American Institute of Physics.

  18. Polar Motion Constraints on Models of the Fortnightly Tide

    NASA Technical Reports Server (NTRS)

    Ray, Richard D.; Egbert, G. D.; Smith, David E. (Technical Monitor)

    2002-01-01

    Estimates of the near-fortnightly Mf ocean tide from Topex/Poseidon satellite altimetry and from numerical solutions to the shallow water equations agree reasonably well, at least in their basin-scale features. For example, both show that the Pacific Ocean tide lags the Atlantic tide by roughly 30 degrees. There are hints of finer scale agreements in the elevation fields, but noise levels are high. In contrast, estimates of Mf currents are only weakly constrained by the TP data, because high-wavenumber Rossby waves (with intense currents) are associated with relatively small perturbations in surface elevation. As a result, a wide range of Mf current fields are consistent with both the TP data and the hydrodynamic equations within a priori plausible misfit bounds. We find that a useful constraint on the Mf currents is provided by independent estimates of the Earth's polar motion. At the Mf period polar motion shows a weak signal (both prograde and retrograde) which must be almost entirely caused by the ocean tide. We have estimated this signal from the SPACE2000 time series, after applying a broad-band correction for atmospheric angular momentum. Although the polar motion estimates have relatively large uncertainties, they are sufficiently precise to fix optimum data weights in a global ocean inverse model of Mf. These weights control the tradeoff between fitting a prior hydrodynamic model of Mf and fitting the relatively noisy T/P measurements of Mf. The predicted polar motion from the final inverse model agrees remarkably well with the Mf polar motion observations. The preferred model is also consistent with noise levels suggested by island gauges, and it is marginally consistent with differences observed by subsetting the altimetry (to the small extent that this is possible). In turn, this new model of the Mf ocean tide allows the ocean component to be removed from Mf estimates of length of day, thus yielding estimates of complex Love numbers less contaminated by

  19. One-degree-of-freedom motion induced by modeled vortex shedding

    NASA Technical Reports Server (NTRS)

    Yates, L. A.; Unal, A.; Szady, M.; Chapman, G. T.

    1989-01-01

    The motion of an elastically supported cylinder forced by a nonlinear, quasi-static, aerodynamic model with the unusual feature of a motion-dependent forcing frequency was studied. Numerical solutions for the motion and the Lyapunov exponents are presented for three forcing amplitudes and two frequencies (1.0 and 1.1 times the Strouhal frequency). Initially, positive Lyapunov exponents occur and the motion can appear chaotic. After thousands of characteristic times, the motion changes to a motion (verified analytically) that is periodic and damped. This periodic, damped motion was not observed experimentally, thus raising questions concerning the modeling.

  20. Affine-response model of molecular solvation of ions: Accurate predictions of asymmetric charging free energies

    PubMed Central

    Bardhan, Jaydeep P.; Jungwirth, Pavel; Makowski, Lee

    2012-01-01

    Two mechanisms have been proposed to drive asymmetric solvent response to a solute charge: a static potential contribution similar to the liquid-vapor potential, and a steric contribution associated with a water molecule's structure and charge distribution. In this work, we use free-energy perturbation molecular-dynamics calculations in explicit water to show that these mechanisms act in complementary regimes; the large static potential (∼44 kJ/mol/e) dominates asymmetric response for deeply buried charges, and the steric contribution dominates for charges near the solute-solvent interface. Therefore, both mechanisms must be included in order to fully account for asymmetric solvation in general. Our calculations suggest that the steric contribution leads to a remarkable deviation from the popular “linear response” model in which the reaction potential changes linearly as a function of charge. In fact, the potential varies in a piecewise-linear fashion, i.e., with different proportionality constants depending on the sign of the charge. This discrepancy is significant even when the charge is completely buried, and holds for solutes larger than single atoms. Together, these mechanisms suggest that implicit-solvent models can be improved using a combination of affine response (an offset due to the static potential) and piecewise-linear response (due to the steric contribution). PMID:23020318

  1. Mobility and dynamics modeling for unmanned ground vehicle motion planning

    NASA Astrophysics Data System (ADS)

    Witus, Gary

    1999-07-01

    This paper presents an approach to modeling unmanned ground vehicle (UGV) mobility performance and vehicle dynamics for evaluating the feasibility and cost of alternative motion plans. Feasibility constraints include power, traction, and roll stability limits. Sensor stabilization performance is considered in a system-level constraint requiring that the obstacle detection distance exceed the stopping distance. Mission time and power requirements are inputs to a multi- attribute cost function for planning under uncertainty. The modeling approach combines a theoretical first-principles mathematical model with an empirical knowledge-based model. The first-principles model predicts performance in an idealized deterministic environment. On-board vehicle dynamics control, for dynamic load balancing and traction management, legitimize some of the simplifying assumptions. The knowledge- based model uses historical relationships to predict the mean and variance of total system performance accounting for the contributions of unplanned reactive behaviors, local terrain variations, and vehicle response transients.

  2. PET Motion Compensation for Radiation Therapy Using a CT-Based Mid-Position Motion Model: Methodology and Clinical Evaluation

    SciTech Connect

    Kruis, Matthijs F.; Kamer, Jeroen B. van de; Houweling, Antonetta C.; Sonke, Jan-Jakob; Belderbos, José S.A.; Herk, Marcel van

    2013-10-01

    Purpose: Four-dimensional positron emission tomography (4D PET) imaging of the thorax produces sharper images with reduced motion artifacts. Current radiation therapy planning systems, however, do not facilitate 4D plan optimization. When images are acquired in a 2-minute time slot, the signal-to-noise ratio of each 4D frame is low, compromising image quality. The purpose of this study was to implement and evaluate the construction of mid-position 3D PET scans, with motion compensated using a 4D computed tomography (CT)-derived motion model. Methods and Materials: All voxels of 4D PET were registered to the time-averaged position by using a motion model derived from the 4D CT frames. After the registration the scans were summed, resulting in a motion-compensated 3D mid-position PET scan. The method was tested with a phantom dataset as well as data from 27 lung cancer patients. Results: PET motion compensation using a CT-based motion model improved image quality of both phantoms and patients in terms of increased maximum SUV (SUV{sub max}) values and decreased apparent volumes. In homogenous phantom data, a strong relationship was found between the amplitude-to-diameter ratio and the effects of the method. In heterogeneous patient data, the effect correlated better with the motion amplitude. In case of large amplitudes, motion compensation may increase SUV{sub max} up to 25% and reduce the diameter of the 50% SUV{sub max} volume by 10%. Conclusions: 4D CT-based motion-compensated mid-position PET scans provide improved quantitative data in terms of uptake values and volumes at the time-averaged position, thereby facilitating more accurate radiation therapy treatment planning of pulmonary lesions.

  3. Tumor affinity of radiolabeled peanut agglutinin compared with that of Ga-67 citrate in animal models

    SciTech Connect

    Yokoyama, K.; Aburano, T.; Watanabe, N.; Kawabata, S.; Ishida, H.; Mukai, K.; Tonami, N.; Hisada, K.

    1985-05-01

    Peanut agglutinin (PNA) binds avidly to the immunodominant group of the tumor associated T antigen. The purpose of this study was to evaluate oncodiagnostic potential of radiolabeled PNA in animal models. PNA was labeled with I-125 or I-131 by Iodogen and also with In-111 by cyclic DTPA anhydride. The biological activity of PNA was examined by a hemaglutination titer with a photometer before and after labeling. Animal tumor models used were Lewis Lung Cancer(LLC), B-16 Melanotic Melanoma(MM), Yoshida Sarcoma(YS), Ehrlich Ascites Tumor(EAT and Hepatoma AH109A(HAH). Inflammatory tissue induced by turpentine oil was used as an abscess model. Serial scintigraphic images were obtained following IV injections of 100 ..mu..Ci of I-131 or In-111-DTPA-PNA. The tumor affinity of Ga-67 citrate was studied to compare that of radiolabeled PNA. Tissue biodistribution was studied in EAT bearing mice. All of these tumor models except HAH were clearly visible by radiolabeled PNA without subtraction techniques. In the models of LLC and EAT, PNA showed the better accumulation into the tumor tissue than Ga-67 citrate. In YS and MM, PNA represented almost the same accumulation as Ga-67 citrate. The localization of PNA into abscess tissue wasn't found although Ga-67 citrate markedly accumulated into abscess tissue as well as tumor tissue. The clearance of PNA from tumor was slower than those from any other organs. Tumor to muscle ratio was 5.1 at 48hrs. and tumor to blood ratio increased with time to 2.3 at 96hrs. These results suggested that radiolabeled PNA may have a potential in the detection of tumor.

  4. Excited protein states of human tear lipocalin for low- and high-affinity ligand binding revealed by functional AB loop motion.

    PubMed

    Gasymov, Oktay K; Abduragimov, Adil R; Glasgow, Ben J

    2010-06-01

    Human tear lipocalin (TL), a prominent member of lipocalin family, exhibits functional and structural promiscuity. The plasticity of loop regions modulates entry to the ligand pocket at the "open" end of the eight-stranded beta-barrel. Site-directed multi-distance measurements using fluorescence resonance energy transfer between functional loops register two excited protein states for low- and high-affinity ligand binding. At low pH, the longest loop AB adopts the conformation of the low-affinity excited protein state that matches the crystal structure of holo-TL at pH 8. A "crankshaft" like movement is detected for the loop AB in a low pH transition. At pH 7.3 the holo-protein assumes a high-affinity excited protein state, in which the loop AB is more compact (RMS=3.1A). In the apo-holo transition, the reporter Trp 28 moves about 4.5A that reflects a decrease in distance between Glu27 and Lys108. This interaction fixes the loop AB conformation for the high-affinity mode. No such movement is detected at low pH, where Glu27 is protonated. Data strongly indicate that the protonation state of Glu27 modulates the conformation of the loop AB for high- and low-affinity binding. PMID:20439130

  5. Molecular modeling of oscillating GHz electric field influence on the kinesin affinity to microtubule

    NASA Astrophysics Data System (ADS)

    R. Saeidi, H.; S. Setayandeh, S.; Lohrasebi, A.

    2015-08-01

    Kinesin is a microtubule-associated motor protein which can respond to the external electric field due to its polarity. Using a molecular dynamics simulation method, the effect of such a field on the affinity of kinesin to the αβ-tubulin is investigated in this study. To consider kinesin affinity, the system is exposed to an electric field of 0.03 V/nm with frequency values of 1, 2, …, 9, and 10 GHz. It is found that the applied electric field can change kinesin affinity to the microtubule. These changes could perturb the normal operation of kinesin, such as the processive motility of kinesin on the microtubule.

  6. Constraints on the affinity term for modeling long-term glass dissolution rates

    SciTech Connect

    Bourcier, W.L.; Carroll, S.A.; Phillips, B.L.

    1993-11-01

    Predictions of long-term glass dissolution rates are highly dependent on the form of the affinity term in the rate expression. Analysis of the quantitative effect of saturation state on glass dissolution rate for CSG glass (a simple analog of SRL-165 glass), shows that a simple (1-Q/K) affinity term does not match experimental results. Our data at 100{degree}C show that the data is better fit by an affinity term having the form (1 {minus} (Q/K){sup 1}/{sigma}) where {sigma} = 10.

  7. A mathematical model for efficient estimation of aircraft motions

    NASA Technical Reports Server (NTRS)

    Bach, R. E., Jr.

    1983-01-01

    In the usual formulation of the aircraft state-estimation problem, motions along a flight trajectory are represented by a plant consisting of nonlinear state and measurement models. Problem solution using this formulation requires that both state- and measurement-dependent Jacobian matrices be evaluated along any trajectory. In this paper it is shown that a set of state variables can be chosen to realize a linear state model of very simple form, such that all nonlinearities appear in the measurement model. The potential advantage of the new formulation is computational: the Jacobian matrix corresponding to a linear state model is constant, a feature that should outweigh the fact that the measurement model is more complicated than in the conventinal formulation. To compare the modeling methods, aircraft motions from typical flight-test and accident data were estimated, using each formulation with the same off-line (smoothing) algorithm. The results of these experiments, reported in the paper, demonstrate clearly the computational superiority of the linear state-variable formulation. The procedure advocated here may be extended to other nonlinear estimation problems, including on-line (filtering) applications.

  8. Langevin model for a Brownian system with directed motion

    NASA Astrophysics Data System (ADS)

    Ambía, Francisco; Híjar, Humberto

    2016-08-01

    We propose a model for an active Brownian system that exhibits one-dimensional directed motion. This system consists of two Brownian spherical particles that interact through an elastic potential and have time-dependent radii. We suggest an algorithm by which the sizes of the particles can be varied, such that the center of mass of the system is able to move at an average constant speed in one direction. The dynamics of the system is studied theoretically using a Langevin model, as well as from Brownian Dynamics simulations.

  9. Re-evaluation of the model-free analysis of fast internal motion in proteins using NMR relaxation.

    PubMed

    Frederick, Kendra King; Sharp, Kim A; Warischalk, Nicholas; Wand, A Joshua

    2008-09-25

    NMR spin relaxation retains a central role in the characterization of the fast internal motion of proteins and their complexes. Knowledge of the distribution and amplitude of the motion of amino acid side chains is critical for the interpretation of the dynamical proxy for the residual conformational entropy of proteins, which can potentially significantly contribute to the entropy of protein function. A popular treatment of NMR relaxation phenomena in macromolecules dissolved in liquids is the so-called model-free approach of Lipari and Szabo. The robustness of the mode-free approach has recently been strongly criticized and the remarkable range and structural context of the internal motion of proteins, characterized by such NMR relaxation techniques, attributed to artifacts arising from the model-free treatment, particularly with respect to the symmetry of the underlying motion. We develop an objective quantification of both spatial and temporal asymmetry of motion and re-examine the foundation of the model-free treatment. Concerns regarding the robustness of the model-free approach to asymmetric motion appear to be generally unwarranted. The generalized order parameter is robustly recovered. The sensitivity of the model-free treatment to asymmetric motion is restricted to the effective correlation time, which is by definition a normalized quantity and not a true time constant and therefore of much less interest in this context. With renewed confidence in the model-free approach, we then examine the microscopic distribution of side chain motion in the complex between calcium-saturated calmodulin and the calmodulin-binding domain of the endothelial nitric oxide synthase. Deuterium relaxation is used to characterize the motion of methyl groups in the complex. A remarkable range of Lipari-Szabo model-free generalized order parameters are seen with little correlation with basic structural parameters such as the depth of burial. These results are contrasted with the

  10. Immersed false vertical room. A new motion sickness model.

    PubMed

    Coats, A C; Norfleet, W T

    1998-01-01

    We evaluated a new model of motion sickness--an enclosure decorated with visual cues to upright which was immersed either inverted or "front"-wall down, in Johnson Space Center's Weightless Environment Training Facility (WETF) pool. This "WETF False Vertical Room" (WFVR) was tested with 19 male and 3 female SCUBA diver subjects, aged 23 to 57, who alternately set clocks mounted near the room's 8 corners and made exaggerated pitch head movements. We found that (1) the WFVR test runs produced motion sickness symptoms in 56% and 36% of subjects in the room-inverted and room-front-down positions, respectively. (2) Pitch head movements were the most provocative acts, followed closely by setting the clocks--particularly when a clock face filled the visual field. (3) When measured with a self-ranking questionnaire, terrestrial motion sickness susceptibility correlated strongly (P < 0.005) with WFVR sickness susceptibility. (4) Standing instability, measured with a modified Fregly-Graybiel floor battery, also correlated strongly (P < 0.005) with WFVR sickness susceptibility. This result may reflect a relationship between visual dominance and WFVR sickness. (5) A control study demonstrated that the inverted and front-down positions produced WFVR sickness, but the upright position did not, and that adaptation may have occurred in some subjects with repeated exposure. The WFVR could become a useful terrestrial model of space motion sickness (SMS) because it duplicates the nature of the gravity-dependent sensory conflicts created by microgravity (visual and otolith inputs conflict while somatosensory gravity cues are minimized), and it also duplicates the nature of the provocative stimulus (sensory environment "rule change" versus application of motion to passive subject) more closely than any other proposed terrestrial SMS model. Also, unlike any other proposed terrestrial SMS model, the WFVR incorporates whole-body movement in all three spatial dimensions. However, the WFVR

  11. Salamander locomotion-induced head movement and retinal motion sensitivity in a correlation-based motion detector model.

    PubMed

    Begley, Jeffrey R; Arbib, Michael A

    2007-06-01

    We report on a computational model of retinal motion sensitivity based on correlation-based motion detectors. We simulate object motion detection in the presence of retinal slip caused by the salamander's head movements during locomotion. Our study offers new insights into object motion sensitive ganglion cells in the salamander retina. A sigmoidal transformation of the spatially and temporally filtered retinal image substantially improves the sensitivity of the system in detecting a small target moving in place against a static natural background in the presence of comparatively large, fast simulated eye movements, but is detrimental to the direction-selectivity of the motion detector. The sigmoid has insignificant effects on detector performance in simulations of slow, high contrast laboratory stimuli. These results suggest that the sigmoid reduces the system's noise sensitivity.

  12. Deformable models with sparsity constraints for cardiac motion analysis.

    PubMed

    Yu, Yang; Zhang, Shaoting; Li, Kang; Metaxas, Dimitris; Axel, Leon

    2014-08-01

    Deformable models integrate bottom-up information derived from image appearance cues and top-down priori knowledge of the shape. They have been widely used with success in medical image analysis. One limitation of traditional deformable models is that the information extracted from the image data may contain gross errors, which adversely affect the deformation accuracy. To alleviate this issue, we introduce a new family of deformable models that are inspired from the compressed sensing, a technique for accurate signal reconstruction by harnessing some sparseness priors. In this paper, we employ sparsity constraints to handle the outliers or gross errors, and integrate them seamlessly with deformable models. The proposed new formulation is applied to the analysis of cardiac motion using tagged magnetic resonance imaging (tMRI), where the automated tagging line tracking results are very noisy due to the poor image quality. Our new deformable models track the heart motion robustly, and the resulting strains are consistent with those calculated from manual labels. PMID:24721617

  13. Modeling the Nonlinear Motion of the Rat Central Airways.

    PubMed

    Ibrahim, G; Rona, A; Hainsworth, S V

    2016-01-01

    Advances in volumetric medical imaging techniques allowed the subject-specific modeling of the bronchial flow through the first few generations of the central airways using computational fluid dynamics (CFD). However, a reliable CFD prediction of the bronchial flow requires modeling of the inhomogeneous deformation of the central airways during breathing. This paper addresses this issue by introducing two models of the central airways motion. The first model utilizes a node-to-node mapping between the discretized geometries of the central airways generated from a number of successive computed tomography (CT) images acquired dynamically (without breath hold) over the breathing cycle of two Sprague-Dawley rats. The second model uses a node-to-node mapping between only two discretized airway geometries generated from the CT images acquired at end-exhale and at end-inhale along with the ventilator measurement of the lung volume change. The advantage of this second model is that it uses just one pair of CT images, which more readily complies with the radiation dosage restrictions for humans. Three-dimensional computer aided design geometries of the central airways generated from the dynamic-CT images were used as benchmarks to validate the output from the two models at sampled time-points over the breathing cycle. The central airway geometries deformed by the first model showed good agreement to the benchmark geometries within a tolerance of 4%. The central airway geometry deformed by the second model better approximated the benchmark geometries than previous approaches that used a linear or harmonic motion model.

  14. Modeling the Nonlinear Motion of the Rat Central Airways.

    PubMed

    Ibrahim, G; Rona, A; Hainsworth, S V

    2016-01-01

    Advances in volumetric medical imaging techniques allowed the subject-specific modeling of the bronchial flow through the first few generations of the central airways using computational fluid dynamics (CFD). However, a reliable CFD prediction of the bronchial flow requires modeling of the inhomogeneous deformation of the central airways during breathing. This paper addresses this issue by introducing two models of the central airways motion. The first model utilizes a node-to-node mapping between the discretized geometries of the central airways generated from a number of successive computed tomography (CT) images acquired dynamically (without breath hold) over the breathing cycle of two Sprague-Dawley rats. The second model uses a node-to-node mapping between only two discretized airway geometries generated from the CT images acquired at end-exhale and at end-inhale along with the ventilator measurement of the lung volume change. The advantage of this second model is that it uses just one pair of CT images, which more readily complies with the radiation dosage restrictions for humans. Three-dimensional computer aided design geometries of the central airways generated from the dynamic-CT images were used as benchmarks to validate the output from the two models at sampled time-points over the breathing cycle. The central airway geometries deformed by the first model showed good agreement to the benchmark geometries within a tolerance of 4%. The central airway geometry deformed by the second model better approximated the benchmark geometries than previous approaches that used a linear or harmonic motion model. PMID:26592166

  15. Age Dependent Absolute Plate and Plume Motion Modeling

    NASA Astrophysics Data System (ADS)

    Heaton, D. E.; Koppers, A. A. P.

    2015-12-01

    Current absolute plate motion (APM) models from 80 - 0 Ma are constrained by the location of mantle plume related hotspot seamounts, in particular those of the Hawaiian-Emperor and Louisville seamount trails. Originally the 'fixed' hotspot hypothesis was developed to explain past plate motion based on linear age progressive intra-plate volcanism. However, now that 'moving' hotspots are accepted, it is becoming clear that APM models need to be corrected for individual plume motion vectors. For older seamount trails that were active between roughly 50 and 80 Ma the APM models that use 'fixed' hotspots overestimate the measured age progression in those trails, while APM models corrected for 'moving' hotspots underestimate those age progressions. These mismatches are due to both a lack of reliable ages in the older portions of both the Hawaii and Louisville seamount trails and insufficient APM modeling constraints from other seamount trails in the Pacific Basin. Seamounts are difficult to sample and analyze because many are hydrothermally altered and have low potassium concentrations. New 40Ar/39Ar Age results from International Ocean Drilling Project (IODP) Expedition 330 Sites U1372 (n=18), U1375 (n=3), U1376 (n=15) and U1377 (n=7) aid in constraining the oldest end of the Louisville Seamount trail. A significant observation in this study is that the age range recovered in the drill cores match the range of ages that were acquired on dredging cruises at the same seamounts (e.g. Koppers et al., 2011). This is important for determining the inception age of a seamount. The sections recovered from IODP EXP 330 are in-situ volcanoclastic breccia and lava flows. Comparing the seismic interpretations of Louisville guyots (Contreras-Reyes et al., 2010), Holes U1372, U1373 and U1374 penetrated the extrusive and volcanoclastic sections of the seamount. The ages obtained are consistent over stratigraphic intervals >100-450 m thick, providing evidence that these seamounts

  16. Blind prediction of charged ligand binding affinities in a model binding site

    PubMed Central

    Rocklin, Gabriel J.; Boyce, Sarah E.; Fischer, Marcus; Fish, Inbar; Mobley, David L.; Shoichet, Brian K.; Dill, Ken A.

    2013-01-01

    Predicting absolute protein-ligand binding affinities remains a frontier challenge in ligand discovery and design. This becomes more difficult when ionic interactions are involved, because of the large opposing solvation and electrostatic attraction energies. In a blind test, we examined whether alchemical free energy calculations could predict binding affinities of 14 charged and 5 neutral compounds previously untested as ligands for a cavity binding site in Cytochrome C Peroxidase. In this simplified site, polar and cationic ligands compete with solvent to interact with a buried aspartate. Predictions were tested by calorimetry, spectroscopy, and crystallography. Of the 15 compounds predicted to bind, 13 were experimentally confirmed, while four compounds were false negative predictions. Predictions had an RMSE of 1.95 kcal/mol to the experimental affinities, and predicted poses had an average RMSD of 1.7 Å to the crystallographic poses. This test serves as a benchmark for these thermodynamically rigorous calculations at predicting binding affinities for charged compounds, and gives insights into the existing sources of error, which are primarily electrostatic interactions inside proteins. Our experiments also provide a useful set of ionic binding affinities in a simplified system for testing new affinity prediction methods. PMID:23896298

  17. Energetics of ligand-receptor binding affinity on endothelial cells: An in vitro model.

    PubMed

    Fotticchia, Iolanda; Guarnieri, Daniela; Fotticchia, Teresa; Falanga, Andrea Patrizia; Vecchione, Raffaele; Giancola, Concetta; Netti, Paolo Antonio

    2016-08-01

    Targeted therapies represent a challenge in modern medicine. In this contest, we propose a rapid and reliable methodology based on Isothermal Titration Calorimetry (ITC) coupled with confluent cell layers cultured around biocompatible templating microparticles to quantify the number of overexpressing receptors on cell membrane and study the energetics of receptor-ligand binding in near-physiological conditions. In the in vitro model here proposed we used the bEnd3 cell line as brain endothelial cells to mimic the blood brain barrier (BBB) cultured on dextran microbeads ranging from 67μm to 80μm in size (Cytodex) and the primary human umbilical vein cells (HUVEC) for comparison. The revealed affinity between transferrin (Tf) and transferrin receptor (TfR) in both systems is very high, Kd values are in the order of nM. Conversely, the value of TfRs/cell reveals a 100-fold increase in the number of TfRs per bEnd3 cells compared to HUVEC cells. The presented methodology can represent a novel and helpful strategy to identify targets, to address drug design and selectively deliver therapeutics that can cross biological barriers such as the blood brain barrier.

  18. Energetics of ligand-receptor binding affinity on endothelial cells: An in vitro model.

    PubMed

    Fotticchia, Iolanda; Guarnieri, Daniela; Fotticchia, Teresa; Falanga, Andrea Patrizia; Vecchione, Raffaele; Giancola, Concetta; Netti, Paolo Antonio

    2016-08-01

    Targeted therapies represent a challenge in modern medicine. In this contest, we propose a rapid and reliable methodology based on Isothermal Titration Calorimetry (ITC) coupled with confluent cell layers cultured around biocompatible templating microparticles to quantify the number of overexpressing receptors on cell membrane and study the energetics of receptor-ligand binding in near-physiological conditions. In the in vitro model here proposed we used the bEnd3 cell line as brain endothelial cells to mimic the blood brain barrier (BBB) cultured on dextran microbeads ranging from 67μm to 80μm in size (Cytodex) and the primary human umbilical vein cells (HUVEC) for comparison. The revealed affinity between transferrin (Tf) and transferrin receptor (TfR) in both systems is very high, Kd values are in the order of nM. Conversely, the value of TfRs/cell reveals a 100-fold increase in the number of TfRs per bEnd3 cells compared to HUVEC cells. The presented methodology can represent a novel and helpful strategy to identify targets, to address drug design and selectively deliver therapeutics that can cross biological barriers such as the blood brain barrier. PMID:27100851

  19. Modeling the integration of motion signals across space

    NASA Astrophysics Data System (ADS)

    Loffler, Gunter; Orbach, Harry S.

    2003-08-01

    Experiments by Loffler and Orbach on the integration of motion signals across space [J. Opt. Soc. Am. A 20, 1461 (2003)] revealed that both three-dimensional analysis and object interpretation play a much smaller role than previously assumed. These results motivated the quantitative description of a low-level, bottom-up model presented here. Motion is computed in parallel at different spatial sites, and excitatory interactions operate between sites. The strength of these interactions is determined mainly by distance. Simulations correctly predict behavior for a variety of manipulations on multi-aperture stimuli: aligned and skewed lines, different presentation times, different inter-aperture gaps, and different spatial frequencies. However, strictly distance-dependent mechanisms are too simplistic to account for all experimental data. Mismatches for grossly misoriented lines suggest collinear facilitation as a promising extension. Once incorporated, collinear facilitation not only correctly predicts results for misoriented patterns but also accounts for the lack of motion integration between heterogeneous stimuli such as lines and dots.

  20. Synthetic cannabinoids: In silico prediction of the cannabinoid receptor 1 affinity by a quantitative structure-activity relationship model.

    PubMed

    Paulke, Alexander; Proschak, Ewgenij; Sommer, Kai; Achenbach, Janosch; Wunder, Cora; Toennes, Stefan W

    2016-03-14

    The number of new synthetic psychoactive compounds increase steadily. Among the group of these psychoactive compounds, the synthetic cannabinoids (SCBs) are most popular and serve as a substitute of herbal cannabis. More than 600 of these substances already exist. For some SCBs the in vitro cannabinoid receptor 1 (CB1) affinity is known, but for the majority it is unknown. A quantitative structure-activity relationship (QSAR) model was developed, which allows the determination of the SCBs affinity to CB1 (expressed as binding constant (Ki)) without reference substances. The chemically advance template search descriptor was used for vector representation of the compound structures. The similarity between two molecules was calculated using the Feature-Pair Distribution Similarity. The Ki values were calculated using the Inverse Distance Weighting method. The prediction model was validated using a cross validation procedure. The predicted Ki values of some new SCBs were in a range between 20 (considerably higher affinity to CB1 than THC) to 468 (considerably lower affinity to CB1 than THC). The present QSAR model can serve as a simple, fast and cheap tool to get a first hint of the biological activity of new synthetic cannabinoids or of other new psychoactive compounds.

  1. A Pelvic Phantom for Modeling Internal Organ Motions

    SciTech Connect

    Kovacs, Peter; Sebestyen, Zsolt; Farkas, Robert; Bellyei, Szabolcs; Szigeti, Andras; Liposits, Gabor; Hideghety, Katalin; Derczy, Katalin; Mangel, Laszlo

    2011-10-01

    A pelvic phantom was developed for use in testing image-guided radiation therapy (IGRT) and adaptive applications in radiation therapy (ART) with simulating the anterior-posterior internal organ motions during prostate radiotherapy. Measurements could be done with an ionization chamber (IC) in the simulated prostate. The rectum was simulated by air-equivalent material (AEM). The volume superior to the IC placement was considered as the bladder. The extension of AEM volume could be varied. The vertical position of the IC placement could be shifted by {+-}1 cm to simulate the prostate motion parallel to the changes in bladder volume. The reality of the simulation was inspected. Three-millimeter-slice-increment computed tomography (CT) scans were taken for irradiation planning. The structure set was adapted to the phantom from a treated patient. Planning target volume was delineated according to the RTOG 0126 study. IMRT and 3D conformal radiation therapy (3D-CRT) plans were made. Prostate motion and rectum volume changes were simulated in the phantom. IC displacement was corrected by phantom shifting. The delivered dose was measured with IC in 7 cases using intensity-modulated radiation therapy (IMRT) and 3D-CRT fractions, and single square-shaped beams: anteroposterior (AP), posteroanterior (PA), and lateral (LAT). Variations from the calculated doses were slightly below 1% at IMRT and around 1% at 3D-CRT; below 4.5% at square AP beam; up to 9% at square PA beam; and around 0.5% at square LAT beam. Other authors have already shown that by using planning systems and ultrasonic and cone beam CT guidance, correction of organ motions in a real patient during prostate cancer IGRT does not have a significant dosimetric effect. The inspection of our phantom-as described here-ended with similar results. Our team suggested that our model is sufficiently realistic and can be used for IGRT and ART testing.

  2. Sparse deformable models with application to cardiac motion analysis.

    PubMed

    Yu, Yang; Zhang, Shaoting; Huang, Junzhou; Metaxas, Dimitris; Axel, Leon

    2013-01-01

    Deformable models have been widely used with success in medical image analysis. They combine bottom-up information derived from image appearance cues, with top-down shape-based constraints within a physics-based formulation. However, in many real world problems the observations extracted from the image data often contain gross errors, which adversely affect the deformation accuracy. To alleviate this issue, we introduce a new family of deformable models that are inspired from compressed sensing, a technique for efficiently reconstructing a signal based on its sparseness in some domain. In this problem, we employ sparsity to represent the outliers or gross errors, and combine it seamlessly with deformable models. The proposed new formulation is applied to the analysis of cardiac motion, using tagged magnetic resonance imaging (tMRI), where the automated tagging line tracking results are very noisy due to the poor image quality. Our new deformable models track the heart motion robustly, and the resulting strains are consistent with those calculated from manual labels. PMID:24683970

  3. Model and parametric uncertainty in source-based kinematic models of earthquake ground motion

    USGS Publications Warehouse

    Hartzell, Stephen; Frankel, Arthur; Liu, Pengcheng; Zeng, Yuehua; Rahman, Shariftur

    2011-01-01

    Four independent ground-motion simulation codes are used to model the strong ground motion for three earthquakes: 1994 Mw 6.7 Northridge, 1989 Mw 6.9 Loma Prieta, and 1999 Mw 7.5 Izmit. These 12 sets of synthetics are used to make estimates of the variability in ground-motion predictions. In addition, ground-motion predictions over a grid of sites are used to estimate parametric uncertainty for changes in rupture velocity. We find that the combined model uncertainty and random variability of the simulations is in the same range as the variability of regional empirical ground-motion data sets. The majority of the standard deviations lie between 0.5 and 0.7 natural-log units for response spectra and 0.5 and 0.8 for Fourier spectra. The estimate of model epistemic uncertainty, based on the different model predictions, lies between 0.2 and 0.4, which is about one-half of the estimates for the standard deviation of the combined model uncertainty and random variability. Parametric uncertainty, based on variation of just the average rupture velocity, is shown to be consistent in amplitude with previous estimates, showing percentage changes in ground motion from 50% to 300% when rupture velocity changes from 2.5 to 2.9 km/s. In addition, there is some evidence that mean biases can be reduced by averaging ground-motion estimates from different methods.

  4. A Fully Nonlinear, Dynamically Consistent Numerical Model for Solid-Body Ship Motion. I. Ship Motion with Fixed Heading

    NASA Technical Reports Server (NTRS)

    Lin, Ray-Quing; Kuang, Weijia

    2011-01-01

    In this paper, we describe the details of our numerical model for simulating ship solidbody motion in a given environment. In this model, the fully nonlinear dynamical equations governing the time-varying solid-body ship motion under the forces arising from ship wave interactions are solved with given initial conditions. The net force and moment (torque) on the ship body are directly calculated via integration of the hydrodynamic pressure over the wetted surface and the buoyancy effect from the underwater volume of the actual ship hull with a hybrid finite-difference/finite-element method. Neither empirical nor free parametrization is introduced in this model, i.e. no a priori experimental data are needed for modelling. This model is benchmarked with many experiments of various ship hulls for heave, roll and pitch motion. In addition to the benchmark cases, numerical experiments are also carried out for strongly nonlinear ship motion with a fixed heading. These new cases demonstrate clearly the importance of nonlinearities in ship motion modelling.

  5. New Ground Motion Prediction Models for Caucasus Region

    NASA Astrophysics Data System (ADS)

    Jorjiashvili, N.

    2012-12-01

    The Caucasus is a region of numerous natural hazards and ensuing disasters. Analysis of the losses due to past disasters indicates the those most catastrophic in the region have historically been due to strong earthquakes. Estimation of expected ground motion is a fundamental earthquake hazard assessment. The most commonly used parameter for attenuation relation is peak ground acceleration because this parameter gives useful information for Seismic Hazard Assessment. Because of this, many peak ground acceleration attenuation relations have been developed by different authors. Besides, a few attenuation relations were developed for Caucasus region: Ambraseys et al. (1996,2005) which were based on entire European region and they were not focused locally on Caucasus Region; Smit et.al. (2000) that was based on a small amount of acceleration data that really is not enough. Since 2003 construction of Georgian Digital Seismic Network has started with the help of number of International organizations, Projects and Private companies. The works conducted involved scientific as well as organizational activities: Resolving technical problems concerning communication and data transmission. Thus, today we have a possibility to get real time data and make scientific research based on digital seismic data. Generally, ground motion and damage are influenced by the magnitude of the earthquake, the distance from the seismic source to site, the local ground conditions and the characteristics of buildings. Estimation of expected ground motion is a fundamental earthquake hazard assessment. This is the reason why this topic is emphasized in this study. In this study new GMP models are obtained based on new data from Georgian seismic network and also from neighboring countries. Estimation of models are obtained by classical, statistical way, regression analysis. Also site ground conditions are considered because the same earthquake recorded at the same distance may cause different damage

  6. Continuous motion decoding from EMG using independent component analysis and adaptive model training.

    PubMed

    Zhang, Qin; Xiong, Caihua; Chen, Wenbin

    2014-01-01

    Surface Electromyography (EMG) is popularly used to decode human motion intention for robot movement control. Traditional motion decoding method uses pattern recognition to provide binary control command which can only move the robot as predefined limited patterns. In this work, we proposed a motion decoding method which can accurately estimate 3-dimensional (3-D) continuous upper limb motion only from multi-channel EMG signals. In order to prevent the muscle activities from motion artifacts and muscle crosstalk which especially obviously exist in upper limb motion, the independent component analysis (ICA) was applied to extract the independent source EMG signals. The motion data was also transferred from 4-manifold to 2-manifold by the principle component analysis (PCA). A hidden Markov model (HMM) was proposed to decode the motion from the EMG signals after the model trained by an adaptive model identification process. Experimental data were used to train the decoding model and validate the motion decoding performance. By comparing the decoded motion with the measured motion, it is found that the proposed motion decoding strategy was feasible to decode 3-D continuous motion from EMG signals.

  7. [Bionic model for coordinated head-eye motion control].

    PubMed

    Mao, Xiaobo; Chen, Tiejun

    2011-10-01

    The relationships between eye movements and head movements of the primate during gaze shifts are analyzed in detail in the present paper. Applying the mechanisms of neurophysiology to engineering domain, we have improved the robot eye-head coordination. A bionic control strategy of coordinated head-eye motion was proposed. The processes of gaze shifts are composed of an initial fast phase followed by a slow phase. In the fast phase saccade eye movements and slow head movements were combined, which cooperate to bring gaze from an initial resting position toward the new target rapidly, while in the slow phase the gaze stability and target fixation were ensured by the action of the vestibulo-ocular reflex (VOR) where the eyes and head rotate by equal amplitudes in opposite directions. A bionic gaze control model was given. The simulation results confirmed the effectiveness of the model by comparing with the results of neurophysiology experiments.

  8. U(6)-Phonon model of nuclear collective motion

    NASA Astrophysics Data System (ADS)

    Ganev, H. G.

    2015-05-01

    The U(6)-phonon model of nuclear collective motion with the semi-direct product structure [HW(21)]U(6) is obtained as a hydrodynamic (macroscopic) limit of the fully microscopic proton-neutron symplectic model (PNSM) with Sp(12, R) dynamical group. The phonon structure of the [HW(21)]U(6) model enables it to simultaneously include the giant monopole and quadrupole, as well as dipole resonances and their coupling to the low-lying collective states. The U(6) intrinsic structure of the [HW(21)]U(6) model, from the other side, gives a framework for the simultaneous shell-model interpretation of the ground state band and the other excited low-lying collective bands. It follows then that the states of the whole nuclear Hilbert space which can be put into one-to-one correspondence with those of a 21-dimensional oscillator with an intrinsic (base) U(6) structure. The latter can be determined in such a way that it is compatible with the proton-neutron structure of the nucleus. The macroscopic limit of the Sp(12, R) algebra, therefore, provides a rigorous mechanism for implementing the unified model ideas of coupling the valence particles to the core collective degrees of freedom within a fully microscopic framework without introducing redundant variables or violating the Pauli principle.

  9. Fast-coding robust motion estimation model in a GPU

    NASA Astrophysics Data System (ADS)

    García, Carlos; Botella, Guillermo; de Sande, Francisco; Prieto-Matias, Manuel

    2015-02-01

    Nowadays vision systems are used with countless purposes. Moreover, the motion estimation is a discipline that allow to extract relevant information as pattern segmentation, 3D structure or tracking objects. However, the real-time requirements in most applications has limited its consolidation, considering the adoption of high performance systems to meet response times. With the emergence of so-called highly parallel devices known as accelerators this gap has narrowed. Two extreme endpoints in the spectrum of most common accelerators are Field Programmable Gate Array (FPGA) and Graphics Processing Systems (GPU), which usually offer higher performance rates than general propose processors. Moreover, the use of GPUs as accelerators involves the efficient exploitation of any parallelism in the target application. This task is not easy because performance rates are affected by many aspects that programmers should overcome. In this paper, we evaluate OpenACC standard, a programming model with directives which favors porting any code to a GPU in the context of motion estimation application. The results confirm that this programming paradigm is suitable for this image processing applications achieving a very satisfactory acceleration in convolution based problems as in the well-known Lucas & Kanade method.

  10. The high affinity melationin binding site probed with conformationally restricted ligand--I. Pharmacophore and minireceptor models.

    PubMed

    Jansen, J M; Copinga, S; Gruppen, G; Molinari, E J; Dubocovich, M L; Grol, C J

    1996-08-01

    The affinities of enantiomers of conformationally restricted melatonin analogues for the ML-1 and ML-2 putative melatonin receptor subtypes are reported. Most ligands exhibited reversed stereoselectivity when competing with 125I 2-iodomelatonin binding to chicken retinal (ML-1) and hamster brain (ML-2) membranes, further supporting the biochemical and pharmacological differences reported for these two sites. Based on the data for the ML-1 site and thorough conformational analyses of several ligands, two pharmacophore models were derived using the program APOLLO. The pharmacophoric elements included were putative receptor points from the amide NH, the amide CO, and the methoxy-O, together with the normal through the phenyl ring. The large drop in ML-1 affinity observed for 4-methoxy-2-acetamido-indan (6a) could not be explained from either of these models. Minireceptors were subsequently built around the two pharmacophores using Yak. Analysis of the resulting ligand-minireceptor interactions offered an explanation for the low affinity of 6a and allowed one of the pharmacophore models to be selected for use in future drug design. PMID:8879554

  11. SU-E-J-186: Using 4DCT-Based Motion Modeling to Predict Motion and Duty Cycle On Successive Days of Gated Radiotherapy

    SciTech Connect

    Myronakis, M; Cai, W; Dhou, S; Cifter, F; Lewis, J

    2015-06-15

    Purpose: To determine if 4DCT-based motion modeling and external surrogate motion measured during treatment simulation can enhance prediction of residual tumor motion and duty cycle during treatment delivery. Methods: This experiment was conducted using simultaneously recorded tumor and external surrogate motion acquired over multiple fractions of lung cancer radiotherapy. These breathing traces were combined with the XCAT phantom to simulate CT images. Data from the first day was used to estimate the residual tumor motion and duty cycle both directly from the 4DCT (the current clinical standard), and from external-surrogate based motion modeling. The accuracy of these estimated residual tumor motions and duty cycles are evaluated by comparing to the measured internal/external motions from other treatment days. Results: All calculations were done for 25% and 50% duty cycles. The results indicated that duty cycle derived from 4DCT information alone is not enough to accurately predict duty cycles during treatment. Residual tumor motion was determined from the recorded data and compared with the estimated residual tumor motion from 4DCT. Relative differences in residual tumor motion varied from −30% to 55%, suggesting that more information is required to properly predict residual tumor motion. Compared to estimations made from 4DCT, in three out of four patients examined, the 30 seconds of motion modeling data was able to predict the duty cycle with better accuracy than 4DCT. No improvement was observed in prediction of residual tumor motion for this dataset. Conclusion: Motion modeling during simulation has the potential to enhance 4DCT and provide more information about target motion, duty cycles, and delivered dose. Based on these four patients, 30 seconds of motion modeling data produced improve duty cycle estimations but showed no measurable improvement in residual tumor motion prediction. More patient data is needed to verify this Result. I would like to

  12. A model for the pilot's use of motion cues in roll-axis tracking tasks

    NASA Technical Reports Server (NTRS)

    Levison, W. H.; Junker, A. M.

    1977-01-01

    Simulated target-following and disturbance-regulation tasks were explored with subjects using visual-only and combined visual and motion cues. The effects of motion cues on task performance and pilot response behavior were appreciably different for the two task configurations and were consistent with data reported in earlier studies for similar task configurations. The optimal-control model for pilot/vehicle systems provided a task-independent framework for accounting for the pilot's use of motion cues. Specifically, the availability of motion cues was modeled by augmenting the set of perceptual variables to include position, rate, acceleration, and accleration-rate of the motion simulator, and results were consistent with the hypothesis of attention-sharing between visual and motion variables. This straightforward informational model allowed accurate model predictions of the effects of motion cues on a variety of response measures for both the target-following and disturbance-regulation tasks.

  13. Models for motion-based video indexing and retrieval.

    PubMed

    Dağtaş, S; Al-Khatib, W; Ghafoor, A; Kashyap, R L

    2000-01-01

    With the rapid proliferation of multimedia applications that require video data management, it is becoming more desirable to provide proper video data indexing techniques capable of representing the rich semantics in video data. In real-time applications, the need for efficient query processing is another reason for the use of such techniques. We present models that use the object motion information in order to characterize the events to allow subsequent retrieval. Algorithms for different spatiotemporal search cases in terms of spatial and temporal translation and scale invariance have been developed using various signal and image processing techniques. We have developed a prototype video search engine, PICTURESQUE (pictorial information and content transformation unified retrieval engine for spatiotemporal queries) to verify the proposed methods. Development of such technology will enable true multimedia search engines that will enable indexing and searching of the digital video data based on its true content. PMID:18255375

  14. Early breakup of Gondwana: constraints from global plate motion models

    NASA Astrophysics Data System (ADS)

    Seton, Maria; Zahirovic, Sabin; Williams, Simon; Whittaker, Joanne; Gibbons, Ana; Muller, Dietmar; Brune, Sascha; Heine, Christian

    2015-04-01

    Supercontinent break-up and amalgamation is a fundamental Earth cycle, contributing to long-term sea-level fluctuations, species diversity and extinction events, long-term greenhouse-icehouse cycles and changes in the long-wavelength density structure of the mantle. The most recent and best-constrained example involves the fragmentation of Gondwana, starting with rifting between Africa/Madagascar and Antarctica in the Early Jurassic and ending with the separation of the Lord Howe microcontinental blocks east of Australia in the Late Cretaceous. Although the first order configuration of Gondwana within modern reconstructions appears similar to that first proposed by Wegener a century ago, recent studies utilising a wealth of new geophysical and geological data provide a much more detailed picture of relative plate motions both during rifting and subsequent seafloor spreading. We present our latest global plate motion model that includes extensive, new regional analyses. These include: South Atlantic rifting, which started at 150 Ma and propagated into cratonic Africa by 145 Ma (Heine et al., 2013); rifting and early seafloor spreading between Australia, India and Antarctica, which reconciles the fit between Broken Ridge-Kergulean Plateau and the eastern Tasman region (Whittaker et al., 2013); rifting of continental material from northeastern Gondwana and its accretion onto Eurasia and SE Asia including a new model of microcontinent formation and early seafloor spreading in the eastern Indian Ocean (Gibbons et al., 2012; 2013; in review; Williams et al., 2013; Zahirovic et al., 2014); and a new model for the isolation of Zealandia east of Australia, with rifting initiating at 100 Ma until the start of seafloor spreading in the Tasman Sea at ~85 Ma (Williams et al., in prep). Using these reconstructions within the open-source GPlates software, accompanied by a set of evolving plates and plate boundaries, we can explore the factors that govern the behavior of plate

  15. Digital resolver for helicopter model blade motion analysis

    NASA Technical Reports Server (NTRS)

    Daniels, T. S.; Berry, J. D.; Park, S.

    1992-01-01

    The paper reports the development and initial testing of a digital resolver to replace existing analog signal processing instrumentation. Radiometers, mounted directly on one of the fully articulated blades, are electrically connected through a slip ring to analog signal processing circuitry. The measured signals are periodic with azimuth angle and are resolved into harmonic components, with 0 deg over the tail. The periodic nature of the helicopter blade motion restricts the frequency content of each flapping and yaw signal to the fundamental and harmonics of the rotor rotational frequency. A minicomputer is employed to collect these data and then plot them graphically in real time. With this and other information generated by the instrumentation, a helicopter test pilot can then adjust the helicopter model's controls to achieve the desired aerodynamic test conditions.

  16. Optimal dividends in the Brownian motion risk model with interest

    NASA Astrophysics Data System (ADS)

    Fang, Ying; Wu, Rong

    2009-07-01

    In this paper, we consider a Brownian motion risk model, and in addition, the surplus earns investment income at a constant force of interest. The objective is to find a dividend policy so as to maximize the expected discounted value of dividend payments. It is well known that optimality is achieved by using a barrier strategy for unrestricted dividend rate. However, ultimate ruin of the company is certain if a barrier strategy is applied. In many circumstances this is not desirable. This consideration leads us to impose a restriction on the dividend stream. We assume that dividends are paid to the shareholders according to admissible strategies whose dividend rate is bounded by a constant. Under this additional constraint, we show that the optimal dividend strategy is formed by a threshold strategy.

  17. Correction to polar motion data due to the model of geocenter motion determined from SLR, GNSS and GRACE observations

    NASA Astrophysics Data System (ADS)

    Kosek, Wieslaw; Brzezinski, Aleksander; Wnek, Agnieszka; Zbylut-Gorska, Maria; Popinski, Waldemar

    2015-08-01

    The geocenter time series determined from observations of satellite geodetic techniques, e.g. Satellite Laser Ranging (SLR) and Global Navigation Satellite Systems(GNSS) represent the variations of the center of mass of the whole Earth (CM) with respect to the Earth center of figure (CF) considered as the origin of the International Terrestrial Reference Frame (ITRF). The CM variations caused by the mass redistribution in the Earth fluid layers can be also expressed by the first degree gravity variations determined from Gravity Recovery and Climate Experiment (GRACE) corrected by the ocean and atmospheric models as well as the 2-nd and higher degree coefficients. The wavelet semblance filtering was applied to compute the common geodetic geocenter motion model from the SLR and GNSS geocenter time series which is in a good agreement in the annual frequency band with geophysical one based on the satellite gravimetry data.The theories of Earth rotation assume always that the underlying Earth-fixed reference system is geocentric, that is its origin is at the instantaneous center of mass. Here we address the following problems: 1) if the observed offset between the CM and CF has significant impact on the equations which are used for interpretation of the observed EOP variations; 2) if and how the observed geocenter motion can be used to correct the polar motion data while keeping the equations of polar motion unchanged. Finally we make an analysis of the time series of corrections and discuss their importance for the current polar motion excitation studies.

  18. Deciphering the Crowd: Modeling and Identification of Pedestrian Group Motion

    PubMed Central

    Yücel, Zeynep; Zanlungo, Francesco; Ikeda, Tetsushi; Miyashita, Takahiro; Hagita, Norihiro

    2013-01-01

    Associating attributes to pedestrians in a crowd is relevant for various areas like surveillance, customer profiling and service providing. The attributes of interest greatly depend on the application domain and might involve such social relations as friends or family as well as the hierarchy of the group including the leader or subordinates. Nevertheless, the complex social setting inherently complicates this task. We attack this problem by exploiting the small group structures in the crowd. The relations among individuals and their peers within a social group are reliable indicators of social attributes. To that end, this paper identifies social groups based on explicit motion models integrated through a hypothesis testing scheme. We develop two models relating positional and directional relations. A pair of pedestrians is identified as belonging to the same group or not by utilizing the two models in parallel, which defines a compound hypothesis testing scheme. By testing the proposed approach on three datasets with different environmental properties and group characteristics, it is demonstrated that we achieve an identification accuracy of 87% to 99%. The contribution of this study lies in its definition of positional and directional relation models, its description of compound evaluations, and the resolution of ambiguities with our proposed uncertainty measure based on the local and global indicators of group relation. PMID:23344382

  19. Mathematical models of polymer solutions motion and their symmetries

    NASA Astrophysics Data System (ADS)

    Bozhkov, Yu. D.; Pukhnachev, V. V.; Pukhnacheva, T. P.

    2015-10-01

    We consider three mathematical models describing motion of aqueous polymer solutions. All of them are derived from equations of Maxwell type viscoelastic medium at small relaxation time. Distinction consists in the choice of time derivative in the rheological constitutive law. Namely, we can choose (a) connective, (b) partial or (c) objective derivative of the strain tensor in time. We found widest symmetry groups admitted by each of these models. Systems (a) and (c) admit the extended Galilei group containing four arbitrary functions of time while the group admitted by system (b) is rather poor. Wide classes of exact solutions are obtained and their behaviors are analyzed if the relaxation viscosity tends to zero. Asymptotic expansion in this solution's parameter describing the flow near a critical point in planar and axially symmetric cases is derived. Analogs of the classical Hagen-Poiseuille and Nusselt solutions are studied too. We found difference in the pressure distribution between solutions calculated on the base of model (c) and two other models.

  20. Cytoplasm dynamics and cell motion: two-phase flow models.

    PubMed

    Alt, W; Dembo, M

    1999-03-01

    The motion of amoeboid cells is characterized by cytoplasmic streaming and by membrane protrusions and retractions which occur even in the absence of interactions with a substratum. Cell translocation requires, in addition, a transmission mechanism wherein the power produced by the cytoplasmic engine is applied to the substratum in a highly controlled fashion through specific adhesion proteins. Here we present a simple mechano-chemical model that tries to capture the physical essence of these complex biomolecular processes. Our model is based on the continuum equations for a viscous and reactive two-phase fluid model with moving boundaries, and on force balance equations that average the stochastic interactions between actin polymers and membrane proteins. In this paper we present a new derivation and analysis of these equations based on minimization of a power functional. This derivation also leads to a clear formulation and classification of the kinds of boundary conditions that should be specified at free surfaces and at the sites of interaction of the cell and the substratum. Numerical simulations of a one-dimensional lamella reveal that even this extremely simplified model is capable of producing several typical features of cell motility. These include periodic 'ruffle' formation, protrusion-retraction cycles, centripetal flow and cell-substratum traction forces. PMID:10204394

  1. Deciphering the crowd: modeling and identification of pedestrian group motion.

    PubMed

    Yücel, Zeynep; Zanlungo, Francesco; Ikeda, Tetsushi; Miyashita, Takahiro; Hagita, Norihiro

    2013-01-14

    Associating attributes to pedestrians in a crowd is relevant for various areas like surveillance, customer profiling and service providing. The attributes of interest greatly depend on the application domain and might involve such social relations as friends or family as well as the hierarchy of the group including the leader or subordinates. Nevertheless, the complex social setting inherently complicates this task. We attack this problem by exploiting the small group structures in the crowd. The relations among individuals and their peers within a social group are reliable indicators of social attributes. To that end, this paper identifies social groups based on explicit motion models integrated through a hypothesis testing scheme. We develop two models relating positional and directional relations. A pair of pedestrians is identified as belonging to the same group or not by utilizing the two models in parallel, which defines a compound hypothesis testing scheme. By testing the proposed approach on three datasets with different environmental properties and group characteristics, it is demonstrated that we achieve an identification accuracy of 87% to 99%. The contribution of this study lies in its definition of positional and directional relation models, its description of compound evaluations, and the resolution of ambiguities with our proposed uncertainty measure based on the local and global indicators of group relation.

  2. Neural population models for perception of motion in depth.

    PubMed

    Peng, Qiuyan; Shi, Bertram E

    2014-08-01

    Changing disparity (CD) and interocular velocity difference (IOVD) are two possible mechanisms for stereomotion perception. We propose two neurally plausible models for the representation of motion-in-depth (MID) via the CD and IOVD mechanisms. These models create distributed representations of MID velocity as the responses from a population of neurons selective to different MID velocity. Estimates of perceived MID velocity can be computed from the population response. They can be applied directly to binocular image sequences commonly used to characterize MID perception in psychophysical experiments. Contrary to common assumptions, we find that the CD and IOVD mechanisms cannot be distinguished easily by random dot stereograms that disrupt correlations between the two eyes or through time. We also demonstrate that the assumed spatial connectivity between the units in these models can be learned through exposure to natural binocular stimuli. Our experiments with these developmental models of MID selectivity suggest that neurons selective to MID are more likely to develop via the CD mechanism than the IOVD mechanism.

