Sample records for affine registration method

  1. Robust non-rigid registration algorithm based on local affine registration

    NASA Astrophysics Data System (ADS)

    Wu, Liyang; Xiong, Lei; Du, Shaoyi; Bi, Duyan; Fang, Ting; Liu, Kun; Wu, Dongpeng

    2018-04-01

    Aiming at the problem that the traditional point set non-rigid registration algorithm has low precision and slow convergence speed for complex local deformation data, this paper proposes a robust non-rigid registration algorithm based on local affine registration. The algorithm uses a hierarchical iterative method to complete the point set non-rigid registration from coarse to fine. In each iteration, the sub data point sets and sub model point sets are divided and the shape control points of each sub point set are updated. Then we use the control point guided affine ICP algorithm to solve the local affine transformation between the corresponding sub point sets. Next, the local affine transformation obtained by the previous step is used to update the sub data point sets and their shape control point sets. When the algorithm reaches the maximum iteration layer K, the loop ends and outputs the updated sub data point sets. Experimental results demonstrate that the accuracy and convergence of our algorithm are greatly improved compared with the traditional point set non-rigid registration algorithms.

  2. Improving the convergence rate in affine registration of PET and SPECT brain images using histogram equalization.

    PubMed

    Salas-Gonzalez, D; Górriz, J M; Ramírez, J; Padilla, P; Illán, I A

    2013-01-01

    A procedure to improve the convergence rate for affine registration methods of medical brain images when the images differ greatly from the template is presented. The methodology is based on a histogram matching of the source images with respect to the reference brain template before proceeding with the affine registration. The preprocessed source brain images are spatially normalized to a template using a general affine model with 12 parameters. A sum of squared differences between the source images and the template is considered as objective function, and a Gauss-Newton optimization algorithm is used to find the minimum of the cost function. Using histogram equalization as a preprocessing step improves the convergence rate in the affine registration algorithm of brain images as we show in this work using SPECT and PET brain images.

  3. Bidirectional Elastic Image Registration Using B-Spline Affine Transformation

    PubMed Central

    Gu, Suicheng; Meng, Xin; Sciurba, Frank C.; Wang, Chen; Kaminski, Naftali; Pu, Jiantao

    2014-01-01

    A registration scheme termed as B-spline affine transformation (BSAT) is presented in this study to elastically align two images. We define an affine transformation instead of the traditional translation at each control point. Mathematically, BSAT is a generalized form of the affine transformation and the traditional B-Spline transformation (BST). In order to improve the performance of the iterative closest point (ICP) method in registering two homologous shapes but with large deformation, a bi-directional instead of the traditional unidirectional objective / cost function is proposed. In implementation, the objective function is formulated as a sparse linear equation problem, and a sub-division strategy is used to achieve a reasonable efficiency in registration. The performance of the developed scheme was assessed using both two-dimensional (2D) synthesized dataset and three-dimensional (3D) volumetric computed tomography (CT) data. Our experiments showed that the proposed B-spline affine model could obtain reasonable registration accuracy. PMID:24530210

  4. A Log-Euclidean polyaffine registration for articulated structures in medical images.

    PubMed

    Martín-Fernández, Miguel Angel; Martín-Fernández, Marcos; Alberola-López, Carlos

    2009-01-01

    In this paper we generalize the Log-Euclidean polyaffine registration framework of Arsigny et al. to deal with articulated structures. This framework has very useful properties as it guarantees the invertibility of smooth geometric transformations. In articulated registration a skeleton model is defined for rigid structures such as bones. The final transformation is affine for the bones and elastic for other tissues in the image. We extend the Arsigny el al.'s method to deal with locally-affine registration of pairs of wires. This enables the possibility of using this registration framework to deal with articulated structures. In this context, the design of the weighting functions, which merge the affine transformations defined for each pair of wires, has a great impact not only on the final result of the registration algorithm, but also on the invertibility of the global elastic transformation. Several experiments, using both synthetic images and hand radiographs, are also presented.

  5. Scope and applications of translation invariant wavelets to image registration

    NASA Technical Reports Server (NTRS)

    Chettri, Samir; LeMoigne, Jacqueline; Campbell, William

    1997-01-01

    The first part of this article introduces the notion of translation invariance in wavelets and discusses several wavelets that have this property. The second part discusses the possible applications of such wavelets to image registration. In the case of registration of affinely transformed images, we would conclude that the notion of translation invariance is not really necessary. What is needed is affine invariance and one way to do this is via the method of moment invariants. Wavelets or, in general, pyramid processing can then be combined with the method of moment invariants to reduce the computational load.

  6. Super-resolution image reconstruction from UAS surveillance video through affine invariant interest point-based motion estimation

    NASA Astrophysics Data System (ADS)

    He, Qiang; Schultz, Richard R.; Wang, Yi; Camargo, Aldo; Martel, Florent

    2008-01-01

    In traditional super-resolution methods, researchers generally assume that accurate subpixel image registration parameters are given a priori. In reality, accurate image registration on a subpixel grid is the single most critically important step for the accuracy of super-resolution image reconstruction. In this paper, we introduce affine invariant features to improve subpixel image registration, which considerably reduces the number of mismatched points and hence makes traditional image registration more efficient and more accurate for super-resolution video enhancement. Affine invariant interest points include those corners that are invariant to affine transformations, including scale, rotation, and translation. They are extracted from the second moment matrix through the integration and differentiation covariance matrices. Our tests are based on two sets of real video captured by a small Unmanned Aircraft System (UAS) aircraft, which is highly susceptible to vibration from even light winds. The experimental results from real UAS surveillance video show that affine invariant interest points are more robust to perspective distortion and present more accurate matching than traditional Harris/SIFT corners. In our experiments on real video, all matching affine invariant interest points are found correctly. In addition, for the same super-resolution problem, we can use many fewer affine invariant points than Harris/SIFT corners to obtain good super-resolution results.

  7. Comparison of three methods for registration of abdominal/pelvic volume data sets from functional-anatomic scans

    NASA Astrophysics Data System (ADS)

    Mahmoud, Faaiza; Ton, Anthony; Crafoord, Joakim; Kramer, Elissa L.; Maguire, Gerald Q., Jr.; Noz, Marilyn E.; Zeleznik, Michael P.

    2000-06-01

    The purpose of this work was to evaluate three volumetric registration methods in terms of technique, user-friendliness and time requirements. CT and SPECT data from 11 patients were interactively registered using: a 3D method involving only affine transformation; a mixed 3D - 2D non-affine (warping) method; and a 3D non-affine (warping) method. In the first method representative isosurfaces are generated from the anatomical images. Registration proceeds through translation, rotation, and scaling in all three space variables. Resulting isosurfaces are fused and quantitative measurements are possible. In the second method, the 3D volumes are rendered co-planar by performing an oblique projection. Corresponding landmark pairs are chosen on matching axial slice sets. A polynomial warp is then applied. This method has undergone extensive validation and was used to evaluate the results. The third method employs visualization tools. The data model allows images to be localized within two separate volumes. Landmarks are chosen on separate slices. Polynomial warping coefficients are generated and data points from one volume are moved to the corresponding new positions. The two landmark methods were the least time consuming (10 to 30 minutes from start to finish), but did demand a good knowledge of anatomy. The affine method was tedious and required a fair understanding of 3D geometry.

  8. Deep Adaptive Log-Demons: Diffeomorphic Image Registration with Very Large Deformations

    PubMed Central

    Jia, Kebin

    2015-01-01

    This paper proposes a new framework for capturing large and complex deformation in image registration. Traditionally, this challenging problem relies firstly on a preregistration, usually an affine matrix containing rotation, scale, and translation and afterwards on a nonrigid transformation. According to preregistration, the directly calculated affine matrix, which is obtained by limited pixel information, may misregistrate when large biases exist, thus misleading following registration subversively. To address this problem, for two-dimensional (2D) images, the two-layer deep adaptive registration framework proposed in this paper firstly accurately classifies the rotation parameter through multilayer convolutional neural networks (CNNs) and then identifies scale and translation parameters separately. For three-dimensional (3D) images, affine matrix is located through feature correspondences by a triplanar 2D CNNs. Then deformation removal is done iteratively through preregistration and demons registration. By comparison with the state-of-the-art registration framework, our method gains more accurate registration results on both synthetic and real datasets. Besides, principal component analysis (PCA) is combined with correlation like Pearson and Spearman to form new similarity standards in 2D and 3D registration. Experiment results also show faster convergence speed. PMID:26120356

  9. Deep Adaptive Log-Demons: Diffeomorphic Image Registration with Very Large Deformations.

    PubMed

    Zhao, Liya; Jia, Kebin

    2015-01-01

    This paper proposes a new framework for capturing large and complex deformation in image registration. Traditionally, this challenging problem relies firstly on a preregistration, usually an affine matrix containing rotation, scale, and translation and afterwards on a nonrigid transformation. According to preregistration, the directly calculated affine matrix, which is obtained by limited pixel information, may misregistrate when large biases exist, thus misleading following registration subversively. To address this problem, for two-dimensional (2D) images, the two-layer deep adaptive registration framework proposed in this paper firstly accurately classifies the rotation parameter through multilayer convolutional neural networks (CNNs) and then identifies scale and translation parameters separately. For three-dimensional (3D) images, affine matrix is located through feature correspondences by a triplanar 2D CNNs. Then deformation removal is done iteratively through preregistration and demons registration. By comparison with the state-of-the-art registration framework, our method gains more accurate registration results on both synthetic and real datasets. Besides, principal component analysis (PCA) is combined with correlation like Pearson and Spearman to form new similarity standards in 2D and 3D registration. Experiment results also show faster convergence speed.

  10. Comparison of time-series registration methods in breast dynamic infrared imaging

    NASA Astrophysics Data System (ADS)

    Riyahi-Alam, S.; Agostini, V.; Molinari, F.; Knaflitz, M.

    2015-03-01

    Automated motion reduction in dynamic infrared imaging is on demand in clinical applications, since movement disarranges time-temperature series of each pixel, thus originating thermal artifacts that might bias the clinical decision. All previously proposed registration methods are feature based algorithms requiring manual intervention. The aim of this work is to optimize the registration strategy specifically for Breast Dynamic Infrared Imaging and to make it user-independent. We implemented and evaluated 3 different 3D time-series registration methods: 1. Linear affine, 2. Non-linear Bspline, 3. Demons applied to 12 datasets of healthy breast thermal images. The results are evaluated through normalized mutual information with average values of 0.70 ±0.03, 0.74 ±0.03 and 0.81 ±0.09 (out of 1) for Affine, Bspline and Demons registration, respectively, as well as breast boundary overlap and Jacobian determinant of the deformation field. The statistical analysis of the results showed that symmetric diffeomorphic Demons' registration method outperforms also with the best breast alignment and non-negative Jacobian values which guarantee image similarity and anatomical consistency of the transformation, due to homologous forces enforcing the pixel geometric disparities to be shortened on all the frames. We propose Demons' registration as an effective technique for time-series dynamic infrared registration, to stabilize the local temperature oscillation.

  11. Automatic motion correction for in vivo human skin optical coherence tomography angiography through combined rigid and nonrigid registration

    NASA Astrophysics Data System (ADS)

    Wei, David Wei; Deegan, Anthony J.; Wang, Ruikang K.

    2017-06-01

    When using optical coherence tomography angiography (OCTA), the development of artifacts due to involuntary movements can severely compromise the visualization and subsequent quantitation of tissue microvasculatures. To correct such an occurrence, we propose a motion compensation method to eliminate artifacts from human skin OCTA by means of step-by-step rigid affine registration, rigid subpixel registration, and nonrigid B-spline registration. To accommodate this remedial process, OCTA is conducted using two matching all-depth volume scans. Affine transformation is first performed on the large vessels of the deep reticular dermis, and then the resulting affine parameters are applied to all-depth vasculatures with a further subpixel registration to refine the alignment between superficial smaller vessels. Finally, the coregistration of both volumes is carried out to result in the final artifact-free composite image via an algorithm based upon cubic B-spline free-form deformation. We demonstrate that the proposed method can provide a considerable improvement to the final en face OCTA images with substantial artifact removal. In addition, the correlation coefficients and peak signal-to-noise ratios of the corrected images are evaluated and compared with those of the original images, further validating the effectiveness of the proposed method. We expect that the proposed method can be useful in improving qualitative and quantitative assessment of the OCTA images of scanned tissue beds.

  12. Automatic motion correction for in vivo human skin optical coherence tomography angiography through combined rigid and nonrigid registration.

    PubMed

    Wei, David Wei; Deegan, Anthony J; Wang, Ruikang K

    2017-06-01

    When using optical coherence tomography angiography (OCTA), the development of artifacts due to involuntary movements can severely compromise the visualization and subsequent quantitation of tissue microvasculatures. To correct such an occurrence, we propose a motion compensation method to eliminate artifacts from human skin OCTA by means of step-by-step rigid affine registration, rigid subpixel registration, and nonrigid B-spline registration. To accommodate this remedial process, OCTA is conducted using two matching all-depth volume scans. Affine transformation is first performed on the large vessels of the deep reticular dermis, and then the resulting affine parameters are applied to all-depth vasculatures with a further subpixel registration to refine the alignment between superficial smaller vessels. Finally, the coregistration of both volumes is carried out to result in the final artifact-free composite image via an algorithm based upon cubic B-spline free-form deformation. We demonstrate that the proposed method can provide a considerable improvement to the final en face OCTA images with substantial artifact removal. In addition, the correlation coefficients and peak signal-to-noise ratios of the corrected images are evaluated and compared with those of the original images, further validating the effectiveness of the proposed method. We expect that the proposed method can be useful in improving qualitative and quantitative assessment of the OCTA images of scanned tissue beds.

  13. Demonstration of accuracy and clinical versatility of mutual information for automatic multimodality image fusion using affine and thin-plate spline warped geometric deformations.

    PubMed

    Meyer, C R; Boes, J L; Kim, B; Bland, P H; Zasadny, K R; Kison, P V; Koral, K; Frey, K A; Wahl, R L

    1997-04-01

    This paper applies and evaluates an automatic mutual information-based registration algorithm across a broad spectrum of multimodal volume data sets. The algorithm requires little or no pre-processing, minimal user input and easily implements either affine, i.e. linear or thin-plate spline (TPS) warped registrations. We have evaluated the algorithm in phantom studies as well as in selected cases where few other algorithms could perform as well, if at all, to demonstrate the value of this new method. Pairs of multimodal gray-scale volume data sets were registered by iteratively changing registration parameters to maximize mutual information. Quantitative registration errors were assessed in registrations of a thorax phantom using PET/CT and in the National Library of Medicine's Visible Male using MRI T2-/T1-weighted acquisitions. Registrations of diverse clinical data sets were demonstrated including rotate-translate mapping of PET/MRI brain scans with significant missing data, full affine mapping of thoracic PET/CT and rotate-translate mapping of abdominal SPECT/CT. A five-point thin-plate spline (TPS) warped registration of thoracic PET/CT is also demonstrated. The registration algorithm converged in times ranging between 3.5 and 31 min for affine clinical registrations and 57 min for TPS warping. Mean error vector lengths for rotate-translate registrations were measured to be subvoxel in phantoms. More importantly the rotate-translate algorithm performs well even with missing data. The demonstrated clinical fusions are qualitatively excellent at all levels. We conclude that such automatic, rapid, robust algorithms significantly increase the likelihood that multimodality registrations will be routinely used to aid clinical diagnoses and post-therapeutic assessment in the near future.

  14. [Affine transformation-based automatic registration for peripheral digital subtraction angiography (DSA)].

    PubMed

    Kong, Gang; Dai, Dao-Qing; Zou, Lu-Min

    2008-07-01

    In order to remove the artifacts of peripheral digital subtraction angiography (DSA), an affine transformation-based automatic image registration algorithm is introduced here. The whole process is described as follows: First, rectangle feature templates are constructed with their centers of the extracted Harris corners in the mask, and motion vectors of the central feature points are estimated using template matching technology with the similarity measure of maximum histogram energy. And then the optimal parameters of the affine transformation are calculated with the matrix singular value decomposition (SVD) method. Finally, bilinear intensity interpolation is taken to the mask according to the specific affine transformation. More than 30 peripheral DSA registrations are performed with the presented algorithm, and as the result, moving artifacts of the images are removed with sub-pixel precision, and the time consumption is less enough to satisfy the clinical requirements. Experimental results show the efficiency and robustness of the algorithm.

  15. Robust feature matching via support-line voting and affine-invariant ratios

    NASA Astrophysics Data System (ADS)

    Li, Jiayuan; Hu, Qingwu; Ai, Mingyao; Zhong, Ruofei

    2017-10-01

    Robust image matching is crucial for many applications of remote sensing and photogrammetry, such as image fusion, image registration, and change detection. In this paper, we propose a robust feature matching method based on support-line voting and affine-invariant ratios. We first use popular feature matching algorithms, such as SIFT, to obtain a set of initial matches. A support-line descriptor based on multiple adaptive binning gradient histograms is subsequently applied in the support-line voting stage to filter outliers. In addition, we use affine-invariant ratios computed by a two-line structure to refine the matching results and estimate the local affine transformation. The local affine model is more robust to distortions caused by elevation differences than the global affine transformation, especially for high-resolution remote sensing images and UAV images. Thus, the proposed method is suitable for both rigid and non-rigid image matching problems. Finally, we extract as many high-precision correspondences as possible based on the local affine extension and build a grid-wise affine model for remote sensing image registration. We compare the proposed method with six state-of-the-art algorithms on several data sets and show that our method significantly outperforms the other methods. The proposed method achieves 94.46% average precision on 15 challenging remote sensing image pairs, while the second-best method, RANSAC, only achieves 70.3%. In addition, the number of detected correct matches of the proposed method is approximately four times the number of initial SIFT matches.

  16. Automated brainstem co-registration (ABC) for MRI.

    PubMed

    Napadow, Vitaly; Dhond, Rupali; Kennedy, David; Hui, Kathleen K S; Makris, Nikos

    2006-09-01

    Group data analysis in brainstem neuroimaging is predicated on accurate co-registration of anatomy. As the brainstem is comprised of many functionally heterogeneous nuclei densely situated adjacent to one another, relatively small errors in co-registration can manifest in increased variance or decreased sensitivity (or significance) in detecting activations. We have devised a 2-stage automated, reference mask guided registration technique (Automated Brainstem Co-registration, or ABC) for improved brainstem co-registration. Our approach utilized a brainstem mask dataset to weight an automated co-registration cost function. Our method was validated through measurement of RMS error at 12 manually defined landmarks. These landmarks were also used as guides for a secondary manual co-registration option, intended for outlier individuals that may not adequately co-register with our automated method. Our methodology was tested on 10 healthy human subjects and compared to traditional co-registration techniques (Talairach transform and automated affine transform to the MNI-152 template). We found that ABC had a significantly lower mean RMS error (1.22 +/- 0.39 mm) than Talairach transform (2.88 +/- 1.22 mm, mu +/- sigma) and the global affine (3.26 +/- 0.81 mm) method. Improved accuracy was also found for our manual-landmark-guided option (1.51 +/- 0.43 mm). Visualizing individual brainstem borders demonstrated more consistent and uniform overlap for ABC compared to traditional global co-registration techniques. Improved robustness (lower susceptibility to outliers) was demonstrated with ABC through lower inter-subject RMS error variance compared with traditional co-registration methods. The use of easily available and validated tools (AFNI and FSL) for this method should ease adoption by other investigators interested in brainstem data group analysis.

  17. Lung texture in serial thoracic CT scans: Assessment of change introduced by image registration1

    PubMed Central

    Cunliffe, Alexandra R.; Al-Hallaq, Hania A.; Labby, Zacariah E.; Pelizzari, Charles A.; Straus, Christopher; Sensakovic, William F.; Ludwig, Michelle; Armato, Samuel G.

    2012-01-01

    Purpose: The aim of this study was to quantify the effect of four image registration methods on lung texture features extracted from serial computed tomography (CT) scans obtained from healthy human subjects. Methods: Two chest CT scans acquired at different time points were collected retrospectively for each of 27 patients. Following automated lung segmentation, each follow-up CT scan was registered to the baseline scan using four algorithms: (1) rigid, (2) affine, (3) B-splines deformable, and (4) demons deformable. The registration accuracy for each scan pair was evaluated by measuring the Euclidean distance between 150 identified landmarks. On average, 1432 spatially matched 32 × 32-pixel region-of-interest (ROI) pairs were automatically extracted from each scan pair. First-order, fractal, Fourier, Laws’ filter, and gray-level co-occurrence matrix texture features were calculated in each ROI, for a total of 140 features. Agreement between baseline and follow-up scan ROI feature values was assessed by Bland–Altman analysis for each feature; the range spanned by the 95% limits of agreement of feature value differences was calculated and normalized by the average feature value to obtain the normalized range of agreement (nRoA). Features with small nRoA were considered “registration-stable.” The normalized bias for each feature was calculated from the feature value differences between baseline and follow-up scans averaged across all ROIs in every patient. Because patients had “normal” chest CT scans, minimal change in texture feature values between scan pairs was anticipated, with the expectation of small bias and narrow limits of agreement. Results: Registration with demons reduced the Euclidean distance between landmarks such that only 9% of landmarks were separated by ≥1 mm, compared with rigid (98%), affine (95%), and B-splines (90%). Ninety-nine of the 140 (71%) features analyzed yielded nRoA > 50% for all registration methods, indicating that the majority of feature values were perturbed following registration. Nineteen of the features (14%) had nRoA < 15% following demons registration, indicating relative feature value stability. Student's t-tests showed that the nRoA of these 19 features was significantly larger when rigid, affine, or B-splines registration methods were used compared with demons registration. Demons registration yielded greater normalized bias in feature value change than B-splines registration, though this difference was not significant (p = 0.15). Conclusions: Demons registration provided higher spatial accuracy between matched anatomic landmarks in serial CT scans than rigid, affine, or B-splines algorithms. Texture feature changes calculated in healthy lung tissue from serial CT scans were smaller following demons registration compared with all other algorithms. Though registration altered the values of the majority of texture features, 19 features remained relatively stable after demons registration, indicating their potential for detecting pathologic change in serial CT scans. Combined use of accurate deformable registration using demons and texture analysis may allow for quantitative evaluation of local changes in lung tissue due to disease progression or treatment response. PMID:22894392

  18. A quantitative comparison of two methods to correct eddy current-induced distortions in DT-MRI.

    PubMed

    Muñoz Maniega, Susana; Bastin, Mark E; Armitage, Paul A

    2007-04-01

    Eddy current-induced geometric distortions of single-shot, diffusion-weighted, echo-planar (DW-EP) images are a major confounding factor to the accurate determination of water diffusion parameters in diffusion tensor MRI (DT-MRI). Previously, it has been suggested that these geometric distortions can be removed from brain DW-EP images using affine transformations determined from phantom calibration experiments using iterative cross-correlation (ICC). Since this approach was first described, a number of image-based registration methods have become available that can also correct eddy current-induced distortions in DW-EP images. However, as yet no study has investigated whether separate eddy current calibration or image-based registration provides the most accurate way of removing these artefacts from DT-MRI data. Here we compare how ICC phantom calibration and affine FLIRT (http://www.fmrib.ox.ac.uk), a popular image-based multi-modal registration method that can correct both eddy current-induced distortions and bulk subject motion, perform when registering DW-EP images acquired with different slice thicknesses (2.8 and 5 mm) and b-values (1000 and 3000 s/mm(2)). With the use of consistency testing, it was found that ICC was a more robust algorithm for correcting eddy current-induced distortions than affine FLIRT, especially at high b-value and small slice thickness. In addition, principal component analysis demonstrated that the combination of ICC phantom calibration (to remove eddy current-induced distortions) with rigid body FLIRT (to remove bulk subject motion) provided a more accurate registration of DT-MRI data than that achieved by affine FLIRT.

  19. Automated retina identification based on multiscale elastic registration.

    PubMed

    Figueiredo, Isabel N; Moura, Susana; Neves, Júlio S; Pinto, Luís; Kumar, Sunil; Oliveira, Carlos M; Ramos, João D

    2016-12-01

    In this work we propose a novel method for identifying individuals based on retinal fundus image matching. The method is based on the image registration of retina blood vessels, since it is known that the retina vasculature of an individual is a signature, i.e., a distinctive pattern of the individual. The proposed image registration consists of a multiscale affine registration followed by a multiscale elastic registration. The major advantage of this particular two-step image registration procedure is that it is able to account for both rigid and non-rigid deformations either inherent to the retina tissues or as a result of the imaging process itself. Afterwards a decision identification measure, relying on a suitable normalized function, is defined to decide whether or not the pair of images belongs to the same individual. The method is tested on a data set of 21721 real pairs generated from a total of 946 retinal fundus images of 339 different individuals, consisting of patients followed in the context of different retinal diseases and also healthy patients. The evaluation of its performance reveals that it achieves a very low false rejection rate (FRR) at zero FAR (the false acceptance rate), equal to 0.084, as well as a low equal error rate (EER), equal to 0.053. Moreover, the tests performed by using only the multiscale affine registration, and discarding the multiscale elastic registration, clearly show the advantage of the proposed approach. The outcome of this study also indicates that the proposed method is reliable and competitive with other existing retinal identification methods, and forecasts its future appropriateness and applicability in real-life applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Development and application of pulmonary structure-function registration methods: towards pulmonary image-guidance tools for improved airway targeted therapies and outcomes

    NASA Astrophysics Data System (ADS)

    Guo, Fumin; Pike, Damien; Svenningsen, Sarah; Coxson, Harvey O.; Drozd, John J.; Yuan, Jing; Fenster, Aaron; Parraga, Grace

    2014-03-01

    Objectives: We aimed to develop a way to rapidly generate multi-modality (MRI-CT) pulmonary imaging structurefunction maps using novel non-rigid image registration methods. This objective is part of our overarching goal to provide an image processing pipeline to generate pulmonary structure-function maps and guide airway-targeted therapies. Methods: Anatomical 1H and functional 3He MRI were acquired in 5 healthy asymptomatic ex-smokers and 7 ex-smokers with chronic obstructive pulmonary disease (COPD) at inspiration breath-hold. Thoracic CT was performed within ten minutes of MRI using the same breath-hold volume. Landmark-based affine registration methods previously validated for imaging of COPD, was based on corresponding fiducial markers located in both CT and 1H MRI coronal slices and compared with shape-based CT-MRI non-rigid registration. Shape-based CT-MRI registration was developed by first identifying the shapes of the lung cavities manually, and then registering the two shapes using affine and thin-plate spline algorithms. We compared registration accuracy using the fiducial localization error (FLE) and target registration error (TRE). Results: For landmark-based registration, the TRE was 8.4±5.3 mm for whole lung and 7.8±4.6 mm for the R and L lungs registered independently (p=0.4). For shape-based registration, the TRE was 8.0±4.6 mm for whole lung as compared to 6.9±4.4 mm for the R and L lung registered independently and this difference was significant (p=0.01). The difference for shape-based (6.9±4.4 mm) and landmark-based R and L lung registration (7.8±4.6 mm) was also significant (p=.04) Conclusion: Shape-based registration TRE was significantly improved compared to landmark-based registration when considering L and R lungs independently.

  1. Nonrigid 3D medical image registration and fusion based on deformable models.

    PubMed

    Liu, Peng; Eberhardt, Benjamin; Wybranski, Christian; Ricke, Jens; Lüdemann, Lutz

    2013-01-01

    For coregistration of medical images, rigid methods often fail to provide enough freedom, while reliable elastic methods are available clinically for special applications only. The number of degrees of freedom of elastic models must be reduced for use in the clinical setting to archive a reliable result. We propose a novel geometry-based method of nonrigid 3D medical image registration and fusion. The proposed method uses a 3D surface-based deformable model as guidance. In our twofold approach, the deformable mesh from one of the images is first applied to the boundary of the object to be registered. Thereafter, the non-rigid volume deformation vector field needed for registration and fusion inside of the region of interest (ROI) described by the active surface is inferred from the displacement of the surface mesh points. The method was validated using clinical images of a quasirigid organ (kidney) and of an elastic organ (liver). The reduction in standard deviation of the image intensity difference between reference image and model was used as a measure of performance. Landmarks placed at vessel bifurcations in the liver were used as a gold standard for evaluating registration results for the elastic liver. Our registration method was compared with affine registration using mutual information applied to the quasi-rigid kidney. The new method achieved 15.11% better quality with a high confidence level of 99% for rigid registration. However, when applied to the quasi-elastic liver, the method has an averaged landmark dislocation of 4.32 mm. In contrast, affine registration of extracted livers yields a significantly (P = 0.000001) smaller dislocation of 3.26 mm. In conclusion, our validation shows that the novel approach is applicable in cases where internal deformation is not crucial, but it has limitations in cases where internal displacement must also be taken into account.

  2. Deformable registration for image-guided spine surgery: preserving rigid body vertebral morphology in free-form transformations

    NASA Astrophysics Data System (ADS)

    Reaungamornrat, S.; Wang, A. S.; Uneri, A.; Otake, Y.; Zhao, Z.; Khanna, A. J.; Siewerdsen, J. H.

    2014-03-01

    Purpose: Deformable registration of preoperative and intraoperative images facilitates accurate localization of target and critical anatomy in image-guided spine surgery. However, conventional deformable registration fails to preserve the morphology of rigid bone anatomy and can impart distortions that confound high-precision intervention. We propose a constrained registration method that preserves rigid morphology while allowing deformation of surrounding soft tissues. Method: The registration method aligns preoperative 3D CT to intraoperative cone-beam CT (CBCT) using free-form deformation (FFD) with penalties on rigid body motion imposed according to a simple intensity threshold. The penalties enforced 3 properties of a rigid transformation - namely, constraints on affinity (AC), orthogonality (OC), and properness (PC). The method also incorporated an injectivity constraint (IC) to preserve topology. Physical experiments (involving phantoms, an ovine spine, and a human cadaver) as well as digital simulations were performed to evaluate the sensitivity to registration parameters, preservation of rigid body morphology, and overall registration accuracy of constrained FFD in comparison to conventional unconstrained FFD (denoted uFFD) and Demons registration. Result: FFD with orthogonality and injectivity constraints (denoted FFD+OC+IC) demonstrated improved performance compared to uFFD and Demons. Affinity and properness constraints offered little or no additional improvement. The FFD+OC+IC method preserved rigid body morphology at near-ideal values of zero dilatation (D = 0.05, compared to 0.39 and 0.56 for uFFD and Demons, respectively) and shear (S = 0.08, compared to 0.36 and 0.44 for uFFD and Demons, respectively). Target registration error (TRE) was similarly improved for FFD+OC+IC (0.7 mm), compared to 1.4 and 1.8 mm for uFFD and Demons. Results were validated in human cadaver studies using CT and CBCT images, with FFD+OC+IC providing excellent preservation of rigid morphology and equivalent or improved TRE. Conclusions: A promising method for deformable registration in CBCT-guided spine surgery has been identified incorporating a constrained FFD to preserve bone morphology. The approach overcomes distortions intrinsic to unconstrained FFD and could better facilitate high-precision image-guided spine surgery.

  3. Comparison of demons deformable registration-based methods for texture analysis of serial thoracic CT scans

    NASA Astrophysics Data System (ADS)

    Cunliffe, Alexandra R.; Al-Hallaq, Hania A.; Fei, Xianhan M.; Tuohy, Rachel E.; Armato, Samuel G.

    2013-02-01

    To determine how 19 image texture features may be altered by three image registration methods, "normal" baseline and follow-up computed tomography (CT) scans from 27 patients were analyzed. Nineteen texture feature values were calculated in over 1,000 32x32-pixel regions of interest (ROIs) randomly placed in each baseline scan. All three methods used demons registration to map baseline scan ROIs to anatomically matched locations in the corresponding transformed follow-up scan. For the first method, the follow-up scan transformation was subsampled to achieve a voxel size identical to that of the baseline scan. For the second method, the follow-up scan was transformed through affine registration to achieve global alignment with the baseline scan. For the third method, the follow-up scan was directly deformed to the baseline scan using demons deformable registration. Feature values in matched ROIs were compared using Bland- Altman 95% limits of agreement. For each feature, the range spanned by the 95% limits was normalized to the mean feature value to obtain the normalized range of agreement, nRoA. Wilcoxon signed-rank tests were used to compare nRoA values across features for the three methods. Significance for individual tests was adjusted using the Bonferroni method. nRoA was significantly smaller for affine-registered scans than for the resampled scans (p=0.003), indicating lower feature value variability between baseline and follow-up scan ROIs using this method. For both of these methods, however, nRoA was significantly higher than when feature values were calculated directly on demons-deformed followup scans (p<0.001). Across features and methods, nRoA values remained below 26%.

  4. Automatic selection of landmarks in T1-weighted head MRI with regression forests for image registration initialization

    NASA Astrophysics Data System (ADS)

    Wang, Jianing; Liu, Yuan; Noble, Jack H.; Dawant, Benoit M.

    2017-02-01

    Medical image registration establishes a correspondence between images of biological structures and it is at the core of many applications. Commonly used deformable image registration methods are dependent on a good preregistration initialization. The initialization can be performed by localizing homologous landmarks and calculating a point-based transformation between the images. The selection of landmarks is however important. In this work, we present a learning-based method to automatically find a set of robust landmarks in 3D MR image volumes of the head to initialize non-rigid transformations. To validate our method, these selected landmarks are localized in unknown image volumes and they are used to compute a smoothing thin-plate splines transformation that registers the atlas to the volumes. The transformed atlas image is then used as the preregistration initialization of an intensity-based non-rigid registration algorithm. We show that the registration accuracy of this algorithm is statistically significantly improved when using the presented registration initialization over a standard intensity-based affine registration.

  5. WE-AB-BRA-12: Post-Implant Dosimetry in Prostate Brachytherapy by X-Ray and MRI Fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, S; Song, D; Lee, J

    Purpose: For post-implant dosimetric assessment after prostate brachytherapy, CT-MR fusion approach has been advocated due to the superior accuracy on both seeds localization and soft tissue delineation. However, CT deposits additional radiation to the patient, and seed identification in CT requires manual review and correction. In this study, we propose an accurate, low-dose, and cost-effective post-implant dosimetry approach based on X-ray and MRI. Methods: Implanted seeds are reconstructed using only three X-ray fluoroscopy images by solving a combinatorial optimization problem. The reconstructed seeds are then registered to MR images using an intensity-based points-to-volume registration. MR images are first pre-processed bymore » geometric and Gaussian filtering, yielding smooth candidate seed-only images. To accommodate potential soft tissue deformation, our registration is performed in two steps, an initial affine followed by local deformable registrations. An evolutionary optimizer in conjunction with a points-to-volume similarity metric is used for the affine registration. Local prostate deformation and seed migration are then adjusted by the deformable registration step with external and internal force constraints. Results: We tested our algorithm on twenty patient data sets. For quantitative evaluation, we obtained ground truth seed positions by fusing the post-implant CT-MR images. Seeds were semi-automatically extracted from CT and manually corrected and then registered to the MR images. Target registration error (TRE) was computed by measuring the Euclidean distances from the ground truth to the closest registered X-ray seeds. The overall TREs (mean±standard deviation in mm) are 1.6±1.1 (affine) and 1.3±0.8 (affine+deformable). The overall computation takes less than 1 minute. Conclusion: It has been reported that the CT-based seed localization error is ∼1.6mm and the seed localization uncertainty of 2mm results in less than 5% deviation of prostate D90. The average error of 1.3mm with our system outperforms the CT-based approach and is considered well within the clinically acceptable limit. Supported in part by NIH/NCI grant 5R01CA151395. The X-ray-based implant reconstruction method (US patent No. 8,233,686) was licensed to Acoustic MedSystems Inc.« less

  6. A Multiatlas Segmentation Using Graph Cuts with Applications to Liver Segmentation in CT Scans

    PubMed Central

    2014-01-01

    An atlas-based segmentation approach is presented that combines low-level operations, an affine probabilistic atlas, and a multiatlas-based segmentation. The proposed combination provides highly accurate segmentation due to registrations and atlas selections based on the regions of interest (ROIs) and coarse segmentations. Our approach shares the following common elements between the probabilistic atlas and multiatlas segmentation: (a) the spatial normalisation and (b) the segmentation method, which is based on minimising a discrete energy function using graph cuts. The method is evaluated for the segmentation of the liver in computed tomography (CT) images. Low-level operations define a ROI around the liver from an abdominal CT. We generate a probabilistic atlas using an affine registration based on geometry moments from manually labelled data. Next, a coarse segmentation of the liver is obtained from the probabilistic atlas with low computational effort. Then, a multiatlas segmentation approach improves the accuracy of the segmentation. Both the atlas selections and the nonrigid registrations of the multiatlas approach use a binary mask defined by coarse segmentation. We experimentally demonstrate that this approach performs better than atlas selections and nonrigid registrations in the entire ROI. The segmentation results are comparable to those obtained by human experts and to other recently published results. PMID:25276219

  7. A fast and fully automatic registration approach based on point features for multi-source remote-sensing images

    NASA Astrophysics Data System (ADS)

    Yu, Le; Zhang, Dengrong; Holden, Eun-Jung

    2008-07-01

    Automatic registration of multi-source remote-sensing images is a difficult task as it must deal with the varying illuminations and resolutions of the images, different perspectives and the local deformations within the images. This paper proposes a fully automatic and fast non-rigid image registration technique that addresses those issues. The proposed technique performs a pre-registration process that coarsely aligns the input image to the reference image by automatically detecting their matching points by using the scale invariant feature transform (SIFT) method and an affine transformation model. Once the coarse registration is completed, it performs a fine-scale registration process based on a piecewise linear transformation technique using feature points that are detected by the Harris corner detector. The registration process firstly finds in succession, tie point pairs between the input and the reference image by detecting Harris corners and applying a cross-matching strategy based on a wavelet pyramid for a fast search speed. Tie point pairs with large errors are pruned by an error-checking step. The input image is then rectified by using triangulated irregular networks (TINs) to deal with irregular local deformations caused by the fluctuation of the terrain. For each triangular facet of the TIN, affine transformations are estimated and applied for rectification. Experiments with Quickbird, SPOT5, SPOT4, TM remote-sensing images of the Hangzhou area in China demonstrate the efficiency and the accuracy of the proposed technique for multi-source remote-sensing image registration.

  8. Atlas-based segmentation of brainstem regions in neuromelanin-sensitive magnetic resonance images

    NASA Astrophysics Data System (ADS)

    Puigvert, Marc; Castellanos, Gabriel; Uranga, Javier; Abad, Ricardo; Fernández-Seara, María. A.; Pastor, Pau; Pastor, María. A.; Muñoz-Barrutia, Arrate; Ortiz de Solórzano, Carlos

    2015-03-01

    We present a method for the automatic delineation of two neuromelanin rich brainstem structures -substantia nigra pars compacta (SN) and locus coeruleus (LC)- in neuromelanin sensitive magnetic resonance images of the brain. The segmentation method uses a dynamic multi-image reference atlas and a pre-registration atlas selection strategy. To create the atlas, a pool of 35 images of healthy subjects was pair-wise pre-registered and clustered in groups using an affinity propagation approach. Each group of the atlas is represented by a single exemplar image. Each new target image to be segmented is registered to the exemplars of each cluster. Then all the images of the highest performing clusters are enrolled into the final atlas, and the results of the registration with the target image are propagated using a majority voting approach. All registration processes used combined one two-stage affine and one elastic B-spline algorithm, to account for global positioning, region selection and local anatomic differences. In this paper, we present the algorithm, with emphasis in the atlas selection method and the registration scheme. We evaluate the performance of the atlas selection strategy using 35 healthy subjects and 5 Parkinson's disease patients. Then, we quantified the volume and contrast ratio of neuromelanin signal of these structures in 47 normal subjects and 40 Parkinson's disease patients to confirm that this method can detect neuromelanin-containing neurons loss in Parkinson's disease patients and could eventually be used for the early detection of SN and LC damage.

  9. SU-E-J-109: Accurate Contour Transfer Between Different Image Modalities Using a Hybrid Deformable Image Registration and Fuzzy Connected Image Segmentation Method.

    PubMed

    Yang, C; Paulson, E; Li, X

    2012-06-01

    To develop and evaluate a tool that can improve the accuracy of contour transfer between different image modalities under challenging conditions of low image contrast and large image deformation, comparing to a few commonly used methods, for radiation treatment planning. The software tool includes the following steps and functionalities: (1) accepting input of images of different modalities, (2) converting existing contours on reference images (e.g., MRI) into delineated volumes and adjusting the intensity within the volumes to match target images (e.g., CT) intensity distribution for enhanced similarity metric, (3) registering reference and target images using appropriate deformable registration algorithms (e.g., B-spline, demons) and generate deformed contours, (4) mapping the deformed volumes on target images, calculating mean, variance, and center of mass as the initialization parameters for consecutive fuzzy connectedness (FC) image segmentation on target images, (5) generate affinity map from FC segmentation, (6) achieving final contours by modifying the deformed contours using the affinity map with a gradient distance weighting algorithm. The tool was tested with the CT and MR images of four pancreatic cancer patients acquired at the same respiration phase to minimize motion distortion. Dice's Coefficient was calculated against direct delineation on target image. Contours generated by various methods, including rigid transfer, auto-segmentation, deformable only transfer and proposed method, were compared. Fuzzy connected image segmentation needs careful parameter initialization and user involvement. Automatic contour transfer by multi-modality deformable registration leads up to 10% of accuracy improvement over the rigid transfer. Two extra proposed steps of adjusting intensity distribution and modifying the deformed contour with affinity map improve the transfer accuracy further to 14% averagely. Deformable image registration aided by contrast adjustment and fuzzy connectedness segmentation improves the contour transfer accuracy between multi-modality images, particularly with large deformation and low image contrast. © 2012 American Association of Physicists in Medicine.

  10. Deformable image registration with local rigidity constraints for cone-beam CT-guided spine surgery

    NASA Astrophysics Data System (ADS)

    Reaungamornrat, S.; Wang, A. S.; Uneri, A.; Otake, Y.; Khanna, A. J.; Siewerdsen, J. H.

    2014-07-01

    Image-guided spine surgery (IGSS) is associated with reduced co-morbidity and improved surgical outcome. However, precise localization of target anatomy and adjacent nerves and vessels relative to planning information (e.g., device trajectories) can be challenged by anatomical deformation. Rigid registration alone fails to account for deformation associated with changes in spine curvature, and conventional deformable registration fails to account for rigidity of the vertebrae, causing unrealistic distortions in the registered image that can confound high-precision surgery. We developed and evaluated a deformable registration method capable of preserving rigidity of bones while resolving the deformation of surrounding soft tissue. The method aligns preoperative CT to intraoperative cone-beam CT (CBCT) using free-form deformation (FFD) with constraints on rigid body motion imposed according to a simple intensity threshold of bone intensities. The constraints enforced three properties of a rigid transformation—namely, constraints on affinity (AC), orthogonality (OC), and properness (PC). The method also incorporated an injectivity constraint (IC) to preserve topology. Physical experiments involving phantoms, an ovine spine, and a human cadaver as well as digital simulations were performed to evaluate the sensitivity to registration parameters, preservation of rigid body morphology, and overall registration accuracy of constrained FFD in comparison to conventional unconstrained FFD (uFFD) and Demons registration. FFD with orthogonality and injectivity constraints (denoted FFD+OC+IC) demonstrated improved performance compared to uFFD and Demons. Affinity and properness constraints offered little or no additional improvement. The FFD+OC+IC method preserved rigid body morphology at near-ideal values of zero dilatation ({ D} = 0.05, compared to 0.39 and 0.56 for uFFD and Demons, respectively) and shear ({ S} = 0.08, compared to 0.36 and 0.44 for uFFD and Demons, respectively). Target registration error (TRE) was similarly improved for FFD+OC+IC (0.7 mm), compared to 1.4 and 1.8 mm for uFFD and Demons. Results were validated in human cadaver studies using CT and CBCT images, with FFD+OC+IC providing excellent preservation of rigid morphology and equivalent or improved TRE. The approach therefore overcomes distortions intrinsic to uFFD and could better facilitate high-precision IGSS.

  11. Multi-modal Registration for Correlative Microscopy using Image Analogies

    PubMed Central

    Cao, Tian; Zach, Christopher; Modla, Shannon; Powell, Debbie; Czymmek, Kirk; Niethammer, Marc

    2014-01-01

    Correlative microscopy is a methodology combining the functionality of light microscopy with the high resolution of electron microscopy and other microscopy technologies for the same biological specimen. In this paper, we propose an image registration method for correlative microscopy, which is challenging due to the distinct appearance of biological structures when imaged with different modalities. Our method is based on image analogies and allows to transform images of a given modality into the appearance-space of another modality. Hence, the registration between two different types of microscopy images can be transformed to a mono-modality image registration. We use a sparse representation model to obtain image analogies. The method makes use of corresponding image training patches of two different imaging modalities to learn a dictionary capturing appearance relations. We test our approach on backscattered electron (BSE) scanning electron microscopy (SEM)/confocal and transmission electron microscopy (TEM)/confocal images. We perform rigid, affine, and deformable registration via B-splines and show improvements over direct registration using both mutual information and sum of squared differences similarity measures to account for differences in image appearance. PMID:24387943

  12. Automatic selection of landmarks in T1-weighted head MRI with regression forests for image registration initialization.

    PubMed

    Wang, Jianing; Liu, Yuan; Noble, Jack H; Dawant, Benoit M

    2017-10-01

    Medical image registration establishes a correspondence between images of biological structures, and it is at the core of many applications. Commonly used deformable image registration methods depend on a good preregistration initialization. We develop a learning-based method to automatically find a set of robust landmarks in three-dimensional MR image volumes of the head. These landmarks are then used to compute a thin plate spline-based initialization transformation. The process involves two steps: (1) identifying a set of landmarks that can be reliably localized in the images and (2) selecting among them the subset that leads to a good initial transformation. To validate our method, we use it to initialize five well-established deformable registration algorithms that are subsequently used to register an atlas to MR images of the head. We compare our proposed initialization method with a standard approach that involves estimating an affine transformation with an intensity-based approach. We show that for all five registration algorithms the final registration results are statistically better when they are initialized with the method that we propose than when a standard approach is used. The technique that we propose is generic and could be used to initialize nonrigid registration algorithms for other applications.

  13. A robust and hierarchical approach for the automatic co-registration of intensity and visible images

    NASA Astrophysics Data System (ADS)

    González-Aguilera, Diego; Rodríguez-Gonzálvez, Pablo; Hernández-López, David; Luis Lerma, José

    2012-09-01

    This paper presents a new robust approach to integrate intensity and visible images which have been acquired with a terrestrial laser scanner and a calibrated digital camera, respectively. In particular, an automatic and hierarchical method for the co-registration of both sensors is developed. The approach integrates several existing solutions to improve the performance of the co-registration between range-based and visible images: the Affine Scale-Invariant Feature Transform (A-SIFT), the epipolar geometry, the collinearity equations, the Groebner basis solution and the RANdom SAmple Consensus (RANSAC), integrating a voting scheme. The approach presented herein improves the existing co-registration approaches in automation, robustness, reliability and accuracy.

  14. Image Segmentation, Registration, Compression, and Matching

    NASA Technical Reports Server (NTRS)

    Yadegar, Jacob; Wei, Hai; Yadegar, Joseph; Ray, Nilanjan; Zabuawala, Sakina

    2011-01-01

    A novel computational framework was developed of a 2D affine invariant matching exploiting a parameter space. Named as affine invariant parameter space (AIPS), the technique can be applied to many image-processing and computer-vision problems, including image registration, template matching, and object tracking from image sequence. The AIPS is formed by the parameters in an affine combination of a set of feature points in the image plane. In cases where the entire image can be assumed to have undergone a single affine transformation, the new AIPS match metric and matching framework becomes very effective (compared with the state-of-the-art methods at the time of this reporting). No knowledge about scaling or any other transformation parameters need to be known a priori to apply the AIPS framework. An automated suite of software tools has been created to provide accurate image segmentation (for data cleaning) and high-quality 2D image and 3D surface registration (for fusing multi-resolution terrain, image, and map data). These tools are capable of supporting existing GIS toolkits already in the marketplace, and will also be usable in a stand-alone fashion. The toolkit applies novel algorithmic approaches for image segmentation, feature extraction, and registration of 2D imagery and 3D surface data, which supports first-pass, batched, fully automatic feature extraction (for segmentation), and registration. A hierarchical and adaptive approach is taken for achieving automatic feature extraction, segmentation, and registration. Surface registration is the process of aligning two (or more) data sets to a common coordinate system, during which the transformation between their different coordinate systems is determined. Also developed here are a novel, volumetric surface modeling and compression technique that provide both quality-guaranteed mesh surface approximations and compaction of the model sizes by efficiently coding the geometry and connectivity/topology components of the generated models. The highly efficient triangular mesh compression compacts the connectivity information at the rate of 1.5-4 bits per vertex (on average for triangle meshes), while reducing the 3D geometry by 40-50 percent. Finally, taking into consideration the characteristics of 3D terrain data, and using the innovative, regularized binary decomposition mesh modeling, a multistage, pattern-drive modeling, and compression technique has been developed to provide an effective framework for compressing digital elevation model (DEM) surfaces, high-resolution aerial imagery, and other types of NASA data.

  15. A Registration Method Based on Contour Point Cloud for 3D Whole-Body PET and CT Images

    PubMed Central

    Yang, Qiyao; Wang, Zhiguo; Zhang, Guoxu

    2017-01-01

    The PET and CT fusion image, combining the anatomical and functional information, has important clinical meaning. An effective registration of PET and CT images is the basis of image fusion. This paper presents a multithread registration method based on contour point cloud for 3D whole-body PET and CT images. Firstly, a geometric feature-based segmentation (GFS) method and a dynamic threshold denoising (DTD) method are creatively proposed to preprocess CT and PET images, respectively. Next, a new automated trunk slices extraction method is presented for extracting feature point clouds. Finally, the multithread Iterative Closet Point is adopted to drive an affine transform. We compare our method with a multiresolution registration method based on Mattes Mutual Information on 13 pairs (246~286 slices per pair) of 3D whole-body PET and CT data. Experimental results demonstrate the registration effectiveness of our method with lower negative normalization correlation (NC = −0.933) on feature images and less Euclidean distance error (ED = 2.826) on landmark points, outperforming the source data (NC = −0.496, ED = 25.847) and the compared method (NC = −0.614, ED = 16.085). Moreover, our method is about ten times faster than the compared one. PMID:28316979

  16. Robust inverse-consistent affine CT-MR registration in MRI-assisted and MRI-alone prostate radiation therapy.

    PubMed

    Rivest-Hénault, David; Dowson, Nicholas; Greer, Peter B; Fripp, Jurgen; Dowling, Jason A

    2015-07-01

    CT-MR registration is a critical component of many radiation oncology protocols. In prostate external beam radiation therapy, it allows the propagation of MR-derived contours to reference CT images at the planning stage, and it enables dose mapping during dosimetry studies. The use of carefully registered CT-MR atlases allows the estimation of patient specific electron density maps from MRI scans, enabling MRI-alone radiation therapy planning and treatment adaptation. In all cases, the precision and accuracy achieved by registration influences the quality of the entire process. Most current registration algorithms do not robustly generalize and lack inverse-consistency, increasing the risk of human error and acting as a source of bias in studies where information is propagated in a particular direction, e.g. CT to MR or vice versa. In MRI-based treatment planning where both CT and MR scans serve as spatial references, inverse-consistency is critical, if under-acknowledged. A robust, inverse-consistent, rigid/affine registration algorithm that is well suited to CT-MR alignment in prostate radiation therapy is presented. The presented method is based on a robust block-matching optimization process that utilises a half-way space definition to maintain inverse-consistency. Inverse-consistency substantially reduces the influence of the order of input images, simplifying analysis, and increasing robustness. An open source implementation is available online at http://aehrc.github.io/Mirorr/. Experimental results on a challenging 35 CT-MR pelvis dataset demonstrate that the proposed method is more accurate than other popular registration packages and is at least as accurate as the state of the art, while being more robust and having an order of magnitude higher inverse-consistency than competing approaches. The presented results demonstrate that the proposed registration algorithm is readily applicable to prostate radiation therapy planning. Copyright © 2015. Published by Elsevier B.V.

  17. A Local Fast Marching-Based Diffusion Tensor Image Registration Algorithm by Simultaneously Considering Spatial Deformation and Tensor Orientation

    PubMed Central

    Xue, Zhong; Li, Hai; Guo, Lei; Wong, Stephen T.C.

    2010-01-01

    It is a key step to spatially align diffusion tensor images (DTI) to quantitatively compare neural images obtained from different subjects or the same subject at different timepoints. Different from traditional scalar or multi-channel image registration methods, tensor orientation should be considered in DTI registration. Recently, several DTI registration methods have been proposed in the literature, but deformation fields are purely dependent on the tensor features not the whole tensor information. Other methods, such as the piece-wise affine transformation and the diffeomorphic non-linear registration algorithms, use analytical gradients of the registration objective functions by simultaneously considering the reorientation and deformation of tensors during the registration. However, only relatively local tensor information such as voxel-wise tensor-similarity, is utilized. This paper proposes a new DTI image registration algorithm, called local fast marching (FM)-based simultaneous registration. The algorithm not only considers the orientation of tensors during registration but also utilizes the neighborhood tensor information of each voxel to drive the deformation, and such neighborhood tensor information is extracted from a local fast marching algorithm around the voxels of interest. These local fast marching-based tensor features efficiently reflect the diffusion patterns around each voxel within a spherical neighborhood and can capture relatively distinctive features of the anatomical structures. Using simulated and real DTI human brain data the experimental results show that the proposed algorithm is more accurate compared with the FA-based registration and is more efficient than its counterpart, the neighborhood tensor similarity-based registration. PMID:20382233

  18. Deformable image registration for tissues with large displacements

    PubMed Central

    Huang, Xishi; Ren, Jing; Green, Mark

    2017-01-01

    Abstract. Image registration for internal organs and soft tissues is considered extremely challenging due to organ shifts and tissue deformation caused by patients’ movements such as respiration and repositioning. In our previous work, we proposed a fast registration method for deformable tissues with small rotations. We extend our method to deformable registration of soft tissues with large displacements. We analyzed the deformation field of the liver by decomposing the deformation into shift, rotation, and pure deformation components and concluded that in many clinical cases, the liver deformation contains large rotations and small deformations. This analysis justified the use of linear elastic theory in our image registration method. We also proposed a region-based neuro-fuzzy transformation model to seamlessly stitch together local affine and local rigid models in different regions. We have performed the experiments on a liver MRI image set and showed the effectiveness of the proposed registration method. We have also compared the performance of the proposed method with the previous method on tissues with large rotations and showed that the proposed method outperformed the previous method when dealing with the combination of pure deformation and large rotations. Validation results show that we can achieve a target registration error of 1.87±0.87  mm and an average centerline distance error of 1.28±0.78  mm. The proposed technique has the potential to significantly improve registration capabilities and the quality of intraoperative image guidance. To the best of our knowledge, this is the first time that the complex displacement of the liver is explicitly separated into local pure deformation and rigid motion. PMID:28149924

  19. Registration of heat capacity mapping mission day and night images

    NASA Technical Reports Server (NTRS)

    Watson, K.; Hummer-Miller, S.; Sawatzky, D. L.

    1982-01-01

    Registration of thermal images is complicated by distinctive differences in the appearance of day and night features needed as control in the registration process. These changes are unlike those that occur between Landsat scenes and pose unique constraints. Experimentation with several potentially promising techniques has led to selection of a fairly simple scheme for registration of data from the experimental thermal satellite HCMM using an affine transformation. Two registration examples are provided.

  20. Registration of Heat Capacity Mapping Mission day and night images

    NASA Technical Reports Server (NTRS)

    Watson, K.; Hummer-Miller, S.; Sawatzky, D. L. (Principal Investigator)

    1982-01-01

    Neither iterative registration, using drainage intersection maps for control, nor cross correlation techniques were satisfactory in registering day and night HCMM imagery. A procedure was developed which registers the image pairs by selecting control points and mapping the night thermal image to the daytime thermal and reflectance images using an affine transformation on a 1300 by 1100 pixel image. The resulting image registration is accurate to better than two pixels (RMS) and does not exhibit the significant misregistration that was noted in the temperature-difference and thermal-inertia products supplied by NASA. The affine transformation was determined using simple matrix arithmetic, a step that can be performed rapidly on a minicomputer.

  1. Non-rigid image registration using a statistical spline deformation model.

    PubMed

    Loeckx, Dirk; Maes, Frederik; Vandermeulen, Dirk; Suetens, Paul

    2003-07-01

    We propose a statistical spline deformation model (SSDM) as a method to solve non-rigid image registration. Within this model, the deformation is expressed using a statistically trained B-spline deformation mesh. The model is trained by principal component analysis of a training set. This approach allows to reduce the number of degrees of freedom needed for non-rigid registration by only retaining the most significant modes of variation observed in the training set. User-defined transformation components, like affine modes, are merged with the principal components into a unified framework. Optimization proceeds along the transformation components rather then along the individual spline coefficients. The concept of SSDM's is applied to the temporal registration of thorax CR-images using pattern intensity as the registration measure. Our results show that, using 30 training pairs, a reduction of 33% is possible in the number of degrees of freedom without deterioration of the result. The same accuracy as without SSDM's is still achieved after a reduction up to 66% of the degrees of freedom.

  2. Accurate registration of temporal CT images for pulmonary nodules detection

    NASA Astrophysics Data System (ADS)

    Yan, Jichao; Jiang, Luan; Li, Qiang

    2017-02-01

    Interpretation of temporal CT images could help the radiologists to detect some subtle interval changes in the sequential examinations. The purpose of this study was to develop a fully automated scheme for accurate registration of temporal CT images for pulmonary nodule detection. Our method consisted of three major registration steps. Firstly, affine transformation was applied in the segmented lung region to obtain global coarse registration images. Secondly, B-splines based free-form deformation (FFD) was used to refine the coarse registration images. Thirdly, Demons algorithm was performed to align the feature points extracted from the registered images in the second step and the reference images. Our database consisted of 91 temporal CT cases obtained from Beijing 301 Hospital and Shanghai Changzheng Hospital. The preliminary results showed that approximately 96.7% cases could obtain accurate registration based on subjective observation. The subtraction images of the reference images and the rigid and non-rigid registered images could effectively remove the normal structures (i.e. blood vessels) and retain the abnormalities (i.e. pulmonary nodules). This would be useful for the screening of lung cancer in our future study.

  3. Electromagnetic tracking for abdominal interventions in computer aided surgery

    PubMed Central

    Zhang, Hui; Banovac, Filip; Lin, Ralph; Glossop, Neil; Wood, Bradford J.; Lindisch, David; Levy, Elliot; Cleary, Kevin

    2014-01-01

    Electromagnetic tracking has great potential for assisting physicians in precision placement of instruments during minimally invasive interventions in the abdomen, since electromagnetic tracking is not limited by the line-of-sight restrictions of optical tracking. A new generation of electromagnetic tracking has recently become available, with sensors small enough to be included in the tips of instruments. To fully exploit the potential of this technology, our research group has been developing a computer aided, image-guided system that uses electromagnetic tracking for visualization of the internal anatomy during abdominal interventions. As registration is a critical component in developing an accurate image-guided system, we present three registration techniques: 1) enhanced paired-point registration (time-stamp match registration and dynamic registration); 2) orientation-based registration; and 3) needle shape-based registration. Respiration compensation is another important issue, particularly in the abdomen, where respiratory motion can make precise targeting difficult. To address this problem, we propose reference tracking and affine transformation methods. Finally, we present our prototype navigation system, which integrates the registration, segmentation, path-planning and navigation functions to provide real-time image guidance in the clinical environment. The methods presented here have been tested with a respiratory phantom specially designed by our group and in swine animal studies under approved protocols. Based on these tests, we conclude that our system can provide quick and accurate localization of tracked instruments in abdominal interventions, and that it offers a user friendly display for the physician. PMID:16829506

  4. Non-rigid registration of serial dedicated breast CT, longitudinal dedicated breast CT and PET/CT images using the diffeomorphic demons method.

    PubMed

    Santos, Jonathan; Chaudhari, Abhijit J; Joshi, Anand A; Ferrero, Andrea; Yang, Kai; Boone, John M; Badawi, Ramsey D

    2014-09-01

    Dedicated breast CT and PET/CT scanners provide detailed 3D anatomical and functional imaging data sets and are currently being investigated for applications in breast cancer management such as diagnosis, monitoring response to therapy and radiation therapy planning. Our objective was to evaluate the performance of the diffeomorphic demons (DD) non-rigid image registration method to spatially align 3D serial (pre- and post-contrast) dedicated breast computed tomography (CT), and longitudinally-acquired dedicated 3D breast CT and positron emission tomography (PET)/CT images. The algorithmic parameters of the DD method were optimized for the alignment of dedicated breast CT images using training data and fixed. The performance of the method for image alignment was quantitatively evaluated using three separate data sets; (1) serial breast CT pre- and post-contrast images of 20 women, (2) breast CT images of 20 women acquired before and after repositioning the subject on the scanner, and (3) dedicated breast PET/CT images of 7 women undergoing neo-adjuvant chemotherapy acquired pre-treatment and after 1 cycle of therapy. The DD registration method outperformed no registration (p < 0.001) and conventional affine registration (p ≤ 0.002) for serial and longitudinal breast CT and PET/CT image alignment. In spite of the large size of the imaging data, the computational cost of the DD method was found to be reasonable (3-5 min). Co-registration of dedicated breast CT and PET/CT images can be performed rapidly and reliably using the DD method. This is the first study evaluating the DD registration method for the alignment of dedicated breast CT and PET/CT images. Copyright © 2014 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  5. SU-E-J-112: Intensity-Based Pulmonary Image Registration: An Evaluation Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, F; Meyer, J; Sandison, G

    2015-06-15

    Purpose: Accurate alignment of thoracic CT images is essential for dose tracking and to safely implement adaptive radiotherapy in lung cancers. At the same time it is challenging given the highly elastic nature of lung tissue deformations. The objective of this study was to assess the performances of three state-of-art intensity-based algorithms in terms of their ability to register thoracic CT images subject to affine, barrel, and sinusoid transformation. Methods: Intensity similarity measures of the evaluated algorithms contained sum-of-squared difference (SSD), local mutual information (LMI), and residual complexity (RC). Five thoracic CT scans obtained from the EMPIRE10 challenge database weremore » included and served as reference images. Each CT dataset was distorted by realistic affine, barrel, and sinusoid transformations. Registration performances of the three algorithms were evaluated for each distortion type in terms of intensity root mean square error (IRMSE) between the reference and registered images in the lung regions. Results: For affine distortions, the three algorithms differed significantly in registration of thoracic images both visually and nominally in terms of IRMSE with a mean of 0.011 for SSD, 0.039 for RC, and 0.026 for LMI (p<0.01; Kruskal-Wallis test). For barrel distortion, the three algorithms showed nominally no significant difference in terms of IRMSE with a mean of 0.026 for SSD, 0.086 for RC, and 0.054 for LMI (p=0.16) . A significant difference was seen for sinusoid distorted thoracic CT data with mean lung IRMSE of 0.039 for SSD, 0.092 for RC, and 0.035 for LMI (p=0.02). Conclusion: Pulmonary deformations might vary to a large extent in nature in a daily clinical setting due to factors ranging from anatomy variations to respiratory motion to image quality. It can be appreciated from the results of the present study that the suitability of application of a particular algorithm for pulmonary image registration is deformation-dependent.« less

  6. Serial volumetric registration of pulmonary CT studies

    NASA Astrophysics Data System (ADS)

    Silva, José Silvestre; Silva, Augusto; Sousa Santos, Beatriz

    2008-03-01

    Detailed morphological analysis of pulmonary structures and tissue, provided by modern CT scanners, is of utmost importance as in the case of oncological applications both for diagnosis, treatment, and follow-up. In this case, a patient may go through several tomographic studies throughout a period of time originating volumetric sets of image data that must be appropriately registered in order to track suspicious radiological findings. The structures or regions of interest may change their position or shape in CT exams acquired at different moments, due to postural, physiologic or pathologic changes, so, the exams should be registered before any follow-up information can be extracted. Postural mismatching throughout time is practically impossible to avoid being particularly evident when imaging is performed at the limiting spatial resolution. In this paper, we propose a method for intra-patient registration of pulmonary CT studies, to assist in the management of the oncological pathology. Our method takes advantage of prior segmentation work. In the first step, the pulmonary segmentation is performed where trachea and main bronchi are identified. Then, the registration method proceeds with a longitudinal alignment based on morphological features of the lungs, such as the position of the carina, the pulmonary areas, the centers of mass and the pulmonary trans-axial principal axis. The final step corresponds to the trans-axial registration of the corresponding pulmonary masked regions. This is accomplished by a pairwise sectional registration process driven by an iterative search of the affine transformation parameters leading to optimal similarity metrics. Results with several cases of intra-patient, intra-modality registration, up to 7 time points, show that this method provides accurate registration which is needed for quantitative tracking of lesions and the development of image fusion strategies that may effectively assist the follow-up process.

  7. Image registration for a UV-Visible dual-band imaging system

    NASA Astrophysics Data System (ADS)

    Chen, Tao; Yuan, Shuang; Li, Jianping; Xing, Sheng; Zhang, Honglong; Dong, Yuming; Chen, Liangpei; Liu, Peng; Jiao, Guohua

    2018-06-01

    The detection of corona discharge is an effective way for early fault diagnosis of power equipment. UV-Visible dual-band imaging can detect and locate corona discharge spot at all-weather condition. In this study, we introduce an image registration protocol for this dual-band imaging system. The protocol consists of UV image denoising and affine transformation model establishment. We report the algorithm details of UV image preprocessing, affine transformation model establishment and relevant experiments for verification of their feasibility. The denoising algorithm was based on a correlation operation between raw UV images, a continuous mask and the transformation model was established by using corner feature and a statistical method. Finally, an image fusion test was carried out to verify the accuracy of affine transformation model. It has proved the average position displacement error between corona discharge and equipment fault at different distances in a 2.5m-20 m range are 1.34 mm and 1.92 mm in the horizontal and vertical directions, respectively, which are precise enough for most industrial applications. The resultant protocol is not only expected to improve the efficiency and accuracy of such imaging system for locating corona discharge spot, but also supposed to provide a more generalized reference for the calibration of various dual-band imaging systems in practice.

  8. Placental fetal stem segmentation in a sequence of histology images

    NASA Astrophysics Data System (ADS)

    Athavale, Prashant; Vese, Luminita A.

    2012-02-01

    Recent research in perinatal pathology argues that analyzing properties of the placenta may reveal important information on how certain diseases progress. One important property is the structure of the placental fetal stems. Analysis of the fetal stems in a placenta could be useful in the study and diagnosis of some diseases like autism. To study the fetal stem structure effectively, we need to automatically and accurately track fetal stems through a sequence of digitized hematoxylin and eosin (H&E) stained histology slides. There are many problems in successfully achieving this goal. A few of the problems are: large size of images, misalignment of the consecutive H&E slides, unpredictable inaccuracies of manual tracing, very complicated texture patterns of various tissue types without clear characteristics, just to name a few. In this paper we propose a novel algorithm to achieve automatic tracing of the fetal stem in a sequence of H&E images, based on an inaccurate manual segmentation of a fetal stem in one of the images. This algorithm combines global affine registration, local non-affine registration and a novel 'dynamic' version of the active contours model without edges. We first use global affine image registration of all the images based on displacement, scaling and rotation. This gives us approximate location of the corresponding fetal stem in the image that needs to be traced. We then use the affine registration algorithm "locally" near this location. At this point, we use a fast non-affine registration based on L2-similarity measure and diffusion regularization to get a better location of the fetal stem. Finally, we have to take into account inaccuracies in the initial tracing. This is achieved through a novel dynamic version of the active contours model without edges where the coefficients of the fitting terms are computed iteratively to ensure that we obtain a unique stem in the segmentation. The segmentation thus obtained can then be used as an initial guess to obtain segmentation in the rest of the images in the sequence. This constitutes an important step in the extraction and understanding of the fetal stem vasculature.

  9. Practical image registration concerns overcome by the weighted and filtered mutual information metric

    NASA Astrophysics Data System (ADS)

    Keane, Tommy P.; Saber, Eli; Rhody, Harvey; Savakis, Andreas; Raj, Jeffrey

    2012-04-01

    Contemporary research in automated panorama creation utilizes camera calibration or extensive knowledge of camera locations and relations to each other to achieve successful results. Research in image registration attempts to restrict these same camera parameters or apply complex point-matching schemes to overcome the complications found in real-world scenarios. This paper presents a novel automated panorama creation algorithm by developing an affine transformation search based on maximized mutual information (MMI) for region-based registration. Standard MMI techniques have been limited to applications with airborne/satellite imagery or medical images. We show that a novel MMI algorithm can approximate an accurate registration between views of realistic scenes of varying depth distortion. The proposed algorithm has been developed using stationary, color, surveillance video data for a scenario with no a priori camera-to-camera parameters. This algorithm is robust for strict- and nearly-affine-related scenes, while providing a useful approximation for the overlap regions in scenes related by a projective homography or a more complex transformation, allowing for a set of efficient and accurate initial conditions for pixel-based registration.

  10. Multimodal registration via spatial-context mutual information.

    PubMed

    Yi, Zhao; Soatto, Stefano

    2011-01-01

    We propose a method to efficiently compute mutual information between high-dimensional distributions of image patches. This in turn is used to perform accurate registration of images captured under different modalities, while exploiting their local structure otherwise missed in traditional mutual information definition. We achieve this by organizing the space of image patches into orbits under the action of Euclidean transformations of the image plane, and estimating the modes of a distribution in such an orbit space using affinity propagation. This way, large collections of patches that are equivalent up to translations and rotations are mapped to the same representative, or "dictionary element". We then show analytically that computing mutual information for a joint distribution in this space reduces to computing mutual information between the (scalar) label maps, and between the transformations mapping each patch into its closest dictionary element. We show that our approach improves registration performance compared with the state of the art in multimodal registration, using both synthetic and real images with quantitative ground truth.

  11. Analysis of Point Based Image Registration Errors With Applications in Single Molecule Microscopy

    PubMed Central

    Cohen, E. A. K.; Ober, R. J.

    2014-01-01

    We present an asymptotic treatment of errors involved in point-based image registration where control point (CP) localization is subject to heteroscedastic noise; a suitable model for image registration in fluorescence microscopy. Assuming an affine transform, CPs are used to solve a multivariate regression problem. With measurement errors existing for both sets of CPs this is an errors-in-variable problem and linear least squares is inappropriate; the correct method being generalized least squares. To allow for point dependent errors the equivalence of a generalized maximum likelihood and heteroscedastic generalized least squares model is achieved allowing previously published asymptotic results to be extended to image registration. For a particularly useful model of heteroscedastic noise where covariance matrices are scalar multiples of a known matrix (including the case where covariance matrices are multiples of the identity) we provide closed form solutions to estimators and derive their distribution. We consider the target registration error (TRE) and define a new measure called the localization registration error (LRE) believed to be useful, especially in microscopy registration experiments. Assuming Gaussianity of the CP localization errors, it is shown that the asymptotic distribution for the TRE and LRE are themselves Gaussian and the parameterized distributions are derived. Results are successfully applied to registration in single molecule microscopy to derive the key dependence of the TRE and LRE variance on the number of CPs and their associated photon counts. Simulations show asymptotic results are robust for low CP numbers and non-Gaussianity. The method presented here is shown to outperform GLS on real imaging data. PMID:24634573

  12. Register cardiac fiber orientations from 3D DTI volume to 2D ultrasound image of rat hearts

    NASA Astrophysics Data System (ADS)

    Qin, Xulei; Wang, Silun; Shen, Ming; Zhang, Xiaodong; Lerakis, Stamatios; Wagner, Mary B.; Fei, Baowei

    2015-03-01

    Two-dimensional (2D) ultrasound or echocardiography is one of the most widely used examinations for the diagnosis of cardiac diseases. However, it only supplies the geometric and structural information of the myocardium. In order to supply more detailed microstructure information of the myocardium, this paper proposes a registration method to map cardiac fiber orientations from three-dimensional (3D) magnetic resonance diffusion tensor imaging (MR-DTI) volume to the 2D ultrasound image. It utilizes a 2D/3D intensity based registration procedure including rigid, log-demons, and affine transformations to search the best similar slice from the template volume. After registration, the cardiac fiber orientations are mapped to the 2D ultrasound image via fiber relocations and reorientations. This method was validated by six images of rat hearts ex vivo. The evaluation results indicated that the final Dice similarity coefficient (DSC) achieved more than 90% after geometric registrations; and the inclination angle errors (IAE) between the mapped fiber orientations and the gold standards were less than 15 degree. This method may provide a practical tool for cardiologists to examine cardiac fiber orientations on ultrasound images and have the potential to supply additional information for diagnosis of cardiac diseases.

  13. Geometry-aware multiscale image registration via OBBTree-based polyaffine log-demons.

    PubMed

    Seiler, Christof; Pennec, Xavier; Reyes, Mauricio

    2011-01-01

    Non-linear image registration is an important tool in many areas of image analysis. For instance, in morphometric studies of a population of brains, free-form deformations between images are analyzed to describe the structural anatomical variability. Such a simple deformation model is justified by the absence of an easy expressible prior about the shape changes. Applying the same algorithms used in brain imaging to orthopedic images might not be optimal due to the difference in the underlying prior on the inter-subject deformations. In particular, using an un-informed deformation prior often leads to local minima far from the expected solution. To improve robustness and promote anatomically meaningful deformations, we propose a locally affine and geometry-aware registration algorithm that automatically adapts to the data. We build upon the log-domain demons algorithm and introduce a new type of OBBTree-based regularization in the registration with a natural multiscale structure. The regularization model is composed of a hierarchy of locally affine transformations via their logarithms. Experiments on mandibles show improved accuracy and robustness when used to initialize the demons, and even similar performance by direct comparison to the demons, with a significantly lower degree of freedom. This closes the gap between polyaffine and non-rigid registration and opens new ways to statistically analyze the registration results.

  14. Registration of MRI to Intraoperative Radiographs for Target Localization in Spinal Interventions

    PubMed Central

    De Silva, T; Uneri, A; Ketcha, M D; Reaungamornrat, S; Goerres, J; Jacobson, M W; Vogt, S; Kleinszig, G; Khanna, A J; Wolinsky, J-P; Siewerdsen, J H

    2017-01-01

    Purpose Decision support to assist in target vertebra localization could provide a useful aid to safe and effective spine surgery. Previous solutions have shown 3D-2D registration of preoperative CT to intraoperative radiographs to reliably annotate vertebral labels for assistance during level localization. We present an algorithm (referred to as MR-LevelCheck) to perform 3D-2D registration based on a preoperative MRI to accommodate the increasingly common clinical scenario in which MRI is used instead of CT for preoperative planning. Methods Straightforward adaptation of gradient/intensity-based methods appropriate to CT-to-radiograph registration is confounded by large mismatch and noncorrespondence in image intensity between MRI and radiographs. The proposed method overcomes such challenges with a simple vertebrae segmentation step using vertebra centroids as seed points (automatically defined within existing workflow). Forwards projections are computed using segmented MRI and registered to radiographs via gradient orientation (GO) similarity and the CMA-ES (Covariance-Matrix-Adaptation Evolutionary-Strategy) optimizer. The method was tested in an IRB-approved study involving 10 patients undergoing cervical, thoracic, or lumbar spine surgery following preoperative MRI. Results The method successfully registered each preoperative MRI to intraoperative radiographs and maintained desirable properties of robustness against image content mismatch and large capture range. Robust registration performance was achieved with projection distance error (PDE) (median ± iqr) = 4.3 ± 2.6 mm (median ± iqr) and 0% failure rate. Segmentation accuracy for the continuous max-flow method yielded Dice coefficient = 88.1 ± 5.2, Accuracy = 90.6 ± 5.7, RMSE = 1.8 ± 0.6 mm, and contour affinity ratio (CAR) = 0.82 ± 0.08. Registration performance was found to be robust for segmentation methods exhibiting RMSE < 3 mm and CAR > 0.50. Conclusion The MR-LevelCheck method provides a potentially valuable extension to a previously developed decision support tool for spine surgery target localization by extending its utility to preoperative MRI while maintaining characteristics of accuracy and robustness. PMID:28050972

  15. Validation of non-rigid point-set registration methods using a porcine bladder pelvic phantom

    NASA Astrophysics Data System (ADS)

    Zakariaee, Roja; Hamarneh, Ghassan; Brown, Colin J.; Spadinger, Ingrid

    2016-01-01

    The problem of accurate dose accumulation in fractionated radiotherapy treatment for highly deformable organs, such as bladder, has garnered increasing interest over the past few years. However, more research is required in order to find a robust and efficient solution and to increase the accuracy over the current methods. The purpose of this study was to evaluate the feasibility and accuracy of utilizing non-rigid (affine or deformable) point-set registration in accumulating dose in bladder of different sizes and shapes. A pelvic phantom was built to house an ex vivo porcine bladder with fiducial landmarks adhered onto its surface. Four different volume fillings of the bladder were used (90, 180, 360 and 480 cc). The performance of MATLAB implementations of five different methods were compared, in aligning the bladder contour point-sets. The approaches evaluated were coherent point drift (CPD), gaussian mixture model, shape context, thin-plate spline robust point matching (TPS-RPM) and finite iterative closest point (ICP-finite). The evaluation metrics included registration runtime, target registration error (TRE), root-mean-square error (RMS) and Hausdorff distance (HD). The reference (source) dataset was alternated through all four points-sets, in order to study the effect of reference volume on the registration outcomes. While all deformable algorithms provided reasonable registration results, CPD provided the best TRE values (6.4 mm), and TPS-RPM yielded the best mean RMS and HD values (1.4 and 6.8 mm, respectively). ICP-finite was the fastest technique and TPS-RPM, the slowest.

  16. Deformable structure registration of bladder through surface mapping.

    PubMed

    Xiong, Li; Viswanathan, Akila; Stewart, Alexandra J; Haker, Steven; Tempany, Clare M; Chin, Lee M; Cormack, Robert A

    2006-06-01

    Cumulative dose distributions in fractionated radiation therapy depict the dose to normal tissues and therefore may permit an estimation of the risk of normal tissue complications. However, calculation of these distributions is highly challenging because of interfractional changes in the geometry of patient anatomy. This work presents an algorithm for deformable structure registration of the bladder and the verification of the accuracy of the algorithm using phantom and patient data. In this algorithm, the registration process involves conformal mapping of genus zero surfaces using finite element analysis, and guided by three control landmarks. The registration produces a correspondence between fractions of the triangular meshes used to describe the bladder surface. For validation of the algorithm, two types of balloons were inflated gradually to three times their original size, and several computerized tomography (CT) scans were taken during the process. The registration algorithm yielded a local accuracy of 4 mm along the balloon surface. The algorithm was then applied to CT data of patients receiving fractionated high-dose-rate brachytherapy to the vaginal cuff, with the vaginal cylinder in situ. The patients' bladder filling status was intentionally different for each fraction. The three required control landmark points were identified for the bladder based on anatomy. Out of an Institutional Review Board (IRB) approved study of 20 patients, 3 had radiographically identifiable points near the bladder surface that were used for verification of the accuracy of the registration. The verification point as seen in each fraction was compared with its predicted location based on affine as well as deformable registration. Despite the variation in bladder shape and volume, the deformable registration was accurate to 5 mm, consistently outperforming the affine registration. We conclude that the structure registration algorithm presented works with reasonable accuracy and provides a means of calculating cumulative dose distributions.

  17. A novel scheme for automatic nonrigid image registration using deformation invariant feature and geometric constraint

    NASA Astrophysics Data System (ADS)

    Deng, Zhipeng; Lei, Lin; Zhou, Shilin

    2015-10-01

    Automatic image registration is a vital yet challenging task, particularly for non-rigid deformation images which are more complicated and common in remote sensing images, such as distorted UAV (unmanned aerial vehicle) images or scanning imaging images caused by flutter. Traditional non-rigid image registration methods are based on the correctly matched corresponding landmarks, which usually needs artificial markers. It is a rather challenging task to locate the accurate position of the points and get accurate homonymy point sets. In this paper, we proposed an automatic non-rigid image registration algorithm which mainly consists of three steps: To begin with, we introduce an automatic feature point extraction method based on non-linear scale space and uniform distribution strategy to extract the points which are uniform distributed along the edge of the image. Next, we propose a hybrid point matching algorithm using DaLI (Deformation and Light Invariant) descriptor and local affine invariant geometric constraint based on triangulation which is constructed by K-nearest neighbor algorithm. Based on the accurate homonymy point sets, the two images are registrated by the model of TPS (Thin Plate Spline). Our method is demonstrated by three deliberately designed experiments. The first two experiments are designed to evaluate the distribution of point set and the correctly matching rate on synthetic data and real data respectively. The last experiment is designed on the non-rigid deformation remote sensing images and the three experimental results demonstrate the accuracy, robustness, and efficiency of the proposed algorithm compared with other traditional methods.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Xiong; Viswanathan, Akila; Stewart, Alexandra J.

    Cumulative dose distributions in fractionated radiation therapy depict the dose to normal tissues and therefore may permit an estimation of the risk of normal tissue complications. However, calculation of these distributions is highly challenging because of interfractional changes in the geometry of patient anatomy. This work presents an algorithm for deformable structure registration of the bladder and the verification of the accuracy of the algorithm using phantom and patient data. In this algorithm, the registration process involves conformal mapping of genus zero surfaces using finite element analysis, and guided by three control landmarks. The registration produces a correspondence between fractionsmore » of the triangular meshes used to describe the bladder surface. For validation of the algorithm, two types of balloons were inflated gradually to three times their original size, and several computerized tomography (CT) scans were taken during the process. The registration algorithm yielded a local accuracy of 4 mm along the balloon surface. The algorithm was then applied to CT data of patients receiving fractionated high-dose-rate brachytherapy to the vaginal cuff, with the vaginal cylinder in situ. The patients' bladder filling status was intentionally different for each fraction. The three required control landmark points were identified for the bladder based on anatomy. Out of an Institutional Review Board (IRB) approved study of 20 patients, 3 had radiographically identifiable points near the bladder surface that were used for verification of the accuracy of the registration. The verification point as seen in each fraction was compared with its predicted location based on affine as well as deformable registration. Despite the variation in bladder shape and volume, the deformable registration was accurate to 5 mm, consistently outperforming the affine registration. We conclude that the structure registration algorithm presented works with reasonable accuracy and provides a means of calculating cumulative dose distributions.« less

  19. Registration of 3D fetal neurosonography and MRI☆

    PubMed Central

    Kuklisova-Murgasova, Maria; Cifor, Amalia; Napolitano, Raffaele; Papageorghiou, Aris; Quaghebeur, Gerardine; Rutherford, Mary A.; Hajnal, Joseph V.; Noble, J. Alison; Schnabel, Julia A.

    2013-01-01

    We propose a method for registration of 3D fetal brain ultrasound with a reconstructed magnetic resonance fetal brain volume. This method, for the first time, allows the alignment of models of the fetal brain built from magnetic resonance images with 3D fetal brain ultrasound, opening possibilities to develop new, prior information based image analysis methods for 3D fetal neurosonography. The reconstructed magnetic resonance volume is first segmented using a probabilistic atlas and a pseudo ultrasound image volume is simulated from the segmentation. This pseudo ultrasound image is then affinely aligned with clinical ultrasound fetal brain volumes using a robust block-matching approach that can deal with intensity artefacts and missing features in the ultrasound images. A qualitative and quantitative evaluation demonstrates good performance of the method for our application, in comparison with other tested approaches. The intensity average of 27 ultrasound images co-aligned with the pseudo ultrasound template shows good correlation with anatomy of the fetal brain as seen in the reconstructed magnetic resonance image. PMID:23969169

  20. Geometric Variational Methods for Controlled Active Vision

    DTIC Science & Technology

    2006-08-01

    Haker , L. Zhu, and A. Tannenbaum, ``Optimal mass transport for registration and warping’’ Int. Journal Computer Vision, volume 60, 2004, pp. 225-240. G...pp. 119-142. A. Angenent, S. Haker , and A. Tannenbaum, ``Minimizing flows for the Monge-Kantorovich problem,’’ SIAM J. Math. Analysis, volume 35...Shape analysis of structures using spherical wavelets’’ (with S. Haker and D. Nain), Proceeedings of MICCAI, 2005. ``Affine surface evolution for 3D

  1. A Framework for Linear and Non-Linear Registration of Diffusion-Weighted MRIs Using Angular Interpolation

    PubMed Central

    Duarte-Carvajalino, Julio M.; Sapiro, Guillermo; Harel, Noam; Lenglet, Christophe

    2013-01-01

    Registration of diffusion-weighted magnetic resonance images (DW-MRIs) is a key step for population studies, or construction of brain atlases, among other important tasks. Given the high dimensionality of the data, registration is usually performed by relying on scalar representative images, such as the fractional anisotropy (FA) and non-diffusion-weighted (b0) images, thereby ignoring much of the directional information conveyed by DW-MR datasets itself. Alternatively, model-based registration algorithms have been proposed to exploit information on the preferred fiber orientation(s) at each voxel. Models such as the diffusion tensor or orientation distribution function (ODF) have been used for this purpose. Tensor-based registration methods rely on a model that does not completely capture the information contained in DW-MRIs, and largely depends on the accurate estimation of tensors. ODF-based approaches are more recent and computationally challenging, but also better describe complex fiber configurations thereby potentially improving the accuracy of DW-MRI registration. A new algorithm based on angular interpolation of the diffusion-weighted volumes was proposed for affine registration, and does not rely on any specific local diffusion model. In this work, we first extensively compare the performance of registration algorithms based on (i) angular interpolation, (ii) non-diffusion-weighted scalar volume (b0), and (iii) diffusion tensor image (DTI). Moreover, we generalize the concept of angular interpolation (AI) to non-linear image registration, and implement it in the FMRIB Software Library (FSL). We demonstrate that AI registration of DW-MRIs is a powerful alternative to volume and tensor-based approaches. In particular, we show that AI improves the registration accuracy in many cases over existing state-of-the-art algorithms, while providing registered raw DW-MRI data, which can be used for any subsequent analysis. PMID:23596381

  2. A Framework for Linear and Non-Linear Registration of Diffusion-Weighted MRIs Using Angular Interpolation.

    PubMed

    Duarte-Carvajalino, Julio M; Sapiro, Guillermo; Harel, Noam; Lenglet, Christophe

    2013-01-01

    Registration of diffusion-weighted magnetic resonance images (DW-MRIs) is a key step for population studies, or construction of brain atlases, among other important tasks. Given the high dimensionality of the data, registration is usually performed by relying on scalar representative images, such as the fractional anisotropy (FA) and non-diffusion-weighted (b0) images, thereby ignoring much of the directional information conveyed by DW-MR datasets itself. Alternatively, model-based registration algorithms have been proposed to exploit information on the preferred fiber orientation(s) at each voxel. Models such as the diffusion tensor or orientation distribution function (ODF) have been used for this purpose. Tensor-based registration methods rely on a model that does not completely capture the information contained in DW-MRIs, and largely depends on the accurate estimation of tensors. ODF-based approaches are more recent and computationally challenging, but also better describe complex fiber configurations thereby potentially improving the accuracy of DW-MRI registration. A new algorithm based on angular interpolation of the diffusion-weighted volumes was proposed for affine registration, and does not rely on any specific local diffusion model. In this work, we first extensively compare the performance of registration algorithms based on (i) angular interpolation, (ii) non-diffusion-weighted scalar volume (b0), and (iii) diffusion tensor image (DTI). Moreover, we generalize the concept of angular interpolation (AI) to non-linear image registration, and implement it in the FMRIB Software Library (FSL). We demonstrate that AI registration of DW-MRIs is a powerful alternative to volume and tensor-based approaches. In particular, we show that AI improves the registration accuracy in many cases over existing state-of-the-art algorithms, while providing registered raw DW-MRI data, which can be used for any subsequent analysis.

