Science.gov

Sample records for affine toda field

  1. ODE/IM correspondence and modified affine Toda field equations

    NASA Astrophysics Data System (ADS)

    Ito, Katsushi; Locke, Christopher

    2014-08-01

    We study the two-dimensional affine Toda field equations for affine Lie algebra gˆ modified by a conformal transformation and the associated linear equations. In the conformal limit, the associated linear problem reduces to a (pseudo-)differential equation. For classical affine Lie algebra gˆ, we obtain a (pseudo-)differential equation corresponding to the Bethe equations for the Langlands dual of the Lie algebra g, which were found by Dorey et al. in study of the ODE/IM correspondence.

  2. ODE/IM correspondence and Bethe ansatz for affine Toda field equations

    NASA Astrophysics Data System (ADS)

    Ito, Katsushi; Locke, Christopher

    2015-07-01

    We study the linear problem associated with modified affine Toda field equation for the Langlands dual gˆ∨, where g ˆ is an untwisted affine Lie algebra. The connection coefficients for the asymptotic solutions of the linear problem are found to correspond to the Q-functions for g-type quantum integrable models. The ψ-system for the solutions associated with the fundamental representations of g leads to Bethe ansatz equations associated with the affine Lie algebra g ˆ . We also study the A2r(2) affine Toda field equation in massless limit in detail and find its Bethe ansatz equations as well as T-Q relations.

  3. Quasi-integrable deformations of the SU(3) Affine Toda theory

    NASA Astrophysics Data System (ADS)

    Ferreira, L. A.; Klimas, P.; Zakrzewski, Wojtek J.

    2016-05-01

    We consider deformations of the SU(3) Affine Toda theory (AT) and investigate the integrability properties of the deformed theories. We find that for some special deformations all conserved quantities change to being conserved only asymptotically, i.e. in the process of the scattering of two solitons these charges do vary in time, but they return, after the scattering, to the values they had prior to the scattering. This phenomenon, which we have called quasi-integrability, is related to special properties of the two-soliton solutions under space-time parity transformations. Some properties of the AT solitons are discussed, especially those involving interesting static multi-soliton solutions. We support our analytical studies with detailed numerical ones in which the time evolution has been simulated by the 4th order Runge-Kutta method. We find that for some perturbations the solitons repel and for the others they form a quasi-bound state. When we send solitons towards each other they can repel when they come close together with or without `flipping' the fields of the model. The solitons radiate very little and appear to be stable. These results support the ideas of quasi-integrability, i.e. that many effects of integrability also approximately hold for the deformed models.

  4. Constrained lattice-field hierarchies and Toda system with Block symmetry

    NASA Astrophysics Data System (ADS)

    Li, Chuanzhong

    2016-03-01

    In this paper, we construct the additional W-symmetry and ghost symmetry of two-lattice field integrable hierarchies. Using the symmetry constraint, we construct constrained two-lattice integrable systems which contain several new integrable difference equations. Under a further reduction, the constrained two-lattice integrable systems can be combined into one single integrable system, namely the well-known one-dimensional original Toda hierarchy. We prove that the one-dimensional original Toda hierarchy has a nice Block Lie symmetry.

  5. Correlation functions with fusion-channel multiplicity in {mathcal{W}}_3 Toda field theory

    NASA Astrophysics Data System (ADS)

    Belavin, Vladimir; Estienne, Benoit; Foda, Omar; Santachiara, Raoul

    2016-06-01

    Current studies of {mathcal{W}}_N Toda field theory focus on correlation functions such that the {mathcal{W}}_N highest-weight representations in the fusion channels are multiplicity-free. In this work, we study {mathcal{W}}_3 Toda 4-point functions with multiplicity in the fusion channel. The conformal blocks of these 4-point functions involve matrix elements of a fully-degenerate primary field with a highest-weight in the adjoint representation of mathfrak{s}{mathfrak{l}}_3 , and a fully-degenerate primary field with a highest-weight in the fundamental representation of mathfrak{s}{mathfrak{l}}_3 . We show that, when the fusion rules do not involve multiplicities, the matrix elements of the fully-degenerate adjoint field, between two arbitrary descendant states, can be computed explicitly, on equal footing with the matrix elements of the semi-degenerate fundamental field. Using null-state conditions, we obtain a fourth-order Fuchsian differential equation for the conformal blocks. Using Okubo theory, we show that, due to the presence of multiplicities, this differential equation belongs to a class of Fuchsian equations that is different from those that have appeared so far in {mathcal{W}}_N theories. We solve this equation, compute its monodromy group, and construct the monodromy-invariant correlation functions. This computation shows in detail how the ambiguities that are caused by the presence of multiplicities are fixed by requiring monodromy-invariance.

  6. The light asymptotic limit of conformal blocks in Toda field theory

    NASA Astrophysics Data System (ADS)

    Poghosyan, Hasmik; Poghossian, Rubik; Sarkissian, Gor

    2016-05-01

    We compute the light asymptotic limit of A n-1 Toda conformal blocks by using the AGT correspondence. We show that for certain class of CFT blocks the corresponding Nekrasov partition functions in this limit are simplified drastically being represented as a sum of a restricted class of Young diagrams. In the particular case of A 2 Toda we also compute the corresponding conformal blocks using conventional CFT techniques finding a perfect agreement with the results obtained from the Nekrasov partition functions.

  7. Localization of Free Field Realizations of Affine Lie Algebras

    NASA Astrophysics Data System (ADS)

    Futorny, Vyacheslav; Grantcharov, Dimitar; Martins, Renato A.

    2015-04-01

    We use localization technique to construct new families of irreducible modules of affine Kac-Moody algebras. In particular, localization is applied to the first free field realization of the affine Lie algebra or, equivalently, to imaginary Verma modules.

  8. Deformed SW curve and the null vector decoupling equation in Toda field theory

    NASA Astrophysics Data System (ADS)

    Poghossian, Rubik

    2016-04-01

    It is shown that the deformed Seiberg-Witten curve equation after Fourier transform is mapped into a differential equation for the AGT dual 2d CFT cnformal block containing an extra completely degenerate field. We carefully match parameters in two sides of duality thus providing not only a simple independent prove of the AGT correspondence in Nekrasov-Shatashvili limit, but also an extension of AGT to the case when a secondary field is included in the CFT conformal block. Implications of our results in the study of monodromy problems for a large class of n'th order Fuchsian differential equations are discussed.

  9. Line operators in theories of class {S} , quantized moduli space of flat connections, and Toda field theory

    NASA Astrophysics Data System (ADS)

    Coman, Ioana; Gabella, Maxime; Teschner, Jörg

    2015-10-01

    Non-perturbative aspects of N=2 supersymmetric gauge theories of class S are deeply encoded in the algebra of functions on the moduli space {M}_{flat} of flat SL( N )- connections on Riemann surfaces. Expectation values of Wilson and 't Hooft line operators are related to holonomies of flat connections, and expectation values of line operators in the low-energy effective theory are related to Fock-Goncharov coordinates on {M}_{flat} . Via the decomposition of UV line operators into IR line operators, we determine their noncommutative algebra from the quantization of Fock-Goncharov Laurent polynomials, and find that it coincides with the skein algebra studied in the context of Chern-Simons theory. Another realization of the skein algebra is generated by Verlinde network operators in Toda field theory. Comparing the spectra of these two realizations provides non-trivial support for their equivalence. Our results can be viewed as evidence for the generalization of the AGT correspondence to higher-rank class S theories.

  10. Intermediate Toda systems

    NASA Astrophysics Data System (ADS)

    Damianou, Pantelis A.; Sabourin, Hervé; Vanhaecke, Pol

    2015-05-01

    We construct a large family of Hamiltonian systems which interpolate between the classical Kostant-Toda lattice and the full Kostant-Toda lattice and we discuss their integrability. There is one such system for every nilpotent ideal I in a Borel subalgebra b+ of an arbitrary simple Lie algebra g. The classical Kostant-Toda lattice corresponds to the case of I = [n+, n+], where n+ is the unipotent ideal of b+, while the full Kostant-Toda lattice corresponds to I = {0}. We mainly focus on the case I = [[n+, n+], n+]. In this case, using the theory of root systems of simple Lie algebras, we compute the rank of the underlying Poisson manifolds and construct a set of (rational) functions in involution, large enough to ensure Liouville integrability. These functions are restrictions of well-chosen integrals of the full Kostant-Toda lattice, except for the case of the Lie algebras of type C and D where a different function (Casimir) is needed. The latter fact, and other ones listed in the paper, point at the Liouville integrability of all the systems we construct, but also at the nontriviality of obtaining the result in full generality.

  11. Singular structure of Toda lattices and cohomology of certain compact Lie groups

    NASA Astrophysics Data System (ADS)

    Casian, Luis; Kodama, Yuji

    2007-05-01

    We study the singularities (blow-ups) of the Toda lattice associated with a real split semisimple Lie algebra . It turns out that the total number of blow-up points along trajectories of the Toda lattice is given by the number of points of a Chevalley group related to the maximal compact subgroup K of the group with over the finite field . Here is the Langlands dual of E The blow-ups of the Toda lattice are given by the zero set of the [tau]-functions. For example, the blow-ups of the Toda lattice of A-type are determined by the zeros of the Schur polynomials associated with rectangular Young diagrams. Those Schur polynomials are the [tau]-functions for the nilpotent Toda lattices. Then we conjecture that the number of blow-ups is also given by the number of real roots of those Schur polynomials for a specific variable. We also discuss the case of periodic Toda lattice in connection with the real cohomology of the flag manifold associated to an affine Kac-Moody algebra.

  12. Molecular modeling of oscillating GHz electric field influence on the kinesin affinity to microtubule

    NASA Astrophysics Data System (ADS)

    R. Saeidi, H.; S. Setayandeh, S.; Lohrasebi, A.

    2015-08-01

    Kinesin is a microtubule-associated motor protein which can respond to the external electric field due to its polarity. Using a molecular dynamics simulation method, the effect of such a field on the affinity of kinesin to the αβ-tubulin is investigated in this study. To consider kinesin affinity, the system is exposed to an electric field of 0.03 V/nm with frequency values of 1, 2, …, 9, and 10 GHz. It is found that the applied electric field can change kinesin affinity to the microtubule. These changes could perturb the normal operation of kinesin, such as the processive motility of kinesin on the microtubule.

  13. The extended Z N -Toda hierarchy

    NASA Astrophysics Data System (ADS)

    Li, Chuanzhong; He, Jingsong

    2015-11-01

    We construct the extended flow equations of a new Z N -Toda hierarchy taking values in a commutative subalgebra Z N of gl( N, C). We give the Hirota bilinear equations and tau function of this new extended Z N -Toda hierarchy. Taking the presence of logarithmic terms into account, we construct some extended vertex operators in generalized Hirota bilinear equations, which might be useful in topological field theory and the Gromov-Witten theory. We present the Darboux transformations and bi-Hamiltonian structure of this hierarchy. Using Hamiltonian tau-symmetry, we obtain another tau function of this hierarchy with some unknown mysterious relation to the tau function derived using the Sato theory.

  14. Particle displacements in the elastic deformation of amorphous materials: Local fluctuations vs. non-affine field

    NASA Astrophysics Data System (ADS)

    Goldenberg, C.; Tanguy, A.; Barrat, J.-L.

    2007-10-01

    We study the local disorder in the deformation of amorphous materials by decomposing the particle displacements into a continuous, inhomogeneous field and the corresponding fluctuations. We compare these fields to the commonly used non-affine displacements in an elastically deformed 2D Lennard-Jones glass. Unlike the non-affine field, the fluctuations are very localized, and exhibit a much smaller (and system size independent) correlation length, on the order of a particle diameter, supporting the applicability of the notion of local "defects" to such materials. We propose a scalar "noise" field to characterize the fluctuations, as an additional field for extended continuum models, e.g., to describe the localized irreversible events observed during plastic deformation.

  15. Field-Emission from Chemically Functionalized Diamond Surfaces: Does Electron Affinity Picture Work?

    NASA Astrophysics Data System (ADS)

    Miyamoto, Yoshiyuki; Miyazaki, Takehide; Takeuchi, Daisuke; Okushi, Hideyo; Yamasaki, Satoshi

    2014-03-01

    By means of the time-dependent density functional electron dynamics, we have revisited the field-emission efficiency of chemically functionalized diamond (100) surfaces. In order to achieve high efficiency and high (chemical) stability, proper chemical species are needed to terminate diamond surfaces. Hydrogen (H) termination is well known to achieve the negative electron affinity (NEA) of diamond surface which indeed enhances field emission performance than that of clean surface with positive electron affinity (PEA). Yet, the durability of H-terminated diamond surface was concerned for long-time operation of the field-emission. Meantime, oxidation, or hydroxyl (OH) termination was considered to achieve chemical stability of the surface but presence of oxygen (O) atom should reduce the emission efficiency. Recently, H- OH-co-terminated surface is reported as NEA and was expected to achieve both emission efficiency and chemical stability. However, our simulation showed that emission efficiency of the H- OH- co-terminated surface is much lower than clean surface with PEA, thus we note that the electron affinity cannot be a unique measure to determine the emission efficiency. In this talk, we introduce necessity of new concept to understand the emission efficiency which needs to know detailed potential profile from bulk to vacuum through surface, which is strongly dependent on the surface chemical functionalization. This work was supported by ALCA project conducted by Japan Science and Technology Agency.

  16. Electric Field Cancellation on Quartz by Rb Adsorbate-Induced Negative Electron Affinity

    NASA Astrophysics Data System (ADS)

    Sedlacek, J. A.; Kim, E.; Rittenhouse, S. T.; Weck, P. F.; Sadeghpour, H. R.; Shaffer, J. P.

    2016-04-01

    We investigate the (0001) surface of single crystal quartz with a submonolayer of Rb adsorbates. Using Rydberg atom electromagnetically induced transparency, we investigate the electric fields resulting from Rb adsorbed on the quartz surface, and measure the activation energy of the Rb adsorbates. We show that the adsorbed Rb induces negative electron affinity (NEA) on the quartz surface. The NEA surface allows low energy electrons to bind to the surface and cancel the electric field from the Rb adsorbates. Our results will be important for integrating Rydberg atoms into hybrid quantum systems, as fundamental probes of atom-surface interactions, and for studies of 2D electron gases bound to surfaces.

  17. Electric Field Cancellation on Quartz by Rb Adsorbate-Induced Negative Electron Affinity.

    PubMed

    Sedlacek, J A; Kim, E; Rittenhouse, S T; Weck, P F; Sadeghpour, H R; Shaffer, J P

    2016-04-01

    We investigate the (0001) surface of single crystal quartz with a submonolayer of Rb adsorbates. Using Rydberg atom electromagnetically induced transparency, we investigate the electric fields resulting from Rb adsorbed on the quartz surface, and measure the activation energy of the Rb adsorbates. We show that the adsorbed Rb induces negative electron affinity (NEA) on the quartz surface. The NEA surface allows low energy electrons to bind to the surface and cancel the electric field from the Rb adsorbates. Our results will be important for integrating Rydberg atoms into hybrid quantum systems, as fundamental probes of atom-surface interactions, and for studies of 2D electron gases bound to surfaces. PMID:27081976

  18. Electric field cancellation on quartz by Rb adsorbate-induced negative electron affinity

    NASA Astrophysics Data System (ADS)

    Shaffer, James

    2016-05-01

    We investigate the (0001) surface of single crystal quartz with a submonolayer of Rb adsorbates. Using Rydberg atom electromagnetically induced transparency, we investigate the electric fields resulting from Rb adsorbed on the quartz surface, and measure the activation energy of the Rb adsorbates. We show that the adsorbed Rb induces a negative electron affinity (NEA) on the quartz surface. The NEA surface allows low energy electrons to bind to the surface and cancel the electric field from the Rb adsorbates. Our results are important for integrating Rydberg atoms into hybrid quantum systems and the fundamental study of atom-surface interactions, as well as applications for electrons bound to a 2D surface. This work was supported by the DARPA Quasar program by a Grant through ARO (60181-PH-DRP) and the AFOSR (FA9550-12-1-0282),.

  19. Evaluation of the surface affinity of water in three biochars using fast field cycling NMR relaxometry.

    PubMed

    Bubici, Salvatore; Korb, Jean-Pierre; Kučerik, Jiří; Conte, Pellegrino

    2016-05-01

    Many soil functions depend on the interaction of water with soil. The affinity of water for soils can be altered by applying soil amendments like stone meal, manure, or biochar (a carbonaceous material obtained by pyrolysis of biomasses). In fact, the addition of hydrophobic biochar to soil may increase soil repellency, reduce water-adsorbing capacity, inhibit microbial activity, alter soil filter, buffer, storage, and transformation functions. For this reason, it is of paramount importance to monitor water affinity for biochar surface (also referred to as 'wettability') in order to better address its applications in soil systems. In this study, we propose the use of fast field cycling NMR relaxometry technique with the application of a new mathematical model for data interpretation, as a valid alternative to the traditional contact angle (CA) measurements for biochar wettability evaluation. Either NMR or CA results revealed the same wettability trend for the biochars studied here. The advantage of NMR relaxometry over CA measurements lies in the possibility to obtain at the microscopic level a variety of different information in only one shot. In fact, while CA provides only wettability evaluation, NMR relaxometry also allows achievement of the mechanisms for water molecular dynamics on biochar surface, thereby leading to the possibility to understand better, in future research, the role of biochar in increasing soil quality and plant nutrition. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27062147

  20. Toda Systems, Cluster Characters, and Spectral Networks

    NASA Astrophysics Data System (ADS)

    Williams, Harold

    2016-07-01

    We show that the Hamiltonians of the open relativistic Toda system are elements of the generic basis of a cluster algebra, and in particular are cluster characters of nonrigid representations of a quiver with potential. Using cluster coordinates defined via spectral networks, we identify the phase space of this system with the wild character variety related to the periodic nonrelativistic Toda system by the wild nonabelian Hodge correspondence. We show that this identification takes the relativistic Toda Hamiltonians to traces of holonomies around a simple closed curve. In particular, this provides nontrivial examples of cluster coordinates on SL n -character varieties for n > 2 where canonical functions associated to simple closed curves can be computed in terms of quivers with potential, extending known results in the SL 2 case.

  1. On polynomial vector fields having a given affine variety as attractive and invariant set: application to robotics

    NASA Astrophysics Data System (ADS)

    Possieri, Corrado; Tornambè, Antonio

    2015-05-01

    The main goal of this paper is to compute a class of polynomial vector fields, whose associated dynamical system has a given affine variety as attractive and invariant set, a given point in such an affine variety as invariant and attractive and another given affine variety as invariant set, solving the application of this technique in the robotic area. This objective is reached by using some tools taken from algebraic geometry. Practical examples of how these vector fields can be computed are reported. Moreover, by using these techniques, two feedback control laws, respectively, for a unicycle-like mobile robot and for a car-like mobile robot, which make them move, within the workspace, approaching to a selected algebraic curve, are given.

  2. Generalised Eisenhart lift of the Toda chain

    SciTech Connect

    Cariglia, Marco; Gibbons, Gary

    2014-02-15

    The Toda chain of nearest neighbour interacting particles on a line can be described both in terms of geodesic motion on a manifold with one extra dimension, the Eisenhart lift, or in terms of geodesic motion in a symmetric space with several extra dimensions. We examine the relationship between these two realisations and discover that the symmetric space is a generalised, multi-particle Eisenhart lift of the original problem that reduces to the standard Eisenhart lift. Such generalised Eisenhart lift acts as an inverse Kaluza-Klein reduction, promoting coupling constants to momenta in higher dimension. In particular, isometries of the generalised lift metric correspond to energy preserving transformations that mix coordinates and coupling constants. A by-product of the analysis is that the lift of the Toda Lax pair can be used to construct higher rank Killing tensors for both the standard and generalised lift metrics.

  3. From Toda to KdV

    NASA Astrophysics Data System (ADS)

    Bambusi, D.; Kappeler, T.; Paul, T.

    2015-07-01

    For periodic Toda chains with a large number N of particles we consider states which are N-2-close to the equilibrium and constructed by discretizing arbitrary given C2-functions with mesh size N-1. Our aim is to describe the spectrum of the Jacobi matrices LN appearing in the Lax pair formulation of the dynamics of these states as N → ∞. To this end we construct two Hill operators H±—such operators come up in the Lax pair formulation of the Korteweg-de Vries equation—and prove by methods of semiclassical analysis that the asymptotics as N → ∞ of the eigenvalues at the edges of the spectrum of LN are of the form +/- (2-(2N)-2 λ ^+/- n + \\cdots ) where (λ ^+/- _n)n ≥ 0 are the eigenvalues of H±. In the bulk of the spectrum, the eigenvalues are o(N-2)-close to the ones of the equilibrium matrix. As an application we obtain asymptotics of a similar type of the discriminant, associated to LN.

  4. Effect of Pentacene-dielectric Affinity on Pentacene Thin Film Growth Morphology in Organic Field-effect Transistors

    SciTech Connect

    S Kim; M Jang; H Yang; C Park

    2011-12-31

    Organic field-effect transistors (OFETs) are fabricated by depositing a thin film of semiconductor on the functionalized surface of a SiO{sub 2} dielectric. The chemical and morphological structures of the interface between the semiconductor and the functionalized dielectric are critical for OFET performance. We have characterized the effect of the affinity between semiconductor and functionalized dielectric on the properties of the semiconductor-dielectric interface. The crystalline microstructure/nanostructure of the pentacene semiconductor layers, grown on a dielectric substrate that had been functionalized with either poly(4-vinyl pyridine) or polystyrene (to control hydrophobicity), and grown under a series of substrate temperatures and deposition rates, were characterized by X-ray diffraction, photoemission spectroscopy, and atomic force microscopy. By comparing the morphological features of the semiconductor thin films with the device characteristics (field-effect mobility, threshold voltage, and hysteresis) of the OFET devices, the effect of affinity-driven properties on charge modulation, charge trapping, and charge carrier transport could be described.

  5. Two-Component Theory of Classical Proca Fields in Curved Spacetimes with Torsionless Affinities

    NASA Astrophysics Data System (ADS)

    Santos Júnior, S. I.; Cardoso, J. G.

    2016-04-01

    The world formulation of the full theory of classical Proca fields in generally relativistic spacetimes is reviewed. Subsequently the entire set of field equations is transcribed in a straightforward way into the framework of one of the Infeld-van der Waerden formalisms. Some well-known calculational techniques are then utilized for deriving the wave equations that control the propagation of the fields allowed for. It appears that no interaction couplings between such fields and electromagnetic curvatures are ultimately carried by the wave equations at issue. What results is, in effect, that the only interactions which occur in the theoretical context under consideration involve strictly Proca fields and wave functions for gravitons.

  6. Affinity Chromatography.

    ERIC Educational Resources Information Center

    Gray, Gary R.

    1980-01-01

    Presents selected recent advances in immobilization chemistry which have important connections to affinity chromatography. Discusses ligand immobilization and support modification. Cites 51 references. (CS)

  7. Cluster characters and the combinatorics of Toda systems

    NASA Astrophysics Data System (ADS)

    Williams, H.

    2015-12-01

    We survey some connections between Toda systems and cluster algebras. One of these connections is based on representation theory: it is known that Laurent expansions of cluster variables are generating functions of Euler characteristics of quiver Grassmannians, and the same turns out to be true of the Hamiltonians of the open relativistic Toda chain. Another connection is geometric: the closed nonrelativistic Toda chain can be regarded as a meromorphic Hitchin system and studied from the standpoint of spectral networks. From this standpoint, the combinatorial formulas for the Hamiltonians of the open relativistic system are sums of trajectories of differential equations defined by the closed nonrelativistic spectral curves.

  8. A local description of dark energy in terms of classical two-component massive spin-one uncharged fields on spacetimes with torsionful affinities

    NASA Astrophysics Data System (ADS)

    Cardoso, Jorge G.

    2015-11-01

    It is assumed that the two-component spinor formalisms for curved spacetimes that are endowed with torsionful affine connexions can supply a local description of dark energy in terms of classical massive spin-one uncharged fields. The relevant wave functions are related to torsional affine potentials which bear invariance under the action of the generalized Weyl gauge group. Such potentials are thus taken to carry an observable character and emerge from contracted spin affinities whose patterns are chosen in a suitable way. New covariant calculational techniques are then developed towards deriving explicitly the wave equations that supposedly control the propagation in spacetime of the dark energy background. What immediately comes out of this derivation is a presumably natural display of interactions between the fields and both spin torsion and curvatures. The physical properties that may arise directly fromthe solutions to thewave equations are not brought out.

  9. Orthogonal polynomial interpretation of Δ-Toda equations

    NASA Astrophysics Data System (ADS)

    Area, I.; Branquinho, A.; Foulquié Moreno, A.; Godoy, E.

    2015-10-01

    In this paper a discretization of Toda equations is analyzed. The correspondence between these Δ-Toda equations for the coefficients of the Jacobi operator and its resolvent function is established. It is shown that the spectral measure of these operators evolve in t like {(1+x)}1-t {{d}}μ (x) where {{d}}μ is a given positive Borel measure. The Lax pair for the Δ-Toda equations is derived and characterized in terms of linear functionals, where orthogonal polynomials which satisfy an Appell condition with respect to the forward difference operator Δ appear in a natural way. In order to illustrate the results of the paper we work out two examples of Δ-Toda equations related with Jacobi and Laguerre orthogonal polynomials.

  10. Phylogenetic affinities of Phobetinus to other pirate spider genera (Araneae: Mimetidae) as indicated by spinning field morphology.

    PubMed

    Townley, Mark A; Harms, Danilo; Benjamin, Suresh P

    2013-09-01

    Spinnerets from Phobetinus sagittifer and an undescribed Phobetinus species were examined by scanning electron microscopy to gain a better understanding of this genus' relationships to other genera in the family Mimetidae. Consistent with placement of Phobetinus in Mimetinae, females possessed two synapomorphies of this subfamily; enlarged cylindrical silk gland spigots with domed shafts and a single cylindrical spigot per posterior lateral spinneret (PLS). Spinning field features overall suggest Phobetinus is most closely related to Mimetus, followed by Australomimetus, then Ero. A possible synapomorphy of a clade including Mimetus and Phobetinus is a pair of modified piriform silk gland spigots on each anterior lateral spinneret of adult males located adjacent to the secondary major ampullate silk gland tartipore. These spigots were present in P. sagittifer; however, similarly positioned spigots in the undescribed species were not obviously modified (i.e., wider or with larger openings relative to the other piriform spigots). Close affinity to Mimetus was also indicated by tartipore-accommodated PLS aciniform silk glands in both Phobetinus species. These have been consistently observed in Mimetus, but not in Australomimetus or Ero. Somatic and genitalic drawings of P. sagittifer are provided to aid identification and similarities are noted between male pedipalps of Mimetus and Phobetinus. PMID:23680801

  11. Toda Molecule Equation and Quotient-Difference Method

    NASA Astrophysics Data System (ADS)

    Sogo, Kiyoshi

    1993-04-01

    The numerical algorithm for computing eigenvalues of a given matrix using the Toda molecule equation, suggested recently by Hirota, Tsujimoto and Imai, is shown to be equivalent to the quotient-difference method. This relation, convergence of the algorithm and extension to a much wider range of matrices are described.

  12. Dispersionless 2D Toda hierarchy, Hurwitz numbers and Riemann theorem

    NASA Astrophysics Data System (ADS)

    Natanzon, Sergey M.

    2016-01-01

    We describe all formal symmetric solutions of dispersionless 2D Toda hierarchy. This classification we use for solving of two classical problems: 1) The calculation of conformal mapping of an arbitrary simply connected domain to the standard disk; 2) Calculation of 2- Hurwitz numbers of genus 0.

  13. Kp and Toda Tau Functions in Bethe Ansatz

    NASA Astrophysics Data System (ADS)

    Takasaki, Kanehisa

    2011-10-01

    Recent work of Foda and his group on a connection between classical integrable hierarchies (the KP and 2D Toda hierarchies) and some quantum integrable systems (the 6-vertex model with DWBC, the finite XXZ chain of spin 1/2, the phase model on a finite chain, etc.) is reviewed. Some additional information on this issue is also presented.

  14. Low uptake affinity cultivars with biochar to tackle Cd-tainted rice--A field study over four rice seasons in Hunan, China.

    PubMed

    Chen, De; Guo, Hu; Li, Ruiyue; Li, Lianqing; Pan, Genxing; Chang, Andrew; Joseph, Stephen

    2016-01-15

    Biochar is becoming an environmentally friendly material for remediation of heavy metal contaminated soils and improving food safety. A field trial over four rice seasons was conducted to investigate the use of biochar and low Cd accumulating cultivars on Cd uptake in a heavy metal contaminated soil. Wheat straw derived biochar was applied at 0, 20 and 40 t ha(-1). Two rice cultivars with differing Cd accumulation abilities were selected in each season. The results showed that both biochar and low Cd affinity cultivars significantly reduced rice grain Cd accumulation. Biochar had no significant effect the first season but thereafter consistently reduced rice grain Cd by a maximum of 61, 86 and 57% over the next three seasons. Zn accumulation in the rice grains was not decreased by biochar application, although available soil Zn was sharply reduced (35-91%). Indica conventional rice cultivars had much lower Cd, but higher Zn and lower Cd/Zn ratios in the grain than indica hybrid cultivars. Biochar was more effective for mitigating grain Cd accumulation in low Cd affinity cultivars than in high affinity cultivars. Soil pH was sustainably increased (up to nearly 1 unit) while available Cd significantly decreased by a maximum of 85% after biochar addition. The translocation of Cd from rice roots to shoots was reduced from 20 to 80% by biochar. Low uptake affinity cultivars combined with biochar reduced late rice grain Cd concentration and Cd/Zn ratios by 69-80% and 72-80%, respectively. It indicated that the management of combining biochar and low Cd affinity cultivars should be an efficient way to remediate Cd contaminated rice paddies and reduce health risk associated with consuming rice from these soils. PMID:26490528

  15. Field and experimental evidence for low-O2 affinity of aerobic methane oxidizers in coastal waters

    NASA Astrophysics Data System (ADS)

    Steinle, Lea; Maltby, Johanna; Bange, Hermann; Kock, Annette; Lehmann, Moritz F.; Treude, Tina; Niemann, Helge

    2015-04-01

    ~200 µM), confirming results from the field study and attesting to an apparent Km of ≲ 0.5 µM. Enhancement of MOx at low O2 levels was more pronounced in incubations with bottom waters, but was also observed in surface waters, which are exposed year-round to high O2 levels in nature. This response to oxygen concentrations suggests a general low-O2 affinity of aerobic methane oxidizers in Eckernförde Bay. Lennartz, S. T., Lehmann, A., Herrford, J., Malien, F., Hansen, H.-P., Biester, H., and Bange, H. W.: Long-term trends at the Boknis Eck time series station (Baltic Sea), 1957-2013: does climate change counteract the decline in eutrophication?, Biogeosciences, 2014.

  16. Nonlinear dust-lattice waves: a modified Toda lattice

    SciTech Connect

    Cramer, N. F.

    2008-09-07

    Charged dust grains in a plasma interact with a Coulomb potential, but also with an exponential component to the potential, due to Debye shielding in the background plasma. Here we investigate large-amplitude oscillations and waves in dust-lattices, employing techniques used in Toda lattice analysis. The lattice consists of a linear chain of particles, or a periodic ring as occurs in experimentally observed dust particle clusters. The particle motion has a triangular waveform, and chaotic motion for large amplitude motion of a grain.

  17. On the squared eigenfunction symmetry of the Toda lattice hierarchy

    NASA Astrophysics Data System (ADS)

    Cheng, Jipeng; He, Jingsong

    2013-02-01

    The squared eigenfunction symmetry for the Toda lattice hierarchy is explicitly constructed in the form of the Kronecker product of the vector eigenfunction and the vector adjoint eigenfunction, which can be viewed as the generating function for the additional symmetries when the eigenfunction and the adjoint eigenfunction are the wave function and the adjoint wave function, respectively. Then after the Fay-like identities and some important relations about the wave functions are investigated, the action of the squared eigenfunction related to the additional symmetry on the tau function is derived, which is equivalent to the Adler-Shiota-van Moerbeke formulas.

  18. Exact quantization conditions for the relativistic Toda lattice

    NASA Astrophysics Data System (ADS)

    Hatsuda, Yasuyuki; Mariño, Marcos

    2016-05-01

    Inspired by recent connections between spectral theory and topological string theory, we propose exact quantization conditions for the relativistic Toda lattice of N particles. These conditions involve the Nekrasov-Shatashvili free energy, which resums the perturbative WKB expansion, but they require in addition a non-perturbative contribution, which is related to the perturbative result by an S-duality transformation of the Planck constant. We test the quantization conditions against explicit calculations of the spectrum for N = 3. Our proposal can be generalized to arbitrary toric Calabi-Yau manifolds and might solve the corresponding quantum integrable system of Goncharov and Kenyon.

  19. Multifold Darboux Transformations of the Extended Bigraded Toda Hierarchy

    NASA Astrophysics Data System (ADS)

    Li, Chuanzhong; Song, Tao

    2016-04-01

    With the extended logarithmic flow equations and some extended Vertex operators in generalized Hirota bilinear equations, extended bigraded Toda hierarchy (EBTH) was proved to govern the Gromov-Witten theory of orbiford cNM in literature. The generating function of these Gromov-Witten invariants is one special solution of the EBTH. In this article, the multifold Darboux transformations and their determinant representations of the EBTH are given with two different gauge transformation operators. The two Darboux transformations in different directions are used to generate new solutions from known solutions which include soliton solutions of (N, N)-EBTH, i.e. the EBTH when N=M. From the generation of new solutions, we can find the big difference between the EBTH and the extended Toda hierarchy (ETH). Also, we plotted the soliton graphs of the (N, N)-EBTH from which some approximation analysis is given. From the analysis on velocities of soliton solutions, the difference between the extended flows and other flows are shown. The two different Darboux transformations constructed by us might be useful in Gromov-Witten theory of orbiford cNM.

  20. Affinity chromatography: a historical perspective.

    PubMed

    Hage, David S; Matsuda, Ryan

    2015-01-01

    Affinity chromatography is one of the most selective and versatile forms of liquid chromatography for the separation or analysis of chemicals in complex mixtures. This method makes use of a biologically related agent as the stationary phase, which provides an affinity column with the ability to bind selectively and reversibly to a given target in a sample. This review examines the early work in this method and various developments that have lead to the current status of this technique. The general principles of affinity chromatography are briefly described as part of this discussion. Past and recent efforts in the generation of new binding agents, supports, and immobilization methods for this method are considered. Various applications of affinity chromatography are also summarized, as well as the influence this field has played in the creation of other affinity-based separation or analysis methods. PMID:25749941

  1. Report: Affinity Chromatography.

    ERIC Educational Resources Information Center

    Walters, Rodney R.

    1985-01-01

    Supports, affinity ligands, immobilization, elution methods, and a number of applications are among the topics considered in this discussion of affinity chromatography. An outline of the basic principles of affinity chromatography is included. (JN)

  2. On Differential form Method to Find Lie Symmetries of two Types of Toda Lattices

    NASA Astrophysics Data System (ADS)

    Ding, Qi; Tian, Shou-Fu

    2014-12-01

    In this paper, we investigate Lie symmetries of the (1 + 1)-dimensional celebrated Toda lattice and the (2 + 1)-dimensional modified semidiscrete Toda lattice by using the extended Harrison and Estabrook's geometric approach. Two closed ideals written in terms of a set of differential forms are constructed for Toda lattices. Moreover, commutation relations of a Kac-Moody-Virasoro type Lie algebra are obtained by direct computation.

  3. One- and two-dimensional Toda lattices and the Painleve property

    SciTech Connect

    Gibbon, J.D.; Tabor, M.

    1985-08-01

    The Toda lattice and the two-dimensional Toda lattice (2-DTL) are shown to possess a type of ''Painleve property'' that is based on the use of separate ''singular manifolds'' for each dependent variable. The isospectral problem for the 2-DTL found by both Mikhailov and by Fordy and Gibbons can be simply and logically derived from this analysis. Some remarks are made about the connection between our work and independent work of Kametaka and Airhault on the relationship between the Toda lattice and the second Painleve transcendent.

  4. New set of symmetries and Lie algebraic structures of the Toda lattice hierarchy

    NASA Astrophysics Data System (ADS)

    Zhu, Xiao-ying; Zhang, Da-jun; Li, Zong-cheng

    2015-02-01

    By introducing the new time-dependence of the spectral parameter λ, we construct two sets of symmetries which are different from the centerless Kac-Moody-Virasoro algebras for the isospectral Toda lattice hierarchy.

  5. On the periodic Toda lattice with a self-consistent source

    NASA Astrophysics Data System (ADS)

    Babajanov, Bazar; Fečkan, Michal; Urazboev, Gayrat

    2015-05-01

    This work is devoted to the application of inverse spectral problem for integration of the periodic Toda lattice with self-consistent source. The effective method of solution of the inverse spectral problem for the discrete Hill's equation is presented.

  6. Bäcklund transformation for the first flows of the relativistic Toda hierarchy and associated properties

    NASA Astrophysics Data System (ADS)

    Choudhury, Anindya Ghose

    2013-01-01

    In this communication we study a class of one parameter dependent auto-Bäcklund transformations for the first flow of the relativistic Toda lattice and also a variant of the usual Toda lattice equation. It is shown that starting from the Hamiltonian formalism such transformations are canonical in nature with a well defined generating function. The notion of spectrality is also analyzed and the separation variables are explicitly constructed.

  7. New method for constructing semi-invariants and integrals of the full symmetric Toda lattice

    NASA Astrophysics Data System (ADS)

    Sorin, A. S.; Chernyakov, Yu. B.

    2015-05-01

    We consider the full symmetric representation of the Lax operator matrix of the Toda lattice, which is known as the full symmetric Toda lattice. The phase space of this system is the generic orbit of the coadjoint action of the Borel subgroup B n + of SL n (ℝ). This system is integrable. We propose a new method for constructing semi-invariants and integrals of the full symmetric Toda lattice. Using only the equations of motion for the Lax eigenvector matrix, we prove the existence of the semi-invariants that are Plücker coordinates in the corresponding projective spaces. We use these semi-invariants to construct the integrals. Our new approach provides simple exact formulas for the full set of independent semi-invariants and integrals expressed in terms of the Lax matrix and also in terms of its eigenvector and eigenvalue matrices of the full symmetric Toda lattice without using the chopping and Kostant procedures. We describe the structure of the additional integrals of motion as functions on the flag space modulo the Toda flows and show how the Plücker coordinates of different projective spaces define different families of the additional integrals.

  8. Special Report: Affinity Chromatography.

    ERIC Educational Resources Information Center

    Parikh, Indu; Cuatrecasas, Pedro

    1985-01-01

    Describes the nature of affinity chromatography and its use in purifying enzymes, studying cell interactions, exploring hormone receptors, and other areas. The potential the technique may have in treating disease is also considered. (JN)

  9. Aptamers in Affinity Separations: Stationary Separation

    NASA Astrophysics Data System (ADS)

    Ravelet, Corinne; Peyrin, Eric

    The use of DNA or RNA aptamers as tools in analytical chemistry is a very promising field of research because of their capabilities to bind specifically the target molecules with an affinity similar to that of antibodies. Notably, they appear to be of great interest as target-specific ligands for the separation and capture of various analytes in affinity chromatography and related affinity-based methods such as magnetic bead technology. In this chapter, the recent developments of these aptamer-based separation/capture approaches are addressed.

  10. Quasi-periodic solutions to the hierarchy of four-component Toda lattices

    NASA Astrophysics Data System (ADS)

    Wei, Jiao; Geng, Xianguo; Zeng, Xin

    2016-08-01

    Starting from a discrete 3×3 matrix spectral problem, the hierarchy of four-component Toda lattices is derived by using the stationary discrete zero-curvature equation. Resorting to the characteristic polynomial of the Lax matrix for the hierarchy, we introduce a trigonal curve Km-2 of genus m - 2 and present the related Baker-Akhiezer function and meromorphic function on it. Asymptotic expansions for the Baker-Akhiezer function and meromorphic function are given near three infinite points on the trigonal curve, from which explicit quasi-periodic solutions for the hierarchy of four-component Toda lattices are obtained in terms of the Riemann theta function.

  11. Kernel functions and Baecklund transformations for relativistic Calogero-Moser and Toda systems

    SciTech Connect

    Hallnaes, Martin; Ruijsenaars, Simon

    2012-12-15

    We obtain kernel functions associated with the quantum relativistic Toda systems, both for the periodic version and for the nonperiodic version with its dual. This involves taking limits of previously known results concerning kernel functions for the elliptic and hyperbolic relativistic Calogero-Moser systems. We show that the special kernel functions at issue admit a limit that yields generating functions of Baecklund transformations for the classical relativistic Calogero-Moser and Toda systems. We also obtain the nonrelativistic counterparts of our results, which tie in with previous results in the literature.

  12. Bifurcation Diagrams and Quotient Topological Spaces Under the Action of the Affine Group of a Family of Planar Quadratic Vector Fields

    NASA Astrophysics Data System (ADS)

    Cerba Diaconescu, Oxana; Schlomiuk, Dana; Vulpe, Nicolae

    In this article, we consider the class QSL4{u +vc+w^c, ∞ } of all real quadratic differential systems (dx)/(dt) = p(x, y), (dy)/(dt) = q(x, y) with gcd(p, q) = 1, having invariant lines of total multiplicity four and two complex and one real infinite singularities. We first construct compactified canonical forms for the class QSL4{u +vc+w^c, ∞ } so as to include limit points in the 12-dimensional parameter space of this class. We next construct the bifurcation diagrams for these compactified canonical forms. These diagrams contain many repetitions of phase portraits and we show that these are due to many symmetries under the group action. To retain the essence of the dynamics we finally construct the quotient spaces under the action of the group G = Aff(2, R) × R* of affine transformations and time homotheties and we place the phase portraits in these quotient spaces. The final diagrams retain only the necessary information to capture the dynamics under the motion in the parameter space as well as under this group action. We also present here necessary and sufficient conditions for an affine line to be invariant of multiplicity k for a quadratic system.

  13. The generalized Toda lattices and the Whitham averaged system for the defocusing nonlinear Schrodinger equation

    NASA Astrophysics Data System (ADS)

    Ye, Jian

    In Part I, we first study an iso-spectral deformation of general matrix which is a natural generalization of the nonperiodic Toda lattice equation. This deformation is equivalent to the Cholesky flow. We prove the integrability of the deformation, and give an explicit formula for the solution to the initial value problem. The formula is obtained by generalizing the orthogonalization procedure of Szego. Using the formula, the solution to the LU factorization can be constructed explicitly. Based on the root spaces for simple Lie algebras, we consider several reductions of the equation. This leads to generalized Toda equations related to other classical semi-simple Lie algebra which include the integrable systems studied by Bogoyavlensky and Kostant. We show these systems can be solved explicitly in a unified way. Based on the explicit solutions, we then consider the iso-spectral real manifolds of tridiagonal Hessenberg matrices with distinct real eigenvalues. The manifolds are described by the iso-spectral flows of indefinite Toda lattice equations introduced by Kodama and Ye. These Toda lattices consist of 2N-1 different systems with hamiltonians H = [[1]/over[2

  14. Flow towards diagonalization for many-body-localization models: adaptation of the Toda matrix differential flow to random quantum spin chains

    NASA Astrophysics Data System (ADS)

    Monthus, Cécile

    2016-07-01

    The iterative methods to diagonalize matrices and many-body Hamiltonians can be reformulated as flows of Hamiltonians towards diagonalization driven by unitary transformations that preserve the spectrum. After a comparative overview of the various types of discrete flows (Jacobi, QR-algorithm) and differential flows (Toda, Wegner, White) that have been introduced in the past, we focus on the random XXZ chain with random fields in order to determine the best closed flow within a given subspace of running Hamiltonians. For the special case of the free-fermion random XX chain with random fields, the flow coincides with the Toda differential flow for tridiagonal matrices which is related to the classical integrable Toda chain and which can be seen as the continuous analog of the discrete QR-algorithm. For the random XXZ chain with random fields that displays a many-body-localization transition, the present differential flow should be an interesting alternative to compare with the discrete flow that has been proposed recently to study the many-body-localization properties in a model of interacting fermions (Rademaker and Ortuno 2016 Phys. Rev. Lett. 116, 010404).

  15. Solutions of the sDiff(2)Toda equation with SU(2) symmetry

    NASA Astrophysics Data System (ADS)

    Finley, Daniel; McIver, John K.

    2010-07-01

    We present the general solution to the Plebański equation for an \\bm{\\mathfrak{h}} space that admits Killing vectors for an entire SU(2) of symmetries, which is therefore also the general solution of the sDiff(2)Toda equation that allows these symmetries. Desiring these solutions as a bridge toward the future for yet more general solutions of the sDiff(2)Toda equation, we generalize the earlier work of Olivier, on the Atiyah-Hitchin metric, and re-formulate work of Babich and Korotkin, and Tod, on the Bianchi IX approach to a metric with an SU(2) of symmetries. We also give careful delineations of the conformal transformations required to ensure that a metric of Bianchi IX type has a zero Ricci tensor, so that it is a self-dual, vacuum solution of the complex-valued version of Einstein's equations, as appropriate for the original Plebański equation.

  16. On the evolution of scattering data under perturbations of the Toda lattice

    NASA Astrophysics Data System (ADS)

    Bilman, D.; Nenciu, I.

    2016-09-01

    We present the results of an analytical and numerical study of the long-time behavior for certain Fermi-Pasta-Ulam (FPU) lattices viewed as perturbations of the completely integrable Toda lattice. Our main tools are the direct and inverse scattering transforms for doubly-infinite Jacobi matrices, which are well-known to linearize the Toda flow. We focus in particular on the evolution of the associated scattering data under the perturbed vs. the unperturbed equations. We find that the eigenvalues present initially in the scattering data converge to new, slightly perturbed eigenvalues under the perturbed dynamics of the lattice equation. To these eigenvalues correspond solitary waves that emerge from the solitons in the initial data. We also find that new eigenvalues emerge from the continuous spectrum as the lattice system is let to evolve under the perturbed dynamics.

  17. q-bosons, Toda lattice, Pieri rules and Baxter q-operator

    NASA Astrophysics Data System (ADS)

    Duval, Antoine; Pasquier, Vincent

    2016-04-01

    We use the Pieri rules to recover the q-boson model and show it is equivalent to a discretized version of the relativistic Toda chain. We identify its semi infinite transfer matrix and the corresponding Baxter Q-matrix with half vertex operators related by an ω-duality transformation. We observe that the scalar product of two higher spin XXZ wave functions can be expressed with a Gaudin determinant. In honour of Rodney Baxter’s 75th birthday.