  3. Optimized transformation of the glottal motion into a mechanical model.

    PubMed

    Triep, M; Brücker, C; Stingl, M; Döllinger, M

    2011-03-01

    During phonation the human vocal folds exhibit a complex self-sustained oscillation which is a result of the transglottic pressure difference, of the characteristics of the tissue of the folds and of the flow in the gap between the vocal folds (Van den Berg J. Myoelastic-aerodynamic theory of voice production. J Speech Hearing Res 1958;1:227-44 [1]). Obviously, extensive experiments cannot be performed in vivo. Therefore, in literature a variety of model experiments that try to replicate the vocal folds kinematics for specific studies within the vocal tract can be found. Here, we present an experimental model to visualize the fluid dynamics which result from the complex motions of real human vocal folds. An existing up-scaled glottal cam model with approximate glottal kinematics is extended to replicate more realistically observed glottal closure types. This extension of the model is a further step in understanding the fluid dynamical mechanisms contributing to the quality of human voice during phonation, in particular the cause (changed glottal kinematics) and its effect (changed aero-acoustic field). For four typical glottal closure types cam geometries of varying profile are generated. Two counter rotating cams covered with a silicone membrane reproduce as well as possible the observed glottal movements.

  4. Affine differential geometry analysis of human arm movements.

    PubMed

    Flash, Tamar; Handzel, Amir A

    2007-06-01

    Humans interact with their environment through sensory information and motor actions. These interactions may be understood via the underlying geometry of both perception and action. While the motor space is typically considered by default to be Euclidean, persistent behavioral observations point to a different underlying geometric structure. These observed regularities include the "two-thirds power law", which connects path curvature with velocity, and "local isochrony", which prescribes the relation between movement time and its extent. Starting with these empirical observations, we have developed a mathematical framework based on differential geometry, Lie group theory and Cartan's moving frame method for the analysis of human hand trajectories. We also use this method to identify possible motion primitives, i.e., elementary building blocks from which more complicated movements are constructed. We show that a natural geometric description of continuous repetitive hand trajectories is not Euclidean but equi-affine. Specifically, equi-affine velocity is piecewise constant along movement segments, and movement execution time for a given segment is proportional to its equi-affine arc-length. Using this mathematical framework, we then analyze experimentally recorded drawing movements. To examine movement segmentation and classification, the two fundamental equi-affine differential invariants-equi-affine arc-length and curvature are calculated for the recorded movements. We also discuss the possible role of conic sections, i.e., curves with constant equi-affine curvature, as motor primitives and focus in more detail on parabolas, the equi-affine geodesics. Finally, we explore possible schemes for the internal neural coding of motor commands by showing that the equi-affine framework is compatible with the common model of population coding of the hand velocity vector when combined with a simple assumption on its dynamics. We then discuss several alternative explanations

  5. Mixed-model QSAR at the glucocorticoid receptor: predicting the binding mode and affinity of psychotropic drugs.

    PubMed

    Spreafico, Morena; Ernst, Beat; Lill, Markus A; Smiesko, Martin; Vedani, Angelo

    2009-01-01

    The glucocorticoid receptor (GR) is a member of the nuclear receptor superfamily that affects immune response, development, and metabolism in target tissues. Glucocorticoids are widely used to treat diverse pathophysiological conditions, but their clinical applicability is limited by side effects. A prediction of the binding affinity toward the GR would be beneficial for identifying glucocorticoid-mediated adverse effects triggered by drugs or chemicals. By identifying the binding mode to the GR using flexible docking (software Yeti) and quantifying the binding affinity through multidimensional QSAR (software Quasar), we validated a model family based on 110 compounds, representing four different chemical classes. The correlation with the experimental data (cross-validated r(2)=0.702; predictive r(2)=0.719) suggests that our approach is suited for predicting the binding affinity of related compounds toward the GR. After challenging the model by a series of scramble tests, a consensus approach (software Raptor), and a prediction set, it was incorporated into our VirtualToxLab and used to simulate and quantify the interaction of 24 psychotropic drugs with the GR.

  6. Global allostery model of hemoglobin. Modulation of O(2) affinity, cooperativity, and Bohr effect by heterotropic allosteric effectors.

    PubMed

    Yonetani, Takashi; Park, Sung-Ick; Tsuneshige, Antonio; Imai, Kiyohiro; Kanaori, Kenji

    2002-09-13

    The O(2) equilibria of human adult hemoglobin have been measured in a wide range of solution conditions in the presence and absence of various allosteric effectors in order to determine how far hemoglobin can modulate its O(2) affinity. The O(2) affinity, cooperative behavior, and the Bohr effect of hemoglobin are modulated principally by tertiary structural changes, which are induced by its interactions with heterotropic allosteric effectors. In their absence, hemoglobin is a high affinity, moderately cooperative O(2) carrier of limited functional flexibility, the behaviors of which are regulated by the homotropic, O(2)-linked T/R quaternary structural transition of the Monod-Wyman-Changeux/Perutz model. However, the interactions with allosteric effectors provide such "inert" hemoglobin unprecedented magnitudes of functional diversities not only of physiological relevance but also of extreme nature, by which hemoglobin can behave energetically beyond what can be explained by the Monod-Wyman-Changeux/Perutz model. Thus, the heterotropic effector-linked tertiary structural changes rather than the homotropic ligation-linked T/R quaternary structural transition are energetically more significant and primarily responsible for modulation of functions of hemoglobin.

  7. 3-Chlorotyramine Acting as Ligand of the D2 Dopamine Receptor. Molecular Modeling, Synthesis and D2 Receptor Affinity.

    PubMed

    Angelina, Emilio; Andujar, Sebastian; Moreno, Laura; Garibotto, Francisco; Párraga, Javier; Peruchena, Nelida; Cabedo, Nuria; Villecco, Margarita; Cortes, Diego; Enriz, Ricardo D

    2015-01-01

    We synthesized and tested 3-chlorotyramine as a ligand of the D2 dopamine receptor. This compound displayed a similar affinity by this receptor to that previously reported for dopamine. In order to understand further the experimental results we performed a molecular modeling study of 3-chlorotyramine and structurally related compounds. By combining molecular dynamics simulations with semiempirical (PM6), ab initio and density functional theory calculations, a simple and generally applicable procedure to evaluate the binding energies of these ligands interacting with the D2 dopamine receptors is reported here. These results provided a clear picture of the binding interactions of these compounds from both structural and energetic view points. A reduced model for the binding pocket was used. This approach allowed us to perform more accurate quantum mechanical calculations as well as to obtain a detailed electronic analysis using the Quantum Theory of Atoms in Molecules (QTAIM) technique. Molecular aspects of the binding interactions between ligands and the D2 dopamine receptor are discussed in detail. A good correlation between the relative binding energies obtained from theoretical calculations and experimental IC50 values was obtained. These results allowed us to predict that 3-chlorotyramine possesses a significant affinity by the D2 -DR. Our theoretical predictions were experimentally corroborated when we synthesized and tested 3-chlorotyramine which displayed a similar affinity by the D2 -DR to that reported for DA.

  8. Ridge-spotting: A new test for Pacific absolute plate motion models

    NASA Astrophysics Data System (ADS)

    Wessel, Paul; Müller, R. Dietmar

    2016-06-01

    Relative plate motions provide high-resolution descriptions of motions of plates relative to other plates. Yet geodynamically, motions of plates relative to the mantle are required since such motions can be attributed to forces (e.g., slab pull and ridge push) acting upon the plates. Various reference frames have been proposed, such as the hot spot reference frame, to link plate motions to a mantle framework. Unfortunately, both accuracy and precision of absolute plate motion models lag behind those of relative plate motion models. Consequently, it is paramount to use relative plate motions in improving our understanding of absolute plate motions. A new technique called "ridge-spotting" combines absolute and relative plate motions and examines the viability of proposed absolute plate motion models. We test the method on six published Pacific absolute plate motions models, including fixed and moving hot spot models as well as a geodynamically derived model. Ridge-spotting reconstructs the Pacific-Farallon and Pacific-Antarctica ridge systems over the last 80 Myr. All six absolute plate motion models predict large amounts of northward migration and monotonic clockwise rotation for the Pacific-Farallon ridge. A geodynamic implication of our ridge migration predictions is that the suggestion that the Pacific-Farallon ridge may have been pinned by a large mantle upwelling is not supported. Unexpected or erratic ridge behaviors may be tied to limitations in the models themselves or (for Indo-Atlantic models) discrepancies in the plate circuits used to project models into the Pacific realm. Ridge-spotting is promising and will be extended to include more plates and other ocean basins.

  9. Micro air vehicle motion tracking and aerodynamic modeling

    NASA Astrophysics Data System (ADS)

    Uhlig, Daniel V.

    exhibited quasi-steady effects caused by small variations in the angle of attack. The quasi-steady effects, or small unsteady effects, caused variations in the aerodynamic characteristics (particularly incrementing the lift curve), and the magnitude of the influence depended on the angle-of-attack rate. In addition to nominal gliding flight, MAVs in general are capable of flying over a wide flight envelope including agile maneuvers such as perching, hovering, deep stall and maneuvering in confined spaces. From the captured motion trajectories, the aerodynamic characteristics during the numerous unsteady flights were gathered without the complexity required for unsteady wind tunnel tests. Experimental results for the MAVs show large flight envelopes that included high angles of attack (on the order of 90 deg) and high angular rates, and the aerodynamic coefficients had dynamic stall hysteresis loops and large values. From the large number of unsteady high angle-of-attack flights, an aerodynamic modeling method was developed and refined for unsteady MAV flight at high angles of attack. The method was based on a separation parameter that depended on the time history of the angle of attack and angle-of-attack rate. The separation parameter accounted for the time lag inherit in the longitudinal characteristics during dynamic maneuvers. The method was applied to three MAVs and showed general agreement with unsteady experimental results and with nominal gliding flight results. The flight tests with the MAVs indicate that modern motion tracking systems are capable of capturing the flight trajectories, and the captured trajectories can be used to determine the aerodynamic characteristics. From the captured trajectories, low Reynolds number MAV flight is explored in both nominal gliding flight and unsteady high angle-of-attack flight. Building on the experimental results, a modeling method for the longitudinal characteristics is developed that is applicable to the full flight

  10. Modeling closure of circular wounds through coordinated collective motion

    NASA Astrophysics Data System (ADS)

    Li, David S.; Zimmermann, Juliane; Levine, Herbert

    2016-02-01

    Wound healing enables tissues to restore their original states, and is achieved through collective cell migration into the wound space, contraction of the wound edge via an actomyosin filament ‘purse-string,’ as well as cell division. Recently, experimental techniques have been developed to create wounds with various regular morphologies in epithelial monolayers, and these experiments of circular closed-contour wounds support coordinated lamellipodial cell crawling as the predominant driver of gap closure. Through utilizing a particle-based mechanical tissue simulation, exhibiting long-range coordination of cell motility, we computationally model these closed-contour experiments with a high level of agreement between experimentally observed and simulated wound closure dynamics and tissue velocity profiles. We also determine the sensitivity of wound closure time in the model to changes in cell motility force and division rate. Our simulation results confirm that circular wounds can close due to collective cell migration without the necessity for a purse-string mechanism or for cell division, and show that the alignment mechanism of cellular motility force with velocity, leading to collective motion in the model, may speed up wound closure.

  11. Motion clouds: model-based stimulus synthesis of natural-like random textures for the study of motion perception.

    PubMed

    Leon, Paula Sanz; Vanzetta, Ivo; Masson, Guillaume S; Perrinet, Laurent U

    2012-06-01

    Choosing an appropriate set of stimuli is essential to characterize the response of a sensory system to a particular functional dimension, such as the eye movement following the motion of a visual scene. Here, we describe a framework to generate random texture movies with controlled information content, i.e., Motion Clouds. These stimuli are defined using a generative model that is based on controlled experimental parametrization. We show that Motion Clouds correspond to dense mixing of localized moving gratings with random positions. Their global envelope is similar to natural-like stimulation with an approximate full-field translation corresponding to a retinal slip. We describe the construction of these stimuli mathematically and propose an open-source Python-based implementation. Examples of the use of this framework are shown. We also propose extensions to other modalities such as color vision, touch, and audition.

  12. Synthetic ground-motion simulation using a spatial stochastic model with slip self-similarity: Toward near-source ground-motion validation

    NASA Astrophysics Data System (ADS)

    Lee, Ya-Ting; Ma, Kuo-Fong; Hsieh, Ming-Che; Yen, Yin-Tung; Sun, Yu-Sheng

    2016-04-01

    Near-fault ground motion is a key to understand the seismic hazard along the fault, and is a challenge by the approach of ground motion prediction equation. This paper presents a developed stochastic-slip-scaling source model, a spatial stochastic model with slip scaling of the slipped area, toward ground motion simulation. We considered the near-fault ground motion of the 1999 Chi-Chi earthquake (Mw 7.7) in Taiwan, which having the most massive near-fault data of a disaster earthquake, as a reference for validation. Including the developed stochastic-slip-scaling source model, two scenario source models, mean-slip model, characteristic-asperity model were also used for the examination on the near-fault ground motion. We simulated synthetic ground motion through 3D waveforms and validated these simulations by using observed data and the ground-motion prediction equation (GMPE) for Taiwan earthquakes. The mean slip and characteristic asperity scenario source models over-predicted the near-fault ground motion. The stochastic-slip-scaling model proposed in this paper is more accurately approximated to the near-fault motion compared with the GMPE and observations. This is the first study to incorporate slipped-area scaling in a stochastic slip model. The proposed model can generate scenario earthquakes for predicting ground motion.

  13. Ground-motion modeling of Hayward fault scenario earthquakes, part II: Simulation of long-period and broadband ground motions

    USGS Publications Warehouse

    Aagaard, Brad T.; Graves, Robert W.; Rodgers, Arthur; Brocher, Thomas M.; Simpson, Robert W.; Dreger, Douglas; Petersson, N. Anders; Larsen, Shawn C.; Ma, Shuo; Jachens, Robert C.

    2010-01-01

    We simulate long-period (T>1.0–2.0 s) and broadband (T>0.1 s) ground motions for 39 scenario earthquakes (Mw 6.7–7.2) involving the Hayward, Calaveras, and Rodgers Creek faults. For rupture on the Hayward fault, we consider the effects of creep on coseismic slip using two different approaches, both of which reduce the ground motions, compared with neglecting the influence of creep. Nevertheless, the scenario earthquakes generate strong shaking throughout the San Francisco Bay area, with about 50% of the urban area experiencing modified Mercalli intensity VII or greater for the magnitude 7.0 scenario events. Long-period simulations of the 2007 Mw 4.18 Oakland earthquake and the 2007 Mw 5.45 Alum Rock earthquake show that the U.S. Geological Survey’s Bay Area Velocity Model version 08.3.0 permits simulation of the amplitude and duration of shaking throughout the San Francisco Bay area for Hayward fault earthquakes, with the greatest accuracy in the Santa Clara Valley (San Jose area). The ground motions for the suite of scenarios exhibit a strong sensitivity to the rupture length (or magnitude), hypocenter (or rupture directivity), and slip distribution. The ground motions display a much weaker sensitivity to the rise time and rupture speed. Peak velocities, peak accelerations, and spectral accelerations from the synthetic broadband ground motions are, on average, slightly higher than the Next Generation Attenuation (NGA) ground-motion prediction equations. We attribute much of this difference to the seismic velocity structure in the San Francisco Bay area and how the NGA models account for basin amplification; the NGA relations may underpredict amplification in shallow sedimentary basins. The simulations also suggest that the Spudich and Chiou (2008) directivity corrections to the NGA relations could be improved by increasing the areal extent of rupture directivity with period.

  14. Testing Neuronal Accounts of Anisotropic Motion Perception with Computational Modelling

    PubMed Central

    Wong, William; Chiang Price, Nicholas Seow

    2014-01-01

    There is an over-representation of neurons in early visual cortical areas that respond most strongly to cardinal (horizontal and vertical) orientations and directions of visual stimuli, and cardinal- and oblique-preferring neurons are reported to have different tuning curves. Collectively, these neuronal anisotropies can explain two commonly-reported phenomena of motion perception – the oblique effect and reference repulsion – but it remains unclear whether neuronal anisotropies can simultaneously account for both perceptual effects. We show in psychophysical experiments that reference repulsion and the oblique effect do not depend on the duration of a moving stimulus, and that brief adaptation to a single direction simultaneously causes a reference repulsion in the orientation domain, and the inverse of the oblique effect in the direction domain. We attempted to link these results to underlying neuronal anisotropies by implementing a large family of neuronal decoding models with parametrically varied levels of anisotropy in neuronal direction-tuning preferences, tuning bandwidths and spiking rates. Surprisingly, no model instantiation was able to satisfactorily explain our perceptual data. We argue that the oblique effect arises from the anisotropic distribution of preferred directions evident in V1 and MT, but that reference repulsion occurs separately, perhaps reflecting a process of categorisation occurring in higher-order cortical areas. PMID:25409518

  15. Demonstrating Circular Motion with a Model Satellite/Earth System

    ERIC Educational Resources Information Center

    Whittaker, Jeff

    2008-01-01

    A number of interesting demonstrations of circular and satellite motion have been described in this journal. This paper presents a variation of a centripetal force apparatus found in G.D. Freier and F.J. Anderson's "A Demonstration Handbook for Physics," which has been modified in order to demonstrate both centripetal force and satellite motion.…

  16. Ground motion modeling of Hayward fault scenario earthquakes II:Simulation of long-period and broadband ground motions

    SciTech Connect

    Aagaard, B T; Graves, R W; Rodgers, A; Brocher, T M; Simpson, R W; Dreger, D; Petersson, N A; Larsen, S C; Ma, S; Jachens, R C

    2009-11-04

    We simulate long-period (T > 1.0-2.0 s) and broadband (T > 0.1 s) ground motions for 39 scenarios earthquakes (Mw 6.7-7.2) involving the Hayward, Calaveras, and Rodgers Creek faults. For rupture on the Hayward fault we consider the effects of creep on coseismic slip using two different approaches, both of which reduce the ground motions compared with neglecting the influence of creep. Nevertheless, the scenario earthquakes generate strong shaking throughout the San Francisco Bay area with about 50% of the urban area experiencing MMI VII or greater for the magnitude 7.0 scenario events. Long-period simulations of the 2007 Mw 4.18 Oakland and 2007 Mw 4.5 Alum Rock earthquakes show that the USGS Bay Area Velocity Model version 08.3.0 permits simulation of the amplitude and duration of shaking throughout the San Francisco Bay area, with the greatest accuracy in the Santa Clara Valley (San Jose area). The ground motions exhibit a strong sensitivity to the rupture length (or magnitude), hypocenter (or rupture directivity), and slip distribution. The ground motions display a much weaker sensitivity to the rise time and rupture speed. Peak velocities, peak accelerations, and spectral accelerations from the synthetic broadband ground motions are, on average, slightly higher than the Next Generation Attenuation (NGA) ground-motion prediction equations. We attribute at least some of this difference to the relatively narrow width of the Hayward fault ruptures. The simulations suggest that the Spudich and Chiou (2008) directivity corrections to the NGA relations could be improved by including a dependence on the rupture speed and increasing the areal extent of rupture directivity with period. The simulations also indicate that the NGA relations may under-predict amplification in shallow sedimentary basins.

  17. Links between topology of the transition graph and limit cycles in a two-dimensional piecewise affine biological model.

    PubMed

    Abou-Jaoudé, Wassim; Chaves, Madalena; Gouzé, Jean-Luc

    2014-12-01

    A class of piecewise affine differential (PWA) models, initially proposed by Glass and Kauffman (in J Theor Biol 39:103-129, 1973), has been widely used for the modelling and the analysis of biological switch-like systems, such as genetic or neural networks. Its mathematical tractability facilitates the qualitative analysis of dynamical behaviors, in particular periodic phenomena which are of prime importance in biology. Notably, a discrete qualitative description of the dynamics, called the transition graph, can be directly associated to this class of PWA systems. Here we present a study of periodic behaviours (i.e. limit cycles) in a class of two-dimensional piecewise affine biological models. Using concavity and continuity properties of Poincaré maps, we derive structural principles linking the topology of the transition graph to the existence, number and stability of limit cycles. These results notably extend previous works on the investigation of structural principles to the case of unequal and regulated decay rates for the 2-dimensional case. Some numerical examples corresponding to minimal models of biological oscillators are treated to illustrate the use of these structural principles.

  18. Demonstrating Circular Motion with a Model Satellite/Earth System

    NASA Astrophysics Data System (ADS)

    Whittaker, Jeff

    2008-04-01

    A number of interesting demonstrations of circular and satellite motion have been described in this journal.1-4 This paper presents a variation of a centripetal force apparatus found in G.D. Freier and F.J. Anderson's A Demonstration Handbook for Physics,5 which has been modified in order to demonstrate both centripetal force and satellite motion. Nice discussions of satellite motion may be found in a number of textbooks.6-8 The following is a description of how to construct the apparatus and some suggested experiments.

  19. ANFIS modeling for prediction of particle motions in fluid flows

    NASA Astrophysics Data System (ADS)

    Safdari, Arman; Kim, Kyung Chun

    2015-11-01

    Accurate dynamic analysis of parcel of solid particles driven in fluid flow system is of interest for many natural and industrial applications such as sedimentation process, study of cloud particles in atmosphere, etc. In this paper, numerical modeling of solid particles in incompressible flow using Eulerian-Lagrangian approach is carried out to investigate the dynamic behavior of particles in different flow conditions; channel and cavity flow. Although modern computers have been well developed, the high computational time and costs for this kind of problems are still demanded. The Lattice Boltzmann Method (LBM) is used to simulate fluid flows and combined with the Lagrangian approach to predict the motion of particles in the range of masses. Some particles are selected, and subjected to Adaptive-network-based fuzzy inference system (ANFIS) to predict the trajectory of moving solid particles. Using a hybrid learning procedure from computational particle movement, the ANFIS can construct an input-output mapping based on fuzzy if-then rules and stipulated computational fluid dynamics prediction pairs. The obtained results from ANFIS algorithm is validated and compared with the set of benchmark data provided based on point-like approach coupled with the LBM method.

  20. A soft biomimetic tongue: model reconstruction and motion tracking

    NASA Astrophysics Data System (ADS)

    Lu, Xuanming; Xu, Weiliang; Li, Xiaoning

    2016-04-01

    A bioinspired robotic tongue which is actuated by a network of compressed air is proposed for the purpose of mimicking the movements of human tongue. It can be applied in the fields such as medical science and food engineering. The robotic tongue is made of two kinds of silicone rubber Ecoflex 0030 and PDMS with the shape simplified from real human tongue. In order to characterize the robotic tongue, a series of experiments were carried out. Laser scan was applied to reconstruct the static model of robotic tongue when it was under pressurization. After each scan, the robotic tongue was scattered into dense points in the same 3D coordinate system and the coordinates of each point were recorded. Motion tracking system (OptiTrack) was used to track and record the whole process of deformation dynamically during the loading and unloading phase. In the experiments, five types of deformation were achieved including roll-up, roll-down, elongation, groove and twist. Utilizing the discrete points generated by laser scan, the accurate parameterized outline of robotic tongue under different pressure was obtained, which could help demonstrate the static characteristic of robotic tongue. The precise deformation process under one pressure was acquired through the OptiTrack system which contains a series of digital cameras, markers on the robotic tongue and a set of hardware and software for data processing. By means of tracking and recording different process of deformation under different pressure, the dynamic characteristic of robotic tongue could be achieved.

  1. In Vitro Modeling of Repetitive Motion Injury and Myofascial Release

    PubMed Central

    Meltzer, Kate R.; Cao, Thanh V.; Schad, Joseph F.; King, Hollis; Stoll, Scott T.; Standley, Paul R.

    2010-01-01

    Objective In this study we modeled repetitive motion strain (RMS) and myofascial release (MFR) in vitro to investigate possible cellular and molecular mechanisms to potentially explain the immediate clinical outcomes associated with RMS and MFR. Method Cultured human fibroblasts were strained with 8 hours RMS, 60 seconds MFR and combined treatment; RMS+MFR. Fibroblasts were immediately sampled upon cessation of strain and evaluated for cell morphology, cytokine secretions, proliferation, apoptosis, and potential changes to intracellular signaling molecules. Results RMS induced fibroblast elongation of lameopodia, cellular decentralization, reduction of cell to cell contact and significant decreases in cell area to perimeter ratios compared to all other experimental groups (p<0.0001). Cellular proliferation indicated no change among any treatment group; however RMS resulted in a significant increase in apoptosis rate (p<0.05) along with increases in death-associated protein kinase (DAPK) and focal adhesion kinase (FAK) phosphorylation by 74% and 58% respectively, when compared to control. These responses were not observed in the MFR and RMS+MFR group. Of the twenty cytokines measured there was a significant increase in GRO secretion in the RMS+MFR group when compared to control and MFR alone. Conclusion Our modeled injury (RMS) appropriately displayed enhanced apoptosis activity and loss of intercellular integrity that is consistent with pro-apoptotic DAPK2 and FAK signaling. Treatment with MFR following RMS resulted in normalization in apoptotic rate and cell morphology both consistent with changes observed in DAPK2. These in vitro studies build upon the cellular evidence base needed to fully explain clinical efficacy of manual manipulative therapies. PMID:20226363

  2. A generalized Brownian motion model for turbulent relative particle dispersion

    NASA Astrophysics Data System (ADS)

    Shivamoggi, B. K.

    2016-08-01

    There is speculation that the difficulty in obtaining an extended range with Richardson-Obukhov scaling in both laboratory experiments and numerical simulations is due to the finiteness of the flow Reynolds number Re in these situations. In this paper, a generalized Brownian motion model has been applied to describe the relative particle dispersion problem in more realistic turbulent flows and to shed some light on this issue. The fluctuating pressure forces acting on a fluid particle are taken to be a colored noise and follow a stationary process and are described by the Uhlenbeck-Ornstein model while it appears plausible to take their correlation time to have a power-law dependence on Re, thus introducing a bridge between the Lagrangian quantities and the Eulerian parameters for this problem. This ansatz is in qualitative agreement with the possibility of a connection speculated earlier by Corrsin [26] between the white-noise representation for the fluctuating pressure forces and the large-Re assumption in the Kolmogorov [4] theory for the 3D fully developed turbulence (FDT) as well as a similar argument of Monin and Yaglom [23] and a similar result of Sawford [13] and Borgas and Sawford [24]. It also provides an insight into the result that the Richardson-Obukhov scaling holds only in the infinite-Re limit and disappears otherwise. This ansatz further provides a determination of the Richardson-Obukhov constant g as a function of Re, with an asymptotic constant value in the infinite-Re limit. It is shown to lead to full agreement, in the small-Re limit as well, with the Batchelor-Townsend [27] scaling for the rate of change of the mean square interparticle separation in 3D FDT, hence validating its soundness further.

  3. Unsteady aerodynamic modeling for arbitrary motions. [for active control techniques

    NASA Technical Reports Server (NTRS)

    Edwards, J. W.

    1977-01-01

    Results indicating that unsteady aerodynamic loads derived under the assumption of simple harmonic motions executed by airfoil or wing can be extended to arbitrary motions are summarized. The generalized Theodorsen (1953) function referable to loads due to simple harmonic oscillations of a wing section in incompressible flow, the Laplace inversion integral for unsteady aerodynamic loads, calculations of root loci of aeroelastic loads, and analysis of generalized compressible transient airloads are discussed.

  4. Towards the chemometric dissection of peptide--HLA-A*0201 binding affinity: comparison of local and global QSAR models.

    PubMed

    Doytchinova, Irini A; Walshe, Valerie; Borrow, Persephone; Flower, Darren R

    2005-03-01

    The affinities of 177 nonameric peptides binding to the HLA-A*0201 molecule were measured using a FACS-based MHC stabilisation assay and analysed using chemometrics. Their structures were described by global and local descriptors, QSAR models were derived by genetic algorithm, stepwise regression and PLS. The global molecular descriptors included molecular connectivity chi indices, kappa shape indices, E-state indices, molecular properties like molecular weight and log P, and three-dimensional descriptors like polarizability, surface area and volume. The local descriptors were of two types. The first used a binary string to indicate the presence of each amino acid type at each position of the peptide. The second was also position-dependent but used five z-scales to describe the main physicochemical properties of the amino acids forming the peptides. The models were developed using a representative training set of 131 peptides and validated using an independent test set of 46 peptides. It was found that the global descriptors could not explain the variance in the training set nor predict the affinities of the test set accurately. Both types of local descriptors gave QSAR models with better explained variance and predictive ability. The results suggest that, in their interactions with the MHC molecule, the peptide acts as a complicated ensemble of multiple amino acids mutually potentiating each other. PMID:16059672

  5. Analytic signal phase-based myocardial motion estimation in tagged MRI sequences by a bilinear model and motion compensation.

    PubMed

    Wang, Liang; Basarab, Adrian; Girard, Patrick R; Croisille, Pierre; Clarysse, Patrick; Delachartre, Philippe

    2015-08-01

    Different mathematical tools, such as multidimensional analytic signals, allow for the calculation of 2D spatial phases of real-value images. The motion estimation method proposed in this paper is based on two spatial phases of the 2D analytic signal applied to cardiac sequences. By combining the information of these phases issued from analytic signals of two successive frames, we propose an analytical estimator for 2D local displacements. To improve the accuracy of the motion estimation, a local bilinear deformation model is used within an iterative estimation scheme. The main advantages of our method are: (1) The phase-based method allows the displacement to be estimated with subpixel accuracy and is robust to image intensity variation in time; (2) Preliminary filtering is not required due to the bilinear model. The proposed algorithm, integrating phase-based optical flow motion estimation and the combination of global motion compensation with local bilinear transform, allows spatio-temporal cardiac motion analysis, e.g. strain and dense trajectory estimation over the cardiac cycle. Results from 7 realistic simulated tagged magnetic resonance imaging (MRI) sequences show that our method is more accurate compared with state-of-the-art method for cardiac motion analysis and with another differential approach from the literature. The motion estimation errors (end point error) of the proposed method are reduced by about 33% compared with that of the two methods. In our work, the frame-to-frame displacements are further accumulated in time, to allow for the calculation of myocardial Lagrangian cardiac strains and point trajectories. Indeed, from the estimated trajectories in time on 11 in vivo data sets (9 patients and 2 healthy volunteers), the shape of myocardial point trajectories belonging to pathological regions are clearly reduced in magnitude compared with the ones from normal regions. Myocardial point trajectories, estimated from our phase-based analytic

  6. Analytic signal phase-based myocardial motion estimation in tagged MRI sequences by a bilinear model and motion compensation.

    PubMed

    Wang, Liang; Basarab, Adrian; Girard, Patrick R; Croisille, Pierre; Clarysse, Patrick; Delachartre, Philippe

    2015-08-01

    Different mathematical tools, such as multidimensional analytic signals, allow for the calculation of 2D spatial phases of real-value images. The motion estimation method proposed in this paper is based on two spatial phases of the 2D analytic signal applied to cardiac sequences. By combining the information of these phases issued from analytic signals of two successive frames, we propose an analytical estimator for 2D local displacements. To improve the accuracy of the motion estimation, a local bilinear deformation model is used within an iterative estimation scheme. The main advantages of our method are: (1) The phase-based method allows the displacement to be estimated with subpixel accuracy and is robust to image intensity variation in time; (2) Preliminary filtering is not required due to the bilinear model. The proposed algorithm, integrating phase-based optical flow motion estimation and the combination of global motion compensation with local bilinear transform, allows spatio-temporal cardiac motion analysis, e.g. strain and dense trajectory estimation over the cardiac cycle. Results from 7 realistic simulated tagged magnetic resonance imaging (MRI) sequences show that our method is more accurate compared with state-of-the-art method for cardiac motion analysis and with another differential approach from the literature. The motion estimation errors (end point error) of the proposed method are reduced by about 33% compared with that of the two methods. In our work, the frame-to-frame displacements are further accumulated in time, to allow for the calculation of myocardial Lagrangian cardiac strains and point trajectories. Indeed, from the estimated trajectories in time on 11 in vivo data sets (9 patients and 2 healthy volunteers), the shape of myocardial point trajectories belonging to pathological regions are clearly reduced in magnitude compared with the ones from normal regions. Myocardial point trajectories, estimated from our phase-based analytic

  7. Numerical modeling of on-orbit propellant motion resulting from an impulsive acceleration

    NASA Technical Reports Server (NTRS)

    Aydelott, John C.; Mjolsness, Raymond C.; Torrey, Martin D.; Hochstein, John I.

    1987-01-01

    In-space docking and separation maneuvers of spacecraft that have large fluid mass fractions may cause undesirable spacecraft motion in response to the impulsive-acceleration-induced fluid motion. An example of this potential low gravity fluid management problem arose during the development of the shuttle/Centaur vehicle. Experimentally verified numerical modeling techniques were developed to establish the propellant dynamics, and subsequent vehicle motion, associated with the separation of the Centaur vehicle from the shuttle orbiter cargo bay. Although the shuttle/Centaur development activity was suspended, the numerical modeling techniques are available to predict on-orbit liquid motion resulting from impulsive accelerations for other missions and spacecraft.

  8. Prediction of binding affinity and efficacy of thyroid hormone receptor ligands using QSAR and structure-based modeling methods

    SciTech Connect

    Politi, Regina; Rusyn, Ivan; Tropsha, Alexander

    2014-10-01

    The thyroid hormone receptor (THR) is an important member of the nuclear receptor family that can be activated by endocrine disrupting chemicals (EDC). Quantitative Structure–Activity Relationship (QSAR) models have been developed to facilitate the prioritization of THR-mediated EDC for the experimental validation. The largest database of binding affinities available at the time of the study for ligand binding domain (LBD) of THRβ was assembled to generate both continuous and classification QSAR models with an external accuracy of R{sup 2} = 0.55 and CCR = 0.76, respectively. In addition, for the first time a QSAR model was developed to predict binding affinities of antagonists inhibiting the interaction of coactivators with the AF-2 domain of THRβ (R{sup 2} = 0.70). Furthermore, molecular docking studies were performed for a set of THRβ ligands (57 agonists and 15 antagonists of LBD, 210 antagonists of the AF-2 domain, supplemented by putative decoys/non-binders) using several THRβ structures retrieved from the Protein Data Bank. We found that two agonist-bound THRβ conformations could effectively discriminate their corresponding ligands from presumed non-binders. Moreover, one of the agonist conformations could discriminate agonists from antagonists. Finally, we have conducted virtual screening of a chemical library compiled by the EPA as part of the Tox21 program to identify potential THRβ-mediated EDCs using both QSAR models and docking. We concluded that the library is unlikely to have any EDC that would bind to the THRβ. Models developed in this study can be employed either to identify environmental chemicals interacting with the THR or, conversely, to eliminate the THR-mediated mechanism of action for chemicals of concern. - Highlights: • This is the largest curated dataset for ligand binding domain (LBD) of the THRβ. • We report the first QSAR model for antagonists of AF-2 domain of THRβ. • A combination of QSAR and docking enables

  9. Evaluating Effectiveness of Modeling Motion System Feedback in the Enhanced Hess Structural Model of the Human Operator

    NASA Technical Reports Server (NTRS)

    Zaychik, Kirill; Cardullo, Frank; George, Gary; Kelly, Lon C.

    2009-01-01

    In order to use the Hess Structural Model to predict the need for certain cueing systems, George and Cardullo significantly expanded it by adding motion feedback to the model and incorporating models of the motion system dynamics, motion cueing algorithm and a vestibular system. This paper proposes a methodology to evaluate effectiveness of these innovations by performing a comparison analysis of the model performance with and without the expanded motion feedback. The proposed methodology is composed of two stages. The first stage involves fine-tuning parameters of the original Hess structural model in order to match the actual control behavior recorded during the experiments at NASA Visual Motion Simulator (VMS) facility. The parameter tuning procedure utilizes a new automated parameter identification technique, which was developed at the Man-Machine Systems Lab at SUNY Binghamton. In the second stage of the proposed methodology, an expanded motion feedback is added to the structural model. The resulting performance of the model is then compared to that of the original one. As proposed by Hess, metrics to evaluate the performance of the models include comparison against the crossover models standards imposed on the crossover frequency and phase margin of the overall man-machine system. Preliminary results indicate the advantage of having the model of the motion system and motion cueing incorporated into the model of the human operator. It is also demonstrated that the crossover frequency and the phase margin of the expanded model are well within the limits imposed by the crossover model.

  10. Hydrological excitation of polar motion by different variables of the GLDAS models

    NASA Astrophysics Data System (ADS)

    Wińska, Małgorzata; Nastula, Jolanta

    Continental hydrological loading, by land water, snow, and ice, is an element that is strongly needed for a full understanding of the excitation of polar motion. In this study we compute different estimations of hydrological excitation functions of polar motion (Hydrological Angular Momentum - HAM) using various variables from the Global Land Data Assimilation System (GLDAS) models of land hydrosphere. The main aim of this study is to show the influence of different variables for example: total evapotranspiration, runoff, snowmelt, soil moisture to polar motion excitations in annual and short term scale. In our consideration we employ several realizations of the GLDAS model as: GLDAS Common Land Model (CLM), GLDAS Mosaic Model, GLDAS National Centers for Environmental Prediction/Oregon State University/Air Force/Hydrologic Research Lab Model (Noah), GLDAS Variable Infiltration Capacity (VIC) Model. Hydrological excitation functions of polar motion, both global and regional, are determined by using selected variables of these GLDAS realizations. First we compare a timing, spectra and phase diagrams of different regional and global HAMs with each other. Next, we estimate, the hydrological signal in geodetically observed polar motion excitation by subtracting the atmospheric -- AAM (pressure + wind) and oceanic -- OAM (bottom pressure + currents) contributions. Finally, the hydrological excitations are compared to these hydrological signal in observed polar motion excitation series. The results help us understand which variables of considered hydrological models are the most important for the polar motion excitation and how well we can close polar motion excitation budget in the seasonal and inter-annual spectral ranges.

  11. Motion estimation performance models with application to hardware error tolerance

    NASA Astrophysics Data System (ADS)

    Cheong, Hye-Yeon; Ortega, Antonio

    2007-01-01

    The progress of VLSI technology towards deep sub-micron feature sizes, e.g., sub-100 nanometer technology, has created a growing impact of hardware defects and fabrication process variability, which lead to reductions in yield rate. To address these problems, a new approach, system-level error tolerance (ET), has been recently introduced. Considering that a significant percentage of the entire chip production is discarded due to minor imperfections, this approach is based on accepting imperfect chips that introduce imperceptible/acceptable system-level degradation; this leads to increases in overall effective yield. In this paper, we investigate the impact of hardware faults on the video compression performance, with a focus on the motion estimation (ME) process. More specifically, we provide an analytical formulation of the impact of single and multiple stuck-at-faults within ME computation. We further present a model for estimating the system-level performance degradation due to such faults, which can be used for the error tolerance based decision strategy of accepting a given faulty chip. We also show how different faults and ME search algorithms compare in terms of error tolerance and define the characteristics of search algorithm that lead to increased error tolerance. Finally, we show that different hardware architectures performing the same metric computation have different error tolerance characteristics and we present the optimal ME hardware architecture in terms of error tolerance. While we focus on ME hardware, our work could also applied to systems (e.g., classifiers, matching pursuits, vector quantization) where a selection is made among several alternatives (e.g., class label, basis function, quantization codeword) based on which choice minimizes an additive metric of interest.

  12. Ground motion modeling of the 1906 San Francisco earthquake II: Ground motion estimates for the 1906 earthquake and scenario events

    SciTech Connect

    Aagaard, B; Brocher, T; Dreger, D; Frankel, A; Graves, R; Harmsen, S; Hartzell, S; Larsen, S; McCandless, K; Nilsson, S; Petersson, N A; Rodgers, A; Sjogreen, B; Tkalcic, H; Zoback, M L

    2007-02-09

    We estimate the ground motions produced by the 1906 San Francisco earthquake making use of the recently developed Song et al. (2008) source model that combines the available geodetic and seismic observations and recently constructed 3D geologic and seismic velocity models. Our estimates of the ground motions for the 1906 earthquake are consistent across five ground-motion modeling groups employing different wave propagation codes and simulation domains. The simulations successfully reproduce the main features of the Boatwright and Bundock (2005) ShakeMap, but tend to over predict the intensity of shaking by 0.1-0.5 modified Mercalli intensity (MMI) units. Velocity waveforms at sites throughout the San Francisco Bay Area exhibit characteristics consistent with rupture directivity, local geologic conditions (e.g., sedimentary basins), and the large size of the event (e.g., durations of strong shaking lasting tens of seconds). We also compute ground motions for seven hypothetical scenarios rupturing the same extent of the northern San Andreas fault, considering three additional hypocenters and an additional, random distribution of slip. Rupture directivity exerts the strongest influence on the variations in shaking, although sedimentary basins do consistently contribute to the response in some locations, such as Santa Rosa, Livermore, and San Jose. These scenarios suggest that future large earthquakes on the northern San Andreas fault may subject the current San Francisco Bay urban area to stronger shaking than a repeat of the 1906 earthquake. Ruptures propagating southward towards San Francisco appear to expose more of the urban area to a given intensity level than do ruptures propagating northward.

  13. Whole-Motion Model of Perception during Forward- and Backward-Facing Centrifuge Runs

    PubMed Central

    Holly, Jan E.; Vrublevskis, Arturs; Carlson, Lindsay E.

    2009-01-01

    Illusory perceptions of motion and orientation arise during human centrifuge runs without vision. Asymmetries have been found between acceleration and deceleration, and between forward-facing and backward-facing runs. Perceived roll tilt has been studied extensively during upright fixed-carriage centrifuge runs, and other components have been studied to a lesser extent. Certain, but not all, perceptual asymmetries in acceleration-vs-deceleration and forward-vs-backward motion can be explained by existing analyses. The immediate acceleration-deceleration roll-tilt asymmetry can be explained by the three-dimensional physics of the external stimulus; in addition, longer-term data has been modeled in a standard way using physiological time constants. However, the standard modeling approach is shown in the present research to predict forward-vs-backward-facing symmetry in perceived roll tilt, contradicting experimental data, and to predict perceived sideways motion, rather than forward or backward motion, around a curve. The present work develops a different whole-motion-based model taking into account the three-dimensional form of perceived motion and orientation. This model predicts perceived forward or backward motion around a curve, and predicts additional asymmetries such as the forward-backward difference in roll tilt. This model is based upon many of the same principles as the standard model, but includes an additional concept of familiarity of motions as a whole. PMID:19208962

  14. Minimal Assumptions Comprehensive Electrostatic Model for Mitotic Motions

    NASA Astrophysics Data System (ADS)

    Gagliardi, L. John

    2003-03-01

    Primitive biological cells had to divide using very few biological mechanisms. This work proposes physicochemical mechanisms based on nanoscale electrostatics which explain and unify the basic motions during mitosis: (1) assembly of the asters, (2) motion of asters to poles, (3) chromosome attachment, (4) separation of sister chromatids, (5) prometaphase monovalent attachment motions, (6) chromosome congression to the cell equator, (7) metaphase oscillations, and (8) anaphase A poleward chromosome motion. In the cytosol of cells, electrostatic fields are subject to strong attenuation by ionic screening. However, the presence of microtubules within cells changes the situation completely. Microtubule dimer subunits are electric dipolar structures, and can act as intermediaries which extend the reach of the electrostatic interaction over cellular distances. Experimental studies have shown that intracellular pH rises to a peak at mitosis, and decreases through cytokinesis. This result, in conjunction with the electric dipole nature of microtubule subunits is sufficient to explain the dynamics of the above events and motions, including their timing and sequencing. The physicochemical methods utilized by primitive eukaryotic cells could provide important clues regarding our understanding of cell division in modern eukaryotic cells.

  15. Motion analysis study on sensitivity of finite element model of the cervical spine to geometry.

    PubMed

    Zafarparandeh, Iman; Erbulut, Deniz U; Ozer, Ali F

    2016-07-01

    Numerous finite element models of the cervical spine have been proposed, with exact geometry or with symmetric approximation in the geometry. However, few researches have investigated the sensitivity of predicted motion responses to the geometry of the cervical spine. The goal of this study was to evaluate the effect of symmetric assumption on the predicted motion by finite element model of the cervical spine. We developed two finite element models of the cervical spine C2-C7. One model was based on the exact geometry of the cervical spine (asymmetric model), whereas the other was symmetric (symmetric model) about the mid-sagittal plane. The predicted range of motion of both models-main and coupled motions-was compared with published experimental data for all motion planes under a full range of loads. The maximum differences between the asymmetric model and symmetric model predictions for the principal motion were 31%, 78%, and 126% for flexion-extension, right-left lateral bending, and right-left axial rotation, respectively. For flexion-extension and lateral bending, the minimum difference was 0%, whereas it was 2% for axial rotation. The maximum coupled motions predicted by the symmetric model were 1.5° axial rotation and 3.6° lateral bending, under applied lateral bending and axial rotation, respectively. Those coupled motions predicted by the asymmetric model were 1.6° axial rotation and 4° lateral bending, under applied lateral bending and axial rotation, respectively. In general, the predicted motion response of the cervical spine by the symmetric model was in the acceptable range and nonlinearity of the moment-rotation curve for the cervical spine was properly predicted.

  16. Motion feature extraction scheme for content-based video retrieval

    NASA Astrophysics Data System (ADS)

    Wu, Chuan; He, Yuwen; Zhao, Li; Zhong, Yuzhuo

    2001-12-01

    This paper proposes the extraction scheme of global motion and object trajectory in a video shot for content-based video retrieval. Motion is the key feature representing temporal information of videos. And it is more objective and consistent compared to other features such as color, texture, etc. Efficient motion feature extraction is an important step for content-based video retrieval. Some approaches have been taken to extract camera motion and motion activity in video sequences. When dealing with the problem of object tracking, algorithms are always proposed on the basis of known object region in the frames. In this paper, a whole picture of the motion information in the video shot has been achieved through analyzing motion of background and foreground respectively and automatically. 6-parameter affine model is utilized as the motion model of background motion, and a fast and robust global motion estimation algorithm is developed to estimate the parameters of the motion model. The object region is obtained by means of global motion compensation between two consecutive frames. Then the center of object region is calculated and tracked to get the object motion trajectory in the video sequence. Global motion and object trajectory are described with MPEG-7 parametric motion and motion trajectory descriptors and valid similar measures are defined for the two descriptors. Experimental results indicate that our proposed scheme is reliable and efficient.

  17. Scatter to volume registration for model-free respiratory motion estimation from dynamic MRIs.

    PubMed

    Miao, S; Wang, Z J; Pan, L; Butler, J; Moran, G; Liao, R

    2016-09-01

    Respiratory motion is one major complicating factor in many image acquisition applications and image-guided interventions. Existing respiratory motion estimation and compensation methods typically rely on breathing motion models learned from certain training data, and therefore may not be able to effectively handle intra-subject and/or inter-subject variations of respiratory motion. In this paper, we propose a respiratory motion compensation framework that directly recovers motion fields from sparsely spaced and efficiently acquired dynamic 2-D MRIs without using a learned respiratory motion model. We present a scatter-to-volume deformable registration algorithm to register dynamic 2-D MRIs with a static 3-D MRI to recover dense deformation fields. Practical considerations and approximations are provided to solve the scatter-to-volume registration problem efficiently. The performance of the proposed method was investigated on both synthetic and real MRI datasets, and the results showed significant improvements over the state-of-art respiratory motion modeling methods. We also demonstrated a potential application of the proposed method on MRI-based motion corrected PET imaging using hybrid PET/MRI.

  18. Modeling Functional Motions of Biological Systems by Customized Natural Moves.

    PubMed

    Demharter, Samuel; Knapp, Bernhard; Deane, Charlotte M; Minary, Peter

    2016-08-23

    Simulating the functional motions of biomolecular systems requires large computational resources. We introduce a computationally inexpensive protocol for the systematic testing of hypotheses regarding the dynamic behavior of proteins and nucleic acids. The protocol is based on natural move Monte Carlo, a highly efficient conformational sampling method with built-in customization capabilities that allows researchers to design and perform a large number of simulations to investigate functional motions in biological systems. We demonstrate the use of this protocol on both a protein and a DNA case study. Firstly, we investigate the plasticity of a class II major histocompatibility complex in the absence of a bound peptide. Secondly, we study the effects of the epigenetic mark 5-hydroxymethyl on cytosine on the structure of the Dickerson-Drew dodecamer. We show how our customized natural moves protocol can be used to investigate causal relationships of functional motions in biological systems. PMID:27558715

  19. Center of gravity motions and ankle joint stiffness control in upright undisturbed stance modeled through a fractional Brownian motion framework.

    PubMed

    Rougier, P; Caron, O

    2000-12-01

    The authors modeled the center of gravity vertical projection (CG(v)) and the difference, CP - CG(v), which, combined, constitute the center of pressure (CP) trajectory, as fractional Brownian motion in order to investigate their relative contributions and their spatiotemporal articulation. The results demonstrated that CG(v) and CP - CG(v) motions are both endowed in complementary fashion with strong stochastic and part-deterministic behaviors. In addition, if the temporal coordinates remain similar for all 3 trajectories by definition, the switch between the successive control mechanisms appears for shorter displacements for CP - CG(v) and CG(v) than for CP trajectories. Results deduced from both input (CG(v)) and muscular stiffness (CP - CG(v)) thus provide insight into the way the central nervous system regulates stance control and in particular how CG and CP - CG are controlled. PMID:11114233

  20. Prediction of binding affinity and efficacy of thyroid hormone receptor ligands using QSAR and structure based modeling methods

    PubMed Central

    Politi, Regina; Rusyn, Ivan; Tropsha, Alexander

    2016-01-01

    The thyroid hormone receptor (THR) is an important member of the nuclear receptor family that can be activated by endocrine disrupting chemicals (EDC). Quantitative Structure-Activity Relationship (QSAR) models have been developed to facilitate the prioritization of THR-mediated EDC for the experimental validation. The largest database of binding affinities available at the time of the study for ligand binding domain (LBD) of THRβ was assembled to generate both continuous and classification QSAR models with an external accuracy of R2=0.55 and CCR=0.76, respectively. In addition, for the first time a QSAR model was developed to predict binding affinities of antagonists inhibiting the interaction of coactivators with the AF-2 domain of THRβ (R2=0.70). Furthermore, molecular docking studies were performed for a set of THRβ ligands (57 agonists and 15 antagonists of LBD, 210 antagonists of the AF-2 domain, supplemented by putative decoys/non-binders) using several THRβ structures retrieved from the Protein Data Bank. We found that two agonist-bound THRβ conformations could effectively discriminate their corresponding ligands from presumed non-binders. Moreover, one of the agonist conformations could discriminate agonists from antagonists. Finally, we have conducted virtual screening of a chemical library compiled by the EPA as part of the Tox21 program to identify potential THRβ-mediated EDCs using both QSAR models and docking. We concluded that the library is unlikely to have any EDC that would bind to the THRβ. Models developed in this study can be employed either to identify environmental chemicals interacting with the THR or, conversely, to eliminate the THR-mediated mechanism of action for chemicals of concern. PMID:25058446

  1. Nonlocal contour dynamics model for chemical front motion

    NASA Astrophysics Data System (ADS)

    Petrich, Dean M.; Goldstein, Raymond E.

    1994-02-01

    Pattern formation exhibited by a two-dimensional reaction-diffusion system in the fast inhibitor limit is considered for the point of view of interface motion. A dissipative nonlocal equation of motion for the boundary between high and low concentrations of the slow species is derived heuristically. Under these dynamics, a compact domain of high concentration may develop into a space-filling labyrinthine structure in which nearby fronts repel. Similar patterns have been observed recently by Lee, McCormick, Ouyang, and Swinney in a reacting chemical system.

  2. An affine continuum mechanical model for cross-linked F-actin networks with compliant linker proteins.

    PubMed

    Holzapfel, Gerhard A; Unterberger, Michael J; Ogden, Ray W

    2014-10-01

    Cross-linked actin networks are important building blocks of the cytoskeleton. In order to gain deeper insight into the interpretation of experimental data on actin networks, adequate models are required. In this paper we introduce an affine constitutive network model for cross-linked F-actin networks based on nonlinear continuum mechanics, and specialize it in order to reproduce the experimental behavior of in vitro reconstituted model networks. The model is based on the elastic properties of single filaments embedded in an isotropic matrix such that the overall properties of the composite are described by a free-energy function. In particular, we are able to obtain the experimentally determined shear and normal stress responses of cross-linked actin networks typically observed in rheometer tests. In the present study an extensive analysis is performed by applying the proposed model network to a simple shear deformation. The single filament model is then extended by incorporating the compliance of cross-linker proteins and further extended by including viscoelasticity. All that is needed for the finite element implementation is the constitutive model for the filaments, the linkers and the matrix, and the associated elasticity tensor in either the Lagrangian or Eulerian formulation. The model facilitates parameter studies of experimental setups such as micropipette aspiration experiments and we present such studies to illustrate the efficacy of this modeling approach. PMID:25043658

  3. TU-F-17A-03: An Analytical Respiratory Perturbation Model for Lung Motion Prediction

    SciTech Connect

    Li, G; Yuan, A; Wei, J

    2014-06-15

    Purpose: Breathing irregularity is common, causing unreliable prediction in tumor motion for correlation-based surrogates. Both tidal volume (TV) and breathing pattern (BP=ΔVthorax/TV, where TV=ΔVthorax+ΔVabdomen) affect lung motion in anterior-posterior and superior-inferior directions. We developed a novel respiratory motion perturbation (RMP) model in analytical form to account for changes in TV and BP in motion prediction from simulation to treatment. Methods: The RMP model is an analytical function of patient-specific anatomic and physiologic parameters. It contains a base-motion trajectory d(x,y,z) derived from a 4-dimensional computed tomography (4DCT) at simulation and a perturbation term Δd(ΔTV,ΔBP) accounting for deviation at treatment from simulation. The perturbation is dependent on tumor-specific location and patient-specific anatomy. Eleven patients with simulation and treatment 4DCT images were used to assess the RMP method in motion prediction from 4DCT1 to 4DCT2, and vice versa. For each patient, ten motion trajectories of corresponding points in the lower lobes were measured in both 4DCTs: one served as the base-motion trajectory and the other as the ground truth for comparison. In total, 220 motion trajectory predictions were assessed. The motion discrepancy between two 4DCTs for each patient served as a control. An established 5D motion model was used for comparison. Results: The average absolute error of RMP model prediction in superior-inferior direction is 1.6±1.8 mm, similar to 1.7±1.6 mm from the 5D model (p=0.98). Some uncertainty is associated with limited spatial resolution (2.5mm slice thickness) and temporal resolution (10-phases). Non-corrected motion discrepancy between two 4DCTs is 2.6±2.7mm, with the maximum of ±20mm, and correction is necessary (p=0.01). Conclusion: The analytical motion model predicts lung motion with accuracy similar to the 5D model. The analytical model is based on physical relationships, requires no

  4. Robust fuzzy output feedback controller for affine nonlinear systems via T-S fuzzy bilinear model: CSTR benchmark.

    PubMed

    Hamdy, M; Hamdan, I

    2015-07-01

    In this paper, a robust H∞ fuzzy output feedback controller is designed for a class of affine nonlinear systems with disturbance via Takagi-Sugeno (T-S) fuzzy bilinear model. The parallel distributed compensation (PDC) technique is utilized to design a fuzzy controller. The stability conditions of the overall closed loop T-S fuzzy bilinear model are formulated in terms of Lyapunov function via linear matrix inequality (LMI). The control law is robustified by H∞ sense to attenuate external disturbance. Moreover, the desired controller gains can be obtained by solving a set of LMI. A continuous stirred tank reactor (CSTR), which is a benchmark problem in nonlinear process control, is discussed in detail to verify the effectiveness of the proposed approach with a comparative study.