  3. A fast alignment method for breast MRI follow-up studies using automated breast segmentation and current-prior registration

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Strehlow, Jan; Rühaak, Jan; Weiler, Florian; Diez, Yago; Gubern-Merida, Albert; Diekmann, Susanne; Laue, Hendrik; Hahn, Horst K.

    2015-03-01

    In breast cancer screening for high-risk women, follow-up magnetic resonance images (MRI) are acquired with a time interval ranging from several months up to a few years. Prior MRI studies may provide additional clinical value when examining the current one and thus have the potential to increase sensitivity and specificity of screening. To build a spatial correlation between suspicious findings in both current and prior studies, a reliable alignment method between follow-up studies is desirable. However, long time interval, different scanners and imaging protocols, and varying breast compression can result in a large deformation, which challenges the registration process. In this work, we present a fast and robust spatial alignment framework, which combines automated breast segmentation and current-prior registration techniques in a multi-level fashion. First, fully automatic breast segmentation is applied to extract the breast masks that are used to obtain an initial affine transform. Then, a non-rigid registration algorithm using normalized gradient fields as similarity measure together with curvature regularization is applied. A total of 29 subjects and 58 breast MR images were collected for performance assessment. To evaluate the global registration accuracy, the volume overlap and boundary surface distance metrics are calculated, resulting in an average Dice Similarity Coefficient (DSC) of 0.96 and root mean square distance (RMSD) of 1.64 mm. In addition, to measure local registration accuracy, for each subject a radiologist annotated 10 pairs of markers in the current and prior studies representing corresponding anatomical locations. The average distance error of marker pairs dropped from 67.37 mm to 10.86 mm after applying registration.

  4. Medical image registration based on normalized multidimensional mutual information

    NASA Astrophysics Data System (ADS)

    Li, Qi; Ji, Hongbing; Tong, Ming

    2009-10-01

    Registration of medical images is an essential research topic in medical image processing and applications, and especially a preliminary and key step for multimodality image fusion. This paper offers a solution to medical image registration based on normalized multi-dimensional mutual information. Firstly, affine transformation with translational and rotational parameters is applied to the floating image. Then ordinal features are extracted by ordinal filters with different orientations to represent spatial information in medical images. Integrating ordinal features with pixel intensities, the normalized multi-dimensional mutual information is defined as similarity criterion to register multimodality images. Finally the immune algorithm is used to search registration parameters. The experimental results demonstrate the effectiveness of the proposed registration scheme.

  5. TU-CD-BRA-01: A Novel 3D Registration Method for Multiparametric Radiological Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akhbardeh, A; Parekth, VS; Jacobs, MA

    2015-06-15

    Purpose: Multiparametric and multimodality radiological imaging methods, such as, magnetic resonance imaging(MRI), computed tomography(CT), and positron emission tomography(PET), provide multiple types of tissue contrast and anatomical information for clinical diagnosis. However, these radiological modalities are acquired using very different technical parameters, e.g.,field of view(FOV), matrix size, and scan planes, which, can lead to challenges in registering the different data sets. Therefore, we developed a hybrid registration method based on 3D wavelet transformation and 3D interpolations that performs 3D resampling and rotation of the target radiological images without loss of information Methods: T1-weighted, T2-weighted, diffusion-weighted-imaging(DWI), dynamic-contrast-enhanced(DCE) MRI and PET/CT were usedmore » in the registration algorithm from breast and prostate data at 3T MRI and multimodality(PET/CT) cases. The hybrid registration scheme consists of several steps to reslice and match each modality using a combination of 3D wavelets, interpolations, and affine registration steps. First, orthogonal reslicing is performed to equalize FOV, matrix sizes and the number of slices using wavelet transformation. Second, angular resampling of the target data is performed to match the reference data. Finally, using optimized angles from resampling, 3D registration is performed using similarity transformation(scaling and translation) between the reference and resliced target volume is performed. After registration, the mean-square-error(MSE) and Dice Similarity(DS) between the reference and registered target volumes were calculated. Results: The 3D registration method registered synthetic and clinical data with significant improvement(p<0.05) of overlap between anatomical structures. After transforming and deforming the synthetic data, the MSE and Dice similarity were 0.12 and 0.99. The average improvement of the MSE in breast was 62%(0.27 to 0.10) and prostate was 63%(0.13 to 0.04;p<0.05). The Dice similarity was in breast 8%(0.91 to 0.99) and for prostate was 89%(0.01 to 0.90;p<0.05) Conclusion: Our 3D wavelet hybrid registration approach registered diverse breast and prostate data of different radiological images(MR/PET/CT) with a high accuracy.« less

  6. Thermal-depth matching in dynamic scene based on affine projection and feature registration

    NASA Astrophysics Data System (ADS)

    Wang, Hongyu; Jia, Tong; Wu, Chengdong; Li, Yongqiang

    2018-03-01

    This paper aims to study the construction of 3D temperature distribution reconstruction system based on depth and thermal infrared information. Initially, a traditional calibration method cannot be directly used, because the depth and thermal infrared camera is not sensitive to the color calibration board. Therefore, this paper aims to design a depth and thermal infrared camera calibration board to complete the calibration of the depth and thermal infrared camera. Meanwhile a local feature descriptors in thermal and depth images is proposed. The belief propagation matching algorithm is also investigated based on the space affine transformation matching and local feature matching. The 3D temperature distribution model is built based on the matching of 3D point cloud and 2D thermal infrared information. Experimental results show that the method can accurately construct the 3D temperature distribution model, and has strong robustness.

  7. Transformations based on continuous piecewise-affine velocity fields

    DOE PAGES

    Freifeld, Oren; Hauberg, Soren; Batmanghelich, Kayhan; ...

    2017-01-11

    Here, we propose novel finite-dimensional spaces of well-behaved Rn → Rn transformations. The latter are obtained by (fast and highly-accurate) integration of continuous piecewise-affine velocity fields. The proposed method is simple yet highly expressive, effortlessly handles optional constraints (e.g., volume preservation and/or boundary conditions), and supports convenient modeling choices such as smoothing priors and coarse-to-fine analysis. Importantly, the proposed approach, partly due to its rapid likelihood evaluations and partly due to its other properties, facilitates tractable inference over rich transformation spaces, including using Markov-Chain Monte-Carlo methods. Its applications include, but are not limited to: monotonic regression (more generally, optimization overmore » monotonic functions); modeling cumulative distribution functions or histograms; time-warping; image warping; image registration; real-time diffeomorphic image editing; data augmentation for image classifiers. Our GPU-based code is publicly available.« less

  8. Transformations Based on Continuous Piecewise-Affine Velocity Fields

    PubMed Central

    Freifeld, Oren; Hauberg, Søren; Batmanghelich, Kayhan; Fisher, Jonn W.

    2018-01-01

    We propose novel finite-dimensional spaces of well-behaved ℝn → ℝn transformations. The latter are obtained by (fast and highly-accurate) integration of continuous piecewise-affine velocity fields. The proposed method is simple yet highly expressive, effortlessly handles optional constraints (e.g., volume preservation and/or boundary conditions), and supports convenient modeling choices such as smoothing priors and coarse-to-fine analysis. Importantly, the proposed approach, partly due to its rapid likelihood evaluations and partly due to its other properties, facilitates tractable inference over rich transformation spaces, including using Markov-Chain Monte-Carlo methods. Its applications include, but are not limited to: monotonic regression (more generally, optimization over monotonic functions); modeling cumulative distribution functions or histograms; time-warping; image warping; image registration; real-time diffeomorphic image editing; data augmentation for image classifiers. Our GPU-based code is publicly available. PMID:28092517

  9. Automatic thoracic anatomy segmentation on CT images using hierarchical fuzzy models and registration

    NASA Astrophysics Data System (ADS)

    Sun, Kaioqiong; Udupa, Jayaram K.; Odhner, Dewey; Tong, Yubing; Torigian, Drew A.

    2014-03-01

    This paper proposes a thoracic anatomy segmentation method based on hierarchical recognition and delineation guided by a built fuzzy model. Labeled binary samples for each organ are registered and aligned into a 3D fuzzy set representing the fuzzy shape model for the organ. The gray intensity distributions of the corresponding regions of the organ in the original image are recorded in the model. The hierarchical relation and mean location relation between different organs are also captured in the model. Following the hierarchical structure and location relation, the fuzzy shape model of different organs is registered to the given target image to achieve object recognition. A fuzzy connected delineation method is then used to obtain the final segmentation result of organs with seed points provided by recognition. The hierarchical structure and location relation integrated in the model provide the initial parameters for registration and make the recognition efficient and robust. The 3D fuzzy model combined with hierarchical affine registration ensures that accurate recognition can be obtained for both non-sparse and sparse organs. The results on real images are presented and shown to be better than a recently reported fuzzy model-based anatomy recognition strategy.

  10. Temporal subtraction contrast-enhanced dedicated breast CT

    NASA Astrophysics Data System (ADS)

    Gazi, Peymon M.; Aminololama-Shakeri, Shadi; Yang, Kai; Boone, John M.

    2016-09-01

    The development of a framework of deformable image registration and segmentation for the purpose of temporal subtraction contrast-enhanced breast CT is described. An iterative histogram-based two-means clustering method was used for the segmentation. Dedicated breast CT images were segmented into background (air), adipose, fibroglandular and skin components. Fibroglandular tissue was classified as either normal or contrast-enhanced then divided into tiers for the purpose of categorizing degrees of contrast enhancement. A variant of the Demons deformable registration algorithm, intensity difference adaptive Demons (IDAD), was developed to correct for the large deformation forces that stemmed from contrast enhancement. In this application, the accuracy of the proposed method was evaluated in both mathematically-simulated and physically-acquired phantom images. Clinical usage and accuracy of the temporal subtraction framework was demonstrated using contrast-enhanced breast CT datasets from five patients. Registration performance was quantified using normalized cross correlation (NCC), symmetric uncertainty coefficient, normalized mutual information (NMI), mean square error (MSE) and target registration error (TRE). The proposed method outperformed conventional affine and other Demons variations in contrast enhanced breast CT image registration. In simulation studies, IDAD exhibited improvement in MSE (0-16%), NCC (0-6%), NMI (0-13%) and TRE (0-34%) compared to the conventional Demons approaches, depending on the size and intensity of the enhancing lesion. As lesion size and contrast enhancement levels increased, so did the improvement. The drop in the correlation between the pre- and post-contrast images for the largest enhancement levels in phantom studies is less than 1.2% (150 Hounsfield units). Registration error, measured by TRE, shows only submillimeter mismatches between the concordant anatomical target points in all patient studies. The algorithm was implemented using a parallel processing architecture resulting in rapid execution time for the iterative segmentation and intensity-adaptive registration techniques. Characterization of contrast-enhanced lesions is improved using temporal subtraction contrast-enhanced dedicated breast CT. Adaptation of Demons registration forces as a function of contrast-enhancement levels provided a means to accurately align breast tissue in pre- and post-contrast image acquisitions, improving subtraction results. Spatial subtraction of the aligned images yields useful diagnostic information with respect to enhanced lesion morphology and uptake.

  11. Deformable registration of x-ray to MRI for post-implant dosimetry in prostate brachytherapy

    NASA Astrophysics Data System (ADS)

    Park, Seyoun; Song, Danny Y.; Lee, Junghoon

    2016-03-01

    Post-implant dosimetric assessment in prostate brachytherapy is typically performed using CT as the standard imaging modality. However, poor soft tissue contrast in CT causes significant variability in target contouring, resulting in incorrect dose calculations for organs of interest. CT-MR fusion-based approach has been advocated taking advantage of the complementary capabilities of CT (seed identification) and MRI (soft tissue visibility), and has proved to provide more accurate dosimetry calculations. However, seed segmentation in CT requires manual review, and the accuracy is limited by the reconstructed voxel resolution. In addition, CT deposits considerable amount of radiation to the patient. In this paper, we propose an X-ray and MRI based post-implant dosimetry approach. Implanted seeds are localized using three X-ray images by solving a combinatorial optimization problem, and the identified seeds are registered to MR images by an intensity-based points-to-volume registration. We pre-process the MR images using geometric and Gaussian filtering. To accommodate potential soft tissue deformation, our registration is performed in two steps, an initial affine transformation and local deformable registration. An evolutionary optimizer in conjunction with a points-to-volume similarity metric is used for the affine registration. Local prostate deformation and seed migration are then adjusted by the deformable registration step with external and internal force constraints. We tested our algorithm on six patient data sets, achieving registration error of (1.2+/-0.8) mm in < 30 sec. Our proposed approach has the potential to be a fast and cost-effective solution for post-implant dosimetry with equivalent accuracy as the CT-MR fusion-based approach.

  12. Non-rigid registration of 3D ultrasound for neurosurgery using automatic feature detection and matching.

    PubMed

    Machado, Inês; Toews, Matthew; Luo, Jie; Unadkat, Prashin; Essayed, Walid; George, Elizabeth; Teodoro, Pedro; Carvalho, Herculano; Martins, Jorge; Golland, Polina; Pieper, Steve; Frisken, Sarah; Golby, Alexandra; Wells, William

    2018-06-04

    The brain undergoes significant structural change over the course of neurosurgery, including highly nonlinear deformation and resection. It can be informative to recover the spatial mapping between structures identified in preoperative surgical planning and the intraoperative state of the brain. We present a novel feature-based method for achieving robust, fully automatic deformable registration of intraoperative neurosurgical ultrasound images. A sparse set of local image feature correspondences is first estimated between ultrasound image pairs, after which rigid, affine and thin-plate spline models are used to estimate dense mappings throughout the image. Correspondences are derived from 3D features, distinctive generic image patterns that are automatically extracted from 3D ultrasound images and characterized in terms of their geometry (i.e., location, scale, and orientation) and a descriptor of local image appearance. Feature correspondences between ultrasound images are achieved based on a nearest-neighbor descriptor matching and probabilistic voting model similar to the Hough transform. Experiments demonstrate our method on intraoperative ultrasound images acquired before and after opening of the dura mater, during resection and after resection in nine clinical cases. A total of 1620 automatically extracted 3D feature correspondences were manually validated by eleven experts and used to guide the registration. Then, using manually labeled corresponding landmarks in the pre- and post-resection ultrasound images, we show that our feature-based registration reduces the mean target registration error from an initial value of 3.3 to 1.5 mm. This result demonstrates that the 3D features promise to offer a robust and accurate solution for 3D ultrasound registration and to correct for brain shift in image-guided neurosurgery.

  13. Affine invariants of convex polygons.

    PubMed

    Flusser, Jan

    2002-01-01

    In this correspondence, we prove that the affine invariants, for image registration and object recognition, proposed recently by Yang and Cohen (see ibid., vol.8, no.7, p.934-46, July 1999) are algebraically dependent. We show how to select an independent and complete set of the invariants. The use of this new set leads to a significant reduction of the computing complexity without decreasing the discrimination power.

  14. Temporal subtraction contrast-enhanced dedicated breast CT

    PubMed Central

    Gazi, Peymon M.; Aminololama-Shakeri, Shadi; Yang, Kai; Boone, John M.

    2016-01-01

    Purpose To develop a framework of deformable image registration and segmentation for the purpose of temporal subtraction contrast-enhanced breast CT is described. Methods An iterative histogram-based two-means clustering method was used for the segmentation. Dedicated breast CT images were segmented into background (air), adipose, fibroglandular and skin components. Fibroglandular tissue was classified as either normal or contrast-enhanced then divided into tiers for the purpose of categorizing degrees of contrast enhancement. A variant of the Demons deformable registration algorithm, Intensity Difference Adaptive Demons (IDAD), was developed to correct for the large deformation forces that stemmed from contrast enhancement. In this application, the accuracy of the proposed method was evaluated in both mathematically-simulated and physically-acquired phantom images. Clinical usage and accuracy of the temporal subtraction framework was demonstrated using contrast-enhanced breast CT datasets from five patients. Registration performance was quantified using Normalized Cross Correlation (NCC), Symmetric Uncertainty Coefficient (SUC), Normalized Mutual Information (NMI), Mean Square Error (MSE) and Target Registration Error (TRE). Results The proposed method outperformed conventional affine and other Demons variations in contrast enhanced breast CT image registration. In simulation studies, IDAD exhibited improvement in MSE(0–16%), NCC (0–6%), NMI (0–13%) and TRE (0–34%) compared to the conventional Demons approaches, depending on the size and intensity of the enhancing lesion. As lesion size and contrast enhancement levels increased, so did the improvement. The drop in the correlation between the pre- and post-contrast images for the largest enhancement levels in phantom studies is less than 1.2% (150 Hounsfield units). Registration error, measured by TRE, shows only submillimeter mismatches between the concordant anatomical target points in all patient studies. The algorithm was implemented using a parallel processing architecture resulting in rapid execution time for the iterative segmentation and intensity-adaptive registration techniques. Conclusion Characterization of contrast-enhanced lesions is improved using temporal subtraction contrast-enhanced dedicated breast CT. Adaptation of Demons registration forces as a function of contrast-enhancement levels provided a means to accurately align breast tissue in pre- and post-contrast image acquisitions, improving subtraction results. Spatial subtraction of the aligned images yields useful diagnostic information with respect to enhanced lesion morphology and uptake. PMID:27494376

  15. Projective invariant biplanar registration of a compact modular orthopaedic robot.

    PubMed

    Luan, Sheng; Sun, Lei; Hu, Lei; Hao, Aimin; Li, Changsheng; Tang, Peifu; Zhang, Lihai; Du, Hailong

    2014-01-01

    This paper presents a compact orthopedic robot designed with modular concept. The layout of the modular configuration is adaptive to various conditions such as surgical workspace and targeting path. A biplanar algorithm is adopted for the mapping from the fluoroscopic image to the robot, while the former affine based method is satisfactory only when the projection rays are basically perpendicular to the reference coordinate planes. This paper introduces the area cross-ratio as a projective invariant to improve the registration accuracy for non-orthogonal orientations, so that the robotic system could be applied to more orthopedic procedures under various C-Arm orientation conditions. The system configurations for femoral neck screw and sacroiliac screw fixation are presented. The accuracy of the robotic system and its efficacy for the two typical applications are validated by experiments.

  16. Mammogram registration using the Cauchy-Navier spline

    NASA Astrophysics Data System (ADS)

    Wirth, Michael A.; Choi, Christopher

    2001-07-01

    The process of comparative analysis involves inspecting mammograms for characteristic signs of potential cancer by comparing various analogous mammograms. Factors such as the deformable behavior of the breast, changes in breast positioning, and the amount/geometry of compression may contribute to spatial differences between corresponding structures in corresponding mammograms, thereby significantly complicating comparative analysis. Mammogram registration is a process whereby spatial differences between mammograms can be reduced. Presented in this paper is a nonrigid approach to matching corresponding mammograms based on a physical registration model. Many of the earliest approaches to mammogram registration used spatial transformations which were innately rigid or affine in nature. More recently algorithms have incorporated radial basis functions such as the Thin-Plate Spline to match mammograms. The approach presented here focuses on the use of the Cauchy-Navier Spline, a deformable registration model which offers approximate nonrigid registration. The utility of the Cauchy-Navier Spline is illustrated by matching both temporal and bilateral mammograms.

  17. Retinal image mosaicing using the radial distortion correction model

    NASA Astrophysics Data System (ADS)

    Lee, Sangyeol; Abràmoff, Michael D.; Reinhardt, Joseph M.

    2008-03-01

    Fundus camera imaging can be used to examine the retina to detect disorders. Similar to looking through a small keyhole into a large room, imaging the fundus with an ophthalmologic camera allows only a limited view at a time. Thus, the generation of a retinal montage using multiple images has the potential to increase diagnostic accuracy by providing larger field of view. A method of mosaicing multiple retinal images using the radial distortion correction (RADIC) model is proposed in this paper. Our method determines the inter-image connectivity by detecting feature correspondences. The connectivity information is converted to a tree structure that describes the spatial relationships between the reference and target images for pairwise registration. The montage is generated by cascading pairwise registration scheme starting from the anchor image downward through the connectivity tree hierarchy. The RADIC model corrects the radial distortion that is due to the spherical-to-planar projection during retinal imaging. Therefore, after radial distortion correction, individual images can be properly mapped onto a montage space by a linear geometric transformation, e.g. affine transform. Compared to the most existing montaging methods, our method is unique in that only a single registration per image is required because of the distortion correction property of RADIC model. As a final step, distance-weighted intensity blending is employed to correct the inter-image differences in illumination encountered when forming the montage. Visual inspection of the experimental results using three mosaicing cases shows our method can produce satisfactory montages.

  18. Respiratory motion correction for free-breathing 3D abdominal MRI using CNN-based image registration: a feasibility study.

    PubMed

    Lv, Jun; Yang, Ming; Zhang, Jue; Wang, Xiaoying

    2018-02-01

    Free-breathing abdomen imaging requires non-rigid motion registration of unavoidable respiratory motion in three-dimensional undersampled data sets. In this work, we introduce an image registration method based on the convolutional neural network (CNN) to obtain motion-free abdominal images throughout the respiratory cycle. Abdominal data were acquired from 10 volunteers using a 1.5 T MRI system. The respiratory signal was extracted from the central-space spokes, and the acquired data were reordered in three bins according to the corresponding breathing signal. Retrospective image reconstruction of the three near-motion free respiratory phases was performed using non-Cartesian iterative SENSE reconstruction. Then, we trained a CNN to analyse the spatial transform among the different bins. This network could generate the displacement vector field and be applied to perform registration on unseen image pairs. To demonstrate the feasibility of this registration method, we compared the performance of three different registration approaches for accurate image fusion of three bins: non-motion corrected (NMC), local affine registration method (LREG) and CNN. Visualization of coronal images indicated that LREG had caused broken blood vessels, while the vessels of the CNN were sharper and more consecutive. As shown in the sagittal view, compared to NMC and CNN, distorted and blurred liver contours were caused by LREG. At the same time, zoom-in axial images presented that the vessels were delineated more clearly by CNN than LREG. The statistical results of the signal-to-noise ratio, visual score, vessel sharpness and registration time over all volunteers were compared among the NMC, LREG and CNN approaches. The SNR indicated that the CNN acquired the best image quality (207.42 ± 96.73), which was better than NMC (116.67 ± 44.70) and LREG (187.93 ± 96.68). The image visual score agreed with SNR, marking CNN (3.85 ± 0.12) as the best, followed by LREG (3.43 ± 0.13) and NMC (2.55 ± 0.09). A vessel sharpness assessment yielded similar values between the CNN (0.81 ± 0.03) and LREG (0.80 ± 0.04), differentiating them from the NMC (0.78 ± 0.06). When compared with the LREG-based reconstruction, the CNN-based reconstruction reduces the registration time from 1 h to 1 min. Our preliminary results demonstrate the feasibility of the CNN-based approach, and this scheme outperforms the NMC- and LREG-based methods. Advances in knowledge: This method reduces the registration time from ~1 h to ~1 min, which has promising prospects for clinical use. To the best of our knowledge, this study shows the first convolutional neural network-based registration method to be applied in abdominal images.

  19. Automated pulmonary lobar ventilation measurements using volume-matched thoracic CT and MRI

    NASA Astrophysics Data System (ADS)

    Guo, F.; Svenningsen, S.; Bluemke, E.; Rajchl, M.; Yuan, J.; Fenster, A.; Parraga, G.

    2015-03-01

    Objectives: To develop and evaluate an automated registration and segmentation pipeline for regional lobar pulmonary structure-function measurements, using volume-matched thoracic CT and MRI in order to guide therapy. Methods: Ten subjects underwent pulmonary function tests and volume-matched 1H and 3He MRI and thoracic CT during a single 2-hr visit. CT was registered to 1H MRI using an affine method that incorporated block-matching and this was followed by a deformable step using free-form deformation. The resultant deformation field was used to deform the associated CT lobe mask that was generated using commercial software. 3He-1H image registration used the same two-step registration method and 3He ventilation was segmented using hierarchical k-means clustering. Whole lung and lobar 3He ventilation and ventilation defect percent (VDP) were generated by mapping ventilation defects to CT-defined whole lung and lobe volumes. Target CT-3He registration accuracy was evaluated using region- , surface distance- and volume-based metrics. Automated whole lung and lobar VDP was compared with semi-automated and manual results using paired t-tests. Results: The proposed pipeline yielded regional spatial agreement of 88.0+/-0.9% and surface distance error of 3.9+/-0.5 mm. Automated and manual whole lung and lobar ventilation and VDP were not significantly different and they were significantly correlated (r = 0.77, p < 0.0001). Conclusion: The proposed automated pipeline can be used to generate regional pulmonary structural-functional maps with high accuracy and robustness, providing an important tool for image-guided pulmonary interventions.

  20. Registration of MRI to intraoperative radiographs for target localization in spinal interventions

    NASA Astrophysics Data System (ADS)

    De Silva, T.; Uneri, A.; Ketcha, M. D.; Reaungamornrat, S.; Goerres, J.; Jacobson, M. W.; Vogt, S.; Kleinszig, G.; Khanna, A. J.; Wolinsky, J.-P.; Siewerdsen, J. H.

    2017-01-01

    Decision support to assist in target vertebra localization could provide a useful aid to safe and effective spine surgery. Previous solutions have shown 3D-2D registration of preoperative CT to intraoperative radiographs to reliably annotate vertebral labels for assistance during level localization. We present an algorithm (referred to as MR-LevelCheck) to perform 3D-2D registration based on a preoperative MRI to accommodate the increasingly common clinical scenario in which MRI is used instead of CT for preoperative planning. Straightforward adaptation of gradient/intensity-based methods appropriate to CT-to-radiograph registration is confounded by large mismatch and noncorrespondence in image intensity between MRI and radiographs. The proposed method overcomes such challenges with a simple vertebrae segmentation step using vertebra centroids as seed points (automatically defined within existing workflow). Forwards projections are computed using segmented MRI and registered to radiographs via gradient orientation (GO) similarity and the CMA-ES (covariance-matrix-adaptation evolutionary-strategy) optimizer. The method was tested in an IRB-approved study involving 10 patients undergoing cervical, thoracic, or lumbar spine surgery following preoperative MRI. The method successfully registered each preoperative MRI to intraoperative radiographs and maintained desirable properties of robustness against image content mismatch and large capture range. Robust registration performance was achieved with projection distance error (PDE) (median  ±  IQR)  =  4.3  ±  2.6 mm (median  ±  IQR) and 0% failure rate. Segmentation accuracy for the continuous max-flow method yielded dice coefficient  =  88.1  ±  5.2, accuracy  =  90.6  ±  5.7, RMSE  =  1.8  ±  0.6 mm, and contour affinity ratio (CAR)  =  0.82  ±  0.08. Registration performance was found to be robust for segmentation methods exhibiting RMSE  <3 mm and CAR  >0.50. The MR-LevelCheck method provides a potentially valuable extension to a previously developed decision support tool for spine surgery target localization by extending its utility to preoperative MRI while maintaining characteristics of accuracy and robustness.

  1. Alignment of Tractograms As Graph Matching.

    PubMed

    Olivetti, Emanuele; Sharmin, Nusrat; Avesani, Paolo

    2016-01-01

    The white matter pathways of the brain can be reconstructed as 3D polylines, called streamlines, through the analysis of diffusion magnetic resonance imaging (dMRI) data. The whole set of streamlines is called tractogram and represents the structural connectome of the brain. In multiple applications, like group-analysis, segmentation, or atlasing, tractograms of different subjects need to be aligned. Typically, this is done with registration methods, that transform the tractograms in order to increase their similarity. In contrast with transformation-based registration methods, in this work we propose the concept of tractogram correspondence, whose aim is to find which streamline of one tractogram corresponds to which streamline in another tractogram, i.e., a map from one tractogram to another. As a further contribution, we propose to use the relational information of each streamline, i.e., its distances from the other streamlines in its own tractogram, as the building block to define the optimal correspondence. We provide an operational procedure to find the optimal correspondence through a combinatorial optimization problem and we discuss its similarity to the graph matching problem. In this work, we propose to represent tractograms as graphs and we adopt a recent inexact sub-graph matching algorithm to approximate the solution of the tractogram correspondence problem. On tractograms generated from the Human Connectome Project dataset, we report experimental evidence that tractogram correspondence, implemented as graph matching, provides much better alignment than affine registration and comparable if not better results than non-linear registration of volumes.

  2. Microscopic validation of whole mouse micro-metastatic tumor imaging agents using cryo-imaging and sliding organ image registration.

    PubMed

    Liu, Yiqiao; Zhou, Bo; Qutaish, Mohammed; Wilson, David L

    2016-01-01

    We created a metastasis imaging, analysis platform consisting of software and multi-spectral cryo-imaging system suitable for evaluating emerging imaging agents targeting micro-metastatic tumor. We analyzed CREKA-Gd in MRI, followed by cryo-imaging which repeatedly sectioned and tiled microscope images of the tissue block face, providing anatomical bright field and molecular fluorescence, enabling 3D microscopic imaging of the entire mouse with single metastatic cell sensitivity. To register MRI volumes to the cryo bright field reference, we used our standard mutual information, non-rigid registration which proceeded: preprocess → affine → B-spline non-rigid 3D registration. In this report, we created two modified approaches: mask where we registered locally over a smaller rectangular solid, and sliding organ . Briefly, in sliding organ , we segmented the organ, registered the organ and body volumes separately and combined results. Though s liding organ required manual annotation, it provided the best result as a standard to measure other registration methods. Regularization parameters for standard and mask methods were optimized in a grid search. Evaluations consisted of DICE, and visual scoring of a checkerboard display. Standard had accuracy of 2 voxels in all regions except near the kidney, where there were 5 voxels sliding. After mask and sliding organ correction, kidneys sliding were within 2 voxels, and Dice overlap increased 4%-10% in mask compared to standard . Mask generated comparable results with sliding organ and allowed a semi-automatic process.

  3. Microscopic validation of whole mouse micro-metastatic tumor imaging agents using cryo-imaging and sliding organ image registration

    NASA Astrophysics Data System (ADS)

    Liu, Yiqiao; Zhou, Bo; Qutaish, Mohammed; Wilson, David L.

    2016-03-01

    We created a metastasis imaging, analysis platform consisting of software and multi-spectral cryo-imaging system suitable for evaluating emerging imaging agents targeting micro-metastatic tumor. We analyzed CREKA-Gd in MRI, followed by cryo-imaging which repeatedly sectioned and tiled microscope images of the tissue block face, providing anatomical bright field and molecular fluorescence, enabling 3D microscopic imaging of the entire mouse with single metastatic cell sensitivity. To register MRI volumes to the cryo bright field reference, we used our standard mutual information, non-rigid registration which proceeded: preprocess --> affine --> B-spline non-rigid 3D registration. In this report, we created two modified approaches: mask where we registered locally over a smaller rectangular solid, and sliding organ. Briefly, in sliding organ, we segmented the organ, registered the organ and body volumes separately and combined results. Though sliding organ required manual annotation, it provided the best result as a standard to measure other registration methods. Regularization parameters for standard and mask methods were optimized in a grid search. Evaluations consisted of DICE, and visual scoring of a checkerboard display. Standard had accuracy of 2 voxels in all regions except near the kidney, where there were 5 voxels sliding. After mask and sliding organ correction, kidneys sliding were within 2 voxels, and Dice overlap increased 4%-10% in mask compared to standard. Mask generated comparable results with sliding organ and allowed a semi-automatic process.

  4. Hyperspectral imaging for cancer surgical margin delineation: registration of hyperspectral and histological images

    NASA Astrophysics Data System (ADS)

    Lu, Guolan; Halig, Luma; Wang, Dongsheng; Chen, Zhuo G.; Fei, Baowei

    2014-03-01

    The determination of tumor margins during surgical resection remains a challenging task. A complete removal of malignant tissue and conservation of healthy tissue is important for the preservation of organ function, patient satisfaction, and quality of life. Visual inspection and palpation is not sufficient for discriminating between malignant and normal tissue types. Hyperspectral imaging (HSI) technology has the potential to noninvasively delineate surgical tumor margin and can be used as an intra-operative visual aid tool. Since histological images provide the ground truth of cancer margins, it is necessary to warp the cancer regions in ex vivo histological images back to in vivo hyperspectral images in order to validate the tumor margins detected by HSI and to optimize the imaging parameters. In this paper, principal component analysis (PCA) is utilized to extract the principle component bands of the HSI images, which is then used to register HSI images with the corresponding histological image. Affine registration is chosen to model the global transformation. A B-spline free form deformation (FFD) method is used to model the local non-rigid deformation. Registration experiment was performed on animal hyperspectral and histological images. Experimental results from animals demonstrated the feasibility of the hyperspectral imaging method for cancer margin detection.

  5. Statistical shape model-based reconstruction of a scaled, patient-specific surface model of the pelvis from a single standard AP x-ray radiograph

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng Guoyan

    2010-04-15

    Purpose: The aim of this article is to investigate the feasibility of using a statistical shape model (SSM)-based reconstruction technique to derive a scaled, patient-specific surface model of the pelvis from a single standard anteroposterior (AP) x-ray radiograph and the feasibility of estimating the scale of the reconstructed surface model by performing a surface-based 3D/3D matching. Methods: Data sets of 14 pelvises (one plastic bone, 12 cadavers, and one patient) were used to validate the single-image based reconstruction technique. This reconstruction technique is based on a hybrid 2D/3D deformable registration process combining a landmark-to-ray registration with a SSM-based 2D/3D reconstruction.more » The landmark-to-ray registration was used to find an initial scale and an initial rigid transformation between the x-ray image and the SSM. The estimated scale and rigid transformation were used to initialize the SSM-based 2D/3D reconstruction. The optimal reconstruction was then achieved in three stages by iteratively matching the projections of the apparent contours extracted from a 3D model derived from the SSM to the image contours extracted from the x-ray radiograph: Iterative affine registration, statistical instantiation, and iterative regularized shape deformation. The image contours are first detected by using a semiautomatic segmentation tool based on the Livewire algorithm and then approximated by a set of sparse dominant points that are adaptively sampled from the detected contours. The unknown scales of the reconstructed models were estimated by performing a surface-based 3D/3D matching between the reconstructed models and the associated ground truth models that were derived from a CT-based reconstruction method. Such a matching also allowed for computing the errors between the reconstructed models and the associated ground truth models. Results: The technique could reconstruct the surface models of all 14 pelvises directly from the landmark-based initialization. Depending on the surface-based matching techniques, the reconstruction errors were slightly different. When a surface-based iterative affine registration was used, an average reconstruction error of 1.6 mm was observed. This error was increased to 1.9 mm, when a surface-based iterative scaled rigid registration was used. Conclusions: It is feasible to reconstruct a scaled, patient-specific surface model of the pelvis from single standard AP x-ray radiograph using the present approach. The unknown scale of the reconstructed model can be estimated by performing a surface-based 3D/3D matching.« less

  6. Inter-slice bidirectional registration-based segmentation of the prostate gland in MR and CT image sequences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khalvati, Farzad, E-mail: farzad.khalvati@uwaterloo.ca; Tizhoosh, Hamid R.; Salmanpour, Aryan

    Purpose: Accurate segmentation and volume estimation of the prostate gland in magnetic resonance (MR) and computed tomography (CT) images are necessary steps in diagnosis, treatment, and monitoring of prostate cancer. This paper presents an algorithm for the prostate gland volume estimation based on the semiautomated segmentation of individual slices in T2-weighted MR and CT image sequences. Methods: The proposedInter-Slice Bidirectional Registration-based Segmentation (iBRS) algorithm relies on interslice image registration of volume data to segment the prostate gland without the use of an anatomical atlas. It requires the user to mark only three slices in a given volume dataset, i.e., themore » first, middle, and last slices. Next, the proposed algorithm uses a registration algorithm to autosegment the remaining slices. We conducted comprehensive experiments to measure the performance of the proposed algorithm using three registration methods (i.e., rigid, affine, and nonrigid techniques). Results: The results with the proposed technique were compared with manual marking using prostate MR and CT images from 117 patients. Manual marking was performed by an expert user for all 117 patients. The median accuracies for individual slices measured using the Dice similarity coefficient (DSC) were 92% and 91% for MR and CT images, respectively. The iBRS algorithm was also evaluated regarding user variability, which confirmed that the algorithm was robust to interuser variability when marking the prostate gland. Conclusions: The proposed algorithm exploits the interslice data redundancy of the images in a volume dataset of MR and CT images and eliminates the need for an atlas, minimizing the computational cost while producing highly accurate results which are robust to interuser variability.« less

  7. Inter-slice bidirectional registration-based segmentation of the prostate gland in MR and CT image sequences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khalvati, Farzad, E-mail: farzad.khalvati@uwaterloo.ca; Tizhoosh, Hamid R.; Salmanpour, Aryan

    2013-12-15

    Purpose: Accurate segmentation and volume estimation of the prostate gland in magnetic resonance (MR) and computed tomography (CT) images are necessary steps in diagnosis, treatment, and monitoring of prostate cancer. This paper presents an algorithm for the prostate gland volume estimation based on the semiautomated segmentation of individual slices in T2-weighted MR and CT image sequences. Methods: The proposedInter-Slice Bidirectional Registration-based Segmentation (iBRS) algorithm relies on interslice image registration of volume data to segment the prostate gland without the use of an anatomical atlas. It requires the user to mark only three slices in a given volume dataset, i.e., themore » first, middle, and last slices. Next, the proposed algorithm uses a registration algorithm to autosegment the remaining slices. We conducted comprehensive experiments to measure the performance of the proposed algorithm using three registration methods (i.e., rigid, affine, and nonrigid techniques). Results: The results with the proposed technique were compared with manual marking using prostate MR and CT images from 117 patients. Manual marking was performed by an expert user for all 117 patients. The median accuracies for individual slices measured using the Dice similarity coefficient (DSC) were 92% and 91% for MR and CT images, respectively. The iBRS algorithm was also evaluated regarding user variability, which confirmed that the algorithm was robust to interuser variability when marking the prostate gland. Conclusions: The proposed algorithm exploits the interslice data redundancy of the images in a volume dataset of MR and CT images and eliminates the need for an atlas, minimizing the computational cost while producing highly accurate results which are robust to interuser variability.« less

  8. Robust, Globally Consistent, and Fully-automatic Multi-image Registration and Montage Synthesis for 3-D Multi-channel Images

    PubMed Central

    Tsai, Chia-Ling; Lister, James P.; Bjornsson, Christopher J; Smith, Karen; Shain, William; Barnes, Carol A.; Roysam, Badrinath

    2013-01-01

    The need to map regions of brain tissue that are much wider than the field of view of the microscope arises frequently. One common approach is to collect a series of overlapping partial views, and align them to synthesize a montage covering the entire region of interest. We present a method that advances this approach in multiple ways. Our method (1) produces a globally consistent joint registration of an unorganized collection of 3-D multi-channel images with or without stage micrometer data; (2) produces accurate registrations withstanding changes in scale, rotation, translation and shear by using a 3-D affine transformation model; (3) achieves complete automation, and does not require any parameter settings; (4) handles low and variable overlaps (5 – 15%) between adjacent images, minimizing the number of images required to cover a tissue region; (5) has the self-diagnostic ability to recognize registration failures instead of delivering incorrect results; (6) can handle a broad range of biological images by exploiting generic alignment cues from multiple fluorescence channels without requiring segmentation; and (7) is computationally efficient enough to run on desktop computers regardless of the number of images. The algorithm was tested with several tissue samples of at least 50 image tiles, involving over 5,000 image pairs. It correctly registered all image pairs with an overlap greater than 7%, correctly recognized all failures, and successfully joint-registered all images for all tissue samples studied. This algorithm is disseminated freely to the community as included with the FARSIGHT toolkit for microscopy (www.farsight-toolkit.org). PMID:21361958

  9. Subject-Specific Sparse Dictionary Learning for Atlas-Based Brain MRI Segmentation.

    PubMed

    Roy, Snehashis; He, Qing; Sweeney, Elizabeth; Carass, Aaron; Reich, Daniel S; Prince, Jerry L; Pham, Dzung L

    2015-09-01

    Quantitative measurements from segmentations of human brain magnetic resonance (MR) images provide important biomarkers for normal aging and disease progression. In this paper, we propose a patch-based tissue classification method from MR images that uses a sparse dictionary learning approach and atlas priors. Training data for the method consists of an atlas MR image, prior information maps depicting where different tissues are expected to be located, and a hard segmentation. Unlike most atlas-based classification methods that require deformable registration of the atlas priors to the subject, only affine registration is required between the subject and training atlas. A subject-specific patch dictionary is created by learning relevant patches from the atlas. Then the subject patches are modeled as sparse combinations of learned atlas patches leading to tissue memberships at each voxel. The combination of prior information in an example-based framework enables us to distinguish tissues having similar intensities but different spatial locations. We demonstrate the efficacy of the approach on the application of whole-brain tissue segmentation in subjects with healthy anatomy and normal pressure hydrocephalus, as well as lesion segmentation in multiple sclerosis patients. For each application, quantitative comparisons are made against publicly available state-of-the art approaches.

  10. Alignment of large image series using cubic B-splines tessellation: application to transmission electron microscopy data.

    PubMed

    Dauguet, Julien; Bock, Davi; Reid, R Clay; Warfield, Simon K

    2007-01-01

    3D reconstruction from serial 2D microscopy images depends on non-linear alignment of serial sections. For some structures, such as the neuronal circuitry of the brain, very large images at very high resolution are necessary to permit reconstruction. These very large images prevent the direct use of classical registration methods. We propose in this work a method to deal with the non-linear alignment of arbitrarily large 2D images using the finite support properties of cubic B-splines. After initial affine alignment, each large image is split into a grid of smaller overlapping sub-images, which are individually registered using cubic B-splines transformations. Inside the overlapping regions between neighboring sub-images, the coefficients of the knots controlling the B-splines deformations are blended, to create a virtual large grid of knots for the whole image. The sub-images are resampled individually, using the new coefficients, and assembled together into a final large aligned image. We evaluated the method on a series of large transmission electron microscopy images and our results indicate significant improvements compared to both manual and affine alignment.

  11. GPU accelerated optical coherence tomography angiography using strip-based registration (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Heisler, Morgan; Lee, Sieun; Mammo, Zaid; Jian, Yifan; Ju, Myeong Jin; Miao, Dongkai; Raposo, Eric; Wahl, Daniel J.; Merkur, Andrew; Navajas, Eduardo; Balaratnasingam, Chandrakumar; Beg, Mirza Faisal; Sarunic, Marinko V.

    2017-02-01

    High quality visualization of the retinal microvasculature can improve our understanding of the onset and development of retinal vascular diseases, which are a major cause of visual morbidity and are increasing in prevalence. Optical Coherence Tomography Angiography (OCT-A) images are acquired over multiple seconds and are particularly susceptible to motion artifacts, which are more prevalent when imaging patients with pathology whose ability to fixate is limited. The acquisition of multiple OCT-A images sequentially can be performed for the purpose of removing motion artifact and increasing the contrast of the vascular network through averaging. Due to the motion artifacts, a robust registration pipeline is needed before feature preserving image averaging can be performed. In this report, we present a novel method for a GPU-accelerated pipeline for acquisition, processing, segmentation, and registration of multiple, sequentially acquired OCT-A images to correct for the motion artifacts in individual images for the purpose of averaging. High performance computing, blending CPU and GPU, was introduced to accelerate processing in order to provide high quality visualization of the retinal microvasculature and to enable a more accurate quantitative analysis in a clinically useful time frame. Specifically, image discontinuities caused by rapid micro-saccadic movements and image warping due to smoother reflex movements were corrected by strip-wise affine registration estimated using Scale Invariant Feature Transform (SIFT) keypoints and subsequent local similarity-based non-rigid registration. These techniques improve the image quality, increasing the value for clinical diagnosis and increasing the range of patients for whom high quality OCT-A images can be acquired.

  12. Patient-specific model-based segmentation of brain tumors in 3D intraoperative ultrasound images.

    PubMed

    Ilunga-Mbuyamba, Elisee; Avina-Cervantes, Juan Gabriel; Lindner, Dirk; Arlt, Felix; Ituna-Yudonago, Jean Fulbert; Chalopin, Claire

    2018-03-01

    Intraoperative ultrasound (iUS) imaging is commonly used to support brain tumor operation. The tumor segmentation in the iUS images is a difficult task and still under improvement because of the low signal-to-noise ratio. The success of automatic methods is also limited due to the high noise sensibility. Therefore, an alternative brain tumor segmentation method in 3D-iUS data using a tumor model obtained from magnetic resonance (MR) data for local MR-iUS registration is presented in this paper. The aim is to enhance the visualization of the brain tumor contours in iUS. A multistep approach is proposed. First, a region of interest (ROI) based on the specific patient tumor model is defined. Second, hyperechogenic structures, mainly tumor tissues, are extracted from the ROI of both modalities by using automatic thresholding techniques. Third, the registration is performed over the extracted binary sub-volumes using a similarity measure based on gradient values, and rigid and affine transformations. Finally, the tumor model is aligned with the 3D-iUS data, and its contours are represented. Experiments were successfully conducted on a dataset of 33 patients. The method was evaluated by comparing the tumor segmentation with expert manual delineations using two binary metrics: contour mean distance and Dice index. The proposed segmentation method using local and binary registration was compared with two grayscale-based approaches. The outcomes showed that our approach reached better results in terms of computational time and accuracy than the comparative methods. The proposed approach requires limited interaction and reduced computation time, making it relevant for intraoperative use. Experimental results and evaluations were performed offline. The developed tool could be useful for brain tumor resection supporting neurosurgeons to improve tumor border visualization in the iUS volumes.

  13. Automated liver segmentation using a normalized probabilistic atlas

    NASA Astrophysics Data System (ADS)

    Linguraru, Marius George; Li, Zhixi; Shah, Furhawn; Chin, See; Summers, Ronald M.

    2009-02-01

    Probabilistic atlases of anatomical organs, especially the brain and the heart, have become popular in medical image analysis. We propose the construction of probabilistic atlases which retain structural variability by using a size-preserving modified affine registration. The organ positions are modeled in the physical space by normalizing the physical organ locations to an anatomical landmark. In this paper, a liver probabilistic atlas is constructed and exploited to automatically segment liver volumes from abdominal CT data. The atlas is aligned with the patient data through a succession of affine and non-linear registrations. The overlap and correlation with manual segmentations are 0.91 (0.93 DICE coefficient) and 0.99 respectively. Little work has taken place on the integration of volumetric measures of liver abnormality to clinical evaluations, which rely on linear estimates of liver height. Our application measures the liver height at the mid-hepatic line (0.94 correlation with manual measurements) and indicates that its combination with volumetric estimates could assist the development of a noninvasive tool to assess hepatomegaly.

  14. Invariant Feature Matching for Image Registration Application Based on New Dissimilarity of Spatial Features

    PubMed Central

    Mousavi Kahaki, Seyed Mostafa; Nordin, Md Jan; Ashtari, Amir H.; J. Zahra, Sophia

    2016-01-01

    An invariant feature matching method is proposed as a spatially invariant feature matching approach. Deformation effects, such as affine and homography, change the local information within the image and can result in ambiguous local information pertaining to image points. New method based on dissimilarity values, which measures the dissimilarity of the features through the path based on Eigenvector properties, is proposed. Evidence shows that existing matching techniques using similarity metrics—such as normalized cross-correlation, squared sum of intensity differences and correlation coefficient—are insufficient for achieving adequate results under different image deformations. Thus, new descriptor’s similarity metrics based on normalized Eigenvector correlation and signal directional differences, which are robust under local variation of the image information, are proposed to establish an efficient feature matching technique. The method proposed in this study measures the dissimilarity in the signal frequency along the path between two features. Moreover, these dissimilarity values are accumulated in a 2D dissimilarity space, allowing accurate corresponding features to be extracted based on the cumulative space using a voting strategy. This method can be used in image registration applications, as it overcomes the limitations of the existing approaches. The output results demonstrate that the proposed technique outperforms the other methods when evaluated using a standard dataset, in terms of precision-recall and corner correspondence. PMID:26985996

  15. Heuristic approach to image registration

    NASA Astrophysics Data System (ADS)

    Gertner, Izidor; Maslov, Igor V.

    2000-08-01

    Image registration, i.e. correct mapping of images obtained from different sensor readings onto common reference frame, is a critical part of multi-sensor ATR/AOR systems based on readings from different types of sensors. In order to fuse two different sensor readings of the same object, the readings have to be put into a common coordinate system. This task can be formulated as optimization problem in a space of all possible affine transformations of an image. In this paper, a combination of heuristic methods is explored to register gray- scale images. The modification of Genetic Algorithm is used as the first step in global search for optimal transformation. It covers the entire search space with (randomly or heuristically) scattered probe points and helps significantly reduce the search space to a subspace of potentially most successful transformations. Due to its discrete character, however, Genetic Algorithm in general can not converge while coming close to the optimum. Its termination point can be specified either as some predefined number of generations or as achievement of a certain acceptable convergence level. To refine the search, potential optimal subspaces are searched using more delicate and efficient for local search Taboo and Simulated Annealing methods.

  16. Towards Ultra-High Resolution Fibre Tract Mapping of the Human Brain – Registration of Polarised Light Images and Reorientation of Fibre Vectors

    PubMed Central

    Palm, Christoph; Axer, Markus; Gräßel, David; Dammers, Jürgen; Lindemeyer, Johannes; Zilles, Karl; Pietrzyk, Uwe; Amunts, Katrin

    2009-01-01

    Polarised light imaging (PLI) utilises the birefringence of the myelin sheaths in order to visualise the orientation of nerve fibres in microtome sections of adult human post-mortem brains at ultra-high spatial resolution. The preparation of post-mortem brains for PLI involves fixation, freezing and cutting into 100-μm-thick sections. Hence, geometrical distortions of histological sections are inevitable and have to be removed for 3D reconstruction and subsequent fibre tracking. We here present a processing pipeline for 3D reconstruction of these sections using PLI derived multimodal images of post-mortem brains. Blockface images of the brains were obtained during cutting; they serve as reference data for alignment and elimination of distortion artefacts. In addition to the spatial image transformation, fibre orientation vectors were reoriented using the transformation fields, which consider both affine and subsequent non-linear registration. The application of this registration and reorientation approach results in a smooth fibre vector field, which reflects brain morphology. PLI combined with 3D reconstruction and fibre tracking is a powerful tool for human brain mapping. It can also serve as an independent method for evaluating in vivo fibre tractography. PMID:20461231

  17. Spatiotemporal Quantification of Local Drug Delivery Using MRI

    PubMed Central

    Giers, Morgan B.; McLaren, Alex C.; Plasencia, Jonathan D.; McLemore, Ryan; Caplan, Michael R.

    2013-01-01

    Controlled release formulations for local, in vivo drug delivery are of growing interest to device manufacturers, research scientists, and clinicians; however, most research characterizing controlled release formulations occurs in vitro because the spatial and temporal distribution of drug delivery is difficult to measure in vivo. In this work, in vivo magnetic resonance imaging (MRI) of local drug delivery was performed to visualize and quantify the time resolved distribution of MRI contrast agents. Three-dimensional T 1 maps (generated from T 1-weighted images with varied T R) were processed using noise-reducing filtering. A segmented region of contrast, from a thresholded image, was converted to concentration maps using the equation 1/T 1 = 1/T 1,0 + R 1 C, where T 1,0 and T 1 are the precontrast and postcontrast T 1 map values, respectively. In this technique, a uniform estimated value for T 1,0 was used. Error estimations were performed for each step. The practical usefulness of this method was assessed using comparisons between devices located in different locations both with and without contrast. The method using a uniform T 1,0, requiring no registration of pre- and postcontrast image volumes, was compared to a method using either affine or deformation registrations. PMID:23710248

  18. Active edge maps for medical image registration

    NASA Astrophysics Data System (ADS)

    Kerwin, William; Yuan, Chun

    2001-07-01

    Applying edge detection prior to performing image registration yields several advantages over raw intensity- based registration. Advantages include the ability to register multicontrast or multimodality images, immunity to intensity variations, and the potential for computationally efficient algorithms. In this work, a common framework for edge-based image registration is formulated as an adaptation of snakes used in boundary detection. Called active edge maps, the new formulation finds a one-to-one transformation T(x) that maps points in a source image to corresponding locations in a target image using an energy minimization approach. The energy consists of an image component that is small when edge features are well matched in the two images, and an internal term that restricts T(x) to allowable configurations. The active edge map formulation is illustrated here with a specific example developed for affine registration of carotid artery magnetic resonance images. In this example, edges are identified using a magnitude of gradient operator, image energy is determined using a Gaussian weighted distance function, and the internal energy includes separate, adjustable components that control volume preservation and rigidity.

  19. An automated A-value measurement tool for accurate cochlear duct length estimation.

    PubMed

    Iyaniwura, John E; Elfarnawany, Mai; Ladak, Hanif M; Agrawal, Sumit K

    2018-01-22

    There has been renewed interest in the cochlear duct length (CDL) for preoperative cochlear implant electrode selection and postoperative generation of patient-specific frequency maps. The CDL can be estimated by measuring the A-value, which is defined as the length between the round window and the furthest point on the basal turn. Unfortunately, there is significant intra- and inter-observer variability when these measurements are made clinically. The objective of this study was to develop an automated A-value measurement algorithm to improve accuracy and eliminate observer variability. Clinical and micro-CT images of 20 cadaveric cochleae specimens were acquired. The micro-CT of one sample was chosen as the atlas, and A-value fiducials were placed onto that image. Image registration (rigid affine and non-rigid B-spline) was applied between the atlas and the 19 remaining clinical CT images. The registration transform was applied to the A-value fiducials, and the A-value was then automatically calculated for each specimen. High resolution micro-CT images of the same 19 specimens were used to measure the gold standard A-values for comparison against the manual and automated methods. The registration algorithm had excellent qualitative overlap between the atlas and target images. The automated method eliminated the observer variability and the systematic underestimation by experts. Manual measurement of the A-value on clinical CT had a mean error of 9.5 ± 4.3% compared to micro-CT, and this improved to an error of 2.7 ± 2.1% using the automated algorithm. Both the automated and manual methods correlated significantly with the gold standard micro-CT A-values (r = 0.70, p < 0.01 and r = 0.69, p < 0.01, respectively). An automated A-value measurement tool using atlas-based registration methods was successfully developed and validated. The automated method eliminated the observer variability and improved accuracy as compared to manual measurements by experts. This open-source tool has the potential to benefit cochlear implant recipients in the future.

  20. The algorithm of fast image stitching based on multi-feature extraction

    NASA Astrophysics Data System (ADS)

    Yang, Chunde; Wu, Ge; Shi, Jing

    2018-05-01

    This paper proposed an improved image registration method combining Hu-based invariant moment contour information and feature points detection, aiming to solve the problems in traditional image stitching algorithm, such as time-consuming feature points extraction process, redundant invalid information overload and inefficiency. First, use the neighborhood of pixels to extract the contour information, employing the Hu invariant moment as similarity measure to extract SIFT feature points in those similar regions. Then replace the Euclidean distance with Hellinger kernel function to improve the initial matching efficiency and get less mismatching points, further, estimate affine transformation matrix between the images. Finally, local color mapping method is adopted to solve uneven exposure, using the improved multiresolution fusion algorithm to fuse the mosaic images and realize seamless stitching. Experimental results confirm high accuracy and efficiency of method proposed in this paper.

  1. Automated robust registration of grossly misregistered whole-slide images with varying stains

    NASA Astrophysics Data System (ADS)

    Litjens, G.; Safferling, K.; Grabe, N.

    2016-03-01

    Cancer diagnosis and pharmaceutical research increasingly depend on the accurate quantification of cancer biomarkers. Identification of biomarkers is usually performed through immunohistochemical staining of cancer sections on glass slides. However, combination of multiple biomarkers from a wide variety of immunohistochemically stained slides is a tedious process in traditional histopathology due to the switching of glass slides and re-identification of regions of interest by pathologists. Digital pathology now allows us to apply image registration algorithms to digitized whole-slides to align the differing immunohistochemical stains automatically. However, registration algorithms need to be robust to changes in color due to differing stains and severe changes in tissue content between slides. In this work we developed a robust registration methodology to allow for fast coarse alignment of multiple immunohistochemical stains to the base hematyoxylin and eosin stained image. We applied HSD color model conversion to obtain a less stain color dependent representation of the whole-slide images. Subsequently, optical density thresholding and connected component analysis were used to identify the relevant regions for registration. Template matching using normalized mutual information was applied to provide initial translation and rotation parameters, after which a cost function-driven affine registration was performed. The algorithm was validated using 40 slides from 10 prostate cancer patients, with landmark registration error as a metric. Median landmark registration error was around 180 microns, which indicates performance is adequate for practical application. None of the registrations failed, indicating the robustness of the algorithm.

  2. Fast interactive elastic registration of 12-bit multi-spectral images with subvoxel accuracy using display hardware

    NASA Astrophysics Data System (ADS)

    Noordmans, Herke Jan; de Roode, Rowland; Verdaasdonk, Rudolf

    2007-03-01

    Multi-spectral images of human tissue taken in-vivo often contain image alignment problems as patients have difficulty in retaining their posture during the acquisition time of 20 seconds. Previously, it has been attempted to correct motion errors with image registration software developed for MR or CT data but these algorithms have been proven to be too slow and erroneous for practical use with multi-spectral images. A new software package has been developed which allows the user to play a decisive role in the registration process as the user can monitor the progress of the registration continuously and force it in the right direction when it starts to fail. The software efficiently exploits videocard hardware to gain speed and to provide a perfect subvoxel correspondence between registration field and display. An 8 bit graphic card was used to efficiently register and resample 12 bit images using the hardware interpolation modes present on the graphic card. To show the feasibility of this new registration process, the software was applied in clinical practice evaluating the dosimetry for psoriasis and KTP laser treatment. The microscopic differences between images of normal skin and skin exposed to UV light proved that an affine registration step including zooming and slanting is critical for a subsequent elastic match to have success. The combination of user interactive registration software with optimal addressing the potentials of PC video card hardware greatly improves the speed of multi spectral image registration.

  3. Fast interactive registration tool for reproducible multi-spectral imaging for wound healing and treatment evaluation

    NASA Astrophysics Data System (ADS)

    Noordmans, Herke J.; de Roode, Rowland; Verdaasdonk, Rudolf

    2007-02-01

    Multi-spectral images of human tissue taken in-vivo often contain image alignment problems as patients have difficulty in retaining their posture during the acquisition time of 20 seconds. Previously, it has been attempted to correct motion errors with image registration software developed for MR or CT data but these algorithms have been proven to be too slow and erroneous for practical use with multi-spectral images. A new software package has been developed which allows the user to play a decisive role in the registration process as the user can monitor the progress of the registration continuously and force it in the right direction when it starts to fail. The software efficiently exploits videocard hardware to gain speed and to provide a perfect subvoxel correspondence between registration field and display. An 8 bit graphic card was used to efficiently register and resample 12 bit images using the hardware interpolation modes present on the graphic card. To show the feasibility of this new registration process, the software was applied in clinical practice evaluating the dosimetry for psoriasis and KTP laser treatment. The microscopic differences between images of normal skin and skin exposed to UV light proved that an affine registration step including zooming and slanting is critical for a subsequent elastic match to have success. The combination of user interactive registration software with optimal addressing the potentials of PC video card hardware greatly improves the speed of multi spectral image registration.

  4. Selecting registration schemes in case of interstitial lung disease follow-up in CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vlachopoulos, Georgios; Korfiatis, Panayiotis; Skiadopoulos, Spyros

    Purpose: Primary goal of this study is to select optimal registration schemes in the framework of interstitial lung disease (ILD) follow-up analysis in CT. Methods: A set of 128 multiresolution schemes composed of multiresolution nonrigid and combinations of rigid and nonrigid registration schemes are evaluated, utilizing ten artificially warped ILD follow-up volumes, originating from ten clinical volumetric CT scans of ILD affected patients, to select candidate optimal schemes. Specifically, all combinations of four transformation models (three rigid: rigid, similarity, affine and one nonrigid: third order B-spline), four cost functions (sum-of-square distances, normalized correlation coefficient, mutual information, and normalized mutual information),more » four gradient descent optimizers (standard, regular step, adaptive stochastic, and finite difference), and two types of pyramids (recursive and Gaussian-smoothing) were considered. The selection process involves two stages. The first stage involves identification of schemes with deformation field singularities, according to the determinant of the Jacobian matrix. In the second stage, evaluation methodology is based on distance between corresponding landmark points in both normal lung parenchyma (NLP) and ILD affected regions. Statistical analysis was performed in order to select near optimal registration schemes per evaluation metric. Performance of the candidate registration schemes was verified on a case sample of ten clinical follow-up CT scans to obtain the selected registration schemes. Results: By considering near optimal schemes common to all ranking lists, 16 out of 128 registration schemes were initially selected. These schemes obtained submillimeter registration accuracies in terms of average distance errors 0.18 ± 0.01 mm for NLP and 0.20 ± 0.01 mm for ILD, in case of artificially generated follow-up data. Registration accuracy in terms of average distance error in clinical follow-up data was in the range of 1.985–2.156 mm and 1.966–2.234 mm, for NLP and ILD affected regions, respectively, excluding schemes with statistically significant lower performance (Wilcoxon signed-ranks test, p < 0.05), resulting in 13 finally selected registration schemes. Conclusions: Selected registration schemes in case of ILD CT follow-up analysis indicate the significance of adaptive stochastic gradient descent optimizer, as well as the importance of combined rigid and nonrigid schemes providing high accuracy and time efficiency. The selected optimal deformable registration schemes are equivalent in terms of their accuracy and thus compatible in terms of their clinical outcome.« less

  5. Adaptive Registration of Varying Contrast-Weighted Images for Improved Tissue Characterization (ARCTIC): Application to T1 Mapping

    PubMed Central

    Roujol, Sébastien; Foppa, Murilo; Weingartner, Sebastian; Manning, Warren J.; Nezafat, Reza

    2014-01-01

    Purpose To propose and evaluate a novel non-rigid image registration approach for improved myocardial T1 mapping. Methods Myocardial motion is estimated as global affine motion refined by a novel local non-rigid motion estimation algorithm. A variational framework is proposed, which simultaneously estimates motion field and intensity variations, and uses an additional regularization term to constrain the deformation field using automatic feature tracking. The method was evaluated in 29 patients by measuring the DICE similarity coefficient (DSC) and the myocardial boundary error (MBE) in short axis and four chamber data. Each image series was visually assessed as “no motion” or “with motion”. Overall T1 map quality and motion artifacts were assessed in the 85 T1 maps acquired in short axis view using a 4-point scale (1-non diagnostic/severe motion artifact, 4-excellent/no motion artifact). Results Increased DSC (0.78±0.14 to 0.87±0.03, p<0.001), reduced MBE (1.29±0.72mm to 0.84±0.20mm, p<0.001), improved overall T1 map quality (2.86±1.04 to 3.49±0.77, p<0.001), and reduced T1 map motion artifacts (2.51±0.84 to 3.61±0.64, p<0.001) were obtained after motion correction of “with motion” data (~56% of data). Conclusion The proposed non-rigid registration approach reduces the respiratory-induced motion that occurs during breath-hold T1 mapping, and significantly improves T1 map quality. PMID:24798588

  6. Tumor growth model for atlas based registration of pathological brain MR images

    NASA Astrophysics Data System (ADS)

    Moualhi, Wafa; Ezzeddine, Zagrouba

    2015-02-01

    The motivation of this work is to register a tumor brain magnetic resonance (MR) image with a normal brain atlas. A normal brain atlas is deformed in order to take account of the presence of a large space occupying tumor. The method use a priori model of tumor growth assuming that the tumor grows in a radial way from a starting point. First, an affine transformation is used in order to bring the patient image and the brain atlas in a global correspondence. Second, the seeding of a synthetic tumor into the brain atlas provides a template for the lesion. Finally, the seeded atlas is deformed combining a method derived from optical flow principles and a model for tumor growth (MTG). Results show that an automatic segmentation method of brain structures in the presence of large deformation can be provided.

  7. SU-E-J-132: Automated Segmentation with Post-Registration Atlas Selection Based On Mutual Information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, X; Gao, H; Sharp, G

    2015-06-15

    Purpose: The delineation of targets and organs-at-risk is a critical step during image-guided radiation therapy, for which manual contouring is the gold standard. However, it is often time-consuming and may suffer from intra- and inter-rater variability. The purpose of this work is to investigate the automated segmentation. Methods: The automatic segmentation here is based on mutual information (MI), with the atlas from Public Domain Database for Computational Anatomy (PDDCA) with manually drawn contours.Using dice coefficient (DC) as the quantitative measure of segmentation accuracy, we perform leave-one-out cross-validations for all PDDCA images sequentially, during which other images are registered to eachmore » chosen image and DC is computed between registered contour and ground truth. Meanwhile, six strategies, including MI, are selected to measure the image similarity, with MI to be the best. Then given a target image to be segmented and an atlas, automatic segmentation consists of: (a) the affine registration step for image positioning; (b) the active demons registration method to register the atlas to the target image; (c) the computation of MI values between the deformed atlas and the target image; (d) the weighted image fusion of three deformed atlas images with highest MI values to form the segmented contour. Results: MI was found to be the best among six studied strategies in the sense that it had the highest positive correlation between similarity measure (e.g., MI values) and DC. For automated segmentation, the weighted image fusion of three deformed atlas images with highest MI values provided the highest DC among four proposed strategies. Conclusion: MI has the highest correlation with DC, and therefore is an appropriate choice for post-registration atlas selection in atlas-based segmentation. Xuhua Ren and Hao Gao were partially supported by the NSFC (#11405105), the 973 Program (#2015CB856000) and the Shanghai Pujiang Talent Program (#14PJ1404500)« less

  8. Evaluation of registration accuracy between Sentinel-2 and Landsat 8

    NASA Astrophysics Data System (ADS)

    Barazzetti, Luigi; Cuca, Branka; Previtali, Mattia

    2016-08-01

    Starting from June 2015, Sentinel-2A is delivering high resolution optical images (ground resolution up to 10 meters) to provide a global coverage of the Earth's land surface every 10 days. The planned launch of Sentinel-2B along with the integration of Landsat images will provide time series with an unprecedented revisit time indispensable for numerous monitoring applications, in which high resolution multi-temporal information is required. They include agriculture, water bodies, natural hazards to name a few. However, the combined use of multi-temporal images requires an accurate geometric registration, i.e. pixel-to-pixel correspondence for terrain-corrected products. This paper presents an analysis of spatial co-registration accuracy for several datasets of Sentinel-2 and Landsat 8 images distributed all around the world. Images were compared with digital correlation techniques for image matching, obtaining an evaluation of registration accuracy with an affine transformation as geometrical model. Results demonstrate that sub-pixel accuracy was achieved between 10 m resolution Sentinel-2 bands (band 3) and 15 m resolution panchromatic Landsat images (band 8).

  9. Imaging of prostate cancer: a platform for 3D co-registration of in-vivo MRI ex-vivo MRI and pathology

    NASA Astrophysics Data System (ADS)

    Orczyk, Clément; Mikheev, Artem; Rosenkrantz, Andrew; Melamed, Jonathan; Taneja, Samir S.; Rusinek, Henry

    2012-02-01

    Objectives: Multi-parametric MRI is emerging as a promising method for prostate cancer diagnosis. prognosis and treatment planning. However, the localization of in-vivo detected lesions and pathologic sites of cancer remains a significant challenge. To overcome this limitation we have developed and tested a system for co-registration of in-vivo MRI, ex-vivo MRI and histology. Materials and Methods: Three men diagnosed with localized prostate cancer (ages 54-72, PSA levels 5.1-7.7 ng/ml) were prospectively enrolled in this study. All patients underwent 3T multi-parametric MRI that included T2W, DCEMRI, and DWI prior to robotic-assisted prostatectomy. Ex-vivo multi-parametric MRI was performed on fresh prostate specimen. Excised prostates were then sliced at regular intervals and photographed both before and after fixation. Slices were perpendicular to the main axis of the posterior capsule, i.e., along the direction of the rectal wall. Guided by the location of the urethra, 2D digital images were assembled into 3D models. Cancer foci, extra-capsular extensions and zonal margins were delineated by the pathologist and included in 3D histology data. A locally-developed software was applied to register in-vivo, ex-vivo and histology using an over-determined set of anatomical landmarks placed in anterior fibro-muscular stroma, central. transition and peripheral zones. The mean root square distance across corresponding control points was used to assess co-registration error. Results: Two specimens were pT3a and one pT2b (negative margin) at pathology. The software successfully fused invivo MRI. ex-vivo MRI fresh specimen and histology using appropriate (rigid and affine) transformation models with mean square error of 1.59 mm. Coregistration accuracy was confirmed by multi-modality viewing using operator-guided variable transparency. Conclusion: The method enables successful co-registration of pre-operative MRI, ex-vivo MRI and pathology and it provides initial evidence of feasibility of MRI-guided surgical planning.

  10. PVR: Patch-to-Volume Reconstruction for Large Area Motion Correction of Fetal MRI.

    PubMed

    Alansary, Amir; Rajchl, Martin; McDonagh, Steven G; Murgasova, Maria; Damodaram, Mellisa; Lloyd, David F A; Davidson, Alice; Rutherford, Mary; Hajnal, Joseph V; Rueckert, Daniel; Kainz, Bernhard

    2017-10-01

    In this paper, we present a novel method for the correction of motion artifacts that are present in fetal magnetic resonance imaging (MRI) scans of the whole uterus. Contrary to current slice-to-volume registration (SVR) methods, requiring an inflexible anatomical enclosure of a single investigated organ, the proposed patch-to-volume reconstruction (PVR) approach is able to reconstruct a large field of view of non-rigidly deforming structures. It relaxes rigid motion assumptions by introducing a specific amount of redundant information that is exploited with parallelized patchwise optimization, super-resolution, and automatic outlier rejection. We further describe and provide an efficient parallel implementation of PVR allowing its execution within reasonable time on commercially available graphics processing units, enabling its use in the clinical practice. We evaluate PVR's computational overhead compared with standard methods and observe improved reconstruction accuracy in the presence of affine motion artifacts compared with conventional SVR in synthetic experiments. Furthermore, we have evaluated our method qualitatively and quantitatively on real fetal MRI data subject to maternal breathing and sudden fetal movements. We evaluate peak-signal-to-noise ratio, structural similarity index, and cross correlation with respect to the originally acquired data and provide a method for visual inspection of reconstruction uncertainty. We further evaluate the distance error for selected anatomical landmarks in the fetal head, as well as calculating the mean and maximum displacements resulting from automatic non-rigid registration to a motion-free ground truth image. These experiments demonstrate a successful application of PVR motion compensation to the whole fetal body, uterus, and placenta.

  11. Development of a piecewise linear omnidirectional 3D image registration method

    NASA Astrophysics Data System (ADS)

    Bae, Hyunsoo; Kang, Wonjin; Lee, SukGyu; Kim, Youngwoo

    2016-12-01

    This paper proposes a new piecewise linear omnidirectional image registration method. The proposed method segments an image captured by multiple cameras into 2D segments defined by feature points of the image and then stitches each segment geometrically by considering the inclination of the segment in the 3D space. Depending on the intended use of image registration, the proposed method can be used to improve image registration accuracy or reduce the computation time in image registration because the trade-off between the computation time and image registration accuracy can be controlled for. In general, nonlinear image registration methods have been used in 3D omnidirectional image registration processes to reduce image distortion by camera lenses. The proposed method depends on a linear transformation process for omnidirectional image registration, and therefore it can enhance the effectiveness of the geometry recognition process, increase image registration accuracy by increasing the number of cameras or feature points of each image, increase the image registration speed by reducing the number of cameras or feature points of each image, and provide simultaneous information on shapes and colors of captured objects.

  12. 32 CFR 1615.1 - Registration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... registration card or other method of registration prescribed by the Director of Selective Service by a person... method of registration prescribed by the Director, he shall advise in writing the Selective Service System, P.O. Box 94638, Palatine, IL 60094-4638. (c) The methods of registration prescribed by the...

  13. Tools and Methods for the Registration and Fusion of Remotely Sensed Data

    NASA Technical Reports Server (NTRS)

    Goshtasby, Arthur Ardeshir; LeMoigne, Jacqueline

    2010-01-01

    Tools and methods for image registration were reviewed. Methods for the registration of remotely sensed data at NASA were discussed. Image fusion techniques were reviewed. Challenges in registration of remotely sensed data were discussed. Examples of image registration and image fusion were given.

  14. Registration of Panoramic/Fish-Eye Image Sequence and LiDAR Points Using Skyline Features

    PubMed Central

    Zhu, Ningning; Jia, Yonghong; Ji, Shunping

    2018-01-01

    We propose utilizing a rigorous registration model and a skyline-based method for automatic registration of LiDAR points and a sequence of panoramic/fish-eye images in a mobile mapping system (MMS). This method can automatically optimize original registration parameters and avoid the use of manual interventions in control point-based registration methods. First, the rigorous registration model between the LiDAR points and the panoramic/fish-eye image was built. Second, skyline pixels from panoramic/fish-eye images and skyline points from the MMS’s LiDAR points were extracted, relying on the difference in the pixel values and the registration model, respectively. Third, a brute force optimization method was used to search for optimal matching parameters between skyline pixels and skyline points. In the experiments, the original registration method and the control point registration method were used to compare the accuracy of our method with a sequence of panoramic/fish-eye images. The result showed: (1) the panoramic/fish-eye image registration model is effective and can achieve high-precision registration of the image and the MMS’s LiDAR points; (2) the skyline-based registration method can automatically optimize the initial attitude parameters, realizing a high-precision registration of a panoramic/fish-eye image and the MMS’s LiDAR points; and (3) the attitude correction values of the sequences of panoramic/fish-eye images are different, and the values must be solved one by one. PMID:29883431

  15. The Insight ToolKit image registration framework

    PubMed Central

    Avants, Brian B.; Tustison, Nicholas J.; Stauffer, Michael; Song, Gang; Wu, Baohua; Gee, James C.

    2014-01-01

    Publicly available scientific resources help establish evaluation standards, provide a platform for teaching and improve reproducibility. Version 4 of the Insight ToolKit (ITK4) seeks to establish new standards in publicly available image registration methodology. ITK4 makes several advances in comparison to previous versions of ITK. ITK4 supports both multivariate images and objective functions; it also unifies high-dimensional (deformation field) and low-dimensional (affine) transformations with metrics that are reusable across transform types and with composite transforms that allow arbitrary series of geometric mappings to be chained together seamlessly. Metrics and optimizers take advantage of multi-core resources, when available. Furthermore, ITK4 reduces the parameter optimization burden via principled heuristics that automatically set scaling across disparate parameter types (rotations vs. translations). A related approach also constrains steps sizes for gradient-based optimizers. The result is that tuning for different metrics and/or image pairs is rarely necessary allowing the researcher to more easily focus on design/comparison of registration strategies. In total, the ITK4 contribution is intended as a structure to support reproducible research practices, will provide a more extensive foundation against which to evaluate new work in image registration and also enable application level programmers a broad suite of tools on which to build. Finally, we contextualize this work with a reference registration evaluation study with application to pediatric brain labeling.1 PMID:24817849

  16. Error estimation of deformable image registration of pulmonary CT scans using convolutional neural networks.

    PubMed

    Eppenhof, Koen A J; Pluim, Josien P W

    2018-04-01

    Error estimation in nonlinear medical image registration is a nontrivial problem that is important for validation of registration methods. We propose a supervised method for estimation of registration errors in nonlinear registration of three-dimensional (3-D) images. The method is based on a 3-D convolutional neural network that learns to estimate registration errors from a pair of image patches. By applying the network to patches centered around every voxel, we construct registration error maps. The network is trained using a set of representative images that have been synthetically transformed to construct a set of image pairs with known deformations. The method is evaluated on deformable registrations of inhale-exhale pairs of thoracic CT scans. Using ground truth target registration errors on manually annotated landmarks, we evaluate the method's ability to estimate local registration errors. Estimation of full domain error maps is evaluated using a gold standard approach. The two evaluation approaches show that we can train the network to robustly estimate registration errors in a predetermined range, with subvoxel accuracy. We achieved a root-mean-square deviation of 0.51 mm from gold standard registration errors and of 0.66 mm from ground truth landmark registration errors.

  17. A patch-based pseudo-CT approach for MRI-only radiotherapy in the pelvis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andreasen, Daniel, E-mail: dana@dtu.dk

    Purpose: In radiotherapy based only on magnetic resonance imaging (MRI), knowledge about tissue electron densities must be derived from the MRI. This can be achieved by converting the MRI scan to the so-called pseudo-computed tomography (pCT). An obstacle is that the voxel intensities in conventional MRI scans are not uniquely related to electron density. The authors previously demonstrated that a patch-based method could produce accurate pCTs of the brain using conventional T{sub 1}-weighted MRI scans. The method was driven mainly by local patch similarities and relied on simple affine registrations between an atlas database of the co-registered MRI/CT scan pairsmore » and the MRI scan to be converted. In this study, the authors investigate the applicability of the patch-based approach in the pelvis. This region is challenging for a method based on local similarities due to the greater inter-patient variation. The authors benchmark the method against a baseline pCT strategy where all voxels inside the body contour are assigned a water-equivalent bulk density. Furthermore, the authors implement a parallelized approximate patch search strategy to speed up the pCT generation time to a more clinically relevant level. Methods: The data consisted of CT and T{sub 1}-weighted MRI scans of 10 prostate patients. pCTs were generated using an approximate patch search algorithm in a leave-one-out fashion and compared with the CT using frequently described metrics such as the voxel-wise mean absolute error (MAE{sub vox}) and the deviation in water-equivalent path lengths. Furthermore, the dosimetric accuracy was tested for a volumetric modulated arc therapy plan using dose–volume histogram (DVH) point deviations and γ-index analysis. Results: The patch-based approach had an average MAE{sub vox} of 54 HU; median deviations of less than 0.4% in relevant DVH points and a γ-index pass rate of 0.97 using a 1%/1 mm criterion. The patch-based approach showed a significantly better performance than the baseline water pCT in almost all metrics. The approximate patch search strategy was 70x faster than a brute-force search, with an average prediction time of 20.8 min. Conclusions: The authors showed that a patch-based method based on affine registrations and T{sub 1}-weighted MRI could generate accurate pCTs of the pelvis. The main source of differences between pCT and CT was positional changes of air pockets and body outline.« less

  18. An atlas-based multimodal registration method for 2D images with discrepancy structures.

    PubMed

    Lv, Wenchao; Chen, Houjin; Peng, Yahui; Li, Yanfeng; Li, Jupeng

    2018-06-04

    An atlas-based multimodal registration method for 2-dimension images with discrepancy structures was proposed in this paper. Atlas was utilized for complementing the discrepancy structure information in multimodal medical images. The scheme includes three steps: floating image to atlas registration, atlas to reference image registration, and field-based deformation. To evaluate the performance, a frame model, a brain model, and clinical images were employed in registration experiments. We measured the registration performance by the squared sum of intensity differences. Results indicate that this method is robust and performs better than the direct registration for multimodal images with discrepancy structures. We conclude that the proposed method is suitable for multimodal images with discrepancy structures. Graphical Abstract An Atlas-based multimodal registration method schematic diagram.

  19. Multimodal Image Registration through Simultaneous Segmentation.

    PubMed

    Aganj, Iman; Fischl, Bruce

    2017-11-01

    Multimodal image registration facilitates the combination of complementary information from images acquired with different modalities. Most existing methods require computation of the joint histogram of the images, while some perform joint segmentation and registration in alternate iterations. In this work, we introduce a new non-information-theoretical method for pairwise multimodal image registration, in which the error of segmentation - using both images - is considered as the registration cost function. We empirically evaluate our method via rigid registration of multi-contrast brain magnetic resonance images, and demonstrate an often higher registration accuracy in the results produced by the proposed technique, compared to those by several existing methods.

  20. 3D-2D registration in endovascular image-guided surgery: evaluation of state-of-the-art methods on cerebral angiograms.

    PubMed

    Mitrović, Uroš; Likar, Boštjan; Pernuš, Franjo; Špiclin, Žiga

    2018-02-01

    Image guidance for minimally invasive surgery is based on spatial co-registration and fusion of 3D pre-interventional images and treatment plans with the 2D live intra-interventional images. The spatial co-registration or 3D-2D registration is the key enabling technology; however, the performance of state-of-the-art automated methods is rather unclear as they have not been assessed under the same test conditions. Herein we perform a quantitative and comparative evaluation of ten state-of-the-art methods for 3D-2D registration on a public dataset of clinical angiograms. Image database consisted of 3D and 2D angiograms of 25 patients undergoing treatment for cerebral aneurysms or arteriovenous malformations. On each of the datasets, highly accurate "gold-standard" registrations of 3D and 2D images were established based on patient-attached fiducial markers. The database was used to rigorously evaluate ten state-of-the-art 3D-2D registration methods, namely two intensity-, two gradient-, three feature-based and three hybrid methods, both for registration of 3D pre-interventional image to monoplane or biplane 2D images. Intensity-based methods were most accurate in all tests (0.3 mm). One of the hybrid methods was most robust with 98.75% of successful registrations (SR) and capture range of 18 mm for registrations of 3D to biplane 2D angiograms. In general, registration accuracy was similar whether registration of 3D image was performed onto mono- or biplanar 2D images; however, the SR was substantially lower in case of 3D to monoplane 2D registration. Two feature-based and two hybrid methods had clinically feasible execution times in the order of a second. Performance of methods seems to fall below expectations in terms of robustness in case of registration of 3D to monoplane 2D images, while translation into clinical image guidance systems seems readily feasible for methods that perform registration of the 3D pre-interventional image onto biplanar intra-interventional 2D images.

  1. Registration of Laser Scanning Point Clouds: A Review.

    PubMed

    Cheng, Liang; Chen, Song; Liu, Xiaoqiang; Xu, Hao; Wu, Yang; Li, Manchun; Chen, Yanming

    2018-05-21

    The integration of multi-platform, multi-angle, and multi-temporal LiDAR data has become important for geospatial data applications. This paper presents a comprehensive review of LiDAR data registration in the fields of photogrammetry and remote sensing. At present, a coarse-to-fine registration strategy is commonly used for LiDAR point clouds registration. The coarse registration method is first used to achieve a good initial position, based on which registration is then refined utilizing the fine registration method. According to the coarse-to-fine framework, this paper reviews current registration methods and their methodologies, and identifies important differences between them. The lack of standard data and unified evaluation systems is identified as a factor limiting objective comparison of different methods. The paper also describes the most commonly-used point cloud registration error analysis methods. Finally, avenues for future work on LiDAR data registration in terms of applications, data, and technology are discussed. In particular, there is a need to address registration of multi-angle and multi-scale data from various newly available types of LiDAR hardware, which will play an important role in diverse applications such as forest resource surveys, urban energy use, cultural heritage protection, and unmanned vehicles.

  2. Registration of Laser Scanning Point Clouds: A Review

    PubMed Central

    Cheng, Liang; Chen, Song; Xu, Hao; Wu, Yang; Li, Manchun

    2018-01-01

    The integration of multi-platform, multi-angle, and multi-temporal LiDAR data has become important for geospatial data applications. This paper presents a comprehensive review of LiDAR data registration in the fields of photogrammetry and remote sensing. At present, a coarse-to-fine registration strategy is commonly used for LiDAR point clouds registration. The coarse registration method is first used to achieve a good initial position, based on which registration is then refined utilizing the fine registration method. According to the coarse-to-fine framework, this paper reviews current registration methods and their methodologies, and identifies important differences between them. The lack of standard data and unified evaluation systems is identified as a factor limiting objective comparison of different methods. The paper also describes the most commonly-used point cloud registration error analysis methods. Finally, avenues for future work on LiDAR data registration in terms of applications, data, and technology are discussed. In particular, there is a need to address registration of multi-angle and multi-scale data from various newly available types of LiDAR hardware, which will play an important role in diverse applications such as forest resource surveys, urban energy use, cultural heritage protection, and unmanned vehicles. PMID:29883397

  3. Hierarchical and successive approximate registration of the non-rigid medical image based on thin-plate splines

    NASA Astrophysics Data System (ADS)

    Hu, Jinyan; Li, Li; Yang, Yunfeng

    2017-06-01

    The hierarchical and successive approximate registration method of non-rigid medical image based on the thin-plate splines is proposed in the paper. There are two major novelties in the proposed method. First, the hierarchical registration based on Wavelet transform is used. The approximate image of Wavelet transform is selected as the registered object. Second, the successive approximation registration method is used to accomplish the non-rigid medical images registration, i.e. the local regions of the couple images are registered roughly based on the thin-plate splines, then, the current rough registration result is selected as the object to be registered in the following registration procedure. Experiments show that the proposed method is effective in the registration process of the non-rigid medical images.

  4. Reliable landmarks for precise topographical analyses of pathological structural changes of the ovine tibial plateau in 2-D and 3-D subspaces.

    PubMed

    Oláh, Tamás; Reinhard, Jan; Gao, Liang; Goebel, Lars K H; Madry, Henning

    2018-01-08

    Selecting identical topographical locations to analyse pathological structural changes of the osteochondral unit in translational models remains difficult. The specific aim of the study was to provide objectively defined reference points on the ovine tibial plateau based on 2-D sections of micro-CT images useful for reproducible sample harvesting and as standardized landmarks for landmark-based 3-D image registration. We propose 5 reference points, 11 reference lines and 12 subregions that are detectable macroscopically and on 2-D micro-CT sections. Their value was confirmed applying landmark-based rigid and affine 3-D registration methods. Intra- and interobserver comparison showed high reliabilities, and constant positions (standard errors < 1%). Spatial patterns of the thicknesses of the articular cartilage and subchondral bone plate were revealed by measurements in 96 individual points of the tibial plateau. As a case study, pathological phenomena 6 months following OA induction in vivo such as osteophytes and areas of OA development were mapped to the individual subregions. These new reference points and subregions are directly identifiable on tibial plateau specimens or macroscopic images, enabling a precise topographical location of pathological structural changes of the osteochondral unit in both 2-D and 3-D subspaces in a region-appropriate fashion relevant for translational investigations.