  18. The Full Kostant-Toda Hierarchy on the Positive Flag Variety

    NASA Astrophysics Data System (ADS)

    Kodama, Yuji; Williams, Lauren

    2015-04-01

    We study some geometric and combinatorial aspects of the solution to the full Kostant-Toda (f-KT) hierarchy, when the initial data is given by an arbitrary point on the totally non-negative (tnn) flag variety of . The f-KT flows on the tnn flag variety are complete, and we show that their asymptotics are completely determined by the cell decomposition of the tnn flag variety given by Rietsch (Total positivity and real flag varieties. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, 1998). Our results represent the first results on the asymptotics of the f-KT hierarchy (and even the f-KT lattice); moreover, our results are not confined to the generic flow, but cover non-generic flows as well. We define the f-KT flow on the weight space via the moment map, and show that the closure of each f-KT flow forms an interesting convex polytope which we call a Bruhat interval polytope. In particular, the Bruhat interval polytope for the generic flow is the permutohedron of the symmetric group . We also prove analogous results for the full symmetric Toda hierarchy, by mapping our f-KT solutions to those of the full symmetric Toda hierarchy. In the appendix we show that Bruhat interval polytopes are generalized permutohedra, in the sense of Postnikov (Int. Math. Res. Not. IMRN (6):1026-1106, 2009).

  19. On Affine Fusion and the Phase Model

    NASA Astrophysics Data System (ADS)

    Walton, Mark A.

    2012-11-01

    A brief review is given of the integrable realization of affine fusion discovered recently by Korff and Stroppel. They showed that the affine fusion of the su(n) Wess-Zumino-Novikov-Witten (WZNW) conformal field theories appears in a simple integrable system known as the phase model. The Yang-Baxter equation leads to the construction of commuting operators as Schur polynomials, with noncommuting hopping operators as arguments. The algebraic Bethe ansatz diagonalizes them, revealing a connection to the modular S matrix and fusion of the su(n) WZNW model. The noncommutative Schur polynomials play roles similar to those of the primary field operators in the corresponding WZNW model. In particular, their 3-point functions are the su(n) fusion multiplicities. We show here how the new phase model realization of affine fusion makes obvious the existence of threshold levels, and how it accommodates higher-genus fusion.

  20. Improving an affine and non-linear image registration and/or segmentation task by incorporating characteristics of the displacement field

    NASA Astrophysics Data System (ADS)

    Ens, Konstantin; Heldmann, Stefan; Modersitzki, Jan; Fischer, Bernd

    2009-02-01

    Image registration is an important and active area of medical image processing. Given two images, the idea is to compute a reasonable displacement field which deforms one image such that it becomes similar to the other image. The design of an automatic registration scheme is a tricky task and often the computed displacement field has to be discarded, when the outcome is not satisfactory. On the other hand, however, any displacement field does contain useful information on the underlying images. It is the idea of this note, to utilize this information and to benefit from an even unsuccessful attempt for the subsequent treatment of the images. Here, we make use of typical vector analysis operators like the divergence and curl operator to identify meaningful portions of the displacement field to be used in a follow-up run. The idea is illustrated with the help of academic as well as a real life medical example. It is demonstrated on how the novel methodology may be used to substantially improve a registration result and to solve a difficult segmentation problem.

  1. The dynamics of metric-affine gravity

    SciTech Connect

    Vitagliano, Vincenzo; Sotiriou, Thomas P.; Liberati, Stefano

    2011-05-15

    Highlights: > The role and the dynamics of the connection in metric-affine theories is explored. > The most general second order action does not lead to a dynamical connection. > Including higher order invariants excites new degrees of freedom in the connection. > f(R) actions are also discussed and shown to be a non- representative class. - Abstract: Metric-affine theories of gravity provide an interesting alternative to general relativity: in such an approach, the metric and the affine (not necessarily symmetric) connection are independent quantities. Furthermore, the action should include covariant derivatives of the matter fields, with the covariant derivative naturally defined using the independent connection. As a result, in metric-affine theories a direct coupling involving matter and connection is also present. The role and the dynamics of the connection in such theories is explored. We employ power counting in order to construct the action and search for the minimal requirements it should satisfy for the connection to be dynamical. We find that for the most general action containing lower order invariants of the curvature and the torsion the independent connection does not carry any dynamics. It actually reduces to the role of an auxiliary field and can be completely eliminated algebraically in favour of the metric and the matter field, introducing extra interactions with respect to general relativity. However, we also show that including higher order terms in the action radically changes this picture and excites new degrees of freedom in the connection, making it (or parts of it) dynamical. Constructing actions that constitute exceptions to this rule requires significant fine tuned and/or extra a priori constraints on the connection. We also consider f(R) actions as a particular example in order to show that they constitute a distinct class of metric-affine theories with special properties, and as such they cannot be used as representative toy theories to

  2. Local Affinity Release.

    PubMed

    Delplace, Vianney; Obermeyer, Jaclyn; Shoichet, Molly S

    2016-07-26

    The use of hydrogels for therapeutic delivery is a burgeoning area of investigation. These water-swollen polymer matrices are ideal platforms for localized drug delivery that can be further combined with specific ligands or nanotechnologies to advance the controlled release of small-molecule drugs and proteins. Due to the advantage of hydrophobic, electrostatic, or specific extracellular matrix interactions, affinity-based strategies can overcome burst release and challenges associated with encapsulation. Future studies will provide innovative binding tools, truly stimuli-responsive systems, and original combinations of emerging technologies to control the release of therapeutics spatially and temporally. Local drug delivery can be achieved by directly injecting a therapeutic to its site of action and is advantageous because off-target effects associated with systemic delivery can be minimized. For prolonged benefit, a vehicle that provides sustained drug release is required. Hydrogels are versatile platforms for localized drug release, owing to the large library of biocompatible building blocks from which they can be formed. Injectable hydrogel formulations that gel quickly in situ and provide sustained release of therapeutics are particularly advantageous to minimize invasiveness. The incorporation of polymers, ligands or nanoparticles that have an affinity for the therapeutic of interest improve control over the release of small-molecule drugs and proteins from hydrogels, enabling spatial and temporal control over the delivery. Such affinity-based strategies can overcome drug burst release and challenges associated with protein instability, allowing more effective therapeutic molecule delivery for a range of applications from therapeutic contact lenses to ischemic tissue regeneration. PMID:27403513

  3. Morphometric affinities of gigantopithecus.

    PubMed

    Gelvin, B R

    1980-11-01

    Multivariate analyses, supplemented by univariate statistical methods, of measurements from mandibular tooth crown dimensions and the mandible of Gigantopithecus blacki, G. bilaspurensis, Plio-Plelstocene hominids, Homo erectus, and seven Neogene ape species from the genera Proconsul, Sivapithecus, Ouranopithecus, and Dryopithecus were used to assess the morphometric affinities of Gigantopithecus. The results show that Gigantopithecus displays affinities to Ouranopithecus and to the hominids, particularly the Plio-Plelstocene hominids, rather than to the apes. Ouranopithecus demonstrated dental resemblances to G. bilaspurensis and the Plio-Pleistocene hominids but mandibular similarities to the apes. Results of analyses of tooth and mandibular shape indices, combined with multivariate distance and temporal relationships, suggest that Ouranopithecus is a more likely candidate for Gigantopithecus ancestry than is Silvapithecus indicus. Shape and allometric differences between G. bilaspurensis and the robust australopithecines weaken the argument for an ancestral-descendant relationship between these groups. The results support the hypothesis that Gigantopithecus is an extinct side branch of the Hominidae. PMID:7468790

  4. Asymptotics of a Class of Solutions to the Cylindrical Toda Equations

    NASA Astrophysics Data System (ADS)

    Tracy, Craig A.; Widom, Harold

    The small t asymptotics of a class of solutions to the 2D cylindrical Toda equations is computed. The solutions, , have the representation where Kk$ are integral operators. This class includes the n-periodic cylindrical Toda equations. For n=2 our results reduce to the previously computed asymptotics of the 2D radial sinh-Gordon equation and for n=3 (and with an additional symmetry constraint) they reduce to earlier results for the radial Bullough-Dodd equation. Both of these special cases are examples of Painlevé III and have arisen in various applications. The asymptotics of are derived by computing the small t asymptotics where explicit formulas are given for the quantities ak and bk. The method consists of showing that the resolvent operator of Kk has an approximation in terms of resolvents of certain Wiener-Hopf operators, for which there are explicit integral formulas.

  5. Adjoint affine fusion and tadpoles

    NASA Astrophysics Data System (ADS)

    Urichuk, Andrew; Walton, Mark A.

    2016-06-01

    We study affine fusion with the adjoint representation. For simple Lie algebras, elementary and universal formulas determine the decomposition of a tensor product of an integrable highest-weight representation with the adjoint representation. Using the (refined) affine depth rule, we prove that equally striking results apply to adjoint affine fusion. For diagonal fusion, a coefficient equals the number of nonzero Dynkin labels of the relevant affine highest weight, minus 1. A nice lattice-polytope interpretation follows and allows the straightforward calculation of the genus-1 1-point adjoint Verlinde dimension, the adjoint affine fusion tadpole. Explicit formulas, (piecewise) polynomial in the level, are written for the adjoint tadpoles of all classical Lie algebras. We show that off-diagonal adjoint affine fusion is obtained from the corresponding tensor product by simply dropping non-dominant representations.

  6. Frontal affinity chromatography (FAC): theory and basic aspects.

    PubMed

    Kasai, Ken-ichi

    2014-01-01

    Frontal affinity chromatography (FAC) is a versatile analytical tool for determining specific interactions between biomolecules and is particularly useful in the field of glycobiology. This article presents its basic aspects, merits, and theory. PMID:25117240

  7. FURTHER MAPPING OF THE NATALITY CHRONOME IN TODA CITY (JAPAN) MATERNITY HOSPITAL

    PubMed Central

    YAMANAKA, T.; CORNÉLISSEN, G.; KAZUMA, M.; KAZUMA, N.; MURAKAMI, S.; OTSUKA, K.; SIEGELOVÁ, J.; DUŠEK, J.; SOSÍKOVÁ, M.; HALBERG, F.

    2008-01-01

    In order to investigate any circannual and/or circaseptan variations in birth incidence and birth weight in Toda City (Japan), data on 4,411 consecutive births were obtained from the city’s Maternity Hospital between 1 Jan 1999 and 31 Dec 2001. Data were analysed by cosinor separately for babies with birth weights in given ranges, and separately for boys and girls born at different gestational ages. A circannual rhythm was detected with statistical significance (P=0.047) for birth incidence of all vaginal deliveries, with an acrophase in the fall. A similar result for caesarean sections was of borderline statistical significance. A circaseptan component with a relatively consistent acrophase around midweek was of borderline statistical significance for birth incidence in some of the groups investigated. About-yearly and about-weekly variations were also found to characterize birth weight in some of the groups investigated. PMID:18978949

  8. Mutations of the cluster algebra of type {A}_{1}^{(1)} and the periodic discrete Toda lattice

    NASA Astrophysics Data System (ADS)

    Nobe, Atsushi

    2016-07-01

    A direct connection between two sequences of points, one of which is generated by seed mutations of the cluster algebra of type {A}1(1) and the other by time evolutions of the periodic discrete Toda lattice, is explicitly given. In this construction, each of them is realized as an orbit of a QRT map, and specialization of the parameters in the maps and appropriate choices of the initial points relate them. The connection with the periodic discrete Toda lattice enables us a geometric interpretation of the seed mutations of the cluster algebra of type {A}1(1) as an addition of points on an elliptic curve.

  9. On constructing purely affine theories with matter

    NASA Astrophysics Data System (ADS)

    Cervantes-Cota, Jorge L.; Liebscher, D.-E.

    2016-08-01

    We explore ways to obtain the very existence of a space-time metric from an action principle that does not refer to it a priori. Although there are reasons to believe that only a non-local theory can viably achieve this goal, we investigate here local theories that start with Schrödinger's purely affine theory (Schrödinger in Space-time structure. Cambridge UP, Cambridge, 1950), where he gave reasons to set the metric proportional to the Ricci curvature aposteriori. When we leave the context of unified field theory, and we couple the non-gravitational matter using some weak equivalence principle, we can show that the propagation of shock waves does not define a lightcone when the purely affine theory is local and avoids the explicit use of the Ricci tensor in realizing the weak equivalence principle. When the Ricci tensor is substituted for the metric, the equations seem to have only a very limited set of solutions. This backs the conviction that viable purely affine theories have to be non-local.

  10. Overview of affinity tags for protein purification.

    PubMed

    Kimple, Michelle E; Sondek, John

    2004-09-01

    Addition of an affinity tag is a useful method for differentiating recombinant proteins expressed in bacterial and eukaryotic expression systems from the background of total cellular proteins, and for detecting protein-protein interactions. This overview describes the historical basis for the development of affinity tags, affinity tags that are commonly used today, how to choose an appropriate affinity tag for a particular purpose, and several recently developed affinity tag technologies that may prove useful in the near future. PMID:18429272

  11. Overview of affinity tags for protein purification.

    PubMed

    Kimple, Michelle E; Brill, Allison L; Pasker, Renee L

    2013-01-01

    Addition of an affinity tag is a useful method for differentiating recombinant proteins expressed in bacterial and eukaryotic expression systems from the background of total cellular proteins, as well as for detecting protein-protein interactions. This overview describes the historical basis for the development of affinity tags, affinity tags that are commonly used today, how to choose an appropriate affinity tag for a particular purpose, and several recently developed affinity tag technologies that may prove useful in the near future. PMID:24510596

  12. Affine Contractions on the Plane

    ERIC Educational Resources Information Center

    Celik, D.; Ozdemir, Y.; Ureyen, M.

    2007-01-01

    Contractions play a considerable role in the theory of fractals. However, it is not easy to find contractions which are not similitudes. In this study, it is shown by counter examples that an affine transformation of the plane carrying a given triangle onto another triangle may not be a contraction even if it contracts edges, heights or medians.…

  13. Quantifying Affinity among Chinese Dialects.

    ERIC Educational Resources Information Center

    Cheng, Chin-Chuan

    A study of the relationships between Chinese dialects based on a quantitative measure of dialect affinity is summarized. First, tone values in all the dialect localities available in the early 1970s were used to calculate the dialectal differences in terms of tone height with respect to the "yin and yang" split. In the late 1970s, calculations of…

  14. Theoretical proton affinity and fluoride affinity of nerve agent VX.

    PubMed

    Bera, Narayan C; Maeda, Satoshi; Morokuma, Keiji; Viggiano, Al A

    2010-12-23

    Proton affinity and fluoride affinity of nerve agent VX at all of its possible sites were calculated at the RI-MP2/cc-pVTZ//B3LYP/6-31G* and RI-MP2/aug-cc-pVTZ//B3LYP/6-31+G* levels, respectively. The protonation leads to various unique structures, with H(+) attached to oxygen, nitrogen, and sulfur atoms; among which the nitrogen site possesses the highest proton affinity of -ΔE ∼ 251 kcal/mol, suggesting that this is likely to be the major product. In addition some H(2), CH(4) dissociation as well as destruction channels have been found, among which the CH(4) + [Et-O-P(═O)(Me)-S-(CH(2))(2)-N(+)(iPr)═CHMe] product and the destruction product forming Et-O-P(═O)(Me)-SMe + CH(2)═N(+)(iPr)(2) are only 9 kcal/mol less stable than the most stable N-protonated product. For fluoridization, the S-P destruction channel to give Et-O-P(═O)(Me)(F) + [S-(CH(2))(2)-N-(iPr)(2)](-) is energetically the most favorable, with a fluoride affinity of -ΔE ∼ 44 kcal. Various F(-) ion-molecule complexes are also found, with the one having F(-) interacting with two hydrogen atoms in different alkyl groups to be only 9 kcal/mol higher than the above destruction product. These results suggest VX behaves quite differently from surrogate systems. PMID:21117653

  15. Automatic gesture analysis using constant affine velocity.

    PubMed

    Cifuentes, Jenny; Boulanger, Pierre; Pham, Minh Tu; Moreau, Richard; Prieto, Flavio

    2014-01-01

    Hand human gesture recognition has been an important research topic widely studied around the world, as this field offers the ability to identify, recognize, and analyze human gestures in order to control devices or to interact with computer interfaces. In particular, in medical training, this approach is an important tool that can be used to obtain an objective evaluation of a procedure performance. In this paper, some obstetrical gestures, acquired by a forceps, were studied with the hypothesis that, as the scribbling and drawing movements, they obey the one-sixth power law, an empirical relationship which connects path curvature, torsion, and euclidean velocity. Our results show that obstetrical gestures have a constant affine velocity, which is different for each type of gesture and based on this idea this quantity is proposed as an appropriate classification feature in the hand human gesture recognition field. PMID:25570332

  16. Lectin affinity chromatography of glycolipids

    SciTech Connect

    Torres, B.V.; Smith, D.F.

    1987-05-01

    Since glycolipids (GLs) are either insoluble or form mixed micelles in water, lectin affinity chromatography in aqueous systems has not been applied to their separation. They have overcome this problem by using tetrahydrofuran (THF) in the mobile phase during chromatography. Affinity columns prepared with the GalNAc-specific Helix pomatia agglutinin (HPA) and equilibrated in THF specifically bind the (/sup 3/H)oligosaccharide derived from Forssman GL indicating that the immobilized HPA retained its carbohydrate-binding specificity in this solvent. Intact Forssman GL was bound by the HPA-column equilibrated in THF and was specifically eluted with 0.1 mg/ml GalNAc in THF. Purification of the Forssman GL was achieved when a crude lipid extract of sheep erythrocyte membranes was applied to the HPA-column in THF. Non-specifically bound GLs were eluted from the column using a step gradient of aqueous buffer in THF, while the addition of GalNAc was required to elute the specifically bound GLs. Using this procedure the A-active GLs were purified from a crude lipid extract of type A human erythrocytes in a single chromatographic step. The use of solvents that maintain carbohydrate-binding specificity and lipid solubility will permit the application of affinity chromatography on immobilized carbohydrate-binding proteins to intact GLs.

  17. Fatigue damage prognosis using affine arithmetic

    NASA Astrophysics Data System (ADS)

    Gbaguidi, Audrey; Kim, Daewon

    2014-02-01

    Among the essential steps to be taken in structural health monitoring systems, damage prognosis would be the field that is least investigated due to the complexity of the uncertainties. This paper presents the possibility of using Affine Arithmetic for uncertainty propagation of crack damage in damage prognosis. The structures examined are thin rectangular plates made of titanium alloys with central mode I cracks and a composite plate with an internal delamination caused by mixed mode I and II fracture modes, under a harmonic uniaxial loading condition. The model-based method for crack growth rates are considered using the Paris Erdogan law model for the isotropic plates and the delamination growth law model proposed by Kardomateas for the composite plate. The parameters for both models are randomly taken and their uncertainties are considered as defined by an interval instead of a probability distribution. A Monte Carlo method is also applied to check whether Affine Arithmetic (AA) leads to tight bounds on the lifetime of the structure.

  18. Ferromagnetic levan composite: an affinity matrix to purify lectin.

    PubMed

    Angeli, Renata; da Paz, Nathalia V N; Maciel, Jackeline C; Araújo, Flávia F B; Paiva, Patrícia M G; Calazans, Glícia M T; Valente, Ana Paula; Almeida, Fábio C L; Coelho, Luana C B B; Carvalho, Luiz B; Silva, Maria da Paz C; dos Santos Correia, Maria Tereza

    2009-01-01

    A simple and inexpensive procedure used magnetite and levan to synthesize a composite recovered by a magnetic field. Lectins from Canavalia ensiformis (Con A) and Cratylia mollis (Cramoll 1 and Cramoll 1, 4) did bind specifically to composite. The magnetic property of derivative favored washing out contaminating proteins and recovery of pure lectins with glucose elution. Cramoll 1 was purified by this affinity binding procedure in two steps instead of a previous three-step protocol with ammonium sulfate fractionation, affinity chromatography on Sephadex G-75, and ion exchange chromatography through a CM-cellulose column. PMID:19547713

  19. Ferromagnetic Levan Composite: An Affinity Matrix to Purify Lectin

    PubMed Central

    Angeli, Renata; da Paz, Nathalia V. N.; Maciel, Jackeline C.; Araújo, Flávia F. B.; Paiva, Patrícia M. G.; Calazans, Glícia M. T.; Valente, Ana Paula; Almeida, Fábio C. L.; Coelho, Luana C. B. B.; Carvalho, Luiz B.; Silva, Maria da Paz C.; dos Santos Correia, Maria Tereza

    2009-01-01

    A simple and inexpensive procedure used magnetite and levan to synthesize a composite recovered by a magnetic field. Lectins from Canavalia ensiformis (Con A) and Cratylia mollis (Cramoll 1 and Cramoll 1, 4) did bind specifically to composite. The magnetic property of derivative favored washing out contaminating proteins and recovery of pure lectins with glucose elution. Cramoll 1 was purified by this affinity binding procedure in two steps instead of a previous three-step protocol with ammonium sulfate fractionation, affinity chromatography on Sephadex G-75, and ion exchange chromatography through a CM-cellulose column. PMID:19547713

  20. Immobilized metal ion affinity chromatography.

    PubMed

    Yip, T T; Hutchens, T W

    1992-01-01

    Immobilized metal ion affinity chromatography (IMAC) (1,2) is also referred to as metal chelate chromatography, metal ion interaction chromatography, and ligand-exchange chromatography. We view this affinity separation technique as an intermediate between highly specific, high-affinity bioaffinity separation methods, and wider spectrum, low-specificity adsorption methods, such as ion exchange. The IMAC stationary phases are designed to chelate certain metal ions that have selectivity for specific groups (e.g., His residues) in peptides (e.g., 3-7) and on protein surfaces (8-13). The number of stationary phases that can be synthesized for efficient chelation of metal ions is unlimited, but the critical consideration is that there must be enough exposure of the metal ion to interact with the proteins, preferably in a biospecific manner. Several examples are presented in Fig. 1. The challenge to produce new immobilized chelating groups, including protein surface metal-binding domains (14,15) is being explored continuously. Table 1 presents a list of published procedures for the synthesis and use of stationary phases with immobilized chelating groups. This is by no means exhaustive, and is intended only to give an idea of the scope and versatility of IMAC. Fig. 1 Schematic illustration of several types of immobilized metal-chelating groups, including, iminodiacetate (IDA), tris(carboxymethyl) ethylenediamine (TED), and the metal-binding peptides (GHHPH)(n)G (where n = 1,2,3, and 5) (14,15). Table 1 Immobilized Chelating Groups and Metal Ions Used for Immobilized Metal Ion Affinity Chromatography Chelating group Suitable metal ions Reference Commercial source Immodiacetate Transitional1,2 Pharmacia LKB Pierce Sigma Boehringer Mannheim TosoHaas 2-Hydroxy-3[N-(2- pyrtdylmethyl) glycme]propyl Transitional3 Not available ?-Alky1 mtrilo triacetic acid Transitional4 Not available Carboxymethylated asparhc acid Ca(II)13 Not available Tris (carboxy- methyl) ethylene Diamme

  1. Effectively nonlocal metric-affine gravity

    NASA Astrophysics Data System (ADS)

    Golovnev, Alexey; Koivisto, Tomi; Sandstad, Marit

    2016-03-01

    In metric-affine theories of gravity such as the C-theories, the spacetime connection is associated to a metric that is nontrivially related to the physical metric. In this article, such theories are rewritten in terms of a single metric, and it is shown that they can be recast as effectively nonlocal gravity. With some assumptions, known ghost-free theories with nonsingular and cosmologically interesting properties may be recovered. Relations between different formulations are analyzed at both perturbative and nonperturbative levels, taking carefully into account subtleties with boundary conditions in the presence of integral operators in the action, and equivalences between theories related by nonlocal redefinitions of the fields are verified at the level of equations of motion. This suggests a possible geometrical interpretation of nonlocal gravity as an emergent property of non-Riemannian spacetime structure.

  2. Specific capture of uranyl protein targets by metal affinity chromatography.

    PubMed

    Basset, Christian; Dedieu, Alain; Guérin, Philippe; Quéméneur, Eric; Meyer, Daniel; Vidaud, Claude

    2008-03-28

    To improve general understanding of biochemical mechanisms in the field of uranium toxicology, the identification of protein targets needs to be intensified. Immobilized metal affinity chromatography (IMAC) has been widely developed as a powerful tool for capturing metal binding proteins from biological extracts. However uranyl cations (UO2(2+)) have particular physico-chemical characteristics which prevent them from being immobilized on classical metal chelating supports. We report here on the first development of an immobilized uranyl affinity chromatography method, based on the cation-exchange properties of aminophosphonate groups for uranyl binding. The cation distribution coefficient and loading capacity on the support were determined. Then the stability of the uranyl-bonded phase under our chromatographic conditions was optimized to promote affinity mechanisms. The successful enrichment of uranyl binding proteins from human serum was then proven using proteomic and mass spectral analysis. PMID:18308325

  3. Recent advances in affinity capillary electrophoresis for binding studies.

    PubMed

    Albishri, Hassan M; El Deeb, Sami; AlGarabli, Noura; AlAstal, Raghda; Alhazmi, Hassan A; Nachbar, Markus; El-Hady, Deia Abd; Wätzig, Hermann

    2014-01-01

    The present review covers recent advances and important applications of affinity capillary electrophoresis (ACE). It provides an overview about various ACE types, including ACE-MS, the multiple injection mode, the use of microchips and field-amplified sample injection-ACE. The most common scenarios of the studied affinity interactions are protein-drug, protein-metal ion, protein-protein, protein-DNA, protein-carbohydrate, carbohydrate-drug, peptide-peptide, DNA-drug and antigen-antibody. Approaches for the improvements of ACE in term of precision, rinsing protocols and sensitivity are discussed. The combined use of computer simulation programs to support data evaluation is presented. In conclusion, the performance of ACE is compared with other techniques such as equilibrium dialysis, parallel artificial membrane permeability assay, high-performance affinity chromatography as well as surface plasmon resonance, ultraviolet, circular dichroism, nuclear magnetic resonance, Fourier transform infrared, fluorescence, MS and isothermal titration calorimetry. PMID:25534793

  4. On the electron affinity of the oxygen atom

    NASA Technical Reports Server (NTRS)

    Bauschlicher, C. W., Jr.; Langhoff, S. R.; Partridge, H.; Taylor, P. R.

    1986-01-01

    The electron affinity (EA) of oxygen is computed to be 1.287 eV, using 2p electron full configuration-interaction (CI) wave functions expanded in a 6s5p3d2f Slater-type orbital basis. The best complete active space self-consistent field - multireference CI (CASSCF-MRCI) result including only 2p correlation is 1.263 eV. However, inclusion of 2s intrashell and 2s2p intershell correlation increases the computed EA to 1.290 at the CASSCF-MRCI level. At the full CI basis set limit, the 2s contribution to the electron affinity is estimated to be as large as 0.1 eV. This study clearly establishes the synergistic effect between the higher excitations and basis set completeness on the electron affinity when the 2s electrons are correlated.

  5. Indian craniometric variability and affinities.

    PubMed

    Raghavan, Pathmanathan; Bulbeck, David; Pathmanathan, Gayathiri; Rathee, Suresh Kanta

    2013-01-01

    Recently published craniometric and genetic studies indicate a predominantly indigenous ancestry of Indian populations. We address this issue with a fuller coverage of Indian craniometrics than any done before. We analyse metrical variability within Indian series, Indians' sexual dimorphism, differences between northern and southern Indians, index-based differences of Indian males from other series, and Indians' multivariate affinities. The relationship between a variable's magnitude and its variability is log-linear. This relationship is strengthened by excluding cranial fractions and series with a sample size less than 30. Male crania are typically larger than female crania, but there are also shape differences. Northern Indians differ from southern Indians in various features including narrower orbits and less pronounced medial protrusion of the orbits. Indians resemble Veddas in having small crania and similar cranial shape. Indians' wider geographic affinities lie with "Caucasoid" populations to the northwest, particularly affecting northern Indians. The latter finding is confirmed from shape-based Mahalanobis-D distances calculated for the best sampled male and female series. Demonstration of a distinctive South Asian craniometric profile and the intermediate status of northern Indians between southern Indians and populations northwest of India confirm the predominantly indigenous ancestry of northern and especially southern Indians. PMID:24455409

  6. Indian Craniometric Variability and Affinities

    PubMed Central

    Raghavan, Pathmanathan; Bulbeck, David; Pathmanathan, Gayathiri; Rathee, Suresh Kanta

    2013-01-01

    Recently published craniometric and genetic studies indicate a predominantly indigenous ancestry of Indian populations. We address this issue with a fuller coverage of Indian craniometrics than any done before. We analyse metrical variability within Indian series, Indians' sexual dimorphism, differences between northern and southern Indians, index-based differences of Indian males from other series, and Indians' multivariate affinities. The relationship between a variable's magnitude and its variability is log-linear. This relationship is strengthened by excluding cranial fractions and series with a sample size less than 30. Male crania are typically larger than female crania, but there are also shape differences. Northern Indians differ from southern Indians in various features including narrower orbits and less pronounced medial protrusion of the orbits. Indians resemble Veddas in having small crania and similar cranial shape. Indians' wider geographic affinities lie with “Caucasoid” populations to the northwest, particularly affecting northern Indians. The latter finding is confirmed from shape-based Mahalanobis-D distances calculated for the best sampled male and female series. Demonstration of a distinctive South Asian craniometric profile and the intermediate status of northern Indians between southern Indians and populations northwest of India confirm the predominantly indigenous ancestry of northern and especially southern Indians. PMID:24455409

  7. On Non-Topological Solutions for Planar Liouville Systems of Toda-Type

    NASA Astrophysics Data System (ADS)

    Poliakovsky, Arkady; Tarantello, Gabriella

    2016-05-01

    Motivated by the study of non-abelian Chern Simons vortices of non-topological type in Gauge Field Theory, see e.g. Gudnason (Nucl Phys B 821:151-169, 2009), Gudnason (Nucl Phys B 840:160-185, 2010) and Dunne (Lecture Notes in Physics, New Series, vol 36. Springer, Heidelberg, 1995), we analyse the solvability of the following (normalised) Liouville-type system in the presence of singular sources: (1)_τ -Δ u_1 = e^{u_1} - τ e^{u_2} - 4N π δ_0, -Δ u_2 = e^{u_2} - τ e^{u_1}, β_1 = 1/2π int_{R2} e^{u_1} {and } β_2 = 1/2π int_{R2} e^{u_2}, with {τ > 0} and {N > 0} . We identify necessary and sufficient conditions on the parameter {τ} and the "flux" pair: {(β_1, β_2),} which ensure the radial solvability of {(1)_τ.}

  8. The Weyl-Cartan Space Problem in Purely Affine Theory

    NASA Astrophysics Data System (ADS)

    von Borzeszkowski, Horst-Heino; Treder, Hans-Jürgen

    1997-04-01

    According to Poincaré, only the ``epistemological sum of geometry and physics is measurable". Of course, there are requirements of measurement to be imposed on geometry because otherwise the theory resting on this geometry cannot be physically interpreted. In particular, the Weyl--Cartan space problem must be solved, i.e., it must be guaranteed that the comparison of distances is compatible with the Levi-Civita transport. In the present paper, we discuss these requirements of measurement and show that in the (purely affine) Einstein-Schrödinger unified field theory the solution of the Weyl-Cartan space problem simultaneously determines the matter via Einstein's equations. Here the affine field $\\Gamma^ikl$ represents Poincaré's sum, and the solution of the space problem means its splitting in a metrical space and in matter fields, where the latter are given by the torsion tensor $\\Gamma^i_{[kl]}$.

  9. Affine hypersurfaces with parallel difference tensor relative to affine α-connection

    NASA Astrophysics Data System (ADS)

    Li, Cece

    2014-12-01

    Li and Zhang (2014) studied affine hypersurfaces of R n + 1 with parallel difference tensor relative to the affine α-connection ∇ (α), and characterized the generalized Cayley hypersurfaces by K n - 1 ≠ 0 and ∇ (α) K = 0 for some nonzero constant α, where the affine α-connection ∇ (α) of information geometry was introduced on affine hypersurface. In this paper, by a slightly different method we continue to study affine hypersurfaces with ∇ (α) K = 0, if α = 0 we further assume that the Pick invariant vanishes and affine metric is of constant sectional curvature. It is proved that they are either hyperquadrics or improper affine hypersphere with flat indefinite affine metric, the latter can be locally given as a graph of a polynomial of at most degree n + 1 with constant Hessian determinant. In particular, if the affine metric is definite, Lorentzian, or its negative index is 2, we complete the classification of such hypersurfaces.

  10. The maximal affinity of ligands

    PubMed Central

    Kuntz, I. D.; Chen, K.; Sharp, K. A.; Kollman, P. A.

    1999-01-01

    We explore the question of what are the best ligands for macromolecular targets. A survey of experimental data on a large number of the strongest-binding ligands indicates that the free energy of binding increases with the number of nonhydrogen atoms with an initial slope of ≈−1.5 kcal/mol (1 cal = 4.18 J) per atom. For ligands that contain more than 15 nonhydrogen atoms, the free energy of binding increases very little with relative molecular mass. This nonlinearity is largely ascribed to nonthermodynamic factors. An analysis of the dominant interactions suggests that van der Waals interactions and hydrophobic effects provide a reasonable basis for understanding binding affinities across the entire set of ligands. Interesting outliers that bind unusually strongly on a per atom basis include metal ions, covalently attached ligands, and a few well known complexes such as biotin–avidin. PMID:10468550

  11. Protein Complex Purification by Affinity Capture.

    PubMed

    LaCava, John; Fernandez-Martinez, Javier; Hakhverdyan, Zhanna; Rout, Michael P

    2016-01-01

    Affinity capture has become a powerful technique for consistently purifying endogenous protein complexes, facilitating biochemical and biophysical assays on otherwise inaccessible biological assemblies, and enabling broader interactomic exploration. For this procedure, cells are broken and their contents separated and extracted into a solvent, permitting access to target macromolecular complexes thus released in solution. The complexes are specifically enriched from the extract onto a solid medium coupled with an affinity reagent-usually an antibody-that recognizes the target either directly or through an appended affinity tag, allowing subsequent characterization of the complex. Here, we discuss approaches and considerations for purifying endogenous yeast protein complexes by affinity capture. PMID:27371601

  12. A Novel Vertex Affinity for Community Detection

    SciTech Connect

    Yoo, Andy; Sanders, Geoffrey; Henson, Van; Vassilevski, Panayot

    2015-10-05

    We propose a novel vertex affinity measure in this paper. The new vertex affinity quantifies the proximity between two vertices in terms of their clustering strength and is ideal for such graph analytics applications as community detection. We also developed a framework that combines simple graph searches and resistance circuit formulas to compute the vertex affinity efficiently. We study the properties of the new affinity measure empirically in comparison to those of other popular vertex proximity metrics. Our results show that the existing metrics are ill-suited for community detection due to their lack of fundamental properties that are essential for correctly capturing inter- and intra-cluster vertex proximity.

  13. Structural determinants of sigma receptor affinity

    SciTech Connect

    Largent, B.L.; Wikstroem, H.G.; Gundlach, A.L.; Snyder, S.H.

    1987-12-01

    The structural determinants of sigma receptor affinity have been evaluated by examining a wide range of compounds related to opioids, neuroleptics, and phenylpiperidine dopaminergic structures for affinity at sigma receptor-binding sites labeled with (+)-(/sup 3/H)3-PPP. Among opioid compounds, requirements for sigma receptor affinity differ strikingly from the determinants of affinity for conventional opiate receptors. Sigma sites display reverse stereoselectivity to classical opiate receptors. Multi-ringed opiate-related compounds such as morphine and naloxone have negligible affinity for sigma sites, with the highest sigma receptor affinity apparent for benzomorphans which lack the C ring of opioids. Highest affinity among opioids and other compounds occurs with more lipophilic N-substituents. This feature is particularly striking among the 3-PPP derivatives as well as the opioids. The butyrophenone haloperidol is the most potent drug at sigma receptors we have detected. Among the series of butyrophenones, receptor affinity is primarily associated with the 4-phenylpiperidine moiety. Conformational calculations for various compounds indicate a fairly wide range of tolerance for distances between the aromatic ring and the amine nitrogen, which may account for the potency at sigma receptors of structures of considerable diversity. Among the wide range of structures that bind to sigma receptor-binding sites, the common pharmacophore associated with high receptor affinity is a phenylpiperidine with a lipophilic N-substituent.

  14. Compact noncontraction semigroups of affine operators

    NASA Astrophysics Data System (ADS)

    Voynov, A. S.; Protasov, V. Yu

    2015-07-01

    We analyze compact multiplicative semigroups of affine operators acting in a finite-dimensional space. The main result states that every such semigroup is either contracting, that is, contains elements of arbitrarily small operator norm, or all its operators share a common invariant affine subspace on which this semigroup is contracting. The proof uses functional difference equations with contraction of the argument. We look at applications to self-affine partitions of convex sets, the investigation of finite affine semigroups and the proof of a criterion of primitivity for nonnegative matrix families. Bibliography: 32 titles.

  15. Structure of classical affine and classical affine fractional W-algebras

    SciTech Connect

    Suh, Uhi Rinn

    2015-01-15

    We introduce a classical BRST complex (See Definition 3.2.) and show that one can construct a classical affine W-algebra via the complex. This definition clarifies that classical affine W-algebras can be considered as quasi-classical limits of quantum affine W-algebras. We also give a definition of a classical affine fractional W-algebra as a Poisson vertex algebra. As in the classical affine case, a classical affine fractional W-algebra has two compatible λ-brackets and is isomorphic to an algebra of differential polynomials as a differential algebra. When a classical affine fractional W-algebra is associated to a minimal nilpotent, we describe explicit forms of free generators and compute λ-brackets between them. Provided some assumptions on a classical affine fractional W-algebra, we find an infinite sequence of integrable systems related to the algebra, using the generalized Drinfel’d and Sokolov reduction.

  16. Scaling analysis of affinity propagation.

    PubMed

    Furtlehner, Cyril; Sebag, Michèle; Zhang, Xiangliang

    2010-06-01

    We analyze and exploit some scaling properties of the affinity propagation (AP) clustering algorithm proposed by Frey and Dueck [Science 315, 972 (2007)]. Following a divide and conquer strategy we setup an exact renormalization-based approach to address the question of clustering consistency, in particular, how many cluster are present in a given data set. We first observe that the divide and conquer strategy, used on a large data set hierarchically reduces the complexity O(N2) to O(N((h+2)/(h+1))) , for a data set of size N and a depth h of the hierarchical strategy. For a data set embedded in a d -dimensional space, we show that this is obtained without notably damaging the precision except in dimension d=2 . In fact, for d larger than 2 the relative loss in precision scales such as N((2-d)/(h+1)d). Finally, under some conditions we observe that there is a value s* of the penalty coefficient, a free parameter used to fix the number of clusters, which separates a fragmentation phase (for ss*) of the underlying hidden cluster structure. At this precise point holds a self-similarity property which can be exploited by the hierarchical strategy to actually locate its position, as a result of an exact decimation procedure. From this observation, a strategy based on AP can be defined to find out how many clusters are present in a given data set. PMID:20866473

  17. Methods for Improving Aptamer Binding Affinity.

    PubMed

    Hasegawa, Hijiri; Savory, Nasa; Abe, Koichi; Ikebukuro, Kazunori

    2016-01-01

    Aptamers are single stranded oligonucleotides that bind a wide range of biological targets. Although aptamers can be isolated from pools of random sequence oligonucleotides using affinity-based selection, aptamers with high affinities are not always obtained. Therefore, further refinement of aptamers is required to achieve desired binding affinities. The optimization of primary sequences and stabilization of aptamer conformations are the main approaches to refining the binding properties of aptamers. In particular, sequence optimization using combined in silico sequence recombinations and in vitro functional evaluations is effective for the improvement of binding affinities, however, the binding affinities of aptamers are limited by the low hydrophobicity of nucleic acids. Accordingly, introduction of hydrophobic moieties into aptamers expands the diversity of interactions between aptamers and targets. Moreover, construction of multivalent aptamers by connecting aptamers that recognize distinct epitopes is an attractive approach to substantial increases in binding affinity. In addition, binding affinities can be tuned by optimizing the scaffolds of multivalent constructs. In this review, we summarize the various techniques for improving the binding affinities of aptamers. PMID:27043498

  18. Affine root systems and dual numbers

    NASA Astrophysics Data System (ADS)

    Kostyakov, I. V.; Gromov, N. A.; Kuratov, V. V.

    The root systems in Carroll spaces with degenerate metric are defined. It is shown that their Cartan matrices and reflection groups are affine. Due to the geometric consideration the root system structure of affine algebras is determined by a sufficiently simple algorithm.

  19. Loop realizations of quantum affine algebras

    SciTech Connect

    Cautis, Sabin; Licata, Anthony

    2012-12-15

    We give a simplified description of quantum affine algebras in their loop presentation. This description is related to Drinfeld's new realization via halves of vertex operators. We also define an idempotent version of the quantum affine algebra which is suitable for categorification.

  20. Improving image segmentation by learning region affinities

    SciTech Connect

    Prasad, Lakshman; Yang, Xingwei; Latecki, Longin J

    2010-11-03

    We utilize the context information of other regions in hierarchical image segmentation to learn new regions affinities. It is well known that a single choice of quantization of an image space is highly unlikely to be a common optimal quantization level for all categories. Each level of quantization has its own benefits. Therefore, we utilize the hierarchical information among different quantizations as well as spatial proximity of their regions. The proposed affinity learning takes into account higher order relations among image regions, both local and long range relations, making it robust to instabilities and errors of the original, pairwise region affinities. Once the learnt affinities are obtained, we use a standard image segmentation algorithm to get the final segmentation. Moreover, the learnt affinities can be naturally unutilized in interactive segmentation. Experimental results on Berkeley Segmentation Dataset and MSRC Object Recognition Dataset are comparable and in some aspects better than the state-of-art methods.

  1. Development of the affinity materials for phosphorylated proteins/peptides enrichment in phosphoproteomics analysis.

    PubMed

    Wang, Zhi-Gang; Lv, Nan; Bi, Wen-Zhi; Zhang, Ji-Lin; Ni, Jia-Zuan

    2015-04-29

    Reversible protein phosphorylation is a key event in numerous biological processes. Mass spectrometry (MS) is the most powerful analysis tool in modern phosphoproteomics. However, the direct MS analysis of phosphorylated proteins/peptides is still a big challenge because of the low abundance and insufficient ionization of phosphorylated proteins/peptides as well as the suppression effects of nontargets. Enrichment of phosphorylated proteins/peptides by affinity materials from complex biosamples is the most widely used strategy to enhance the MS detection. The demand of efficiently enriching phosphorylated proteins/peptides has spawned diverse affinity materials based on different enrichment principles (e.g., electronic attraction, chelating). In this review, we summarize the recent development of various affinity materials for phosphorylated proteins/peptides enrichment. We will highlight the design and fabrication of these affinity materials, discuss the enrichment mechanisms involved in different affinity materials, and suggest the future challenges and research directions in this field. PMID:25845677

  2. Characterizing traveling-wave collisions in granular chains starting from integrable limits: the case of the Korteweg-de Vries equation and the Toda lattice.

    PubMed

    Shen, Y; Kevrekidis, P G; Sen, S; Hoffman, A

    2014-08-01

    Our aim in the present work is to develop approximations for the collisional dynamics of traveling waves in the context of granular chains in the presence of precompression. To that effect, we aim to quantify approximations of the relevant Hertzian FPU-type lattice through both the Korteweg-de Vries (KdV) equation and the Toda lattice. Using the availability in such settings of both one-soliton and two-soliton solutions in explicit analytical form, we initialize such coherent structures in the granular chain and observe the proximity of the resulting evolution to the underlying integrable (KdV or Toda) model. While the KdV offers the possibility to accurately capture collisions of solitary waves propagating in the same direction, the Toda lattice enables capturing both copropagating and counterpropagating soliton collisions. The error in the approximation is quantified numerically and connections to bounds established in the mathematical literature are also given. PMID:25215797

  3. Solutions for the Mikhailov-Shabat-Yamilov Difference-Differential Equations and Generalized Solutions for the Volterra and the Toda Lattice Equations

    NASA Astrophysics Data System (ADS)

    Narita, K.

    1998-03-01

    We present two types of mixed 1-rational N-soliton solutions and two types of special solutions for four types of Volterra-related difference-differential equations arising in Mikhailov, Shabat and Yamilov's lists. We also find new expressions of mixed 1-rational N-soliton solutions for the Volterra and the Toda lattice equations based on the invariance of Gibbon and Tabor's equation (J. Math. Phys. 26 (1985), 1956) under the fractional linear transformation. By taking appropriate limits of wave numbers, we find some new rational solutions for the Volterra and the Toda lattice equations. We also present elliptic function solutions for the Volterra and the Toda lattice equations different from known ones based on the same formulation.

  4. Affine gravity, Palatini formalism and charges

    NASA Astrophysics Data System (ADS)

    Katz, Joseph; Livshits, Gideon I.

    2011-12-01

    Affine gravity and the Palatini formalism contribute both to produce a simple and unique formula for calculating charges at spatial and null infinity for Lovelock type Lagrangians whose variational derivatives do not depend on second-order derivatives of the field components. The method is based on the covariant generalization due to Julia and Silva of the Regge-Teitelboim procedure that was used to define properly the mass in the classical formulation of Einstein's theory of gravity. Numerous applications reproduce standard results obtained by other secure but mostly specialized method like in ADM energy for asymptotically flat spacetimes and in Abbot and Deser for asymptotically de Sitter and anti-de Sitter spacetimes, both at spatial infinity. As a novel application we calculate the Bondi energy loss in five dimensional gravity, based on the asymptotic solution given by Tanabe et al. and obtain, as expected, the same result. We also give the for Einstein-Gauss-Bonnet gravity and find the superpotential for Lovelock theories of gravity when the number of dimensions tends to infinity with maximally symmetrical boundaries. The paper is written in standard component formalism.

  5. A new method of synthesizing biopolymeric affinity ligands.

    PubMed

    Chaga, G S; Guzman, R; Porath, J O

    1997-08-01

    (1) A new concept for producing soluble polymeric affinity ligands is proposed and exemplified. By solid-phase synthesis, an insoluble hydrophilic polymer is converted into an affinity gel. The gel is hydrolytically degraded to water-soluble affinity polymeric ligands which are recovered and purified. (2) A water-soluble biopolymeric metal-affinity carrier based on an iminodiacetic acid (IDA) derivative of dextran has been synthesized through the modification of Sephadex G-200 by IDA, followed by hydrolysis with dextranase and size-exclusion-chromatographic purification of the high-molecular-mass fragments. (3) The molecular size of the soluble products as a function of hydrolysis time with dextranase from Penicillium sp. was determined. The range of molecular size of the biopolymeric chelating ligand varies from around 200 Da to greater than 580 kDa. (4) The influence of three metal ions chelated with the Sephadex derivative on the hydrolysis rate and the molecular-size distribution of end products was studied. Eu3+ was found to improve the rate of solubilization. Ni2+ and Cu2+ decreased the hydrolysis rate, as compared with that of the metal-free IDA-Sephadex. (5) The method introduced here has the potential of being developed and applied as a general technology for synthesis of soluble multifunctional affinity ligands. Such ligands should be useful for liquid-phase extraction as well as for the synthesis of adsorbents with localized multiple binding sites. Other possible fields of applications are to be found in medicine, where they could be used for slow drug delivery or detoxification, and in analytical chemistry, where they could be used in various assays. PMID:9261997

  6. Novel trends in affinity biosensors: current challenges and perspectives

    NASA Astrophysics Data System (ADS)

    Arugula, Mary A.; Simonian, Aleksandr

    2014-03-01

    Molecular biorecognition processes facilitate physical and biochemical interactions between molecules in all crucial metabolic pathways. Perhaps the target analyte and the biorecognition element interactions have the most impactful use in biosensing applications. Traditional analytical sensing systems offer excellent biorecognition elements with the ability to detect and determine the presence of analytes. High affinity antibodies and DNA play an important role in the development of affinity biosensors based on electrochemical, optical and mass sensitive approaches. Advancements in this area routinely employ labels, label free, nanoparticles, multifunctional matrices, carbon nanotubes and other methods to meet the requirements of its own application. However, despite increasing affinity ceilings for conventional biosensors, the field draws back in meeting specifically important demands, such as long-term stability, ultrasensitivity, rapid detection, extreme selectivity, strong biological base, calibration, in vivo measurements, regeneration, satisfactory performance and ease of production. Nevertheless, recent efforts through this line have produced novel high-tech nanosensing systems such as ‘aptamers’ and ‘phages’ which exhibit high-throughput sensing. Aptamers and phages are powerful tools that excel over antibodies in sensibility, stability, multi-detection, in vivo measurements and regeneration. Phages are superior in stability, screening for affinity-based target molecules ranging from small to proteins and even cells, and easy production. In this review, we focus mainly on recent developments in affinity-based biosensors such as immunosensors, DNA sensors, emphasizing aptasensors and phage-based biosensors basing on novel electrochemical, optical and mass sensitive detection techniques. We also address enzyme inhibition-based biosensors and the current problems associated with the above sensors and their future perspectives.