  5. Coexistence of bounded and unbounded motions in a bouncing ball model

    NASA Astrophysics Data System (ADS)

    Marò, Stefano

    2013-05-01

    We consider the model describing the vertical motion of a ball falling with constant acceleration on a wall and elastically reflected. The wall is supposed to move in the vertical direction according to a given periodic function f. We apply the Aubry-Mather theory to the generating function in order to prove the existence of bounded motions with prescribed mean time between the bounces. As the existence of unbounded motions is known, it is possible to find a class of functions f that allow both bounded and unbounded motions.

  6. Robust velocity computation from a biologically motivated model of motion perception

    PubMed Central

    Johnston, A.; McOwan, P. W.; Benton, C. P.

    1999-01-01

    Current computational models of motion processing in the primate motion pathway do not cope well with image sequences in which a moving pattern is superimposed upon a static texture. The use of non-linear operations and the need for contrast normalization in motion models mean that the separation of the influences of moving and static patterns on the motion computation is not trivial. Therefore, the response to the superposition of static and moving patterns provides an important means of testing various computational strategies. Here we describe a computational model of motion processing in the visual cortex, one of the advantages of which is that it is highly resistant to interference from static patterns.

  7. Comparison of Nonlinear Model Results Using Modified Recorded and Synthetic Ground Motions

    SciTech Connect

    Robert E. Spears; J. Kevin Wilkins

    2011-11-01

    A study has been performed that compares results of nonlinear model runs using two sets of earthquake ground motion time histories that have been modified to fit the same design response spectra. The time histories include applicable modified recorded earthquake ground motion time histories and synthetic ground motion time histories. The modified recorded earthquake ground motion time histories are modified from time history records that are selected based on consistent magnitude and distance. The synthetic ground motion time histories are generated using appropriate Fourier amplitude spectrums, Arias intensity, and drift correction. All of the time history modification is performed using the same algorithm to fit the design response spectra. The study provides data to demonstrate that properly managed synthetic ground motion time histories are reasonable for use in nonlinear seismic analysis.

  8. Estimating Internal Respiratory Motion from Respiratory Surrogate Signals Using Correspondence Models

    NASA Astrophysics Data System (ADS)

    McClelland, Jamie

    It is often difficult or impossible to directly monitor the respiratory motion of the tumour and other internal anatomy during RT treatment. Implanted markers can be used, but this involves an invasive procedure and has a number of other associated risks and problems. An alternative option is to use a correspondence model. This models the relationship between a respiratory surrogate signal(s), such as spirometry or the displacement of the skin surface, and the motion of the internal anatomy. Such a model allows the internal motion to be estimated from the surrogate signal(s), which can be easily monitored during RT treatment. The correspondence model is constructed prior to RT treatment. Imaging data is simultaneously acquired with the surrogate signal(s), and the internal motion is measured from the imaging data, e.g. using deformable image registration. A correspondence model is then fit relating the internal motion to the surrogate signal(s). This can then be used during treatment to estimate the internal motion from the surrogate signal(s). This chapter reviews the most popular correspondence models that have been used in the literature, as well as the different surrogate signals, types of imaging data used to measure the internal motion, and fitting methods used to fit the correspondence model to the data.

  9. Modelling the dynamics of motion integration with a new luminance-gated diffusion mechanism.

    PubMed

    Tlapale, Emilien; Masson, Guillaume S; Kornprobst, Pierre

    2010-08-01

    The dynamics of motion integration show striking similarities when observed at neuronal, psychophysical, and oculomotor levels. Based on the inter-relation and complementary insights given by those dynamics, our goal was to test how basic mechanisms of dynamical cortical processing can be incorporated in a dynamical model to solve several aspects of 2D motion integration and segmentation. Our model is inspired by the hierarchical processing stages of the primate visual cortex: we describe the interactions between several layers processing local motion and form information through feedforward, feedback, and inhibitive lateral connections. Also, following perceptual studies concerning contour integration and physiological studies of receptive fields, we postulate that motion estimation takes advantage of another low-level cue, which is luminance smoothness along edges or surfaces, in order to gate recurrent motion diffusion. With such a model, we successfully reproduced the temporal dynamics of motion integration on a wide range of simple motion stimuli: line segments, rotating ellipses, plaids, and barber poles. Furthermore, we showed that the proposed computational rule of luminance-gated diffusion of motion information is sufficient to explain a large set of contextual modulations of motion integration and segmentation in more elaborated stimuli such as chopstick illusions, simulated aperture problems, or rotating diamonds. As a whole, in this paper we proposed a new basal luminance-driven motion integration mechanism as an alternative to less parsimonious models, we carefully investigated the dynamics of motion integration, and we established a distinction between simple and complex stimuli according to the kind of information required to solve their ambiguities.

  10. SU-E-J-163: A Biomechanical Lung Model for Respiratory Motion Study

    SciTech Connect

    Liu, X; Belcher, AH; Grelewicz, Z; Wiersma, RD

    2015-06-15

    Purpose: This work presents a biomechanical model to investigate the complex respiratory motion for the lung tumor tracking in radiosurgery by computer simulation. Methods: The models include networked massspring-dampers to describe the tumor motion, different types of surrogate signals, and the force generated by the diaphragm. Each mass-springdamper has the same mechanical structure and each model can have different numbers of mass-spring-dampers. Both linear and nonlinear stiffness parameters were considered, and the damping ratio was tuned in a range so that the tumor motion was over-damped (no natural tumor oscillation occurs without force from the diaphragm). The simulation was run by using ODE45 (ordinary differential equations by Runge-Kutta method) in MATLAB, and all time courses of motions and inputs (force) were generated and compared. Results: The curvature of the motion time courses around their peaks was sensitive to the damping ratio. Therefore, the damping ratio can be determined based on the clinical data of a high sampling rate. The peak values of different signals and the time the peaks occurred were compared, and it was found that the diaphragm force had a time lead over the tumor motion, and the lead time (0.1–0.4 seconds) depended on the distance between the tumor and the diaphragm. Conclusion: We reported a model based analysis approach for the spatial and temporal relation between the motion of the lung tumor and the surrogate signals. Due to the phase lead of the diaphragm in comparing with the lung tumor motion, the measurement of diaphragm motion (or its electromyography signal) can be used as a beam gating signal in radiosurgery, and it can also be an additional surrogate signal for better tumor motion tracking. The research is funded by the American Cancer Society (ACS) grant. The grant name is: Frameless SRS Based on Robotic Head Motion Cancellation. The grant number is: RSG-13-313-01-CCE.

  11. Architecture in motion: A model for music composition

    NASA Astrophysics Data System (ADS)

    Variego, Jorge Elias

    2011-12-01

    Speculations regarding the relationship between music and architecture go back to the very origins of these disciplines. Throughout history, these links have always reaffirmed that music and architecture are analogous art forms that only diverge in their object of study. In the 1 st c. BCE Vitruvius conceived Architecture as "one of the most inclusive and universal human activities" where the architect should be educated in all the arts, having a vast knowledge in history, music and philosophy. In the 18th c., the German thinker Johann Wolfgang von Goethe, described Architecture as "frozen music". More recently, in the 20th c., Iannis Xenakis studied the similar structuring principles between Music and Architecture creating his own "models" of musical composition based on mathematical principles and geometric constructions. The goal of this document is to propose a compositional method that will function as a translator between the acoustical properties of a room and music, to facilitate the creation of musical works that will not only happen within an enclosed space but will also intentionally interact with the space. Acoustical measurements of rooms such as reverberation time, frequency response and volume will be measured and systematically organized in correspondence with orchestrational parameters. The musical compositions created after the proposed model are evocative of the spaces on which they are based. They are meant to be performed in any space, not exclusively in the one where the acoustical measurements were obtained. The visual component of architectural design is disregarded; the room is considered a musical instrument, with its particular sound qualities and resonances. Compositions using the proposed model will not result as sonified shapes, they will be musical works literally "tuned" to a specific space. This Architecture in motion is an attempt to adopt scientific research to the service of a creative activity and to let the aural properties of

  12. A finite state model for respiratory motion analysis in image guided radiation therapy

    NASA Astrophysics Data System (ADS)

    Wu, Huanmei; Sharp, Gregory C.; Salzberg, Betty; Kaeli, David; Shirato, Hiroki; Jiang, Steve B.

    2004-12-01

    Effective image guided radiation treatment of a moving tumour requires adequate information on respiratory motion characteristics. For margin expansion, beam tracking and respiratory gating, the tumour motion must be quantified for pretreatment planning and monitored on-line. We propose a finite state model for respiratory motion analysis that captures our natural understanding of breathing stages. In this model, a regular breathing cycle is represented by three line segments, exhale, end-of-exhale and inhale, while abnormal breathing is represented by an irregular breathing state. In addition, we describe an on-line implementation of this model in one dimension. We found this model can accurately characterize a wide variety of patient breathing patterns. This model was used to describe the respiratory motion for 23 patients with peak-to-peak motion greater than 7 mm. The average root mean square error over all patients was less than 1 mm and no patient has an error worse than 1.5 mm. Our model provides a convenient tool to quantify respiratory motion characteristics, such as patterns of frequency changes and amplitude changes, and can be applied to internal or external motion, including internal tumour position, abdominal surface, diaphragm, spirometry and other surrogates.

  13. A trade-off analysis design tool. Aircraft interior noise-motion/passenger satisfaction model

    NASA Technical Reports Server (NTRS)

    Jacobson, I. D.

    1977-01-01

    A design tool was developed to enhance aircraft passenger satisfaction. The effect of aircraft interior motion and noise on passenger comfort and satisfaction was modelled. Effects of individual aircraft noise sources were accounted for, and the impact of noise on passenger activities and noise levels to safeguard passenger hearing were investigated. The motion noise effect models provide a means for tradeoff analyses between noise and motion variables, and also provide a framework for optimizing noise reduction among noise sources. Data for the models were collected onboard commercial aircraft flights and specially scheduled tests.

  14. Characterization of free breathing patterns with 5D lung motion model

    SciTech Connect

    Zhao Tianyu; Lu Wei; Yang Deshan; Mutic, Sasa; Noel, Camille E.; Parikh, Parag J.; Bradley, Jeffrey D.; Low, Daniel A.

    2009-11-15

    Purpose: To determine the quiet respiration breathing motion model parameters for lung cancer and nonlung cancer patients. Methods: 49 free breathing patient 4DCT image datasets (25 scans, cine mode) were collected with simultaneous quantitative spirometry. A cross-correlation registration technique was employed to track the lung tissue motion between scans. The registration results were applied to a lung motion model: X-vector=X-vector{sub 0}+{alpha}-vector{beta}-vector f, where X-vector is the position of a piece of tissue located at reference position X-vector{sub 0} during a reference breathing phase (zero tidal volume v, zero airflow f). {alpha}-vector is a parameter that characterizes the motion due to air filling (motion as a function of tidal volume v) and {beta}-vector is the parameter that accounts for the motion due to the imbalance of dynamical stress distributions during inspiration and exhalation that causes lung motion hysteresis (motion as a function of airflow f). The parameters {alpha}-vector and {beta}-vector together provide a quantitative characterization of breathing motion that inherently includes the complex hysteresis interplay. The {alpha}-vector and {beta}-vector distributions were examined for each patient to determine overall general patterns and interpatient pattern variations. Results: For 44 patients, the greatest values of |{alpha}-vector| were observed in the inferior and posterior lungs. For the rest of the patients, |{alpha}-vector| reached its maximum in the anterior lung in three patients and the lateral lung in two patients. The hysteresis motion {beta}-vector had greater variability, but for the majority of patients, |{beta}-vector| was largest in the lateral lungs. Conclusions: This is the first report of the three-dimensional breathing motion model parameters for a large cohort of patients. The model has the potential for noninvasively predicting lung motion. The majority of patients exhibited similar |{alpha}-vector| maps

  15. Model-based risk assessment for motion effects in 3D radiotherapy of lung tumors

    NASA Astrophysics Data System (ADS)

    Werner, René; Ehrhardt, Jan; Schmidt-Richberg, Alexander; Handels, Heinz

    2012-02-01

    Although 4D CT imaging becomes available in an increasing number of radiotherapy facilities, 3D imaging and planning is still standard in current clinical practice. In particular for lung tumors, respiratory motion is a known source of uncertainty and should be accounted for during radiotherapy planning - which is difficult by using only a 3D planning CT. In this contribution, we propose applying a statistical lung motion model to predict patients' motion patterns and to estimate dosimetric motion effects in lung tumor radiotherapy if only 3D images are available. Being generated based on 4D CT images of patients with unimpaired lung motion, the model tends to overestimate lung tumor motion. It therefore promises conservative risk assessment regarding tumor dose coverage. This is exemplarily evaluated using treatment plans of lung tumor patients with different tumor motion patterns and for two treatment modalities (conventional 3D conformal radiotherapy and step-&- shoot intensity modulated radiotherapy). For the test cases, 4D CT images are available. Thus, also a standard registration-based 4D dose calculation is performed, which serves as reference to judge plausibility of the modelbased 4D dose calculation. It will be shown that, if combined with an additional simple patient-specific breathing surrogate measurement (here: spirometry), the model-based dose calculation provides reasonable risk assessment of respiratory motion effects.

  16. Stochastic point-source modeling of ground motions in the Cascadia region

    USGS Publications Warehouse

    Atkinson, G.M.; Boore, D.M.

    1997-01-01

    A stochastic model is used to develop preliminary ground motion relations for the Cascadia region for rock sites. The model parameters are derived from empirical analyses of seismographic data from the Cascadia region. The model is based on a Brune point-source characterized by a stress parameter of 50 bars. The model predictions are compared to ground-motion data from the Cascadia region and to data from large earthquakes in other subduction zones. The point-source simulations match the observations from moderate events (M 100 km). The discrepancy at large magnitudes suggests further work on modeling finite-fault effects and regional attenuation is warranted. In the meantime, the preliminary equations are satisfactory for predicting motions from events of M < 7 and provide conservative estimates of motions from larger events at distances less than 100 km.

  17. Motion sickness: an evolutionary and genetic basis for the negative reinforcement model.

    PubMed

    Knox, Glenn W

    2014-01-01

    It has been theorized that motion sickness evolved as a negative reinforcement system which terminates motion involving postural instability and/or sensory conflict. A hypothetical example is provided by a "thought experiment" whereby protohominids are in a tree looking for food. Selection pressure results when the organisms that have an aversion to motion-producing sensory conflict do not venture out too far on the tree limbs and therefore tend to survive. In order to support an evolutionary model for motion sickness there must be evidence for genetic and/or heritable predisposition. The present study involves a retrospective literature review which reveals abundant evidence for genetic/heritable factors in motion sickness. Examples include genetic polymorphism of the alpha-2-adrenergic receptor, which has been shown to increase susceptibility to motion sickness, examination of family trees revealing heritable motion sickness susceptibility, evidence indicating that Asians are hyper-susceptible to motion sickness, and twin studies, just to mention a few. Thus, the theory of heritable negative reinforcement as a basis for motion sickness is supported by extensive evidence in the medical literature. This theory is compared and contrasted with other theories. Further areas for research are suggested.

  18. Affinity driven social networks

    NASA Astrophysics Data System (ADS)

    Ruyú, B.; Kuperman, M. N.

    2007-04-01

    In this work we present a model for evolving networks, where the driven force is related to the social affinity between individuals of a population. In the model, a set of individuals initially arranged on a regular ordered network and thus linked with their closest neighbors are allowed to rearrange their connections according to a dynamics closely related to that of the stable marriage problem. We show that the behavior of some topological properties of the resulting networks follows a non trivial pattern.

  19. Multilayer Joint Gait-Pose Manifolds for Human Gait Motion Modeling.

    PubMed

    Ding, Meng; Fan, Guolian

    2015-11-01

    We present new multilayer joint gait-pose manifolds (multilayer JGPMs) for complex human gait motion modeling, where three latent variables are defined jointly in a low-dimensional manifold to represent a variety of body configurations. Specifically, the pose variable (along the pose manifold) denotes a specific stage in a walking cycle; the gait variable (along the gait manifold) represents different walking styles; and the linear scale variable characterizes the maximum stride in a walking cycle. We discuss two kinds of topological priors for coupling the pose and gait manifolds, i.e., cylindrical and toroidal, to examine their effectiveness and suitability for motion modeling. We resort to a topologically-constrained Gaussian process (GP) latent variable model to learn the multilayer JGPMs where two new techniques are introduced to facilitate model learning under limited training data. First is training data diversification that creates a set of simulated motion data with different strides. Second is the topology-aware local learning to speed up model learning by taking advantage of the local topological structure. The experimental results on the Carnegie Mellon University motion capture data demonstrate the advantages of our proposed multilayer models over several existing GP-based motion models in terms of the overall performance of human gait motion modeling.

  20. Development of Response Spectral Ground Motion Prediction Equations from Empirical Models for Fourier Spectra and Duration of Ground Motion

    NASA Astrophysics Data System (ADS)

    Bora, S. S.; Scherbaum, F.; Kuehn, N. M.; Stafford, P.; Edwards, B.

    2014-12-01

    In a probabilistic seismic hazard assessment (PSHA) framework, it still remains a challenge to adjust ground motion prediction equations (GMPEs) for application in different seismological environments. In this context, this study presents a complete framework for the development of a response spectral GMPE easily adjustable to different seismological conditions; and which does not suffer from the technical problems associated with the adjustment in response spectral domain. Essentially, the approach consists of an empirical FAS (Fourier Amplitude Spectrum) model and a duration model for ground motion which are combined within the random vibration theory (RVT) framework to obtain the full response spectral ordinates. Additionally, FAS corresponding to individual acceleration records are extrapolated beyond the frequency range defined by the data using the stochastic FAS model, obtained by inversion as described in Edwards & Faeh, (2013). To that end, an empirical model for a duration, which is tuned to optimize the fit between RVT based and observed response spectral ordinate, at each oscillator frequency is derived. Although, the main motive of the presented approach was to address the adjustability issues of response spectral GMPEs; comparison, of median predicted response spectra with the other regional models indicate that presented approach can also be used as a stand-alone model. Besides that, a significantly lower aleatory variability (σ<0.5 in log units) in comparison to other regional models, at shorter periods brands it to a potentially viable alternative to the classical regression (on response spectral ordinates) based GMPEs for seismic hazard studies in the near future. The dataset used for the presented analysis is a subset of the recently compiled database RESORCE-2012 across Europe, Middle East and the Mediterranean region.

  1. Stochastic Modeling and Simulation of Near-Fault Ground Motions for Performance-Based Earthquake Engineering

    NASA Astrophysics Data System (ADS)

    Dabaghi, Mayssa Nabil

    A comprehensive parameterized stochastic model of near-fault ground motions in two orthogonal horizontal directions is developed. The proposed model uniquely combines several existing and new sub-models to represent major characteristics of recorded near-fault ground motions. These characteristics include near-fault effects of directivity and fling step; temporal and spectral non-stationarity; intensity, duration and frequency content characteristics; directionality of components, as well as the natural variability of motions for a given earthquake and site scenario. By fitting the model to a database of recorded near-fault ground motions with known earthquake source and site characteristics, empirical "observations" of the model parameters are obtained. These observations are used to develop predictive equations for the model parameters in terms of a small number of earthquake source and site characteristics. Functional forms for the predictive equations that are consistent with seismological theory are employed. A site-based simulation procedure that employs the proposed stochastic model and predictive equations is developed to generate synthetic near-fault ground motions at a site. The procedure is formulated in terms of information about the earthquake design scenario that is normally available to a design engineer. Not all near-fault ground motions contain a forward directivity pulse, even when the conditions for such a pulse are favorable. The proposed procedure produces pulselike and non-pulselike motions in the same proportions as they naturally occur among recorded near-fault ground motions for a given design scenario. The proposed models and simulation procedure are validated by several means. Synthetic ground motion time series with fitted parameter values are compared with the corresponding recorded motions. The proposed empirical predictive relations are compared to similar relations available in the literature. The overall simulation procedure is

  2. A heuristic mathematical model for the dynamics of sensory conflict and motion sickness

    NASA Technical Reports Server (NTRS)

    Oman, C. M.

    1982-01-01

    The etiology of motion sickness is now usually explained in terms of a qualitatively formulated sensory conflict hypothesis. By consideration of the information processing task faced by the central nervous system in estimating body spatial orientation and in controlling active body movement using an internal model referenced control strategy, a mathematical model for sensory conflict generation is developed. The model postulates a major dynamic functional role for sensory conflict signals in movement control, as well as in sensory motor adaptation. It accounts for the role of active movement in creating motion sickness symptoms in some experimental circumstances, and in alleviating them in others. The relationship between motion sickness produced by sensory rearrangement and that resulting from external motion disturbances is explicitly defined. A nonlinear conflict averaging model describes dynamic aspects of experimentally observed subjective discomfort sensation, and suggests resulting behavior.

  3. A heuristic mathematical model for the dynamics of sensory conflict and motion sickness

    NASA Technical Reports Server (NTRS)

    Oman, C. M.

    1980-01-01

    The etiology of motion sickness is explained in terms of a qualitatively formulated sensory conflict hypothesis. By consideration of the information processing task faced by the central nervous system in estimating body spatial orientation and in controlling active body movement using an internal model referenced control strategy, a mathematical model for sensory conflict generation is developed. The model postulates a major dynamic functional role for sensory conflict signals in movement control, as well as in sensory-motor adaptation. It accounts for the role of active movement in creating motion sickness symptoms in some experimental circumstances, and in alleviating them in others. The relationship between motion sickness produced by sensory rearrangement and that resulting from external motion disturbances is explicitly defined. A nonlinear conflict averaging model is proposed which describes dynamic aspects of experimentally observed subjective discomfort sensation, and suggests resulting behaviors.

  4. A motion-energy model predicts the direction discrimination and MAE duration of two-stroke apparent motion at high and low retinal illuminance.

    PubMed

    Challinor, Kirsten L; Mather, George

    2010-06-11

    Two-stroke apparent motion offers a challenge to current theoretical models of motion processing and is thus a useful tool for investigating motion sensor input. The stimulus involves repeated presentation of two pattern frames containing a spatial displacement, with a blank inter-stimulus interval (ISI) at one of the two-frame transitions. The resulting impression of continuous motion was measured here using both direction discrimination and motion after-effect duration in order to assess the extent to which data using the two measures can be explained by a computational model without reference to attentive tracking mechanisms. The motion-energy model was found to offer a very good account of the psychophysical data using similar parameters for both tasks. The experiment was run under both photopic and scotopic retinal illumination. Data revealed that the optimum ISI for perceiving two-stroke apparent motion shifts to longer ISIs under scotopic conditions, providing evidence for a biphasic impulse response at low luminance. Best-fitting model parameters indicate that motion sensors receive inputs from temporal filters whose central temporal frequency shifts from 2.5 to 3.0Hz at high retinal illuminance to 1.0-1.5Hz at low retinal illuminance.

  5. Mathematical Model of the Firefly Luciferase Complementation Assay Reveals a Non-Linear Relationship between the Detected Luminescence and the Affinity of the Protein Pair Being Analyzed.

    PubMed

    Dale, Renee; Ohmuro-Matsuyama, Yuki; Ueda, Hiroshi; Kato, Naohiro

    2016-01-01

    The firefly luciferase complementation assay is widely used as a bioluminescent reporter technology to detect protein-protein interactions in vitro, in cellulo, and in vivo. Upon the interaction of a protein pair, complemented firefly luciferase emits light through the adenylation and oxidation of its substrate, luciferin. Although it has been suggested that kinetics of light production in the firefly luciferase complementation assay is different from that in full length luciferase, the mechanism behind this is still not understood. To quantitatively understand the different kinetics and how changes in affinity of a protein pair affect the light emission in the assay, a mathematical model of the in vitro firefly luciferase complementation assay was constructed. Analysis of the model finds that the change in kinetics is caused by rapid dissociation of the protein pair, low adenylation rate of luciferin, and increased affinity of adenylated luciferin to the enzyme. The model suggests that the affinity of the protein pair has an exponential relationship with the light detected in the assay. This relationship causes the change of affinity in a protein pair to be underestimated. This study underlines the importance of understanding the molecular mechanism of the firefly luciferase complementation assay in order to analyze protein pair affinities quantitatively. PMID:26886551

  6. Mathematical Model of the Firefly Luciferase Complementation Assay Reveals a Non-Linear Relationship between the Detected Luminescence and the Affinity of the Protein Pair Being Analyzed.

    PubMed

    Dale, Renee; Ohmuro-Matsuyama, Yuki; Ueda, Hiroshi; Kato, Naohiro

    2016-01-01

    The firefly luciferase complementation assay is widely used as a bioluminescent reporter technology to detect protein-protein interactions in vitro, in cellulo, and in vivo. Upon the interaction of a protein pair, complemented firefly luciferase emits light through the adenylation and oxidation of its substrate, luciferin. Although it has been suggested that kinetics of light production in the firefly luciferase complementation assay is different from that in full length luciferase, the mechanism behind this is still not understood. To quantitatively understand the different kinetics and how changes in affinity of a protein pair affect the light emission in the assay, a mathematical model of the in vitro firefly luciferase complementation assay was constructed. Analysis of the model finds that the change in kinetics is caused by rapid dissociation of the protein pair, low adenylation rate of luciferin, and increased affinity of adenylated luciferin to the enzyme. The model suggests that the affinity of the protein pair has an exponential relationship with the light detected in the assay. This relationship causes the change of affinity in a protein pair to be underestimated. This study underlines the importance of understanding the molecular mechanism of the firefly luciferase complementation assay in order to analyze protein pair affinities quantitatively.

  7. Modelling of Motion of Bodies Near Triangular Lagrangian Points

    NASA Astrophysics Data System (ADS)

    Bobrov, O. A.

    In this paper, we consider a system of three bodies connected by gravity, two of which are of comparable mass (the Sun and Jupiter), and the third is negligible and it is located in one of the triangular Lagrange points (restricted 3 - body problem). We used the equations of motion in a planar coordinate system that rotates together with massive bodies. Several programs have been written in the programming environment Pascal ABC, in order to build the trajectory of a small body, to indicate the osculating orbit around a massive body, to display equipotential surfaces.

  8. Construction and evaluation of an integrated dynamical model of visual motion perception.

    PubMed

    Tlapale, Émilien; Dosher, Barbara Anne; Lu, Zhong-Lin

    2015-07-01

    Although numerous models describe the individual neural mechanisms that may be involved in the perception of visual motion, few of them have been constructed to take arbitrary stimuli and map them to a motion percept. Here, we propose an integrated dynamical motion model (IDM), which is sufficiently general to handle diverse moving stimuli, yet sufficiently precise to account for a wide-ranging set of empirical observations made on a family of random dot kinematograms. In particular, we constructed models of the cortical areas involved in motion detection, motion integration and perceptual decision. We analyzed their parameters through dynamical simulations and numerical continuation to constrain their proper ranges. Then, empirical data from a family of random dot kinematograms experiments with systematically varying direction distribution, presentation duration and stimulus size, were used to evaluate our model and estimate corresponding model parameters. The resulting model provides an excellent account of a demanding set of parametrically varied behavioral effects on motion perception, providing both quantitative and qualitative elements of evaluation.

  9. Model-based respiratory motion compensation for emission tomography image reconstruction.

    PubMed

    Reyes, M; Malandain, G; Koulibaly, P M; González-Ballester, M A; Darcourt, J

    2007-06-21

    In emission tomography imaging, respiratory motion causes artifacts in lungs and cardiac reconstructed images, which lead to misinterpretations, imprecise diagnosis, impairing of fusion with other modalities, etc. Solutions like respiratory gating, correlated dynamic PET techniques, list-mode data based techniques and others have been tested, which lead to improvements over the spatial activity distribution in lungs lesions, but which have the disadvantages of requiring additional instrumentation or the need of discarding part of the projection data used for reconstruction. The objective of this study is to incorporate respiratory motion compensation directly into the image reconstruction process, without any additional acquisition protocol consideration. To this end, we propose an extension to the maximum likelihood expectation maximization (MLEM) algorithm that includes a respiratory motion model, which takes into account the displacements and volume deformations produced by the respiratory motion during the data acquisition process. We present results from synthetic simulations incorporating real respiratory motion as well as from phantom and patient data.

  10. Cardiac Motion Analysis Using High-Speed Video Images in a Rat Model for Myocardial Infarction

    NASA Astrophysics Data System (ADS)

    Ishii, Idaku; Okuda, Toshikazu; Nie, Yuman; Takaki, Takeshi; Orito, Kensuke; Tanaka, Akane; Matsuda, Hiroshi

    In this study, we performed a cardiac motion analysis by using 1000-frames per second (fps) stereo images to capture the three-dimensional motion of small color markers in a rat heart. This method of recording cardiac motion could quantify the rate of change in the myocardial area, which indicated localized myocardial activity of rhythmic expansion and contraction. We analyzed the three-dimensional motion distributions in a rat model for myocardial infarction, in which the heart rate was 4 times/s or more. In the analysis, we spatiotemporally quantified the characteristic cardiac motion in ischemic heart diseases and found that infarction due to ischemia in the rat heart was spread around the left ventricle.

  11. Cardiac motion compensation and resolution modeling in simultaneous PET-MR: a cardiac lesion detection study.

    PubMed

    Petibon, Y; Ouyang, J; Zhu, X; Huang, C; Reese, T G; Chun, S Y; Li, Q; El Fakhri, G

    2013-04-01

    Cardiac motion and partial volume effects (PVE) are two of the main causes of image degradation in cardiac PET. Motion generates artifacts and blurring while PVE lead to erroneous myocardial activity measurements. Newly available simultaneous PET-MR scanners offer new possibilities in cardiac imaging as MRI can assess wall contractility while collecting PET perfusion data. In this perspective, we develop a list-mode iterative reconstruction framework incorporating both tagged-MR derived non-rigid myocardial wall motion and position dependent detector point spread function (PSF) directly into the PET system matrix. In this manner, our algorithm performs both motion 'deblurring' and PSF deconvolution while reconstructing images with all available PET counts. The proposed methods are evaluated in a beating non-rigid cardiac phantom whose hot myocardial compartment contains small transmural and non-transmural cold defects. In order to accelerate imaging time, we investigate collecting full and half k-space tagged MR data to obtain tagged volumes that are registered using non-rigid B-spline registration to yield wall motion information. Our experimental results show that tagged-MR based motion correction yielded an improvement in defect/myocardium contrast recovery of 34-206% as compared to motion uncorrected studies. Likewise, lesion detectability improved by respectively 115-136% and 62-235% with MR-based motion compensation as compared to gating and no motion correction and made it possible to distinguish non-transmural from transmural defects, which has clinical significance given the inherent limitations of current single modality imaging in identifying the amount of residual ischemia. The incorporation of PSF modeling within the framework of MR-based motion compensation significantly improved defect/myocardium contrast recovery (5.1-8.5%, p < 0.01) and defect detectability (39-56%, p < 0.01). No statistical difference was found in PET contrast and lesion

  12. Cardiac motion compensation and resolution modeling in simultaneous PET-MR: a cardiac lesion detection study

    NASA Astrophysics Data System (ADS)

    Petibon, Y.; Ouyang, J.; Zhu, X.; Huang, C.; Reese, T. G.; Chun, S. Y.; Li, Q.; El Fakhri, G.

    2013-04-01

    Cardiac motion and partial volume effects (PVE) are two of the main causes of image degradation in cardiac PET. Motion generates artifacts and blurring while PVE lead to erroneous myocardial activity measurements. Newly available simultaneous PET-MR scanners offer new possibilities in cardiac imaging as MRI can assess wall contractility while collecting PET perfusion data. In this perspective, we develop a list-mode iterative reconstruction framework incorporating both tagged-MR derived non-rigid myocardial wall motion and position dependent detector point spread function (PSF) directly into the PET system matrix. In this manner, our algorithm performs both motion ‘deblurring’ and PSF deconvolution while reconstructing images with all available PET counts. The proposed methods are evaluated in a beating non-rigid cardiac phantom whose hot myocardial compartment contains small transmural and non-transmural cold defects. In order to accelerate imaging time, we investigate collecting full and half k-space tagged MR data to obtain tagged volumes that are registered using non-rigid B-spline registration to yield wall motion information. Our experimental results show that tagged-MR based motion correction yielded an improvement in defect/myocardium contrast recovery of 34-206% as compared to motion uncorrected studies. Likewise, lesion detectability improved by respectively 115-136% and 62-235% with MR-based motion compensation as compared to gating and no motion correction and made it possible to distinguish non-transmural from transmural defects, which has clinical significance given the inherent limitations of current single modality imaging in identifying the amount of residual ischemia. The incorporation of PSF modeling within the framework of MR-based motion compensation significantly improved defect/myocardium contrast recovery (5.1-8.5%, p < 0.01) and defect detectability (39-56%, p < 0.01). No statistical difference was found in PET contrast and lesion

  13. Mutational Analysis of the High-Affinity Zinc Binding Site Validates a Refined Human Dopamine Transporter Homology Model

    PubMed Central

    Stockner, Thomas; Montgomery, Therese R.; Kudlacek, Oliver; Weissensteiner, Rene; Ecker, Gerhard F.; Freissmuth, Michael; Sitte, Harald H.

    2013-01-01

    The high-resolution crystal structure of the leucine transporter (LeuT) is frequently used as a template for homology models of the dopamine transporter (DAT). Although similar in structure, DAT differs considerably from LeuT in a number of ways: (i) when compared to LeuT, DAT has very long intracellular amino and carboxyl termini; (ii) LeuT and DAT share a rather low overall sequence identity (22%) and (iii) the extracellular loop 2 (EL2) of DAT is substantially longer than that of LeuT. Extracellular zinc binds to DAT and restricts the transporter‚s movement through the conformational cycle, thereby resulting in a decrease in substrate uptake. Residue H293 in EL2 praticipates in zinc binding and must be modelled correctly to allow for a full understanding of its effects. We exploited the high-affinity zinc binding site endogenously present in DAT to create a model of the complete transmemberane domain of DAT. The zinc binding site provided a DAT-specific molecular ruler for calibration of the model. Our DAT model places EL2 at the transporter lipid interface in the vicinity of the zinc binding site. Based on the model, D206 was predicted to represent a fourth co-ordinating residue, in addition to the three previously described zinc binding residues H193, H375 and E396. This prediction was confirmed by mutagenesis: substitution of D206 by lysine and cysteine affected the inhibitory potency of zinc and the maximum inhibition exerted by zinc, respectively. Conversely, the structural changes observed in the model allowed for rationalizing the zinc-dependent regulation of DAT: upon binding, zinc stabilizes the outward-facing state, because its first coordination shell can only be completed in this conformation. Thus, the model provides a validated solution to the long extracellular loop and may be useful to address other aspects of the transport cycle. PMID:23436987

  14. Physiologically corrected coupled motion during gait analysis using a model-based approach.

    PubMed

    Bonnechère, Bruno; Sholukha, Victor; Salvia, Patrick; Rooze, Marcel; Van Sint Jan, Serge

    2015-01-01

    Gait analysis is used in daily clinics for patients' evaluation and follow-up. Stereophotogrammetric devices are the most used tool to perform these analyses. Although these devices are accurate results must be analyzed carefully due to relatively poor reproducibility. One of the major issues is related to skin displacement artifacts. Motion representation is recognized reliable for the main plane of motion displacement, but secondary motions, or combined, are less reliable because of the above artifacts. Model-based approach (MBA) combining accurate joint kinematics and motion data was previously developed based on a double-step registration method. This study presents an extensive validation of this MBA method by comparing results with a conventional motion representation model. Thirty five healthy subjects participated to this study. Gait motion data were obtained from a stereophotogrammetric system. Plug-in Gait model (PiG) and MBA were applied to raw data, results were then compared. Range-of-motion, were computed for pelvis, hip, knee and ankle joints. Differences between PiG and MBA were then computed. Paired-sample t-tests were used to compare both methods. Normalized root-mean square errors were also computed. Shapes of the curves were compared using coefficient of multiple correlations. The MBA and PiG approaches shows similar results for the main plane of motion displacement but statistically significative discrepancies appear for the combined motions. MBA appear to be usable in applications (such as musculoskeletal modeling) requesting better approximations of the joints-of-interest thanks to the integration of validated joint mechanisms.

  15. A heuristic mathematical model for the dynamics of sensory conflict and motion sickness

    NASA Technical Reports Server (NTRS)

    Oman, C. M.

    1982-01-01

    By consideration of the information processing task faced by the central nervous system in estimating body spatial orientation and in controlling active body movement using an internal model referenced control strategy, a mathematical model for sensory conflict generation is developed. The model postulates a major dynamic functional role for sensory conflict signals in movement control, as well as in sensory-motor adaptation. It accounts for the role of active movement in creating motion sickness symptoms in some experimental circumstance, and in alleviating them in others. The relationship between motion sickness produced by sensory rearrangement and that resulting from external motion disturbances is explicitly defined. A nonlinear conflict averaging model is proposed which describes dynamic aspects of experimentally observed subjective discomfort sensation, and suggests resulting behaviours. The model admits several possibilities for adaptive mechanisms which do not involve internal model updating. Further systematic efforts to experimentally refine and validate the model are indicated.

  16. The estimation of affinity constants for the binding of model peptides to DNA by equilibrium dialysis.

    PubMed Central

    Standke, K C; Brunnert, H

    1975-01-01

    The binding of lysine model peptides of the type Lys-X-Lys, Lys-X-X-Lys and Lys-X-X-X-Lys (X = different aliphatic and aromatic amino acids) has been studied by equilibrium dialysis. It was shown that the strong electrostatic binding forces generated by protonated amino groups of lysine can be distinguished from the weak forces stemming from neutral and aromatic spacer amino acids. The overall binding strength of the lysine model peptides is modified by these weak binding forces and the apparent binding constants are influenced more by the hydrophobic character of the spacer amino acid side chains than by the chainlength of the spacers. PMID:1187347

  17. Report: Affinity Chromatography.

    ERIC Educational Resources Information Center

    Walters, Rodney R.

    1985-01-01

    Supports, affinity ligands, immobilization, elution methods, and a number of applications are among the topics considered in this discussion of affinity chromatography. An outline of the basic principles of affinity chromatography is included. (JN)

  18. Mechanism-based common reactivity pattern (COREPA) modelling of aryl hydrocarbon receptor binding affinity

    PubMed Central

    Petkov, P.I.; Rowlands, J.C.; Budinsky, R.; Zhao, B.; Denison, M.S.; Mekenyan, O.

    2011-01-01

    The aryl hydrocarbon receptor is a ligand-activated transcription factor responsive to both natural and synthetic environmental compounds, with the most potent agonist being 2,3,7,8-tetrachlotrodibenzo-p-dioxin. The aim of this work was to develop a categorical COmmon REactivity PAttern (COREPA)-based structure–activity relationship model for predicting aryl hydrocarbon receptor ligands within different binding ranges. The COREPA analysis suggested two different binding mechanisms called dioxin- and biphenyl-like, respectively. The dioxin-like model predicts a mechanism that requires a favourable interaction with a receptor nucleophilic site in the central part of the ligand and with electrophilic sites at both sides of the principal molecular axis, whereas the biphenyl-like model predicted a stacking-type interaction with the aryl hydrocarbon receptor allowing electron charge transfer from the receptor to the ligand. The current model was also adjusted to predict agonistic/antagonistic properties of chemicals. The mechanism of antagonistic properties was related to the possibility that these chemicals have a localized negative charge at the molecule's axis and ultimately bind with the receptor surface through the electron-donating properties of electron-rich groups. The categorization of chemicals as agonists/antagonists was found to correlate with their gene expression. The highest increase in gene expression was elicited by strong agonists, followed by weak agonists producing lower increases in gene expression, whereas all antagonists (and non-aryl hydrocarbon receptor binders) were found to have no effect on gene expression. However, this relationship was found to be quantitative for the chemicals populating the areas with extreme gene expression values only, leaving a wide fuzzy area where the quantitative relationship was unclear. The total concordance of the derived aryl hydrocarbon receptor binding categorical structure–activity relationship model was

  19. Neural network-based motion control of an underactuated wheeled inverted pendulum model.

    PubMed

    Yang, Chenguang; Li, Zhijun; Cui, Rongxin; Xu, Bugong

    2014-11-01

    In this paper, automatic motion control is investigated for one of wheeled inverted pendulum (WIP) models, which have been widely applied for modeling of a large range of two wheeled modern vehicles. First, the underactuated WIP model is decomposed into a fully actuated second order subsystem Σa consisting of planar movement of vehicle forward and yaw angular motions, and a nonactuated first order subsystem Σb of pendulum motion. Due to the unknown dynamics of subsystem Σa and the universal approximation ability of neural network (NN), an adaptive NN scheme has been employed for motion control of subsystem Σa . The model reference approach has been used whereas the reference model is optimized by the finite time linear quadratic regulation technique. The pendulum motion in the passive subsystem Σb is indirectly controlled using the dynamic coupling with planar forward motion of subsystem Σa , such that satisfactory tracking of a set pendulum tilt angle can be guaranteed. Rigours theoretic analysis has been established, and simulation studies have been performed to demonstrate the developed method.

  20. Mixed-model QSAR at the human mineralocorticoid receptor: predicting binding mode and affinity of anabolic steroids.

    PubMed

    Peristera, Ourania; Spreafico, Morena; Smiesko, Martin; Ernst, Beat; Vedani, Angelo

    2009-09-28

    We present a computational study on the human mineralocorticoid receptor (hMR) that is based on multi-dimensional quantitative structure-activity relationships (mQSAR). Therein, we identified the binding mode of 48 steroid and non-steroid homologues by flexible docking to the crystal structure (software Yeti) and quantified it using 6D-QSAR (software Quasar). The receptor surrogate, evolved using a genetic algorithm, converged at a cross-validated r2 of 0.810, and yielded a predictive r2 of 0.661. The model was challenged by a series of scramble tests and by consensus scoring (software Raptor: r2=0.844, predictive r(2)=0.620). The model was then employed to predict the binding affinity of 26 anabolic steroids, demonstrating to which extent they might disrupt the endocrine system via binding to the hMR. The model for the hMR was added to the VirtualToxLab, a technology developed by the Biographics Laboratory 3R, allows the identification of the endocrine-disrupting potential of drugs, chemicals and natural products in silico.

  1. A space-variant model for motion interpretation across the visual field.

    PubMed

    Chessa, Manuela; Maiello, Guido; Bex, Peter J; Solari, Fabio

    2016-01-01

    We implement a neural model for the estimation of the focus of radial motion (FRM) at different retinal locations and assess the model by comparing its results with respect to the precision with which human observers can estimate the FRM in naturalistic motion stimuli. The model describes the deep hierarchy of the first stages of the dorsal visual pathway and is space variant, since it takes into account the retino-cortical transformation of the primate visual system through log-polar mapping. The log-polar transform of the retinal image is the input to the cortical motion-estimation stage, where optic flow is computed by a three-layer neural population. The sensitivity to complex motion patterns that has been found in area MST is modeled through a population of adaptive templates. The first-order description of cortical optic flow is derived from the responses of the adaptive templates. Information about self-motion (e.g., direction of heading) is estimated by combining the first-order descriptors computed in the cortical domain. The model's performance at FRM estimation as a function of retinal eccentricity neatly maps onto data from human observers. By employing equivalent-noise analysis we observe that loss in FRM accuracy for both model and human observers is attributable to a decrease in the efficiency with which motion information is pooled with increasing retinal eccentricity in the visual field. The decrease in sampling efficiency is thus attributable to receptive-field size increases with increasing retinal eccentricity, which are in turn driven by the lossy log-polar mapping that projects the retinal image onto primary visual areas. We further show that the model is able to estimate direction of heading in real-world scenes, thus validating the model's potential application to neuromimetic robotic architectures. More broadly, we provide a framework in which to model complex motion integration across the visual field in real-world scenes. PMID:27580091

  2. Fast Modeling of Binding Affinities by Means of Superposing Significant Interaction Rules (SSIR) Method

    PubMed Central

    Besalú, Emili

    2016-01-01

    The Superposing Significant Interaction Rules (SSIR) method is described. It is a general combinatorial and symbolic procedure able to rank compounds belonging to combinatorial analogue series. The procedure generates structure-activity relationship (SAR) models and also serves as an inverse SAR tool. The method is fast and can deal with large databases. SSIR operates from statistical significances calculated from the available library of compounds and according to the previously attached molecular labels of interest or non-interest. The required symbolic codification allows dealing with almost any combinatorial data set, even in a confidential manner, if desired. The application example categorizes molecules as binding or non-binding, and consensus ranking SAR models are generated from training and two distinct cross-validation methods: leave-one-out and balanced leave-two-out (BL2O), the latter being suited for the treatment of binary properties. PMID:27240346

  3. A saliency based motion detection model of visual system considering visual adaptation properties.

    PubMed

    Kodama, Mitsuhiro; Kohama, Takeshi; Yoshida, Hisashi

    2015-01-01

    The purpose of this study is to construct a mathematical model which predicts saliency regions in high-speed egocentric-motion movies, filmed by an embedded camera in a driving vehicle, by reproducing the characteristics of the area MT and MST neurons' receptive fields with consideration of visual adaptation properties. The area MT neurons integrate from the area V1 activation and respond well to regions where higher motion contrasts exist. While the area MST neurons detect global motions such as expansion, contraction, rotation, and so on. We modeled the area MT neurons' receptive fields as a center-surround spatial summation of counter sided motion vectors of visual scenery. The area MST neurons in our model integrate the responses of the MT neurons by convolving with spacial weight functions of which central portions are biased to preferred direction. Visual adaptations were taken as the primary delay filters for each visual feature channel to deplete the saliency of stationary objects and regions during particular frames. The simulation results for the movies which were taken in a running vehicle indicate that the proposed model detects more salient objects around the vanishing point than the conventional saliency based model. To evaluate the performance of proposed model, we defined the moving-NSS (normalized scan-path salience) scores as the averaged NSS scores in each moving time window. The moving-NSS scores for motion images of our model were higher than those of the conventional model. PMID:26737820

  4. Observing and Modeling Long-Period Tidal Variations in Polar Motion

    NASA Technical Reports Server (NTRS)

    Gross, Richard S.; Dickman, S. R.

    2011-01-01

    By exchanging angular momentum with the solid Earth, ocean tides cause the Earth's rotation to change. While hydrodynamic tide models have been used to study the effect of ocean tides on polar motion, it is shown here that none of the published models can fully account for the observed variations. An empirical ocean tide model is therefore determined by fitting periodic terms at the tidal frequencies to polar motion excitation observations, from which atmospheric and non-tidal oceanic effects were removed. While the empirical ocean tide model does fully account for allof the observed tidal power, tests indicate that the model may not have completely converged. So better models of the effects of ocean tides on polar motion are still needed, both dynamical and empirical.

  5. Analytical approach to calculation of response spectra from seismological models of ground motion

    USGS Publications Warehouse

    Safak, Erdal

    1988-01-01

    An analytical approach to calculate response spectra from seismological models of ground motion is presented. Seismological models have three major advantages over empirical models: (1) they help in an understanding of the physics of earthquake mechanisms, (2) they can be used to predict ground motions for future earthquakes and (3) they can be extrapolated to cases where there are no data available. As shown with this study, these models also present a convenient form for the calculation of response spectra, by using the methods of random vibration theory, for a given magnitude and site conditions. The first part of the paper reviews the past models for ground motion description, and introduces the available seismological models. Then, the random vibration equations for the spectral response are presented. The nonstationarity, spectral bandwidth and the correlation of the peaks are considered in the calculation of the peak response.

  6. Identifying and modeling motion primitives for the hydromedusae Sarsia tubulosa and Aequorea victoria.

    PubMed

    Sledge, Isaac; Krieg, Michael; Lipinski, Doug; Mohseni, Kamran

    2015-12-01

    The movements of organisms can be thought of as aggregations of motion primitives: motion segments containing one or more significant actions. Here, we present a means to identify and characterize motion primitives from recorded movement data. We address these problems by assuming that the motion sequences can be characterized as a series of dynamical-system-based pattern generators. By adopting a nonparametric, Bayesian formalism for learning and simplifying these pattern generators, we arrive at a purely data-driven model to automatically identify breakpoints in the movement sequences. We apply this model to swimming sequences from two hydromedusa. The first hydromedusa is the prolate Sarsia tubulosa, for which we obtain five motion primitives that correspond to bell cavity pressurization, jet formation, jetting, cavity fluid refill, and coasting. The second hydromedusa is the oblate Aequorea victoria, for which we obtain five motion primitives that correspond to bell compression, vortex separation, cavity fluid refill, vortex formation, and coasting. Our experimental results indicate that the breakpoints between primitives are correlated with transitions in the bell geometry, vortex formation and shedding, and changes in derived dynamical quantities. These dynamics quantities include terms like pressure, power, drag, and thrust. Such findings suggest that dynamics information is inherently present in the observed motions. PMID:26495992

  7. 4D cone-beam CT reconstruction using multi-organ meshes for sliding motion modeling.

    PubMed

    Zhong, Zichun; Gu, Xuejun; Mao, Weihua; Wang, Jing

    2016-02-01

    A simultaneous motion estimation and image reconstruction (SMEIR) strategy was proposed for 4D cone-beam CT (4D-CBCT) reconstruction and showed excellent results in both phantom and lung cancer patient studies. In the original SMEIR algorithm, the deformation vector field (DVF) was defined on voxel grid and estimated by enforcing a global smoothness regularization term on the motion fields. The objective of this work is to improve the computation efficiency and motion estimation accuracy of SMEIR for 4D-CBCT through developing a multi-organ meshing model. Feature-based adaptive meshes were generated to reduce the number of unknowns in the DVF estimation and accurately capture the organ shapes and motion. Additionally, the discontinuity in the motion fields between different organs during respiration was explicitly considered in the multi-organ mesh model. This will help with the accurate visualization and motion estimation of the tumor on the organ boundaries in 4D-CBCT. To further improve the computational efficiency, a GPU-based parallel implementation was designed. The performance of the proposed algorithm was evaluated on a synthetic sliding motion phantom, a 4D NCAT phantom, and four lung cancer patients. The proposed multi-organ mesh based strategy outperformed the conventional Feldkamp-Davis-Kress, iterative total variation minimization, original SMEIR and single meshing method based on both qualitative and quantitative evaluations.

  8. Identifying and modeling motion primitives for the hydromedusae Sarsia tubulosa and Aequorea victoria.

    PubMed

    Sledge, Isaac; Krieg, Michael; Lipinski, Doug; Mohseni, Kamran

    2015-10-23

    The movements of organisms can be thought of as aggregations of motion primitives: motion segments containing one or more significant actions. Here, we present a means to identify and characterize motion primitives from recorded movement data. We address these problems by assuming that the motion sequences can be characterized as a series of dynamical-system-based pattern generators. By adopting a nonparametric, Bayesian formalism for learning and simplifying these pattern generators, we arrive at a purely data-driven model to automatically identify breakpoints in the movement sequences. We apply this model to swimming sequences from two hydromedusa. The first hydromedusa is the prolate Sarsia tubulosa, for which we obtain five motion primitives that correspond to bell cavity pressurization, jet formation, jetting, cavity fluid refill, and coasting. The second hydromedusa is the oblate Aequorea victoria, for which we obtain five motion primitives that correspond to bell compression, vortex separation, cavity fluid refill, vortex formation, and coasting. Our experimental results indicate that the breakpoints between primitives are correlated with transitions in the bell geometry, vortex formation and shedding, and changes in derived dynamical quantities. These dynamics quantities include terms like pressure, power, drag, and thrust. Such findings suggest that dynamics information is inherently present in the observed motions.

  9. 4D cone-beam CT reconstruction using multi-organ meshes for sliding motion modeling

    NASA Astrophysics Data System (ADS)

    Zhong, Zichun; Gu, Xuejun; Mao, Weihua; Wang, Jing

    2016-02-01

    A simultaneous motion estimation and image reconstruction (SMEIR) strategy was proposed for 4D cone-beam CT (4D-CBCT) reconstruction and showed excellent results in both phantom and lung cancer patient studies. In the original SMEIR algorithm, the deformation vector field (DVF) was defined on voxel grid and estimated by enforcing a global smoothness regularization term on the motion fields. The objective of this work is to improve the computation efficiency and motion estimation accuracy of SMEIR for 4D-CBCT through developing a multi-organ meshing model. Feature-based adaptive meshes were generated to reduce the number of unknowns in the DVF estimation and accurately capture the organ shapes and motion. Additionally, the discontinuity in the motion fields between different organs during respiration was explicitly considered in the multi-organ mesh model. This will help with the accurate visualization and motion estimation of the tumor on the organ boundaries in 4D-CBCT. To further improve the computational efficiency, a GPU-based parallel implementation was designed. The performance of the proposed algorithm was evaluated on a synthetic sliding motion phantom, a 4D NCAT phantom, and four lung cancer patients. The proposed multi-organ mesh based strategy outperformed the conventional Feldkamp-Davis-Kress, iterative total variation minimization, original SMEIR and single meshing method based on both qualitative and quantitative evaluations.

  10. Human motion recognition based on features and models selected HMM

    NASA Astrophysics Data System (ADS)

    Lu, Haixiang; Zhou, Hongjun

    2015-03-01

    This paper research on the motion recognition based on HMM with Kinect. Kinect provides skeletal data consist of 3D body joints with its lower price and convenience. In this work, several methods are used to determine the optimal subset of features among Cartesian coordinates, distance to hip center, velocity, angle and angular velocity, in order to improve the recognition rate. K-means is used for vector quantization and HMM is used as recognition method. HMM is an effective signal processing method which contains time calibration, provides a learning mechanism and recognition ability. Cluster numbers of K-means, structure and state numbers of HMM are optimized as well. The proposed methods are applied to the MSR Action3D dataset. Results show that the proposed methods obtain better recognition accuracy than the state of the art methods.

  11. 3D fluoroscopic image estimation using patient-specific 4DCBCT-based motion models.

    PubMed

    Dhou, S; Hurwitz, M; Mishra, P; Cai, W; Rottmann, J; Li, R; Williams, C; Wagar, M; Berbeco, R; Ionascu, D; Lewis, J H

    2015-05-01

    3D fluoroscopic images represent volumetric patient anatomy during treatment with high spatial and temporal resolution. 3D fluoroscopic images estimated using motion models built using 4DCT images, taken days or weeks prior to treatment, do not reliably represent patient anatomy during treatment. In this study we developed and performed initial evaluation of techniques to develop patient-specific motion models from 4D cone-beam CT (4DCBCT) images, taken immediately before treatment, and used these models to estimate 3D fluoroscopic images based on 2D kV projections captured during treatment. We evaluate the accuracy of 3D fluoroscopic images by comparison to ground truth digital and physical phantom images. The performance of 4DCBCT-based and 4DCT-based motion models are compared in simulated clinical situations representing tumor baseline shift or initial patient positioning errors. The results of this study demonstrate the ability for 4DCBCT imaging to generate motion models that can account for changes that cannot be accounted for with 4DCT-based motion models. When simulating tumor baseline shift and patient positioning errors of up to 5 mm, the average tumor localization error and the 95th percentile error in six datasets were 1.20 and 2.2 mm, respectively, for 4DCBCT-based motion models. 4DCT-based motion models applied to the same six datasets resulted in average tumor localization error and the 95th percentile error of 4.18 and 5.4 mm, respectively. Analysis of voxel-wise intensity differences was also conducted for all experiments. In summary, this study demonstrates the feasibility of 4DCBCT-based 3D fluoroscopic image generation in digital and physical phantoms and shows the potential advantage of 4DCBCT-based 3D fluoroscopic image estimation when there are changes in anatomy between the time of 4DCT imaging and the time of treatment delivery.