  5. A Kalman Filtering Perspective for Multiatlas Segmentation*

    PubMed Central

    Gao, Yi; Zhu, Liangjia; Cates, Joshua; MacLeod, Rob S.; Bouix, Sylvain; Tannenbaum, Allen

    2016-01-01

    In multiatlas segmentation, one typically registers several atlases to the novel image, and their respective segmented label images are transformed and fused to form the final segmentation. In this work, we provide a new dynamical system perspective for multiatlas segmentation, inspired by the following fact: The transformation that aligns the current atlas to the novel image can be not only computed by direct registration but also inferred from the transformation that aligns the previous atlas to the image together with the transformation between the two atlases. This process is similar to the global positioning system on a vehicle, which gets position by inquiring from the satellite and by employing the previous location and velocity—neither answer in isolation being perfect. To solve this problem, a dynamical system scheme is crucial to combine the two pieces of information; for example, a Kalman filtering scheme is used. Accordingly, in this work, a Kalman multiatlas segmentation is proposed to stabilize the global/affine registration step. The contributions of this work are twofold. First, it provides a new dynamical systematic perspective for standard independent multiatlas registrations, and it is solved by Kalman filtering. Second, with very little extra computation, it can be combined with most existing multiatlas segmentation schemes for better registration/segmentation accuracy. PMID:26807162

  6. Supervised local error estimation for nonlinear image registration using convolutional neural networks

    NASA Astrophysics Data System (ADS)

    Eppenhof, Koen A. J.; Pluim, Josien P. W.

    2017-02-01

    Error estimation in medical image registration is valuable when validating, comparing, or combining registration methods. To validate a nonlinear image registration method, ideally the registration error should be known for the entire image domain. We propose a supervised method for the estimation of a registration error map for nonlinear image registration. The method is based on a convolutional neural network that estimates the norm of the residual deformation from patches around each pixel in two registered images. This norm is interpreted as the registration error, and is defined for every pixel in the image domain. The network is trained using a set of artificially deformed images. Each training example is a pair of images: the original image, and a random deformation of that image. No manually labeled ground truth error is required. At test time, only the two registered images are required as input. We train and validate the network on registrations in a set of 2D digital subtraction angiography sequences, such that errors up to eight pixels can be estimated. We show that for this range of errors the convolutional network is able to learn the registration error in pairs of 2D registered images at subpixel precision. Finally, we present a proof of principle for the extension to 3D registration problems in chest CTs, showing that the method has the potential to estimate errors in 3D registration problems.

  7. Registration of T2-weighted and diffusion-weighted MR images of the prostate: comparison between manual and landmark-based methods

    NASA Astrophysics Data System (ADS)

    Peng, Yahui; Jiang, Yulei; Soylu, Fatma N.; Tomek, Mark; Sensakovic, William; Oto, Aytekin

    2012-02-01

    Quantitative analysis of multi-parametric magnetic resonance (MR) images of the prostate, including T2-weighted (T2w) and diffusion-weighted (DW) images, requires accurate image registration. We compared two registration methods between T2w and DW images. We collected pre-operative MR images of 124 prostate cancer patients (68 patients scanned with a GE scanner and 56 with Philips scanners). A landmark-based rigid registration was done based on six prostate landmarks in both T2w and DW images identified by a radiologist. Independently, a researcher manually registered the same images. A radiologist visually evaluated the registration results by using a 5-point ordinal scale of 1 (worst) to 5 (best). The Wilcoxon signed-rank test was used to determine whether the radiologist's ratings of the results of the two registration methods were significantly different. Results demonstrated that both methods were accurate: the average ratings were 4.2, 3.3, and 3.8 for GE, Philips, and all images, respectively, for the landmark-based method; and 4.6, 3.7, and 4.2, respectively, for the manual method. The manual registration results were more accurate than the landmark-based registration results (p < 0.0001 for GE, Philips, and all images). Therefore, the manual method produces more accurate registration between T2w and DW images than the landmark-based method.

  8. Real-time automatic registration in optical surgical navigation

    NASA Astrophysics Data System (ADS)

    Lin, Qinyong; Yang, Rongqian; Cai, Ken; Si, Xuan; Chen, Xiuwen; Wu, Xiaoming

    2016-05-01

    An image-guided surgical navigation system requires the improvement of the patient-to-image registration time to enhance the convenience of the registration procedure. A critical step in achieving this aim is performing a fully automatic patient-to-image registration. This study reports on a design of custom fiducial markers and the performance of a real-time automatic patient-to-image registration method using these markers on the basis of an optical tracking system for rigid anatomy. The custom fiducial markers are designed to be automatically localized in both patient and image spaces. An automatic localization method is performed by registering a point cloud sampled from the three dimensional (3D) pedestal model surface of a fiducial marker to each pedestal of fiducial markers searched in image space. A head phantom is constructed to estimate the performance of the real-time automatic registration method under four fiducial configurations. The head phantom experimental results demonstrate that the real-time automatic registration method is more convenient, rapid, and accurate than the manual method. The time required for each registration is approximately 0.1 s. The automatic localization method precisely localizes the fiducial markers in image space. The averaged target registration error for the four configurations is approximately 0.7 mm. The automatic registration performance is independent of the positions relative to the tracking system and the movement of the patient during the operation.

  9. [Progresses in screening active compounds from herbal medicine by affinity chromatography].

    PubMed

    Feng, Ying-shu; Tong, Shan-shan; Xu, Xi-ming; Yu, Jiang-nan

    2015-03-01

    Affinity chromatography is a chromatographic method for separating molecules using the binding characteristics of the stationary phase with potential drug molecules. This method can be performed as a high throughput screening method and a chromatographic separation method to screen a variety of active drugs. This paper summarizes the history of affinity chromatography, screening technology of affinity chromatography, and application of affinity chromatography in screening bio-active compounds in herbal medicines, and then discusses its application prospects, in order to broaden applications of the affinity chromatography in drug screening.

  10. A Remote Registration Based on MIDAS

    NASA Astrophysics Data System (ADS)

    JIN, Xin

    2017-04-01

    We often need for software registration to protect the interests of the software developers. This article narrated one kind of software long-distance registration technology. The registration method is: place the registration information in a database table, after the procedure starts in check table registration information, if it has registered then the procedure may the normal operation; Otherwise, the customer must input the sequence number and registers through the network on the long-distance server. If it registers successfully, then records the registration information in the database table. This remote registration method can protect the rights of software developers.

  11. DIRBoost-an algorithm for boosting deformable image registration: application to lung CT intra-subject registration.

    PubMed

    Muenzing, Sascha E A; van Ginneken, Bram; Viergever, Max A; Pluim, Josien P W

    2014-04-01

    We introduce a boosting algorithm to improve on existing methods for deformable image registration (DIR). The proposed DIRBoost algorithm is inspired by the theory on hypothesis boosting, well known in the field of machine learning. DIRBoost utilizes a method for automatic registration error detection to obtain estimates of local registration quality. All areas detected as erroneously registered are subjected to boosting, i.e. undergo iterative registrations by employing boosting masks on both the fixed and moving image. We validated the DIRBoost algorithm on three different DIR methods (ANTS gSyn, NiftyReg, and DROP) on three independent reference datasets of pulmonary image scan pairs. DIRBoost reduced registration errors significantly and consistently on all reference datasets for each DIR algorithm, yielding an improvement of the registration accuracy by 5-34% depending on the dataset and the registration algorithm employed. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Low dose tomographic fluoroscopy: 4D intervention guidance with running prior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flach, Barbara; Kuntz, Jan; Brehm, Marcus

    Purpose: Today's standard imaging technique in interventional radiology is the single- or biplane x-ray fluoroscopy which delivers 2D projection images as a function of time (2D+T). This state-of-the-art technology, however, suffers from its projective nature and is limited by the superposition of the patient's anatomy. Temporally resolved tomographic volumes (3D+T) would significantly improve the visualization of complex structures. A continuous tomographic data acquisition, if carried out with today's technology, would yield an excessive patient dose. Recently the authors proposed a method that enables tomographic fluoroscopy at the same dose level as projective fluoroscopy which means that if scanning time ofmore » an intervention guided by projective fluoroscopy is the same as that of an intervention guided by tomographic fluoroscopy, almost the same dose is administered to the patient. The purpose of this work is to extend authors' previous work and allow for patient motion during the intervention.Methods: The authors propose the running prior technique for adaptation of a prior image. This adaptation is realized by a combination of registration and projection replacement. In a first step the prior is deformed to the current position via affine and deformable registration. Then the information from outdated projections is replaced by newly acquired projections using forward and backprojection steps. The thus adapted volume is the running prior. The proposed method is validated by simulated as well as measured data. To investigate motion during intervention a moving head phantom was simulated. Real in vivo data of a pig are acquired by a prototype CT system consisting of a flat detector and a continuously rotating clinical gantry.Results: With the running prior technique it is possible to correct for motion without additional dose. For an application in intervention guidance both steps of the running prior technique, registration and replacement, are necessary. Reconstructed volumes based on the running prior show high image quality without introducing new artifacts and the interventional materials are displayed at the correct position.Conclusions: The running prior improves the robustness of low dose 3D+T intervention guidance toward intended or unintended patient motion.« less

  13. PHARMACEUTICAL AND BIOMEDICAL APPLICATIONS OF AFFINITY CHROMATOGRAPHY: RECENT TRENDS AND DEVELOPMENTS

    PubMed Central

    Hage, David S.; Anguizola, Jeanethe A.; Bi, Cong; Li, Rong; Matsuda, Ryan; Papastavros, Efthimia; Pfaunmiller, Erika; Vargas, John; Zheng, Xiwei

    2012-01-01

    Affinity chromatography is a separation technique that has become increasingly important in work with biological samples and pharmaceutical agents. This method is based on the use of a biologically-related agent as a stationary phase to selectively retain analytes or to study biological interactions. This review discusses the basic principles behind affinity chromatography and examines recent developments that have occurred in the use of this method for biomedical and pharmaceutical analysis. Techniques based on traditional affinity supports are discussed, but an emphasis is placed on methods in which affinity columns are used as part of HPLC systems or in combination with other analytical methods. General formats for affinity chromatography that are considered include step elution schemes, weak affinity chromatography, affinity extraction and affinity depletion. Specific separation techniques that are examined include lectin affinity chromatography, boronate affinity chromatography, immunoaffinity chromatography, and immobilized metal ion affinity chromatography. Approaches for the study of biological interactions by affinity chromatography are also presented, such as the measurement of equilibrium constants, rate constants, or competition and displacement effects. In addition, related developments in the use of immobilized enzyme reactors, molecularly imprinted polymers, dye ligands and aptamers are briefly considered. PMID:22305083

  14. Hierarchical and symmetric infant image registration by robust longitudinal-example-guided correspondence detection

    PubMed Central

    Wu, Yao; Wu, Guorong; Wang, Li; Munsell, Brent C.; Wang, Qian; Lin, Weili; Feng, Qianjin; Chen, Wufan; Shen, Dinggang

    2015-01-01

    Purpose: To investigate anatomical differences across individual subjects, or longitudinal changes in early brain development, it is important to perform accurate image registration. However, due to fast brain development and dynamic tissue appearance changes, it is very difficult to align infant brain images acquired from birth to 1-yr-old. Methods: To solve this challenging problem, a novel image registration method is proposed to align two infant brain images, regardless of age at acquisition. The main idea is to utilize the growth trajectories, or spatial-temporal correspondences, learned from a set of longitudinal training images, for guiding the registration of two different time-point images with different image appearances. Specifically, in the training stage, an intrinsic growth trajectory is first estimated for each training subject using the longitudinal images. To register two new infant images with potentially a large age gap, the corresponding images patches between each new image and its respective training images with similar age are identified. Finally, the registration between the two new images can be assisted by the learned growth trajectories from one time point to another time point that have been established in the training stage. To further improve registration accuracy, the proposed method is combined with a hierarchical and symmetric registration framework that can iteratively add new key points in both images to steer the estimation of the deformation between the two infant brain images under registration. Results: To evaluate image registration accuracy, the proposed method is used to align 24 infant subjects at five different time points (2-week-old, 3-month-old, 6-month-old, 9-month-old, and 12-month-old). Compared to the state-of-the-art methods, the proposed method demonstrated superior registration performance. Conclusions: The proposed method addresses the difficulties in the infant brain registration and produces better results compared to existing state-of-the-art registration methods. PMID:26133617

  15. Real-time CT-video registration for continuous endoscopic guidance

    NASA Astrophysics Data System (ADS)

    Merritt, Scott A.; Rai, Lav; Higgins, William E.

    2006-03-01

    Previous research has shown that CT-image-based guidance could be useful for the bronchoscopic assessment of lung cancer. This research drew upon the registration of bronchoscopic video images to CT-based endoluminal renderings of the airway tree. The proposed methods either were restricted to discrete single-frame registration, which took several seconds to complete, or required non-real-time buffering and processing of video sequences. We have devised a fast 2D/3D image registration method that performs single-frame CT-Video registration in under 1/15th of a second. This allows the method to be used for real-time registration at full video frame rates without significantly altering the physician's behavior. The method achieves its speed through a gradient-based optimization method that allows most of the computation to be performed off-line. During live registration, the optimization iteratively steps toward the locally optimal viewpoint at which a CT-based endoluminal view is most similar to a current bronchoscopic video frame. After an initial registration to begin the process (generally done in the trachea for bronchoscopy), subsequent registrations are performed in real-time on each incoming video frame. As each new bronchoscopic video frame becomes available, the current optimization is initialized using the previous frame's optimization result, allowing continuous guidance to proceed without manual re-initialization. Tests were performed using both synthetic and pre-recorded bronchoscopic video. The results show that the method is robust to initialization errors, that registration accuracy is high, and that continuous registration can proceed on real-time video at >15 frames per sec. with minimal user-intervention.

  16. Learning-based deformable image registration for infant MR images in the first year of life.

    PubMed

    Hu, Shunbo; Wei, Lifang; Gao, Yaozong; Guo, Yanrong; Wu, Guorong; Shen, Dinggang

    2017-01-01

    Many brain development studies have been devoted to investigate dynamic structural and functional changes in the first year of life. To quantitatively measure brain development in such a dynamic period, accurate image registration for different infant subjects with possible large age gap is of high demand. Although many state-of-the-art image registration methods have been proposed for young and elderly brain images, very few registration methods work for infant brain images acquired in the first year of life, because of (a) large anatomical changes due to fast brain development and (b) dynamic appearance changes due to white-matter myelination. To address these two difficulties, we propose a learning-based registration method to not only align the anatomical structures but also alleviate the appearance differences between two arbitrary infant MR images (with large age gap) by leveraging the regression forest to predict both the initial displacement vector and appearance changes. Specifically, in the training stage, two regression models are trained separately, with (a) one model learning the relationship between local image appearance (of one development phase) and its displacement toward the template (of another development phase) and (b) another model learning the local appearance changes between the two brain development phases. Then, in the testing stage, to register a new infant image to the template, we first predict both its voxel-wise displacement and appearance changes by the two learned regression models. Since such initializations can alleviate significant appearance and shape differences between new infant image and the template, it is easy to just use a conventional registration method to refine the remaining registration. We apply our proposed registration method to align 24 infant subjects at five different time points (i.e., 2-week-old, 3-month-old, 6-month-old, 9-month-old, and 12-month-old), and achieve more accurate and robust registration results, compared to the state-of-the-art registration methods. The proposed learning-based registration method addresses the challenging task of registering infant brain images and achieves higher registration accuracy compared with other counterpart registration methods. © 2016 American Association of Physicists in Medicine.

  17. A prospective comparison between auto-registration and manual registration of real-time ultrasound with MR images for percutaneous ablation or biopsy of hepatic lesions.

    PubMed

    Cha, Dong Ik; Lee, Min Woo; Song, Kyoung Doo; Oh, Young-Taek; Jeong, Ja-Yeon; Chang, Jung-Woo; Ryu, Jiwon; Lee, Kyong Joon; Kim, Jaeil; Bang, Won-Chul; Shin, Dong Kuk; Choi, Sung Jin; Koh, Dalkwon; Seo, Bong Koo; Kim, Kyunga

    2017-06-01

    To compare the accuracy and required time for image fusion of real-time ultrasound (US) with pre-procedural magnetic resonance (MR) images between positioning auto-registration and manual registration for percutaneous radiofrequency ablation or biopsy of hepatic lesions. This prospective study was approved by the institutional review board, and all patients gave written informed consent. Twenty-two patients (male/female, n = 18/n = 4; age, 61.0 ± 7.7 years) who were referred for planning US to assess the feasibility of radiofrequency ablation (n = 21) or biopsy (n = 1) for focal hepatic lesions were included. One experienced radiologist performed the two types of image fusion methods in each patient. The performance of auto-registration and manual registration was evaluated. The accuracy of the two methods, based on measuring registration error, and the time required for image fusion for both methods were recorded using in-house software and respectively compared using the Wilcoxon signed rank test. Image fusion was successful in all patients. The registration error was not significantly different between the two methods (auto-registration: median, 3.75 mm; range, 1.0-15.8 mm vs. manual registration: median, 2.95 mm; range, 1.2-12.5 mm, p = 0.242). The time required for image fusion was significantly shorter with auto-registration than with manual registration (median, 28.5 s; range, 18-47 s, vs. median, 36.5 s; range, 14-105 s, p = 0.026). Positioning auto-registration showed promising results compared with manual registration, with similar accuracy and even shorter registration time.

  18. Deformable registration of CT and cone-beam CT with local intensity matching.

    PubMed

    Park, Seyoun; Plishker, William; Quon, Harry; Wong, John; Shekhar, Raj; Lee, Junghoon

    2017-02-07

    Cone-beam CT (CBCT) is a widely used intra-operative imaging modality in image-guided radiotherapy and surgery. A short scan followed by a filtered-backprojection is typically used for CBCT reconstruction. While data on the mid-plane (plane of source-detector rotation) is complete, off-mid-planes undergo different information deficiency and the computed reconstructions are approximate. This causes different reconstruction artifacts at off-mid-planes depending on slice locations, and therefore impedes accurate registration between CT and CBCT. In this paper, we propose a method to accurately register CT and CBCT by iteratively matching local CT and CBCT intensities. We correct CBCT intensities by matching local intensity histograms slice by slice in conjunction with intensity-based deformable registration. The correction-registration steps are repeated in an alternating way until the result image converges. We integrate the intensity matching into three different deformable registration methods, B-spline, demons, and optical flow that are widely used for CT-CBCT registration. All three registration methods were implemented on a graphics processing unit for efficient parallel computation. We tested the proposed methods on twenty five head and neck cancer cases and compared the performance with state-of-the-art registration methods. Normalized cross correlation (NCC), structural similarity index (SSIM), and target registration error (TRE) were computed to evaluate the registration performance. Our method produced overall NCC of 0.96, SSIM of 0.94, and TRE of 2.26 → 2.27 mm, outperforming existing methods by 9%, 12%, and 27%, respectively. Experimental results also show that our method performs consistently and is more accurate than existing algorithms, and also computationally efficient.

  19. Deformable registration of CT and cone-beam CT with local intensity matching

    NASA Astrophysics Data System (ADS)

    Park, Seyoun; Plishker, William; Quon, Harry; Wong, John; Shekhar, Raj; Lee, Junghoon

    2017-02-01

    Cone-beam CT (CBCT) is a widely used intra-operative imaging modality in image-guided radiotherapy and surgery. A short scan followed by a filtered-backprojection is typically used for CBCT reconstruction. While data on the mid-plane (plane of source-detector rotation) is complete, off-mid-planes undergo different information deficiency and the computed reconstructions are approximate. This causes different reconstruction artifacts at off-mid-planes depending on slice locations, and therefore impedes accurate registration between CT and CBCT. In this paper, we propose a method to accurately register CT and CBCT by iteratively matching local CT and CBCT intensities. We correct CBCT intensities by matching local intensity histograms slice by slice in conjunction with intensity-based deformable registration. The correction-registration steps are repeated in an alternating way until the result image converges. We integrate the intensity matching into three different deformable registration methods, B-spline, demons, and optical flow that are widely used for CT-CBCT registration. All three registration methods were implemented on a graphics processing unit for efficient parallel computation. We tested the proposed methods on twenty five head and neck cancer cases and compared the performance with state-of-the-art registration methods. Normalized cross correlation (NCC), structural similarity index (SSIM), and target registration error (TRE) were computed to evaluate the registration performance. Our method produced overall NCC of 0.96, SSIM of 0.94, and TRE of 2.26 → 2.27 mm, outperforming existing methods by 9%, 12%, and 27%, respectively. Experimental results also show that our method performs consistently and is more accurate than existing algorithms, and also computationally efficient.

  20. Intensity-Based Registration for Lung Motion Estimation

    NASA Astrophysics Data System (ADS)

    Cao, Kunlin; Ding, Kai; Amelon, Ryan E.; Du, Kaifang; Reinhardt, Joseph M.; Raghavan, Madhavan L.; Christensen, Gary E.

    Image registration plays an important role within pulmonary image analysis. The task of registration is to find the spatial mapping that brings two images into alignment. Registration algorithms designed for matching 4D lung scans or two 3D scans acquired at different inflation levels can catch the temporal changes in position and shape of the region of interest. Accurate registration is critical to post-analysis of lung mechanics and motion estimation. In this chapter, we discuss lung-specific adaptations of intensity-based registration methods for 3D/4D lung images and review approaches for assessing registration accuracy. Then we introduce methods for estimating tissue motion and studying lung mechanics. Finally, we discuss methods for assessing and quantifying specific volume change, specific ventilation, strain/ stretch information and lobar sliding.

  1. Dental non-linear image registration and collection method with 3D reconstruction and change detection

    NASA Astrophysics Data System (ADS)

    Rahmes, Mark; Fagan, Dean; Lemieux, George

    2017-03-01

    The capability of a software algorithm to automatically align same-patient dental bitewing and panoramic x-rays over time is complicated by differences in collection perspectives. We successfully used image correlation with an affine transform for each pixel to discover common image borders, followed by a non-linear homography perspective adjustment to closely align the images. However, significant improvements in image registration could be realized if images were collected from the same perspective, thus facilitating change analysis. The perspective differences due to current dental image collection devices are so significant that straightforward change analysis is not possible. To address this, a new custom dental tray could be used to provide the standard reference needed for consistent positioning of a patient's mouth. Similar to sports mouth guards, the dental tray could be fabricated in standard sizes from plastic and use integrated electronics that have been miniaturized. In addition, the x-ray source needs to be consistently positioned in order to collect images with similar angles and scales. Solving this pose correction is similar to solving for collection angle in aerial imagery for change detection. A standard collection system would provide a method for consistent source positioning using real-time sensor position feedback from a digital x-ray image reference. Automated, robotic sensor positioning could replace manual adjustments. Given an image set from a standard collection, a disparity map between images can be created using parallax from overlapping viewpoints to enable change detection. This perspective data can be rectified and used to create a three-dimensional dental model reconstruction.

  2. Statistical atlas based extrapolation of CT data

    NASA Astrophysics Data System (ADS)

    Chintalapani, Gouthami; Murphy, Ryan; Armiger, Robert S.; Lepisto, Jyri; Otake, Yoshito; Sugano, Nobuhiko; Taylor, Russell H.; Armand, Mehran

    2010-02-01

    We present a framework to estimate the missing anatomical details from a partial CT scan with the help of statistical shape models. The motivating application is periacetabular osteotomy (PAO), a technique for treating developmental hip dysplasia, an abnormal condition of the hip socket that, if untreated, may lead to osteoarthritis. The common goals of PAO are to reduce pain, joint subluxation and improve contact pressure distribution by increasing the coverage of the femoral head by the hip socket. While current diagnosis and planning is based on radiological measurements, because of significant structural variations in dysplastic hips, a computer-assisted geometrical and biomechanical planning based on CT data is desirable to help the surgeon achieve optimal joint realignments. Most of the patients undergoing PAO are young females, hence it is usually desirable to minimize the radiation dose by scanning only the joint portion of the hip anatomy. These partial scans, however, do not provide enough information for biomechanical analysis due to missing iliac region. A statistical shape model of full pelvis anatomy is constructed from a database of CT scans. The partial volume is first aligned with the statistical atlas using an iterative affine registration, followed by a deformable registration step and the missing information is inferred from the atlas. The atlas inferences are further enhanced by the use of X-ray images of the patient, which are very common in an osteotomy procedure. The proposed method is validated with a leave-one-out analysis method. Osteotomy cuts are simulated and the effect of atlas predicted models on the actual procedure is evaluated.

  3. Poster - 32: Atlas Selection for Automated Segmentation of Pelvic CT for Prostate Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mallawi, Abrar; Farrell, TomTom; Diamond, Kevin-Ro

    2016-08-15

    Atlas based-segmentation has recently been evaluated for use in prostate radiotherapy. In a typical approach, the essential step is the selection of an atlas from a database that the best matches of the target image. This work proposes an atlas selection strategy and evaluate it impacts on final segmentation accuracy. Several anatomical parameters were measured to indicate the overall prostate and body shape, all of these measurements obtained on CT images. A brute force procedure was first performed for a training dataset of 20 patients using image registration to pair subject with similar contours; each subject was served as amore » target image to which all reaming 19 images were affinity registered. The overlap between the prostate and femoral heads was quantified for each pair using the Dice Similarity Coefficient (DSC). Finally, an atlas selection procedure was designed; relying on the computation of a similarity score defined as a weighted sum of differences between the target and atlas subject anatomical measurement. The algorithm ability to predict the most similar atlas was excellent, achieving mean DSCs of 0.78 ± 0.07 and 0.90 ± 0.02 for the CTV and either femoral head. The proposed atlas selection yielded 0.72 ± 0.11 and 0.87 ± 0.03 for CTV and either femoral head. The DSC obtained with the proposed selection method were slightly lower than the maximum established using brute force, but this does not include potential improvements expected with deformable registration. The proposed atlas selection method provides reasonable segmentation accuracy.« less

  4. 3D ultrasound volume stitching using phase symmetry and harris corner detection for orthopaedic applications

    NASA Astrophysics Data System (ADS)

    Dalvi, Rupin; Hacihaliloglu, Ilker; Abugharbieh, Rafeef

    2010-03-01

    Stitching of volumes obtained from three dimensional (3D) ultrasound (US) scanners improves visualization of anatomy in many clinical applications. Fast but accurate volume registration remains the key challenge in this area.We propose a volume stitching method based on efficient registration of 3D US volumes obtained from a tracked US probe. Since the volumes, after adjusting for probe motion, are coarsely registered, we obtain salient correspondence points in the central slices of these volumes. This is done by first removing artifacts in the US slices using intensity invariant local phase image processing and then applying the Harris Corner detection algorithm. Fast sub-volume registration on a small neighborhood around the points then gives fast, accurate 3D registration parameters. The method has been tested on 3D US scans of phantom and real human radius and pelvis bones and a phantom human fetus. The method has also been compared to volumetric registration, as well as feature based registration using 3D-SIFT. Quantitative results show average post-registration error of 0.33mm which is comparable to volumetric registration accuracy (0.31mm) and much better than 3D-SIFT based registration which failed to register the volumes. The proposed method was also much faster than volumetric registration (~4.5 seconds versus 83 seconds).

  5. Improvement of registration accuracy in accelerated partial breast irradiation using the point-based rigid-body registration algorithm for patients with implanted fiducial markers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inoue, Minoru; Yoshimura, Michio, E-mail: myossy@kuhp.kyoto-u.ac.jp; Sato, Sayaka

    2015-04-15

    Purpose: To investigate image-registration errors when using fiducial markers with a manual method and the point-based rigid-body registration (PRBR) algorithm in accelerated partial breast irradiation (APBI) patients, with accompanying fiducial deviations. Methods: Twenty-two consecutive patients were enrolled in a prospective trial examining 10-fraction APBI. Titanium clips were implanted intraoperatively around the seroma in all patients. For image-registration, the positions of the clips in daily kV x-ray images were matched to those in the planning digitally reconstructed radiographs. Fiducial and gravity registration errors (FREs and GREs, respectively), representing resulting misalignments of the edge and center of the target, respectively, were comparedmore » between the manual and algorithm-based methods. Results: In total, 218 fractions were evaluated. Although the mean FRE/GRE values for the manual and algorithm-based methods were within 3 mm (2.3/1.7 and 1.3/0.4 mm, respectively), the percentages of fractions where FRE/GRE exceeded 3 mm using the manual and algorithm-based methods were 18.8%/7.3% and 0%/0%, respectively. Manual registration resulted in 18.6% of patients with fractions of FRE/GRE exceeding 5 mm. The patients with larger clip deviation had significantly more fractions showing large FRE/GRE using manual registration. Conclusions: For image-registration using fiducial markers in APBI, the manual registration results in more fractions with considerable registration error due to loss of fiducial objectivity resulting from their deviation. The authors recommend the PRBR algorithm as a safe and effective strategy for accurate, image-guided registration and PTV margin reduction.« less

  6. Simultaneous 3D–2D image registration and C-arm calibration: Application to endovascular image-guided interventions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitrović, Uroš; Pernuš, Franjo; Likar, Boštjan

    Purpose: Three-dimensional to two-dimensional (3D–2D) image registration is a key to fusion and simultaneous visualization of valuable information contained in 3D pre-interventional and 2D intra-interventional images with the final goal of image guidance of a procedure. In this paper, the authors focus on 3D–2D image registration within the context of intracranial endovascular image-guided interventions (EIGIs), where the 3D and 2D images are generally acquired with the same C-arm system. The accuracy and robustness of any 3D–2D registration method, to be used in a clinical setting, is influenced by (1) the method itself, (2) uncertainty of initial pose of the 3Dmore » image from which registration starts, (3) uncertainty of C-arm’s geometry and pose, and (4) the number of 2D intra-interventional images used for registration, which is generally one and at most two. The study of these influences requires rigorous and objective validation of any 3D–2D registration method against a highly accurate reference or “gold standard” registration, performed on clinical image datasets acquired in the context of the intervention. Methods: The registration process is split into two sequential, i.e., initial and final, registration stages. The initial stage is either machine-based or template matching. The latter aims to reduce possibly large in-plane translation errors by matching a projection of the 3D vessel model and 2D image. In the final registration stage, four state-of-the-art intrinsic image-based 3D–2D registration methods, which involve simultaneous refinement of rigid-body and C-arm parameters, are evaluated. For objective validation, the authors acquired an image database of 15 patients undergoing cerebral EIGI, for which accurate gold standard registrations were established by fiducial marker coregistration. Results: Based on target registration error, the obtained success rates of 3D to a single 2D image registration after initial machine-based and template matching and final registration involving C-arm calibration were 36%, 73%, and 93%, respectively, while registration accuracy of 0.59 mm was the best after final registration. By compensating in-plane translation errors by initial template matching, the success rates achieved after the final stage improved consistently for all methods, especially if C-arm calibration was performed simultaneously with the 3D–2D image registration. Conclusions: Because the tested methods perform simultaneous C-arm calibration and 3D–2D registration based solely on anatomical information, they have a high potential for automation and thus for an immediate integration into current interventional workflow. One of the authors’ main contributions is also comprehensive and representative validation performed under realistic conditions as encountered during cerebral EIGI.« less

  7. A quantitative comparison of the performance of three deformable registration algorithms in radiotherapy

    PubMed Central

    Fabri, Daniella; Zambrano, Valentina; Bhatia, Amon; Furtado, Hugo; Bergmann, Helmar; Stock, Markus; Bloch, Christoph; Lütgendorf-Caucig, Carola; Pawiro, Supriyanto; Georg, Dietmar; Birkfellner, Wolfgang; Figl, Michael

    2013-01-01

    We present an evaluation of various non-rigid registration algorithms for the purpose of compensating interfractional motion of the target volume and organs at risk areas when acquiring CBCT image data prior to irradiation. Three different deformable registration (DR) methods were used: the Demons algorithm implemented in the iPlan Software (BrainLAB AG, Feldkirchen, Germany) and two custom-developed piecewise methods using either a Normalized Correlation or a Mutual Information metric (featureletNC and featureletMI). These methods were tested on data acquired using a novel purpose-built phantom for deformable registration and clinical CT/CBCT data of prostate and lung cancer patients. The Dice similarity coefficient (DSC) between manually drawn contours and the contours generated by a derived deformation field of the structures in question was compared to the result obtained with rigid registration (RR). For the phantom, the piecewise methods were slightly superior, the featureletNC for the intramodality and the featureletMI for the intermodality registrations. For the prostate cases in less than 50% of the images studied the DSC was improved over RR. Deformable registration methods improved the outcome over a rigid registration for lung cases and in the phantom study, but not in a significant way for the prostate study. A significantly superior deformation method could not be identified. PMID:23969092

  8. Scalable High Performance Image Registration Framework by Unsupervised Deep Feature Representations Learning

    PubMed Central

    Wu, Guorong; Kim, Minjeong; Wang, Qian; Munsell, Brent C.

    2015-01-01

    Feature selection is a critical step in deformable image registration. In particular, selecting the most discriminative features that accurately and concisely describe complex morphological patterns in image patches improves correspondence detection, which in turn improves image registration accuracy. Furthermore, since more and more imaging modalities are being invented to better identify morphological changes in medical imaging data,, the development of deformable image registration method that scales well to new image modalities or new image applications with little to no human intervention would have a significant impact on the medical image analysis community. To address these concerns, a learning-based image registration framework is proposed that uses deep learning to discover compact and highly discriminative features upon observed imaging data. Specifically, the proposed feature selection method uses a convolutional stacked auto-encoder to identify intrinsic deep feature representations in image patches. Since deep learning is an unsupervised learning method, no ground truth label knowledge is required. This makes the proposed feature selection method more flexible to new imaging modalities since feature representations can be directly learned from the observed imaging data in a very short amount of time. Using the LONI and ADNI imaging datasets, image registration performance was compared to two existing state-of-the-art deformable image registration methods that use handcrafted features. To demonstrate the scalability of the proposed image registration framework image registration experiments were conducted on 7.0-tesla brain MR images. In all experiments, the results showed the new image registration framework consistently demonstrated more accurate registration results when compared to state-of-the-art. PMID:26552069

  9. Scalable High-Performance Image Registration Framework by Unsupervised Deep Feature Representations Learning.

    PubMed

    Wu, Guorong; Kim, Minjeong; Wang, Qian; Munsell, Brent C; Shen, Dinggang

    2016-07-01

    Feature selection is a critical step in deformable image registration. In particular, selecting the most discriminative features that accurately and concisely describe complex morphological patterns in image patches improves correspondence detection, which in turn improves image registration accuracy. Furthermore, since more and more imaging modalities are being invented to better identify morphological changes in medical imaging data, the development of deformable image registration method that scales well to new image modalities or new image applications with little to no human intervention would have a significant impact on the medical image analysis community. To address these concerns, a learning-based image registration framework is proposed that uses deep learning to discover compact and highly discriminative features upon observed imaging data. Specifically, the proposed feature selection method uses a convolutional stacked autoencoder to identify intrinsic deep feature representations in image patches. Since deep learning is an unsupervised learning method, no ground truth label knowledge is required. This makes the proposed feature selection method more flexible to new imaging modalities since feature representations can be directly learned from the observed imaging data in a very short amount of time. Using the LONI and ADNI imaging datasets, image registration performance was compared to two existing state-of-the-art deformable image registration methods that use handcrafted features. To demonstrate the scalability of the proposed image registration framework, image registration experiments were conducted on 7.0-T brain MR images. In all experiments, the results showed that the new image registration framework consistently demonstrated more accurate registration results when compared to state of the art.

  10. Skull registration for prone patient position using tracked ultrasound

    NASA Astrophysics Data System (ADS)

    Underwood, Grace; Ungi, Tamas; Baum, Zachary; Lasso, Andras; Kronreif, Gernot; Fichtinger, Gabor

    2017-03-01

    PURPOSE: Tracked navigation has become prevalent in neurosurgery. Problems with registration of a patient and a preoperative image arise when the patient is in a prone position. Surfaces accessible to optical tracking on the back of the head are unreliable for registration. We investigated the accuracy of surface-based registration using points accessible through tracked ultrasound. Using ultrasound allows access to bone surfaces that are not available through optical tracking. Tracked ultrasound could eliminate the need to work (i) under the table for registration and (ii) adjust the tracker between surgery and registration. In addition, tracked ultrasound could provide a non-invasive method in comparison to an alternative method of registration involving screw implantation. METHODS: A phantom study was performed to test the feasibility of tracked ultrasound for registration. An initial registration was performed to partially align the pre-operative computer tomography data and skull phantom. The initial registration was performed by an anatomical landmark registration. Surface points accessible by tracked ultrasound were collected and used to perform an Iterative Closest Point Algorithm. RESULTS: When the surface registration was compared to a ground truth landmark registration, the average TRE was found to be 1.6+/-0.1mm and the average distance of points off the skull surface was 0.6+/-0.1mm. CONCLUSION: The use of tracked ultrasound is feasible for registration of patients in prone position and eliminates the need to perform registration under the table. The translational component of error found was minimal. Therefore, the amount of TRE in registration is due to a rotational component of error.

  11. Semiautomatic registration of 3D transabdominal ultrasound images for patient repositioning during postprostatectomy radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Presles, Benoît, E-mail: benoit.presles@creatis.insa-lyon.fr; Rit, Simon; Sarrut, David

    2014-12-15

    Purpose: The aim of the present work is to propose and evaluate registration algorithms of three-dimensional (3D) transabdominal (TA) ultrasound (US) images to setup postprostatectomy patients during radiation therapy. Methods: Three registration methods have been developed and evaluated to register a reference 3D-TA-US image acquired during the planning CT session and a 3D-TA-US image acquired before each treatment session. The first method (method A) uses only gray value information, whereas the second one (method B) uses only gradient information. The third one (method C) combines both sets of information. All methods restrict the comparison to a region of interest computedmore » from the dilated reference positioning volume drawn on the reference image and use mutual information as a similarity measure. The considered geometric transformations are translations and have been optimized by using the adaptive stochastic gradient descent algorithm. Validation has been carried out using manual registration by three operators of the same set of image pairs as the algorithms. Sixty-two treatment US images of seven patients irradiated after a prostatectomy have been registered to their corresponding reference US image. The reference registration has been defined as the average of the manual registration values. Registration error has been calculated by subtracting the reference registration from the algorithm result. For each session, the method has been considered a failure if the registration error was above both the interoperator variability of the session and a global threshold of 3.0 mm. Results: All proposed registration algorithms have no systematic bias. Method B leads to the best results with mean errors of −0.6, 0.7, and −0.2 mm in left–right (LR), superior–inferior (SI), and anterior–posterior (AP) directions, respectively. With this method, the standard deviations of the mean error are of 1.7, 2.4, and 2.6 mm in LR, SI, and AP directions, respectively. The latter are inferior to the interoperator registration variabilities which are of 2.5, 2.5, and 3.5 mm in LR, SI, and AP directions, respectively. Failures occur in 5%, 18%, and 10% of cases in LR, SI, and AP directions, respectively. 69% of the sessions have no failure. Conclusions: Results of the best proposed registration algorithm of 3D-TA-US images for postprostatectomy treatment have no bias and are in the same variability range as manual registration. As the algorithm requires a short computation time, it could be used in clinical practice provided that a visual review is performed.« less

  12. Marker-free registration for the accurate integration of CT images and the subject's anatomy during navigation surgery of the maxillary sinus

    PubMed Central

    Kang, S-H; Kim, M-K; Kim, J-H; Park, H-K; Park, W

    2012-01-01

    Objective This study compared three marker-free registration methods that are applicable to a navigation system that can be used for maxillary sinus surgery, and evaluated the associated errors, with the aim of determining which registration method is the most applicable for operations that require accurate navigation. Methods The CT digital imaging and communications in medicine (DICOM) data of ten maxillary models in DICOM files were converted into stereolithography file format. All of the ten maxillofacial models were scanned three dimensionally using a light-based three-dimensional scanner. The methods applied for registration of the maxillofacial models utilized the tooth cusp, bony landmarks and maxillary sinus anterior wall area. The errors during registration were compared between the groups. Results There were differences between the three registration methods in the zygoma, sinus posterior wall, molar alveolar, premolar alveolar, lateral nasal aperture and the infraorbital areas. The error was smallest using the overlay method for the anterior wall of the maxillary sinus, and the difference was statistically significant. Conclusion The navigation error can be minimized by conducting registration using the anterior wall of the maxillary sinus during image-guided surgery of the maxillary sinus. PMID:22499127

  13. WE-EF-210-06: Ultrasound 2D Strain Measurement of Radiation-Induced Toxicity: Phantom and Ex Vivo Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, T; Torres, M; Rossi, P

    Purpose: Radiation-induced fibrosis is a common long-term complication affecting many patients following cancer radiotherapy. Standard clinical assessment of subcutaneous fibrosis is subjective and often limited to visual inspection and palpation. Ultrasound strain imaging describes the compressibility (elasticity) of biological tissues. This study’s purpose is to develop a quantitative ultrasound strain imaging that can consistently and accurately characterize radiation-induce fibrosis. Methods: In this study, we propose a 2D strain imaging method based on deformable image registration. A combined affine and B-spline transformation model is used to calculate the displacement of tissue between pre-stress and post-stress B-mode image sequences. The 2D displacementmore » is estimated through a hybrid image similarity measure metric, which is a combination of the normalized mutual information (NMI) and normalized sum-of-squared-differences (NSSD). And 2D strain is obtained from the gradient of the local displacement. We conducted phantom experiments under various compressions and compared the performance of our proposed method with the standard cross-correlation (CC)- based method using the signal-to-noise (SNR) and contrast-to-noise (CNS) ratios. In addition, we conducted ex-vivo beef muscle experiment to further validate the proposed method. Results: For phantom study, the SNR and CNS values of the proposed method were significantly higher than those calculated from the CC-based method under different strains. The SNR and CNR increased by a factor of 1.9 and 2.7 comparing to the CC-based method. For the ex-vivo experiment, the CC-based method failed to work due to large deformation (6.7%), while our proposed method could accurately detect the stiffness change. Conclusion: We have developed a 2D strain imaging technique based on the deformable image registration, validated its accuracy and feasibility with phantom and ex-vivo data. This 2D ultrasound strain imaging technology may be valuable as physicians try to eliminate radiation-induce fibrosis and improve the therapeutic ratio of cancer radiotherapy. This research is supported in part by DOD PCRP Award W81XWH-13-1-0269, and National Cancer Institute (NCI) Grant CA114313.« less

  14. MRI Signal Intensity Based B-Spline Nonrigid Registration for Pre- and Intraoperative Imaging During Prostate Brachytherapy

    PubMed Central

    Oguro, Sota; Tokuda, Junichi; Elhawary, Haytham; Haker, Steven; Kikinis, Ron; Tempany, Clare M.C.; Hata, Nobuhiko

    2009-01-01

    Purpose To apply an intensity-based nonrigid registration algorithm to MRI-guided prostate brachytherapy clinical data and to assess its accuracy. Materials and Methods A nonrigid registration of preoperative MRI to intraoperative MRI images was carried out in 16 cases using a Basis-Spline algorithm in a retrospective manner. The registration was assessed qualitatively by experts’ visual inspection and quantitatively by measuring the Dice similarity coefficient (DSC) for total gland (TG), central gland (CG), and peripheral zone (PZ), the mutual information (MI) metric, and the fiducial registration error (FRE) between corresponding anatomical landmarks for both the nonrigid and a rigid registration method. Results All 16 cases were successfully registered in less than 5 min. After the nonrigid registration, DSC values for TG, CG, PZ were 0.91, 0.89, 0.79, respectively, the MI metric was −0.19 ± 0.07 and FRE presented a value of 2.3 ± 1.8 mm. All the metrics were significantly better than in the case of rigid registration, as determined by one-sided t-tests. Conclusion The intensity-based nonrigid registration method using clinical data was demonstrated to be feasible and showed statistically improved metrics when compare to only rigid registration. The method is a valuable tool to integrate pre- and intraoperative images for brachytherapy. PMID:19856437

  15. Phantom Study Investigating the Accuracy of Manual and Automatic Image Fusion with the GE Logiq E9: Implications for use in Percutaneous Liver Interventions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burgmans, Mark Christiaan, E-mail: m.c.burgmans@lumc.nl; Harder, J. Michiel den, E-mail: chiel.den.harder@gmail.com; Meershoek, Philippa, E-mail: P.Meershoek@lumc.nl

    PurposeTo determine the accuracy of automatic and manual co-registration methods for image fusion of three-dimensional computed tomography (CT) with real-time ultrasonography (US) for image-guided liver interventions.Materials and MethodsCT images of a skills phantom with liver lesions were acquired and co-registered to US using GE Logiq E9 navigation software. Manual co-registration was compared to automatic and semiautomatic co-registration using an active tracker. Also, manual point registration was compared to plane registration with and without an additional translation point. Finally, comparison was made between manual and automatic selection of reference points. In each experiment, accuracy of the co-registration method was determined bymore » measurement of the residual displacement in phantom lesions by two independent observers.ResultsMean displacements for a superficial and deep liver lesion were comparable after manual and semiautomatic co-registration: 2.4 and 2.0 mm versus 2.0 and 2.5 mm, respectively. Both methods were significantly better than automatic co-registration: 5.9 and 5.2 mm residual displacement (p < 0.001; p < 0.01). The accuracy of manual point registration was higher than that of plane registration, the latter being heavily dependent on accurate matching of axial CT and US images by the operator. Automatic reference point selection resulted in significantly lower registration accuracy compared to manual point selection despite lower root-mean-square deviation (RMSD) values.ConclusionThe accuracy of manual and semiautomatic co-registration is better than that of automatic co-registration. For manual co-registration using a plane, choosing the correct plane orientation is an essential first step in the registration process. Automatic reference point selection based on RMSD values is error-prone.« less

  16. SU-E-J-89: Deformable Registration Method Using B-TPS in Radiotherapy.

    PubMed

    Xie, Y

    2012-06-01

    A novel deformable registration method for four-dimensional computed tomography (4DCT) images is developed in radiation therapy. The proposed method combines the thin plate spline (TPS) and B-spline together to achieve high accuracy and high efficiency. The method consists of two steps. First, TPS is used as a global registration method to deform large unfit regions in the moving image to match counterpart in the reference image. Then B-spline is used for local registration, the previous deformed moving image is further deformed to match the reference image more accurately. Two clinical CT image sets, including one pair of lung and one pair of liver, are simulated using the proposed algorithm, which results in a tremendous improvement in both run-time and registration quality, compared with the conventional methods solely using either TPS or B-spline. The proposed method can combine the efficiency of TPS and the accuracy of B-spline, performing good adaptively and robust in registration of clinical 4DCT image. © 2012 American Association of Physicists in Medicine.

  17. Conventional 3D staging PET/CT in CT simulation for lung cancer: impact of rigid and deformable target volume alignments for radiotherapy treatment planning.

    PubMed

    Hanna, G G; Van Sörnsen De Koste, J R; Carson, K J; O'Sullivan, J M; Hounsell, A R; Senan, S

    2011-10-01

    Positron emission tomography (PET)/CT scans can improve target definition in radiotherapy for non-small cell lung cancer (NSCLC). As staging PET/CT scans are increasingly available, we evaluated different methods for co-registration of staging PET/CT data to radiotherapy simulation (RTP) scans. 10 patients underwent staging PET/CT followed by RTP PET/CT. On both scans, gross tumour volumes (GTVs) were delineated using CT (GTV(CT)) and PET display settings. Four PET-based contours (manual delineation, two threshold methods and a source-to-background ratio method) were delineated. The CT component of the staging scan was co-registered using both rigid and deformable techniques to the CT component of RTP PET/CT. Subsequently rigid registration and deformation warps were used to transfer PET and CT contours from the staging scan to the RTP scan. Dice's similarity coefficient (DSC) was used to assess the registration accuracy of staging-based GTVs following both registration methods with the GTVs delineated on the RTP PET/CT scan. When the GTV(CT) delineated on the staging scan after both rigid registration and deformation was compared with the GTV(CT)on the RTP scan, a significant improvement in overlap (registration) using deformation was observed (mean DSC 0.66 for rigid registration and 0.82 for deformable registration, p = 0.008). A similar comparison for PET contours revealed no significant improvement in overlap with the use of deformable registration. No consistent improvements in similarity measures were observed when deformable registration was used for transferring PET-based contours from a staging PET/CT. This suggests that currently the use of rigid registration remains the most appropriate method for RTP in NSCLC.

  18. MIND Demons for MR-to-CT Deformable Image Registration In Image-Guided Spine Surgery

    PubMed Central

    Reaungamornrat, S.; De Silva, T.; Uneri, A.; Wolinsky, J.-P.; Khanna, A. J.; Kleinszig, G.; Vogt, S.; Prince, J. L.; Siewerdsen, J. H.

    2016-01-01

    Purpose Localization of target anatomy and critical structures defined in preoperative MR images can be achieved by means of multi-modality deformable registration to intraoperative CT. We propose a symmetric diffeomorphic deformable registration algorithm incorporating a modality independent neighborhood descriptor (MIND) and a robust Huber metric for MR-to-CT registration. Method The method, called MIND Demons, solves for the deformation field between two images by optimizing an energy functional that incorporates both the forward and inverse deformations, smoothness on the velocity fields and the diffeomorphisms, a modality-insensitive similarity function suitable to multi-modality images, and constraints on geodesics in Lagrangian coordinates. Direct optimization (without relying on an exponential map of stationary velocity fields used in conventional diffeomorphic Demons) is carried out using a Gauss-Newton method for fast convergence. Registration performance and sensitivity to registration parameters were analyzed in simulation, in phantom experiments, and clinical studies emulating application in image-guided spine surgery, and results were compared to conventional mutual information (MI) free-form deformation (FFD), local MI (LMI) FFD, and normalized MI (NMI) Demons. Result The method yielded sub-voxel invertibility (0.006 mm) and nonsingular spatial Jacobians with capability to preserve local orientation and topology. It demonstrated improved registration accuracy in comparison to the reference methods, with mean target registration error (TRE) of 1.5 mm compared to 10.9, 2.3, and 4.6 mm for MI FFD, LMI FFD, and NMI Demons methods, respectively. Validation in clinical studies demonstrated realistic deformation with sub-voxel TRE in cases of cervical, thoracic, and lumbar spine. Conclusions A modality-independent deformable registration method has been developed to estimate a viscoelastic diffeomorphic map between preoperative MR and intraoperative CT. The method yields registration accuracy suitable to application in image-guided spine surgery across a broad range of anatomical sites and modes of deformation. PMID:27330239

  19. MIND Demons for MR-to-CT deformable image registration in image-guided spine surgery

    NASA Astrophysics Data System (ADS)

    Reaungamornrat, S.; De Silva, T.; Uneri, A.; Wolinsky, J.-P.; Khanna, A. J.; Kleinszig, G.; Vogt, S.; Prince, J. L.; Siewerdsen, J. H.

    2016-03-01

    Purpose: Localization of target anatomy and critical structures defined in preoperative MR images can be achieved by means of multi-modality deformable registration to intraoperative CT. We propose a symmetric diffeomorphic deformable registration algorithm incorporating a modality independent neighborhood descriptor (MIND) and a robust Huber metric for MR-to-CT registration. Method: The method, called MIND Demons, solves for the deformation field between two images by optimizing an energy functional that incorporates both the forward and inverse deformations, smoothness on the velocity fields and the diffeomorphisms, a modality-insensitive similarity function suitable to multi-modality images, and constraints on geodesics in Lagrangian coordinates. Direct optimization (without relying on an exponential map of stationary velocity fields used in conventional diffeomorphic Demons) is carried out using a Gauss-Newton method for fast convergence. Registration performance and sensitivity to registration parameters were analyzed in simulation, in phantom experiments, and clinical studies emulating application in image-guided spine surgery, and results were compared to conventional mutual information (MI) free-form deformation (FFD), local MI (LMI) FFD, and normalized MI (NMI) Demons. Result: The method yielded sub-voxel invertibility (0.006 mm) and nonsingular spatial Jacobians with capability to preserve local orientation and topology. It demonstrated improved registration accuracy in comparison to the reference methods, with mean target registration error (TRE) of 1.5 mm compared to 10.9, 2.3, and 4.6 mm for MI FFD, LMI FFD, and NMI Demons methods, respectively. Validation in clinical studies demonstrated realistic deformation with sub-voxel TRE in cases of cervical, thoracic, and lumbar spine. Conclusions: A modality-independent deformable registration method has been developed to estimate a viscoelastic diffeomorphic map between preoperative MR and intraoperative CT. The method yields registration accuracy suitable to application in image-guided spine surgery across a broad range of anatomical sites and modes of deformation.

  20. Nonrigid registration of 3D longitudinal optical coherence tomography volumes with choroidal neovascularization

    NASA Astrophysics Data System (ADS)

    Wei, Qiangding; Shi, Fei; Zhu, Weifang; Xiang, Dehui; Chen, Haoyu; Chen, Xinjian

    2017-02-01

    In this paper, we propose a 3D registration method for retinal optical coherence tomography (OCT) volumes. The proposed method consists of five main steps: First, a projection image of the 3D OCT scan is created. Second, the vessel enhancement filter is applied on the projection image to detect vessel shadow. Third, landmark points are extracted based on both vessel positions and layer information. Fourth, the coherent point drift method is used to align retinal OCT volumes. Finally, a nonrigid B-spline-based registration method is applied to find the optimal transform to match the data. We applied this registration method on 15 3D OCT scans of patients with Choroidal Neovascularization (CNV). The Dice coefficients (DSC) between layers are greatly improved after applying the nonrigid registration.

  1. Open-source image registration for MRI-TRUS fusion-guided prostate interventions.

    PubMed

    Fedorov, Andriy; Khallaghi, Siavash; Sánchez, C Antonio; Lasso, Andras; Fels, Sidney; Tuncali, Kemal; Sugar, Emily Neubauer; Kapur, Tina; Zhang, Chenxi; Wells, William; Nguyen, Paul L; Abolmaesumi, Purang; Tempany, Clare

    2015-06-01

    We propose two software tools for non-rigid registration of MRI and transrectal ultrasound (TRUS) images of the prostate. Our ultimate goal is to develop an open-source solution to support MRI-TRUS fusion image guidance of prostate interventions, such as targeted biopsy for prostate cancer detection and focal therapy. It is widely hypothesized that image registration is an essential component in such systems. The two non-rigid registration methods are: (1) a deformable registration of the prostate segmentation distance maps with B-spline regularization and (2) a finite element-based deformable registration of the segmentation surfaces in the presence of partial data. We evaluate the methods retrospectively using clinical patient image data collected during standard clinical procedures. Computation time and Target Registration Error (TRE) calculated at the expert-identified anatomical landmarks were used as quantitative measures for the evaluation. The presented image registration tools were capable of completing deformable registration computation within 5 min. Average TRE was approximately 3 mm for both methods, which is comparable with the slice thickness in our MRI data. Both tools are available under nonrestrictive open-source license. We release open-source tools that may be used for registration during MRI-TRUS-guided prostate interventions. Our tools implement novel registration approaches and produce acceptable registration results. We believe these tools will lower the barriers in development and deployment of interventional research solutions and facilitate comparison with similar tools.

  2. MIND Demons: Symmetric Diffeomorphic Deformable Registration of MR and CT for Image-Guided Spine Surgery.

    PubMed

    Reaungamornrat, Sureerat; De Silva, Tharindu; Uneri, Ali; Vogt, Sebastian; Kleinszig, Gerhard; Khanna, Akhil J; Wolinsky, Jean-Paul; Prince, Jerry L; Siewerdsen, Jeffrey H

    2016-11-01

    Intraoperative localization of target anatomy and critical structures defined in preoperative MR/CT images can be achieved through the use of multimodality deformable registration. We propose a symmetric diffeomorphic deformable registration algorithm incorporating a modality-independent neighborhood descriptor (MIND) and a robust Huber metric for MR-to-CT registration. The method, called MIND Demons, finds a deformation field between two images by optimizing an energy functional that incorporates both the forward and inverse deformations, smoothness on the integrated velocity fields, a modality-insensitive similarity function suitable to multimodality images, and smoothness on the diffeomorphisms themselves. Direct optimization without relying on the exponential map and stationary velocity field approximation used in conventional diffeomorphic Demons is carried out using a Gauss-Newton method for fast convergence. Registration performance and sensitivity to registration parameters were analyzed in simulation, phantom experiments, and clinical studies emulating application in image-guided spine surgery, and results were compared to mutual information (MI) free-form deformation (FFD), local MI (LMI) FFD, normalized MI (NMI) Demons, and MIND with a diffusion-based registration method (MIND-elastic). The method yielded sub-voxel invertibility (0.008 mm) and nonzero-positive Jacobian determinants. It also showed improved registration accuracy in comparison to the reference methods, with mean target registration error (TRE) of 1.7 mm compared to 11.3, 3.1, 5.6, and 2.4 mm for MI FFD, LMI FFD, NMI Demons, and MIND-elastic methods, respectively. Validation in clinical studies demonstrated realistic deformations with sub-voxel TRE in cases of cervical, thoracic, and lumbar spine.

  3. MIND Demons: Symmetric Diffeomorphic Deformable Registration of MR and CT for Image-Guided Spine Surgery

    PubMed Central

    Reaungamornrat, Sureerat; De Silva, Tharindu; Uneri, Ali; Vogt, Sebastian; Kleinszig, Gerhard; Khanna, Akhil J; Wolinsky, Jean-Paul; Prince, Jerry L.

    2016-01-01

    Intraoperative localization of target anatomy and critical structures defined in preoperative MR/CT images can be achieved through the use of multimodality deformable registration. We propose a symmetric diffeomorphic deformable registration algorithm incorporating a modality-independent neighborhood descriptor (MIND) and a robust Huber metric for MR-to-CT registration. The method, called MIND Demons, finds a deformation field between two images by optimizing an energy functional that incorporates both the forward and inverse deformations, smoothness on the integrated velocity fields, a modality-insensitive similarity function suitable to multimodality images, and smoothness on the diffeomorphisms themselves. Direct optimization without relying on the exponential map and stationary velocity field approximation used in conventional diffeomorphic Demons is carried out using a Gauss-Newton method for fast convergence. Registration performance and sensitivity to registration parameters were analyzed in simulation, phantom experiments, and clinical studies emulating application in image-guided spine surgery, and results were compared to mutual information (MI) free-form deformation (FFD), local MI (LMI) FFD, normalized MI (NMI) Demons, and MIND with a diffusion-based registration method (MIND-elastic). The method yielded sub-voxel invertibility (0.008 mm) and nonzero-positive Jacobian determinants. It also showed improved registration accuracy in comparison to the reference methods, with mean target registration error (TRE) of 1.7 mm compared to 11.3, 3.1, 5.6, and 2.4 mm for MI FFD, LMI FFD, NMI Demons, and MIND-elastic methods, respectively. Validation in clinical studies demonstrated realistic deformations with sub-voxel TRE in cases of cervical, thoracic, and lumbar spine. PMID:27295656

  4. Implementation and evaluation of a new workflow for registration and segmentation of pulmonary MRI data for regional lung perfusion assessment.

    PubMed

    Böttger, T; Grunewald, K; Schöbinger, M; Fink, C; Risse, F; Kauczor, H U; Meinzer, H P; Wolf, Ivo

    2007-03-07

    Recently it has been shown that regional lung perfusion can be assessed using time-resolved contrast-enhanced magnetic resonance (MR) imaging. Quantification of the perfusion images has been attempted, based on definition of small regions of interest (ROIs). Use of complete lung segmentations instead of ROIs could possibly increase quantification accuracy. Due to the low signal-to-noise ratio, automatic segmentation algorithms cannot be applied. On the other hand, manual segmentation of the lung tissue is very time consuming and can become inaccurate, as the borders of the lung to adjacent tissues are not always clearly visible. We propose a new workflow for semi-automatic segmentation of the lung from additionally acquired morphological HASTE MR images. First the lung is delineated semi-automatically in the HASTE image. Next the HASTE image is automatically registered with the perfusion images. Finally, the transformation resulting from the registration is used to align the lung segmentation from the morphological dataset with the perfusion images. We evaluated rigid, affine and locally elastic transformations, suitable optimizers and different implementations of mutual information (MI) metrics to determine the best possible registration algorithm. We located the shortcomings of the registration procedure and under which conditions automatic registration will succeed or fail. Segmentation results were evaluated using overlap and distance measures. Integration of the new workflow reduces the time needed for post-processing of the data, simplifies the perfusion quantification and reduces interobserver variability in the segmentation process. In addition, the matched morphological data set can be used to identify morphologic changes as the source for the perfusion abnormalities.

  5. SU-F-J-96: Comparison of Frame-Based and Mutual Information Registration Techniques for CT and MR Image Sets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popple, R; Bredel, M; Brezovich, I

    Purpose: To compare the accuracy of CT-MR registration using a mutual information method with registration using a frame-based localizer box. Methods: Ten patients having the Leksell head frame and scanned with a modality specific localizer box were imported into the treatment planning system. The fiducial rods of the localizer box were contoured on both the MR and CT scans. The skull was contoured on the CT images. The MR and CT images were registered by two methods. The frame-based method used the transformation that minimized the mean square distance of the centroids of the contours of the fiducial rods frommore » a mathematical model of the localizer. The mutual information method used automated image registration tools in the TPS and was restricted to a volume-of-interest defined by the skull contours with a 5 mm margin. For each case, the two registrations were adjusted by two evaluation teams, each comprised of an experienced radiation oncologist and neurosurgeon, to optimize alignment in the region of the brainstem. The teams were blinded to the registration method. Results: The mean adjustment was 0.4 mm (range 0 to 2 mm) and 0.2 mm (range 0 to 1 mm) for the frame and mutual information methods, respectively. The median difference between the frame and mutual information registrations was 0.3 mm, but was not statistically significant using the Wilcoxon signed rank test (p=0.37). Conclusion: The difference between frame and mutual information registration techniques was neither statistically significant nor, for most applications, clinically important. These results suggest that mutual information is equivalent to frame-based image registration for radiosurgery. Work is ongoing to add additional evaluators and to assess the differences between evaluators.« less

  6. Unobtrusive Multi-Static Serial LiDAR Imager (UMSLI) First Generation Shape-Matching Based Classifier for 2D Contours

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Zheng; Ouyang, Bing; Principe, Jose

    A multi-static serial LiDAR system prototype was developed under DE-EE0006787 to detect, classify, and record interactions of marine life with marine hydrokinetic generation equipment. This software implements a shape-matching based classifier algorithm for the underwater automated detection of marine life for that system. In addition to applying shape descriptors, the algorithm also adopts information theoretical learning based affine shape registration, improving point correspondences found by shape descriptors as well as the final similarity measure.

  7. Phantom Study Investigating the Accuracy of Manual and Automatic Image Fusion with the GE Logiq E9: Implications for use in Percutaneous Liver Interventions.

    PubMed

    Burgmans, Mark Christiaan; den Harder, J Michiel; Meershoek, Philippa; van den Berg, Nynke S; Chan, Shaun Xavier Ju Min; van Leeuwen, Fijs W B; van Erkel, Arian R

    2017-06-01

    To determine the accuracy of automatic and manual co-registration methods for image fusion of three-dimensional computed tomography (CT) with real-time ultrasonography (US) for image-guided liver interventions. CT images of a skills phantom with liver lesions were acquired and co-registered to US using GE Logiq E9 navigation software. Manual co-registration was compared to automatic and semiautomatic co-registration using an active tracker. Also, manual point registration was compared to plane registration with and without an additional translation point. Finally, comparison was made between manual and automatic selection of reference points. In each experiment, accuracy of the co-registration method was determined by measurement of the residual displacement in phantom lesions by two independent observers. Mean displacements for a superficial and deep liver lesion were comparable after manual and semiautomatic co-registration: 2.4 and 2.0 mm versus 2.0 and 2.5 mm, respectively. Both methods were significantly better than automatic co-registration: 5.9 and 5.2 mm residual displacement (p < 0.001; p < 0.01). The accuracy of manual point registration was higher than that of plane registration, the latter being heavily dependent on accurate matching of axial CT and US images by the operator. Automatic reference point selection resulted in significantly lower registration accuracy compared to manual point selection despite lower root-mean-square deviation (RMSD) values. The accuracy of manual and semiautomatic co-registration is better than that of automatic co-registration. For manual co-registration using a plane, choosing the correct plane orientation is an essential first step in the registration process. Automatic reference point selection based on RMSD values is error-prone.

  8. An automatic markerless registration method for neurosurgical robotics based on an optical camera.

    PubMed

    Meng, Fanle; Zhai, Fangwen; Zeng, Bowei; Ding, Hui; Wang, Guangzhi

    2018-02-01

    Current markerless registration methods for neurosurgical robotics use the facial surface to match the robot space with the image space, and acquisition of the facial surface usually requires manual interaction and constrains the patient to a supine position. To overcome these drawbacks, we propose a registration method that is automatic and does not constrain patient position. An optical camera attached to the robot end effector captures images around the patient's head from multiple views. Then, high coverage of the head surface is reconstructed from the images through multi-view stereo vision. Since the acquired head surface point cloud contains color information, a specific mark that is manually drawn on the patient's head prior to the capture procedure can be extracted to automatically accomplish coarse registration rather than using facial anatomic landmarks. Then, fine registration is achieved by registering the high coverage of the head surface without relying solely on the facial region, thus eliminating patient position constraints. The head surface was acquired by the camera with a good repeatability accuracy. The average target registration error of 8 different patient positions measured with targets inside a head phantom was [Formula: see text], while the mean surface registration error was [Formula: see text]. The method proposed in this paper achieves automatic markerless registration in multiple patient positions and guarantees registration accuracy inside the head. This method provides a new approach for establishing the spatial relationship between the image space and the robot space.

  9. Accuracy of surface registration compared to conventional volumetric registration in patient positioning for head-and-neck radiotherapy: A simulation study using patient data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Youngjun; Li, Ruijiang; Na, Yong Hum

    2014-12-15

    Purpose: 3D optical surface imaging has been applied to patient positioning in radiation therapy (RT). The optical patient positioning system is advantageous over conventional method using cone-beam computed tomography (CBCT) in that it is radiation free, frameless, and is capable of real-time monitoring. While the conventional radiographic method uses volumetric registration, the optical system uses surface matching for patient alignment. The relative accuracy of these two methods has not yet been sufficiently investigated. This study aims to investigate the theoretical accuracy of the surface registration based on a simulation study using patient data. Methods: This study compares the relative accuracymore » of surface and volumetric registration in head-and-neck RT. The authors examined 26 patient data sets, each consisting of planning CT data acquired before treatment and patient setup CBCT data acquired at the time of treatment. As input data of surface registration, patient’s skin surfaces were created by contouring patient skin from planning CT and treatment CBCT. Surface registration was performed using the iterative closest points algorithm by point–plane closest, which minimizes the normal distance between source points and target surfaces. Six degrees of freedom (three translations and three rotations) were used in both surface and volumetric registrations and the results were compared. The accuracy of each method was estimated by digital phantom tests. Results: Based on the results of 26 patients, the authors found that the average and maximum root-mean-square translation deviation between the surface and volumetric registrations were 2.7 and 5.2 mm, respectively. The residual error of the surface registration was calculated to have an average of 0.9 mm and a maximum of 1.7 mm. Conclusions: Surface registration may lead to results different from those of the conventional volumetric registration. Only limited accuracy can be achieved for patient positioning with an approach based solely on surface information.« less

  10. Three-dimensional nonrigid landmark-based magnetic resonance to transrectal ultrasound registration for image-guided prostate biopsy.

    PubMed

    Sun, Yue; Qiu, Wu; Yuan, Jing; Romagnoli, Cesare; Fenster, Aaron

    2015-04-01

    Registration of three-dimensional (3-D) magnetic resonance (MR) to 3-D transrectal ultrasound (TRUS) prostate images is an important step in the planning and guidance of 3-D TRUS guided prostate biopsy. In order to accurately and efficiently perform the registration, a nonrigid landmark-based registration method is required to account for the different deformations of the prostate when using these two modalities. We describe a nonrigid landmark-based method for registration of 3-D TRUS to MR prostate images. The landmark-based registration method first makes use of an initial rigid registration of 3-D MR to 3-D TRUS images using six manually placed approximately corresponding landmarks in each image. Following manual initialization, the two prostate surfaces are segmented from 3-D MR and TRUS images and then nonrigidly registered using the following steps: (1) rotationally reslicing corresponding segmented prostate surfaces from both 3-D MR and TRUS images around a specified axis, (2) an approach to find point correspondences on the surfaces of the segmented surfaces, and (3) deformation of the surface of the prostate in the MR image to match the surface of the prostate in the 3-D TRUS image and the interior using a thin-plate spline algorithm. The registration accuracy was evaluated using 17 patient prostate MR and 3-D TRUS images by measuring the target registration error (TRE). Experimental results showed that the proposed method yielded an overall mean TRE of [Formula: see text] for the rigid registration and [Formula: see text] for the nonrigid registration, which is favorably comparable to a clinical requirement for an error of less than 2.5 mm. A landmark-based nonrigid 3-D MR-TRUS registration approach is proposed, which takes into account the correspondences on the prostate surface, inside the prostate, as well as the centroid of the prostate. Experimental results indicate that the proposed method yields clinically sufficient accuracy.

  11. Non-rigid image registration using graph-cuts.

    PubMed

    Tang, Tommy W H; Chung, Albert C S

    2007-01-01

    Non-rigid image registration is an ill-posed yet challenging problem due to its supernormal high degree of freedoms and inherent requirement of smoothness. Graph-cuts method is a powerful combinatorial optimization tool which has been successfully applied into image segmentation and stereo matching. Under some specific constraints, graph-cuts method yields either a global minimum or a local minimum in a strong sense. Thus, it is interesting to see the effects of using graph-cuts in non-rigid image registration. In this paper, we formulate non-rigid image registration as a discrete labeling problem. Each pixel in the source image is assigned a displacement label (which is a vector) indicating which position in the floating image it is spatially corresponding to. A smoothness constraint based on first derivative is used to penalize sharp changes in displacement labels across pixels. The whole system can be optimized by using the graph-cuts method via alpha-expansions. We compare 2D and 3D registration results of our method with two state-of-the-art approaches. It is found that our method is more robust to different challenging non-rigid registration cases with higher registration accuracy.

  12. MIND Demons for MR-to-CT Deformable Image Registration In Image-Guided Spine Surgery.

    PubMed

    Reaungamornrat, S; De Silva, T; Uneri, A; Wolinsky, J-P; Khanna, A J; Kleinszig, G; Vogt, S; Prince, J L; Siewerdsen, J H

    2016-02-27

    Localization of target anatomy and critical structures defined in preoperative MR images can be achieved by means of multi-modality deformable registration to intraoperative CT. We propose a symmetric diffeomorphic deformable registration algorithm incorporating a modality independent neighborhood descriptor (MIND) and a robust Huber metric for MR-to-CT registration. The method, called MIND Demons, solves for the deformation field between two images by optimizing an energy functional that incorporates both the forward and inverse deformations, smoothness on the velocity fields and the diffeomorphisms, a modality-insensitive similarity function suitable to multi-modality images, and constraints on geodesics in Lagrangian coordinates. Direct optimization (without relying on an exponential map of stationary velocity fields used in conventional diffeomorphic Demons) is carried out using a Gauss-Newton method for fast convergence. Registration performance and sensitivity to registration parameters were analyzed in simulation, in phantom experiments, and clinical studies emulating application in image-guided spine surgery, and results were compared to conventional mutual information (MI) free-form deformation (FFD), local MI (LMI) FFD, and normalized MI (NMI) Demons. The method yielded sub-voxel invertibility (0.006 mm) and nonsingular spatial Jacobians with capability to preserve local orientation and topology. It demonstrated improved registration accuracy in comparison to the reference methods, with mean target registration error (TRE) of 1.5 mm compared to 10.9, 2.3, and 4.6 mm for MI FFD, LMI FFD, and NMI Demons methods, respectively. Validation in clinical studies demonstrated realistic deformation with sub-voxel TRE in cases of cervical, thoracic, and lumbar spine. A modality-independent deformable registration method has been developed to estimate a viscoelastic diffeomorphic map between preoperative MR and intraoperative CT. The method yields registration accuracy suitable to application in image-guided spine surgery across a broad range of anatomical sites and modes of deformation.

  13. Marker Registration Technique for Handwritten Text Marker in Augmented Reality Applications

    NASA Astrophysics Data System (ADS)

    Thanaborvornwiwat, N.; Patanukhom, K.

    2018-04-01

    Marker registration is a fundamental process to estimate camera poses in marker-based Augmented Reality (AR) systems. We developed AR system that creates correspondence virtual objects on handwritten text markers. This paper presents a new method for registration that is robust for low-content text markers, variation of camera poses, and variation of handwritten styles. The proposed method uses Maximally Stable Extremal Regions (MSER) and polygon simplification for a feature point extraction. The experiment shows that we need to extract only five feature points per image which can provide the best registration results. An exhaustive search is used to find the best matching pattern of the feature points in two images. We also compared performance of the proposed method to some existing registration methods and found that the proposed method can provide better accuracy and time efficiency.

  14. An Improved InSAR Image Co-Registration Method for Pairs with Relatively Big Distortions or Large Incoherent Areas

    PubMed Central

    Chen, Zhenwei; Zhang, Lei; Zhang, Guo

    2016-01-01

    Co-registration is one of the most important steps in interferometric synthetic aperture radar (InSAR) data processing. The standard offset-measurement method based on cross-correlating uniformly distributed patches takes no account of specific geometric transformation between images or characteristics of ground scatterers. Hence, it is inefficient and difficult to obtain satisfying co-registration results for image pairs with relatively big distortion or large incoherent areas. Given this, an improved co-registration strategy is proposed in this paper which takes both the geometric features and image content into consideration. Firstly, some geometric transformations including scale, flip, rotation, and shear between images were eliminated based on the geometrical information, and the initial co-registration polynomial was obtained. Then the registration points were automatically detected by integrating the signal-to-clutter-ratio (SCR) thresholds and the amplitude information, and a further co-registration process was performed to refine the polynomial. Several comparison experiments were carried out using 2 TerraSAR-X data from the Hong Kong airport and 21 PALSAR data from the Donghai Bridge. Experiment results demonstrate that the proposed method brings accuracy and efficiency improvements for co-registration and processing abilities in the cases of big distortion between images or large incoherent areas in the images. For most co-registrations, the proposed method can enhance the reliability and applicability of co-registration and thus promote the automation to a higher level. PMID:27649207

  15. An Improved InSAR Image Co-Registration Method for Pairs with Relatively Big Distortions or Large Incoherent Areas.

    PubMed

    Chen, Zhenwei; Zhang, Lei; Zhang, Guo

    2016-09-17

    Co-registration is one of the most important steps in interferometric synthetic aperture radar (InSAR) data processing. The standard offset-measurement method based on cross-correlating uniformly distributed patches takes no account of specific geometric transformation between images or characteristics of ground scatterers. Hence, it is inefficient and difficult to obtain satisfying co-registration results for image pairs with relatively big distortion or large incoherent areas. Given this, an improved co-registration strategy is proposed in this paper which takes both the geometric features and image content into consideration. Firstly, some geometric transformations including scale, flip, rotation, and shear between images were eliminated based on the geometrical information, and the initial co-registration polynomial was obtained. Then the registration points were automatically detected by integrating the signal-to-clutter-ratio (SCR) thresholds and the amplitude information, and a further co-registration process was performed to refine the polynomial. Several comparison experiments were carried out using 2 TerraSAR-X data from the Hong Kong airport and 21 PALSAR data from the Donghai Bridge. Experiment results demonstrate that the proposed method brings accuracy and efficiency improvements for co-registration and processing abilities in the cases of big distortion between images or large incoherent areas in the images. For most co-registrations, the proposed method can enhance the reliability and applicability of co-registration and thus promote the automation to a higher level.

  16. The heritability of the functional connectome is robust to common nonlinear registration methods

    NASA Astrophysics Data System (ADS)

    Hafzalla, George W.; Prasad, Gautam; Baboyan, Vatche G.; Faskowitz, Joshua; Jahanshad, Neda; McMahon, Katie L.; de Zubicaray, Greig I.; Wright, Margaret J.; Braskie, Meredith N.; Thompson, Paul M.

    2016-03-01

    Nonlinear registration algorithms are routinely used in brain imaging, to align data for inter-subject and group comparisons, and for voxelwise statistical analyses. To understand how the choice of registration method affects maps of functional brain connectivity in a sample of 611 twins, we evaluated three popular nonlinear registration methods: Advanced Normalization Tools (ANTs), Automatic Registration Toolbox (ART), and FMRIB's Nonlinear Image Registration Tool (FNIRT). Using both structural and functional MRI, we used each of the three methods to align the MNI152 brain template, and 80 regions of interest (ROIs), to each subject's T1-weighted (T1w) anatomical image. We then transformed each subject's ROIs onto the associated resting state functional MRI (rs-fMRI) scans and computed a connectivity network or functional connectome for each subject. Given the different degrees of genetic similarity between pairs of monozygotic (MZ) and same-sex dizygotic (DZ) twins, we used structural equation modeling to estimate the additive genetic influences on the elements of the function networks, or their heritability. The functional connectome and derived statistics were relatively robust to nonlinear registration effects.

  17. Serial Scanning and Registration of High Resolution Quantitative Computed Tomography Volume Scans for the Determination of Local Bone Density Changes

    NASA Technical Reports Server (NTRS)

    Whalen, Robert T.; Napel, Sandy; Yan, Chye H.

    1996-01-01

    Progress in development of the methods required to study bone remodeling as a function of time is reported. The following topics are presented: 'A New Methodology for Registration Accuracy Evaluation', 'Registration of Serial Skeletal Images for Accurately Measuring Changes in Bone Density', and 'Precise and Accurate Gold Standard for Multimodality and Serial Registration Method Evaluations.'

  18. MRI signal intensity based B-spline nonrigid registration for pre- and intraoperative imaging during prostate brachytherapy.

    PubMed

    Oguro, Sota; Tokuda, Junichi; Elhawary, Haytham; Haker, Steven; Kikinis, Ron; Tempany, Clare M C; Hata, Nobuhiko

    2009-11-01

    To apply an intensity-based nonrigid registration algorithm to MRI-guided prostate brachytherapy clinical data and to assess its accuracy. A nonrigid registration of preoperative MRI to intraoperative MRI images was carried out in 16 cases using a Basis-Spline algorithm in a retrospective manner. The registration was assessed qualitatively by experts' visual inspection and quantitatively by measuring the Dice similarity coefficient (DSC) for total gland (TG), central gland (CG), and peripheral zone (PZ), the mutual information (MI) metric, and the fiducial registration error (FRE) between corresponding anatomical landmarks for both the nonrigid and a rigid registration method. All 16 cases were successfully registered in less than 5 min. After the nonrigid registration, DSC values for TG, CG, PZ were 0.91, 0.89, 0.79, respectively, the MI metric was -0.19 +/- 0.07 and FRE presented a value of 2.3 +/- 1.8 mm. All the metrics were significantly better than in the case of rigid registration, as determined by one-sided t-tests. The intensity-based nonrigid registration method using clinical data was demonstrated to be feasible and showed statistically improved metrics when compare to only rigid registration. The method is a valuable tool to integrate pre- and intraoperative images for brachytherapy.

  19. Assessing the intrinsic precision of 3D/3D rigid image registration results for patient setup in the absence of a ground truth.

    PubMed

    Wu, Jian; Murphy, Martin J

    2010-06-01

    To assess the precision and robustness of patient setup corrections computed from 3D/3D rigid registration methods using image intensity, when no ground truth validation is possible. Fifteen pairs of male pelvic CTs were rigidly registered using four different in-house registration methods. Registration results were compared for different resolutions and image content by varying the image down-sampling ratio and by thresholding out soft tissue to isolate bony landmarks. Intrinsic registration precision was investigated by comparing the different methods and by reversing the source and the target roles of the two images being registered. The translational reversibility errors for successful registrations ranged from 0.0 to 1.69 mm. Rotations were less than 1 degrees. Mutual information failed in most registrations that used only bony landmarks. The magnitude of the reversibility error was strongly correlated with the success/ failure of each algorithm to find the global minimum. Rigid image registrations have an intrinsic uncertainty and robustness that depends on the imaging modality, the registration algorithm, the image resolution, and the image content. In the absence of an absolute ground truth, the variation in the shifts calculated by several different methods provides a useful estimate of that uncertainty. The difference observed by reversing the source and target images can be used as an indication of robust convergence.

  20. Text messaging as a new method for injury registration in sports: a methodological study in elite female football.

    PubMed

    Nilstad, A; Bahr, R; Andersen, T E

    2014-02-01

    Methodological differences in epidemiologic studies have led to significant discrepancies in injury incidences reported. The aim of this study was to evaluate text messaging as a new method for injury registration in elite female football players and to compare this method with routine medical staff registration. Twelve teams comprising 228 players prospectively recorded injuries and exposure through one competitive football season. Players reported individually by answering three text messages once a week. A designated member of the medical staff conducted concurrent registrations of injuries and exposure. Injuries and exposure were compared between medical staff registrations from nine teams and their 159 affiliated players. During the football season, a total of 232 time-loss injuries were recorded. Of these, 62% were captured through individual registration only, 10% by the medical staff only, and 28% were reported through both methods. The incidence of training injuries was 3.7 per 1000 player hours when calculated from individual registration vs 2.2 from medical staff registration [rate ratio (RR): 1.7, 1.2-2.4]. For match injuries, the corresponding incidences were 18.6 vs 5.4 (RR: 3.4, 2.4-4.9), respectively. There was moderate agreement for severity classifications in injury cases reported by both methods (kappa correlation coefficient: 0.48, confidence interval: 0.30-0.66). © 2012 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Topology preserving non-rigid image registration using time-varying elasticity model for MRI brain volumes.

    PubMed

    Ahmad, Sahar; Khan, Muhammad Faisal

    2015-12-01

    In this paper, we present a new non-rigid image registration method that imposes a topology preservation constraint on the deformation. We propose to incorporate the time varying elasticity model into the deformable image matching procedure and constrain the Jacobian determinant of the transformation over the entire image domain. The motion of elastic bodies is governed by a hyperbolic partial differential equation, generally termed as elastodynamics wave equation, which we propose to use as a deformation model. We carried out clinical image registration experiments on 3D magnetic resonance brain scans from IBSR database. The results of the proposed registration approach in terms of Kappa index and relative overlap computed over the subcortical structures were compared against the existing topology preserving non-rigid image registration methods and non topology preserving variant of our proposed registration scheme. The Jacobian determinant maps obtained with our proposed registration method were qualitatively and quantitatively analyzed. The results demonstrated that the proposed scheme provides good registration accuracy with smooth transformations, thereby guaranteeing the preservation of topology. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Subcortical structure segmentation using probabilistic atlas priors

    NASA Astrophysics Data System (ADS)

    Gouttard, Sylvain; Styner, Martin; Joshi, Sarang; Smith, Rachel G.; Cody Hazlett, Heather; Gerig, Guido

    2007-03-01

    The segmentation of the subcortical structures of the brain is required for many forms of quantitative neuroanatomic analysis. The volumetric and shape parameters of structures such as lateral ventricles, putamen, caudate, hippocampus, pallidus and amygdala are employed to characterize a disease or its evolution. This paper presents a fully automatic segmentation of these structures via a non-rigid registration of a probabilistic atlas prior and alongside a comprehensive validation. Our approach is based on an unbiased diffeomorphic atlas with probabilistic spatial priors built from a training set of MR images with corresponding manual segmentations. The atlas building computes an average image along with transformation fields mapping each training case to the average image. These transformation fields are applied to the manually segmented structures of each case in order to obtain a probabilistic map on the atlas. When applying the atlas for automatic structural segmentation, an MR image is first intensity inhomogeneity corrected, skull stripped and intensity calibrated to the atlas. Then the atlas image is registered to the image using an affine followed by a deformable registration matching the gray level intensity. Finally, the registration transformation is applied to the probabilistic maps of each structures, which are then thresholded at 0.5 probability. Using manual segmentations for comparison, measures of volumetric differences show high correlation with our results. Furthermore, the dice coefficient, which quantifies the volumetric overlap, is higher than 62% for all structures and is close to 80% for basal ganglia. The intraclass correlation coefficient computed on these same datasets shows a good inter-method correlation of the volumetric measurements. Using a dataset of a single patient scanned 10 times on 5 different scanners, reliability is shown with a coefficient of variance of less than 2 percents over the whole dataset. Overall, these validation and reliability studies show that our method accurately and reliably segments almost all structures. Only the hippocampus and amygdala segmentations exhibit relative low correlation with the manual segmentation in at least one of the validation studies, whereas they still show appropriate dice overlap coefficients.

  3. SU-C-207B-06: Comparison of Registration Methods for Modeling Pathologic Response of Esophageal Cancer to Chemoradiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riyahi, S; Choi, W; Bhooshan, N

    2016-06-15

    Purpose: To compare linear and deformable registration methods for evaluation of tumor response to Chemoradiation therapy (CRT) in patients with esophageal cancer. Methods: Linear and multi-resolution BSpline deformable registration were performed on Pre-Post-CRT CT/PET images of 20 patients with esophageal cancer. For both registration methods, we registered CT using Mean Square Error (MSE) metric, however to register PET we used transformation obtained using Mutual Information (MI) from the same CT due to being multi-modality. Similarity of Warped-CT/PET was quantitatively evaluated using Normalized Mutual Information and plausibility of DF was assessed using inverse consistency Error. To evaluate tumor response four groupsmore » of tumor features were examined: (1) Conventional PET/CT e.g. SUV, diameter (2) Clinical parameters e.g. TNM stage, histology (3)spatial-temporal PET features that describe intensity, texture and geometry of tumor (4)all features combined. Dominant features were identified using 10-fold cross-validation and Support Vector Machine (SVM) was deployed for tumor response prediction while the accuracy was evaluated by ROC Area Under Curve (AUC). Results: Average and standard deviation of Normalized mutual information for deformable registration using MSE was 0.2±0.054 and for linear registration was 0.1±0.026, showing higher NMI for deformable registration. Likewise for MI metric, deformable registration had 0.13±0.035 comparing to linear counterpart with 0.12±0.037. Inverse consistency error for deformable registration for MSE metric was 4.65±2.49 and for linear was 1.32±2.3 showing smaller value for linear registration. The same conclusion was obtained for MI in terms of inverse consistency error. AUC for both linear and deformable registration was 1 showing no absolute difference in terms of response evaluation. Conclusion: Deformable registration showed better NMI comparing to linear registration, however inverse consistency of transformation was lower in linear registration. We do not expect to see significant difference when warping PET images using deformable or linear registration. This work was supported in part by the National Cancer Institute Grants R01CA172638.« less

  4. Automatic image fusion of real-time ultrasound with computed tomography images: a prospective comparison between two auto-registration methods.