  7. Affinity Proteomics in the mountains: Alpbach 2015.

    PubMed

    Taussig, Michael J

    2016-09-25

    The 2015 Alpbach Workshop on Affinity Proteomics, organised by the EU AFFINOMICS consortium, was the 7th workshop in this series. As in previous years, the focus of the event was the current state of affinity methods for proteome analysis, including complementarity with mass spectrometry, progress in recombinant binder production methods, alternatives to classical antibodies as affinity reagents, analysis of proteome targets, industry focus on biomarkers, and diagnostic and clinical applications. The combination of excellent science with Austrian mountain scenery and winter sports engender an atmosphere that makes this series of workshops exceptional. The articles in this Special Issue represent a cross-section of the presentations at the 2015 meeting. PMID:27118167

  8. Optimized Affinity Capture of Yeast Protein Complexes.

    PubMed

    LaCava, John; Fernandez-Martinez, Javier; Hakhverdyan, Zhanna; Rout, Michael P

    2016-01-01

    Here, we describe an affinity isolation protocol. It uses cryomilled yeast cell powder for producing cell extracts and antibody-conjugated paramagnetic beads for affinity capture. Guidelines for determining the optimal extraction solvent composition are provided. Captured proteins are eluted in a denaturing solvent (sodium dodecyl sulfate polyacrylamide gel electrophoresis sample buffer) for gel-based proteomic analyses. Although the procedures can be modified to use other sources of cell extract and other forms of affinity media, to date we have consistently obtained the best results with the method presented. PMID:27371596

  9. Affinity purification of heme-tagged proteins.

    PubMed

    Asher, Wesley B; Bren, Kara L

    2014-01-01

    Protein affinity purification techniques are widely used for isolating pure target proteins for biochemical and structural characterization. Herein, we describe the protocol for affinity-based purification of proteins expressed in Escherichia coli that uses the coordination of a peptide tag covalently modified with heme c, known as a heme-tag, to an L-histidine immobilized Sepharose resin. This approach provides an affinity purification tag visible to the eye, facilitating tracking of the protein. In addition, we describe methods for specifically detecting heme-tagged proteins in SDS-PAGE gels using a heme-staining procedure and for quantifying the proteins using a pyridine hemochrome assay. PMID:24943311

  10. Parafermionic representation of the affine /sl(21C) algebra at fractional level

    NASA Astrophysics Data System (ADS)

    Bowcock, P.; Hayes, M.; Taormina, A.

    1999-12-01

    The four fermionic currents of the affine superalgebra /sl(21C) at fractional level k=1/u-1,u∈N are shown to be realised in terms of a free scalar field, an /sl(2C) doublet field and primary fields of the parafermionic algebra Zu-1.

  11. PRINCIPLES OF AFFINITY-BASED BIOSENSORS

    EPA Science Inventory

    Despite the amount of resources that have been invested by national and international academic, government, and commercial sectors to develop affinity-based biosensor products, little obvious success has been realized through commercialization of these devices for specific applic...

  12. Minimal information to determine affine shape equivalence.

    PubMed

    Wagemans, J; Van Gool, L; Lamote, C; Foster, D H

    2000-04-01

    Participants judged the affine equivalence of 2 simultaneously presented 4-point patterns. Performance level (d') varied between 1.5 and 2.7, depending on the information available for solving the correspondence problem (insufficient in Experiment 1a, superfluous in Experiment 1b, and minimal in Experiments 1c, 2a, 2b) and on the exposure time (unlimited in Experiments 1 and 2a and 500 ms in Experiment 2b), but it did not vary much with the complexity of the affine transformation (rotation and slant in Experiment 1 and same plus tilt in Experiment 2). Performance in Experiment 3 was lower with 3-point patterns than with 4-point patterns, whereas blocking the trials according to the affine transformation parameters had little effect. Determining affine shape equivalence with minimal-information displays is based on a fast assessment of qualitatively or quasi-invariant properties such as convexity/ concavity, parallelism, and collinearity. PMID:10811156

  13. Protein purification using PDZ affinity chromatography.

    PubMed

    Walkup, Ward G; Kennedy, Mary B

    2015-01-01

    PDZ domains function in nature as protein-binding domains within scaffold and membrane-associated proteins. They comprise approximately 90 residues and undergo specific, high-affinity interactions with complementary C-terminal peptide sequences, other PDZ domains, and/or phospholipids. We have previously shown that the specific, strong interactions of PDZ domains with their ligands make them well suited for use in affinity chromatography. This unit provides protocols for the PDZ affinity chromatography procedure that are applicable for the purification of proteins that contain PDZ domains or PDZ domain-binding ligands, either naturally or introduced by genetic engineering. We detail the preparation of affinity resins composed of PDZ domains or PDZ domain peptide ligands coupled to solid supports. These resins can be used to purify proteins containing endogenous or genetically introduced PDZ domains or ligands, eluting the proteins with free PDZ domain peptide ligands. PMID:25829303

  14. Visualizing antibody affinity maturation in germinal centers.

    PubMed

    Tas, Jeroen M J; Mesin, Luka; Pasqual, Giulia; Targ, Sasha; Jacobsen, Johanne T; Mano, Yasuko M; Chen, Casie S; Weill, Jean-Claude; Reynaud, Claude-Agnès; Browne, Edward P; Meyer-Hermann, Michael; Victora, Gabriel D

    2016-03-01

    Antibodies somatically mutate to attain high affinity in germinal centers (GCs). There, competition between B cell clones and among somatic mutants of each clone drives an increase in average affinity across the population. The extent to which higher-affinity cells eliminating competitors restricts clonal diversity is unknown. By combining multiphoton microscopy and sequencing, we show that tens to hundreds of distinct B cell clones seed each GC and that GCs lose clonal diversity at widely disparate rates. Furthermore, efficient affinity maturation can occur in the absence of homogenizing selection, ensuring that many clones can mature in parallel within the same GC. Our findings have implications for development of vaccines in which antibodies with nonimmunodominant specificities must be elicited, as is the case for HIV-1 and influenza. PMID:26912368

  15. Higher Sugawara Operators for the Quantum Affine Algebras of Type A

    NASA Astrophysics Data System (ADS)

    Frappat, Luc; Jing, Naihuan; Molev, Alexander; Ragoucy, Eric

    2016-07-01

    We give explicit formulas for the elements of the center of the completed quantum affine algebra in type A at the critical level that are associated with the fundamental representations. We calculate the images of these elements under a Harish-Chandra-type homomorphism. These images coincide with those in the free field realization of the quantum affine algebra and reproduce generators of the q-deformed classical {{mathcal W}}-algebra of Frenkel and Reshetikhin.

  16. Affinity engineering of maltoporin: variants with enhanced affinity for particular ligands.

    PubMed

    Clune, A; Lee, K S; Ferenci, T

    1984-05-31

    Affinity-chromatographic selection on immobilized starch was used to selectively enhance the affinity of the maltodextrin-specific pore protein ( maltoporin , LamB protein, or lambda receptor protein) in the outer membrane of E. coli. Selection strategies were established for rare bacteria in large populations producing maltoporin variants with enhanced affinities for both starch and maltose, for starch but not maltose and for maltose but not starch. Three classes of lamB mutants with up to eight-fold increase in affinity for particular ligands were isolated. These mutants provide a unique range of modifications in the specificity of a transport protein. PMID:6375667

  17. Classification of neocortical interneurons using affinity propagation

    PubMed Central

    Santana, Roberto; McGarry, Laura M.; Bielza, Concha; Larrañaga, Pedro; Yuste, Rafael

    2013-01-01

    In spite of over a century of research on cortical circuits, it is still unknown how many classes of cortical neurons exist. In fact, neuronal classification is a difficult problem because it is unclear how to designate a neuronal cell class and what are the best characteristics to define them. Recently, unsupervised classifications using cluster analysis based on morphological, physiological, or molecular characteristics, have provided quantitative and unbiased identification of distinct neuronal subtypes, when applied to selected datasets. However, better and more robust classification methods are needed for increasingly complex and larger datasets. Here, we explored the use of affinity propagation, a recently developed unsupervised classification algorithm imported from machine learning, which gives a representative example or exemplar for each cluster. As a case study, we applied affinity propagation to a test dataset of 337 interneurons belonging to four subtypes, previously identified based on morphological and physiological characteristics. We found that affinity propagation correctly classified most of the neurons in a blind, non-supervised manner. Affinity propagation outperformed Ward's method, a current standard clustering approach, in classifying the neurons into 4 subtypes. Affinity propagation could therefore be used in future studies to validly classify neurons, as a first step to help reverse engineer neural circuits. PMID:24348339

  18. Classification of neocortical interneurons using affinity propagation.

    PubMed

    Santana, Roberto; McGarry, Laura M; Bielza, Concha; Larrañaga, Pedro; Yuste, Rafael

    2013-01-01

    In spite of over a century of research on cortical circuits, it is still unknown how many classes of cortical neurons exist. In fact, neuronal classification is a difficult problem because it is unclear how to designate a neuronal cell class and what are the best characteristics to define them. Recently, unsupervised classifications using cluster analysis based on morphological, physiological, or molecular characteristics, have provided quantitative and unbiased identification of distinct neuronal subtypes, when applied to selected datasets. However, better and more robust classification methods are needed for increasingly complex and larger datasets. Here, we explored the use of affinity propagation, a recently developed unsupervised classification algorithm imported from machine learning, which gives a representative example or exemplar for each cluster. As a case study, we applied affinity propagation to a test dataset of 337 interneurons belonging to four subtypes, previously identified based on morphological and physiological characteristics. We found that affinity propagation correctly classified most of the neurons in a blind, non-supervised manner. Affinity propagation outperformed Ward's method, a current standard clustering approach, in classifying the neurons into 4 subtypes. Affinity propagation could therefore be used in future studies to validly classify neurons, as a first step to help reverse engineer neural circuits. PMID:24348339

  19. Affinity purification of aprotinin from bovine lung.

    PubMed

    Xin, Yu; Liu, Lanhua; Chen, Beizhan; Zhang, Ling; Tong, Yanjun

    2015-05-01

    An affinity protocol for the purification of aprotinin from bovine lung was developed. To simulate the structure of sucrose octasulfate, a natural specific probe for aprotinin, the affinity ligand was composed of an acidic head and a hydrophobic stick, and was then linked with Sepharose. The sorbent was then subjected to adsorption analysis with pure aprotinin. The purification process consisted of one step of affinity chromatography and another step of ultrafiltration. Then purified aprotinin was subjected to sodium dodecyl sulfate polyacrylamide gel electrophoresis, trypsin inhibitor activity, gel-filtration, and thin-layer chromatography analysis. As calculated, the theoretical maximum adsorption (Qmax ) of the affinity sorbent was 25,476.0 ± 184.8 kallikrein inactivator unit/g wet gel; the dissociation constant of the complex "immobilized ligand-aprotinin" (Kd ) was 4.6 ± 0.1 kallikrein inactivator unit/mL. After the affinity separation of bovine lung aprotinin, reducing sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis and gel-filtration chromatography revealed that the protein was a single polypeptide, and the purities were ∼ 97 and 100%, respectively; the purified peptide was also confirmed with aprotinin standard by gel-filtration chromatography and thin-layer chromatography. After the whole purification process, protein, and bioactivity recoveries were 2.2 and 92.6%, respectively; and the specific activity was up to 15,907.1 ± 10.2 kallikrein inactivator unit/mg. PMID:25677462

  20. Identity, Affinity, Reality: Making the Case for Affinity Groups in Elementary School

    ERIC Educational Resources Information Center

    Parsons, Julie; Ridley, Kimberly

    2012-01-01

    Affinity groups are places where students build connections and process "ouch" moments from their classes. Children talk about the isolation they sometimes feel. The relationships students gain through race-based affinity groups enable them to feel less alone with their emotions and help them build a stronger sense of self. At the same time,…

  1. Modified gravity in three dimensional metric-affine scenarios

    NASA Astrophysics Data System (ADS)

    Bambi, Cosimo; Ghasemi-Nodehi, M.; Rubiera-Garcia, D.

    2015-08-01

    We consider metric-affine scenarios where a modified gravitational action is sourced by electrovacuum fields in a three dimensional space-time. We first study the case of f (R ) theories, finding deviations near the center as compared to the solutions of general relativity. We then consider Born-Infeld gravity, which has raised a lot of interest in the last few years regarding its applications in astrophysics and cosmology, and show that new features always arise at a finite distance from the center. Several properties of the resulting space-times, in particular in presence of a cosmological constant term, are discussed.

  2. Displacement phenomena in lectin affinity chromatography.

    PubMed

    Cho, Wonryeon

    2015-10-01

    The work described here examines displacement phenomena that play a role in lectin affinity chromatography and their potential to impact reproducibility. This was achieved using Lycopersicon esculentum lectin (LEL), a lectin widely used in monitoring cancer. Four small identical LEL columns were coupled in series to form a single affinity chromatography system with the last in the series connected to an absorbance detector. The serial affinity column set (SACS) was then loaded with human plasma proteins. At the completion of loading, the column set was disassembled, the four columns were eluted individually, the captured proteins were trypsin digested, the peptides were deglycosylated with PNGase F, and the parent proteins were identified through mass spectral analyses. Significantly different sets of glycoproteins were selected by each column, some proteins appearing to be exclusively bound to the first column while others were bound further along in the series. Clearly, sample displacement chromatography (SDC) occurs. Glycoproteins were bound at different places in the column train, identifying the presence of glycoforms with different affinity on a single glycoprotein. It is not possible to see these phenomena in the single column mode of chromatography. Moreover, low abundance proteins were enriched, which facilitates detection. The great advantage of this method is that it differentiates between glycoproteins on the basis of their binding affinity. Displacement phenomena are concluded to be a significant component of the separation mechanism in heavily loaded lectin affinity chromatography columns. This further suggests that care must be exercised in sample loading of lectin columns to prevent analyte displacement with nonretained proteins. PMID:26348026

  3. Designer protein delivery: From natural to engineered affinity-controlled release systems.

    PubMed

    Pakulska, Malgosia M; Miersch, Shane; Shoichet, Molly S

    2016-03-18

    Exploiting binding affinities between molecules is an established practice in many fields, including biochemical separations, diagnostics, and drug development; however, using these affinities to control biomolecule release is a more recent strategy. Affinity-controlled release takes advantage of the reversible nature of noncovalent interactions between a therapeutic protein and a binding partner to slow the diffusive release of the protein from a vehicle. This process, in contrast to degradation-controlled sustained-release formulations such as poly(lactic-co-glycolic acid) microspheres, is controlled through the strength of the binding interaction, the binding kinetics, and the concentration of binding partners. In the context of affinity-controlled release--and specifically the discovery or design of binding partners--we review advances in in vitro selection and directed evolution of proteins, peptides, and oligonucleotides (aptamers), aided by computational design. PMID:26989257

  4. Negative Electron Affinity Mechanism for Diamond Surfaces

    NASA Technical Reports Server (NTRS)

    Krainsky, I. L.; Asnin, V. M.

    1998-01-01

    The energy distribution of the secondary electrons for chemical vacuum deposited diamond films with Negative Electron Affinity (NEA) was investigated. It was found that while for completely hydrogenated diamond surfaces the negative electron affinity peak in the energy spectrum of the secondary electrons is present for any energy of the primary electrons, for partially hydrogenated diamond surfaces there is a critical energy above which the peak is present in the spectrum. This critical energy increases sharply when hydrogen coverage of the diamond surface diminishes. This effect was explained by the change of the NEA from the true type for the completely hydrogenated surface to the effective type for the partially hydrogenated surfaces.

  5. New unitary affine-Virasoro constructions

    SciTech Connect

    Halpern, M.B.; Kiritsis, E.; Obers, N.A.; Poratti, M. ); Yamron, J.P. )

    1990-06-20

    This paper reports on a quasi-systematic investigation of the Virasoro master equation. The space of all affine-Virasoro constructions is organized by K-conjugation into affine-Virasoro nests, and an estimate of the dimension of the space shows that most solutions await discovery. With consistent ansatze for the master equation, large classes of new unitary nests are constructed, including quadratic deformation nests with continuous conformal weights, and unitary irrational central charge nests, which may dominate unitary rational central charge on compact g.

  6. Adsorption affinity of anions on metal oxyhydroxides

    NASA Astrophysics Data System (ADS)

    Pechenyuk, S. I.; Semushina, Yu. P.; Kuz'mich, L. F.

    2013-03-01

    The dependences of anion (phosphate, carbonate, sulfate, chromate, oxalate, tartrate, and citrate) adsorption affinity anions from geometric characteristics, acid-base properties, and complex forming ability are generalized. It is shown that adsorption depends on the nature of both the anions and the ionic medium and adsorbent. It is established that anions are generally grouped into the following series of adsorption affinity reduction: PO{4/3-}, CO{3/2-} > C2O{4/2-}, C(OH)(CH2)2(COO){3/3-}, (CHOH)2(COO){2/2-} > CrO{4/2-} ≫ SO{4/2-}.

  7. Streamlining the Pipeline for Generation of Recombinant Affinity Reagents by Integrating the Affinity Maturation Step.

    PubMed

    Huang, Renhua; Gorman, Kevin T; Vinci, Chris R; Dobrovetsky, Elena; Gräslund, Susanne; Kay, Brian K

    2015-01-01

    Often when generating recombinant affinity reagents to a target, one singles out an individual binder, constructs a secondary library of variants, and affinity selects a tighter or more specific binder. To enhance the throughput of this general approach, we have developed a more integrated strategy where the "affinity maturation" step is part of the phage-display pipeline, rather than a follow-on process. In our new schema, we perform two rounds of affinity selection, followed by error-prone PCR on the pools of recovered clones, generation of secondary libraries, and three additional rounds of affinity selection, under conditions of off-rate competition. We demonstrate the utility of this approach by generating low nanomolar fibronectin type III (FN3) monobodies to five human proteins: ubiquitin-conjugating enzyme E2 R1 (CDC34), COP9 signalosome complex subunit 5 (COPS5), mitogen-activated protein kinase kinase 5 (MAP2K5), Splicing factor 3A subunit 1 (SF3A1) and ubiquitin carboxyl-terminal hydrolase 11 (USP11). The affinities of the resulting monobodies are typically in the single-digit nanomolar range. We demonstrate the utility of two binders by pulling down the targets from a spiked lysate of HeLa cells. This integrated approach should be applicable to directed evolution of any phage-displayed affinity reagent scaffold. PMID:26437402

  8. Streamlining the Pipeline for Generation of Recombinant Affinity Reagents by Integrating the Affinity Maturation Step

    PubMed Central

    Huang, Renhua; Gorman, Kevin T.; Vinci, Chris R.; Dobrovetsky, Elena; Gräslund, Susanne; Kay, Brian K.

    2015-01-01

    Often when generating recombinant affinity reagents to a target, one singles out an individual binder, constructs a secondary library of variants, and affinity selects a tighter or more specific binder. To enhance the throughput of this general approach, we have developed a more integrated strategy where the “affinity maturation” step is part of the phage-display pipeline, rather than a follow-on process. In our new schema, we perform two rounds of affinity selection, followed by error-prone PCR on the pools of recovered clones, generation of secondary libraries, and three additional rounds of affinity selection, under conditions of off-rate competition. We demonstrate the utility of this approach by generating low nanomolar fibronectin type III (FN3) monobodies to five human proteins: ubiquitin-conjugating enzyme E2 R1 (CDC34), COP9 signalosome complex subunit 5 (COPS5), mitogen-activated protein kinase kinase 5 (MAP2K5), Splicing factor 3A subunit 1 (SF3A1) and ubiquitin carboxyl-terminal hydrolase 11 (USP11). The affinities of the resulting monobodies are typically in the single-digit nanomolar range. We demonstrate the utility of two binders by pulling down the targets from a spiked lysate of HeLa cells. This integrated approach should be applicable to directed evolution of any phage-displayed affinity reagent scaffold. PMID:26437402

  9. High affinity of lead for fetal haemoglobin.

    PubMed Central

    Ong, C N; Lee, W R

    1980-01-01

    In-vitro experiments using 203Pb were performed to identify lead-binding components in human haemoglobin. Sephadex A-50 ion-exchange chromatography of haemolysate showed that different types of haemoglobin had different affinities for lead. For the haemolysate from adults, lead was present in both Hb A (alpha 2 beta 2) and Hb A2 (alpha 2 delta 2), whereas, in the haemolysate from new-born infants, the haemoglobin of fetal origin, Hb F (alpha 2 gamma 2) showed a much greater affinity for 203Pb than the adult haemoglobin Hb A (alpha 2 beta 2), obtained from maternal blood. Analysis of the 203 Pb-labelled haemoglobin suggested that about 82% of 203Pb was in the globin polypeptide. Further analysis with carboxylmethyl (CM) cellulose chromatography indicated that the gamma globin of fetal origin had a higher affinity for 203Pb than the beta globin, whereas alpha globin appeared to be unimportant in lead binding. The results of the different affinities for lead of different Hb types are discussed with regard to the effect of lead upon haemoglobin synthesis. PMID:6158989

  10. Vygotsky's and Buber's Pedagogical Perspectives: Some Affinities

    ERIC Educational Resources Information Center

    Bartholo, Roberto; Tunes, Elizabeth; Tacca, Maria Carmen Villela Rosa

    2010-01-01

    The purpose of this paper is to examine the dialogical and creative character of pedagogic work by analyzing the affinities between Martin Buber's "I-Thou relation" and Lev Semenovich Vygotsky's "Zone of Proximal Development". Backed up by empirical studies on the teacher-student relation, we understand that education can only result in students'…

  11. Fan Affinity Laws from a Collision Model

    ERIC Educational Resources Information Center

    Bhattacharjee, Shayak

    2012-01-01

    The performance of a fan is usually estimated using hydrodynamical considerations. The calculations are long and involved and the results are expressed in terms of three affinity laws. In this paper we use kinetic theory to attack this problem. A hard sphere collision model is used, and subsequently a correction to account for the flow behaviour…

  12. Affinity purification of metalloprotease from marine bacterium using immobilized metal affinity chromatography.

    PubMed

    Li, Shangyong; Wang, Linna; Yang, Juan; Bao, Jing; Liu, Junzhong; Lin, Shengxiang; Hao, Jianhua; Sun, Mi

    2016-06-01

    In this study, an efficient affinity purification protocol for an alkaline metalloprotease from marine bacterium was developed using immobilized metal affinity chromatography. After screening and optimization of the affinity ligands and spacer arm lengths, Cu-iminmodiacetic acid was chosen as the optimal affinity ligand, which was coupled to Sepharose 6B via a 14-atom spacer arm. The absorption analysis of this medium revealed a desorption constant Kd of 21.5 μg/mL and a theoretical maximum absorption Qmax of 24.9 mg/g. Thanks to this affinity medium, the enzyme could be purified by only one affinity purification step with a purity of approximately 95% pure when analyzed by high-performance liquid chromatography and reducing sodium dodecyl sulfate polyacrylamide gel electrophoresis. The recovery of the protease activity reached 74.6%, which is much higher than the value obtained by traditional protocols (8.9%). These results contribute to the industrial purifications and contribute a significant reference for the purification of other metalloproteases. PMID:27058973

  13. Smooth big bounce from affine quantization

    NASA Astrophysics Data System (ADS)

    Bergeron, Hervé; Dapor, Andrea; Gazeau, Jean Pierre; Małkiewicz, Przemysław

    2014-04-01

    We examine the possibility of dealing with gravitational singularities on a quantum level through the use of coherent state or wavelet quantization instead of canonical quantization. We consider the Robertson-Walker metric coupled to a perfect fluid. It is the simplest model of a gravitational collapse, and the results obtained here may serve as a useful starting point for more complex investigations in the future. We follow a quantization procedure based on affine coherent states or wavelets built from the unitary irreducible representation of the affine group of the real line with positive dilation. The main issue of our approach is the appearance of a quantum centrifugal potential allowing for regularization of the singularity, essential self-adjointness of the Hamiltonian, and unambiguous quantum dynamical evolution.

  14. Improved native affinity purification of RNA.

    PubMed

    Batey, Robert T; Kieft, Jeffrey S

    2007-08-01

    RNA biochemical or structural studies often require an RNA sample that is chemically pure, and most protocols for its in vitro production use denaturing polyacrylamide gel electrophoresis to achieve this. Unfortunately, many RNAs do not quantitatively refold into an active conformation after denaturation, creating significant problems for downstream characterization or use. In addition, this traditional purification method is not amenable to studies demanding high-throughput RNA production. Recently, we presented the first general method for producing almost any RNA sequence that employs an affinity tag that is removed during the purification process. Because technical difficulties prevented application of this method to many RNAs, we have developed an improved version that utilizes a different activatable ribozyme and affinity tag that are considerably more robust, rapid, and broadly applicable. PMID:17548432

  15. Protein affinity map of chemical space.

    PubMed

    Kauvar, L M; Villar, H O; Sportsman, J R; Higgins, D L; Schmidt, D E

    1998-09-11

    Affinity fingerprinting is a quantitative method for mapping chemical space based on binding preferences of compounds for a reference panel of proteins. An effective reference panel of <20 proteins can be empirically selected which shows differential interaction with nearly all compounds. By using this map to iteratively sample the chemical space, identification of active ligands from a library of 30,000 candidate compounds has been accomplished for a wide spectrum of specific protein targets. In each case, <200 compounds were directly assayed against the target. Further, analysis of the fingerprint database suggests a strategy for effective selection of affinity chromatography ligands and scaffolds for combinatorial chemistry. With such a system, the large numbers of potential therapeutic targets emerging from genome research can be categorized according to ligand binding properties, complementing sequence based classification. PMID:9792501

  16. Affinity Chromatography in Nonionic Detergent Solutions

    NASA Astrophysics Data System (ADS)

    Robinson, Jack B.; Strottmann, James M.; Wick, Donald G.; Stellwagen, Earle

    1980-10-01

    Anionic dye affinity chromatography is commonly unproductive in the presence of nonionic detergents used to extract particulate proteins. Using lactate dehydrogenase as a model protein, Cibacron blue F3GA as a model dye, and Triton X-100 as a model detergent, we find that the dye is encapsulated in nonionic detergent micelles, rendering the dye incapable of ligation with the enzyme. However, the dye can be liberated from the micelles without altering the nonionic detergent concentration by addition of an anionic detergent, such as deoxycholate or sodium dodecyl sulfate, forming mixed anionic/nonionic micelles that displace the anionic dye. Encapsulation of the anionic detergents prevents their activity as protein denaturants. These observations have been successfully translated to the dye affinity chromatography of a detergent extract of brain particulate cyclic nucleotide phosphodiesterase.

  17. Engineered affinity proteins for tumour-targeting applications.

    PubMed

    Friedman, Mikaela; Ståhl, Stefan

    2009-05-01

    Targeting of tumour-associated antigens is an expanding treatment modality in clinical oncology as an alternative to, or in combination with, conventional treatments, such as chemotherapy, external-radiation therapy and surgery. Targeting of antigens that are unique or more highly expressed in tumours than in normal tissues can be used to increase the specificity and reduce the cytotoxic effect on normal tissues. Several targeting agents have been studied for clinical use, where monoclonal antibodies have been the ones most widely used. More than 20 monoclonal antibodies are approved for therapy today and the largest field is oncology. Advances in genetic engineering and in vitro selection technology has enabled the feasible high-throughput generation of monoclonal antibodies, antibody derivatives [e.g. scFvs, Fab molecules, dAbs (single-domain antibodies), diabodies and minibodies] and more recently also non-immunoglobulin scaffold proteins. Several of these affinity proteins have been investigated for both in vivo diagnostics and therapy. Affinity proteins in tumour-targeted therapy can affect tumour progression by altering signal transduction or by delivering a payload of toxin, drug or radionuclide. The ErbB receptor family has been extensively studied as biomarkers in tumour targeting, primarily for therapy using monoclonal antibodies. Two receptors in the ErbB family, EGFR (epidermal growth factor receptor) and HER2 (epidermal growth factor receptor 2), are overexpressed in various malignancies and associated with poor patient prognosis and are therefore interesting targets for solid tumours. In the present review, strategies are described for tumour targeting of solid tumours using affinity proteins to deliver radionuclides, either for molecular imaging or radiotherapy. Antibodies, antibody derivatives and non-immunoglobulin scaffold proteins are discussed with a certain focus on the affibody (Affibody) molecule. PMID:19341363

  18. A MEMS Dielectric Affinity Glucose Biosensor.

    PubMed

    Huang, Xian; Li, Siqi; Davis, Erin; Li, Dachao; Wang, Qian; Lin, Qiao

    2013-06-20

    Continuous glucose monitoring (CGM) sensors based on affinity detection are desirable for long-term and stable glucose management. However, most affinity sensors contain mechanical moving structures and complex design in sensor actuation and signal readout, limiting their reliability in subcutaneously implantable glucose detection. We have previously demonstrated a proof-of-concept dielectric glucose sensor that measured pre-mixed glucose-sensitive polymer solutions at various glucose concentrations. This sensor features simplicity in sensor design, and possesses high specificity and accuracy in glucose detection. However, lack of glucose diffusion passage, this device is unable to fulfill real-time in-vivo monitoring. As a major improvement to this device, we present in this paper a fully implantable MEMS dielectric affinity glucose biosensor that contains a perforated electrode embedded in a suspended diaphragm. This capacitive-based sensor contains no moving parts, and enables glucose diffusion and real-time monitoring. The experimental results indicate that this sensor can detect glucose solutions at physiological concentrations and possesses good reversibility and reliability. This sensor has a time constant to glucose concentration change at approximately 3 min, which is comparable to commercial systems. The sensor has potential applications in fully implantable CGM that require excellent long-term stability and reliability. PMID:24511215

  19. Phosphopeptide Enrichment by Immobilized Metal Affinity Chromatography.

    PubMed

    Thingholm, Tine E; Larsen, Martin R

    2016-01-01

    Immobilized metal affinity chromatography (IMAC) has been the method of choice for phosphopeptide enrichment prior to mass spectrometric analysis for many years and it is still used extensively in many laboratories. Using the affinity of negatively charged phosphate groups towards positively charged metal ions such as Fe(3+), Ga(3+), Al(3+), Zr(4+), and Ti(4+) has made it possible to enrich phosphorylated peptides from peptide samples. However, the selectivity of most of the metal ions is limited, when working with highly complex samples, e.g., whole-cell extracts, resulting in contamination from nonspecific binding of non-phosphorylated peptides. This problem is mainly caused by highly acidic peptides that also share high binding affinity towards these metal ions. By lowering the pH of the loading buffer nonspecific binding can be reduced significantly, however with the risk of reducing specific binding capacity. After binding, the enriched phosphopeptides are released from the metal ions using alkaline buffers of pH 10-11, EDTA, or phosphate-containing buffers. Here we describe a protocol for IMAC using Fe(3+) for phosphopeptide enrichment. The principles are illustrated on a semi-complex peptide mixture. PMID:26584922

  20. Parameterization of an effective potential for protein–ligand binding from host–guest affinity data

    PubMed Central

    Wickstrom, Lauren; Deng, Nanjie; He, Peng; Mentes, Ahmet; Nguyen, Crystal; Gilson, Michael K.; Kurtzman, Tom; Gallicchio, Emilio; Levy, Ronald M.

    2015-01-01

    Force field accuracy is still one of the “stalemates” in biomolecular modeling. Model systems with high quality experimental data are valuable instruments for the validation and improvement of effective potentials. With respect to protein–ligand binding, organic host–guest complexes have long served as models for both experimental and computational studies because of the abundance of binding affinity data available for such systems. Binding affinity data collected for cyclodextrin (CD) inclusion complexes, a popular model for molecular recognition, is potentially a more reliable resource for tuning energy parameters than hydration free energy measurements. Convergence of binding free energy calculations on CD host–guest systems can also be obtained rapidly, thus offering the opportunity to assess the robustness of these parameters. In this work, we demonstrate how implicit solvent parameters can be developed using binding affinity experimental data and the binding energy distribution analysis method (BEDAM) and validated using the Grid Inhomogeneous Solvation Theory analysis. These new solvation parameters were used to study protein–ligand binding in two drug targets against the HIV-1 virus and improved the agreement between the calculated and the experimental binding affinities. This work illustrates how benchmark sets of high quality experimental binding affinity data and physics-based binding free energy models can be used to evaluate and optimize force fields for protein–ligand systems. PMID:26256816

  1. Fundamentals and application of ordered molecular assemblies to affinity biosensing.

    PubMed

    Matharu, Zimple; Bandodkar, Amay Jairaj; Gupta, Vinay; Malhotra, Bansi Dhar

    2012-02-01

    Organization of biomolecules in two/three dimensional assemblies has recently aroused much interest in nanobiotechnology. In this context, the development of techniques for controlling spatial arrangement and orientation of the desired molecules to generate highly-ordered nanostructures in the form of a mono/multi layer is considered highly significant. The studies of monolayer films to date have focused on three distinct methods of preparation: (i) the Langmuir-Blodgett (LB) technique, involving the transfer of a monolayer assembled at the gas-liquid interface; (ii) self-assembly at the liquid-solid interface, based on spontaneous adsorption of desired molecules from a solution directly onto a solid surface; and (iii) Layer-by-layer (LBL) self-assembly at a liquid-solid interface, based on inter-layer electrostatic attractions for fabrication of multilayers. A variety of monolayers have been utilized to fabricate biomolecular electronic devices including biosensors. The composition of a monolayer based matrix has been found to influence the activity(ies) of biomolecule(s). We present comprehensive and critical analysis of ordered molecular assemblies formed by LB and self-assembly with potential applications to affinity biosensing. This critical review on fundamentals and application of ordered molecular assemblies to affinity biosensing is likely to benefit researchers working in this as well as related fields of research (401 references). PMID:22105315

  2. Impact of crystalline quality on neuronal affinity of pristine graphene.

    PubMed

    Veliev, Farida; Briançon-Marjollet, Anne; Bouchiat, Vincent; Delacour, Cécile

    2016-04-01

    Due to its outstanding mechanical and electrical properties as well as chemical inertness, graphene has attracted a growing interest in the field of bioelectric interfacing. Herein, we investigate the suitability of pristine, i.e. without a cell adhesive coating, chemical vapor deposition (CVD) grown monolayer graphene to act as a platform for neuronal growth. We study the development of primary hippocampal neurons grown on bare graphene (transferred on glass coverslip) for up to 5 days and show that pristine graphene significantly improves the neurons adhesion and outgrowth at the early stage of culture (1-2 days in vitro). At the later development stage, neurons grown on coating free graphene (untreated with poly-L-lysine) show remarkably well developed neuritic architecture similar to those cultured on conventional poly-L-lysine coated glass coverslips. This exceptional possibility to bypass the adhesive coating allows a direct electrical contact of graphene to the cells and reveals its great potential for chronic medical implants and tissue engineering. Moreover, regarding the controversial results obtained on the neuronal affinity of pristine graphene and its ability to support neuronal growth without the need of polymer or protein coating, we found that the crystallinity of CVD grown graphene plays an important role in neuronal attachment, outgrowth and axonal specification. In particular, we show that the decreasing crystalline quality of graphene tunes the neuronal affinity from highly adhesive to fully repellent. PMID:26878439

  3. Measuring an antibody affinity distribution molecule by molecule

    SciTech Connect

    Bradbury, Andrew M; Werner, James H; Temirov, Jamshid

    2008-01-01

    Single molecule fluorescence mIcroscopy was used to observe the binding and unbinding of hapten decorated quantum dots with individual surface immobilized antibodies. The fluorescence time history from an individual antibody site can be used to calculate its binding affinity. While quantum dot blinking occurs during these measurements, we describe a simple empirical method to correct the apparent/observed affinity to account for the blinking contribution. The combination of many single molecule affinity measurements from different antibodies yields not only the average affinity, it directly measures the full shape and character of the surface affinity distribution function.

  4. On the structure of self-affine convex bodies

    SciTech Connect

    Voynov, A S

    2013-08-31

    We study the structure of convex bodies in R{sup d} that can be represented as a union of their affine images with no common interior points. Such bodies are called self-affine. Vallet's conjecture on the structure of self-affine bodies was proved for d = 2 by Richter in 2011. In the present paper we disprove the conjecture for all d≥3 and derive a detailed description of self-affine bodies in R{sup 3}. Also we consider the relation between properties of self-affine bodies and functional equations with a contraction of an argument. Bibliography: 10 titles.

  5. Metal-affinity separations: A new dimension in protein processing

    SciTech Connect

    Arnold, F.H. )

    1991-02-01

    Rapid growth in the preparative and high-resolution analytical applications of metal-affinity chromatography demonstrate the appeal of metal recognition as a basis for protein separations. Stable, inexpensive chelated metals effectively mimic biospecific interactions, providing selective ligands for protein binding. This article reviews recent progress in understanding the mechanisms of metal-protein recognition that underlie metal-affinity separations. Also discussed are schemes for integrating metal-affinity purifications into the expression and bioprocessing of recombinant proteins. Promising future developments include new metal-affinity processes for analytical and preparative-scale separations and a range of techniques for enhancing the selectivity of metal-affinity separations.

  6. Avoiding degenerate coframes in an affine gauge approach to quantum gravity

    SciTech Connect

    Mielke, E.W.; McCrea, J.D.; Ne`eman, Y.; Hehl, F.W.

    1993-04-01

    This report discusses the following concepts on quantum gravity: The affine gauge approach; affine gauge transformations versus active differomorphisms; affine gauge approach to quantum gravity with topology change.

  7. Aluminum monocation basicity and affinity scales.

    PubMed

    Gal, Jean-François; Yáñez, Manuel; Mó, Otilia

    2015-01-01

    The experimental aspects of the determination of thermochemical data for the attachment of the aluminum monocation Al(+) to neutral atoms and molecules are reviewed. Literature aluminum cation affinities (enthalpy scale) and basicities (Gibbs energy scale) are tabulated and discussed. Ab initio quantum chemical calculations at the G4 level on 43 adducts provide a consistent picture of the energetics of the adducts and their structures. The Al(+)-ligand bonding is analyzed in terms of natural bond orbital and atom-in molecule analyses. A brief comparison of the Al(+) basicity scales and other gas- phase cation basicities is presented. PMID:26307732

  8. Contractions of affine Kac-Moody algebras

    NASA Astrophysics Data System (ADS)

    Daboul, J.; Daboul, C.; de Montigny, M.

    2008-08-01

    I review our recent work on contractions of affine Kac-Moody algebras (KMA) and present new results. We study generalized contractions of KMA with respect to their twisted and untwisted KM subalgebras. As a concrete example, we discuss contraction of D(1)4 and D(3)4, based on Z3-grading. We also describe examples of 'level-dependent' contractions, which are based on Z-gradings of KMA. Our work generalizes the Inönü-Wigner contraction of P. Majumdar in several directions. We also give an algorithm for constructing Kac-Moody-like algebras hat g for any Lie algebra g.

  9. Vibrational photodetachment spectroscopy near the electron affinity of S2

    NASA Astrophysics Data System (ADS)

    Barrick, J. B.; Yukich, J. N.

    2016-02-01

    We have conducted laser photodetachment spectroscopy near the detachment threshold of the electron affinity of S2 in a 1.8-T field. The ions are prepared by dissociative electron attachment to carbonyl sulfide. The experiment is conducted in a Penning ion trap and with a narrow-band, tunable, Ti:sapphire laser. A hybrid model for photodetachment in an ion trap is fit to the data using the appropriate Franck-Condon factors. The observations reveal detachment from and to the first few vibrational levels of the anion and the neutral molecule, respectively. Evaporative cooling of the anion ensemble condenses the thermal distribution to the lowest initial vibrational states. The subsequent detachment spectroscopy yields results consistent with a vibrationally cooled anion population.

  10. 3D affine registration using teaching-learning based optimization

    NASA Astrophysics Data System (ADS)

    Jani, Ashish; Savsani, Vimal; Pandya, Abhijit

    2013-09-01

    3D image registration is an emerging research field in the study of computer vision. In this paper, two effective global optimization methods are considered for the 3D registration of point clouds. Experiments were conducted by applying each algorithm and their performance was evaluated with respect to rigidity, similarity and affine transformations. Comparison of algorithms and its effectiveness was tested for the average performance to find the global solution for minimizing the error in the terms of distance between the model cloud and the data cloud. The parameters for the transformation matrix were considered as the design variables. Further comparisons of the considered methods were done for the computational effort, computational time and the convergence of the algorithm. The results reveal that the use of TLBO was outstanding for image processing application involving 3D registration. [Figure not available: see fulltext.

  11. Advances in affinity ligand-functionalized nanomaterials for biomagnetic separation.

    PubMed

    Fields, Conor; Li, Peng; O'Mahony, James J; Lee, Gil U

    2016-01-01

    The downstream processing of proteins remains the most significant cost in protein production, and is largely attributed to rigorous chromatographic purification protocols, where the stringency of purity for biopharmaceutical products sometimes exceeds 99%. With an ever burgeoning biotechnology market, there is a constant demand for alternative purification methodologies, to ameliorate the dependence on chromatography, while still adhering to regulatory concerns over product purity and safety. In this article, we present an up-to-date view of bioseparation, with emphasis on magnetic separation and its potential application in the field. Additionally, we discuss the economic and performance benefits of synthetic ligands, in the form of peptides and miniaturized antibody fragments, compared to full-length antibodies. We propose that adoption of synthetic affinity ligands coupled with magnetic adsorbents, will play an important role in enabling sustainable bioprocessing in the future. PMID:26032605

  12. Dynamical surface affinity of diphasic liquids as a probe of wettability of multimodal porous media.

    PubMed

    Korb, J-P; Freiman, G; Nicot, B; Ligneul, P

    2009-12-01

    We introduce a method for estimating the wettability of rock/oil/brine systems using noninvasive in situ nuclear magnetic relaxation dispersion. This technique scans over a large range of applied magnetic fields and yields unique information about the extent to which a fluid is dynamically correlated with a solid rock surface. Unlike conventional transverse relaxation studies, this approach is a direct probe of the dynamical surface affinity of fluids. To quantify these features we introduce a microscopic dynamical surface affinity index which measures the dynamical correlation (i.e., the microscopic wettability) between the diffusive fluid and the fixed paramagnetic relaxation sources at the pore surfaces. We apply this method to carbonate reservoir rocks which are known to hold about two thirds of the world's oil reserves. Although this nondestructive method concerns here an application to rocks, it could be generalized as an in situ liquid/surface affinity indicator for any multimodal porous medium including porous biological media. PMID:20365175

  13. Affinity separation in magnetically stabilized fluidized beds: synthesis and performance of packing materials

    SciTech Connect

    Lochmueller, C.H.; Wigman, L.S.

    1987-11-01

    A magnetically stabilized fluidized-bed separator designed to test the use of pellicular, ferromagnetic affinity chromatography packing materials has been developed. A wire wound solenoid was used to produce the magnetic field. The ferromagnetic packing material is comprised of a magnetite-containing, polyurethane gel coated onto polystyrene beads. The gel contains free carboxyl groups. These were carbodiimide-coupled to soy trypsin inhibitor and the material used for trypsin purification. Narrow-band affinity chromatography was carried out in packed-bed, fluidized-bed, and magnetically stabilized, fluidized-bed separators. Pressure drop, capacity, dilution, and peak asymmetry were evaluated for each type of separator. The three types provide comparable efficiency but the fluidized separators exhibit a much lower pressure drop. As might be expected, fluidized-bed separators perform well for affinity chromatography (large k') but poorly for size exclusion chromatography.

  14. Aptamer Affinity Maturation by Resampling and Microarray Selection.

    PubMed

    Kinghorn, Andrew B; Dirkzwager, Roderick M; Liang, Shaolin; Cheung, Yee-Wai; Fraser, Lewis A; Shiu, Simon Chi-Chin; Tang, Marco S L; Tanner, Julian A

    2016-07-19

    Aptamers have significant potential as affinity reagents, but better approaches are critically needed to discover higher affinity nucleic acids to widen the scope for their diagnostic, therapeutic, and proteomic application. Here, we report aptamer affinity maturation, a novel aptamer enhancement technique, which combines bioinformatic resampling of aptamer sequence data and microarray selection to navigate the combinatorial chemistry binding landscape. Aptamer affinity maturation is shown to improve aptamer affinity by an order of magnitude in a single round. The novel aptamers exhibited significant adaptation, the complexity of which precludes discovery by other microarray based methods. Honing aptamer sequences using aptamer affinity maturation could help optimize a next generation of nucleic acid affinity reagents. PMID:27346322

  15. Disorder, pre-stress and non-affinity in polymer 8-chain models

    NASA Astrophysics Data System (ADS)

    Cioroianu, Adrian R.; Spiesz, Ewa M.; Storm, Cornelis

    2016-04-01

    To assess the role of single-chain elasticity, non-affine strain fields and pre-stressed reference states we present and discuss the results of numerical and analytical analyses of a modified 8-chain Arruda-Boyce model for cross-linked polymer networks. This class of models has proved highly successful in modeling the finite-strain response of flexible rubbers. We extend it to include the effects of spatial disorder and the associated non-affinity, and use it to assess the validity of replacing the constituent chain's nonlinear elastic response with equivalent linear, Hookean springs. Surprisingly, we find that even in the regime of linear response, the full polymer model gives very different results from its linearized counterpart, even though none of the chains are stretched beyond their linear regime. We demonstrate that this effect is due to the fact that the polymer models are under considerable pre-stress in their ground state. We show that pre-stress strongly suppresses non-affinity in these unit cell models, resulting in a marked stiffening of the bulk response. Polymer networks with some degree of flexibility are thus intrinsically prestressed, and one effect of such prestresses is to reduce non-affine deformations. Combined, these findings may help explain why fully affine mechanical models, in many cases, predict the bulk mechanical response of disordered polymer networks so well.