  12. Shear Wave Generation and Modeling Ground Motion From a Source Physics Experiment (SPE) Underground Explosion

    NASA Astrophysics Data System (ADS)

    Pitarka, Arben; Mellors, Robert; Rodgers, Arthur; Vorobiev, Oleg; Ezzedine, Souheil; Matzel, Eric; Ford, Sean; Walter, Bill; Antoun, Tarabay; Wagoner, Jeffery; Pasyanos, Mike; Petersson, Anders; Sjogreen, Bjorn

    2014-05-01

    We investigate the excitation and propagation of far-field (epicentral distance larger than 20 m) seismic waves by analyzing and modeling ground motion from an underground chemical explosion recorded during the Source Physics Experiment (SPE), Nevada. The far-field recorded ground motion is characterized by complex features, such as large azimuthal variations in P- and S-wave amplitudes, as well as substantial energy on the tangential component of motion. Shear wave energy is also observed on the tangential component of the near-field motion (epicentral distance smaller than 20 m) suggesting that shear waves were generated at or very near the source. These features become more pronounced as the waves propagate away from the source. We address the shear wave generation during the explosion by modeling ground motion waveforms recorded in the frequency range 0.01-20 Hz, at distances of up to 1 km. We used a physics based approach that combines hydrodynamic modeling of the source with anelastic modeling of wave propagation in order to separate the contributions from the source and near-source wave scattering on shear motion generation. We found that wave propagation scattering caused by the near-source geological environment, including surface topography, contributes to enhancement of shear waves generated from the explosion source. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-06NA25946/ NST11-NCNS-TM-EXP-PD15.

  13. Couch-based motion compensation: modelling, simulation and real-time experiments.

    PubMed

    Haas, Olivier C L; Skworcow, Piotr; Paluszczyszyn, Daniel; Sahih, Abdelhamid; Ruta, Mariusz; Mills, John A

    2012-09-21

    The paper presents a couch-based active motion compensation strategy evaluated in simulation and validated experimentally using both a research and a clinical Elekta Precise Table™. The control strategy combines a Kalman filter to predict the surrogate motion used as a reference by a linear model predictive controller with the control action calculation based on estimated position and velocity feedback provided by an observer as well as predicted couch position and velocity using a linearized state space model. An inversion technique is used to compensate for the dead-zone nonlinearity. New generic couch models are presented and applied to model the Elekta Precise Table™ dynamics and nonlinearities including dead zone. Couch deflection was measured for different manufacturers and found to be up to 25 mm. A feed-forward approach is proposed to compensate for such couch deflection. Simultaneous motion compensation for longitudinal, lateral and vertical motions was evaluated using arbitrary trajectories generated from sensors or loaded from files. Tracking errors were between 0.5 and 2 mm RMS. A dosimetric evaluation of the motion compensation was done using a sinusoidal waveform. No notable differences were observed between films obtained for a fixed- or motion-compensated target. Further dosimetric improvement could be made by combining gating, based on tracking error together with beam on/off time, and PSS compensation. PMID:22951301

  14. Nuclear quadrupole resonance lineshape analysis for different motional models: Stochastic Liouville approach

    NASA Astrophysics Data System (ADS)

    Kruk, D.; Earle, K. A.; Mielczarek, A.; Kubica, A.; Milewska, A.; Moscicki, J.

    2011-12-01

    A general theory of lineshapes in nuclear quadrupole resonance (NQR), based on the stochastic Liouville equation, is presented. The description is valid for arbitrary motional conditions (particularly beyond the valid range of perturbation approaches) and interaction strengths. It can be applied to the computation of NQR spectra for any spin quantum number and for any applied magnetic field. The treatment presented here is an adaptation of the "Swedish slow motion theory," [T. Nilsson and J. Kowalewski, J. Magn. Reson. 146, 345 (2000), 10.1006/jmre.2000.2125] originally formulated for paramagnetic systems, to NQR spectral analysis. The description is formulated for simple (Brownian) diffusion, free diffusion, and jump diffusion models. The two latter models account for molecular cooperativity effects in dense systems (such as liquids of high viscosity or molecular glasses). The sensitivity of NQR slow motion spectra to the mechanism of the motional processes modulating the nuclear quadrupole interaction is discussed.

  15. Nuclear quadrupole resonance lineshape analysis for different motional models: stochastic Liouville approach.

    PubMed

    Kruk, D; Earle, K A; Mielczarek, A; Kubica, A; Milewska, A; Moscicki, J

    2011-12-14

    A general theory of lineshapes in nuclear quadrupole resonance (NQR), based on the stochastic Liouville equation, is presented. The description is valid for arbitrary motional conditions (particularly beyond the valid range of perturbation approaches) and interaction strengths. It can be applied to the computation of NQR spectra for any spin quantum number and for any applied magnetic field. The treatment presented here is an adaptation of the "Swedish slow motion theory," [T. Nilsson and J. Kowalewski, J. Magn. Reson. 146, 345 (2000)] originally formulated for paramagnetic systems, to NQR spectral analysis. The description is formulated for simple (Brownian) diffusion, free diffusion, and jump diffusion models. The two latter models account for molecular cooperativity effects in dense systems (such as liquids of high viscosity or molecular glasses). The sensitivity of NQR slow motion spectra to the mechanism of the motional processes modulating the nuclear quadrupole interaction is discussed. PMID:22168707

  16. Applying Model Analysis to a Resource-Based Analysis of the Force and Motion Conceptual Evaluation

    ERIC Educational Resources Information Center

    Smith, Trevor I.; Wittmann, Michael C.; Carter, Tom

    2014-01-01

    Previously, we analyzed the Force and Motion Conceptual Evaluation in terms of a resources-based model that allows for clustering of questions so as to provide useful information on how students correctly or incorrectly reason about physics. In this paper, we apply model analysis to show that the associated model plots provide more information…

  17. Error Model for Reduction of Cardiac and Respiratory Motion Effects in Quantitative Liver DW-MRI

    PubMed Central

    Murphy, Paul; Wolfson, Tanya; Gamst, Anthony; Sirlin, Claude; Bydder, Mark

    2014-01-01

    Diffusion-weighted images of the liver exhibit signal dropout from cardiac and respiratory motion, particularly in the left lobe. These artifacts cause bias and variance in derived parameters that quantify intra-voxel incoherent motion (IVIM). Many models of diffusion have been proposed, but few separate attenuation from diffusion or perfusion from that of bulk motion. The error model proposed here (Beta*LogNormal) is intended to accomplish that separation by modeling stochastic attenuation from bulk motion as multiplication by a Beta-distributed random variate. Maximum likelihood estimation with this error model can be used to derive IVIM parameters separate from signal dropout, and does not require a priori specification of parameters to do so. Liver IVIM parameters were derived for six healthy subjects under this error model and compared with least-squares estimates. Least-squares estimates exhibited bias due to cardiac and respiratory gating and due to location within the liver. Bias from these factors was significantly reduced under the Beta*LogNormal model, as was within-organ parameter variance. Similar effects were appreciable in diffusivity maps in two patients with focal liver lesions. These results suggest that, relative to least-squares estimation, the Beta*LogNormal model accomplishes the intended reduction of bias and variance from bulk motion in liver diffusion imaging. PMID:23280855

  18. Key elements of regional seismic velocity models for long period ground motion simulations

    USGS Publications Warehouse

    Brocher, T.M.

    2008-01-01

    Regional 3-D seismic velocity models used for broadband strong motion simulations must include compressional-wave velocity (Vp), shear-wave velocity (Vs), intrinsic attenuation (Qp, Qs), and density. Vs and Qs are the most important of these parameters because the strongest ground motions are generated chiefly by shear- and surface-wave arrivals. Because Vp data are more common than Vs data, many researchers first develop a Vp model and convert it to a Vs model. I describe recent empirical relations between Vs, Vp, Qs, Qp, and density that allow velocity models to be rapidly and accurately calculated. ?? Springer Science+Business Media B.V. 2007.

  19. Safe motion planning for mobile agents: A model of reactive planning for multiple mobile agents

    SciTech Connect

    Fujimura, Kikuo.

    1990-01-01

    The problem of motion planning for multiple mobile agents is studied. Each planning agent independently plans its own action based on its map which contains a limited information about the environment. In an environment where more than one mobile agent interacts, the motions of the robots are uncertain and dynamic. A model for reactive agents is described and simulation results are presented to show their behavior patterns. 18 refs., 2 figs.

  20. Complementary three-dimensional quantitative structure-activity relationship modeling of binding affinity and functional potency: a study on alpha4beta2 nicotinic ligands.

    PubMed

    Tosco, Paolo; Ahring, Philip K; Dyhring, Tino; Peters, Dan; Harpsøe, Kasper; Liljefors, Tommy; Balle, Thomas

    2009-04-23

    Complementary 3D-QSAR modeling of binding affinity and functional potency is proposed as a tool to pinpoint the molecular features of the ligands, and the corresponding amino acids in the receptor, responsible for high affinity binding vs those driving agonist behavior and receptor activation. This approach proved successful on a series of nicotinic alpha(4)beta(2) ligands, whose partial/full agonist profile could be linked to the size of the scaffold as well as to the nature of the substituents.

  1. Plate motion

    SciTech Connect

    Gordon, R.G. )

    1991-01-01

    The motion of tectonic plates on the earth is characterized in a critical review of U.S. research from the period 1987-1990. Topics addressed include the NUVEL-1 global model of current plate motions, diffuse plate boundaries and the oceanic lithosphere, the relation between plate motions and distributed deformations, accelerations and the steadiness of plate motions, the distribution of current Pacific-North America motion across western North America and its margin, plate reconstructions and their uncertainties, hotspots, and plate dynamics. A comprehensive bibliography is provided. 126 refs.

  2. Noise cancellation model validation for reduced motion artifact wearable PPG sensors using MEMS accelerometers.

    PubMed

    Wood, Levi B; Asada, H Harry

    2006-01-01

    This paper investigates the validity of utilizing Widrow's Active Noise Cancellation (ANC) in the context of motion artifact reduction for photoplethysmogram (PPG) sensors. The ANC approach has previously been applied to the PPG problem, but little consideration has been given to the validity of the ANC signal corruption assumptions and in what motion range the algorithm works. The ANC validity testing is done in the form of impact (approximate impulse) testing of the physical PPG system and comparing with the modeled response for a range of motion amplitudes. The testing reveals that the identified corruption model does not generally represent the true physical system, but locally approximates the true system. Testing shows that if a similar motion amplitude is used for model tuning as the impact test, an average peak deviation of 5.2% is obtained, but if motion amplitude that is smaller than the impact amplitude by a factor of 5, the peak deviation is 15%. Finally, after ANC filtering motion corrupted data, heart rate can be estimated with less than 1.6% error.

  3. Coronary arteries motion modeling on 2D x-ray images

    NASA Astrophysics Data System (ADS)

    Gao, Yang; Sundar, Hari

    2012-02-01

    During interventional procedures, 3D imaging modalities like CT and MRI are not commonly used due to interference with the surgery and radiation exposure concerns. Therefore, real-time information is usually limited and building models of cardiac motion are difficult. In such case, vessel motion modeling based on 2-D angiography images become indispensable. Due to issues with existing vessel segmentation algorithms and the lack of contrast in occluded vessels, manual segmentation of certain branches is usually necessary. In addition, such occluded branches are the most important vessels during coronary interventions and obtaining motion models for these can greatly help in reducing the procedure time and radiation exposure. Segmenting different cardiac phases independently does not guarantee temporal consistency and is not efficient for occluded branches required manual segmentation. In this paper, we propose a coronary motion modeling system which extracts the coronary tree for every cardiac phase, maintaining the segmentation by tracking the coronary tree during the cardiac cycle. It is able to map every frame to the specific cardiac phase, thereby inferring the shape information of the coronary arteries using the model corresponding to its phase. Our experiments show that our motion modeling system can achieve promising results with real-time performance.

  4. Defining ATR solutions using affine transformations on a union of subspaces model

    NASA Astrophysics Data System (ADS)

    Hester, Charles F.; Risko, Kelly K. D.

    2012-05-01

    The ability to recognize a target in an image is an important problem for machine vision, surveillance systems, and military weapons. There are many "solutions" to an automatic target recognition (ATR) problem proposed by practitioners. Often the definition of the problem leads to multiple solutions due to the incompleteness of the definition. Solutions are also made approximate due to resource limitations. Issues concerning "best" solution and solution performance are very open issues, since problem definitions and solutions are ill-defined. Indeed from information based physical measurement theory such as found in the Minimum Description Length (MDL) the exact solution is intractable1. Generating some clarity in defining problems on restricted sets seems an appropriate approach for improving this vagueness in ATR definitions and solutions. Given that a one to one relationship between a physical system and the MDL exists, then this uniqueness allows that a solution can be defined by its description and a norm assigned to that description. Moreover, the solution can be characterized by a set of metrics that are based on the algorithmic information of the physical measurements. The MDL, however, is not a constructive theory, but solutions can be defined by concise problem descriptions. This limits the scope of the problem and we will take this approach here. The paper will start with a definition of an ATR problem followed by our proposal of a descriptive solution using a union of subspaces model of images as described below based on Lu and Do2. This solution uses the concept of informative representations3 implicitly which we review briefly. Then we will present some metrics to be used to characterize the solution(s) which we will demonstrate by a simple example. In the discussions following the example we will suggest how this fits in the context of present and future work.

  5. Model of line preserving field line motions using Euler potentials

    SciTech Connect

    Figura, Przemysław; Macek, Wiesław M.

    2013-06-15

    We consider behavior of finite magnetic field lines during reconnection processes. We portray field line motions using Euler potentials representation. Here, we propose a new insight into plasma flow fields related with magnetic reconnection. In this approach reconnection is treated as a breakage of magnetic topology, which results in deviation from the line preserving flow regime. We derive constraints and the general equations for these flows. In our approach the flux preserving flows are treated as a special case of line preserving regime. We also derive a constraint on a non-ideal term in Ohm’s Law within diffusion regions, which relates plasma flow with resistivity, and which must hold for non-reconnective diffusion. We also propose a new method of detecting magnetic reconnection. -- Highlights: •We formulate a line preserving magnetic field flow equation using Euler potentials. •We find constraints on a non-reconnective general resistivity term in Ohm’s Law. •We propose a new method of detecting magnetic reconnection.

  6. Sensitivity of tumor motion simulation accuracy to lung biomechanical modeling approaches and parameters.

    PubMed

    Tehrani, Joubin Nasehi; Yang, Yin; Werner, Rene; Lu, Wei; Low, Daniel; Guo, Xiaohu; Wang, Jing

    2015-11-21

    Finite element analysis (FEA)-based biomechanical modeling can be used to predict lung respiratory motion. In this technique, elastic models and biomechanical parameters are two important factors that determine modeling accuracy. We systematically evaluated the effects of lung and lung tumor biomechanical modeling approaches and related parameters to improve the accuracy of motion simulation of lung tumor center of mass (TCM) displacements. Experiments were conducted with four-dimensional computed tomography (4D-CT). A Quasi-Newton FEA was performed to simulate lung and related tumor displacements between end-expiration (phase 50%) and other respiration phases (0%, 10%, 20%, 30%, and 40%). Both linear isotropic and non-linear hyperelastic materials, including the neo-Hookean compressible and uncoupled Mooney-Rivlin models, were used to create a finite element model (FEM) of lung and tumors. Lung surface displacement vector fields (SDVFs) were obtained by registering the 50% phase CT to other respiration phases, using the non-rigid demons registration algorithm. The obtained SDVFs were used as lung surface displacement boundary conditions in FEM. The sensitivity of TCM displacement to lung and tumor biomechanical parameters was assessed in eight patients for all three models. Patient-specific optimal parameters were estimated by minimizing the TCM motion simulation errors between phase 50% and phase 0%. The uncoupled Mooney-Rivlin material model showed the highest TCM motion simulation accuracy. The average TCM motion simulation absolute errors for the Mooney-Rivlin material model along left-right, anterior-posterior, and superior-inferior directions were 0.80 mm, 0.86 mm, and 1.51 mm, respectively. The proposed strategy provides a reliable method to estimate patient-specific biomechanical parameters in FEM for lung tumor motion simulation. PMID:26531324

  7. Sensitivity of tumor motion simulation accuracy to lung biomechanical modeling approaches and parameters

    NASA Astrophysics Data System (ADS)

    Nasehi Tehrani, Joubin; Yang, Yin; Werner, Rene; Lu, Wei; Low, Daniel; Guo, Xiaohu; Wang, Jing

    2015-11-01

    Finite element analysis (FEA)-based biomechanical modeling can be used to predict lung respiratory motion. In this technique, elastic models and biomechanical parameters are two important factors that determine modeling accuracy. We systematically evaluated the effects of lung and lung tumor biomechanical modeling approaches and related parameters to improve the accuracy of motion simulation of lung tumor center of mass (TCM) displacements. Experiments were conducted with four-dimensional computed tomography (4D-CT). A Quasi-Newton FEA was performed to simulate lung and related tumor displacements between end-expiration (phase 50%) and other respiration phases (0%, 10%, 20%, 30%, and 40%). Both linear isotropic and non-linear hyperelastic materials, including the neo-Hookean compressible and uncoupled Mooney-Rivlin models, were used to create a finite element model (FEM) of lung and tumors. Lung surface displacement vector fields (SDVFs) were obtained by registering the 50% phase CT to other respiration phases, using the non-rigid demons registration algorithm. The obtained SDVFs were used as lung surface displacement boundary conditions in FEM. The sensitivity of TCM displacement to lung and tumor biomechanical parameters was assessed in eight patients for all three models. Patient-specific optimal parameters were estimated by minimizing the TCM motion simulation errors between phase 50% and phase 0%. The uncoupled Mooney-Rivlin material model showed the highest TCM motion simulation accuracy. The average TCM motion simulation absolute errors for the Mooney-Rivlin material model along left-right, anterior-posterior, and superior-inferior directions were 0.80 mm, 0.86 mm, and 1.51 mm, respectively. The proposed strategy provides a reliable method to estimate patient-specific biomechanical parameters in FEM for lung tumor motion simulation.

  8. Toward a computational theory for motion understanding: The expert animators model

    NASA Technical Reports Server (NTRS)

    Mohamed, Ahmed S.; Armstrong, William W.

    1988-01-01

    Artificial intelligence researchers claim to understand some aspect of human intelligence when their model is able to emulate it. In the context of computer graphics, the ability to go from motion representation to convincing animation should accordingly be treated not simply as a trick for computer graphics programmers but as important epistemological and methodological goal. In this paper we investigate a unifying model for animating a group of articulated bodies such as humans and robots in a three-dimensional environment. The proposed model is considered in the framework of knowledge representation and processing, with special reference to motion knowledge. The model is meant to help setting the basis for a computational theory for motion understanding applied to articulated bodies.

  9. Simulation model for combined motion of myosin cross-bridges agrees with experimental data.

    PubMed

    Marandos, Peter; Midde, Krishna

    2014-06-01

    The motivation for this work was to derive a theoretical model for the combined motion of a sample of muscle tissue with a small number (approximately 12) of myosin molecules. This was then compared to data collected at the University of North Texas Health Science center. A theoretical model of the motion of the myosin cross-bridges has been derived. The solution is a combination of solutions from the classical harmonic oscillator, Brownian motion, and Maxwell-Boltzmann statistics. The model illustrates the myosin behavior as a function of the number of myosin molecules, the temperature of the sample, and the spring constant. The results show that there is good agreement between the theoretical model and experimental data.

  10. Local harmonic motion monitoring of focused ultrasound surgery--a simulation model.

    PubMed

    Heikkilä, Janne; Curiel, Laura; Hynynen, Kullervo

    2010-01-01

    In this paper, a computational model for localized harmonic motion (LHM) imaging-based monitoring of high-intensity focused ultrasound surgery (FUS) is presented. The LHM technique is based on a focused, time-varying ultrasound radiation force excitation, which induces local oscillatory motions at the focal region. These vibrations are tracked, using pulse-echo imaging, and then, used to estimate the mechanical properties of the sonication region. LHM is feasible for FUS monitoring because changes in the material properties during the coagulation process affect the measured displacements. The presented model includes separate models to simulate acoustic sonication fields, sonication-induced temperature elevation and mechanical motion, and pulse-echo imaging of the induced motions. These 3-D simulation models are based on Rayleigh-Sommerfield integral, finite element, and spatial impulse response methods. Simulated-tissue temperature elevation and mechanical motion were compared with previously published in vivo measurements. Finally, the simulation model was used to simulate coagulation and LHM monitoring, as would occur with multiple, neighbouring sonication locations covering a large tumor.

  11. Elastic network models capture the motions apparent within ensembles of RNA structures.

    PubMed

    Zimmermann, Michael T; Jernigan, Robert L

    2014-06-01

    The role of structure and dynamics in mechanisms for RNA becomes increasingly important. Computational approaches using simple dynamics models have been successful at predicting the motions of proteins and are often applied to ribonucleo-protein complexes but have not been thoroughly tested for well-packed nucleic acid structures. In order to characterize a true set of motions, we investigate the apparent motions from 16 ensembles of experimentally determined RNA structures. These indicate a relatively limited set of motions that are captured by a small set of principal components (PCs). These limited motions closely resemble the motions computed from low frequency normal modes from elastic network models (ENMs), either at atomic or coarse-grained resolution. Various ENM model types, parameters, and structure representations are tested here against the experimental RNA structural ensembles, exposing differences between models for proteins and for folded RNAs. Differences in performance are seen, depending on the structure alignment algorithm used to generate PCs, modulating the apparent utility of ENMs but not significantly impacting their ability to generate functional motions. The loss of dynamical information upon coarse-graining is somewhat larger for RNAs than for globular proteins, indicating, perhaps, the lower cooperativity of the less densely packed RNA. However, the RNA structures show less sensitivity to the elastic network model parameters than do proteins. These findings further demonstrate the utility of ENMs and the appropriateness of their application to well-packed RNA-only structures, justifying their use for studying the dynamics of ribonucleo-proteins, such as the ribosome and regulatory RNAs.

  12. Onset of collective motion in locusts is captured by a minimal model.

    PubMed

    Dyson, Louise; Yates, Christian A; Buhl, Jerome; McKane, Alan J

    2015-01-01

    We present a minimal model to describe the onset of collective motion seen when a population of locusts are placed in an annular arena. At low densities motion is disordered, while at high densities locusts march in a common direction, which may reverse during the experiment. The data are well captured by an individual-based model, in which demographic noise leads to the observed density-dependent effects. By fitting the model parameters to equation-free coefficients, we give a quantitative comparison, showing time series, stationary distributions, and the mean switching times between states. PMID:26651724

  13. Fission-Fragment Charge Yields in a Brownian Shape-Motion Model

    NASA Astrophysics Data System (ADS)

    Möller, P.; Randrup, J.

    2014-09-01

    We use a recent model for fission-fragment yield distributions based on Brownian shape motion on 5D potential-energy surfaces to calculate fission-fragment charge yields for the complete U and Th isotope chains observed in the seminal GSI experiment by K.H. Schmidt et al. Previously it was shown that this model describes the transition between symmetric and asymmetric fission in the light Th region; however in these studies the damping of shell corrections with energy was not taken into account. Here we use a generalized Brownian shape-motion model that includes damping of shell corrections with energy.

  14. Viscoelastic model based force control for soft tissue interaction and its application in physiological motion compensation.

    PubMed

    Moreira, Pedro; Zemiti, Nabil; Liu, Chao; Poignet, Philippe

    2014-09-01

    Controlling the interaction between robots and living soft tissues has become an important issue as the number of robotic systems inside the operating room increases. Many researches have been done on force control to help surgeons during medical procedures, such as physiological motion compensation and tele-operation systems with haptic feedback. In order to increase the performance of such controllers, this work presents a novel force control scheme using Active Observer (AOB) based on a viscoelastic interaction model. The control scheme has shown to be stable through theoretical analysis and its performance was evaluated by in vitro experiments. In order to evaluate how the force control scheme behaves under the presence of physiological motion, experiments considering breathing and beating heart disturbances are presented. The proposed control scheme presented a stable behavior in both static and moving environment. The viscoelastic AOB presented a compensation ratio of 87% for the breathing motion and 79% for the beating heart motion.

  15. Flap motion of helicopter rotors with novel, dynamic stall model

    NASA Astrophysics Data System (ADS)

    Han, Wei; Liu, Jie; Liu, Chun; Chen, Lei; Su, Xichao; Zhao, Peng

    2016-07-01

    In this paper, a nonlinear flapping equation for large inflow angles and flap angles is established by analyzing the aerodynamics of helicopter blade elements. In order to obtain a generalized flap equation, the Snel stall model was first applied to determine the lift coefficient of the helicopter rotor. A simulation experiment for specific airfoils was then conducted to verify the effectiveness of the Snel stall model as it applies to helicopters. Results show that the model requires no extraneous parameters compared to the traditional stall model and is highly accurate and practically applicable. Based on the model, the relationship between the flapping angle and the angle of attack was analyzed, as well as the advance ratio under the dynamic stall state.

  16. ROTATING MOTIONS AND MODELING OF THE ERUPTING SOLAR POLAR-CROWN PROMINENCE ON 2010 DECEMBER 6

    SciTech Connect

    Su, Yingna; Van Ballegooijen, Adriaan

    2013-02-10

    A large polar-crown prominence composed of different segments spanning nearly the entire solar disk erupted on 2010 December 6. Prior to the eruption, the filament in the active region part split into two layers: a lower layer and an elevated layer. The eruption occurs in several episodes. Around 14:12 UT, the lower layer of the active region filament breaks apart: One part ejects toward the west, while the other part ejects toward the east, which leads to the explosive eruption of the eastern quiescent filament. During the early rise phase, part of the quiescent filament sheet displays strong rolling motion (observed by STEREO-B) in the clockwise direction (viewed from east to west) around the filament axis. This rolling motion appears to start from the border of the active region, then propagates toward the east. The Atmospheric Imaging Assembly (AIA) observes another type of rotating motion: In some other parts of the erupting quiescent prominence, the vertical threads turn horizontal, then turn upside down. The elevated active region filament does not erupt until 18:00 UT, when the erupting quiescent filament has already reached a very large height. We develop two simplified three-dimensional models that qualitatively reproduce the observed rolling and rotating motions. The prominence in the models is assumed to consist of a collection of discrete blobs that are tied to particular field lines of a helical flux rope. The observed rolling motion is reproduced by continuous twist injection into the flux rope in Model 1 from the active region side. Asymmetric reconnection induced by the asymmetric distribution of the magnetic fields on the two sides of the filament may cause the observed rolling motion. The rotating motion of the prominence threads observed by AIA is consistent with the removal of the field line dips in Model 2 from the top down during the eruption.

  17. Moving object detection using dynamic motion modelling from UAV aerial images.

    PubMed

    Saif, A F M Saifuddin; Prabuwono, Anton Satria; Mahayuddin, Zainal Rasyid

    2014-01-01

    Motion analysis based moving object detection from UAV aerial image is still an unsolved issue due to inconsideration of proper motion estimation. Existing moving object detection approaches from UAV aerial images did not deal with motion based pixel intensity measurement to detect moving object robustly. Besides current research on moving object detection from UAV aerial images mostly depends on either frame difference or segmentation approach separately. There are two main purposes for this research: firstly to develop a new motion model called DMM (dynamic motion model) and secondly to apply the proposed segmentation approach SUED (segmentation using edge based dilation) using frame difference embedded together with DMM model. The proposed DMM model provides effective search windows based on the highest pixel intensity to segment only specific area for moving object rather than searching the whole area of the frame using SUED. At each stage of the proposed scheme, experimental fusion of the DMM and SUED produces extracted moving objects faithfully. Experimental result reveals that the proposed DMM and SUED have successfully demonstrated the validity of the proposed methodology.

  18. Validation of attenuation models for ground motion applications in central and eastern North America

    SciTech Connect

    Pasyanos, Michael E.

    2015-11-01

    Recently developed attenuation models are incorporated into standard one-dimensional (1-D) ground motion prediction equations (GMPEs), effectively making them two-dimensional (2-D) and eliminating the need to create different GMPEs for an increasing number of sub-regions. The model is tested against a data set of over 10,000 recordings from 81 earthquakes in North America. The use of attenuation models in GMPEs improves our ability to fit observed ground motions and should be incorporated into future national hazard maps. The improvement is most significant at higher frequencies and longer distances which have a greater number of wave cycles. This has implications for the rare high-magnitude earthquakes, which produce potentially damaging ground motions over wide areas, and drive the seismic hazards. Furthermore, the attenuation models can be created using weak ground motions, they could be developed for regions of low seismicity where empirical recordings of ground motions are uncommon and do not span the full range of magnitudes and distances.

  19. Validation of attenuation models for ground motion applications in central and eastern North America

    DOE PAGES

    Pasyanos, Michael E.

    2015-11-01

    Recently developed attenuation models are incorporated into standard one-dimensional (1-D) ground motion prediction equations (GMPEs), effectively making them two-dimensional (2-D) and eliminating the need to create different GMPEs for an increasing number of sub-regions. The model is tested against a data set of over 10,000 recordings from 81 earthquakes in North America. The use of attenuation models in GMPEs improves our ability to fit observed ground motions and should be incorporated into future national hazard maps. The improvement is most significant at higher frequencies and longer distances which have a greater number of wave cycles. This has implications for themore » rare high-magnitude earthquakes, which produce potentially damaging ground motions over wide areas, and drive the seismic hazards. Furthermore, the attenuation models can be created using weak ground motions, they could be developed for regions of low seismicity where empirical recordings of ground motions are uncommon and do not span the full range of magnitudes and distances.« less

  20. Moving Object Detection Using Dynamic Motion Modelling from UAV Aerial Images

    PubMed Central

    Saif, A. F. M. Saifuddin; Prabuwono, Anton Satria; Mahayuddin, Zainal Rasyid

    2014-01-01

    Motion analysis based moving object detection from UAV aerial image is still an unsolved issue due to inconsideration of proper motion estimation. Existing moving object detection approaches from UAV aerial images did not deal with motion based pixel intensity measurement to detect moving object robustly. Besides current research on moving object detection from UAV aerial images mostly depends on either frame difference or segmentation approach separately. There are two main purposes for this research: firstly to develop a new motion model called DMM (dynamic motion model) and secondly to apply the proposed segmentation approach SUED (segmentation using edge based dilation) using frame difference embedded together with DMM model. The proposed DMM model provides effective search windows based on the highest pixel intensity to segment only specific area for moving object rather than searching the whole area of the frame using SUED. At each stage of the proposed scheme, experimental fusion of the DMM and SUED produces extracted moving objects faithfully. Experimental result reveals that the proposed DMM and SUED have successfully demonstrated the validity of the proposed methodology. PMID:24892103

  1. Mathematical analysis and modeling of motion direction selectivity in the retina.

    PubMed

    Escobar, María-José; Pezo, Danilo; Orio, Patricio

    2013-11-01

    Motion detection is one of the most important and primitive computations performed by our visual system. Specifically in the retina, ganglion cells producing motion direction-selective responses have been addressed by different disciplines, such as mathematics, neurophysiology and computational modeling, since the beginnings of vision science. Although a number of studies have analyzed theoretical and mathematical considerations for such responses, a clear picture of the underlying cellular mechanisms is only recently emerging. In general, motion direction selectivity is based on a non-linear asymmetric computation inside a receptive field differentiating cell responses between preferred and null direction stimuli. To what extent can biological findings match these considerations? In this review, we outline theoretical and mathematical studies of motion direction selectivity, aiming to map the properties of the models onto the neural circuitry and synaptic connectivity found in the retina. Additionally, we review several compartmental models that have tried to fill this gap. Finally, we discuss the remaining challenges that computational models will have to tackle in order to fully understand the retinal motion direction-selective circuitry.

  2. Moving object detection using dynamic motion modelling from UAV aerial images.

    PubMed

    Saif, A F M Saifuddin; Prabuwono, Anton Satria; Mahayuddin, Zainal Rasyid

    2014-01-01

    Motion analysis based moving object detection from UAV aerial image is still an unsolved issue due to inconsideration of proper motion estimation. Existing moving object detection approaches from UAV aerial images did not deal with motion based pixel intensity measurement to detect moving object robustly. Besides current research on moving object detection from UAV aerial images mostly depends on either frame difference or segmentation approach separately. There are two main purposes for this research: firstly to develop a new motion model called DMM (dynamic motion model) and secondly to apply the proposed segmentation approach SUED (segmentation using edge based dilation) using frame difference embedded together with DMM model. The proposed DMM model provides effective search windows based on the highest pixel intensity to segment only specific area for moving object rather than searching the whole area of the frame using SUED. At each stage of the proposed scheme, experimental fusion of the DMM and SUED produces extracted moving objects faithfully. Experimental result reveals that the proposed DMM and SUED have successfully demonstrated the validity of the proposed methodology. PMID:24892103

  3. A patient-specific respiratory model of anatomical motion for radiation treatment planning

    SciTech Connect

    Zhang Qinghui; Pevsner, Alex; Hertanto, Agung; Hu Yuchi; Rosenzweig, Kenneth E.; Ling, C. Clifton; Mageras, Gig S

    2007-12-15

    The modeling of respiratory motion is important for a more accurate understanding and accounting of its effect on dose to cancers in the thorax and abdomen by radiotherapy. We have developed a model of respiration-induced organ motion in the thorax without the commonly adopted assumption of repeatable breath cycles. The model describes the motion of a volume of interest within the patient based on a reference three-dimensional (3D) image (at end expiration) and the diaphragm positions at different time points. The input data are respiration-correlated CT (RCCT) images of patients treated for non-small- cell lung cancer, consisting of 3D images, including the diaphragm positions, at ten phases of the respiratory cycle. A deformable image registration algorithm calculates the deformation field that maps each 3D image to the reference 3D image. A principal component analysis is performed to parameterize the 3D deformation field in terms of the diaphragm motion. We show that the first two principal components are adequate to accurately and completely describe the organ motion in the data of four patients. Artifacts in the RCCT images that commonly occur at the mid-respiration states are reduced in the model-generated images. Further validation of the model is demonstrated in the successful application of the parameterized 3D deformation field to RCCT data of the same patient but acquired several days later. We have developed a method for predicting respiration-induced organ motion in patients that has potential for improving the accuracy of dose calculation in radiotherapy. Possible limitations of the model are cases where the correlation between lung tumor and diaphragm position is less reliable such as superiorly situated tumors and interfraction changes in tumor-diaphragm correlation. The limited number of clinical cases examined suggests, but does not confirm, the model's applicability to a wide range of patients.

  4. Multi-modal gesture recognition using integrated model of motion, audio and video

    NASA Astrophysics Data System (ADS)

    Goutsu, Yusuke; Kobayashi, Takaki; Obara, Junya; Kusajima, Ikuo; Takeichi, Kazunari; Takano, Wataru; Nakamura, Yoshihiko

    2015-07-01

    Gesture recognition is used in many practical applications such as human-robot interaction, medical rehabilitation and sign language. With increasing motion sensor development, multiple data sources have become available, which leads to the rise of multi-modal gesture recognition. Since our previous approach to gesture recognition depends on a unimodal system, it is difficult to classify similar motion patterns. In order to solve this problem, a novel approach which integrates motion, audio and video models is proposed by using dataset captured by Kinect. The proposed system can recognize observed gestures by using three models. Recognition results of three models are integrated by using the proposed framework and the output becomes the final result. The motion and audio models are learned by using Hidden Markov Model. Random Forest which is the video classifier is used to learn the video model. In the experiments to test the performances of the proposed system, the motion and audio models most suitable for gesture recognition are chosen by varying feature vectors and learning methods. Additionally, the unimodal and multi-modal models are compared with respect to recognition accuracy. All the experiments are conducted on dataset provided by the competition organizer of MMGRC, which is a workshop for Multi-Modal Gesture Recognition Challenge. The comparison results show that the multi-modal model composed of three models scores the highest recognition rate. This improvement of recognition accuracy means that the complementary relationship among three models improves the accuracy of gesture recognition. The proposed system provides the application technology to understand human actions of daily life more precisely.

  5. Hidden Markov Modeling for Weigh-In-Motion Estimation

    SciTech Connect

    Abercrombie, Robert K; Ferragut, Erik M; Boone, Shane

    2012-01-01

    This paper describes a hidden Markov model to assist in the weight measurement error that arises from complex vehicle oscillations of a system of discrete masses. Present reduction of oscillations is by a smooth, flat, level approach and constant, slow speed in a straight line. The model uses this inherent variability to assist in determining the true total weight and individual axle weights of a vehicle. The weight distribution dynamics of a generic moving vehicle were simulated. The model estimation converged to within 1% of the true mass for simulated data. The computational demands of this method, while much greater than simple averages, took only seconds to run on a desktop computer.

  6. Pathological tremor and voluntary motion modeling and online estimation for active compensation.

    PubMed

    Bo, Antônio Padilha Lanari; Poignet, Philippe; Geny, Christian

    2011-04-01

    This paper presents an algorithm to perform online tremor characterization from motion sensors measurements, while filtering the voluntary motion performed by the patient. In order to estimate simultaneously both nonstationary signals in a stochastic filtering framework, pathological tremor was represented by a time-varying harmonic model and voluntary motion was modeled as an auto-regressive moving-average (ARMA) model. Since it is a nonlinear problem, an extended Kalman filter (EKF) was used. The developed solution was evaluated with simulated signals and experimental data from patients with different pathologies. Also, the results were comprehensively compared with alternative techniques proposed in the literature, evidencing the better performance of the proposed method. The algorithm presented in this paper may be an important tool in the design of active tremor compensation systems.

  7. Statistical mechanics models for motion and force planning

    NASA Technical Reports Server (NTRS)

    Rodriguez, G.

    1990-01-01

    The models of statistical mechanics provide an alternative to the methods of classical mechanics more traditionally used in robotics. They have a potential to: improve analysis of object collisions; handle kinematic and dynamic contact interactions within the same frmework; and reduce the need for perfect deterministic world model information. The statistical mechanics models characterize the state of the system as a probability density function (p.d.f.) whose time evolution is governed by a partial differential equation subject to boundary and initial conditions. The boundary conditions when rigid objects collide reflect the conservation of momentum. The models are being developed to embedd in remote semi-autonomous systems with a need to reason and interact with a multiobject environment.

  8. Modeling of stochastic motion of bacteria propelled spherical microbeads

    NASA Astrophysics Data System (ADS)

    Arabagi, Veaceslav; Behkam, Bahareh; Cheung, Eugene; Sitti, Metin

    2011-06-01

    This work proposes a stochastic dynamic model of bacteria propelled spherical microbeads as potential swimming microrobotic bodies. Small numbers of S. marcescens bacteria are attached with their bodies to surfaces of spherical microbeads. Average-behavior stochastic models that are normally adopted when studying such biological systems are generally not effective for cases in which a small number of agents are interacting in a complex manner, hence a stochastic model is proposed to simulate the behavior of 8-41 bacteria assembled on a curved surface. Flexibility of the flagellar hook is studied via comparing simulated and experimental results for scenarios of increasing bead size and the number of attached bacteria on a bead. Although requiring more experimental data to yield an exact, certain flagellar hook stiffness value, the examined results favor a stiffer flagella. The stochastic model is intended to be used as a design and simulation tool for future potential targeted drug delivery and disease diagnosis applications of bacteria propelled microrobots.

  9. Tensegrity applied to modelling the motion of viruses

    NASA Astrophysics Data System (ADS)

    Simona-Mariana, Cretu; Gabriela-Catalina, Brinzan

    2011-02-01

    A considerable number of viruses' structures have been discovered and more are expected to be identified. Different viruses' symmetries can be observed at the nanoscale level. The mechanical models of some viruses realised by scientists are described in this paper, none of which has taken into consideration the internal deformation of subsystems. The authors' models for some viruses' elements are introduced, with rigid and flexible links, which reproduce the movements of viruses including internal deformations of the subunits.

  10. Flocking and Turning: a New Model for Self-organized Collective Motion

    NASA Astrophysics Data System (ADS)

    Cavagna, Andrea; Del Castello, Lorenzo; Giardina, Irene; Grigera, Tomas; Jelic, Asja; Melillo, Stefania; Mora, Thierry; Parisi, Leonardo; Silvestri, Edmondo; Viale, Massimiliano; Walczak, Aleksandra M.

    2015-02-01

    Birds in a flock move in a correlated way, resulting in large polarization of velocities. A good understanding of this collective behavior exists for linear motion of the flock. Yet observing actual birds, the center of mass of the group often turns giving rise to more complicated dynamics, still keeping strong polarization of the flock. Here we propose novel dynamical equations for the collective motion of polarized animal groups that account for correlated turning including solely social forces. We exploit rotational symmetries and conservation laws of the problem to formulate a theory in terms of generalized coordinates of motion for the velocity directions akin to a Hamiltonian formulation for rotations. We explicitly derive the correspondence between this formulation and the dynamics of the individual velocities, thus obtaining a new model of collective motion. In the appropriate overdamped limit we recover the well-known Vicsek model, which dissipates rotational information and does not allow for polarized turns. Although the new model has its most vivid success in describing turning groups, its dynamics is intrinsically different from previous ones in a wide dynamical regime, while reducing to the hydrodynamic description of Toner and Tu at very large length-scales. The derived framework is therefore general and it may describe the collective motion of any strongly polarized active matter system.

  11. Robot body self-modeling algorithm: a collision-free motion planning approach for humanoids.

    PubMed

    Leylavi Shoushtari, Ali

    2016-01-01

    Motion planning for humanoid robots is one of the critical issues due to the high redundancy and theoretical and technical considerations e.g. stability, motion feasibility and collision avoidance. The strategies which central nervous system employs to plan, signal and control the human movements are a source of inspiration to deal with the mentioned problems. Self-modeling is a concept inspired by body self-awareness in human. In this research it is integrated in an optimal motion planning framework in order to detect and avoid collision of the manipulated object with the humanoid body during performing a dynamic task. Twelve parametric functions are designed as self-models to determine the boundary of humanoid's body. Later, the boundaries which mathematically defined by the self-models are employed to calculate the safe region for box to avoid the collision with the robot. Four different objective functions are employed in motion simulation to validate the robustness of algorithm under different dynamics. The results also confirm the collision avoidance, reality and stability of the predicted motion.

  12. ARMA models for earthquake ground motions. Seismic safety margins research program

    SciTech Connect

    Chang, M. K.; Kwiatkowski, J. W.; Nau, R. F.; Oliver, R. M.; Pister, K. S.

    1981-02-01

    Four major California earthquake records were analyzed by use of a class of discrete linear time-domain processes commonly referred to as ARMA (Autoregressive/Moving-Average) models. It was possible to analyze these different earthquakes, identify the order of the appropriate ARMA model(s), estimate parameters, and test the residuals generated by these models. It was also possible to show the connections, similarities, and differences between the traditional continuous models (with parameter estimates based on spectral analyses) and the discrete models with parameters estimated by various maximum-likelihood techniques applied to digitized acceleration data in the time domain. The methodology proposed is suitable for simulating earthquake ground motions in the time domain, and appears to be easily adapted to serve as inputs for nonlinear discrete time models of structural motions. 60 references, 19 figures, 9 tables.

  13. Visuovestibular perception of self-motion modeled as a dynamic optimization process.

    PubMed

    Reymond, Gilles; Droulez, Jacques; Kemeny, Andras

    2002-10-01

    This article describes a computational model for the sensory perception of self-motion, considered as a compromise between sensory information and physical coherence constraints. This compromise is realized by a dynamic optimization process minimizing a set of cost functions. Measure constraints are expressed as quadratic errors between motion estimates and corresponding sensory signals, using internal models of sensor transfer functions. Coherence constraints are expressed as quadratic errors between motion estimates, and their prediction is based on internal models of the physical laws governing the corresponding physical stimuli. This general scheme leads to a straightforward representation of fundamental sensory interactions (fusion of visual and canal rotational inputs, identification of the gravity component from the otolithic input, otolithic contribution to the perception of rotations, and influence of vection on the subjective vertical). The model is tuned and assessed using a range of well-known psychophysical results, including off-vertical axis rotations and centrifuge experiments. The ability of the model to predict and help analyze new situations is illustrated by a study of the vestibular contributions to self-motion perception during automobile driving and during acceleration cueing in driving simulators. The extendable structure of the model allows for further developments and applications, by using other cost functions representing additional sensory interactions. PMID:12386745

  14. Multi-level model for 2D human motion analysis and description

    NASA Astrophysics Data System (ADS)

    Foures, Thomas; Joly, Philippe

    2003-01-01

    This paper deals with the proposition of a model for human motion analysis in a video. Its main caracteristic is to adapt itself automatically to the current resolution, the actual quality of the picture, or the level of precision required by a given application, due to its possible decomposition into several hierarchical levels. The model is region-based to address some analysis processing needs. The top level of the model is only defined with 5 ribbons, which can be cut into sub-ribbons regarding to a given (or an expected) level of details. Matching process between model and current picture consists in the comparison of extracted subject shape with a graphical rendering of the model built on the base of some computed parameters. The comparison is processed by using a chamfer matching algorithm. In our developments, we intend to realize a platform of interaction between a dancer and tools synthetizing abstract motion pictures and music in the conditions of a real-time dialogue between a human and a computer. In consequence, we use this model in a perspective of motion description instead of motion recognition: no a priori gestures are supposed to be recognized as far as no a priori application is specially targeted. The resulting description will be made following a Description Scheme compliant with the movement notation called "Labanotation".

  15. Model Experiment of Two-Dimentional Brownian Motion by Microcomputer.

    ERIC Educational Resources Information Center

    Mishima, Nobuhiko; And Others

    1980-01-01

    Describes the use of a microcomputer in studying a model experiment (Brownian particles colliding with thermal particles). A flow chart and program for the experiment are provided. Suggests that this experiment may foster a deepened understanding through mutual dialog between the student and computer. (SK)

  16. Mineralogy of new Antarctic achondrites with affinity to Lodran and a model of their evolution in an asteroid

    NASA Technical Reports Server (NTRS)

    Takeda, Hiroshi; Mori, Hiroshi; Hiroi, Takahiro; Saito, Jun

    1994-01-01

    We studied five new Antartic achondrites, MacAlpine Hills (MAC) 88177, Yamato (Y)74357, Y75274, Y791491 and Elephant Moraine (EET)84302 by mineralogical techniques to gain a better understanding of the mineral assemblages of a group of meteorites with an affinity to Lodran (stony-iron meteorite) and their formation processes. This group is being called lodranites. These meteorites contain major coarse-grained orthopyroxene (Opx) and olivine as in Lodran and variable amounts of FeNi metal and troilite etc. MAC88177 has more augite and less FeNi than Lodran; Y74357 has more olivine and contains minor augite; Y791491 contains in addition plagioclase. EET84302 has an Acapulco-like chondritic mineral assembladge and is enriched in FeNi metal and plagioclase, but one part is enriched in Opx and chromite. The EET84302 and MAC88177 Opx crystals have dusty cores as in Acapulco. EET84302 and Y75274 are more Mg-rich than other members of the lodranite group, and Y74357 is intermediate. Since these meteorites all have coarse-grained textures, similar major mineral assemblages, variable amounts of augite, plagioclase, FeNi metal, chromite and olivine, we suggest that they are related and are linked to a parent body with modified chondritic compositions. The variability of the abundances of these minerals are in line with a proposed model of the surface mineral assemblages of the S asteroids. The mineral assemblages can best be explained by differing degrees of loss or movements of lower temperature partial melts and recrystallization, and reduction. A portion of EET84302 rich in metal and plagioclase may represent a type of component removed from the lodranite group meteorites. Y791058 and Caddo County, which were studied for comparison, are plagioclase-rich silicate inclusions in IAB iron meteorites and may have been derived by similar process but in a different body.

  17. Image-driven, model-based 3D abdominal motion estimation for MR-guided radiotherapy

    NASA Astrophysics Data System (ADS)

    Stemkens, Bjorn; Tijssen, Rob H. N.; de Senneville, Baudouin Denis; Lagendijk, Jan J. W.; van den Berg, Cornelis A. T.

    2016-07-01

    Respiratory motion introduces substantial uncertainties in abdominal radiotherapy for which traditionally large margins are used. The MR-Linac will open up the opportunity to acquire high resolution MR images just prior to radiation and during treatment. However, volumetric MRI time series are not able to characterize 3D tumor and organ-at-risk motion with sufficient temporal resolution. In this study we propose a method to estimate 3D deformation vector fields (DVFs) with high spatial and temporal resolution based on fast 2D imaging and a subject-specific motion model based on respiratory correlated MRI. In a pre-beam phase, a retrospectively sorted 4D-MRI is acquired, from which the motion is parameterized using a principal component analysis. This motion model is used in combination with fast 2D cine-MR images, which are acquired during radiation, to generate full field-of-view 3D DVFs with a temporal resolution of 476 ms. The geometrical accuracies of the input data (4D-MRI and 2D multi-slice acquisitions) and the fitting procedure were determined using an MR-compatible motion phantom and found to be 1.0-1.5 mm on average. The framework was tested on seven healthy volunteers for both the pancreas and the kidney. The calculated motion was independently validated using one of the 2D slices, with an average error of 1.45 mm. The calculated 3D DVFs can be used retrospectively for treatment simulations, plan evaluations, or to determine the accumulated dose for both the tumor and organs-at-risk on a subject-specific basis in MR-guided radiotherapy.

  18. Image-driven, model-based 3D abdominal motion estimation for MR-guided radiotherapy

    NASA Astrophysics Data System (ADS)

    Stemkens, Bjorn; Tijssen, Rob H. N.; de Senneville, Baudouin Denis; Lagendijk, Jan J. W.; van den Berg, Cornelis A. T.

    2016-07-01

    Respiratory motion introduces substantial uncertainties in abdominal radiotherapy for which traditionally large margins are used. The MR-Linac will open up the opportunity to acquire high resolution MR images just prior to radiation and during treatment. However, volumetric MRI time series are not able to characterize 3D tumor and organ-at-risk motion with sufficient temporal resolution. In this study we propose a method to estimate 3D deformation vector fields (DVFs) with high spatial and temporal resolution based on fast 2D imaging and a subject-specific motion model based on respiratory correlated MRI. In a pre-beam phase, a retrospectively sorted 4D-MRI is acquired, from which the motion is parameterized using a principal component analysis. This motion model is used in combination with fast 2D cine-MR images, which are acquired during radiation, to generate full field-of-view 3D DVFs with a temporal resolution of 476 ms. The geometrical accuracies of the input data (4D-MRI and 2D multi-slice acquisitions) and the fitting procedure were determined using an MR-compatible motion phantom and found to be 1.0–1.5 mm on average. The framework was tested on seven healthy volunteers for both the pancreas and the kidney. The calculated motion was independently validated using one of the 2D slices, with an average error of 1.45 mm. The calculated 3D DVFs can be used retrospectively for treatment simulations, plan evaluations, or to determine the accumulated dose for both the tumor and organs-at-risk on a subject-specific basis in MR-guided radiotherapy.

  19. Image-driven, model-based 3D abdominal motion estimation for MR-guided radiotherapy.

    PubMed

    Stemkens, Bjorn; Tijssen, Rob H N; de Senneville, Baudouin Denis; Lagendijk, Jan J W; van den Berg, Cornelis A T

    2016-07-21

    Respiratory motion introduces substantial uncertainties in abdominal radiotherapy for which traditionally large margins are used. The MR-Linac will open up the opportunity to acquire high resolution MR images just prior to radiation and during treatment. However, volumetric MRI time series are not able to characterize 3D tumor and organ-at-risk motion with sufficient temporal resolution. In this study we propose a method to estimate 3D deformation vector fields (DVFs) with high spatial and temporal resolution based on fast 2D imaging and a subject-specific motion model based on respiratory correlated MRI. In a pre-beam phase, a retrospectively sorted 4D-MRI is acquired, from which the motion is parameterized using a principal component analysis. This motion model is used in combination with fast 2D cine-MR images, which are acquired during radiation, to generate full field-of-view 3D DVFs with a temporal resolution of 476 ms. The geometrical accuracies of the input data (4D-MRI and 2D multi-slice acquisitions) and the fitting procedure were determined using an MR-compatible motion phantom and found to be 1.0-1.5 mm on average. The framework was tested on seven healthy volunteers for both the pancreas and the kidney. The calculated motion was independently validated using one of the 2D slices, with an average error of 1.45 mm. The calculated 3D DVFs can be used retrospectively for treatment simulations, plan evaluations, or to determine the accumulated dose for both the tumor and organs-at-risk on a subject-specific basis in MR-guided radiotherapy.

  20. Modeling Noncircular Motions in Disk Galaxies: Application to NGC 2976

    NASA Astrophysics Data System (ADS)

    Spekkens, Kristine; Sellwood, J. A.

    2007-07-01

    We present a new procedure to fit nonaxisymmetric flow patterns to two-dimensional velocity maps of spiral galaxies. We concentrate on flows caused by barlike or oval distortions to the total potential, which may arise either from a non-axially symmetric halo or a bar in the luminous disk. We apply our method to high-quality CO and Hα data for the nearby, low-mass spiral NGC 2976, previously obtained by Simon et al., and find that a barlike model fits the data at least as well as their model with large radial flows. We find supporting evidence for the existence of a bar in the baryonic disk. Our model suggests that the azimuthally averaged central attraction in the inner part of this galaxy is larger than estimated by these authors. It is likely that the disk is also more massive, which will limit the increase to the allowed dark halo density. Allowance for barlike distortions in other galaxies may either increase or decrease the estimated central attraction.

  1. Medical prevention of space motion sickness—animal model of therapeutic effect of a new medicine on motion sickness

    NASA Astrophysics Data System (ADS)

    Yang, T. D.; Pei, J. S.; Yang, S. L.; Liu, Z. Q.; Sun, R. L.

    Space motion sickness (MS) is one of the most important problems in the field of space medicine. In order to prevent space MS, a new medicine, PMPA, has been prepared by means of synthesizing in our laboratory. The purposes of this study were to set up animal models of PMPA against MS, and to observe its effects on anti-MS, and to prove its function of antagonism to choline. Eight cats, forty rabbits and two hundred and ten rats were selected as animal subjects. The parallel swing stimulus, a method causing the reversal syndromes and tests of anti-choline function were used in our experiments. The results are as follows: (1) The score of MS symptoms in cats with PMPA or scopolamine (SCOP) is significantly lower than that in cats with placebo (p<0.01), while the incidences of efficiency and prevention of PMPA (87.5%, 75%) are higher than those of SCOP (75.0%, 50%) in cats. (2) PMPA of 1.6 mg/kg or 0.8 mg/kg could antagonize the reversal syndromes and repress reversal rotation significantly in rabbits like SCOP in comparison with placebo (p<0.01). (3) PMPA could inhibit tremor evoked by oxotremorine or by nicotine-procaine in rats like SCOP, and play an important role in the antagonism to central M-choline and N-choline receptors. The animal experiments demonstrate that PMPA is an effective medicine against MS with antagonism function to choline.

  2. Position Estimation of an Epicardial Crawling Robot on the Beating Heart by Modeling of Physiological Motion

    PubMed Central

    Wood, Nathan A.; del Agua, Diego Moral; Zenati, Marco A.; Riviere, Cameron N.