    PubMed

    Cha, Dong Ik; Lee, Min Woo; Kim, Ah Yeong; Kang, Tae Wook; Oh, Young-Taek; Jeong, Ja-Yeon; Chang, Jung-Woo; Ryu, Jiwon; Lee, Kyong Joon; Kim, Jaeil; Bang, Won-Chul; Shin, Dong Kuk; Choi, Sung Jin; Koh, Dalkwon; Seo, Bong Koo; Kim, Kyunga

    2017-11-01

    Background A major drawback of conventional manual image fusion is that the process may be complex, especially for less-experienced operators. Recently, two automatic image fusion techniques called Positioning and Sweeping auto-registration have been developed. Purpose To compare the accuracy and required time for image fusion of real-time ultrasonography (US) and computed tomography (CT) images between Positioning and Sweeping auto-registration. Material and Methods Eighteen consecutive patients referred for planning US for radiofrequency ablation or biopsy for focal hepatic lesions were enrolled. Image fusion using both auto-registration methods was performed for each patient. Registration error, time required for image fusion, and number of point locks used were compared using the Wilcoxon signed rank test. Results Image fusion was successful in all patients. Positioning auto-registration was significantly faster than Sweeping auto-registration for both initial (median, 11 s [range, 3-16 s] vs. 32 s [range, 21-38 s]; P < 0.001] and complete (median, 34.0 s [range, 26-66 s] vs. 47.5 s [range, 32-90]; P = 0.001] image fusion. Registration error of Positioning auto-registration was significantly higher for initial image fusion (median, 38.8 mm [range, 16.0-84.6 mm] vs. 18.2 mm [6.7-73.4 mm]; P = 0.029), but not for complete image fusion (median, 4.75 mm [range, 1.7-9.9 mm] vs. 5.8 mm [range, 2.0-13.0 mm]; P = 0.338]. Number of point locks required to refine the initially fused images was significantly higher with Positioning auto-registration (median, 2 [range, 2-3] vs. 1 [range, 1-2]; P = 0.012]. Conclusion Positioning auto-registration offers faster image fusion between real-time US and pre-procedural CT images than Sweeping auto-registration. The final registration error is similar between the two methods.

  5. A fast rigid-registration method of inferior limb X-ray image and 3D CT images for TKA surgery

    NASA Astrophysics Data System (ADS)

    Ito, Fumihito; O. D. A, Prima; Uwano, Ikuko; Ito, Kenzo

    2010-03-01

    In this paper, we propose a fast rigid-registration method of inferior limb X-ray films (two-dimensional Computed Radiography (CR) images) and three-dimensional Computed Tomography (CT) images for Total Knee Arthroplasty (TKA) surgery planning. The position of the each bone, such as femur and tibia (shin bone), in X-ray film and 3D CT images is slightly different, and we must pay attention how to use the two different images, since X-ray film image is captured in the standing position, and 3D CT is captured in decubitus (face up) position, respectively. Though the conventional registration mainly uses cross-correlation function between two images,and utilizes optimization techniques, it takes enormous calculation time and it is difficult to use it in interactive operations. In order to solve these problems, we calculate the center line (bone axis) of femur and tibia (shin bone) automatically, and we use them as initial positions for the registration. We evaluate our registration method by using three patient's image data, and we compare our proposed method and a conventional registration, which uses down-hill simplex algorithm. The down-hill simplex method is an optimization algorithm that requires only function evaluations, and doesn't need the calculation of derivatives. Our registration method is more effective than the downhill simplex method in computational time and the stable convergence. We have developed the implant simulation system on a personal computer, in order to support the surgeon in a preoperative planning of TKA. Our registration method is implemented in the simulation system, and user can manipulate 2D/3D translucent templates of implant components on X-ray film and 3D CT images.

  6. Determination of optimal ultrasound planes for the initialisation of image registration during endoscopic ultrasound-guided procedures.

    PubMed

    Bonmati, Ester; Hu, Yipeng; Gibson, Eli; Uribarri, Laura; Keane, Geri; Gurusami, Kurinchi; Davidson, Brian; Pereira, Stephen P; Clarkson, Matthew J; Barratt, Dean C

    2018-06-01

    Navigation of endoscopic ultrasound (EUS)-guided procedures of the upper gastrointestinal (GI) system can be technically challenging due to the small fields-of-view of ultrasound and optical devices, as well as the anatomical variability and limited number of orienting landmarks during navigation. Co-registration of an EUS device and a pre-procedure 3D image can enhance the ability to navigate. However, the fidelity of this contextual information depends on the accuracy of registration. The purpose of this study was to develop and test the feasibility of a simulation-based planning method for pre-selecting patient-specific EUS-visible anatomical landmark locations to maximise the accuracy and robustness of a feature-based multimodality registration method. A registration approach was adopted in which landmarks are registered to anatomical structures segmented from the pre-procedure volume. The predicted target registration errors (TREs) of EUS-CT registration were estimated using simulated visible anatomical landmarks and a Monte Carlo simulation of landmark localisation error. The optimal planes were selected based on the 90th percentile of TREs, which provide a robust and more accurate EUS-CT registration initialisation. The method was evaluated by comparing the accuracy and robustness of registrations initialised using optimised planes versus non-optimised planes using manually segmented CT images and simulated ([Formula: see text]) or retrospective clinical ([Formula: see text]) EUS landmarks. The results show a lower 90th percentile TRE when registration is initialised using the optimised planes compared with a non-optimised initialisation approach (p value [Formula: see text]). The proposed simulation-based method to find optimised EUS planes and landmarks for EUS-guided procedures may have the potential to improve registration accuracy. Further work will investigate applying the technique in a clinical setting.

  7. Mass preserving registration for lung CT

    NASA Astrophysics Data System (ADS)

    Gorbunova, Vladlena; Lo, Pechin; Loeve, Martine; Tiddens, Harm A.; Sporring, Jon; Nielsen, Mads; de Bruijne, Marleen

    2009-02-01

    In this paper, we evaluate a novel image registration method on a set of expiratory-inspiratory pairs of computed tomography (CT) lung scans. A free-form multi resolution image registration technique is used to match two scans of the same subject. To account for the differences in the lung intensities due to differences in inspiration level, we propose to adjust the intensity of lung tissue according to the local expansion or compression. An image registration method without intensity adjustment is compared to the proposed method. Both approaches are evaluated on a set of 10 pairs of expiration and inspiration CT scans of children with cystic fibrosis lung disease. The proposed method with mass preserving adjustment results in significantly better alignment of the vessel trees. Analysis of local volume change for regions with trapped air compared to normally ventilated regions revealed larger differences between these regions in the case of mass preserving image registration, indicating that mass preserving registration is better at capturing localized differences in lung deformation.

  8. Efficient Multi-Atlas Registration using an Intermediate Template Image

    PubMed Central

    Dewey, Blake E.; Carass, Aaron; Blitz, Ari M.; Prince, Jerry L.

    2017-01-01

    Multi-atlas label fusion is an accurate but time-consuming method of labeling the human brain. Using an intermediate image as a registration target can allow researchers to reduce time constraints by storing the deformations required of the atlas images. In this paper, we investigate the effect of registration through an intermediate template image on multi-atlas label fusion and propose a novel registration technique to counteract the negative effects of through-template registration. We show that overall computation time can be decreased dramatically with minimal impact on final label accuracy and time can be exchanged for improved results in a predictable manner. We see almost complete recovery of Dice similarity over a simple through-template registration using the corrected method and still maintain a 3–4 times speed increase. Further, we evaluate the effectiveness of this method on brains of patients with normal-pressure hydrocephalus, where abnormal brain shape presents labeling difficulties, specifically the ventricular labels. Our correction method creates substantially better ventricular labeling than traditional methods and maintains the speed increase seen in healthy subjects. PMID:28943702

  9. Efficient multi-atlas registration using an intermediate template image

    NASA Astrophysics Data System (ADS)

    Dewey, Blake E.; Carass, Aaron; Blitz, Ari M.; Prince, Jerry L.

    2017-03-01

    Multi-atlas label fusion is an accurate but time-consuming method of labeling the human brain. Using an intermediate image as a registration target can allow researchers to reduce time constraints by storing the deformations required of the atlas images. In this paper, we investigate the effect of registration through an intermediate template image on multi-atlas label fusion and propose a novel registration technique to counteract the negative effects of through-template registration. We show that overall computation time can be decreased dramatically with minimal impact on final label accuracy and time can be exchanged for improved results in a predictable manner. We see almost complete recovery of Dice similarity over a simple through-template registration using the corrected method and still maintain a 3-4 times speed increase. Further, we evaluate the effectiveness of this method on brains of patients with normal-pressure hydrocephalus, where abnormal brain shape presents labeling difficulties, specifically the ventricular labels. Our correction method creates substantially better ventricular labeling than traditional methods and maintains the speed increase seen in healthy subjects.

  10. High School Voter Registration.

    ERIC Educational Resources Information Center

    Institute for Political/Legal Education, Sewell, NJ.

    Methods for conducting peer voter registration of high school students cover establishing a permanent voter registration committee and identifying and registering eligible students. The permanent voter registration committee, made up of student body representatives, class representatives, and selected teachers, guarantees comprehensive…

  11. Real-time Enhancement, Registration, and Fusion for an Enhanced Vision System

    NASA Technical Reports Server (NTRS)

    Hines, Glenn D.; Rahman, Zia-ur; Jobson, Daniel J.; Woodell, Glenn A.

    2006-01-01

    Over the last few years NASA Langley Research Center (LaRC) has been developing an Enhanced Vision System (EVS) to aid pilots while flying in poor visibility conditions. The EVS captures imagery using two infrared video cameras. The cameras are placed in an enclosure that is mounted and flown forward-looking underneath the NASA LaRC ARIES 757 aircraft. The data streams from the cameras are processed in real-time and displayed on monitors on-board the aircraft. With proper processing the camera system can provide better-than-human-observed imagery particularly during poor visibility conditions. However, to obtain this goal requires several different stages of processing including enhancement, registration, and fusion, and specialized processing hardware for real-time performance. We are using a real-time implementation of the Retinex algorithm for image enhancement, affine transformations for registration, and weighted sums to perform fusion. All of the algorithms are executed on a single TI DM642 digital signal processor (DSP) clocked at 720 MHz. The image processing components were added to the EVS system, tested, and demonstrated during flight tests in August and September of 2005. In this paper we briefly discuss the EVS image processing hardware and algorithms. We then discuss implementation issues and show examples of the results obtained during flight tests.

  12. Groupwise registration of MR brain images with tumors.

    PubMed

    Tang, Zhenyu; Wu, Yihong; Fan, Yong

    2017-08-04

    A novel groupwise image registration framework is developed for registering MR brain images with tumors. Our method iteratively estimates a normal-appearance counterpart for each tumor image to be registered and constructs a directed graph (digraph) of normal-appearance images to guide the groupwise image registration. Particularly, our method maps each tumor image to its normal appearance counterpart by identifying and inpainting brain tumor regions with intensity information estimated using a low-rank plus sparse matrix decomposition based image representation technique. The estimated normal-appearance images are groupwisely registered to a group center image guided by a digraph of images so that the total length of 'image registration paths' to be the minimum, and then the original tumor images are warped to the group center image using the resulting deformation fields. We have evaluated our method based on both simulated and real MR brain tumor images. The registration results were evaluated with overlap measures of corresponding brain regions and average entropy of image intensity information, and Wilcoxon signed rank tests were adopted to compare different methods with respect to their regional overlap measures. Compared with a groupwise image registration method that is applied to normal-appearance images estimated using the traditional low-rank plus sparse matrix decomposition based image inpainting, our method achieved higher image registration accuracy with statistical significance (p  =  7.02  ×  10 -9 ).

  13. Compiling mortality statistics from civil registration systems in Viet Nam: the long road ahead.

    PubMed

    Rao, Chalapati; Osterberger, Brigitta; Anh, Tran Dam; MacDonald, Malcolm; Chúc, Nguyen Thi Kim; Hill, Peter S

    2010-01-01

    Accurate mortality statistics, needed for population health assessment, health policy and research, are best derived from data in vital registration systems. However, mortality statistics from vital registration systems are not available for several countries including Viet Nam. We used a mixed methods case study approach to assess vital registration operations in 2006 in three provinces in Viet Nam (Hòa Bình, Thùa Thiên-Hué and Bình Duong), and provide recommendations to strengthen vital registration systems in the country. For each province we developed life tables from population and mortality data compiled by sex and age group. Demographic methods were used to estimate completeness of death registration as an indicator of vital registration performance. Qualitative methods (document review, key informant interviews and focus group discussions) were used to assess administrative, technical and societal aspects of vital registration systems. Completeness of death registration was low in all three provinces. Problems were identified with the legal framework for registration of early neonatal deaths and deaths of temporary residents or migrants. The system does not conform to international standards for reporting cause of death or for recording detailed statistics by age, sex and cause of death. Capacity-building along with an intersectoral coordination committee involving the Ministries of Justice and Health and the General Statistics Office would improve the vital registration system, especially with regard to procedures for death registration. There appears to be strong political support for sentinel surveillance systems to generate reliable mortality statistics in Viet Nam.

  14. Ultrasound fusion image error correction using subject-specific liver motion model and automatic image registration.

    PubMed

    Yang, Minglei; Ding, Hui; Zhu, Lei; Wang, Guangzhi

    2016-12-01

    Ultrasound fusion imaging is an emerging tool and benefits a variety of clinical applications, such as image-guided diagnosis and treatment of hepatocellular carcinoma and unresectable liver metastases. However, respiratory liver motion-induced misalignment of multimodal images (i.e., fusion error) compromises the effectiveness and practicability of this method. The purpose of this paper is to develop a subject-specific liver motion model and automatic registration-based method to correct the fusion error. An online-built subject-specific motion model and automatic image registration method for 2D ultrasound-3D magnetic resonance (MR) images were combined to compensate for the respiratory liver motion. The key steps included: 1) Build a subject-specific liver motion model for current subject online and perform the initial registration of pre-acquired 3D MR and intra-operative ultrasound images; 2) During fusion imaging, compensate for liver motion first using the motion model, and then using an automatic registration method to further correct the respiratory fusion error. Evaluation experiments were conducted on liver phantom and five subjects. In the phantom study, the fusion error (superior-inferior axis) was reduced from 13.90±2.38mm to 4.26±0.78mm by using the motion model only. The fusion error further decreased to 0.63±0.53mm by using the registration method. The registration method also decreased the rotation error from 7.06±0.21° to 1.18±0.66°. In the clinical study, the fusion error was reduced from 12.90±9.58mm to 6.12±2.90mm by using the motion model alone. Moreover, the fusion error decreased to 1.96±0.33mm by using the registration method. The proposed method can effectively correct the respiration-induced fusion error to improve the fusion image quality. This method can also reduce the error correction dependency on the initial registration of ultrasound and MR images. Overall, the proposed method can improve the clinical practicability of ultrasound fusion imaging. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Landmark-based elastic registration using approximating thin-plate splines.

    PubMed

    Rohr, K; Stiehl, H S; Sprengel, R; Buzug, T M; Weese, J; Kuhn, M H

    2001-06-01

    We consider elastic image registration based on a set of corresponding anatomical point landmarks and approximating thin-plate splines. This approach is an extension of the original interpolating thin-plate spline approach and allows to take into account landmark localization errors. The extension is important for clinical applications since landmark extraction is always prone to error. Our approach is based on a minimizing functional and can cope with isotropic as well as anisotropic landmark errors. In particular, in the latter case it is possible to include different types of landmarks, e.g., unique point landmarks as well as arbitrary edge points. Also, the scheme is general with respect to the image dimension and the order of smoothness of the underlying functional. Optimal affine transformations as well as interpolating thin-plate splines are special cases of this scheme. To localize landmarks we use a semi-automatic approach which is based on three-dimensional (3-D) differential operators. Experimental results are presented for two-dimensional as well as 3-D tomographic images of the human brain.

  16. Surface-based prostate registration with biomechanical regularization

    NASA Astrophysics Data System (ADS)

    van de Ven, Wendy J. M.; Hu, Yipeng; Barentsz, Jelle O.; Karssemeijer, Nico; Barratt, Dean; Huisman, Henkjan J.

    2013-03-01

    Adding MR-derived information to standard transrectal ultrasound (TRUS) images for guiding prostate biopsy is of substantial clinical interest. A tumor visible on MR images can be projected on ultrasound by using MRUS registration. A common approach is to use surface-based registration. We hypothesize that biomechanical modeling will better control deformation inside the prostate than a regular surface-based registration method. We developed a novel method by extending a surface-based registration with finite element (FE) simulation to better predict internal deformation of the prostate. For each of six patients, a tetrahedral mesh was constructed from the manual prostate segmentation. Next, the internal prostate deformation was simulated using the derived radial surface displacement as boundary condition. The deformation field within the gland was calculated using the predicted FE node displacements and thin-plate spline interpolation. We tested our method on MR guided MR biopsy imaging data, as landmarks can easily be identified on MR images. For evaluation of the registration accuracy we used 45 anatomical landmarks located in all regions of the prostate. Our results show that the median target registration error of a surface-based registration with biomechanical regularization is 1.88 mm, which is significantly different from 2.61 mm without biomechanical regularization. We can conclude that biomechanical FE modeling has the potential to improve the accuracy of multimodal prostate registration when comparing it to regular surface-based registration.

  17. Effective 2D-3D medical image registration using Support Vector Machine.

    PubMed

    Qi, Wenyuan; Gu, Lixu; Zhao, Qiang

    2008-01-01

    Registration of pre-operative 3D volume dataset and intra-operative 2D images gradually becomes an important technique to assist radiologists in diagnosing complicated diseases easily and quickly. In this paper, we proposed a novel 2D/3D registration framework based on Support Vector Machine (SVM) to compensate the disadvantages of generating large number of DRR images in the stage of intra-operation. Estimated similarity metric distribution could be built up from the relationship between parameters of transform and prior sparse target metric values by means of SVR method. Based on which, global optimal parameters of transform are finally searched out by an optimizer in order to guide 3D volume dataset to match intra-operative 2D image. Experiments reveal that our proposed registration method improved performance compared to conventional registration method and also provided a precise registration result efficiently.

  18. Deformable image registration with content mismatch: a demons variant to account for added material and surgical devices in the target image

    NASA Astrophysics Data System (ADS)

    Nithiananthan, S.; Uneri, A.; Schafer, S.; Mirota, D.; Otake, Y.; Stayman, J. W.; Zbijewski, W.; Khanna, A. J.; Reh, D. D.; Gallia, G. L.; Siewerdsen, J. H.

    2013-03-01

    Fast, accurate, deformable image registration is an important aspect of image-guided interventions. Among the factors that can confound registration is the presence of additional material in the intraoperative image - e.g., contrast bolus or a surgical implant - that was not present in the prior image. Existing deformable registration methods generally fail to account for tissue excised between image acquisitions and typically simply "move" voxels within the images with no ability to account for tissue that is removed or introduced between scans. We present a variant of the Demons algorithm to accommodate such content mismatch. The approach combines segmentation of mismatched content with deformable registration featuring an extra pseudo-spatial dimension representing a reservoir from which material can be drawn into the registered image. Previous work tested the registration method in the presence of tissue excision ("missing tissue"). The current paper tests the method in the presence of additional material in the target image and presents a general method by which either missing or additional material can be accommodated. The method was tested in phantom studies, simulations, and cadaver models in the context of intraoperative cone-beam CT with three examples of content mismatch: a variable-diameter bolus (contrast injection); surgical device (rod), and additional material (bone cement). Registration accuracy was assessed in terms of difference images and normalized cross correlation (NCC). We identify the difficulties that traditional registration algorithms encounter when faced with content mismatch and evaluate the ability of the proposed method to overcome these challenges.

  19. Automated replication of cone beam CT-guided treatments in the Pinnacle(3) treatment planning system for adaptive radiotherapy.

    PubMed

    Hargrave, Catriona; Mason, Nicole; Guidi, Robyn; Miller, Julie-Anne; Becker, Jillian; Moores, Matthew; Mengersen, Kerrie; Poulsen, Michael; Harden, Fiona

    2016-03-01

    Time-consuming manual methods have been required to register cone-beam computed tomography (CBCT) images with plans in the Pinnacle(3) treatment planning system in order to replicate delivered treatments for adaptive radiotherapy. These methods rely on fiducial marker (FM) placement during CBCT acquisition or the image mid-point to localise the image isocentre. A quality assurance study was conducted to validate an automated CBCT-plan registration method utilising the Digital Imaging and Communications in Medicine (DICOM) Structure Set (RS) and Spatial Registration (RE) files created during online image-guided radiotherapy (IGRT). CBCTs of a phantom were acquired with FMs and predetermined setup errors using various online IGRT workflows. The CBCTs, DICOM RS and RE files were imported into Pinnacle(3) plans of the phantom and the resulting automated CBCT-plan registrations were compared to existing manual methods. A clinical protocol for the automated method was subsequently developed and tested retrospectively using CBCTs and plans for six bladder patients. The automated CBCT-plan registration method was successfully applied to thirty-four phantom CBCT images acquired with an online 0 mm action level workflow. Ten CBCTs acquired with other IGRT workflows required manual workarounds. This was addressed during the development and testing of the clinical protocol using twenty-eight patient CBCTs. The automated CBCT-plan registrations were instantaneous, replicating delivered treatments in Pinnacle(3) with errors of ±0.5 mm. These errors were comparable to mid-point-dependant manual registrations but superior to FM-dependant manual registrations. The automated CBCT-plan registration method quickly and reliably replicates delivered treatments in Pinnacle(3) for adaptive radiotherapy.

  20. Adaptive Diffeomorphic Multiresolution Demons and Their Application to Same Modality Medical Image Registration with Large Deformation

    PubMed Central

    Wang, Chang; Ren, Qiongqiong; Qin, Xin

    2018-01-01

    Diffeomorphic demons can guarantee smooth and reversible deformation and avoid unreasonable deformation. However, the number of iterations needs to be set manually, and this greatly influences the registration result. In order to solve this problem, we proposed adaptive diffeomorphic multiresolution demons in this paper. We used an optimized framework with nonrigid registration and diffeomorphism strategy, designed a similarity energy function based on grey value, and stopped iterations adaptively. This method was tested by synthetic image and same modality medical image. Large deformation was simulated by rotational distortion and extrusion transform, medical image registration with large deformation was performed, and quantitative analyses were conducted using the registration evaluation indexes, and the influence of different driving forces and parameters on the registration result was analyzed. The registration results of same modality medical images were compared with those obtained using active demons, additive demons, and diffeomorphic demons. Quantitative analyses showed that the proposed method's normalized cross-correlation coefficient and structural similarity were the highest and mean square error was the lowest. Medical image registration with large deformation could be performed successfully; evaluation indexes remained stable with an increase in deformation strength. The proposed method is effective and robust, and it can be applied to nonrigid registration of same modality medical images with large deformation.

  1. Adaptive Diffeomorphic Multiresolution Demons and Their Application to Same Modality Medical Image Registration with Large Deformation.

    PubMed

    Wang, Chang; Ren, Qiongqiong; Qin, Xin; Yu, Yi

    2018-01-01

    Diffeomorphic demons can guarantee smooth and reversible deformation and avoid unreasonable deformation. However, the number of iterations needs to be set manually, and this greatly influences the registration result. In order to solve this problem, we proposed adaptive diffeomorphic multiresolution demons in this paper. We used an optimized framework with nonrigid registration and diffeomorphism strategy, designed a similarity energy function based on grey value, and stopped iterations adaptively. This method was tested by synthetic image and same modality medical image. Large deformation was simulated by rotational distortion and extrusion transform, medical image registration with large deformation was performed, and quantitative analyses were conducted using the registration evaluation indexes, and the influence of different driving forces and parameters on the registration result was analyzed. The registration results of same modality medical images were compared with those obtained using active demons, additive demons, and diffeomorphic demons. Quantitative analyses showed that the proposed method's normalized cross-correlation coefficient and structural similarity were the highest and mean square error was the lowest. Medical image registration with large deformation could be performed successfully; evaluation indexes remained stable with an increase in deformation strength. The proposed method is effective and robust, and it can be applied to nonrigid registration of same modality medical images with large deformation.

  2. Registration of organs with sliding interfaces and changing topologies

    NASA Astrophysics Data System (ADS)

    Berendsen, Floris F.; Kotte, Alexis N. T. J.; Viergever, Max A.; Pluim, Josien P. W.

    2014-03-01

    Smoothness and continuity assumptions on the deformation field in deformable image registration do not hold for applications where the imaged objects have sliding interfaces. Recent extensions to deformable image registration that accommodate for sliding motion of organs are limited to sliding motion along approximately planar surfaces or cannot model sliding that changes the topological configuration in case of multiple organs. We propose a new extension to free-form image registration that is not limited in this way. Our method uses a transformation model that consists of uniform B-spline transformations for each organ region separately, which is based on segmentation of one image. Since this model can create overlapping regions or gaps between regions, we introduce a penalty term that minimizes this undesired effect. The penalty term acts on the surfaces of the organ regions and is optimized simultaneously with the image similarity. To evaluate our method registrations were performed on publicly available inhale-exhale CT scans for which performances of other methods are known. Target registration errors are computed on dense landmark sets that are available with these datasets. On these data our method outperforms the other methods in terms of target registration error and, where applicable, also in terms of overlap and gap volumes. The approximation of the other methods of sliding motion along planar surfaces is reasonably well suited for the motion present in the lung data. The ability of our method to handle sliding along curved boundaries and for changing region topology configurations was demonstrated on synthetic images.

  3. [Optimization of end-tool parameters based on robot hand-eye calibration].

    PubMed

    Zhang, Lilong; Cao, Tong; Liu, Da

    2017-04-01

    A new one-time registration method was developed in this research for hand-eye calibration of a surgical robot to simplify the operation process and reduce the preparation time. And a new and practical method is introduced in this research to optimize the end-tool parameters of the surgical robot based on analysis of the error sources in this registration method. In the process with one-time registration method, firstly a marker on the end-tool of the robot was recognized by a fixed binocular camera, and then the orientation and position of the marker were calculated based on the joint parameters of the robot. Secondly the relationship between the camera coordinate system and the robot base coordinate system could be established to complete the hand-eye calibration. Because of manufacturing and assembly errors of robot end-tool, an error equation was established with the transformation matrix between the robot end coordinate system and the robot end-tool coordinate system as the variable. Numerical optimization was employed to optimize end-tool parameters of the robot. The experimental results showed that the one-time registration method could significantly improve the efficiency of the robot hand-eye calibration compared with the existing methods. The parameter optimization method could significantly improve the absolute positioning accuracy of the one-time registration method. The absolute positioning accuracy of the one-time registration method can meet the requirements of the clinical surgery.

  4. Automated atlas-based clustering of white matter fiber tracts from DTMRI.

    PubMed

    Maddah, Mahnaz; Mewes, Andrea U J; Haker, Steven; Grimson, W Eric L; Warfield, Simon K

    2005-01-01

    A new framework is presented for clustering fiber tracts into anatomically known bundles. This work is motivated by medical applications in which variation analysis of known bundles of fiber tracts in the human brain is desired. To include the anatomical knowledge in the clustering, we invoke an atlas of fiber tracts, labeled by the number of bundles of interest. In this work, we construct such an atlas and use it to cluster all fiber tracts in the white matter. To build the atlas, we start with a set of labeled ROIs specified by an expert and extract the fiber tracts initiating from each ROI. Affine registration is used to project the extracted fiber tracts of each subject to the atlas, whereas their B-spline representation is used to efficiently compare them to the fiber tracts in the atlas and assign cluster labels. Expert visual inspection of the result confirms that the proposed method is very promising and efficient in clustering of the known bundles of fiber tracts.

  5. 77 FR 43078 - Federal Acquisition Regulation; Information Collection; Central Contractor Registration

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-23

    ...; Information Collection; Central Contractor Registration AGENCY: Department of Defense (DOD), General Services... requirement concerning the Central Contractor Registration database. Public comments are particularly invited... Information Collection 9000- 0159, Central Contractor Registration, by any of the following methods...

  6. 78 FR 12316 - Federal Acquisition Regulation; Information Collection; Central Contractor Registration

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-22

    ...; Information Collection; Central Contractor Registration AGENCIES: Department of Defense (DOD), General... collection requirement concerning the Central Contractor Registration database. A notice was published in the... Information Collection 9000- 0159, Central Contractor Registration, by any of the following methods...

  7. α-Information Based Registration of Dynamic Scans for Magnetic Resonance Cystography

    PubMed Central

    Han, Hao; Lin, Qin; Li, Lihong; Duan, Chaijie; Lu, Hongbing; Li, Haifang; Yan, Zengmin; Fitzgerald, John

    2015-01-01

    To continue our effort on developing magnetic resonance (MR) cystography, we introduce a novel non–rigid 3D registration method to compensate for bladder wall motion and deformation in dynamic MR scans, which are impaired by relatively low signal–to–noise ratio in each time frame. The registration method is developed on the similarity measure of α–information, which has the potential of achieving higher registration accuracy than the commonly-used mutual information (MI) measure for either mono-modality or multi-modality image registration. The α–information metric was also demonstrated to be superior to both the mean squares and the cross-correlation metrics in multi-modality scenarios. The proposed α–registration method was applied for bladder motion compensation via real patient studies, and its effect to the automatic and accurate segmentation of bladder wall was also evaluated. Compared with the prevailing MI-based image registration approach, the presented α–information based registration was more effective to capture the bladder wall motion and deformation, which ensured the success of the following bladder wall segmentation to achieve the goal of evaluating the entire bladder wall for detection and diagnosis of abnormality. PMID:26087506

  8. COMPARISON OF VOLUMETRIC REGISTRATION ALGORITHMS FOR TENSOR-BASED MORPHOMETRY

    PubMed Central

    Villalon, Julio; Joshi, Anand A.; Toga, Arthur W.; Thompson, Paul M.

    2015-01-01

    Nonlinear registration of brain MRI scans is often used to quantify morphological differences associated with disease or genetic factors. Recently, surface-guided fully 3D volumetric registrations have been developed that combine intensity-guided volume registrations with cortical surface constraints. In this paper, we compare one such algorithm to two popular high-dimensional volumetric registration methods: large-deformation viscous fluid registration, formulated in a Riemannian framework, and the diffeomorphic “Demons” algorithm. We performed an objective morphometric comparison, by using a large MRI dataset from 340 young adult twin subjects to examine 3D patterns of correlations in anatomical volumes. Surface-constrained volume registration gave greater effect sizes for detecting morphometric associations near the cortex, while the other two approaches gave greater effects sizes subcortically. These findings suggest novel ways to combine the advantages of multiple methods in the future. PMID:26925198

  9. Optical diamagnetic biosensor for immunocomplexes on beads

    NASA Astrophysics Data System (ADS)

    Norina, Svetlana B.

    2000-12-01

    In the present work, diamagnetic separation parameters for the porous beads are studied using optical video recording microscopy. The possible direct amount determination of single or double macromolecular layers immobilized in the meshes of the porous beads is demonstrated for the concentrations' range used in heterogenic immunotest and the affinity chromatography, where the direct rapid detection of ligands within sorbent particles is known to be the actual task. A gradient diamagnetic biosensor is described as suitable for rapid quantitative detection of single or double macromolecular layers in porous nonmagnetic beads. Measurements of capture traveling time or accumulation radius in gradient magnetic field have shown that it is possible to determine 0.20 mg/ml of macromolecular amount within several seconds. The portative devices were made on the base of the fabre optic technique to detect accumulation radius of collected beads in two gradient magnetic positions: diamagnetic and paramagnetic zones of magnetized wire with 55 μm in diameter and to registrate with a lot of fabre wires having 30 μm in diameters. The successive procedures of the present method can be described by: the obtaining of agarose immuno-beads, the incubation of beads with the ligand sample or the injection of sample through affinity mini-column, the submerging of the loaded beads into the glass cell containing Ni-wire or the narrow gap of magnetic poles; the computational obtaining of immuno- parameters; binding constants, accumulation radius. Several biotechnological applications of the biosensor are presented on sorbent beads, human lymphocytes.

  10. larvalign: Aligning Gene Expression Patterns from the Larval Brain of Drosophila melanogaster.

    PubMed

    Muenzing, Sascha E A; Strauch, Martin; Truman, James W; Bühler, Katja; Thum, Andreas S; Merhof, Dorit

    2018-01-01

    The larval brain of the fruit fly Drosophila melanogaster is a small, tractable model system for neuroscience. Genes for fluorescent marker proteins can be expressed in defined, spatially restricted neuron populations. Here, we introduce the methods for 1) generating a standard template of the larval central nervous system (CNS), 2) spatial mapping of expression patterns from different larvae into a reference space defined by the standard template. We provide a manually annotated gold standard that serves for evaluation of the registration framework involved in template generation and mapping. A method for registration quality assessment enables the automatic detection of registration errors, and a semi-automatic registration method allows one to correct registrations, which is a prerequisite for a high-quality, curated database of expression patterns. All computational methods are available within the larvalign software package: https://github.com/larvalign/larvalign/releases/tag/v1.0.

  11. Image registration assessment in radiotherapy image guidance based on control chart monitoring.

    PubMed

    Xia, Wenyao; Breen, Stephen L

    2018-04-01

    Image guidance with cone beam computed tomography in radiotherapy can guarantee the precision and accuracy of patient positioning prior to treatment delivery. During the image guidance process, operators need to take great effort to evaluate the image guidance quality before correcting a patient's position. This work proposes an image registration assessment method based on control chart monitoring to reduce the effort taken by the operator. According to the control chart plotted by daily registration scores of each patient, the proposed method can quickly detect both alignment errors and image quality inconsistency. Therefore, the proposed method can provide a clear guideline for the operators to identify unacceptable image quality and unacceptable image registration with minimal effort. Experimental results demonstrate that by using control charts from a clinical database of 10 patients undergoing prostate radiotherapy, the proposed method can quickly identify out-of-control signals and find special cause of out-of-control registration events.

  12. Immobilizing affinity proteins to nitrocellulose: a toolbox for paper-based assay developers.

    PubMed

    Holstein, Carly A; Chevalier, Aaron; Bennett, Steven; Anderson, Caitlin E; Keniston, Karen; Olsen, Cathryn; Li, Bing; Bales, Brian; Moore, David R; Fu, Elain; Baker, David; Yager, Paul

    2016-02-01

    To enable enhanced paper-based diagnostics with improved detection capabilities, new methods are needed to immobilize affinity reagents to porous substrates, especially for capture molecules other than IgG. To this end, we have developed and characterized three novel methods for immobilizing protein-based affinity reagents to nitrocellulose membranes. We have demonstrated these methods using recombinant affinity proteins for the influenza surface protein hemagglutinin, leveraging the customizability of these recombinant "flu binders" for the design of features for immobilization. The three approaches shown are: (1) covalent attachment of thiolated affinity protein to an epoxide-functionalized nitrocellulose membrane, (2) attachment of biotinylated affinity protein through a nitrocellulose-binding streptavidin anchor protein, and (3) fusion of affinity protein to a novel nitrocellulose-binding anchor protein for direct coupling and immobilization. We also characterized the use of direct adsorption for the flu binders, as a point of comparison and motivation for these novel methods. Finally, we demonstrated that these novel methods can provide improved performance to an influenza hemagglutinin assay, compared to a traditional antibody-based capture system. Taken together, this work advances the toolkit available for the development of next-generation paper-based diagnostics.

  13. Determine equilibrium dissociation constant of drug-membrane receptor affinity using the cell membrane chromatography relative standard method.

    PubMed

    Ma, Weina; Yang, Liu; Lv, Yanni; Fu, Jia; Zhang, Yanmin; He, Langchong

    2017-06-23

    The equilibrium dissociation constant (K D ) of drug-membrane receptor affinity is the basic parameter that reflects the strength of interaction. The cell membrane chromatography (CMC) method is an effective technique to study the characteristics of drug-membrane receptor affinity. In this study, the K D value of CMC relative standard method for the determination of drug-membrane receptor affinity was established to analyze the relative K D values of drugs binding to the membrane receptors (Epidermal growth factor receptor and angiotensin II receptor). The K D values obtained by the CMC relative standard method had a strong correlation with those obtained by the frontal analysis method. Additionally, the K D values obtained by CMC relative standard method correlated with pharmacological activity of the drug being evaluated. The CMC relative standard method is a convenient and effective method to evaluate drug-membrane receptor affinity. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. A Bayesian nonrigid registration method to enhance intraoperative target definition in image-guided prostate procedures through uncertainty characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pursley, Jennifer; Risholm, Petter; Fedorov, Andriy

    2012-11-15

    Purpose: This study introduces a probabilistic nonrigid registration method for use in image-guided prostate brachytherapy. Intraoperative imaging for prostate procedures, usually transrectal ultrasound (TRUS), is typically inferior to diagnostic-quality imaging of the pelvis such as endorectal magnetic resonance imaging (MRI). MR images contain superior detail of the prostate boundaries and provide substructure features not otherwise visible. Previous efforts to register diagnostic prostate images with the intraoperative coordinate system have been deterministic and did not offer a measure of the registration uncertainty. The authors developed a Bayesian registration method to estimate the posterior distribution on deformations and provide a case-specific measuremore » of the associated registration uncertainty. Methods: The authors adapted a biomechanical-based probabilistic nonrigid method to register diagnostic to intraoperative images by aligning a physician's segmentations of the prostate in the two images. The posterior distribution was characterized with a Markov Chain Monte Carlo method; the maximum a posteriori deformation and the associated uncertainty were estimated from the collection of deformation samples drawn from the posterior distribution. The authors validated the registration method using a dataset created from ten patients with MRI-guided prostate biopsies who had both diagnostic and intraprocedural 3 Tesla MRI scans. The accuracy and precision of the estimated posterior distribution on deformations were evaluated from two predictive distance distributions: between the deformed central zone-peripheral zone (CZ-PZ) interface and the physician-labeled interface, and based on physician-defined landmarks. Geometric margins on the registration of the prostate's peripheral zone were determined from the posterior predictive distance to the CZ-PZ interface separately for the base, mid-gland, and apical regions of the prostate. Results: The authors observed variation in the shape and volume of the segmented prostate in diagnostic and intraprocedural images. The probabilistic method allowed us to convey registration results in terms of posterior distributions, with the dispersion providing a patient-specific estimate of the registration uncertainty. The median of the predictive distance distribution between the deformed prostate boundary and the segmented boundary was Less-Than-Or-Slanted-Equal-To 3 mm (95th percentiles within {+-}4 mm) for all ten patients. The accuracy and precision of the internal deformation was evaluated by comparing the posterior predictive distance distribution for the CZ-PZ interface for each patient, with the median distance ranging from -0.6 to 2.4 mm. Posterior predictive distances between naturally occurring landmarks showed registration errors of Less-Than-Or-Slanted-Equal-To 5 mm in any direction. The uncertainty was not a global measure, but instead was local and varied throughout the registration region. Registration uncertainties were largest in the apical region of the prostate. Conclusions: Using a Bayesian nonrigid registration method, the authors determined the posterior distribution on deformations between diagnostic and intraprocedural MR images and quantified the uncertainty in the registration results. The feasibility of this approach was tested and results were positive. The probabilistic framework allows us to evaluate both patient-specific and location-specific estimates of the uncertainty in the registration result. Although the framework was tested on MR-guided procedures, the preliminary results suggest that it may be applied to TRUS-guided procedures as well, where the addition of diagnostic MR information may have a larger impact on target definition and clinical guidance.« less

  15. A Bayesian nonrigid registration method to enhance intraoperative target definition in image-guided prostate procedures through uncertainty characterization

    PubMed Central

    Pursley, Jennifer; Risholm, Petter; Fedorov, Andriy; Tuncali, Kemal; Fennessy, Fiona M.; Wells, William M.; Tempany, Clare M.; Cormack, Robert A.

    2012-01-01

    Purpose: This study introduces a probabilistic nonrigid registration method for use in image-guided prostate brachytherapy. Intraoperative imaging for prostate procedures, usually transrectal ultrasound (TRUS), is typically inferior to diagnostic-quality imaging of the pelvis such as endorectal magnetic resonance imaging (MRI). MR images contain superior detail of the prostate boundaries and provide substructure features not otherwise visible. Previous efforts to register diagnostic prostate images with the intraoperative coordinate system have been deterministic and did not offer a measure of the registration uncertainty. The authors developed a Bayesian registration method to estimate the posterior distribution on deformations and provide a case-specific measure of the associated registration uncertainty. Methods: The authors adapted a biomechanical-based probabilistic nonrigid method to register diagnostic to intraoperative images by aligning a physician's segmentations of the prostate in the two images. The posterior distribution was characterized with a Markov Chain Monte Carlo method; the maximum a posteriori deformation and the associated uncertainty were estimated from the collection of deformation samples drawn from the posterior distribution. The authors validated the registration method using a dataset created from ten patients with MRI-guided prostate biopsies who had both diagnostic and intraprocedural 3 Tesla MRI scans. The accuracy and precision of the estimated posterior distribution on deformations were evaluated from two predictive distance distributions: between the deformed central zone-peripheral zone (CZ-PZ) interface and the physician-labeled interface, and based on physician-defined landmarks. Geometric margins on the registration of the prostate's peripheral zone were determined from the posterior predictive distance to the CZ-PZ interface separately for the base, mid-gland, and apical regions of the prostate. Results: The authors observed variation in the shape and volume of the segmented prostate in diagnostic and intraprocedural images. The probabilistic method allowed us to convey registration results in terms of posterior distributions, with the dispersion providing a patient-specific estimate of the registration uncertainty. The median of the predictive distance distribution between the deformed prostate boundary and the segmented boundary was ⩽3 mm (95th percentiles within ±4 mm) for all ten patients. The accuracy and precision of the internal deformation was evaluated by comparing the posterior predictive distance distribution for the CZ-PZ interface for each patient, with the median distance ranging from −0.6 to 2.4 mm. Posterior predictive distances between naturally occurring landmarks showed registration errors of ⩽5 mm in any direction. The uncertainty was not a global measure, but instead was local and varied throughout the registration region. Registration uncertainties were largest in the apical region of the prostate. Conclusions: Using a Bayesian nonrigid registration method, the authors determined the posterior distribution on deformations between diagnostic and intraprocedural MR images and quantified the uncertainty in the registration results. The feasibility of this approach was tested and results were positive. The probabilistic framework allows us to evaluate both patient-specific and location-specific estimates of the uncertainty in the registration result. Although the framework was tested on MR-guided procedures, the preliminary results suggest that it may be applied to TRUS-guided procedures as well, where the addition of diagnostic MR information may have a larger impact on target definition and clinical guidance. PMID:23127078

  16. A hybrid patient-specific biomechanical model based image registration method for the motion estimation of lungs.

    PubMed

    Han, Lianghao; Dong, Hua; McClelland, Jamie R; Han, Liangxiu; Hawkes, David J; Barratt, Dean C

    2017-07-01

    This paper presents a new hybrid biomechanical model-based non-rigid image registration method for lung motion estimation. In the proposed method, a patient-specific biomechanical modelling process captures major physically realistic deformations with explicit physical modelling of sliding motion, whilst a subsequent non-rigid image registration process compensates for small residuals. The proposed algorithm was evaluated with 10 4D CT datasets of lung cancer patients. The target registration error (TRE), defined as the Euclidean distance of landmark pairs, was significantly lower with the proposed method (TRE = 1.37 mm) than with biomechanical modelling (TRE = 3.81 mm) and intensity-based image registration without specific considerations for sliding motion (TRE = 4.57 mm). The proposed method achieved a comparable accuracy as several recently developed intensity-based registration algorithms with sliding handling on the same datasets. A detailed comparison on the distributions of TREs with three non-rigid intensity-based algorithms showed that the proposed method performed especially well on estimating the displacement field of lung surface regions (mean TRE = 1.33 mm, maximum TRE = 5.3 mm). The effects of biomechanical model parameters (such as Poisson's ratio, friction and tissue heterogeneity) on displacement estimation were investigated. The potential of the algorithm in optimising biomechanical models of lungs through analysing the pattern of displacement compensation from the image registration process has also been demonstrated. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Improving alignment in Tract-based spatial statistics: evaluation and optimization of image registration.

    PubMed

    de Groot, Marius; Vernooij, Meike W; Klein, Stefan; Ikram, M Arfan; Vos, Frans M; Smith, Stephen M; Niessen, Wiro J; Andersson, Jesper L R

    2013-08-01

    Anatomical alignment in neuroimaging studies is of such importance that considerable effort is put into improving the registration used to establish spatial correspondence. Tract-based spatial statistics (TBSS) is a popular method for comparing diffusion characteristics across subjects. TBSS establishes spatial correspondence using a combination of nonlinear registration and a "skeleton projection" that may break topological consistency of the transformed brain images. We therefore investigated feasibility of replacing the two-stage registration-projection procedure in TBSS with a single, regularized, high-dimensional registration. To optimize registration parameters and to evaluate registration performance in diffusion MRI, we designed an evaluation framework that uses native space probabilistic tractography for 23 white matter tracts, and quantifies tract similarity across subjects in standard space. We optimized parameters for two registration algorithms on two diffusion datasets of different quality. We investigated reproducibility of the evaluation framework, and of the optimized registration algorithms. Next, we compared registration performance of the regularized registration methods and TBSS. Finally, feasibility and effect of incorporating the improved registration in TBSS were evaluated in an example study. The evaluation framework was highly reproducible for both algorithms (R(2) 0.993; 0.931). The optimal registration parameters depended on the quality of the dataset in a graded and predictable manner. At optimal parameters, both algorithms outperformed the registration of TBSS, showing feasibility of adopting such approaches in TBSS. This was further confirmed in the example experiment. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Consistency-based rectification of nonrigid registrations

    PubMed Central

    Gass, Tobias; Székely, Gábor; Goksel, Orcun

    2015-01-01

    Abstract. We present a technique to rectify nonrigid registrations by improving their group-wise consistency, which is a widely used unsupervised measure to assess pair-wise registration quality. While pair-wise registration methods cannot guarantee any group-wise consistency, group-wise approaches typically enforce perfect consistency by registering all images to a common reference. However, errors in individual registrations to the reference then propagate, distorting the mean and accumulating in the pair-wise registrations inferred via the reference. Furthermore, the assumption that perfect correspondences exist is not always true, e.g., for interpatient registration. The proposed consistency-based registration rectification (CBRR) method addresses these issues by minimizing the group-wise inconsistency of all pair-wise registrations using a regularized least-squares algorithm. The regularization controls the adherence to the original registration, which is additionally weighted by the local postregistration similarity. This allows CBRR to adaptively improve consistency while locally preserving accurate pair-wise registrations. We show that the resulting registrations are not only more consistent, but also have lower average transformation error when compared to known transformations in simulated data. On clinical data, we show improvements of up to 50% target registration error in breathing motion estimation from four-dimensional MRI and improvements in atlas-based segmentation quality of up to 65% in terms of mean surface distance in three-dimensional (3-D) CT. Such improvement was observed consistently using different registration algorithms, dimensionality (two-dimensional/3-D), and modalities (MRI/CT). PMID:26158083

  19. Improving Functional MRI Registration Using Whole-Brain Functional Correlation Tensors.

    PubMed

    Zhou, Yujia; Yap, Pew-Thian; Zhang, Han; Zhang, Lichi; Feng, Qianjin; Shen, Dinggang

    2017-09-01

    Population studies of brain function with resting-state functional magnetic resonance imaging (rs-fMRI) largely rely on the accurate inter-subject registration of functional areas. This is typically achieved through registration of the corresponding T1-weighted MR images with more structural details. However, accumulating evidence has suggested that such strategy cannot well-align functional regions which are not necessarily confined by the anatomical boundaries defined by the T1-weighted MR images. To mitigate this problem, various registration algorithms based directly on rs-fMRI data have been developed, most of which have utilized functional connectivity (FC) as features for registration. However, most of the FC-based registration methods usually extract the functional features only from the thin and highly curved cortical grey matter (GM), posing a great challenge in accurately estimating the whole-brain deformation field. In this paper, we demonstrate that the additional useful functional features can be extracted from brain regions beyond the GM, particularly, white-matter (WM) based on rs-fMRI, for improving the overall functional registration. Specifically, we quantify the local anisotropic correlation patterns of the blood oxygenation level-dependent (BOLD) signals, modeled by functional correlation tensors (FCTs), in both GM and WM. Functional registration is then performed based on multiple components of the whole-brain FCTs using a multichannel Large Deformation Diffeomorphic Metric Mapping (mLDDMM) algorithm. Experimental results show that our proposed method achieves superior functional registration performance, compared with other conventional registration methods.

  20. Integrated bronchoscopic video tracking and 3D CT registration for virtual bronchoscopy

    NASA Astrophysics Data System (ADS)

    Higgins, William E.; Helferty, James P.; Padfield, Dirk R.

    2003-05-01

    Lung cancer assessment involves an initial evaluation of 3D CT image data followed by interventional bronchoscopy. The physician, with only a mental image inferred from the 3D CT data, must guide the bronchoscope through the bronchial tree to sites of interest. Unfortunately, this procedure depends heavily on the physician's ability to mentally reconstruct the 3D position of the bronchoscope within the airways. In order to assist physicians in performing biopsies of interest, we have developed a method that integrates live bronchoscopic video tracking and 3D CT registration. The proposed method is integrated into a system we have been devising for virtual-bronchoscopic analysis and guidance for lung-cancer assessment. Previously, the system relied on a method that only used registration of the live bronchoscopic video to corresponding virtual endoluminal views derived from the 3D CT data. This procedure only performs the registration at manually selected sites; it does not draw upon the motion information inherent in the bronchoscopic video. Further, the registration procedure is slow. The proposed method has the following advantages: (1) it tracks the 3D motion of the bronchoscope using the bronchoscopic video; (2) it uses the tracked 3D trajectory of the bronchoscope to assist in locating sites in the 3D CT "virtual world" to perform the registration. In addition, the method incorporates techniques to: (1) detect and exclude corrupted video frames (to help make the video tracking more robust); (2) accelerate the computation of the many 3D virtual endoluminal renderings (thus, speeding up the registration process). We have tested the integrated tracking-registration method on a human airway-tree phantom and on real human data.

  1. A Review on Medical Image Registration as an Optimization Problem

    PubMed Central

    Song, Guoli; Han, Jianda; Zhao, Yiwen; Wang, Zheng; Du, Huibin

    2017-01-01

    Objective: In the course of clinical treatment, several medical media are required by a phy-sician in order to provide accurate and complete information about a patient. Medical image registra-tion techniques can provide a richer diagnosis and treatment information to doctors and to provide a comprehensive reference source for the researchers involved in image registration as an optimization problem. Methods: The essence of image registration is associating two or more different images spatial asso-ciation, and getting the translation of their spatial relationship. For medical image registration, its pro-cess is not absolute. Its core purpose is finding the conversion relationship between different images. Result: The major step of image registration includes the change of geometrical dimensions, and change of the image of the combination, image similarity measure, iterative optimization and interpo-lation process. Conclusion: The contribution of this review is sort of related image registration research methods, can provide a brief reference for researchers about image registration. PMID:28845149

  2. Accurate CT-MR image registration for deep brain stimulation: a multi-observer evaluation study

    NASA Astrophysics Data System (ADS)

    Rühaak, Jan; Derksen, Alexander; Heldmann, Stefan; Hallmann, Marc; Meine, Hans

    2015-03-01

    Since the first clinical interventions in the late 1980s, Deep Brain Stimulation (DBS) of the subthalamic nucleus has evolved into a very effective treatment option for patients with severe Parkinson's disease. DBS entails the implantation of an electrode that performs high frequency stimulations to a target area deep inside the brain. A very accurate placement of the electrode is a prerequisite for positive therapy outcome. The assessment of the intervention result is of central importance in DBS treatment and involves the registration of pre- and postinterventional scans. In this paper, we present an image processing pipeline for highly accurate registration of postoperative CT to preoperative MR. Our method consists of two steps: a fully automatic pre-alignment using a detection of the skull tip in the CT based on fuzzy connectedness, and an intensity-based rigid registration. The registration uses the Normalized Gradient Fields distance measure in a multilevel Gauss-Newton optimization framework and focuses on a region around the subthalamic nucleus in the MR. The accuracy of our method was extensively evaluated on 20 DBS datasets from clinical routine and compared with manual expert registrations. For each dataset, three independent registrations were available, thus allowing to relate algorithmic with expert performance. Our method achieved an average registration error of 0.95mm in the target region around the subthalamic nucleus as compared to an inter-observer variability of 1.12 mm. Together with the short registration time of about five seconds on average, our method forms a very attractive package that can be considered ready for clinical use.

  3. The influence of the image registration method on the adaptive radiotherapy. A proof of the principle in a selected case of prostate IMRT.

    PubMed

    Berenguer, Roberto; de la Vara, Victoria; Lopez-Honrubia, Veronica; Nuñez, Ana Teresa; Rivera, Miguel; Villas, Maria Victoria; Sabater, Sebastia

    2018-01-01

    To analyse the influence of the image registration method on the adaptive radiotherapy of an IMRT prostate treatment, and to compare the dose accumulation according to 3 different image registration methods with the planned dose. The IMRT prostate patient was CT imaged 3 times throughout his treatment. The prostate, PTV, rectum and bladder were segmented on each CT. A Rigid, a deformable (DIR) B-spline and a DIR with landmarks registration algorithms were employed. The difference between the accumulated doses and planned doses were evaluated by the gamma index. The Dice coefficient and Hausdorff distance was used to evaluate the overlap between volumes, to quantify the quality of the registration. When comparing adaptive vs no adaptive RT, the gamma index calculation showed large differences depending on the image registration method (as much as 87.6% in the case of DIR B-spline). The quality of the registration was evaluated using an index such as the Dice coefficient. This showed that the best result was obtained with DIR with landmarks compared with the rest and it was always above 0.77, reported as a recommended minimum value for prostate studies in a multi-centre review. Apart from showing the importance of the application of an adaptive RT protocol in a particular treatment, this work shows that the election of the registration method is decisive in the result of the adaptive radiotherapy and dose accumulation. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  4. [Medical image elastic registration smoothed by unconstrained optimized thin-plate spline].

    PubMed

    Zhang, Yu; Li, Shuxiang; Chen, Wufan; Liu, Zhexing

    2003-12-01

    Elastic registration of medical image is an important subject in medical image processing. Previous work has concentrated on selecting the corresponding landmarks manually and then using thin-plate spline interpolating to gain the elastic transformation. However, the landmarks extraction is always prone to error, which will influence the registration results. Localizing the landmarks manually is also difficult and time-consuming. We the optimization theory to improve the thin-plate spline interpolation, and based on it, used an automatic method to extract the landmarks. Combining these two steps, we have proposed an automatic, exact and robust registration method and have gained satisfactory registration results.

  5. Self-correcting multi-atlas segmentation

    NASA Astrophysics Data System (ADS)

    Gao, Yi; Wilford, Andrew; Guo, Liang

    2016-03-01

    In multi-atlas segmentation, one typically registers several atlases to the new image, and their respective segmented label images are transformed and fused to form the final segmentation. After each registration, the quality of the registration is reflected by the single global value: the final registration cost. Ideally, if the quality of the registration can be evaluated at each point, independent of the registration process, which also provides a direction in which the deformation can further be improved, the overall segmentation performance can be improved. We propose such a self-correcting multi-atlas segmentation method. The method is applied on hippocampus segmentation from brain images and statistically significantly improvement is observed.

  6. Functional MRI registration with tissue-specific patch-based functional correlation tensors.

    PubMed

    Zhou, Yujia; Zhang, Han; Zhang, Lichi; Cao, Xiaohuan; Yang, Ru; Feng, Qianjin; Yap, Pew-Thian; Shen, Dinggang

    2018-06-01

    Population studies of brain function with resting-state functional magnetic resonance imaging (rs-fMRI) rely on accurate intersubject registration of functional areas. This is typically achieved through registration using high-resolution structural images with more spatial details and better tissue contrast. However, accumulating evidence has suggested that such strategy cannot align functional regions well because functional areas are not necessarily consistent with anatomical structures. To alleviate this problem, a number of registration algorithms based directly on rs-fMRI data have been developed, most of which utilize functional connectivity (FC) features for registration. However, most of these methods usually extract functional features only from the thin and highly curved cortical grey matter (GM), posing great challenges to accurate estimation of whole-brain deformation fields. In this article, we demonstrate that additional useful functional features can also be extracted from the whole brain, not restricted to the GM, particularly the white-matter (WM), for improving the overall functional registration. Specifically, we quantify local anisotropic correlation patterns of the blood oxygenation level-dependent (BOLD) signals using tissue-specific patch-based functional correlation tensors (ts-PFCTs) in both GM and WM. Functional registration is then performed by integrating the features from different tissues using the multi-channel large deformation diffeomorphic metric mapping (mLDDMM) algorithm. Experimental results show that our method achieves superior functional registration performance, compared with conventional registration methods. © 2018 Wiley Periodicals, Inc.

  7. Prostate multimodality image registration based on B-splines and quadrature local energy.

    PubMed

    Mitra, Jhimli; Martí, Robert; Oliver, Arnau; Lladó, Xavier; Ghose, Soumya; Vilanova, Joan C; Meriaudeau, Fabrice

    2012-05-01

    Needle biopsy of the prostate is guided by Transrectal Ultrasound (TRUS) imaging. The TRUS images do not provide proper spatial localization of malignant tissues due to the poor sensitivity of TRUS to visualize early malignancy. Magnetic Resonance Imaging (MRI) has been shown to be sensitive for the detection of early stage malignancy, and therefore, a novel 2D deformable registration method that overlays pre-biopsy MRI onto TRUS images has been proposed. The registration method involves B-spline deformations with Normalized Mutual Information (NMI) as the similarity measure computed from the texture images obtained from the amplitude responses of the directional quadrature filter pairs. Registration accuracy of the proposed method is evaluated by computing the Dice Similarity coefficient (DSC) and 95% Hausdorff Distance (HD) values for 20 patients prostate mid-gland slices and Target Registration Error (TRE) for 18 patients only where homologous structures are visible in both the TRUS and transformed MR images. The proposed method and B-splines using NMI computed from intensities provide average TRE values of 2.64 ± 1.37 and 4.43 ± 2.77 mm respectively. Our method shows statistically significant improvement in TRE when compared with B-spline using NMI computed from intensities with Student's t test p = 0.02. The proposed method shows 1.18 times improvement over thin-plate splines registration with average TRE of 3.11 ± 2.18 mm. The mean DSC and the mean 95% HD values obtained with the proposed method of B-spline with NMI computed from texture are 0.943 ± 0.039 and 4.75 ± 2.40 mm respectively. The texture energy computed from the quadrature filter pairs provides better registration accuracy for multimodal images than raw intensities. Low TRE values of the proposed registration method add to the feasibility of it being used during TRUS-guided biopsy.

  8. A new markerless patient-to-image registration method using a portable 3D scanner.

    PubMed

    Fan, Yifeng; Jiang, Dongsheng; Wang, Manning; Song, Zhijian

    2014-10-01

    Patient-to-image registration is critical to providing surgeons with reliable guidance information in the application of image-guided neurosurgery systems. The conventional point-matching registration method, which is based on skin markers, requires expensive and time-consuming logistic support. Surface-matching registration with facial surface scans is an alternative method, but the registration accuracy is unstable and the error in the more posterior parts of the head is usually large because the scan range is limited. This study proposes a new surface-matching method using a portable 3D scanner to acquire a point cloud of the entire head to perform the patient-to-image registration. A new method for transforming the scan points from the device space into the patient space without calibration and tracking was developed. Five positioning targets were attached on a reference star, and their coordinates in the patient space were measured prior. During registration, the authors moved the scanner around the head to scan its entire surface as well as the positioning targets, and the scanner generated a unique point cloud in the device space. The coordinates of the positioning targets in the device space were automatically detected by the scanner, and a spatial transformation from the device space to the patient space could be calculated by registering them to their coordinates in the patient space that had been measured prior. A three-step registration algorithm was then used to register the patient space to the image space. The authors evaluated their method on a rigid head phantom and an elastic head phantom to verify its practicality and to calculate the target registration error (TRE) in different regions of the head phantoms. The authors also conducted an experiment with a real patient's data to test the feasibility of their method in the clinical environment. In the phantom experiments, the mean fiducial registration error between the device space and the patient space, the mean surface registration error, and the mean TRE of 15 targets on the surface of each phantom were 0.34 ± 0.01 mm and 0.33 ± 0.02 mm, 1.17 ± 0.02 mm and 1.34 ± 0.10 mm, and 1.06 ± 0.11 mm and 1.48 ± 0.21 mm, respectively. When grouping the targets according to their positions on the head, high accuracy was achieved in all parts of the head, and the TREs were similar across different regions. The authors compared their method with the current surface registration methods that use only a part of the facial surface on the elastic phantom, and the mean TRE of 15 targets was 1.48 ± 0.21 mm and 1.98 ± 0.53 mm, respectively. In a clinical experiment, the mean TRE of seven targets on the patient's head surface was 1.92 ± 0.18 mm, which was sufficient to meet clinical requirements. The proposed surface-matching registration method provides sufficient registration accuracy even in the posterior area of the head. The 3D point cloud of the entire head, including the facial surface and the back of the head, can be easily acquired using a portable 3D scanner. The scanner does not need to be calibrated prior or tracked by the optical tracking system during scanning.

  9. Three-dimensional registration of intravascular optical coherence tomography and cryo-image volumes for microscopic-resolution validation.

    PubMed

    Prabhu, David; Mehanna, Emile; Gargesha, Madhusudhana; Brandt, Eric; Wen, Di; van Ditzhuijzen, Nienke S; Chamie, Daniel; Yamamoto, Hirosada; Fujino, Yusuke; Alian, Ali; Patel, Jaymin; Costa, Marco; Bezerra, Hiram G; Wilson, David L

    2016-04-01

    Evidence suggests high-resolution, high-contrast, [Formula: see text] intravascular optical coherence tomography (IVOCT) can distinguish plaque types, but further validation is needed, especially for automated plaque characterization. We developed experimental and three-dimensional (3-D) registration methods to provide validation of IVOCT pullback volumes using microscopic, color, and fluorescent cryo-image volumes with optional registered cryo-histology. A specialized registration method matched IVOCT pullback images acquired in the catheter reference frame to a true 3-D cryo-image volume. Briefly, an 11-parameter registration model including a polynomial virtual catheter was initialized within the cryo-image volume, and perpendicular images were extracted, mimicking IVOCT image acquisition. Virtual catheter parameters were optimized to maximize cryo and IVOCT lumen overlap. Multiple assessments suggested that the registration error was better than the [Formula: see text] spacing between IVOCT image frames. Tests on a digital synthetic phantom gave a registration error of only [Formula: see text] (signed distance). Visual assessment of randomly presented nearby frames suggested registration accuracy within 1 IVOCT frame interval ([Formula: see text]). This would eliminate potential misinterpretations confronted by the typical histological approaches to validation, with estimated 1-mm errors. The method can be used to create annotated datasets and automated plaque classification methods and can be extended to other intravascular imaging modalities.

  10. 3D prostate histology image reconstruction: Quantifying the impact of tissue deformation and histology section location

    PubMed Central

    Gibson, Eli; Gaed, Mena; Gómez, José A.; Moussa, Madeleine; Pautler, Stephen; Chin, Joseph L.; Crukley, Cathie; Bauman, Glenn S.; Fenster, Aaron; Ward, Aaron D.

    2013-01-01

    Background: Guidelines for localizing prostate cancer on imaging are ideally informed by registered post-prostatectomy histology. 3D histology reconstruction methods can support this by reintroducing 3D spatial information lost during histology processing. The need to register small, high-grade foci drives a need for high accuracy. Accurate 3D reconstruction method design is impacted by the answers to the following central questions of this work. (1) How does prostate tissue deform during histology processing? (2) What spatial misalignment of the tissue sections is induced by microtome cutting? (3) How does the choice of reconstruction model affect histology reconstruction accuracy? Materials and Methods: Histology, paraffin block face and magnetic resonance images were acquired for 18 whole mid-gland tissue slices from six prostates. 7-15 homologous landmarks were identified on each image. Tissue deformation due to histology processing was characterized using the target registration error (TRE) after landmark-based registration under four deformation models (rigid, similarity, affine and thin-plate-spline [TPS]). The misalignment of histology sections from the front faces of tissue slices was quantified using manually identified landmarks. The impact of reconstruction models on the TRE after landmark-based reconstruction was measured under eight reconstruction models comprising one of four deformation models with and without constraining histology images to the tissue slice front faces. Results: Isotropic scaling improved the mean TRE by 0.8-1.0 mm (all results reported as 95% confidence intervals), while skew or TPS deformation improved the mean TRE by <0.1 mm. The mean misalignment was 1.1-1.9° (angle) and 0.9-1.3 mm (depth). Using isotropic scaling, the front face constraint raised the mean TRE by 0.6-0.8 mm. Conclusions: For sub-millimeter accuracy, 3D reconstruction models should not constrain histology images to the tissue slice front faces and should be flexible enough to model isotropic scaling. PMID:24392245

  11. Atlas-based identification of targets for functional radiosurgery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stancanello, Joseph; Romanelli, Pantaleo; Modugno, Nicola

    2006-06-15

    Functional disorders of the brain, such as Parkinson's disease, dystonia, epilepsy, and neuropathic pain, may exhibit poor response to medical therapy. In such cases, surgical intervention may become necessary. Modern surgical approaches to such disorders include radio-frequency lesioning and deep brain stimulation (DBS). The subthalamic nucleus (STN) is one of the most useful stereotactic targets available: STN DBS is known to induce substantial improvement in patients with end-stage Parkinson's disease. Other targets include the Globus Pallidus pars interna (GPi) for dystonia and Parkinson's disease, and the centromedian nucleus of the thalamus (CMN) for neuropathic pain. Radiosurgery is an attractive noninvasivemore » alternative to treat some functional brain disorders. The main technical limitation to radiosurgery is that the target can be selected only on the basis of magnetic resonance anatomy without electrophysiological confirmation. The aim of this work is to provide a method for the correct atlas-based identification of the target to be used in functional neurosurgery treatment planning. The coordinates of STN, CMN, and GPi were identified in the Talairach and Tournoux atlas and transformed to the corresponding regions of the Montreal Neurological Institute (MNI) electronic atlas. Binary masks describing the target nuclei were created. The MNI electronic atlas was deformed onto the patient magnetic resonance imaging-T1 scan by applying an affine transformation followed by a local nonrigid registration. The first transformation was based on normalized cross correlation and the second on optimization of a two-part objective function consisting of similarity criteria and weighted regularization. The obtained deformation field was then applied to the target masks. The minimum distance between the surface of an implanted electrode and the surface of the deformed mask was calculated. The validation of the method consisted of comparing the electrode-mask distance to the clinical outcome of the treatments in ten cases of bilateral DBS implants. Electrode placement may have an effect within a radius of stimulation equal to 2 mm, therefore the registration process is considered successful if error is less than 2 mm. The registrations of the MNI atlas onto the patient space succeeded in all cases. The comparison of the distance to the clinical outcome revealed good agreement: where the distance was high (at least in one implant), the clinical outcome was poor; where there was a close correlation between the structures, clinical outcome revealed an improvement of the pathological condition. In conclusion, the proposed method seems to provide a useful tool for the identification of the target nuclei for functional radiosurgery. Also, the method is applicable to other types of functional treatment.« less

  12. Automatic deformable diffusion tensor registration for fiber population analysis.

    PubMed

    Irfanoglu, M O; Machiraju, R; Sammet, S; Pierpaoli, C; Knopp, M V

    2008-01-01

    In this work, we propose a novel method for deformable tensor-to-tensor registration of Diffusion Tensor Images. Our registration method models the distances in between the tensors with Geode-sic-Loxodromes and employs a version of Multi-Dimensional Scaling (MDS) algorithm to unfold the manifold described with this metric. Defining the same shape properties as tensors, the vector images obtained through MDS are fed into a multi-step vector-image registration scheme and the resulting deformation fields are used to reorient the tensor fields. Results on brain DTI indicate that the proposed method is very suitable for deformable fiber-to-fiber correspondence and DTI-atlas construction.

  13. PCA-based groupwise image registration for quantitative MRI.

    PubMed

    Huizinga, W; Poot, D H J; Guyader, J-M; Klaassen, R; Coolen, B F; van Kranenburg, M; van Geuns, R J M; Uitterdijk, A; Polfliet, M; Vandemeulebroucke, J; Leemans, A; Niessen, W J; Klein, S

    2016-04-01

    Quantitative magnetic resonance imaging (qMRI) is a technique for estimating quantitative tissue properties, such as the T1 and T2 relaxation times, apparent diffusion coefficient (ADC), and various perfusion measures. This estimation is achieved by acquiring multiple images with different acquisition parameters (or at multiple time points after injection of a contrast agent) and by fitting a qMRI signal model to the image intensities. Image registration is often necessary to compensate for misalignments due to subject motion and/or geometric distortions caused by the acquisition. However, large differences in image appearance make accurate image registration challenging. In this work, we propose a groupwise image registration method for compensating misalignment in qMRI. The groupwise formulation of the method eliminates the requirement of choosing a reference image, thus avoiding a registration bias. The method minimizes a cost function that is based on principal component analysis (PCA), exploiting the fact that intensity changes in qMRI can be described by a low-dimensional signal model, but not requiring knowledge on the specific acquisition model. The method was evaluated on 4D CT data of the lungs, and both real and synthetic images of five different qMRI applications: T1 mapping in a porcine heart, combined T1 and T2 mapping in carotid arteries, ADC mapping in the abdomen, diffusion tensor mapping in the brain, and dynamic contrast-enhanced mapping in the abdomen. Each application is based on a different acquisition model. The method is compared to a mutual information-based pairwise registration method and four other state-of-the-art groupwise registration methods. Registration accuracy is evaluated in terms of the precision of the estimated qMRI parameters, overlap of segmented structures, distance between corresponding landmarks, and smoothness of the deformation. In all qMRI applications the proposed method performed better than or equally well as competing methods, while avoiding the need to choose a reference image. It is also shown that the results of the conventional pairwise approach do depend on the choice of this reference image. We therefore conclude that our groupwise registration method with a similarity measure based on PCA is the preferred technique for compensating misalignments in qMRI. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. A method of 2D/3D registration of a statistical mouse atlas with a planar X-ray projection and an optical photo.

    PubMed

    Wang, Hongkai; Stout, David B; Chatziioannou, Arion F

    2013-05-01

    The development of sophisticated and high throughput whole body small animal imaging technologies has created a need for improved image analysis and increased automation. The registration of a digital mouse atlas to individual images is a prerequisite for automated organ segmentation and uptake quantification. This paper presents a fully-automatic method for registering a statistical mouse atlas with individual subjects based on an anterior-posterior X-ray projection and a lateral optical photo of the mouse silhouette. The mouse atlas was trained as a statistical shape model based on 83 organ-segmented micro-CT images. For registration, a hierarchical approach is applied which first registers high contrast organs, and then estimates low contrast organs based on the registered high contrast organs. To register the high contrast organs, a 2D-registration-back-projection strategy is used that deforms the 3D atlas based on the 2D registrations of the atlas projections. For validation, this method was evaluated using 55 subjects of preclinical mouse studies. The results showed that this method can compensate for moderate variations of animal postures and organ anatomy. Two different metrics, the Dice coefficient and the average surface distance, were used to assess the registration accuracy of major organs. The Dice coefficients vary from 0.31 ± 0.16 for the spleen to 0.88 ± 0.03 for the whole body, and the average surface distance varies from 0.54 ± 0.06 mm for the lungs to 0.85 ± 0.10mm for the skin. The method was compared with a direct 3D deformation optimization (without 2D-registration-back-projection) and a single-subject atlas registration (instead of using the statistical atlas). The comparison revealed that the 2D-registration-back-projection strategy significantly improved the registration accuracy, and the use of the statistical mouse atlas led to more plausible organ shapes than the single-subject atlas. This method was also tested with shoulder xenograft tumor-bearing mice, and the results showed that the registration accuracy of most organs was not significantly affected by the presence of shoulder tumors, except for the lungs and the spleen. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Automatic Mrf-Based Registration of High Resolution Satellite Video Data

    NASA Astrophysics Data System (ADS)

    Platias, C.; Vakalopoulou, M.; Karantzalos, K.

    2016-06-01

    In this paper we propose a deformable registration framework for high resolution satellite video data able to automatically and accurately co-register satellite video frames and/or register them to a reference map/image. The proposed approach performs non-rigid registration, formulates a Markov Random Fields (MRF) model, while efficient linear programming is employed for reaching the lowest potential of the cost function. The developed approach has been applied and validated on satellite video sequences from Skybox Imaging and compared with a rigid, descriptor-based registration method. Regarding the computational performance, both the MRF-based and the descriptor-based methods were quite efficient, with the first one converging in some minutes and the second in some seconds. Regarding the registration accuracy the proposed MRF-based method significantly outperformed the descriptor-based one in all the performing experiments.

  16. Image registration with uncertainty analysis

    DOEpatents

    Simonson, Katherine M [Cedar Crest, NM

    2011-03-22

    In an image registration method, edges are detected in a first image and a second image. A percentage of edge pixels in a subset of the second image that are also edges in the first image shifted by a translation is calculated. A best registration point is calculated based on a maximum percentage of edges matched. In a predefined search region, all registration points other than the best registration point are identified that are not significantly worse than the best registration point according to a predetermined statistical criterion.

  17. Improved image alignment method in application to X-ray images and biological images.

    PubMed

    Wang, Ching-Wei; Chen, Hsiang-Chou

    2013-08-01

    Alignment of medical images is a vital component of a large number of applications throughout the clinical track of events; not only within clinical diagnostic settings, but prominently so in the area of planning, consummation and evaluation of surgical and radiotherapeutical procedures. However, image registration of medical images is challenging because of variations on data appearance, imaging artifacts and complex data deformation problems. Hence, the aim of this study is to develop a robust image alignment method for medical images. An improved image registration method is proposed, and the method is evaluated with two types of medical data, including biological microscopic tissue images and dental X-ray images and compared with five state-of-the-art image registration techniques. The experimental results show that the presented method consistently performs well on both types of medical images, achieving 88.44 and 88.93% averaged registration accuracies for biological tissue images and X-ray images, respectively, and outperforms the benchmark methods. Based on the Tukey's honestly significant difference test and Fisher's least square difference test tests, the presented method performs significantly better than all existing methods (P ≤ 0.001) for tissue image alignment, and for the X-ray image registration, the proposed method performs significantly better than the two benchmark b-spline approaches (P < 0.001). The software implementation of the presented method and the data used in this study are made publicly available for scientific communities to use (http://www-o.ntust.edu.tw/∼cweiwang/ImprovedImageRegistration/). cweiwang@mail.ntust.edu.tw.

  18. A new system of computer-assisted navigation leading to reduction in operating time in uncemented total hip replacement in a matched population.

    PubMed

    Chaudhry, Fouad A; Ismail, Sanaa Z; Davis, Edward T

    2018-05-01

    Computer-assisted navigation techniques are used to optimise component placement and alignment in total hip replacement. It has developed in the last 10 years but despite its advantages only 0.3% of all total hip replacements in England and Wales are done using computer navigation. One of the reasons for this is that computer-assisted technology increases operative time. A new method of pelvic registration has been developed without the need to register the anterior pelvic plane (BrainLab hip 6.0) which has shown to improve the accuracy of THR. The purpose of this study was to find out if the new method reduces the operating time. This was a retrospective analysis of comparing operating time in computer navigated primary uncemented total hip replacement using two methods of registration. Group 1 included 128 cases that were performed using BrainLab versions 2.1-5.1. This version relied on the acquisition of the anterior pelvic plane for registration. Group 2 included 128 cases that were performed using the newest navigation software, BrainLab hip 6.0 (registration possible with the patient in the lateral decubitus position). The operating time was 65.79 (40-98) minutes using the old method of registration and was 50.87 (33-74) minutes using the new method of registration. This difference was statistically significant. The body mass index (BMI) was comparable in both groups. The study supports the use of new method of registration in improving the operating time in computer navigated primary uncemented total hip replacements.

  19. Optimized SIFTFlow for registration of whole-mount histology to reference optical images

    PubMed Central

    Shojaii, Rushin; Martel, Anne L.

    2016-01-01

    Abstract. The registration of two-dimensional histology images to reference images from other modalities is an important preprocessing step in the reconstruction of three-dimensional histology volumes. This is a challenging problem because of the differences in the appearances of histology images and other modalities, and the presence of large nonrigid deformations which occur during slide preparation. This paper shows the feasibility of using densely sampled scale-invariant feature transform (SIFT) features and a SIFTFlow deformable registration algorithm for coregistering whole-mount histology images with blockface optical images. We present a method for jointly optimizing the regularization parameters used by the SIFTFlow objective function and use it to determine the most appropriate values for the registration of breast lumpectomy specimens. We demonstrate that tuning the regularization parameters results in significant improvements in accuracy and we also show that SIFTFlow outperforms a previously described edge-based registration method. The accuracy of the histology images to blockface images registration using the optimized SIFTFlow method was assessed using an independent test set of images from five different lumpectomy specimens and the mean registration error was 0.32±0.22  mm. PMID:27774494

  20. Evaluation of body-wise and organ-wise registrations for abdominal organs

    NASA Astrophysics Data System (ADS)

    Xu, Zhoubing; Panjwani, Sahil A.; Lee, Christopher P.; Burke, Ryan P.; Baucom, Rebeccah B.; Poulose, Benjamin K.; Abramson, Richard G.; Landman, Bennett A.

    2016-03-01

    Identifying cross-sectional and longitudinal correspondence in the abdomen on computed tomography (CT) scans is necessary for quantitatively tracking change and understanding population characteristics, yet abdominal image registration is a challenging problem. The key difficulty in solving this problem is huge variations in organ dimensions and shapes across subjects. The current standard registration method uses the global or body-wise registration technique, which is based on the global topology for alignment. This method (although producing decent results) has substantial influence of outliers, thus leaving room for significant improvement. Here, we study a new image registration approach using local (organ-wise registration) by first creating organ-specific bounding boxes and then using these regions of interest (ROIs) for aligning references to target. Based on Dice Similarity Coefficient (DSC), Mean Surface Distance (MSD) and Hausdorff Distance (HD), the organ-wise approach is demonstrated to have significantly better results by minimizing the distorting effects of organ variations. This paper compares exclusively the two registration methods by providing novel quantitative and qualitative comparison data and is a subset of the more comprehensive problem of improving the multi-atlas segmentation by using organ normalization.

  1. Assessment of Registration Information on Methodological Design of Acupuncture RCTs: A Review of 453 Registration Records Retrieved from WHO International Clinical Trials Registry Platform

    PubMed Central

    Gu, Jing; Wang, Qi; Wang, Xiaogang; Li, Hailong; Gu, Mei; Ming, Haixia; Dong, Xiaoli; Yang, Kehu; Wu, Hongyan

    2014-01-01

    Background. This review provides the first methodological information assessment of protocol of acupuncture RCTs registered in WHO International Clinical Trials Registry Platform (ICTRP). Methods. All records of acupuncture RCTs registered in the ICTRP have been collected. The methodological design assessment involved whether the randomization methods, allocation concealment, and blinding were adequate or not based on the information of registration records (protocols of acupuncture RCTs). Results. A total of 453 records, found in 11 registries, were examined. Methodological details were insufficient in registration records; there were 76.4%, 89.0%, and 21.4% records that did not provide information on randomization methods, allocation concealment, and blinding respectively. The proportions of adequate randomization methods, allocation concealment, and blinding were only 107 (23.6%), 48 (10.6%), and 210 (46.4%), respectively. The methodological design improved year by year, especially after 2007. Additionally, methodology of RCTs with ethics approval was clearly superior to those without ethics approval and different among registries. Conclusions. The overall methodological design based on registration records of acupuncture RCTs is not very well but improved year by year. The insufficient information on randomization methods, allocation concealment, and blinding maybe due to the relevant description is not taken seriously in acupuncture RCTs' registration. PMID:24688591

  2. Assessment of Registration Information on Methodological Design of Acupuncture RCTs: A Review of 453 Registration Records Retrieved from WHO International Clinical Trials Registry Platform.

    PubMed

    Gu, Jing; Wang, Qi; Wang, Xiaogang; Li, Hailong; Gu, Mei; Ming, Haixia; Dong, Xiaoli; Yang, Kehu; Wu, Hongyan

    2014-01-01

    Background. This review provides the first methodological information assessment of protocol of acupuncture RCTs registered in WHO International Clinical Trials Registry Platform (ICTRP). Methods. All records of acupuncture RCTs registered in the ICTRP have been collected. The methodological design assessment involved whether the randomization methods, allocation concealment, and blinding were adequate or not based on the information of registration records (protocols of acupuncture RCTs). Results. A total of 453 records, found in 11 registries, were examined. Methodological details were insufficient in registration records; there were 76.4%, 89.0%, and 21.4% records that did not provide information on randomization methods, allocation concealment, and blinding respectively. The proportions of adequate randomization methods, allocation concealment, and blinding were only 107 (23.6%), 48 (10.6%), and 210 (46.4%), respectively. The methodological design improved year by year, especially after 2007. Additionally, methodology of RCTs with ethics approval was clearly superior to those without ethics approval and different among registries. Conclusions. The overall methodological design based on registration records of acupuncture RCTs is not very well but improved year by year. The insufficient information on randomization methods, allocation concealment, and blinding maybe due to the relevant description is not taken seriously in acupuncture RCTs' registration.

  3. Automatic lung nodule matching for the follow-up in temporal chest CT scans

    NASA Astrophysics Data System (ADS)

    Hong, Helen; Lee, Jeongjin; Shin, Yeong Gil

    2006-03-01

    We propose a fast and robust registration method for matching lung nodules of temporal chest CT scans. Our method is composed of four stages. First, the lungs are extracted from chest CT scans by the automatic segmentation method. Second, the gross translational mismatch is corrected by the optimal cube registration. This initial registration does not require extracting any anatomical landmarks. Third, initial alignment is step by step refined by the iterative surface registration. To evaluate the distance measure between surface boundary points, a 3D distance map is generated by the narrow-band distance propagation, which drives fast and robust convergence to the optimal location. Fourth, nodule correspondences are established by the pairs with the smallest Euclidean distances. The results of pulmonary nodule alignment of twenty patients are reported on a per-center-of mass point basis using the average Euclidean distance (AED) error between corresponding nodules of initial and follow-up scans. The average AED error of twenty patients is significantly reduced to 4.7mm from 30.0mm by our registration. Experimental results show that our registration method aligns the lung nodules much faster than the conventional ones using a distance measure. Accurate and fast result of our method would be more useful for the radiologist's evaluation of pulmonary nodules on chest CT scans.

  4. 3D/2D image registration using weighted histogram of gradient directions

    NASA Astrophysics Data System (ADS)

    Ghafurian, Soheil; Hacihaliloglu, Ilker; Metaxas, Dimitris N.; Tan, Virak; Li, Kang

    2015-03-01

    Three dimensional (3D) to two dimensional (2D) image registration is crucial in many medical applications such as image-guided evaluation of musculoskeletal disorders. One of the key problems is to estimate the 3D CT- reconstructed bone model positions (translation and rotation) which maximize the similarity between the digitally reconstructed radiographs (DRRs) and the 2D fluoroscopic images using a registration method. This problem is computational-intensive due to a large search space and the complicated DRR generation process. Also, finding a similarity measure which converges to the global optimum instead of local optima adds to the challenge. To circumvent these issues, most existing registration methods need a manual initialization, which requires user interaction and is prone to human error. In this paper, we introduce a novel feature-based registration method using the weighted histogram of gradient directions of images. This method simplifies the computation by searching the parameter space (rotation and translation) sequentially rather than simultaneously. In our numeric simulation experiments, the proposed registration algorithm was able to achieve sub-millimeter and sub-degree accuracies. Moreover, our method is robust to the initial guess. It can tolerate up to +/-90°rotation offset from the global optimal solution, which minimizes the need for human interaction to initialize the algorithm.

  5. Non-invasive breast biopsy method using GD-DTPA contrast enhanced MRI series and F-18-FDG PET/CT dynamic image series

    NASA Astrophysics Data System (ADS)

    Magri, Alphonso William

    This study was undertaken to develop a nonsurgical breast biopsy from Gd-DTPA Contrast Enhanced Magnetic Resonance (CE-MR) images and F-18-FDG PET/CT dynamic image series. A five-step process was developed to accomplish this. (1) Dynamic PET series were nonrigidly registered to the initial frame using a finite element method (FEM) based registration that requires fiducial skin markers to sample the displacement field between image frames. A commercial FEM package (ANSYS) was used for meshing and FEM calculations. Dynamic PET image series registrations were evaluated using similarity measurements SAVD and NCC. (2) Dynamic CE-MR series were nonrigidly registered to the initial frame using two registration methods: a multi-resolution free-form deformation (FFD) registration driven by normalized mutual information, and a FEM-based registration method. Dynamic CE-MR image series registrations were evaluated using similarity measurements, localization measurements, and qualitative comparison of motion artifacts. FFD registration was found to be superior to FEM-based registration. (3) Nonlinear curve fitting was performed for each voxel of the PET/CT volume of activity versus time, based on a realistic two-compartmental Patlak model. Three parameters for this model were fitted; two of them describe the activity levels in the blood and in the cellular compartment, while the third characterizes the washout rate of F-18-FDG from the cellular compartment. (4) Nonlinear curve fitting was performed for each voxel of the MR volume of signal intensity versus time, based on a realistic two-compartment Brix model. Three parameters for this model were fitted: rate of Gd exiting the compartment, representing the extracellular space of a lesion; rate of Gd exiting a blood compartment; and a parameter that characterizes the strength of signal intensities. Curve fitting used for PET/CT and MR series was accomplished by application of the Levenburg-Marquardt nonlinear regression algorithm. The best-fit parameters were used to create 3D parametric images. Compartmental modeling evaluation was based on the ability of parameter values to differentiate between tissue types. This evaluation was used on registered and unregistered image series and found that registration improved results. (5) PET and MR parametric images were registered through FEM- and FFD-based registration. Parametric image registration was evaluated using similarity measurements, target registration error, and qualitative comparison. Comparing FFD and FEM-based registration results showed that the FEM method is superior. This five-step process constitutes a novel multifaceted approach to a nonsurgical breast biopsy that successfully executes each step. Comparison of this method to biopsy still needs to be done with a larger set of subject data.