  16. Wakimoto modules for the affine superalgebra sl( {overline2}/{1}) and noncritical N = 2 strings

    NASA Astrophysics Data System (ADS)

    Bowcock, P.; Koktava, R.-L. K.; Taormina, A.

    1996-02-01

    Free field representations of the affine superalgebra A(1, 0) (1) at level k corresponding to two inequivalent choices of the simple roots are shown to be related by nonlinear canonical field transformations, both at the classical and at the quantum level. The ambiguity in the choice of the Wakimoto module needed in the description of physical states in the noncritical N = 2 string is therefore lifted.

  17. High-affinity Cyclic Peptide Matriptase Inhibitors*

    PubMed Central

    Quimbar, Pedro; Malik, Uru; Sommerhoff, Christian P.; Kaas, Quentin; Chan, Lai Y.; Huang, Yen-Hua; Grundhuber, Maresa; Dunse, Kerry; Craik, David J.; Anderson, Marilyn A.; Daly, Norelle L.

    2013-01-01

    The type II transmembrane serine protease matriptase is a key activator of multiple signaling pathways associated with cell proliferation and modification of the extracellular matrix. Deregulated matriptase activity correlates with a number of diseases, including cancer and hence highly selective matriptase inhibitors may have therapeutic potential. The plant-derived cyclic peptide, sunflower trypsin inhibitor-1 (SFTI-1), is a promising drug scaffold with potent matriptase inhibitory activity. In the current study we have analyzed the structure-activity relationships of SFTI-1 and Momordica cochinchinensis trypsin inhibitor-II (MCoTI-II), a structurally divergent trypsin inhibitor from Momordica cochinchinensis that also contains a cyclic backbone. We show that MCoTI-II is a significantly more potent matriptase inhibitor than SFTI-1 and that all alanine mutants of both peptides, generated using positional scanning mutagenesis, have decreased trypsin affinity, whereas several mutations either maintain or result in enhanced matriptase inhibitory activity. These intriguing results were used to design one of the most potent matriptase inhibitors known to date with a 290 pm equilibrium dissociation constant, and provide the first indication on how to modulate affinity for matriptase over trypsin in cyclic peptides. This information might be useful for the design of more selective and therapeutically relevant inhibitors of matriptase. PMID:23548907

  18. Heparin affinity purification of extracellular vesicles

    PubMed Central

    Balaj, Leonora; Atai, Nadia A.; Chen, Weilin; Mu, Dakai; Tannous, Bakhos A.; Breakefield, Xandra O.; Skog, Johan; Maguire, Casey A.

    2015-01-01

    Extracellular vesicles (EVs) are lipid membrane vesicles released by cells. They carry active biomolecules including DNA, RNA, and protein which can be transferred to recipient cells. Isolation and purification of EVs from culture cell media and biofluids is still a major challenge. The most widely used isolation method is ultracentrifugation (UC) which requires expensive equipment and only partially purifies EVs. Previously we have shown that heparin blocks EV uptake in cells, supporting a direct EV-heparin interaction. Here we show that EVs can be purified from cell culture media and human plasma using ultrafiltration (UF) followed by heparin-affinity beads. UF/heparin-purified EVs from cell culture displayed the EV marker Alix, contained a diverse RNA profile, had lower levels of protein contamination, and were functional at binding to and uptake into cells. RNA yield was similar for EVs isolated by UC. We were able to detect mRNAs in plasma samples with comparable levels to UC samples. In conclusion, we have discovered a simple, scalable, and effective method to purify EVs taking advantage of their heparin affinity. PMID:25988257

  19. Affine conformal vectors in space-time

    NASA Astrophysics Data System (ADS)

    Coley, A. A.; Tupper, B. O. J.

    1992-05-01

    All space-times admitting a proper affine conformal vector (ACV) are found. By using a theorem of Hall and da Costa, it is shown that such space-times either (i) admit a covariantly constant vector (timelike, spacelike, or null) and the ACV is the sum of a proper affine vector and a conformal Killing vector or (ii) the space-time is 2+2 decomposable, in which case it is shown that no ACV can exist (unless the space-time decomposes further). Furthermore, it is proved that all space-times admitting an ACV and a null covariantly constant vector (which are necessarily generalized pp-wave space-times) must have Ricci tensor of Segré type {2,(1,1)}. It follows that, among space-times admitting proper ACV, the Einstein static universe is the only perfect fluid space-time, there are no non-null Einstein-Maxwell space-times, and only the pp-wave space-times are representative of null Einstein-Maxwell solutions. Otherwise, the space-times can represent anisotropic fluids and viscous heat-conducting fluids, but only with restricted equations of state in each case.

  20. Exploring Fluorous Affinity by Liquid Chromatography.

    PubMed

    Catani, Martina; Guzzinati, Roberta; Marchetti, Nicola; Pasti, Luisa; Cavazzini, Alberto

    2015-07-01

    Terms such as "fluorous affinity" and "fluorophilicity" have been used to describe the unique partition and sorption properties often exhibited by highly fluorinated organic compounds, that is molecules rich in sp(3) carbon-fluorine bonds. In this work, we made use of a highly fluorinated stationary phase and a series of benzene derivatives to study the effect of one single perfluorinated carbon on the chromatographic behavior and adsorption properties of molecules. For this purpose, the adsorption equilibria of α,α,α-trifluorotoluene, toluene, and other alkylbenzenes have been studied by means of nonlinear chromatography in a variety of acetonitrile/water eluents. Our results reveal that one single perfluorinated carbon is already enough to induce a drastic change in the adsorption properties of molecules on the perfluorinated stationary phase. In particular, it has been found that adsorption is monolayer if the perfluoroalkyl carbon is present but that, when this unit is missing, molecules arrange as multilayer stack structures. These findings can contribute to the understanding of molecular mechanisms of fluorous affinity. PMID:26047527

  1. Quantification of hydrophobic interaction affinity of colloids

    NASA Astrophysics Data System (ADS)

    Saini, G.; Nasholm, N.; Wood, B. D.

    2009-12-01

    Colloids play an important role in a wide variety of disciplines, including water and wastewater treatment, subsurface transport of metals and organic contaminants, migration of fines in oil reservoirs, biocolloid (virus and bacteria) transport in subsurface, and are integral to laboratory transport studies. Although the role of hydrophobicity in adhesion and transport of colloids, particularly bacteria, is well known; there is scarcity of literature regarding hydrophobicity measurement of non-bacterial colloids and other micron-sized particles. Here we detail an experimental approach based on differential partitioning of colloids between two liquid phases (hydrocarbon and buffer) as a measure of the hydrophobic interaction affinity of colloids. This assay, known as Microbial adhesion to hydrocarbons or MATH, is frequently used in microbiology and bacteriology for quantifying the hydrophobicity of microbes. Monodispersed colloids and particles, with sizes ranging from 1 micron to 33 micron, were used for the experiments. A range of hydrophobicity values were observed for different particles. The hydrophobicity results are also verified against water contact angle measurements of these particles. This liquid-liquid partitioning assay is quick, easy-to-perform and requires minimal instrumentation. Estimation of the hydrophobic interaction affinity of colloids would lead to a better understanding of their adhesion to different surfaces and subsequent transport in porous media.

  2. Affinity Crystallography: A New Approach to Extracting High-Affinity Enzyme Inhibitors from Natural Extracts.

    PubMed

    Aguda, Adeleke H; Lavallee, Vincent; Cheng, Ping; Bott, Tina M; Meimetis, Labros G; Law, Simon; Nguyen, Nham T; Williams, David E; Kaleta, Jadwiga; Villanueva, Ivan; Davies, Julian; Andersen, Raymond J; Brayer, Gary D; Brömme, Dieter

    2016-08-26

    Natural products are an important source of novel drug scaffolds. The highly variable and unpredictable timelines associated with isolating novel compounds and elucidating their structures have led to the demise of exploring natural product extract libraries in drug discovery programs. Here we introduce affinity crystallography as a new methodology that significantly shortens the time of the hit to active structure cycle in bioactive natural product discovery research. This affinity crystallography approach is illustrated by using semipure fractions of an actinomycetes culture extract to isolate and identify a cathepsin K inhibitor and to compare the outcome with the traditional assay-guided purification/structural analysis approach. The traditional approach resulted in the identification of the known inhibitor antipain (1) and its new but lower potency dehydration product 2, while the affinity crystallography approach led to the identification of a new high-affinity inhibitor named lichostatinal (3). The structure and potency of lichostatinal (3) was verified by total synthesis and kinetic characterization. To the best of our knowledge, this is the first example of isolating and characterizing a potent enzyme inhibitor from a partially purified crude natural product extract using a protein crystallographic approach. PMID:27498895

  3. Structure of a High-Affinity

    SciTech Connect

    Saphire, E.O.; Montero, M.; Menendez, A.; Houten, N.E.van; Irving, M.B.; Pantophlet, R.; Swick, M.B.; Parren, P.W.H.I.; Burton, D.R.; Scott, J.K.; Wilson, I.A.; /Scripps Res. Inst. /Simon Fraser U. /British Columbia U.

    2007-07-13

    The human antibody b12 recognizes a discontinuous epitope on gp120 and is one of the rare monoclonal antibodies that neutralize a broad range of primary human immunodeficiency virus type 1 (HIV-1) isolates. We previously reported the isolation of B2.1, a dimeric peptide that binds with high specificity to b12 and competes with gp120 for b12 antibody binding. Here, we show that the affinity of B2.1 was improved 60-fold over its synthetic-peptide counterpart by fusing it to the N terminus of a soluble protein. This affinity, which is within an order of magnitude of that of gp120, probably more closely reflects the affinity of the phage-borne peptide. The crystal structure of a complex between Fab of b12 and B2.1 was determined at 1.8 Angstrom resolution. The structural data allowed the differentiation of residues that form critical contacts with b12 from those required for maintenance of the antigenic structure of the peptide, and revealed that three contiguous residues mediate B2.1's critical contacts with b12. This single region of critical contact between the B2.1 peptide and the b12 paratope is unlikely to mimic the discontinuous key binding residues involved in the full b12 epitope for gp120, as previously identified by alanine scanning substitutions on the gp120 surface. These structural observations are supported by experiments that demonstrate that B2.1 is an ineffective immunogenic mimic of the b12 epitope on gp120. Indeed, an extensive series of immunizations with B2.1 in various forms failed to produce gp120 cross-reactive sera. The functional and structural data presented here, however, suggest that the mechanism by which b12 recognizes the two antigens is very different. Here, we present the first crystal structure of peptide bound to an antibody that was originally raised against a discontinuous protein epitope. Our results highlight the challenge of producing immunogens that mimic discontinuous protein epitopes, and the necessity of combining

  4. Static black holes of metric-affine gravity in the presence of matter

    NASA Astrophysics Data System (ADS)

    Ayón-Beato, Eloy; García, Alberto; Macías, Alfredo; Quevedo, Hernando

    2001-07-01

    We investigate spherically symmetric and static gravitational fields representing black hole configurations in the framework of metric-affine gauge theories of gravity (MAG) in the presence of different matter fields. It is shown that in the triplet ansatz sector of MAG, black hole configurations in the presence of non-Abelian matter fields allow the existence of black hole hair. We analyze several cases of matter fields characterized by the presence of hair and for all of them we show the validity of the no short hair conjecture.

  5. Affinities of the Swartkrans early Homo mandibles.

    PubMed

    Curnoe, Darren

    2008-01-01

    The southern African early Homo assemblage continues to make important contributions to understanding the systematics, adaptations and evolutionary history of the human genus. However, the taxonomy of this sample is in a state of flux. This study examines the size and shape of the mandibular bodies of Swartkrans SK 15 and SK 45 comparing them with variation in two early Homo taxa (H. habilis sensu lato and H. sapiens erectus). The research aims to clarify their phenetic affinities and systematics through univariate statistics, inferential testing and multivariate analysis employing size (Log-transformed) and shape (Mosimann variables). Neither of them strongly resembles H. habilis sensu lato or H. sapiens erectus, rather, they probably sample a novel species of Homo not seen in East Africa. Moreover, there is considerable morphological variability within the Swartkrans sample and the possibility of more than one novel species being sampled at this site cannot be excluded. PMID:18402959

  6. Wetting on rough self-affine surfaces

    NASA Astrophysics Data System (ADS)

    Palasantzas, George

    1995-05-01

    In this paper, we present a general investigation of the effective potential for complete wetting on self-affine rough surfaces. The roughness effect is investigated by means of the height-height correlation model in Fourier space ~(1+aξ2q2)-1-H. The parameters H and ξ are, respectively, the roughness exponent and the substrate in-plane correlation length. It is observed that the effect of H on the free interface profile is significant for ξ>ξ) regime is characterized by a power-law scaling ~Y-2.

  7. Dye affinity cryogels for plasmid DNA purification.

    PubMed

    Çimen, Duygu; Yılmaz, Fatma; Perçin, Işık; Türkmen, Deniz; Denizli, Adil

    2015-11-01

    The aim of this study is to prepare megaporous dye-affinity cryogel discs for the purification of plasmid DNA (pDNA) from bacterial lysate. Poly(hydroxyethyl methacrylate) [PHEMA] cryogel discs were produced by free radical polymerization initiated by N,N,N',N'-tetramethylene diamine (TEMED) and ammonium persulfate (APS) redox pair in an ice bath. Cibacron Blue F3GA was used as an affinity ligand (loading amount: 68.9μmol/g polymer). The amount of pDNA adsorbed onto the PHEMA-Cibacron Blue F3GA cryogel discs first increased and then reached a plateau value (i.e., 32.5mg/g cryogel) at 3.0mg/mL pDNA concentration. Compared with the PHEMA cryogel (0.11mg/g cryogel), the pDNA adsorption capacity of the PHEMA-Cibacron Blue F3GA cryogel (32.4mg/g polymer) was improved significantly due to the Cibacron Blue 3GA immobilization onto the polymeric matrix. pDNA adsorption amount decreased from 11.7mg/g to 1.1mg/g with the increasing of NaCl concentration. The maximum pDNA adsorption was achieved at 4°C. The overall recovery of pDNA was calculated as 90%. The PHEMA-Cibacron Blue F3GA cryogel discs could be used five times without decreasing the pDNA adsorption capacity significantly. The results show that the PHEMA-Cibacron Blue F3GA cryogel discs promise high selectivity for pDNA. PMID:26249596

  8. In vitro affinity maturation of a natural human antibody overcomes a barrier to in vivo affinity maturation

    PubMed Central

    Li, Bing; Fouts, Ashley E; Stengel, Katharina; Luan, Peng; Dillon, Michael; Liang, Wei-Ching; Feierbach, Becket; Kelley, Robert F; Hötzel, Isidro

    2014-01-01

    Antibodies isolated from human donors are increasingly being developed for anti-infective therapeutics. These antibodies undergo affinity maturation in vivo, minimizing the need for engineering of therapeutic leads for affinity. However, the affinities required for some therapeutic applications may be higher than the affinities of the leads obtained, requiring further affinity maturation in vitro. To improve the neutralization potency of natural human antibody MSL-109 targeting human cytomegalovirus (CMV), we affinity matured the antibody against the gH/gL glycoprotein complex. A phage display library where most of the six complementary-determining regions (CDRs) were allowed to vary in only one amino acid residue at a time was used to scan for mutations that improve binding affinity. A T55R mutation and multiple mutations in position 53 of the heavy chain were identified that, when present individually or in combination, resulted in higher apparent affinities to gH/gL and improved CMV neutralization potency of Fab fragments expressed in bacterial cells. Three of these mutations in position 53 introduced glycosylation sites in heavy chain CDR 2 (CDR H2) that impaired binding of antibodies expressed in mammalian cells. One high affinity (KD < 10 pM) variant was identified that combined the D53N and T55R mutations while avoiding glycosylation of CDR H2. However, all the amino acid substitutions identified by phage display that improved binding affinity without introducing glycosylation sites required between two and four simultaneous nucleotide mutations to avoid glycosylation. These results indicate that the natural human antibody MSL-109 is close to a local affinity optimum. We show that affinity maturation by phage display can be used to identify and bypass barriers to in vivo affinity maturation of antibodies imposed by glycosylation and codon usage. These constraints may be relatively prevalent in human antibodies due to the codon usage and the amino acid

  9. Prediction of Neutral Salt Elution Profiles for Affinity Chromatography

    NASA Astrophysics Data System (ADS)

    Robinson, Jack B.; Strottmann, James M.; Stellwagen, Earle

    1981-04-01

    Neutral salts exhibit very marked differences as eluants of proteins from affinity columns. We observe: (i) that the relative potencies of neutral salts as eluants are independent of the protein or the affinity ligand in the systems studied, (ii) that the absolute salt concentration necessary to elute any given protein bound to the affinity matrix is proportional to the algebraic sum of a set of elution coefficients defined herein for the separate ions present in the solution, and (iii) that the proportionality between elution potency and elution coefficient is a function of the affinity of the protein for the immobilized ligand. Given the concentration of one neutral salt required for elution of a protein of interest from an affinity column, the elution capability of any neutral salt at any temperature can be quantitatively predicted for that protein. Accordingly, application and elution protocols for affinity chromatography can be designed to optimize the yield and fold purification of proteins.

  10. Affine Vertex Operator Algebras and Modular Linear Differential Equations

    NASA Astrophysics Data System (ADS)

    Arike, Yusuke; Kaneko, Masanobu; Nagatomo, Kiyokazu; Sakai, Yuichi

    2016-05-01

    In this paper, we list all affine vertex operator algebras of positive integral levels whose dimensions of spaces of characters are at most 5 and show that a basis of the space of characters of each affine vertex operator algebra in the list gives a fundamental system of solutions of a modular linear differential equation. Further, we determine the dimensions of the spaces of characters of affine vertex operator algebras whose numbers of inequivalent simple modules are not exceeding 20.

  11. A new affine-invariant image matching method based on SIFT

    NASA Astrophysics Data System (ADS)

    Wang, Peng-cheng; Chen, Qian; Chen, Hai-xin; Cheng, Hong-chang; Gong, Zhen-fei

    2013-09-01

    Local invariant feature extraction, as one of the main problems in the field of computer vision, has been widely applied to image matching, splicing and target recognition etc. Lowe's scale invariant feature transform (known as SIFT) algorithm has attracted much attention due to its invariance to scale, rotation and illumination. However, SIFT is not robust to affine deformations, because it is based on the DoG detector which extracts keypoints in a circle region. Besides, the feature descriptor is represented by a 128-dimensional vector, which means that the algorithm complexity is extremely large especially when there is a great quantity of keypoints in the image. In this paper, a new feature descriptor, which is robust to affine deformations, is proposed. Considering that circles turn to be ellipses after affine deformations, some improvements have been made. Firstly, the Gaussian image pyramids are constructed by convoluting the source image and the elliptical Gaussian kernel with two volatile parameters, orientation and eccentricity. In addition, the two parameters are discretely selected in order to imitate the possibilities of the affine deformation, which can make sure that anisotropic regions are transformed into isotropic ones. Next, all extreme points can be extracted as the candidates for the affine-invariant keypoints in the image pyramids. After accurate keypoints localization is performed, the secondary moment of the keypoints' neighborhood is calculated to identify the elliptical region which is affineinvariant, the same as SIFT, the main orientation of the keypoints can be determined and the feature descriptor is generated based on the histogram constructed in this region. At last, the PCA method for the 128-dimensional descriptor's reduction is used to improve the computer calculating efficiency. The experiments show that this new algorithm inherits all SIFT's original advantages, and has a good resistance to affine deformations; what's more, it

  12. A Differential Dielectric Affinity Glucose Sensor

    PubMed Central

    Huang, Xian; Leduc, Charles; Ravussin, Yann; Li, Siqi; Davis, Erin; Song, Bing; Li, Dachao; Xu, Kexin; Accili, Domenico; Wang, Qian; Leibel, Rudolph; Lin, Qiao

    2013-01-01

    A continuous glucose monitor with a differential dielectric sensor implanted within the subcutaneous tissue that determines the glucose in the interstitial fluid is presented. The device, created using microelectromechanical systems (MEMS) technology, consists of sensing and reference modules that are identical in design and placed in close proximity. Each module contains a microchamber housing a pair of capacitive electrodes residing on the device substrate and embedded in a suspended, perforated polymer diaphragm. The microchambers, enclosed in semi-permeable membranes, are filled with either a polymer solution that has specific affinity to glucose or a glucose-insensitive reference solution. To accurately determine the glucose concentration, changes in the permittivity of the sensing and the reference solutions induced by changes in glucose concentration are measured differentially. In vitro characterization demonstrated the sensor capable of measuring glucose concentrations from 0 to 500 mg/dL with resolution and accuracy of ∼1.7 μg/dL and ∼1.74 mg/dL, respectively. In addition, device drift was reduced to 1.4% (uncontrolled environment) and 11% (5 °C of temperature variation) of that from non-differential measurements, indicating significant stability improvements. Preliminary animal testing demonstrated that the differential sensor accurately tracks glucose concentration in blood. This sensor can potentially be used clinically as a subcutaneously implanted continuous monitoring device in diabetic patients. PMID:24220675

  13. Ligand Affinities Estimated by Quantum Chemical Calculations.

    PubMed

    Söderhjelm, Pär; Kongsted, Jacob; Ryde, Ulf

    2010-05-11

    We present quantum chemical estimates of ligand-binding affinities performed, for the first time, at a level of theory for which there is a hope that dispersion and polarization effects are properly accounted for (MP2/cc-pVTZ) and at the same time effects of solvation, entropy, and sampling are included. We have studied the binding of seven biotin analogues to the avidin tetramer. The calculations have been performed by the recently developed PMISP approach (polarizable multipole interactions with supermolecular pairs), which treats electrostatic interactions by multipoles up to quadrupoles, induction by anisotropic polarizabilities, and nonclassical interactions (dispersion, exchange repulsion, etc.) by explicit quantum chemical calculations, using a fragmentation approach, except for long-range interactions that are treated by standard molecular-mechanics Lennard-Jones terms. In order to include effects of sampling, 10 snapshots from a molecular dynamics simulation are studied for each biotin analogue. Solvation energies are estimated by the polarized continuum model (PCM), coupled to the multipole-polarizability model. Entropy effects are estimated from vibrational frequencies, calculated at the molecular mechanics level. We encounter several problems, not previously discussed, illustrating that we are first to apply such a method. For example, the PCM model is, in the present implementation, questionable for large molecules, owing to the use of a surface definition that gives numerous small cavities in a protein. PMID:26615702

  14. Divalent cation affinity sites in Paramecium aurelia.

    PubMed

    Fisher, G; Kaneshiro, E S; Peters, P D

    1976-05-01

    Sites with high calcium affinity in Paramecium aurelia were identified by high calcium (5 mM) fixation and electron microscope methods. Electron-opaque deposits were observed on the cytoplasmic side of surface membranes, particularly at the basal regions of cilia and trichocyst-pellicle fusion sites. Deposits were also observed on some smooth cytomembranes, within the axoneme of cilia, and on basal bodies. The divalent cations, Mg2+, Mn2+, Sr2+, Ni2+, Ba2+, and Zn2+, could be substituted for Ca2+ in the procedure. Deposits were larger with 5 mM Sr2+. Ba2+, and Mn2+ at ciliary transverse plates and the terminal plate of basal bodies. Microprobe analysis showed that Ca and C1 were concentrated within deposits. In some analyses, S and P were detected in deposits. Also, microprobe analysis of 5 mM Mn2+-fixed P. aurelia showed that those deposits were enriched in Mn and C1 and sometimes enriched in P. Deposits were seen only when the ciliates were actively swimming at the time of fixation. Locomotory mutants having defective membrane Ca-gating mechanisms and ciliates fixed while exhibiting ciliary reversal showed no obvious differences in deposition pattern and intensity. Possible correlations between electron-opaque deposits and the locations of intramembranous particles seen by freeze-fracture studied, as well as sites where fibrillar material associate with membranes are considered. The possibility that the action sites of calcium and other divalent cations were identified is discussed. PMID:1262398

  15. Multiplexed protein profiling by sequential affinity capture.

    PubMed

    Ayoglu, Burcu; Birgersson, Elin; Mezger, Anja; Nilsson, Mats; Uhlén, Mathias; Nilsson, Peter; Schwenk, Jochen M

    2016-04-01

    Antibody microarrays enable parallelized and miniaturized analysis of clinical samples, and have proven to provide novel insights for the analysis of different proteomes. However, there are concerns that the performance of such direct labeling and single antibody assays are prone to off-target binding due to the sample context. To improve selectivity and sensitivity while maintaining the possibility to conduct multiplexed protein profiling, we developed a multiplexed and semi-automated sequential capture assay. This novel bead-based procedure encompasses a first antigen capture, labeling of captured protein targets on magnetic particles, combinatorial target elution and a read-out by a secondary capture bead array. We demonstrate in a proof-of-concept setting that target detection via two sequential affinity interactions reduced off-target contribution, while lowered background and noise levels, improved correlation to clinical values compared to single binder assays. We also compared sensitivity levels with single binder and classical sandwich assays, explored the possibility for DNA-based signal amplification, and demonstrate the applicability of the dual capture bead-based antibody microarray for biomarker analysis. Hence, the described concept enhances the possibilities for antibody array assays to be utilized for protein profiling in body fluids and beyond. PMID:26935855

  16. Affinity of guanosine derivatives for polycytidylate revisited

    NASA Technical Reports Server (NTRS)

    Kanavarioti, A.; Hurley, T. B.; Baird, E. E.

    1995-01-01

    Evidence is presented for complexation of guanosine 5'-monophosphate 2-methylimidazolide (2-MeImpG) with polycytidylate (poly(C)) at pH 8.0 and 23 degrees C in the presence of 1.0 M NaCl2 and 0.2 M MgCl2 in water. The association of 2-MeImpG with poly(C) was investigated using UV-vis spectroscopy as well as by monitoring the kinetics of the nucleophilic substitution reaction of the imidazole moiety by amines. The results of both methods are consistent with moderately strong poly(C) 2-MeImpG complexation and the spectrophotometric measurements allowed the construction of a binding isotherm with a concentration of 2-MeImpG equal to 5.55 +/- 0.15 mM at half occupancy. UV spectroscopy was employed to establish the binding of other guanosine derivatives on poly(C). These derivatives are guanosine 5'-monophosphate (5'GMP), guanosine 5'-monophosphate imidazolide (ImpG), and guanosine 5'-monophosphate morpholidate (morpG). Within experimental error these guanosine derivatives exhibit the same affinity for poly(C) as 2-MeImpG.

  17. Banach frames in the affine synthesis problem

    NASA Astrophysics Data System (ADS)

    Terekhin, Pavel A.

    2009-10-01

    We consider the problem of representing functions f\\in L^p(\\mathbb R^d) by a series in elements of the affine system \\displaystyle \\psi_{j,k}(x)=\\lvert\\det a_j\\rvert^{1/2}\\psi(a_jx-bk), \\qquad j\\in\\mathbb N, \\quad k\\in\\mathbb Z^d. The corresponding representation theorems are established on the basis of the frame inequalities \\displaystyle A\\Vert g\\Vert _q\\le\\Vert\\{(g,\\psi_{j,k})\\}\\Vert _Y\\le B\\Vert g\\Vert _q for the Fourier coefficients \\displaystyle(g,\\psi_{j,k})=\\int_{\\mathbb R^d}g(x)\\psi_{j,k}(x)\\,dx of functions g\\in L^q(\\mathbb R^d), 1/p+1/q=1, where {\\Vert\\cdot\\Vert}_Y is the norm in some Banach space of number families \\{y_{j,k}\\} and 0 are constants. In particular, it is proved that if the integral of a function \\psi\\in L^1\\cap L^p(\\mathbb R^d), 1, is nonzero, so \\displaystyle\\int_{\\mathbb R^d}\\psi(x)\\,dx\

  18. FAST TRACK COMMUNICATION: Affine constellations without mutually unbiased counterparts

    NASA Astrophysics Data System (ADS)

    Weigert, Stefan; Durt, Thomas

    2010-10-01

    It has been conjectured that a complete set of mutually unbiased bases in a space of dimension d exists if and only if there is an affine plane of order d. We introduce affine constellations and compare their existence properties with those of mutually unbiased constellations. The observed discrepancies make a deeper relation between the two existence problems unlikely.

  19. Tending to Change: Toward a Situated Model of Affinity Spaces

    ERIC Educational Resources Information Center

    Bommarito, Dan

    2014-01-01

    The concept of affinity spaces, a theoretical construct used to analyze literate activity from a spatial perspective, has gained popularity among scholars of literacy studies and, particularly, video-game studies. This article seeks to expand current notions of affinity spaces by identifying key assumptions that have limited researchers'…

  20. The Study of Affinity-Seeking in an Organizational Setting.

    ERIC Educational Resources Information Center

    Flath, Dominic B.

    This study investigated the relationship between supervisors' use of Bell and Daly's affinity-seeking strategies and their impact on employee satisfaction. Results indicated that 16 of the 25 affinity-seeking strategies were positively correlated with a subordinate's perception of supervisor credibility. Results also indicated that a supervisor's…

  1. A minimax approach to spatial estimation using affinity matrices

    NASA Technical Reports Server (NTRS)

    Morris, C. N.

    1983-01-01

    Estimates made in the plane to improve on noisy unbiased estimates were combined. Only a small fraction of points in a giant grid were used to do this, those that are most like a given point. A component of this process defining an affinity matrix of values, indicating which points are relevant to others. Minimax rules are shown to be based on affinity matrices.

  2. Striving for Empathy: Affinities, Alliances and Peer Sexuality Educators

    ERIC Educational Resources Information Center

    Fields, Jessica; Copp, Martha

    2015-01-01

    Peer sexuality educators' accounts of their work reveal two approaches to empathy with their students: affinity and alliance. "Affinity-based empathy" rests on the idea that the more commonalities sexuality educators and students share (or perceive they share), the more they will be able to empathise with one another, while…

  3. Conformational kinetics reveals affinities of protein conformational states

    PubMed Central

    Daniels, Kyle G.; Suo, Yang; Oas, Terrence G.

    2015-01-01

    Most biological reactions rely on interplay between binding and changes in both macromolecular structure and dynamics. Practical understanding of this interplay requires detection of critical intermediates and determination of their binding and conformational characteristics. However, many of these species are only transiently present and they have often been overlooked in mechanistic studies of reactions that couple binding to conformational change. We monitored the kinetics of ligand-induced conformational changes in a small protein using six different ligands. We analyzed the kinetic data to simultaneously determine both binding affinities for the conformational states and the rate constants of conformational change. The approach we used is sufficiently robust to determine the affinities of three conformational states and detect even modest differences in the protein’s affinities for relatively similar ligands. Ligand binding favors higher-affinity conformational states by increasing forward conformational rate constants and/or decreasing reverse conformational rate constants. The amounts by which forward rate constants increase and reverse rate constants decrease are proportional to the ratio of affinities of the conformational states. We also show that both the affinity ratio and another parameter, which quantifies the changes in conformational rate constants upon ligand binding, are strong determinants of the mechanism (conformational selection and/or induced fit) of molecular recognition. Our results highlight the utility of analyzing the kinetics of conformational changes to determine affinities that cannot be determined from equilibrium experiments. Most importantly, they demonstrate an inextricable link between conformational dynamics and the binding affinities of conformational states. PMID:26162682

  4. Affine group formulation of the Standard Model coupled to gravity

    SciTech Connect

    Chou, Ching-Yi; Ita, Eyo; Soo, Chopin

    2014-04-15

    In this work we apply the affine group formalism for four dimensional gravity of Lorentzian signature, which is based on Klauder’s affine algebraic program, to the formulation of the Hamiltonian constraint of the interaction of matter and all forces, including gravity with non-vanishing cosmological constant Λ, as an affine Lie algebra. We use the hermitian action of fermions coupled to gravitation and Yang–Mills theory to find the density weight one fermionic super-Hamiltonian constraint. This term, combined with the Yang–Mills and Higgs energy densities, are composed with York’s integrated time functional. The result, when combined with the imaginary part of the Chern–Simons functional Q, forms the affine commutation relation with the volume element V(x). Affine algebraic quantization of gravitation and matter on equal footing implies a fundamental uncertainty relation which is predicated upon a non-vanishing cosmological constant. -- Highlights: •Wheeler–DeWitt equation (WDW) quantized as affine algebra, realizing Klauder’s program. •WDW formulated for interaction of matter and all forces, including gravity, as affine algebra. •WDW features Hermitian generators in spite of fermionic content: Standard Model addressed. •Constructed a family of physical states for the full, coupled theory via affine coherent states. •Fundamental uncertainty relation, predicated on non-vanishing cosmological constant.

  5. Optimal T-cell receptor affinity for inducing autoimmunity.

    PubMed

    Koehli, Sabrina; Naeher, Dieter; Galati-Fournier, Virginie; Zehn, Dietmar; Palmer, Ed

    2014-12-01

    T-cell receptor affinity for self-antigen has an important role in establishing self-tolerance. Three transgenic mouse strains expressing antigens of variable affinity for the OVA transgenic-I T-cell receptor were generated to address how TCR affinity affects the efficiency of negative selection, the ability to prime an autoimmune response, and the elimination of the relevant target cell. Mice expressing antigens with an affinity just above the negative selection threshold exhibited the highest risk of developing experimental autoimmune diabetes. The data demonstrate that close to the affinity threshold for negative selection, sufficient numbers of self-reactive T cells escape deletion and create an increased risk for the development of autoimmunity. PMID:25411315

  6. Affinity Monolith-Integrated Microchips for Protein Purification and Concentration.

    PubMed

    Gao, Changlu; Sun, Xiuhua; Wang, Huaixin; Qiao, Wei; Hu, Bo

    2016-01-01

    Affinity chromatography is a valuable method to purify and concentrate minute amount of proteins. Monoliths with epoxy groups for affinity immobilization were prepared by direct in-situ photopolymerization of glycidyl methacrylate and ethylene glycol dimethacrylate in porogenic solvents consisting of 1-dodecanol and cyclohexanol. By integrating affinity monoliths onto a microfluidic system, targeted biomolecules can be captured and retained on affinity column, while other biomolecules having no specific interactions toward the immobilized ligands flow through the microchannel. Therefore, proteins which remain on the affinity column are purified and concentrated, and then eluted by appropriate solutions and finally, separated by microchip capillary electrophoresis. This integrated microfluidic device has been applied to the purification and separation of specific proteins (FITC-labeled human serum albumin and IgG) in a mixture. PMID:27473483

  7. Self-affinity in phase space.

    PubMed

    Alieva, T; Bastiaans, M J

    2000-04-01

    The expression for the Wigner distribution (WD) in polar coordinates was derived, based on the decomposition of coherent and partially coherent fields on the orthogonal sets of Hermite-Gauss modes. This representation allows one to analyze easily the structure of the WD and to describe the field propagation through first-order optical systems, including the self-imaging phenomenon. PMID:10757184

  8. Chasing polys: Interdisciplinary affinity and its connection to physics identity

    NASA Astrophysics Data System (ADS)

    Scott, Tyler D.

    This research is based on two motivations that merge by means of the frameworks of interdisciplinary affinity and physics identity. First, a goal of education is to develop interdisciplinary abilities in students' thinking and work. But an often ignored factor is students interests and beliefs about being interdisciplinary. Thus, this work develops and uses a framework called interdisciplinary affinity. It encompasses students interests in making connections across disciplines and their beliefs about their abilities to make those connections. The second motivation of this research is to better understand how to engage more students with physics. Physics identity describes how a student sees themselves in relation to physics. By understanding how physics identity is developed, researchers and educators can identify factors that increase interest and engagement in physics classrooms. Therefore, physics identity was used in conjunction with interdisciplinary affinity. Using a mixed methods approach, this research used quantitative data to identify the relationships interdisciplinary affinity has with physics identity and the physics classroom. These connections were explored in more detail using a case study of three students in a high school physics class. Results showed significant and positive relationships between interdisciplinary affinity and physics identity, including the individual interest and recognition components of identity. It also identified characteristics of physics classrooms that had a significant, positive relationship with interdisciplinary affinity. The qualitative case study highlighted the importance of student interest to the relationship between interdisciplinary affinity and physics identity. It also identified interest and mastery orientation as key to understanding the link between interdisciplinary affinity and the physics classroom. These results are a positive sign that by understanding interdisciplinary affinity and physics identity

  9. Genetic affinities of central China populations.

    PubMed

    Zhou, H Y; Wang, H W; Tan, S N; Chen, Y; Wang, W L; Tao, H X; Yin, Z C; Zou, Y H; Ouyang, S M; Ni, B

    2014-01-01

    Hunan locates in the south-central part of China, to the south of the middle reaches of the Yangtze River and south of Lake Dongting. According to the historical records, the peopling of Hunan by modern human ancestors can ascend to 40 thousand years ago. Thus, to trace the ancient maternal components can offer further insight into the origin of south-central China. In this study, we investigated the mitochondrial DNA of 114 individuals from Hunan Province (including 34 Han, 40 Tujia and 40 Miao). Hypervariable regions I and II of the mtDNA control region were sequenced, and the relative diagnostic variations in coding region according to the updated worldwide phylogeny tree were selected and typed by restriction fragment length polymorphism analysis or direct sequencing. All individuals were classified into specific (sub)haplogroups. By comparison with the surrounding populations, southern China-prevalent haplogroups were detected with relative higher frequency in the Tujia and Miao ethnic populations, such as haplogroup B, with more than 20%, lacking in the Han population, which illustrated its southern origin characters. In addition, we also detected northern of East Asia prevalent haplogroups with a relative higher frequency in Tujia populations than in the Miao and Yao ethnic groups, implying a gene flow from Han populations. However, the language-clustering tendency was supported by our principal component analysis and further genetic estimation results. Han and ethnic groups in central China exhibited specific ancestors related to their closer language affinity, although there was extensively genetic admixture between Han and ethnic groups. PMID:24615027

  10. Selectively Promiscuous Opioid Ligands: Discovery of High Affinity/Low Efficacy Opioid Ligands with Substantial Nociceptin Opioid Peptide Receptor Affinity

    PubMed Central

    2015-01-01

    Emerging clinical and preclinical evidence suggests that a compound displaying high affinity for μ, κ, and δ opioid (MOP, KOP, and DOP) receptors and antagonist activity at each, coupled with moderate affinity and efficacy at nociceptin opioid peptide (NOP) receptors will have utility as a relapse prevention agent for multiple types of drug abuse. Members of the orvinol family of opioid ligands have the desired affinity profile but have typically displayed substantial efficacy at MOP and or KOP receptors. In this study it is shown that a phenyl ring analogue (1d) of buprenorphine displays the desired profile in vitro with high, nonselective affinity for the MOP, KOP, and DOP receptors coupled with moderate affinity for NOP receptors. In vivo, 1d lacked any opioid agonist activity and was an antagonist of both the MOP receptor agonist morphine and the KOP receptor agonist ethylketocyclazocine, confirming the desired opioid receptor profile in vivo. PMID:24761755

  11. A Capacitive MEMS Viscometric Sensor for Affinity Detection of Glucose

    PubMed Central

    Huang, Xian; Li, Siqi; Schultz, Jerome; Wang, Qian; Lin, Qiao

    2013-01-01

    This paper presents a capacitively based microelectromechanical systems affinity sensor for continuous glucose monitoring (CGM) applications. This sensor consists of a vibrating Parylene diaphragm, which is remotely driven by a magnetic field and situated inside a microchamber. A solution of poly(acrylamide-ran-3-acrylamidophenylboronic acid) (PAA-ran-PAAPBA), a biocompatible glucose-sensitive polymer, fills the microchamber, which is separated from its surroundings by a semipermeable membrane. Glucose permeates through the membrane and binds reversibly to the phenylboronic acid moiety of the polymer. This results in a viscosity change of the sensing solution, causing a detectable change in the Parylene diaphragm vibration which can be measured capacitively. Experimental results demonstrate that the device is capable of detecting glucose at physiologically relevant concentrations ranging from 30 to 360 mg/dL. The response time of the sensor to glucose concentration changes is approximately 1.5 min, which can be further improved with optimized device designs. Excellent reversibility and stability are observed in sensor responses, as highly desired for long-term CGM. PMID:24511213

  12. Surface-modified magnetic colloids for affinity adsorption of immunoglobulins

    NASA Astrophysics Data System (ADS)

    Martins, Fernanda; Pinho, Samantha C.; Zollner, Terezinha C. A.; Zollner, Ricardo L.; de Cuyper, Marcel; Santana, Maria Helena A.

    This work describes the preparation, characterization and in vitro adsorption tests of surface-modified magnetoliposomes for affinity binding of (i) anticardiolipin (isotype G) antibodies and (ii) specific isotype E antibodies generated by hypersensitivity reactions in humans with respiratory allergy. In the first case, cardiolipin embedded in the bilayer of magnetoliposomes was used as specific ligand. In the second case, antigenic proteins present in an extract of Dermatophagoids pteronyssinus and Blomia tropicalis mites were covalently coupled on the surface of magnetoliposomes via a diglycolic spacer arm, and used as specific ligands for IgE. Antibody adsorption was performed in a high-gradient magnetophoresis system, using either sera of healthy individuals or a pool of sera from autoimmune or allergic patients. The selectivity and capacity of the system were quantified by a frontal analysis in a capillary column, and by constructing breakthrough curves. The results show that the highest yield and selectivity were obtained if the ligand was extended into the aqueous layer surrounding the magnetoliposome surface. A 100% selectivity was obtained for adsorption of specific IgE, and 8% for IgG. These results demonstrate the potentialities of both types of surface-modified magnetic biocolloids in the field of in vitro diagnosis tests for allergic or autoimmune conditions.

  13. Tetrahydroprotoberberine alkaloids with dopamine and σ receptor affinity.

    PubMed

    Gadhiya, Satishkumar; Madapa, Sudharshan; Kurtzman, Thomas; Alberts, Ian L; Ramsey, Steven; Pillarsetty, Nagavara-Kishore; Kalidindi, Teja; Harding, Wayne W

    2016-05-01

    Two series of analogues of the tetrahydroprotoberberine (THPB) alkaloid (±)-stepholidine that (a) contain various alkoxy substituents at the C10 position and, (b) were de-rigidified with respect to (±)-stepholidine, were synthesized and evaluated for affinity at dopamine and σ receptors in order to evaluate effects on D3 and σ2 receptor affinity and selectivity. Small n-alkoxy groups are best tolerated by D3 and σ2 receptors. Among all compounds tested, C10 methoxy and ethoxy analogues (10 and 11 respectively) displayed the highest affinity for σ2 receptors as well as σ2 versus σ1 selectivity and also showed the highest D3 receptor affinity. De-rigidification of stepholidine resulted in decreased affinity at all receptors evaluated; thus the tetracyclic THPB framework is advantageous for affinity at dopamine and σ receptors. Docking of the C10 analogues at the D3 receptor, suggest that an ionic interaction between the protonated nitrogen atom and Asp110, a H-bond interaction between the C2 phenol and Ser192, a H-bond interaction between the C10 phenol and Cys181 as well as hydrophobic interactions of the aryl rings to Phe106 and Phe345, are critical for high affinity of the compounds. PMID:27032890

  14. Analysis of biomolecular interactions using affinity microcolumns: A review

    PubMed Central

    Zheng, Xiwei; Li, Zhao; Beeram, Sandya; Podariu, Maria; Matsuda, Ryan; Pfaunmiller, Erika L.; White, Christopher J.; Carter, NaTasha; Hage, David S.

    2014-01-01

    Affinity chromatography has become an important tool for characterizing biomolecular interactions. The use of affinity microcolumns, which contain immobilized binding agents and have volumes in the mid-to-low microliter range, has received particular attention in recent years. Potential advantages of affinity microcolumns include the many analysis and detection formats that can be used with these columns, as well as the need for only small amounts of supports and immobilized binding agents. This review examines how affinity microcolumns have been used to examine biomolecular interactions. Both capillary-based microcolumns and short microcolumns are considered. The use of affinity microcolumns with zonal elution and frontal analysis methods are discussed. The techniques of peak decay analysis, ultrafast affinity extraction, split-peak analysis, and band-broadening studies are also explored. The principles of these methods are examined and various applications are provided to illustrate the use of these methods with affinity microcolumns. It is shown how these techniques can be utilized to provide information on the binding strength and kinetics of an interaction, as well as on the number and types of binding sites. It is further demonstrated how information on competition or displacement effects can be obtained by these methods. PMID:24572459

  15. Analysis of biomolecular interactions using affinity microcolumns: a review.

    PubMed

    Zheng, Xiwei; Li, Zhao; Beeram, Sandya; Podariu, Maria; Matsuda, Ryan; Pfaunmiller, Erika L; White, Christopher J; Carter, NaTasha; Hage, David S

    2014-10-01

    Affinity chromatography has become an important tool for characterizing biomolecular interactions. The use of affinity microcolumns, which contain immobilized binding agents and have volumes in the mid-to-low microliter range, has received particular attention in recent years. Potential advantages of affinity microcolumns include the many analysis and detection formats that can be used with these columns, as well as the need for only small amounts of supports and immobilized binding agents. This review examines how affinity microcolumns have been used to examine biomolecular interactions. Both capillary-based microcolumns and short microcolumns are considered. The use of affinity microcolumns with zonal elution and frontal analysis methods are discussed. The techniques of peak decay analysis, ultrafast affinity extraction, split-peak analysis, and band-broadening studies are also explored. The principles of these methods are examined and various applications are provided to illustrate the use of these methods with affinity microcolumns. It is shown how these techniques can be utilized to provide information on the binding strength and kinetics of an interaction, as well as on the number and types of binding sites. It is further demonstrated how information on competition or displacement effects can be obtained by these methods. PMID:24572459

  16. Strategies to guide the antibody affinity maturation process.

    PubMed

    Doria-Rose, Nicole A; Joyce, M Gordon

    2015-04-01

    Antibodies with protective activity are critical for vaccine efficacy. Affinity maturation increases antibody activity through multiple rounds of somatic hypermutation and selection in the germinal center. Identification of HIV-1 specific and influenza-specific antibody developmental pathways, as well as characterization of B cell and virus co-evolution in patients, has informed our understanding of antibody development. In order to counteract HIV-1 and influenza viral diversity, broadly neutralizing antibodies precisely target specific sites of vulnerability and require high levels of affinity maturation. We present immunization strategies that attempt to recapitulate these natural processes and guide the affinity maturation process. PMID:25913818

  17. Strategies to guide the antibody affinity maturation process

    PubMed Central

    Doria-Rose, Nicole A.; Joyce, M. Gordon

    2015-01-01

    Antibodies with protective activity are critical for vaccine efficacy. Affinity maturation increases antibody activity through multiple rounds of somatic hypermutation and selection in the germinal center. Identification of HIV-1 specific and influenza-specific antibody developmental pathways, as well as characterization of B cell and virus co-evolution in patients, has informed our understanding of antibody development. In order to counteract HIV-1 and Influenza viral diversity, broadly neutralizing antibodies precisely target specific sites of vulnerability and require high levels of affinity maturation. We present immunization strategies that attempt to recapitulate these natural processes and guide the affinity maturation process. PMID:25913818

  18. Affinity- and topology-dependent bound on current fluctuations

    NASA Astrophysics Data System (ADS)

    Pietzonka, Patrick; Barato, Andre C.; Seifert, Udo

    2016-08-01

    We provide a proof of a recently conjectured universal bound on current fluctuations in Markovian processes. This bound establishes a link between the fluctuations of an individual observable current, the cycle affinities driving the system into a non-equilibrium steady state, and the topology of the network. The proof is based on a decomposition of the network into independent cycles with both positive affinity and positive stationary cycle current. This formalism allows for a refinement of the bound for systems in equilibrium or with locally vanishing affinities.