    2012-01-01

    HeartLander, a small mobile robot designed to provide treatments to the surface of the beating heart, overcomes a major difficulty of minimally invasive cardiac surgery, providing a stable operating platform. This is achieved inherently in the way the robot adheres to and crawls over the surface of the heart. This mode of operation does not require physiological motion compensation to provide this stable environment; however, modeling of physiological motion is advantageous in providing more accurate position estimation as well as synchronization of motion to the physiological cycles. The work presented uses an Extended Kalman Filter framework to estimate parameters of non-stationary Fourier series models of the motion of the heart due to the respiratory and cardiac cycles as well as the position of the robot as it moves over the surface of the heart. The proposed method is demonstrated in the laboratory with HeartLander operating on a physiological motion simulator. Improved performance is demonstrated in comparison to the filtering methods previously used with HeartLander. The use of detected physiological cycle phases to synchronize locomotion of HeartLander is also described. PMID:23066511

  3. Position Estimation of an Epicardial Crawling Robot on the Beating Heart by Modeling of Physiological Motion.

    PubMed

    Wood, Nathan A; Del Agua, Diego Moral; Zenati, Marco A; Riviere, Cameron N

    2011-12-01

    HeartLander, a small mobile robot designed to provide treatments to the surface of the beating heart, overcomes a major difficulty of minimally invasive cardiac surgery, providing a stable operating platform. This is achieved inherently in the way the robot adheres to and crawls over the surface of the heart. This mode of operation does not require physiological motion compensation to provide this stable environment; however, modeling of physiological motion is advantageous in providing more accurate position estimation as well as synchronization of motion to the physiological cycles. The work presented uses an Extended Kalman Filter framework to estimate parameters of non-stationary Fourier series models of the motion of the heart due to the respiratory and cardiac cycles as well as the position of the robot as it moves over the surface of the heart. The proposed method is demonstrated in the laboratory with HeartLander operating on a physiological motion simulator. Improved performance is demonstrated in comparison to the filtering methods previously used with HeartLander. The use of detected physiological cycle phases to synchronize locomotion of HeartLander is also described.

  4. Meeting Review: Diffuse X-Ray Scattering to Model Protein Motions

    PubMed Central

    Wall, Michael E.; Adams, Paul D.; Fraser, James S.; Sautter, Nicholas K.

    2014-01-01

    Problems in biology increasingly need models of protein flexibility to understand and control protein function. At the same time, as they improve, crystallographic methods are marching closer to the limits of what can be learned from Bragg data in isolation. It is thus inevitable that mainstream protein crystallography will turn to diffuse scattering to model protein motions and improve crystallographic models. The time is ripe to make it happen. PMID:24507780

  5. Modeling Visual, Vestibular and Oculomotor Interactions in Self-Motion Estimation

    NASA Technical Reports Server (NTRS)

    Perrone, John

    1997-01-01

    A computational model of human self-motion perception has been developed in collaboration with Dr. Leland S. Stone at NASA Ames Research Center. The research included in the grant proposal sought to extend the utility of this model so that it could be used for explaining and predicting human performance in a greater variety of aerospace applications. This extension has been achieved along with physiological validation of the basic operation of the model.

  6. A Generalized Correlation-Based Model for Out-of-Plane Motion Estimation in Freehand Ultrasound.

    PubMed

    Afsham, Narges; Najafi, Mohammad; Abolmaesumi, Purang; Rohling, Robert

    2014-01-01

    A big challenge in sensorless image-based ultrasound tracking is in the out-of-plane motion estimation. The correlation value of a specific model of speckle known as fully developed speckle (FDS) can be used to estimate the out-of-plane displacement. In real tissue, this kind of pattern is rare and the deviation of speckle pattern from the ideal FDS model diminishes the accuracy of the out-of-plane motion estimation. In this paper a new method for estimation of the out-of-plane motion is proposed. Firstly a closed-form mathematical derivation is provided for the correlation of two RF echo signal patches at different positions. A linear regression model of the ultrasound beam profile is proposed to account for the spatial variability of the ultrasound beam and enhance the accuracy of out-of-plane motion estimation in real tissue. The statistical model of speckle used here is based on the Rician-Inverse Gaussian (RiIG) stochastic process of the speckle formation, which can be considered as a generalized form of the K-distribution with richer parametrization. In this work, for the first time the second-order statistics of the RIG model is used for speckle tracking. This statistical model allows for derivation of a closed-form formulation for the correlation coefficient based on the statistical parameters of every patch. Since the effect of coherency is considered in the RiIG model, it increases the reliability of the out-of-plane motion estimation. The flexibility of the proposed method enables almost any patch through the whole image to be used for the purpose of displacement estimation. The method has been evaluated both on ex vivo and in vivo tissues in various experiments including out-of-plane rotation (tilt, yaw) and free-hand imaging. The overall outcome demonstrates the potential of the proposed method for in vivo tissues.

  7. A comparative study of lectin affinity based plant n-glycoproteome profiling using tomato fruit as a model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lectin affinity chromatography (LAC) can provide a valuable front-end enrichment strategy for the study of N-glycoproteins and has been used to characterize a broad range eukaryotic N-glycoproteomes. Moreover, studies with mammalian systems have suggested that the use of multiple lectins with differ...

  8. RNase One Gene Isolation, Expression, and Affinity Purification Models Research Experimental Progression and Culminates with Guided Inquiry-Based Experiments

    ERIC Educational Resources Information Center

    Bailey, Cheryl P.

    2009-01-01

    This new biochemistry laboratory course moves through a progression of experiments that generates a platform for guided inquiry-based experiments. RNase One gene is isolated from prokaryotic genomic DNA, expressed as a tagged protein, affinity purified, and tested for activity and substrate specificity. Student pairs present detailed explanations…

  9. Mathematical model of motion of a mixture of gases and hollow microspheres with selective permeability

    NASA Astrophysics Data System (ADS)

    Vereshchagin, A. S.; Fomin, V. M.

    2015-09-01

    A mathematical model of motion of solid particles with selective permeability and a mixture of moving gases is developed with the use of averaging principles of mechanics of multiphase media. The derived system of quasi-linear partial differential equations is studied for a particular one-dimensional isothermal case.

  10. Self-noise models of five commercial strong-motion accelerometers

    USGS Publications Warehouse

    Ringler, Adam; Evans, John R.; Hutt, Charles R.

    2015-01-01

    To better characterize the noise of a number of commonly deployed accelerometers in a standardized way, we conducted noise measurements on five different models of strong‐motion accelerometers. Our study was limited to traditional accelerometers (Fig. 1) and is in no way exhaustive.

  11. From deep TLS validation to ensembles of atomic models built from elemental motions

    PubMed Central

    Urzhumtsev, Alexandre; Afonine, Pavel V.; Van Benschoten, Andrew H.; Fraser, James S.; Adams, Paul D.

    2015-01-01

    The translation–libration–screw model first introduced by Cruickshank, Schomaker and Trueblood describes the concerted motions of atomic groups. Using TLS models can improve the agreement between calculated and experimental diffraction data. Because the T, L and S matrices describe a combination of atomic vibrations and librations, TLS models can also potentially shed light on molecular mechanisms involving correlated motions. However, this use of TLS models in mechanistic studies is hampered by the difficulties in translating the results of refinement into molecular movement or a structural ensemble. To convert the matrices into a constituent molecular movement, the matrix elements must satisfy several conditions. Refining the T, L and S matrix elements as independent parameters without taking these conditions into account may result in matrices that do not represent concerted molecular movements. Here, a mathematical framework and the computational tools to analyze TLS matrices, resulting in either explicit decomposition into descriptions of the underlying motions or a report of broken conditions, are described. The description of valid underlying motions can then be output as a structural ensemble. All methods are implemented as part of the PHENIX project. PMID:26249348

  12. From deep TLS validation to ensembles of atomic models built from elemental motions.

    PubMed

    Urzhumtsev, Alexandre; Afonine, Pavel V; Van Benschoten, Andrew H; Fraser, James S; Adams, Paul D

    2015-08-01

    The translation-libration-screw model first introduced by Cruickshank, Schomaker and Trueblood describes the concerted motions of atomic groups. Using TLS models can improve the agreement between calculated and experimental diffraction data. Because the T, L and S matrices describe a combination of atomic vibrations and librations, TLS models can also potentially shed light on molecular mechanisms involving correlated motions. However, this use of TLS models in mechanistic studies is hampered by the difficulties in translating the results of refinement into molecular movement or a structural ensemble. To convert the matrices into a constituent molecular movement, the matrix elements must satisfy several conditions. Refining the T, L and S matrix elements as independent parameters without taking these conditions into account may result in matrices that do not represent concerted molecular movements. Here, a mathematical framework and the computational tools to analyze TLS matrices, resulting in either explicit decomposition into descriptions of the underlying motions or a report of broken conditions, are described. The description of valid underlying motions can then be output as a structural ensemble. All methods are implemented as part of the PHENIX project.

  13. An Interactive Computer Model for Improved Student Understanding of Random Particle Motion and Osmosis

    ERIC Educational Resources Information Center

    Kottonau, Johannes

    2011-01-01

    Effectively teaching the concepts of osmosis to college-level students is a major obstacle in biological education. Therefore, a novel computer model is presented that allows students to observe the random nature of particle motion simultaneously with the seemingly directed net flow of water across a semipermeable membrane during osmotic…

  14. From deep TLS validation to ensembles of atomic models built from elemental motions

    SciTech Connect

    Urzhumtsev, Alexandre; Afonine, Pavel V.; Van Benschoten, Andrew H.; Fraser, James S.; Adams, Paul D.

    2015-07-28

    The translation–libration–screw model first introduced by Cruickshank, Schomaker and Trueblood describes the concerted motions of atomic groups. Using TLS models can improve the agreement between calculated and experimental diffraction data. Because the T, L and S matrices describe a combination of atomic vibrations and librations, TLS models can also potentially shed light on molecular mechanisms involving correlated motions. However, this use of TLS models in mechanistic studies is hampered by the difficulties in translating the results of refinement into molecular movement or a structural ensemble. To convert the matrices into a constituent molecular movement, the matrix elements must satisfy several conditions. Refining the T, L and S matrix elements as independent parameters without taking these conditions into account may result in matrices that do not represent concerted molecular movements. Here, a mathematical framework and the computational tools to analyze TLS matrices, resulting in either explicit decomposition into descriptions of the underlying motions or a report of broken conditions, are described. The description of valid underlying motions can then be output as a structural ensemble. All methods are implemented as part of the PHENIX project.

  15. From deep TLS validation to ensembles of atomic models built from elemental motions

    DOE PAGES

    Urzhumtsev, Alexandre; Afonine, Pavel V.; Van Benschoten, Andrew H.; Fraser, James S.; Adams, Paul D.

    2015-07-28

    The translation–libration–screw model first introduced by Cruickshank, Schomaker and Trueblood describes the concerted motions of atomic groups. Using TLS models can improve the agreement between calculated and experimental diffraction data. Because the T, L and S matrices describe a combination of atomic vibrations and librations, TLS models can also potentially shed light on molecular mechanisms involving correlated motions. However, this use of TLS models in mechanistic studies is hampered by the difficulties in translating the results of refinement into molecular movement or a structural ensemble. To convert the matrices into a constituent molecular movement, the matrix elements must satisfy severalmore » conditions. Refining the T, L and S matrix elements as independent parameters without taking these conditions into account may result in matrices that do not represent concerted molecular movements. Here, a mathematical framework and the computational tools to analyze TLS matrices, resulting in either explicit decomposition into descriptions of the underlying motions or a report of broken conditions, are described. The description of valid underlying motions can then be output as a structural ensemble. All methods are implemented as part of the PHENIX project.« less

  16. Modeling, system identification, and control for slosh-free motion of an open container of liquid

    SciTech Connect

    Feddema, J.; Baty, R.; Dykhuizen, R.; Dohrmann, C.; Parker, G.; Robinett, R.; Romero, V.; Schmitt, D.

    1996-04-01

    This report discusses work performed under a Cooperative Research And Development Agreement (CRADA) with Corning, Inc., to analyze and test various techniques for controlling the motion of a high speed robotic arm carrying an open container of viscous liquid, in this case, molten glass. A computer model was generated to estimate the modes of oscillation of the liquid based on the shape of the container and the viscosity of the liquid. This fluid model was experimentally verified and tuned based on experimental data from a capacitive sensor on the side of the container. A model of the robot dynamics was also developed and verified through experimental tests on a Fanuc S-800 robot arm. These two models were used to estimate the overall modes of oscillation of an open container of liquid being carried by a robot arm. Using the estimated modes, inverse dynamic control techniques were used to determine a motion profile which would eliminate waves on the liquid`s surface. Experimental tests showed that residual surface waves in an open container of water at the end of motion were reduced by over 95% and that in-motion surface waves were reduced by over 75%.

  17. Student Teachers' Levels of Understanding and Model of Understanding about Newton's Laws of Motion

    ERIC Educational Resources Information Center

    Saglam-Arslan, Aysegul; Devecioglu, Yasemin

    2010-01-01

    This study was conducted to determine the level of student teachers' understandings of Newton's laws of motion and relating these levels to identify student teachers' models of understanding. An achievement test composed of two parts comprising 12 open ended questions was constructed and given to 45 pre-service classroom teachers. The first part…

  18. From deep TLS validation to ensembles of atomic models built from elemental motions

    SciTech Connect

    Urzhumtsev, Alexandre; Afonine, Pavel V.; Van Benschoten, Andrew H.; Fraser, James S.; Adams, Paul D.

    2015-07-28

    Procedures are described for extracting the vibration and libration parameters corresponding to a given set of TLS matrices and their simultaneous validation. Knowledge of these parameters allows the generation of structural ensembles corresponding to these matrices. The translation–libration–screw model first introduced by Cruickshank, Schomaker and Trueblood describes the concerted motions of atomic groups. Using TLS models can improve the agreement between calculated and experimental diffraction data. Because the T, L and S matrices describe a combination of atomic vibrations and librations, TLS models can also potentially shed light on molecular mechanisms involving correlated motions. However, this use of TLS models in mechanistic studies is hampered by the difficulties in translating the results of refinement into molecular movement or a structural ensemble. To convert the matrices into a constituent molecular movement, the matrix elements must satisfy several conditions. Refining the T, L and S matrix elements as independent parameters without taking these conditions into account may result in matrices that do not represent concerted molecular movements. Here, a mathematical framework and the computational tools to analyze TLS matrices, resulting in either explicit decomposition into descriptions of the underlying motions or a report of broken conditions, are described. The description of valid underlying motions can then be output as a structural ensemble. All methods are implemented as part of the PHENIX project.

  19. Effects of Teaching One and Two Dimensional Motion Units through Mathematical Modeling

    ERIC Educational Resources Information Center

    Baskan, Zeynep; Alev, Nedim

    2013-01-01

    The aim of this study is to investigate the effect of physics lessons that are taught through mathematical modelling on conceptual understanding and operational achievements of prospective science teachers in one and two dimensional motions. Through a quasi-experimental design "operational achievement test" (OAT) and "conceptual…

  20. Model for the computation of self-motion in biological systems

    NASA Technical Reports Server (NTRS)

    Perrone, John A.

    1992-01-01

    A technique is presented by which direction- and speed-tuned cells, such as those commonly found in the middle temporal region of the primate brain, can be utilized to analyze the patterns of retinal image motion that are generated during observer movement through the environment. The developed model determines heading by finding the peak response in a population of detectors or neurons each tuned to a particular heading direction. It is suggested that a complex interaction of multiple cell networks is required for the solution of the self-motion problem in the primate brain.

  1. Model Study of the Effect of Slag Layer on the Swirl Motion of Molten Steel Jet

    NASA Astrophysics Data System (ADS)

    Iguchi, Daisuke; Hiratsuka, Akira; Ohmi, Tatsuya; Tsujino, Ryoji; Sasaki, Yasushi; Iguchi, Manabu

    Efficient agitation of molten steel and slag is requested in the steelmaking industry. The conventional agitation methods are mainly classified into Ar gas injection and electromagnetic stirring. These methods are very expensive and use much energy, and accordingly, we have proposed an alternative, cheap and effective mixing method using a swirl motion. This method does not need any driving devices in the reactor. In this study, low-density liquids and low-density particles are used as models for slag. The effects of the upper slag layer on the occurrence region and the amplitude of a swirl motion of a molten steel jet are investigated.

  2. Template CoMFA Generates Single 3D-QSAR Models that, for Twelve of Twelve Biological Targets, Predict All ChEMBL-Tabulated Affinities

    PubMed Central

    Cramer, Richard D.

    2015-01-01

    The possible applicability of the new template CoMFA methodology to the prediction of unknown biological affinities was explored. For twelve selected targets, all ChEMBL binding affinities were used as training and/or prediction sets, making these 3D-QSAR models the most structurally diverse and among the largest ever. For six of the targets, X-ray crystallographic structures provided the aligned templates required as input (BACE, cdk1, chk2, carbonic anhydrase-II, factor Xa, PTP1B). For all targets including the other six (hERG, cyp3A4 binding, endocrine receptor, COX2, D2, and GABAa), six modeling protocols applied to only three familiar ligands provided six alternate sets of aligned templates. The statistical qualities of the six or seven models thus resulting for each individual target were remarkably similar. Also, perhaps unexpectedly, the standard deviations of the errors of cross-validation predictions accompanying model derivations were indistinguishable from the standard deviations of the errors of truly prospective predictions. These standard deviations of prediction ranged from 0.70 to 1.14 log units and averaged 0.89 (8x in concentration units) over the twelve targets, representing an average reduction of almost 50% in uncertainty, compared to the null hypothesis of “predicting” an unknown affinity to be the average of known affinities. These errors of prediction are similar to those from Tanimoto coefficients of fragment occurrence frequencies, the predominant approach to side effect prediction, which template CoMFA can augment by identifying additional active structural classes, by improving Tanimoto-only predictions, by yielding quantitative predictions of potency, and by providing interpretable guidance for avoiding or enhancing any specific target response. PMID:26065424

  3. Software package for modeling spin–orbit motion in storage rings

    SciTech Connect

    Zyuzin, D. V.

    2015-12-15

    A software package providing a graphical user interface for computer experiments on the motion of charged particle beams in accelerators, as well as analysis of obtained data, is presented. The software package was tested in the framework of the international project on electric dipole moment measurement JEDI (Jülich Electric Dipole moment Investigations). The specific features of particle spin motion imply the requirement to use a cyclic accelerator (storage ring) consisting of electrostatic elements, which makes it possible to preserve horizontal polarization for a long time. Computer experiments study the dynamics of 10{sup 6}–10{sup 9} particles in a beam during 10{sup 9} turns in an accelerator (about 10{sup 12}–10{sup 15} integration steps for the equations of motion). For designing an optimal accelerator structure, a large number of computer experiments on polarized beam dynamics are required. The numerical core of the package is COSY Infinity, a program for modeling spin–orbit dynamics.

  4. Software package for modeling spin-orbit motion in storage rings

    NASA Astrophysics Data System (ADS)

    Zyuzin, D. V.

    2015-12-01

    A software package providing a graphical user interface for computer experiments on the motion of charged particle beams in accelerators, as well as analysis of obtained data, is presented. The software package was tested in the framework of the international project on electric dipole moment measurement JEDI (Jülich Electric Dipole moment Investigations). The specific features of particle spin motion imply the requirement to use a cyclic accelerator (storage ring) consisting of electrostatic elements, which makes it possible to preserve horizontal polarization for a long time. Computer experiments study the dynamics of 106-109 particles in a beam during 109 turns in an accelerator (about 1012-1015 integration steps for the equations of motion). For designing an optimal accelerator structure, a large number of computer experiments on polarized beam dynamics are required. The numerical core of the package is COSY Infinity, a program for modeling spin-orbit dynamics.

  5. Subject-specific four-dimensional liver motion modeling based on registration of dynamic MRI.

    PubMed

    Noorda, Yolanda H; Bartels, Lambertus W; Viergever, Max A; Pluim, Josien P W

    2016-01-01

    Magnetic resonance-guided high intensity focused ultrasound treatment of the liver is a promising noninvasive technique for ablation of liver lesions. For the technique to be used in clinical practice, however, the issue of liver motion needs to be addressed. A subject-specific four-dimensional liver motion model is presented that is created based on registration of dynamically acquired magnetic resonance data. This model can be used for predicting the tumor motion trajectory for treatment planning and to indicate the tumor position for treatment guidance. The performance of the model was evaluated on a dynamic scan series that was not used to build the model. The method achieved an average Dice coefficient of 0.93 between the predicted and actual liver profiles and an average vessel misalignment of 3.0 mm. The model performed robustly, with a small variation in the results per subject. The results demonstrate the potential of the model to be used for MRI-guided treatment of liver lesions. Furthermore, the model can possibly be applied in other image-guided therapies, for instance radiotherapy of the liver. PMID:27493981

  6. Angular Motion Estimation Using Dynamic Models in a Gyro-Free Inertial Measurement Unit

    PubMed Central

    Edwan, Ezzaldeen; Knedlik, Stefan; Loffeld, Otmar

    2012-01-01

    In this paper, we summarize the results of using dynamic models borrowed from tracking theory in describing the time evolution of the state vector to have an estimate of the angular motion in a gyro-free inertial measurement unit (GF-IMU). The GF-IMU is a special type inertial measurement unit (IMU) that uses only a set of accelerometers in inferring the angular motion. Using distributed accelerometers, we get an angular information vector (AIV) composed of angular acceleration and quadratic angular velocity terms. We use a Kalman filter approach to estimate the angular velocity vector since it is not expressed explicitly within the AIV. The bias parameters inherent in the accelerometers measurements' produce a biased AIV and hence the AIV bias parameters are estimated within an augmented state vector. Using dynamic models, the appended bias parameters of the AIV become observable and hence we can have unbiased angular motion estimate. Moreover, a good model is required to extract the maximum amount of information from the observation. Observability analysis is done to determine the conditions for having an observable state space model. For higher grades of accelerometers and under relatively higher sampling frequency, the error of accelerometer measurements is dominated by the noise error. Consequently, simulations are conducted on two models, one has bias parameters appended in the state space model and the other is a reduced model without bias parameters. PMID:22778586

  7. Investigation of a model vertical motion liquid damper: comparing numerical simulation and experimental evidence

    NASA Astrophysics Data System (ADS)

    Papadopoulos, Chris; Tabatabai, Habib; Buechel, Craig

    2005-05-01

    Tuned Liquid Dampers (TLD) are used to limit horizontal vibrations in structures, and offer practical alternatives to Tuned Mass Dampers (TMD). However, to our knowledge, liquid damping systems have not been developed to reduce vertical vibrations. In this work, we develop a model for a Vertical Motion Liquid Damper (VMLD), idealized as a discrete, two degree of freedom system. One degree of freedom represents the 'target' structure that is to be damped, and the other represents the approximate, one-dimensional motion of a liquid in a U-shaped tube. Internal losses due to the fluid oscillation serve to limit and control motions of the target structure. The U-shaped tube has a flexible joint such that one vertical portion and the horizontal portion of the tube remain fixed, and the remaining vertical portion of the tube is affixed to the vibrating structure, allowing the liquid to become excited. The equations of motion are derived using Lagrange's Equations, and are integrated using Runge-Kutta algorithms that are available in Matlab. An experimental model was built in the laboratory, consisting of a mass attached to the end of a cantilevered beam (corresponding to the target structure), and a U-tube made from PVC pipe. The various damping and stiffness parameters of the system were calibrated independently based on experimental data. Measured data from the experimental model show reasonable agreement with numerical simulations.

  8. Motion, flash, and flicker: a unified spatiotemporal model of perceived edge sharpening.

    PubMed

    Hammett, Stephen T; Georgeson, Mark A; Barbieri-Hesse, Gillian S

    2003-01-01

    Blurred edges appear sharper in motion than when they are stationary. We proposed a model of this motion sharpening that invokes a local, nonlinear contrast transducer function (Hammett et al, 1998 Vision Research 38 2099-2108). Response saturation in the transducer compresses or 'clips' the input spatial waveform, rendering the edges as sharper. To explain the increasing distortion of drifting edges at higher speeds, the degree of nonlinearity must increase with speed or temporal frequency. A dynamic contrast gain control before the transducer can account for both the speed dependence and approximate contrast invariance of motion sharpening (Hammett et al, 2003 Vision Research, in press). We show here that this model also predicts perceived sharpening of briefly flashed and flickering edges, and we show that the model can account fairly well for experimental data from all three modes of presentation (motion, flash, and flicker). At moderate durations and lower temporal frequencies the gain control attenuates the input signal, thus protecting it from later compression by the transducer. The gain control is somewhat sluggish, and so it suffers both a slow onset, and loss of power at high temporal frequencies. Consequently, brief presentations and high temporal frequencies of drift and flicker are less protected from distortion, and show greater perceptual sharpening. PMID:14700257

  9. Sensory vestibular contributions to constructing internal models of self-motion

    NASA Astrophysics Data System (ADS)

    Green, Andrea M.; Shaikh, Aasef G.; Angelaki, Dora E.

    2005-09-01

    The ability to navigate in the world and execute appropriate behavioral and motor responses depends critically on our capacity to construct an accurate internal representation of our current motion and orientation in space. Vestibular sensory signals are among those that may make an essential contribution to the construction of such 'internal models'. Movement in a gravitational environment represents a situation where the construction of internal models becomes particularly important because the otolith organs, like any linear accelerometer, sense inertial and gravitational accelerations equivalently. Otolith afferents thus provide inherently ambiguous motion information, as they respond identically to translation and head reorientation relative to gravity. Resolution of this ambiguity requires the nonlinear integration of linear acceleration and angular velocity cues, as predicted by the physical equations of motion. Here, we summarize evidence that during translations and tilts from upright the firing rates of brainstem and cerebellar neurons encode a combination of dynamically processed semicircular canal and otolith signals appropriate to construct an internal model representation of the computations required for inertial motion detection.

  10. A model to simulate the mastication motion at the temporomandibular joint

    NASA Astrophysics Data System (ADS)

    Villamil, Marta B.; Nedel, Luciana P.; Freitas, Carla M. D. S.; Maciel, Anderson

    2005-04-01

    The understanding of the mastication system motion is essential to maxillofacial surgeons and dentists in the procedures concerning jaw and teeth corrections. The temporomandibular joint (TMJ), despite its complexity, is one of the most frequently used joints of the human body. The incidence of a great number of injuries in this joint is influenced not only by its regular use during the mastication, but also by the strong forces applied by the muscles and the wide range of movements it is capable to perform. In this work, we propose the development of a jaw simulator capable of reproducing the complete mastication movement. Our jaw simulator is basically composed by three triangle meshes representing the 3D model of the cranium, mandible and teeth; and an anatomically-based joint model conceived to represent the TMJ motion. The polygonal meshes describing the bones and teeth are obtained from CT images and the jaw motion is simulated using the joint model guided by a 3D motion curve obtained from the composition of the standard 2D curves available in the medical literature. The scale, height and width of these original curves are modified to simulate different kind and size of food and to represent the movements" variability depending on patient morphology (teeth, bones, joints and muscles). The evaluation of preliminary results involved the comparison of a dynamic MRI of a healthy person with the respective simulation.

  11. Wave motion on the surface of the human tympanic membrane: Holographic measurement and modeling analysis

    PubMed Central

    Cheng, Jeffrey Tao; Hamade, Mohamad; Merchant, Saumil N.; Rosowski, John J.; Harrington, Ellery; Furlong, Cosme

    2013-01-01

    Sound-induced motions of the surface of the tympanic membrane (TM) were measured using stroboscopic holography in cadaveric human temporal bones at frequencies between 0.2 and 18 kHz. The results are consistent with the combination of standing-wave-like modal motions and traveling-wave-like motions on the TM surface. The holographic techniques also quantified sound-induced displacements of the umbo of the malleus, as well as volume velocity of the TM. These measurements were combined with sound-pressure measurements near the TM to compute middle-ear input impedance and power reflectance at the TM. The results are generally consistent with other published data. A phenomenological model that behaved qualitatively like the data was used to quantify the relative magnitude and spatial frequencies of the modal and traveling-wave-like displacement components on the TM surface. This model suggests the modal magnitudes are generally larger than those of the putative traveling waves, and the computed wave speeds are much slower than wave speeds predicted by estimates of middle-ear delay. While the data are inconsistent with simple modal displacements of the TM, an alternate model based on the combination of modal motions in a lossy membrane can also explain these measurements without invoking traveling waves. PMID:23363110

  12. A Simulation Model for Local Harmonic Motion Monitoring of Focused Ultrasound Surgery

    SciTech Connect

    Heikkilae, Janne; Curiel, Laura; Hynynen, Kullervo

    2009-04-14

    A computational model for local harmonic motion (LHM) imaging-based monitoring of high-intensity focused ultrasound surgery (FUS) is presented. LMH technique is based on a focused ultrasound radiation force excitation, which induces local mechanical vibrations at the focal region. These pulse-echo imaged vibrations are then used to estimate the mechanical properties of the sonication region. LHM has been proven to be feasible for FUS monitoring because changes in the material properties during the coagulation affect the measured displacements. The presented model includes separate models to simulate acoustic fields, sonication induced temperature elevation and mechanical vibrations, and pulse-echo imaging of the induced motions. These simulation models are based on Rayleigh integral, finite element, and spatial impulse response methods. Simulated temperature rise and vibration amplitudes have been compared with in vivo rabbit experiments with noninvasive MRI thermometry.

  13. Amoeba-like motion of an oil droplet. Chemical model of self-motile organisms

    NASA Astrophysics Data System (ADS)

    Sumino, Y.; Yoshikawa, K.

    2014-06-01

    In this paper, we demonstrate our recent attempt to construct a chemical model system of amoeboid motion. The system is intended to mimic biological motility based on the generation and collapse of an elastic aggregate; it is composed of oil, water, and surfactants. In this chemical system, the oil-water interface shows extension and retreat of spherical extrusions accompanied by the generation of aggregate on the interface. This instability of the oil-water interface can cause autonomous splitting and motion of a floating oil droplet. The current mathematical model based on the generation of a passive elastic gel is explained, as well as the discrepancy between the model and the experiments. We further describe recently observed microscopic characteristics of the aggregate formation process that might cause the interfacial instability. Finally, we discuss the disadvantage of a chemical model system compared with active colloid and in vitro biological systems, and also mention its potential advantages.

  14. Integration of MATLAB Simulink(Registered Trademark) Models with the Vertical Motion Simulator

    NASA Technical Reports Server (NTRS)

    Lewis, Emily K.; Vuong, Nghia D.

    2012-01-01

    This paper describes the integration of MATLAB Simulink(Registered TradeMark) models into the Vertical Motion Simulator (VMS) at NASA Ames Research Center. The VMS is a high-fidelity, large motion flight simulator that is capable of simulating a variety of aerospace vehicles. Integrating MATLAB Simulink models into the VMS needed to retain the development flexibility of the MATLAB environment and allow rapid deployment of model changes. The process developed at the VMS was used successfully in a number of recent simulation experiments. This accomplishment demonstrated that the model integrity was preserved, while working within the hard real-time run environment of the VMS architecture, and maintaining the unique flexibility of the VMS to meet diverse research requirements.

  15. From deep TLS validation to ensembles of atomic models built from elemental motions. Addenda and corrigendum

    PubMed Central

    Urzhumtsev, Alexandre; Afonine, Pavel V.; Van Benschoten, Andrew H.; Fraser, James S.; Adams, Paul D.

    2016-01-01

    Researcher feedback has indicated that in Urzhumtsev et al. [(2015) Acta Cryst. D71, 1668–1683] clarification of key parts of the algorithm for interpretation of TLS matrices in terms of elemental atomic motions and corresponding ensembles of atomic models is required. Also, it has been brought to the attention of the authors that the incorrect PDB code was reported for one of test models. These issues are addressed in this article. PMID:27599739

  16. Long-term dynamics beyond Neptune: secular models to study the regular motions

    NASA Astrophysics Data System (ADS)

    Saillenfest, Melaine; Fouchard, Marc; Tommei, Giacomo; Valsecchi, Giovanni B.

    2016-06-01

    Two semi-analytical one-degree-of-freedom secular models are presented for the motion of small bodies beyond Neptune. A special attention is given to trajectories entirely exterior to the planetary orbits. The first one is the well-known non-resonant model of Kozai (Astron J 67:591, 1962) adapted to the transneptunian region. Contrary to previous papers, the dynamics is fully characterized with respect to the fixed parameters. A maximum perihelion excursion possible of 16.4 AU is determined. The second model handles the occurrence of a mean-motion resonance with one of the planets. In that case, the one-degree-of-freedom integrable approximation is obtained by postulating the adiabatic invariance, and is much more general and accurate than previous secular models found in the literature. It brings out in a plain way the possibility of perihelion oscillations with a very high amplitude. Such a model could thus be used in future studies to deeper explore that kind of motion. For complex resonant orbits (especially of type 1 : k), a segmented secular description is necessary since the trajectories are only "integrable by parts". The two models are applied to the Solar System but the notations are kept general so that it could be used for any quasi-circular and coplanar planetary system.

  17. Bacteriophage Tailspikes and Bacterial O-Antigens as a Model System to Study Weak-Affinity Protein-Polysaccharide Interactions.

    PubMed

    Kang, Yu; Gohlke, Ulrich; Engström, Olof; Hamark, Christoffer; Scheidt, Tom; Kunstmann, Sonja; Heinemann, Udo; Widmalm, Göran; Santer, Mark; Barbirz, Stefanie

    2016-07-27

    Understanding interactions of bacterial surface polysaccharides with receptor protein scaffolds is important for the development of antibiotic therapies. The corresponding protein recognition domains frequently form low-affinity complexes with polysaccharides that are difficult to address with experimental techniques due to the conformational flexibility of the polysaccharide. In this work, we studied the tailspike protein (TSP) of the bacteriophage Sf6. Sf6TSP binds and hydrolyzes the high-rhamnose, serotype Y O-antigen polysaccharide of the Gram-negative bacterium Shigella flexneri (S. flexneri) as a first step of bacteriophage infection. Spectroscopic analyses and enzymatic cleavage assays confirmed that Sf6TSP binds long stretches of this polysaccharide. Crystal structure analysis and saturation transfer difference (STD) NMR spectroscopy using an enhanced method to interpret the data permitted the detailed description of affinity contributions and flexibility in an Sf6TSP-octasaccharide complex. Dodecasaccharide fragments corresponding to three repeating units of the O-antigen in complex with Sf6TSP were studied computationally by molecular dynamics simulations. They showed that distortion away from the low-energy solution conformation found in the octasaccharide complex is necessary for ligand binding. This is in agreement with a weak-affinity functional polysaccharide-protein contact that facilitates correct placement and thus hydrolysis of the polysaccharide close to the catalytic residues. Our simulations stress that the flexibility of glycan epitopes together with a small number of specific protein contacts provide the driving force for Sf6TSP-polysaccharide complex formation in an overall weak-affinity interaction system. PMID:27045683

  18. The importance of being equivalent: Newton's two models of one-body motion

    NASA Astrophysics Data System (ADS)

    Pourciau, Bruce

    2004-05-01

    As an undergraduate at Cambridge, Newton entered into his "Waste Book" an assumption that we have named the Equivalence Assumption (The Younger): "If a body move progressively in some crooked line [about a center of motion] ..., [then this] crooked line may bee conceived to consist of an infinite number of streight lines. Or else in any point of the croked line the motion may bee conceived to be on in the tangent". In this assumption, Newton somewhat imprecisely describes two mathematical models, a "polygonal limit model" and a "tangent deflected model", for "one-body motion", that is, for the motion of a "body in orbit about a fixed center", and then claims that these two models are equivalent. In the first part of this paper, we study the Principia to determine how the elder Newton would more carefully describe the polygonal limit and tangent deflected models. From these more careful descriptions, we then create Equivalence Assumption (The Elder), a precise interpretation of Equivalence Assumption (The Younger) as it might have been restated by Newton, after say 1687. We then review certain portions of the Waste Book and the Principia to make the case that, although Newton never restates nor even alludes to the Equivalence Assumption after his youthful Waste Book entry, still the polygonal limit and tangent deflected models, as well as an unspoken belief in their equivalence, infuse Newton's work on orbital motion. In particular, we show that the persuasiveness of the argument for the Area Property in Proposition 1 of the Principia depends crucially on the validity of Equivalence Assumption (The Elder). After this case is made, we present the mathematical analysis required to establish the validity of the Equivalence Assumption (The Elder). Finally, to illustrate the fundamental nature of the resulting theorem, the Equivalence Theorem as we call it, we present three significant applications: we use the Equivalence Theorem first to clarify and resolve questions

  19. Reevaluation of plate motion models based on hotspot tracks in the Atlantic and Indian Oceans

    SciTech Connect

    Baksi, A.K.

    1999-01-01

    Plate motion models based on hotspot tracks in the Atlantic and Indian Oceans predict minimal movement (less than a few millimeters per year) between these hotspots and their counterparts in the Pacific Ocean for the past {approximately}100 m.yr., whereas plate circuit exercises indicate relative motions of {approximately}20 mm/yr. Hotspot-based models also suggest that the Rajmahal Traps, India, were located {approximately}1,000 km away from the Kerguelen hotspot at {approximately}115 Ma, and the Deccan Traps, India, were located a similar distance from the Reunion hotspot at {approximately}65 Ma; this is at odds with conclusions derived from paleomagnetism, plate circuits, and geochemical parameters that suggest a genetic link between flood basalt provinces in India and hotspots in the Indian Ocean. These divergent views may be explained by plume action {approximately}1,000 km from its center or errors in the hotspot motion models. The latter hypothesis is scrutinized in this article by examination of the radiometric ages for hotspot tracks in the Atlantic and Indian Oceans. The {sup 40}/{sup 39}Ar step-heating data for rocks defining the tracks of the Reunion and Kerguelen hotspots in the Indian Ocean and the Great Metero and Tristan da Cunha hotspots in the Atlantic Ocean are critically reexamined. Of {approximately}35 such ages utilized for deriving plate motion models for the past 130 m.yr., at best, only three ({approximately}32, {approximately}50, and {approximately}52 Ma) in the Indian Ocean and one ({approximately}65 Ma) for the Atlantic Ocean may be treated as crystallization ages. Conclusions based on hotspot track modeling for Late Cretaceous to Eocene time are suspect, and those for the Early to Late Cretaceous period are untenable. In the absence of precise age data for the tracks of hotspots in the Atlantic and Indian Oceans, and inconsistent age progressions noted within a single volcanic chain, plate circuit models serve as the superior technique

  20. Transient pressure changes in the vertebral canal during whiplash motion--A hydrodynamic modeling approach.

    PubMed

    Yao, Hua-Dong; Svensson, Mats Y; Nilsson, Håkan

    2016-02-01

    In vehicle collisions, the occupant's torso is accelerated in a given direction while the unsupported head tends to lag behind. This mechanism results in whiplash motion to the neck. In whiplash experiments conducted for animals, pressure transients have been recorded in the spinal canal. It was hypothesized that the transients caused dorsal root ganglion dysfunction. Neck motion introduces volume changes inside the vertebral canal. The changes require an adaptation which is likely achieved by redistribution of blood volume in the internal vertebral venous plexus (IVVP). Pressure transients then arise from the rapid redistribution. The present study aimed to explore the hypothesis theoretically and analytically. Further, the objectives were to quantify the effect of the neck motion on the pressure generation and to identify the physical factors involved. We developed a hydrodynamic system of tubes that represent the IVVP and its lateral intervertebral vein connections. An analytical model was developed for an anatomical geometrical relation that the venous blood volume changes with respect to the vertebral angular displacement. This model was adopted in the hydrodynamic tube system so that the system can predict the pressure transients on the basis of the neck vertebral motion data from a whiplash experiment. The predicted pressure transients were in good agreement with the earlier experimental data. A parametric study was conducted and showed that the system can be used to assess the influences of anatomical geometrical properties and vehicle collision severity on the pressure generation.

  1. Motion corrected LV quantification based on 3D modelling for improved functional assessment in cardiac MRI

    NASA Astrophysics Data System (ADS)

    Liew, Y. M.; McLaughlin, R. A.; Chan, B. T.; Aziz, Y. F. Abdul; Chee, K. H.; Ung, N. M.; Tan, L. K.; Lai, K. W.; Ng, S.; Lim, E.

    2015-04-01

    Cine MRI is a clinical reference standard for the quantitative assessment of cardiac function, but reproducibility is confounded by motion artefacts. We explore the feasibility of a motion corrected 3D left ventricle (LV) quantification method, incorporating multislice image registration into the 3D model reconstruction, to improve reproducibility of 3D LV functional quantification. Multi-breath-hold short-axis and radial long-axis images were acquired from 10 patients and 10 healthy subjects. The proposed framework reduced misalignment between slices to subpixel accuracy (2.88 to 1.21 mm), and improved interstudy reproducibility for 5 important clinical functional measures, i.e. end-diastolic volume, end-systolic volume, ejection fraction, myocardial mass and 3D-sphericity index, as reflected in a reduction in the sample size required to detect statistically significant cardiac changes: a reduction of 21-66%. Our investigation on the optimum registration parameters, including both cardiac time frames and number of long-axis (LA) slices, suggested that a single time frame is adequate for motion correction whereas integrating more LA slices can improve registration and model reconstruction accuracy for improved functional quantification especially on datasets with severe motion artefacts.

  2. Transient pressure changes in the vertebral canal during whiplash motion--A hydrodynamic modeling approach.

    PubMed

    Yao, Hua-Dong; Svensson, Mats Y; Nilsson, Håkan

    2016-02-01

    In vehicle collisions, the occupant's torso is accelerated in a given direction while the unsupported head tends to lag behind. This mechanism results in whiplash motion to the neck. In whiplash experiments conducted for animals, pressure transients have been recorded in the spinal canal. It was hypothesized that the transients caused dorsal root ganglion dysfunction. Neck motion introduces volume changes inside the vertebral canal. The changes require an adaptation which is likely achieved by redistribution of blood volume in the internal vertebral venous plexus (IVVP). Pressure transients then arise from the rapid redistribution. The present study aimed to explore the hypothesis theoretically and analytically. Further, the objectives were to quantify the effect of the neck motion on the pressure generation and to identify the physical factors involved. We developed a hydrodynamic system of tubes that represent the IVVP and its lateral intervertebral vein connections. An analytical model was developed for an anatomical geometrical relation that the venous blood volume changes with respect to the vertebral angular displacement. This model was adopted in the hydrodynamic tube system so that the system can predict the pressure transients on the basis of the neck vertebral motion data from a whiplash experiment. The predicted pressure transients were in good agreement with the earlier experimental data. A parametric study was conducted and showed that the system can be used to assess the influences of anatomical geometrical properties and vehicle collision severity on the pressure generation. PMID:26827171

  3. Motion-adaptive model-assisted compatible coding with spatiotemporal scalability

    NASA Astrophysics Data System (ADS)

    Lee, JaeBeom; Eleftheriadis, Alexandros

    1997-01-01

    We introduce the concept of motion adaptive spatio-temporal model-assisted compatible (MA-STMAC) coding, a technique to selectively encode areas of different importance to the human eye in terms of space and time in moving images with the consideration of object motion. PRevious STMAC was proposed base don the fact that human 'eye contact' and 'lip synchronization' are very important in person-to-person communication. Several areas including the eyes and lips need different types of quality, since different areas have different perceptual significance to human observers. The approach provides a better rate-distortion tradeoff than conventional image coding techniques base don MPEG-1, MPEG- 2, H.261, as well as H.263. STMAC coding is applied on top of an encoder, taking full advantage of its core design. Model motion tracking in our previous STMAC approach was not automatic. The proposed MA-STMAC coding considers the motion of the human face within the STMAC concept using automatic area detection. Experimental results are given using ITU-T H.263, addressing very low bit-rate compression.

  4. Motion of tympanic membrane in guinea pig otitis media model measured by scanning laser Doppler vibrometry.

    PubMed

    Wang, Xuelin; Guan, Xiying; Pineda, Mario; Gan, Rong Z

    2016-09-01

    Otitis media (OM) is an inflammatory or infectious disease of the middle ear. Acute otitis media (AOM) and otitis media with effusion (OME) are the two major types of OM. However, the tympanic membrane (TM) motion differences induced by AOM and OME have not been quantified in animal models in the literature. In this study, the guinea pig AOM and OME models were created by transbullar injection of Streptococcus pneumoniae type 3 and lipopolysaccharide, respectively. To explore the effects of OM on the entire TM vibration, the measurements of full-field TM motions were performed in the AOM, OME and untreated control ears by using scanning laser Doppler vibrometry (SLDV). The results showed that both AOM and OME generally reduced the displacement peak and produced the traveling-wave-like motions at relatively low frequencies. Compared with the normal ear, OME resulted in a significant change of the TM displacement mainly in the inferior portion of the TM, and AOM significantly affected the surface motion across four quadrants. The SLDV measurements provide more insight into sound-induced TM vibration in diseased ears. PMID:27490002

  5. Conditional spectrum computation incorporating multiple causal earthquakes and ground-motion prediction models

    USGS Publications Warehouse

    Lin, Ting; Harmsen, Stephen C.; Baker, Jack W.; Luco, Nicolas

    2013-01-01

    The conditional spectrum (CS) is a target spectrum (with conditional mean and conditional standard deviation) that links seismic hazard information with ground-motion selection for nonlinear dynamic analysis. Probabilistic seismic hazard analysis (PSHA) estimates the ground-motion hazard by incorporating the aleatory uncertainties in all earthquake scenarios and resulting ground motions, as well as the epistemic uncertainties in ground-motion prediction models (GMPMs) and seismic source models. Typical CS calculations to date are produced for a single earthquake scenario using a single GMPM, but more precise use requires consideration of at least multiple causal earthquakes and multiple GMPMs that are often considered in a PSHA computation. This paper presents the mathematics underlying these more precise CS calculations. Despite requiring more effort to compute than approximate calculations using a single causal earthquake and GMPM, the proposed approach produces an exact output that has a theoretical basis. To demonstrate the results of this approach and compare the exact and approximate calculations, several example calculations are performed for real sites in the western United States. The results also provide some insights regarding the circumstances under which approximate results are likely to closely match more exact results. To facilitate these more precise calculations for real applications, the exact CS calculations can now be performed for real sites in the United States using new deaggregation features in the U.S. Geological Survey hazard mapping tools. Details regarding this implementation are discussed in this paper.

  6. Spatially-constrained probability distribution model of incoherent motion (SPIM) for abdominal diffusion-weighted MRI.

    PubMed

    Kurugol, Sila; Freiman, Moti; Afacan, Onur; Perez-Rossello, Jeannette M; Callahan, Michael J; Warfield, Simon K

    2016-08-01

    Quantitative diffusion-weighted MR imaging (DW-MRI) of the body enables characterization of the tissue microenvironment by measuring variations in the mobility of water molecules. The diffusion signal decay model parameters are increasingly used to evaluate various diseases of abdominal organs such as the liver and spleen. However, previous signal decay models (i.e., mono-exponential, bi-exponential intra-voxel incoherent motion (IVIM) and stretched exponential models) only provide insight into the average of the distribution of the signal decay rather than explicitly describe the entire range of diffusion scales. In this work, we propose a probability distribution model of incoherent motion that uses a mixture of Gamma distributions to fully characterize the multi-scale nature of diffusion within a voxel. Further, we improve the robustness of the distribution parameter estimates by integrating spatial homogeneity prior into the probability distribution model of incoherent motion (SPIM) and by using the fusion bootstrap solver (FBM) to estimate the model parameters. We evaluated the improvement in quantitative DW-MRI analysis achieved with the SPIM model in terms of accuracy, precision and reproducibility of parameter estimation in both simulated data and in 68 abdominal in-vivo DW-MRIs. Our results show that the SPIM model not only substantially reduced parameter estimation errors by up to 26%; it also significantly improved the robustness of the parameter estimates (paired Student's t-test, p < 0.0001) by reducing the coefficient of variation (CV) of estimated parameters compared to those produced by previous models. In addition, the SPIM model improves the parameter estimates reproducibility for both intra- (up to 47%) and inter-session (up to 30%) estimates compared to those generated by previous models. Thus, the SPIM model has the potential to improve accuracy, precision and robustness of quantitative abdominal DW-MRI analysis for clinical applications. PMID

  7. Simulation of single microorganism motion in fluid based on granular model

    NASA Astrophysics Data System (ADS)

    Viridi, S.; Nuraini, N.

    2016-04-01

    Microorganism model for simulating its motion is proposed in this work. It consists of granular particles which can interact to each other through linear spring mimicking microorganism muscles, which is simpler than other model. As a part of the organism organ is moving, while the other remains at its position, it will push the surrounding fluid through Stoke's force and as reaction the fluid pushes back the microorganism. Contracting force is used to change the distance between two points in the organ. Gravity influence is simply neglected in this work. All the considered forces are used to get motion parameters of organism through molecular dynamics method. It is observed that the use of contracting (push-pull) organ constructs slightly more effective model than shrink- and swell-organs as previously investigated, if weighted effectiveness formula is used as function of number of considered forces and involved particles.

  8. Sensitivity of a mesoscale model to initial specification of relative humidity, liquid water and vertical motion

    NASA Technical Reports Server (NTRS)

    Kalb, M. W.; Perkey, D. J.

    1985-01-01

    The influence of synoptic scale initial conditions on the accuracy of mesoscale precipitation modeling is investigated. Attention is focused on the relative importance of the water vapor, cloud water, rain water, and vertical motion, with the analysis carried out using the Limited Area Mesoscale Prediction System (LAMPS). The fully moist primitive equation model has 15 levels and a terrain-following sigma coordinate system. A K-theory approach was implemented to model the planetary boundary layer. A total of 15 sensitivity simulations were run to investigate the effects of the synoptic initial conditions of the four atmospheric variables. The absence of synoptic cloud and rain water amounts in the initialization caused a 2 hr delay in the onset of precipitation. The delay was increased if synoptic-scale vertical motion was used instead of mesoscale values. Both the delays and a choice of a smoothed moisture field resulted in underestimations of the total rainfall.

  9. In-room breathing motion estimation from limited projection views using a sliding deformation model

    NASA Astrophysics Data System (ADS)

    Delmon, V.; Vandemeulebroucke, J.; Pinho, R.; Vila Oliva, M.; Sarrut, D.; Rit, S.

    2014-03-01

    Purpose: To estimate in-room breathing motion from a limited number of 2D cone-beam (CB) projection images by registering them to a phase of the 4D planning CT. Methods: Breathing motion was modelled using a piecewise continuous B-spline representation [1], allowing to preserve the sliding along the thoracic wall while limiting the degrees of freedom. The deformed target 3D image was subsequently used to generate Digitally Reconstructed Radiographs (DRR). The Normalized Correlation Coefficient (NCC) between the measured projection images and the DRR was computed in the 2D projection space. However, the partial derivatives of the NCC relative to the transform parameters were backprojected into the 3D space, avoiding the projection of the transform Jacobian matrix which is computationally intractable [2]. Results: The method was quantitatively evaluated on 16 lung cancer patients. 40 CB projection images were simulated using the end-exhale phase of the 4D planning CT and the geometric parameters of a clinical CB protocol. The end-inhale phase was deformed to match these simulated projections. The Target Registration Error (TRE) decreased from 8.8 mm to 2.0 mm while the TRE obtained from the 3D/3D registration of the reconstructed CBCT was significantly worse (2.6 mm), due to view aliasing artefacts. We also provide the motion compensated image reconstructed from a real CB acquisition showing the quality improvement brought by the in-room deformation model compared to the planning motion model. Conclusions: We have developed a 2D/3D deformable registration algorithm that enables in-room breathing motion estimation from cone-beam projection images.

  10. Experimental and modeling study of human tympanic membrane motion in the presence of middle ear liquid.

    PubMed

    Zhang, Xiangming; Guan, Xiying; Nakmali, Don; Palan, Vikrant; Pineda, Mario; Gan, Rong Z

    2014-12-01

    Vibration of the tympanic membrane (TM) has been measured at the umbo using laser Doppler vibrometry and analyzed with finite element (FE) models of the human ear. Recently, full-field TM surface motion has been reported using scanning laser Doppler vibrometry, holographic interferometry, and optical coherence tomography. Technologies for imaging human TM motion have the potential to lead to using a dedicated clinical diagnosis tool for identification of middle ear diseases. However, the effect of middle ear fluid (liquid) on TM surface motion is still not clear. In this study, a scanning laser Doppler vibrometer was used to measure the full-field surface motion of the TM from four human temporal bones. TM displacements were measured under normal and disease-mimicking conditions with different middle ear liquid levels over frequencies ranging from 0.2 to 8 kHz. An FE model of the human ear, including the ear canal, middle ear, and spiral cochlea was used to simulate the motion of the TM in normal and disease-mimicking conditions. The results from both experiments and FE model show that a simple deflection shape with one or two major displacement peak regions of the TM in normal ear was observed at low frequencies (1 kHz and below) while complicated ring-like pattern of the deflection shapes appeared at higher frequencies (4 kHz and above). The liquid in middle ear mainly affected TM deflection shapes at the frequencies higher than 1 kHz.

  11. Ampicillin/penicillin-binding protein interactions as a model drug-target system to optimize affinity pull-down and mass spectrometric strategies for target and pathway identification.

    PubMed

    von Rechenberg, Moritz; Blake, Brian Kelly; Ho, Yew-Seng J; Zhen, Yuejun; Chepanoske, Cindy Lou; Richardson, Bonnie E; Xu, Nafei; Kery, Vladimir

    2005-05-01

    The identification and validation of the targets of active compounds identified in cell-based assays is an important step in preclinical drug development. New analytical approaches that combine drug affinity pull-down assays with mass spectrometry (MS) could lead to the identification of new targets and druggable pathways. In this work, we investigate a drug-target system consisting of ampicillin- and penicillin-binding proteins (PBPs) to evaluate and compare different amino-reactive resins for the immobilization of the affinity compound and mass spectrometric methods to identify proteins from drug affinity pull-down assays. First, ampicillin was immobilized onto various amino-reactive resins, which were compared in the ampicillin-PBP model with respect to their nonspecific binding of proteins from an Escherichia coli membrane extract. Dynal M-270 magnetic beads were chosen to further study the system as a model for capturing and identifying the targets of ampicillin, PBPs that were specifically and covalently bound to the immobilized ampicillin. The PBPs were identified, after in situ digestion of proteins bound to ampicillin directly on the beads, by using either one-dimensional (1-D) or two-dimensional (2-D) liquid chromatography (LC) separation techniques followed by tandem mass spectrometry (MS/MS) analysis. Alternatively, an elution with N-lauroylsarcosine (sarcosyl) from the ampicillin beads followed by in situ digestion and 2-D LC-MS/MS analysis identified proteins potentially interacting noncovalently with the PBPs or the ampicillin. The in situ approach required only little time, resources, and sample for the analysis. The combination of drug affinity pull-down assays with in situ digestion and 2-D LC-MS/MS analysis is a useful tool in obtaining complex information about a primary drug target as well as its protein interactors. PMID:15761956

  12. Toward in vivo lung's tissue incompressibility characterization for tumor motion modeling in radiation therapy

    SciTech Connect

    Shirzadi, Zahra; Sadeghi-Naini, Ali; Samani, Abbas

    2013-05-15

    Purpose: A novel technique is proposed to characterize lung tissue incompressibility variation during respiration. Estimating lung tissue incompressibility parameter variations resulting from air content variation throughout respiration is critical for computer assisted tumor motion tracking. Continuous tumor motion is a major challenge in lung cancer radiotherapy, especially with external beam radiotherapy. If not accounted for, this motion may lead to areas of radiation overdosage for normal tissue. Given the unavailability of imaging modality that can be used effectively for real-time lung tumor tracking, computer assisted approach based on tissue deformation estimation can be a good alternative. This approach involves lung biomechanical model where its fidelity depends on input tissue properties. This investigation shows that considering variable tissue incompressibility parameter is very important for predicting tumor motion accurately, hence improving the lung radiotherapy outcome. Methods: First, an in silico lung phantom study was conducted to demonstrate the importance of employing variable Poisson's ratio for tumor motion predication. After it was established that modeling this variability is critical for accurate tumor motion prediction, an optimization based technique was developed to estimate lung tissue Poisson's ratio as a function of respiration cycle time. In this technique, the Poisson's ratio and lung pressure value were varied systematically until optimal values were obtained, leading to maximum similarity between acquired and simulated 4D CT lung images. This technique was applied in an ex vivo porcine lung study where simulated images were constructed using the end exhale CT image and deformation fields obtained from the lung's FE modeling of each respiration time increment. To model the tissue, linear elastic and Marlow hyperelastic material models in conjunction with variable Poisson's ratio were used. Results: The phantom study showed that

  13. Fractional Brownian Motion with Stochastic Variance:. Modeling Absolute Returns in STOCK Markets

    NASA Astrophysics Data System (ADS)

    Roman, H. E.; Porto, M.