  6. Demons deformable registration of CT and cone-beam CT using an iterative intensity matching approach

    PubMed Central

    Nithiananthan, Sajendra; Schafer, Sebastian; Uneri, Ali; Mirota, Daniel J.; Stayman, J. Webster; Zbijewski, Wojciech; Brock, Kristy K.; Daly, Michael J.; Chan, Harley; Irish, Jonathan C.; Siewerdsen, Jeffrey H.

    2011-01-01

    Purpose: A method of intensity-based deformable registration of CT and cone-beam CT (CBCT) images is described, in which intensity correction occurs simultaneously within the iterative registration process. The method preserves the speed and simplicity of the popular Demons algorithm while providing robustness and accuracy in the presence of large mismatch between CT and CBCT voxel values (“intensity”). Methods: A variant of the Demons algorithm was developed in which an estimate of the relationship between CT and CBCT intensity values for specific materials in the image is computed at each iteration based on the set of currently overlapping voxels. This tissue-specific intensity correction is then used to estimate the registration output for that iteration and the process is repeated. The robustness of the method was tested in CBCT images of a cadaveric head exhibiting a broad range of simulated intensity variations associated with x-ray scatter, object truncation, and∕or errors in the reconstruction algorithm. The accuracy of CT-CBCT registration was also measured in six real cases, exhibiting deformations ranging from simple to complex during surgery or radiotherapy guided by a CBCT-capable C-arm or linear accelerator, respectively. Results: The iterative intensity matching approach was robust against all levels of intensity variation examined, including spatially varying errors in voxel value of a factor of 2 or more, as can be encountered in cases of high x-ray scatter. Registration accuracy without intensity matching degraded severely with increasing magnitude of intensity error and introduced image distortion. A single histogram match performed prior to registration alleviated some of these effects but was also prone to image distortion and was quantifiably less robust and accurate than the iterative approach. Within the six case registration accuracy study, iterative intensity matching Demons reduced mean TRE to (2.5±2.8) mm compared to (3.5±3.0) mm with rigid registration. Conclusions: A method was developed to iteratively correct CT-CBCT intensity disparity during Demons registration, enabling fast, intensity-based registration in CBCT-guided procedures such as surgery and radiotherapy, in which CBCT voxel values may be inaccurate. Accurate CT-CBCT registration in turn facilitates registration of multimodality preoperative image and planning data to intraoperative CBCT by way of the preoperative CT, thereby linking the intraoperative frame of reference to a wealth of preoperative information that could improve interventional guidance. PMID:21626913

  7. Demons deformable registration of CT and cone-beam CT using an iterative intensity matching approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nithiananthan, Sajendra; Schafer, Sebastian; Uneri, Ali

    2011-04-15

    Purpose: A method of intensity-based deformable registration of CT and cone-beam CT (CBCT) images is described, in which intensity correction occurs simultaneously within the iterative registration process. The method preserves the speed and simplicity of the popular Demons algorithm while providing robustness and accuracy in the presence of large mismatch between CT and CBCT voxel values (''intensity''). Methods: A variant of the Demons algorithm was developed in which an estimate of the relationship between CT and CBCT intensity values for specific materials in the image is computed at each iteration based on the set of currently overlapping voxels. This tissue-specificmore » intensity correction is then used to estimate the registration output for that iteration and the process is repeated. The robustness of the method was tested in CBCT images of a cadaveric head exhibiting a broad range of simulated intensity variations associated with x-ray scatter, object truncation, and/or errors in the reconstruction algorithm. The accuracy of CT-CBCT registration was also measured in six real cases, exhibiting deformations ranging from simple to complex during surgery or radiotherapy guided by a CBCT-capable C-arm or linear accelerator, respectively. Results: The iterative intensity matching approach was robust against all levels of intensity variation examined, including spatially varying errors in voxel value of a factor of 2 or more, as can be encountered in cases of high x-ray scatter. Registration accuracy without intensity matching degraded severely with increasing magnitude of intensity error and introduced image distortion. A single histogram match performed prior to registration alleviated some of these effects but was also prone to image distortion and was quantifiably less robust and accurate than the iterative approach. Within the six case registration accuracy study, iterative intensity matching Demons reduced mean TRE to (2.5{+-}2.8) mm compared to (3.5{+-}3.0) mm with rigid registration. Conclusions: A method was developed to iteratively correct CT-CBCT intensity disparity during Demons registration, enabling fast, intensity-based registration in CBCT-guided procedures such as surgery and radiotherapy, in which CBCT voxel values may be inaccurate. Accurate CT-CBCT registration in turn facilitates registration of multimodality preoperative image and planning data to intraoperative CBCT by way of the preoperative CT, thereby linking the intraoperative frame of reference to a wealth of preoperative information that could improve interventional guidance.« less

  8. Combination of intensity-based image registration with 3D simulation in radiation therapy.

    PubMed

    Li, Pan; Malsch, Urban; Bendl, Rolf

    2008-09-07

    Modern techniques of radiotherapy like intensity modulated radiation therapy (IMRT) make it possible to deliver high dose to tumors of different irregular shapes at the same time sparing surrounding healthy tissue. However, internal tumor motion makes precise calculation of the delivered dose distribution challenging. This makes analysis of tumor motion necessary. One way to describe target motion is using image registration. Many registration methods have already been developed previously. However, most of them belong either to geometric approaches or to intensity approaches. Methods which take account of anatomical information and results of intensity matching can greatly improve the results of image registration. Based on this idea, a combined method of image registration followed by 3D modeling and simulation was introduced in this project. Experiments were carried out for five patients 4DCT lung datasets. In the 3D simulation, models obtained from images of end-exhalation were deformed to the state of end-inhalation. Diaphragm motions were around -25 mm in the cranial-caudal (CC) direction. To verify the quality of our new method, displacements of landmarks were calculated and compared with measurements in the CT images. Improvement of accuracy after simulations has been shown compared to the results obtained only by intensity-based image registration. The average improvement was 0.97 mm. The average Euclidean error of the combined method was around 3.77 mm. Unrealistic motions such as curl-shaped deformations in the results of image registration were corrected. The combined method required less than 30 min. Our method provides information about the deformation of the target volume, which we need for dose optimization and target definition in our planning system.

  9. The plant virus microscope image registration method based on mismatches removing.

    PubMed

    Wei, Lifang; Zhou, Shucheng; Dong, Heng; Mao, Qianzhuo; Lin, Jiaxiang; Chen, Riqing

    2016-01-01

    The electron microscopy is one of the major means to observe the virus. The view of virus microscope images is limited by making specimen and the size of the camera's view field. To solve this problem, the virus sample is produced into multi-slice for information fusion and image registration techniques are applied to obtain large field and whole sections. Image registration techniques have been developed in the past decades for increasing the camera's field of view. Nevertheless, these approaches typically work in batch mode and rely on motorized microscopes. Alternatively, the methods are conceived just to provide visually pleasant registration for high overlap ratio image sequence. This work presents a method for virus microscope image registration acquired with detailed visual information and subpixel accuracy, even when overlap ratio of image sequence is 10% or less. The method proposed focus on the correspondence set and interimage transformation. A mismatch removal strategy is proposed by the spatial consistency and the components of keypoint to enrich the correspondence set. And the translation model parameter as well as tonal inhomogeneities is corrected by the hierarchical estimation and model select. In the experiments performed, we tested different registration approaches and virus images, confirming that the translation model is not always stationary, despite the fact that the images of the sample come from the same sequence. The mismatch removal strategy makes building registration of virus microscope images at subpixel accuracy easier and optional parameters for building registration according to the hierarchical estimation and model select strategies make the proposed method high precision and reliable for low overlap ratio image sequence. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. A new method for registration of heterogeneous sensors in a dimensional measurement system

    NASA Astrophysics Data System (ADS)

    Zhao, Yan; Wang, Zhong; Fu, Luhua; Qu, Xinghua; Zhang, Heng; Liu, Changjie

    2017-10-01

    Registration of multiple sensors is a basic step in multi-sensor dimensional or coordinate measuring systems before any measurement. In most cases, a common standard is used to be measured by all sensors, and this may work well for general registration of multiple homogeneous sensors. However, when inhomogeneous sensors detect a common standard, it is usually very difficult to obtain the same information, because of the different working principles of the sensors. In this paper, a new method called multiple steps registration is proposed to register two sensors: a video camera sensor (VCS) and a tactile probe sensor (TPS). In this method, the two sensors measure two separated standards: a chrome circle on a reticle and a reference sphere with a constant distance between them, fixed on a steel plate. The VCS captures only the circle and the TPS touches only the sphere. Both simulations and real experiments demonstrate that the proposed method is robust and accurate in the registration of multiple inhomogeneous sensors in a dimensional measurement system.

  11. Complex background suppression using global-local registration strategy for the detection of small-moving target on moving platform

    NASA Astrophysics Data System (ADS)

    Zou, Tianhao; Zuo, Zhengrong

    2018-02-01

    Target detection is a very important and basic problem of computer vision and image processing. The most often case we meet in real world is a detection task for a moving-small target on moving platform. The commonly used methods, such as Registration-based suppression, can hardly achieve a desired result. To crack this hard nut, we introduce a Global-local registration based suppression method. Differ from the traditional ones, the proposed Global-local Registration Strategy consider both the global consistency and the local diversity of the background, obtain a better performance than normal background suppression methods. In this paper, we first discussed the features about the small-moving target detection on unstable platform. Then we introduced a new strategy and conducted an experiment to confirm its noisy stability. In the end, we confirmed the background suppression method based on global-local registration strategy has a better perform in moving target detection on moving platform.

  12. Pairwise registration of TLS point clouds using covariance descriptors and a non-cooperative game

    NASA Astrophysics Data System (ADS)

    Zai, Dawei; Li, Jonathan; Guo, Yulan; Cheng, Ming; Huang, Pengdi; Cao, Xiaofei; Wang, Cheng

    2017-12-01

    It is challenging to automatically register TLS point clouds with noise, outliers and varying overlap. In this paper, we propose a new method for pairwise registration of TLS point clouds. We first generate covariance matrix descriptors with an adaptive neighborhood size from point clouds to find candidate correspondences, we then construct a non-cooperative game to isolate mutual compatible correspondences, which are considered as true positives. The method was tested on three models acquired by two different TLS systems. Experimental results demonstrate that our proposed adaptive covariance (ACOV) descriptor is invariant to rigid transformation and robust to noise and varying resolutions. The average registration errors achieved on three models are 0.46 cm, 0.32 cm and 1.73 cm, respectively. The computational times cost on these models are about 288 s, 184 s and 903 s, respectively. Besides, our registration framework using ACOV descriptors and a game theoretic method is superior to the state-of-the-art methods in terms of both registration error and computational time. The experiment on a large outdoor scene further demonstrates the feasibility and effectiveness of our proposed pairwise registration framework.

  13. Research on registration algorithm for check seal verification

    NASA Astrophysics Data System (ADS)

    Wang, Shuang; Liu, Tiegen

    2008-03-01

    Nowadays seals play an important role in China. With the development of social economy, the traditional method of manual check seal identification can't meet the need s of banking transactions badly. This paper focus on pre-processing and registration algorithm for check seal verification using theory of image processing and pattern recognition. First of all, analyze the complex characteristics of check seals. To eliminate the difference of producing conditions and the disturbance caused by background and writing in check image, many methods are used in the pre-processing of check seal verification, such as color components transformation, linearity transform to gray-scale image, medium value filter, Otsu, close calculations and labeling algorithm of mathematical morphology. After the processes above, the good binary seal image can be obtained. On the basis of traditional registration algorithm, a double-level registration method including rough and precise registration method is proposed. The deflection angle of precise registration method can be precise to 0.1°. This paper introduces the concepts of difference inside and difference outside and use the percent of difference inside and difference outside to judge whether the seal is real or fake. The experimental results of a mass of check seals are satisfied. It shows that the methods and algorithmic presented have good robustness to noise sealing conditions and satisfactory tolerance of difference within class.

  14. Multi-modality image registration for effective thermographic fever screening

    NASA Astrophysics Data System (ADS)

    Dwith, C. Y. N.; Ghassemi, Pejhman; Pfefer, Joshua; Casamento, Jon; Wang, Quanzeng

    2017-02-01

    Fever screening based on infrared thermographs (IRTs) is a viable mass screening approach during infectious disease pandemics, such as Ebola and Severe Acute Respiratory Syndrome (SARS), for temperature monitoring in public places like hospitals and airports. IRTs have been found to be powerful, quick and non-invasive methods for detecting elevated temperatures. Moreover, regions medially adjacent to the inner canthi (called the canthi regions in this paper) are preferred sites for fever screening. Accurate localization of the canthi regions can be achieved through multi-modality registration of infrared (IR) and white-light images. Here we propose a registration method through a coarse-fine registration strategy using different registration models based on landmarks and edge detection on eye contours. We have evaluated the registration accuracy to be within +/- 2.7 mm, which enables accurate localization of the canthi regions.

  15. Geometric modeling of hepatic arteries in 3D ultrasound with unsupervised MRA fusion during liver interventions.

    PubMed

    Gérard, Maxime; Michaud, François; Bigot, Alexandre; Tang, An; Soulez, Gilles; Kadoury, Samuel

    2017-06-01

    Modulating the chemotherapy injection rate with regard to blood flow velocities in the tumor-feeding arteries during intra-arterial therapies may help improve liver tumor targeting while decreasing systemic exposure. These velocities can be obtained noninvasively using Doppler ultrasound (US). However, small vessels situated in the liver are difficult to identify and follow in US. We propose a multimodal fusion approach that non-rigidly registers a 3D geometric mesh model of the hepatic arteries obtained from preoperative MR angiography (MRA) acquisitions with intra-operative 3D US imaging. The proposed fusion tool integrates 3 imaging modalities: an arterial MRA, a portal phase MRA and an intra-operative 3D US. Preoperatively, the arterial phase MRA is used to generate a 3D model of the hepatic arteries, which is then non-rigidly co-registered with the portal phase MRA. Once the intra-operative 3D US is acquired, we register it with the portal MRA using a vessel-based rigid initialization followed by a non-rigid registration using an image-based metric based on linear correlation of linear combination. Using the combined non-rigid transformation matrices, the 3D mesh model is fused with the 3D US. 3D US and multi-phase MRA images acquired from 10 porcine models were used to test the performance of the proposed fusion tool. Unimodal registration of the MRA phases yielded a target registration error (TRE) of [Formula: see text] mm. Initial rigid alignment of the portal MRA and 3D US yielded a mean TRE of [Formula: see text] mm, which was significantly reduced to [Formula: see text] mm ([Formula: see text]) after affine image-based registration. The following deformable registration step allowed for further decrease of the mean TRE to [Formula: see text] mm. The proposed tool could facilitate visualization and localization of these vessels when using 3D US intra-operatively for either intravascular or percutaneous interventions to avoid vessel perforation.

  16. Real-time Enhancement, Registration, and Fusion for a Multi-Sensor Enhanced Vision System

    NASA Technical Reports Server (NTRS)

    Hines, Glenn D.; Rahman, Zia-ur; Jobson, Daniel J.; Woodell, Glenn A.

    2006-01-01

    Over the last few years NASA Langley Research Center (LaRC) has been developing an Enhanced Vision System (EVS) to aid pilots while flying in poor visibility conditions. The EVS captures imagery using two infrared video cameras. The cameras are placed in an enclosure that is mounted and flown forward-looking underneath the NASA LaRC ARIES 757 aircraft. The data streams from the cameras are processed in real-time and displayed on monitors on-board the aircraft. With proper processing the camera system can provide better-than- human-observed imagery particularly during poor visibility conditions. However, to obtain this goal requires several different stages of processing including enhancement, registration, and fusion, and specialized processing hardware for real-time performance. We are using a real-time implementation of the Retinex algorithm for image enhancement, affine transformations for registration, and weighted sums to perform fusion. All of the algorithms are executed on a single TI DM642 digital signal processor (DSP) clocked at 720 MHz. The image processing components were added to the EVS system, tested, and demonstrated during flight tests in August and September of 2005. In this paper we briefly discuss the EVS image processing hardware and algorithms. We then discuss implementation issues and show examples of the results obtained during flight tests. Keywords: enhanced vision system, image enhancement, retinex, digital signal processing, sensor fusion

  17. Fundamentals of affinity cell separations.

    PubMed

    Zhang, Ye; Lyons, Veronica; Pappas, Dimitri

    2018-03-01

    Cell separations using affinity methods continue to be an enabling science for a wide variety of applications. In this review, we discuss the fundamental aspects of affinity separation, including the competing forces for cell capture and elution, cell-surface interactions, and models for cell adhesion. Factors affecting separation performance such as bond affinity, contact area, and temperature are presented. We also discuss and demonstrate the effects of nonspecific binding on separation performance. Metrics for evaluating cell separations are presented, along with methods of comparing separation techniques for cell isolation using affinity capture. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Demons deformable registration of CT and cone-beam CT using an iterative intensity matching approach.

    PubMed

    Nithiananthan, Sajendra; Schafer, Sebastian; Uneri, Ali; Mirota, Daniel J; Stayman, J Webster; Zbijewski, Wojciech; Brock, Kristy K; Daly, Michael J; Chan, Harley; Irish, Jonathan C; Siewerdsen, Jeffrey H

    2011-04-01

    A method of intensity-based deformable registration of CT and cone-beam CT (CBCT) images is described, in which intensity correction occurs simultaneously within the iterative registration process. The method preserves the speed and simplicity of the popular Demons algorithm while providing robustness and accuracy in the presence of large mismatch between CT and CBCT voxel values ("intensity"). A variant of the Demons algorithm was developed in which an estimate of the relationship between CT and CBCT intensity values for specific materials in the image is computed at each iteration based on the set of currently overlapping voxels. This tissue-specific intensity correction is then used to estimate the registration output for that iteration and the process is repeated. The robustness of the method was tested in CBCT images of a cadaveric head exhibiting a broad range of simulated intensity variations associated with x-ray scatter, object truncation, and/or errors in the reconstruction algorithm. The accuracy of CT-CBCT registration was also measured in six real cases, exhibiting deformations ranging from simple to complex during surgery or radiotherapy guided by a CBCT-capable C-arm or linear accelerator, respectively. The iterative intensity matching approach was robust against all levels of intensity variation examined, including spatially varying errors in voxel value of a factor of 2 or more, as can be encountered in cases of high x-ray scatter. Registration accuracy without intensity matching degraded severely with increasing magnitude of intensity error and introduced image distortion. A single histogram match performed prior to registration alleviated some of these effects but was also prone to image distortion and was quantifiably less robust and accurate than the iterative approach. Within the six case registration accuracy study, iterative intensity matching Demons reduced mean TRE to (2.5 +/- 2.8) mm compared to (3.5 +/- 3.0) mm with rigid registration. A method was developed to iteratively correct CT-CBCT intensity disparity during Demons registration, enabling fast, intensity-based registration in CBCT-guided procedures such as surgery and radiotherapy, in which CBCT voxel values may be inaccurate. Accurate CT-CBCT registration in turn facilitates registration of multimodality preoperative image and planning data to intraoperative CBCT by way of the preoperative CT, thereby linking the intraoperative frame of reference to a wealth of preoperative information that could improve interventional guidance.

  19. Local-search based prediction of medical image registration error

    NASA Astrophysics Data System (ADS)

    Saygili, Görkem

    2018-03-01

    Medical image registration is a crucial task in many different medical imaging applications. Hence, considerable amount of work has been published recently that aim to predict the error in a registration without any human effort. If provided, these error predictions can be used as a feedback to the registration algorithm to further improve its performance. Recent methods generally start with extracting image-based and deformation-based features, then apply feature pooling and finally train a Random Forest (RF) regressor to predict the real registration error. Image-based features can be calculated after applying a single registration but provide limited accuracy whereas deformation-based features such as variation of deformation vector field may require up to 20 registrations which is a considerably high time-consuming task. This paper proposes to use extracted features from a local search algorithm as image-based features to estimate the error of a registration. The proposed method comprises a local search algorithm to find corresponding voxels between registered image pairs and based on the amount of shifts and stereo confidence measures, it predicts the amount of registration error in millimetres densely using a RF regressor. Compared to other algorithms in the literature, the proposed algorithm does not require multiple registrations, can be efficiently implemented on a Graphical Processing Unit (GPU) and can still provide highly accurate error predictions in existence of large registration error. Experimental results with real registrations on a public dataset indicate a substantially high accuracy achieved by using features from the local search algorithm.

  20. Study on Huizhou architecture of point cloud registration based on optimized ICP algorithm

    NASA Astrophysics Data System (ADS)

    Zhang, Runmei; Wu, Yulu; Zhang, Guangbin; Zhou, Wei; Tao, Yuqian

    2018-03-01

    In view of the current point cloud registration software has high hardware requirements, heavy workload and moltiple interactive definition, the source of software with better processing effect is not open, a two--step registration method based on normal vector distribution feature and coarse feature based iterative closest point (ICP) algorithm is proposed in this paper. This method combines fast point feature histogram (FPFH) algorithm, define the adjacency region of point cloud and the calculation model of the distribution of normal vectors, setting up the local coordinate system for each key point, and obtaining the transformation matrix to finish rough registration, the rough registration results of two stations are accurately registered by using the ICP algorithm. Experimental results show that, compared with the traditional ICP algorithm, the method used in this paper has obvious time and precision advantages for large amount of point clouds.

  1. Multimodality Non-Rigid Image Registration for Planning, Targeting and Monitoring during CT-guided Percutaneous Liver Tumor Cryoablation

    PubMed Central

    Elhawary, Haytham; Oguro, Sota; Tuncali, Kemal; Morrison, Paul R.; Tatli, Servet; Shyn, Paul B.; Silverman, Stuart G.; Hata, Nobuhiko

    2010-01-01

    Rationale and Objectives To develop non-rigid image registration between pre-procedure contrast enhanced MR images and intra-procedure unenhanced CT images, to enhance tumor visualization and localization during CT-guided liver tumor cryoablation procedures. Materials and Methods After IRB approval, a non-rigid registration (NRR) technique was evaluated with different pre-processing steps and algorithm parameters and compared to a standard rigid registration (RR) approach. The Dice Similarity Coefficient (DSC), Target Registration Error (TRE), 95% Hausdorff distance (HD) and total registration time (minutes) were compared using a two-sided Student’s t-test. The entire registration method was then applied during five CT-guided liver cryoablation cases with the intra-procedural CT data transmitted directly from the CT scanner, with both accuracy and registration time evaluated. Results Selected optimal parameters for registration were section thickness of 5mm, cropping the field of view to 66% of its original size, manual segmentation of the liver, B-spline control grid of 5×5×5 and spatial sampling of 50,000 pixels. Mean 95% HD of 3.3mm (2.5x improvement compared to RR, p<0.05); mean DSC metric of 0.97 (13% increase); and mean TRE of 4.1mm (2.7x reduction) were measured. During the cryoablation procedure registration between the pre-procedure MR and the planning intra-procedure CT took a mean time of 10.6 minutes, the MR to targeting CT image took 4 minutes and MR to monitoring CT took 4.3 minutes. Mean registration accuracy was under 3.4mm. Conclusion Non-rigid registration allowed improved visualization of the tumor during interventional planning, targeting and evaluation of tumor coverage by the ice ball. Future work is focused on reducing segmentation time to make the method more clinically acceptable. PMID:20817574

  2. An ITK framework for deterministic global optimization for medical image registration

    NASA Astrophysics Data System (ADS)

    Dru, Florence; Wachowiak, Mark P.; Peters, Terry M.

    2006-03-01

    Similarity metric optimization is an essential step in intensity-based rigid and nonrigid medical image registration. For clinical applications, such as image guidance of minimally invasive procedures, registration accuracy and efficiency are prime considerations. In addition, clinical utility is enhanced when registration is integrated into image analysis and visualization frameworks, such as the popular Insight Toolkit (ITK). ITK is an open source software environment increasingly used to aid the development, testing, and integration of new imaging algorithms. In this paper, we present a new ITK-based implementation of the DIRECT (Dividing Rectangles) deterministic global optimization algorithm for medical image registration. Previously, it has been shown that DIRECT improves the capture range and accuracy for rigid registration. Our ITK class also contains enhancements over the original DIRECT algorithm by improving stopping criteria, adaptively adjusting a locality parameter, and by incorporating Powell's method for local refinement. 3D-3D registration experiments with ground-truth brain volumes and clinical cardiac volumes show that combining DIRECT with Powell's method improves registration accuracy over Powell's method used alone, is less sensitive to initial misorientation errors, and, with the new stopping criteria, facilitates adequate exploration of the search space without expending expensive iterations on non-improving function evaluations. Finally, in this framework, a new parallel implementation for computing mutual information is presented, resulting in near-linear speedup with two processors.

  3. Registration of prone and supine CT colonography scans using correlation optimized warping and canonical correlation analysis

    PubMed Central

    Wang, Shijun; Yao, Jianhua; Liu, Jiamin; Petrick, Nicholas; Van Uitert, Robert L.; Periaswamy, Senthil; Summers, Ronald M.

    2009-01-01

    Purpose: In computed tomographic colonography (CTC), a patient will be scanned twice—Once supine and once prone—to improve the sensitivity for polyp detection. To assist radiologists in CTC reading, in this paper we propose an automated method for colon registration from supine and prone CTC scans. Methods: We propose a new colon centerline registration method for prone and supine CTC scans using correlation optimized warping (COW) and canonical correlation analysis (CCA) based on the anatomical structure of the colon. Four anatomical salient points on the colon are first automatically distinguished. Then correlation optimized warping is applied to the segments defined by the anatomical landmarks to improve the global registration based on local correlation of segments. The COW method was modified by embedding canonical correlation analysis to allow multiple features along the colon centerline to be used in our implementation. Results: We tested the COW algorithm on a CTC data set of 39 patients with 39 polyps (19 training and 20 test cases) to verify the effectiveness of the proposed COW registration method. Experimental results on the test set show that the COW method significantly reduces the average estimation error in a polyp location between supine and prone scans by 67.6%, from 46.27±52.97 to 14.98 mm±11.41 mm, compared to the normalized distance along the colon centerline algorithm (p<0.01). Conclusions: The proposed COW algorithm is more accurate for the colon centerline registration compared to the normalized distance along the colon centerline method and the dynamic time warping method. Comparison results showed that the feature combination of z-coordinate and curvature achieved lowest registration error compared to the other feature combinations used by COW. The proposed method is tolerant to centerline errors because anatomical landmarks help prevent the propagation of errors across the entire colon centerline. PMID:20095272

  4. Registration of prone and supine CT colonography scans using correlation optimized warping and canonical correlation analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Shijun; Yao Jianhua; Liu Jiamin

    Purpose: In computed tomographic colonography (CTC), a patient will be scanned twice--Once supine and once prone--to improve the sensitivity for polyp detection. To assist radiologists in CTC reading, in this paper we propose an automated method for colon registration from supine and prone CTC scans. Methods: We propose a new colon centerline registration method for prone and supine CTC scans using correlation optimized warping (COW) and canonical correlation analysis (CCA) based on the anatomical structure of the colon. Four anatomical salient points on the colon are first automatically distinguished. Then correlation optimized warping is applied to the segments defined bymore » the anatomical landmarks to improve the global registration based on local correlation of segments. The COW method was modified by embedding canonical correlation analysis to allow multiple features along the colon centerline to be used in our implementation. Results: We tested the COW algorithm on a CTC data set of 39 patients with 39 polyps (19 training and 20 test cases) to verify the effectiveness of the proposed COW registration method. Experimental results on the test set show that the COW method significantly reduces the average estimation error in a polyp location between supine and prone scans by 67.6%, from 46.27{+-}52.97 to 14.98 mm{+-}11.41 mm, compared to the normalized distance along the colon centerline algorithm (p<0.01). Conclusions: The proposed COW algorithm is more accurate for the colon centerline registration compared to the normalized distance along the colon centerline method and the dynamic time warping method. Comparison results showed that the feature combination of z-coordinate and curvature achieved lowest registration error compared to the other feature combinations used by COW. The proposed method is tolerant to centerline errors because anatomical landmarks help prevent the propagation of errors across the entire colon centerline.« less

  5. System and method for image registration of multiple video streams

    DOEpatents

    Dillavou, Marcus W.; Shum, Phillip Corey; Guthrie, Baron L.; Shenai, Mahesh B.; Deaton, Drew Steven; May, Matthew Benton

    2018-02-06

    Provided herein are methods and systems for image registration from multiple sources. A method for image registration includes rendering a common field of interest that reflects a presence of a plurality of elements, wherein at least one of the elements is a remote element located remotely from another of the elements and updating the common field of interest such that the presence of the at least one of the elements is registered relative to another of the elements.

  6. A combined registration and finite element analysis method for fast estimation of intraoperative brain shift; phantom and animal model study.

    PubMed

    Mohammadi, Amrollah; Ahmadian, Alireza; Rabbani, Shahram; Fattahi, Ehsan; Shirani, Shapour

    2017-12-01

    Finite element models for estimation of intraoperative brain shift suffer from huge computational cost. In these models, image registration and finite element analysis are two time-consuming processes. The proposed method is an improved version of our previously developed Finite Element Drift (FED) registration algorithm. In this work the registration process is combined with the finite element analysis. In the Combined FED (CFED), the deformation of whole brain mesh is iteratively calculated by geometrical extension of a local load vector which is computed by FED. While the processing time of the FED-based method including registration and finite element analysis was about 70 s, the computation time of the CFED was about 3.2 s. The computational cost of CFED is almost 50% less than similar state of the art brain shift estimators based on finite element models. The proposed combination of registration and structural analysis can make the calculation of brain deformation much faster. Copyright © 2016 John Wiley & Sons, Ltd.

  7. A finite element method to correct deformable image registration errors in low-contrast regions

    NASA Astrophysics Data System (ADS)

    Zhong, Hualiang; Kim, Jinkoo; Li, Haisen; Nurushev, Teamour; Movsas, Benjamin; Chetty, Indrin J.

    2012-06-01

    Image-guided adaptive radiotherapy requires deformable image registration to map radiation dose back and forth between images. The purpose of this study is to develop a novel method to improve the accuracy of an intensity-based image registration algorithm in low-contrast regions. A computational framework has been developed in this study to improve the quality of the ‘demons’ registration. For each voxel in the registration's target image, the standard deviation of image intensity in a neighborhood of this voxel was calculated. A mask for high-contrast regions was generated based on their standard deviations. In the masked regions, a tetrahedral mesh was refined recursively so that a sufficient number of tetrahedral nodes in these regions can be selected as driving nodes. An elastic system driven by the displacements of the selected nodes was formulated using a finite element method (FEM) and implemented on the refined mesh. The displacements of these driving nodes were generated with the ‘demons’ algorithm. The solution of the system was derived using a conjugated gradient method, and interpolated to generate a displacement vector field for the registered images. The FEM correction method was compared with the ‘demons’ algorithm on the computed tomography (CT) images of lung and prostate patients. The performance of the FEM correction relating to the ‘demons’ registration was analyzed based on the physical property of their deformation maps, and quantitatively evaluated through a benchmark model developed specifically for this study. Compared to the benchmark model, the ‘demons’ registration has the maximum error of 1.2 cm, which can be corrected by the FEM to 0.4 cm, and the average error of the ‘demons’ registration is reduced from 0.17 to 0.11 cm. For the CT images of lung and prostate patients, the deformation maps generated by the ‘demons’ algorithm were found unrealistic at several places. In these places, the displacement differences between the ‘demons’ registrations and their FEM corrections were found in the range of 0.4 and 1.1 cm. The mesh refinement and FEM simulation were implemented in a single thread application which requires about 45 min of computation time on a 2.6 GHz computer. This study has demonstrated that the FEM can be integrated with intensity-based image registration algorithms to improve their registration accuracy, especially in low-contrast regions.

  8. Calculation of the confidence intervals for transformation parameters in the registration of medical images

    PubMed Central

    Bansal, Ravi; Staib, Lawrence H.; Laine, Andrew F.; Xu, Dongrong; Liu, Jun; Posecion, Lainie F.; Peterson, Bradley S.

    2010-01-01

    Images from different individuals typically cannot be registered precisely because anatomical features within the images differ across the people imaged and because the current methods for image registration have inherent technological limitations that interfere with perfect registration. Quantifying the inevitable error in image registration is therefore of crucial importance in assessing the effects that image misregistration may have on subsequent analyses in an imaging study. We have developed a mathematical framework for quantifying errors in registration by computing the confidence intervals of the estimated parameters (3 translations, 3 rotations, and 1 global scale) for the similarity transformation. The presence of noise in images and the variability in anatomy across individuals ensures that estimated registration parameters are always random variables. We assume a functional relation among intensities across voxels in the images, and we use the theory of nonlinear, least-squares estimation to show that the parameters are multivariate Gaussian distributed. We then use the covariance matrix of this distribution to compute the confidence intervals of the transformation parameters. These confidence intervals provide a quantitative assessment of the registration error across the images. Because transformation parameters are nonlinearly related to the coordinates of landmark points in the brain, we subsequently show that the coordinates of those landmark points are also multivariate Gaussian distributed. Using these distributions, we then compute the confidence intervals of the coordinates for landmark points in the image. Each of these confidence intervals in turn provides a quantitative assessment of the registration error at a particular landmark point. Because our method is computationally intensive, however, its current implementation is limited to assessing the error of the parameters in the similarity transformation across images. We assessed the performance of our method in computing the error in estimated similarity parameters by applying that method to real world dataset. Our results showed that the size of the confidence intervals computed using our method decreased – i.e. our confidence in the registration of images from different individuals increased – for increasing amounts of blur in the images. Moreover, the size of the confidence intervals increased for increasing amounts of noise, misregistration, and differing anatomy. Thus, our method precisely quantified confidence in the registration of images that contain varying amounts of misregistration and varying anatomy across individuals. PMID:19138877

  9. Stopping Criteria for Log-Domain Diffeomorphic Demons Registration: An Experimental Survey for Radiotherapy Application.

    PubMed

    Peroni, M; Golland, P; Sharp, G C; Baroni, G

    2016-02-01

    A crucial issue in deformable image registration is achieving a robust registration algorithm at a reasonable computational cost. Given the iterative nature of the optimization procedure an algorithm must automatically detect convergence, and stop the iterative process when most appropriate. This paper ranks the performances of three stopping criteria and six stopping value computation strategies for a Log-Domain Demons Deformable registration method simulating both a coarse and a fine registration. The analyzed stopping criteria are: (a) velocity field update magnitude, (b) mean squared error, and (c) harmonic energy. Each stoping condition is formulated so that the user defines a threshold ∊, which quantifies the residual error that is acceptable for the particular problem and calculation strategy. In this work, we did not aim at assigning a value to e, but to give insights in how to evaluate and to set the threshold on a given exit strategy in a very popular registration scheme. Experiments on phantom and patient data demonstrate that comparing the optimization metric minimum over the most recent three iterations with the minimum over the fourth to sixth most recent iterations can be an appropriate algorithm stopping strategy. The harmonic energy was found to provide best trade-off between robustness and speed of convergence for the analyzed registration method at coarse registration, but was outperformed by mean squared error when all the original pixel information is used. This suggests the need of developing mathematically sound new convergence criteria in which both image and vector field information could be used to detect the actual convergence, which could be especially useful when considering multi-resolution registrations. Further work should be also dedicated to study same strategies performances in other deformable registration methods and body districts. © The Author(s) 2014.

  10. 2D to 3D fusion of echocardiography and cardiac CT for TAVR and TAVI image guidance.

    PubMed

    Khalil, Azira; Faisal, Amir; Lai, Khin Wee; Ng, Siew Cheok; Liew, Yih Miin

    2017-08-01

    This study proposed a registration framework to fuse 2D echocardiography images of the aortic valve with preoperative cardiac CT volume. The registration facilitates the fusion of CT and echocardiography to aid the diagnosis of aortic valve diseases and provide surgical guidance during transcatheter aortic valve replacement and implantation. The image registration framework consists of two major steps: temporal synchronization and spatial registration. Temporal synchronization allows time stamping of echocardiography time series data to identify frames that are at similar cardiac phase as the CT volume. Spatial registration is an intensity-based normalized mutual information method applied with pattern search optimization algorithm to produce an interpolated cardiac CT image that matches the echocardiography image. Our proposed registration method has been applied on the short-axis "Mercedes Benz" sign view of the aortic valve and long-axis parasternal view of echocardiography images from ten patients. The accuracy of our fully automated registration method was 0.81 ± 0.08 and 1.30 ± 0.13 mm in terms of Dice coefficient and Hausdorff distance for short-axis aortic valve view registration, whereas for long-axis parasternal view registration it was 0.79 ± 0.02 and 1.19 ± 0.11 mm, respectively. This accuracy is comparable to gold standard manual registration by expert. There was no significant difference in aortic annulus diameter measurement between the automatically and manually registered CT images. Without the use of optical tracking, we have shown the applicability of this technique for effective fusion of echocardiography with preoperative CT volume to potentially facilitate catheter-based surgery.

  11. PORTR: Pre-Operative and Post-Recurrence Brain Tumor Registration

    PubMed Central

    Niethammer, Marc; Akbari, Hamed; Bilello, Michel; Davatzikos, Christos; Pohl, Kilian M.

    2014-01-01

    We propose a new method for deformable registration of pre-operative and post-recurrence brain MR scans of glioma patients. Performing this type of intra-subject registration is challenging as tumor, resection, recurrence, and edema cause large deformations, missing correspondences, and inconsistent intensity profiles between the scans. To address this challenging task, our method, called PORTR, explicitly accounts for pathological information. It segments tumor, resection cavity, and recurrence based on models specific to each scan. PORTR then uses the resulting maps to exclude pathological regions from the image-based correspondence term while simultaneously measuring the overlap between the aligned tumor and resection cavity. Embedded into a symmetric registration framework, we determine the optimal solution by taking advantage of both discrete and continuous search methods. We apply our method to scans of 24 glioma patients. Both quantitative and qualitative analysis of the results clearly show that our method is superior to other state-of-the-art approaches. PMID:24595340

  12. Toward magnetic resonance-guided electroanatomical voltage mapping for catheter ablation of scar-related ventricular tachycardia: a comparison of registration methods.

    PubMed

    Tao, Qian; Milles, Julien; VAN Huls VAN Taxis, Carine; Lamb, Hildo J; Reiber, Johan H C; Zeppenfeld, Katja; VAN DER Geest, Rob J

    2012-01-01

    Integration of preprocedural delayed enhanced magnetic resonance imaging (DE-MRI) with electroanatomical voltage mapping (EAVM) may provide additional high-resolution substrate information for catheter ablation of scar-related ventricular tachycardias (VT). Accurate and fast image integration of DE-MRI with EAVM is desirable for MR-guided ablation. Twenty-six VT patients with large transmural scar underwent catheter ablation and preprocedural DE-MRI. With different registration models and EAVM input, 3 image integration methods were evaluated and compared to the commercial registration module CartoMerge. The performance was evaluated both in terms of distance measure that describes surface matching, and correlation measure that describes actual scar correspondence. Compared to CartoMerge, the method that uses the translation-and-rotation model and high-density EAVM input resulted in a registration error of 4.32±0.69 mm as compared to 4.84 ± 1.07 (P <0.05); the method that uses the translation model and high-density EAVM input resulted in a registration error of 4.60 ± 0.65 mm (P = NS); and the method that uses the translation model and a single anatomical landmark input resulted in a registration error of 6.58 ± 1.63 mm (P < 0.05). No significant difference in scar correlation was observed between all 3 methods and CartoMerge (P = NS). During VT ablation procedures, accurate integration of EAVM and DE-MRI can be achieved using a translation registration model and a single anatomical landmark. This model allows for image integration in minimal mapping time and is likely to reduce fluoroscopy time and increase procedure efficacy. © 2011 Wiley Periodicals, Inc.

  13. Evaluation of 4D-CT lung registration.

    PubMed

    Kabus, Sven; Klinder, Tobias; Murphy, Keelin; van Ginneken, Bram; van Lorenz, Cristian; Pluim, Josien P W

    2009-01-01

    Non-rigid registration accuracy assessment is typically performed by evaluating the target registration error at manually placed landmarks. For 4D-CT lung data, we compare two sets of landmark distributions: a smaller set primarily defined on vessel bifurcations as commonly described in the literature and a larger set being well-distributed throughout the lung volume. For six different registration schemes (three in-house schemes and three schemes frequently used by the community) the landmark error is evaluated and found to depend significantly on the distribution of the landmarks. In particular, lung regions near to the pleura show a target registration error three times larger than near-mediastinal regions. While the inter-method variability on the landmark positions is rather small, the methods show discriminating differences with respect to consistency and local volume change. In conclusion, both a well-distributed set of landmarks and a deformation vector field analysis are necessary for reliable non-rigid registration accuracy assessment.

  14. A Rigid Image Registration Based on the Nonsubsampled Contourlet Transform and Genetic Algorithms

    PubMed Central

    Meskine, Fatiha; Chikr El Mezouar, Miloud; Taleb, Nasreddine

    2010-01-01

    Image registration is a fundamental task used in image processing to match two or more images taken at different times, from different sensors or from different viewpoints. The objective is to find in a huge search space of geometric transformations, an acceptable accurate solution in a reasonable time to provide better registered images. Exhaustive search is computationally expensive and the computational cost increases exponentially with the number of transformation parameters and the size of the data set. In this work, we present an efficient image registration algorithm that uses genetic algorithms within a multi-resolution framework based on the Non-Subsampled Contourlet Transform (NSCT). An adaptable genetic algorithm for registration is adopted in order to minimize the search space. This approach is used within a hybrid scheme applying the two techniques fitness sharing and elitism. Two NSCT based methods are proposed for registration. A comparative study is established between these methods and a wavelet based one. Because the NSCT is a shift-invariant multidirectional transform, the second method is adopted for its search speeding up property. Simulation results clearly show that both proposed techniques are really promising methods for image registration compared to the wavelet approach, while the second technique has led to the best performance results of all. Moreover, to demonstrate the effectiveness of these methods, these registration techniques have been successfully applied to register SPOT, IKONOS and Synthetic Aperture Radar (SAR) images. The algorithm has been shown to work perfectly well for multi-temporal satellite images as well, even in the presence of noise. PMID:22163672

  15. A rigid image registration based on the nonsubsampled contourlet transform and genetic algorithms.

    PubMed

    Meskine, Fatiha; Chikr El Mezouar, Miloud; Taleb, Nasreddine

    2010-01-01

    Image registration is a fundamental task used in image processing to match two or more images taken at different times, from different sensors or from different viewpoints. The objective is to find in a huge search space of geometric transformations, an acceptable accurate solution in a reasonable time to provide better registered images. Exhaustive search is computationally expensive and the computational cost increases exponentially with the number of transformation parameters and the size of the data set. In this work, we present an efficient image registration algorithm that uses genetic algorithms within a multi-resolution framework based on the Non-Subsampled Contourlet Transform (NSCT). An adaptable genetic algorithm for registration is adopted in order to minimize the search space. This approach is used within a hybrid scheme applying the two techniques fitness sharing and elitism. Two NSCT based methods are proposed for registration. A comparative study is established between these methods and a wavelet based one. Because the NSCT is a shift-invariant multidirectional transform, the second method is adopted for its search speeding up property. Simulation results clearly show that both proposed techniques are really promising methods for image registration compared to the wavelet approach, while the second technique has led to the best performance results of all. Moreover, to demonstrate the effectiveness of these methods, these registration techniques have been successfully applied to register SPOT, IKONOS and Synthetic Aperture Radar (SAR) images. The algorithm has been shown to work perfectly well for multi-temporal satellite images as well, even in the presence of noise.

  16. SU-G-IeP2-06: Evaluation of Registration Accuracy for Cone-Beam CT Reconstruction Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, J; Wang, P; Zhang, H

    2016-06-15

    Purpose: Cone-beam (CB) computed tomography (CT) is used for image guidance during radiotherapy treatment delivery. Conventional Feldkamp and compressed sensing (CS) based CBCT recon-struction techniques are compared for image registration. This study is to evaluate the image registration accuracy of conventional and CS CBCT for head-and-neck (HN) patients. Methods: Ten HN patients with oropharyngeal tumors were retrospectively selected. Each HN patient had one planning CT (CTP) and three CBCTs were acquired during an adaptive radiotherapy proto-col. Each CBCT was reconstructed by both the conventional (CBCTCON) and compressed sens-ing (CBCTCS) methods. Two oncologists manually labeled 23 landmarks of normal tissue andmore » implanted gold markers on both the CTP and CBCTCON. Subsequently, landmarks on CTp were propagated to CBCTs, using a b-spline-based deformable image registration (DIR) and rigid registration (RR). The errors of these registration methods between two CBCT methods were calcu-lated. Results: For DIR, the mean distance between the propagated and the labeled landmarks was 2.8 mm ± 0.52 for CBCTCS, and 3.5 mm ± 0.75 for CBCTCON. For RR, the mean distance between the propagated and the labeled landmarks was 6.8 mm ± 0.92 for CBCTCS, and 8.7 mm ± 0.95 CBCTCON. Conclusion: This study has demonstrated that CS CBCT is more accurate than conventional CBCT in image registration by both rigid and non-rigid methods. It is potentially suggested that CS CBCT is an improved image modality for image guided adaptive applications.« less

  17. Groupwise Image Registration Guided by a Dynamic Digraph of Images.

    PubMed

    Tang, Zhenyu; Fan, Yong

    2016-04-01

    For groupwise image registration, graph theoretic methods have been adopted for discovering the manifold of images to be registered so that accurate registration of images to a group center image can be achieved by aligning similar images that are linked by the shortest graph paths. However, the image similarity measures adopted to build a graph of images in the extant methods are essentially pairwise measures, not effective for capturing the groupwise similarity among multiple images. To overcome this problem, we present a groupwise image similarity measure that is built on sparse coding for characterizing image similarity among all input images and build a directed graph (digraph) of images so that similar images are connected by the shortest paths of the digraph. Following the shortest paths determined according to the digraph, images are registered to a group center image in an iterative manner by decomposing a large anatomical deformation field required to register an image to the group center image into a series of small ones between similar images. During the iterative image registration, the digraph of images evolves dynamically at each iteration step to pursue an accurate estimation of the image manifold. Moreover, an adaptive dictionary strategy is adopted in the groupwise image similarity measure to ensure fast convergence of the iterative registration procedure. The proposed method has been validated based on both simulated and real brain images, and experiment results have demonstrated that our method was more effective for learning the manifold of input images and achieved higher registration accuracy than state-of-the-art groupwise image registration methods.

  18. Segmentation of brain structures in presence of a space-occupying lesion.

    PubMed

    Pollo, Claudio; Cuadra, Meritxell Bach; Cuisenaire, Olivier; Villemure, Jean-Guy; Thiran, Jean-Philippe

    2005-02-15

    Brain deformations induced by space-occupying lesions may result in unpredictable position and shape of functionally important brain structures. The aim of this study is to propose a method for segmentation of brain structures by deformation of a segmented brain atlas in presence of a space-occupying lesion. Our approach is based on an a priori model of lesion growth (MLG) that assumes radial expansion from a seeding point and involves three steps: first, an affine registration bringing the atlas and the patient into global correspondence; then, the seeding of a synthetic tumor into the brain atlas providing a template for the lesion; finally, the deformation of the seeded atlas, combining a method derived from optical flow principles and a model of lesion growth. The method was applied on two meningiomas inducing a pure displacement of the underlying brain structures, and segmentation accuracy of ventricles and basal ganglia was assessed. Results show that the segmented structures were consistent with the patient's anatomy and that the deformation accuracy of surrounding brain structures was highly dependent on the accurate placement of the tumor seeding point. Further improvements of the method will optimize the segmentation accuracy. Visualization of brain structures provides useful information for therapeutic consideration of space-occupying lesions, including surgical, radiosurgical, and radiotherapeutic planning, in order to increase treatment efficiency and prevent neurological damage.

  19. Introduction to Remote Sensing Image Registration

    NASA Technical Reports Server (NTRS)

    Le Moigne, Jacqueline

    2017-01-01

    For many applications, accurate and fast image registration of large amounts of multi-source data is the first necessary step before subsequent processing and integration. Image registration is defined by several steps and each step can be approached by various methods which all present diverse advantages and drawbacks depending on the type of data, the type of applications, the a prior information known about the data and the type of accuracy that is required. This paper will first present a general overview of remote sensing image registration and then will go over a few specific methods and their applications

  20. Control over structure-specific flexibility improves anatomical accuracy for point-based deformable registration in bladder cancer radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wognum, S.; Chai, X.; Hulshof, M. C. C. M.

    2013-02-15

    Purpose: Future developments in image guided adaptive radiotherapy (IGART) for bladder cancer require accurate deformable image registration techniques for the precise assessment of tumor and bladder motion and deformation that occur as a result of large bladder volume changes during the course of radiotherapy treatment. The aim was to employ an extended version of a point-based deformable registration algorithm that allows control over tissue-specific flexibility in combination with the authors' unique patient dataset, in order to overcome two major challenges of bladder cancer registration, i.e., the difficulty in accounting for the difference in flexibility between the bladder wall and tumormore » and the lack of visible anatomical landmarks for validation. Methods: The registration algorithm used in the current study is an extension of the symmetric-thin plate splines-robust point matching (S-TPS-RPM) algorithm, a symmetric feature-based registration method. The S-TPS-RPM algorithm has been previously extended to allow control over the degree of flexibility of different structures via a weight parameter. The extended weighted S-TPS-RPM algorithm was tested and validated on CT data (planning- and four to five repeat-CTs) of five urinary bladder cancer patients who received lipiodol injections before radiotherapy. The performance of the weighted S-TPS-RPM method, applied to bladder and tumor structures simultaneously, was compared with a previous version of the S-TPS-RPM algorithm applied to bladder wall structure alone and with a simultaneous nonweighted S-TPS-RPM registration of the bladder and tumor structures. Performance was assessed in terms of anatomical and geometric accuracy. The anatomical accuracy was calculated as the residual distance error (RDE) of the lipiodol markers and the geometric accuracy was determined by the surface distance, surface coverage, and inverse consistency errors. Optimal parameter values for the flexibility and bladder weight parameters were determined for the weighted S-TPS-RPM. Results: The weighted S-TPS-RPM registration algorithm with optimal parameters significantly improved the anatomical accuracy as compared to S-TPS-RPM registration of the bladder alone and reduced the range of the anatomical errors by half as compared with the simultaneous nonweighted S-TPS-RPM registration of the bladder and tumor structures. The weighted algorithm reduced the RDE range of lipiodol markers from 0.9-14 mm after rigid bone match to 0.9-4.0 mm, compared to a range of 1.1-9.1 mm with S-TPS-RPM of bladder alone and 0.9-9.4 mm for simultaneous nonweighted registration. All registration methods resulted in good geometric accuracy on the bladder; average error values were all below 1.2 mm. Conclusions: The weighted S-TPS-RPM registration algorithm with additional weight parameter allowed indirect control over structure-specific flexibility in multistructure registrations of bladder and bladder tumor, enabling anatomically coherent registrations. The availability of an anatomically validated deformable registration method opens up the horizon for improvements in IGART for bladder cancer.« less

  1. Local respiratory motion correction for PET/CT imaging: Application to lung cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamare, F., E-mail: frederic.lamare@chu-bordeaux.fr; Fernandez, P.; Fayad, H.

    Purpose: Despite multiple methodologies already proposed to correct respiratory motion in the whole PET imaging field of view (FOV), such approaches have not found wide acceptance in clinical routine. An alternative can be the local respiratory motion correction (LRMC) of data corresponding to a given volume of interest (VOI: organ or tumor). Advantages of LRMC include the use of a simple motion model, faster execution times, and organ specific motion correction. The purpose of this study was to evaluate the performance of LMRC using various motion models for oncology (lung lesion) applications. Methods: Both simulated (NURBS based 4D cardiac-torso phantom)more » and clinical studies (six patients) were used in the evaluation of the proposed LRMC approach. PET data were acquired in list-mode and synchronized with respiration. The implemented approach consists first in defining a VOI on the reconstructed motion average image. Gated PET images of the VOI are subsequently reconstructed using only lines of response passing through the selected VOI and are used in combination with a center of gravity or an affine/elastic registration algorithm to derive the transformation maps corresponding to the respiration effects. Those are finally integrated in the reconstruction process to produce a motion free image over the lesion regions. Results: Although the center of gravity or affine algorithm achieved similar performance for individual lesion motion correction, the elastic model, applied either locally or to the whole FOV, led to an overall superior performance. The spatial tumor location was altered by 89% and 81% for the elastic model applied locally or to the whole FOV, respectively (compared to 44% and 39% for the center of gravity and affine models, respectively). This resulted in similar associated overall tumor volume changes of 84% and 80%, respectively (compared to 75% and 71% for the center of gravity and affine models, respectively). The application of the nonrigid deformation model in LRMC led to over an order of magnitude gain in computational efficiency of the correction relative to the application of the deformable model to the whole FOV. Conclusions: The results of this study support the use of LMRC as a flexible and efficient correction approach for respiratory motion effects for single lesions in the thoracic area.« less

  2. Microscopic neural image registration based on the structure of mitochondria

    NASA Astrophysics Data System (ADS)

    Cao, Huiwen; Han, Hua; Rao, Qiang; Xiao, Chi; Chen, Xi

    2017-02-01

    Microscopic image registration is a key component of the neural structure reconstruction with serial sections of neural tissue. The goal of microscopic neural image registration is to recover the 3D continuity and geometrical properties of specimen. During image registration, various distortions need to be corrected, including image rotation, translation, tissue deformation et.al, which come from the procedure of sample cutting, staining and imaging. Furthermore, there is only certain similarity between adjacent sections, and the degree of similarity depends on local structure of the tissue and the thickness of the sections. These factors make the microscopic neural image registration a challenging problem. To tackle the difficulty of corresponding landmarks extraction, we introduce a novel image registration method for Scanning Electron Microscopy (SEM) images of serial neural tissue sections based on the structure of mitochondria. The ellipsoidal shape of mitochondria ensures that the same mitochondria has similar shape between adjacent sections, and its characteristic of broad distribution in the neural tissue guarantees that landmarks based on the mitochondria distributed widely in the image. The proposed image registration method contains three parts: landmarks extraction between adjacent sections, corresponding landmarks matching and image deformation based on the correspondences. We demonstrate the performance of our method with SEM images of drosophila brain.

  3. Registration of in vivo MR to histology of rodent brains using blockface imaging

    NASA Astrophysics Data System (ADS)

    Uberti, Mariano; Liu, Yutong; Dou, Huanyu; Mosley, R. Lee; Gendelman, Howard E.; Boska, Michael

    2009-02-01

    Registration of MRI to histopathological sections can enhance bioimaging validation for use in pathobiologic, diagnostic, and therapeutic evaluations. However, commonly used registration methods fall short of this goal due to tissue shrinkage and tearing after brain extraction and preparation. In attempts to overcome these limitations we developed a software toolbox using 3D blockface imaging as the common space of reference. This toolbox includes a semi-automatic brain extraction technique using constraint level sets (CLS), 3D reconstruction methods for the blockface and MR volume, and a 2D warping technique using thin-plate splines with landmark optimization. Using this toolbox, the rodent brain volume is first extracted from the whole head MRI using CLS. The blockface volume is reconstructed followed by 3D brain MRI registration to the blockface volume to correct the global deformations due to brain extraction and fixation. Finally, registered MRI and histological slices are warped to corresponding blockface images to correct slice specific deformations. The CLS brain extraction technique was validated by comparing manual results showing 94% overlap. The image warping technique was validated by calculating target registration error (TRE). Results showed a registration accuracy of a TRE < 1 pixel. Lastly, the registration method and the software tools developed were used to validate cell migration in murine human immunodeficiency virus type one encephalitis.

  4. Estimation of the uncertainty of elastic image registration with the demons algorithm.

    PubMed

    Hub, M; Karger, C P

    2013-05-07

    The accuracy of elastic image registration is limited. We propose an approach to detect voxels where registration based on the demons algorithm is likely to perform inaccurately, compared to other locations of the same image. The approach is based on the assumption that the local reproducibility of the registration can be regarded as a measure of uncertainty of the image registration. The reproducibility is determined as the standard deviation of the displacement vector components obtained from multiple registrations. These registrations differ in predefined initial deformations. The proposed approach was tested with artificially deformed lung images, where the ground truth on the deformation is known. In voxels where the result of the registration was less reproducible, the registration turned out to have larger average registration errors as compared to locations of the same image, where the registration was more reproducible. The proposed method can show a clinician in which area of the image the elastic registration with the demons algorithm cannot be expected to be accurate.

  5. Camera Image Transformation and Registration for Safe Spacecraft Landing and Hazard Avoidance

    NASA Technical Reports Server (NTRS)

    Jones, Brandon M.

    2005-01-01

    Inherent geographical hazards of Martian terrain may impede a safe landing for science exploration spacecraft. Surface visualization software for hazard detection and avoidance may accordingly be applied in vehicles such as the Mars Exploration Rover (MER) to induce an autonomous and intelligent descent upon entering the planetary atmosphere. The focus of this project is to develop an image transformation algorithm for coordinate system matching between consecutive frames of terrain imagery taken throughout descent. The methodology involves integrating computer vision and graphics techniques, including affine transformation and projective geometry of an object, with the intrinsic parameters governing spacecraft dynamic motion and camera calibration.

  6. Automatic Registration of GF4 Pms: a High Resolution Multi-Spectral Sensor on Board a Satellite on Geostationary Orbit

    NASA Astrophysics Data System (ADS)

    Gao, M.; Li, J.

    2018-04-01

    Geometric correction is an important preprocessing process in the application of GF4 PMS image. The method of geometric correction that is based on the manual selection of geometric control points is time-consuming and laborious. The more common method, based on a reference image, is automatic image registration. This method involves several steps and parameters. For the multi-spectral sensor GF4 PMS, it is necessary for us to identify the best combination of parameters and steps. This study mainly focuses on the following issues: necessity of Rational Polynomial Coefficients (RPC) correction before automatic registration, base band in the automatic registration and configuration of GF4 PMS spatial resolution.

  7. A Finite Element Method to Correct Deformable Image Registration Errors in Low-Contrast Regions

    PubMed Central

    Zhong, Hualiang; Kim, Jinkoo; Li, Haisen; Nurushev, Teamour; Movsas, Benjamin; Chetty, Indrin J.

    2012-01-01

    Image-guided adaptive radiotherapy requires deformable image registration to map radiation dose back and forth between images. The purpose of this study is to develop a novel method to improve the accuracy of an intensity-based image registration algorithm in low-contrast regions. A computational framework has been developed in this study to improve the quality of the “demons” registration. For each voxel in the registration’s target image, the standard deviation of image intensity in a neighborhood of this voxel was calculated. A mask for high-contrast regions was generated based on their standard deviations. In the masked regions, a tetrahedral mesh was refined recursively so that a sufficient number of tetrahedral nodes in these regions can be selected as driving nodes. An elastic system driven by the displacements of the selected nodes was formulated using a finite element method (FEM) and implemented on the refined mesh. The displacements of these driving nodes were generated with the “demons” algorithm. The solution of the system was derived using a conjugated gradient method, and interpolated to generate a displacement vector field for the registered images. The FEM correction method was compared with the “demons” algorithm on the CT images of lung and prostate patients. The performance of the FEM correction relating to the “demons” registration was analyzed based on the physical property of their deformation maps, and quantitatively evaluated through a benchmark model developed specifically for this study. Compared to the benchmark model, the “demons” registration has the maximum error of 1.2 cm, which can be corrected by the FEM method to 0.4 cm, and the average error of the “demons” registration is reduced from 0.17 cm to 0.11 cm. For the CT images of lung and prostate patients, the deformation maps generated by the “demons” algorithm were found unrealistic at several places. In these places, the displacement differences between the “demons” registrations and their FEM corrections were found in the range of 0.4 cm and 1.1cm. The mesh refinement and FEM simulation were implemented in a single thread application which requires about 45 minutes of computation time on a 2.6 GH computer. This study has demonstrated that the finite element method can be integrated with intensity-based image registration algorithms to improve their registration accuracy, especially in low-contrast regions. PMID:22581269

  8. 4D-CT Lung registration using anatomy-based multi-level multi-resolution optical flow analysis and thin-plate splines.

    PubMed

    Min, Yugang; Neylon, John; Shah, Amish; Meeks, Sanford; Lee, Percy; Kupelian, Patrick; Santhanam, Anand P

    2014-09-01

    The accuracy of 4D-CT registration is limited by inconsistent Hounsfield unit (HU) values in the 4D-CT data from one respiratory phase to another and lower image contrast for lung substructures. This paper presents an optical flow and thin-plate spline (TPS)-based 4D-CT registration method to account for these limitations. The use of unified HU values on multiple anatomy levels (e.g., the lung contour, blood vessels, and parenchyma) accounts for registration errors by inconsistent landmark HU value. While 3D multi-resolution optical flow analysis registers each anatomical level, TPS is employed for propagating the results from one anatomical level to another ultimately leading to the 4D-CT registration. 4D-CT registration was validated using target registration error (TRE), inverse consistency error (ICE) metrics, and a statistical image comparison using Gamma criteria of 1 % intensity difference in 2 mm(3) window range. Validation results showed that the proposed method was able to register CT lung datasets with TRE and ICE values <3 mm. In addition, the average number of voxel that failed the Gamma criteria was <3 %, which supports the clinical applicability of the propose registration mechanism. The proposed 4D-CT registration computes the volumetric lung deformations within clinically viable accuracy.

  9. eHUGS: Enhanced Hierarchical Unbiased Graph Shrinkage for Efficient Groupwise Registration

    PubMed Central

    Wu, Guorong; Peng, Xuewei; Ying, Shihui; Wang, Qian; Yap, Pew-Thian; Shen, Dan; Shen, Dinggang

    2016-01-01

    Effective and efficient spatial normalization of a large population of brain images is critical for many clinical and research studies, but it is technically very challenging. A commonly used approach is to choose a certain image as the template and then align all other images in the population to this template by applying pairwise registration. To avoid the potential bias induced by the inappropriate template selection, groupwise registration methods have been proposed to simultaneously register all images to a latent common space. However, current groupwise registration methods do not make full use of image distribution information for more accurate registration. In this paper, we present a novel groupwise registration method that harnesses the image distribution information by capturing the image distribution manifold using a hierarchical graph with its nodes representing the individual images. More specifically, a low-level graph describes the image distribution in each subgroup, and a high-level graph encodes the relationship between representative images of subgroups. Given the graph representation, we can register all images to the common space by dynamically shrinking the graph on the image manifold. The topology of the entire image distribution is always maintained during graph shrinkage. Evaluations on two datasets, one for 80 elderly individuals and one for 285 infants, indicate that our method can yield promising results. PMID:26800361

  10. Joint image registration and fusion method with a gradient strength regularization

    NASA Astrophysics Data System (ADS)

    Lidong, Huang; Wei, Zhao; Jun, Wang

    2015-05-01

    Image registration is an essential process for image fusion, and fusion performance can be used to evaluate registration accuracy. We propose a maximum likelihood (ML) approach to joint image registration and fusion instead of treating them as two independent processes in the conventional way. To improve the visual quality of a fused image, a gradient strength (GS) regularization is introduced in the cost function of ML. The GS of the fused image is controllable by setting the target GS value in the regularization term. This is useful because a larger target GS brings a clearer fused image and a smaller target GS makes the fused image smoother and thus restrains noise. Hence, the subjective quality of the fused image can be improved whether the source images are polluted by noise or not. We can obtain the fused image and registration parameters successively by minimizing the cost function using an iterative optimization method. Experimental results show that our method is effective with transformation, rotation, and scale parameters in the range of [-2.0, 2.0] pixel, [-1.1 deg, 1.1 deg], and [0.95, 1.05], respectively, and variances of noise smaller than 300. It also demonstrated that our method yields a more visual pleasing fused image and higher registration accuracy compared with a state-of-the-art algorithm.

  11. 3D/2D model-to-image registration by imitation learning for cardiac procedures.

    PubMed

    Toth, Daniel; Miao, Shun; Kurzendorfer, Tanja; Rinaldi, Christopher A; Liao, Rui; Mansi, Tommaso; Rhode, Kawal; Mountney, Peter

    2018-05-12

    In cardiac interventions, such as cardiac resynchronization therapy (CRT), image guidance can be enhanced by involving preoperative models. Multimodality 3D/2D registration for image guidance, however, remains a significant research challenge for fundamentally different image data, i.e., MR to X-ray. Registration methods must account for differences in intensity, contrast levels, resolution, dimensionality, field of view. Furthermore, same anatomical structures may not be visible in both modalities. Current approaches have focused on developing modality-specific solutions for individual clinical use cases, by introducing constraints, or identifying cross-modality information manually. Machine learning approaches have the potential to create more general registration platforms. However, training image to image methods would require large multimodal datasets and ground truth for each target application. This paper proposes a model-to-image registration approach instead, because it is common in image-guided interventions to create anatomical models for diagnosis, planning or guidance prior to procedures. An imitation learning-based method, trained on 702 datasets, is used to register preoperative models to intraoperative X-ray images. Accuracy is demonstrated on cardiac models and artificial X-rays generated from CTs. The registration error was [Formula: see text] on 1000 test cases, superior to that of manual ([Formula: see text]) and gradient-based ([Formula: see text]) registration. High robustness is shown in 19 clinical CRT cases. Besides the proposed methods feasibility in a clinical environment, evaluation has shown good accuracy and high robustness indicating that it could be applied in image-guided interventions.

  12. Single-step affinity purification for fungal proteomics.

    PubMed

    Liu, Hui-Lin; Osmani, Aysha H; Ukil, Leena; Son, Sunghun; Markossian, Sarine; Shen, Kuo-Fang; Govindaraghavan, Meera; Varadaraj, Archana; Hashmi, Shahr B; De Souza, Colin P; Osmani, Stephen A

    2010-05-01

    A single-step protein affinity purification protocol using Aspergillus nidulans is described. Detailed protocols for cell breakage, affinity purification, and depending on the application, methods for protein release from affinity beads are provided. Examples defining the utility of the approaches, which should be widely applicable, are included.

  13. Estimating nonrigid motion from inconsistent intensity with robust shape features

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Wenyang; Ruan, Dan, E-mail: druan@mednet.ucla.edu; Department of Radiation Oncology, University of California, Los Angeles, California 90095

    2013-12-15

    Purpose: To develop a nonrigid motion estimation method that is robust to heterogeneous intensity inconsistencies amongst the image pairs or image sequence. Methods: Intensity and contrast variations, as in dynamic contrast enhanced magnetic resonance imaging, present a considerable challenge to registration methods based on general discrepancy metrics. In this study, the authors propose and validate a novel method that is robust to such variations by utilizing shape features. The geometry of interest (GOI) is represented with a flexible zero level set, segmented via well-behaved regularized optimization. The optimization energy drives the zero level set to high image gradient regions, andmore » regularizes it with area and curvature priors. The resulting shape exhibits high consistency even in the presence of intensity or contrast variations. Subsequently, a multiscale nonrigid registration is performed to seek a regular deformation field that minimizes shape discrepancy in the vicinity of GOIs. Results: To establish the working principle, realistic 2D and 3D images were subject to simulated nonrigid motion and synthetic intensity variations, so as to enable quantitative evaluation of registration performance. The proposed method was benchmarked against three alternative registration approaches, specifically, optical flow, B-spline based mutual information, and multimodality demons. When intensity consistency was satisfied, all methods had comparable registration accuracy for the GOIs. When intensities among registration pairs were inconsistent, however, the proposed method yielded pronounced improvement in registration accuracy, with an approximate fivefold reduction in mean absolute error (MAE = 2.25 mm, SD = 0.98 mm), compared to optical flow (MAE = 9.23 mm, SD = 5.36 mm), B-spline based mutual information (MAE = 9.57 mm, SD = 8.74 mm) and mutimodality demons (MAE = 10.07 mm, SD = 4.03 mm). Applying the proposed method on a real MR image sequence also provided qualitatively appealing results, demonstrating good feasibility and applicability of the proposed method. Conclusions: The authors have developed a novel method to estimate the nonrigid motion of GOIs in the presence of spatial intensity and contrast variations, taking advantage of robust shape features. Quantitative analysis and qualitative evaluation demonstrated good promise of the proposed method. Further clinical assessment and validation is being performed.« less

  14. SU-C-BRA-04: Automated Segmentation of Head-And-Neck CT Images for Radiotherapy Treatment Planning Via Multi-Atlas Machine Learning (MAML)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, X; Gao, H; Sharp, G

    Purpose: Accurate image segmentation is a crucial step during image guided radiation therapy. This work proposes multi-atlas machine learning (MAML) algorithm for automated segmentation of head-and-neck CT images. Methods: As the first step, the algorithm utilizes normalized mutual information as similarity metric, affine registration combined with multiresolution B-Spline registration, and then fuses together using the label fusion strategy via Plastimatch. As the second step, the following feature selection strategy is proposed to extract five feature components from reference or atlas images: intensity (I), distance map (D), box (B), center of gravity (C) and stable point (S). The box feature Bmore » is novel. It describes a relative position from each point to minimum inscribed rectangle of ROI. The center-of-gravity feature C is the 3D Euclidean distance from a sample point to the ROI center of gravity, and then S is the distance of the sample point to the landmarks. Then, we adopt random forest (RF) in Scikit-learn, a Python module integrating a wide range of state-of-the-art machine learning algorithms as classifier. Different feature and atlas strategies are used for different ROIs for improved performance, such as multi-atlas strategy with reference box for brainstem, and single-atlas strategy with reference landmark for optic chiasm. Results: The algorithm was validated on a set of 33 CT images with manual contours using a leave-one-out cross-validation strategy. Dice similarity coefficients between manual contours and automated contours were calculated: the proposed MAML method had an improvement from 0.79 to 0.83 for brainstem and 0.11 to 0.52 for optic chiasm with respect to multi-atlas segmentation method (MA). Conclusion: A MAML method has been proposed for automated segmentation of head-and-neck CT images with improved performance. It provides the comparable result in brainstem and the improved result in optic chiasm compared with MA. Xuhua Ren and Hao Gao were partially supported by the NSFC (#11405105), the 973 Program (#2015CB856000), and the Shanghai Pujiang Talent Program (#14PJ1404500).« less

  15. Surface-Constrained Volumetric Brain Registration Using Harmonic Mappings

    PubMed Central

    Joshi, Anand A.; Shattuck, David W.; Thompson, Paul M.; Leahy, Richard M.

    2015-01-01

    In order to compare anatomical and functional brain imaging data across subjects, the images must first be registered to a common coordinate system in which anatomical features are aligned. Intensity-based volume registration methods can align subcortical structures well, but the variability in sulcal folding patterns typically results in misalignment of the cortical surface. Conversely, surface-based registration using sulcal features can produce excellent cortical alignment but the mapping between brains is restricted to the cortical surface. Here we describe a method for volumetric registration that also produces an accurate one-to-one point correspondence between cortical surfaces. This is achieved by first parameterizing and aligning the cortical surfaces using sulcal landmarks. We then use a constrained harmonic mapping to extend this surface correspondence to the entire cortical volume. Finally, this mapping is refined using an intensity-based warp. We demonstrate the utility of the method by applying it to T1-weighted magnetic resonance images (MRI). We evaluate the performance of our proposed method relative to existing methods that use only intensity information; for this comparison we compute the inter-subject alignment of expert-labeled sub-cortical structures after registration. PMID:18092736

  16. Inverse-consistent rigid registration of CT and MR for MR-based planning and adaptive prostate radiation therapy

    NASA Astrophysics Data System (ADS)

    Rivest-Hénault, David; Dowson, Nicholas; Greer, Peter; Dowling, Jason

    2014-03-01

    MRI-alone treatment planning and adaptive MRI-based prostate radiation therapy are two promising techniques that could significantly increase the accuracy of the curative dose delivery processes while reducing the total radiation dose. State-of-the-art methods rely on the registration of a patient MRI with a MR-CT atlas for the estimation of pseudo-CT [5]. This atlas itself is generally created by registering many CT and MRI pairs. Most registration methods are not symmetric, but the order of the images influences the result [8]. The computed transformation is therefore biased, introducing unwanted variability. This work examines how much a symmetric algorithm improves the registration. Methods: A robust symmetric registration algorithm is proposed that simultaneously optimises a half space transform and its inverse. During the registration process, the two input volumetric images are transformed to a common position in space, therefore minimising any computational bias. An asymmetrical implementation of the same algorithm was used for comparison purposes. Results: Whole pelvis MRI and CT scans from 15 prostate patients were registered, as in the creation of MR-CT atlases. In each case, two registrations were performed, with different input image orders, and the transformation error quantified. Mean residuals of 0.63±0.26 mm (translation) and (8.7±7.3) × 10--3 rad (rotation) were found for the asymmetrical implementation with corresponding values of 0.038±0.039 mm and (1.6 ± 1.3) × 10--3 rad for the proposed symmetric algorithm, a substantial improvement. Conclusions: The increased registration precision will enhance the generation of pseudo-CT from MRI for atlas based MR planning methods.

  17. TU-F-BRF-02: MR-US Prostate Registration Using Patient-Specific Tissue Elasticity Property Prior for MR-Targeted, TRUS-Guided HDR Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, X; Rossi, P; Ogunleye, T

    2014-06-15

    Purpose: High-dose-rate (HDR) brachytherapy has become a popular treatment modality for prostate cancer. Conventional transrectal ultrasound (TRUS)-guided prostate HDR brachytherapy could benefit significantly from MR-targeted, TRUS-guided procedure where the tumor locations, acquired from the multiparametric MRI, are incorporated into the treatment planning. In order to enable this integration, we have developed a MR-TRUS registration with a patient-specific biomechanical elasticity prior. Methods: The proposed method used a biomechanical elasticity prior to guide the prostate volumetric B-spline deformation in the MRI and TRUS registration. The patient-specific biomechanical elasticity prior was generated using ultrasound elastography, where two 3D TRUS prostate images were acquiredmore » under different probe-induced pressures during the HDR procedure, which takes 2-4 minutes. These two 3D TRUS images were used to calculate the local displacement (elasticity map) of two prostate volumes. The B-spline transformation was calculated by minimizing the Euclidean distance between the normalized attribute vectors of the prostate surface landmarks on the MR and TRUS. This technique was evaluated through two studies: a prostate-phantom study and a pilot study with 5 patients undergoing prostate HDR treatment. The accuracy of our approach was assessed through the locations of several landmarks in the post-registration and TRUS images; our registration results were compared with the surface-based method. Results: For the phantom study, the mean landmark displacement of the proposed method was 1.29±0.11 mm. For the 5 patients, the mean landmark displacement of the surface-based method was 3.25±0.51 mm; our method, 1.71±0.25 mm. Therefore, our proposed method of prostate registration outperformed the surfaced-based registration significantly. Conclusion: We have developed a novel MR-TRUS prostate registration approach based on patient-specific biomechanical elasticity prior. Successful integration of multi-parametric MR and TRUS prostate images provides a prostate-cancer map for treatment planning, enables accurate dose planning and delivery, and potentially enhances prostate HDR treatment outcome.« less

  18. Control over structure-specific flexibility improves anatomical accuracy for point-based deformable registration in bladder cancer radiotherapy.

    PubMed

    Wognum, S; Bondar, L; Zolnay, A G; Chai, X; Hulshof, M C C M; Hoogeman, M S; Bel, A

    2013-02-01

    Future developments in image guided adaptive radiotherapy (IGART) for bladder cancer require accurate deformable image registration techniques for the precise assessment of tumor and bladder motion and deformation that occur as a result of large bladder volume changes during the course of radiotherapy treatment. The aim was to employ an extended version of a point-based deformable registration algorithm that allows control over tissue-specific flexibility in combination with the authors' unique patient dataset, in order to overcome two major challenges of bladder cancer registration, i.e., the difficulty in accounting for the difference in flexibility between the bladder wall and tumor and the lack of visible anatomical landmarks for validation. The registration algorithm used in the current study is an extension of the symmetric-thin plate splines-robust point matching (S-TPS-RPM) algorithm, a symmetric feature-based registration method. The S-TPS-RPM algorithm has been previously extended to allow control over the degree of flexibility of different structures via a weight parameter. The extended weighted S-TPS-RPM algorithm was tested and validated on CT data (planning- and four to five repeat-CTs) of five urinary bladder cancer patients who received lipiodol injections before radiotherapy. The performance of the weighted S-TPS-RPM method, applied to bladder and tumor structures simultaneously, was compared with a previous version of the S-TPS-RPM algorithm applied to bladder wall structure alone and with a simultaneous nonweighted S-TPS-RPM registration of the bladder and tumor structures. Performance was assessed in terms of anatomical and geometric accuracy. The anatomical accuracy was calculated as the residual distance error (RDE) of the lipiodol markers and the geometric accuracy was determined by the surface distance, surface coverage, and inverse consistency errors. Optimal parameter values for the flexibility and bladder weight parameters were determined for the weighted S-TPS-RPM. The weighted S-TPS-RPM registration algorithm with optimal parameters significantly improved the anatomical accuracy as compared to S-TPS-RPM registration of the bladder alone and reduced the range of the anatomical errors by half as compared with the simultaneous nonweighted S-TPS-RPM registration of the bladder and tumor structures. The weighted algorithm reduced the RDE range of lipiodol markers from 0.9-14 mm after rigid bone match to 0.9-4.0 mm, compared to a range of 1.1-9.1 mm with S-TPS-RPM of bladder alone and 0.9-9.4 mm for simultaneous nonweighted registration. All registration methods resulted in good geometric accuracy on the bladder; average error values were all below 1.2 mm. The weighted S-TPS-RPM registration algorithm with additional weight parameter allowed indirect control over structure-specific flexibility in multistructure registrations of bladder and bladder tumor, enabling anatomically coherent registrations. The availability of an anatomically validated deformable registration method opens up the horizon for improvements in IGART for bladder cancer.

  19. Realistic simulated MRI and SPECT databases. Application to SPECT/MRI registration evaluation.

    PubMed

    Aubert-Broche, Berengere; Grova, Christophe; Reilhac, Anthonin; Evans, Alan C; Collins, D Louis

    2006-01-01

    This paper describes the construction of simulated SPECT and MRI databases that account for realistic anatomical and functional variability. The data is used as a gold-standard to evaluate four SPECT/MRI similarity-based registration methods. Simulation realism was accounted for using accurate physical models of data generation and acquisition. MRI and SPECT simulations were generated from three subjects to take into account inter-subject anatomical variability. Functional SPECT data were computed from six functional models of brain perfusion. Previous models of normal perfusion and ictal perfusion observed in Mesial Temporal Lobe Epilepsy (MTLE) were considered to generate functional variability. We studied the impact noise and intensity non-uniformity in MRI simulations and SPECT scatter correction may have on registration accuracy. We quantified the amount of registration error caused by anatomical and functional variability. Registration involving ictal data was less accurate than registration involving normal data. MR intensity nonuniformity was the main factor decreasing registration accuracy. The proposed simulated database is promising to evaluate many functional neuroimaging methods, involving MRI and SPECT data.

  20. Automatic Marker-free Longitudinal Infrared Image Registration by Shape Context Based Matching and Competitive Winner-guided Optimal Corresponding

    PubMed Central

    Lee, Chia-Yen; Wang, Hao-Jen; Lai, Jhih-Hao; Chang, Yeun-Chung; Huang, Chiun-Sheng

    2017-01-01

    Long-term comparisons of infrared image can facilitate the assessment of breast cancer tissue growth and early tumor detection, in which longitudinal infrared image registration is a necessary step. However, it is hard to keep markers attached on a body surface for weeks, and rather difficult to detect anatomic fiducial markers and match them in the infrared image during registration process. The proposed study, automatic longitudinal infrared registration algorithm, develops an automatic vascular intersection detection method and establishes feature descriptors by shape context to achieve robust matching, as well as to obtain control points for the deformation model. In addition, competitive winner-guided mechanism is developed for optimal corresponding. The proposed algorithm is evaluated in two ways. Results show that the algorithm can quickly lead to accurate image registration and that the effectiveness is superior to manual registration with a mean error being 0.91 pixels. These findings demonstrate that the proposed registration algorithm is reasonably accurate and provide a novel method of extracting a greater amount of useful data from infrared images. PMID:28145474

  1. Methodological study of affine transformations of gene expression data with proposed robust non-parametric multi-dimensional normalization method.

    PubMed

    Bengtsson, Henrik; Hössjer, Ola

    2006-03-01

    Low-level processing and normalization of microarray data are most important steps in microarray analysis, which have profound impact on downstream analysis. Multiple methods have been suggested to date, but it is not clear which is the best. It is therefore important to further study the different normalization methods in detail and the nature of microarray data in general. A methodological study of affine models for gene expression data is carried out. Focus is on two-channel comparative studies, but the findings generalize also to single- and multi-channel data. The discussion applies to spotted as well as in-situ synthesized microarray data. Existing normalization methods such as curve-fit ("lowess") normalization, parallel and perpendicular translation normalization, and quantile normalization, but also dye-swap normalization are revisited in the light of the affine model and their strengths and weaknesses are investigated in this context. As a direct result from this study, we propose a robust non-parametric multi-dimensional affine normalization method, which can be applied to any number of microarrays with any number of channels either individually or all at once. A high-quality cDNA microarray data set with spike-in controls is used to demonstrate the power of the affine model and the proposed normalization method. We find that an affine model can explain non-linear intensity-dependent systematic effects in observed log-ratios. Affine normalization removes such artifacts for non-differentially expressed genes and assures that symmetry between negative and positive log-ratios is obtained, which is fundamental when identifying differentially expressed genes. In addition, affine normalization makes the empirical distributions in different channels more equal, which is the purpose of quantile normalization, and may also explain why dye-swap normalization works or fails. All methods are made available in the aroma package, which is a platform-independent package for R.

  2. A survey of medical image registration - under review.

    PubMed

    Viergever, Max A; Maintz, J B Antoine; Klein, Stefan; Murphy, Keelin; Staring, Marius; Pluim, Josien P W

    2016-10-01

    A retrospective view on the past two decades of the field of medical image registration is presented, guided by the article "A survey of medical image registration" (Maintz and Viergever, 1998). It shows that the classification of the field introduced in that article is still usable, although some modifications to do justice to advances in the field would be due. The main changes over the last twenty years are the shift from extrinsic to intrinsic registration, the primacy of intensity-based registration, the breakthrough of nonlinear registration, the progress of inter-subject registration, and the availability of generic image registration software packages. Two problems that were called urgent already 20 years ago, are even more urgent nowadays: Validation of registration methods, and translation of results of image registration research to clinical practice. It may be concluded that the field of medical image registration has evolved, but still is in need of further development in various aspects. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Estimating nonrigid motion from inconsistent intensity with robust shape features.

    PubMed

    Liu, Wenyang; Ruan, Dan

    2013-12-01

    To develop a nonrigid motion estimation method that is robust to heterogeneous intensity inconsistencies amongst the image pairs or image sequence. Intensity and contrast variations, as in dynamic contrast enhanced magnetic resonance imaging, present a considerable challenge to registration methods based on general discrepancy metrics. In this study, the authors propose and validate a novel method that is robust to such variations by utilizing shape features. The geometry of interest (GOI) is represented with a flexible zero level set, segmented via well-behaved regularized optimization. The optimization energy drives the zero level set to high image gradient regions, and regularizes it with area and curvature priors. The resulting shape exhibits high consistency even in the presence of intensity or contrast variations. Subsequently, a multiscale nonrigid registration is performed to seek a regular deformation field that minimizes shape discrepancy in the vicinity of GOIs. To establish the working principle, realistic 2D and 3D images were subject to simulated nonrigid motion and synthetic intensity variations, so as to enable quantitative evaluation of registration performance. The proposed method was benchmarked against three alternative registration approaches, specifically, optical flow, B-spline based mutual information, and multimodality demons. When intensity consistency was satisfied, all methods had comparable registration accuracy for the GOIs. When intensities among registration pairs were inconsistent, however, the proposed method yielded pronounced improvement in registration accuracy, with an approximate fivefold reduction in mean absolute error (MAE = 2.25 mm, SD = 0.98 mm), compared to optical flow (MAE = 9.23 mm, SD = 5.36 mm), B-spline based mutual information (MAE = 9.57 mm, SD = 8.74 mm) and mutimodality demons (MAE = 10.07 mm, SD = 4.03 mm). Applying the proposed method on a real MR image sequence also provided qualitatively appealing results, demonstrating good feasibility and applicability of the proposed method. The authors have developed a novel method to estimate the nonrigid motion of GOIs in the presence of spatial intensity and contrast variations, taking advantage of robust shape features. Quantitative analysis and qualitative evaluation demonstrated good promise of the proposed method. Further clinical assessment and validation is being performed.

  4. Line-Based Registration of Panoramic Images and LiDAR Point Clouds for Mobile Mapping.

    PubMed

    Cui, Tingting; Ji, Shunping; Shan, Jie; Gong, Jianya; Liu, Kejian

    2016-12-31

    For multi-sensor integrated systems, such as the mobile mapping system (MMS), data fusion at sensor-level, i.e., the 2D-3D registration between an optical camera and LiDAR, is a prerequisite for higher level fusion and further applications. This paper proposes a line-based registration method for panoramic images and a LiDAR point cloud collected by a MMS. We first introduce the system configuration and specification, including the coordinate systems of the MMS, the 3D LiDAR scanners, and the two panoramic camera models. We then establish the line-based transformation model for the panoramic camera. Finally, the proposed registration method is evaluated for two types of camera models by visual inspection and quantitative comparison. The results demonstrate that the line-based registration method can significantly improve the alignment of the panoramic image and the LiDAR datasets under either the ideal spherical or the rigorous panoramic camera model, with the latter being more reliable.

  5. Line-Based Registration of Panoramic Images and LiDAR Point Clouds for Mobile Mapping

    PubMed Central

    Cui, Tingting; Ji, Shunping; Shan, Jie; Gong, Jianya; Liu, Kejian

    2016-01-01

    For multi-sensor integrated systems, such as the mobile mapping system (MMS), data fusion at sensor-level, i.e., the 2D-3D registration between an optical camera and LiDAR, is a prerequisite for higher level fusion and further applications. This paper proposes a line-based registration method for panoramic images and a LiDAR point cloud collected by a MMS. We first introduce the system configuration and specification, including the coordinate systems of the MMS, the 3D LiDAR scanners, and the two panoramic camera models. We then establish the line-based transformation model for the panoramic camera. Finally, the proposed registration method is evaluated for two types of camera models by visual inspection and quantitative comparison. The results demonstrate that the line-based registration method can significantly improve the alignment of the panoramic image and the LiDAR datasets under either the ideal spherical or the rigorous panoramic camera model, with the latter being more reliable. PMID:28042855

  6. Approximate registration of point clouds with large scale differences

    NASA Astrophysics Data System (ADS)

    Novak, D.; Schindler, K.