  19. Affinity+: Semi-Structured Brainstorming on Large Displays

    SciTech Connect

    Burtner, Edwin R.; May, Richard A.; Scarberry, Randall E.; LaMothe, Ryan R.; Endert, Alexander

    2013-04-27

    Affinity diagraming is a powerful method for encouraging and capturing lateral thinking in a group environment. The Affinity+ Concept was designed to improve the collaborative brainstorm process through the use of large display surfaces in conjunction with mobile devices like smart phones and tablets. The system works by capturing the ideas digitally and allowing users to sort and group them on a large touch screen manually. Additionally, Affinity+ incorporates theme detection, topic clustering, and other processing algorithms that help bring structured analytic techniques to the process without requiring explicit leadership roles and other overhead typically involved in these activities.

  20. Complementary metal oxide semiconductor-compatible silicon nanowire biofield-effect transistors as affinity biosensors.

    PubMed

    Duan, Xuexin; Rajan, Nitin K; Izadi, Mohammad Hadi; Reed, Mark A

    2013-11-01

    Affinity biosensors use biorecognition elements and transducers to convert a biochemical event into a recordable signal. They provides the molecule binding information, which includes the dynamics of biomolecular association and dissociation, and the equilibrium association constant. Complementary metal oxide semiconductor-compatible silicon (Si) nanowires configured as a field-effect transistor (NW FET) have shown significant advantages for real-time, label-free and highly sensitive detection of a wide range of biomolecules. Most research has focused on reducing the detection limit of Si-NW FETs but has provided less information about the real binding parameters of the biomolecular interactions. Recently, Si-NW FETs have been demonstrated as affinity biosensors to quantify biomolecular binding affinities and kinetics. They open new applications for NW FETs in the nanomedicine field and will bring such sensor technology a step closer to commercial point-of-care applications. This article summarizes the recent advances in bioaffinity measurement using Si-NW FETs, with an emphasis on the different approaches used to address the issues of sensor calibration, regeneration, binding kinetic measurements, limit of detection, sensor surface modification, biomolecule charge screening, reference electrode integration and nonspecific molecular binding. PMID:24156488

  1. Real-time affine invariant gesture recognition for LED smart lighting control

    NASA Astrophysics Data System (ADS)

    Chen, Xu; Liao, Miao; Feng, Xiao-Fan

    2015-03-01

    Gesture recognition has attracted extensive research interest in the field of human computer interaction. Realtime affine invariant gesture recognition is an important and challenging problem. This paper presents a robust affine view invariant gesture recognition system for realtime LED smart light control. As far as we know, this is the first time that gesture recognition has been applied for control LED smart light in realtime. Employing skin detection, hand blobs captured from a top view camera are first localized and aligned. Subsequently, SVM classifiers trained on HOG features and robust shape features are then utilized for gesture recognition. By accurately recognizing two types of gestures ("gesture 8" and a "5 finger gesture"), a user is enabled to toggle lighting on/off efficiently and control light intensity on a continuous scale. In each case, gesture recognition is rotation- and translation-invariant. Extensive evaluations in an office setting demonstrate the effectiveness and robustness of the proposed gesture recognition algorithm.

  2. Infinitesimal affine automorphisms of symplectic connections

    NASA Astrophysics Data System (ADS)

    Fox, Daniel J. F.

    2016-08-01

    Conditions are given under which an infinitesimal automorphism of a torsion-free connection preserving a symplectic form is necessarily a symplectic vector field. An example is given of a compact symplectic nilmanifold admitting a flat symplectic connection and an infinitesimal automorphism that is not symplectic.

  3. Extremely high negative electron affinity of diamond via magnesium adsorption

    NASA Astrophysics Data System (ADS)

    O'Donnell, K. M.; Edmonds, M. T.; Tadich, A.; Thomsen, L.; Stacey, A.; Schenk, A.; Pakes, C. I.; Ley, L.

    2015-07-01

    We report large negative electron affinity (NEA) on diamond (100) using magnesium adsorption on a previously oxygen-terminated surface. The measured NEA is up to (-2.01 ±0.05 ) eV, the largest reported negative electron affinity to date. Despite the expected close relationship between the surface chemistry of Mg and Li species on oxygen-terminated diamond, we observe differences in the adsorption properties between the two. Most importantly, a high-temperature annealing step is not required to activate the Mg-adsorbed surface to a state of negative electron affinity. Diamond surfaces prepared by this procedure continue to possess negative electron affinity after exposure to high temperatures, air, and even immersion in water.

  4. COMPARATIVE OXYGEN AFFINITY OF FISH AND MAMMALIAN MYOGLOBINS

    EPA Science Inventory

    Myoglobins from rat, coho salmon (Oncorhynchus kisutch), buffalo sculpin (Enophrys bison) hearts, and yellowfin tuna (Thunnus albacares) red skeletal muscle were partially purified and their O2 binding affinities determined. Commercially prepared sperm whale myoglobin was employe...

  5. Proton affinity of several basic non-standard amino acids

    NASA Astrophysics Data System (ADS)

    Rožman, Marko

    2012-08-01

    The structures and absolute proton affinities of several arginine (2-amino-3-guanidinopropionic acid, 2-amino-4-guanidinobutyric acid, homoarginine, citrulline and canavanine), histidine (1-methylhistidine and 3-methylhistidine) and lysine (2,3-diaminopropanoic acid, 2,4-diaminobutanoic acid, ornithine, 5-hydroxylysine, canaline and thialysine) homologues and analogues have been estimated using composite G3MP2B3 computational protocol. For a majority of here studied non-standard amino acids the gas-phase proton affinities were established for the first time, while for the others obtained values are used to improve the accuracy of the computational and experimental proton affinities reported previously. In addition, structures and proton affinities are discussed in order to rationalize their biological activity.

  6. Bidirectional Elastic Image Registration Using B-Spline Affine Transformation

    PubMed Central

    Gu, Suicheng; Meng, Xin; Sciurba, Frank C.; Wang, Chen; Kaminski, Naftali; Pu, Jiantao

    2014-01-01

    A registration scheme termed as B-spline affine transformation (BSAT) is presented in this study to elastically align two images. We define an affine transformation instead of the traditional translation at each control point. Mathematically, BSAT is a generalized form of the affine transformation and the traditional B-Spline transformation (BST). In order to improve the performance of the iterative closest point (ICP) method in registering two homologous shapes but with large deformation, a bi-directional instead of the traditional unidirectional objective / cost function is proposed. In implementation, the objective function is formulated as a sparse linear equation problem, and a sub-division strategy is used to achieve a reasonable efficiency in registration. The performance of the developed scheme was assessed using both two-dimensional (2D) synthesized dataset and three-dimensional (3D) volumetric computed tomography (CT) data. Our experiments showed that the proposed B-spline affine model could obtain reasonable registration accuracy. PMID:24530210

  7. Bidirectional elastic image registration using B-spline affine transformation.

    PubMed

    Gu, Suicheng; Meng, Xin; Sciurba, Frank C; Ma, Hongxia; Leader, Joseph; Kaminski, Naftali; Gur, David; Pu, Jiantao

    2014-06-01

    A registration scheme termed as B-spline affine transformation (BSAT) is presented in this study to elastically align two images. We define an affine transformation instead of the traditional translation at each control point. Mathematically, BSAT is a generalized form of the affine transformation and the traditional B-spline transformation (BST). In order to improve the performance of the iterative closest point (ICP) method in registering two homologous shapes but with large deformation, a bidirectional instead of the traditional unidirectional objective/cost function is proposed. In implementation, the objective function is formulated as a sparse linear equation problem, and a sub-division strategy is used to achieve a reasonable efficiency in registration. The performance of the developed scheme was assessed using both two-dimensional (2D) synthesized dataset and three-dimensional (3D) volumetric computed tomography (CT) data. Our experiments showed that the proposed B-spline affine model could obtain reasonable registration accuracy. PMID:24530210

  8. Antibody Affinity Maturation in Fishes—Our Current Understanding

    PubMed Central

    Magor, Brad G.

    2015-01-01

    It has long been believed that fish lack antibody affinity maturation, in part because they were thought to lack germinal centers. Recent research done on sharks and bony fishes indicates that these early vertebrates are able to affinity mature their antibodies. This article reviews the functionality of the fish homologue of the immunoglobulin (Ig) mutator enzyme activation-induced cytidine deaminase (AID). We also consider the protein and molecular evidence for Ig somatic hypermutation and antibody affinity maturation. In the context of recent evidence for a putative proto-germinal center in fishes we propose some possible reasons that observed affinity maturation in fishes often seems lacking and propose future work that might shed further light on this process in fishes. PMID:26264036

  9. Aptamer-modified magnetic beads in affinity separation of proteins.

    PubMed

    Zhu, Guohong; Walter, Johanna-Gabriela

    2015-01-01

    Aptamers are valuable alternative ligands for affinity separations. Here, we describe the aptamer-based affinity separation of His-tagged proteins using an aptamer directed against the His-tag. The immobilization of the aptamer to magnetic beads is described as well as the aptamer-based purification and proper methods for the characterization of the process. Moreover, indications for the transfer of the process to other aptamers are given. PMID:25749947

  10. Blind prediction of SAMPL4 cucurbit[7]uril binding affinities with the mining minima method

    PubMed Central

    Muddana, Hari S.; Yin, Jian; Sapra, Neil V.; Fenley, Andrew T.; Gilson, Michael K.

    2014-01-01

    Accurate methods for predicting protein-ligand binding affinities are of central interest to computer-aided drug design for hit identification and lead optimization. Here, we used the mining minima (M2) method to predict cucurbit[7]uril binding affinities from the SAMPL4 blind prediction challenge. We tested two different energy models, an empirical classical force field, CHARMm with VCharge charges, and the Poisson-Boltzmann Surface Area (PBSA) solvation model; and a semiempirical quantum mechanical Hamiltonian, PM6-DH+, coupled with the COSMO solvation model and a surface area term for nonpolar solvation free energy. Binding affinities based on the classical force field correlated strongly with the experiments with a correlation coefficient (R2) of 0.74. On the other hand, binding affinities based on the quantum mechanical energy model correlated poorly with experiments (R2 = 0.24), due largely to two major outliers. As we used extensive conformational search methods, these results point to possible inaccuracies in the PM6-DH+ energy model or the COSMO solvation model. Furthermore, the different binding free energy components, solute energy, solvation free energy, and configurational entropy showed significant deviations between the classical M2 and quantum M2 calculations. Comparison of different classical M2 free energy components to experiments show that the change in the total energy, i.e. the solute energy plus the solvation free energy, is the key driving force for binding, with a reasonable correlation to experiment (R2 = 0.56); however, accounting for configurational entropy further improves the correlation. PMID:24510191

  11. On the computation of stress in affine versus nonaffine fibril kinematics within planar collagen network models.

    PubMed

    Pence, Thomas J; Monroe, Ryan J; Wright, Neil T

    2008-08-01

    Some recent analyses modeled the response of collagenous tissues, such as epicardium, using a hypothetical network consisting of interconnected springlike fibers. The fibers in the network were organized such that internal nodes served as the connection point between three such collagen springs. The results for assumed affine and nonaffine deformations are contrasted after a homogeneous deformation at the boundary. Affine deformation provides a stiffer mechanical response than nonaffine deformation. In contrast to nonaffine deformation, affine deformation determines the displacement of internal nodes without imposing detailed force balance, thereby complicating the simplest intuitive notion of stress, one based on free body cuts, at the single node scale. The standard notion of stress may then be recovered via average field theory computations based on large micromesh realizations. An alternative and by all indications complementary viewpoint for the determination of stress in these collagen fiber networks is discussed here, one in which stress is defined using elastic energy storage, a notion which is intuitive at the single node scale. It replaces the average field theory computations by an averaging technique over randomly oriented isolated simple elements. The analytical operations do not require large micromesh realizations, but the tedious nature of the mathematical manipulation is clearly aided by symbolic algebra calculation. For the example case of linear elastic deformation, this results in material stiffnesses that relate the infinitesimal strain and stress. The result that the affine case is stiffer than the nonaffine case is recovered, as would be expected. The energy framework also lends itself to the natural inclusion of changes in mechanical response due to the chemical, electrical, or thermal environment. PMID:18601451

  12. Proton affinity of methyl nitrate - Less than proton affinity of nitric acid

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Rice, Julia E.

    1992-01-01

    Several state-of-the-art ab initio quantum mechanical methods were used to investigate the equilibrium structure, dipole moments, harmonic vibrational frequencies, and IR intensities of methyl nitrate, methanol, and several structures of protonated methyl nitrate, using the same theoretical methods as in an earlier study (Lee and Rice, 1992) of nitric acid. The ab initio results for methyl nitrate and methanol were found to be in good agreement with available experimental data. The proton affinity (PA) of methyl nitrate was calculated to be 176.9 +/-5 kcal/mol, in excellent agreement with the experimental value 176 kcal/mol obtained by Attina et al. (1987) and less than the PA value of nitric acid. An explanation of the discrepancy of the present results with those of an earlier study on protonated nitric acid is proposed.

  13. Enhancing IHE XDS for federated clinical affinity domain support.

    PubMed

    Dogac, Asuman; Laleci, Gokce B; Aden, Thomas; Eichelberg, Marco

    2007-03-01

    One of the key problems in healthcare informatics is the inability to share patient records across enterprises. To address this problem, an important industry initiative called "integrating the healthcare enterprise (IHE)" specified the "cross enterprise document sharing (XDS)" profile. In the IHE XDS, healthcare enterprises that agree to work together form a "clinical affinity domain" and store healthcare documents in an ebXML registry/repository architecture to facilitate their sharing. The affinity domains also agree on a common set of policies such as coding lists to be used to annotate clinical documents in the registry/repository and the common schemes for patient identification. However, since patients expect their records to follow them as they move from one clinical affinity domain to another, there is a need for affinity domains to be federated to enable information exchange. In this paper, we describe how IHE XDS can be enhanced to support federated clinical affinity domains. We demonstrate that federation of affinity domains are facilitated when ontologies, rather than coding term lists, are used to annotate clinical documents. Furthermore, we describe a patient identification protocol that eliminates the need to keep a master patient index file for the federation. PMID:17390991

  14. Flexible Linker Modulates Glycosaminoglycan Affinity of Decorin Binding Protein A.

    PubMed

    Morgan, Ashli; Sepuru, Krishna Mohan; Feng, Wei; Rajarathnam, Krishna; Wang, Xu

    2015-08-18

    Decorin binding protein A (DBPA) is a glycosaminoglycan (GAG)-binding adhesin found on the surface of the bacterium Borrelia burgdorferi (B. burgdorferi), the causative agent of Lyme disease. DBPA facilitates bacterial adherence to extracellular matrices of human tissues and is crucial during the early stage of the infection process. Interestingly, DBPA from different strains (B31, N40, and PBr) show significant differences in GAG affinities, but the structural basis for the differences is not clear. In this study, we show that GAG affinity of N40 DBPA is modulated in part by flexible segments that control access to the GAG binding site, such that shortening of the linker leads to higher GAG affinity when analyzed using ELISA, gel mobility shift assay, solution NMR, and isothermal titration calorimetry. Our observation that GAG affinity differences among different B. burgdorferi strains can be attributed to a flexible linker domain regulating access to the GAG-binding domain is novel. It also provides a rare example of how neutral amino acids and dynamic segments in GAG binding proteins can have a large influence on GAG affinity and provides insights into why the number of basic amino acids in the GAG-binding site may not be the only factor determining GAG affinity of proteins. PMID:26223367

  15. Increased hemoglobin O2 affinity protects during acute hypoxia.

    PubMed

    Yalcin, Ozlem; Cabrales, Pedro

    2012-08-01

    Acclimatization to hypoxia requires time to complete the adaptation mechanisms that influence oxygen (O(2)) transport and O(2) utilization. Although decreasing hemoglobin (Hb) O(2) affinity would favor the release of O(2) to the tissues, increasing Hb O(2) affinity would augment arterial O(2) saturation during hypoxia. This study was designed to test the hypothesis that pharmacologically increasing the Hb O(2) affinity will augment O(2) transport during severe hypoxia (10 and 5% inspired O(2)) compared with normal Hb O(2) affinity. RBC Hb O(2) affinity was increased by infusion of 20 mg/kg of 5-hydroxymethyl-2-furfural (5HMF). Control animals received only the vehicle. The effects of increasing Hb O(2) affinity were studied in the hamster window chamber model, in terms of systemic and microvascular hemodynamics and partial pressures of O(2) (Po(2)). Pimonidazole binding to hypoxic areas of mice heart and brain was also studied. 5HMF decreased the Po(2) at which the Hb is 50% saturated with O(2) by 12.6 mmHg. During 10 and 5% O(2) hypoxia, 5HMF increased arterial blood O(2) saturation by 35 and 48% from the vehicle group, respectively. During 5% O(2) hypoxia, blood pressure and heart rate were 58 and 30% higher for 5HMF compared with the vehicle. In addition, 5HMF preserved microvascular blood flow, whereas blood flow decreased to 40% of baseline in the vehicle group. Consequently, perivascular Po(2) was three times higher in the 5HMF group compared with the control group at 5% O(2) hypoxia. 5HMF also reduced heart and brain hypoxic areas in mice. Therefore, increased Hb O(2) affinity resulted in hemodynamics and oxygenation benefits during severe hypoxia. This acute acclimatization process may have implications in survival during severe environmental hypoxia when logistic constraints prevent chronic acclimatization. PMID:22636677

  16. Affinities of methylphenidate derivatives for dopamine, norepinephrine and serotonin transporters.

    PubMed

    Gatley, S J; Pan, D; Chen, R; Chaturvedi, G; Ding, Y S

    1996-01-01

    We have synthesized several derivative of dl-threo-methylphenidate (Ritalin) bearing substituents on the phenyl ring. IC50 values for binding these compounds to rat brain monoamine transporters were assessed using [3H]WIN 35,428 (striatal membranes, dopamine transporters, DAT), [3H]nisoxetine (frontal cortex membranes, norepinephrine transporters, NET) and [3H]paroxetine (brain stem membranes, 5HT transporters, 5HTT). Affinities (1/Ki) decreased in the order: DAT > NET > 5HTT. Substitution at the para position of dl-threo-methylphenidate generally led to retained or increased affinity for the dopamine transporter (bromo > iodo > methoxy > hydroxy). Substitution at the meta position also increased affinity for the DAT (m-bromo > methylphenidate; m-iodo-p-hydroxy > p-hydroxy). Substitution at the ortho position with bromine considerably decreased affinity. Similar IC50 values for binding of o-bromomethylphenidate to the dopamine transporter were measured at 0, 22 and 37 degrees. N-Methylation of the piperidine ring of methylphenidate also considerably reduced affinity. The dl-erythro isomer of o-bromomethylphenidate did not bind to the DAT (IC50 > 50,000 nM). Affinities at the dopamine and norepinephrine transporters for substituted methylphenidate derivatives were well correlated (r2=0.90). Abilities of several methylphenidate derivatives to inhibit [3H]dopamine uptake in striatal synaptosomes corresponded well with inhibition of [3H]WIN 35, 428 binding. None of the compounds examined exhibited significant affinity to dopamine D1 or D2 receptors (IC50 > 500 or 5,000 nM, respectively), as assessed by inhibition of binding of [3H]SCH 23390 or [123I]epidepride, respectively, to striatal membranes. PMID:8786705

  17. Increased hemoglobin O2 affinity protects during acute hypoxia

    PubMed Central

    Yalcin, Ozlem

    2012-01-01

    Acclimatization to hypoxia requires time to complete the adaptation mechanisms that influence oxygen (O2) transport and O2 utilization. Although decreasing hemoglobin (Hb) O2 affinity would favor the release of O2 to the tissues, increasing Hb O2 affinity would augment arterial O2 saturation during hypoxia. This study was designed to test the hypothesis that pharmacologically increasing the Hb O2 affinity will augment O2 transport during severe hypoxia (10 and 5% inspired O2) compared with normal Hb O2 affinity. RBC Hb O2 affinity was increased by infusion of 20 mg/kg of 5-hydroxymethyl-2-furfural (5HMF). Control animals received only the vehicle. The effects of increasing Hb O2 affinity were studied in the hamster window chamber model, in terms of systemic and microvascular hemodynamics and partial pressures of O2 (Po2). Pimonidazole binding to hypoxic areas of mice heart and brain was also studied. 5HMF decreased the Po2 at which the Hb is 50% saturated with O2 by 12.6 mmHg. During 10 and 5% O2 hypoxia, 5HMF increased arterial blood O2 saturation by 35 and 48% from the vehicle group, respectively. During 5% O2 hypoxia, blood pressure and heart rate were 58 and 30% higher for 5HMF compared with the vehicle. In addition, 5HMF preserved microvascular blood flow, whereas blood flow decreased to 40% of baseline in the vehicle group. Consequently, perivascular Po2 was three times higher in the 5HMF group compared with the control group at 5% O2 hypoxia. 5HMF also reduced heart and brain hypoxic areas in mice. Therefore, increased Hb O2 affinity resulted in hemodynamics and oxygenation benefits during severe hypoxia. This acute acclimatization process may have implications in survival during severe environmental hypoxia when logistic constraints prevent chronic acclimatization. PMID:22636677

  18. Spinor representations of affine Lie algebras

    PubMed Central

    Frenkel, I. B.

    1980-01-01

    Let [unk] be an infinite-dimensional Kac-Moody Lie algebra of one of the types Dl+1(2), Bl(1), or Dl(1). These algebras are characterized by the property that an elimination of any endpoint of their Dynkin diagrams gives diagrams of types Bl or Dl of classical orthogonal Lie algebras. We construct two representations of a Lie algebra [unk], which we call spinor representations, following the analogy with the classical case. We obtain that every spinor representation is either irreducible or has two irreducible components. This provides us with an explicit construction of fundamental representations of [unk], two for the type Dl+1(2), three for Bl(1), and four for Dl(1). We note the profound connection of our construction with quantum field theory—in particular, with fermion fields. Comparing the character formulas of our representations with another construction of the fundamental representations of Kac-Moody Lie algebras of types Al(1), Dl(1), El(1), we obtain classical Jacobi identities and addition formulas for elliptic θ-functions. PMID:16592912

  19. Oligomerization of Peptides LVEALYL and RGFFYT and Their Binding Affinity to Insulin

    PubMed Central

    Chiang, Hsin-Lin; Ngo, Son Tung; Chen, Chun-Jung; Hu, Chin-Kun; Li, Mai Suan

    2013-01-01

    Recently it has been proposed a model for fibrils of human insulin in which the fibril growth proceeds via stacking LVEALYL (fragment 11–17 from chain B of insulin) into pairs of tightly interdigitated -sheets. The experiments have also shown that LVEALYL has high propensity to self-assembly and binding to insulin. This necessitates study of oligomerization of LVEALYL and its binding affinity to full-length insulin. Using the all-atom simulations with Gromos96 43a1 force field and explicit water it is shown that LVEALYL can aggregate. Theoretical estimation of the binding free energy of LVEALYL to insulin by the molecular mechanic Poisson-Boltzmann surface area method reveals its strong binding affinity to chain B, implying that, in agreement with the experiments, LVEALYL can affect insulin aggregation via binding mechanism. We predict that, similar to LVEALYL, peptide RGFFYT (fragment B22-27) can self-assemble and bind to insulin modulating its fibril growth process. The binding affinity of RGFFYT is shown to be comparable with that of LVEALYL. PMID:23805182

  20. CSAR Benchmark of Flexible MedusaDock in Affinity Prediction and Nativelike Binding Pose Selection.

    PubMed

    Nedumpully-Govindan, Praveen; Jemec, Domen B; Ding, Feng

    2016-06-27

    While molecular docking with both ligand and receptor flexibilities can help capture conformational changes upon binding, correct ranking of nativelike binding poses and accurate estimation of binding affinities remains a major challenge. In addition to the commonly used scoring approach with intermolecular interaction energies, we included the contribution of intramolecular energies changes upon binding in our flexible docking method, MedusaDock. In CSAR 2013-2014 binding prediction benchmark exercises, the new scoring function MScomplex was found to better recapitulate experimental binding affinities and correctly identify ligand-binding sequences from decoy receptors. Our further analysis with the DUD data sets indicates significant improvement of virtual screening enrichment using the new scoring function when compared to the previous intermolecular energy based scoring method. Our postanalysis also suggests a new approach to select nativelike poses in the clustering-based pose ranking approach by MedusaDock. Since the calculation of intramolecular energy changes and clustering-based pose ranking and selection are not MedusaDock specific, we expect a broad application in force-field based estimation of binding affinities and pose ranking using flexible ligand-receptor docking. PMID:26252196

  1. Affinity monolith chromatography: A review of principles and recent analytical applications

    PubMed Central

    Pfaunmiller, Erika L.; Paulemond, Marie Laura; Dupper, Courtney M.; Hage, David S.

    2012-01-01

    Affinity monolith chromatography (AMC) is a type of liquid chromatography that uses a monolithic support and a biologically-related binding agent as a stationary phase. AMC is a powerful method for the selective separation, analysis or studies of specific target compounds in a sample. This review discusses the basic principles of AMC and recent developments or applications of this method, with particular emphasis being given to work that has appeared in the last five years. Various materials that have been used to prepare columns for AMC are examined, including organic monoliths, silica monoliths, agarose monoliths and cryogels. These supports have been used in AMC for formats that have ranged from traditional columns to disks, microcolumns and capillaries. Many binding agents have also been employed in AMC, such as antibodies, enzymes, proteins, lectins, immobilized metal-ions and dyes. Some applications that have been reported with these binding agents in AMC are bioaffinity chromatography, immunoaffinity chromatography or immunoextraction, immobilized metal-ion affinity chromatography, dye-ligand affinity chromatography, chiral separations and biointeraction studies. Examples are presented from fields that include analytical chemistry, pharmaceutical analysis, clinical testing and biotechnology. Current trends and possible future directions in AMC are also discussed. PMID:23187827

  2. Optimal fusion of antibody binding domains resulted in higher affinity and wider specificity.

    PubMed

    Dong, Jinhua; Kojima, Tomoki; Ohashi, Hiroyuki; Ueda, Hiroshi

    2015-11-01

    Antibody is a very important protein in biotechnological and biomedical fields because of its high affinity and specificity to various antigens. Due to the rise of human antibody therapeutics, its cost-effective purification is an urgent issue for bio-industry. In this study, we made novel fusion proteins PAxPG with a flexible (DDAKK)n linker between the two Ig binding domains derived from Staphylococcus protein A and Streptococcus protein G. The fusion proteins bound human and mouse IgGs and their fragments with up to 58-times higher affinity and wider specificity than the parental binding domains. Interestingly, the optimal linker for human Fab fragment was n = 4, which was close to the modeled distance between the termini of domains bound to heavy chain, implying increased avidity as a possible mechanism. For binding to Fc, the longest n=6 linker gave the highest affinity, implying longer interchain distance between the two binding sites. The novel fusion protein with optimized interdomain linker length will be a useful tool for the purification and detection of various IgGs including mouse IgG1 that binds only weakly to natural protein A. PMID:25910963

  3. Robust Affinity Standards for Cu(I) Biochemistry

    PubMed Central

    Bagchi, Pritha; Morgan, M. Thomas; Bacsa, John; Fahrni, Christoph J.

    2014-01-01

    The measurement of reliable Cu(I) protein binding affinities requires competing reference ligands with similar binding strengths; however, the literature on such reference ligands is not only sparse but often conflicting. To address this deficiency, we have created and characterized a series of water-soluble monovalent copper ligands, MCL-1, MCL-2, and MCL-3, that form well-defined, air-stable, and colorless complexes with Cu(I) in aqueous solution. Concluding from X-ray structural data, electrochemical measurements, and an extensive network of equilibrium titrations, all three ligands form discrete Cu(I) complexes with 1:1 stoichiometry and are capable of buffering Cu(I) concentrations between 10−10 and 10−17 M. As most Cu(I) protein affinities have been obtained from competition experiments with bathocuproine disulfonate (BCS) or 2,2′-bicinchoninic acid (BCA), we further calibrated their Cu(I) stability constants against the MCL-series. To demonstrate the application of these reagents, we determined the Cu(I) binding affinity of CusF (logK = 14.3±0.1), a periplasmic metalloprotein required for the detoxification of elevated copper levels in E. coli. Altogether, this interconnected set of affinity standards establishes a reliable foundation that will facilitate the precise determination of Cu(I) binding affinities of proteins and small molecule ligands. PMID:24298878

  4. Coenzyme-like ligands for affinity isolation of cholesterol oxidase.

    PubMed

    Xin, Yu; Lu, Liushen; Wang, Qing; Zhang, Ling; Tong, Yanjun; Wang, Wu

    2016-05-15

    Two coenzyme-like chemical ligands were designed and synthesized for affinity isolation of cholesterol oxidase (COD). To simulate the structure of natural coenzyme of COD (flavin adenine dinucleotide (FAD)), on Sepharose beads, 5-aminouracil, cyanuric chloride and 1, 4-butanediamine were composed and then modified. The COD gene from Brevibacterium sp. (DQ345780) was expressed in Escherichia coli BL21 (DE3), and then the sorbents were applied to adsorption analysis with the pure enzyme. Subsequently, the captured enzyme was applied to SDS-PAGE and activity analysis. As calculated, the theoretical maximum adsorption (Qmax) of the two affinity sorbents (RL-1 and RL-2) were ∼83.5 and 46.3mg/g wet gel; and the desorption constant Kd of the two sorbents were ∼6.02×10(-4) and 1.19×10(-4)μM. The proteins after cell lysis were applied to affinity isolation, and then after one step of affinity binding on the two sorbents, the protein recoveries of RL-1 and RL-2 were 9.2% and 9.7%; the bioactivity recoveries were 92.7% and 91.3%, respectively. SDS-PAGE analysis revealed that the purities of COD isolated with the two affinity sorbents were approximately 95%. PMID:26856529

  5. Fluorescent measurement of affinity binding between thrombin and its aptamers using on-chip affinity monoliths.

    PubMed

    Gao, Changlu; Sun, Xiuhua; Woolley, Adam T

    2013-05-24

    A microfluidic chip with integrated 2mm long monoliths incorporated with poly(ethylene glycol) (PEG) groups was developed for thrombin-aptamer interaction study. The non-G quartet forming oligonucleotide coated monoliths was compared to a 15 mer thrombin-binding aptamer, in which affinity binding and elution processes were real-time monitored fluorescently. The results showed that the fluorescence intensity of aptamer stationary phase is approximately 10 times higher than that of the control column, which is probably due to the successful suppression of nonspecific adsorption between thrombin and aptamers/monoliths by using PEG-monolith. The experiment was repeated using human serum albumin (HSA) and green fluorescence protein (GFP) as interferences, it was double confirmed that thrombin was selectively retained by PEG-monolith. An elution efficiency of 75% was achieved with an elute of 200mM acetic acid and 2M NaCI, and the eluted thrombin was successfully separated in an ionic buffer system of 20mM NaHCO3 (pH 9.5) with 3% PEG. The hydrophilic and antifouling properties of PEG-monolith greatly decrease nonspecific adsorption and enhance detection sensitivity, which provided an alternative method to perform on-chip fluorescent measurement of bioaffinity binding. PMID:23587316

  6. Craniodental affinities of Southeast Asia's "negritos" and the concordance with their genetic affinities.

    PubMed

    Bulbeck, David

    2013-01-01

    Genetic research into Southeast Asia's "negritos" has revealed their deep-rooted ancestry, with time depth comparable to that of Southwest Pacific populations. This finding is often interpreted as evidence that negritos, in contrast to other Southeast Asians, can trace much of their ancestry directly back to the early dispersal of Homo sapiens in the order of 70 kya from Africa to Pleistocene New Guinea and Australia. One view on negritos is to lump them and Southwest Pacific peoples into an "Australoid" race whose geographic distribution had included Southeast Asia prior to the Neolithic incursion of "Mongoloid" farmers. Studies into Semang osteology have revealed some hints of Southwest Pacific affinities in cranial shape, dental morphology, and dental metrical "shape." On the other hand, the Andamanese have been shown to resemble Africans in their craniometrics and South Asians in their dental morphology, while Philippine negritos resemble Mongoloid Southeast Asians in these respects and also in their dental metrics. This study expands the scope of negrito cranial comparisons by including Melayu Malays and additional coverage of South Asians. It highlights the distinction between the Mongoloid-like Philippine negritos and the Andamanese and Semang (and Senoi of Malaya) with their non-Mongoloid associations. It proposes that the early/mid-Holocene dispersal of the B4a1a mitochondrial DNA clade across Borneo, the Philippines, and Taiwan may be important for understanding the distinction between Philippine and other negritos. PMID:24297222

  7. Enhancing Community Detection By Affinity-based Edge Weighting Scheme

    SciTech Connect

    Yoo, Andy; Sanders, Geoffrey; Henson, Van; Vassilevski, Panayot

    2015-10-05

    Community detection refers to an important graph analytics problem of finding a set of densely-connected subgraphs in a graph and has gained a great deal of interest recently. The performance of current community detection algorithms is limited by an inherent constraint of unweighted graphs that offer very little information on their internal community structures. In this paper, we propose a new scheme to address this issue that weights the edges in a given graph based on recently proposed vertex affinity. The vertex affinity quantifies the proximity between two vertices in terms of their clustering strength, and therefore, it is ideal for graph analytics applications such as community detection. We also demonstrate that the affinity-based edge weighting scheme can improve the performance of community detection algorithms significantly.

  8. Einstein-aether theory, violation of Lorentz invariance, and metric-affine gravity

    SciTech Connect

    Heinicke, Christian; Baekler, Peter; Hehl, Friedrich W.

    2005-07-15

    We show that the Einstein-aether theory of Jacobson and Mattingly (J and M) can be understood in the framework of the metric-affine (gauge theory of) gravity (MAG). We achieve this by relating the aether vector field of J and M to certain post-Riemannian nonmetricity pieces contained in an independent linear connection of spacetime. Then, for the aether, a corresponding geometrical curvature-square Lagrangian with a massive piece can be formulated straightforwardly. We find an exact spherically symmetric solution of our model.

  9. Neuroprotective effects of high affinity sigma 1 receptor selective compounds

    PubMed Central

    Luedtke, Robert R.; Perez, Evelyn; Yang, Shao-Hua; Liu, Ran; Vangveravong, Suwanna; Tu, Zhude; Mach, Robert H.; Simpkins, James W.

    2014-01-01

    We previously reported that the antipsychotic drug haloperidol, a multifunctional D2-like dopamine and sigma receptor subtype antagonist, has neuroprotective properties. In this study we further examined the association between neuroprotection and receptor antagonism by evaluating a panel of novel compounds with varying affinity at sigma and D2-like dopamine receptors. These compounds were evaluated using an in vitro cytotoxicity assay that utilizes a hippocampal-derived cell line, HT-22, in the presence or absence of varying concentrations (5 to 20 mM) of glutamate. While haloperidol was found to be a potent neuroprotective agent in this in vitro cell assay, the prototypic sigma 1 receptor agonist (+)-pentazocine was found not to be neuroprotective. Subsequently, the potency for the neuroprotection of HT-22 cells was evaluated for a) three SV series indoles which have nMolar affinity at D2-like receptors but varying affinity at sigma 1 receptor and b) two benzyl phenylacetamides sigma 1 receptor selective compounds which bind with low affinity at D2-like receptors but have nMolar affinity for the sigma 1 receptor. We observed that cytoprotection correlated with the affinity of the compounds for sigma 1 receptors. Based upon results from the HT-22 cell-based in vitro assay, two phenylacetamides, LS-127 and LS-137, were further evaluated in vivo using a transient middle cerebral artery occlusion (t-MCAO) model of stroke. At a dose of 100 µg/kg, both LS-127 and LS-137 attenuated infarct volume by approximately 50%. These studies provide further evidence that sigma 1 receptor selective compounds can provide neuroprotection in cytotoxic situations. These results also demonstrate that sigma 1 receptor selective benzyl phenylacetamides are candidate pharmacotherapeutic agents that could be used to minimize neuronal death after a stroke or head trauma. PMID:22285434

  10. Binding affinity prediction of novel estrogen receptor ligands using receptor-based 3-D QSAR methods.

    PubMed

    Sippl, Wolfgang

    2002-12-01

    We have recently reported the development of a 3-D QSAR model for estrogen receptor ligands showing a significant correlation between calculated molecular interaction fields and experimentally measured binding affinity. The ligand alignment obtained from docking simulations was taken as basis for a comparative field analysis applying the GRID/GOLPE program. Using the interaction field derived with a water probe and applying the smart region definition (SRD) variable selection procedure, a significant and robust model was obtained (q(2)(LOO)=0.921, SDEP=0.345). To further analyze the robustness and the predictivity of the established model several recently developed estrogen receptor ligands were selected as external test set. An excellent agreement between predicted and experimental binding data was obtained indicated by an external SDEP of 0.531. Two other traditionally used prediction techniques were applied in order to check the performance of the receptor-based 3-D QSAR procedure. The interaction energies calculated on the basis of receptor-ligand complexes were correlated with experimentally observed affinities. Also ligand-based 3-D QSAR models were generated using program FlexS. The interaction energy-based model, as well as the ligand-based 3-D QSAR models yielded models with lower predictivity. The comparison with the interaction energy-based model and with the ligand-based 3-D QSAR models, respectively, indicates that the combination of receptor-based and 3-D QSAR methods is able to improve the quality of prediction. PMID:12413831

  11. Affine and deformable registration based on polynomial expansion.

    PubMed

    Farnebäck, Gunnar; Westin, Carl-Fredrik

    2006-01-01

    This paper presents a registration framework based on the polynomial expansion transform. The idea of polynomial expansion is that the image is locally approximated by polynomials at each pixel. Starting with observations of how the coefficients of ideal linear and quadratic polynomials change under translation and affine transformation, algorithms are developed to estimate translation and compute affine and deformable registration between a fixed and a moving image, from the polynomial expansion coefficients. All algorithms can be used for signals of any dimensionality. The algorithms are evaluated on medical data. PMID:17354971

  12. Affine generalization of the Komar complex of general relativity

    NASA Astrophysics Data System (ADS)

    Mielke, Eckehard W.

    2001-02-01

    On the basis of the ``on shell'' Noether identities of the metric-affine gauge approach of gravity, an affine superpotential is derived which comprises the energy- and angular-momentum content of exact solutions. In the special case of general relativity (GR) or its teleparallel equivalent, the Komar or Freud complex, respectively, are recovered. Applying this to the spontaneously broken anti-de Sitter gauge model of McDowell and Mansouri with an induced Euler term automatically yields the correct mass and spin of the Kerr-AdS solution of GR with a (induced) cosmological constant without the factor two discrepancy of the Komar formula.

  13. Affinity based and molecularly imprinted cryogels: Applications in biomacromolecule purification.

    PubMed

    Andaç, Müge; Galaev, Igor Yu; Denizli, Adil

    2016-05-15

    The publications in macro-molecularly imprinted polymers have increased drastically in recent years with the development of water-based polymer systems. The macroporous structure of cryogels has allowed the use of these materials within different applications, particularly in affinity purification and molecular imprinting based methods. Due to their high selectivity, specificity, efficient mass transfer and good reproducibility, molecularly imprinted cryogels (MICs) have become attractive for researchers in the separation and purification of proteins. In this review, the recent developments in affinity based cryogels and molecularly imprinted cryogels in protein purification are reviewed comprehensively. PMID:26454622

  14. Statistical theory of chromatography: new outlooks for affinity chromatography.

    PubMed Central

    Denizot, F C; Delaage, M A

    1975-01-01

    We have developed further the statistical approach to chromatography initiated by Giddings and Eyring, and applied it to affinity chromatography. By means of a convenient expression of moments the convergence towards the Laplace-Gauss distribution has been established. The Gaussian character is not preserved if other causes of dispersion are taken into account, but expressions of moments can be obtained in a generalized form. A simple procedure is deduced for expressing the fundamental constants of the model in terms of purely experimental quantities. Thus, affinity chromatography can be used to determine rate constants of association and dissociation in a range considered as the domain of the stopped-flow methods. PMID:1061072

  15. and as Vertex Operator Extensionsof Dual Affine Algebras

    NASA Astrophysics Data System (ADS)

    Bowcock, P.; Feigin, B. L.; Semikhatov, A. M.; Taormina, A.

    We discover a realisation of the affine Lie superalgebra and of the exceptional affine superalgebra as vertex operator extensions of two algebras with ``dual'' levels (and an auxiliary level-1 algebra). The duality relation between the levels is . We construct the representation of on a sum of tensor products of , , and modules and decompose it into a direct sum over the spectral flow orbit. This decomposition gives rise to character identities, which we also derive. The extension of the construction to is traced to the properties of embeddings into and their relation with the dual pairs. Conversely, we show how the representations are constructed from representations.

  16. Dynamic output feedback H ∞ control for affine fuzzy systems

    NASA Astrophysics Data System (ADS)

    Wang, Huimin; Yang, Guang-Hong

    2013-06-01

    This article investigates the problem of designing H ∞ dynamic output feedback controllers for nonlinear systems, which are described by affine fuzzy models. The system outputs have been chosen as premise variables, which can guarantee that the plant and the controller always switch to the same region. By using a piecewise Lyapunov function and adding slack matrix variables, a piecewise-affine dynamic output feedback controller design method is obtained in the formulation of linear matrix inequalities (LMIs), which can be efficiently solved numerically. In contrast to the existing work, the proposed approach needs less LMI constraints and leads to less conservatism. Finally, numerical examples illustrate the effectiveness of the new result.

  17. Synthesis of biotinylated probes of artemisinin for affinity labeling

    PubMed Central

    Konziase, Benetode

    2015-01-01

    In this data article, we described the synthetic routes to four biotinylated probes (2, 3, 4, and 5) of artemisinin and the associated experimental procedures. We also provided the physical data for the synthesized compounds. These synthesized biotinylated probes of artemisinin are useful molecular tools for the affinity-labeling study of target receptor proteins of artemisinin in tropical pathogens such as Trypanosoma, Leishmania, and Schistosoma. The data provided herein are related to “Biotinylated probes of artemisinin with labeling affinity toward Trypanosoma brucei brucei target proteins”, by Konziase (Anal. Biochem. (2015)). PMID:26217765

  18. Kinetic controlled affinity labeling of target enzyme with thioester chemistry.

    PubMed

    Tomohiro, Takenori; Nakabayashi, Masahiro; Sugita, Yuka; Morimoto, Shota

    2016-08-01

    High specificity has been an important feature in affinity labeling for target profiling. Especially, to label targets via rapidly progressing reactions with consumption of ligand (probe), high specificity of reaction with common functional groups of target protein should be achieved without reactions with similar groups of non-target proteins. Herein, we demonstrate the kinetic controlled affinity labeling of acyl CoA synthetase using a fatty acid analogue containing a phenylthioester linkage. High specificity was attained by accelerating the labeling rate in the binding pocket. This approach could be useful for profiling a series of target enzymes and transporters in signal transduction pathways. PMID:27298000

  19. Affinity Chromatography Purification of Cytochrome c Binding Enzymes

    NASA Astrophysics Data System (ADS)

    Azzi, Angelo; Bill, Kurt; Broger, Clemens

    1982-04-01

    An efficient affinity chromatography procedure for the isolation of mitochondrial cytochrome c oxidase and reductase is described. Saccharomyces cerevisiae cytochrome c was used as a ligand, bound to a thiol-Sepharose 4B gel through cysteine-107. In this way, the site of interaction of cytochrome c with cytochrome oxidase and reductase remained unmodified and available for binding to a number of partner enzymes. The procedure is adequate for the purification of all those proteins having in common the property of binding with high affinity to cytochrome c--e.g., cytochrome c oxidase, reductase, and peroxidase, sulfite oxidase, and reaction centers of photosynthetic bacteria.

  20. Affinity Adsorbents Based on Carriers Activated by Epoxy-compounds

    NASA Astrophysics Data System (ADS)

    Klyashchitskii, B. A.; Kuznetsov, P. V.

    1984-10-01

    The review is devoted to the synthesis and applications of affinity adsorbents based on carriers activated by epoxy-compounds. The methods for the introduction of epoxy-groups into carriers of different chemical types are discussed and conditions for the immobilisation of three-dimensional spacers and low-molecular-weight and polymeric ligands on carriers containing epoxy-groups are considered. Data are presented on the properties and applications of adsorbents of this type in affinity chromatography. The bibliography includes 144 references.

  1. Affinity chromatography and affinity labeling of rat liver succinyl-CoA synthetase.

    PubMed

    Ball, D J; Nishimura, J S

    1980-11-25

    Succinyl-CoA synthetase has been purified to apparent homogeneity from rat liver. The key step in the purification procedure involved adsorption on a GDP dialdehyde (dial-GDP)-adipic dihydrazide-Sepharose 4B column and elution by GDP-Mg2+. Like the pig heart enzyme (Brownie, E. R., and Bridger, W. A. (1972) Can. J. Biochem. 50, 719--724), the rat liver enzyme was an alpha beta heterodimer and only the alpha subunit was phosphorylated by [gamma-32P]GTP. The A 280(0.1%) of the enzyme was determined to be 0.5. Amino acid analyses revealed significant similarities in 50% of the amino acid residues of rat liver and Escherichia coli succinyl-CoA synthetases. However, immunodiffusion analysis failed to reveal any antigenic identity between the two enzymes. Incubation with the affinity label, dial-GDP, in the presence of Mg2+ resulted in a biphasic inactivation of the enzyme. The extent of the rapid phase of inactivation appeared to be related to the extent of dephosphorylation of the enzyme and was prevented by preincubation of the enzyme with GTP-Mg2+. The presence of GDP-Mg2+ in the incubation medium prevented the slow phase of the inactivation and retarded the rapid phase. Dephosphorylated enzyme was approximately 2 orders of magnitude more susceptible to inactivation by dial-GDP than phosphorylated enzyme. Labeling of succinyl-CoA synthetase with [3H]dial-GDP gave a linear relationship between inactivation and incorporation of radioactivity with an extrapolated value of less than 1.2 mol of analog/mol of enzyme at 100% inactivation. The distribution of the label in enzyme that was inactivated 40% was approximately 60% in the alpha subunit and 40% in the beta subunit. Thus, while phosphorylation of the enzyme occurs exclusively in the alpha subunit, the nucleotide binding site appears to include components from both alpha and beta subunits. PMID:7430155

  2. Quantitative demonstration of intrathecal synthesis of high affinity immunoglobulin G in herpes simplex encephalitis using affinity-mediated immunoblotting.