    We discuss a model for simulating a long-time memory in time series characterized in addition by a stochastic variance. The model is based on a combination of fractional Brownian motion (FBM) concepts, for dealing with the long-time memory, with an autoregressive scheme with conditional heteroskedasticity (ARCH), responsible for the stochastic variance of the series, and is denoted as FBMARCH. Unlike well-known fractionally integrated autoregressive models, FBMARCH admits finite second moments. The resulting probability distribution functions have power-law tails with exponents similar to ARCH models. This idea is applied to the description of long-time autocorrelations of absolute returns ubiquitously observed in stock markets.

  14. Relation of landslides triggered by the Kiholo Bay earthquake to modeled ground motion

    USGS Publications Warehouse

    Harp, Edwin L.; Hartzell, Stephen H.; Jibson, Randall W.; Ramirez-Guzman, L.; Schmitt, Robert G.

    2014-01-01

    The 2006 Kiholo Bay, Hawaii, earthquake triggered high concentrations of rock falls and slides in the steep canyons of the Kohala Mountains along the north coast of Hawaii. Within these mountains and canyons a complex distribution of landslides was triggered by the earthquake shaking. In parts of the area, landslides were preferentially located on east‐facing slopes, whereas in other parts of the canyons no systematic pattern prevailed with respect to slope aspect or vertical position on the slopes. The geology within the canyons is homogeneous, so we hypothesize that the variable landslide distribution is the result of localized variation in ground shaking; therefore, we used a state‐of‐the‐art, high‐resolution ground‐motion simulation model to see if it could reproduce the landslide‐distribution patterns. We used a 3D finite‐element analysis to model earthquake shaking using a 10 m digital elevation model and slip on a finite‐fault model constructed from teleseismic records of the mainshock. Ground velocity time histories were calculated up to a frequency of 5 Hz. Dynamic shear strain also was calculated and compared with the landslide distribution. Results were mixed for the velocity simulations, with some areas showing correlation of landslide locations with peak modeled ground motions but many other areas showing no such correlation. Results were much improved for the comparison with dynamic shear strain. This suggests that (1) rock falls and slides are possibly triggered by higher frequency ground motions (velocities) than those in our simulations, (2) the ground‐motion velocity model needs more refinement, or (3) dynamic shear strain may be a more fundamental measurement of the decoupling process of slope materials during seismic shaking.

  15. Modeling of an Oil-Free Carbon Dioxide Compressor Using Sanderson-Rocker Arm Motion (S-RAM) Mechanism

    NASA Astrophysics Data System (ADS)

    Yang, Bin; Kurtulus, Orkan; Groll, Eckhard A.

    2015-08-01

    A simulation model to predict the performance of a prototype CO2 compressor is presented. This prototype compressor employs the Sanderson-Rocker Arm Motion (S-RAM) mechanism, which converts the rotary motion of the shaft into a linear reciprocating motion of the cylinders. The piston stroke can be variable by changing the incline angle between the connecting rod and compressor main shaft centerline. The compressor model is mainly composed of two main sub-models simulating the kinematics of the drive mechanism and the compression process. A valve sub-model is included in the compression process model.

  16. Automated 3D Motion Tracking using Gabor Filter Bank, Robust Point Matching, and Deformable Models

    PubMed Central

    Wang, Xiaoxu; Chung, Sohae; Metaxas, Dimitris; Axel, Leon

    2013-01-01

    Tagged Magnetic Resonance Imaging (tagged MRI or tMRI) provides a means of directly and noninvasively displaying the internal motion of the myocardium. Reconstruction of the motion field is needed to quantify important clinical information, e.g., the myocardial strain, and detect regional heart functional loss. In this paper, we present a three-step method for this task. First, we use a Gabor filter bank to detect and locate tag intersections in the image frames, based on local phase analysis. Next, we use an improved version of the Robust Point Matching (RPM) method to sparsely track the motion of the myocardium, by establishing a transformation function and a one-to-one correspondence between grid tag intersections in different image frames. In particular, the RPM helps to minimize the impact on the motion tracking result of: 1) through-plane motion, and 2) relatively large deformation and/or relatively small tag spacing. In the final step, a meshless deformable model is initialized using the transformation function computed by RPM. The model refines the motion tracking and generates a dense displacement map, by deforming under the influence of image information, and is constrained by the displacement magnitude to retain its geometric structure. The 2D displacement maps in short and long axis image planes can be combined to drive a 3D deformable model, using the Moving Least Square method, constrained by the minimization of the residual error at tag intersections. The method has been tested on a numerical phantom, as well as on in vivo heart data from normal volunteers and heart disease patients. The experimental results show that the new method has a good performance on both synthetic and real data. Furthermore, the method has been used in an initial clinical study to assess the differences in myocardial strain distributions between heart disease (left ventricular hypertrophy) patients and the normal control group. The final results show that the proposed method

  17. Conformal field theory on affine Lie groups

    SciTech Connect

    Clubok, K.S.

    1996-04-01

    Working directly on affine Lie groups, we construct several new formulations of the WZW model, the gauged WZW model, and the generic affine-Virasoro action. In one formulation each of these conformal field theories (CFTs) is expressed as a one-dimensional mechanical system whose variables are coordinates on the affine Lie group. When written in terms of the affine group element, this formulation exhibits a two-dimensional WZW term. In another formulation each CFT is written as a two-dimensional field theory, with a three- dimensional WZW term, whose fields are coordinates on the affine group. On the basis of these equivalent formulations, we develop a translation dictionary in which the new formulations on the affine Lie group are understood as mode formulations of the conventional formulations on the Lie group. Using this dictionary, we also express each CFT as a three-dimensional field theory on the Lie group with a four-dimensional WZW term. 36 refs.

  18. Impact of solar radiation pressure modeling on GNSS-derived geocenter motion

    NASA Astrophysics Data System (ADS)

    Hugentobler, U.; Rodriguez-Solano, C.; Steigenberger, P.; Fritsche, M.

    2012-04-01

    The geocenter motion, i.e., the variations of the Earth's center of mass with respect to a crust-based reference frame, derived from GPS measurements shows apparent displacements at orbit related frequencies. In previous studies, harmonics of the GPS draconitic period (the repeat period of the Sun with respect to. the satellite constellation) have been identified in the Z-component of the geocenter. The acceleration and orbit perturbations caused by solar radiation pressure (SRP) have a strong dependency on the relative position of satellite, Earth and Sun, and therefore they exhibit a long-term draconitic periodicity. Mismodeling of this perturbing acceleration is a potential cause for the observed anomalous frequencies in the geocenter motion. In this study, we compute two multi-year GPS/GLONASS solutions. The first one uses an empirical parameterization of the SRP widely used within the IGS (International GNSS Service), namely the CODE (Center for Orbit Determination in Europe) empirical model. The second one uses a recently developed SRP model based on the physical interaction between solar radiation and satellite, capable of fitting the GNSS tracking data, called adjustable box-wing model. These two multi-year solutions allow studying the impact of solar radiation pressure modeling on the GNSS-derived geocenter motion and indicate the potential for reduction of technique-specific artifacts in the geodetic time series.

  19. Two modes of motion of the alligator lizard cochlea: Measurements and model predictions

    NASA Astrophysics Data System (ADS)

    Aranyosi, A. J.; Freeman, Dennis M.

    2005-09-01

    Measurements of motion of an in vitro preparation of the alligator lizard basilar papilla in response to sound demonstrate elliptical trajectories. These trajectories are consistent with the presence of both a translational and rotational mode of motion. The translational mode is independent of frequency, and the rotational mode has a displacement peak near 5 kHz. These measurements can be explained by a simple mechanical system in which the basilar papilla is supported asymmetrically on the basilar membrane. In a quantitative model, the translational admittance is compliant while the rotational admittance is second order. Best-fit model parameters are consistent with estimates based on anatomy and predict that fluid flow across hair bundles is a primary source of viscous damping. The model predicts that the rotational mode contributes to the high-frequency slopes of auditory nerve fiber tuning curves, providing a physical explanation for a low-pass filter required in models of this cochlea. The combination of modes makes the sensitivity of hair bundles more uniform with radial position than that which would result from pure rotation. A mechanical analogy with the organ of Corti suggests that these two modes of motion may also be present in the mammalian cochlea.

  20. A continuous 4D motion model from multiple respiratory cycles for use in lung radiotherapy.

    PubMed

    McClelland, Jamie R; Blackall, Jane M; Tarte, Ségolène; Chandler, Adam C; Hughes, Simon; Ahmad, Shahreen; Landau, David B; Hawkes, David J

    2006-09-01

    Respiratory motion causes errors when planning and delivering radiotherapy treatment to lung cancer patients. To reduce these errors, methods of acquiring and using four-dimensional computed tomography (4DCT) datasets have been developed. We have developed a novel method of constructing computational motion models from 4DCT. The motion models attempt to describe an average respiratory cycle, which reduces the effects of variation between different cycles. They require substantially less memory than a 4DCT dataset, are continuous in space and time, and facilitate automatic target propagation and combining of doses over the respiratory cycle. The motion models are constructed from CT data acquired in cine mode while the patient is free breathing (free breathing CT - FBCT). A "slab" of data is acquired at each couch position, with 3-4 contiguous slabs being acquired per patient. For each slab a sequence of 20 or 30 volumes was acquired over 20 seconds. A respiratory signal is simultaneously recorded in order to calculate the position in the respiratory cycle for each FBCT. Additionally, a high quality reference CT volume is acquired at breath hold. The reference volume is nonrigidly registered to each of the FBCT volumes. A motion model is then constructed for each slab by temporally fitting the nonrigid registration results. The value of each of the registration parameters is related to the position in the respiratory cycle by fitting an approximating B spline to the registration results. As an approximating function is used, and the data is acquired over several respiratory cycles, the function should model an average respiratory cycle. This can then be used to calculate the value of each degree of freedom at any desired position in the respiratory cycle. The resulting nonrigid transformation will deform the reference volume to predict the contents of the slab at the desired position in the respiratory cycle. The slab model predictions are then concatenated to

  1. Advances and challenges in deformable image registration: From image fusion to complex motion modelling.

    PubMed

    Schnabel, Julia A; Heinrich, Mattias P; Papież, Bartłomiej W; Brady, Sir J Michael

    2016-10-01

    Over the past 20 years, the field of medical image registration has significantly advanced from multi-modal image fusion to highly non-linear, deformable image registration for a wide range of medical applications and imaging modalities, involving the compensation and analysis of physiological organ motion or of tissue changes due to growth or disease patterns. While the original focus of image registration has predominantly been on correcting for rigid-body motion of brain image volumes acquired at different scanning sessions, often with different modalities, the advent of dedicated longitudinal and cross-sectional brain studies soon necessitated the development of more sophisticated methods that are able to detect and measure local structural or functional changes, or group differences. Moving outside of the brain, cine imaging and dynamic imaging required the development of deformable image registration to directly measure or compensate for local tissue motion. Since then, deformable image registration has become a general enabling technology. In this work we will present our own contributions to the state-of-the-art in deformable multi-modal fusion and complex motion modelling, and then discuss remaining challenges and provide future perspectives to the field.

  2. Advances and challenges in deformable image registration: From image fusion to complex motion modelling.

    PubMed

    Schnabel, Julia A; Heinrich, Mattias P; Papież, Bartłomiej W; Brady, Sir J Michael

    2016-10-01

    Over the past 20 years, the field of medical image registration has significantly advanced from multi-modal image fusion to highly non-linear, deformable image registration for a wide range of medical applications and imaging modalities, involving the compensation and analysis of physiological organ motion or of tissue changes due to growth or disease patterns. While the original focus of image registration has predominantly been on correcting for rigid-body motion of brain image volumes acquired at different scanning sessions, often with different modalities, the advent of dedicated longitudinal and cross-sectional brain studies soon necessitated the development of more sophisticated methods that are able to detect and measure local structural or functional changes, or group differences. Moving outside of the brain, cine imaging and dynamic imaging required the development of deformable image registration to directly measure or compensate for local tissue motion. Since then, deformable image registration has become a general enabling technology. In this work we will present our own contributions to the state-of-the-art in deformable multi-modal fusion and complex motion modelling, and then discuss remaining challenges and provide future perspectives to the field. PMID:27364430

  3. An improved Reynolds-equation model for gas damping of microbeam motion.

    SciTech Connect

    Gallis, Michail A.; Torczynski, John Robert

    2003-09-01

    An improved gas-damping model for the out-of-plane motion of a near-substrate microbeam is developed based on the Reynolds equation (RE). A boundary condition for the RE is developed that relates the pressure at the beam edge to the beam motion. The coefficients in this boundary condition are determined from Navier-Stokes slip-jump (NSSJ) simulations for small slip lengths (relative to the gap height) and from direct simulation Monte Carlo (DSMC) molecular gas dynamics simulations for larger slip lengths. This boundary condition significantly improves the accuracy of the RE when the microbeam width is only slightly greater than the gap height between the microbeam and the substrate. The improved RE model is applied to microbeams fabricated using the SUMMiT V process.

  4. Molecular Motion of the Junction Points in Model Networks Prepared by Acyclic Triene Metathesis.

    PubMed

    da Silva, Lucas Caire; Bowers, Clifford R; Graf, Robert; Wagener, Kenneth B

    2016-03-01

    The junction dynamics in a selectively deuterated model polymer network containing junctions on every 21st chain carbon is studied by solid state (2) H echo NMR. Polymer networks are prepared via acyclic triene metathesis of deuteron-labeled symmetric trienes with deuteron probes precisely placed at the alpha carbon relative to the junction point. The effect of decreasing the cross-link density on the junction dynamics is studied by introduction of polybutadiene chains in-between junctions. The networks are characterized by swelling, gel content, and solid state (1) H MAS NMR. Line shape analysis of the (2) H quadrupolar echo spectra reveals that the degree of motion anisotropy and the distribution of motion correlation times depend on the cross-link density and structural heterogeneity of the polymer networks. A detailed model of the junction dynamics at different temperatures is proposed and explained in terms of the intermolecular cooperativity in densely-packed systems. PMID:26787457

  5. Analysis of a system modelling the motion of a piston in a viscous gas

    NASA Astrophysics Data System (ADS)

    Maity, Debayan; Takahashi, Takéo; Tucsnak, Marius

    2016-09-01

    We study a free boundary problem modelling the motion of a piston in a viscous gas. The gas-piston system fills a cylinder with fixed extremities, which possibly allow gas from the exterior to penetrate inside the cylinder. The gas is modeled by the 1D compressible Navier-Stokes system and the piston motion is described by the second Newton's law. We prove the existence and uniqueness of global in time strong solutions. The main novelty brought in by our results is that they include the case of nonhomogeneous boundary conditions which, as far as we know, have not been studied in this context. Moreover, even for homogeneous boundary conditions, our results require less regularity of the initial data than those obtained in previous works.

  6. Models of Postural Control: Shared Variance in Joint and COM Motions.

    PubMed

    Kilby, Melissa C; Molenaar, Peter C M; Newell, Karl M

    2015-01-01

    This paper investigated the organization of the postural control system in human upright stance. To this aim the shared variance between joint and 3D total body center of mass (COM) motions was analyzed using multivariate canonical correlation analysis (CCA). The CCA was performed as a function of established models of postural control that varied in their joint degrees of freedom (DOF), namely, an inverted pendulum ankle model (2DOF), ankle-hip model (4DOF), ankle-knee-hip model (5DOF), and ankle-knee-hip-neck model (7DOF). Healthy young adults performed various postural tasks (two-leg and one-leg quiet stances, voluntary AP and ML sway) on a foam and rigid surface of support. Based on CCA model selection procedures, the amount of shared variance between joint and 3D COM motions and the cross-loading patterns we provide direct evidence of the contribution of multi-DOF postural control mechanisms to human balance. The direct model fitting of CCA showed that incrementing the DOFs in the model through to 7DOF was associated with progressively enhanced shared variance with COM motion. In the 7DOF model, the first canonical function revealed more active involvement of all joints during more challenging one leg stances and dynamic posture tasks. Furthermore, the shared variance was enhanced during the dynamic posture conditions, consistent with a reduction of dimension. This set of outcomes shows directly the degeneracy of multivariate joint regulation in postural control that is influenced by stance and surface of support conditions.

  7. Femtomolar Zn(II) affinity in a peptide-based ligand designed to model thiolate-rich metalloprotein active sites.

    PubMed

    Petros, Amy K; Reddi, Amit R; Kennedy, Michelle L; Hyslop, Alison G; Gibney, Brian R

    2006-12-11

    Metal-ligand interactions are critical components of metalloprotein assembly, folding, stability, electrochemistry, and catalytic function. Research over the past 3 decades on the interaction of metals with peptide and protein ligands has progressed from the characterization of amino acid-metal and polypeptide-metal complexes to the design of folded protein scaffolds containing multiple metal cofactors. De novo metalloprotein design has emerged as a valuable tool both for the modular synthesis of these complex metalloproteins and for revealing the fundamental tenets of metalloprotein structure-function relationships. Our research has focused on using the coordination chemistry of de novo designed metalloproteins to probe the interactions of metal cofactors with protein ligands relevant to biological phenomena. Herein, we present a detailed thermodynamic analysis of Fe(II), Co(II), Zn(II), and[4Fe-4S]2(+/+) binding to IGA, a 16 amino acid peptide ligand containing four cysteine residues, H2N-KLCEGG-CIGCGAC-GGW-CONH2. These studies were conducted to delineate the inherent metal-ion preferences of this unfolded tetrathiolate peptide ligand as well as to evaluate the role of the solution pH on metal-peptide complex speciation. The [4Fe-4S]2(+/+)-IGA complex is both an excellent peptide-based synthetic analogue for natural ferredoxins and is flexible enough to accommodate mononuclear metal-ion binding. Incorporation of a single ferrous ion provides the FeII-IGA complex, a spectroscopic model of a reduced rubredoxin active site that possesses limited stability in aqueous buffers. As expected based on the Irving-Williams series and hard-soft acid-base theory, the Co(II) and Zn(II) complexes of IGA are significantly more stable than the Fe(II) complex. Direct proton competition experiments, coupled with determinations of the conditional dissociation constants over a range of pH values, fully define the thermodynamic stabilities and speciation of each MII-IGA complex. The

  8. Affinity proteomics led identification of vimentin as a potential biomarker in colon cancers: insights from serological screening and computational modelling.

    PubMed

    Bukhari, Shoiab; Mokhdomi, Taseem A; Chikan, Naveed A; Amin, Asif; Qazi, Hilal; Wani, Sajad H; Wafai, Asrar H; Tyub, Sumira; Mustafa, Farhat; Mir, Masood S; Chowdri, Nisar A; Qadri, Raies A

    2015-01-01

    Proteomic analysis using multiplex affinity reagents is perhaps the most reliable strategy to capture differentially expressed proteins that are slightly or immensely modified. In addition to expressional variation, it is comprehensively evident that the immunogenicity of a protein can be a deciding factor for instigating an inflammation afflicted-carcinogenesis. Considering both these factors, a simple and systematic strategy was designed to capture the immunogenic cancer biomarkers from sera of colorectal cancer patients. The affinity reagent, in the form of an antibody repertoire against the secretome of the HT29 cell line was used to grade the sera samples on the basis of the degree of immuno-reactivity and to capture differentially expressed antigens from the patient sera. Following affinity based 2DE-MALDI-TOF; the proteins were identified as (1) soluble vimentin; and (2) TGF-beta-inhibited membrane-associated protein (PP16B), in colon cancer sera and (3) keratin, type II cytoskeletal protein in rectal cancer sera. Pathway reconstruction and protein-protein networking of identified proteins predicted only Vimentin to be physically and genetically engaged in close proximity with the most established colorectal cancer associated tumorigenic pathways. Furthermore, our findings suggest that a possible surface stoichiometric shift in the structure of protein could be due to mutations in the coding sequence of Vimentin that may elicit its enhanced secretion possibly due to protein-hyperphosphorylation. Of the three proteins identified, only Vimentin showed higher expression in sera of colon cancer patients alone. Thus, it could be argued that vimentin might help in predicting individuals at higher risk of developing colon cancers. Our data are therefore suggestive of using vimentin as an antigen for tumor vaccination in an autologous set-up for colon cancers.

  9. Aerodynamic characteristics of the standard dynamics model in coning motion at Mach 0.6

    NASA Technical Reports Server (NTRS)

    Jermey, C.; Schiff, L. B.

    1985-01-01

    A wind tunnel test was conducted on the Standard Dynamics Model (a simplified generic fighter aircraft shape) undergoing coning motion at Mach 0.6. Six component force and moment data are presented for a range of angle of attack, sideslip, and coning rates. At the relatively low non-dimensional coning rate employed (omega b/2V less than or equal to 0.04), the lateral aerodynamic characteristics generally show a linear variation with coning rate.

  10. 3D model-based catheter tracking for motion compensation in EP procedures

    NASA Astrophysics Data System (ADS)

    Brost, Alexander; Liao, Rui; Hornegger, Joachim; Strobel, Norbert

    2010-02-01

    Atrial fibrillation is the most common sustained heart arrhythmia and a leading cause of stroke. Its treatment by radio-frequency catheter ablation, performed using fluoroscopic image guidance, is gaining increasingly more importance. Two-dimensional fluoroscopic navigation can take advantage of overlay images derived from pre-operative 3-D data to add anatomical details otherwise not visible under X-ray. Unfortunately, respiratory motion may impair the utility of these static overlay images for catheter navigation. We developed an approach for image-based 3-D motion compensation as a solution to this problem. A bi-plane C-arm system is used to take X-ray images of a special circumferential mapping catheter from two directions. In the first step of the method, a 3-D model of the device is reconstructed. Three-dimensional respiratory motion at the site of ablation is then estimated by tracking the reconstructed catheter model in 3-D. This step involves bi-plane fluoroscopy and 2-D/3-D registration. Phantom data and clinical data were used to assess our model-based catheter tracking method. Experiments involving a moving heart phantom yielded an average 2-D tracking error of 1.4 mm and an average 3-D tracking error of 1.1 mm. Our evaluation of clinical data sets comprised 469 bi-plane fluoroscopy frames (938 monoplane fluoroscopy frames). We observed an average 2-D tracking error of 1.0 mm +/- 0.4 mm and an average 3-D tracking error of 0.8 mm +/- 0.5 mm. These results demonstrate that model-based motion-compensation based on 2-D/3-D registration is both feasible and accurate.

  11. Motion-compensated coding and frame rate up-conversion: models and analysis.

    PubMed

    Dar, Yehuda; Bruckstein, Alfred M

    2015-07-01

    Block-based motion estimation (ME) and motion compensation (MC) techniques are widely used in modern video processing algorithms and compression systems. The great variety of video applications and devices results in diverse compression specifications, such as frame rates and bit rates. In this paper, we study the effect of frame rate and compression bit rate on block-based ME and MC as commonly utilized in inter-frame coding and frame rate up-conversion (FRUC). This joint examination yields a theoretical foundation for comparing MC procedures in coding and FRUC. First, the video signal is locally modeled as a noisy translational motion of an image. Then, we theoretically model the motion-compensated prediction of available and absent frames as in coding and FRUC applications, respectively. The theoretic MC-prediction error is studied further and its autocorrelation function is calculated, yielding useful separable-simplifications for the coding application. We argue that a linear relation exists between the variance of the MC-prediction error and temporal distance. While the relevant distance in MC coding is between the predicted and reference frames, MC-FRUC is affected by the distance between the frames available for interpolation. We compare our estimates with experimental results and show that the theory explains qualitatively the empirical behavior. Then, we use the models proposed to analyze a system for improving of video coding at low bit rates, using a spatio-temporal scaling. Although this concept is practically employed in various forms, so far it lacked a theoretical justification. We here harness the proposed MC models and present a comprehensive analysis of the system, to qualitatively predict the experimental results.

  12. Motion Compensated Abdominal Diffusion Weighted MRI by Simultaneous Image Registration and Model Estimation (SIR-ME).

    PubMed

    Kurugol, Sila; Freiman, Moti; Afacan, Onur; Domachevsky, Liran; Perez-Rossello, Jeannette M; Callahan, Michael J; Warfield, Simon K

    2015-01-01

    Non-invasive characterization of water molecule's mobility variations by quantitative analysis of diffusion-weighted MRI (DW-MRI) signal decay in the abdomen has the potential to serve as a biomarker in gastrointestinal and oncological applications. Accurate and reproducible estimation of the signal decay model parameters is challenging due to the presence of respiratory, cardiac, and peristalsis motion. Independent registration of each b-value image to the b-value=0 s/mm(2) image prior to parameter estimation might be sub-optimal because of the low SNR and contrast difference between images of varying b-value. In this work, we introduce a motion-compensated parameter estimation framework that simultaneously solves image registration and model estimation (SIR-ME) problems by utilizing the interdependence of acquired volumes along the diffusion weighting dimension. We evaluated the improvement in model parameters estimation accuracy using 16 in-vivo DW-MRI data sets of Crohn's disease patients by comparing parameter estimates obtained using the SIR-ME model to the parameter estimates obtained by fitting the signal decay model to the acquired DW-MRI images. The proposed SIR-ME model reduced the average root-mean-square error between the observed signal and the fitted model by more than 50%. Moreover, the SIR-ME model estimates discriminate between normal and abnormal bowel loops better than the standard parameter estimates.

  13. Depth information in natural environments derived from optic flow by insect motion detection system: a model analysis

    PubMed Central

    Schwegmann, Alexander; Lindemann, Jens P.; Egelhaaf, Martin

    2014-01-01

    Knowing the depth structure of the environment is crucial for moving animals in many behavioral contexts, such as collision avoidance, targeting objects, or spatial navigation. An important source of depth information is motion parallax. This powerful cue is generated on the eyes during translatory self-motion with the retinal images of nearby objects moving faster than those of distant ones. To investigate how the visual motion pathway represents motion-based depth information we analyzed its responses to image sequences recorded in natural cluttered environments with a wide range of depth structures. The analysis was done on the basis of an experimentally validated model of the visual motion pathway of insects, with its core elements being correlation-type elementary motion detectors (EMDs). It is the key result of our analysis that the absolute EMD responses, i.e., the motion energy profile, represent the contrast-weighted nearness of environmental structures during translatory self-motion at a roughly constant velocity. In other words, the output of the EMD array highlights contours of nearby objects. This conclusion is largely independent of the scale over which EMDs are spatially pooled and was corroborated by scrutinizing the motion energy profile after eliminating the depth structure from the natural image sequences. Hence, the well-established dependence of correlation-type EMDs on both velocity and textural properties of motion stimuli appears to be advantageous for representing behaviorally relevant information about the environment in a computationally parsimonious way. PMID:25136314

  14. Depth information in natural environments derived from optic flow by insect motion detection system: a model analysis.

    PubMed

    Schwegmann, Alexander; Lindemann, Jens P; Egelhaaf, Martin

    2014-01-01

    Knowing the depth structure of the environment is crucial for moving animals in many behavioral contexts, such as collision avoidance, targeting objects, or spatial navigation. An important source of depth information is motion parallax. This powerful cue is generated on the eyes during translatory self-motion with the retinal images of nearby objects moving faster than those of distant ones. To investigate how the visual motion pathway represents motion-based depth information we analyzed its responses to image sequences recorded in natural cluttered environments with a wide range of depth structures. The analysis was done on the basis of an experimentally validated model of the visual motion pathway of insects, with its core elements being correlation-type elementary motion detectors (EMDs). It is the key result of our analysis that the absolute EMD responses, i.e., the motion energy profile, represent the contrast-weighted nearness of environmental structures during translatory self-motion at a roughly constant velocity. In other words, the output of the EMD array highlights contours of nearby objects. This conclusion is largely independent of the scale over which EMDs are spatially pooled and was corroborated by scrutinizing the motion energy profile after eliminating the depth structure from the natural image sequences. Hence, the well-established dependence of correlation-type EMDs on both velocity and textural properties of motion stimuli appears to be advantageous for representing behaviorally relevant information about the environment in a computationally parsimonious way. PMID:25136314

  15. Dynamic modeling and motion simulation for a winged hybrid-driven underwater glider

    NASA Astrophysics Data System (ADS)

    Wang, Shu-Xin; Sun, Xiu-Jun; Wang, Yan-Hui; Wu, Jian-Guo; Wang, Xiao-Ming

    2011-03-01

    PETREL, a winged hybrid-driven underwater glider is a novel and practical marine survey platform which combines the features of legacy underwater glider and conventional AUV (autonomous underwater vehicle). It can be treated as a multi-rigid-body system with a floating base and a particular hydrodynamic profile. In this paper, theorems on linear and angular momentum are used to establish the dynamic equations of motion of each rigid body and the effect of translational and rotational motion of internal masses on the attitude control are taken into consideration. In addition, due to the unique external shape with fixed wings and deflectable rudders and the dual-drive operation in thrust and glide modes, the approaches of building dynamic model of conventional AUV and hydrodynamic model of submarine are introduced, and the tailored dynamic equations of the hybrid glider are formulated. Moreover, the behaviors of motion in glide and thrust operation are analyzed based on the simulation and the feasibility of the dynamic model is validated by data from lake field trials.

  16. Internal models of self-motion: computations that suppress vestibular reafference in early vestibular processing.

    PubMed

    Cullen, Kathleen E; Brooks, Jessica X; Jamali, Mohsen; Carriot, Jerome; Massot, Corentin

    2011-05-01

    In everyday life, vestibular sensors are activated by both self-generated and externally applied head movements. The ability to distinguish inputs that are a consequence of our own actions (i.e., active motion) from those that result from changes in the external world (i.e., passive or unexpected motion) is essential for perceptual stability and accurate motor control. Recent work has made progress toward understanding how the brain distinguishes between these two kinds of sensory inputs. We have performed a series of experiments in which single-unit recordings were made from vestibular afferents and central neurons in alert macaque monkeys during rotation and translation. Vestibular afferents showed no differences in firing variability or sensitivity during active movements when compared to passive movements. In contrast, the analyses of neuronal firing rates revealed that neurons at the first central stage of vestibular processing (i.e., in the vestibular nuclei) were effectively less sensitive to active motion. Notably, however, this ability to distinguish between active and passive motion was not a general feature of early central processing, but rather was a characteristic of a distinct group of neurons known to contribute to postural control and spatial orientation. Our most recent studies have addressed how vestibular and proprioceptive inputs are integrated in the vestibular cerebellum, a region likely to be involved in generating an internal model of self-motion. We propose that this multimodal integration within the vestibular cerebellum is required for eliminating self-generated vestibular information from the subsequent computation of orientation and posture control at the first central stage of processing.

  17. [Model of the perception of perturbed angular motion of the cockpit as part of pilot's information model].

    PubMed

    Azarskov, V N; Blokhin, L N; Burdin, V V; Voronin, L I

    1991-01-01

    This paper presents the method, algorithm and results of structural identification as a model of pilot's perception of perturbed angular motion of the cockpit and its transmission to the joystick as well as spectral density of the remnant corresponding to the transmission process. Assessments of scalar quasilinear and (more effective) multichannel models of pilot's functions are given. The assessments have been obtained for a single operator. They illustrate the potentials of this procedure.

  18. Development of ground motion attenuation relationships for southern Italy based on attenuation models and stochastic simulations

    NASA Astrophysics Data System (ADS)

    D'Amico, Sebastiano

    2011-12-01

    The evaluation of the expected peak ground motion caused by an earthquake is an important problem in earthquake seismology. It is particularly important for regions where strong-motion data are lacking. With the approach presented in this study of using data from small earthquakes, it is possible to extrapolate the peak motion parameters beyond the magnitude range of the weak-motion data set on which they are calculated. To provide a description of the high frequency attenuation and ground motion parameters in southern Italy we used seismic recordings coming from two different projects: the SAPTEX (Southern Apennines Tomography Experiment) and the CAT/SCAN (Calabria Apennine Tyrrhenian - Subduction Collision Accretion Network). We used about 10,000 records with magnitudes between M=2.5 and M=4.7. Using regression model with the large number of weak-motion data, the regional propagation and the absolute source scaling were determined. To properly calibrate the source scaling it was necessary to compute moment magnitudes of several events in the data set. We computed the moment tensor solutions using the "Cut And Paste" and the SLUMT methods. Both methods determine the source depth, moment magnitude and focal mechanisms using a grid search technique. The methods provide quality solutions in the area in a magnitude range (2.5-4.5) that has been too small to be included in the Italian national earthquake catalogues. The derived database of focal mechanisms allowed us to better detail the transitional area in the Messina Strait between the extensional domain related to subduction trench retreat (southern Calabria) and the compressional one associated with continental collision (central-western Sicily). Stochastic simulations are generated for finite-fault ruptures using the derived propagation parameters to predict the absolute peaks of the ground acceleration for several faults, magnitude, and distance range, as well as beyond the magnitude range of the weak-motion

  19. 4D human body posture estimation based on a motion capture system and a multi-rigid link model.

    PubMed

    Yoshikawa, Naoya; Suzuki, Yasuyuki; Ozaki, Wataru; Yamamoto, Tomohisa; Nomura, Taishin

    2012-01-01

    Human motion analysis in various fields such as neurophysiology, clinical medicine, and sports sciences utilizes a multi-rigid link model of a human body for considering kinetics by solving inverse dynamics of a motion, in which a motion capture system with reflective markers are often used to measure the motion, and then the obtained motion are mapped onto the multi-rigid link model. However, algorithms for such a mapping from spatio-temporal positions of the markers to the corresponding posture of the model are not always fully disclosed. Moreover, a common difficulty for such algorithms is an error caused by displacements of the markers attached on the body surface, referred to as the skin motion error. In this study, we developed a simple algorithm that maps positions of the markers to the corresponding posture of a rigid link model, and examined accuracy of the algorithm by evaluating quantitatively differences between the measured and the estimated posture. We also analyzed the skin motion error. It is shown that magnitude of the error was determined not only by the amplitude of the skin motion, but also by the direction of the marker displacement relative to the frame of reference attached to each segment of the body.

  20. Identification of Motions in Membrane Proteins by Elastic Network Models and Their Experimental Validation

    PubMed Central

    Isin, Basak; Tirupula, Kalyan C.; Oltvai, Zoltán N.; Klein-Seetharaman, Judith; Bahar, Ivet

    2016-01-01

    Identifying the functional motions of membrane proteins is difficult because they range from large-scale collective dynamics to local small atomic fluctuations at different timescales that are difficult to measure experimentally due to the hydrophobic nature of these proteins. Elastic Network Models, and in particular their most widely used implementation, the Anisotropic Network Model (ANM), have proven to be useful computational methods in many recent applications to predict membrane protein dynamics. These models are based on the premise that biomolecules possess intrinsic mechanical characteristics uniquely defined by their particular architectures. In the ANM, interactions between residues in close proximity are represented by harmonic potentials with a uniform spring constant. The slow mode shapes generated by the ANM provide valuable information on the global dynamics of biomolecules that are relevant to their function. In its recent extension in the form of ANM-guided molecular dynamics (MD), this coarse-grained approach is augmented with atomic detail. The results from ANM and its extensions can be used to guide experiments and thus speedup the process of quantifying motions in membrane proteins. Testing the predictions can be accomplished through (a) direct observation of motions through studies of structure and biophysical probes, (b) perturbation of the motions by, e.g., cross-linking or site-directed mutagenesis, and (c) by studying the effects of such perturbations on protein function, typically through ligand binding and activity assays. To illustrate the applicability of the combined computational ANM—experimental testing framework to membrane proteins, we describe—alongside the general protocols—here the application of ANM to rhodopsin, a prototypical member of the pharmacologically relevant G-protein coupled receptor family. PMID:22976035

  1. Automatic 3D motion estimation of left ventricle from C-arm rotational angiocardiography using a prior motion model and learning based boundary detector.

    PubMed

    Chen, Mingqing; Zheng, Yefeng; Wang, Yang; Mueller, Kerstin; Lauritsch, Guenter

    2013-01-01

    Compared to pre-operative imaging modalities, it is more convenient to estimate the current cardiac physiological status from C-arm angiocardiography since C-arm is a widely used intra-operative imaging modality to guide many cardiac interventions. The 3D shape and motion of the left ventricle (LV) estimated from rotational angiocardiography provide important cardiac function measurements, e.g., ejection fraction and myocardium motion dyssynchrony. However, automatic estimation of the 3D LV motion is difficult since all anatomical structures overlap on the 2D X-ray projections and the nearby confounding strong image boundaries (e.g., pericardium) often cause ambiguities to LV endocardium boundary detection. In this paper, a new framework is proposed to overcome the aforementioned difficulties: (1) A new learning-based boundary detector is developed by training a boosting boundary classifier combined with the principal component analysis of a local image patch; (2) The prior LV motion model is learned from a set of dynamic cardiac computed tomography (CT) sequences to provide a good initial estimate of the 3D LV shape of different cardiac phases; (3) The 3D motion trajectory is learned for each mesh point; (4) All these components are integrated into a multi-surface graph optimization method to extract the globally coherent motion. The method is tested on seven patient scans, showing significant improvement on the ambiguous boundary cases with a detection accuracy of 2.87 +/- 1.00 mm on LV endocardium boundary delineation in the 2D projections.

  2. Automatic 3D motion estimation of left ventricle from C-arm rotational angiocardiography using a prior motion model and learning based boundary detector.

    PubMed

    Chen, Mingqing; Zheng, Yefeng; Wang, Yang; Mueller, Kerstin; Lauritsch, Guenter

    2013-01-01

    Compared to pre-operative imaging modalities, it is more convenient to estimate the current cardiac physiological status from C-arm angiocardiography since C-arm is a widely used intra-operative imaging modality to guide many cardiac interventions. The 3D shape and motion of the left ventricle (LV) estimated from rotational angiocardiography provide important cardiac function measurements, e.g., ejection fraction and myocardium motion dyssynchrony. However, automatic estimation of the 3D LV motion is difficult since all anatomical structures overlap on the 2D X-ray projections and the nearby confounding strong image boundaries (e.g., pericardium) often cause ambiguities to LV endocardium boundary detection. In this paper, a new framework is proposed to overcome the aforementioned difficulties: (1) A new learning-based boundary detector is developed by training a boosting boundary classifier combined with the principal component analysis of a local image patch; (2) The prior LV motion model is learned from a set of dynamic cardiac computed tomography (CT) sequences to provide a good initial estimate of the 3D LV shape of different cardiac phases; (3) The 3D motion trajectory is learned for each mesh point; (4) All these components are integrated into a multi-surface graph optimization method to extract the globally coherent motion. The method is tested on seven patient scans, showing significant improvement on the ambiguous boundary cases with a detection accuracy of 2.87 +/- 1.00 mm on LV endocardium boundary delineation in the 2D projections. PMID:24505748

  3. Vesicle Motion during Sustained Exocytosis in Chromaffin Cells: Numerical Model Based on Amperometric Measurements.

    PubMed

    Jarukanont, Daungruthai; Bonifas Arredondo, Imelda; Femat, Ricardo; Garcia, Martin E

    2015-01-01

    Chromaffin cells release catecholamines by exocytosis, a process that includes vesicle docking, priming and fusion. Although all these steps have been intensively studied, some aspects of their mechanisms, particularly those regarding vesicle transport to the active sites situated at the membrane, are still unclear. In this work, we show that it is possible to extract information on vesicle motion in Chromaffin cells from the combination of Langevin simulations and amperometric measurements. We developed a numerical model based on Langevin simulations of vesicle motion towards the cell membrane and on the statistical analysis of vesicle arrival times. We also performed amperometric experiments in bovine-adrenal Chromaffin cells under Ba2+ stimulation to capture neurotransmitter releases during sustained exocytosis. In the sustained phase, each amperometric peak can be related to a single release from a new vesicle arriving at the active site. The amperometric signal can then be mapped into a spike-series of release events. We normalized the spike-series resulting from the current peaks using a time-rescaling transformation, thus making signals coming from different cells comparable. We discuss why the obtained spike-series may contain information about the motion of all vesicles leading to release of catecholamines. We show that the release statistics in our experiments considerably deviate from Poisson processes. Moreover, the interspike-time probability is reasonably well described by two-parameter gamma distributions. In order to interpret this result we computed the vesicles' arrival statistics from our Langevin simulations. As expected, assuming purely diffusive vesicle motion we obtain Poisson statistics. However, if we assume that all vesicles are guided toward the membrane by an attractive harmonic potential, simulations also lead to gamma distributions of the interspike-time probability, in remarkably good agreement with experiment. We also show that

  4. Vesicle Motion during Sustained Exocytosis in Chromaffin Cells: Numerical Model Based on Amperometric Measurements.

    PubMed

    Jarukanont, Daungruthai; Bonifas Arredondo, Imelda; Femat, Ricardo; Garcia, Martin E

    2015-01-01

    Chromaffin cells release catecholamines by exocytosis, a process that includes vesicle docking, priming and fusion. Although all these steps have been intensively studied, some aspects of their mechanisms, particularly those regarding vesicle transport to the active sites situated at the membrane, are still unclear. In this work, we show that it is possible to extract information on vesicle motion in Chromaffin cells from the combination of Langevin simulations and amperometric measurements. We developed a numerical model based on Langevin simulations of vesicle motion towards the cell membrane and on the statistical analysis of vesicle arrival times. We also performed amperometric experiments in bovine-adrenal Chromaffin cells under Ba2+ stimulation to capture neurotransmitter releases during sustained exocytosis. In the sustained phase, each amperometric peak can be related to a single release from a new vesicle arriving at the active site. The amperometric signal can then be mapped into a spike-series of release events. We normalized the spike-series resulting from the current peaks using a time-rescaling transformation, thus making signals coming from different cells comparable. We discuss why the obtained spike-series may contain information about the motion of all vesicles leading to release of catecholamines. We show that the release statistics in our experiments considerably deviate from Poisson processes. Moreover, the interspike-time probability is reasonably well described by two-parameter gamma distributions. In order to interpret this result we computed the vesicles' arrival statistics from our Langevin simulations. As expected, assuming purely diffusive vesicle motion we obtain Poisson statistics. However, if we assume that all vesicles are guided toward the membrane by an attractive harmonic potential, simulations also lead to gamma distributions of the interspike-time probability, in remarkably good agreement with experiment. We also show that

  5. Vesicle Motion during Sustained Exocytosis in Chromaffin Cells: Numerical Model Based on Amperometric Measurements

    PubMed Central

    Jarukanont, Daungruthai; Bonifas Arredondo, Imelda; Femat, Ricardo; Garcia, Martin E.

    2015-01-01

    Chromaffin cells release catecholamines by exocytosis, a process that includes vesicle docking, priming and fusion. Although all these steps have been intensively studied, some aspects of their mechanisms, particularly those regarding vesicle transport to the active sites situated at the membrane, are still unclear. In this work, we show that it is possible to extract information on vesicle motion in Chromaffin cells from the combination of Langevin simulations and amperometric measurements. We developed a numerical model based on Langevin simulations of vesicle motion towards the cell membrane and on the statistical analysis of vesicle arrival times. We also performed amperometric experiments in bovine-adrenal Chromaffin cells under Ba2+ stimulation to capture neurotransmitter releases during sustained exocytosis. In the sustained phase, each amperometric peak can be related to a single release from a new vesicle arriving at the active site. The amperometric signal can then be mapped into a spike-series of release events. We normalized the spike-series resulting from the current peaks using a time-rescaling transformation, thus making signals coming from different cells comparable. We discuss why the obtained spike-series may contain information about the motion of all vesicles leading to release of catecholamines. We show that the release statistics in our experiments considerably deviate from Poisson processes. Moreover, the interspike-time probability is reasonably well described by two-parameter gamma distributions. In order to interpret this result we computed the vesicles’ arrival statistics from our Langevin simulations. As expected, assuming purely diffusive vesicle motion we obtain Poisson statistics. However, if we assume that all vesicles are guided toward the membrane by an attractive harmonic potential, simulations also lead to gamma distributions of the interspike-time probability, in remarkably good agreement with experiment. We also show that

  6. Modeling of marangoni-induced droplet motion and melt convection during solidification of hypermonotectic alloys

    NASA Astrophysics Data System (ADS)

    Wu, Menghuai; Ludwig, Andreas; Ratke, Lorenz

    2003-12-01

    A two-phase volume averaging approach to model Marangoni-induced droplet motion of the minority liquid phase and the convection in the parent melt during solidification of the hypermonotectic alloys is presented. The minority liquid phase decomposed from the parent melt as droplets in the miscibility gap was treated as the second-phase L 2. The parent melt including the solidified monotectic matrix was treated as the first phase L 1. Both phases were considered as different and spatially interpenetrating continua. The conservation equations of mass, momentum, solute, and enthalpy for both phases, and an additional transport equation for the droplet density, were solved. Nucleation of the L 2 droplets, diffusion-controlled growth, interphase interactions such as Marangoni force at the L 1- L 2 interface, Stokes force, solute partitioning, and heat release of decomposition were taken into account by corresponding source and exchange terms in the conservation equations. The monotectic reaction was modeled by adding the latent heat on the L 1 phase during monotectic reaction, and applying an enlarged viscosity to the solidified monotectic matrix. A two-dimensional (2-D) square casting with hypermonotectic composition (Al-10 wt pct Bi) was simulated. This paper focused on Marangoni motion, hence gravity was not included. Results with nucleation, droplet evolution, Marangoni-induced droplet motion, solute transport, and macrosegregation formation were obtained and discussed.

  7. Visual fatigue modeling for stereoscopic video shot based on camera motion

    NASA Astrophysics Data System (ADS)

    Shi, Guozhong; Sang, Xinzhu; Yu, Xunbo; Liu, Yangdong; Liu, Jing

    2014-11-01

    As three-dimensional television (3-DTV) and 3-D movie become popular, the discomfort of visual feeling limits further applications of 3D display technology. The cause of visual discomfort from stereoscopic video conflicts between accommodation and convergence, excessive binocular parallax, fast motion of objects and so on. Here, a novel method for evaluating visual fatigue is demonstrated. Influence factors including spatial structure, motion scale and comfortable zone are analyzed. According to the human visual system (HVS), people only need to converge their eyes to the specific objects for static cameras and background. Relative motion should be considered for different camera conditions determining different factor coefficients and weights. Compared with the traditional visual fatigue prediction model, a novel visual fatigue predicting model is presented. Visual fatigue degree is predicted using multiple linear regression method combining with the subjective evaluation. Consequently, each factor can reflect the characteristics of the scene, and the total visual fatigue score can be indicated according to the proposed algorithm. Compared with conventional algorithms which ignored the status of the camera, our approach exhibits reliable performance in terms of correlation with subjective test results.

  8. Uncertainty of earthquake losses due to model uncertainty of input ground motions in the Los Angeles area

    USGS Publications Warehouse

    Cao, T.; Petersen, M.D.

    2006-01-01

    In a recent study we used the Monte Carlo simulation method to evaluate the ground-motion uncertainty of the 2002 update of the California probabilistic seismic hazard model. The resulting ground-motion distribution is used in this article to evaluate the contribution of the hazard model to the uncertainty in earthquake loss ratio, the ratio of the expected loss to the total value of a structure. We use the Hazards U.S. (HAZUS) methodology for loss estimation because it is a widely used and publicly available risk model and intended for regional studies by public agencies and for use by governmental decision makers. We found that the loss ratio uncertainty depends not only on the ground-motion uncertainty but also on the mean ground-motion level. The ground-motion uncertainty, as measured by the coefficient of variation (COV), is amplified when converting to the loss ratio uncertainty because loss increases concavely with ground motion. By comparing the ground-motion uncertainty with the corresponding loss ratio uncertainty for the structural damage of light wood-frame buildings in Los Angeles area, we show that the COV of loss ratio is almost twice the COV of ground motion with a return period of 475 years around the San Andreas fault and other major faults in the area. The loss ratio for the 2475-year ground-motion maps is about a factor of three higher than for the 475-year maps. However, the uncertainties in ground motion and loss ratio for the longer return periods are lower than for the shorter return periods because the uncertainty parameters in the hazard logic tree are independent of the return period, but the mean ground motion increases with return period.

  9. Simplified unified model for estimating the motion of magnetic nanoparticles within electrohydrodynamic field.

    PubMed

    Seo, Hyeon-Seok; Lee, Sangyoup; Lee, Jong-Chul

    2014-11-01

    In previous research, we studied the electrical breakdown characteristics of a transformer oil-based magnetic fluid; mailnly, those were carried out by the experimental measurements. The first study was aimed at enhancing the dielectric breakdown voltage of transformer oil by adding magnetic nanoparticles experimentally under the official testing condition of dielectric liquids. The next study was focused on explaining the reason why the dielectric characterisitics of the fluids were changed through optically visualizing the particles motion in a microchannel using an optical microscopic measurement and numerically calculating the dielectrophoretic force induced in the fluids with considering only the properties of magnetic nanoparticles. In this study, we developed a simplified unified model for calculating further the motion of magnetic nanoparticles suspended in the presence of electrohydrodynamic field using the COMSOL multiphysics finite element simulation suite and investigated the effects of magnetic nanoparticle dielectrophoretic activity aimed at enhancing the electrical breakdown characteristics of transformer oil. PMID:25958577

  10. Fluid particle motion and Lagrangian velocities for pulsatile flow through a femoral artery branch model

    NASA Technical Reports Server (NTRS)

    Cho, Y. I.; Crawford, D. W.; Back, L. H.; Back, M. R.

    1987-01-01

    A flow visualization study using selective dye injection and frame by frame analysis of a movie provided qualitative and quantitative data on the motion of marked fluid particles in a 60 degree artery branch model for simulation of physiological femoral artery flow. Physical flow features observed included jetting of the branch flow into the main lumen during the brief reverse flow period, flow separation along the main lumen wall during the near zero flow phase of diastole when the core flow was in the downstream direction, and inference of flow separation conditions along the wall opposite the branch later in systole at higher branch flow ratios. There were many similarities between dye particle motions in pulsatile flow and the comparative steady flow observations.

  11. Model-Based Reinforcement of Kinect Depth Data for Human Motion Capture Applications

    PubMed Central

    Calderita, Luis Vicente; Bandera, Juan Pedro; Bustos, Pablo; Skiadopoulos, Andreas

    2013-01-01

    Motion capture systems have recently experienced a strong evolution. New cheap depth sensors and open source frameworks, such as OpenNI, allow for perceiving human motion on-line without using invasive systems. However, these proposals do not evaluate the validity of the obtained poses. This paper addresses this issue using a model-based pose generator to complement the OpenNI human tracker. The proposed system enforces kinematics constraints, eliminates odd poses and filters sensor noise, while learning the real dimensions of the performer's body. The system is composed by a PrimeSense sensor, an OpenNI tracker and a kinematics-based filter and has been extensively tested. Experiments show that the proposed system improves pure OpenNI results at a very low computational cost. PMID:23845933

  12. Self Motion Perception and Motion Sickness

    NASA Technical Reports Server (NTRS)

    Fox, Robert A. (Principal Investigator)

    1991-01-01

    The studies conducted in this research project examined several aspects of motion sickness in animal models. A principle objective of these studies was to investigate the neuroanatomy that is important in motion sickness with the objectives of examining both the utility of putative models and defining neural mechanisms that are important in motion sickness.

  13. Analysis of myocardial motion using generalized spline models and tagged magnetic resonance images

    NASA Astrophysics Data System (ADS)

    Chen, Fang; Rose, Stephen E.; Wilson, Stephen J.; Veidt, Martin; Bennett, Cameron J.; Doddrell, David M.

    2000-06-01

    Heart wall motion abnormalities are the very sensitive indicators of common heart diseases, such as myocardial infarction and ischemia. Regional strain analysis is especially important in diagnosing local abnormalities and mechanical changes in the myocardium. In this work, we present a complete method for the analysis of cardiac motion and the evaluation of regional strain in the left ventricular wall. The method is based on the generalized spline models and tagged magnetic resonance images (MRI) of the left ventricle. The whole method combines dynamical tracking of tag deformation, simulating cardiac movement and accurately computing the regional strain distribution. More specifically, the analysis of cardiac motion is performed in three stages. Firstly, material points within the myocardium are tracked over time using a semi-automated snake-based tag tracking algorithm developed for this purpose. This procedure is repeated in three orthogonal axes so as to generate a set of one-dimensional sample measurements of the displacement field. The 3D-displacement field is then reconstructed from this sample set by using a generalized vector spline model. The spline reconstruction of the displacement field is explicitly expressed as a linear combination of a spline kernel function associated with each sample point and a polynomial term. Finally, the strain tensor (linear or nonlinear) with three direct components and three shear components is calculated by applying a differential operator directly to the displacement function. The proposed method is computationally effective and easy to perform on tagged MR images. The preliminary study has shown potential advantages of using this method for the analysis of myocardial motion and the quantification of regional strain.

  14. Internal models of target motion: expected dynamics overrides measured kinematics in timing manual interceptions.

    PubMed

    Zago, Myrka; Bosco, Gianfranco; Maffei, Vincenzo; Iosa, Marco; Ivanenko, Yuri P; Lacquaniti, Francesco

    2004-04-01

    Prevailing views on how we time the interception of a moving object assume that the visual inputs are informationally sufficient to estimate the time-to-contact from the object's kinematics. Here we present evidence in favor of a different view: the brain makes the best estimate about target motion based on measured kinematics and an a priori guess about the causes of motion. According to this theory, a predictive model is used to extrapolate time-to-contact from expected dynamics (kinetics). We projected a virtual target moving vertically downward on a wide screen with different randomized laws of motion. In the first series of experiments, subjects were asked to intercept this target by punching a real ball that fell hidden behind the screen and arrived in synchrony with the visual target. Subjects systematically timed their motor responses consistent with the assumption of gravity effects on an object's mass, even when the visual target did not accelerate. With training, the gravity model was not switched off but adapted to nonaccelerating targets by shifting the time of motor activation. In the second series of experiments, there was no real ball falling behind the screen. Instead the subjects were required to intercept the visual target by clicking a mousebutton. In this case, subjects timed their responses consistent with the assumption of uniform motion in the absence of forces, even when the target actually accelerated. Overall, the results are in accord with the theory that motor responses evoked by visual kinematics are modulated by a prior of the target dynamics. The prior appears surprisingly resistant to modifications based on performance errors. PMID:14627663

  15. Use of the stochastic-source model to simulate ground motion and response spectra in northern Vietnam

    NASA Astrophysics Data System (ADS)

    Hung, Tran Viet; Kiyomiya, Osamu

    2013-01-01

    Northern Vietnam has experienced large earthquakes in the past, but waveforms are not mentioned in the Vietnamese Specification for Bridge Design, and the acceleration response spectrum in these specifications has not been adequately studied under Vietnamese seismic conditions. The simulation of future earthquake events based on regional seismicity and a ground motion model is necessary because of the absence of data on strong ground motions. This paper summarizes artificial ground motion procedures, which were studied using a stochastic point-source model. Simulated waveforms were employed to synthesize seismograms with VN L1 and VN L2 ground motions estimated using a 475-year return period (M 5.8) and the largest recorded earthquake events (M 7.0). Ground motions were simulated using different source parameters and their response spectra were compared with corresponding available data. As a result, target response spectra are proposed for future earthquake-resistant design in Vietnam.