    2013-10-01

    3D reconstruction of objects is a basic task in many fields, including surveying, engineering, entertainment and cultural heritage. The task is nowadays often accomplished with a laser scanner, which produces dense point clouds, but lacks accurate colour information, and lacks per-point accuracy measures. An obvious solution is to combine laser scanning with photogrammetric recording. In that context, the problem arises to register the two datasets, which feature large scale, translation and rotation differences. The absence of approximate registration parameters (3D translation, 3D rotation and scale) precludes the use of fine-registration methods such as ICP. Here, we present a method to register realistic photogrammetric and laser point clouds in a fully automated fashion. The proposed method decomposes the registration into a sequence of simpler steps: first, two rotation angles are determined by finding dominant surface normal directions, then the remaining parameters are found with RANSAC followed by ICP and scale refinement. These two steps are carried out at low resolution, before computing a precise final registration at higher resolution.

  7. Fractal Analysis of Rock Joint Profiles

    NASA Astrophysics Data System (ADS)

    Audy, Ondřej; Ficker, Tomáš

    2017-10-01

    Surface reliefs of rock joints are analyzed in geotechnics when shear strength of rocky slopes is estimated. The rock joint profiles actually are self-affine fractal curves and computations of their fractal dimensions require special methods. Many papers devoted to the fractal properties of these profiles were published in the past but only a few of those papers employed a convenient computational method that would have guaranteed a sound value of that dimension. As a consequence, anomalously low dimensions were presented. This contribution deals with two computational modifications that lead to sound fractal dimensions of the self-affine rock joint profiles. These are the modified box-counting method and the modified yard-stick method sometimes called the compass method. Both these methods are frequently applied to self-similar fractal curves but the self-affine profile curves due to their self-affine nature require modified computational procedures implemented in computer programs.

  8. A rapid solution-based method for determining the affinity of heroin hapten-induced antibodies to heroin, its metabolites, and other opioids.

    PubMed

    Torres, Oscar B; Duval, Alexander J; Sulima, Agnieszka; Antoline, Joshua F G; Jacobson, Arthur E; Rice, Kenner C; Alving, Carl R; Matyas, Gary R

    2018-06-01

    We describe for the first time a method that utilizes microscale thermophoresis (MST) technology to determine polyclonal antibody affinities to small molecules. Using a novel type of heterologous MST, we have accurately measured a solution-based binding affinity of serum antibodies to heroin which was previously impossible with other currently available methods. Moreover, this mismatch approach (i.e., using a cross-reactive hapten tracer) has never been reported in the literature. When compared with equilibrium dialysis combined with ultra-performance liquid chromatography/tandem mass spectrometry (ED-UPLC/MS/MS), this novel MST method yields similar binding affinity values for polyclonal antibodies to the major heroin metabolites 6-AM and morphine. Additionally, we herein report the method of synthesis of this novel cross-reactive hapten, MorHap-acetamide-a useful analog for the study of heroin hapten-antibody interactions. Using heterologous MST, we were able to determine the affinities, down to nanomolar accuracies, of polyclonal antibodies to various abused opioids. While optimizing this method, we further discovered that heroin is protected from serum esterase degradation by the presence of these antibodies in a concentration-dependent manner. Lastly, using affinity data for a number of structurally different opioids, we were able to dissect the moieties that are crucial to antibody binding. The novel MST method that is presented herein can be extended to the analysis of any ligand that is prone to degradation and can be applied not only to the development of vaccines to substances of abuse but also to the analysis of small molecule/protein interactions in the presence of serum. Graphical abstract Strategy for the determination of hapten-induced antibody affinities using Microscale thermophoresis.

  9. Direct Measurement of Equilibrium Constants for High-Affinity Hemoglobins

    PubMed Central

    Kundu, Suman; Premer, Scott A.; Hoy, Julie A.; Trent, James T.; Hargrove, Mark S.

    2003-01-01

    The biological functions of heme proteins are linked to their rate and affinity constants for ligand binding. Kinetic experiments are commonly used to measure equilibrium constants for traditional hemoglobins comprised of pentacoordinate ligand binding sites and simple bimolecular reaction schemes. However, kinetic methods do not always yield reliable equilibrium constants with more complex hemoglobins for which reaction mechanisms are not clearly understood. Furthermore, even where reaction mechanisms are clearly understood, it is very difficult to directly measure equilibrium constants for oxygen and carbon monoxide binding to high-affinity (KD ≪ 1 μM) hemoglobins. This work presents a method for direct measurement of equilibrium constants for high-affinity hemoglobins that utilizes a competition for ligands between the "target" protein and an array of "scavenger" hemoglobins with known affinities. This method is described for oxygen and carbon monoxide binding to two hexacoordinate hemoglobins: rice nonsymbiotic hemoglobin and Synechocystis hemoglobin. Our results demonstrate that although these proteins have different mechanisms for ligand binding, their affinities for oxygen and carbon monoxide are similar. Their large affinity constants for oxygen, 285 and ∼100 μM−1 respectively, indicate that they are not capable of facilitating oxygen transport. PMID:12770899

  10. Fully automatic segmentation of the femur from 3D-CT images using primitive shape recognition and statistical shape models.

    PubMed

    Ben Younes, Lassad; Nakajima, Yoshikazu; Saito, Toki

    2014-03-01

    Femur segmentation is well established and widely used in computer-assisted orthopedic surgery. However, most of the robust segmentation methods such as statistical shape models (SSM) require human intervention to provide an initial position for the SSM. In this paper, we propose to overcome this problem and provide a fully automatic femur segmentation method for CT images based on primitive shape recognition and SSM. Femur segmentation in CT scans was performed using primitive shape recognition based on a robust algorithm such as the Hough transform and RANdom SAmple Consensus. The proposed method is divided into 3 steps: (1) detection of the femoral head as sphere and the femoral shaft as cylinder in the SSM and the CT images, (2) rigid registration between primitives of SSM and CT image to initialize the SSM into the CT image, and (3) fitting of the SSM to the CT image edge using an affine transformation followed by a nonlinear fitting. The automated method provided good results even with a high number of outliers. The difference of segmentation error between the proposed automatic initialization method and a manual initialization method is less than 1 mm. The proposed method detects primitive shape position to initialize the SSM into the target image. Based on primitive shapes, this method overcomes the problem of inter-patient variability. Moreover, the results demonstrate that our method of primitive shape recognition can be used for 3D SSM initialization to achieve fully automatic segmentation of the femur.

  11. Analysis of Biological Interactions by Affinity Chromatography: Clinical and Pharmaceutical Applications

    PubMed Central

    Hage, David S.

    2017-01-01

    BACKGROUND The interactions between biochemical and chemical agents in the body are important in many clinical processes. Affinity chromatography and high-performance affinity chromatography (HPAC), in which a column contains an immobilized biologically-related binding agent, are two methods that can be used to study these interactions. CONTENT This review looks at various approaches that can be used in affinity chromatography and HPAC to characterize the strength or rate of a biological interaction, the number and types of sites that are involved in this process, and the interactions between multiple solutes for the same binding agent. A number of applications for these methods are examined, with an emphasis on recent developments and high-performance affinity methods. These applications include the use of these techniques for fundamental studies of biological interactions, high-throughput screening of drugs, work with modified proteins, tools for personalized medicine, and studies of drug-drug competition for a common binding agent. SUMMARY The wide range of formats and detection methods that can be used with affinity chromatography and HPAC for examining biological interactions makes these tools attractive for various clinical and pharmaceutical applications. Future directions in the development of small-scale columns and the coupling of these methods with other techniques, such as mass spectrometry or other separation methods, should continue to increase the flexibility and ease with which these approaches can be used in work involving clinical or pharmaceutical samples. PMID:28396561

  12. Sequence2Vec: a novel embedding approach for modeling transcription factor binding affinity landscape.

    PubMed

    Dai, Hanjun; Umarov, Ramzan; Kuwahara, Hiroyuki; Li, Yu; Song, Le; Gao, Xin

    2017-11-15

    An accurate characterization of transcription factor (TF)-DNA affinity landscape is crucial to a quantitative understanding of the molecular mechanisms underpinning endogenous gene regulation. While recent advances in biotechnology have brought the opportunity for building binding affinity prediction methods, the accurate characterization of TF-DNA binding affinity landscape still remains a challenging problem. Here we propose a novel sequence embedding approach for modeling the transcription factor binding affinity landscape. Our method represents DNA binding sequences as a hidden Markov model which captures both position specific information and long-range dependency in the sequence. A cornerstone of our method is a novel message passing-like embedding algorithm, called Sequence2Vec, which maps these hidden Markov models into a common nonlinear feature space and uses these embedded features to build a predictive model. Our method is a novel combination of the strength of probabilistic graphical models, feature space embedding and deep learning. We conducted comprehensive experiments on over 90 large-scale TF-DNA datasets which were measured by different high-throughput experimental technologies. Sequence2Vec outperforms alternative machine learning methods as well as the state-of-the-art binding affinity prediction methods. Our program is freely available at https://github.com/ramzan1990/sequence2vec. xin.gao@kaust.edu.sa or lsong@cc.gatech.edu. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.

  13. Method of identity analyte-binding peptides

    DOEpatents

    Kauvar, Lawrence M.

    1990-01-01

    A method for affinity chromatography or adsorption of a designated analyte utilizes a paralog as the affinity partner. The immobilized paralog can be used in purification or analysis of the analyte; the paralog can also be used as a substitute for antibody in an immunoassay. The paralog is identified by screening candidate peptide sequences of 4-20 amino acids for specific affinity to the analyte.

  14. Determination of hydride affinities of various aldehydes and ketones in acetonitrile.

    PubMed

    Zhu, Xiao-Qing; Chen, Xi; Mei, Lian-Rui

    2011-05-06

    The hydride affinities of 21 typical aldehydes and ketones in acetonitrile were determined by using an experimental method, which is valuable for chemists choosing suitable reducing agents to reduce them. The focus of this paper is to introduce a very facile experimental method, which can be used to determine the hydride affinities of various carbonyl compounds in solution.

  15. SU-E-J-248: Comparative Study of Two Image Registration for Image-Guided Radiation Therapy in Esophageal Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shang, K; Wang, J; Liu, D

    2014-06-01

    Purpose: Image-guided radiation therapy (IGRT) is one of the major treatment of esophageal cancer. Gray value registration and bone registration are two kinds of image registration, the purpose of this work is to compare which one is more suitable for esophageal cancer patients. Methods: Twenty three esophageal patients were treated by Elekta Synergy, CBCT images were acquired and automatically registered to planning kilovoltage CT scans according to gray value or bone registration. The setup errors were measured in the X, Y and Z axis, respectively. Two kinds of setup errors were analysed by matching T test statistical method. Results: Fourmore » hundred and five groups of CBCT images were available and the systematic and random setup errors (cm) in X, Y, Z directions were 0.35, 0.63, 0.29 and 0.31, 0.53, 0.21 with gray value registration, while 0.37, 0.64, 0.26 and 0.32, 0.55, 0.20 with bone registration, respectively. Compared with bone registration and gray value registration, the setup errors in X and Z axis have significant differences. In Y axis, both measurement comparison results of T value is 0.256 (P value > 0.05); In X axis, the T value is 5.287(P value < 0.05); In Z axis, the T value is −5.138 (P value < 0.05). Conclusion: Gray value registration is recommended in image-guided radiotherapy for esophageal cancer and the other thoracic tumors. Manual registration could be applied when it is necessary. Bone registration is more suitable for the head tumor and pelvic tumor department where composed of redundant interconnected and immobile bone tissue.« less

  16. Qualitative Improvement Methods Through Analysis of Inquiry Contents for Cancer Registration

    PubMed

    Boo, Yoo-Kyung; Lim, Hyun-Sook; Kim, Jung-Eun; Kim, Kyoung-Beom; Won, Young-Joo

    2017-06-25

    Background: In Korea, the national cancer database was constructed after the initiation of the national cancer registration project in 1980, and the annual national cancer registration report has been published every year since 2005. Consequently, data management must begin even at the stage of data collection in order to ensure quality. Objectives: To determine the suitability of cancer registries’ inquiry tools through the inquiry analysis of the Korea Central Cancer Registry (KCCR), and identify the needs to improve the quality of cancer registration. Methods: Results of 721 inquiries to the KCCR from 2000 to 2014 were analyzed by inquiry year, question type, and medical institution characteristics. Using Stata version 14.1, descriptive analysis was performed to identify general participant characteristics, and chi-square analysis was applied to investigate significant differences in distribution characteristics by factors affecting the quality of cancer registration data. Results: The number of inquiries increased in 2005–2009. During this period, there were various changes, including the addition of cancer registration items such as brain tumors and guideline updates. Of the inquirers, 65.3% worked at hospitals in metropolitan cities and 60.89% of hospitals had 601–1000 beds. Tertiary hospitals had the highest number of inquiries (64.91%), and the highest number of questions by type were 353 (48.96%) for histological codes, 92 (12.76%) for primary sites, and 76 (10.54%) for reportable. Conclusions: A cancer registration inquiry system is an effective method when not confident about codes during cancer registration, or when confronting cancer cases in which previous clinical knowledge or information on the cancer registration guidelines are insufficient. Creative Commons Attribution License

  17. Compositions, antibodies, asthma diagnosis methods, and methods for preparing antibodies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Hongjun; Zangar, Richard C.

    Methods for preparing an antibody are provided with the method including incorporating 3-bromo-4-hydroxy-benzoic acid into a protein to form an antigen, immunizing a mammalian host with the antigen, and recovering an antibody having an affinity for the antigen from the host. Antibodies having a binding affinity for a monohalotyrosine are provided as well as composition comprising an antibody bound with monohalotyrosine. Compositions comprising a protein having a 3-bromo-4-hydroxy-benzoic acid moiety are also provided. Methods for evaluating the severity of asthma are provide with the methods including analyzing sputum of a patient using an antibody having a binding affinity for monohalotyrosine,more » and measuring the amount of antibody bound to protein. Methods for determining eosinophil activity in bodily fluid are also provided with the methods including exposing bodily fluid to an antibody having a binding affinity for monohalotyrosine, and measuring the amount of bound antibody to determine the eosinophil activity.« less

  18. Evaluation of respiratory and cardiac motion correction schemes in dual gated PET/CT cardiac imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamare, F., E-mail: frederic.lamare@chu-bordeaux.fr; Fernandez, P.; CNRS, INCIA, UMR 5287, F-33400 Talence

    Purpose: Cardiac imaging suffers from both respiratory and cardiac motion. One of the proposed solutions involves double gated acquisitions. Although such an approach may lead to both respiratory and cardiac motion compensation there are issues associated with (a) the combination of data from cardiac and respiratory motion bins, and (b) poor statistical quality images as a result of using only part of the acquired data. The main objective of this work was to evaluate different schemes of combining binned data in order to identify the best strategy to reconstruct motion free cardiac images from dual gated positron emission tomography (PET)more » acquisitions. Methods: A digital phantom study as well as seven human studies were used in this evaluation. PET data were acquired in list mode (LM). A real-time position management system and an electrocardiogram device were used to provide the respiratory and cardiac motion triggers registered within the LM file. Acquired data were subsequently binned considering four and six cardiac gates, or the diastole only in combination with eight respiratory amplitude gates. PET images were corrected for attenuation, but no randoms nor scatter corrections were included. Reconstructed images from each of the bins considered above were subsequently used in combination with an affine or an elastic registration algorithm to derive transformation parameters allowing the combination of all acquired data in a particular position in the cardiac and respiratory cycles. Images were assessed in terms of signal-to-noise ratio (SNR), contrast, image profile, coefficient-of-variation (COV), and relative difference of the recovered activity concentration. Results: Regardless of the considered motion compensation strategy, the nonrigid motion model performed better than the affine model, leading to higher SNR and contrast combined with a lower COV. Nevertheless, when compensating for respiration only, no statistically significant differences were observed in the performance of the two motion models considered. Superior image SNR and contrast were seen using the affine respiratory motion model in combination with the diastole cardiac bin in comparison to the use of the whole cardiac cycle. In contrast, when simultaneously correcting for cardiac beating and respiration, the elastic respiratory motion model outperformed the affine model. In this context, four cardiac bins associated with eight respiratory amplitude bins seemed to be adequate. Conclusions: Considering the compensation of respiratory motion effects only, both affine and elastic based approaches led to an accurate resizing and positioning of the myocardium. The use of the diastolic phase combined with an affine model based respiratory motion correction may therefore be a simple approach leading to significant quality improvements in cardiac PET imaging. However, the best performance was obtained with the combined correction for both cardiac and respiratory movements considering all the dual-gated bins independently through the use of an elastic model based motion compensation.« less

  19. Point cloud registration from local feature correspondences-Evaluation on challenging datasets.

    PubMed

    Petricek, Tomas; Svoboda, Tomas

    2017-01-01

    Registration of laser scans, or point clouds in general, is a crucial step of localization and mapping with mobile robots or in object modeling pipelines. A coarse alignment of the point clouds is generally needed before applying local methods such as the Iterative Closest Point (ICP) algorithm. We propose a feature-based approach to point cloud registration and evaluate the proposed method and its individual components on challenging real-world datasets. For a moderate overlap between the laser scans, the method provides a superior registration accuracy compared to state-of-the-art methods including Generalized ICP, 3D Normal-Distribution Transform, Fast Point-Feature Histograms, and 4-Points Congruent Sets. Compared to the surface normals, the points as the underlying features yield higher performance in both keypoint detection and establishing local reference frames. Moreover, sign disambiguation of the basis vectors proves to be an important aspect in creating repeatable local reference frames. A novel method for sign disambiguation is proposed which yields highly repeatable reference frames.

  20. Deformable Medical Image Registration: A Survey

    PubMed Central

    Sotiras, Aristeidis; Davatzikos, Christos; Paragios, Nikos

    2013-01-01

    Deformable image registration is a fundamental task in medical image processing. Among its most important applications, one may cite: i) multi-modality fusion, where information acquired by different imaging devices or protocols is fused to facilitate diagnosis and treatment planning; ii) longitudinal studies, where temporal structural or anatomical changes are investigated; and iii) population modeling and statistical atlases used to study normal anatomical variability. In this paper, we attempt to give an overview of deformable registration methods, putting emphasis on the most recent advances in the domain. Additional emphasis has been given to techniques applied to medical images. In order to study image registration methods in depth, their main components are identified and studied independently. The most recent techniques are presented in a systematic fashion. The contribution of this paper is to provide an extensive account of registration techniques in a systematic manner. PMID:23739795

  1. Cortical Surface Registration for Image-Guided Neurosurgery Using Laser-Range Scanning

    PubMed Central

    Sinha, Tuhin K.; Cash, David M.; Galloway, Robert L.; Weil, Robert J.

    2013-01-01

    In this paper, a method of acquiring intraoperative data using a laser range scanner (LRS) is presented within the context of model-updated image-guided surgery. Registering textured point clouds generated by the LRS to tomographic data is explored using established point-based and surface techniques as well as a novel method that incorporates geometry and intensity information via mutual information (SurfaceMI). Phantom registration studies were performed to examine accuracy and robustness for each framework. In addition, an in vivo registration is performed to demonstrate feasibility of the data acquisition system in the operating room. Results indicate that SurfaceMI performed better in many cases than point-based (PBR) and iterative closest point (ICP) methods for registration of textured point clouds. Mean target registration error (TRE) for simulated deep tissue targets in a phantom were 1.0 ± 0.2, 2.0 ± 0.3, and 1.2 ± 0.3 mm for PBR, ICP, and SurfaceMI, respectively. With regard to in vivo registration, the mean TRE of vessel contour points for each framework was 1.9 ± 1.0, 0 9 ± 0.6, and 1.3 ± 0.5 for PBR, ICP, and SurfaceMI, respectively. The methods discussed in this paper in conjunction with the quantitative data provide impetus for using LRS technology within the model-updated image-guided surgery framework. PMID:12906252

  2. Atlas Based Segmentation and Mapping of Organs at Risk from Planning CT for the Development of Voxel-Wise Predictive Models of Toxicity in Prostate Radiotherapy

    NASA Astrophysics Data System (ADS)

    Acosta, Oscar; Dowling, Jason; Cazoulat, Guillaume; Simon, Antoine; Salvado, Olivier; de Crevoisier, Renaud; Haigron, Pascal

    The prediction of toxicity is crucial to managing prostate cancer radiotherapy (RT). This prediction is classically organ wise and based on the dose volume histograms (DVH) computed during the planning step, and using for example the mathematical Lyman Normal Tissue Complication Probability (NTCP) model. However, these models lack spatial accuracy, do not take into account deformations and may be inappropiate to explain toxicity events related with the distribution of the delivered dose. Producing voxel wise statistical models of toxicity might help to explain the risks linked to the dose spatial distribution but is challenging due to the difficulties lying on the mapping of organs and dose in a common template. In this paper we investigate the use of atlas based methods to perform the non-rigid mapping and segmentation of the individuals' organs at risk (OAR) from CT scans. To build a labeled atlas, 19 CT scans were selected from a population of patients treated for prostate cancer by radiotherapy. The prostate and the OAR (Rectum, Bladder, Bones) were then manually delineated by an expert and constituted the training data. After a number of affine and non rigid registration iterations, an average image (template) representing the whole population was obtained. The amount of consensus between labels was used to generate probabilistic maps for each organ. We validated the accuracy of the approach by segmenting the organs using the training data in a leave one out scheme. The agreement between the volumes after deformable registration and the manually segmented organs was on average above 60% for the organs at risk. The proposed methodology provides a way to map the organs from a whole population on a single template and sets the stage to perform further voxel wise analysis. With this method new and accurate predictive models of toxicity will be built.

  3. Deformable Image Registration for Cone-Beam CT Guided Transoral Robotic Base of Tongue Surgery

    PubMed Central

    Reaungamornrat, S.; Liu, W. P.; Wang, A. S.; Otake, Y.; Nithiananthan, S.; Uneri, A.; Schafer, S.; Tryggestad, E.; Richmon, J.; Sorger, J. M.; Siewerdsen, J. H.; Taylor, R. H.

    2013-01-01

    Transoral robotic surgery (TORS) offers a minimally invasive approach to resection of base of tongue tumors. However, precise localization of the surgical target and adjacent critical structures can be challenged by the highly deformed intraoperative setup. We propose a deformable registration method using intraoperative cone-beam CT (CBCT) to accurately align preoperative CT or MR images with the intraoperative scene. The registration method combines a Gaussian mixture (GM) model followed by a variation of the Demons algorithm. First, following segmentation of the volume of interest (i.e., volume of the tongue extending to the hyoid), a GM model is applied to surface point clouds for rigid initialization (GM rigid) followed by nonrigid deformation (GM nonrigid). Second, the registration is refined using the Demons algorithm applied to distance map transforms of the (GM-registered) preoperative image and intraoperative CBCT. Performance was evaluated in repeat cadaver studies (25 image pairs) in terms of target registration error (TRE), entropy correlation coefficient (ECC), and normalized pointwise mutual information (NPMI). Retraction of the tongue in the TORS operative setup induced gross deformation >30 mm. The mean TRE following the GM rigid, GM nonrigid, and Demons steps was 4.6, 2.1, and 1.7 mm, respectively. The respective ECC was 0.57, 0.70, and 0.73 and NPMI was 0.46, 0.57, and 0.60. Registration accuracy was best across the superior aspect of the tongue and in proximity to the hyoid (by virtue of GM registration of surface points on these structures). The Demons step refined registration primarily in deeper portions of the tongue further from the surface and hyoid bone. Since the method does not use image intensities directly, it is suitable to multi-modality registration of preoperative CT or MR with intraoperative CBCT. Extending the 3D image registration to the fusion of image and planning data in stereo-endoscopic video is anticipated to support safer, high-precision base of tongue robotic surgery. PMID:23807549

  4. Deformable image registration for cone-beam CT guided transoral robotic base-of-tongue surgery

    NASA Astrophysics Data System (ADS)

    Reaungamornrat, S.; Liu, W. P.; Wang, A. S.; Otake, Y.; Nithiananthan, S.; Uneri, A.; Schafer, S.; Tryggestad, E.; Richmon, J.; Sorger, J. M.; Siewerdsen, J. H.; Taylor, R. H.

    2013-07-01

    Transoral robotic surgery (TORS) offers a minimally invasive approach to resection of base-of-tongue tumors. However, precise localization of the surgical target and adjacent critical structures can be challenged by the highly deformed intraoperative setup. We propose a deformable registration method using intraoperative cone-beam computed tomography (CBCT) to accurately align preoperative CT or MR images with the intraoperative scene. The registration method combines a Gaussian mixture (GM) model followed by a variation of the Demons algorithm. First, following segmentation of the volume of interest (i.e. volume of the tongue extending to the hyoid), a GM model is applied to surface point clouds for rigid initialization (GM rigid) followed by nonrigid deformation (GM nonrigid). Second, the registration is refined using the Demons algorithm applied to distance map transforms of the (GM-registered) preoperative image and intraoperative CBCT. Performance was evaluated in repeat cadaver studies (25 image pairs) in terms of target registration error (TRE), entropy correlation coefficient (ECC) and normalized pointwise mutual information (NPMI). Retraction of the tongue in the TORS operative setup induced gross deformation >30 mm. The mean TRE following the GM rigid, GM nonrigid and Demons steps was 4.6, 2.1 and 1.7 mm, respectively. The respective ECC was 0.57, 0.70 and 0.73, and NPMI was 0.46, 0.57 and 0.60. Registration accuracy was best across the superior aspect of the tongue and in proximity to the hyoid (by virtue of GM registration of surface points on these structures). The Demons step refined registration primarily in deeper portions of the tongue further from the surface and hyoid bone. Since the method does not use image intensities directly, it is suitable to multi-modality registration of preoperative CT or MR with intraoperative CBCT. Extending the 3D image registration to the fusion of image and planning data in stereo-endoscopic video is anticipated to support safer, high-precision base-of-tongue robotic surgery.

  5. A Multistage Approach for Image Registration.

    PubMed

    Bowen, Francis; Hu, Jianghai; Du, Eliza Yingzi

    2016-09-01

    Successful image registration is an important step for object recognition, target detection, remote sensing, multimodal content fusion, scene blending, and disaster assessment and management. The geometric and photometric variations between images adversely affect the ability for an algorithm to estimate the transformation parameters that relate the two images. Local deformations, lighting conditions, object obstructions, and perspective differences all contribute to the challenges faced by traditional registration techniques. In this paper, a novel multistage registration approach is proposed that is resilient to view point differences, image content variations, and lighting conditions. Robust registration is realized through the utilization of a novel region descriptor which couples with the spatial and texture characteristics of invariant feature points. The proposed region descriptor is exploited in a multistage approach. A multistage process allows the utilization of the graph-based descriptor in many scenarios thus allowing the algorithm to be applied to a broader set of images. Each successive stage of the registration technique is evaluated through an effective similarity metric which determines subsequent action. The registration of aerial and street view images from pre- and post-disaster provide strong evidence that the proposed method estimates more accurate global transformation parameters than traditional feature-based methods. Experimental results show the robustness and accuracy of the proposed multistage image registration methodology.

  6. Feature-Based Retinal Image Registration Using D-Saddle Feature

    PubMed Central

    Hasikin, Khairunnisa; A. Karim, Noor Khairiah; Ahmedy, Fatimah

    2017-01-01

    Retinal image registration is important to assist diagnosis and monitor retinal diseases, such as diabetic retinopathy and glaucoma. However, registering retinal images for various registration applications requires the detection and distribution of feature points on the low-quality region that consists of vessels of varying contrast and sizes. A recent feature detector known as Saddle detects feature points on vessels that are poorly distributed and densely positioned on strong contrast vessels. Therefore, we propose a multiresolution difference of Gaussian pyramid with Saddle detector (D-Saddle) to detect feature points on the low-quality region that consists of vessels with varying contrast and sizes. D-Saddle is tested on Fundus Image Registration (FIRE) Dataset that consists of 134 retinal image pairs. Experimental results show that D-Saddle successfully registered 43% of retinal image pairs with average registration accuracy of 2.329 pixels while a lower success rate is observed in other four state-of-the-art retinal image registration methods GDB-ICP (28%), Harris-PIIFD (4%), H-M (16%), and Saddle (16%). Furthermore, the registration accuracy of D-Saddle has the weakest correlation (Spearman) with the intensity uniformity metric among all methods. Finally, the paired t-test shows that D-Saddle significantly improved the overall registration accuracy of the original Saddle. PMID:29204257

  7. Method of identity analyte-binding peptides

    DOEpatents

    Kauvar, L.M.

    1990-10-16

    A method for affinity chromatography or adsorption of a designated analyte utilizes a paralog as the affinity partner. The immobilized paralog can be used in purification or analysis of the analyte; the paralog can also be used as a substitute for antibody in an immunoassay. The paralog is identified by screening candidate peptide sequences of 4--20 amino acids for specific affinity to the analyte. 5 figs.

  8. Automatic allograft bone selection through band registration and its application to distal femur.

    PubMed

    Zhang, Yu; Qiu, Lei; Li, Fengzan; Zhang, Qing; Zhang, Li; Niu, Xiaohui

    2017-09-01

    Clinical reports suggest that large bone defects could be effectively restored by allograft bone transplantation, where allograft bone selection acts an important role. Besides, there is a huge demand for developing the automatic allograft bone selection methods, as the automatic methods could greatly improve the management efficiency of the large bone banks. Although several automatic methods have been presented to select the most suitable allograft bone from the massive allograft bone bank, these methods still suffer from inaccuracy. In this paper, we propose an effective allograft bone selection method without using the contralateral bones. Firstly, the allograft bone is globally aligned to the recipient bone by surface registration. Then, the global alignment is further refined through band registration. The band, defined as the recipient points within the lifted and lowered cutting planes, could involve more local structure of the defected segment. Therefore, our method could achieve robust alignment and high registration accuracy of the allograft and recipient. Moreover, the existing contour method and surface method could be unified into one framework under our method by adjusting the lift and lower distances of the cutting planes. Finally, our method has been validated on the database of distal femurs. The experimental results indicate that our method outperforms the surface method and contour method.

  9. Automatic Intensity-based 3D-to-2D Registration of CT Volume and Dual-energy Digital Radiography for the Detection of Cardiac Calcification

    PubMed Central

    Chen, Xiang; Gilkeson, Robert; Fei, Baowei

    2013-01-01

    We are investigating three-dimensional (3D) to two-dimensional (2D) registration methods for computed tomography (CT) and dual-energy digital radiography (DR) for the detection of coronary artery calcification. CT is an established tool for the diagnosis of coronary artery diseases (CADs). Dual-energy digital radiography could be a cost-effective alternative for screening coronary artery calcification. In order to utilize CT as the “gold standard” to evaluate the ability of DR images for the detection and localization of calcium, we developed an automatic intensity-based 3D-to-2D registration method for 3D CT volumes and 2D DR images. To generate digital rendering radiographs (DRR) from the CT volumes, we developed three projection methods, i.e. Gaussian-weighted projection, threshold-based projection, and average-based projection. We tested normalized cross correlation (NCC) and normalized mutual information (NMI) as similarity measurement. We used the Downhill Simplex method as the search strategy. Simulated projection images from CT were fused with the corresponding DR images to evaluate the localization of cardiac calcification. The registration method was evaluated by digital phantoms, physical phantoms, and clinical data sets. The results from the digital phantoms show that the success rate is 100% with mean errors of less 0.8 mm and 0.2 degree for both NCC and NMI. The registration accuracy of the physical phantoms is 0.34 ± 0.27 mm. Color overlay and 3D visualization of the clinical data show that the two images are registered well. This is consistent with the improvement of the NMI values from 0.20 ± 0.03 to 0.25 ± 0.03 after registration. The automatic 3D-to-2D registration method is accurate and robust and may provide a useful tool to evaluate the dual-energy DR images for the detection of coronary artery calcification. PMID:24386527

  10. Automatic Intensity-based 3D-to-2D Registration of CT Volume and Dual-energy Digital Radiography for the Detection of Cardiac Calcification.

    PubMed

    Chen, Xiang; Gilkeson, Robert; Fei, Baowei

    2007-03-03

    We are investigating three-dimensional (3D) to two-dimensional (2D) registration methods for computed tomography (CT) and dual-energy digital radiography (DR) for the detection of coronary artery calcification. CT is an established tool for the diagnosis of coronary artery diseases (CADs). Dual-energy digital radiography could be a cost-effective alternative for screening coronary artery calcification. In order to utilize CT as the "gold standard" to evaluate the ability of DR images for the detection and localization of calcium, we developed an automatic intensity-based 3D-to-2D registration method for 3D CT volumes and 2D DR images. To generate digital rendering radiographs (DRR) from the CT volumes, we developed three projection methods, i.e. Gaussian-weighted projection, threshold-based projection, and average-based projection. We tested normalized cross correlation (NCC) and normalized mutual information (NMI) as similarity measurement. We used the Downhill Simplex method as the search strategy. Simulated projection images from CT were fused with the corresponding DR images to evaluate the localization of cardiac calcification. The registration method was evaluated by digital phantoms, physical phantoms, and clinical data sets. The results from the digital phantoms show that the success rate is 100% with mean errors of less 0.8 mm and 0.2 degree for both NCC and NMI. The registration accuracy of the physical phantoms is 0.34 ± 0.27 mm. Color overlay and 3D visualization of the clinical data show that the two images are registered well. This is consistent with the improvement of the NMI values from 0.20 ± 0.03 to 0.25 ± 0.03 after registration. The automatic 3D-to-2D registration method is accurate and robust and may provide a useful tool to evaluate the dual-energy DR images for the detection of coronary artery calcification.

  11. Automatic intensity-based 3D-to-2D registration of CT volume and dual-energy digital radiography for the detection of cardiac calcification

    NASA Astrophysics Data System (ADS)

    Chen, Xiang; Gilkeson, Robert; Fei, Baowei

    2007-03-01

    We are investigating three-dimensional (3D) to two-dimensional (2D) registration methods for computed tomography (CT) and dual-energy digital radiography (DR) for the detection of coronary artery calcification. CT is an established tool for the diagnosis of coronary artery diseases (CADs). Dual-energy digital radiography could be a cost-effective alternative for screening coronary artery calcification. In order to utilize CT as the "gold standard" to evaluate the ability of DR images for the detection and localization of calcium, we developed an automatic intensity-based 3D-to-2D registration method for 3D CT volumes and 2D DR images. To generate digital rendering radiographs (DRR) from the CT volumes, we developed three projection methods, i.e. Gaussian-weighted projection, threshold-based projection, and average-based projection. We tested normalized cross correlation (NCC) and normalized mutual information (NMI) as similarity measurement. We used the Downhill Simplex method as the search strategy. Simulated projection images from CT were fused with the corresponding DR images to evaluate the localization of cardiac calcification. The registration method was evaluated by digital phantoms, physical phantoms, and clinical data sets. The results from the digital phantoms show that the success rate is 100% with mean errors of less 0.8 mm and 0.2 degree for both NCC and NMI. The registration accuracy of the physical phantoms is 0.34 +/- 0.27 mm. Color overlay and 3D visualization of the clinical data show that the two images are registered well. This is consistent with the improvement of the NMI values from 0.20 +/- 0.03 to 0.25 +/- 0.03 after registration. The automatic 3D-to-2D registration method is accurate and robust and may provide a useful tool to evaluate the dual-energy DR images for the detection of coronary artery calcification.

  12. Non-rigid ultrasound image registration using generalized relaxation labeling process

    NASA Astrophysics Data System (ADS)

    Lee, Jong-Ha; Seong, Yeong Kyeong; Park, MoonHo; Woo, Kyoung-Gu; Ku, Jeonghun; Park, Hee-Jun

    2013-03-01

    This research proposes a novel non-rigid registration method for ultrasound images. The most predominant anatomical features in medical images are tissue boundaries, which appear as edges. In ultrasound images, however, other features can be identified as well due to the specular reflections that appear as bright lines superimposed on the ideal edge location. In this work, an image's local phase information (via the frequency domain) is used to find the ideal edge location. The generalized relaxation labeling process is then formulated to align the feature points extracted from the ideal edge location. In this work, the original relaxation labeling method was generalized by taking n compatibility coefficient values to improve non-rigid registration performance. This contextual information combined with a relaxation labeling process is used to search for a correspondence. Then the transformation is calculated by the thin plate spline (TPS) model. These two processes are iterated until the optimal correspondence and transformation are found. We have tested our proposed method and the state-of-the-art algorithms with synthetic data and bladder ultrasound images of in vivo human subjects. Experiments show that the proposed method improves registration performance significantly, as compared to other state-of-the-art non-rigid registration algorithms.

  13. TH-EF-BRA-03: Assessment of Data-Driven Respiratory Motion-Compensation Methods for 4D-CBCT Image Registration and Reconstruction Using Clinical Datasets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riblett, MJ; Weiss, E; Hugo, GD

    Purpose: To evaluate the performance of a 4D-CBCT registration and reconstruction method that corrects for respiratory motion and enhances image quality under clinically relevant conditions. Methods: Building on previous work, which tested feasibility of a motion-compensation workflow using image datasets superior to clinical acquisitions, this study assesses workflow performance under clinical conditions in terms of image quality improvement. Evaluated workflows utilized a combination of groupwise deformable image registration (DIR) and image reconstruction. Four-dimensional cone beam CT (4D-CBCT) FDK reconstructions were registered to either mean or respiratory phase reference frame images to model respiratory motion. The resulting 4D transformation was usedmore » to deform projection data during the FDK backprojection operation to create a motion-compensated reconstruction. To simulate clinically realistic conditions, superior quality projection datasets were sampled using a phase-binned striding method. Tissue interface sharpness (TIS) was defined as the slope of a sigmoid curve fit to the lung-diaphragm boundary or to the carina tissue-airway boundary when no diaphragm was discernable. Image quality improvement was assessed in 19 clinical cases by evaluating mitigation of view-aliasing artifacts, tissue interface sharpness recovery, and noise reduction. Results: For clinical datasets, evaluated average TIS recovery relative to base 4D-CBCT reconstructions was observed to be 87% using fixed-frame registration alone; 87% using fixed-frame with motion-compensated reconstruction; 92% using mean-frame registration alone; and 90% using mean-frame with motion-compensated reconstruction. Soft tissue noise was reduced on average by 43% and 44% for the fixed-frame registration and registration with motion-compensation methods, respectively, and by 40% and 42% for the corresponding mean-frame methods. Considerable reductions in view aliasing artifacts were observed for each method. Conclusion: Data-driven groupwise registration and motion-compensated reconstruction have the potential to improve the quality of 4D-CBCT images acquired under clinical conditions. For clinical image datasets, the addition of motion compensation after groupwise registration visibly reduced artifact impact. This work was supported by the National Cancer Institute of the National Institutes of Health under Award Number R01CA166119. Hugo and Weiss hold a research agreement with Philips Healthcare and license agreement with Varian Medical Systems. Weiss receives royalties from UpToDate. Christensen receives funds from Roger Koch to support research.« less

  14. High-Precision Registration of Point Clouds Based on Sphere Feature Constraints.

    PubMed

    Huang, Junhui; Wang, Zhao; Gao, Jianmin; Huang, Youping; Towers, David Peter

    2016-12-30

    Point cloud registration is a key process in multi-view 3D measurements. Its precision affects the measurement precision directly. However, in the case of the point clouds with non-overlapping areas or curvature invariant surface, it is difficult to achieve a high precision. A high precision registration method based on sphere feature constraint is presented to overcome the difficulty in the paper. Some known sphere features with constraints are used to construct virtual overlapping areas. The virtual overlapping areas provide more accurate corresponding point pairs and reduce the influence of noise. Then the transformation parameters between the registered point clouds are solved by an optimization method with weight function. In that case, the impact of large noise in point clouds can be reduced and a high precision registration is achieved. Simulation and experiments validate the proposed method.

  15. High-Precision Registration of Point Clouds Based on Sphere Feature Constraints

    PubMed Central

    Huang, Junhui; Wang, Zhao; Gao, Jianmin; Huang, Youping; Towers, David Peter

    2016-01-01

    Point cloud registration is a key process in multi-view 3D measurements. Its precision affects the measurement precision directly. However, in the case of the point clouds with non-overlapping areas or curvature invariant surface, it is difficult to achieve a high precision. A high precision registration method based on sphere feature constraint is presented to overcome the difficulty in the paper. Some known sphere features with constraints are used to construct virtual overlapping areas. The virtual overlapping areas provide more accurate corresponding point pairs and reduce the influence of noise. Then the transformation parameters between the registered point clouds are solved by an optimization method with weight function. In that case, the impact of large noise in point clouds can be reduced and a high precision registration is achieved. Simulation and experiments validate the proposed method. PMID:28042846

  16. A robust cloud registration method based on redundant data reduction using backpropagation neural network and shift window

    NASA Astrophysics Data System (ADS)

    Xin, Meiting; Li, Bing; Yan, Xiao; Chen, Lei; Wei, Xiang

    2018-02-01

    A robust coarse-to-fine registration method based on the backpropagation (BP) neural network and shift window technology is proposed in this study. Specifically, there are three steps: coarse alignment between the model data and measured data, data simplification based on the BP neural network and point reservation in the contour region of point clouds, and fine registration with the reweighted iterative closest point algorithm. In the process of rough alignment, the initial rotation matrix and the translation vector between the two datasets are obtained. After performing subsequent simplification operations, the number of points can be reduced greatly. Therefore, the time and space complexity of the accurate registration can be significantly reduced. The experimental results show that the proposed method improves the computational efficiency without loss of accuracy.

  17. Method for accurate registration of tissue autofluorescence imaging data with corresponding histology: a means for enhanced tumor margin assessment

    NASA Astrophysics Data System (ADS)

    Unger, Jakob; Sun, Tianchen; Chen, Yi-Ling; Phipps, Jennifer E.; Bold, Richard J.; Darrow, Morgan A.; Ma, Kwan-Liu; Marcu, Laura

    2018-01-01

    An important step in establishing the diagnostic potential for emerging optical imaging techniques is accurate registration between imaging data and the corresponding tissue histopathology typically used as gold standard in clinical diagnostics. We present a method to precisely register data acquired with a point-scanning spectroscopic imaging technique from fresh surgical tissue specimen blocks with corresponding histological sections. Using a visible aiming beam to augment point-scanning multispectral time-resolved fluorescence spectroscopy on video images, we evaluate two different markers for the registration with histology: fiducial markers using a 405-nm CW laser and the tissue block's outer shape characteristics. We compare the registration performance with benchmark methods using either the fiducial markers or the outer shape characteristics alone to a hybrid method using both feature types. The hybrid method was found to perform best reaching an average error of 0.78±0.67 mm. This method provides a profound framework to validate diagnostical abilities of optical fiber-based techniques and furthermore enables the application of supervised machine learning techniques to automate tissue characterization.

  18. [Comparison of acetonitrile, ethanol and chromatographic column to eliminate high-abundance proteins in human serum].

    PubMed

    Li, Yin; Liao, Ming; He, Xiao; Zhou, Yi; Luo, Rong; Li, Hongtao; Wang, Yun; He, Min

    2012-11-01

    To compare the effects of acetonitrile precipitation, ethanol precipitation and multiple affinity chromatography column Human 14 removal to eliminate high-abundance proteins in human serum. Elimination of serum high-abundance proteins performed with acetonitrile precipitation, ethanol precipitation and multiple affinity chromatography column Human 14 removal. Bis-Tris Mini Gels electrophoresis and two-dimensional gel electrophoresis to detect the effect. Grey value analysis from 1-DE figure showed that after serum processed by acetonitrile method, multiple affinity chromatography column Human 14 removal method and ethanol method, the grey value of albumin changed into 157.2, 40.8 and 8.2 respectively from the original value of 19. 2-DE analysis results indicated that using multiple affinity chromatography column Human 14 method, the protein points noticeable increased by 137 compared to the original serum. After processed by acetonitrile method and ethanol method, the protein point reduced, but the low abundance protein point emerged. The acetonitrile precipitation could eliminate the vast majority of high abundance proteins in serum and gain more proteins of low molecular weight, ethanol precipitation could eliminate part of high abundance proteins in serum, but low abundance proteins less harvested, and multiple affinity chromatography column Human 14 method could effectively removed the high abundance proteins, and keep a large number of low abundance proteins.

  19. A concept for holistic whole body MRI data analysis, Imiomics

    PubMed Central

    Malmberg, Filip; Johansson, Lars; Lind, Lars; Sundbom, Magnus; Ahlström, Håkan; Kullberg, Joel

    2017-01-01

    Purpose To present and evaluate a whole-body image analysis concept, Imiomics (imaging–omics) and an image registration method that enables Imiomics analyses by deforming all image data to a common coordinate system, so that the information in each voxel can be compared between persons or within a person over time and integrated with non-imaging data. Methods The presented image registration method utilizes relative elasticity constraints of different tissue obtained from whole-body water-fat MRI. The registration method is evaluated by inverse consistency and Dice coefficients and the Imiomics concept is evaluated by example analyses of importance for metabolic research using non-imaging parameters where we know what to expect. The example analyses include whole body imaging atlas creation, anomaly detection, and cross-sectional and longitudinal analysis. Results The image registration method evaluation on 128 subjects shows low inverse consistency errors and high Dice coefficients. Also, the statistical atlas with fat content intensity values shows low standard deviation values, indicating successful deformations to the common coordinate system. The example analyses show expected associations and correlations which agree with explicit measurements, and thereby illustrate the usefulness of the proposed Imiomics concept. Conclusions The registration method is well-suited for Imiomics analyses, which enable analyses of relationships to non-imaging data, e.g. clinical data, in new types of holistic targeted and untargeted big-data analysis. PMID:28241015

  20. Reproducibility measurements of three methods for calculating in vivo MR-based knee kinematics.

    PubMed

    Lansdown, Drew A; Zaid, Musa; Pedoia, Valentina; Subburaj, Karupppasamy; Souza, Richard; Benjamin, C; Li, Xiaojuan

    2015-08-01

    To describe three quantification methods for magnetic resonance imaging (MRI)-based knee kinematic evaluation and to report on the reproducibility of these algorithms. T2 -weighted, fast-spin echo images were obtained of the bilateral knees in six healthy volunteers. Scans were repeated for each knee after repositioning to evaluate protocol reproducibility. Semiautomatic segmentation defined regions of interest for the tibia and femur. The posterior femoral condyles and diaphyseal axes were defined using the previously defined tibia and femur. All segmentation was performed twice to evaluate segmentation reliability. Anterior tibial translation (ATT) and internal tibial rotation (ITR) were calculated using three methods: a tibial-based registration system, a combined tibiofemoral-based registration method with all manual segmentation, and a combined tibiofemoral-based registration method with automatic definition of condyles and axes. Intraclass correlation coefficients and standard deviations across multiple measures were determined. Reproducibility of segmentation was excellent (ATT = 0.98; ITR = 0.99) for both combined methods. ATT and ITR measurements were also reproducible across multiple scans in the combined registration measurements with manual (ATT = 0.94; ITR = 0.94) or automatic (ATT = 0.95; ITR = 0.94) condyles and axes. The combined tibiofemoral registration with automatic definition of the posterior femoral condyle and diaphyseal axes allows for improved knee kinematics quantification with excellent in vivo reproducibility. © 2014 Wiley Periodicals, Inc.

  1. Registration algorithm of point clouds based on multiscale normal features

    NASA Astrophysics Data System (ADS)

    Lu, Jun; Peng, Zhongtao; Su, Hang; Xia, GuiHua

    2015-01-01

    The point cloud registration technology for obtaining a three-dimensional digital model is widely applied in many areas. To improve the accuracy and speed of point cloud registration, a registration method based on multiscale normal vectors is proposed. The proposed registration method mainly includes three parts: the selection of key points, the calculation of feature descriptors, and the determining and optimization of correspondences. First, key points are selected from the point cloud based on the changes of magnitude of multiscale curvatures obtained by using principal components analysis. Then the feature descriptor of each key point is proposed, which consists of 21 elements based on multiscale normal vectors and curvatures. The correspondences in a pair of two point clouds are determined according to the descriptor's similarity of key points in the source point cloud and target point cloud. Correspondences are optimized by using a random sampling consistency algorithm and clustering technology. Finally, singular value decomposition is applied to optimized correspondences so that the rigid transformation matrix between two point clouds is obtained. Experimental results show that the proposed point cloud registration algorithm has a faster calculation speed, higher registration accuracy, and better antinoise performance.

  2. Mammogram registration: a phantom-based evaluation of compressed breast thickness variation effects.

    PubMed

    Richard, Frédéric J P; Bakić, Predrag R; Maidment, Andrew D A

    2006-02-01

    The temporal comparison of mammograms is complex; a wide variety of factors can cause changes in image appearance. Mammogram registration is proposed as a method to reduce the effects of these changes and potentially to emphasize genuine alterations in breast tissue. Evaluation of such registration techniques is difficult since ground truth regarding breast deformations is not available in clinical mammograms. In this paper, we propose a systematic approach to evaluate sensitivity of registration methods to various types of changes in mammograms using synthetic breast images with known deformations. As a first step, images of the same simulated breasts with various amounts of simulated physical compression have been used to evaluate a previously described nonrigid mammogram registration technique. Registration performance is measured by calculating the average displacement error over a set of evaluation points identified in mammogram pairs. Applying appropriate thickness compensation and using a preferred order of the registered images, we obtained an average displacement error of 1.6 mm for mammograms with compression differences of 1-3 cm. The proposed methodology is applicable to analysis of other sources of mammogram differences and can be extended to the registration of multimodality breast data.

  3. Deformable 3D-2D registration for CT and its application to low dose tomographic fluoroscopy

    NASA Astrophysics Data System (ADS)

    Flach, Barbara; Brehm, Marcus; Sawall, Stefan; Kachelrieß, Marc

    2014-12-01

    Many applications in medical imaging include image registration for matching of images from the same or different modalities. In the case of full data sampling, the respective reconstructed images are usually of such a good image quality that standard deformable volume-to-volume (3D-3D) registration approaches can be applied. But research in temporal-correlated image reconstruction and dose reductions increases the number of cases where rawdata are available from only few projection angles. Here, deteriorated image quality leads to non-acceptable deformable volume-to-volume registration results. Therefore a registration approach is required that is robust against a decreasing number of projections defining the target position. We propose a deformable volume-to-rawdata (3D-2D) registration method that aims at finding a displacement vector field maximizing the alignment of a CT volume and the acquired rawdata based on the sum of squared differences in rawdata domain. The registration is constrained by a regularization term in accordance with a fluid-based diffusion. Both cost function components, the rawdata fidelity and the regularization term, are optimized in an alternating manner. The matching criterion is optimized by a conjugate gradient descent for nonlinear functions, while the regularization is realized by convolution of the vector fields with Gaussian kernels. We validate the proposed method and compare it to the demons algorithm, a well-known 3D-3D registration method. The comparison is done for a range of 4-60 target projections using datasets from low dose tomographic fluoroscopy as an application example. The results show a high correlation to the ground truth target position without introducing artifacts even in the case of very few projections. In particular the matching in the rawdata domain is improved compared to the 3D-3D registration for the investigated range. The proposed volume-to-rawdata registration increases the robustness regarding sparse rawdata and provides more stable results than volume-to-volume approaches. By applying the proposed registration approach to low dose tomographic fluoroscopy it is possible to improve the temporal resolution and thus to increase the robustness of low dose tomographic fluoroscopy.

  4. SU-E-J-08: A Hybrid Three Dimensional Registration Framework for Image-Guided Accurate Radiotherapy System ARTS-IGRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Q; School of Nuclear Science and Technology, Hefei, Anhui; Anhui Medical University, Hefei, Anhui

    Purpose: The purpose of this work was to develop a registration framework and method based on the software platform of ARTS-IGRT and implement in C++ based on ITK libraries to register CT images and CBCT images. ARTS-IGRT was a part of our self-developed accurate radiation planning system ARTS. Methods: Mutual information (MI) registration treated each voxel equally. Actually, different voxels even having same intensity should be treated differently in the registration procedure. According to their importance values calculated from self-information, a similarity measure was proposed which combined the spatial importance of a voxel with MI (S-MI). For lung registration, Firstly,more » a global alignment method was adopted to minimize the margin error and achieve the alignment of these two images on the whole. The result obtained at the low resolution level was then interpolated to become the initial conditions for the higher resolution computation. Secondly, a new similarity measurement S-MI was established to quantify how close the two input image volumes were to each other. Finally, Demons model was applied to compute the deformable map. Results: Registration tools were tested for head-neck and lung images and the average region was 128*128*49. The rigid registration took approximately 2 min and converged 10% faster than traditional MI algorithm, the accuracy reached 1mm for head-neck images. For lung images, the improved symmetric Demons registration process was completed in an average of 5 min using a 2.4GHz dual core CPU. Conclusion: A registration framework was developed to correct patient's setup according to register the planning CT volume data and the daily reconstructed 3D CBCT data. The experiments showed that the spatial MI algorithm can be adopted for head-neck images. The improved Demons deformable registration was more suitable to lung images, and rigid alignment should be applied before deformable registration to get more accurate result. Supported by National Natural Science Foundation of China (NO.81101132) and Natural Science Foundation of Anhui Province (NO.11040606Q55)« less

  5. Point-based warping with optimized weighting factors of displacement vectors

    NASA Astrophysics Data System (ADS)

    Pielot, Ranier; Scholz, Michael; Obermayer, Klaus; Gundelfinger, Eckart D.; Hess, Andreas

    2000-06-01

    The accurate comparison of inter-individual 3D image brain datasets requires non-affine transformation techniques (warping) to reduce geometric variations. Constrained by the biological prerequisites we use in this study a landmark-based warping method with weighted sums of displacement vectors, which is enhanced by an optimization process. Furthermore, we investigate fast automatic procedures for determining landmarks to improve the practicability of 3D warping. This combined approach was tested on 3D autoradiographs of Gerbil brains. The autoradiographs were obtained after injecting a non-metabolized radioactive glucose derivative into the Gerbil thereby visualizing neuronal activity in the brain. Afterwards the brain was processed with standard autoradiographical methods. The landmark-generator computes corresponding reference points simultaneously within a given number of datasets by Monte-Carlo-techniques. The warping function is a distance weighted exponential function with a landmark- specific weighting factor. These weighting factors are optimized by a computational evolution strategy. The warping quality is quantified by several coefficients (correlation coefficient, overlap-index, and registration error). The described approach combines a highly suitable procedure to automatically detect landmarks in autoradiographical brain images and an enhanced point-based warping technique, optimizing the local weighting factors. This optimization process significantly improves the similarity between the warped and the target dataset.

  6. Surfactant-free Colloidal Particles with Specific Binding Affinity

    PubMed Central

    2017-01-01

    Colloidal particles with specific binding affinity are essential for in vivo and in vitro biosensing, targeted drug delivery, and micrometer-scale self-assembly. Key to these techniques are surface functionalizations that provide high affinities to specific target molecules. For stabilization in physiological environments, current particle coating methods rely on adsorbed surfactants. However, spontaneous desorption of these surfactants typically has an undesirable influence on lipid membranes. To address this issue and create particles for targeting molecules in lipid membranes, we present here a surfactant-free coating method that combines high binding affinity with stability at physiological conditions. After activating charge-stabilized polystyrene microparticles with EDC/Sulfo-NHS, we first coat the particles with a specific protein and subsequently covalently attach a dense layer of poly(ethyelene) glycol. This polymer layer provides colloidal stability at physiological conditions as well as antiadhesive properties, while the protein coating provides the specific affinity to the targeted molecule. We show that NeutrAvidin-functionalized particles bind specifically to biotinylated membranes and that Concanavalin A-functionalized particles bind specifically to the glycocortex of Dictyostelium discoideum cells. The affinity of the particles changes with protein density, which can be tuned during the coating procedure. The generic and surfactant-free coating method reported here transfers the high affinity and specificity of a protein onto colloidal polystyrene microparticles. PMID:28847149

  7. Deformable and rigid registration of MRI and microPET images for photodynamic therapy of cancer in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fei Baowei; Wang Hesheng; Muzic, Raymond F. Jr.

    2006-03-15

    We are investigating imaging techniques to study the tumor response to photodynamic therapy (PDT). Positron emission tomography (PET) can provide physiological and functional information. High-resolution magnetic resonance imaging (MRI) can provide anatomical and morphological changes. Image registration can combine MRI and PET images for improved tumor monitoring. In this study, we acquired high-resolution MRI and microPET {sup 18}F-fluorodeoxyglucose (FDG) images from C3H mice with RIF-1 tumors that were treated with Pc 4-based PDT. We developed two registration methods for this application. For registration of the whole mouse body, we used an automatic three-dimensional, normalized mutual information algorithm. For tumor registration,more » we developed a finite element model (FEM)-based deformable registration scheme. To assess the quality of whole body registration, we performed slice-by-slice review of both image volumes; manually segmented feature organs, such as the left and right kidneys and the bladder, in each slice; and computed the distance between corresponding centroids. Over 40 volume registration experiments were performed with MRI and microPET images. The distance between corresponding centroids of organs was 1.5{+-}0.4 mm which is about 2 pixels of microPET images. The mean volume overlap ratios for tumors were 94.7% and 86.3% for the deformable and rigid registration methods, respectively. Registration of high-resolution MRI and microPET images combines anatomical and functional information of the tumors and provides a useful tool for evaluating photodynamic therapy.« less

  8. An effective non-rigid registration approach for ultrasound image based on "demons" algorithm.

    PubMed

    Liu, Yan; Cheng, H D; Huang, Jianhua; Zhang, Yingtao; Tang, Xianglong; Tian, Jiawei

    2013-06-01

    Medical image registration is an important component of computer-aided diagnosis system in diagnostics, therapy planning, and guidance of surgery. Because of its low signal/noise ratio (SNR), ultrasound (US) image registration is a difficult task. In this paper, a fully automatic non-rigid image registration algorithm based on demons algorithm is proposed for registration of ultrasound images. In the proposed method, an "inertia force" derived from the local motion trend of pixels in a Moore neighborhood system is produced and integrated into optical flow equation to estimate the demons force, which is helpful to handle the speckle noise and preserve the geometric continuity of US images. In the experiment, a series of US images and several similarity measure metrics are utilized for evaluating the performance. The experimental results demonstrate that the proposed method can register ultrasound images efficiently, robust to noise, quickly and automatically.

  9. [Non-rigid medical image registration based on mutual information and thin-plate spline].

    PubMed

    Cao, Guo-gang; Luo, Li-min

    2009-01-01

    To get precise and complete details, the contrast in different images is needed in medical diagnosis and computer assisted treatment. The image registration is the basis of contrast, but the regular rigid registration does not satisfy the clinic requirements. A non-rigid medical image registration method based on mutual information and thin-plate spline was present. Firstly, registering two images globally based on mutual information; secondly, dividing reference image and global-registered image into blocks and registering them; then getting the thin-plate spline transformation according to the shift of blocks' center; finally, applying the transformation to the global-registered image. The results show that the method is more precise than the global rigid registration based on mutual information and it reduces the complexity of getting control points and satisfy the clinic requirements better by getting control points of the thin-plate transformation automatically.

  10. Deformation field correction for spatial normalization of PET images

    PubMed Central

    Bilgel, Murat; Carass, Aaron; Resnick, Susan M.; Wong, Dean F.; Prince, Jerry L.

    2015-01-01

    Spatial normalization of positron emission tomography (PET) images is essential for population studies, yet the current state of the art in PET-to-PET registration is limited to the application of conventional deformable registration methods that were developed for structural images. A method is presented for the spatial normalization of PET images that improves their anatomical alignment over the state of the art. The approach works by correcting the deformable registration result using a model that is learned from training data having both PET and structural images. In particular, viewing the structural registration of training data as ground truth, correction factors are learned by using a generalized ridge regression at each voxel given the PET intensities and voxel locations in a population-based PET template. The trained model can then be used to obtain more accurate registration of PET images to the PET template without the use of a structural image. A cross validation evaluation on 79 subjects shows that the proposed method yields more accurate alignment of the PET images compared to deformable PET-to-PET registration as revealed by 1) a visual examination of the deformed images, 2) a smaller error in the deformation fields, and 3) a greater overlap of the deformed anatomical labels with ground truth segmentations. PMID:26142272

  11. Topology-guided deformable registration with local importance preservation for biomedical images

    NASA Astrophysics Data System (ADS)

    Zheng, Chaojie; Wang, Xiuying; Zeng, Shan; Zhou, Jianlong; Yin, Yong; Feng, Dagan; Fulham, Michael

    2018-01-01

    The demons registration (DR) model is well recognized for its deformation capability. However, it might lead to misregistration due to erroneous diffusion direction when there are no overlaps between corresponding regions. We propose a novel registration energy function, introducing topology energy, and incorporating a local energy function into the DR in a progressive registration scheme, to address these shortcomings. The topology energy that is derived from the topological information of the images serves as a direction inference to guide diffusion transformation to retain the merits of DR. The local energy constrains the deformation disparity of neighbouring pixels to maintain important local texture and density features. The energy function is minimized in a progressive scheme steered by a topology tree graph and we refer to it as topology-guided deformable registration (TDR). We validated our TDR on 20 pairs of synthetic images with Gaussian noise, 20 phantom PET images with artificial deformations and 12 pairs of clinical PET-CT studies. We compared it to three methods: (1) free-form deformation registration method, (2) energy-based DR and (3) multi-resolution DR. The experimental results show that our TDR outperformed the other three methods in regard to structural correspondence and preservation of the local important information including texture and density, while retaining global correspondence.

  12. Supervoxels for graph cuts-based deformable image registration using guided image filtering

    NASA Astrophysics Data System (ADS)

    Szmul, Adam; Papież, Bartłomiej W.; Hallack, Andre; Grau, Vicente; Schnabel, Julia A.

    2017-11-01

    We propose combining a supervoxel-based image representation with the concept of graph cuts as an efficient optimization technique for three-dimensional (3-D) deformable image registration. Due to the pixels/voxels-wise graph construction, the use of graph cuts in this context has been mainly limited to two-dimensional (2-D) applications. However, our work overcomes some of the previous limitations by posing the problem on a graph created by adjacent supervoxels, where the number of nodes in the graph is reduced from the number of voxels to the number of supervoxels. We demonstrate how a supervoxel image representation combined with graph cuts-based optimization can be applied to 3-D data. We further show that the application of a relaxed graph representation of the image, followed by guided image filtering over the estimated deformation field, allows us to model "sliding motion." Applying this method to lung image registration results in highly accurate image registration and anatomically plausible estimations of the deformations. Evaluation of our method on a publicly available computed tomography lung image dataset leads to the observation that our approach compares very favorably with state of the art methods in continuous and discrete image registration, achieving target registration error of 1.16 mm on average per landmark.

  13. Robust registration of sparsely sectioned histology to ex-vivo MRI of temporal lobe resections

    NASA Astrophysics Data System (ADS)

    Goubran, Maged; Khan, Ali R.; Crukley, Cathie; Buchanan, Susan; Santyr, Brendan; deRibaupierre, Sandrine; Peters, Terry M.

    2012-02-01

    Surgical resection of epileptic foci is a typical treatment for drug-resistant epilepsy, however, accurate preoperative localization is challenging and often requires invasive sub-dural or intra-cranial electrode placement. The presence of cellular abnormalities in the resected tissue can be used to validate the effectiveness of multispectralMagnetic Resonance Imaging (MRI) in pre-operative foci localization and surgical planning. If successful, these techniques can lead to improved surgical outcomes and less invasive procedures. Towards this goal, a novel pipeline is presented here for post-operative imaging of temporal lobe specimens involving MRI and digital histology, and present and evaluate methods for bringing these images into spatial correspondence. The sparsely-sectioned histology images of resected tissue represents a challenge for 3D reconstruction which we address with a combined 3D and 2D rigid registration algorithm that alternates between slice-based and volume-based registration with the ex-vivo MRI. We also evaluate four methods for non-rigid within-plane registration using both images and fiducials, with the top performing method resulting in a target registration error of 0.87 mm. This work allows for the spatially-local comparison of histology with post-operative MRI and paves the way for eventual registration with pre-operative MRI images.

  14. Supervoxels for Graph Cuts-Based Deformable Image Registration Using Guided Image Filtering.

    PubMed

    Szmul, Adam; Papież, Bartłomiej W; Hallack, Andre; Grau, Vicente; Schnabel, Julia A

    2017-10-04

    In this work we propose to combine a supervoxel-based image representation with the concept of graph cuts as an efficient optimization technique for 3D deformable image registration. Due to the pixels/voxels-wise graph construction, the use of graph cuts in this context has been mainly limited to 2D applications. However, our work overcomes some of the previous limitations by posing the problem on a graph created by adjacent supervoxels, where the number of nodes in the graph is reduced from the number of voxels to the number of supervoxels. We demonstrate how a supervoxel image representation, combined with graph cuts-based optimization can be applied to 3D data. We further show that the application of a relaxed graph representation of the image, followed by guided image filtering over the estimated deformation field, allows us to model 'sliding motion'. Applying this method to lung image registration, results in highly accurate image registration and anatomically plausible estimations of the deformations. Evaluation of our method on a publicly available Computed Tomography lung image dataset (www.dir-lab.com) leads to the observation that our new approach compares very favorably with state-of-the-art in continuous and discrete image registration methods achieving Target Registration Error of 1.16mm on average per landmark.

  15. Supervoxels for Graph Cuts-Based Deformable Image Registration Using Guided Image Filtering

    PubMed Central

    Szmul, Adam; Papież, Bartłomiej W.; Hallack, Andre; Grau, Vicente; Schnabel, Julia A.

    2017-01-01

    In this work we propose to combine a supervoxel-based image representation with the concept of graph cuts as an efficient optimization technique for 3D deformable image registration. Due to the pixels/voxels-wise graph construction, the use of graph cuts in this context has been mainly limited to 2D applications. However, our work overcomes some of the previous limitations by posing the problem on a graph created by adjacent supervoxels, where the number of nodes in the graph is reduced from the number of voxels to the number of supervoxels. We demonstrate how a supervoxel image representation, combined with graph cuts-based optimization can be applied to 3D data. We further show that the application of a relaxed graph representation of the image, followed by guided image filtering over the estimated deformation field, allows us to model ‘sliding motion’. Applying this method to lung image registration, results in highly accurate image registration and anatomically plausible estimations of the deformations. Evaluation of our method on a publicly available Computed Tomography lung image dataset (www.dir-lab.com) leads to the observation that our new approach compares very favorably with state-of-the-art in continuous and discrete image registration methods achieving Target Registration Error of 1.16mm on average per landmark. PMID:29225433

  16. Joint estimation of subject motion and tracer kinetic parameters of dynamic PET data in an EM framework

    NASA Astrophysics Data System (ADS)

    Jiao, Jieqing; Salinas, Cristian A.; Searle, Graham E.; Gunn, Roger N.; Schnabel, Julia A.

    2012-02-01

    Dynamic Positron Emission Tomography is a powerful tool for quantitative imaging of in vivo biological processes. The long scan durations necessitate motion correction, to maintain the validity of the dynamic measurements, which can be particularly challenging due to the low signal-to-noise ratio (SNR) and spatial resolution, as well as the complex tracer behaviour in the dynamic PET data. In this paper we develop a novel automated expectation-maximisation image registration framework that incorporates temporal tracer kinetic information to correct for inter-frame subject motion during dynamic PET scans. We employ the Zubal human brain phantom to simulate dynamic PET data using SORTEO (a Monte Carlo-based simulator), in order to validate the proposed method for its ability to recover imposed rigid motion. We have conducted a range of simulations using different noise levels, and corrupted the data with a range of rigid motion artefacts. The performance of our motion correction method is compared with pairwise registration using normalised mutual information as a voxel similarity measure (an approach conventionally used to correct for dynamic PET inter-frame motion based solely on intensity information). To quantify registration accuracy, we calculate the target registration error across the images. The results show that our new dynamic image registration method based on tracer kinetics yields better realignment of the simulated datasets, halving the target registration error when compared to the conventional method at small motion levels, as well as yielding smaller residuals in translation and rotation parameters. We also show that our new method is less affected by the low signal in the first few frames, which the conventional method based on normalised mutual information fails to realign.

  17. 3D-SIFT-Flow for atlas-based CT liver image segmentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Yan, E-mail: xuyan04@gmail.com; Xu, Chenchao, E-mail: chenchaoxu33@gmail.com; Kuang, Xiao, E-mail: kuangxiao.ace@gmail.com

    Purpose: In this paper, the authors proposed a new 3D registration algorithm, 3D-scale invariant feature transform (SIFT)-Flow, for multiatlas-based liver segmentation in computed tomography (CT) images. Methods: In the registration work, the authors developed a new registration method that takes advantage of dense correspondence using the informative and robust SIFT feature. The authors computed the dense SIFT features for the source image and the target image and designed an objective function to obtain the correspondence between these two images. Labeling of the source image was then mapped to the target image according to the former correspondence, resulting in accurate segmentation.more » In the fusion work, the 2D-based nonparametric label transfer method was extended to 3D for fusing the registered 3D atlases. Results: Compared with existing registration algorithms, 3D-SIFT-Flow has its particular advantage in matching anatomical structures (such as the liver) that observe large variation/deformation. The authors observed consistent improvement over widely adopted state-of-the-art registration methods such as ELASTIX, ANTS, and multiatlas fusion methods such as joint label fusion. Experimental results of liver segmentation on the MICCAI 2007 Grand Challenge are encouraging, e.g., Dice overlap ratio 96.27% ± 0.96% by our method compared with the previous state-of-the-art result of 94.90% ± 2.86%. Conclusions: Experimental results show that 3D-SIFT-Flow is robust for segmenting the liver from CT images, which has large tissue deformation and blurry boundary, and 3D label transfer is effective and efficient for improving the registration accuracy.« less

  18. [Validation of an improved Demons deformable registration algorithm and its application in re-contouring in 4D-CT].

    PubMed

    Zhen, Xin; Zhou, Ling-hong; Lu, Wen-ting; Zhang, Shu-xu; Zhou, Lu

    2010-12-01

    To validate the efficiency and accuracy of an improved Demons deformable registration algorithm and evaluate its application in contour recontouring in 4D-CT. To increase the additional Demons force and reallocate the bilateral forces to accelerate convergent speed, we propose a novel energy function as the similarity measure, and utilize a BFGS method for optimization to avoid specifying the numbers of iteration. Mathematical transformed deformable CT images and home-made deformable phantom were used to validate the accuracy of the improved algorithm, and its effectiveness for contour recontouring was tested. The improved algorithm showed a relatively high registration accuracy and speed when compared with the classic Demons algorithm and optical flow based method. Visual inspection of the positions and shapes of the deformed contours agreed well with the physician-drawn contours. Deformable registration is a key technique in 4D-CT, and this improved Demons algorithm for contour recontouring can significantly reduce the workload of the physicians. The registration accuracy of this method proves to be sufficient for clinical needs.

  19. A method to map errors in the deformable registration of 4DCT images1

    PubMed Central

    Vaman, Constantin; Staub, David; Williamson, Jeffrey; Murphy, Martin J.

    2010-01-01

    Purpose: To present a new approach to the problem of estimating errors in deformable image registration (DIR) applied to sequential phases of a 4DCT data set. Methods: A set of displacement vector fields (DVFs) are made by registering a sequence of 4DCT phases. The DVFs are assumed to display anatomical movement, with the addition of errors due to the imaging and registration processes. The positions of physical landmarks in each CT phase are measured as ground truth for the physical movement in the DVF. Principal component analysis of the DVFs and the landmarks is used to identify and separate the eigenmodes of physical movement from the error eigenmodes. By subtracting the physical modes from the principal components of the DVFs, the registration errors are exposed and reconstructed as DIR error maps. The method is demonstrated via a simple numerical model of 4DCT DVFs that combines breathing movement with simulated maps of spatially correlated DIR errors. Results: The principal components of the simulated DVFs were observed to share the basic properties of principal components for actual 4DCT data. The simulated error maps were accurately recovered by the estimation method. Conclusions: Deformable image registration errors can have complex spatial distributions. Consequently, point-by-point landmark validation can give unrepresentative results that do not accurately reflect the registration uncertainties away from the landmarks. The authors are developing a method for mapping the complete spatial distribution of DIR errors using only a small number of ground truth validation landmarks. PMID:21158288

  20. High-affinity RNA aptamers to C-reactive protein (CRP): newly developed pre-elution methods for aptamer selection

    NASA Astrophysics Data System (ADS)

    Orito, N.; Umekage, S.; Sato, K.; Kawauchi, S.; Tanaka, H.; Sakai, E.; Tanaka, T.; Kikuchi, Y.

    2012-03-01

    We have developed a modified SELEX (systematic evolution of ligands by exponential enrichment) method to obtain RNA aptamers with high affinity to C-reactive protein (CRP). CRP is a clinical biomarker present in plasma, the level of which increases in response to infections and noninfectious inflammation. The CRP level is also an important prognostic indicator in patients with several syndromes. At present, CRP content in blood is measured immunochemically using antibodies. To develop a more sensitive method using RNA aptamers, we have attempted to obtain high-affinity RNA aptamers to CRP. We succeeded in obtaining an RNA aptamer with high affinity to CRP using a CRP-immobilized Sepharose column and pre-elution procedure. Pre-elution is a method that removes the weak binding portion from a selected RNA population by washing for a short time with buffer containing CRP. By surface plasmon-resonance (SPR) analysis, the affinity constant of this aptamer for CRP was calculated to be KD = 2.25×10-9 (M). The secondary structure, contact sites with CRP protein, and application of this aptamer will be described.

  1. 3D/2D image registration method for joint motion analysis using low-quality images from mini C-arm machines

    NASA Astrophysics Data System (ADS)

    Ghafurian, Soheil; Hacihaliloglu, Ilker; Metaxas, Dimitris N.; Tan, Virak; Li, Kang

    2017-03-01

    A 3D kinematic measurement of joint movement is crucial for orthopedic surgery assessment and diagnosis. This is usually obtained through a frame-by-frame registration of the 3D bone volume to a fluoroscopy video of the joint movement. The high cost of a high-quality fluoroscopy imaging system has hindered the access of many labs to this application. This is while the more affordable and low-dosage version, the mini C-arm, is not commonly used for this application due to low image quality. In this paper, we introduce a novel method for kinematic analysis of joint movement using the mini C-arm. In this method the bone of interest is recovered and isolated from the rest of the image using a non-rigid registration of an atlas to each frame. The 3D/2D registration is then performed using the weighted histogram of image gradients as an image feature. In our experiments, the registration error was 0.89 mm and 2.36° for human C2 vertebra. While the precision is still lacking behind a high quality fluoroscopy machine, it is a good starting point facilitating the use of mini C-arms for motion analysis making this application available to lower-budget environments. Moreover, the registration was highly resistant to the initial distance from the true registration, converging to the answer from anywhere within +/-90° of it.

  2. Automatic alignment of pre- and post-interventional liver CT images for assessment of radiofrequency ablation

    NASA Astrophysics Data System (ADS)

    Rieder, Christian; Wirtz, Stefan; Strehlow, Jan; Zidowitz, Stephan; Bruners, Philipp; Isfort, Peter; Mahnken, Andreas H.; Peitgen, Heinz-Otto

    2012-02-01

    Image-guided radiofrequency ablation (RFA) is becoming a standard procedure for minimally invasive tumor treatment in clinical practice. To verify the treatment success of the therapy, reliable post-interventional assessment of the ablation zone (coagulation) is essential. Typically, pre- and post-interventional CT images have to be aligned to compare the shape, size, and position of tumor and coagulation zone. In this work, we present an automatic workflow for masking liver tissue, enabling a rigid registration algorithm to perform at least as accurate as experienced medical experts. To minimize the effect of global liver deformations, the registration is computed in a local region of interest around the pre-interventional lesion and post-interventional coagulation necrosis. A registration mask excluding lesions and neighboring organs is calculated to prevent the registration algorithm from matching both lesion shapes instead of the surrounding liver anatomy. As an initial registration step, the centers of gravity from both lesions are aligned automatically. The subsequent rigid registration method is based on the Local Cross Correlation (LCC) similarity measure and Newton-type optimization. To assess the accuracy of our method, 41 RFA cases are registered and compared with the manually aligned cases from four medical experts. Furthermore, the registration results are compared with ground truth transformations based on averaged anatomical landmark pairs. In the evaluation, we show that our method allows to automatic alignment of the data sets with equal accuracy as medical experts, but requiring significancy less time consumption and variability.

  3. Automatic initialization for 3D bone registration

    NASA Astrophysics Data System (ADS)

    Foroughi, Pezhman; Taylor, Russell H.; Fichtinger, Gabor

    2008-03-01

    In image-guided bone surgery, sample points collected from the surface of the bone are registered to the preoperative CT model using well-known registration methods such as Iterative Closest Point (ICP). These techniques are generally very sensitive to the initial alignment of the datasets. Poor initialization significantly increases the chances of getting trapped local minima. In order to reduce the risk of local minima, the registration is manually initialized by locating the sample points close to the corresponding points on the CT model. In this paper, we present an automatic initialization method that aligns the sample points collected from the surface of pelvis with CT model of the pelvis. The main idea is to exploit a mean shape of pelvis created from a large number of CT scans as the prior knowledge to guide the initial alignment. The mean shape is constant for all registrations and facilitates the inclusion of application-specific information into the registration process. The CT model is first aligned with the mean shape using the bilateral symmetry of the pelvis and the similarity of multiple projections. The surface points collected using ultrasound are then aligned with the pelvis mean shape. This will, in turn, lead to initial alignment of the sample points with the CT model. The experiments using a dry pelvis and two cadavers show that the method can align the randomly dislocated datasets close enough for successful registration. The standard ICP has been used for final registration of datasets.

  4. MR to CT registration of brains using image synthesis

    NASA Astrophysics Data System (ADS)

    Roy, Snehashis; Carass, Aaron; Jog, Amod; Prince, Jerry L.; Lee, Junghoon

    2014-03-01

    Computed tomography (CT) is the preferred imaging modality for patient dose calculation for radiation therapy. Magnetic resonance (MR) imaging (MRI) is used along with CT to identify brain structures due to its superior soft tissue contrast. Registration of MR and CT is necessary for accurate delineation of the tumor and other structures, and is critical in radiotherapy planning. Mutual information (MI) or its variants are typically used as a similarity metric to register MRI to CT. However, unlike CT, MRI intensity does not have an accepted calibrated intensity scale. Therefore, MI-based MR-CT registration may vary from scan to scan as MI depends on the joint histogram of the images. In this paper, we propose a fully automatic framework for MR-CT registration by synthesizing a synthetic CT image from MRI using a co-registered pair of MR and CT images as an atlas. Patches of the subject MRI are matched to the atlas and the synthetic CT patches are estimated in a probabilistic framework. The synthetic CT is registered to the original CT using a deformable registration and the computed deformation is applied to the MRI. In contrast to most existing methods, we do not need any manual intervention such as picking landmarks or regions of interests. The proposed method was validated on ten brain cancer patient cases, showing 25% improvement in MI and correlation between MR and CT images after registration compared to state-of-the-art registration methods.

  5. Intrasubject multimodal groupwise registration with the conditional template entropy.

    PubMed

    Polfliet, Mathias; Klein, Stefan; Huizinga, Wyke; Paulides, Margarethus M; Niessen, Wiro J; Vandemeulebroucke, Jef

    2018-05-01

    Image registration is an important task in medical image analysis. Whereas most methods are designed for the registration of two images (pairwise registration), there is an increasing interest in simultaneously aligning more than two images using groupwise registration. Multimodal registration in a groupwise setting remains difficult, due to the lack of generally applicable similarity metrics. In this work, a novel similarity metric for such groupwise registration problems is proposed. The metric calculates the sum of the conditional entropy between each image in the group and a representative template image constructed iteratively using principal component analysis. The proposed metric is validated in extensive experiments on synthetic and intrasubject clinical image data. These experiments showed equivalent or improved registration accuracy compared to other state-of-the-art (dis)similarity metrics and improved transformation consistency compared to pairwise mutual information. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Monoplane 3D-2D registration of cerebral angiograms based on multi-objective stratified optimization

    NASA Astrophysics Data System (ADS)

    Aksoy, T.; Špiclin, Ž.; Pernuš, F.; Unal, G.

    2017-12-01

    Registration of 3D pre-interventional to 2D intra-interventional medical images has an increasingly important role in surgical planning, navigation and treatment, because it enables the physician to co-locate depth information given by pre-interventional 3D images with the live information in intra-interventional 2D images such as x-ray. Most tasks during image-guided interventions are carried out under a monoplane x-ray, which is a highly ill-posed problem for state-of-the-art 3D to 2D registration methods. To address the problem of rigid 3D-2D monoplane registration we propose a novel multi-objective stratified parameter optimization, wherein a small set of high-magnitude intensity gradients are matched between the 3D and 2D images. The stratified parameter optimization matches rotation templates to depth templates, first sampled from projected 3D gradients and second from the 2D image gradients, so as to recover 3D rigid-body rotations and out-of-plane translation. The objective for matching was the gradient magnitude correlation coefficient, which is invariant to in-plane translation. The in-plane translations are then found by locating the maximum of the gradient phase correlation between the best matching pair of rotation and depth templates. On twenty pairs of 3D and 2D images of ten patients undergoing cerebral endovascular image-guided intervention the 3D to monoplane 2D registration experiments were setup with a rather high range of initial mean target registration error from 0 to 100 mm. The proposed method effectively reduced the registration error to below 2 mm, which was further refined by a fast iterative method and resulted in a high final registration accuracy (0.40 mm) and high success rate (> 96%). Taking into account a fast execution time below 10 s, the observed performance of the proposed method shows a high potential for application into clinical image-guidance systems.

  7. A fast and mobile system for registration of low-altitude visual and thermal aerial images using multiple small-scale UAVs

    NASA Astrophysics Data System (ADS)

    Yahyanejad, Saeed; Rinner, Bernhard

    2015-06-01

    The use of multiple small-scale UAVs to support first responders in disaster management has become popular because of their speed and low deployment costs. We exploit such UAVs to perform real-time monitoring of target areas by fusing individual images captured from heterogeneous aerial sensors. Many approaches have already been presented to register images from homogeneous sensors. These methods have demonstrated robustness against scale, rotation and illumination variations and can also cope with limited overlap among individual images. In this paper we focus on thermal and visual image registration and propose different methods to improve the quality of interspectral registration for the purpose of real-time monitoring and mobile mapping. Images captured by low-altitude UAVs represent a very challenging scenario for interspectral registration due to the strong variations in overlap, scale, rotation, point of view and structure of such scenes. Furthermore, these small-scale UAVs have limited processing and communication power. The contributions of this paper include (i) the introduction of a feature descriptor for robustly identifying corresponding regions of images in different spectrums, (ii) the registration of image mosaics, and (iii) the registration of depth maps. We evaluated the first method using a test data set consisting of 84 image pairs. In all instances our approach combined with SIFT or SURF feature-based registration was superior to the standard versions. Although we focus mainly on aerial imagery, our evaluation shows that the presented approach would also be beneficial in other scenarios such as surveillance and human detection. Furthermore, we demonstrated the advantages of the other two methods in case of multiple image pairs.

  8. Iterative Most-Likely Point Registration (IMLP): A Robust Algorithm for Computing Optimal Shape Alignment

    PubMed Central

    Billings, Seth D.; Boctor, Emad M.; Taylor, Russell H.

    2015-01-01

    We present a probabilistic registration algorithm that robustly solves the problem of rigid-body alignment between two shapes with high accuracy, by aptly modeling measurement noise in each shape, whether isotropic or anisotropic. For point-cloud shapes, the probabilistic framework additionally enables modeling locally-linear surface regions in the vicinity of each point to further improve registration accuracy. The proposed Iterative Most-Likely Point (IMLP) algorithm is formed as a variant of the popular Iterative Closest Point (ICP) algorithm, which iterates between point-correspondence and point-registration steps. IMLP’s probabilistic framework is used to incorporate a generalized noise model into both the correspondence and the registration phases of the algorithm, hence its name as a most-likely point method rather than a closest-point method. To efficiently compute the most-likely correspondences, we devise a novel search strategy based on a principal direction (PD)-tree search. We also propose a new approach to solve the generalized total-least-squares (GTLS) sub-problem of the registration phase, wherein the point correspondences are registered under a generalized noise model. Our GTLS approach has improved accuracy, efficiency, and stability compared to prior methods presented for this problem and offers a straightforward implementation using standard least squares. We evaluate the performance of IMLP relative to a large number of prior algorithms including ICP, a robust variant on ICP, Generalized ICP (GICP), and Coherent Point Drift (CPD), as well as drawing close comparison with the prior anisotropic registration methods of GTLS-ICP and A-ICP. The performance of IMLP is shown to be superior with respect to these algorithms over a wide range of noise conditions, outliers, and misalignments using both mesh and point-cloud representations of various shapes. PMID:25748700

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, M; Suh, T; Cho, W

    Purpose: A potential validation tool for compensating patient positioning error was developed using 2D/3D and 3D/3D image registration. Methods: For 2D/3D registration, digitally reconstructed radiography (DRR) and three-dimensional computed tomography (3D-CT) images were applied. The ray-casting algorithm is the most straightforward method for generating DRR. We adopted the traditional ray-casting method, which finds the intersections of a ray with all objects, voxels of the 3D-CT volume in the scene. The similarity between the extracted DRR and orthogonal image was measured by using a normalized mutual information method. Two orthogonal images were acquired from a Cyber-Knife system from the anterior-posterior (AP)more » and right lateral (RL) views. The 3D-CT and two orthogonal images of an anthropomorphic phantom and head and neck cancer patient were used in this study. For 3D/3D registration, planning CT and in-room CT image were applied. After registration, the translation and rotation factors were calculated to position a couch to be movable in six dimensions. Results: Registration accuracies and average errors of 2.12 mm ± 0.50 mm for transformations and 1.23° ± 0.40° for rotations were acquired by 2D/3D registration using an anthropomorphic Alderson-Rando phantom. In addition, registration accuracies and average errors of 0.90 mm ± 0.30 mm for transformations and 1.00° ± 0.2° for rotations were acquired using CT image sets. Conclusion: We demonstrated that this validation tool could compensate for patient positioning error. In addition, this research could be the fundamental step for compensating patient positioning error at the first Korea heavy-ion medical accelerator treatment center.« less

  10. A procedure to estimate the origins and the insertions of the knee ligaments from computed tomography images.

    PubMed

    Ascani, Daniele; Mazzà, Claudia; De Lollis, Angelo; Bernardoni, Massimiliano; Viceconti, Marco

    2015-01-21

    The estimation of the origin and insertion of the four knee ligaments is crucial for individualised dynamic modelling of the knee. Commonly this information is obtained ex vivo or from high resolution MRI, which is not always available. Aim of this work is to devise a method to estimate the origins and insertions from computed tomography (CT) images. A reference registration atlas was created using a set of 16 bone landmarks visible in CT and eight origins and insertions estimated from MRI and in vitro data available in the literature for three knees. This atlas can be registered to the set of bone landmarks palpated on any given CT using an affine transformation. The resulting orientation and translation matrices and scaling factors can be used to find also the ligament origin and insertions. This procedure was validated on seven pathological knees for which both CT and MRI of the knee region were available, using a proprietary software tool (NMSBuilder, SCS srl, Italy). To assess the procedure reproducibility and repeatability, four different operators performed the landmarks palpation on all seven patients. The average difference between the values predicted by registration on the CT scan and those estimated on the MRI was 2.1±1.2 mm for the femur and 2.7±1.0 mm for the tibia, respectively. The procedure is highly repeatable, with no significant differences observed within or between the operators (p>0.1) and allows to estimate origins and insertions of the knee ligaments from a CT scan with the same level of accuracy obtainable with MRI. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. SU-E-J-114: A Practical Hybrid Method for Improving the Quality of CT-CBCT Deformable Image Registration for Head and Neck Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, C; Kumarasiri, A; Chetvertkov, M

    2015-06-15

    Purpose: Accurate deformable image registration (DIR) between CT and CBCT in H&N is challenging. In this study, we propose a practical hybrid method that uses not only the pixel intensities but also organ physical properties, structure volume of interest (VOI), and interactive local registrations. Methods: Five oropharyngeal cancer patients were selected retrospectively. For each patient, the planning CT was registered to the last fraction CBCT, where the anatomy difference was largest. A three step registration strategy was tested; Step1) DIR using pixel intensity only, Step2) DIR with additional use of structure VOI and rigidity penalty, and Step3) interactive local correction.more » For Step1, a public-domain open-source DIR algorithm was used (cubic B-spline, mutual information, steepest gradient optimization, and 4-level multi-resolution). For Step2, rigidity penalty was applied on bony anatomies and brain, and a structure VOI was used to handle the body truncation such as the shoulder cut-off on CBCT. Finally, in Step3, the registrations were reviewed on our in-house developed software and the erroneous areas were corrected via a local registration using level-set motion algorithm. Results: After Step1, there were considerable amount of registration errors in soft tissues and unrealistic stretching in the posterior to the neck and near the shoulder due to body truncation. The brain was also found deformed to a measurable extent near the superior border of CBCT. Such errors could be effectively removed by using a structure VOI and rigidity penalty. The rest of the local soft tissue error could be corrected using the interactive software tool. The estimated interactive correction time was approximately 5 minutes. Conclusion: The DIR using only the image pixel intensity was vulnerable to noise and body truncation. A corrective action was inevitable to achieve good quality of registrations. We found the proposed three-step hybrid method efficient and practical for CT/CBCT registrations in H&N. My department receives grant support from Industrial partners: (a) Varian Medical Systems, Palo Alto, CA, and (b) Philips HealthCare, Best, Netherlands.« less

  12. [Accurate 3D free-form registration between fan-beam CT and cone-beam CT].