    PubMed

    Chapman, Miles D; Thompson, Edward J; Candler, Paul M; Dale, Russell C; Church, Andrew J; Giovannoni, Gavin

    2007-04-01

    Three paired serial samples of CSF and serum (from days 8, 13 and 22) were taken from a patient referred to the National Hospital for Neurology and Neurosurgery with what was duly confirmed as having herpes simplex encephalitis using PCR. The samples were investigated using affinity-mediated immunoblotting followed by incubation with sodium thiocyanate. Digitisation of the blots enabled further analysis. We showed that the clones of antigen-specific IgG, which were produced intrathecally, were of higher relative affinity than polyclonal antigen-specific IgG. PMID:17303253

  3. Inhibition of aggregation of amyloid peptides by beta-sheet breaker peptides and their binding affinity.

    PubMed

    Viet, Man Hoang; Ngo, Son Tung; Lam, Nguyen Sy; Li, Mai Suan

    2011-06-01

    The effects of beta-sheet breaker peptides KLVFF and LPFFD on the oligomerization of amyloid peptides were studied by all-atom simulations. It was found that LPFFD interferes the aggregation of Aβ(16-22) peptides to a greater extent than does KLVFF. Using the molecular mechanics-Poisson-Boltzmann surface area (MM-PBSA) method, we found that the former binds more strongly to Aβ(16-22). Therefore, by simulations, we have clarified the relationship between aggregation rates and binding affinity: the stronger the ligand binding, the slower the oligomerization process. The binding affinity of pentapeptides to full-length peptide Aβ(1-40) and its mature fibrils has been considered using the Autodock and MM-PBSA methods. The hydrophobic interaction between ligands and receptors plays a more important role for association than does hydrogen bonding. The influence of beta-sheet breaker peptides on the secondary structures of monomer Aβ(1-40) was studied in detail, and it turns out that, in their presence, the total beta-sheet content can be enhanced. However, the aggregation can be slowed because the beta-content is reduced in fibril-prone regions. Both pentapeptides strongly bind to monomer Aβ(1-40), as well as to mature fibrils, but KLVFF displays a lower binding affinity than LPFFD. Our findings are in accord with earlier experiments that both of these peptides can serve as prominent inhibitors. In addition, we predict that LPFFD inhibits/degrades the fibrillogenesis of full-length amyloid peptides better than KLVFF. This is probably related to a difference in their total hydrophobicities in that the higher the hydrophobicity, the lower the inhibitory capacity. The GROMOS96 43a1 force field with explicit water and the force field proposed by Morris et al. (Morris et al. J. Comput. Chem. 1998, 19, 1639 ) were employed for all-atom molecular dynamics simulations and Autodock experiments, respectively. PMID:21563780

  4. Electrochemical affinity biosensors for detection of mycotoxins: A review.

    PubMed

    Vidal, Juan C; Bonel, Laura; Ezquerra, Alba; Hernández, Susana; Bertolín, Juan R; Cubel, Carlota; Castillo, Juan R

    2013-11-15

    This review discusses the current state of electrochemical biosensors in the determination of mycotoxins in foods. Mycotoxins are highly toxic secondary metabolites produced by molds. The acute toxicity of these results in serious human and animal health problems, although it has been only since early 1960s when the first studied aflatoxins were found to be carcinogenic. Mycotoxins affect a broad range of agricultural products, most important cereals and cereal-based foods. A majority of countries, mentioning especially the European Union, have established preventive programs to control contamination and strict laws of the permitted levels in foods. Official methods of analysis of mycotoxins normally requires sophisticated instrumentation, e.g. liquid chromatography with fluorescence or mass detectors, combined with extraction procedures for sample preparation. For about sixteen years, the use of simpler and faster analytical procedures based on affinity biosensors has emerged in scientific literature as a very promising alternative, particularly electrochemical (i.e., amperometric, impedance, potentiometric or conductimetric) affinity biosensors due to their simplicity and sensitivity. Typically, electrochemical biosensors for mycotoxins use specific antibodies or aptamers as affinity ligands, although recombinant antibodies, artificial receptors and molecular imprinted polymers show potential utility. This article deals with recent advances in electrochemical affinity biosensors for mycotoxins and covers complete literature from the first reports about sixteen years ago. PMID:23743326

  5. Affinities and beyond! Developing Ways of Seeing in Online Spaces

    ERIC Educational Resources Information Center

    Davies, Julia

    2006-01-01

    This article presents an insider view of an online community of adults involved in sharing digital photography through a host website, Flickr. It describes how reciprocal teaching and learning partnerships in a dynamic multimodal environment are achieved through the creation of a "Third Space" or "Affinity Space", where "Funds of Knowledge" are…

  6. Native Elution of Yeast Protein Complexes Obtained by Affinity Capture.

    PubMed

    LaCava, John; Fernandez-Martinez, Javier; Rout, Michael P

    2016-01-01

    This protocol describes two options for the native (nondenaturing) elution of protein complexes obtained by affinity capture. The first approach involves the elution of complexes purified through a tag that includes a human rhinovirus 3C protease (PreScission protease) cleavage site sequence between the protein of interest and the tag. Incubation with the protease cleaves immobilized complexes from the affinity medium. The second approach involves the release of protein A-tagged protein complexes using a competitive elution reagent called PEGylOx. The degree of purity of the native assemblies eluted is sample dependent and strongly influenced by the affinity capture. It should be noted that the efficiency of native elution is commonly lower than that of elution by a denaturing agent (e.g., SDS) and the release of the complex will be limited by the activity of the protease or the inhibition constant (Ki) of the competitive release agent. However, an advantage of native release is that some nonspecifically bound materials tend to stay adsorbed to the affinity medium, providing an eluted fraction of higher purity. Finally, keep in mind that the presence of the protease or elution peptide could potentially affect downstream applications; thus, their removal should be considered. PMID:27371597

  7. Affinity of cefoperazone for penicillin-binding proteins.

    PubMed Central

    Matsubara, N; Minami, S; Matsuhashi, M; Takaoka, M; Mitsuhashi, S

    1980-01-01

    Cefoperazone (T-1551, CFP) a new semisynthetic cephalosporin, has a broad spectrum of antibacterial activity. We investigated the affinity of CFP to penicillin-binding proteins (PBPs) and the inhibition of peptidoglycan synthesis by CFP. CFP had high affinities for Escherichia coli PBP-3, -1Bs, -2, and -1A, in descending order, and low affinities for PBP-4, -5, and -6. Similarly, CFP showed high affinity for Pseudomonas aeruginosa PBP-3, -1A, -1B, -2, and -4, in descending order. It is known that E. coli PBP-3 and P. aeruginosa PBP-3 participate in cell division. These results are in good agreement with the formation of filamentous cells of E. coli and P. aeruginosa treated with CFP. CFP had lower inhibitory activities on D-alanine carboxypeptidase IA and IB of E. coli than that of penicillin G, but its inhibitory activities on the cross-link formation in peptidoglycan synthesis were the same as those of penicillin G and higher than those of ampicillin. Images PMID:6448021

  8. A molecular determinant of phosphoinositide affinity in mammalian TRPV channels

    PubMed Central

    Velisetty, Phanindra; Borbiro, Istvan; Kasimova, Marina A.; Liu, Luyu; Badheka, Doreen; Carnevale, Vincenzo; Rohacs, Tibor

    2016-01-01

    Phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] is an important cofactor for ion channels. Affinity for this lipid is a major determinant of channel inhibition by depletion of PI(4,5)P2 upon phospholipase C (PLC) activation. Little is known about what determines PI(4,5)P2 affinity in mammalian ion channels. Here we report that two members of the Transient Receptor Potential Vanilloid (TRPV) ion channel family, TRPV5 and TRPV6 lack a positively charged residue in the TM4-TM5 loop that was shown to interact with PI(4,5)P2 in TRPV1, which shows high affinity for this lipid. When this positively charged residue was introduced to either TRPV6 or TRPV5, they displayed markedly higher affinities for PI(4,5)P2, and were largely resistant to inhibition by PI(4,5)P2 depletion. Furthermore, Ca2+-induced inactivation of TRPV6 was essentially eliminated in the G488R mutant, showing the importance of PLC-mediated PI(4,5)P2 depletion in this process. Computational modeling shows that the introduced positive charge interacts with PI(4,5)P2 in TRPV6. PMID:27291418

  9. Chemokines and the Signaling Modules Regulating Integrin Affinity

    PubMed Central

    Montresor, Alessio; Toffali, Lara; Constantin, Gabriela; Laudanna, Carlo

    2012-01-01

    Integrin-mediated adhesion is a general concept referring to a series of adhesive phenomena including tethering–rolling, affinity, valency, and binding stabilization altogether controlling cell avidity (adhesiveness) for the substrate. Arrest chemokines modulate each aspect of integrin activation, although integrin affinity regulation has been recognized as the prominent event in rapid leukocyte arrest induced by chemokines. A variety of inside-out and outside-in signaling mechanisms have been related to the process of integrin-mediated adhesion in different cellular models, but only few of them have been clearly contextualized to rapid integrin affinity modulation by arrest chemokines in primary leukocytes. Complex signaling processes triggered by arrest chemokines and controlling leukocyte integrin activation have been described for ras-related rap and for rho-related small GTPases. We summarize the role of rap and rho small GTPases in the regulation of rapid integrin affinity in primary leukocytes and provide a modular view of these pro-adhesive signaling events. A potential, albeit still speculative, mechanism of rho-mediated regulation of cytoskeletal proteins controlling the last step of integrin activation is also discussed. We also discuss data suggesting a functional integration between the rho- and rap-modules of integrin activation. Finally we examine the universality of signaling mechanisms regulating integrin triggering by arrest chemokines. PMID:22654882

  10. Development of gadolinium based nanoparticles having an affinity towards melanin

    NASA Astrophysics Data System (ADS)

    Morlieras, Jessica; Chezal, Jean-Michel; Miot-Noirault, Elisabeth; Roux, Amandine; Heinrich-Balard, Laurence; Cohen, Richard; Tarrit, Sébastien; Truillet, Charles; Mignot, Anna; Hachani, Roxanne; Kryza, David; Antoine, Rodolphe; Dugourd, Philippe; Perriat, Pascal; Janier, Marc; Sancey, Lucie; Lux, François; Tillement, Olivier

    2013-01-01

    Small Rigid Platforms (SRPs) are sub-5 nanometre gadolinium based nanoparticles that have been developed for multimodal imaging and theranostic applications. They are composed of a polysiloxane network surrounded by gadolinium chelates. A covalent coupling with quinoxaline derivatives has been performed. Such derivatives have proven their affinity for melanin frequently expressed in primary melanoma cases. Three different quinoxaline derivatives have been synthesised and coupled to the nanoparticles. The affinity of the grafted nanoparticles for melanin has then been shown in vitro by surface plasmon resonance on a homemade melanin grafted gold chip.Small Rigid Platforms (SRPs) are sub-5 nanometre gadolinium based nanoparticles that have been developed for multimodal imaging and theranostic applications. They are composed of a polysiloxane network surrounded by gadolinium chelates. A covalent coupling with quinoxaline derivatives has been performed. Such derivatives have proven their affinity for melanin frequently expressed in primary melanoma cases. Three different quinoxaline derivatives have been synthesised and coupled to the nanoparticles. The affinity of the grafted nanoparticles for melanin has then been shown in vitro by surface plasmon resonance on a homemade melanin grafted gold chip. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr33457g

  11. Background correction using dinucleotide affinities improves the performance of GCRMA

    PubMed Central

    Gharaibeh, Raad Z; Fodor, Anthony A; Gibas, Cynthia J

    2008-01-01

    Background High-density short oligonucleotide microarrays are a primary research tool for assessing global gene expression. Background noise on microarrays comprises a significant portion of the measured raw data, which can have serious implications for the interpretation of the generated data if not estimated correctly. Results We introduce an approach to calculate probe affinity based on sequence composition, incorporating nearest-neighbor (NN) information. Our model uses position-specific dinucleotide information, instead of the original single nucleotide approach, and adds up to 10% to the total variance explained (R2) when compared to the previously published model. We demonstrate that correcting for background noise using this approach enhances the performance of the GCRMA preprocessing algorithm when applied to control datasets, especially for detecting low intensity targets. Conclusion Modifying the previously published position-dependent affinity model to incorporate dinucleotide information significantly improves the performance of the model. The dinucleotide affinity model enhances the detection of differentially expressed genes when implemented as a background correction procedure in GeneChip preprocessing algorithms. This is conceptually consistent with physical models of binding affinity, which depend on the nearest-neighbor stacking interactions in addition to base-pairing. PMID:18947404

  12. Affinity and Avidity in Antibody-Based Tumor Targeting

    PubMed Central

    Rudnick, Stephen I.

    2009-01-01

    Summation Many factors contribute to successful tumor targeting by antibodies. Besides properties of the tumor tissue and general antibody pharmacology, a relationship exists between an antibody and its antigen that can shape penetration, catabolism, specificity, and efficacy. The affinity and avidity of the binding interactions play critical roles in these dynamics. In this work, we review the principles that guide models predicting tumor penetration and cellular internalization while providing a critical overview of studies aimed at experimentally determining the specific role of affinity and avidity in these processes. One should gain the perspective that binding affinity can, in part, dictate the localization of antibodies in tumors, leading to high concentrations in the perivascular space or low concentrations diffused throughout the tumor. These patterns can be simply due to the diminution of available dose by binding antigen and are complicated by internalization and degradation stemming from slow rates of dissociation. As opposed to the trend of simply increasing affinity to increase efficacy, novel strategies that increase avidity and broaden specificity have made significant progress in tumor targeting. PMID:19409036

  13. Affinity through Mathematical Activity: Cultivating Democratic Learning Communities

    ERIC Educational Resources Information Center

    Sengupta-Irving, Tesha

    2014-01-01

    In this article, the author demonstrates how a broader view of what shapes affinity is ideologically and practically linked to creating democratic learning communities. Specifically, the author explores how a teacher employed complex instruction (an equity pedagogy) with her ethnically and racially diverse students in the "lowest track"…

  14. Toward an Affinity Space Methodology: Considerations for Literacy Research

    ERIC Educational Resources Information Center

    Lammers, Jayne C.; Curwood, Jen Scott; Magnifico, Alecia Marie

    2012-01-01

    As researchers seek to make sense of young people's online literacy practices and participation, questions of methodology are important to consider. In our work to understand the culture of physical, virtual and blended spheres that adolescents inhabit, we find it necessary to expand Gee's (2004) notion of affinity spaces. In this article, we draw…

  15. Peptides@mica: from affinity to adhesion mechanism.

    PubMed

    Gladytz, A; John, T; Gladytz, T; Hassert, R; Pagel, M; Risselada, H J; Naumov, S; Beck-Sickinger, A G; Abel, B

    2016-09-14

    Investigating the adsorption of peptides on inorganic surfaces, on the molecular level, is fundamental for medicinal and analytical applications. Peptides can be potent as linkers between surfaces and living cells in biochips or in implantation medicine. Here, we studied the adsorption process of the positively charged pentapeptide RTHRK, a recently identified binding sequence for surface oxidized silicon, and novel analogues thereof to negatively charged mica surfaces. Homogeneous formation of monolayers in the nano- and low micromolar peptide concentration range was observed. We propose an alternative and efficient method to both quantify binding affinity and follow adhesion behavior. This method makes use of the thermodynamic relationship between surface coverage, measured by atomic force microscopy (AFM), and the concomitant free energy of adhesion. A knowledge-based fit to the autocorrelation of the AFM images was used to correct for a biased surface coverage introduced by the finite lateral resolution of the AFM. Binding affinities and mechanisms were further explored by large scale molecular dynamics (MD) simulations. The combination of well validated MD simulations with topological data from AFM revealed a better understanding of peptide adsorption processes on the atomistic scale. We demonstrate that binding affinity is strongly determined by a peptide's ability to form salt bridges and hydrogen bonds with the surface lattice. Consequently, differences in hydrogen bond formation lead to substantial differences in binding affinity despite conservation of the peptide's overall charge. Further, MD simulations give access to relative changes in binding energy of peptide variations in comparison to a lead compound. PMID:27491508

  16. Accurate Evaluation Method of Molecular Binding Affinity from Fluctuation Frequency

    NASA Astrophysics Data System (ADS)

    Hoshino, Tyuji; Iwamoto, Koji; Ode, Hirotaka; Ohdomari, Iwao

    2008-05-01

    Exact estimation of the molecular binding affinity is significantly important for drug discovery. The energy calculation is a direct method to compute the strength of the interaction between two molecules. This energetic approach is, however, not accurate enough to evaluate a slight difference in binding affinity when distinguishing a prospective substance from dozens of candidates for medicine. Hence more accurate estimation of drug efficacy in a computer is currently demanded. Previously we proposed a concept of estimating molecular binding affinity, focusing on the fluctuation at an interface between two molecules. The aim of this paper is to demonstrate the compatibility between the proposed computational technique and experimental measurements, through several examples for computer simulations of an association of human immunodeficiency virus type-1 (HIV-1) protease and its inhibitor (an example for a drug-enzyme binding), a complexation of an antigen and its antibody (an example for a protein-protein binding), and a combination of estrogen receptor and its ligand chemicals (an example for a ligand-receptor binding). The proposed affinity estimation has proven to be a promising technique in the advanced stage of the discovery and the design of drugs.

  17. A molecular determinant of phosphoinositide affinity in mammalian TRPV channels.

    PubMed

    Velisetty, Phanindra; Borbiro, Istvan; Kasimova, Marina A; Liu, Luyu; Badheka, Doreen; Carnevale, Vincenzo; Rohacs, Tibor

    2016-01-01

    Phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] is an important cofactor for ion channels. Affinity for this lipid is a major determinant of channel inhibition by depletion of PI(4,5)P2 upon phospholipase C (PLC) activation. Little is known about what determines PI(4,5)P2 affinity in mammalian ion channels. Here we report that two members of the Transient Receptor Potential Vanilloid (TRPV) ion channel family, TRPV5 and TRPV6 lack a positively charged residue in the TM4-TM5 loop that was shown to interact with PI(4,5)P2 in TRPV1, which shows high affinity for this lipid. When this positively charged residue was introduced to either TRPV6 or TRPV5, they displayed markedly higher affinities for PI(4,5)P2, and were largely resistant to inhibition by PI(4,5)P2 depletion. Furthermore, Ca(2+)-induced inactivation of TRPV6 was essentially eliminated in the G488R mutant, showing the importance of PLC-mediated PI(4,5)P2 depletion in this process. Computational modeling shows that the introduced positive charge interacts with PI(4,5)P2 in TRPV6. PMID:27291418

  18. Student Engagement and Neoliberalism: Mapping an Elective Affinity

    ERIC Educational Resources Information Center

    Zepke, Nick

    2015-01-01

    The purpose of this article is to argue that student engagement, an important area for research about learning and teaching in formal higher education, has an elective affinity with neoliberalism, a hegemonic ideology in many countries of the developed world. The paper first surveys an extensive research literature examining student engagement and…

  19. Kinetic Studies of Biological Interactions By Affinity Chromatography

    PubMed Central

    Schiel, John E.; Hage, David S.

    2009-01-01

    The rates at which biological interactions occur can provide important information on the mechanism and behavior of such processes in living systems. This review will discuss how affinity chromatography can be used as a tool to examine the kinetics of biological interactions. This approach, referred to here as biointeraction chromatography, uses a column with an immobilized binding agent to examine the association or dissociation of this agent with other compounds. The use of HPLC-based affinity columns in kinetic studies has received particular attention in recent years. Advantages of using HPLC with affinity chromatography for this purpose include the ability to reuse the same ligand within a column for a large number of experiments, and the good precision and accuracy of this approach. A number of techniques are available for kinetic studies through the use of affinity columns and biointeraction chromatography. These approaches include plate height measurements, peak profiling, peak fitting, split-peak measurements, and peak decay analysis. The general principles for each of these methods are discussed in this review and some recent applications of these techniques are presented. The advantages and potential limitations of each approach are also considered. PMID:19391173

  20. Bimolecular affinity purification: a variation of TAP with multiple applications.

    PubMed

    Starokadomskyy, Petro; Burstein, Ezra

    2014-01-01

    The identification of true interacting partners of any given bait can be plagued by the nonspecific purification of irrelevant proteins. To avoid this problem, Tandem Affinity Purification (TAP) is a widely used procedure in molecular biology as this reduces the chance of nonspecific proteins being present in the final preparation. In this approach, two different affinity tags are fused to the protein bait. Herein, we review in detail a variation on the TAP procedure that we have previously developed, where the affinity moieties are placed on two different proteins that form a complex in vivo. This variation, which we refer to as Bimolecular Affinity Purification (BAP), is suited for the identification of specific molecular complexes marked by the presence of two known proteins. We have utilized BAP for characterization of molecular complexes and evaluation of proteins interaction. Another application of BAP is the isolation of ubiquitin-like proteins (UBL)-modified fractions of a given protein and characterization of the lysine-acceptor site and structure of UBL-chains. PMID:24943324

  1. ESTIMATION OF ELECTRON AFFINITY BASED ON STRUCTURE ACTIVITY RELATIONSHIPS

    EPA Science Inventory

    Electron affinity for a wide range of organic molecules was calculated from molecular structure using the chemical reactivity models developed in SPARC. hese models are based on fundamental chemical structure theory applied to the prediction of chemical reactivities for organic m...

  2. Harmonic fusion and pitch affinity: Is there a direct link?

    PubMed

    Bonnard, Damien; Dauman, René; Semal, Catherine; Demany, Laurent

    2016-03-01

    Simultaneous pure tones approximately one octave apart tend to be fused perceptually and to evoke a single pitch sensation. Besides, sequentially presented pure tones show a subjective "affinity" or similarity in pitch when their frequency ratio is close to one octave. The aim of the study reported here was to determine if these two perceptual phenomena are directly related. Each stimulus was a triplet of simultaneous or successive pure tones forming frequency ratios varying across stimuli between 0.96 and 1.04 octaves. The tones were presented at a low sensation level (15 dB) within broadband threshold-equalizing noise, in order to prevent them from interacting in the cochlea when they were simultaneous. A large set of stimulus comparisons made by 18 listeners indicated that: (1) when the tones were simultaneous, maximal fusion was obtained for a mean frequency ratio deviating by less than 0.2% from one octave, and fusion decreased less rapidly above this frequency ratio than below it; (2) when the tones were presented successively, maximal pitch affinity was obtained for a mean frequency ratio significantly larger than one octave, and pitch affinity decreased more rapidly above this frequency ratio than below it. The differences between the results obtained for simultaneous and successive tones suggest that harmonic fusion and pitch affinity are unrelated phenomena. PMID:26341475

  3. RELATIVE BINDING AFFINITY OF ALKYLPHENOLS TO RAINBOW TROUT ESTROGEN RECEPTOR

    EPA Science Inventory

    RELATIVE BINDING AFFINITY OF ALKYLPHENOLS TO RAINBOW TROUT ESTROGEN RECEPTOR. T R Henry1, J S Denny2 and P K Schmieder2. USEPA, ORD, NHEERL, 1Experimental Toxicology Division and 2Mid-Continent Ecology Division, Duluth, MN, USA.
    The USEPA has been mandated to screen industria...

  4. Gini covariance matrix and its affine equivariant version

    NASA Astrophysics Data System (ADS)

    Weatherall, Lauren Anne

    Gini's mean difference (GMD) and its derivatives such as Gini index have been widely used as alternative measures of variability over one century in many research fields especially in finance, economics and social welfare. In this dissertation, we generalize the univariate GMD to the multivariate case and propose a new covariance matrix so called the Gini covariance matrix (GCM). The extension is natural, which is based on the covariance representation of GMD with the notion of multivariate spatial rank function. In order to gain the affine equivariance property for GCM, we utilize the transformation-retransformation (TR) technique and obtain TR version GCM that turns out to be a symmetrized M-functional. Indeed, both GCMs are symmetrized approaches based on the difference of two independent variables without reference of a location, hence avoiding some arbitrary definition of location for non-symmetric distributions. We study the properties of both GCMs. They possess the so-called independence property, which is highly important, for example, in independent component analysis. Influence functions of two GCMs are derived to assess their robustness. They are found to be more robust than the regular covariance matrix but less robust than Tyler and Dumbgen M-functional. Under elliptical distributions, the relationship between the scatter parameter and the two GCM are obtained. With this relationship, principal component analysis (PCA) based on GCM is possible. Estimation of two GCMs is presented. We study asymptotical behavior of the estimators. √n-consistency and asymptotical normality of estimators are established. Asymptotic relative efficiency (ARE) of TR-GCM estimator with respect to sample covariance matrix is compared to that of Tyler and Dumbgen M-estimators. With little loss on efficiency (< 2%) in the normal case, it gains high efficiency for heavy-tailed distributions. Finite sample behavior of Gini estimators is explored under various models using two

  5. Myoglobin oxygen affinity in aquatic and terrestrial birds and mammals.

    PubMed

    Wright, Traver J; Davis, Randall W

    2015-07-01

    Myoglobin (Mb) is an oxygen binding protein found in vertebrate skeletal muscle, where it facilitates intracellular transport and storage of oxygen. This protein has evolved to suit unique physiological needs in the muscle of diving vertebrates that express Mb at much greater concentrations than their terrestrial counterparts. In this study, we characterized Mb oxygen affinity (P50) from 25 species of aquatic and terrestrial birds and mammals. Among diving species, we tested for correlations between Mb P50 and routine dive duration. Across all species examined, Mb P50 ranged from 2.40 to 4.85 mmHg. The mean P50 of Mb from terrestrial ungulates was 3.72±0.15 mmHg (range 3.70-3.74 mmHg). The P50 of cetaceans was similar to terrestrial ungulates ranging from 3.54 to 3.82 mmHg, with the exception of the melon-headed whale, which had a significantly higher P50 of 4.85 mmHg. Among pinnipeds, the P50 ranged from 3.23 to 3.81 mmHg and showed a trend for higher oxygen affinity in species with longer dive durations. Among diving birds, the P50 ranged from 2.40 to 3.36 mmHg and also showed a trend of higher affinities in species with longer dive durations. In pinnipeds and birds, low Mb P50 was associated with species whose muscles are metabolically active under hypoxic conditions associated with aerobic dives. Given the broad range of potential globin oxygen affinities, Mb P50 from diverse vertebrate species appears constrained within a relatively narrow range. High Mb oxygen affinity within this range may be adaptive for some vertebrates that make prolonged dives. PMID:25987728

  6. Tuning Hydrophobicity in Abiotic Affinity Reagents: Polymer Hydrogel Affinity Reagents for Molecules with Lipid-like Domains.

    PubMed

    Chou, Beverly; Mirau, Peter; Jiang, Tian; Wang, Szu-Wen; Shea, Kenneth J

    2016-05-01

    Hydrophobic interactions often dominate the associative forces between biomacromolecules. A synthetic affinity reagent must be able to exploit and optimize these interactions. We describe synthesis of abiotic affinity reagents that sequester biomacromolecules with lipid-like domains. NIPAm-based copolymer nanoparticles (NPs) containing C4-C8 hydrophobic groups were evaluated for their affinity for lipopolysaccharides (LPS), the lipophilic component of the outer membrane of Gram-negative bacteria. Optimal affinity was found for NPs incorporating a linear C4 hydrocarbon group. 1D and 2D (1)H NMR studies revealed that in water, the longer chain (C6 and C8) alkyl groups in the hydrogel NPs were engaged in intrachain association, rendering them less available to interact with LPS. Optimal LPS-NP interaction requires maximizing hydrophobicity, while avoiding side chain aggregation. Polymer compositions with high LPS binding were grafted onto agarose beads and evaluated for LPS clearance from solution; samples containing linear C4 groups also showed the highest LPS clearance capacity. PMID:27064286

  7. PDZ Affinity Chromatography: A general method for affinity purification of proteins based on PDZ domains and their ligands

    PubMed Central

    Walkup, Ward G.; Kennedy, Mary B.

    2014-01-01

    PDZ (PSD-95, DiscsLarge, ZO1) domains function in nature as protein binding domains within scaffold and membrane-associated proteins. They comprise ~ 90 residues and make specific, high affinity interactions with complementary C-terminal peptide sequences, with other PDZ domains, and with phospholipids. We hypothesized that the specific, strong interactions of PDZ domains with their ligands would make them well suited for use in affinity chromatography. Here we describe a novel affinity chromatography method applicable for the purification of proteins that contain PDZ domain-binding ligands, either naturally or introduced by genetic engineering. We created a series of affinity resins comprised of PDZ domains from the scaffold protein PSD-95, or from neuronal nitric oxide synthase (nNOS), coupled to solid supports. We used them to purify heterologously expressed neuronal proteins or protein domains containing endogenous PDZ domain ligands, eluting the proteins with free PDZ domain peptide ligands. We show that Proteins of Interest (POIs) lacking endogenous PDZ domain ligands can be engineered as fusion products containing C-terminal PDZ domain ligand peptides or internal, N- or C-terminal PDZ domains and then can be purified by the same method. Using this method, we recovered recombinant GFP fused to a PDZ-domain ligand in active form as verified by fluorescence yield. Similarly, chloramphenicol acetyltransferase (CAT) and β-Galactosidase (LacZ) fused to a C-terminal PDZ domain ligand or an N-terminal PDZ domain were purified in active form as assessed by enzymatic assay. In general, PDZ domains and ligands derived from PSD-95 were superior to those from nNOS for this method. PDZ Domain Affinity Chromatography promises to be a versatile and effective method for purification of a wide variety of natural and recombinant proteins. PMID:24607360

  8. Affinity learning with diffusion on tensor product graph.

    PubMed

    Yang, Xingwei; Prasad, Lakshman; Latecki, Longin Jan

    2013-01-01

    In many applications, we are given a finite set of data points sampled from a data manifold and represented as a graph with edge weights determined by pairwise similarities of the samples. Often the pairwise similarities (which are also called affinities) are unreliable due to noise or due to intrinsic difficulties in estimating similarity values of the samples. As observed in several recent approaches, more reliable similarities can be obtained if the original similarities are diffused in the context of other data points, where the context of each point is a set of points most similar to it. Compared to the existing methods, our approach differs in two main aspects. First, instead of diffusing the similarity information on the original graph, we propose to utilize the tensor product graph (TPG) obtained by the tensor product of the original graph with itself. Since TPG takes into account higher order information, it is not a surprise that we obtain more reliable similarities. However, it comes at the price of higher order computational complexity and storage requirement. The key contribution of the proposed approach is that the information propagation on TPG can be computed with the same computational complexity and the same amount of storage as the propagation on the original graph. We prove that a graph diffusion process on TPG is equivalent to a novel iterative algorithm on the original graph, which is guaranteed to converge. After its convergence we obtain new edge weights that can be interpreted as new, learned affinities. We stress that the affinities are learned in an unsupervised setting. We illustrate the benefits of the proposed approach for data manifolds composed of shapes, images, and image patches on two very different tasks of image retrieval and image segmentation. With learned affinities, we achieve the bull's eye retrieval score of 99.99 percent on the MPEG-7 shape dataset, which is much higher than the state-of-the-art algorithms. When the data

  9. Comparative oxygen affinity of fish and mammalian myoglobins.

    PubMed

    Nichols, J W; Weber, L J

    1989-01-01

    Myoglobins from rat, coho salmon (Oncorhynchus kisutch), buffalo sculpin (Enophrys bison) hearts, and yellowfin tuna (Thunnus albacares) red skeletal muscle were partially purified and their O2 binding affinities determined. Commercially prepared sperm whale myoglobin was employed as an internal standard. Tested at 20 degrees C, myoglobins from salmon and sculpin bound O2 with lower affinity than myoglobins from the rat or sperm whale. Oxygen binding studies at 12 degrees C and 37 degrees C suggest that this difference is adaptive, permitting myoglobins from cold-adapted fish to function at physiologically relevant temperatures. Taken together, purification and O2 binding data obtained in this study reveal a previously unrecognized diversity of myoglobin structure and function. PMID:2760286

  10. Isotope shift in the electron affinity of lithium

    SciTech Connect

    Bubin, Sergiy; Komasa, Jacek; Stanke, Monika; Adamowicz, Ludwik

    2009-12-21

    Very accurate electron affinity (EA) calculations of {sup 6}Li and {sup 7}Li (and {sup {infinity}L}i) have been performed using explicitly correlated Gaussian functions and a variational approach that explicitly includes the nuclear motion in the calculations (i.e., the approach that does not assume the Born-Oppenheimer approximation). The leading relativistic and quantum electrodynamics corrections to the electron affinities were also calculated. The results are the most accurate theoretical values obtained for the studied systems to date. Our best estimates of the {sup 7}Li and {sup 6}Li EAs are 4984.9842(30) and 4984.9015(30) cm{sup -1}, respectively, and of the {sup 7}Li/{sup 6}Li EA isotope shift is 0.0827 cm{sup -1}.

  11. Complex high affinity interactions occur between MHCI and superantigens

    NASA Technical Reports Server (NTRS)

    Chapes, S. K.; Herpich, A. R.; Spooner, B. S. (Principal Investigator)

    1998-01-01

    Staphylococcal enterotoxins A and C1 (SEA or SEC1) bound to major histocompatibility-I (MHCI) molecules with high affinity (binding constants ranging from 1.1 microM to 79 nM). SEA and SEC1 directly bound MHCI molecules that had been captured by monoclonal antibodies specific for H-2Kk, H-2Dk, or both. In addition, MHCI-specific antibodies inhibited the binding of SEC1 to LM929 cells and SEA competitively inhibited SEC1 binding; indicating that the superantigens bound to MHCI on the cell surface. The affinity and number of superantigen binding sites differed depending on whether MHCI was expressed in the membrane of LM929 cells or whether it was captured. These data support the hypothesis that MHCI molecules can serve as superantigen receptors.

  12. Affinity Propagation Clustering of Measurements for Multiple Extended Target Tracking.

    PubMed

    Zhang, Tao; Wu, Renbiao

    2015-01-01

    More measurements are generated by the target per observation interval, when the target is detected by a high resolution sensor, or there are more measurement sources on the target surface. Such a target is referred to as an extended target. The probability hypothesis density filter is considered an efficient method for tracking multiple extended targets. However, the crucial problem of how to accurately and effectively partition the measurements of multiple extended targets remains unsolved. In this paper, affinity propagation clustering is introduced into measurement partitioning for extended target tracking, and the elliptical gating technique is used to remove the clutter measurements, which makes the affinity propagation clustering capable of partitioning the measurement in a densely cluttered environment with high accuracy. The Gaussian mixture probability hypothesis density filter is implemented for multiple extended target tracking. Numerical results are presented to demonstrate the performance of the proposed algorithm, which provides improved performance, while obviously reducing the computational complexity. PMID:26370998

  13. Affinity Propagation Clustering of Measurements for Multiple Extended Target Tracking

    PubMed Central

    Zhang, Tao; Wu, Renbiao

    2015-01-01

    More measurements are generated by the target per observation interval, when the target is detected by a high resolution sensor, or there are more measurement sources on the target surface. Such a target is referred to as an extended target. The probability hypothesis density filter is considered an efficient method for tracking multiple extended targets. However, the crucial problem of how to accurately and effectively partition the measurements of multiple extended targets remains unsolved. In this paper, affinity propagation clustering is introduced into measurement partitioning for extended target tracking, and the elliptical gating technique is used to remove the clutter measurements, which makes the affinity propagation clustering capable of partitioning the measurement in a densely cluttered environment with high accuracy. The Gaussian mixture probability hypothesis density filter is implemented for multiple extended target tracking. Numerical results are presented to demonstrate the performance of the proposed algorithm, which provides improved performance, while obviously reducing the computational complexity. PMID:26370998

  14. Affinity-Driven Immobilization of Proteins to Hematite Nanoparticles.

    PubMed

    Zare-Eelanjegh, Elaheh; Bora, Debajeet K; Rupper, Patrick; Schrantz, Krisztina; Thöny-Meyer, Linda; Maniura-Weber, Katharina; Richter, Michael; Faccio, Greta

    2016-08-10

    Functional nanoparticles are valuable materials for energy production, bioelectronics, and diagnostic devices. The combination of biomolecules with nanosized material produces a new hybrid material with properties that can exceed the ones of the single components. Hematite is a widely available material that has found application in various sectors such as in sensing and solar energy production. We report a single-step immobilization process based on affinity and achieved by genetically engineering the protein of interest to carry a hematite-binding peptide. Fabricated hematite nanoparticles were then investigated for the immobilization of the two biomolecules C-phycocyanin (CPC) and laccase from Bacillus pumilus (LACC) under mild conditions. Genetic engineering of biomolecules with a hematite-affinity peptide led to a higher extent of protein immobilization and enhanced the catalytic activity of the enzyme. PMID:27429157

  15. Affinity purification of proteins binding to GST fusion proteins.

    PubMed

    Swaffield, J C; Johnston, S A

    2001-05-01

    This unit describes the use of proteins fused to glutathione-S-transferase (GST fusion proteins) to affinity purify other proteins, a technique also known as GST pulldown purification. The describes a strategy in which a GST fusion protein is bound to agarose affinity beads and the complex is then used to assay the binding of a specific test protein that has been labeled with [35S]methionine by in vitro translation. However, this method can be adapted for use with other types of fusion proteins; for example, His6, biotin tags, or maltose-binding protein fusions (MBP), and these may offer particular advantages. A describes preparation of an E. coli extract that is added to the reaction mixture with purified test protein to reduce nonspecific binding. PMID:18265191

  16. Evolution based on chromosome affinity from a network perspective

    NASA Astrophysics Data System (ADS)

    Monteiro, R. L. S.; Fontoura, J. R. A.; Carneiro, T. K. G.; Moret, M. A.; Pereira, H. B. B.

    2014-06-01

    Recent studies have focused on models to simulate the complex phenomenon of evolution of species. Several studies have been performed with theoretical models based on Darwin's theories to associate them with the actual evolution of species. However, none of the existing models include the affinity between individuals using network properties. In this paper, we present a new model based on the concept of affinity. The model is used to simulate the evolution of species in an ecosystem composed of individuals and their relationships. We propose an evolutive algorithm that incorporates the degree centrality and efficiency network properties to perform the crossover process and to obtain the network topology objective, respectively. Using a real network as a starting point, we simulate its evolution and compare its results with the results of 5788 computer-generated networks.

  17. Robust Spectral Clustering Using Statistical Sub-Graph Affinity Model

    PubMed Central

    Eichel, Justin A.; Wong, Alexander; Fieguth, Paul; Clausi, David A.

    2013-01-01

    Spectral clustering methods have been shown to be effective for image segmentation. Unfortunately, the presence of image noise as well as textural characteristics can have a significant negative effect on the segmentation performance. To accommodate for image noise and textural characteristics, this study introduces the concept of sub-graph affinity, where each node in the primary graph is modeled as a sub-graph characterizing the neighborhood surrounding the node. The statistical sub-graph affinity matrix is then constructed based on the statistical relationships between sub-graphs of connected nodes in the primary graph, thus counteracting the uncertainty associated with the image noise and textural characteristics by utilizing more information than traditional spectral clustering methods. Experiments using both synthetic and natural images under various levels of noise contamination demonstrate that the proposed approach can achieve improved segmentation performance when compared to existing spectral clustering methods. PMID:24386111

  18. Molecular modeling of the affinity chromatography of monoclonal antibodies.

    PubMed

    Paloni, Matteo; Cavallotti, Carlo

    2015-01-01

    Molecular modeling is a methodology that offers the possibility of studying complex systems such as protein-ligand complexes from an atomistic point of view, making available information that can be difficultly obtained from experimental studies. Here, a protocol for the construction of molecular models of the interaction between antibodies and ligands that can be used for an affinity chromatography process is presented. The outlined methodology focuses mostly on the description of a procedure that may be adopted to determine the structure and free energy of interaction between the antibody and the affinity ligand. A procedure to extend the proposed methodology to include the effect of the environment (buffer solution, spacer, support matrix) is also briefly outlined. PMID:25749965

  19. Stable high capacity, F-actin affinity column

    SciTech Connect

    Luna, E.J.; Wang, Y.L.; Voss, E.W. Jr.; Branton, D.; Taylor, D.L.

    1982-11-10

    A high capacity F-actin affinity matrix is constructed by binding fluorescyl-actin to rabbit anti-fluorescein IgG that is covalently bound to Sepharose 4B. When stabilized with phalloidin, the actin remains associated with the Sepharose beads during repeated washes, activates the ATPase activity of myosin subfragment 1, and specifically binds /sup 125/I-heavy meromyosin and /sup 125/I-tropomyosin. The associations between the F-actin-binding proteins are monitored both by affinity chromatography and by a rapid, low speed sedimentation assay. Anti-fluorescein IgG-Sepharose should be generally useful as a matrix for the immobilization of proteins containing accessible, covalently bound fluorescein groups.

  20. Rapid D-Affine Biventricular Cardiac Function with Polar Prediction

    PubMed Central

    Gilbert, Kathleen; Cowan, Brett; Suinesiaputra, Avan; Occleshaw, Christopher; Young, Alistair

    2014-01-01

    Although many solutions have been proposed for left ventricular functional analysis of the heart, right and left (bi-) ventricular function has been problematic due to the complex geometry and large motions. Biventricular function is particularly important in congenital heart disease, the most common type of birth defects. We describe a rapid interactive analysis tool for biventricular function which incorporates 1) a 3D+ time finite element model of biventricular geometry, 2) a fast prediction step which estimates an initial geometry in a polar coordinate system, and 3) a Cartesian update which penalizes deviations from affine transformations (D-Affine) from a prior. Solution times were very rapid, enabling interaction in real time using guide point modeling. The method was applied to 13 patients with congenital heart disease and compared with the clinical gold standard of manual tracing. Results between the methods showed good correlation (R2 > 0.9) and good precision (volume<17ml; mass<11g) for both chambers. PMID:25485422

  1. Thr-E11 regulates O2 affinity in Cerebratulus lacteus mini-hemoglobin.

    PubMed

    Pesce, Alessandra; Nardini, Marco; Ascenzi, Paolo; Geuens, Eva; Dewilde, Sylvia; Moens, Luc; Bolognesi, Martino; Riggs, Austen F; Hale, Angela; Deng, Pengchi; Nienhaus, G Ulrich; Olson, John S; Nienhaus, Karin

    2004-08-01

    The mini-hemoglobin from Cerebratulus lacteus (CerHb) belongs to a class of globins containing the polar Tyr-B10/Gln-E7 amino acid pair that normally causes low rates of O2 dissociation and ultra-high O2 affinity, which suggest O2 sensing or NO scavenging functions. CerHb, however, has high rates of O2 dissociation (kO2 = 200-600 s(-1)) and moderate O2 affinity (KO2) approximately 1 microm(-1)) as a result of a third polar amino acid in its active site, Thr-E11. When Thr-E11 is replaced by Val, kO2 decreases 1000-fold and KO2 increases 130-fold at pH 7.0, 20 degrees C. The mutation also shifts the stretching frequencies of both heme-bound and photodissociated CO, indicating marked changes of the electrostatic field at the active site. The crystal structure of Thr-E11 --> Val CerHbO2 at 1.70 A resolution is almost identical to that of the wild-type protein (root mean square deviation of 0.12 A). The dramatic functional and spectral effects of the Thr-E11 --> Val mutation are due exclusively to changes in the hydrogen bonding network in the active site. Replacing Thr-E11 with Val "frees" the Tyr-B10 hydroxyl group to rotate toward and donate a strong hydrogen bond to the heme-bound ligand, causing a selective increase in O2 affinity, a decrease of the rate coefficient for O2 dissociation, a 40 cm(-1) decrease in nuCO of heme-bound CO, and an increase in ligand migration toward more remote intermediate sites. PMID:15161908

  2. Affinity chromatography based on a combinatorial strategy for rerythropoietin purification.

    PubMed

    Martínez-Ceron, María C; Marani, Mariela M; Taulés, Marta; Etcheverrigaray, Marina; Albericio, Fernando; Cascone, Osvaldo; Camperi, Silvia A

    2011-05-01

    Small peptides containing fewer than 10 amino acids are promising ligand candidates with which to build affinity chromatographic systems for industrial protein purification. The application of combinatorial peptide synthesis strategies greatly facilitates the discovery of suitable ligands for any given protein of interest. Here we sought to identify peptide ligands with affinity for recombinant human erythropoietin (rhEPO), which is used for the treatment of anemia. A combinatorial library containing the octapeptides X-X-X-Phe-X-X-Ala-Gly, where X = Ala, Asp, Glu, Phe, His, Leu, Asn, Pro, Ser, or Thr, was synthesized on HMBA-ChemMatrix resin by the divide-couple-recombine method. For the library screening, rhEPO was coupled to either Texas Red or biotin. Fluorescent beads or beads showing a positive reaction with streptavidin-peroxidase were isolated. After cleavage, peptides were sequenced by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Fifty-seven beads showed a positive reaction. Peptides showing more consensuses were synthesized, and their affinity to rhEPO was assessed using a plasma resonance biosensor. Dissociation constant values in the range of 1-18 μM were obtained. The best two peptides were immobilized on Sepharose, and the resultant chromatographic matrixes showed affinity for rhEPO with dissociation constant values between 1.8 and 2.7 μM. Chinese hamster ovary (CHO) cell culture supernatant was spiked with rhEPO, and the artificial mixture was loaded on Peptide-Sepharose columns. The rhEPO was recovered in the elution fraction with a yield of 90% and a purity of 95% and 97% for P1-Sepharose and P2-Sepharose, respectively. PMID:21495625

  3. Cohomology of Various Completions of Quasicoherent Sheaves on Affines

    PubMed Central

    Laudal, Olav Arnfinn

    1972-01-01

    Let O be a complete discrete valuation ring and let A be a commutative O-algebra. Let M be any A-module. In this paper, a class of completions M̃ on the affine X corresponding to A, which includes, e.g., the Washnitzer-Monsky completion [1], and the full completion is studied. We then prove that for all of these completions we have, Hi(X,M̃+) = O for i ≥ 1, H°(X,M̃+) = M+. PMID:16592014

  4. Selective high affinity polydentate ligands and methods of making such

    SciTech Connect

    DeNardo, Sally; DeNardo, Gerald; Balhorn, Rodney

    2010-02-16

    This invention provides novel polydentate selective high affinity ligands (SHALs) that can be used in a variety of applications in a manner analogous to the use of antibodies. SHALs typically comprise a multiplicity of ligands that each bind different region son the target molecule. The ligands are joined directly or through a linker thereby forming a polydentate moiety that typically binds the target molecule with high selectivity and avidity.