  16. Affine projective Osserman structures

    NASA Astrophysics Data System (ADS)

    Gilkey, P.; Nikčević, S.

    2013-08-01

    By considering the projectivized spectrum of the Jacobi operator, we introduce the concept of projective Osserman manifold in both the affine and in the pseudo-Riemannian settings. If M is an affine projective Osserman manifold, then the deformed Riemannian extension metric on the cotangent bundle is both spacelike and timelike projective Osserman. Since any rank-1-symmetric space is affine projective Osserman, this provides additional information concerning the cotangent bundle of a rank-1 Riemannian symmetric space with the deformed Riemannian extension metric. We construct other examples of affine projective Osserman manifolds where the Ricci tensor is not symmetric and thus the connection in question is not the Levi-Civita connection of any metric. If the dimension is odd, we use methods of algebraic topology to show the Jacobi operator of an affine projective Osserman manifold has only one non-zero eigenvalue and that eigenvalue is real.

  17. Velocity and Density Models Incorporating the Cascadia Subduction Zone for 3D Earthquake Ground Motion Simulations

    USGS Publications Warehouse

    Stephenson, William J.

    2007-01-01

    INTRODUCTION In support of earthquake hazards and ground motion studies in the Pacific Northwest, three-dimensional P- and S-wave velocity (3D Vp and Vs) and density (3D rho) models incorporating the Cascadia subduction zone have been developed for the region encompassed from about 40.2?N to 50?N latitude, and from about -122?W to -129?W longitude. The model volume includes elevations from 0 km to 60 km (elevation is opposite of depth in model coordinates). Stephenson and Frankel (2003) presented preliminary ground motion simulations valid up to 0.1 Hz using an earlier version of these models. The version of the model volume described here includes more structural and geophysical detail, particularly in the Puget Lowland as required for scenario earthquake simulations in the development of the Seattle Urban Hazards Maps (Frankel and others, 2007). Olsen and others (in press) used the model volume discussed here to perform a Cascadia simulation up to 0.5 Hz using a Sumatra-Andaman Islands rupture history. As research from the EarthScope Program (http://www.earthscope.org) is published, a wealth of important detail can be added to these model volumes, particularly to depths of the upper-mantle. However, at the time of development for this model version, no EarthScope-specific results were incorporated. This report is intended to be a reference for colleagues and associates who have used or are planning to use this preliminary model in their research. To this end, it is intended that these models will be considered a beginning template for a community velocity model of the Cascadia region as more data and results become available.

  18. A state-based probabilistic model for tumor respiratory motion prediction

    NASA Astrophysics Data System (ADS)

    Kalet, Alan; Sandison, George; Wu, Huanmei; Schmitz, Ruth

    2010-12-01

    This work proposes a new probabilistic mathematical model for predicting tumor motion and position based on a finite state representation using the natural breathing states of exhale, inhale and end of exhale. Tumor motion was broken down into linear breathing states and sequences of states. Breathing state sequences and the observables representing those sequences were analyzed using a hidden Markov model (HMM) to predict the future sequences and new observables. Velocities and other parameters were clustered using a k-means clustering algorithm to associate each state with a set of observables such that a prediction of state also enables a prediction of tumor velocity. A time average model with predictions based on average past state lengths was also computed. State sequences which are known a priori to fit the data were fed into the HMM algorithm to set a theoretical limit of the predictive power of the model. The effectiveness of the presented probabilistic model has been evaluated for gated radiation therapy based on previously tracked tumor motion in four lung cancer patients. Positional prediction accuracy is compared with actual position in terms of the overall RMS errors. Various system delays, ranging from 33 to 1000 ms, were tested. Previous studies have shown duty cycles for latencies of 33 and 200 ms at around 90% and 80%, respectively, for linear, no prediction, Kalman filter and ANN methods as averaged over multiple patients. At 1000 ms, the previously reported duty cycles range from approximately 62% (ANN) down to 34% (no prediction). Average duty cycle for the HMM method was found to be 100% and 91 ± 3% for 33 and 200 ms latency and around 40% for 1000 ms latency in three out of four breathing motion traces. RMS errors were found to be lower than linear and no prediction methods at latencies of 1000 ms. The results show that for system latencies longer than 400 ms, the time average HMM prediction outperforms linear, no prediction, and the more

  19. Calibration of strong motion models for Central America region and its use in seismic hazard assessment

    NASA Astrophysics Data System (ADS)

    Climent, A.; Benito, M. B.; Piedra, R.; Lindholm, C.; Gaspar-Escribano, J.

    2013-05-01

    We present the results of a study aimed at choosing the more suitable strong-motion models for seismic hazard analysis in the Central America (CA) Region. After a careful revision of the state of the art, different models developed for subduction and volcanic crustal zones, in tectonic environment similar to those of CA, were selected. These models were calibrated with accelerograms recorded in Costa Rica, Nicaragua and El Salvador. The peak ground acceleration PGA and Spectral Acceleration SA (T) derived from the records were compared with the ones predicted by the models in similar conditions of magnitude, distance and soil. The type of magnitude (Ms, Mb, MW), distance (Rhyp, Rrup, etc) and ground motion parameter (maximum horizontal component, geometrical mean, etc ) was taken into account in the comparison with the real data. As results of the analysis, the models which present a best fit with the local data were identified. These models have been applied for carrying out seismic hazard analysis in the region, in the frame of the RESIS II project financed by the Norwegian Foreign Department and also by the Spanish project SISMOCAES. The methodology followed is based on the direct comparison between PGA and SA 5 % damped response values extracted from actual records with the corresponding acceleration values predicted by the selected ground-motion models for similar magnitude, distance and soil conditions. Residuals between observed and predicted values for PGA, and SA (1sec) are calculated and plotted as a function of distance and magnitude, analyzing their deviation from the mean value. Besides and most important, a statistical analysis of the normalized residuals was carry out using the criteria proposed by Scherbaum et al. (2004), which consists in categorizing ground motion models based in a likelihood parameter that reflects the goodness-of-fit of the median values as well as the shape of the underlying distribution of ground motion residuals. Considering

  20. Theoretical model for coupled radial and translational motion of two bubbles at arbitrary separation distances.

    PubMed

    Doinikov, Alexander A; Bouakaz, Ayache

    2015-10-01

    A theoretical model is developed that describes nonlinear spherical pulsations and translational motions of two interacting bubbles at arbitrary separation distances between the bubbles. The derivation of the model is based on the multipole expansion of the bubble velocity potentials and the use of the Lagrangian formalism. The model consists of four coupled ordinary differential equations. Two of them are modified Rayleigh-Plesset equations for the radial oscillations of the bubbles and the other two describe the translational displacement of the bubble centers. The equations are not subject to the assumption that the distance between the bubbles is large compared to the bubble radii and hence make it possible to simulate the bubble dynamics starting from large separation distances up to contact between the bubbles providing that the deviation of the bubble shape from sphericity is negligible. Numerical simulations are carried out to demonstrate the capabilities of the developed model. It is shown that the correct modeling of the translational dynamics of the bubbles at small separation distances requires terms accurate up to ninth order in the inverse separation distance. Physical mechanisms are analyzed that lead to the change of the direction of the relative translational motion of the bubbles in finite-amplitude acoustic fields.

  1. Evaluation of a computational model to predict elbow range of motion

    PubMed Central

    Nishiwaki, Masao; Johnson, James A.; King, Graham J. W.; Athwal, George S.

    2014-01-01

    Computer models capable of predicting elbow flexion and extension range of motion (ROM) limits would be useful for assisting surgeons in improving the outcomes of surgical treatment of patients with elbow contractures. A simple and robust computer-based model was developed that predicts elbow joint ROM using bone geometries calculated from computed tomography image data. The model assumes a hinge-like flexion-extension axis, and that elbow passive ROM limits can be based on terminal bony impingement. The model was validated against experimental results with a cadaveric specimen, and was able to predict the flexion and extension limits of the intact joint to 0° and 3°, respectively. The model was also able to predict the flexion and extension limits to 1° and 2°, respectively, when simulated osteophytes were inserted into the joint. Future studies based on this approach will be used for the prediction of elbow flexion-extension ROM in patients with primary osteoarthritis to help identify motion-limiting hypertrophic osteophytes, and will eventually permit real-time computer-assisted navigated excisions. PMID:24841799

  2. Modeling Pancreatic Tumor Motion Using 4-Dimensional Computed Tomography and Surrogate Markers

    SciTech Connect

    Huguet, Florence; Yorke, Ellen D.; Davidson, Margaret; Zhang, Zhigang; Jackson, Andrew; Mageras, Gig S.; Wu, Abraham J.; Goodman, Karyn A.

    2015-03-01

    Purpose: To assess intrafractional positional variations of pancreatic tumors using 4-dimensional computed tomography (4D-CT), their impact on gross tumor volume (GTV) coverage, the reliability of biliary stent, fiducial seeds, and the real-time position management (RPM) external marker as tumor surrogates for setup of respiratory gated treatment, and to build a correlative model of tumor motion. Methods and Materials: We analyzed the respiration-correlated 4D-CT images acquired during simulation of 36 patients with either a biliary stent (n=16) or implanted fiducials (n=20) who were treated with RPM respiratory gated intensity modulated radiation therapy for locally advanced pancreatic cancer. Respiratory displacement relative to end-exhalation was measured for the GTV, the biliary stent, or fiducial seeds, and the RPM marker. The results were compared between the full respiratory cycle and the gating interval. Linear mixed model was used to assess the correlation of GTV motion with the potential surrogate markers. Results: The average ± SD GTV excursions were 0.3 ± 0.2 cm in the left-right direction, 0.6 ± 0.3 cm in the anterior-posterior direction, and 1.3 ± 0.7 cm in the superior-inferior direction. Gating around end-exhalation reduced GTV motion by 46% to 60%. D95% was at least the prescribed 56 Gy in 76% of patients. GTV displacement was associated with the RPM marker, the biliary stent, and the fiducial seeds. The correlation was better with fiducial seeds and with biliary stent. Conclusions: Respiratory gating reduced the margin necessary for radiation therapy for pancreatic tumors. GTV motion was well correlated with biliary stent or fiducial seed displacements, validating their use as surrogates for daily assessment of GTV position during treatment. A patient-specific internal target volume based on 4D-CT is recommended both for gated and not-gated treatment; otherwise, our model can be used to predict the degree of GTV motion.

  3. Non-affine deformations in polymer hydrogels

    PubMed Central

    Wen, Qi; Basu, Anindita; Janmey, Paul A.; Yodh, A. G.

    2012-01-01

    Most theories of soft matter elasticity assume that the local strain in a sample after deformation is identical everywhere and equal to the macroscopic strain, or equivalently that the deformation is affine. We discuss the elasticity of hydrogels of crosslinked polymers with special attention to affine and non-affine theories of elasticity. Experimental procedures to measure non-affine deformations are also described. Entropic theories, which account for gel elasticity based on stretching out individual polymer chains, predict affine deformations. In contrast, simulations of network deformation that result in bending of the stiff constituent filaments generally predict non-affine behavior. Results from experiments show significant non-affine deformation in hydrogels even when they are formed by flexible polymers for which bending would appear to be negligible compared to stretching. However, this finding is not necessarily an experimental proof of the non-affine model for elasticity. We emphasize the insights gained from experiments using confocal rheoscope and show that, in addition to filament bending, sample micro-inhomogeneity can be a significant alternative source of non-affine deformation. PMID:23002395

  4. Three-dimensional semi-idealized model for tidal motion in tidal estuaries. An application to the Ems estuary

    NASA Astrophysics Data System (ADS)

    Kumar, Mohit; Schuttelaars, Henk M.; Roos, Pieter C.; Möller, Matthias

    2016-01-01

    In this paper, a three-dimensional semi-idealized model for tidal motion in a tidal estuary of arbitrary shape and bathymetry is presented. This model aims at bridging the gap between idealized and complex models. The vertical profiles of the velocities are obtained analytically in terms of the first-order and the second-order partial derivatives of surface elevation, which itself follows from an elliptic partial differential equation. The surface elevation is computed numerically using the finite element method and its partial derivatives are obtained using various methods. The newly developed semi-idealized model allows for a systematic investigation of the influence of geometry and bathymetry on the tidal motion which was not possible in previously developed idealized models. The new model also retains the flexibility and computational efficiency of previous idealized models, essential for sensitivity analysis. As a first step, the accuracy of the semi-idealized model is investigated. To this end, an extensive comparison is made between the model results of the semi-idealized model and two other idealized models: a width-averaged model and a three-dimensional idealized model. Finally, the semi-idealized model is used to understand the influence of local geometrical effects on the tidal motion in the Ems estuary. The model shows that local convergence and meandering effects can have a significant influence on the tidal motion. Finally, the model is applied to the Ems estuary. The model results agree well with observations and results from a complex numerical model.

  5. a computational modeling for image motion velocity on focal plane of aerial & aerospace frame camera

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Jin, G.; Li, Z. Y.

    As the resolving power and geometric accuracy of aerial aerospace imaging is demanded to be higher the researches in technology of IMC become very important In order to compensate the image motion on focal plane the rule of FPIMV Focal Plane Image Motion Velocity should be grasped while the posture of aircraft and the modes of imaging are under changing In this paper a reasonable computational modeling scheme to the problem is introduced Coordinates transformation method is utilized for calculation of forward FPIMV under different condition of vertical and sloped imaging meanwhile integrated with three axes posture and angle velocity of aircraft Forward FPIMV combine with pitch roll and yaw FPIMV is considered simultaneously and the derivation calculating expressions of frame camera FPIMV under different conditions is presented in detail The solution is applied to computational simulation and has been confirmed to be effective based on the calculation result and it lays the foundation for our farther researches on frame camera IMC technology Key words IMC FPIMV Focal Plane Image Motion Velocity Coordinates transformation method

  6. Simulation of strong ground motion in northern Iran using the specific barrier model

    NASA Astrophysics Data System (ADS)

    Soghrat, M. R.; Khaji, N.; Zafarani, H.

    2012-02-01

    In this study, based upon the calibrated specific barrier model (SBM) against the latest available strong motion data, ground motion prediction equations for soil and rock sites in northern Iran are developed. The SBM may provide the most complete, simple and self-consistent description of the faulting process, which is applicable in both 'near-fault' and 'far-field' regions. Consequently, the SBM may provide consistent ground motion simulations over the entire necessary frequency range and for all distances of engineering interests. To determine source parameters in this study, we used 163 three-component records of 32 earthquakes with magnitude ranging from MW 4.9 to 7.4 in northern Iran. In the database, records with hypocentral distances less than 200 km are chosen and only earthquakes whose moment-magnitude estimates are available have been used. Furthermore, using the best available information, recording sites are classified into two main geologic categories: rock and soil. Because of the lack of site amplification information in the most regions of the world including Iran, we used the H/V ratio method for estimating the site amplification. Moreover, the Kappa factor that shows diminishing the high-frequency amplitude is determined. In this study, two data sets are considered for determining the source parameters (ΔσG and ΔσL) and the H/V ratio and the Kappa factor. Only S-wave part of signals is used in each analysis. Regression analysis is performed using 'random effects' method that considers both interseismic (event-to-event) and coseismic (within-event) variabilities to effectively deal with the problem of weighting observations from different earthquakes. The residuals are controlled against available northern Iranian strong ground motion data to verify that the model predictions are unbiased and that there are no significant residual trends with magnitude and distance. At first, it is assumed that no sign of self-similarity breakdown is observed

  7. Topographic modelling of caldera analogues using Structure from Motion - Multiview stereo-photogrammetry

    NASA Astrophysics Data System (ADS)

    Ulusoy, İnan; Aydın, Eda; Evren Çubukçu, H.

    2016-04-01

    Analogue caldera models have long been used in volcanology to investigate structural evolution of volcanoes during tumescence and collapse periods. Influence of tectonic forces on volcanic features are also in the scope of those experiments. As well as interior modelling of the caldera experiments, topographic modelling is essential for digital monitoring and quantification purposes. Topographic modelling of those sandbox models is possible using laser scanning techniques. Particle tracking using still images is another way to demonstrate and quantify the structure and movement during the experiment. The quantum leap in the digital photography and computation tools and ease of access to both, provides the use of a new modelling technique in various scales and applications in Geology. Although the roots are older, Structure from Motion - Multiview stereo-photogrammetry (SfM-MVS) is a relatively new technique for surface modelling via several high resolution photographs. We have used SfM-MVS to digitally model the elevation of the tumescence and collapse cycles in analogue caldera experiments. Several sandbox experiments have been modelled using SfM-MVS technique stage by stage during tumescence and collapse periods. It has been possible to evaluate the structural evolution of the collapse models. Additionally, using particle tracking via still images acquired during the experiments, we have modelled the superficial evolution of the caldera structure. SfM-MVS is an effective low budget method for modelling in decimetric scale down to millimetre/micrometre precision.

  8. The geocenter motion from decadal to geological time-scales: geophysical modelling

    NASA Astrophysics Data System (ADS)

    Greff-Lefftz, M.; Métivier, L.

    2012-04-01

    Among the coefficients of the spherical harmonics expansion of elasto-gravitational deformations, the degree-one has particular characteristics related to geodesy as well as to mechanics. It is linked to the position of the Earth centre of mass and is strongly dependent on the choice of the origin of the reference frame. We investigate here the geocenter motion, that is to say the geometric centre of the translated external surface with respect to the centre of mass, for different internal excitation sources at different time-scales. At decadal time-scale, we find that the geocenter motion induced by geostrophic pressures within the fluid core acting at both the core-mantle and inner core boundaries is at a level of 0.1 mm/yr. At secular time-scale, geocenter motions induced by post-glacial rebound have been shown to be at the level of -0.4 - 0.2 mm/yr Finally, at geological time-scale, we quantify degree-one deformations induced by internal loads within the mantle. We use a simple model in which we assume that subducted plates sink vertically through the mantle, and in which upwelling domes are stable over the last 120 Ma. We found that, although the associated geocenter secular motion is one order of magnitude smaller than the one induced by post-glacial rebound, there is a significant discrepancy of about a few hundred meters between the centre of figure and the centre of mass of the Earth. Is it possible to detect, at the present time, with geodetic measurements, such a permanent translation?

  9. SU-E-J-01: 3D Fluoroscopic Image Estimation From Patient-Specific 4DCBCT-Based Motion Models

    SciTech Connect

    Dhou, S; Hurwitz, M; Lewis, J; Mishra, P

    2014-06-01

    Purpose: 3D motion modeling derived from 4DCT images, taken days or weeks before treatment, cannot reliably represent patient anatomy on the day of treatment. We develop a method to generate motion models based on 4DCBCT acquired at the time of treatment, and apply the model to estimate 3D time-varying images (referred to as 3D fluoroscopic images). Methods: Motion models are derived through deformable registration between each 4DCBCT phase, and principal component analysis (PCA) on the resulting displacement vector fields. 3D fluoroscopic images are estimated based on cone-beam projections simulating kV treatment imaging. PCA coefficients are optimized iteratively through comparison of these cone-beam projections and projections estimated based on the motion model. Digital phantoms reproducing ten patient motion trajectories, and a physical phantom with regular and irregular motion derived from measured patient trajectories, are used to evaluate the method in terms of tumor localization, and the global voxel intensity difference compared to ground truth. Results: Experiments included: 1) assuming no anatomic or positioning changes between 4DCT and treatment time; and 2) simulating positioning and tumor baseline shifts at the time of treatment compared to 4DCT acquisition. 4DCBCT were reconstructed from the anatomy as seen at treatment time. In case 1) the tumor localization error and the intensity differences in ten patient were smaller using 4DCT-based motion model, possible due to superior image quality. In case 2) the tumor localization error and intensity differences were 2.85 and 0.15 respectively, using 4DCT-based motion models, and 1.17 and 0.10 using 4DCBCT-based models. 4DCBCT performed better due to its ability to reproduce daily anatomical changes. Conclusion: The study showed an advantage of 4DCBCT-based motion models in the context of 3D fluoroscopic images estimation. Positioning and tumor baseline shift uncertainties were mitigated by the 4DCBCT

  10. Apparent Motion Suppresses Responses in Early Visual Cortex: A Population Code Model

    PubMed Central

    Van Humbeeck, Nathalie; Putzeys, Tom; Wagemans, Johan

    2016-01-01

    Two stimuli alternately presented at different locations can evoke a percept of a stimulus continuously moving between the two locations. The neural mechanism underlying this apparent motion (AM) is thought to be increased activation of primary visual cortex (V1) neurons tuned to locations along the AM path, although evidence remains inconclusive. AM masking, which refers to the reduced detectability of stimuli along the AM path, has been taken as evidence for AM-related V1 activation. AM-induced neural responses are thought to interfere with responses to physical stimuli along the path and as such impair the perception of these stimuli. However, AM masking can also be explained by predictive coding models, predicting that responses to stimuli presented on the AM path are suppressed when they match the spatio-temporal prediction of a stimulus moving along the path. In the present study, we find that AM has a distinct effect on the detection of target gratings, limiting the maximum performance at high contrast levels. This masking is strongest when the target orientation is identical to the orientation of the inducers. We developed a V1-like population code model of early visual processing, based on a standard contrast normalization model. We find that AM-related activation in early visual cortex is too small to either cause masking or to be perceived as motion. Our model instead predicts strong suppression of early sensory responses during AM, consistent with the theoretical framework of predictive coding. PMID:27783622

  11. Predicting muscle activation patterns from motion and anatomy: modelling the skull of Sphenodon (Diapsida: Rhynchocephalia)

    PubMed Central

    Curtis, Neil; Jones, Marc E. H.; Evans, Susan E.; Shi, JunFen; O'Higgins, Paul; Fagan, Michael J.

    2010-01-01

    The relationship between skull shape and the forces generated during feeding is currently under widespread scrutiny and increasingly involves the use of computer simulations such as finite element analysis. The computer models used to represent skulls are often based on computed tomography data and thus are structurally accurate; however, correctly representing muscular loading during food reduction remains a major problem. Here, we present a novel approach for predicting the forces and activation patterns of muscles and muscle groups based on their known anatomical orientation (line of action). The work was carried out for the lizard-like reptile Sphenodon (Rhynchocephalia) using a sophisticated computer-based model and multi-body dynamics analysis. The model suggests that specific muscle groups control specific motions, and that during certain times in the bite cycle some muscles are highly active whereas others are inactive. The predictions of muscle activity closely correspond to data previously recorded from live Sphenodon using electromyography. Apparent exceptions can be explained by variations in food resistance, food size, food position and lower jaw motions. This approach shows considerable promise in advancing detailed functional models of food acquisition and reduction, and for use in other musculoskeletal systems where no experimental determination of muscle activity is possible, such as in rare, endangered or extinct species. PMID:19474084

  12. Computational modeling and analysis for left ventricle motion using CT/Echo image fusion

    NASA Astrophysics Data System (ADS)

    Kim, Ji-Yeon; Kang, Nahyup; Lee, Hyoung-Euk; Kim, James D. K.

    2014-03-01

    In order to diagnose heart disease such as myocardial infarction, 2D strain through the speckle tracking echocardiography (STE) or the tagged MRI is often used. However out-of-plane strain measurement using STE or tagged MRI is inaccurate. Therefore, strain for whole organ which are analyzed by simulation of 3D cardiac model can be applied in clinical diagnosis. To simulate cardiac contraction in a cycle, cardiac physical properties should be reflected in cardiac model. The myocardial wall in left ventricle is represented as a transversely orthotropic hyperelastic material, with the fiber orientation varying sequentially from the epicardial surface, through about 0° at the midwall, to the endocardial surface. A time-varying elastance model is simulated to contract myocardial fiber, and physiological intraventricular systolic pressure curves are employed for the cardiac dynamics simulation in a cycle. And an exact description of the cardiac motion should be acquired in order that essential boundary conditions for cardiac simulation are obtained effectively. Real time cardiac motion can be acquired by using echocardiography and exact cardiac geometrical 3D model can be reconstructed using 3D CT data. In this research, image fusion technology from CT and echocardiography is employed in order to consider patient-specific left ventricle movement. Finally, longitudinal strain from speckle tracking echocardiography which is known to fit actual left ventricle deformation relatively well is used to verify these results.

  13. Research on the modeling of the missile's disturbance motion and the initial control point optimization

    NASA Astrophysics Data System (ADS)

    Guo, Jie; Zhu, Dalin; Tang, Shengjing

    2012-11-01

    The initial trajectory design of the missile is an important part of the overall design, but often a tedious calculation and analysis process due to the large dimension nonlinear differential equations and the traditional statistical analysis methods. To improve the traditional design methods, a robust optimization concept and method are introduced in this paper to deal with the determination of the initial control point. First, the Gaussian Radial Basis Network is adopted to establish the approximate model of the missile's disturbance motion based on the disturbance motion and disturbance factors analysis. Then, a direct analytical relationship between the disturbance input and statistical results is deduced on the basis of Gaussian Radial Basis Network model. Subsequently, a robust optimization model is established aiming at the initial control point design problem and the niche Pareto genetic algorithm for multi-objective optimization is adopted to solve this optimization model. An integral design example is give at last and the simulation results have verified the validity of this method.

  14. From behavioural analyses to models of collective motion in fish schools

    PubMed Central

    Lopez, Ugo; Gautrais, Jacques; Couzin, Iain D.; Theraulaz, Guy

    2012-01-01

    Fish schooling is a phenomenon of long-lasting interest in ethology and ecology, widely spread across taxa and ecological contexts, and has attracted much interest from statistical physics and theoretical biology as a case of self-organized behaviour. One topic of intense interest is the search of specific behavioural mechanisms at stake at the individual level and from which the school properties emerges. This is fundamental for understanding how selective pressure acting at the individual level promotes adaptive properties of schools and in trying to disambiguate functional properties from non-adaptive epiphenomena. Decades of studies on collective motion by means of individual-based modelling have allowed a qualitative understanding of the self-organization processes leading to collective properties at school level, and provided an insight into the behavioural mechanisms that result in coordinated motion. Here, we emphasize a set of paradigmatic modelling assumptions whose validity remains unclear, both from a behavioural point of view and in terms of quantitative agreement between model outcome and empirical data. We advocate for a specific and biologically oriented re-examination of these assumptions through experimental-based behavioural analysis and modelling. PMID:24312723

  15. Model and computer simulations of the motion of DNA molecules during pulse field gel electrophoresis

    SciTech Connect

    Smith, S.B.; Bustamante, C. ); Heller, C. )

    1991-05-28

    A model is presented for the motion of individual molecules of DNA undergoing pulse field gel electrophoresis (PFGE). The molecule is represented by a chain of charged beads connected by entropic springs, and the gel is represented by a segmented tube surrounding the beads. This model differs from earlier reptation/tube models in that the tube is allowed to leak in certain places and the chain can double over and flow out of the side of the tube in kinks. It is found that these kinks often lead to the formation of U shapes, which are a major source of retardation in PFGE. The results of computer simulations using this model are compared with real DNA experimental results for the following cases: steady field motion as seen in fluorescence microscopy, mobility in steady fields, mobility in transverse field alternation gel electrophoresis (TFAGE), mobility in field inversion gel electrophoresis (FIGE), and linear dichroism (LD) of DNA in agarose gels during PFGE. Good agreement between the simulations and the experimental results is obtained.

  16. Mathematical models of passive motion at the human ankle joint by equivalent spatial parallel mechanisms.

    PubMed

    Di Gregorio, R; Parenti-Castelli, V; O'Connor, J J; Leardini, A

    2007-03-01

    The paper presents a theoretical model of the ankle joint, i.e. tibio-talar articulation, which shows how the articular surfaces and the ligaments, acting together as a mechanism, can control the passive kinematics of the joint. The authors had previously shown that, in virtually unloaded conditions, the ankle behaves as a single degree-of-freedom system, and that two ligament fibres remain nearly isometric throughout the flexion arc. Two different equivalent spatial parallel mechanisms together with corresponding kinematic models were formulated. These assumed isometricity of fibres within the calcaneal-fibular and tibio-calcaneal ligaments and rigidity of the articulating surfaces, taken as three sphere-plane contacts in one model, and as a single spherical pair in the other. Geometry parameters for the models were obtained from three specimens. Motion predictions compare quite well with the measured motion of the specimens. The differences are accounted for by the simplifications adopted to represent the complex anatomical structures, and might be reduced by future more realistic representations of the natural articular surfaces.

  17. THE SIMULATION OF FINE SCALE NOCTURNAL BOUNDARY LAYER MOTIONS WITH A MESO-SCALE ATMOSPHERIC MODEL

    SciTech Connect

    Werth, D.; Kurzeja, R.; Parker, M.

    2009-04-02

    A field project over the Atmospheric Radiation Measurement-Clouds and Radiation Testbed (ARM-CART) site during a period of several nights in September, 2007 was conducted to explore the evolution of the low-level jet (LLJ). Data was collected from a tower and a sodar and analyzed for turbulent behavior. To study the full range of nocturnal boundary layer (NBL) behavior, the Regional Atmospheric Modeling System (RAMS) was used to simulate the ARM-CART NBL field experiment and validated against the data collected from the site. This model was run at high resolution, and is ideal for calculating the interactions among the various motions within the boundary layer and their influence on the surface. The model reproduces adequately the synoptic situation and the formation and dissolution cycles of the low-level jet, although it suffers from insufficient cloud production and excessive nocturnal cooling. The authors suggest that observed heat flux data may further improve the realism of the simulations both in the cloud formation and in the jet characteristics. In a higher resolution simulation, the NBL experiences motion on a range of timescales as revealed by a wavelet analysis, and these are affected by the presence of the LLJ. The model can therefore be used to provide information on activity throughout the depth of the NBL.

  18. A DFT and semiempirical model-based study of opioid receptor affinity and selectivity in a group of molecules with a morphine structural core.

    PubMed

    Bruna-Larenas, Tamara; Gómez-Jeria, Juan S

    2012-01-01

    We report the results of a search for model-based relationships between mu, delta, and kappa opioid receptor binding affinity and molecular structure for a group of molecules having in common a morphine structural core. The wave functions and local reactivity indices were obtained at the ZINDO/1 and B3LYP/6-31G(∗∗) levels of theory for comparison. New developments in the expression for the drug-receptor interaction energy expression allowed several local atomic reactivity indices to be included, such as local electronic chemical potential, local hardness, and local electrophilicity. These indices, together with a new proposal for the ordering of the independent variables, were incorporated in the statistical study. We found and discussed several statistically significant relationships for mu, delta, and kappa opioid receptor binding affinity at both levels of theory. Some of the new local reactivity indices incorporated in the theory appear in several equations for the first time in the history of model-based equations. Interaction pharmacophores were generated for mu, delta, and kappa receptors. We discuss possible differences regulating binding and selectivity in opioid receptor subtypes. This study, contrarily to the statistically backed ones, is able to provide a microscopic insight of the mechanisms involved in the binding process.

  19. Investigating motion and stability of particles in flows using numerical models

    NASA Astrophysics Data System (ADS)

    Khurana, Nidhi

    The phenomenon of transport of particles in a fluid is ubiquitous in nature and a detailed understanding of its mechanism continues to remain a fundamental question for physicists. In this thesis, we use numerical methods to study the dynamics and stability of particles advected in flows. First, we investigate the dynamics of a single, motile particle advected in a two-dimensional chaotic flow. The particle can be either spherical or ellipsoidal. Particle activity is modeled as a constant intrinsic swimming velocity and stochastic fluctuations in both the translational and rotational motions are also taken into account. Our results indicate that interaction of swimming with flow structures causes a reduction in long-term transport at low speeds. Swimmers can get trapped at the transport barriers of the flow. We show that elongated swimmers respond more strongly to the dynamical structures of the flow field. At low speeds, their macroscopic transport is reduced even further than in the case of spherical swimmers. However, at high speeds these elongated swimmers tend to get attracted to the stable manifolds of hyperbolic fixed points, leading to increased transport. We then investigate the collective dynamics of a system of particles. The particles may interact both with each other and with the background flow. We focus on two different cases. In the fist case, we examine the stability of aggregation models in a turbulent-like flow. We use a simple aggregation model in which a point-like particle moves with a constant intrinsic speed while its velocity vector is reoriented according to the average direction of motion of its neighbors. We generate a strongly fluctuating, spatially correlated background flow using Kinematic Simulation, and show that flocks are highly sensitive to this background flow and break into smaller clusters. Our results indicate that such environmental perturbations must be taken into account for models which aim to capture the collective

  20. A Little Knowledge of Ground Motion: Explaining 3-D Physics-Based Modeling to Engineers

    NASA Astrophysics Data System (ADS)

    Porter, K.

    2014-12-01

    Users of earthquake planning scenarios require the ground-motion map to be credible enough to justify costly planning efforts, but not all ground-motion maps are right for all uses. There are two common ways to create a map of ground motion for a hypothetical earthquake. One approach is to map the median shaking estimated by empirical attenuation relationships. The other uses 3-D physics-based modeling, in which one analyzes a mathematical model of the earth's crust near the fault rupture and calculates the generation and propagation of seismic waves from source to ground surface by first principles. The two approaches produce different-looking maps. The more-familiar median maps smooth out variability and correlation. Using them in a planning scenario can lead to a systematic underestimation of damage and loss, and could leave a community underprepared for realistic shaking. The 3-D maps show variability, including some very high values that can disconcert non-scientists. So when the USGS Science Application for Risk Reduction's (SAFRR) Haywired scenario project selected 3-D maps, it was necessary to explain to scenario users—especially engineers who often use median maps—the differences, advantages, and disadvantages of the two approaches. We used authority, empirical evidence, and theory to support our choice. We prefaced our explanation with SAFRR's policy of using the best available earth science, and cited the credentials of the maps' developers and the reputation of the journal in which they published the maps. We cited recorded examples from past earthquakes of extreme ground motions that are like those in the scenario map. We explained the maps on theoretical grounds as well, explaining well established causes of variability: directivity, basin effects, and source parameters. The largest mapped motions relate to potentially unfamiliar extreme-value theory, so we used analogies to human longevity and the average age of the oldest person in samples of

  1. Intermittency in an interacting generalization of the geometric Brownian motion model

    NASA Astrophysics Data System (ADS)

    Kühn, Reimer; Neu, Peter

    2008-08-01

    We propose a minimal interacting generalization of the geometric Brownian motion model, which turns out to be formally equivalent to a model describing the dynamics of networks of analogue neurons. For sufficiently strong interactions, such systems may have many meta-stable states. Transitions between meta-stable states are associated with macroscopic reorganizations of the system, which can be triggered by random external forcing. Such a system will exhibit intermittent dynamics within a large part of its parameter space. We propose market dynamics as a possible application of this model, in which case random external forcing would correspond to the arrival of important information. The emergence of a model of interacting prices of the type considered here can be argued to follow naturally from a general argument based on integrating out all non-price degrees of freedom from the dynamics of a hypothetical complete description of economic dependences.

  2. Ground-motion modeling of the 1906 San Francisco Earthquake, part II: Ground-motion estimates for the 1906 earthquake and scenario events

    USGS Publications Warehouse

    Aagaard, B.T.; Brocher, T.M.; Dolenc, D.; Dreger, D.; Graves, R.W.; Harmsen, S.; Hartzell, S.; Larsen, S.; McCandless, K.; Nilsson, S.; Petersson, N.A.; Rodgers, A.; Sjogreen, B.; Zoback, M.L.

    2008-01-01

    We estimate the ground motions produce by the 1906 San Francisco earthquake making use of the recently developed Song et al. (2008) source model that combines the available geodetic and seismic observations and recently constructed 3D geologic and seismic velocity models. Our estimates of the ground motions for the 1906 earthquake are consistent across five ground-motion modeling groups employing different wave propagation codes and simulation domains. The simulations successfully reproduce the main features of the Boatwright and Bundock (2005) ShakeMap, but tend to over predict the intensity of shaking by 0.1-0.5 modified Mercalli intensity (MMI) units. Velocity waveforms at sites throughout the San Francisco Bay Area exhibit characteristics consistent with rupture directivity, local geologic conditions (e.g., sedimentary basins), and the large size of the event (e.g., durations of strong shaking lasting tens of seconds). We also compute ground motions for seven hypothetical scenarios rupturing the same extent of the northern San Andreas fault, considering three additional hypocenters and an additional, random distribution of slip. Rupture directivity exerts the strongest influence on the variations in shaking, although sedimentary basins do consistently contribute to the response in some locations, such as Santa Rosa, Livermore, and San Jose. These scenarios suggest that future large earthquakes on the northern San Andreas fault may subject the current San Francisco Bay urban area to stronger shaking than a repeat of the 1906 earthquake. Ruptures propagating southward towards San Francisco appear to expose more of the urban area to a given intensity level than do ruptures propagating northward.

  3. Meshless deformable models for 3D cardiac motion and strain analysis from tagged MRI.

    PubMed

    Wang, Xiaoxu; Chen, Ting; Zhang, Shaoting; Schaerer, Joël; Qian, Zhen; Huh, Suejung; Metaxas, Dimitris; Axel, Leon

    2015-01-01

    Tagged magnetic resonance imaging (TMRI) provides a direct and noninvasive way to visualize the in-wall deformation of the myocardium. Due to the through-plane motion, the tracking of 3D trajectories of the material points and the computation of 3D strain field call for the necessity of building 3D cardiac deformable models. The intersections of three stacks of orthogonal tagging planes are material points in the myocardium. With these intersections as control points, 3D motion can be reconstructed with a novel meshless deformable model (MDM). Volumetric MDMs describe an object as point cloud inside the object boundary and the coordinate of each point can be written in parametric functions. A generic heart mesh is registered on the TMRI with polar decomposition. A 3D MDM is generated and deformed with MR image tagging lines. Volumetric MDMs are deformed by calculating the dynamics function and minimizing the local Laplacian coordinates. The similarity transformation of each point is computed by assuming its neighboring points are making the same transformation. The deformation is computed iteratively until the control points match the target positions in the consecutive image frame. The 3D strain field is computed from the 3D displacement field with moving least squares. We demonstrate that MDMs outperformed the finite element method and the spline method with a numerical phantom. Meshless deformable models can track the trajectory of any material point in the myocardium and compute the 3D strain field of any particular area. The experimental results on in vivo healthy and patient heart MRI show that the MDM can fully recover the myocardium motion in three dimensions.

  4. Modeling and motion compensation of a bidirectional tendon-sheath actuated system for robotic endoscopic surgery.

    PubMed

    Sun, Zhenglong; Wang, Zheng; Phee, Soo Jay

    2015-04-01

    Recent study shows that tendon-sheath system (TSS) has great potential in the development of surgical robots for endoscopic surgery. It is able to deliver adequate power in a light-weight and compact package. And the flexibility and compliance of the tendon-sheath system make it capable of adapting to the long and winding path in the flexible endoscope. However, the main difficulties in precise control of such system fall on the nonlinearities of the system behavior and absence of necessary sensory feedback at the surgical end-effectors. Since accurate position control of the tool is a prerequisite for efficacy, safety and intuitive user-experience in robotic surgery, in this paper we propose a system modeling approach for motion compensation. Based on a bidirectional actuated system using two separate tendon-sheaths, motion transmission is firstly characterized. Two types of positional errors due to system backlash and environment loading are defined and modeled. Then a model-based feedforward compensation method is proposed for open-loop control, giving the system abilities to adjust according to changes in the transmission route configuration without any information feedback from the distal end. A dedicated experimental platform emulating a bidirectional TSS robotic system for endoscopic surgery is built for testing. Proposed positional errors are identified and verified. The performance of the proposed motion compensation is evaluated by trajectory tracking under different environment loading conditions. And the results demonstrate that accurate position control can be achieved even if the transmission route configuration is updated. PMID:25819033

  5. Meshless deformable models for 3D cardiac motion and strain analysis from tagged MRI.

    PubMed

    Wang, Xiaoxu; Chen, Ting; Zhang, Shaoting; Schaerer, Joël; Qian, Zhen; Huh, Suejung; Metaxas, Dimitris; Axel, Leon

    2015-01-01

    Tagged magnetic resonance imaging (TMRI) provides a direct and noninvasive way to visualize the in-wall deformation of the myocardium. Due to the through-plane motion, the tracking of 3D trajectories of the material points and the computation of 3D strain field call for the necessity of building 3D cardiac deformable models. The intersections of three stacks of orthogonal tagging planes are material points in the myocardium. With these intersections as control points, 3D motion can be reconstructed with a novel meshless deformable model (MDM). Volumetric MDMs describe an object as point cloud inside the object boundary and the coordinate of each point can be written in parametric functions. A generic heart mesh is registered on the TMRI with polar decomposition. A 3D MDM is generated and deformed with MR image tagging lines. Volumetric MDMs are deformed by calculating the dynamics function and minimizing the local Laplacian coordinates. The similarity transformation of each point is computed by assuming its neighboring points are making the same transformation. The deformation is computed iteratively until the control points match the target positions in the consecutive image frame. The 3D strain field is computed from the 3D displacement field with moving least squares. We demonstrate that MDMs outperformed the finite element method and the spline method with a numerical phantom. Meshless deformable models can track the trajectory of any material point in the myocardium and compute the 3D strain field of any particular area. The experimental results on in vivo healthy and patient heart MRI show that the MDM can fully recover the myocardium motion in three dimensions. PMID:25157446

  6. Meshless deformable models for 3D cardiac motion and strain analysis from tagged MRI

    PubMed Central

    Wang, Xiaoxu; Chen, Ting; Zhang, Shaoting; Schaerer, Joël; Qian, Zhen; Huh, Suejung; Metaxas, Dimitris; Axel, Leon

    2016-01-01

    Tagged magnetic resonance imaging (TMRI) provides a direct and noninvasive way to visualize the in-wall deformation of the myocardium. Due to the through-plane motion, the tracking of 3D trajectories of the material points and the computation of 3D strain field call for the necessity of building 3D cardiac deformable models. The intersections of three stacks of orthogonal tagging planes are material points in the myocardium. With these intersections as control points, 3D motion can be reconstructed with a novel meshless deformable model (MDM). Volumetric MDMs describe an object as point cloud inside the object boundary and the coordinate of each point can be written in parametric functions. A generic heart mesh is registered on the TMRI with polar decomposition. A 3D MDM is generated and deformed with MR image tagging lines. Volumetric MDMs are deformed by calculating the dynamics function and minimizing the local Laplacian coordinates. The similarity transformation of each point is computed by assuming its neighboring points are making the same transformation. The deformation is computed iteratively until the control points match the target positions in the consecutive image frame. The 3D strain field is computed from the 3D displacement field with moving least squares. We demonstrate that MDMs outperformed the finite element method and the spline method with a numerical phantom. Meshless deformable models can track the trajectory of any material point in the myocardium and compute the 3D strain field of any particular area. The experimental results on in vivo healthy and patient heart MRI show that the MDM can fully recover the myocardium motion in three dimensions. PMID:25157446

  7. Using an external surrogate for predictor model training in real-time motion management of lung tumors

    SciTech Connect

    Rottmann, Joerg; Berbeco, Ross

    2014-12-15

    Purpose: Precise prediction of respiratory motion is a prerequisite for real-time motion compensation techniques such as beam, dynamic couch, or dynamic multileaf collimator tracking. Collection of tumor motion data to train the prediction model is required for most algorithms. To avoid exposure of patients to additional dose from imaging during this procedure, the feasibility of training a linear respiratory motion prediction model with an external surrogate signal is investigated and its performance benchmarked against training the model with tumor positions directly. Methods: The authors implement a lung tumor motion prediction algorithm based on linear ridge regression that is suitable to overcome system latencies up to about 300 ms. Its performance is investigated on a data set of 91 patient breathing trajectories recorded from fiducial marker tracking during radiotherapy delivery to the lung of ten patients. The expected 3D geometric error is quantified as a function of predictor lookahead time, signal sampling frequency and history vector length. Additionally, adaptive model retraining is evaluated, i.e., repeatedly updating the prediction model after initial training. Training length for this is gradually increased with incoming (internal) data availability. To assess practical feasibility model calculation times as well as various minimum data lengths for retraining are evaluated. Relative performance of model training with external surrogate motion data versus tumor motion data is evaluated. However, an internal–external motion correlation model is not utilized, i.e., prediction is solely driven by internal motion in both cases. Results: Similar prediction performance was achieved for training the model with external surrogate data versus internal (tumor motion) data. Adaptive model retraining can substantially boost performance in the case of external surrogate training while it has little impact for training with internal motion data. A minimum

  8. Dynamic modeling and sensitivity analysis of dAFM in the transient and steady state motions.

    PubMed

    Payam, Amir Farokh

    2016-10-01

    In this paper, based on the slow time varying function theory, dynamical equations for the amplitude and phase of the dynamic atomic force microscope are derived. Then, the sensitivity of the amplitude and phase to the dissipative and conservative parts of interaction force is investigated. The most advantage of this dynamical model is the ability to simulate and analysis the dynamics behavior of amplitude and phase of the AFM tip motion not only in the steady state but also in the transient regime. Using numerical analysis the transient and steady state behavior of amplitude and phase is studied and the sensitivity of amplitude and phase to the interaction force is analyzed. PMID:27448201

  9. Modelling surface motion and spall at the Nevada Test Site. Los Alamos Source Region Project

    SciTech Connect

    App, F.N.; Brunish, W.M.

    1992-01-01

    Spallation of the ground surface accompanies all underground nuclear explosions of significant yield. This report discusses computer modelling used to investigate the physical processes that govern spallation and the amplitude and wavelength of motion at the free surface under a variety of conditions. Four events are selected: MERLIN which was conducted in desert alluvium; HEARTS which was conducted in tuff beneath the water table in Yucca Flat; TOWANDA which was conducted beneath the water table on Pahute Mesa; and HOUSTON which was conducted above the water table in very dense rock and Pahute Mesa. These span the range of test environments for Los Alamos underground nuclear tests.

  10. Arene Binding Affinities in [CpRu(nu6-arene)]+ Complexes: Models for the Adsorption of Arenes on Hydroesulferization Catalysts

    SciTech Connect

    Choi, M. G.; Ho, T. C.; Angelici, R.

    2008-02-29

    Product/reactant ratios (Y) were determined for the reactions CpRu({eta}{sup 6}-DBT){sup +} + L CpRu({eta}{sup 6}-L){sup +} + DBT (where DBT is dibenzothiophene and L is a homo- or heterocyclic arene), which were conducted under UV photolysis conditions. In the photostationary state, the Y values for the different arenes decrease in the following order: mesitylene (17) > toluene (13) > indole (9.1) > carbazole (6.7) > benzene (5.9) > fluorene (5.1) > biphenyl (3.9) > DBT (1.0) > phenanthrene (0.65) > naphthalene (0.35). In general, alkyl-substituted arenes have a higher binding affinity than the parent arene, except for tert-butyl groups, which decrease the Y values. These trends in {eta}{sup 6}-arene binding to CpRu{sup +} provide a basis for understanding competitive adsorption of arenes on metal sites of hydrotreating catalysts. Such arene components in petroleum feedstocks reduce the rates of hydrodesulfurization of dibenzothiophenes.

  11. Storage for free: a surprising property of a simple gain-control model of motion aftereffects.

    PubMed

    van de Grind, Wim A; van der Smagt, Maarten J; Verstraten, Frans A J

    2004-01-01

    If a motion aftereffect (MAE) for given adaptation conditions has a duration T s, and the eyes are closed after adaptation during a waiting period tw=T s before testing, an unexpected MAE of a 'residual' duration TrT s is experienced. This effect is called 'storage' and it is often quantified by a storage factor sigma=TrT/T, which can reach values up to about 0.7-0.8. The phenomenon and its name have invited explanations in terms of inhibition of recovery during darkness. We present a model based on the opposite idea, that an effective test stimulus quickens recovery relative to darkness or other ineffective test stimuli. The model is worked out in mathematical detail and proves to explain 'storage' data from the literature, on the static MAE (sMAE: an MAE experienced for static test stimuli). We also present results of a psychophysical experiment with moving random pixel arrays, quantifying storage phenomena both for the sMAE and the dynamic MAE (dMAE: an MAE experienced for a random dynamic noise test stimulus). Storage factors for the dMAE are lower than for the sMAE. Our model also gives an excellent description of these new data on storage of the dMAE. The term 'storage' might therefore be a misnomer. If an effective test stimulus influences all direction tuned motion sensors indiscriminately and thus speeds up equalization of gains, one gets the storage phenomenon for free.

  12. Influence of blade motion on mass flux to a model seagrass blade

    NASA Astrophysics Data System (ADS)

    Lei, Jiarui; Nepf, Heidi

    2015-11-01

    Seagrass and other freshwater macrophytes can acquire nutrients from surrounding water through their blades. While we anticipate that blade motion and reconfiguration may impact mass flux at the blade surface, this topic is an area of open discussion and research. We seek to better understand the interaction of individual blades with both unidirectional and oscillatory flows and how this interaction impacts mass flux. The degree of reconfiguration can be quantified by two dimensionless numbers, the Cauchy number, Ca, and the buoyancy parameter, B. For unidirectional currents (U) , a theoretical model for the transfer velocity (K) was constructed assuming the boundary layer on the blade surface remained laminar and developed like that over a flat plate, which predicts K ~U 0 . 5 . When the blades were bent-over, the model predicted the measured flux well; when the blades remained upright, the flux to the blade diminished relative to the model. Preliminary wave experiments show that blade motion increased with wave amplitude, and that there are two distinct regimes. In the first regime (Ca<15), the maximum reconfiguration was associated with the peak velocity (wave crest), so that the blade velocity leads the wave velocity by 90 degrees. The second regime occurred when Ca>15. In this regime, the phase difference was approximately zero and the blade moved passively with the wave. NSF.

  13. Understanding Ground Motion in Las Vegas: Insights from Data Analysis and Two-Dimensional Modeling

    SciTech Connect

    Rodgers, A; Tkalcic, H; McCallen, D

    2004-02-05

    Seismic ground motions are amplified in low velocity sedimentary basins relative to adjacent sites on high velocity hard rock. We used historical recordings of NTS nuclear explosions and earthquake recordings in Las Vegas Valley to quantify frequency-dependent basin amplification using Standard Spectral Ratios. We show that amplifications, referred to as site response, can reach a factor of 10 in the frequency band 0.4-2.0 Hz. Band-averaged site response between 0.4-2.0 Hz is strongly correlated with basin depth. However, it is also well known that site response is related to shallow shear-wave velocity structure. We simulated low frequency (f<1Hz) ground motion and site response with two-dimensional elastic finite difference simulations. We demonstrate that physically plausible models of the shallow subsurface, including low velocity sedimentary structure, can predict relative amplification as well as some of the complexity in the observed waveforms. This study demonstrates that site response can be modeled without invoking complex and computationally expensive three-dimensional structural models.

  14. Modeling the transient aerodynamic effects during the motion of a flexible trailing edge

    NASA Astrophysics Data System (ADS)

    Wolff, T.; Seume, J. R.

    2016-09-01

    Wind turbine blades have been becoming longer and more slender during the last few decades. The longer lever arm results in higher stresses at the blade root. Hence, the unsteady loads induced by turbulence, gust, or wind shear increase. One promising way to control these loads is to use flexible trailing edges near the blade tip. The unsteady effects which appear during the motion of a flexible trailing edge must be considered for the load calculation during the design process because of their high influence on aeroelastic effects and hence on the fatigue loads. This is not yet possible in most of the wind turbine simulation environments. Consequently, an empirical model is developed in the present study which accounts for unsteady effects during the motion of the trailing edge. The model is based on Fourier analyses of results generated with Reynolds-Averaged Navier-Stokes (RANS) simulations of a typical thin airfoil with a deformable trailing edge. The validation showed that the model fits Computational Fluid Dynamics (CFD) results simulated with a random time series of the deflection angle.

  15. SU-E-J-150: Four-Dimensional Cone-Beam CT Algorithm by Extraction of Physical and Motion Parameter of Mobile Targets Retrospective to Image Reconstruction with Motion Modeling

    SciTech Connect

    Ali, I; Ahmad, S; Alsbou, N

    2015-06-15

    Purpose: To develop 4D-cone-beam CT (CBCT) algorithm by motion modeling that extracts actual length, CT numbers level and motion amplitude of a mobile target retrospective to image reconstruction by motion modeling. Methods: The algorithm used three measurable parameters: apparent length and blurred CT number distribution of a mobile target obtained from CBCT images to determine actual length, CT-number value of the stationary target, and motion amplitude. The predictions of this algorithm were tested with mobile targets that with different well-known sizes made from tissue-equivalent gel which was inserted into a thorax phantom. The phantom moved sinusoidally in one-direction to simulate respiratory motion using eight amplitudes ranging 0–20mm. Results: Using this 4D-CBCT algorithm, three unknown parameters were extracted that include: length of the target, CT number level, speed or motion amplitude for the mobile targets retrospective to image reconstruction. The motion algorithms solved for the three unknown parameters using measurable apparent length, CT number level and gradient for a well-defined mobile target obtained from CBCT images. The motion model agreed with measured apparent lengths which were dependent on the actual target length and motion amplitude. The gradient of the CT number distribution of the mobile target is dependent on the stationary CT number level, actual target length and motion amplitude. Motion frequency and phase did not affect the elongation and CT number distribution of the mobile target and could not be determined. Conclusion: A 4D-CBCT motion algorithm was developed to extract three parameters that include actual length, CT number level and motion amplitude or speed of mobile targets directly from reconstructed CBCT images without prior knowledge of the stationary target parameters. This algorithm provides alternative to 4D-CBCT without requirement to motion tracking and sorting of the images into different breathing phases

  16. Stabilization of Motion of Helicopter Rotor Blades Using Delayed FEEDBACK—MODELLING, Computer Simulation and Experimental Verification

    NASA Astrophysics Data System (ADS)

    KRODKIEWSKI, J. M.; FARAGHER, J. S.

    2000-07-01

    A new control law for stabilizing the periodic motion of uncertain systems, with particular application to helicopter rotor blades, is presented. The control law uses proportional displacement and velocity feedback with a time delay equal to the period of the motion being stabilized. No knowledge of the dynamics of the system being controlled or the desired trajectory is required. The control law is tested on a two-degree-of-freedom mathematical model that approximates the motion of a helicopter rotor blade in both hover and forward flight. Analysis of the developed perturbations equation shows that a significant improvement in the stability of the motion of the rotor blade is achieved by the appropriate choice of the control parameters. The control law greatly affected the transient states without altering the steady state motion of the uncontrolled system. This feature is particularly important for helicopters because the steady state motion of the rotor blades determines the flight path. The experimental investigation confirms the existence of optimal values of the parameters of the control law, which result in a significant improvement of the stability of the periodic motion of the installation. The experimentally obtained relationship between the optimal control parameters and the period of the motion confirms the results of the analytical investigation of the influence of the control law on the stability margin of uncertain systems.