    PubMed

    Liang, Yueqiang; Xu, Hongbing; Li, Baosheng; Li, Hongsheng; Yang, Fujun

    2012-06-01

    Because the X-ray scatters, the CT numbers in cone-beam CT cannot exactly correspond to the electron densities. This, therefore, results in registration error when the intensity-based registration algorithm is used to register planning fan-beam CT and cone-beam CT. In order to reduce the registration error, we have developed an accurate gradient-based registration algorithm. The gradient-based deformable registration problem is described as a minimization of energy functional. Through the calculus of variations and Gauss-Seidel finite difference method, we derived the iterative formula of the deformable registration. The algorithm was implemented by GPU through OpenCL framework, with which the registration time was greatly reduced. Our experimental results showed that the proposed gradient-based registration algorithm could register more accurately the clinical cone-beam CT and fan-beam CT images compared with the intensity-based algorithm. The GPU-accelerated algorithm meets the real-time requirement in the online adaptive radiotherapy.

  13. Fast and robust multimodal image registration using a local derivative pattern.

    PubMed

    Jiang, Dongsheng; Shi, Yonghong; Chen, Xinrong; Wang, Manning; Song, Zhijian

    2017-02-01

    Deformable multimodal image registration, which can benefit radiotherapy and image guided surgery by providing complementary information, remains a challenging task in the medical image analysis field due to the difficulty of defining a proper similarity measure. This article presents a novel, robust and fast binary descriptor, the discriminative local derivative pattern (dLDP), which is able to encode images of different modalities into similar image representations. dLDP calculates a binary string for each voxel according to the pattern of intensity derivatives in its neighborhood. The descriptor similarity is evaluated using the Hamming distance, which can be efficiently computed, instead of conventional L1 or L2 norms. For the first time, we validated the effectiveness and feasibility of the local derivative pattern for multimodal deformable image registration with several multi-modal registration applications. dLDP was compared with three state-of-the-art methods in artificial image and clinical settings. In the experiments of deformable registration between different magnetic resonance imaging (MRI) modalities from BrainWeb, between computed tomography and MRI images from patient data, and between MRI and ultrasound images from BITE database, we show our method outperforms localized mutual information and entropy images in terms of both accuracy and time efficiency. We have further validated dLDP for the deformable registration of preoperative MRI and three-dimensional intraoperative ultrasound images. Our results indicate that dLDP reduces the average mean target registration error from 4.12 mm to 2.30 mm. This accuracy is statistically equivalent to the accuracy of the state-of-the-art methods in the study; however, in terms of computational complexity, our method significantly outperforms other methods and is even comparable to the sum of the absolute difference. The results reveal that dLDP can achieve superior performance regarding both accuracy and time efficiency in general multimodal image registration. In addition, dLDP also indicates the potential for clinical ultrasound guided intervention. © 2016 The Authors. Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  14. FPFH-based graph matching for 3D point cloud registration

    NASA Astrophysics Data System (ADS)

    Zhao, Jiapeng; Li, Chen; Tian, Lihua; Zhu, Jihua

    2018-04-01

    Correspondence detection is a vital step in point cloud registration and it can help getting a reliable initial alignment. In this paper, we put forward an advanced point feature-based graph matching algorithm to solve the initial alignment problem of rigid 3D point cloud registration with partial overlap. Specifically, Fast Point Feature Histograms are used to determine the initial possible correspondences firstly. Next, a new objective function is provided to make the graph matching more suitable for partially overlapping point cloud. The objective function is optimized by the simulated annealing algorithm for final group of correct correspondences. Finally, we present a novel set partitioning method which can transform the NP-hard optimization problem into a O(n3)-solvable one. Experiments on the Stanford and UWA public data sets indicates that our method can obtain better result in terms of both accuracy and time cost compared with other point cloud registration methods.

  15. Matching CT and ultrasound data of the liver by landmark constrained image registration

    NASA Astrophysics Data System (ADS)

    Olesch, Janine; Papenberg, Nils; Lange, Thomas; Conrad, Matthias; Fischer, Bernd

    2009-02-01

    In navigated liver surgery the key challenge is the registration of pre-operative planing and intra-operative navigation data. Due to the patients individual anatomy the planning is based on segmented, pre-operative CT scans whereas ultrasound captures the actual intra-operative situation. In this paper we derive a novel method based on variational image registration methods and additional given anatomic landmarks. For the first time we embed the landmark information as inequality hard constraints and thereby allowing for inaccurately placed landmarks. The yielding optimization problem allows to ensure the accuracy of the landmark fit by simultaneous intensity based image registration. Following the discretize-then-optimize approach the overall problem is solved by a generalized Gauss-Newton-method. The upcoming linear system is attacked by the MinRes solver. We demonstrate the applicability of the new approach for clinical data which lead to convincing results.

  16. 78 FR 40820 - 60-Day Notice of Proposed Information Collection: Exchange Programs Alumni Web Site Registration

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-08

    ...: Exchange Programs Alumni Web Site Registration ACTION: Notice of request for public comment. SUMMARY: The... following methods: Web: Persons with access to the Internet may use the Federal Docket Management System... Programs Alumni Web site Registration OMB Control Number: 1405-0192 Type of Request: Extension of an...

  17. Efficient Method for Scalable Registration of Remote Sensing Images

    NASA Astrophysics Data System (ADS)

    Prouty, R.; LeMoigne, J.; Halem, M.

    2017-12-01

    The goal of this project is to build a prototype of a resource-efficient pipeline that will provide registration within subpixel accuracy of multitemporal Earth science data. Accurate registration of Earth-science data is imperative to proper data integration and seamless mosaicing of data from multiple times, sensors, and/or observation geometries. Modern registration methods make use of many arithmetic operations and sometimes require complete knowledge of the image domain. As such, while sensors become more advanced and are able to provide higher-resolution data, the memory resources required to properly register these data become prohibitive. The proposed pipeline employs a region of interest extraction algorithm in order to extract image subsets with high local feature density. These image subsets are then used to generate local solutions to the global registration problem. The local solutions are then 'globalized' to determine the deformation model that best solves the registration problem. The region of interest extraction and globalization routines are tested for robustness among the variety of scene-types and spectral locations provided by Earth-observing instruments such as Landsat, MODIS, or ASTER.

  18. Coarse Point Cloud Registration by Egi Matching of Voxel Clusters

    NASA Astrophysics Data System (ADS)

    Wang, Jinhu; Lindenbergh, Roderik; Shen, Yueqian; Menenti, Massimo

    2016-06-01

    Laser scanning samples the surface geometry of objects efficiently and records versatile information as point clouds. However, often more scans are required to fully cover a scene. Therefore, a registration step is required that transforms the different scans into a common coordinate system. The registration of point clouds is usually conducted in two steps, i.e. coarse registration followed by fine registration. In this study an automatic marker-free coarse registration method for pair-wise scans is presented. First the two input point clouds are re-sampled as voxels and dimensionality features of the voxels are determined by principal component analysis (PCA). Then voxel cells with the same dimensionality are clustered. Next, the Extended Gaussian Image (EGI) descriptor of those voxel clusters are constructed using significant eigenvectors of each voxel in the cluster. Correspondences between clusters in source and target data are obtained according to the similarity between their EGI descriptors. The random sampling consensus (RANSAC) algorithm is employed to remove outlying correspondences until a coarse alignment is obtained. If necessary, a fine registration is performed in a final step. This new method is illustrated on scan data sampling two indoor scenarios. The results of the tests are evaluated by computing the point to point distance between the two input point clouds. The presented two tests resulted in mean distances of 7.6 mm and 9.5 mm respectively, which are adequate for fine registration.

  19. Registration using natural features for augmented reality systems.

    PubMed

    Yuan, M L; Ong, S K; Nee, A Y C

    2006-01-01

    Registration is one of the most difficult problems in augmented reality (AR) systems. In this paper, a simple registration method using natural features based on the projective reconstruction technique is proposed. This method consists of two steps: embedding and rendering. Embedding involves specifying four points to build the world coordinate system on which a virtual object will be superimposed. In rendering, the Kanade-Lucas-Tomasi (KLT) feature tracker is used to track the natural feature correspondences in the live video. The natural features that have been tracked are used to estimate the corresponding projective matrix in the image sequence. Next, the projective reconstruction technique is used to transfer the four specified points to compute the registration matrix for augmentation. This paper also proposes a robust method for estimating the projective matrix, where the natural features that have been tracked are normalized (translation and scaling) and used as the input data. The estimated projective matrix will be used as an initial estimate for a nonlinear optimization method that minimizes the actual residual errors based on the Levenberg-Marquardt (LM) minimization method, thus making the results more robust and stable. The proposed registration method has three major advantages: 1) It is simple, as no predefined fiducials or markers are used for registration for either indoor and outdoor AR applications. 2) It is robust, because it remains effective as long as at least six natural features are tracked during the entire augmentation, and the existence of the corresponding projective matrices in the live video is guaranteed. Meanwhile, the robust method to estimate the projective matrix can obtain stable results even when there are some outliers during the tracking process. 3) Virtual objects can still be superimposed on the specified areas, even if some parts of the areas are occluded during the entire process. Some indoor and outdoor experiments have been conducted to validate the performance of this proposed method.

  20. Multi-template tensor-based morphometry: Application to analysis of Alzheimer's disease

    PubMed Central

    Koikkalainen, Juha; Lötjönen, Jyrki; Thurfjell, Lennart; Rueckert, Daniel; Waldemar, Gunhild; Soininen, Hilkka

    2012-01-01

    In this paper methods for using multiple templates in tensor-based morphometry (TBM) are presented and comparedtothe conventional single-template approach. TBM analysis requires non-rigid registrations which are often subject to registration errors. When using multiple templates and, therefore, multiple registrations, it can be assumed that the registration errors are averaged and eventually compensated. Four different methods are proposed for multi-template TBM. The methods were evaluated using magnetic resonance (MR) images of healthy controls, patients with stable or progressive mild cognitive impairment (MCI), and patients with Alzheimer's disease (AD) from the ADNI database (N=772). The performance of TBM features in classifying images was evaluated both quantitatively and qualitatively. Classification results show that the multi-template methods are statistically significantly better than the single-template method. The overall classification accuracy was 86.0% for the classification of control and AD subjects, and 72.1%for the classification of stable and progressive MCI subjects. The statistical group-level difference maps produced using multi-template TBM were smoother, formed larger continuous regions, and had larger t-values than the maps obtained with single-template TBM. PMID:21419228

  1. Application of a spectrally filtered probing light beam and RGB decomposition of microphotographs for flow registration of ultrasonically enhanced agglutination of erythrocytes

    NASA Astrophysics Data System (ADS)

    Doubrovski, V. A.; Ganilova, Yu. A.; Zabenkov, I. V.

    2013-08-01

    We propose a development of the flow microscopy method to increase the resolving power upon registration of erythrocyte agglutination. We experimentally show that the action of a ultrasonic standing wave on an agglutinating mixture blood-serum leads to the formation of so large erythrocytic immune complexes that it seems possible to propose a new two-wave optical method of registration of the process of erythrocyte agglutination using the RGB decomposition of microphotographs of the flow of the mixture under study. This approach increases the reliability of registration of erythrocyte agglutination and, consequently, increases the reliability of blood typing. Our results can be used in the development of instruments for automatic human blood typing.

  2. Performance Evaluation of MIND Demons Deformable Registration of MR and CT Images in Spinal Interventions

    PubMed Central

    Reaungamornrat, S.; De Silva, T.; Uneri, A.; Goerres, J.; Jacobson, M.; Ketcha, M.; Vogt, S.; Kleinszig, G.; Khanna, A. J.; Wolinsky, J.-P.; Prince, J. L.; Siewerdsen, J. H.

    2016-01-01

    Accurate intraoperative localization of target anatomy and adjacent nervous and vascular tissue is essential to safe, effective surgery, and multimodality deformable registration can be used to identify such anatomy by fusing preoperative CT or MR images with intraoperative images. A deformable image registration method has been developed to estimate viscoelastic diffeomorphisms between preoperative MR and intraoperative CT using modality-independent neighborhood descriptors (MIND) and a Huber metric for robust registration. The method, called MIND Demons, optimizes a constrained symmetric energy functional incorporating priors on smoothness, geodesics, and invertibility by alternating between Gauss-Newton optimization and Tikhonov regularization in a multiresolution scheme. Registration performance was evaluated for the MIND Demons method with a symmetric energy formulation in comparison to an asymmetric form, and sensitivity to anisotropic MR voxel-size was analyzed in phantom experiments emulating image-guided spine-surgery in comparison to a free-form deformation (FFD) method using local mutual information (LMI). Performance was validated in a clinical study involving 15 patients undergoing intervention of the cervical, thoracic, and lumbar spine. The target registration error (TRE) for the symmetric MIND Demons formulation [1.3 ± 0.8 mm (median ± interquartile)] outperformed the asymmetric form [3.6 ± 4.4 mm]. The method demonstrated fairly minor sensitivity to anisotropic MR voxel size, with median TRE ranging 1.3 – 2.9 mm for MR slice thickness ranging 0.9 – 9.9 mm, compared to TRE = 3.2 – 4.1 mm for LMI FFD over the same range. Evaluation in clinical data demonstrated sub-voxel TRE (< 2 mm) in all fifteen cases with realistic deformations that preserved topology with sub-voxel invertibility (0.001 mm) and positive-determinant spatial Jacobians. The approach therefore appears robust against realistic anisotropic resolution characteristics in MR and yields registration accuracy suitable to application in image-guided spine-surgery. PMID:27811396

  3. Performance evaluation of MIND demons deformable registration of MR and CT images in spinal interventions.

    PubMed

    Reaungamornrat, S; De Silva, T; Uneri, A; Goerres, J; Jacobson, M; Ketcha, M; Vogt, S; Kleinszig, G; Khanna, A J; Wolinsky, J-P; Prince, J L; Siewerdsen, J H

    2016-12-07

    Accurate intraoperative localization of target anatomy and adjacent nervous and vascular tissue is essential to safe, effective surgery, and multimodality deformable registration can be used to identify such anatomy by fusing preoperative CT or MR images with intraoperative images. A deformable image registration method has been developed to estimate viscoelastic diffeomorphisms between preoperative MR and intraoperative CT using modality-independent neighborhood descriptors (MIND) and a Huber metric for robust registration. The method, called MIND Demons, optimizes a constrained symmetric energy functional incorporating priors on smoothness, geodesics, and invertibility by alternating between Gauss-Newton optimization and Tikhonov regularization in a multiresolution scheme. Registration performance was evaluated for the MIND Demons method with a symmetric energy formulation in comparison to an asymmetric form, and sensitivity to anisotropic MR voxel-size was analyzed in phantom experiments emulating image-guided spine-surgery in comparison to a free-form deformation (FFD) method using local mutual information (LMI). Performance was validated in a clinical study involving 15 patients undergoing intervention of the cervical, thoracic, and lumbar spine. The target registration error (TRE) for the symmetric MIND Demons formulation (1.3  ±  0.8 mm (median  ±  interquartile)) outperformed the asymmetric form (3.6  ±  4.4 mm). The method demonstrated fairly minor sensitivity to anisotropic MR voxel size, with median TRE ranging 1.3-2.9 mm for MR slice thickness ranging 0.9-9.9 mm, compared to TRE  =  3.2-4.1 mm for LMI FFD over the same range. Evaluation in clinical data demonstrated sub-voxel TRE (<2 mm) in all fifteen cases with realistic deformations that preserved topology with sub-voxel invertibility (0.001 mm) and positive-determinant spatial Jacobians. The approach therefore appears robust against realistic anisotropic resolution characteristics in MR and yields registration accuracy suitable to application in image-guided spine-surgery.

  4. Performance evaluation of MIND demons deformable registration of MR and CT images in spinal interventions

    NASA Astrophysics Data System (ADS)

    Reaungamornrat, S.; De Silva, T.; Uneri, A.; Goerres, J.; Jacobson, M.; Ketcha, M.; Vogt, S.; Kleinszig, G.; Khanna, A. J.; Wolinsky, J.-P.; Prince, J. L.; Siewerdsen, J. H.

    2016-12-01

    Accurate intraoperative localization of target anatomy and adjacent nervous and vascular tissue is essential to safe, effective surgery, and multimodality deformable registration can be used to identify such anatomy by fusing preoperative CT or MR images with intraoperative images. A deformable image registration method has been developed to estimate viscoelastic diffeomorphisms between preoperative MR and intraoperative CT using modality-independent neighborhood descriptors (MIND) and a Huber metric for robust registration. The method, called MIND Demons, optimizes a constrained symmetric energy functional incorporating priors on smoothness, geodesics, and invertibility by alternating between Gauss-Newton optimization and Tikhonov regularization in a multiresolution scheme. Registration performance was evaluated for the MIND Demons method with a symmetric energy formulation in comparison to an asymmetric form, and sensitivity to anisotropic MR voxel-size was analyzed in phantom experiments emulating image-guided spine-surgery in comparison to a free-form deformation (FFD) method using local mutual information (LMI). Performance was validated in a clinical study involving 15 patients undergoing intervention of the cervical, thoracic, and lumbar spine. The target registration error (TRE) for the symmetric MIND Demons formulation (1.3  ±  0.8 mm (median  ±  interquartile)) outperformed the asymmetric form (3.6  ±  4.4 mm). The method demonstrated fairly minor sensitivity to anisotropic MR voxel size, with median TRE ranging 1.3-2.9 mm for MR slice thickness ranging 0.9-9.9 mm, compared to TRE  =  3.2-4.1 mm for LMI FFD over the same range. Evaluation in clinical data demonstrated sub-voxel TRE (<2 mm) in all fifteen cases with realistic deformations that preserved topology with sub-voxel invertibility (0.001 mm) and positive-determinant spatial Jacobians. The approach therefore appears robust against realistic anisotropic resolution characteristics in MR and yields registration accuracy suitable to application in image-guided spine-surgery.

  5. Comparison of landmark-based and automatic methods for cortical surface registration

    PubMed Central

    Pantazis, Dimitrios; Joshi, Anand; Jiang, Jintao; Shattuck, David; Bernstein, Lynne E.; Damasio, Hanna; Leahy, Richard M.

    2009-01-01

    Group analysis of structure or function in cerebral cortex typically involves as a first step the alignment of the cortices. A surface based approach to this problem treats the cortex as a convoluted surface and coregisters across subjects so that cortical landmarks or features are aligned. This registration can be performed using curves representing sulcal fundi and gyral crowns to constrain the mapping. Alternatively, registration can be based on the alignment of curvature metrics computed over the entire cortical surface. The former approach typically involves some degree of user interaction in defining the sulcal and gyral landmarks while the latter methods can be completely automated. Here we introduce a cortical delineation protocol consisting of 26 consistent landmarks spanning the entire cortical surface. We then compare the performance of a landmark-based registration method that uses this protocol with that of two automatic methods implemented in the software packages FreeSurfer and BrainVoyager. We compare performance in terms of discrepancy maps between the different methods, the accuracy with which regions of interest are aligned, and the ability of the automated methods to correctly align standard cortical landmarks. Our results show similar performance for ROIs in the perisylvian region for the landmark based method and FreeSurfer. However, the discrepancy maps showed larger variability between methods in occipital and frontal cortex and also that automated methods often produce misalignment of standard cortical landmarks. Consequently, selection of the registration approach should consider the importance of accurate sulcal alignment for the specific task for which coregistration is being performed. When automatic methods are used, the users should ensure that sulci in regions of interest in their studies are adequately aligned before proceeding with subsequent analysis. PMID:19796696

  6. Feasibility of Multimodal Deformable Registration for Head and Neck Tumor Treatment Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fortunati, Valerio, E-mail: v.fortunati@erasmusmc.nl; Verhaart, René F.; Angeloni, Francesco

    2014-09-01

    Purpose: To investigate the feasibility of using deformable registration in clinical practice to fuse MR and CT images of the head and neck for treatment planning. Method and Materials: A state-of-the-art deformable registration algorithm was optimized, evaluated, and compared with rigid registration. The evaluation was based on manually annotated anatomic landmarks and regions of interest in both modalities. We also developed a multiparametric registration approach, which simultaneously aligns T1- and T2-weighted MR sequences to CT. This was evaluated and compared with single-parametric approaches. Results: Our results show that deformable registration yielded a better accuracy than rigid registration, without introducing unrealisticmore » deformations. For deformable registration, an average landmark alignment of approximatively 1.7 mm was obtained. For all the regions of interest excluding the cerebellum and the parotids, deformable registration provided a median modified Hausdorff distance of approximatively 1 mm. Similar accuracies were obtained for the single-parameter and multiparameter approaches. Conclusions: This study demonstrates that deformable registration of head-and-neck CT and MR images is feasible, with overall a significanlty higher accuracy than for rigid registration.« less

  7. Objective and expert-independent validation of retinal image registration algorithms by a projective imaging distortion model.

    PubMed

    Lee, Sangyeol; Reinhardt, Joseph M; Cattin, Philippe C; Abràmoff, Michael D

    2010-08-01

    Fundus camera imaging of the retina is widely used to diagnose and manage ophthalmologic disorders including diabetic retinopathy, glaucoma, and age-related macular degeneration. Retinal images typically have a limited field of view, and multiple images can be joined together using an image registration technique to form a montage with a larger field of view. A variety of methods for retinal image registration have been proposed, but evaluating such methods objectively is difficult due to the lack of a reference standard for the true alignment of the individual images that make up the montage. A method of generating simulated retinal images by modeling the geometric distortions due to the eye geometry and the image acquisition process is described in this paper. We also present a validation process that can be used for any retinal image registration method by tracing through the distortion path and assessing the geometric misalignment in the coordinate system of the reference standard. The proposed method can be used to perform an accuracy evaluation over the whole image, so that distortion in the non-overlapping regions of the montage components can be easily assessed. We demonstrate the technique by generating test image sets with a variety of overlap conditions and compare the accuracy of several retinal image registration models. Copyright 2010 Elsevier B.V. All rights reserved.

  8. Simultaneous Nonrigid Registration, Segmentation, and Tumor Detection in MRI Guided Cervical Cancer Radiation Therapy

    PubMed Central

    Lu, Chao; Chelikani, Sudhakar; Jaffray, David A.; Milosevic, Michael F.; Staib, Lawrence H.; Duncan, James S.

    2013-01-01

    External beam radiation therapy (EBRT) for the treatment of cancer enables accurate placement of radiation dose on the cancerous region. However, the deformation of soft tissue during the course of treatment, such as in cervical cancer, presents significant challenges for the delineation of the target volume and other structures of interest. Furthermore, the presence and regression of pathologies such as tumors may violate registration constraints and cause registration errors. In this paper, automatic segmentation, nonrigid registration and tumor detection in cervical magnetic resonance (MR) data are addressed simultaneously using a unified Bayesian framework. The proposed novel method can generate a tumor probability map while progressively identifying the boundary of an organ of interest based on the achieved nonrigid transformation. The method is able to handle the challenges of significant tumor regression and its effect on surrounding tissues. The new method was compared to various currently existing algorithms on a set of 36 MR data from six patients, each patient has six T2-weighted MR cervical images. The results show that the proposed approach achieves an accuracy comparable to manual segmentation and it significantly outperforms the existing registration algorithms. In addition, the tumor detection result generated by the proposed method has a high agreement with manual delineation by a qualified clinician. PMID:22328178

  9. Highly accurate fast lung CT registration

    NASA Astrophysics Data System (ADS)

    Rühaak, Jan; Heldmann, Stefan; Kipshagen, Till; Fischer, Bernd

    2013-03-01

    Lung registration in thoracic CT scans has received much attention in the medical imaging community. Possible applications range from follow-up analysis, motion correction for radiation therapy, monitoring of air flow and pulmonary function to lung elasticity analysis. In a clinical environment, runtime is always a critical issue, ruling out quite a few excellent registration approaches. In this paper, a highly efficient variational lung registration method based on minimizing the normalized gradient fields distance measure with curvature regularization is presented. The method ensures diffeomorphic deformations by an additional volume regularization. Supplemental user knowledge, like a segmentation of the lungs, may be incorporated as well. The accuracy of our method was evaluated on 40 test cases from clinical routine. In the EMPIRE10 lung registration challenge, our scheme ranks third, with respect to various validation criteria, out of 28 algorithms with an average landmark distance of 0.72 mm. The average runtime is about 1:50 min on a standard PC, making it by far the fastest approach of the top-ranking algorithms. Additionally, the ten publicly available DIR-Lab inhale-exhale scan pairs were registered to subvoxel accuracy at computation times of only 20 seconds. Our method thus combines very attractive runtimes with state-of-the-art accuracy in a unique way.

  10. Groupwise Registration and Atlas Construction of 4th-Order Tensor Fields Using the ℝ+ Riemannian Metric*

    PubMed Central

    Barmpoutis, Angelos

    2010-01-01

    Registration of Diffusion-Weighted MR Images (DW-MRI) can be achieved by registering the corresponding 2nd-order Diffusion Tensor Images (DTI). However, it has been shown that higher-order diffusion tensors (e.g. order-4) outperform the traditional DTI in approximating complex fiber structures such as fiber crossings. In this paper we present a novel method for unbiased group-wise non-rigid registration and atlas construction of 4th-order diffusion tensor fields. To the best of our knowledge there is no other existing method to achieve this task. First we define a metric on the space of positive-valued functions based on the Riemannian metric of real positive numbers (denoted by ℝ+). Then, we use this metric in a novel functional minimization method for non-rigid 4th-order tensor field registration. We define a cost function that accounts for the 4th-order tensor re-orientation during the registration process and has analytic derivatives with respect to the transformation parameters. Finally, the tensor field atlas is computed as the minimizer of the variance defined using the Riemannian metric. We quantitatively compare the proposed method with other techniques that register scalar-valued or diffusion tensor (rank-2) representations of the DWMRI. PMID:20436782

  11. A new method for real-time co-registration of 3D coronary angiography and intravascular ultrasound or optical coherence tomography.

    PubMed

    Carlier, Stéphane; Didday, Rich; Slots, Tristan; Kayaert, Peter; Sonck, Jeroen; El-Mourad, Mike; Preumont, Nicolas; Schoors, Dany; Van Camp, Guy

    2014-06-01

    We present a new clinically practical method for online co-registration of 3D quantitative coronary angiography (QCA) and intravascular ultrasound (IVUS) or optical coherence tomography (OCT). The workflow is based on two modified commercially available software packages. Reconstruction steps are explained and compared to previously available methods. The feasibility for different clinical scenarios is illustrated. The co-registration appears accurate, robust and induced a minimal delay on the normal cath lab activities. This new method is based on the 3D angiographic reconstruction of the catheter path and does not require operator's identification of landmarks to establish the image synchronization. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Cross Correlation versus Normalized Mutual Information on Image Registration

    NASA Technical Reports Server (NTRS)

    Tan, Bin; Tilton, James C.; Lin, Guoqing

    2016-01-01

    This is the first study to quantitatively assess and compare cross correlation and normalized mutual information methods used to register images in subpixel scale. The study shows that the normalized mutual information method is less sensitive to unaligned edges due to the spectral response differences than is cross correlation. This characteristic makes the normalized image resolution a better candidate for band to band registration. Improved band-to-band registration in the data from satellite-borne instruments will result in improved retrievals of key science measurements such as cloud properties, vegetation, snow and fire.

  13. Increasing the automation of a 2D-3D registration system.

    PubMed

    Varnavas, Andreas; Carrell, Tom; Penney, Graeme

    2013-02-01

    Routine clinical use of 2D-3D registration algorithms for Image Guided Surgery remains limited. A key aspect for routine clinical use of this technology is its degree of automation, i.e., the amount of necessary knowledgeable interaction between the clinicians and the registration system. Current image-based registration approaches usually require knowledgeable manual interaction during two stages: for initial pose estimation and for verification of produced results. We propose four novel techniques, particularly suited to vertebra-based registration systems, which can significantly automate both of the above stages. Two of these techniques are based upon the intraoperative "insertion" of a virtual fiducial marker into the preoperative data. The remaining two techniques use the final registration similarity value between multiple CT vertebrae and a single fluoroscopy vertebra. The proposed methods were evaluated with data from 31 operations (31 CT scans, 419 fluoroscopy images). Results show these methods can remove the need for manual vertebra identification during initial pose estimation, and were also very effective for result verification, producing a combined true positive rate of 100% and false positive rate equal to zero. This large decrease in required knowledgeable interaction is an important contribution aiming to enable more widespread use of 2D-3D registration technology.

  14. Liver DCE-MRI Registration in Manifold Space Based on Robust Principal Component Analysis.

    PubMed

    Feng, Qianjin; Zhou, Yujia; Li, Xueli; Mei, Yingjie; Lu, Zhentai; Zhang, Yu; Feng, Yanqiu; Liu, Yaqin; Yang, Wei; Chen, Wufan

    2016-09-29

    A technical challenge in the registration of dynamic contrast-enhanced magnetic resonance (DCE-MR) imaging in the liver is intensity variations caused by contrast agents. Such variations lead to the failure of the traditional intensity-based registration method. To address this problem, a manifold-based registration framework for liver DCE-MR time series is proposed. We assume that liver DCE-MR time series are located on a low-dimensional manifold and determine intrinsic similarities between frames. Based on the obtained manifold, the large deformation of two dissimilar images can be decomposed into a series of small deformations between adjacent images on the manifold through gradual deformation of each frame to the template image along the geodesic path. Furthermore, manifold construction is important in automating the selection of the template image, which is an approximation of the geodesic mean. Robust principal component analysis is performed to separate motion components from intensity changes induced by contrast agents; the components caused by motion are used to guide registration in eliminating the effect of contrast enhancement. Visual inspection and quantitative assessment are further performed on clinical dataset registration. Experiments show that the proposed method effectively reduces movements while preserving the topology of contrast-enhancing structures and provides improved registration performance.

  15. A bronchoscopic navigation system using bronchoscope center calibration for accurate registration of electromagnetic tracker and CT volume without markers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Xiongbiao, E-mail: xiongbiao.luo@gmail.com

    2014-06-15

    Purpose: Various bronchoscopic navigation systems are developed for diagnosis, staging, and treatment of lung and bronchus cancers. To construct electromagnetically navigated bronchoscopy systems, registration of preoperative images and an electromagnetic tracker must be performed. This paper proposes a new marker-free registration method, which uses the centerlines of the bronchial tree and the center of a bronchoscope tip where an electromagnetic sensor is attached, to align preoperative images and electromagnetic tracker systems. Methods: The chest computed tomography (CT) volume (preoperative images) was segmented to extract the bronchial centerlines. An electromagnetic sensor was fixed at the bronchoscope tip surface. A model wasmore » designed and printed using a 3D printer to calibrate the relationship between the fixed sensor and the bronchoscope tip center. For each sensor measurement that includes sensor position and orientation information, its corresponding bronchoscope tip center position was calculated. By minimizing the distance between each bronchoscope tip center position and the bronchial centerlines, the spatial alignment of the electromagnetic tracker system and the CT volume was determined. After obtaining the spatial alignment, an electromagnetic navigation bronchoscopy system was established to real-timely track or locate a bronchoscope inside the bronchial tree during bronchoscopic examinations. Results: The electromagnetic navigation bronchoscopy system was validated on a dynamic bronchial phantom that can simulate respiratory motion with a breath rate range of 0–10 min{sup −1}. The fiducial and target registration errors of this navigation system were evaluated. The average fiducial registration error was reduced from 8.7 to 6.6 mm. The average target registration error, which indicates all tracked or navigated bronchoscope position accuracy, was much reduced from 6.8 to 4.5 mm compared to previous registration methods. Conclusions: An electromagnetically navigated bronchoscopy system was constructed with accurate registration of an electromagnetic tracker and the CT volume on the basis of an improved marker-free registration approach that uses the bronchial centerlines and bronchoscope tip center information. The fiducial and target registration errors of our electromagnetic navigation system were about 6.6 and 4.5 mm in dynamic bronchial phantom validation.« less

  16. Geodesic active fields--a geometric framework for image registration.

    PubMed

    Zosso, Dominique; Bresson, Xavier; Thiran, Jean-Philippe

    2011-05-01

    In this paper we present a novel geometric framework called geodesic active fields for general image registration. In image registration, one looks for the underlying deformation field that best maps one image onto another. This is a classic ill-posed inverse problem, which is usually solved by adding a regularization term. Here, we propose a multiplicative coupling between the registration term and the regularization term, which turns out to be equivalent to embed the deformation field in a weighted minimal surface problem. Then, the deformation field is driven by a minimization flow toward a harmonic map corresponding to the solution of the registration problem. This proposed approach for registration shares close similarities with the well-known geodesic active contours model in image segmentation, where the segmentation term (the edge detector function) is coupled with the regularization term (the length functional) via multiplication as well. As a matter of fact, our proposed geometric model is actually the exact mathematical generalization to vector fields of the weighted length problem for curves and surfaces introduced by Caselles-Kimmel-Sapiro. The energy of the deformation field is measured with the Polyakov energy weighted by a suitable image distance, borrowed from standard registration models. We investigate three different weighting functions, the squared error and the approximated absolute error for monomodal images, and the local joint entropy for multimodal images. As compared to specialized state-of-the-art methods tailored for specific applications, our geometric framework involves important contributions. Firstly, our general formulation for registration works on any parametrizable, smooth and differentiable surface, including nonflat and multiscale images. In the latter case, multiscale images are registered at all scales simultaneously, and the relations between space and scale are intrinsically being accounted for. Second, this method is, to the best of our knowledge, the first reparametrization invariant registration method introduced in the literature. Thirdly, the multiplicative coupling between the registration term, i.e. local image discrepancy, and the regularization term naturally results in a data-dependent tuning of the regularization strength. Finally, by choosing the metric on the deformation field one can freely interpolate between classic Gaussian and more interesting anisotropic, TV-like regularization.

  17. Known-component 3D-2D registration for quality assurance of spine surgery pedicle screw placement

    NASA Astrophysics Data System (ADS)

    Uneri, A.; De Silva, T.; Stayman, J. W.; Kleinszig, G.; Vogt, S.; Khanna, A. J.; Gokaslan, Z. L.; Wolinsky, J.-P.; Siewerdsen, J. H.

    2015-10-01

    A 3D-2D image registration method is presented that exploits knowledge of interventional devices (e.g. K-wires or spine screws—referred to as ‘known components’) to extend the functionality of intraoperative radiography/fluoroscopy by providing quantitative measurement and quality assurance (QA) of the surgical product. The known-component registration (KC-Reg) algorithm uses robust 3D-2D registration combined with 3D component models of surgical devices known to be present in intraoperative 2D radiographs. Component models were investigated that vary in fidelity from simple parametric models (e.g. approximation of a screw as a simple cylinder, referred to as ‘parametrically-known’ component [pKC] registration) to precise models based on device-specific CAD drawings (referred to as ‘exactly-known’ component [eKC] registration). 3D-2D registration from three intraoperative radiographs was solved using the covariance matrix adaptation evolution strategy (CMA-ES) to maximize image-gradient similarity, relating device placement relative to 3D preoperative CT of the patient. Spine phantom and cadaver studies were conducted to evaluate registration accuracy and demonstrate QA of the surgical product by verification of the type of devices delivered and conformance within the ‘acceptance window’ of the spinal pedicle. Pedicle screws were successfully registered to radiographs acquired from a mobile C-arm, providing TRE 1-4 mm and  <5° using simple parametric (pKC) models, further improved to  <1 mm and  <1° using eKC registration. Using advanced pKC models, screws that did not match the device models specified in the surgical plan were detected with an accuracy of  >99%. Visualization of registered devices relative to surgical planning and the pedicle acceptance window provided potentially valuable QA of the surgical product and reliable detection of pedicle screw breach. 3D-2D registration combined with 3D models of known surgical devices offers a novel method for intraoperative QA. The method provides a near-real-time independent check against pedicle breach, facilitating revision within the same procedure if necessary and providing more rigorous verification of the surgical product.

  18. Evaluation of similarity measures for use in the intensity-based rigid 2D-3D registration for patient positioning in radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu Jian; Kim, Minho; Peters, Jorg

    2009-12-15

    Purpose: Rigid 2D-3D registration is an alternative to 3D-3D registration for cases where largely bony anatomy can be used for patient positioning in external beam radiation therapy. In this article, the authors evaluated seven similarity measures for use in the intensity-based rigid 2D-3D registration using a variation in Skerl's similarity measure evaluation protocol. Methods: The seven similarity measures are partitioned intensity uniformity, normalized mutual information (NMI), normalized cross correlation (NCC), entropy of the difference image, pattern intensity (PI), gradient correlation (GC), and gradient difference (GD). In contrast to traditional evaluation methods that rely on visual inspection or registration outcomes, themore » similarity measure evaluation protocol probes the transform parameter space and computes a number of similarity measure properties, which is objective and optimization method independent. The variation in protocol offers an improved property in the quantification of the capture range. The authors used this protocol to investigate the effects of the downsampling ratio, the region of interest, and the method of the digitally reconstructed radiograph (DRR) calculation [i.e., the incremental ray-tracing method implemented on a central processing unit (CPU) or the 3D texture rendering method implemented on a graphics processing unit (GPU)] on the performance of the similarity measures. The studies were carried out using both the kilovoltage (kV) and the megavoltage (MV) images of an anthropomorphic cranial phantom and the MV images of a head-and-neck cancer patient. Results: Both the phantom and the patient studies showed the 2D-3D registration using the GPU-based DRR calculation yielded better robustness, while providing similar accuracy compared to the CPU-based calculation. The phantom study using kV imaging suggested that NCC has the best accuracy and robustness, but its slow function value change near the global maximum requires a stricter termination condition for an optimization method. The phantom study using MV imaging indicated that PI, GD, and GC have the best accuracy, while NCC and NMI have the best robustness. The clinical study using MV imaging showed that NCC and NMI have the best robustness. Conclusions: The authors evaluated the performance of seven similarity measures for use in 2D-3D image registration using the variation in Skerl's similarity measure evaluation protocol. The generalized methodology can be used to select the best similarity measures, determine the optimal or near optimal choice of parameter, and choose the appropriate registration strategy for the end user in his specific registration applications in medical imaging.« less

  19. 40 CFR 152.86 - The cite-all method.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... types of data that EPA would require to be submitted if the application sought the initial registration... PESTICIDE REGISTRATION AND CLASSIFICATION PROCEDURES Procedures To Ensure Protection of Data Submitters' Rights § 152.86 The cite-all method. An applicant may comply with this subpart by citing all data in...

  20. Hooking horseradish peroxidase by using the affinity Langmuir-Blodgett technique for an oriented immobilization

    NASA Astrophysics Data System (ADS)

    Peng, Ye; Ling-Ling, Hu; Yu-Zhi, Du; Yong-Juan, Xu; Hua-Gang, Ni; Cong, Chen; Xiao-Lin, Lu; Xiao-Jun, Huang

    2017-05-01

    A novel method of oriented immobilization was presented: affinity Langmuir-Blodgett (LB) technique. Firstly, a long carbon chain was bond to a ligand of Horseradish Peroxidase (HRP). The ligand derivative appears surface activity with the hydrophobic carbon chain oriented to air and the hydrophilic ligand faced to water. Then, this derivative was put onto the water/air surface to assemble a LB film and formed the affinity interaction with the active site of HRP. After that, the affinity LB film with the enzyme was transferred onto the support to obtain the oriented immobilized HRP. The specific activity of HRP immobilized by affinity LB (182.1 ± 14 U/mg) was higher than that by adsorption (40.5 ± 5 U/mg). HRP immobilized by affinity LB could maintain a more native conformation, compared to that by adsorption. This method could be effectively used to immobilize protein with orientation and show widely promising applications in many fields including biosensor and bioreactor.

  1. Registration of 3D spectral OCT volumes using 3D SIFT feature point matching

    NASA Astrophysics Data System (ADS)

    Niemeijer, Meindert; Garvin, Mona K.; Lee, Kyungmoo; van Ginneken, Bram; Abràmoff, Michael D.; Sonka, Milan

    2009-02-01

    The recent introduction of next generation spectral OCT scanners has enabled routine acquisition of high resolution, 3D cross-sectional volumetric images of the retina. 3D OCT is used in the detection and management of serious eye diseases such as glaucoma and age-related macular degeneration. For follow-up studies, image registration is a vital tool to enable more precise, quantitative comparison of disease states. This work presents a registration method based on a recently introduced extension of the 2D Scale-Invariant Feature Transform (SIFT) framework1 to 3D.2 The SIFT feature extractor locates minima and maxima in the difference of Gaussian scale space to find salient feature points. It then uses histograms of the local gradient directions around each found extremum in 3D to characterize them in a 4096 element feature vector. Matching points are found by comparing the distance between feature vectors. We apply this method to the rigid registration of optic nerve head- (ONH) and macula-centered 3D OCT scans of the same patient that have only limited overlap. Three OCT data set pairs with known deformation were used for quantitative assessment of the method's robustness and accuracy when deformations of rotation and scaling were considered. Three-dimensional registration accuracy of 2.0+/-3.3 voxels was observed. The accuracy was assessed as average voxel distance error in N=1572 matched locations. The registration method was applied to 12 3D OCT scans (200 x 200 x 1024 voxels) of 6 normal eyes imaged in vivo to demonstrate the clinical utility and robustness of the method in a real-world environment.

  2. Survey of Non-Rigid Registration Tools in Medicine.

    PubMed

    Keszei, András P; Berkels, Benjamin; Deserno, Thomas M

    2017-02-01

    We catalogue available software solutions for non-rigid image registration to support scientists in selecting suitable tools for specific medical registration purposes. Registration tools were identified using non-systematic search in Pubmed, Web of Science, IEEE Xplore® Digital Library, Google Scholar, and through references in identified sources (n = 22). Exclusions are due to unavailability or inappropriateness. The remaining (n = 18) tools were classified by (i) access and technology, (ii) interfaces and application, (iii) living community, (iv) supported file formats, and (v) types of registration methodologies emphasizing the similarity measures implemented. Out of the 18 tools, (i) 12 are open source, 8 are released under a permissive free license, which imposes the least restrictions on the use and further development of the tool, 8 provide graphical processing unit (GPU) support; (ii) 7 are built on software platforms, 5 were developed for brain image registration; (iii) 6 are under active development but only 3 have had their last update in 2015 or 2016; (iv) 16 support the Analyze format, while 7 file formats can be read with only one of the tools; and (v) 6 provide multiple registration methods and 6 provide landmark-based registration methods. Based on open source, licensing, GPU support, active community, several file formats, algorithms, and similarity measures, the tools Elastics and Plastimatch are chosen for the platform ITK and without platform requirements, respectively. Researchers in medical image analysis already have a large choice of registration tools freely available. However, the most recently published algorithms may not be included in the tools, yet.

  3. Registration verification of SEA/AR fields. [Oregon, Texas, Montana, Nebraska, Washington, Colorado, Kansas, Oklahoma, and North Dakota

    NASA Technical Reports Server (NTRS)

    Austin, W. W.; Lautenschlager, L. (Principal Investigator)

    1981-01-01

    A method of field registration verification for 20 SEA/AR sites for the 1979 crop year is evaluated. Field delineations for the sites were entered into the data base, and their registration verified using single channel gray scale computer printout maps of LANDSAT data taken over the site.

  4. Development and validation of a new method for the registration of overuse injuries in sports injury epidemiology: the Oslo Sports Trauma Research Centre (OSTRC) overuse injury questionnaire.

    PubMed

    Clarsen, Benjamin; Myklebust, Grethe; Bahr, Roald

    2013-05-01

    Current methods for injury registration in sports injury epidemiology studies may substantially underestimate the true burden of overuse injuries due to a reliance on time-loss injury definitions. To develop and validate a new method for the registration of overuse injuries in sports. A new method, including a new overuse injury questionnaire, was developed and validated in a 13-week prospective study of injuries among 313 athletes from five different sports, cross-country skiing, floorball, handball, road cycling and volleyball. All athletes completed a questionnaire by email each week to register problems in the knee, lower back and shoulder. Standard injury registration methods were also used to record all time-loss injuries that occurred during the study period. The new method recorded 419 overuse problems in the knee, lower back and shoulder during the 3-month-study period. Of these, 142 were classified as substantial overuse problems, defined as those leading to moderate or severe reductions in sports performance or participation, or time loss. Each week, an average of 39% of athletes reported having overuse problems and 13% reported having substantial problems. In contrast, standard methods of injury registration registered only 40 overuse injuries located in the same anatomical areas, the majority of which were of minimal or mild severity. Standard injury surveillance methods only capture a small percentage of the overuse problems affecting the athletes, largely because few problems led to time loss from training or competition. The new method captured a more complete and nuanced picture of the burden of overuse injuries in this cohort.

  5. Model-based registration for assessment of spinal deformities in idiopathic scoliosis

    NASA Astrophysics Data System (ADS)

    Forsberg, Daniel; Lundström, Claes; Andersson, Mats; Knutsson, Hans

    2014-01-01

    Detailed analysis of spinal deformity is important within orthopaedic healthcare, in particular for assessment of idiopathic scoliosis. This paper addresses this challenge by proposing an image analysis method, capable of providing a full three-dimensional spine characterization. The proposed method is based on the registration of a highly detailed spine model to image data from computed tomography. The registration process provides an accurate segmentation of each individual vertebra and the ability to derive various measures describing the spinal deformity. The derived measures are estimated from landmarks attached to the spine model and transferred to the patient data according to the registration result. Evaluation of the method provides an average point-to-surface error of 0.9 mm ± 0.9 (comparing segmentations), and an average target registration error of 2.3 mm ± 1.7 (comparing landmarks). Comparing automatic and manual measurements of axial vertebral rotation provides a mean absolute difference of 2.5° ± 1.8, which is on a par with other computerized methods for assessing axial vertebral rotation. A significant advantage of our method, compared to other computerized methods for rotational measurements, is that it does not rely on vertebral symmetry for computing the rotational measures. The proposed method is fully automatic and computationally efficient, only requiring three to four minutes to process an entire image volume covering vertebrae L5 to T1. Given the use of landmarks, the method can be readily adapted to estimate other measures describing a spinal deformity by changing the set of employed landmarks. In addition, the method has the potential to be utilized for accurate segmentations of the vertebrae in routine computed tomography examinations, given the relatively low point-to-surface error.

  6. Image registration with auto-mapped control volumes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schreibmann, Eduard; Xing Lei

    2006-04-15

    Many image registration algorithms rely on the use of homologous control points on the two input image sets to be registered. In reality, the interactive identification of the control points on both images is tedious, difficult, and often a source of error. We propose a two-step algorithm to automatically identify homologous regions that are used as a priori information during the image registration procedure. First, a number of small control volumes having distinct anatomical features are identified on the model image in a somewhat arbitrary fashion. Instead of attempting to find their correspondences in the reference image through user interaction,more » in the proposed method, each of the control regions is mapped to the corresponding part of the reference image by using an automated image registration algorithm. A normalized cross-correlation (NCC) function or mutual information was used as the auto-mapping metric and a limited memory Broyden-Fletcher-Goldfarb-Shanno algorithm (L-BFGS) was employed to optimize the function to find the optimal mapping. For rigid registration, the transformation parameters of the system are obtained by averaging that derived from the individual control volumes. In our deformable calculation, the mapped control volumes are treated as the nodes or control points with known positions on the two images. If the number of control volumes is not enough to cover the whole image to be registered, additional nodes are placed on the model image and then located on the reference image in a manner similar to the conventional BSpline deformable calculation. For deformable registration, the established correspondence by the auto-mapped control volumes provides valuable guidance for the registration calculation and greatly reduces the dimensionality of the problem. The performance of the two-step registrations was applied to three rigid registration cases (two PET-CT registrations and a brain MRI-CT registration) and one deformable registration of inhale and exhale phases of a lung 4D CT. Algorithm convergence was confirmed by starting the registration calculations from a large number of initial transformation parameters. An accuracy of {approx}2 mm was achieved for both deformable and rigid registration. The proposed image registration method greatly reduces the complexity involved in the determination of homologous control points and allows us to minimize the subjectivity and uncertainty associated with the current manual interactive approach. Patient studies have indicated that the two-step registration technique is fast, reliable, and provides a valuable tool to facilitate both rigid and nonrigid image registrations.« less

  7. 3D craniofacial registration using thin-plate spline transform and cylindrical surface projection

    PubMed Central

    Chen, Yucong; Deng, Qingqiong; Duan, Fuqing

    2017-01-01

    Craniofacial registration is used to establish the point-to-point correspondence in a unified coordinate system among human craniofacial models. It is the foundation of craniofacial reconstruction and other craniofacial statistical analysis research. In this paper, a non-rigid 3D craniofacial registration method using thin-plate spline transform and cylindrical surface projection is proposed. First, the gradient descent optimization is utilized to improve a cylindrical surface fitting (CSF) for the reference craniofacial model. Second, the thin-plate spline transform (TPST) is applied to deform a target craniofacial model to the reference model. Finally, the cylindrical surface projection (CSP) is used to derive the point correspondence between the reference and deformed target models. To accelerate the procedure, the iterative closest point ICP algorithm is used to obtain a rough correspondence, which can provide a possible intersection area of the CSP. Finally, the inverse TPST is used to map the obtained corresponding points from the deformed target craniofacial model to the original model, and it can be realized directly by the correspondence between the original target model and the deformed target model. Three types of registration, namely, reflexive, involutive and transitive registration, are carried out to verify the effectiveness of the proposed craniofacial registration algorithm. Comparison with the methods in the literature shows that the proposed method is more accurate. PMID:28982117

  8. 3D craniofacial registration using thin-plate spline transform and cylindrical surface projection.

    PubMed

    Chen, Yucong; Zhao, Junli; Deng, Qingqiong; Duan, Fuqing

    2017-01-01

    Craniofacial registration is used to establish the point-to-point correspondence in a unified coordinate system among human craniofacial models. It is the foundation of craniofacial reconstruction and other craniofacial statistical analysis research. In this paper, a non-rigid 3D craniofacial registration method using thin-plate spline transform and cylindrical surface projection is proposed. First, the gradient descent optimization is utilized to improve a cylindrical surface fitting (CSF) for the reference craniofacial model. Second, the thin-plate spline transform (TPST) is applied to deform a target craniofacial model to the reference model. Finally, the cylindrical surface projection (CSP) is used to derive the point correspondence between the reference and deformed target models. To accelerate the procedure, the iterative closest point ICP algorithm is used to obtain a rough correspondence, which can provide a possible intersection area of the CSP. Finally, the inverse TPST is used to map the obtained corresponding points from the deformed target craniofacial model to the original model, and it can be realized directly by the correspondence between the original target model and the deformed target model. Three types of registration, namely, reflexive, involutive and transitive registration, are carried out to verify the effectiveness of the proposed craniofacial registration algorithm. Comparison with the methods in the literature shows that the proposed method is more accurate.

  9. Statistical shape analysis of clavicular cortical bone with applications to the development of mean and boundary shape models.

    PubMed

    Lu, Yuan-Chiao; Untaroiu, Costin D

    2013-09-01

    During car collisions, the shoulder belt exposes the occupant's clavicle to large loading conditions which often leads to a bone fracture. To better understand the geometric variability of clavicular cortical bone which may influence its injury tolerance, twenty human clavicles were evaluated using statistical shape analysis. The interior and exterior clavicular cortical bone surfaces were reconstructed from CT-scan images. Registration between one selected template and the remaining 19 clavicle models was conducted to remove translation and rotation differences. The correspondences of landmarks between the models were then established using coordinates and surface normals. Three registration methods were compared: the LM-ICP method; the global method; and the SHREC method. The LM-ICP registration method showed better performance than the global and SHREC registration methods, in terms of compactness, generalization, and specificity. The first four principal components obtained by using the LM-ICP registration method account for 61% and 67% of the overall anatomical variation for the exterior and interior cortical bone shapes, respectively. The length was found to be the most significant variation mode of the human clavicle. The mean and two boundary shape models were created using the four most significant principal components to investigate the size and shape variation of clavicular cortical bone. In the future, boundary shape models could be used to develop probabilistic finite element models which may help to better understand the variability in biomechanical responses and injuries to the clavicle. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  10. a Global Registration Algorithm of the Single-Closed Ring Multi-Stations Point Cloud

    NASA Astrophysics Data System (ADS)

    Yang, R.; Pan, L.; Xiang, Z.; Zeng, H.

    2018-04-01

    Aimed at the global registration problem of the single-closed ring multi-stations point cloud, a formula in order to calculate the error of rotation matrix was constructed according to the definition of error. The global registration algorithm of multi-station point cloud was derived to minimize the error of rotation matrix. And fast-computing formulas of transformation matrix with whose implementation steps and simulation experiment scheme was given. Compared three different processing schemes of multi-station point cloud, the experimental results showed that the effectiveness of the new global registration method was verified, and it could effectively complete the global registration of point cloud.

  11. Object-constrained meshless deformable algorithm for high speed 3D nonrigid registration between CT and CBCT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Ting; Kim, Sung; Goyal, Sharad

    2010-01-15

    Purpose: High-speed nonrigid registration between the planning CT and the treatment CBCT data is critical for real time image guided radiotherapy (IGRT) to improve the dose distribution and to reduce the toxicity to adjacent organs. The authors propose a new fully automatic 3D registration framework that integrates object-based global and seed constraints with the grayscale-based ''demons'' algorithm. Methods: Clinical objects were segmented on the planning CT images and were utilized as meshless deformable models during the nonrigid registration process. The meshless models reinforced a global constraint in addition to the grayscale difference between CT and CBCT in order to maintainmore » the shape and the volume of geometrically complex 3D objects during the registration. To expedite the registration process, the framework was stratified into hierarchies, and the authors used a frequency domain formulation to diffuse the displacement between the reference and the target in each hierarchy. Also during the registration of pelvis images, they replaced the air region inside the rectum with estimated pixel values from the surrounding rectal wall and introduced an additional seed constraint to robustly track and match the seeds implanted into the prostate. The proposed registration framework and algorithm were evaluated on 15 real prostate cancer patients. For each patient, prostate gland, seminal vesicle, bladder, and rectum were first segmented by a radiation oncologist on planning CT images for radiotherapy planning purpose. The same radiation oncologist also manually delineated the tumor volumes and critical anatomical structures in the corresponding CBCT images acquired at treatment. These delineated structures on the CBCT were only used as the ground truth for the quantitative validation, while structures on the planning CT were used both as the input to the registration method and the ground truth in validation. By registering the planning CT to the CBCT, a displacement map was generated. Segmented volumes in the CT images deformed using the displacement field were compared against the manual segmentations in the CBCT images to quantitatively measure the convergence of the shape and the volume. Other image features were also used to evaluate the overall performance of the registration. Results: The algorithm was able to complete the segmentation and registration process within 1 min, and the superimposed clinical objects achieved a volumetric similarity measure of over 90% between the reference and the registered data. Validation results also showed that the proposed registration could accurately trace the deformation inside the target volume with average errors of less than 1 mm. The method had a solid performance in registering the simulated images with up to 20 Hounsfield unit white noise added. Also, the side by side comparison with the original demons algorithm demonstrated its improved registration performance over the local pixel-based registration approaches. Conclusions: Given the strength and efficiency of the algorithm, the proposed method has significant clinical potential to accelerate and to improve the CBCT delineation and targets tracking in online IGRT applications.« less

  12. PDZ affinity chromatography: a general method for affinity purification of proteins based on PDZ domains and their ligands.

    PubMed

    Walkup, Ward G; Kennedy, Mary B

    2014-06-01

    PDZ (PSD-95, DiscsLarge, ZO1) domains function in nature as protein binding domains within scaffold and membrane-associated proteins. They comprise ∼90 residues and make specific, high affinity interactions with complementary C-terminal peptide sequences, with other PDZ domains, and with phospholipids. We hypothesized that the specific, strong interactions of PDZ domains with their ligands would make them well suited for use in affinity chromatography. Here we describe a novel affinity chromatography method applicable for the purification of proteins that contain PDZ domain-binding ligands, either naturally or introduced by genetic engineering. We created a series of affinity resins comprised of PDZ domains from the scaffold protein PSD-95, or from neuronal nitric oxide synthase (nNOS), coupled to solid supports. We used them to purify heterologously expressed neuronal proteins or protein domains containing endogenous PDZ domain ligands, eluting the proteins with free PDZ domain peptide ligands. We show that Proteins of Interest (POIs) lacking endogenous PDZ domain ligands can be engineered as fusion products containing C-terminal PDZ domain ligand peptides or internal, N- or C-terminal PDZ domains and then can be purified by the same method. Using this method, we recovered recombinant GFP fused to a PDZ domain ligand in active form as verified by fluorescence yield. Similarly, chloramphenicol acetyltransferase (CAT) and β-Galactosidase (LacZ) fused to a C-terminal PDZ domain ligand or an N-terminal PDZ domain were purified in active form as assessed by enzymatic assay. In general, PDZ domains and ligands derived from PSD-95 were superior to those from nNOS for this method. PDZ Domain Affinity Chromatography promises to be a versatile and effective method for purification of a wide variety of natural and recombinant proteins. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Cell behavior on gallium nitride surfaces: peptide affinity attachment versus covalent functionalization.

    PubMed

    Foster, Corey M; Collazo, Ramon; Sitar, Zlatko; Ivanisevic, Albena

    2013-07-02

    Gallium nitride is a wide band gap semiconductor that demonstrates a unique set of optical and electrical properties as well as aqueous stability and biocompatibility. This combination of properties makes gallium nitride a strong candidate for use in chemical and biological applications such as sensors and neural interfaces. Molecular modification can be used to enhance the functionality and properties of the gallium nitride surface. Here, gallium nitride surfaces were functionalized with a PC12 cell adhesion promoting peptide using covalent and affinity driven attachment methods. The covalent scheme proceeded by Grignard reaction and olefin metathesis while the affinity driven scheme utilized the recognition peptide isolated through phage display. This study shows that the method of attaching the adhesion peptide influences PC12 cell adhesion and differentiation as measured by cell density and morphological analysis. Covalent attachment promoted monolayer and dispersed cell adhesion while affinity driven attachment promoted multilayer cell agglomeration. Higher cell density was observed on surfaces modified using the recognition peptide. The results suggest that the covalent and affinity driven attachment methods are both suitable for promoting PC12 cell adhesion to the gallium nitride surface, though each method may be preferentially suited for distinct applications.

  14. Research on segmentation based on multi-atlas in brain MR image

    NASA Astrophysics Data System (ADS)

    Qian, Yuejing

    2018-03-01

    Accurate segmentation of specific tissues in brain MR image can be effectively achieved with the multi-atlas-based segmentation method, and the accuracy mainly depends on the image registration accuracy and fusion scheme. This paper proposes an automatic segmentation method based on the multi-atlas for brain MR image. Firstly, to improve the registration accuracy in the area to be segmented, we employ a target-oriented image registration method for the refinement. Then In the label fusion, we proposed a new algorithm to detect the abnormal sparse patch and simultaneously abandon the corresponding abnormal sparse coefficients, this method is made based on the remaining sparse coefficients combined with the multipoint label estimator strategy. The performance of the proposed method was compared with those of the nonlocal patch-based label fusion method (Nonlocal-PBM), the sparse patch-based label fusion method (Sparse-PBM) and majority voting method (MV). Based on our experimental results, the proposed method is efficient in the brain MR images segmentation compared with MV, Nonlocal-PBM, and Sparse-PBM methods.

  15. Using shape contexts method for registration of contra lateral breasts in thermal images.

    PubMed

    Etehadtavakol, Mahnaz; Ng, Eddie Yin-Kwee; Gheissari, Niloofar

    2014-12-10

    To achieve symmetric boundaries for left and right breasts boundaries in thermal images by registration. The proposed method for registration consists of two steps. In the first step, shape context, an approach as presented by Belongie and Malik was applied for registration of two breast boundaries. The shape context is an approach to measure shape similarity. Two sets of finite sample points from shape contours of two breasts are then presented. Consequently, the correspondences between the two shapes are found. By finding correspondences, the sample point which has the most similar shape context is obtained. In this study, a line up transformation which maps one shape onto the other has been estimated in order to complete shape. The used of a thin plate spline permitted good estimation of a plane transformation which has capability to map unselective points from one shape onto the other. The obtained aligning transformation of boundaries points has been applied successfully to map the two breasts interior points. Some of advantages for using shape context method in this work are as follows: (1) no special land marks or key points are needed; (2) it is tolerant to all common shape deformation; and (3) although it is uncomplicated and straightforward to use, it gives remarkably powerful descriptor for point sets significantly upgrading point set registration. Results are very promising. The proposed algorithm was implemented for 32 cases. Boundary registration is done perfectly for 28 cases. We used shape contexts method that is simple and easy to implement to achieve symmetric boundaries for left and right breasts boundaries in thermal images.

  16. Registration of Laser Scanning Point Clouds and Aerial Images Using either Artificial or Natural Tie Features

    NASA Astrophysics Data System (ADS)

    Rönnholm, P.; Haggrén, H.

    2012-07-01

    Integration of laser scanning data and photographs is an excellent combination regarding both redundancy and complementary. Applications of integration vary from sensor and data calibration to advanced classification and scene understanding. In this research, only airborne laser scanning and aerial images are considered. Currently, the initial registration is solved using direct orientation sensors GPS and inertial measurements. However, the accuracy is not usually sufficient for reliable integration of data sets, and thus the initial registration needs to be improved. A registration of data from different sources requires searching and measuring of accurate tie features. Usually, points, lines or planes are preferred as tie features. Therefore, the majority of resent methods rely highly on artificial objects, such as buildings, targets or road paintings. However, in many areas no such objects are available. For example in forestry areas, it would be advantageous to be able to improve registration between laser data and images without making additional ground measurements. Therefore, there is a need to solve registration using only natural features, such as vegetation and ground surfaces. Using vegetation as tie features is challenging, because the shape and even location of vegetation can change because of wind, for example. The aim of this article was to compare registration accuracies derived by using either artificial or natural tie features. The test area included urban objects as well as trees and other vegetation. In this area, two registrations were performed, firstly, using mainly built objects and, secondly, using only vegetation and ground surface. The registrations were solved applying the interactive orientation method. As a result, using artificial tie features leaded to a successful registration in all directions of the coordinate system axes. In the case of using natural tie features, however, the detection of correct heights was difficult causing also some tilt errors. The planimetric registration was accurate.

  17. SU-E-J-92: CERR: New Tools to Analyze Image Registration Precision.

    PubMed

    Apte, A; Wang, Y; Oh, J; Saleh, Z; Deasy, J

    2012-06-01

    To present new tools in CERR (The Computational Environment for Radiotherapy Research) to analyze image registration and other software updates/additions. CERR continues to be a key environment (cited more than 129 times to date) for numerous RT-research studies involving outcomes modeling, prototyping algorithms for segmentation, and registration, experiments with phantom dosimetry, IMRT research, etc. Image registration is one of the key technologies required in many research studies. CERR has been interfaced with popular image registration frameworks like Plastimatch and ITK. Once the images have been autoregistered, CERR provides tools to analyze the accuracy of registration using the following innovative approaches (1)Distance Discordance Histograms (DDH), described in detail in a separate paper and (2)'MirrorScope', explained as follows: for any view plane the 2-d image is broken up into a 2d grid of medium-sized squares. Each square contains a right-half, which is the reference image, and a left-half, which is the mirror flipped version of the overlay image. The user can increase or decrease the size of this grid to control the resolution of the analysis. Other updates to CERR include tools to extract image and dosimetric features programmatically and storage in a central database and tools to interface with Statistical analysis software like SPSS and Matlab Statistics toolbox. MirrorScope was compared on various examples, including 'perfect' registration examples and 'artificially translated' registrations. for 'perfect' registration, the patterns obtained within each circles are symmetric, and are easily, visually recognized as aligned. For registrations that are off, the patterns obtained in the circles located in the regions of imperfections show unsymmetrical patterns that are easily recognized. The new updates to CERR further increase its utility for RT-research. Mirrorscope is a visually intuitive method of monitoring the accuracy of image registration that improves on the visual confusion of standard methods. © 2012 American Association of Physicists in Medicine.

  18. Fast time-of-flight camera based surface registration for radiotherapy patient positioning.

    PubMed

    Placht, Simon; Stancanello, Joseph; Schaller, Christian; Balda, Michael; Angelopoulou, Elli

    2012-01-01

    This work introduces a rigid registration framework for patient positioning in radiotherapy, based on real-time surface acquisition by a time-of-flight (ToF) camera. Dynamic properties of the system are also investigated for future gating/tracking strategies. A novel preregistration algorithm, based on translation and rotation-invariant features representing surface structures, was developed. Using these features, corresponding three-dimensional points were computed in order to determine initial registration parameters. These parameters became a robust input to an accelerated version of the iterative closest point (ICP) algorithm for the fine-tuning of the registration result. Distance calibration and Kalman filtering were used to compensate for ToF-camera dependent noise. Additionally, the advantage of using the feature based preregistration over an "ICP only" strategy was evaluated, as well as the robustness of the rigid-transformation-based method to deformation. The proposed surface registration method was validated using phantom data. A mean target registration error (TRE) for translations and rotations of 1.62 ± 1.08 mm and 0.07° ± 0.05°, respectively, was achieved. There was a temporal delay of about 65 ms in the registration output, which can be seen as negligible considering the dynamics of biological systems. Feature based preregistration allowed for accurate and robust registrations even at very large initial displacements. Deformations affected the accuracy of the results, necessitating particular care in cases of deformed surfaces. The proposed solution is able to solve surface registration problems with an accuracy suitable for radiotherapy cases where external surfaces offer primary or complementary information to patient positioning. The system shows promising dynamic properties for its use in gating/tracking applications. The overall system is competitive with commonly-used surface registration technologies. Its main benefit is the usage of a cost-effective off-the-shelf technology for surface acquisition. Further strategies to improve the registration accuracy are under development.

  19. Elastic registration of prostate MR images based on state estimation of dynamical systems

    NASA Astrophysics Data System (ADS)

    Marami, Bahram; Ghoul, Suha; Sirouspour, Shahin; Capson, David W.; Davidson, Sean R. H.; Trachtenberg, John; Fenster, Aaron

    2014-03-01

    Magnetic resonance imaging (MRI) is being increasingly used for image-guided biopsy and focal therapy of prostate cancer. A combined rigid and deformable registration technique is proposed to register pre-treatment diagnostic 3T magnetic resonance (MR) images, with the identified target tumor(s), to the intra-treatment 1.5T MR images. The pre-treatment 3T images are acquired with patients in strictly supine position using an endorectal coil, while 1.5T images are obtained intra-operatively just before insertion of the ablation needle with patients in the lithotomy position. An intensity-based registration routine rigidly aligns two images in which the transformation parameters is initialized using three pairs of manually selected approximate corresponding points. The rigid registration is followed by a deformable registration algorithm employing a generic dynamic linear elastic deformation model discretized by the finite element method (FEM). The model is used in a classical state estimation framework to estimate the deformation of the prostate based on a similarity metric between pre- and intra-treatment images. Registration results using 10 sets of prostate MR images showed that the proposed method can significantly improve registration accuracy in terms of target registration error (TRE) for all prostate substructures. The root mean square (RMS) TRE of 46 manually identified fiducial points was found to be 2.40+/-1.20 mm, 2.51+/-1.20 mm, and 2.28+/-1.22mm for the whole gland (WG), central gland (CG), and peripheral zone (PZ), respectively after deformable registration. These values are improved from 3.15+/-1.60 mm, 3.09+/-1.50 mm, and 3.20+/-1.73mm in the WG, CG and PZ, respectively resulted from rigid registration. Registration results are also evaluated based on the Dice similarity coefficient (DSC), mean absolute surface distances (MAD) and maximum absolute surface distances (MAXD) of the WG and CG in the prostate images.

  20. WHOLE BODY NONRIGID CT-PET REGISTRATION USING WEIGHTED DEMONS.

    PubMed

    Suh, J W; Kwon, Oh-K; Scheinost, D; Sinusas, A J; Cline, Gary W; Papademetris, X

    2011-03-30

    We present a new registration method for whole-body rat computed tomography (CT) image and positron emission tomography (PET) images using a weighted demons algorithm. The CT and PET images are acquired in separate scanners at different times and the inherent differences in the imaging protocols produced significant nonrigid changes between the two acquisitions in addition to heterogeneous image characteristics. In this situation, we utilized both the transmission-PET and the emission-PET images in the deformable registration process emphasizing particular regions of the moving transmission-PET image using the emission-PET image. We validated our results with nine rat image sets using M-Hausdorff distance similarity measure. We demonstrate improved performance compared to standard methods such as Demons and normalized mutual information-based non-rigid FFD registration.

  1. A MULTICORE BASED PARALLEL IMAGE REGISTRATION METHOD

    PubMed Central

    Yang, Lin; Gong, Leiguang; Zhang, Hong; Nosher, John L.; Foran, David J.

    2012-01-01

    Image registration is a crucial step for many image-assisted clinical applications such as surgery planning and treatment evaluation. In this paper we proposed a landmark based nonlinear image registration algorithm for matching 2D image pairs. The algorithm was shown to be effective and robust under conditions of large deformations. In landmark based registration, the most important step is establishing the correspondence among the selected landmark points. This usually requires an extensive search which is often computationally expensive. We introduced a nonregular data partition algorithm using the K-means clustering algorithm to group the landmarks based on the number of available processing cores. The step optimizes the memory usage and data transfer. We have tested our method using IBM Cell Broadband Engine (Cell/B.E.) platform. PMID:19964921

  2. 3D-2D registration for surgical guidance: effect of projection view angles on registration accuracy

    NASA Astrophysics Data System (ADS)

    Uneri, A.; Otake, Y.; Wang, A. S.; Kleinszig, G.; Vogt, S.; Khanna, A. J.; Siewerdsen, J. H.

    2014-01-01

    An algorithm for intensity-based 3D-2D registration of CT and x-ray projections is evaluated, specifically using single- or dual-projection views to provide 3D localization. The registration framework employs the gradient information similarity metric and covariance matrix adaptation evolution strategy to solve for the patient pose in six degrees of freedom. Registration performance was evaluated in an anthropomorphic phantom and cadaver, using C-arm projection views acquired at angular separation, Δθ, ranging from ˜0°-180° at variable C-arm magnification. Registration accuracy was assessed in terms of 2D projection distance error and 3D target registration error (TRE) and compared to that of an electromagnetic (EM) tracker. The results indicate that angular separation as small as Δθ ˜10°-20° achieved TRE <2 mm with 95% confidence, comparable or superior to that of the EM tracker. The method allows direct registration of preoperative CT and planning data to intraoperative fluoroscopy, providing 3D localization free from conventional limitations associated with external fiducial markers, stereotactic frames, trackers and manual registration.

  3. Robust image registration for multiple exposure high dynamic range image synthesis

    NASA Astrophysics Data System (ADS)

    Yao, Susu

    2011-03-01

    Image registration is an important preprocessing technique in high dynamic range (HDR) image synthesis. This paper proposed a robust image registration method for aligning a group of low dynamic range images (LDR) that are captured with different exposure times. Illumination change and photometric distortion between two images would result in inaccurate registration. We propose to transform intensity image data into phase congruency to eliminate the effect of the changes in image brightness and use phase cross correlation in the Fourier transform domain to perform image registration. Considering the presence of non-overlapped regions due to photometric distortion, evolutionary programming is applied to search for the accurate translation parameters so that the accuracy of registration is able to be achieved at a hundredth of a pixel level. The proposed algorithm works well for under and over-exposed image registration. It has been applied to align LDR images for synthesizing high quality HDR images..

  4. An image mosaic method based on corner

    NASA Astrophysics Data System (ADS)

    Jiang, Zetao; Nie, Heting

    2015-08-01

    In view of the shortcomings of the traditional image mosaic, this paper describes a new algorithm for image mosaic based on the Harris corner. Firstly, Harris operator combining the constructed low-pass smoothing filter based on splines function and circular window search is applied to detect the image corner, which allows us to have better localisation performance and effectively avoid the phenomenon of cluster. Secondly, the correlation feature registration is used to find registration pair, remove the false registration using random sampling consensus. Finally use the method of weighted trigonometric combined with interpolation function for image fusion. The experiments show that this method can effectively remove the splicing ghosting and improve the accuracy of image mosaic.

  5. A scale space feature based registration technique for fusion of satellite imagery

    NASA Technical Reports Server (NTRS)

    Raghavan, Srini; Cromp, Robert F.; Campbell, William C.

    1997-01-01

    Feature based registration is one of the most reliable methods to register multi-sensor images (both active and passive imagery) since features are often more reliable than intensity or radiometric values. The only situation where a feature based approach will fail is when the scene is completely homogenous or densely textural in which case a combination of feature and intensity based methods may yield better results. In this paper, we present some preliminary results of testing our scale space feature based registration technique, a modified version of feature based method developed earlier for classification of multi-sensor imagery. The proposed approach removes the sensitivity in parameter selection experienced in the earlier version as explained later.

  6. A mixture model for robust registration in Kinect sensor

    NASA Astrophysics Data System (ADS)

    Peng, Li; Zhou, Huabing; Zhu, Shengguo

    2018-03-01

    The Microsoft Kinect sensor has been widely used in many applications, but it suffers from the drawback of low registration precision between color image and depth image. In this paper, we present a robust method to improve the registration precision by a mixture model that can handle multiply images with the nonparametric model. We impose non-parametric geometrical constraints on the correspondence, as a prior distribution, in a reproducing kernel Hilbert space (RKHS).The estimation is performed by the EM algorithm which by also estimating the variance of the prior model is able to obtain good estimates. We illustrate the proposed method on the public available dataset. The experimental results show that our approach outperforms the baseline methods.

  7. Mosaicking Techniques for Deep Submergence Vehicle Video Imagery - Applications to Ridge2000 Science

    NASA Astrophysics Data System (ADS)

    Mayer, L.; Rzhanov, Y.; Fornari, D. J.; Soule, A.; Shank, T. M.; Beaulieu, S. E.; Schouten, H.; Tivey, M.

    2004-12-01

    Severe attenuation of visible light and limited power capabilities of many submersible vehicles require acquisition of imagery from short ranges, rarely exceeding 8-10 meters. Although modern video- and photo-equipment makes high-resolution video surveying possible, the field of view of each image remains relatively narrow. To compensate for the deficiencies in light and field of view researchers have been developing techniques allowing for combining images into larger composite images i.e., mosaicking. A properly constructed, accurate mosaic has a number of well-known advantages in comparison with the original sequence of images, the most notable being improved situational awareness. We have developed software strategies for PC-based computers that permit conversion of video imagery acquired from any underwater vehicle, operated within both absolute (e.g. LBL or USBL) or relative (e.g. Doppler Velocity Log-DVL) navigation networks, to quickly produce a set of geo-referenced photomosaics which can then be directly incorporated into a Geographic Information System (GIS) data base. The timescale of processing is rapid enough to permit analysis of the resulting mosaics between submersible dives thus enhancing the efficiency of deep-sea research. Commercial imaging processing packages usually handle cases where there is no or little parallax - an unlikely situation for undersea world where terrain has pronounced 3D content and imagery is acquired from moving platforms. The approach we have taken is optimized for situations in which there is significant relief and thus parallax in the imagery (e.g. seafloor fault scarps or constructional volcanic escarpments and flow fronts). The basis of all mosaicking techniques is a pair-wise image registration method that finds a transformation relating pixels of two consecutive image frames. We utilize a "rigid affine model" with four degrees of freedom for image registration that allows for camera translation in all directions and camera rotation about its optical axis. The coefficients of the transformation can be determined robustly using the well-established and powerful "featureless Fourier domain-based technique" (FFDT), which is an extension of the FFT-based correlation approach. While calculation of cross-correlation allows the recovery of only two parameters of the transformation (translation in 2D), FFDT uses the "Phase shift" theorem of the Fourier Transform as well as a log-polar transform of the Fourier magnitude spectrum to recover all four transformation coefficients required for the rigid affine model. Examples of results of our video mosaicking data processing for the East Pacific Rise ISS will be presented.

  8. Automated Registration of Sequential Breath-Hold Dynamic Contrast-Enhanced MRI Images: a Comparison of 3 Techniques

    PubMed Central

    Rajaraman, Sivaramakrishnan; Rodriguez, Jeffery J.; Graff, Christian; Altbach, Maria I.; Dragovich, Tomislav; Sirlin, Claude B.; Korn, Ronald L.; Raghunand, Natarajan

    2011-01-01

    Dynamic Contrast-Enhanced MRI (DCE-MRI) is increasingly in use as an investigational biomarker of response in cancer clinical studies. Proper registration of images acquired at different time-points is essential for deriving diagnostic information from quantitative pharmacokinetic analysis of these data. Motion artifacts in the presence of time-varying intensity due to contrast-enhancement make this registration problem challenging. DCE-MRI of chest and abdominal lesions is typically performed during sequential breath-holds, which introduces misregistration due to inconsistent diaphragm positions, and also places constraints on temporal resolution vis-à-vis free-breathing. In this work, we have employed a computer-generated DCE-MRI phantom to compare the performance of two published methods, Progressive Principal Component Registration and Pharmacokinetic Model-Driven Registration, with Sequential Elastic Registration (SER) to register adjacent time-sample images using a published general-purpose elastic registration algorithm. In all 3 methods, a 3-D rigid-body registration scheme with a mutual information similarity measure was used as a pre-processing step. The DCE-MRI phantom images were mathematically deformed to simulate misregistration which was corrected using the 3 schemes. All 3 schemes were comparably successful in registering large regions of interest (ROIs) such as muscle, liver, and spleen. SER was superior in retaining tumor volume and shape, and in registering smaller but important ROIs such as tumor core and tumor rim. The performance of SER on clinical DCE-MRI datasets is also presented. PMID:21531108

  9. Affinity Proteomics in the mountains: Alpbach 2015.

    PubMed

    Taussig, Michael J

    2016-09-25

    The 2015 Alpbach Workshop on Affinity Proteomics, organised by the EU AFFINOMICS consortium, was the 7th workshop in this series. As in previous years, the focus of the event was the current state of affinity methods for proteome analysis, including complementarity with mass spectrometry, progress in recombinant binder production methods, alternatives to classical antibodies as affinity reagents, analysis of proteome targets, industry focus on biomarkers, and diagnostic and clinical applications. The combination of excellent science with Austrian mountain scenery and winter sports engender an atmosphere that makes this series of workshops exceptional. The articles in this Special Issue represent a cross-section of the presentations at the 2015 meeting. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. A 3D global-to-local deformable mesh model based registration and anatomy-constrained segmentation method for image guided prostate radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou Jinghao; Kim, Sung; Jabbour, Salma

    2010-03-15

    Purpose: In the external beam radiation treatment of prostate cancers, successful implementation of adaptive radiotherapy and conformal radiation dose delivery is highly dependent on precise and expeditious segmentation and registration of the prostate volume between the simulation and the treatment images. The purpose of this study is to develop a novel, fast, and accurate segmentation and registration method to increase the computational efficiency to meet the restricted clinical treatment time requirement in image guided radiotherapy. Methods: The method developed in this study used soft tissues to capture the transformation between the 3D planning CT (pCT) images and 3D cone-beam CTmore » (CBCT) treatment images. The method incorporated a global-to-local deformable mesh model based registration framework as well as an automatic anatomy-constrained robust active shape model (ACRASM) based segmentation algorithm in the 3D CBCT images. The global registration was based on the mutual information method, and the local registration was to minimize the Euclidian distance of the corresponding nodal points from the global transformation of deformable mesh models, which implicitly used the information of the segmented target volume. The method was applied on six data sets of prostate cancer patients. Target volumes delineated by the same radiation oncologist on the pCT and CBCT were chosen as the benchmarks and were compared to the segmented and registered results. The distance-based and the volume-based estimators were used to quantitatively evaluate the results of segmentation and registration. Results: The ACRASM segmentation algorithm was compared to the original active shape model (ASM) algorithm by evaluating the values of the distance-based estimators. With respect to the corresponding benchmarks, the mean distance ranged from -0.85 to 0.84 mm for ACRASM and from -1.44 to 1.17 mm for ASM. The mean absolute distance ranged from 1.77 to 3.07 mm for ACRASM and from 2.45 to 6.54 mm for ASM. The volume overlap ratio ranged from 79% to 91% for ACRASM and from 44% to 80% for ASM. These data demonstrated that the segmentation results of ACRASM were in better agreement with the corresponding benchmarks than those of ASM. The developed registration algorithm was quantitatively evaluated by comparing the registered target volumes from the pCT to the benchmarks on the CBCT. The mean distance and the root mean square error ranged from 0.38 to 2.2 mm and from 0.45 to 2.36 mm, respectively, between the CBCT images and the registered pCT. The mean overlap ratio of the prostate volumes ranged from 85.2% to 95% after registration. The average time of the ACRASM-based segmentation was under 1 min. The average time of the global transformation was from 2 to 4 min on two 3D volumes and the average time of the local transformation was from 20 to 34 s on two deformable superquadrics mesh models. Conclusions: A novel and fast segmentation and deformable registration method was developed to capture the transformation between the planning and treatment images for external beam radiotherapy of prostate cancers. This method increases the computational efficiency and may provide foundation to achieve real time adaptive radiotherapy.« less

  11. Mapping protein-protein interactions with phage-displayed combinatorial peptide libraries.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kay, B. K.; Castagnoli, L.; Biosciences Division

    This unit describes the process and analysis of affinity selecting bacteriophage M13 from libraries displaying combinatorial peptides fused to either a minor or major capsid protein. Direct affinity selection uses target protein bound to a microtiter plate followed by purification of selected phage by ELISA. Alternatively, there is a bead-based affinity selection method. These methods allow one to readily isolate peptide ligands that bind to a protein target of interest and use the consensus sequence to search proteomic databases for putative interacting proteins.

  12. Revision of the experimental electron affinity of BO

    NASA Astrophysics Data System (ADS)

    Rienstra, Jonathan C.; Schaefer, Henry F., III

    1997-05-01

    The experimental electron affinity of BO has proven questionable. We obtained the electron affinity of BO using the large aug-cc-pVQZ basis with SCF, CISD, CISD+Q, CCSD, and CCSD(T) methods and predict a value of 2.57 eV, or 0.55 eV smaller than the latest experimental value. The 2∑+ to 2Π excitation energy of BO has also been obtained with the CCSD(T) method and found to be 2.82 eV.

  13. A new patient registration method for intensive care department management.

    PubMed

    Van Aken, P; Bossaert, L; Gilot, C; Tielemans, L

    1987-01-01

    A new method to describe intensive care department performance is presented. The method is a complication of available administrative and medical data, completed with a severity of illness measure (Acute Physiology And Chronic Health Evaluation, APACHE) and the registration of nursing care intensity. The development of this latter patient stratification system (Intensive Care Activity Score, INCAS) is described. The performance of the method is demonstrated by a study of 200 consecutive admissions.

  14. Justice Can Further Improve Its Monitoring of Changes in State/Local Voting Laws.

    DTIC Science & Technology

    1983-12-19

    voter quali- fications and eligibility; registration, bal- loting and vote counting procedures; and the eligibility or method of selecting candidates...voter qualifications and eligibility; registration, balloting, and vote counting procedures; and the eligibility or method of *$ selecting candidates...reapportionments, -* annexations, method -of-election, and bilingual assistance to mi- nority language groups. Forty-nine of the withdrawals occurred after the

  15. Registration and Marking Requirements for UAS. Unmanned Aircraft System (UAS) Registration

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The registration of an aircraft is a prerequisite for issuance of a U.S. certificate of airworthiness by the FAA. The procedures and requirements for aircraft registration, and the subsequent issuance of registration numbers, are contained in FAR Part 47. However, the process/method(s) for applying the requirements of Parts 45 & 47 to Unmanned Aircraft Systems (UAS) has not been defined. This task resolved the application of 14 CFR Parts 45 and 47 to UAS. Key Findings: UAS are aircraft systems and as such the recommended approach to registration is to follow the same process for registration as manned aircraft. This will require manufacturers to comply with the requirements for 14 CFR 47, Aircraft Registration and 14 CFR 45, Identification and Registration Marking. In addition, only the UA should be identified with the N number registration markings. There should also be a documentation link showing the applicability of the control station and communication link to the UA. The documentation link can be in the form of a Type Certificate Data Sheet (TCDS) entry or a UAS logbook entry. The recommended process for the registration of UAS is similar to the manned aircraft process and is outlined in a 6-step process in the paper.