  5. Purification of muscarinic acetylcholine receptors by affinity chromatography.

    PubMed Central

    André, C; De Backer, J P; Guillet, J C; Vanderheyden, P; Vauquelin, G; Strosberg, A D

    1983-01-01

    Calf forebrain homogenates contain 2.8 pM muscarinic acetylcholine receptors per mg of protein. [3H]Antagonist saturation binding experiments under equilibrium conditions revealed a single class of sites with equilibrium dissociation constants of 0.82 nM for [3H]dexetimide and 0.095 nM for [3H]quinuclidinyl benzilate. Displacement binding studies with agonists revealed the presence of low and high affinity sites. Here we describe the solubilization of muscarinic acetylcholine receptors with digitonin and their purification by affinity chromatography using an affinity gel which consisted of dexetimide coupled to Affi-Gel 10 (i.e., carboxy N-hydroxysuccinimide esters linked via a 1 nm spacer arm to agarose beads). Purified proteins were obtained by specific elution with muscarinic drugs, i.e., the antagonist atropine and the irreversible ligand propylbenzilylcholine mustard. SDS-polyacrylamide gel electrophoresis of the radioiodinated purified preparations revealed a major 70-K protein. Images Fig. 3. PMID:6605245

  6. Nanoparticle Surface Affinity as a Predictor of Trophic Transfer.

    PubMed

    Geitner, Nicholas K; Marinakos, Stella M; Guo, Charles; O'Brien, Niall; Wiesner, Mark R

    2016-07-01

    Nanoscale materials, whether natural, engineered, or incidental, are increasingly acknowledged as important components in large, environmental systems with potential implications for environmental impact and human health. Mathematical models are a useful tool for handling the rapidly increasing complexity and diversity of these materials and their exposure routes. Presented here is a mathematical model of trophic transfer driven by nanomaterial surface affinity for environmental and biological surfaces, developed in tandem with an experimental functional assay for determining these surface affinities. We found that nanoparticle surface affinity is a strong predictor of uptake through predation in a simple food web consisting of the algae Chlorella vulgaris and daphnid Daphnia magna. The mass of nanoparticles internalized by D. magna through consuming nanomaterial-contaminated algae varied linearly with surface-attachment efficiency. Internalized quantities of gold nanoparticles in D. magna ranged from 8.3 to 23.6 ng/mg for nanoparticle preparations with surface-attachment efficiencies ranging from 0.07 to 1. This model, coupled with the functional-assay approach, may provide a useful screening tool for existing materials as well as a predictive model for their development. PMID:27249534

  7. Crystal structures of fusion proteins with large-affinity tags.

    PubMed

    Smyth, Douglas R; Mrozkiewicz, Marek K; McGrath, William J; Listwan, Pawel; Kobe, Bostjan

    2003-07-01

    The fusion of a protein of interest to a large-affinity tag, such as the maltose-binding protein (MBP), thioredoxin (TRX), or glutathione-S-transferase (GST), can be advantageous in terms of increased expression, enhanced solubility, protection from proteolysis, improved folding, and protein purification via affinity chromatography. Unfortunately, crystal growth is hindered by the conformational heterogeneity induced by the fusion tag, requiring that the tag is removed by a potentially problematic cleavage step. The first three crystal structures of fusion proteins with large-affinity tags have been reported recently. All three structures used a novel strategy to rigidly fuse the protein of interest to MBP via a short three- to five-amino acid spacer. This strategy has the potential to aid structure determination of proteins that present particular experimental challenges and are not conducive to more conventional crystallization strategies (e.g., membrane proteins). Structural genomics initiatives may also benefit from this approach as a way to crystallize problematic proteins of significant interest. PMID:12824478

  8. Structure of Greyhound hemoglobin: origin of high oxygen affinity.

    PubMed

    Bhatt, Veer S; Zaldívar-López, Sara; Harris, David R; Couto, C Guillermo; Wang, Peng G; Palmer, Andre F

    2011-05-01

    This study presents the crystal structure of Greyhound hemoglobin (GrHb) determined to 1.9 Å resolution. GrHb was found to crystallize with an α₁β₁ dimer in the asymmetric unit and belongs to the R2 state. Oxygen-affinity measurements combined with the fact that GrHb crystallizes in the R2 state despite the high-salt conditions used for crystallization strongly indicate that GrHb can serve as a model high-oxygen-affinity hemoglobin (Hb) for higher mammals, especially humans. Structural analysis of GrHb and its comparison with the R2-state of human Hb revealed several regions that can potentially contribute to the high oxygen affinity of GrHb and serve to rationalize the additional stability of the R2-state of GrHb. A previously well studied hydrophobic cluster of bar-headed goose Hb near α119 was also incorporated in the comparison between GrHb and human Hb. Finally, a structural comparison with generic dog Hb and maned wolf Hb was conducted, revealing that in contrast to GrHb these structures belong to the R state of Hb and raising the intriguing possibility of an additional allosteric factor co-purifying with GrHb that can modulate its quaternary structure. PMID:21543841

  9. Use of protein-protein interactions in affinity chromatography.

    PubMed

    Muronetz, V I; Sholukh, M; Korpela, T

    2001-10-30

    Biospecific recognition between proteins is a phenomenon that can be exploited for designing affinity-chromatographic purification systems for proteins. In principle, the approach is straightforward, and there are usually many alternative ways, since a protein can be always found which binds specifically enough to the desired protein. Routine immunoaffinity chromatography utilizes the recognition of antigenic epitopes by antibodies. However, forces involved in protein-protein interactions as well the forces keeping the three-dimensional structures of proteins intact are complicated, and proteins are easily unfolded by various factors with unpredictable results. Because of this and because of the generally high association strength between proteins, the correct adjustment of binding forces between an immobilized protein and the protein to be purified as well as the release of bound proteins in biologically active form from affinity complexes are the main problem. Affinity systems involving interactions like enzyme-enzyme, subunit-oligomer, protein-antibody, protein-chaperone and the specific features involved in each case are presented as examples. This article also aims to sketch prospects for further development of the use of protein-protein interactions for the purification of proteins. PMID:11694271

  10. An Early Cambrian problematic fossil: Vetustovermis and its possible affinities

    PubMed Central

    Chen, Jun-yuan; Huang, Di-ying; Bottjer, David J

    2005-01-01

    The Early Cambrian problematic fossil Vetustovermis (Glaessner 1979 Alcheringa 3, 21–31) was described as an annelid or arthropod. Anatomical analysis of 17 new specimens from the Lower Cambrian Maotianshan Shale at Anning, Kunming (South China) does not support its affinities with annelids or arthropods. Anatomical features instead resemble other animal groups including modern flatworms, nemertines and molluscs. The presence of a pelagic slug-like form and ventral foot, as well as a head with eyes and tentacles indicates a possible affinity with molluscs, but these characters are not present only in molluscs; some of them are shared with other animal groups, including flatworms and nemertines. For example, a ventral foot-like structure is found in nemertines, ‘turbellarians’, and some polychaete groups. The well differentiated head is seen in separate bilaterian groups, but among molluscs it did not occur before the evolutionary level of the Conchifera. Unlike the ctenia-gills in molluscs, the gills in Vetustovermis are bar-like. All the characters displayed in this 525 million-year old soft-bodied animal fail to demonstrate clear affinity with molluscs or any other known extant or extinct animal groups, but argue for representing an independently evolved animal group, which flourished in Early Cambrian and possibly in Middle Cambrian time. PMID:16191609

  11. Virtual-real spatial information visualization registration using affine representations

    NASA Astrophysics Data System (ADS)

    Wu, Xueling; Ren, Fu; Du, Qingyun

    2009-10-01

    Virtual-real registration in Outdoor Augmented Reality is committed to enhance user's spatial cognition by overlaying virtual geographical objects on real scene. According to analyze fiducial detection registration method in indoor AR, for the purpose of avoiding complex and tedious process of position tracking and camera calibration in traditional registration methods, it puts forward and practices a virtual-real spatial information visualization registration method using affine representations. Based on the observation from Koenderink and van Doorn, Ullman and Basri in 1991 which is given a set of four or more non-coplanar 3D points, the projection of all points in the set can be computed as a linear combination of the projection of just four of the points, it sets up global affine coordinate system in light of world coordinates, camera coordinates and virtual coordinates and extracts four feature points from scene image and calculates the global affine coordinates of key points of virtual objects. Then according to a linear homogeneous coordinates of the four feature point's projection, it calculates projection pixel coordinates of key points of virtual objects. In addition, it proposes an approach to obtain pixel relative depth for hidden surface removal. Finally, by a case study, it verifies the feasibility and efficiency of the registration methods. The method would not only explore a new research direction for Geographical Information Science, but also would provide location-based information and services for outdoor AR.

  12. Affitins for protein purification by affinity magnetic fishing.

    PubMed

    Fernandes, Cláudia S M; Dos Santos, Raquel; Ottengy, Stella; Viecinski, Aline Canani; Béhar, Ghislaine; Mouratou, Barbara; Pecorari, Frédéric; Roque, A Cecília A

    2016-07-29

    Currently most economical and technological bottlenecks in protein production are placed in the downstream processes. With the aim of increasing the efficiency and reducing the associated costs, various affinity ligands have been developed. Affitins are small, yet robust and easy to produce, proteins derived from the archaeal extremophilic "7kDa DNA-binding" protein family. By means of combinatorial protein engineering and ribosome display selection techniques, Affitins have shown to bind a diversity of targets. In this work, two previously developed Affitins (anti-lysozyme and anti-IgG) were immobilized onto magnetic particles to assess their potential for protein purification by magnetic fishing. The optimal lysozyme and human IgG binding conditions yielded 58mg lysozyme/g support and 165mgIgG/g support, respectively. The recovery of proteins was possible in high yield (≥95%) and with high purity, namely ≥95% and 81%, when recovering lysozyme from Escherichia coli supernatant and IgG from human plasma, respectively. Static binding studies indicated affinity constants of 5.0×10(4)M(-1) and 9.3×10(5)M(-1) for the anti-lysozyme and anti-IgG magnetic supports. This work demonstrated that Affitins, which can be virtually evolved for any protein of interest, can be coupled onto magnetic particles creating novel affinity adsorbents for purification by magnetic fishing. PMID:27342136

  13. Relative Binding Affinities of Monolignols to Horseradish Peroxidase.

    PubMed

    Sangha, Amandeep K; Petridis, Loukas; Cheng, Xiaolin; Smith, Jeremy C

    2016-08-11

    Monolignol binding to the peroxidase active site is the first step in lignin polymerization in plant cell walls. Using molecular dynamics, docking, and free energy perturbation calculations, we investigate the binding of monolignols to horseradish peroxidase C. Our results suggest that p-coumaryl alcohol has the strongest binding affinity followed by sinapyl and coniferyl alcohol. Stacking interactions between the monolignol aromatic rings and nearby phenylalanine residues play an important role in determining the calculated relative binding affinities. p-Coumaryl and coniferyl alcohols bind in a pose productive for reaction in which a direct H-bond is formed between the phenolic -OH group and a water molecule (W2) that may facilitate proton transfer during oxidation. In contrast, in the case of sinapyl alcohol there is no such direct interaction, the phenolic -OH group instead interacting with Pro139. Since proton and electron transfer is the rate-limiting step in monolignol oxidation by peroxidase, the binding pose (and thus the formation of near attack conformation) appears to play a more important role than the overall binding affinity in determining the oxidation rate. PMID:27447548

  14. Single-cell measurement of red blood cell oxygen affinity

    PubMed Central

    Di Caprio, Giuseppe; Stokes, Chris; Higgins, John M.; Schonbrun, Ethan

    2015-01-01

    Oxygen is transported throughout the body by hemoglobin (Hb) in red blood cells (RBCs). Although the oxygen affinity of blood is well-understood and routinely assessed in patients by pulse oximetry, variability at the single-cell level has not been previously measured. In contrast, single-cell measurements of RBC volume and Hb concentration are taken millions of times per day by clinical hematology analyzers, and they are important factors in determining the health of the hematologic system. To better understand the variability and determinants of oxygen affinity on a cellular level, we have developed a system that quantifies the oxygen saturation, cell volume, and Hb concentration for individual RBCs in high throughput. We find that the variability in single-cell saturation peaks at an oxygen partial pressure of 2.9%, which corresponds to the maximum slope of the oxygen–Hb dissociation curve. In addition, single-cell oxygen affinity is positively correlated with Hb concentration but independent of osmolarity, which suggests variation in the Hb to 2,3-diphosphoglycerate (2–3 DPG) ratio on a cellular level. By quantifying the functional behavior of a cellular population, our system adds a dimension to blood cell analysis and other measurements of single-cell variability. PMID:26216973

  15. Affinity labeling of the ribosomal P site in Drosophila melanogaster

    SciTech Connect

    North, D.

    1987-01-01

    Several recent studies have probed the peptidyl transferase region of the Drosophila ribosome via the use of reactive site specific analogues (affinity labels). P site proteins adjacent to the 3' end of the amino acid bearing tRNA strand were labeled with modified tRNA fragments. Drugs affecting the binding of these agents were used to further clarify the nature of the region. The nascent peptide region of the P site was not labeled in previous experiments. To label that region radioactive Bromoacetylphenylalanyl-tRNA (BrAcphe-tRNA) was synthesized. The alpha-bromoacetyl group of this analogue is potentially reactive with nucleophiles present in either proteins or RNAs. Charged tRNAs and tRNA analogues bearing a peptide bond on the N-terminus of their amino acid are recognized as having affinity for the ribosomal P site. Specific labeling of the P site by BrAcphe-tRNA was confirmed by its ability to radioactively label proteins indirectly. As many as 8 ribosomal proteins may be labeled under these conditions, however, the majority of the bound label is associated with 3 large subunit proteins and 2 small subunit proteins. Overlaps between the proteins labeled by BrAcphe-tRNA and those labeled by other affinity labels are examined and a model of the peptidyl transferase region of Drosophila ribosomes is presented.

  16. Pepsin-modified chiral monolithic column for affinity capillary electrochromatography.

    PubMed

    Hong, Tingting; Chi, Cuijie; Ji, Yibing

    2014-11-01

    Pepsin-modified affinity monolithic capillary electrochromatography, a novel microanalysis system, was developed by the covalent bonding of pepsin on silica monolith. The column was successfully applied in the chiral separation of (±)-nefopam. Furthermore, the electrochromatographic performance of the pepsin-functionalized monolith for enantiomeric analysis was evaluated in terms of protein content, pH of running buffer, sample volume, buffer concentration, applied voltage, and capillary temperature. The relative standard deviation (%RSD) values of retention time (intraday <0.53, n = 10; interday <0.53, n = 10; column-to-column <0.70, n = 20; and batch-to-batch <0.80, n = 20) indicated satisfactory stability of these columns. No appreciable change was observed in retention and resolution for chiral recognition of (±)-nefopam in 50 days with 100 injections. The proteolytic activity of this stationary phase was further characterized with bovine serum albumin as substrate for online protein digestion. As for monolithic immobilized enzyme reactor, successive protein injections confirmed both the operational stability and ability to reuse the bioreactor for at least 20 digestions. It implied that the affinity monolith used in this research opens a new path of exploring particularly versatile class of enzymes to develop enzyme-modified affinity capillary monolith for enantioseparation. PMID:25146884

  17. Comparison of Inlet Geometry in Microfluidic Cell Affinity Chromatography

    PubMed Central

    Li, Peng; Tian, Yu; Pappas, Dimitri

    2011-01-01

    Cell separation based on microfluidic affinity chromatography is a widely used methodology in cell analysis research when rapid separations with high purity are needed. Several successful examples have been reported with high separation efficiency and purity; however, cell capture at the inlet area and inlet design has not been extensively described or studied. The most common inlets—used to connect the microfluidic chip to pumps, tubing, etc—are vertical (top-loading) inlets and parallel (in-line) inlets. In this work, we investigated the cell capture behavior near the affinity chip inlet area and compared the different performance of vertical inlet devices and parallel inlet devices. Vertical inlet devices showed significant cell capture capability near the inlet area, which led to the formation of cell blockages as the separation progressed. Cell density near the inlet area was much higher than the remaining channel, while for parallel inlet chips cell density at the inlet area was similar to the rest of the channel. In this paper, we discuss the effects of inlet type on chip fabrication, nonspecific binding, cell capture efficiency, and separation purity. We also discuss the possibility of using vertical inlets in negative selection separations. Our findings show that inlet design is critical and must be considered when fabricating cell affinity microfluidic devices. PMID:21207967

  18. Negative Enrichment of Target Cells by Microfluidic Affinity Chromatography

    PubMed Central

    Li, Peng; Gao, Yan; Pappas, Dimitri

    2011-01-01

    A three-dimensional microfluidic channel was developed for high purity cell separations. This system featured high capture affinity using multiple vertical inlets to an affinity surface. In cell separations, positive selection (capture of the target cell) is usually employed. Negative enrichment, the capture of non-target cells and elution of target cells, has distinct advantages over positive selection. In negative enrichment, target cells are not labeled, and are not subjected to strenuous elution conditions or dilution. As a result, negative enrichment systems are amenable to multi-step processes in microfluidic systems. In previous work, we reported cell capture enhancement effects at vertical inlets to the affinity surface. In this study, we designed a chip that has multiple vertical and horizontal channels, forming a three-dimensional separation system. Enrichment of target cells showed separation purities of 92-96%, compared with straight-channel systems (77% purity). A parallelized chip was also developed for increased sample throughput. A two-channel showed similar separation purity with twice the sample flow rate. This microfluidic system, featuring high separation purity, ease of fabrication and use, is suitable for cell separations when subsequent analysis of target cells is required. PMID:21939198

  19. Supramolecular Affinity Chromatography for Methylation-Targeted Proteomics.

    PubMed

    Garnett, Graham A E; Starke, Melissa J; Shaurya, Alok; Li, Janessa; Hof, Fraser

    2016-04-01

    Proteome-wide studies of post-translationally methylated species using mass spectrometry are complicated by high sample diversity, competition for ionization among peptides, and mass redundancies. Antibody-based enrichment has powered methylation proteomics until now, but the reliability, pan-specificity, polyclonal nature, and stability of the available pan-specific antibodies are problematic and do not provide a standard, reliable platform for investigators. We have invented an anionic supramolecular host that can form host-guest complexes selectively with methyllysine-containing peptides and used it to create a methylysine-affinity column. The column resolves peptides on the basis of methylation-a feat impossible with a comparable commercial cation-exchange column. A proteolyzed nuclear extract was separated on the methyl-affinity column prior to standard proteomics analysis. This experiment demonstrates that such chemical methyl-affinity columns are capable of enriching and improving the analysis of methyllysine residues from complex protein mixtures. We discuss the importance of this advance in the context of biomolecule-driven enrichment methods. PMID:26973166

  20. Protein purification by aminosquarylium cyanine dye-affinity chromatography.

    PubMed

    Graça, Vânia C; Sousa, Fani; Santos, Paulo F; Almeida, Paulo S

    2015-01-01

    Affinity chromatography (AC) is one of the most important techniques for the separation and purification of biomolecules, being probably the most selective technique for protein purification. It is based on unique specific reversible interactions between the target molecule and a ligand. In this affinity interaction, the choice of the ligand is extremely important for the success of the purification protocol. The growing interest in AC has motivated an intense research effort toward the development of materials able to overcome the disadvantages of conventional natural ligands, namely their high cost and chemical and biological lability. In this context, synthetic dyes have emerged, in recent decades, as a promising alternative to biological ligands. Herein, detailed protocols for the assembling of a new chromatographic dye-ligand affinity support bearing an immobilized aminosquarylium cyanine dye on an agarose-based matrix (Sepharose CL-6B) and for the separation of a mixture o f three standard proteins: lysozyme, α-chymotrypsin, and trypsin are provided. PMID:25749942

  1. Affinity approaches in RNAi-based therapeutics purification.

    PubMed

    Pereira, Patrícia; Queiroz, João A; Figueiras, Ana; Sousa, Fani

    2016-05-15

    The recent investigation on RNA interference (RNAi) related mechanisms and applications led to an increased awareness of the importance of RNA in biology. Nowadays, RNAi-based technology has emerged as a potentially powerful tool for silencing gene expression, being exploited to develop new therapeutics for treating a vast number of human disease conditions, as it is expected that this technology can be translated onto clinical applications in a near future. This approach makes use of a large number of small (namely short interfering RNAs, microRNAs and PIWI-interacting RNAs) and long non-coding RNAs (ncRNAs), which are likely to have a crucial role as the next generation therapeutics. The commercial and biomedical interest in these RNAi-based therapy applications have fostered the need to develop innovative procedures to easily and efficiently purify RNA, aiming to obtain the final product with high purity degree, good quality and biological activity. Recently, affinity chromatography has been applied to ncRNAs purification, in view of the high specificity. Therefore, this article intends to review the biogenesis pathways of regulatory ncRNAs and also to discuss the most significant and recent developments as well as applications of affinity chromatography in the challenging task of purifying ncRNAs. In addition, the importance of affinity chromatography in ncRNAs purification is addressed and prospects for what is forthcoming are presented. PMID:26830537

  2. Monitoring water supplies for weaponized bacteria and bacterial toxins using rapid fluorescence-based viability and affinity assays

    NASA Astrophysics Data System (ADS)

    Van Tassell, Roger L.; Evans, Mishell

    2004-03-01

    The rapid detection of weaponized bacteria and toxins is a major problem during a biological attack. Although sensitive detection formats exist for many biowarfare agents, they often require advanced training and complex procedures. Luna has developed simple, rapid means for determining the presence of pathogens and bacterial toxins in water supplies using fluorescence-based assays that can be adapted for field use. The batteries of rapid assays are designed for i) determining cell viability and bacterial loads by exploiting metabolic markers (e.g., acid-production, redox potentials, etc) and ii) detecting bacterial toxins using fluorescent, polymerized affinity liposomes (fluorosomes). The viability assays were characterized using E. coli, S. aureus and the anthrax simulant, B. globigii. The viability assays detected bacterial loads of ~ 104 CFU/ml and with simple filtration ~ 100CFU/ml could be detected. The affinity fluorosomes were characterized using cholera toxin (CT). Affinity liposomes displaying GM1 and anti-CT antibodies could detect CT at <μg/ml levels. Stability studies showed that affinity vesicles could be stored for weeks at 4°C or freeze-dried with no significant loss of binding capacity. Using an in-house fiber optic fluorescence system, Luna characterized the binding of affinity fluorosomes to respective targets and determined the responses of bacterial loads in the fluorescent viability assays. Using this two-tiered approach, Luna demonstrated that water susceptible to sabotage could be easily monitored and confirmed for specific agents using simple, general and specific fluorescence-based detection schemes based on metabolism and ligand-target interactions.

  3. The Purification of a Blood Group A Glycoprotein: An Affinity Chromatography Experiment.

    ERIC Educational Resources Information Center

    Estelrich, J.; Pouplana, R.

    1988-01-01

    Describes a purification process through affinity chromatography necessary to obtain specific blood group glycoproteins from erythrocytic membranes. Discusses the preparation of erythrocytic membranes, extraction of glycoprotein from membranes, affinity chromatography purification, determination of glycoproteins, and results. (CW)

  4. Gas-phase lithium cation affinity of glycine.

    PubMed

    Bourcier, Sophie; Chiaa, Ru Xuan; Mimbong, Rosa Ngo Biboum; Bouchoux, Guy

    2015-01-01

    The gas-phase lithium cation binding thermochemistry of glycine has been determined theoretically by quantum chemical calculations at the G4 level and experimentally by the extended kinetic method using electrospray ionization quadrupole time-of-flight tandem mass spectrometry. The lithium cation affinity of glycine, ∆(Li)H°(298)(GLY), i.e. the∆(Li)H°(298) of the reaction GlyLi(+)→ Gly + Li(+)) given by the G4 method is equal to 241.4 kJ.mol(-1) if only the most stable conformer of glycine is considered or to 242.3 kJ.mol(-1) if the 298K equilibrium mixture of neutral conformers is included in the calculation. The ∆(Li)H°(298)(GLY) deduced from the extended kinetic method is obviously dependent on the choice of the Li(+) affinity scale, thus∆(Li)H°(298)(GLY) is equal to 228.7±0.9(2.0) kJ.mol(- 1) if anchored to the recently re-evaluated lithium cation affinity scale but shifted to 235.4±1.0 kJ.mol(-1) if G4 computed lithium cation affinities of the reference molecules is used. This difference of 6.3 kJ.mol(-1) may originate from a compression of the experimental lithium affinity scale in the high ∆(Li)H°(298) region. The entropy change associated with the reaction GlyLi(+)→Gly + Li(+) reveals a gain of approximately 15 J.mol(-) 1.K(-1) with respect to monodentate Li(+) acceptors. The origin of this excess entropy is attributed to the bidentate interaction between the Li(+) cation and both the carbonyl oxygen and the nitrogen atoms of glycine. The computed G4 Gibbs free energy,∆(Li)G°(298)(GLY) is equal to 205.3 kJ.mol(-1), a similar result, 201.0±3.4 kJ.mol(-1), is obtained from the experiment if the∆(Li)G°(298) of the reference molecules is anchored on the G4 results. PMID:26307695

  5. Robust adaptive control for a class of uncertain non-affine nonlinear systems using affine-type neural networks

    NASA Astrophysics Data System (ADS)

    Zhao, Shitie; Gao, Xianwen

    2016-08-01

    A robust adaptive control is proposed for a class of single-input single-output non-affine nonlinear systems. In order to approximate the unknown nonlinear function, a novel affine-type neural network is used, and then to compensate the approximation error and external disturbance a robust control term is employed. By Lyapunov stability analysis for the closed-loop system, it is proved that tracking errors asymptotically converge to zero. Moreover, an observer is designed to estimate the system states because all the states may not be available for measurements. Furthermore, the adaptation laws of neural networks and the robust controller are given out based on the Lyapunov stability theory. Finally, two simulation examples are presented to demonstrate the effectiveness of the proposed control method.

  6. Thiochrome enhances acetylcholine affinity at muscarinic M4 receptors: receptor subtype selectivity via cooperativity rather than affinity.

    PubMed

    Lazareno, S; Dolezal, V; Popham, A; Birdsall, N J M

    2004-01-01

    Thiochrome (2,7-dimethyl-5H-thiachromine-8-ethanol), an oxidation product and metabolite of thiamine, has little effect on the equilibrium binding of l-[3H]N-methyl scopolamine ([3H]NMS) to the five human muscarinic receptor subtypes (M1-M5) at concentrations up to 0.3 mM. In contrast, it inhibits [3H]NMS dissociation from M1 to M4 receptors at submillimolar concentrations and from M5 receptors at 1 mM. These results suggest that thiochrome binds allosterically to muscarinic receptors and has approximately neutral cooperativity with [3H]NMS at M1 to M4 and possibly M5 receptors. Thiochrome increases the affinity of acetylcholine (ACh) 3- to 5-fold for inhibiting [3H]NMS binding to M4 receptors but has no effect on ACh affinity at M1 to M3 or M5 receptors. Thiochrome (0.1 mM) also increases the direct binding of [3H]ACh to M4 receptors but decreases it slightly at M2 receptors. In agreement with the binding data, thiochrome does not affect the potency of ACh for stimulating the binding of guanosine 5'-O-(3-[35S]thiotriphosphate) ([35S]GTPgammaS) to membranes containing M1 to M3 receptors, but it increases ACh potency 3.5-fold at M4 receptors. It also selectively reduces the release of [3H]ACh from potassium-stimulated slices of rat striatum, which contain autoinhibitory presynaptic M4 receptors, but not from hippocampal slices, which contain presynaptic M2 receptors. We conclude that thiochrome is a selective M4 muscarinic receptor enhancer of ACh affinity and has neutral cooperativity with ACh at M1 to M3 receptors; it therefore demonstrates a powerful new form of selectivity, "absolute subtype selectivity", which is derived from cooperativity rather than from affinity. PMID:14722259

  7. Analysis of free drug fractions in human serum by ultrafast affinity extraction and two-dimensional affinity chromatography.

    PubMed

    Zheng, Xiwei; Podariu, Maria; Matsuda, Ryan; Hage, David S

    2016-01-01

    Ultrafast affinity extraction and a two-dimensional high performance affinity chromatographic system were used to measure the free fractions for various drugs in serum and at typical therapeutic concentrations. Pooled samples of normal serum or serum from diabetic patients were utilized in this work. Several drug models (i.e., quinidine, diazepam, gliclazide, tolbutamide, and acetohexamide) were examined that represented a relatively wide range of therapeutic concentrations and affinities for human serum albumin (HSA). The two-dimensional system consisted of an HSA microcolumn for the extraction of a free drug fraction, followed by a larger HSA analytical column for the further separation and measurement of this fraction. Factors that were optimized in this method included the flow rates, column sizes, and column switching times that were employed. The final extraction times used for isolating the free drug fractions were 333-665 ms or less. The dissociation rate constants for several of the drugs with soluble HSA were measured during system optimization, giving results that agreed with reference values. In the final system, free drug fractions in the range of 0.7-9.5% were measured and gave good agreement with values that were determined by ultrafiltration. Association equilibrium constants or global affinities were also estimated by this approach for the drugs with soluble HSA. The results for the two-dimensional system were obtained in 5-10 min or less and required only 1-5 μL of serum per injection. The same approach could be adapted for work with other drugs and proteins in clinical samples or for biomedical research. PMID:26462924

  8. Recent improvements to Binding MOAD: a resource for protein-ligand binding affinities and structures.

    PubMed

    Ahmed, Aqeel; Smith, Richard D; Clark, Jordan J; Dunbar, James B; Carlson, Heather A

    2015-01-01

    For over 10 years, Binding MOAD (Mother of All Databases; http://www.BindingMOAD.org) has been one of the largest resources for high-quality protein-ligand complexes and associated binding affinity data. Binding MOAD has grown at the rate of 1994 complexes per year, on average. Currently, it contains 23,269 complexes and 8156 binding affinities. Our annual updates curate the data using a semi-automated literature search of the references cited within the PDB file, and we have recently upgraded our website and added new features and functionalities to better serve Binding MOAD users. In order to eliminate the legacy application server of the old platform and to accommodate new changes, the website has been completely rewritten in the LAMP (Linux, Apache, MySQL and PHP) environment. The improved user interface incorporates current third-party plugins for better visualization of protein and ligand molecules, and it provides features like sorting, filtering and filtered downloads. In addition to the field-based searching, Binding MOAD now can be searched by structural queries based on the ligand. In order to remove redundancy, Binding MOAD records are clustered in different families based on 90% sequence identity. The new Binding MOAD, with the upgraded platform, features and functionalities, is now equipped to better serve its users. PMID:25378330

  9. Shark Attack: high affinity binding proteins derived from shark vNAR domains by stepwise in vitro affinity maturation.

    PubMed

    Zielonka, Stefan; Weber, Niklas; Becker, Stefan; Doerner, Achim; Christmann, Andreas; Christmann, Christine; Uth, Christina; Fritz, Janine; Schäfer, Elena; Steinmann, Björn; Empting, Martin; Ockelmann, Pia; Lierz, Michael; Kolmar, Harald

    2014-12-10

    A novel method for stepwise in vitro affinity maturation of antigen-specific shark vNAR domains is described that exclusively relies on semi-synthetic repertoires derived from non-immunized sharks. Target-specific molecules were selected from a CDR3-randomized bamboo shark (Chiloscyllium plagiosum) vNAR library using yeast surface display as platform technology. Various antigen-binding vNAR domains were easily isolated by screening against several therapeutically relevant antigens, including the epithelial cell adhesion molecule (EpCAM), the Ephrin type-A receptor 2 (EphA2), and the human serine protease HTRA1. Affinity maturation was demonstrated for EpCAM and HTRA1 by diversifying CDR1 of target-enriched populations which allowed for the rapid selection of nanomolar binders. EpCAM-specific vNAR molecules were produced as soluble proteins and more extensively characterized via thermal shift assays and biolayer interferometry. Essentially, we demonstrate that high-affinity binders can be generated in vitro without largely compromising the desirable high thermostability of the vNAR scaffold. PMID:24862193

  10. Electron emission from conduction band of heavily phosphorus doped diamond negative electron affinity surface

    NASA Astrophysics Data System (ADS)

    Yamada, Takatoshi; Masuzawa, Tomoaki; Mimura, Hidenori; Okano, Ken

    2016-02-01

    Hydrogen (H)-terminated surfaces of diamond have attracted significant attention due to their negative electron affinity (NEA), suggesting high-efficiency electron emitters. Combined with n-type doping technique using phosphorus (P) as donors, the unique NEA surface makes diamond a promising candidate for vacuum cold-cathode applications. However, high-electric fields are needed for the electron emission from the n-type doped diamond with NEA. Here we have clarified the electron emission mechanism of field emission from P-doped diamond having NEA utilizing combined ultraviolet photoelectron spectroscopy/field emission spectroscopy (UPS/FES). An UP spectrum has confirmed the NEA of H-terminated (1 1 1) surface of P-doped diamond. Despite the NEA, electron emission occurs only when electric field at the surface exceeds 4.2  ×  106 V cm-1. Further analysis by UPS/FES has revealed that the emitted energy level is shifted, indicating that the electron emission mechanism of n-type diamond having NEA surface does not follow a standard field emission theory, but is dominated by potential barrier formed within the diamond due to upward band bending. The reduction of internal barrier is the key to achieve high-efficiency electron emitters using P-doped diamond with NEA, of which application ranges from high-resolution electron spectroscopy to novel vacuum nanoelectronics devices.

  11. PHARMACEUTICAL AND BIOMEDICAL APPLICATIONS OF AFFINITY CHROMATOGRAPHY: RECENT TRENDS AND DEVELOPMENTS

    PubMed Central

    Hage, David S.; Anguizola, Jeanethe A.; Bi, Cong; Li, Rong; Matsuda, Ryan; Papastavros, Efthimia; Pfaunmiller, Erika; Vargas, John; Zheng, Xiwei

    2012-01-01

    Affinity chromatography is a separation technique that has become increasingly important in work with biological samples and pharmaceutical agents. This method is based on the use of a biologically-related agent as a stationary phase to selectively retain analytes or to study biological interactions. This review discusses the basic principles behind affinity chromatography and examines recent developments that have occurred in the use of this method for biomedical and pharmaceutical analysis. Techniques based on traditional affinity supports are discussed, but an emphasis is placed on methods in which affinity columns are used as part of HPLC systems or in combination with other analytical methods. General formats for affinity chromatography that are considered include step elution schemes, weak affinity chromatography, affinity extraction and affinity depletion. Specific separation techniques that are examined include lectin affinity chromatography, boronate affinity chromatography, immunoaffinity chromatography, and immobilized metal ion affinity chromatography. Approaches for the study of biological interactions by affinity chromatography are also presented, such as the measurement of equilibrium constants, rate constants, or competition and displacement effects. In addition, related developments in the use of immobilized enzyme reactors, molecularly imprinted polymers, dye ligands and aptamers are briefly considered. PMID:22305083

  12. Minimization of the root of a quadratic functional under a system of affine equality constraints with application to portfolio management

    NASA Astrophysics Data System (ADS)

    Landsman, Zinoviy

    2008-10-01

    We present an explicit closed form solution of the problem of minimizing the root of a quadratic functional subject to a system of affine constraints. The result generalizes Z. Landsman, Minimization of the root of a quadratic functional under an affine equality constraint, J. Comput. Appl. Math. 2007, to appear, see , articles in press, where the optimization problem was solved under only one linear constraint. This is of interest for solving significant problems pertaining to financial economics as well as some classes of feasibility and optimization problems which frequently occur in tomography and other fields. The results are illustrated in the problem of optimal portfolio selection and the particular case when the expected return of finance portfolio is certain is discussed.

  13. Improving affinity chromatography resin efficiency using semi-continuous chromatography.

    PubMed

    Mahajan, Ekta; George, Anupa; Wolk, Bradley

    2012-03-01

    Protein A affinity chromatography is widely used for purification of monoclonal antibodies (MAbs) from harvested cell culture fluid (HCCF). At the manufacturing scale, the HCCF is typically loaded on a single Protein A affinity chromatography column in cycles until all of the HCCF is processed. Protein A resin costs are significant, comprising a substantial portion of the raw material costs in MAb manufacturing. Cost can be reduced by operating the process continuously using multiple smaller columns to a higher binding capacity in lieu of one industrial scale column. In this study, a series of experiments were performed using three 1-ml Hi-Trap™ MabSelect SuRe™ columns on a modified ÄKTA™ system operated according to the three Column Periodic Counter Current Chromatography (3C PCC) principle. The columns were loaded individually at different times until the 70% breakthrough point was achieved. The HCCF with unbound protein from the column was then loaded onto the next column to capture the MAb, preventing any protein loss. At any given point, all three columns were in operation, either loading or washing, enabling a reduction in processing time. The product yield and quality were evaluated and compared with a batch process to determine the effect of using the three column continuous process. The continuous operation shows the potential to reduce both resin volume and buffer consumption by ∼40%, however the system hardware and the process is more complex than the batch process. Alternative methods using a single standard affinity column, such as recycling load effluent back to the tank or increasing residence time, were also evaluated to improve Protein A resin efficiency. These alternative methods showed similar cost benefits but required longer processing time. PMID:22265178

  14. Surface affinity role in graphoepitaxy of lamellar block copolymers

    NASA Astrophysics Data System (ADS)

    Claveau, G.; Quemere, P.; Argoud, M.; Hazart, J.; Pimenta Barros, P.; Sarrazin, A.; Posseme, N.; Tiron, R.; Chevalier, X.; Nicolet, C.; Navarro, C.

    2016-03-01

    Overcoming the optical limitations of 193nm immersion lithography can be achieved using Directed Self Assembly (DSA) of block-copolymers (BCPs) as a low-cost and versatile complementary technique. The goal of this paper is to investigate the potential of DSA to address line and space (L/S) high resolution patterning by performing the density multiplication of lines with the graphoepitaxy approach. As surface affinity is a key parameter in self-assembly, three variations, or "flavors", of DSA template affinity are investigated regarding several success criteria such as morphology control or defectivity. More precisely, both the methodology to register DSA defects and the impact of process parameters on defectivity are detailed. Using the 300mm pilot line available in LETI and Arkema's advanced materials, we investigate process optimization of DSA line/space patterning of a 38nm period lamellar PS-b-PMMA BCP (L38). For this study, our integration scheme, depicted in figure 2-1, is based on BCP self-assembly inside organic hard mask guiding patterns obtained using 193i nm lithography. Defect analysis coupled with the fine tuning of process parameters (annealing, brush material) provided the optimum conditions for the L38 self-assembly. Using such conditions, DSA using the three affinity flavors is investigated by means of SEM top-view and cross-section review. Lithographic performances of one selected flavor are then evaluated with the comparison of Process Windows (PWs) function of either commensurability, morphology or LWR. This work is a first step in finding the best process for an industrial graphoepitaxy approach.

  15. The affinity of magnetic microspheres for Schistosoma eggs.

    PubMed

    Candido, Renata R F; Favero, Vivian; Duke, Mary; Karl, Stephan; Gutiérrez, Lucía; Woodward, Robert C; Graeff-Teixeira, Carlos; Jones, Malcolm K; St Pierre, Timothy G

    2015-01-01

    Schistosomiasis is a chronic parasitic disease of humans, with two species primarily causing the intestinal infection: Schistosoma mansoni and Schistosoma japonicum. Traditionally, diagnosis of schistosomiasis is achieved through direct visualisation of eggs in faeces using techniques that lack the sensitivity required to detect all infections, especially in areas of low endemicity. A recently developed method termed Helmintex™ is a very sensitive technique for detection of Schistosoma eggs and exhibits 100% sensitivity at 1.3 eggs per gram of faeces, enough to detect even low-level infections. The Helminthex™ method is based on the interaction of magnetic microspheres and schistosome eggs. Further understanding the underlying egg-microsphere interactions would enable a targeted optimisation of egg-particle binding and may thus enable a significant improvement of the Helmintex™ method and diagnostic sensitivity in areas with low infection rates. We investigated the magnetic properties of S. mansoni and S. japonicum eggs and their interactions with microspheres with different magnetic properties and surface functionalization. Eggs of both species exhibited higher binding affinity to the magnetic microspheres than the non-magnetic microspheres. Binding efficiency was further enhanced if the particles were coated with streptavidin. Schistosoma japonicum eggs bound more microspheres compared with S. mansoni. However, distinct differences within eggs of each species were also observed when the distribution of the number of microspheres bound per egg was modelled with double Poisson distributions. Using this approach, both S. japonicum and S. mansoni eggs fell into two groups, one having greater affinity for magnetic microspheres than the other, indicating that not all eggs of a species exhibit the same binding affinity. Our observations suggest that interaction between the microspheres and eggs is more likely to be related to surface charge-based electrostatic

  16. [Progresses in screening active compounds from herbal medicine by affinity chromatography].

    PubMed

    Feng, Ying-shu; Tong, Shan-shan; Xu, Xi-ming; Yu, Jiang-nan

    2015-03-01

    Affinity chromatography is a chromatographic method for separating molecules using the binding characteristics of the stationary phase with potential drug molecules. This method can be performed as a high throughput screening method and a chromatographic separation method to screen a variety of active drugs. This paper summarizes the history of affinity chromatography, screening technology of affinity chromatography, and application of affinity chromatography in screening bio-active compounds in herbal medicines, and then discusses its application prospects, in order to broaden applications of the affinity chromatography in drug screening. PMID:26226740

  17. Calcium affinity of human α-actinin 1

    PubMed Central

    2015-01-01

    Due to alternative splicing, the human ACTN1 gene codes for three different transcripts of α-actinin; one isoform that is expressed only in the brain and two with a more general expression pattern. The sequence difference is located to the C-terminal domains and the EF-hand motifs. Therefore, any functional or structural distinction should involve this part of the protein. To investigate this further, the calcium affinities of these three isoforms of α-actinin 1 have been determined by isothermal calorimetry. PMID:26020004

  18. Membrane affinity chromatography used for the separation of trypsin inhibitor.

    PubMed

    Guo, W; Shang, Z; Yu, Y; Guan, Y; Zhou, L

    1992-01-01

    Polysulphone (PS) was chemically modified by acrylation-amination and by chloromethylation-amination, respectively. An ultrafiltration membrane of chemically modified polysulphone (CMPS) was prepared by the phase inversion method. Trypsin was then covalently bonded onto the CMPS membrane by diazotization. The activity of immobilized trypsin reaches up to 10200 U/g; 15 mg trypsin was immobilized on 1 g CMPS membrane. Separation of soybean trypsin inhibitor was carried out on the affinity membrane, yielding 6.5 mg pure trypsin inhibitor in one run. The enzyme membrane has good activity and stability. PMID:1638098

  19. Lateral Casimir force between self-affine rough surfaces

    NASA Astrophysics Data System (ADS)

    Tajik, Fatemeh; Masoudi, Amir Ali; Khorrami, Mohammad

    2016-03-01

    The effect of self-affine roughness on the lateral Casimir force between two plates is studied using a perturbative expansion method. The PWS (pairwise summation) method is applicable only at lateral correlation lengths much larger than the separation between two plates. The effect of the roughness parameters on the lateral Casimir force is investigated, and it is seen that this effect is significant, enabling one to tailor roughness parameters so that to obtain the desirable Casimir force and increase the yield of micro- or nano-electromechanical devices based on the vacuum fluctuations.

  20. Self-affine surface morphology of plastically deformed metals.

    PubMed

    Zaiser, Michael; Grasset, Frederic Madani; Koutsos, Vasileios; Aifantis, Elias C

    2004-11-01

    We analyze the surface morphology of metals after plastic deformation over a range of scales from 10 nm to 2 mm using atomic force microscopy and scanning white-light interferometry. We demonstrate that an initially smooth surface during deformation develops self-affine roughness over almost 4 orders of magnitude in scale. The Hurst exponent H of one-dimensional surface profiles initially decreases with increasing strain and then stabilizes at H approximately 0.75. We show that the profiles can be mathematically modeled as graphs of a fractional Brownian motion. Our findings can be understood in terms of a fractal distribution of plastic strain within the deformed samples. PMID:15600851

  1. Surface States and Negative Electron Affinity in Polyethylene

    SciTech Connect

    Righi, M. C.; Scandolo, S.; Serra, S.; Iarlori, S.; Tosatti, E.; Santoro, G.

    2001-08-13

    First-principles calculations are used to investigate the electronic properties of the surfaces of polyethylene. The calculations support the experimental evidence of a negative electron affinity, with calculated values of -0.17 eV and -0.10 eV for surfaces with chains perpendicular and parallel to the surface normal, respectively. Both surfaces exhibit a surface state with binding energy -1.2{+-}0.5 eV with respect to the bulk polyethylene conduction band minimum. Implications of these findings on spectroscopy, as well as on the transport and aging properties of polyethylene for high-voltage applications, are discussed.

  2. Affinity enhancement by dendritic side chains in synthetic carbohydrate receptors.

    PubMed

    Destecroix, Harry; Renney, Charles M; Mooibroek, Tiddo J; Carter, Tom S; Stewart, Patrick F N; Crump, Matthew P; Davis, Anthony P

    2015-02-01

    Dendritic side chains have been used to modify the binding environment in anthracene-based synthetic carbohydrate receptors. Control of length, charge, and branching enabled the positioning of side-chain carboxylate groups in such a way that they assisted in binding substrates rather than blocking the cavity. Conformational degeneracy in the dendrimers resulted in effective preorganization despite the flexibility of the system. Strong binding was observed to glucosammonium ions in water, with Ka values up to 7000 M(-1) . Affinities for uncharged substrates (glucose and N-acetylglucosamine) were also enhanced, despite competition from solvent and the absence of electrostatic interactions. PMID:25645064

  3. Control of an affinity purification procedure using a thermal biosensor.

    PubMed

    Flygare, L; Larsson, P O; Danielsson, B

    1990-10-01

    Lactate dehydrogenase (LDH) was recovered from a solution by affinity binding to an N(6)-(6-aminohexyl)-AMP-Sepharose gel. An enzyme thermistor unit was employed to continously measure the activity of the unbound LDH. The enzyme activity signal from the enzyme thermistor was used in a PID controller to regulate the addition of AMP-Sepharose gel to the LDH solution. In another type of experiment, a desktop computer was utilized to control the addition of the adsorbent. Both systems worked satisfactorily, and enabled a rapid and accurate assessment of correct addition of adsorbent. PMID:18597264

  4. Development of a novel affinity membrane purification system for deoxyribonuclease.

    PubMed

    Landry, Kyle S; Levin, Robert E

    2014-02-01

    A membrane based affinity purification system was developed for the purification of the DNA specific nuclease, DNase I. Single stranded DNA was bound to unmodified polyvinylidene fluoride (PVDF) membranes which were used to purify DNase I from a solution of bovine serum albumin. Using coated membranes, a 6-fold increase in specific activity was achieved with 80 % enzyme recovery. This method provides a simple yet effective way to purify DNase I and can be very useful for the purification of other DNA specific enzymes. PMID:24318589

  5. Nine switch-affine neurons suffice for Turing universality.

    PubMed

    Siegelmann, H T.; Margenstern, M

    1999-06-01

    In a previous work Pollack showed that a particular type of heterogeneous processor network is Turing universal. Siegelmann and Sontag (1991) showed the universality of homogeneous networks of first-order neurons having piecewise-linear activation functions. Their result was generalized by Kilian and Siegelmann (1996) to include various sigmoidal activation functions. Here we focus on a type of high-order neurons called switch-affine neurons, with piecewise-linear activation functions, and prove that nine such neurons suffice for simulating universal Turing machines. PMID:12662670

  6. Kinetic analysis of drug-protein interactions by affinity chromatography.

    PubMed

    Bi, Cong; Beeram, Sandya; Li, Zhao; Zheng, Xiwei; Hage, David S

    2015-10-01

    Information on the kinetics of drug-protein interactions is of crucial importance in drug discovery and development. Several methods based on affinity chromatography have been developed in recent years to examine the association and dissociation rates of these processes. These techniques include band-broadening measurements, the peak decay method, peak fitting methods, the split-peak method, and free fraction analysis. This review will examine the general principles and applications of these approaches and discuss their use in the characterization, screening and analysis of drug-protein interactions in the body. PMID:26724332

  7. Enrichment of Phosphopeptides via Immobilized Metal Affinity Chromatography.

    PubMed

    Swaney, Danielle L; Villén, Judit

    2016-03-01

    Immobilized metal affinity chromatography (IMAC) is a frequently used method for the enrichment of phosphorylated peptides from complex, cellular lysate-derived peptide mixtures. Here we outline an IMAC protocol that uses iron-chelated magnetic beads to selectively isolate phosphorylated peptides for mass spectrometry-based proteomic analysis. Under acidic conditions, negatively charged phosphoryl modifications preferentially bind to positively charged metal ions (e.g., Fe(3+), Ga(3+)) on the beads. After washing away nonphosphorylated peptides, a pH shift to basic conditions causes the elution of bound phosphopeptides from the metal ion. Under optimal conditions, very high specificity for phosphopeptides can be achieved. PMID:26933247

  8. Cohomology of various completions of quasicoherent sheaves on affines.

    PubMed

    Laudal, O A

    1972-09-01

    Let O be a complete discrete valuation ring and let A be a commutative O-algebra. Let M be any A-module. In this paper, a class of completions M on the affine X corresponding to A, which includes, e.g., the Washnitzer-Monsky completion [1], and the full completion is studied. We then prove that for all of these completions we have, H(i)(X,M(+)) = O for i >/= 1, H degrees (X,M(+)) = M(+). PMID:16592014

  9. An affine projection algorithm using grouping selection of input vectors

    NASA Astrophysics Data System (ADS)

    Shin, JaeWook; Kong, NamWoong; Park, PooGyeon

    2011-10-01

    This paper present an affine projection algorithm (APA) using grouping selection of input vectors. To improve the performance of conventional APA, the proposed algorithm adjusts the number of the input vectors using two procedures: grouping procedure and selection procedure. In grouping procedure, the some input vectors that have overlapping information for update is grouped using normalized inner product. Then, few input vectors that have enough information for for coefficient update is selected using steady-state mean square error (MSE) in selection procedure. Finally, the filter coefficients update using selected input vectors. The experimental results show that the proposed algorithm has small steady-state estimation errors comparing with the existing algorithms.