  17. Special Report: Affinity Chromatography.

    ERIC Educational Resources Information Center

    Parikh, Indu; Cuatrecasas, Pedro

    1985-01-01

    Describes the nature of affinity chromatography and its use in purifying enzymes, studying cell interactions, exploring hormone receptors, and other areas. The potential the technique may have in treating disease is also considered. (JN)

  18. Tumor Tracking Method Based on a Deformable 4D CT Breathing Motion Model Driven by an External Surface Surrogate

    SciTech Connect

    Fassi, Aurora; Schaerer, Joël; Fernandes, Mathieu; Riboldi, Marco; Sarrut, David; Baroni, Guido

    2014-01-01

    Purpose: To develop a tumor tracking method based on a surrogate-driven motion model, which provides noninvasive dynamic localization of extracranial targets for the compensation of respiration-induced intrafraction motion in high-precision radiation therapy. Methods and Materials: The proposed approach is based on a patient-specific breathing motion model, derived a priori from 4-dimensional planning computed tomography (CT) images. Model parameters (respiratory baseline, amplitude, and phase) are retrieved and updated at each treatment fraction according to in-room radiography acquisition and optical surface imaging. The baseline parameter is adapted to the interfraction variations obtained from the daily cone beam (CB) CT scan. The respiratory amplitude and phase are extracted from an external breathing surrogate, estimated from the displacement of the patient thoracoabdominal surface, acquired with a noninvasive surface imaging device. The developed method was tested on a database of 7 lung cancer patients, including the synchronized information on internal and external respiratory motion during a CBCT scan. Results: About 30 seconds of simultaneous acquisition of CBCT and optical surface images were analyzed for each patient. The tumor trajectories identified in CBCT projections were used as reference and compared with the target trajectories estimated from surface displacement with the a priori motion model. The resulting absolute differences between the reference and estimated tumor motion along the 2 image dimensions ranged between 0.7 and 2.4 mm; the measured phase shifts did not exceed 7% of the breathing cycle length. Conclusions: We investigated a tumor tracking method that integrates breathing motion information provided by the 4-dimensional planning CT with surface imaging at the time of treatment, representing an alternative approach to point-based external–internal correlation models. Although an in-room radiograph-based assessment of the

  19. Active and passive Brownian motion of charged particles in two-dimensional plasma models

    SciTech Connect

    Dunkel, Joern; Ebeling, Werner; Trigger, Sergey A.

    2004-10-01

    The dynamics of charged Coulomb grains in a plasma is numerically and analytically investigated. Analogous to recent experiments, it is assumed that the grains are trapped in an external parabolic field. Our simulations are based on a Langevin model, where the grain-plasma interaction is realized by a velocity-dependent friction coefficient and a velocity-independent diffusion coefficient. In addition to the ordinary case of positive (passive) friction between grains and plasma, we also discuss the effects of negative (active) friction. The latter case seems particularly interesting, since recent analytical calculations have shown that friction coefficients with negative parts may appear in some models of ion absorption by grains as well as in models of ion-grain scattering. Such negative friction may cause active Brownian motions of the grains. As our computer simulations show, the influence of negative friction leads to the formation of various stationary modes (rotations, oscillations), which, to some extent, can also be estimated analytically.

  20. AQM router design for TCP network via input constrained fuzzy control of time-delay affine Takagi-Sugeno fuzzy models

    NASA Astrophysics Data System (ADS)

    Chang, Wen-Jer; Meng, Yu-Teh; Tsai, Kuo-Hui

    2012-12-01

    In this article, Takagi-Sugeno (T-S) fuzzy control theory is proposed as a key tool to design an effective active queue management (AQM) router for the transmission control protocol (TCP) networks. The probability control of packet marking in the TCP networks is characterised by an input constrained control problem in this article. By modelling the TCP network into a time-delay affine T-S fuzzy model, an input constrained fuzzy control methodology is developed in this article to serve the AQM router design. The proposed fuzzy control approach, which is developed based on the parallel distributed compensation technique, can provide smaller probability of dropping packets than previous AQM design schemes. Lastly, a numerical simulation is provided to illustrate the usefulness and effectiveness of the proposed design approach.

  1. The benefits of extended plate motion history in mantle circulation models

    NASA Astrophysics Data System (ADS)

    Webb, Peter; Davies, Huw; Davies, Rhodri; Hochard, Cyril; Stampfli, Gerard

    2010-05-01

    Mantle Circulation Models (MCMs) are mantle convection simulations conditioned with plate motion history. Due to difficulties in reconstructing plate motions beyond ≈ 120 Ma, MCMs often only incorporate the most recent 120 Myr of plate tectonic evolution. We find that such models are strongly influenced by initial conditions. The development of a new series of tectonic reconstructions extending back to the Triassic (230 Ma) and including careful reconstruction of the oceanic parts of the plates (modified from Stampfli and Borel, 2004, Stampfli et al. 2008 and references therein) should prove to be of huge importance to MCMs. In this study we present a comparison between the traditionally used 120 Myr and the latest 230 Myr plate motion histories. We use the three-dimensional spherical mantle convection code TERRA (Bunge et al., 2003) to simulate convection at Earth like vigour. Here we apply the plate motion history as a surface velocity boundary condition to drive the internal convection of an already well-mixed system. The forward models from a chosen starting point to present day yield information on mantle temperature (as well as pressure, velocity and material properties) throughout the volume. One of the ways to validate our results is to compare these with tomographic models. Seismic tomography provides us with a snapshot of Earth's mantle at present day. Assuming that the mantle is driven largely by thermal convection, we can assume that the seismically fast regions are associated with cooler, denser material. The most significant of these can be interpreted as remnants of subducted slabs (Hafkenscheid et al 2006, van der Meer et al. 2010). We convert the temperatures predicted by the MCM to seismic velocities using the latest techniques (e.g. Cobden et al., 2008) and compare the calculated velocities to a range of seismic tomography models (both P and S wave). This way we can examine the validity of the surface velocity boundary condition and identify

  2. Epac and the high affinity rolipram binding conformer of PDE4 modulate neurite outgrowth and myelination using an in vitro spinal cord injury model

    PubMed Central

    Boomkamp, S D; McGrath, M A; Houslay, M D; Barnett, S C

    2014-01-01

    Background and Purpose cAMP and pharmacological inhibition of PDE4, which degrades it, are promising therapeutic targets for the treatment of spinal cord injury (SCI). Using our previously described in vitro SCI model, we studied the mechanisms by which cAMP modulators promote neurite outgrowth and myelination using enantiomers of the PDE4-specific inhibitor rolipram and other modulators of downstream signalling effectors. Experimental Approach Rat mixed neural cell myelinating cultures were cut with a scalpel and treated with enantiomers of the PDE4-specific inhibitor rolipram, Epac agonists and PKA antagonists. Neurite outgrowth, density and myelination were assessed by immunocytochemistry and cytokine levels analysed by qPCR. Key Results Inhibition of the high-affinity rolipram-binding state (HARBS), rather than the low-affinity rolipram binding state (LARBS) PDE4 conformer promoted neurite outgrowth and myelination. These effects were mediated through the activation of Epac and not through PKA. Expression of the chemokine CXCL10, known to inhibit myelination, was markedly elevated in astrocytes after Rho inhibition and this was blocked by inhibition of Rho kinase or PDE4. Conclusions and Implications PDE4 inhibitors targeted at the HARBS conformer or Epac agonists may provide promising novel targets for the treatment of SCI. Our study demonstrates the differential mechanisms of action of these compounds, as well as the benefit of a combined pharmacological approach and highlighting potential promising targets for the treatment of SCI. These findings need to be confirmed in vivo. PMID:24467222

  3. Structure-based model profiles affinity constant of drugs with hPEPT1 for rapid virtual screening of hPEPT1's substrate.

    PubMed

    Sun, L; Meng, S

    2016-08-01

    The human proton-coupled peptide transporter (hPEPT1) with broad substrates is an important route for improving the pharmacokinetic performance of drugs. Thus, it is essential to predict the affinity constant between drug molecule and hPEPT1 for rapid virtual screening of hPEPT1's substrate during lead optimization, candidate selection and hPEPT1 prodrug design. Here, a structure-based in silico model for 114 compounds was constructed based on eight structural parameters. This model was built by the multiple linear regression method and satisfied all the prerequisites of the regression models. For the entire data set, the r(2) and adjusted r(2) values were 0.74 and 0.72, respectively. Then, this model was used to perform substrate/non-substrate classification. For 29 drugs from DrugBank database, all were correctly classified as substrates of hPEPT1. This model was also used to perform substrate/non-substrate classification for 18 drugs and their prodrugs; this QSAR model also can distinguish between the substrate and non-substrate. In conclusion, the QSAR model in this paper was validated by a large external data set, and all results indicated that the developed model was robust, stable, and can be used for rapid virtual screening of hPEPT1's substrate in the early stage of drug discovery. PMID:27586363

  4. Nordimaprit, homodimaprit, clobenpropit and imetit: affinities for H3 binding sites and potencies in a functional H3 receptor model.

    PubMed

    Kathmann, M; Schlicker, E; Detzner, M; Timmerman, H

    1993-11-01

    We determined the affinities of nordimaprit, homodimaprit, clobenpropit and imetit for H3 binding sites (labelled by 3H-N alpha-methylhistamine) in rat brain cortex homogenates and their potencies at presynaptic H3A receptors on noradrenergic nerve endings in mouse brain cortex slices. 3H-N alpha-Methylhistamine bound saturably to rat brain cortex homogenates with a Kd of 0.70 nmol/l and a Bmax of 98 fmol/mg protein. Binding of 3H-N alpha-methylhistamine was displaced monophasically by dimaprit (pKi 6.55), nordimaprit (5.94), homodimaprit (6.44), clobenpropit (9.16), imetit (9.83), R-(-)-alpha-methylhistamine (8.87) and histamine (8.20), and biphasically by burimamide (pKi high 7.73, pKi low 5.97). In superfused mouse brain cortex slices preincubated with 3H-noradrenaline, the electrically (0.3 Hz) evoked tritium overflow was inhibited by imetit (pIC35 8.93), R-(-)-alpha-methylhistamine (7.87) and histamine (7.03). The effect of histamine was attenuated by nordimaprit, homodimaprit, clobenpropit and N-ethoxycarbonyl-2- ethoxy-1,2-dihydroquinoline (EEDQ); EEDQ (but not nordimaprit, homodimaprit and clobenpropit) attenuated the effect of histamine also in slices pre-exposed to the drug 60-30 min prior to superfusion. The concentration-response curve of histamine was shifted to the right by homodimaprit and clobenpropit; Schild plots yielded straight lines with a slope of unity for both drugs (pA2 5.94 and 9.55, respectively). Nordimaprit depressed the maximum effect of histamine (pD'2 5.55) and also slightly increased the concentration of histamine producing the half-maximum effect.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Comparison of hydrological signal in polar motion excitation with those based on the FGOALS-g2 climate model

    NASA Astrophysics Data System (ADS)

    Wińska, Małgorzata; Nastula, Jolanta; Salstein, David

    2016-04-01

    Our investigations are focused on the influence of different land hydrosphere surface parameters (precipitation, evaporation, total runoff, soil moisture, accumulated snow) on polar motion excitation functions at seasonal and nonseasonal timescales. Here these different variables are obtained from the Flexible Global Ocean-Atmosphere-Land System Model, Grid point Version 2 (FGOALS-g2), which is a climate model from the fifth phase of the Coupled Model Intercomparison Project (CMIP5); with CMIP5 being composed of separate component models of the atmosphere, ocean, sea ice, and land surface. In this study Terrestrial Water Storage TWS changes were determined as: differences between the precipitation, evaporation and total surface runoff content, and as the total soil moisture content being a sum of soil moisture and snowfall flux changes. We compare the model-based data with those from estimates of the Equivalent Water Thickness determined by GRACE satellite observations from the Center for Space Research (CSR). The transfer of angular momentum from global geophysical fluids to the solid Earth is described by the equatorial components χ1 and χ2 of the polar motion excitation functions. Observationally, these so-called geodetic excitation functions of polar motion can be determined on the basis of the equations of motion by using observed x, y components of the pole. The second-degree, first-order coefficients of the Earth gravity field are proportional to variations of the equatorial component χ1, χ2 of the series of the gravimetric excitation function of polar motion. This gravimetric function can be compared with the mass term of geodetic excitation of polar motion. Our analysis comprises (1) determinations and comparisons of regional patterns of hydrological excitation functions of polar motion, and (2) comparison of the global hydrological function determined from the FGOALS-g2 and GRACE data with a hydrological signal in the geodetic excitation function of

  6. Numerical modelling of ground motion in the Taipei Basin: basin and source effects

    NASA Astrophysics Data System (ADS)

    Miksat, J.; Wen, K.-L.; Wenzel, F.; Sokolov, V.; Chen, C.-T.

    2010-12-01

    The Taipei basin in northern Taiwan is located in a high seismicity region and was affected by several earthquakes in the past (ML = 7.3 on 1909 April 15; ML = 6.8 on 1986 November 15; the Chi-Chi ML = 7.3 earthquake on 1999 September 21 and ML = 6.8 on 2002 March 31). The main characteristic of the Taipei basin is its complex shape with a deep western and shallow eastern part. The uppermost Sungshan formation with its low shear wave velocities (90-200ms-1) is also a distinct feature of the basin. Based on the large data base of earthquake records obtained from the Taiwan Strong Motion Instrumentation Program network, many studies on ground motion within the Taipei basin exist. However, the influence of the various subsurface structures on the observed ground motions as well as the variability of ground motion with respect to earthquake location is not fully understood. We apply a 3-D finite-difference method to simulate wave propagation up to 1Hz for a small earthquake close to the basin in order to resolve these open questions. By varying source and structural parameters, we explore the variability of ground motion. Our study includes a subsurface model that is based on recent studies on the basin structure and on the crustal structure of Taiwan. From our simulations we find a good fit between simulated and observed waveforms and peak ground accelerations for the considered small earthquake near the basin. We also explore the influence of fault plane orientation, hypocentre location, deep basin structure and soft soil surface layers of the Sungshan formation by varying the subsurface structure and earthquake position. Our studies reveal that the basin structure produces an amplification factor of about 4 compared to hard rock conditions. Additionally, the soft soil Sungshan formation produce amplification of a factor of 2. This results in a maximum amplification of the basin structure of about 8, which is in good comparison with amplification values larger than 5

  7. Enhanced Modeling of First-Order Plant Equations of Motion for Aeroelastic and Aeroservoelastic Applications

    NASA Technical Reports Server (NTRS)

    Pototzky, Anthony S.

    2010-01-01

    A methodology is described for generating first-order plant equations of motion for aeroelastic and aeroservoelastic applications. The description begins with the process of generating data files representing specialized mode-shapes, such as rigid-body and control surface modes, using both PATRAN and NASTRAN analysis. NASTRAN executes the 146 solution sequence using numerous Direct Matrix Abstraction Program (DMAP) calls to import the mode-shape files and to perform the aeroelastic response analysis. The aeroelastic response analysis calculates and extracts structural frequencies, generalized masses, frequency-dependent generalized aerodynamic force (GAF) coefficients, sensor deflections and load coefficients data as text-formatted data files. The data files are then re-sequenced and re-formatted using a custom written FORTRAN program. The text-formatted data files are stored and coefficients for s-plane equations are fitted to the frequency-dependent GAF coefficients using two Interactions of Structures, Aerodynamics and Controls (ISAC) programs. With tabular files from stored data created by ISAC, MATLAB generates the first-order aeroservoelastic plant equations of motion. These equations include control-surface actuator, turbulence, sensor and load modeling. Altitude varying root-locus plot and PSD plot results for a model of the F-18 aircraft are presented to demonstrate the capability.

  8. Self-Motion Perception and Motion Sickness

    NASA Technical Reports Server (NTRS)

    Fox, Robert A.

    1991-01-01

    Motion sickness typically is considered a bothersome artifact of exposure to passive motion in vehicles of conveyance. This condition seldom has significant impact on the health of individuals because it is of brief duration, it usually can be prevented by simply avoiding the eliciting condition and, when the conditions that produce it are unavoidable, sickness dissipates with continued exposure. The studies conducted examined several aspects of motion sickness in animal models. A principle objective of these studies was to investigate the neuroanatomy that is important in motion sickness with the objectives of examining both the utility of putative models and defining neural mechanisms that are important in motion sickness.

  9. SU-E-J-234: Application of a Breathing Motion Model to ViewRay Cine MR Images

    SciTech Connect

    O’Connell, D. P.; Thomas, D. H.; Dou, T. H.; Lamb, J. M.; Yang, L.; Low, D. A.

    2015-06-15

    Purpose: A respiratory motion model previously used to generate breathing-gated CT images was used with cine MR images. Accuracy and predictive ability of the in-plane models were evaluated. Methods: Sagittalplane cine MR images of a patient undergoing treatment on a ViewRay MRI/radiotherapy system were acquired before and during treatment. Images were acquired at 4 frames/second with 3.5 × 3.5 mm resolution and a slice thickness of 5 mm. The first cine frame was deformably registered to following frames. Superior/inferior component of the tumor centroid position was used as a breathing surrogate. Deformation vectors and surrogate measurements were used to determine motion model parameters. Model error was evaluated and subsequent treatment cines were predicted from breathing surrogate data. A simulated CT cine was created by generating breathing-gated volumetric images at 0.25 second intervals along the measured breathing trace, selecting a sagittal slice and downsampling to the resolution of the MR cines. A motion model was built using the first half of the simulated cine data. Model accuracy and error in predicting the remaining frames of the cine were evaluated. Results: Mean difference between model predicted and deformably registered lung tissue positions for the 28 second preview MR cine acquired before treatment was 0.81 +/− 0.30 mm. The model was used to predict two minutes of the subsequent treatment cine with a mean accuracy of 1.59 +/− 0.63 mm. Conclusion: Inplane motion models were built using MR cine images and evaluated for accuracy and ability to predict future respiratory motion from breathing surrogate measurements. Examination of long term predictive ability is ongoing. The technique was applied to simulated CT cines for further validation, and the authors are currently investigating use of in-plane models to update pre-existing volumetric motion models used for generation of breathing-gated CT planning images.

  10. Modeling confidence judgments, response times, and multiple choices in decision making: recognition memory and motion discrimination.

    PubMed

    Ratcliff, Roger; Starns, Jeffrey J

    2013-07-01

    Confidence in judgments is a fundamental aspect of decision making, and tasks that collect confidence judgments are an instantiation of multiple-choice decision making. We present a model for confidence judgments in recognition memory tasks that uses a multiple-choice diffusion decision process with separate accumulators of evidence for the different confidence choices. The accumulator that first reaches its decision boundary determines which choice is made. Five algorithms for accumulating evidence were compared, and one of them produced proportions of responses for each of the choices and full response time distributions for each choice that closely matched empirical data. With this algorithm, an increase in the evidence in one accumulator is accompanied by a decrease in the others so that the total amount of evidence in the system is constant. Application of the model to the data from an earlier experiment (Ratcliff, McKoon, & Tindall, 1994) uncovered a relationship between the shapes of z-transformed receiver operating characteristics and the behavior of response time distributions. Both are explained in the model by the behavior of the decision boundaries. For generality, we also applied the decision model to a 3-choice motion discrimination task and found it accounted for data better than a competing class of models. The confidence model presents a coherent account of confidence judgments and response time that cannot be explained with currently popular signal detection theory analyses or dual-process models of recognition.

  11. Robust estimation of motion blur kernel using a piecewise-linear model.

    PubMed

    Sungchan Oh; Gyeonghwan Kim

    2014-03-01

    Blur kernel estimation is a crucial step in the deblurring process for images. Estimation of the kernel, especially in the presence of noise, is easily perturbed, and the quality of the resulting deblurred images is hence degraded. Since every motion blur in a single exposure image can be represented by 2D parametric curves, we adopt a piecewise-linear model to approximate the curves for the reliable blur kernel estimation. The model is found to be an effective tradeoff between flexibility and robustness as it takes advantage of two extremes: (1) the generic model, represented by a discrete 2D function, which has a high degree of freedom (DOF) for the maximum flexibility but suffers from noise and (2) the linear model, which enhances robustness and simplicity but has limited expressiveness due to its low DOF. We evaluate several deblurring methods based on not only the generic model, but also the piecewise-linear model as an alternative. After analyzing the experiment results using real-world images with significant levels of noise and a benchmark data set, we conclude that the proposed model is not only robust with respect to noise, but also flexible in dealing with various types of blur.

  12. Motion of nanoprobes in complex liquids within the framework of the length-scale dependent viscosity model.

    PubMed

    Kalwarczyk, Tomasz; Sozanski, Krzysztof; Ochab-Marcinek, Anna; Szymanski, Jedrzej; Tabaka, Marcin; Hou, Sen; Holyst, Robert

    2015-09-01

    This paper deals with the recent phenomenological model of the motion of nanoscopic objects (colloidal particles, proteins, nanoparticles, molecules) in complex liquids. We analysed motion in polymer, micellar, colloidal and protein solutions and the cytoplasm of living cells using the length-scale dependent viscosity model. Viscosity monotonically approaches macroscopic viscosity as the size of the object increases and thus gives a single, coherent picture of motion at the nano and macro scale. The model includes interparticle interactions (solvent-solute), temperature and the internal structure of a complex liquid. The depletion layer ubiquitously occurring in complex liquids is also incorporated into the model. We also discuss the biological aspects of crowding in terms of the length-scale dependent viscosity model.

  13. Ground motion modelling in the Gujarat region of Western India using empirical Green's function approach

    NASA Astrophysics Data System (ADS)

    Choudhury, Pallabee; Chopra, Sumer; Roy, Ketan Singha; Sharma, Jyoti

    2016-04-01

    In this study, ground motions are estimated for scenario earthquakes of Mw 6.0, 6.5 and 7.0 at 17 sites in Gujarat region using Empirical Green's function technique. The Dholavira earthquake of June 19, 2012 (Mw 5.1) which occurred in the Kachchh region of Gujarat is considered as an element earthquake. We estimated the focal mechanism and source parameters of the element earthquake using standard methodologies. The moment tensor inversion technique is used to determine the fault plane solution (strike = 8°, dip = 51°, and rake = - 7°). The seismic moment and the stress drop are 5.6 × 1016 Nm and 120 bars respectively. The validity of the approach was tested for a smaller earthquake. A few possible directivity scenarios were also tested to find out the effect of directivity on the level of ground motions. Our study reveals that source complexities and site effects play a very important role in deciding the level of ground motions at a site which are difficult to model by GMPEs. Our results shed new light on the expected accelerations in the region and suggest that the Kachchh region can expect maximum acceleration of around 500 cm/s2 at few sites near source and around 200 cm/s2 at most of the sites located within 50 km from the epicentre for a Mw 7.0 earthquake. The estimated ground accelerations can be used by the administrators and planners for providing a guiding framework to undertake mitigation investments and activities in the region.

  14. Incorporating dynamic collimator motion in Monte Carlo simulations: an application in modelling a dynamic wedge

    NASA Astrophysics Data System (ADS)

    Verhaegen, Frank; Liu, H. Helen

    2001-02-01

    In radiation therapy, new treatment modalities employing dynamic collimation and intensity modulation increase the complexity of dose calculation because a new dimension, time, has to be incorporated into the traditional three-dimensional problem. In this work, we investigated two classes of sampling technique to incorporate dynamic collimator motion in Monte Carlo simulation. The methods were initially evaluated for modelling enhanced dynamic wedges (EDWs) from Varian accelerators (Varian Medical Systems, Palo Alto, USA). In the position-probability-sampling or PPS method, a cumulative probability distribution function (CPDF) was computed for the collimator position, which could then be sampled during simulations. In the static-component-simulation or SCS method, a dynamic field is approximated by multiple static fields in a step-shoot fashion. The weights of the particles or the number of particles simulated for each component field are computed from the probability distribution function (PDF) of the collimator position. The CPDF and PDF were computed from the segmented treatment tables (STTs) for the EDWs. An output correction factor had to be applied in this calculation to account for the backscattered radiation affecting monitor chamber readings. Comparison of the phase-space data from the PPS method (with the step-shoot motion) with those from the SCS method showed excellent agreement. The accuracy of the PPS method was further verified from the agreement between the measured and calculated dose distributions. Compared to the SCS method, the PPS method is more automated and efficient from an operational point of view. The principle of the PPS method can be extended to simulate other dynamic motions, and in particular, intensity-modulated beams using multileaf collimators.

  15. Generalized uncertainty relations and entanglement dynamics in quantum Brownian motion models

    SciTech Connect

    Anastopoulos, C.; Kechribaris, S.; Mylonas, D.

    2010-10-15

    We study entanglement dynamics in quantum Brownian motion (QBM) models. Our main tool is the Wigner function propagator. Time evolution in the Wigner picture is physically intuitive and it leads to a simple derivation of a master equation for any number of system harmonic oscillators and spectral density of the environment. It also provides generalized uncertainty relations, valid for any initial state, that allow a characterization of the environment in terms of the modifications it causes to the system's dynamics. In particular, the uncertainty relations are very informative about the entanglement dynamics of Gaussian states, and to a lesser extent for other families of states. For concreteness, we apply these techniques to a bipartite QBM model, describing the processes of entanglement creation, disentanglement, and decoherence at all temperatures and time scales.

  16. Control method and system for hydraulic machines employing a dynamic joint motion model

    DOEpatents

    Danko, George

    2011-11-22

    A control method and system for controlling a hydraulically actuated mechanical arm to perform a task, the mechanical arm optionally being a hydraulically actuated excavator arm. The method can include determining a dynamic model of the motion of the hydraulic arm for each hydraulic arm link by relating the input signal vector for each respective link to the output signal vector for the same link. Also the method can include determining an error signal for each link as the weighted sum of the differences between a measured position and a reference position and between the time derivatives of the measured position and the time derivatives of the reference position for each respective link. The weights used in the determination of the error signal can be determined from the constant coefficients of the dynamic model. The error signal can be applied in a closed negative feedback control loop to diminish or eliminate the error signal for each respective link.

  17. Modeling motion of a small black hole through a star or a planet

    NASA Astrophysics Data System (ADS)

    Turova, Victoria; Panin, Alexander

    2012-10-01

    In some scenarios of Big Bang the fluctuations of density in early universe result in the formation of various sized primordial black holes. The black holes of mass range 10^10 -10^22 kg are suitable candidates for a dark matter (or at least for a part of it). Such black holes could from time to time pass via Solar system or Sun or even Earth. What would a trajectory of a small black hole passing through Sun or through Earth look like? Would a black hole slow down and stuck consuming matter and causing cataclysmic collapse of Earth or Sun, or would it just pass? What other effects would take place? We model computationally a motion of a small black hole moving with various initial velocities (10- 1000 km/sec) through a planet-like and a star-like body of various density distributions. The results of this modeling are presented.

  18. Modeling of steady motion and vertical-plane dynamics of a tunnel hull

    NASA Astrophysics Data System (ADS)

    Chaney, Christopher S.; Matveev, Konstantin I.

    2014-06-01

    High-speed marine vehicles can take advantage of aerodynamically supported platforms or air wings to increase maximum speed or transportation efficiency. However, this also results in increased complexity of boat dynamics, especially in the presence of waves and wind gusts. In this study, a mathematical model based on the fully unsteady aerodynamic extreme-ground-effect theory and the hydrodynamic added-mass strip theory is applied for simulating vertical-plane motions of a tunnel hull in a disturbed environment, as well as determining its steady states in calm conditions. Calculated responses of the boat to wind gusts and surface waves are demonstrated. The present model can be used as a supplementary method for preliminary estimations of performance of aerodynamically assisted marine craft.

  19. Brownian Motion.

    ERIC Educational Resources Information Center

    Lavenda, Bernard H.

    1985-01-01

    Explains the phenomenon of Brownian motion, which serves as a mathematical model for random processes. Topics addressed include kinetic theory, Einstein's theory, particle displacement, and others. Points out that observations of the random course of a particle suspended in fluid led to the first accurate measurement of atomic mass. (DH)

  20. Modeling the ascent of sounding balloons: derivation of the vertical air motion

    NASA Astrophysics Data System (ADS)

    Gallice, A.; Wienhold, F. G.; Hoyle, C. R.; Immler, F.; Peter, T.

    2011-06-01

    A new model to describe the ascent of sounding balloons in the troposphere and lower stratosphere (up to ~30-35 km altitude) is presented. Contrary to previous models, detailed account is taken of both the variation of the drag coefficient with altitude and the heat imbalance between the balloon and the atmosphere. To compensate for the lack of data on the drag coefficient of sounding balloons, a reference curve for the relationship between drag coefficient and Reynolds number is derived from a dataset of flights launched during the Lindenberg Upper Air Methods Intercomparisons (LUAMI) campaign. The transfer of heat from the surrounding air into the balloon is accounted for by solving the radial heat diffusion equation inside the balloon. The potential applications of the model include the forecast of the trajectory of sounding balloons, which can be used to increase the accuracy of the match technique, and the derivation of the air vertical velocity. The latter is obtained by subtracting the ascent rate of the balloon in still air calculated by the model from the actual ascent rate. This technique is shown to provide an approximation for the vertical air motion with an uncertainty error of 0.5 m s-1 in the troposphere and 0.2 m s-1 in the stratosphere. An example of extraction of the air vertical velocity is provided in this paper. We show that the air vertical velocities derived from the balloon soundings in this paper are in general agreement with small-scale atmospheric velocity fluctuations related to gravity waves, mechanical turbulence, or other small-scale air motions measured during the SUCCESS campaign (Subsonic Aircraft: Contrail and Cloud Effects Special Study) in the orographically unperturbed mid-latitude middle troposphere.

  1. Effect of Dipolar Cross Correlation on Model-Free Motional Parameters Obtained from 13C Relaxation in AX 2 Systems

    NASA Astrophysics Data System (ADS)

    Zhu, L. Y.; Kemple, M. D.; Landy, S. B.; Buckley, P.

    The importance of dipolar cross correlation in 13C relaxation studies of molecular motion in AX 2 spin systems (A = 13C, X = 1H) was examined. Several different models for the internal motion, including two restricted-diffusion, and two-site jump models, the Kinosita model [K. Kinosita, Jr., S. Kawato, and A. Ikegami, Biophys. J.20, 289 (1977)], and an axially symmetric model, were applied through the Lipari and Szabo [ J. Am. Chem. Soc.104, 4546 (1982)] formalism to calculate errors in 13C T1, obtained from inversion-recovery measurements under proton saturation, and NOE when dipolar cross correlation is neglected. Motional parameters in the Lipari and Szabo formalism, τ m, S2, and τ e, were then determined from T1 and NOE (including the errors) and compared with parameters initially used to simulate the relaxation data. The resulting differences in the motional parameters, while model dependent, were generally small for plausible motions. At larger S2 values (≥ 0.6), the errors in both τ m and S2 were <5%. Errors in τ e increased with S2 but were usually less than 10%. Larger errors in the parameters were found for an axially symmetric model, but with τ m fixed even those were >5% only for the τ m = 1 ns, τ e = 10 ps case. Furthermore, it was observed that deviations in a given motional parameter were mostly of the same sign, which allows bounds to be set on experimentally derived parameters. Relaxation data for the peptide melittin synthesized with gly enriched with 13C at the backbone cu position and with lys enriched with 13C in the side chain were examined in light of the results of the simulations. All in all, it appears that neglect of dipolar cross correlation in 13C T1 (With proton saturation) and NOE measurements in AX 2 systems does not lead to major problems in interpretation of the results in terms of molecular motion.

  2. Solvable continuous-time random walk model of the motion of tracer particles through porous media.

    PubMed

    Fouxon, Itzhak; Holzner, Markus

    2016-08-01

    We consider the continuous-time random walk (CTRW) model of tracer motion in porous medium flows based on the experimentally determined distributions of pore velocity and pore size reported by Holzner et al. [M. Holzner et al., Phys. Rev. E 92, 013015 (2015)PLEEE81539-375510.1103/PhysRevE.92.013015]. The particle's passing through one channel is modeled as one step of the walk. The step (channel) length is random and the walker's velocity at consecutive steps of the walk is conserved with finite probability, mimicking that at the turning point there could be no abrupt change of velocity. We provide the Laplace transform of the characteristic function of the walker's position and reductions for different cases of independence of the CTRW's step duration τ, length l, and velocity v. We solve our model with independent l and v. The model incorporates different forms of the tail of the probability density of small velocities that vary with the model parameter α. Depending on that parameter, all types of anomalous diffusion can hold, from super- to subdiffusion. In a finite interval of α, ballistic behavior with logarithmic corrections holds, which was observed in a previously introduced CTRW model with independent l and τ. Universality of tracer diffusion in the porous medium is considered.

  3. Solvable continuous-time random walk model of the motion of tracer particles through porous media

    NASA Astrophysics Data System (ADS)

    Fouxon, Itzhak; Holzner, Markus

    2016-08-01

    We consider the continuous-time random walk (CTRW) model of tracer motion in porous medium flows based on the experimentally determined distributions of pore velocity and pore size reported by Holzner et al. [M. Holzner et al., Phys. Rev. E 92, 013015 (2015), 10.1103/PhysRevE.92.013015]. The particle's passing through one channel is modeled as one step of the walk. The step (channel) length is random and the walker's velocity at consecutive steps of the walk is conserved with finite probability, mimicking that at the turning point there could be no abrupt change of velocity. We provide the Laplace transform of the characteristic function of the walker's position and reductions for different cases of independence of the CTRW's step duration τ , length l , and velocity v . We solve our model with independent l and v . The model incorporates different forms of the tail of the probability density of small velocities that vary with the model parameter α . Depending on that parameter, all types of anomalous diffusion can hold, from super- to subdiffusion. In a finite interval of α , ballistic behavior with logarithmic corrections holds, which was observed in a previously introduced CTRW model with independent l and τ . Universality of tracer diffusion in the porous medium is considered.

  4. Numerically pricing American options under the generalized mixed fractional Brownian motion model

    NASA Astrophysics Data System (ADS)

    Chen, Wenting; Yan, Bowen; Lian, Guanghua; Zhang, Ying

    2016-06-01

    In this paper, we introduce a robust numerical method, based on the upwind scheme, for the pricing of American puts under the generalized mixed fractional Brownian motion (GMFBM) model. By using portfolio analysis and applying the Wick-Itô formula, a partial differential equation (PDE) governing the prices of vanilla options under the GMFBM is successfully derived for the first time. Based on this, we formulate the pricing of American puts under the current model as a linear complementarity problem (LCP). Unlike the classical Black-Scholes (B-S) model or the generalized B-S model discussed in Cen and Le (2011), the newly obtained LCP under the GMFBM model is difficult to be solved accurately because of the numerical instability which results from the degeneration of the governing PDE as time approaches zero. To overcome this difficulty, a numerical approach based on the upwind scheme is adopted. It is shown that the coefficient matrix of the current method is an M-matrix, which ensures its stability in the maximum-norm sense. Remarkably, we have managed to provide a sharp theoretic error estimate for the current method, which is further verified numerically. The results of various numerical experiments also suggest that this new approach is quite accurate, and can be easily extended to price other types of financial derivatives with an American-style exercise feature under the GMFBM model.

  5. Solvable continuous-time random walk model of the motion of tracer particles through porous media.

    PubMed

    Fouxon, Itzhak; Holzner, Markus

    2016-08-01

    We consider the continuous-time random walk (CTRW) model of tracer motion in porous medium flows based on the experimentally determined distributions of pore velocity and pore size reported by Holzner et al. [M. Holzner et al., Phys. Rev. E 92, 013015 (2015)PLEEE81539-375510.1103/PhysRevE.92.013015]. The particle's passing through one channel is modeled as one step of the walk. The step (channel) length is random and the walker's velocity at consecutive steps of the walk is conserved with finite probability, mimicking that at the turning point there could be no abrupt change of velocity. We provide the Laplace transform of the characteristic function of the walker's position and reductions for different cases of independence of the CTRW's step duration τ, length l, and velocity v. We solve our model with independent l and v. The model incorporates different forms of the tail of the probability density of small velocities that vary with the model parameter α. Depending on that parameter, all types of anomalous diffusion can hold, from super- to subdiffusion. In a finite interval of α, ballistic behavior with logarithmic corrections holds, which was observed in a previously introduced CTRW model with independent l and τ. Universality of tracer diffusion in the porous medium is considered. PMID:27627271

  6. 3D delivered dose assessment using a 4DCT-based motion model

    SciTech Connect

    Cai, Weixing; Hurwitz, Martina H.; Williams, Christopher L.; Dhou, Salam; Berbeco, Ross I.; Mishra, Pankaj E-mail: jhlewis@lroc.harvard.edu; Lewis, John H. E-mail: jhlewis@lroc.harvard.edu; Seco, Joao

    2015-06-15

    Purpose: The purpose of this work is to develop a clinically feasible method of calculating actual delivered dose distributions for patients who have significant respiratory motion during the course of stereotactic body radiation therapy (SBRT). Methods: A novel approach was proposed to calculate the actual delivered dose distribution for SBRT lung treatment. This approach can be specified in three steps. (1) At the treatment planning stage, a patient-specific motion model is created from planning 4DCT data. This model assumes that the displacement vector field (DVF) of any respiratory motion deformation can be described as a linear combination of some basis DVFs. (2) During the treatment procedure, 2D time-varying projection images (either kV or MV projections) are acquired, from which time-varying “fluoroscopic” 3D images of the patient are reconstructed using the motion model. The DVF of each timepoint in the time-varying reconstruction is an optimized linear combination of basis DVFs such that the 2D projection of the 3D volume at this timepoint matches the projection image. (3) 3D dose distribution is computed for each timepoint in the set of 3D reconstructed fluoroscopic images, from which the total effective 3D delivered dose is calculated by accumulating deformed dose distributions. This approach was first validated using two modified digital extended cardio-torso (XCAT) phantoms with lung tumors and different respiratory motions. The estimated doses were compared to the dose that would be calculated for routine 4DCT-based planning and to the actual delivered dose that was calculated using “ground truth” XCAT phantoms at all timepoints. The approach was also tested using one set of patient data, which demonstrated the application of our method in a clinical scenario. Results: For the first XCAT phantom that has a mostly regular breathing pattern, the errors in 95% volume dose (D95) are 0.11% and 0.83%, respectively for 3D fluoroscopic images

  7. 3D delivered dose assessment using a 4DCT-based motion model

    PubMed Central

    Cai, Weixing; Hurwitz, Martina H.; Williams, Christopher L.; Dhou, Salam; Berbeco, Ross I.; Seco, Joao; Mishra, Pankaj; Lewis, John H.

    2015-01-01

    Purpose: The purpose of this work is to develop a clinically feasible method of calculating actual delivered dose distributions for patients who have significant respiratory motion during the course of stereotactic body radiation therapy (SBRT). Methods: A novel approach was proposed to calculate the actual delivered dose distribution for SBRT lung treatment. This approach can be specified in three steps. (1) At the treatment planning stage, a patient-specific motion model is created from planning 4DCT data. This model assumes that the displacement vector field (DVF) of any respiratory motion deformation can be described as a linear combination of some basis DVFs. (2) During the treatment procedure, 2D time-varying projection images (either kV or MV projections) are acquired, from which time-varying “fluoroscopic” 3D images of the patient are reconstructed using the motion model. The DVF of each timepoint in the time-varying reconstruction is an optimized linear combination of basis DVFs such that the 2D projection of the 3D volume at this timepoint matches the projection image. (3) 3D dose distribution is computed for each timepoint in the set of 3D reconstructed fluoroscopic images, from which the total effective 3D delivered dose is calculated by accumulating deformed dose distributions. This approach was first validated using two modified digital extended cardio-torso (XCAT) phantoms with lung tumors and different respiratory motions. The estimated doses were compared to the dose that would be calculated for routine 4DCT-based planning and to the actual delivered dose that was calculated using “ground truth” XCAT phantoms at all timepoints. The approach was also tested using one set of patient data, which demonstrated the application of our method in a clinical scenario. Results: For the first XCAT phantom that has a mostly regular breathing pattern, the errors in 95% volume dose (D95) are 0.11% and 0.83%, respectively for 3D fluoroscopic images

  8. A Revised Caribbean Plate Motion Model: GPS Geodetic Results From the Dominica NSF- REU Site

    NASA Astrophysics Data System (ADS)

    Fauria, K.; Styron, R. H.; James, S.; Turner, H. L.; Ashlock, A.; Cavness, C. L.; Collier, X.; Feinstein, R.; Murphy, R.; Staisch, L.; Williams, B.; Demets, C.; Mattioli, G. S.; Jansma, P. E.; Cothren, J.

    2007-12-01

    Velocities from sixteen campaign GPS sites on the Caribbean island of Dominica are analyzed in combination with fifteen existing Caribbean GPS sites to further constrain Caribbean plate motion. High precision GPS geodesy was used to determine the site positions of 16 sites in Dominica between 2000 and 2007. All observations were obtained using dual-frequency, code-phase receivers and geodetic-quality antennae, primarily choke rings. Generally, three consecutive 24 hour observation days were acquired for each site at every epoch. Absolute point positions were obtained using GIPSY-OASIS II along with final, precise orbits, clocks, earth orientation parameters, and x-files from JPL. All site velocities are calculated relative to ITRF05 and legacy site velocities from elsewhere in the eastern and western stable Caribbean were transformed from ITRF00 to ITRF05 before inversion. The addition of Dominican GPS data from the 16 new sites resulted in no statistically significant (the 95% confidence level) change in the Caribbean Euler pole as recently published by DeMets et al., 2007. Our calculated pole is 35.929°N, 102.536° E, and rotating at a rate of .2610 degrees/m.yr. The updated rotation model verifies the previously published pole and supports the conclusion that within current error bounds, Dominica is part of the stable Caribbean plate, with residual motions on the order of only a few mm/yr.

  9. A mechanical model to compute elastic modulus of tissues for harmonic motion imaging.

    PubMed

    Shan, Baoxiang; Pelegri, Assimina A; Maleke, Caroline; Konofagou, Elisa E

    2008-07-19

    Numerous experimental and computational methods have been developed to estimate tissue elasticity. The existing testing techniques are generally classified into in vitro, invasive in vivo and non-invasive in vivo. For each experimental method, a computational scheme is accordingly proposed to calculate mechanical properties of soft biological tissues. Harmonic motion imaging (HMI) is a new technique that performs radio frequency (RF) signal tracking to estimate the localized oscillatory motion resulting from a radiation force produced by focused ultrasound. A mechanical model and computational scheme based on the superposition principle are developed in this paper to estimate the Young's modulus of a tissue mimicking phantom and bovine liver in vitro tissue from the harmonic displacement measured by HMI. The simulation results are verified by two groups of measurement data, and good agreement is shown in each comparison. Furthermore, an inverse function is observed to correlate the elastic modulus of uniform phantoms with amplitude of displacement measured in HMI. The computational scheme is also implemented to estimate 3D elastic modulus of bovine liver in vitro.

  10. Harmonic motion microwave Doppler imaging: a simulation study using a simple breast model.

    PubMed

    Top, Can Bariş; Gençer, Nevzat G

    2014-02-01

    A hybrid method for tissue imaging using dielectric and elastic properties is proposed and investigated with simple bi-layered breast model. In this method, local harmonic motion is generated in the tissue using a focused ultrasound probe. A narrow-band microwave signal is transmitted to the tissue. The Doppler component of the scattered signal, which depends on the dielectric and elastic properties of the vibrating region, is sensed. A plane-wave spectrum technique is used together with reciprocity theorem for calculating the response of a vibrating electrically small spherical tumor in breast tissue. The effects of operating frequency, antenna alignment and distance, and tumor depth on the received signal are presented. The effect of harmonic motion frequency on the vibration amplitude and displacement distribution is investigated with mechanical simulations using the finite element method. The safety of the method is analyzed in terms of microwave and ultrasound exposure of the breast tissue. The results show that the method has a potential in detecting tumors inside fibro-glandular breast tissue.

  11. 6.9 Sikkim Earthquake and Modeling of Ground Motions to Determine Causative Fault

    NASA Astrophysics Data System (ADS)

    Chopra, Sumer; Sharma, Jyoti; Sutar, Anup; Bansal, B. K.

    2014-07-01

    In this study, source parameters of the September 18, 2011 M w 6.9, Sikkim earthquake were determined using acceleration records. These parameters were then used to generate strong motion at a number of sites using the stochastic finite fault modeling technique to constrain the causative fault plane for this earthquake. The average values of corner frequency, seismic moment, stress drop and source radius were 0.12 Hz, 3.07 × 1026 dyne-cm, 115 bars and 9.68 km, respectively. The fault plane solution showed strike-slip movement with two nodal planes oriented along two prominent lineaments in the region, the NE-oriented Kanchendzonga and NW-oriented Tista lineaments. The ground motions were estimated considering both the nodal planes as causative faults and the results in terms of the peak ground accelerations (PGA) and Fourier spectra were then compared with the actual recordings. We found that the NW-SE striking nodal plane along the Tista lineament may have been the causative fault for the Sikkim earthquake, as PGA estimates are comparable with the observed recordings. We also observed that the Fourier spectrum is not a good parameter in deciding the causative fault plane.

  12. Microscopic nuclear structure models and methods: chiral symmetry, wobbling motion and γ–bands

    NASA Astrophysics Data System (ADS)

    Sheikh, Javid A.; Bhat, Gowhar H.; Dar, Waheed A.; Jehangir, Sheikh; Ganai, Prince A.

    2016-06-01

    A systematic investigation of the nuclear observables related to the triaxial degree of freedom is presented using the multi-quasiparticle triaxial projected shell model (TPSM) approach. These properties correspond to the observation of γ-bands, chiral doublet bands and the wobbling mode. In the TPSM approach, γ-bands are built on each quasiparticle configuration and it is demonstrated that some observations in high-spin spectroscopy that have remained unresolved for quite some time could be explained by considering γ-bands based on two-quasiparticle configurations. It is shown in some Ce-, Nd- and Ge-isotopes that the two observed aligned or s-bands originate from the same intrinsic configuration with one of them as the γ-band based on a two-quasiparticle configuration. In the present work, we have also performed a detailed study of γ-bands observed up to the highest spin in dysposium, hafnium, mercury and uranium isotopes. Furthermore, several measurements related to chiral symmetry breaking and wobbling motion have been reported recently. These phenomena, which are possible only for triaxial nuclei, have been investigated using the TPSM approach. It is shown that doublet bands observed in lighter odd–odd Cs-isotopes can be considered as candidates for chiral symmetry breaking. Transverse wobbling motion recently observed in 135Pr has also been investigated and it is shown that TPSM approach provides a reasonable description of the measured properties.

  13. Modeling meiotic chromosome pairing: nuclear envelope attachment, telomere-led active random motion, and anomalous diffusion

    NASA Astrophysics Data System (ADS)

    Marshall, Wallace F.; Fung, Jennifer C.

    2016-04-01

    The recognition and pairing of homologous chromosomes during meiosis is a complex physical and molecular process involving a combination of polymer dynamics and molecular recognition events. Two highly conserved features of meiotic chromosome behavior are the attachment of telomeres to the nuclear envelope and the active random motion of telomeres driven by their interaction with cytoskeletal motor proteins. Both of these features have been proposed to facilitate the process of homolog pairing, but exactly what role these features play in meiosis remains poorly understood. Here we investigate the roles of active motion and nuclear envelope tethering using a Brownian dynamics simulation in which meiotic chromosomes are represented by a Rouse polymer model subjected to tethering and active forces at the telomeres. We find that tethering telomeres to the nuclear envelope slows down pairing relative to the rates achieved by unattached chromosomes, but that randomly directed active forces applied to the telomeres speed up pairing dramatically in a manner that depends on the statistical properties of the telomere force fluctuations. The increased rate of initial pairing cannot be explained by stretching out of the chromosome conformation but instead seems to correlate with anomalous diffusion of sub-telomeric regions.

  14. Analysis of conformational motions and related key residue interactions responsible for a specific function of proteins with elastic network model.

    PubMed

    Su, Ji Guo; Han, Xiao Ming; Zhang, Xiao; Hou, Yan Xue; Zhu, Jian Zhuo; Wu, Yi Dong

    2016-01-01

    Protein collective motions play a critical role in many biochemical processes. How to predict the functional motions and the related key residue interactions in proteins is important for our understanding in the mechanism of the biochemical processes. Normal mode analysis (NMA) of the elastic network model (ENM) is one of the effective approaches to investigate the structure-encoded motions in proteins. However, the motion modes revealed by the conventional NMA approach do not necessarily correspond to a specific function of protein. In the present work, a new analysis method was proposed to identify the motion modes responsible for a specific function of proteins and then predict the key residue interactions involved in the functional motions by using a perturbation approach. In our method, an internal coordinate that accounts for the specific function was introduced, and the Cartesian coordinate space was transformed into the internal/Cartesian space by using linear approximation, where the introduced internal coordinate serves as one of the axes of the coordinate space. NMA of ENM in this internal/Cartesian space was performed and the function-relevant motion modes were identified according to their contributions to the specific function of proteins. Then the key residue interactions important for the functional motions of the protein were predicted as the interactions whose perturbation largely influences the fluctuation along the internal coordinate. Using our proposed methods, the maltose transporter (MalFGK2) from E. Coli was studied. The functional motions and the key residue interactions that are related to the channel-gating function of this protein were successfully identified.

  15. Assessment of Different Turbulence Models for the Motion of Non-metallic Inclusion in Induction Crucible Furnace

    NASA Astrophysics Data System (ADS)

    Barati, H.; Wu, M.; Kharicha, A.; Ludwig, A.

    2016-07-01

    Turbulent fluid flow due to the electromagnetic forces in induction crucible furnace (ICF) is modeled using k-ɛ, k-ω SST and Large Eddy Simulation (LES) turbulence models. Fluid flow patterns calculated by different turbulence models and their effects on the motion of non-metallic inclusions (NMI) in the bulk melt have been investigated. Results show that the conventional k-ɛ model cannot solve the transient flow in ICF properly. With k-ω model transient flow and oscillation behavior of the flow pattern can be solved, and the motion of NMI can be tracked fairly well. LES model delivers the best modeling result on both details of the transient flow pattern and motion trajectories of NMI without the limitation of NMI size. The drawback of LES model is the long calculation time. Therefore, for general purpose to estimate the dynamic behavior of NMI in ICF both k-ω SST and LES are recommended. For the precise calculation of the motion of NMI smaller than 10 μm only LES model is appropriate.

  16. Secular models and Kozai resonance for planets in coorbital non-coplanar motion

    NASA Astrophysics Data System (ADS)

    Giuppone, C. A.; Leiva, A. M.

    2016-07-01

    In this work, we construct and test an analytical model and a semi-analytical secular model for two planets locked in a coorbital non-coplanar motion, comparing the results with the restricted three-body problem. The analytical average model replicates the numerical N-body integrations, even for moderate eccentricities (≲0.3) and inclinations (≲10°), except for the regions corresponding to quasi-satellite and Lidov-Kozai configurations. Furthermore, this model is also useful in the restricted three-body problem, assuming a very low mass ratio between the planets. We also describe a four-degree-of-freedom semi-analytical model valid for any type of coorbital configuration in a wide range of eccentricities and inclinations. Using an N-body integrator, we have found that the phase space of the general three-body problem is different to the restricted case for an inclined system, and we establish the location of the Lidov-Kozai equilibrium configurations depending on the mass ratio. We study the stability of periodic orbits in the inclined systems, and find that apart from the robust configurations, L4, AL4 and QS, it is possible to HARBOUR two Earth-like planets in orbits previously identified as unstable (U) and also in Euler L3 configurations, with bounded chaos.

  17. A Possible Role for End-Stopped V1 Neurons in the Perception of Motion: A Computational Model

    PubMed Central

    Zarei Eskikand, Parvin; Kameneva, Tatiana; Ibbotson, Michael R.; Burkitt, Anthony N.; Grayden, David B.

    2016-01-01

    We present a model of the early stages of processing in the visual cortex, in particular V1 and MT, to investigate the potential role of end-stopped V1 neurons in solving the aperture problem. A hierarchical network is used in which the incoming motion signals provided by complex V1 neurons and end-stopped V1 neurons proceed to MT neurons at the next stage. MT neurons are categorized into two types based on their function: integration and segmentation. The role of integration neurons is to propagate unambiguous motion signals arriving from those V1 neurons that emphasize object terminators (e.g. corners). Segmentation neurons detect the discontinuities in the input stimulus to control the activity of integration neurons. Although the activity of the complex V1 neurons at the terminators of the object accurately represents the direction of the motion, their level of activity is less than the activity of the neurons along the edges. Therefore, a model incorporating end-stopped neurons is essential to suppress ambiguous motion signals along the edges of the stimulus. It is shown that the unambiguous motion signals at terminators propagate over the rest of the object to achieve an accurate representation of motion. PMID:27741307

  18. Proteochemometric modelling coupled to in silico target prediction: an integrated approach for the simultaneous prediction of polypharmacology and binding affinity/potency of small molecules.

    PubMed

    Paricharak, Shardul; Cortés-Ciriano, Isidro; IJzerman, Adriaan P; Malliavin, Thérèse E; Bender, Andreas

    2015-01-01

    The rampant increase of public bioactivity databases has fostered the development of computational chemogenomics methodologies to evaluate potential ligand-target interactions (polypharmacology) both in a qualitative and quantitative way. Bayesian target prediction algorithms predict the probability of an interaction between a compound and a panel of targets, thus assessing compound polypharmacology qualitatively, whereas structure-activity relationship techniques are able to provide quantitative bioactivity predictions. We propose an integrated drug discovery pipeline combining in silico target prediction and proteochemometric modelling (PCM) for the respective prediction of compound polypharmacology and potency/affinity. The proposed pipeline was evaluated on the retrospective discovery of Plasmodium falciparum DHFR inhibitors. The qualitative in silico target prediction model comprised 553,084 ligand-target associations (a total of 262,174 compounds), covering 3,481 protein targets and used protein domain annotations to extrapolate predictions across species. The prediction of bioactivities for plasmodial DHFR led to a recall value of 79% and a precision of 100%, where the latter high value arises from the structural similarity of plasmodial DHFR inhibitors and T. gondii DHFR inhibitors in the training set. Quantitative PCM models were then trained on a dataset comprising 20 eukaryotic, protozoan and bacterial DHFR sequences, and 1,505 distinct compounds (in total 3,099 data points). The most predictive PCM model exhibited R (2) 0 test and RMSEtest values of 0.79 and 0.59 pIC50 units respectively, which was shown to outperform models based exclusively on compound (R (2) 0 test/RMSEtest = 0.63/0.78) and target information (R (2) 0 test/RMSEtest = 0.09/1.22), as well as inductive transfer knowledge between targets, with respective R (2) 0 test and RMSEtest values of 0.76 and 0.63 pIC50 units. Finally, both methods were integrated to predict the protein

  19. Empirical modeling of renal motion for improved targeting during focused ultrasound surgery.

    PubMed

    Abhilash, R H; Chauhan, Sunita

    2013-05-01

    Non-invasive surgery looks at ways of eliminating physical contact with the target tissues while maintaining necessary levels of accuracy. Focused Ultrasound Surgery (FUS) is one such treatment modality, which uses a tightly focused beam of high intensity ultrasound to ablate tumors in various parts of the body. For trans-abdominal access, respiration induced movement of the tissue targets remains a major issue during FUS. Respiration induced movements are known to be significant in liver and kidney. In this paper, we attempt to address this problem using non-linear prediction and modeling techniques as applicable to kidney movement patterns. Kidney movement patterns are known to be three dimensional and vastly complicated compared to movement patterns of the liver. Monitoring and quantification of the nature and extent of kidney movement is yet to be explored in depth for effective compensation and accurate targeting. Apart from the respiratory cycle, the movement of the kidney is also affected by several factors, such as the movement of the ribs, spleen and liver. Modeling of these movements is imperative for motion adaptive FUS. Since kidney movements are highly subject specific, generic statistical models cannot be used for compensation. The system latency and real-time performance of the imaging modality also induce additional parametric dependence in target tracking. In this work, we focus on empirical modeling and prediction of the kidney movement to for error analysis and computing system latency. The accuracy of existing modeling techniques is compared with a newly developed empirical model. From the study conducted in healthy volunteers, it was found that the kidney movement was complex and subject specific and could be effectively modeled using the new shape function based model. The model was further fine-tuned using Kalman filter based predictors and Adaptive Neuro-Fuzzy Inference System (ANFIS) which gave more than 85% accuracy in prediction. PMID

  20. Modeling "secular" flank motion at Kilauea Volcano (Hawai'i) during 2000-2003

    NASA Astrophysics Data System (ADS)

    Plattner, C.; Amelung, F.; Baker, S.; Govers, R. M.; Poland, M. P.; Lavallee, Y.