  16. Registration of High Angular Resolution Diffusion MRI Images Using 4th Order Tensors⋆

    PubMed Central

    Barmpoutis, Angelos; Vemuri, Baba C.; Forder, John R.

    2009-01-01

    Registration of Diffusion Weighted (DW)-MRI datasets has been commonly achieved to date in literature by using either scalar or 2nd-order tensorial information. However, scalar or 2nd-order tensors fail to capture complex local tissue structures, such as fiber crossings, and therefore, datasets containing fiber-crossings cannot be registered accurately by using these techniques. In this paper we present a novel method for non-rigidly registering DW-MRI datasets that are represented by a field of 4th-order tensors. We use the Hellinger distance between the normalized 4th-order tensors represented as distributions, in order to achieve this registration. Hellinger distance is easy to compute, is scale and rotation invariant and hence allows for comparison of the true shape of distributions. Furthermore, we propose a novel 4th-order tensor re-transformation operator, which plays an essential role in the registration procedure and shows significantly better performance compared to the re-orientation operator used in literature for DTI registration. We validate and compare our technique with other existing scalar image and DTI registration methods using simulated diffusion MR data and real HARDI datasets. PMID:18051145

  17. Agile Multi-Scale Decompositions for Automatic Image Registration

    NASA Technical Reports Server (NTRS)

    Murphy, James M.; Leija, Omar Navarro; Le Moigne, Jacqueline

    2016-01-01

    In recent works, the first and third authors developed an automatic image registration algorithm based on a multiscale hybrid image decomposition with anisotropic shearlets and isotropic wavelets. This prototype showed strong performance, improving robustness over registration with wavelets alone. However, this method imposed a strict hierarchy on the order in which shearlet and wavelet features were used in the registration process, and also involved an unintegrated mixture of MATLAB and C code. In this paper, we introduce a more agile model for generating features, in which a flexible and user-guided mix of shearlet and wavelet features are computed. Compared to the previous prototype, this method introduces a flexibility to the order in which shearlet and wavelet features are used in the registration process. Moreover, the present algorithm is now fully coded in C, making it more efficient and portable than the MATLAB and C prototype. We demonstrate the versatility and computational efficiency of this approach by performing registration experiments with the fully-integrated C algorithm. In particular, meaningful timing studies can now be performed, to give a concrete analysis of the computational costs of the flexible feature extraction. Examples of synthetically warped and real multi-modal images are analyzed.

  18. [Affinity between CrIII and purified DNA, studied by competition with an intercalating agent: ethidium bromide].

    PubMed

    Vecchio, D; Balbi, C; Russo, P; Parodi, S; Santi, L

    1981-05-30

    The affinity between CrIII and purified calf- thymus DNA was studied at neutral pH by competition with ethidium bromide. Competition results indicated an affinity between CrIII and DNA of the order of 10(5) 1/mole. These results are in good agreement with previous results CrIII - DNA affinity was studied by the independent method of equilibrium dialysis and chromium dosage by atomic spectrometry.

  19. Predicting the relative binding affinity of mineralocorticoid receptor antagonists by density functional methods

    NASA Astrophysics Data System (ADS)

    Roos, Katarina; Hogner, Anders; Ogg, Derek; Packer, Martin J.; Hansson, Eva; Granberg, Kenneth L.; Evertsson, Emma; Nordqvist, Anneli

    2015-12-01

    In drug discovery, prediction of binding affinity ahead of synthesis to aid compound prioritization is still hampered by the low throughput of the more accurate methods and the lack of general pertinence of one method that fits all systems. Here we show the applicability of a method based on density functional theory using core fragments and a protein model with only the first shell residues surrounding the core, to predict relative binding affinity of a matched series of mineralocorticoid receptor (MR) antagonists. Antagonists of MR are used for treatment of chronic heart failure and hypertension. Marketed MR antagonists, spironolactone and eplerenone, are also believed to be highly efficacious in treatment of chronic kidney disease in diabetes patients, but is contra-indicated due to the increased risk for hyperkalemia. These findings and a significant unmet medical need among patients with chronic kidney disease continues to stimulate efforts in the discovery of new MR antagonist with maintained efficacy but low or no risk for hyperkalemia. Applied on a matched series of MR antagonists the quantum mechanical based method gave an R2 = 0.76 for the experimental lipophilic ligand efficiency versus relative predicted binding affinity calculated with the M06-2X functional in gas phase and an R2 = 0.64 for experimental binding affinity versus relative predicted binding affinity calculated with the M06-2X functional including an implicit solvation model. The quantum mechanical approach using core fragments was compared to free energy perturbation calculations using the full sized compound structures.

  20. Methods for quantifying T cell receptor binding affinities and thermodynamics

    PubMed Central

    Piepenbrink, Kurt H.; Gloor, Brian E.; Armstrong, Kathryn M.; Baker, Brian M.

    2013-01-01

    αβ T cell receptors (TCRs) recognize peptide antigens bound and presented by class I or class II major histocompatibility complex (MHC) proteins. Recognition of a peptide/MHC complex is required for initiation and propagation of a cellular immune response, as well as the development and maintenance of the T cell repertoire. Here we discuss methods to quantify the affinities and thermodynamics of interactions between soluble ectodomains of TCRs and their peptide/MHC ligands, focusing on titration calorimetry, surface plasmon resonance, and fluorescence anisotropy. As TCRs typically bind ligand with weak-to-moderate affinities, we focus the discussion on means to enhance the accuracy and precision of low affinity measurements. In addition to further elucidating the biology of the T cell mediated immune response, more reliable low affinity measurements will aid with more probing studies with mutants or altered peptides that can help illuminate the physical underpinnings of how TCRs achieve their remarkable recognition properties. PMID:21609868

  1. Tissue Feature-Based and Segmented Deformable Image Registration for Improved Modeling of the Shear Movement of the Lungs

    PubMed Central

    Xie, Yaoqin; Chao, Ming; Xing, Lei

    2009-01-01

    Purpose To report a tissue feature-based image registration strategy with explicit inclusion of the differential motions of thoracic structures. Methods and Materials The proposed technique started with auto-identification of a number of corresponding points with distinct tissue features. The tissue feature points were found by using the scale-invariant feature transform (SIFT) method. The control point pairs were then sorted into different “colors” according to the organs they reside and used to model the involved organs individually. A thin-plate spline (TPS) method was used to register a structure characterized by the control points with a given “color”. The proposed technique was applied to study a digital phantom case, three lung and three liver cancer patients. Results For the phantom case, a comparison with the conventional TPS method showed that the registration accuracy was markedly improved when the differential motions of the lung and chest wall were taken into account. On average, the registration error and the standard deviation (SD) of the 15 points against the known ground truth are reduced from 3.0 mm to 0.5 mm and from 1.5 mm to 0.2 mm, respectively, when the new method was used. Similar level of improvement was achieved for the clinical cases. Conclusions The segmented deformable approach provides a natural and logical solution to model the discontinuous organ motions and greatly improves the accuracy and robustness of deformable registration. PMID:19545792

  2. Density Functional Study of Structures and Electron Affinities of BrO4F/BrO4F−

    PubMed Central

    Gong, Liangfa; Xiong, Jieming; Wu, Xinmin; Qi, Chuansong; Li, Wei; Guo, Wenli

    2009-01-01

    The structures, electron affinities and bond dissociation energies of BrO4F/BrO4F− species have been investigated with five density functional theory (DFT) methods with DZP++ basis sets. The planar F-Br…O2…O2 complexes possess 3A′ electronic state for neutral molecule and 4A′ state for the corresponding anion. Three types of the neutral-anion energy separations are the adiabatic electron affinity (EAad), the vertical electron affinity (EAvert), and the vertical detachment energy (VDE). The EAad value predicted by B3LYP method is 4.52 eV. The bond dissociation energies De (BrO4F → BrO4-mF + Om) (m = 1–4) and De− (BrO4F− → BrO4-mF− + Om and BrO4F− → BrO4-mF + Om−) are predicted. The adiabatic electron affinities (EAad) were predicted to be 4.52 eV for F-Br…O2…O2 (3A′←4A′) (B3LYP method). PMID:19742128

  3. Automatic markerless registration of point clouds with semantic-keypoint-based 4-points congruent sets

    NASA Astrophysics Data System (ADS)

    Ge, Xuming

    2017-08-01

    The coarse registration of point clouds from urban building scenes has become a key topic in applications of terrestrial laser scanning technology. Sampling-based algorithms in the random sample consensus (RANSAC) model have emerged as mainstream solutions to address coarse registration problems. In this paper, we propose a novel combined solution to automatically align two markerless point clouds from building scenes. Firstly, the method segments non-ground points from ground points. Secondly, the proposed method detects feature points from each cross section and then obtains semantic keypoints by connecting feature points with specific rules. Finally, the detected semantic keypoints from two point clouds act as inputs to a modified 4PCS algorithm. Examples are presented and the results compared with those of K-4PCS to demonstrate the main contributions of the proposed method, which are the extension of the original 4PCS to handle heavy datasets and the use of semantic keypoints to improve K-4PCS in relation to registration accuracy and computational efficiency.

  4. Splint sterilization--a potential registration hazard in computer-assisted surgery.

    PubMed

    Figl, Michael; Weber, Christoph; Assadian, Ojan; Toma, Cyril D; Traxler, Hannes; Seemann, Rudolf; Guevara-Rojas, Godoberto; Pöschl, Wolfgang P; Ewers, Rolf; Schicho, Kurt

    2012-04-01

    Registration of preoperative targeting information for the intraoperative situation is a crucial step in computer-assisted surgical interventions. Point-to-point registration using acrylic splints is among the most frequently used procedures. There are, however, no generally accepted recommendations for sterilization of the splint. An appropriate method for the thermolabile splint would be hydrogen peroxide-based plasma sterilization. This study evaluated the potential deformation of the splint undergoing such sterilization. Deformation was quantified using image-processing methods applied to computed tomographic (CT) volumes before and after sterilization. An acrylic navigation splint was used as the study object. Eight metallic markers placed in the splint were used for registration. Six steel spheres in the mouthpiece were used as targets. Two CT volumes of the splint were acquired before and after 5 sterilization cycles using a hydrogen peroxide sterilizer. Point-to-point registration was applied, and fiducial and target registration errors were computed. Surfaces were extracted from CT scans and Hausdorff distances were derived. Effectiveness of sterilization was determined using Geobacillus stearothermophilus. Fiducial-based registration of CT scans before and after sterilization resulted in a mean fiducial registration error of 0.74 mm; the target registration error in the mouthpiece was 0.15 mm. The Hausdorff distance, describing the maximal deformation of the splint, was 2.51 mm. Ninety percent of point-surface distances were shorter than 0.61 mm, and 95% were shorter than 0.73 mm. No bacterial growth was found after the sterilization process. Hydrogen peroxide-based low-temperature plasma sterilization does not deform the splint, which is the base for correct computer-navigated surgery. Copyright © 2012 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  5. Calculation of protein-ligand binding affinities.

    PubMed

    Gilson, Michael K; Zhou, Huan-Xiang

    2007-01-01

    Accurate methods of computing the affinity of a small molecule with a protein are needed to speed the discovery of new medications and biological probes. This paper reviews physics-based models of binding, beginning with a summary of the changes in potential energy, solvation energy, and configurational entropy that influence affinity, and a theoretical overview to frame the discussion of specific computational approaches. Important advances are reported in modeling protein-ligand energetics, such as the incorporation of electronic polarization and the use of quantum mechanical methods. Recent calculations suggest that changes in configurational entropy strongly oppose binding and must be included if accurate affinities are to be obtained. The linear interaction energy (LIE) and molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) methods are analyzed, as are free energy pathway methods, which show promise and may be ready for more extensive testing. Ultimately, major improvements in modeling accuracy will likely require advances on multiple fronts, as well as continued validation against experiment.

  6. Preliminary experience with a novel method of three-dimensional co-registration of prostate cancer digital histology and in vivo multiparametric MRI.

    PubMed

    Orczyk, C; Rusinek, H; Rosenkrantz, A B; Mikheev, A; Deng, F-M; Melamed, J; Taneja, S S

    2013-12-01

    To assess a novel method of three-dimensional (3D) co-registration of prostate cancer digital histology and in-vivo multiparametric magnetic resonance imaging (mpMRI) image sets for clinical usefulness. A software platform was developed to achieve 3D co-registration. This software was prospectively applied to three patients who underwent radical prostatectomy. Data comprised in-vivo mpMRI [T2-weighted, dynamic contrast-enhanced weighted images (DCE); apparent diffusion coefficient (ADC)], ex-vivo T2-weighted imaging, 3D-rebuilt pathological specimen, and digital histology. Internal landmarks from zonal anatomy served as reference points for assessing co-registration accuracy and precision. Applying a method of deformable transformation based on 22 internal landmarks, a 1.6 mm accuracy was reached to align T2-weighted images and the 3D-rebuilt pathological specimen, an improvement over rigid transformation of 32% (p = 0.003). The 22 zonal anatomy landmarks were more accurately mapped using deformable transformation than rigid transformation (p = 0.0008). An automatic method based on mutual information, enabled automation of the process and to include perfusion and diffusion MRI images. Evaluation of co-registration accuracy using the volume overlap index (Dice index) met clinically relevant requirements, ranging from 0.81-0.96 for sequences tested. Ex-vivo images of the specimen did not significantly improve co-registration accuracy. This preliminary analysis suggests that deformable transformation based on zonal anatomy landmarks is accurate in the co-registration of mpMRI and histology. Including diffusion and perfusion sequences in the same 3D space as histology is essential further clinical information. The ability to localize cancer in 3D space may improve targeting for image-guided biopsy, focal therapy, and disease quantification in surveillance protocols. Copyright © 2013 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  7. Performance evaluations of demons and free form deformation algorithms for the liver region.

    PubMed

    Wang, Hui; Gong, Guanzhong; Wang, Hongjun; Li, Dengwang; Yin, Yong; Lu, Jie

    2014-04-01

    We investigated the influence of breathing motion on radiation therapy according to four- dimensional computed tomography (4D-CT) technology and indicated the registration of 4D-CT images was significant. The demons algorithm in two interpolation modes was compared to the FFD model algorithm to register the different phase images of 4D-CT in tumor tracking, using iodipin as verification. Linear interpolation was used in both mode 1 and mode 2. Mode 1 set outside pixels to nearest pixel, while mode 2 set outside pixels to zero. We used normalized mutual information (NMI), sum of squared differences, modified Hausdorff-distance, and registration speed to evaluate the performance of each algorithm. The average NMI after demons registration method in mode 1 improved 1.76% and 4.75% when compared to mode 2 and FFD model algorithm, respectively. Further, the modified Hausdorff-distance was no different between demons modes 1 and 2, but mode 1 was 15.2% lower than FFD. Finally, demons algorithm has the absolute advantage in registration speed. The demons algorithm in mode 1 was therefore found to be much more suitable for the registration of 4D-CT images. The subtractions of floating images and reference image before and after registration by demons further verified that influence of breathing motion cannot be ignored and the demons registration method is feasible.

  8. a Band Selection Method for High Precision Registration of Hyperspectral Image

    NASA Astrophysics Data System (ADS)

    Yang, H.; Li, X.

    2018-04-01

    During the registration of hyperspectral images and high spatial resolution images, too much bands in a hyperspectral image make it difficult to select bands with good registration performance. Terrible bands are possible to reduce matching speed and accuracy. To solve this problem, an algorithm based on Cram'er-Rao lower bound theory is proposed to select good matching bands in this paper. The algorithm applies the Cram'er-Rao lower bound theory to the study of registration accuracy, and selects good matching bands by CRLB parameters. Experiments show that the algorithm in this paper can choose good matching bands and provide better data for the registration of hyperspectral image and high spatial resolution image.

  9. Automatic face naming by learning discriminative affinity matrices from weakly labeled images.

    PubMed

    Xiao, Shijie; Xu, Dong; Wu, Jianxin

    2015-10-01

    Given a collection of images, where each image contains several faces and is associated with a few names in the corresponding caption, the goal of face naming is to infer the correct name for each face. In this paper, we propose two new methods to effectively solve this problem by learning two discriminative affinity matrices from these weakly labeled images. We first propose a new method called regularized low-rank representation by effectively utilizing weakly supervised information to learn a low-rank reconstruction coefficient matrix while exploring multiple subspace structures of the data. Specifically, by introducing a specially designed regularizer to the low-rank representation method, we penalize the corresponding reconstruction coefficients related to the situations where a face is reconstructed by using face images from other subjects or by using itself. With the inferred reconstruction coefficient matrix, a discriminative affinity matrix can be obtained. Moreover, we also develop a new distance metric learning method called ambiguously supervised structural metric learning by using weakly supervised information to seek a discriminative distance metric. Hence, another discriminative affinity matrix can be obtained using the similarity matrix (i.e., the kernel matrix) based on the Mahalanobis distances of the data. Observing that these two affinity matrices contain complementary information, we further combine them to obtain a fused affinity matrix, based on which we develop a new iterative scheme to infer the name of each face. Comprehensive experiments demonstrate the effectiveness of our approach.

  10. FZUImageReg: A toolbox for medical image registration and dose fusion in cervical cancer radiotherapy

    PubMed Central

    Bai, Penggang; Du, Min; Ni, Xiaolei; Ke, Dongzhong; Tong, Tong

    2017-01-01

    The combination external-beam radiotherapy and high-dose-rate brachytherapy is a standard form of treatment for patients with locally advanced uterine cervical cancer. Personalized radiotherapy in cervical cancer requires efficient and accurate dose planning and assessment across these types of treatment. To achieve radiation dose assessment, accurate mapping of the dose distribution from HDR-BT onto EBRT is extremely important. However, few systems can achieve robust dose fusion and determine the accumulated dose distribution during the entire course of treatment. We have therefore developed a toolbox (FZUImageReg), which is a user-friendly dose fusion system based on hybrid image registration for radiation dose assessment in cervical cancer radiotherapy. The main part of the software consists of a collection of medical image registration algorithms and a modular design with a user-friendly interface, which allows users to quickly configure, test, monitor, and compare different registration methods for a specific application. Owing to the large deformation, the direct application of conventional state-of-the-art image registration methods is not sufficient for the accurate alignment of EBRT and HDR-BT images. To solve this problem, a multi-phase non-rigid registration method using local landmark-based free-form deformation is proposed for locally large deformation between EBRT and HDR-BT images, followed by intensity-based free-form deformation. With the transformation, the software also provides a dose mapping function according to the deformation field. The total dose distribution during the entire course of treatment can then be presented. Experimental results clearly show that the proposed system can achieve accurate registration between EBRT and HDR-BT images and provide radiation dose warping and fusion results for dose assessment in cervical cancer radiotherapy in terms of high accuracy and efficiency. PMID:28388623

  11. Predictors of successful use of a web-based healthcare document storage and sharing system for pediatric cancer survivors: Cancer SurvivorLink™.

    PubMed

    Williamson, Rebecca; Meacham, Lillian; Cherven, Brooke; Hassen-Schilling, Leann; Edwards, Paula; Palgon, Michael; Espinoza, Sofia; Mertens, Ann

    2014-09-01

    Cancer SurvivorLink™, www.cancersurvivorlink.org , is a patient-controlled communication tool where survivors can electronically store and share documents with healthcare providers. Functionally, SurvivorLink serves as an electronic personal health record-a record of health-related information managed and controlled by the survivor. Recruitment methods to increase registration and the characteristics of registrants who completed each step of using SurvivorLink are described. Pediatric cancer survivors were recruited via mailings, survivor clinic, and community events. Recruitment method and Aflac Survivor Clinic attendance was determined for each registrant. Registration date, registrant type (parent vs. survivor), zip code, creation of a personal health record in SurvivorLink, storage of documents, and document sharing were measured. Logistic regression was used to determine the characteristics that predicted creation of a health record and storage of documents. To date, 275 survivors/parents have completed registration: 63 were recruited via mailing, 99 from clinic, 56 from community events, and 57 via other methods. Overall, 66.9 % registrants created a personal health record and 45.7 % of those stored a health document. There were no significant predictors for creating a personal health record. Attending a survivor clinic was the strongest predictor of document storage (p < 0.01). Of those with a document stored, 21.4 % shared with a provider. Having attended survivor clinic is the biggest predictor of registering and using SurvivorLink. Many survivors must advocate for their survivorship care. Survivor Link provides educational material and supports the dissemination of survivor-specific follow-up recommendations to facilitate shared clinical care decision making.

  12. Registration of angiographic image on real-time fluoroscopic image for image-guided percutaneous coronary intervention.

    PubMed

    Kim, Dongkue; Park, Sangsoo; Jeong, Myung Ho; Ryu, Jeha

    2018-02-01

    In percutaneous coronary intervention (PCI), cardiologists must study two different X-ray image sources: a fluoroscopic image and an angiogram. Manipulating a guidewire while alternately monitoring the two separate images on separate screens requires a deep understanding of the anatomy of coronary vessels and substantial training. We propose 2D/2D spatiotemporal image registration of the two images in a single image in order to provide cardiologists with enhanced visual guidance in PCI. The proposed 2D/2D spatiotemporal registration method uses a cross-correlation of two ECG series in each image to temporally synchronize two separate images and register an angiographic image onto the fluoroscopic image. A guidewire centerline is then extracted from the fluoroscopic image in real time, and the alignment of the centerline with vessel outlines of the chosen angiographic image is optimized using the iterative closest point algorithm for spatial registration. A proof-of-concept evaluation with a phantom coronary vessel model with engineering students showed an error reduction rate greater than 74% on wrong insertion to nontarget branches compared to the non-registration method and more than 47% reduction in the task completion time in performing guidewire manipulation for very difficult tasks. Evaluation with a small number of experienced doctors shows a potentially significant reduction in both task completion time and error rate for difficult tasks. The total registration time with real procedure X-ray (angiographic and fluoroscopic) images takes [Formula: see text] 60 ms, which is within the fluoroscopic image acquisition rate of 15 Hz. By providing cardiologists with better visual guidance in PCI, the proposed spatiotemporal image registration method is shown to be useful in advancing the guidewire to the coronary vessel branches, especially those difficult to insert into.

  13. Evaluation of nonrigid registration models for interfraction dose accumulation in radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janssens, Guillaume; Orban de Xivry, Jonathan; Fekkes, Stein

    2009-09-15

    Purpose: Interfraction dose accumulation is necessary to evaluate the dose distribution of an entire course of treatment by adding up multiple dose distributions of different treatment fractions. This accumulation of dose distributions is not straightforward as changes in the patient anatomy may occur during treatment. For this purpose, the accuracy of nonrigid registration methods is assessed for dose accumulation based on the calculated deformations fields. Methods: A phantom study using a deformable cubic silicon phantom with implanted markers and a cylindrical silicon phantom with MOSFET detectors has been performed. The phantoms were deformed and images were acquired using a cone-beammore » CT imager. Dose calculations were performed on these CT scans using the treatment planning system. Nonrigid CT-based registration was performed using two different methods, the Morphons and Demons. The resulting deformation field was applied on the dose distribution. For both phantoms, accuracy of the registered dose distribution was assessed. For the cylindrical phantom, also measured dose values in the deformed conditions were compared with the dose values of the registered dose distributions. Finally, interfraction dose accumulation for two treatment fractions of a patient with primary rectal cancer has been performed and evaluated using isodose lines and the dose volume histograms of the target volume and normal tissue. Results: A significant decrease in the difference in marker or MOSFET position was observed after nonrigid registration methods (p<0.001) for both phantoms and with both methods, as well as a significant decrease in the dose estimation error (p<0.01 for the cubic phantom and p<0.001 for the cylindrical) with both methods. Considering the whole data set at once, the difference between estimated and measured doses was also significantly decreased using registration (p<0.001 for both methods). The patient case showed a slightly underdosed planning target volume and an overdosed bladder volume due to anatomical deformations. Conclusions: Dose accumulation using nonrigid registration methods is possible using repeated CT imaging. This opens possibilities for interfraction dose accumulation and adaptive radiotherapy to incorporate possible differences in dose delivered to the target volume and organs at risk due to anatomical deformations.« less

  14. Integrating atlas and graph cut methods for right ventricle blood-pool segmentation from cardiac cine MRI

    NASA Astrophysics Data System (ADS)

    Dangi, Shusil; Linte, Cristian A.

    2017-03-01

    Segmentation of right ventricle from cardiac MRI images can be used to build pre-operative anatomical heart models to precisely identify regions of interest during minimally invasive therapy. Furthermore, many functional parameters of right heart such as right ventricular volume, ejection fraction, myocardial mass and thickness can also be assessed from the segmented images. To obtain an accurate and computationally efficient segmentation of right ventricle from cardiac cine MRI, we propose a segmentation algorithm formulated as an energy minimization problem in a graph. Shape prior obtained by propagating label from an average atlas using affine registration is incorporated into the graph framework to overcome problems in ill-defined image regions. The optimal segmentation corresponding to the labeling with minimum energy configuration of the graph is obtained via graph-cuts and is iteratively refined to produce the final right ventricle blood pool segmentation. We quantitatively compare the segmentation results obtained from our algorithm to the provided gold-standard expert manual segmentation for 16 cine-MRI datasets available through the MICCAI 2012 Cardiac MR Right Ventricle Segmentation Challenge according to several similarity metrics, including Dice coefficient, Jaccard coefficient, Hausdorff distance, and Mean absolute distance error.

  15. SAMPL4 & DOCK3.7: lessons for automated docking procedures

    NASA Astrophysics Data System (ADS)

    Coleman, Ryan G.; Sterling, Teague; Weiss, Dahlia R.

    2014-03-01

    The SAMPL4 challenges were used to test current automated methods for solvation energy, virtual screening, pose and affinity prediction of the molecular docking pipeline DOCK 3.7. Additionally, first-order models of binding affinity were proposed as milestones for any method predicting binding affinity. Several important discoveries about the molecular docking software were made during the challenge: (1) Solvation energies of ligands were five-fold worse than any other method used in SAMPL4, including methods that were similarly fast, (2) HIV Integrase is a challenging target, but automated docking on the correct allosteric site performed well in terms of virtual screening and pose prediction (compared to other methods) but affinity prediction, as expected, was very poor, (3) Molecular docking grid sizes can be very important, serious errors were discovered with default settings that have been adjusted for all future work. Overall, lessons from SAMPL4 suggest many changes to molecular docking tools, not just DOCK 3.7, that could improve the state of the art. Future difficulties and projects will be discussed.

  16. Improved full analytical polygon-based method using Fourier analysis of the three-dimensional affine transformation.

    PubMed

    Pan, Yijie; Wang, Yongtian; Liu, Juan; Li, Xin; Jia, Jia

    2014-03-01

    Previous research [Appl. Opt.52, A290 (2013)] has revealed that Fourier analysis of three-dimensional affine transformation theory can be used to improve the computation speed of the traditional polygon-based method. In this paper, we continue our research and propose an improved full analytical polygon-based method developed upon this theory. Vertex vectors of primitive and arbitrary triangles and the pseudo-inverse matrix were used to obtain an affine transformation matrix representing the spatial relationship between the two triangles. With this relationship and the primitive spectrum, we analytically obtained the spectrum of the arbitrary triangle. This algorithm discards low-level angular dependent computations. In order to add diffusive reflection to each arbitrary surface, we also propose a whole matrix computation approach that takes advantage of the affine transformation matrix and uses matrix multiplication to calculate shifting parameters of similar sub-polygons. The proposed method improves hologram computation speed for the conventional full analytical approach. Optical experimental results are demonstrated which prove that the proposed method can effectively reconstruct three-dimensional scenes.

  17. Unreported links between trial registrations and published articles were identified using document similarity measures in a cross-sectional analysis of ClinicalTrials.gov.

    PubMed

    Dunn, Adam G; Coiera, Enrico; Bourgeois, Florence T

    2018-03-01

    Trial registries can be used to measure reporting biases and support systematic reviews, but 45% of registrations do not provide a link to the article reporting on the trial. We evaluated the use of document similarity methods to identify unreported links between ClinicalTrials.gov and PubMed. We extracted terms and concepts from a data set of 72,469 ClinicalTrials.gov registrations and 276,307 PubMed articles and tested methods for ranking articles across 16,005 reported links and 90 manually identified unreported links. Performance was measured by the median rank of matching articles and the proportion of unreported links that could be found by screening ranked candidate articles in order. The best-performing concept-based representation produced a median rank of 3 (interquartile range [IQR] 1-21) for reported links and 3 (IQR 1-19) for the manually identified unreported links, and term-based representations produced a median rank of 2 (1-20) for reported links and 2 (IQR 1-12) in unreported links. The matching article was ranked first for 40% of registrations, and screening 50 candidate articles per registration identified 86% of the unreported links. Leveraging the growth in the corpus of reported links between ClinicalTrials.gov and PubMed, we found that document similarity methods can assist in the identification of unreported links between trial registrations and corresponding articles. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. 3D non-rigid surface-based MR-TRUS registration for image-guided prostate biopsy

    NASA Astrophysics Data System (ADS)

    Sun, Yue; Qiu, Wu; Romagnoli, Cesare; Fenster, Aaron

    2014-03-01

    Two dimensional (2D) transrectal ultrasound (TRUS) guided prostate biopsy is the standard approach for definitive diagnosis of prostate cancer (PCa). However, due to the lack of image contrast of prostate tumors needed to clearly visualize early-stage PCa, prostate biopsy often results in false negatives, requiring repeat biopsies. Magnetic Resonance Imaging (MRI) has been considered to be a promising imaging modality for noninvasive identification of PCa, since it can provide a high sensitivity and specificity for the detection of early stage PCa. Our main objective is to develop and validate a registration method of 3D MR-TRUS images, allowing generation of volumetric 3D maps of targets identified in 3D MR images to be biopsied using 3D TRUS images. Our registration method first makes use of an initial rigid registration of 3D MR images to 3D TRUS images using 6 manually placed approximately corresponding landmarks in each image. Following the manual initialization, two prostate surfaces are segmented from 3D MR and TRUS images and then non-rigidly registered using a thin-plate spline (TPS) algorithm. The registration accuracy was evaluated using 4 patient images by measuring target registration error (TRE) of manually identified corresponding intrinsic fiducials (calcifications and/or cysts) in the prostates. Experimental results show that the proposed method yielded an overall mean TRE of 2.05 mm, which is favorably comparable to a clinical requirement for an error of less than 2.5 mm.

  19. Registration Methods for IVUS: Transversal and Longitudinal Transducer Motion Compensation.

    PubMed

    Talou, Gonzalo D Maso; Blanco, Pablo J; Larrabide, Ignacio; Bezerra, Cristiano Guedes; Lemos, Pedro A; Feijoo, Raul A

    2017-04-01

    Intravascular ultrasound (IVUS) is a fundamental imaging technique for atherosclerotic plaque assessment, interventionist guidance, and, ultimately, as a tissue characterization tool. The studies acquired by this technique present the spatial description of the vessel during the cardiac cycle. However, the study frames are not properly sorted. As gating methods deal with the cardiac phase classification of the frames, the gated studies lack motion compensation between vessel and catheter. In this study, we develop registration strategies to arrange the vessel data into its rightful spatial sequence. Registration is performed by compensating longitudinal and transversal relative motion between vessel and catheter. Transversal motion is identified through maximum likelihood estimator optimization, while longitudinal motion is estimated by a neighborhood similarity estimator among the study frames. A strongly coupled implementation is proposed to compensate for both motion components at once. Loosely coupled implementations (DLT and DTL) decouple the registration process, resulting in more computationally efficient algorithms in detriment of the size of the set of candidate solutions. The DTL outperforms DLT and coupled implementations in terms of accuracy by a factor of 1.9 and 1.4, respectively. Sensitivity analysis shows that perivascular tissue must be considered to obtain the best registration outcome. Evidences suggest that the method is able to measure axial strain along the vessel wall. The proposed registration sorts the IVUS frames for spatial location, which is crucial for a correct interpretation of the vessel wall kinematics along the cardiac phases.

  20. Automatic Registration of TLS-TLS and TLS-MLS Point Clouds Using a Genetic Algorithm

    PubMed Central

    Yan, Li; Xie, Hong; Chen, Changjun

    2017-01-01

    Registration of point clouds is a fundamental issue in Light Detection and Ranging (LiDAR) remote sensing because point clouds scanned from multiple scan stations or by different platforms need to be transformed to a uniform coordinate reference frame. This paper proposes an efficient registration method based on genetic algorithm (GA) for automatic alignment of two terrestrial LiDAR scanning (TLS) point clouds (TLS-TLS point clouds) and alignment between TLS and mobile LiDAR scanning (MLS) point clouds (TLS-MLS point clouds). The scanning station position acquired by the TLS built-in GPS and the quasi-horizontal orientation of the LiDAR sensor in data acquisition are used as constraints to narrow the search space in GA. A new fitness function to evaluate the solutions for GA, named as Normalized Sum of Matching Scores, is proposed for accurate registration. Our method is divided into five steps: selection of matching points, initialization of population, transformation of matching points, calculation of fitness values, and genetic operation. The method is verified using a TLS-TLS data set and a TLS-MLS data set. The experimental results indicate that the RMSE of registration of TLS-TLS point clouds is 3~5 mm, and that of TLS-MLS point clouds is 2~4 cm. The registration integrating the existing well-known ICP with GA is further proposed to accelerate the optimization and its optimizing time decreases by about 50%. PMID:28850100

  1. Automatic Registration of TLS-TLS and TLS-MLS Point Clouds Using a Genetic Algorithm.

    PubMed

    Yan, Li; Tan, Junxiang; Liu, Hua; Xie, Hong; Chen, Changjun

    2017-08-29

    Registration of point clouds is a fundamental issue in Light Detection and Ranging (LiDAR) remote sensing because point clouds scanned from multiple scan stations or by different platforms need to be transformed to a uniform coordinate reference frame. This paper proposes an efficient registration method based on genetic algorithm (GA) for automatic alignment of two terrestrial LiDAR scanning (TLS) point clouds (TLS-TLS point clouds) and alignment between TLS and mobile LiDAR scanning (MLS) point clouds (TLS-MLS point clouds). The scanning station position acquired by the TLS built-in GPS and the quasi-horizontal orientation of the LiDAR sensor in data acquisition are used as constraints to narrow the search space in GA. A new fitness function to evaluate the solutions for GA, named as Normalized Sum of Matching Scores, is proposed for accurate registration. Our method is divided into five steps: selection of matching points, initialization of population, transformation of matching points, calculation of fitness values, and genetic operation. The method is verified using a TLS-TLS data set and a TLS-MLS data set. The experimental results indicate that the RMSE of registration of TLS-TLS point clouds is 3~5 mm, and that of TLS-MLS point clouds is 2~4 cm. The registration integrating the existing well-known ICP with GA is further proposed to accelerate the optimization and its optimizing time decreases by about 50%.

  2. Multimodal registration of three-dimensional maxillodental cone beam CT and photogrammetry data over time.

    PubMed

    Bolandzadeh, N; Bischof, W; Flores-Mir, C; Boulanger, P

    2013-01-01

    In recent years, one of the foci of orthodontics has been on systems for the evaluation of treatment results and the tracking of tissue variations over time. This can be accomplished through analysing three-dimensional orthodontic images obtained before and after the treatments. Since complementary information is achieved by integrating multiple imaging modalities, cone beam CT (CBCT) and stereophotogrammetry technologies are used in this study to develop a method for tracking bone, teeth and facial soft-tissue variations over time. We propose a two-phase procedure of multimodal (Phase 1) and multitemporal (Phase 2) registration which aligns images taken from the same patient by different imaging modalities and at different times. Extrinsic (for Phase 1) and intrinsic (for Phase 2) landmark-based registration methods are employed as an initiation for a robust iterative closest points algorithm. Since the mandible moves independently of the upper skull, the registration procedure is applied separately on the mandible and the upper skull. The results show that the signed error distributions of both mandible and skull registrations follow a mixture of two Gaussian distributions, corresponding to alignment errors (due to our method) and temporal change over time. We suggest that the large values among the total registration errors correspond to the temporal change resulting from (1) the effect of treatment (i.e. the orthodontic changes of teeth positions); (2) the biological changes such as teeth growth over time, especially for teenagers; and (3) the segmentation procedure and CBCT precision change over time.

  3. A HIGH-LEVEL CALCULATION OF THE PROTON AFFINITY OF DIBORANE

    EPA Science Inventory

    The experimental proton affinity of diborane (B2H6) is based on an unstable species, B2H,+, 4 which has been observed only at low temperatures. The present work calculates the proton 5 affinity of diborane using the Gaussian-3 method and other high-level compound ab initio 6 met...

  4. A gaussian mixture + demons deformable registration method for cone-beam CT-guided robotic transoral base-of-tongue surgery

    NASA Astrophysics Data System (ADS)

    Reaungamornrat, S.; Liu, W. P.; Schafer, S.; Otake, Y.; Nithiananthan, S.; Uneri, A.; Richmon, J.; Sorger, J.; Siewerdsen, J. H.; Taylor, R. H.

    2013-03-01

    Purpose: An increasingly popular minimally invasive approach to resection of oropharyngeal / base-of-tongue cancer is made possible by a transoral technique conducted with the assistance of a surgical robot. However, the highly deformed surgical setup (neck flexed, mouth open, and tongue retracted) compared to the typical patient orientation in preoperative images poses a challenge to guidance and localization of the tumor target and adjacent critical anatomy. Intraoperative cone-beam CT (CBCT) can account for such deformation, but due to the low contrast of soft-tissue in CBCT images, direct localization of the target and critical tissues in CBCT images can be difficult. Such structures may be more readily delineated in preoperative CT or MR images, so a method to deformably register such information to intraoperative CBCT could offer significant value. This paper details the initial implementation of a deformable registration framework to align preoperative images with the deformed intraoperative scene and gives preliminary evaluation of the geometric accuracy of registration in CBCT-guided TORS. Method: The deformable registration aligns preoperative CT or MR to intraoperative CBCT by integrating two established approaches. The volume of interest is first segmented (specifically, the region of the tongue from the tip to the hyoid), and a Gaussian mixture (GM) mode1 of surface point clouds is used for rigid initialization (GMRigid) as well as an initial deformation (GMNonRigid). Next, refinement of the registration is performed using the Demons algorithm applied to distance transformations of the GM-registered and CBCT volumes. The registration accuracy of the framework was quantified in preliminary studies using a cadaver emulating preoperative and intraoperative setups. Geometric accuracy of registration was quantified in terms of target registration error (TRE) and surface distance error. Result: With each step of the registration process, the framework demonstrated improved registration, achieving mean TRE of 3.0 mm following the GM rigid, 1.9 mm following GM nonrigid, and 1.5 mm at the output of the registration process. Analysis of surface distance demonstrated a corresponding improvement of 2.2, 0.4, and 0.3 mm, respectively. The evaluation of registration error revealed the accurate alignment in the region of interest for base-of-tongue robotic surgery owing to point-set selection in the GM steps and refinement in the deep aspect of the tongue in the Demons step. Conclusions: A promising framework has been developed for CBCT-guided TORS in which intraoperative CBCT provides a basis for registration of preoperative images to the highly deformed intraoperative setup. The registration framework is invariant to imaging modality (accommodating preoperative CT or MR) and is robust against CBCT intensity variations and artifact, provided corresponding segmentation of the volume of interest. The approach could facilitate overlay of preoperative planning data directly in stereo-endoscopic video in support of CBCT-guided TORS.

  5. Panorama imaging for image-to-physical registration of narrow drill holes inside spongy bones

    NASA Astrophysics Data System (ADS)

    Bergmeier, Jan; Fast, Jacob Friedemann; Ortmaier, Tobias; Kahrs, Lüder Alexander

    2017-03-01

    Image-to-physical registration based on volumetric data like computed tomography on the one side and intraoperative endoscopic images on the other side is an important method for various surgical applications. In this contribution, we present methods to generate panoramic views from endoscopic recordings for image-to-physical registration of narrow drill holes inside spongy bone. One core application is the registration of drill poses inside the mastoid during minimally invasive cochlear implantations. Besides the development of image processing software for registration, investigations are performed on a miniaturized optical system, achieving 360° radial imaging with one shot by extending a conventional, small, rigid, rod lens endoscope. A reflective cone geometry is used to deflect radially incoming light rays into the endoscope optics. Therefore, a cone mirror is mounted in front of a conventional 0° endoscope. Furthermore, panoramic images of inner drill hole surfaces in artificial bone material are created. Prior to drilling, cone beam computed tomography data is acquired from this artificial bone and simulated endoscopic views are generated from this data. A qualitative and quantitative image comparison of resulting views in terms of image-to-image registration is performed. First results show that downsizing of panoramic optics to a diameter of 3mm is possible. Conventional rigid rod lens endoscopes can be extended to produce suitable panoramic one-shot image data. Using unrolling and stitching methods, images of the inner drill hole surface similar to computed tomography image data of the same surface were created. Registration is performed on ten perturbations of the search space and results in target registration errors of (0:487 +/- 0:438)mm at the entry point and (0:957 +/- 0:948)mm at the exit as well as an angular error of (1:763 +/- 1:536)°. The results show suitability of this image data for image-to-image registration. Analysis of the error components in different directions reveals a strong influence of the pattern structure, meaning higher diversity results into smaller errors.

  6. WE-AB-BRA-01: 3D-2D Image Registration for Target Localization in Spine Surgery: Comparison of Similarity Metrics Against Robustness to Content Mismatch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Silva, T; Ketcha, M; Siewerdsen, J H

    Purpose: In image-guided spine surgery, mapping 3D preoperative images to 2D intraoperative images via 3D-2D registration can provide valuable assistance in target localization. However, the presence of surgical instrumentation, hardware implants, and soft-tissue resection/displacement causes mismatches in image content, confounding existing registration methods. Manual/semi-automatic methods to mask such extraneous content is time consuming, user-dependent, error prone, and disruptive to clinical workflow. We developed and evaluated 2 novel similarity metrics within a robust registration framework to overcome such challenges in target localization. Methods: An IRB-approved retrospective study in 19 spine surgery patients included 19 preoperative 3D CT images and 50 intraoperativemore » mobile radiographs in cervical, thoracic, and lumbar spine regions. A neuroradiologist provided truth definition of vertebral positions in CT and radiography. 3D-2D registration was performed using the CMA-ES optimizer with 4 gradient-based image similarity metrics: (1) gradient information (GI); (2) gradient correlation (GC); (3) a novel variant referred to as gradient orientation (GO); and (4) a second variant referred to as truncated gradient correlation (TGC). Registration accuracy was evaluated in terms of the projection distance error (PDE) of the vertebral levels. Results: Conventional similarity metrics were susceptible to gross registration error and failure modes associated with the presence of surgical instrumentation: for GI, the median PDE and interquartile range was 33.0±43.6 mm; similarly for GC, PDE = 23.0±92.6 mm respectively. The robust metrics GO and TGC, on the other hand, demonstrated major improvement in PDE (7.6 ±9.4 mm and 8.1± 18.1 mm, respectively) and elimination of gross failure modes. Conclusion: The proposed GO and TGC similarity measures improve registration accuracy and robustness to gross failure in the presence of strong image content mismatch. Such registration capability could offer valuable assistance in target localization without disruption of clinical workflow. G. Kleinszig and S. Vogt are employees of Siemens Healthcare.« less

  7. Extra-dimensional Demons: A method for incorporating missing tissue in deformable image registration

    PubMed Central

    Nithiananthan, Sajendra; Schafer, Sebastian; Mirota, Daniel J.; Stayman, J. Webster; Zbijewski, Wojciech; Reh, Douglas D.; Gallia, Gary L.; Siewerdsen, Jeffrey H.

    2012-01-01

    Purpose: A deformable registration method capable of accounting for missing tissue (e.g., excision) is reported for application in cone-beam CT (CBCT)-guided surgical procedures. Excisions are identified by a segmentation step performed simultaneous to the registration process. Tissue excision is explicitly modeled by increasing the dimensionality of the deformation field to allow motion beyond the dimensionality of the image. The accuracy of the model is tested in phantom, simulations, and cadaver models. Methods: A variant of the Demons deformable registration algorithm is modified to include excision segmentation and modeling. Segmentation is performed iteratively during the registration process, with initial implementation using a threshold-based approach to identify voxels corresponding to “tissue” in the moving image and “air” in the fixed image. With each iteration of the Demons process, every voxel is assigned a probability of excision. Excisions are modeled explicitly during registration by increasing the dimensionality of the deformation field so that both deformations and excisions can be accounted for by in- and out-of-volume deformations, respectively. The out-of-volume (i.e., fourth) component of the deformation field at each voxel carries a magnitude proportional to the excision probability computed in the excision segmentation step. The registration accuracy of the proposed “extra-dimensional” Demons (XDD) and conventional Demons methods was tested in the presence of missing tissue in phantom models, simulations investigating the effect of excision size on registration accuracy, and cadaver studies emulating realistic deformations and tissue excisions imparted in CBCT-guided endoscopic skull base surgery. Results: Phantom experiments showed the normalized mutual information (NMI) in regions local to the excision to improve from 1.10 for the conventional Demons approach to 1.16 for XDD, and qualitative examination of the resulting images revealed major differences: the conventional Demons approach imparted unrealistic distortions in areas around tissue excision, whereas XDD provided accurate “ejection” of voxels within the excision site and maintained the registration accuracy throughout the rest of the image. Registration accuracy in areas far from the excision site (e.g., > ∼5 mm) was identical for the two approaches. Quantitation of the effect was consistent in analysis of NMI, normalized cross-correlation (NCC), target registration error (TRE), and accuracy of voxels ejected from the volume (true-positive and false-positive analysis). The registration accuracy for conventional Demons was found to degrade steeply as a function of excision size, whereas XDD was robust in this regard. Cadaver studies involving realistic excision of the clivus, vidian canal, and ethmoid sinuses demonstrated similar results, with unrealistic distortion of anatomy imparted by conventional Demons and accurate ejection and deformation for XDD. Conclusions: Adaptation of the Demons deformable registration process to include segmentation (i.e., identification of excised tissue) and an extra dimension in the deformation field provided a means to accurately accommodate missing tissue between image acquisitions. The extra-dimensional approach yielded accurate “ejection” of voxels local to the excision site while preserving the registration accuracy (typically subvoxel) of the conventional Demons approach throughout the rest of the image. The ability to accommodate missing tissue volumes is important to application of CBCT for surgical guidance (e.g., skull base drillout) and may have application in other areas of CBCT guidance. PMID:22957637

  8. Study on networking issues of medium earth orbit satellite communications systems

    NASA Technical Reports Server (NTRS)

    Araki, Noriyuki; Shinonaga, Hideyuki; Ito, Yasuhiko

    1993-01-01

    Two networking issues of communications systems with medium earth orbit (MEO) satellites, namely network architectures and location determination and registration methods for hand-held terminals, are investigated in this paper. For network architecture, five candidate architectures are considered and evaluated in terms of signaling traffic. For location determination and registration, two methods are discussed and evaluated.

  9. Electron affinities, molecular structures, and thermochemistry of the fluorine, chlorine and bromine substituted methyl radicals

    NASA Astrophysics Data System (ADS)

    Li, Qian-Shu; Zhao, Jun-Fang; Xie, Yaoming; Schaefer, Henry F., III

    Four independent density functional theory (DFT) methods have been employed to study the structures and electron affinities of the methyl and F-, Cl- and Br-substituted methyl radicals and their anions. The methods used have been carefully calibrated against a comprehensive tabulation of experimental electron affinities (Chemical Reviews, 2002, 102, 231). The first dissociation energies together with the vibrational frequencies of these species are also reported. The basis sets used in this work are of double- ζ plus polarization quality with additional s- and p-type diffuse functions, labelled as DZP++. Previously observed trends in the prediction of bond lengths by the DFT methods are also demonstrated for the F-, Cl- and Br-substituted methyl radicals and their anions. Generally, the Hartree-Fock/DFT hybrid methods predict shorter and more reliable bond lengths than the pure DFT methods. Neutral-anion energy differences reported in this work are the adiabatic electron affinity (EAad), the vertical electron affinity (EAvert), and the vertical detachment energy (VDE). Compared with the available experimental electron affinities, the BHLYP method predicts much lower values, while the other methods predict values (EAad, EAvert, VDE) close to each other and almost within the experimental range. For those systems without reliable experimental measurements, our best adiabatic EAs predicted by BLYP are 0.78 (CHF2), 1.23 (CHFCl), 1.44 (CHFBr), 1.61 (CHClBr), 2.24 (CF2Cl), 2.42 (CF2Br), 2.56 (CFBr2), 2.36 (CCl2Br), 2.46 (CClBr2), and 2.44 eV (CFClBr). The most striking feature of these predictions is that they display an inverse relationship between halogen electronegativity and EA. The DZP++ B3LYP method determines the vibrational frequencies in best agreement with available experimental results for this series, with an average relative error of ~2%. The value of using a variety of DFT methods is observed in that BHLYP does best for geometries, BLYP for electron affinities, and B3LYP for vibrational frequencies. These theoretical results serve to resolve several disagreements between competing experiments. Several other experiments appear to have drawn incorrect conclusions. For example, CHCl2 is significantly pyramidal, unlike the experimental inferences, and clearly the experimental CCl2 - Cl dissociation energy is too large.

  10. Coronary artery analysis: Computer-assisted selection of best-quality segments in multiple-phase coronary CT angiography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Chuan, E-mail: chuan@umich.edu; Chan, Heang-

    Purpose: The authors are developing an automated method to identify the best-quality coronary arterial segment from multiple-phase coronary CT angiography (cCTA) acquisitions, which may be used by either interpreting physicians or computer-aided detection systems to optimally and efficiently utilize the diagnostic information available in multiple-phase cCTA for the detection of coronary artery disease. Methods: After initialization with a manually identified seed point, each coronary artery tree is automatically extracted from multiple cCTA phases using our multiscale coronary artery response enhancement and 3D rolling balloon region growing vessel segmentation and tracking method. The coronary artery trees from multiple phases are thenmore » aligned by a global registration using an affine transformation with quadratic terms and nonlinear simplex optimization, followed by a local registration using a cubic B-spline method with fast localized optimization. The corresponding coronary arteries among the available phases are identified using a recursive coronary segment matching method. Each of the identified vessel segments is transformed by the curved planar reformation (CPR) method. Four features are extracted from each corresponding segment as quality indicators in the original computed tomography volume and the straightened CPR volume, and each quality indicator is used as a voting classifier for the arterial segment. A weighted voting ensemble (WVE) classifier is designed to combine the votes of the four voting classifiers for each corresponding segment. The segment with the highest WVE vote is then selected as the best-quality segment. In this study, the training and test sets consisted of 6 and 20 cCTA cases, respectively, each with 6 phases, containing a total of 156 cCTA volumes and 312 coronary artery trees. An observer preference study was also conducted with one expert cardiothoracic radiologist and four nonradiologist readers to visually rank vessel segment quality. The performance of our automated method was evaluated by comparing the automatically identified best-quality segments identified by the computer to those selected by the observers. Results: For the 20 test cases, 254 groups of corresponding vessel segments were identified after multiple phase registration and recursive matching. The AI-BQ segments agreed with the radiologist’s top 2 ranked segments in 78.3% of the 254 groups (Cohen’s kappa 0.60), and with the 4 nonradiologist observers in 76.8%, 84.3%, 83.9%, and 85.8% of the 254 groups. In addition, 89.4% of the AI-BQ segments agreed with at least two observers’ top 2 rankings, and 96.5% agreed with at least one observer’s top 2 rankings. In comparison, agreement between the four observers’ top ranked segment and the radiologist’s top 2 ranked segments were 79.9%, 80.7%, 82.3%, and 76.8%, respectively, with kappa values ranging from 0.56 to 0.68. Conclusions: The performance of our automated method for selecting the best-quality coronary segments from a multiple-phase cCTA acquisition was comparable to the selection made by human observers. This study demonstrates the potential usefulness of the automated method in clinical practice, enabling interpreting physicians to fully utilize the best available information in cCTA for diagnosis of coronary disease, without requiring manual search through the multiple phases and minimizing the variability in image phase selection for evaluation of coronary artery segments across the diversity of human readers with variations in expertise.« less

  11. Invert biopanning: A novel method for efficient and rapid isolation of scFvs by phage display technology.

    PubMed

    Rahbarnia, Leila; Farajnia, Safar; Babaei, Hossein; Majidi, Jafar; Veisi, Kamal; Tanomand, Asghar; Akbari, Bahman

    2016-11-01

    Phage display is a prominent screening technique for development of novel high affinity antibodies against almost any antigen. However, removing false positive clones in screening process remains a challenge. The aim of this study was to develop an efficient and rapid method for isolation of high affinity scFvs by removing NSBs without losing rare specific clones. Therefore, a novel two rounds strategy called invert biopanning was developed for isolating high affinity scFvs against EGFRvIII antigen from human scFv library. The efficiency of invert biopanning method (procedure III) was analyzed by comparing with results of conventional biopanning methods (procedures I and II). According to the results of polyclonal ELISA, the second round of procedure III displayed highest binding affinity against EGFRvIII peptide accompanied by lowest NSB comparing to other two procedures. Several positive clones were identified among output phages of procedure III by monoclonal phage ELISA which displayed high affinity to EGFRvIII antigen. In conclusion, results of our study indicate that invert biopanning is an efficient method for avoiding NSBs and conservation of rare specific clones during screening of a scFv phage library. Novel anti EGFRvIII scFv isolated could be a promising candidate for potential use in treatment of EGFRvIII expressing cancers. Copyright © 2016 International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  12. A method to estimate the effect of deformable image registration uncertainties on daily dose mapping

    PubMed Central

    Murphy, Martin J.; Salguero, Francisco J.; Siebers, Jeffrey V.; Staub, David; Vaman, Constantin

    2012-01-01

    Purpose: To develop a statistical sampling procedure for spatially-correlated uncertainties in deformable image registration and then use it to demonstrate their effect on daily dose mapping. Methods: Sequential daily CT studies are acquired to map anatomical variations prior to fractionated external beam radiotherapy. The CTs are deformably registered to the planning CT to obtain displacement vector fields (DVFs). The DVFs are used to accumulate the dose delivered each day onto the planning CT. Each DVF has spatially-correlated uncertainties associated with it. Principal components analysis (PCA) is applied to measured DVF error maps to produce decorrelated principal component modes of the errors. The modes are sampled independently and reconstructed to produce synthetic registration error maps. The synthetic error maps are convolved with dose mapped via deformable registration to model the resulting uncertainty in the dose mapping. The results are compared to the dose mapping uncertainty that would result from uncorrelated DVF errors that vary randomly from voxel to voxel. Results: The error sampling method is shown to produce synthetic DVF error maps that are statistically indistinguishable from the observed error maps. Spatially-correlated DVF uncertainties modeled by our procedure produce patterns of dose mapping error that are different from that due to randomly distributed uncertainties. Conclusions: Deformable image registration uncertainties have complex spatial distributions. The authors have developed and tested a method to decorrelate the spatial uncertainties and make statistical samples of highly correlated error maps. The sample error maps can be used to investigate the effect of DVF uncertainties on daily dose mapping via deformable image registration. An initial demonstration of this methodology shows that dose mapping uncertainties can be sensitive to spatial patterns in the DVF uncertainties. PMID:22320766

  13. Automatic aortic root segmentation in CTA whole-body dataset

    NASA Astrophysics Data System (ADS)

    Gao, Xinpei; Kitslaar, Pieter H.; Scholte, Arthur J. H. A.; Lelieveldt, Boudewijn P. F.; Dijkstra, Jouke; Reiber, Johan H. C.

    2016-03-01

    Trans-catheter aortic valve replacement (TAVR) is an evolving technique for patients with serious aortic stenosis disease. Typically, in this application a CTA data set is obtained of the patient's arterial system from the subclavian artery to the femoral arteries, to evaluate the quality of the vascular access route and analyze the aortic root to determine if and which prosthesis should be used. In this paper, we concentrate on the automated segmentation of the aortic root. The purpose of this study was to automatically segment the aortic root in computed tomography angiography (CTA) datasets to support TAVR procedures. The method in this study includes 4 major steps. First, the patient's cardiac CTA image was resampled to reduce the computation time. Next, the cardiac CTA image was segmented using an atlas-based approach. The most similar atlas was selected from a total of 8 atlases based on its image similarity to the input CTA image. Third, the aortic root segmentation from the previous step was transferred to the patient's whole-body CTA image by affine registration and refined in the fourth step using a deformable subdivision surface model fitting procedure based on image intensity. The pipeline was applied to 20 patients. The ground truth was created by an analyst who semi-automatically corrected the contours of the automatic method, where necessary. The average Dice similarity index between the segmentations of the automatic method and the ground truth was found to be 0.965±0.024. In conclusion, the current results are very promising.

  14. On the nature of data collection for soft-tissue image-to-physical organ registration: a noise characterization study

    NASA Astrophysics Data System (ADS)

    Collins, Jarrod A.; Heiselman, Jon S.; Weis, Jared A.; Clements, Logan W.; Simpson, Amber L.; Jarnagin, William R.; Miga, Michael I.

    2017-03-01

    In image-guided liver surgery (IGLS), sparse representations of the anterior organ surface may be collected intraoperatively to drive image-to-physical space registration. Soft tissue deformation represents a significant source of error for IGLS techniques. This work investigates the impact of surface data quality on current surface based IGLS registration methods. In this work, we characterize the robustness of our IGLS registration methods to noise in organ surface digitization. We study this within a novel human-to-phantom data framework that allows a rapid evaluation of clinically realistic data and noise patterns on a fully characterized hepatic deformation phantom. Additionally, we implement a surface data resampling strategy that is designed to decrease the impact of differences in surface acquisition. For this analysis, n=5 cases of clinical intraoperative data consisting of organ surface and salient feature digitizations from open liver resection were collected and analyzed within our human-to-phantom validation framework. As expected, results indicate that increasing levels of noise in surface acquisition cause registration fidelity to deteriorate. With respect to rigid registration using the raw and resampled data at clinically realistic levels of noise (i.e. a magnitude of 1.5 mm), resampling improved TRE by 21%. In terms of nonrigid registration, registrations using resampled data outperformed the raw data result by 14% at clinically realistic levels and were less susceptible to noise across the range of noise investigated. These results demonstrate the types of analyses our novel human-to-phantom validation framework can provide and indicate the considerable benefits of resampling strategies.

  15. A Parallel Nonrigid Registration Algorithm Based on B-Spline for Medical Images.

    PubMed

    Du, Xiaogang; Dang, Jianwu; Wang, Yangping; Wang, Song; Lei, Tao

    2016-01-01

    The nonrigid registration algorithm based on B-spline Free-Form Deformation (FFD) plays a key role and is widely applied in medical image processing due to the good flexibility and robustness. However, it requires a tremendous amount of computing time to obtain more accurate registration results especially for a large amount of medical image data. To address the issue, a parallel nonrigid registration algorithm based on B-spline is proposed in this paper. First, the Logarithm Squared Difference (LSD) is considered as the similarity metric in the B-spline registration algorithm to improve registration precision. After that, we create a parallel computing strategy and lookup tables (LUTs) to reduce the complexity of the B-spline registration algorithm. As a result, the computing time of three time-consuming steps including B-splines interpolation, LSD computation, and the analytic gradient computation of LSD, is efficiently reduced, for the B-spline registration algorithm employs the Nonlinear Conjugate Gradient (NCG) optimization method. Experimental results of registration quality and execution efficiency on the large amount of medical images show that our algorithm achieves a better registration accuracy in terms of the differences between the best deformation fields and ground truth and a speedup of 17 times over the single-threaded CPU implementation due to the powerful parallel computing ability of Graphics Processing Unit (GPU).

  16. Image Quality Improvement in Adaptive Optics Scanning Laser Ophthalmoscopy Assisted Capillary Visualization Using B-spline-based Elastic Image Registration

    PubMed Central

    Uji, Akihito; Ooto, Sotaro; Hangai, Masanori; Arichika, Shigeta; Yoshimura, Nagahisa

    2013-01-01

    Purpose To investigate the effect of B-spline-based elastic image registration on adaptive optics scanning laser ophthalmoscopy (AO-SLO)-assisted capillary visualization. Methods AO-SLO videos were acquired from parafoveal areas in the eyes of healthy subjects and patients with various diseases. After nonlinear image registration, the image quality of capillary images constructed from AO-SLO videos using motion contrast enhancement was compared before and after B-spline-based elastic (nonlinear) image registration performed using ImageJ. For objective comparison of image quality, contrast-to-noise ratios (CNRS) for vessel images were calculated. For subjective comparison, experienced ophthalmologists ranked images on a 5-point scale. Results All AO-SLO videos were successfully stabilized by elastic image registration. CNR was significantly higher in capillary images stabilized by elastic image registration than in those stabilized without registration. The average ratio of CNR in images with elastic image registration to CNR in images without elastic image registration was 2.10 ± 1.73, with no significant difference in the ratio between patients and healthy subjects. Improvement of image quality was also supported by expert comparison. Conclusions Use of B-spline-based elastic image registration in AO-SLO-assisted capillary visualization was effective for enhancing image quality both objectively and subjectively. PMID:24265796

  17. Scalable Joint Segmentation and Registration Framework for Infant Brain Images.

    PubMed

    Dong, Pei; Wang, Li; Lin, Weili; Shen, Dinggang; Wu, Guorong

    2017-03-15

    The first year of life is the most dynamic and perhaps the most critical phase of postnatal brain development. The ability to accurately measure structure changes is critical in early brain development study, which highly relies on the performances of image segmentation and registration techniques. However, either infant image segmentation or registration, if deployed independently, encounters much more challenges than segmentation/registration of adult brains due to dynamic appearance change with rapid brain development. In fact, image segmentation and registration of infant images can assists each other to overcome the above challenges by using the growth trajectories (i.e., temporal correspondences) learned from a large set of training subjects with complete longitudinal data. Specifically, a one-year-old image with ground-truth tissue segmentation can be first set as the reference domain. Then, to register the infant image of a new subject at earlier age, we can estimate its tissue probability maps, i.e., with sparse patch-based multi-atlas label fusion technique, where only the training images at the respective age are considered as atlases since they have similar image appearance. Next, these probability maps can be fused as a good initialization to guide the level set segmentation. Thus, image registration between the new infant image and the reference image is free of difficulty of appearance changes, by establishing correspondences upon the reasonably segmented images. Importantly, the segmentation of new infant image can be further enhanced by propagating the much more reliable label fusion heuristics at the reference domain to the corresponding location of the new infant image via the learned growth trajectories, which brings image segmentation and registration to assist each other. It is worth noting that our joint segmentation and registration framework is also flexible to handle the registration of any two infant images even with significant age gap in the first year of life, by linking their joint segmentation and registration through the reference domain. Thus, our proposed joint segmentation and registration method is scalable to various registration tasks in early brain development studies. Promising segmentation and registration results have been achieved for infant brain MR images aged from 2-week-old to 1-year-old, indicating the applicability of our method in early brain development study.

  18. [Development of antibody medicines by bio-venture: lesson from license negotiations with mega pharmacies].

    PubMed

    Takada, Kenzo

    2013-01-01

    The current method of antibody production is mainly the hybridoma method, in which mice are immunized with an excess amount of antigen for a short period to promote activation and proliferation of B-lymphocytes producing the antibodies of interest. Because of the excess antigen, those producing low-affinity antibodies are activated. In contrast, human blood B-lymphocytes are activated through natural immune reactions, such as the reaction to infection. B-lymphocytes are stimulated repeatedly with a small amount of antigen, and thus only those producing high-affinity antibodies are activated. Consequently, the lymphocytes producing the high-affinity antibodies are accumulated in human blood. Therefore, human lymphocytes are an excellent source of high-affinity antibodies. Evec, Inc. has established a unique method to produce high-affinity antibodies from human lymphocytes using Epstein-Barr virus (EBV), which induces the proliferation of B-lymphocytes. The method first induces the proliferation of B-lymphocytes from human blood using EBV, and then isolates those producing the antibodies of interest. The key features of the Evec technique are: 1) development of a lymphocyte library consisting of 150 donors' lymphocytes from which donors suited to develop the antibodies of interest can be selected in 4 days; and 2) development of a sorting method and cell microarray method for selecting lymphocyte clones producing the target antibodies. Licensing agreements have been concluded with European and Japanese pharmaceutical companies for two types of antibody. This paper describes Evec's antibody technology and experience in license negotiations with Mega Pharmacies.

  19. Robust video super-resolution with registration efficiency adaptation

    NASA Astrophysics Data System (ADS)

    Zhang, Xinfeng; Xiong, Ruiqin; Ma, Siwei; Zhang, Li; Gao, Wen

    2010-07-01

    Super-Resolution (SR) is a technique to construct a high-resolution (HR) frame by fusing a group of low-resolution (LR) frames describing the same scene. The effectiveness of the conventional super-resolution techniques, when applied on video sequences, strongly relies on the efficiency of motion alignment achieved by image registration. Unfortunately, such efficiency is limited by the motion complexity in the video and the capability of adopted motion model. In image regions with severe registration errors, annoying artifacts usually appear in the produced super-resolution video. This paper proposes a robust video super-resolution technique that adapts itself to the spatially-varying registration efficiency. The reliability of each reference pixel is measured by the corresponding registration error and incorporated into the optimization objective function of SR reconstruction. This makes the SR reconstruction highly immune to the registration errors, as outliers with higher registration errors are assigned lower weights in the objective function. In particular, we carefully design a mechanism to assign weights according to registration errors. The proposed superresolution scheme has been tested with various video sequences and experimental results clearly demonstrate the effectiveness of the proposed method.

  20. What approach to brain partial volume correction is best for PET/MRI?

    NASA Astrophysics Data System (ADS)

    Hutton, B. F.; Thomas, B. A.; Erlandsson, K.; Bousse, A.; Reilhac-Laborde, A.; Kazantsev, D.; Pedemonte, S.; Vunckx, K.; Arridge, S. R.; Ourselin, S.

    2013-02-01

    Many partial volume correction approaches make use of anatomical information, readily available in PET/MRI systems but it is not clear what approach is best. Seven novel approaches to partial volume correction were evaluated, including several post-reconstruction methods and several reconstruction methods that incorporate anatomical information. These were compared with an MRI-independent approach (reblurred van Cittert ) and uncorrected data. Monte Carlo PET data were generated for activity distributions representing both 18F FDG and amyloid tracer uptake. Post-reconstruction methods provided the best recovery with ideal segmentation but were particularly sensitive to mis-registration. Alternative approaches performed better in maintaining lesion contrast (unseen in MRI) with good noise control. These were also relatively insensitive to mis-registration errors. The choice of method will depend on the specific application and reliability of segmentation and registration algorithms.

  1. Affinity purification combined with mass spectrometry to identify herpes simplex virus protein-protein interactions.

    PubMed

    Meckes, David G

    2014-01-01

    The identification and characterization of herpes simplex virus protein interaction complexes are fundamental to understanding the molecular mechanisms governing the replication and pathogenesis of the virus. Recent advances in affinity-based methods, mass spectrometry configurations, and bioinformatics tools have greatly increased the quantity and quality of protein-protein interaction datasets. In this chapter, detailed and reliable methods that can easily be implemented are presented for the identification of protein-protein interactions using cryogenic cell lysis, affinity purification, trypsin digestion, and mass spectrometry.

  2. Affinity chromatographic purification of tetrodotoxin by use of tetrodotoxin-binding high molecular weight substances in the body fluid of shore crab (Hemigrapsus sanguineus) as ligands.

    PubMed

    Shiomi, K; Yamaguchi, S; Shimakura, K; Nagashima, Y; Yamamori, K; Matsui, T

    1993-12-01

    A purification method for tetrodotoxin (TTX), based on affinity chromatography using the TTX-binding high mol. wt substances in the body fluid of shore crab (Hemigrapsus sanguineus) as ligands, was developed. This method was particularly useful for analysis of TTX in biological samples with low concentrations of TTX. The affinity gel prepared was highly specific for TTX, having no ability to bind 4-epi-TTX and anhydro-TTX as well as saxitoxin.

  3. CALCULATION OF ELECTRON AFFINITIES OF POLYCYCLIC AROMATIC HYDROCARBONS AND SOVATION ENERGIES OF THEIR ANIONS

    EPA Science Inventory

    Electron affinities (EAs) and free energies for electron attachment have been calculated for 42 polynuclear aromatic hydrocarbons and related molecules by a variety of theoretical models, including Koopmans' theorem methods and the L1E method from differences in energy between th...

  4. Simultaneous intrinsic and extrinsic calibration of a laser deflecting tilting mirror in the projective voltage space.

    PubMed

    Schneider, Adrian; Pezold, Simon; Baek, Kyung-Won; Marinov, Dilyan; Cattin, Philippe C

    2016-09-01

    PURPOSE  : During the past five decades, laser technology emerged and is nowadays part of a great number of scientific and industrial applications. In the medical field, the integration of laser technology is on the rise and has already been widely adopted in contemporary medical applications. However, it is new to use a laser to cut bone and perform general osteotomy surgical tasks with it. In this paper, we describe a method to calibrate a laser deflecting tilting mirror and integrate it into a sophisticated laser osteotome, involving next generation robots and optical tracking. METHODS  : A mathematical model was derived, which describes a controllable deflection mirror by the general projective transformation. This makes the application of well-known camera calibration methods possible. In particular, the direct linear transformation algorithm is applied to calibrate and integrate a laser deflecting tilting mirror into the affine transformation chain of a surgical system. RESULTS  : Experiments were performed on synthetic generated calibration input, and the calibration was tested with real data. The determined target registration errors in a working distance of 150 mm for both simulated input and real data agree at the declared noise level of the applied optical 3D tracking system: The evaluation of the synthetic input showed an error of 0.4 mm, and the error with the real data was 0.3 mm.

  5. Error analysis of satellite attitude determination using a vision-based approach

    NASA Astrophysics Data System (ADS)

    Carozza, Ludovico; Bevilacqua, Alessandro

    2013-09-01

    Improvements in communication and processing technologies have opened the doors to exploit on-board cameras to compute objects' spatial attitude using only the visual information from sequences of remote sensed images. The strategies and the algorithmic approach used to extract such information affect the estimation accuracy of the three-axis orientation of the object. This work presents a method for analyzing the most relevant error sources, including numerical ones, possible drift effects and their influence on the overall accuracy, referring to vision-based approaches. The method in particular focuses on the analysis of the image registration algorithm, carried out through on-purpose simulations. The overall accuracy has been assessed on a challenging case study, for which accuracy represents the fundamental requirement. In particular, attitude determination has been analyzed for small satellites, by comparing theoretical findings to metric results from simulations on realistic ground-truth data. Significant laboratory experiments, using a numerical control unit, have further confirmed the outcome. We believe that our analysis approach, as well as our findings in terms of error characterization, can be useful at proof-of-concept design and planning levels, since they emphasize the main sources of error for visual based approaches employed for satellite attitude estimation. Nevertheless, the approach we present is also of general interest for all the affine applicative domains which require an accurate estimation of three-dimensional orientation parameters (i.e., robotics, airborne stabilization).

  6. Interindividual registration and dose mapping for voxelwise population analysis of rectal toxicity in prostate cancer radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dréan, Gaël; Acosta, Oscar, E-mail: Oscar.Acosta@univ-rennes1.fr; Simon, Antoine

    2016-06-15

    Purpose: Recent studies revealed a trend toward voxelwise population analysis in order to understand the local dose/toxicity relationships in prostate cancer radiotherapy. Such approaches require, however, an accurate interindividual mapping of the anatomies and 3D dose distributions toward a common coordinate system. This step is challenging due to the high interindividual variability. In this paper, the authors propose a method designed for interindividual nonrigid registration of the rectum and dose mapping for population analysis. Methods: The method is based on the computation of a normalized structural description of the rectum using a Laplacian-based model. This description takes advantage of themore » tubular structure of the rectum and its centerline to be embedded in a nonrigid registration-based scheme. The performances of the method were evaluated on 30 individuals treated for prostate cancer in a leave-one-out cross validation. Results: Performance was measured using classical metrics (Dice score and Hausdorff distance), along with new metrics devised to better assess dose mapping in relation with structural deformation (dose-organ overlap). Considering these scores, the proposed method outperforms intensity-based and distance maps-based registration methods. Conclusions: The proposed method allows for accurately mapping interindividual 3D dose distributions toward a single anatomical template, opening the way for further voxelwise statistical analysis.« less

  7. Characterization of two ammonia-oxidizing bacteria isolated from reactors operated with low dissolved oxygen concentrations.

    PubMed

    Park, H-D; Noguera, D R

    2007-05-01

    To obtain ammonia-oxidizing bacterial (AOB) strains inhabiting low dissolved oxygen (DO) environments and to characterize them to better understand their function and ecology. Using a serial dilution method, two AOB strains (ML1 and NL7) were isolated from chemostat reactors operated with low DO concentrations (0.12-0.24 mg l(-1)). Phylogenetically, strains ML1 and NL7 are affiliated to AOB within the Nitrosomonas europaea and Nitrosomonas oligotropha lineages, respectively. Kinetically, strain ML1 had high affinity for oxygen (0.24 +/- 0.13 mg l(-1)) and low affinity for ammonia (1.62 +/- 0.97 mg N l(-1)), while strain NL7 had high affinity for ammonia (0.48 +/- 0.35 mg l(-1)), but a surprisingly low affinity for oxygen (1.22 +/- 0.43 mg l(-1)). A co-culture experiment was used to iteratively estimate decay constants for both strains. The results indicated that AOB without high affinity for oxygen may have other mechanisms to persist in low DO environments, with high affinity for ammonia being important. This study provides a method to determine AOB growth kinetic parameters without assuming or neglecting decay constant. And, this is the first report on oxygen affinity constant of a N. oligotropha strain.

  8. Multi-Objective Memetic Search for Robust Motion and Distortion Correction in Diffusion MRI.

    PubMed

    Hering, Jan; Wolf, Ivo; Maier-Hein, Klaus H

    2016-10-01

    Effective image-based artifact correction is an essential step in the analysis of diffusion MR images. Many current approaches are based on retrospective registration, which becomes challenging in the realm of high b -values and low signal-to-noise ratio, rendering the corresponding correction schemes more and more ineffective. We propose a novel registration scheme based on memetic search optimization that allows for simultaneous exploitation of different signal intensity relationships between the images, leading to more robust registration results. We demonstrate the increased robustness and efficacy of our method on simulated as well as in vivo datasets. In contrast to the state-of-art methods, the median target registration error (TRE) stayed below the voxel size even for high b -values (3000 s ·mm -2 and higher) and low SNR conditions. We also demonstrate the increased precision in diffusion-derived quantities by evaluating Neurite Orientation Dispersion and Density Imaging (NODDI) derived measures on a in vivo dataset with severe motion artifacts. These promising results will potentially inspire further studies on metaheuristic optimization in diffusion MRI artifact correction and image registration in general.

  9. An Automatic Multi-Target Independent Analysis Framework for Non-Planar Infrared-Visible Registration.

    PubMed

    Sun, Xinglong; Xu, Tingfa; Zhang, Jizhou; Zhao, Zishu; Li, Yuankun

    2017-07-26

    In this paper, we propose a novel automatic multi-target registration framework for non-planar infrared-visible videos. Previous approaches usually analyzed multiple targets together and then estimated a global homography for the whole scene, however, these cannot achieve precise multi-target registration when the scenes are non-planar. Our framework is devoted to solving the problem using feature matching and multi-target tracking. The key idea is to analyze and register each target independently. We present a fast and robust feature matching strategy, where only the features on the corresponding foreground pairs are matched. Besides, new reservoirs based on the Gaussian criterion are created for all targets, and a multi-target tracking method is adopted to determine the relationships between the reservoirs and foreground blobs. With the matches in the corresponding reservoir, the homography of each target is computed according to its moving state. We tested our framework on both public near-planar and non-planar datasets. The results demonstrate that the proposed framework outperforms the state-of-the-art global registration method and the manual global registration matrix in all tested datasets.

  10. Feature-based three-dimensional registration for repetitive geometry in machine vision

    PubMed Central

    Gong, Yuanzheng; Seibel, Eric J.

    2016-01-01

    As an important step in three-dimensional (3D) machine vision, 3D registration is a process of aligning two or multiple 3D point clouds that are collected from different perspectives together into a complete one. The most popular approach to register point clouds is to minimize the difference between these point clouds iteratively by Iterative Closest Point (ICP) algorithm. However, ICP does not work well for repetitive geometries. To solve this problem, a feature-based 3D registration algorithm is proposed to align the point clouds that are generated by vision-based 3D reconstruction. By utilizing texture information of the object and the robustness of image features, 3D correspondences can be retrieved so that the 3D registration of two point clouds is to solve a rigid transformation. The comparison of our method and different ICP algorithms demonstrates that our proposed algorithm is more accurate, efficient and robust for repetitive geometry registration. Moreover, this method can also be used to solve high depth uncertainty problem caused by little camera baseline in vision-based 3D reconstruction. PMID:28286703

  11. Gaussian Process Interpolation for Uncertainty Estimation in Image Registration

    PubMed Central

    Wachinger, Christian; Golland, Polina; Reuter, Martin; Wells, William

    2014-01-01

    Intensity-based image registration requires resampling images on a common grid to evaluate the similarity function. The uncertainty of interpolation varies across the image, depending on the location of resampled points relative to the base grid. We propose to perform Bayesian inference with Gaussian processes, where the covariance matrix of the Gaussian process posterior distribution estimates the uncertainty in interpolation. The Gaussian process replaces a single image with a distribution over images that we integrate into a generative model for registration. Marginalization over resampled images leads to a new similarity measure that includes the uncertainty of the interpolation. We demonstrate that our approach increases the registration accuracy and propose an efficient approximation scheme that enables seamless integration with existing registration methods. PMID:25333127

  12. Joint tumor segmentation and dense deformable registration of brain MR images.

    PubMed

    Parisot, Sarah; Duffau, Hugues; Chemouny, Stéphane; Paragios, Nikos

    2012-01-01

    In this paper we propose a novel graph-based concurrent registration and segmentation framework. Registration is modeled with a pairwise graphical model formulation that is modular with respect to the data and regularization term. Segmentation is addressed by adopting a similar graphical model, using image-based classification techniques while producing a smooth solution. The two problems are coupled via a relaxation of the registration criterion in the presence of tumors as well as a segmentation through a registration term aiming the separation between healthy and diseased tissues. Efficient linear programming is used to solve both problems simultaneously. State of the art results demonstrate the potential of our method on a large and challenging low-grade glioma data set.

  13. Spherical Demons: Fast Surface Registration

    PubMed Central

    Yeo, B.T. Thomas; Sabuncu, Mert; Vercauteren, Tom; Ayache, Nicholas; Fischl, Bruce; Golland, Polina

    2009-01-01

    We present the fast Spherical Demons algorithm for registering two spherical images. By exploiting spherical vector spline interpolation theory, we show that a large class of regularizers for the modified demons objective function can be efficiently implemented on the sphere using convolution. Based on the one parameter subgroups of diffeomorphisms, the resulting registration is diffeomorphic and fast – registration of two cortical mesh models with more than 100k nodes takes less than 5 minutes, comparable to the fastest surface registration algorithms. Moreover, the accuracy of our method compares favorably to the popular FreeSurfer registration algorithm. We validate the technique in two different settings: (1) parcellation in a set of in-vivo cortical surfaces and (2) Brodmann area localization in ex-vivo cortical surfaces. PMID:18979813

  14. Spherical demons: fast surface registration.

    PubMed

    Yeo, B T Thomas; Sabuncu, Mert; Vercauteren, Tom; Ayache, Nicholas; Fischl, Bruce; Golland, Polina

    2008-01-01

    We present the fast Spherical Demons algorithm for registering two spherical images. By exploiting spherical vector spline interpolation theory, we show that a large class of regularizers for the modified demons objective function can be efficiently implemented on the sphere using convolution. Based on the one parameter subgroups of diffeomorphisms, the resulting registration is diffeomorphic and fast - registration of two cortical mesh models with more than 100k nodes takes less than 5 minutes, comparable to the fastest surface registration algorithms. Moreover, the accuracy of our method compares favorably to the popular FreeSurfer registration algorithm. We validate the technique in two different settings: (1) parcellation in a set of in-vivo cortical surfaces and (2) Brodmann area localization in ex-vivo cortical surfaces.

  15. 3D surface-based registration of ultrasound and histology in prostate cancer imaging.

    PubMed

    Schalk, Stefan G; Postema, Arnoud; Saidov, Tamerlan A; Demi, Libertario; Smeenge, Martijn; de la Rosette, Jean J M C H; Wijkstra, Hessel; Mischi, Massimo

    2016-01-01

    Several transrectal ultrasound (TRUS)-based techniques aiming at accurate localization of prostate cancer are emerging to improve diagnostics or to assist with focal therapy. However, precise validation prior to introduction into clinical practice is required. Histopathology after radical prostatectomy provides an excellent ground truth, but needs accurate registration with imaging. In this work, a 3D, surface-based, elastic registration method was developed to fuse TRUS images with histopathologic results. To maximize the applicability in clinical practice, no auxiliary sensors or dedicated hardware were used for the registration. The mean registration errors, measured in vitro and in vivo, were 1.5±0.2 and 2.1±0.5mm, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Shearlet Features for Registration of Remotely Sensed Multitemporal Images

    NASA Technical Reports Server (NTRS)

    Murphy, James M.; Le Moigne, Jacqueline

    2015-01-01

    We investigate the role of anisotropic feature extraction methods for automatic image registration of remotely sensed multitemporal images. Building on the classical use of wavelets in image registration, we develop an algorithm based on shearlets, a mathematical generalization of wavelets that offers increased directional sensitivity. Initial experimental results on LANDSAT images are presented, which indicate superior performance of the shearlet algorithm when compared to classical wavelet algorithms.

  17. In-die mask registration measurement on 28nm-node and beyond

    NASA Astrophysics Data System (ADS)

    Chen, Shen Hung; Cheng, Yung Feng; Chen, Ming Jui

    2013-09-01

    As semiconductor go to smaller node, the critical dimension (CD) of process become more and more small. For lithography, RET (Resolution Enhancement Technology) applications can be used for wafer printing of smaller CD/pitch on 28nm node and beyond. SMO (Source Mask Optimization), DPT (Double Patterning Technology) and SADP (Self-Align Double Patterning) can provide lower k1 value for lithography. In another way, image placement error and overlay control also become more and more important for smaller chip size (advanced node). Mask registration (image placement error) and mask overlay are important factors to affect wafer overlay control/performance especially for DPT or SADP. In traditional method, the designed registration marks (cross type, square type) with larger CD were put into scribe-line of mask frame for registration and overlay measurement. However, these patterns are far way from real patterns. It does not show the registration of real pattern directly and is not a convincing method. In this study, the in-die (in-chip) registration measurement is introduced. We extract the dummy patterns that are close to main pattern from post-OPC (Optical Proximity Correction) gds by our desired rule and choose the patterns that distribute over whole mask uniformly. The convergence test shows 100 points measurement has a reliable result.

  18. Quicksilver: Fast predictive image registration - A deep learning approach.

    PubMed

    Yang, Xiao; Kwitt, Roland; Styner, Martin; Niethammer, Marc

    2017-09-01

    This paper introduces Quicksilver, a fast deformable image registration method. Quicksilver registration for image-pairs works by patch-wise prediction of a deformation model based directly on image appearance. A deep encoder-decoder network is used as the prediction model. While the prediction strategy is general, we focus on predictions for the Large Deformation Diffeomorphic Metric Mapping (LDDMM) model. Specifically, we predict the momentum-parameterization of LDDMM, which facilitates a patch-wise prediction strategy while maintaining the theoretical properties of LDDMM, such as guaranteed diffeomorphic mappings for sufficiently strong regularization. We also provide a probabilistic version of our prediction network which can be sampled during the testing time to calculate uncertainties in the predicted deformations. Finally, we introduce a new correction network which greatly increases the prediction accuracy of an already existing prediction network. We show experimental results for uni-modal atlas-to-image as well as uni-/multi-modal image-to-image registrations. These experiments demonstrate that our method accurately predicts registrations obtained by numerical optimization, is very fast, achieves state-of-the-art registration results on four standard validation datasets, and can jointly learn an image similarity measure. Quicksilver is freely available as an open-source software. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. FMRI 3D registration based on Fourier space subsets using neural networks.

    PubMed

    Freire, Luis C; Gouveia, Ana R; Godinho, Fernando M

    2010-01-01

    In this work, we present a neural network (NN) based method designed for 3D rigid-body registration of FMRI time series, which relies on a limited number of Fourier coefficients of the images to be aligned. These coefficients, which are comprised in a small cubic neighborhood located at the first octant of a 3D Fourier space (including the DC component), are then fed into six NN during the learning stage. Each NN yields the estimates of a registration parameter. The proposed method was assessed for 3D rigid-body transformations, using DC neighborhoods of different sizes. The mean absolute registration errors are of approximately 0.030 mm in translations and 0.030 deg in rotations, for the typical motion amplitudes encountered in FMRI studies. The construction of the training set and the learning stage are fast requiring, respectively, 90 s and 1 to 12 s, depending on the number of input and hidden units of the NN. We believe that NN-based approaches to the problem of FMRI registration can be of great interest in the future. For instance, NN relying on limited K-space data (possibly in navigation echoes) can be a valid solution to the problem of prospective (in frame) FMRI registration.

  20. A spatiotemporal-based scheme for efficient registration-based segmentation of thoracic 4-D MRI.

    PubMed

    Yang, Y; Van Reeth, E; Poh, C L; Tan, C H; Tham, I W K

    2014-05-01

    Dynamic three-dimensional (3-D) (four-dimensional, 4-D) magnetic resonance (MR) imaging is gaining importance in the study of pulmonary motion for respiratory diseases and pulmonary tumor motion for radiotherapy. To perform quantitative analysis using 4-D MR images, segmentation of anatomical structures such as the lung and pulmonary tumor is required. Manual segmentation of entire thoracic 4-D MRI data that typically contains many 3-D volumes acquired over several breathing cycles is extremely tedious, time consuming, and suffers high user variability. This requires the development of new automated segmentation schemes for 4-D MRI data segmentation. Registration-based segmentation technique that uses automatic registration methods for segmentation has been shown to be an accurate method to segment structures for 4-D data series. However, directly applying registration-based segmentation to segment 4-D MRI series lacks efficiency. Here we propose an automated 4-D registration-based segmentation scheme that is based on spatiotemporal information for the segmentation of thoracic 4-D MR lung images. The proposed scheme saved up to 95% of computation amount while achieving comparable accurate segmentations compared to directly applying registration-based segmentation to 4-D dataset. The scheme facilitates rapid 3-D/4-D visualization of the lung and tumor motion and potentially the tracking of tumor during radiation delivery.

Top