  10. Isolation of human lactate dehydrogenase isoenzyme X by affinity chromatography.

    PubMed Central

    Kolk, A H; van Kuyk, L; Boettcher, B

    1978-01-01

    Human isoenzyme LDH-X (lactate dehydrogenase isoenzyme X) was isolated from seminal fluid of frozen semen samples by affinity chromatography by using oxamate-Sepharose and AMP-Sepharose. In the presence of 1.6 mM-NAD+, isoenzyme LDH-X does not bind to AMP-Sepharose, whereas the other lactate dehydrogenase isoenzymes do. This is the crucial point in the isolation of isoenzyme LDH-X from the other isoenzymes. The purified human isoenzyme LDH-X had a specific activity of 146 units/mg of protein. Images Fig. 2. Fig. 3. PMID:213050

  11. Affinity flow fractionation of cells via transient interactions with asymmetric molecular patterns

    NASA Astrophysics Data System (ADS)

    Bose, Suman; Singh, Rishi; Hanewich-Hollatz, Mikhail; Shen, Chong; Lee, Chia-Hua; Dorfman, David M.; Karp, Jeffrey M.; Karnik, Rohit

    2013-07-01

    Flow fractionation of cells using physical fields to achieve lateral displacement finds wide applications, but its extension to surface molecule-specific separation requires labeling. Here we demonstrate affinity flow fractionation (AFF) where weak, short-range interactions with asymmetric molecular patterns laterally displace cells in a continuous, label-free process. We show that AFF can directly draw neutrophils out of a continuously flowing stream of blood with an unprecedented 400,000-fold depletion of red blood cells, with the sorted cells being highly viable, unactivated, and functionally intact. The lack of background erythrocytes enabled the use of AFF for direct enumeration of neutrophils by a downstream detector, which could distinguish the activation state of neutrophils in blood. The compatibility of AFF with capillary microfluidics and its ability to directly separate cells with high purity and minimal sample preparation will facilitate the design of simple and portable devices for point-of-care diagnostics and quick, cost-effective laboratory analysis.

  12. S-Boxes Based on Affine Mapping and Orbit of Power Function

    NASA Astrophysics Data System (ADS)

    Khan, Mubashar; Azam, Naveed Ahmed

    2015-06-01

    The demand of data security against computational attacks such as algebraic, differential, linear and interpolation attacks has been increased as a result of rapid advancement in the field of computation. It is, therefore, necessary to develop such cryptosystems which can resist current cryptanalysis and more computational attacks in future. In this paper, we present a multiple S-boxes scheme based on affine mapping and orbit of the power function used in Advanced Encryption Standard (AES). The proposed technique results in 256 different S-boxes named as orbital S-boxes. Rigorous tests and comparisons are performed to analyse the cryptographic strength of each of the orbital S-boxes. Furthermore, gray scale images are encrypted by using multiple orbital S-boxes. Results and simulations show that the encryption strength of the orbital S-boxes against computational attacks is better than that of the existing S-boxes.

  13. Experimental and theoretical binding affinity between polyvinylpolypyrrolidone and selected phenolic compounds from food matrices.

    PubMed

    Durán-Lara, Esteban F; López-Cortés, Xaviera A; Castro, Ricardo I; Avila-Salas, Fabián; González-Nilo, Fernando D; Laurie, V Felipe; Santos, Leonardo S

    2015-02-01

    Polyvinylpolypyrrolidone (PVPP) is a fining agent, widely used in winemaking and brewing, whose mode of action in removing phenolic compounds has not been fully characterised. The aim of this study was to evaluate the experimental and theoretical binding affinity of PVPP towards six phenolic compounds representing different types of phenolic species. The interaction between PVPP and phenolics was evaluated in model solutions, where hydroxyl groups, hydrophobic bonding and steric hindrance were characterised. The results of the study indicated that PVPP exhibits high affinity for quercetin and catechin, moderate affinity for epicatechin, gallic acid and lower affinity for 4-methylcatechol and caffeic acid. The affinity has a direct correlation with the hydroxylation degree of each compound. The results show that the affinity of PVPP towards phenols is related with frontier orbitals. This work demonstrates a direct correlation between the experimental affinity and the interaction energy calculations obtained through computational chemistry methods. PMID:25172736

  14. Challenges and recent advances in affinity purification of tag-free proteins.

    PubMed

    Guan, Dongli; Chen, Zhilei

    2014-07-01

    There is currently no generic, simple, lowcost method for affinity chromatographic purification of proteins in which the purified product is free of appended tags. Existing approaches for the purification of tagless proteins fall into two broad categories: (1) direct affinity-based capture of tag-free proteins that utilize affinity ligands specific to the target protein or class of target protein, and (2) removal of an appended affinity tag following tag-mediated protein capture. This paper reviews current state-of-the-art approaches for tagless protein purification in both categories, including specific examples of affinity ligands used for the capture of different classes of proteins and cleavage systems for affinity tag removal following chromatographic capture. A particular focus of this review is on recent developments in affinity tag removal systems utilizing split inteins. PMID:24658742

  15. Low-Affinity Memory CD8+ T Cells Mediate Robust Heterologous Immunity.

    PubMed

    Krummey, Scott M; Martinez, Ryan J; Andargachew, Rakieb; Liu, Danya; Wagener, Maylene; Kohlmeier, Jacob E; Evavold, Brian D; Larsen, Christian P; Ford, Mandy L

    2016-03-15

    Heterologous immunity is recognized as a significant barrier to transplant tolerance. Whereas it has been established that pathogen-elicited memory T cells can have high or low affinity for cross-reactive allogeneic peptide-MHC, the role of TCR affinity during heterologous immunity has not been explored. We established a model with which to investigate the impact of TCR-priming affinity on memory T cell populations following a graft rechallenge. In contrast to high-affinity priming, low-affinity priming elicited fully differentiated memory T cells with a CD45RB(hi) status. High CD45RB status enabled robust secondary responses in vivo, as demonstrated by faster graft rejection kinetics and greater proliferative responses. CD45RB blockade prolonged graft survival in low affinity-primed mice, but not in high affinity-primed mice. Mechanistically, low affinity-primed memory CD8(+) T cells produced more IL-2 and significantly upregulated IL-2Rα expression during rechallenge. We found that CD45RB(hi) status was also a stable marker of priming affinity within polyclonal CD8(+) T cell populations. Following high-affinity rechallenge, low affinity-primed CD45RB(hi) cells became CD45RB(lo), demonstrating that CD45RB status acts as an affinity-based differentiation switch on CD8(+) T cells. Thus, these data establish a novel mechanism by which CD45 isoforms tune low affinity-primed memory CD8(+) T cells to become potent secondary effectors following heterologous rechallenge. These findings have direct implications for allogeneic heterologous immunity by demonstrating that despite a lower precursor frequency, low-affinity priming is sufficient to generate memory cells that mediate potent secondary responses against a cross-reactive graft challenge. PMID:26864034

  16. Use of quantitative affinity chromatography for characterizing high-affinity interactions: binding of heparin to antithrombin III.

    PubMed

    Hogg, P J; Jackson, C M; Winzor, D J

    1991-02-01

    The versatility of quantitative affinity chromatography (QAC) for evaluating the binding of macromolecular ligands to macromolecular acceptors has been increased substantially as a result of the derivation of the equations which describe the partitioning of acceptor between matrix-bound and soluble forms in terms of total, rather than free, ligand concentrations. In addition to simplifying the performance of the binding experiments, this development makes possible the application of the technique to systems characterized by affinities higher than those previously amenable to investigation by QAC. Addition of an on-line data acquisition system to monitor the concentration of partitioning solute in the liquid phase as a function of time has permitted the adoption of an empirical approach for determining the liquid-phase concentration of acceptor in the system at partition equilibrium, a development which decreases significantly the time required to obtain a complete binding curve by QAC. The application of these new QAC developments is illustrated by the determination of binding constants for the interactions of high-affinity heparin (Mr 20,300) with antithrombin III at three temperatures. Association constants of 8.0 +/- 2.2 x 10(7), 3.4 +/- 0.3 x 10(7), and 1.0 +/- 0.2 x 10(7) M-1 were observed at 15, 25, and 35 degrees C, respectively. The standard enthalpy change of -4.2 +/- 0.6 kcal/mol that is calculated from these data is in good agreement with a reported value obtained from fluorescence quenching measurements. PMID:2035830

  17. Influence of affinity on antibody determination in microtiter ELISA systems

    SciTech Connect

    Peterman, J.H.; Voss, E.W. Jr.; Butler, J.E.

    1986-03-01

    Theoretically, all immunoassays are affinity (Ka) dependent when the product of the antibody (Ab) Ka and the free epitope concentration is less than 10. Thus, the degree of dependence on Ka depends on the concentration of available antigen in the system. The authors examined the binding of /sup 125/I-anti-fluorescein (a-FLU) monoclonal antibodies of different affinities to FLU-gelatin adsorbed on Immunlon 2 microtiter plates. Data obtained were in general agreement with our theoretical predictions; the percent of /sup 125/I-a-FLU which bound correlated with Ka, as did the shape of the titration curves. Measurement of 5 a-FLU monoclonals by the ELISA showed that the determination of Ab concentrations depends on the FLU-gelatin concentration, epitope density, and on the relationship between the Kas of test samples and the reference standard Ab preparation. Thus the ELISA is Ka dependent and should not be used routinely to estimate the absolute amount to Ab in unknown samples. However, the Ka dependency of the ELISA might provide a convenient assay for the estimation of the relative functional Ka (rfKa) of antibody preparations.

  18. Flexible Molybdenum Electrodes towards Designing Affinity Based Protein Biosensors.

    PubMed

    Kamakoti, Vikramshankar; Panneer Selvam, Anjan; Radha Shanmugam, Nandhinee; Muthukumar, Sriram; Prasad, Shalini

    2016-01-01

    Molybdenum electrode based flexible biosensor on porous polyamide substrates has been fabricated and tested for its functionality as a protein affinity based biosensor. The biosensor performance was evaluated using a key cardiac biomarker; cardiac Troponin-I (cTnI). Molybdenum is a transition metal and demonstrates electrochemical behavior upon interaction with an electrolyte. We have leveraged this property of molybdenum for designing an affinity based biosensor using electrochemical impedance spectroscopy. We have evaluated the feasibility of detection of cTnI in phosphate-buffered saline (PBS) and human serum (HS) by measuring impedance changes over a frequency window from 100 mHz to 1 MHz. Increasing changes to the measured impedance was correlated to the increased dose of cTnI molecules binding to the cTnI antibody functionalized molybdenum surface. We achieved cTnI detection limit of 10 pg/mL in PBS and 1 ng/mL in HS medium. The use of flexible substrates for designing the biosensor demonstrates promise for integration with a large-scale batch manufacturing process. PMID:27438863

  19. Determinants of benzodiazepine brain uptake: lipophilicity versus binding affinity.

    PubMed

    Arendt, R M; Greenblatt, D J; Liebisch, D C; Luu, M D; Paul, S M

    1987-01-01

    Factors influencing brain uptake of benzodiazepine derivatives were evaluated in adult Sprague Dawley rats (n = 8-10 per drug). Animals received single intraperitoneal doses of alprazolam, triazolam, lorazepam, flunitrazepam, diazepam, midazolam, desmethyldiazepam, or clobazam. Concentrations of each drug (and metabolites) in whole brain and serum 1 h after dosage were determined by gas chromatography. Serum free fraction was measured by equilibrium dialysis. In vitro binding affinity (apparent Ki) of each compound was estimated based on displacement of tritiated flunitrazepam in washed membrane preparations from rat cerebral cortex. Lipid solubility of each benzodiazepine was estimated using the reverse-phase liquid chromatographic (HPLC) retention index at physiologic pH. There was no significant relation between brain:total serum concentration ratio and either HPLC retention (r = 0.18) or binding Ki (r = -0.34). Correction of uptake ratios for free as opposed to total serum concentration yielded a highly significant correlation with HPLC retention (r = 0.78, P less than 0.005). However, even the corrected ratio was not correlated with binding Ki (r = -0.22). Thus a benzodiazepine's capacity to diffuse from systemic blood into brain tissue is much more closely associated with the physicochemical property of lipid solubility than with specific affinity. Unbound rather than total serum or plasma concentration most accurately reflects the quantity of drug available for diffusion. PMID:2888155

  20. 01-ERD-111 - The Development of Synthetic High Affinity Ligands

    SciTech Connect

    Perkins, J; Balhorn, R; Cosman, M; Lightstone, F; Zeller, L

    2004-02-05

    The aim of this project was to develop Synthetic High-Affinity Ligands (SHALs), which bind with high affinity and specificity to proteins of interest for national security and cancer therapy applications. The aim of producing synthetic ligands for sensory devices as an alternative to antibody-based detection assays and therapeutic agents is to overcome the drawbacks associated with antibody-based in next-generation sensors and systems. The focus area of the project was the chemical synthesis of the SHALs. The project concentrated on two different protein targets. (a) The C fragment of tetanus and botulinum toxin, potential biowarfare agents. A SHAL for tetanus or botulinum toxin would be incorporated into a sensory device for the toxins. (b) HLA-DR10, a protein found in high abundance on the surface of Non-Hodgkins Lymphoma. A SHAL specific to a tumor marker, labeled with a radionuclide, would enable the targeted delivery of radiation therapy to metastatic disease. The technical approach used to develop a SHAL for each protein target will be described in more detail below. However, in general, the development of a SHAL requires a combination of computational modeling techniques, modern nuclear magnetic resonance spectroscopy (NMR) and synthetic chemistry.

  1. Altered catecholamine receptor affinity in rabbit aortic intimal hyperplasia

    SciTech Connect

    O'Malley, M.K.; Cotecchia, S.; Hagen, P.O. )

    1991-08-01

    Intimal thickening is a universal response to endothelial denudation and is also thought to be a precursor of atherosclerosis. The authors have demonstrated selective supersensitivity in arterial intimal hyperplasia to norepinephrine and they now report a possible mechanism for this. Binding studies in rabbit aorta with the selective alpha 1-adrenergic radioligand 125I-HEAT demonstrated that there was no change in receptor density (20 {plus minus} 4 fmole/10(6) cells) in intact vascular smooth muscle cells at either 5 or 14 days after denudation. However, competition studies showed a 2.6-fold increase in alpha 1-adrenergic receptor affinity for norepinephrine in intimal hyperplastic tissue (P less than 0.05). This increased affinity for norepinephrine was associated with a greater increase in 32P-labeled phosphatidylinositol (148% intimal thickening versus 76% control) and phosphatidic acid (151% intimal thickening versus 56% control) following norepinephrine stimulation of free floating rings of intimal hyperplastic aorta. These data suggest that the catecholamine supersensitivity in rabbit aortic intimal hyperplasia is receptor mediated and may be linked to the phosphatidylinositol cycle.

  2. Detection of Waterborne Viruses Using High Affinity Molecularly Imprinted Polymers.

    PubMed

    Altintas, Zeynep; Gittens, Micah; Guerreiro, Antonio; Thompson, Katy-Anne; Walker, Jimmy; Piletsky, Sergey; Tothill, Ibtisam E

    2015-07-01

    Molecularly imprinted polymers (MIPs) are artificial receptor ligands which can recognize and specifically bind to a target molecule. They are more resistant to chemical and biological damage and inactivation than antibodies. Therefore, target specific-MIP nanoparticles are aimed to develop and implemented to biosensors for the detection of biological toxic agents such as viruses, bacteria, and fungi toxins that cause many diseases and death due to the environmental contamination. For the first time, a molecularly imprinted polymer (MIP) targeting the bacteriophage MS2 as the template was investigated using a novel solid-phase synthesis method to obtain the artificial affinity ligand for the detection and removal of waterborne viruses through optical-based sensors. A high affinity between the artificial ligand and the target was found, and a regenerative MIP-based virus detection assay was successfully developed using a new surface plasmon resonance (SPR)-biosensor which provides an alternative technology for the specific detection and removal of waterborne viruses that lead to high disease and death rates all over the world. PMID:26008649

  3. Telonemia, a new protist phylum with affinity to chromist lineages.

    PubMed

    Shalchian-Tabrizi, K; Eikrem, W; Klaveness, D; Vaulot, D; Minge, M A; Le Gall, F; Romari, K; Throndsen, J; Botnen, A; Massana, R; Thomsen, H A; Jakobsen, K S

    2006-07-22

    Recent molecular investigations of marine samples taken from different environments, including tropical, temperate and polar areas, as well as deep thermal vents, have revealed an unexpectedly high diversity of protists, some of them forming deep-branching clades within important lineages, such as the alveolates and heterokonts. Using the same approach on coastal samples, we have identified a novel group of protist small subunit (SSU) rDNA sequences that do not correspond to any phylogenetic group previously identified. Comparison with other sequences obtained from cultures of heterotrophic protists showed that the environmental sequences grouped together with Telonema, a genus known since 1913 but of uncertain taxonomic affinity. Phylogenetic analyses using four genes (SSU, Hsp90, alpha-tubulin and beta-tubulin), and accounting for gamma- and covarion-distributed substitution rates, revealed Telonema as a distinct group of species branching off close to chromist lineages. Consistent with these gene trees, Telonema possesses ultrastructures revealing both the distinctness of the group and the evolutionary affinity to chromist groups. Altogether, the data suggest that Telonema constitutes a new eukaryotic phylum, here defined as Telonemia, possibly representing a key clade for the understanding of the early evolution of bikont protist groups, such as the proposed chromalveolate supergroup. PMID:16790418

  4. Compensating Enthalpic and Entropic Changes Hinder Binding Affinity Optimization

    SciTech Connect

    Lafont,V.; Armstrong, A.; Ohtaka, H.; Kiso, Y.; Amzel, L.; Freire, E.

    2007-01-01

    A common strategy to improve the potency of drug candidates is to introduce chemical functionalities, like hydrogen bond donors or acceptors, at positions where they are able to establish strong interactions with the target. However, it is often observed that the added functionalities do not necessarily improve potency even if they form strong hydrogen bonds. Here, we explore the thermodynamic and structural basis for those observations. KNI-10033 is a potent experimental HIV-1 protease inhibitor with picomolar affinity against the wild-type enzyme (Kd = 13 pm). The potency of the inhibitor is the result of favorable enthalpic (?H = -8.2 kcal/mol) and entropic (-T?S = -6.7 kcal/mol) interactions. The replacement of the thioether group in KNI-10033 by a sulfonyl group (KNI-10075) results in a strong hydrogen bond with the amide of Asp 30B of the HIV-1 protease. This additional hydrogen bond improves the binding enthalpy by 3.9 kcal/mol; however, the enthalpy gain is completely compensated by an entropy loss, resulting in no affinity change. Crystallographic and thermodynamic analysis of the inhibitor/protease complexes indicates that the entropy losses are due to a combination of conformational and solvation effects. These results provide a set of practical guidelines aimed at overcoming enthalpy/entropy compensation and improve binding potency.

  5. Innate immunity probed by lipopolysaccharides affinity strategy and proteomics.

    PubMed

    Giangrande, Chiara; Colarusso, Lucia; Lanzetta, Rosa; Molinaro, Antonio; Pucci, Piero; Amoresano, Angela

    2013-01-01

    Lipopolysaccharides (LPSs) are ubiquitous and vital components of the cell surface of Gram-negative bacteria that have been shown to play a relevant role in the induction of the immune-system response. In animal and plant cells, innate immune defenses toward microorganisms are triggered by the perception of pathogen associated molecular patterns. These are conserved and generally indispensable microbial structures such as LPSs that are fundamental in the Gram-negative immunity recognition. This paper reports the development of an integrated strategy based on lipopolysaccharide affinity methodology that represents a new starting point to elucidate the molecular mechanisms elicited by bacterial LPS and involved in the different steps of innate immunity response. Biotin-tagged LPS was immobilized on streptavidin column and used as a bait in an affinity capture procedure to identify protein partners from human serum specifically interacting with this effector. The complex proteins/lipopolysaccharide was isolated and the protein partners were fractionated by gel electrophoresis and identified by mass spectrometry. This procedure proved to be very effective in specifically binding proteins functionally correlated with the biological role of LPS. Proteins specifically bound to LPS essentially gathered within two functional groups, regulation of the complement system (factor H, C4b, C4BP, and alpha 2 macroglobulin) and inhibition of LPS-induced inflammation (HRG and Apolipoproteins). The reported strategy might have important applications in the elucidation of biological mechanisms involved in the LPSs-mediated molecular recognition and anti-infection responses. PMID:22752448

  6. The eyes of Tullimonstrum reveal a vertebrate affinity.

    PubMed

    Clements, Thomas; Dolocan, Andrei; Martin, Peter; Purnell, Mark A; Vinther, Jakob; Gabbott, Sarah E

    2016-04-28

    Tullimonstrum gregarium is an iconic soft-bodied fossil from the Carboniferous Mazon Creek Lagerstätte (Illinois, USA). Despite a large number of specimens and distinct anatomy, various analyses over the past five decades have failed to determine the phylogenetic affinities of the 'Tully monster', and although it has been allied to such disparate phyla as the Mollusca, Annelida or Chordata, it remains enigmatic. The nature and phylogenetic affinities of Tullimonstrum have defied confident systematic placement because none of its preserved anatomy provides unequivocal evidence of homology, without which comparative analysis fails. Here we show that the eyes of Tullimonstrum possess ultrastructural details indicating homology with vertebrate eyes. Anatomical analysis using scanning electron microscopy reveals that the eyes of Tullimonstrum preserve a retina defined by a thick sheet comprising distinct layers of spheroidal and cylindrical melanosomes. Time-of-flight secondary ion mass spectrometry and multivariate statistics provide further evidence that these microbodies are melanosomes. A range of animals have melanin in their eyes, but the possession of melanosomes of two distinct morphologies arranged in layers, forming retinal pigment epithelium, is a synapomorphy of vertebrates. Our analysis indicates that in addition to evidence of colour patterning, ecology and thermoregulation, fossil melanosomes can also carry a phylogenetic signal. Identification in Tullimonstrum of spheroidal and cylindrical melanosomes forming the remains of retinal pigment epithelium indicates that it is a vertebrate; considering its body parts in this new light suggests it was an anatomically unusual member of total group Vertebrata. PMID:27074512

  7. A heme fusion tag for protein affinity purification and quantification

    PubMed Central

    Asher, Wesley B; Bren, Kara L

    2010-01-01

    We report a novel affinity-based purification method for proteins expressed in Escherichia coli that uses the coordination of a heme tag to an l-histidine-immobilized sepharose (HIS) resin. This approach provides an affinity purification tag visible to the eye, facilitating tracking of the protein. We show that azurin and maltose binding protein are readily purified from cell lysate using the heme tag and HIS resin. Mild conditions are used; heme-tagged proteins are bound to the HIS resin in phosphate buffer, pH 7.0, and eluted by adding 200–500 mM imidazole or binding buffer at pH 5 or 8. The HIS resin exhibits a low level of nonspecific binding of untagged cellular proteins for the systems studied here. An additional advantage of the heme tag-HIS method for purification is that the heme tag can be used for protein quantification by using the pyridine hemochrome absorbance method for heme concentration determination. PMID:20665691

  8. Reflection symmetry detection using locally affine invariant edge correspondence.

    PubMed

    Wang, Zhaozhong; Tang, Zesheng; Zhang, Xiao

    2015-04-01

    Reflection symmetry detection receives increasing attentions in recent years. The state-of-the-art algorithms mainly use the matching of intensity-based features (such as the SIFT) within a single image to find symmetry axes. This paper proposes a novel approach by establishing the correspondence of locally affine invariant edge-based features, which are superior to the intensity based in the aspects that it is insensitive to illumination variations, and applicable to textureless objects. The locally affine invariance is achieved by simple linear algebra for efficient and robust computations, making the algorithm suitable for detections under object distortions like perspective projection. Commonly used edge detectors and a voting process are, respectively, used before and after the edge description and matching steps to form a complete reflection detection pipeline. Experiments are performed using synthetic and real-world images with both multiple and single reflection symmetry axis. The test results are compared with existing algorithms to validate the proposed method. PMID:25608306

  9. An Ultrahigh Affinity D-Peptide Antagonist Of MDM2

    PubMed Central

    Zhan, Changyou; Zhao, Le; Wei, Xiaoli; Wu, Xueji; Chen, Xishan; Yuan, Weirong; Lu, Wei-Yue; Pazgier, Marzena; Lu, Wuyuan

    2012-01-01

    The oncoprotein MDM2 negatively regulates the activity and stability of the p53 tumor suppressor, and is an important molecular target for anticancer therapy. Aided by mirror image phage display and native chemical ligation, we have previously discovered several proteolysis-resistant duodecimal D-peptide antagonists of MDM2, termed DPMI-α, β, γ. The prototypic D-peptide inhibitor DPMI-α binds (25-109)MDM2 at an affinity of 220 nM, and kills tumor cells in vitro and inhibits tumor growth in vivo by reactivating the p53 pathway. Herein, we report the design of a super-active D-peptide antagonist of MDM2, termed DPMI-δ, of which the binding affinity for (25-109)MDM2 has been improved over DPMI-α by three orders of magnitude (Kd = 220 pM). X-ray crystallographic studies validate DPMI-δ as an exceedingly potent inhibitor of the p53-MDM2 interaction, promising to be a highly attractive lead drug candidate for anticancer therapeutic development. PMID:22694121

  10. Robust activation method for negative electron affinity photocathodes

    DOEpatents

    Mulhollan, Gregory A.; Bierman, John C.

    2011-09-13

    A method by which photocathodes(201), single crystal, amorphous, or otherwise ordered, can be surface modified to a robust state of lowered and in best cases negative, electron affinity has been discovered. Conventional methods employ the use of Cs(203) and an oxidizing agent(207), typically carried by diatomic oxygen or by more complex molecules, for example nitrogen trifluoride, to achieve a lowered electron affinity(404). In the improved activation method, a second alkali, other than Cs(205), is introduced onto the surface during the activation process, either by co-deposition, yo-yo, or sporadic or intermittent application. Best effect for GaAs photocathodes has been found through the use of Li(402) as the second alkali, though nearly the same effect can be found by employing Na(406). Suitable photocathodes are those which are grown, cut from boules, implanted, rolled, deposited or otherwise fabricated in a fashion and shape desired for test or manufacture independently supported or atop a support structure or within a framework or otherwise affixed or suspended in the place and position required for use.

  11. Electron affinity of cubic boron nitride terminated with vanadium oxide

    NASA Astrophysics Data System (ADS)

    Yang, Yu; Sun, Tianyin; Shammas, Joseph; Kaur, Manpuneet; Hao, Mei; Nemanich, Robert J.

    2015-10-01

    A thermally stable negative electron affinity (NEA) for a cubic boron nitride (c-BN) surface with vanadium-oxide-termination is achieved, and its electronic structure was analyzed with in-situ photoelectron spectroscopy. The c-BN films were prepared by electron cyclotron resonance plasma-enhanced chemical vapor deposition employing BF3 and N2 as precursors. Vanadium layers of ˜0.1 and 0.5 nm thickness were deposited on the c-BN surface in an electron beam deposition system. Oxidation of the metal layer was achieved by an oxygen plasma treatment. After 650 °C thermal annealing, the vanadium oxide on the c-BN surface was determined to be VO2, and the surfaces were found to be thermally stable, exhibiting an NEA. In comparison, the oxygen-terminated c-BN surface, where B2O3 was detected, showed a positive electron affinity of ˜1.2 eV. The B2O3 evidently acts as a negatively charged layer introducing a surface dipole directed into the c-BN. Through the interaction of VO2 with the B2O3 layer, a B-O-V layer structure would contribute a dipole between the O and V layers with the positive side facing vacuum. The lower enthalpy of formation for B2O3 is favorable for the formation of the B-O-V layer structure, which provides a thermally stable surface dipole and an NEA surface.

  12. Membrane Affinity of Platensimycin and Its Dialkylamine Analogs

    PubMed Central

    Rowe, Ian; Guo, Min; Yasmann, Anthony; Cember, Abigail; Sintim, Herman O.; Sukharev, Sergei

    2015-01-01

    Membrane permeability is a desired property in drug design, but there have been difficulties in quantifying the direct drug partitioning into native membranes. Platensimycin (PL) is a new promising antibiotic whose biosynthetic production is costly. Six dialkylamine analogs of PL were synthesized with identical pharmacophores but different side chains; five of them were found inactive. To address the possibility that their activity is limited by the permeation step, we calculated polarity, measured surface activity and the ability to insert into the phospholipid monolayers. The partitioning of PL and the analogs into the cytoplasmic membrane of E. coli was assessed by activation curve shifts of a re-engineered mechanosensitive channel, MscS, in patch-clamp experiments. Despite predicted differences in polarity, the affinities to lipid monolayers and native membranes were comparable for most of the analogs. For PL and the di-myrtenyl analog QD-11, both carrying bulky sidechains, the affinity for the native membrane was lower than for monolayers (half-membranes), signifying that intercalation must overcome the lateral pressure of the bilayer. We conclude that the biological activity among the studied PL analogs is unlikely to be limited by their membrane permeability. We also discuss the capacity of endogenous tension-activated channels to detect asymmetric partitioning of exogenous substances into the native bacterial membrane and the different contributions to the thermodynamic force which drives permeation. PMID:26247942

  13. Therapeutic Strategies to Alter Oxygen Affinity of Sickle Hemoglobin

    PubMed Central

    Safo, Martin K.; Kato, Gregory J.

    2014-01-01

    The fundamental pathophysiology of sickle cell disease involves the polymerization of sickle hemoglobin in its T-state which develops under low oxygen saturation. One therapeutic strategy is to develop pharmacologic agents to stabilize the R-state of hemoglobin, which has higher oxygen affinity and would be expected to have slower kinetics of polymerization, potentially delaying the sickling of red cells during circulation. This therapeutic strategy has stimulated the laboratory investigation of aromatic aldehydes, aspirin derivatives, thiols and isothiocyanates that can stabilize the R-state of hemoglobin in vitro. One representative aromatic aldehyde agent, 5-hydoxymethyl-2-furfural (5-HMF, also known as Aes-103) increases oxygen affinity of sickle hemoglobin and reduces hypoxia-induced sickling in vitro and protects sickle cell mice from effects of hypoxia. It has completed pre-clinical testing and has entered clinical trials. The development of Hb allosteric modifiers as direct anti-sickling agents is an attractive investigational goal for the treatment of sickle cell disease. PMID:24589263

  14. Affinity sensor using 3-aminophenylboronic acid for bacteria detection.

    PubMed

    Wannapob, Rodtichoti; Kanatharana, Proespichaya; Limbut, Warakorn; Numnuam, Apon; Asawatreratanakul, Punnee; Thammakhet, Chongdee; Thavarungkul, Panote

    2010-10-15

    Boronic acid that can reversibly bind to diols was used to detect bacteria through its affinity binding reaction with diol-groups on bacterial cell walls. 3-aminophenylboronic acid (3-APBA) was immobilized on a gold electrode via a self-assembled monolayer. The change in capacitance of the sensing surface caused by the binding between 3-APBA and bacteria in a flow system was detected by a potentiostatic step method. Under optimal conditions the linear range of 1.5×10(2)-1.5×10(6) CFU ml(-1) and the detection limit of 1.0×10(2) CFU ml(-1) was obtained. The sensing surface can be regenerated and reused up to 58 times. The method was used for the analysis of bacteria in several types of water, i.e., bottled, well, tap, reservoir and wastewater. Compared with the standard plate count method, the results were within one standard deviation of each other. The proposed method can save both time and cost of analysis. The electrode modified with 3-APBA would also be applicable to the detection of other cis-diol-containing analytes. The concept could be extended to other chemoselective ligands, offering less expensive and more robust affinity sensors for a wide range of compounds. PMID:20801635

  15. Telonemia, a new protist phylum with affinity to chromist lineages

    PubMed Central

    Shalchian-Tabrizi, K; Eikrem, W; Klaveness, D; Vaulot, D; Minge, M.A; Le Gall, F; Romari, K; Throndsen, J; Botnen, A; Massana, R; Thomsen, H.A; Jakobsen, K.S

    2006-01-01

    Recent molecular investigations of marine samples taken from different environments, including tropical, temperate and polar areas, as well as deep thermal vents, have revealed an unexpectedly high diversity of protists, some of them forming deep-branching clades within important lineages, such as the alveolates and heterokonts. Using the same approach on coastal samples, we have identified a novel group of protist small subunit (SSU) rDNA sequences that do not correspond to any phylogenetic group previously identified. Comparison with other sequences obtained from cultures of heterotrophic protists showed that the environmental sequences grouped together with Telonema, a genus known since 1913 but of uncertain taxonomic affinity. Phylogenetic analyses using four genes (SSU, Hsp90, alpha-tubulin and beta-tubulin), and accounting for gamma- and covarion-distributed substitution rates, revealed Telonema as a distinct group of species branching off close to chromist lineages. Consistent with these gene trees, Telonema possesses ultrastructures revealing both the distinctness of the group and the evolutionary affinity to chromist groups. Altogether, the data suggest that Telonema constitutes a new eukaryotic phylum, here defined as Telonemia, possibly representing a key clade for the understanding of the early evolution of bikont protist groups, such as the proposed chromalveolate supergroup. PMID:16790418

  16. Expression and affinity purification of recombinant proteins from plants

    NASA Technical Reports Server (NTRS)

    Desai, Urvee A.; Sur, Gargi; Daunert, Sylvia; Babbitt, Ruth; Li, Qingshun

    2002-01-01

    With recent advances in plant biotechnology, transgenic plants have been targeted as an inexpensive means for the mass production of proteins for biopharmaceutical and industrial uses. However, the current plant purification techniques lack a generally applicable, economic, large-scale strategy. In this study, we demonstrate the purification of a model protein, beta-glucuronidase (GUS), by employing the protein calmodulin (CaM) as an affinity tag. In the proposed system, CaM is fused to GUS. In the presence of calcium, the calmodulin fusion protein binds specifically to a phenothiazine-modified surface of an affinity column. When calcium is removed with a complexing agent, e.g., EDTA, calmodulin undergoes a conformational change allowing the dissociation of the calmodulin-phenothiazine complex and, therefore, permitting the elution of the GUS-CaM fusion protein. The advantages of this approach are the fast, efficient, and economical isolation of the target protein under mild elution conditions, thus preserving the activity of the target protein. Two types of transformation methods were used in this study, namely, the Agrobacterium-mediated system and the viral-vector-mediated transformation system. Copyright 2002 Elsevier Science (USA).

  17. Characterization of methacrylate chromatographic monoliths bearing affinity ligands.

    PubMed

    Černigoj, Urh; Vidic, Urška; Nemec, Blaž; Gašperšič, Jernej; Vidič, Jana; Lendero Krajnc, Nika; Štrancar, Aleš; Podgornik, Aleš

    2016-09-16

    We investigated effect of immobilization procedure and monolith structure on chromatographic performance of methacrylate monoliths bearing affinity ligands. Monoliths of different pore size and various affinity ligands were prepared and characterized using physical and chromatographic methods. When testing protein A monoliths with different protein A ligand densities, a significant nonlinear effect of ligand density on dynamic binding capacity (DBC) for IgG was obtained and accurately described by Langmuir isotherm curve enabling estimation of protein A utilization as a function of ligand density. Maximal IgG binding capacity was found to be at least 12mg/mL exceeding theoretical monolayer adsorption value of 7.8mg/mL assuming hexagonal packing and IgG hydrodynamic diameter of 11nm. Observed discrepancy was explained by shrinkage of IgG during adsorption on protein A experimentally determined through calculated adsorbed IgG layer thickness of 5.4nm from pressure drop data. For monoliths with different pore size maximal immobilized densities of protein A as well as IgG dynamic capacity linearly correlates with monolith surface area indicating constant ligand utilization. Finally, IgGs toward different plasma proteins were immobilized via the hydrazide coupling chemistry to provide oriented immobilization. DBC was found to be flow independent and was increasing with the size of bound protein. Despite DBC was lower than IgG capacity to immobilized protein A, ligand utilization was higher. PMID:27554023

  18. Boronate affinity adsorption of RNA: possible role of conformational changes

    NASA Technical Reports Server (NTRS)

    Singh, N.; Willson, R. C.; Fox, G. E. (Principal Investigator)

    1999-01-01

    Batch equilibrium adsorption isotherm determination is used to characterize the adsorption of mixed yeast RNA on agarose-immobilized m-aminophenylboronic acid. It is shown that the affinity-enhancing influence of divalent cations depends strongly on the precise nature of the cation used, with barium being far more effective than the conventionally-used magnesium. This adsorption-promoting influence of barium is suggested to arise primarily from ionic influences on the structure and rigidity of the RNA molecule, as the adsorption of ribose-based small molecules is not similarly affected. The substitution of barium for the standard magnesium counterion does not greatly promote the adsorption of DNA, implying that the effect is specific to RNA and may be useful in boronate-based RNA separations. RNA adsorption isotherms exhibit sharp transitions as functions of temperature, and these transitions occur at different temperatures with Mg2+ and with Ba2+. Adsorption affinity and capacity were found to increase markedly at lower temperatures, suggestive of an enthalpically favored interaction process. The stoichiometric displacement parameter, Z, in Ba2+ buffer is three times the value in Mg2+ buffer, and is close to unity.

  19. Binding Affinity of Glycoconjugates to BACILLUS Spores and Toxins

    NASA Astrophysics Data System (ADS)

    Rasol, Aveen; Eassa, Souzan; Tarasenko, Olga

    2010-04-01

    Early recognition of Bacillus cereus group species is important since they can cause food-borne illnesses and deadly diseases in humans. Glycoconjugates (GCs) are carbohydrates covalently linked to non-sugar moieties including lipids, proteins or other entities. GCs are involved in recognition and signaling processes intrinsic to biochemical functions in cells. They also stimulate cell-cell adhesion and subsequent recognition and activation of receptors. We have demonstrated that GCs are involved in Bacillus cereus spore recognition. In the present study, we have investigated whether GCs possess the ability to bind and recognize B. cereus spores and Bacillus anthracis recombinant single toxins (sTX) and complex toxins (cTX). The affinity of GCs to spores + sTX and spores + cTX toxins was studied in the binding essay. Our results demonstrated that GC9 and GC10 were able to selectively bind to B. cereus spores and B. anthracis toxins. Different binding affinities for GCs were found toward Bacillus cereus spores + sTX and spores + cTX. Dilution of GCs does not impede the recognition and binding. Developed method provides a tool for simultaneous recognition and targeting of spores, bacteria toxins, and/or other entities.

  20. Magnetic Parkia pendula seed gum as matrix for Concanavalin A lectin immobilization and its application in affinity purification.

    PubMed

    Rêgo, Moacyr J B M; Almeida, Sinara M; Bezerra, Sérgio A; Carvalho Júnior, Luiz B; Beltrão, Eduardo I C

    2014-09-01

    The present work aimed to magnetize Parkia pendula seeds gum and use it as a matrix for Concanavalin A covalent immobilization. This composite was applied in affinity purification of glycoconjugates. Parkia pendula seeds were hydrated and the gum provenient from the supernatant was precipitated and washed with ethanol and dried. The gum was magnetized in co-precipitation using solutions of Fe+2 and Fe+3. Matrix activation was accomplished with NaIO4. Magnetized Parkia pendula seeds gum with covalently immobilized Concanavalin A was used as an affinity matrix for the recognition of bovine serum fetuin glycoprotein. Fetuin elution was carried out with a solution of glucose (300mM) and evaluated through SDS-PAGE. The efficiency of lectin immobilization and fetuin purification were 63% and 14%, respectively. These results indicate that the composite produced is a promising magnetic polysaccharide matrix for lectins immobilization. Thus, such system can be applied for affinity purification allowing an easy recovery by magnetic field. PMID:25140501

  1. The crystal structure of oxy hemoglobin from high oxygen affinity bird emu (Dromaius novaehollandiae).

    PubMed

    Mohamed Abubakkar, Mohamed H; Saraboji, Kadhirvel; Ponnuswamy, Mon Nanjappa G

    2014-01-01

    Hemoglobin is an honorary enzyme, a two-way respiratory carrier, transporting oxygen from the lungs to the tissues and facilitating the return transport of carbon dioxide. Hemoglobin has high affinity for oxygen and low affinity for carbon dioxide and other substances in the arterial circulation, whereas in the venous circulation these relative affinities are upturned. The oxygen affinity of hemoglobin increases with the fall in temperature and decreases with the increase in pH and 2, 3-bisphosphoglycerate; point mutations also affect the tetrameric arrangement and alter the oxygen affinity. Though several studies have revealed the specific reasons for the adaptation of increased oxygen affinity of avian hemoglobins at high-altitudes, further structural insights on hemoglobins from high oxygen affinity species are required to understand the detailed oxygen adaptation at the molecular level. Herein, we describe the structural investigation of hemoglobin from emu (Dromaius novaehollandiae), a high oxygen affinity bird. Hemoglobin from emu was purified using anion-exchange chromatography, crystallized and determined the structure in the oxy form at a resolution of 2.3 Å; the R-factor of the model was 19.2%. The structure was compared with other oxy hemoglobins of high oxygen affinity avian species; significant changes are noted at intra-subunit contacts which provide the clues for increased oxygen affinity of emu hemoglobin. PMID:25146185

  2. Boronate affinity materials for separation and molecular recognition: structure, properties and applications.

    PubMed

    Li, Daojin; Chen, Yang; Liu, Zhen

    2015-11-21

    Boronate affinity materials, as unique sorbents, have emerged as important media for the selective separation and molecular recognition of cis-diol-containing compounds. With the introduction of boronic acid functionality, boronate affinity materials exhibit several significant advantages, including broad-spectrum selectivity, reversible covalent binding, pH-controlled capture/release, fast association/desorption kinetics, and good compatibility with mass spectrometry. Because cis-diol-containing biomolecules, including nucleosides, saccharides, glycans, glycoproteins and so on, are the important targets in current research frontiers such as metabolomics, glycomics and proteomics, boronate affinity materials have gained rapid development and found increasing applications in the last decade. In this review, we critically survey recent advances in boronate affinity materials. We focus on fundamental considerations as well as important progress and new boronate affinity materials reported in the last decade. We particularly discuss on the effects of the structure of boronate ligands and supporting materials on the properties of boronate affinity materials, such as binding pH, affinity, selectivity, binding capacity, tolerance for interference and so on. A variety of promising applications, including affinity separation, proteomics, metabolomics, disease diagnostics and aptamer selection, are introduced with main emphasis on how boronate affinity materials can solve the issues in the applications and what merits boronate affinity materials can provide. PMID:26377373

  3. Cholinergic activation of the murine trachealis muscle via non-vesicular acetylcholine release involving low-affinity choline transporters.

    PubMed

    Nassenstein, Christina; Wiegand, Silke; Lips, Katrin S; Li, Guanfeng; Klein, Jochen; Kummer, Wolfgang

    2015-11-01

    In addition to quantal, vesicular release of acetylcholine (ACh), there is also non-quantal release at the motor endplate which is insufficient to evoke postsynaptic responses unless acetylcholinesterase (AChE) is inhibited. We here addressed potential non-quantal release in the mouse trachea by organ bath experiments and (immuno)histochemical methods. Electrical field stimulation (EFS) of nerve terminals elicited tracheal constriction that is largely due to ACh release. Classical enzyme histochemistry demonstrated acetylcholinesterase (AChE) activity in nerve fibers in the muscle and butyrylcholinesterase (BChE) activity in the smooth muscle cells. Acute inhibition of both esterases by eserine significantly raised tracheal tone which was fully sensitive to atropine. This effect was reduced, but not abolished, in AChE, but not in BChE gene-deficient mice. The eserine-induced increase in tracheal tone was unaffected by vesamicol (10(-5)M), an inhibitor of the vesicular acetylcholine transporter, and by corticosterone (10(-4)M), an inhibitor of organic cation transporters. Hemicholinium-3, in low concentrations an inhibitor of the high-affinity choline transporter-1 (CHT1), completely abrogated the eserine effects when applied in high concentrations (10(-4)M) pointing towards an involvement of low-affinity choline transporters. To evaluate the cellular sources of non-quantal ACh release in the trachea, expression of low-affinity choline transporter-like family (CTL1-5) was evaluated by RT-PCR analysis. Even though these transporters were largely abundant in the epithelium, denudation of airway epithelial cells had no effect on eserine-induced tracheal contraction, indicating a non-quantal release of ACh from non-epithelial sources in the airways. These data provide evidence for an epithelium-independent non-vesicular, non-quantal ACh release in the mouse trachea involving low-affinity choline transporters. PMID:26278668

  4. Alterations of cortical pyramidal neurons in mice lacking high-affinity nicotinic receptors

    PubMed Central

    Ballesteros-Yáñez, Inmaculada; Benavides-Piccione, Ruth; Bourgeois, Jean-Pierre; Changeux, Jean-Pierre; DeFelipe, Javier

    2010-01-01

    The neuronal nicotinic acetylcholine receptors (nAChRs) are allosteric membrane proteins involved in multiple cognitive processes, including attention, learning, and memory. The most abundant form of heterooligomeric nAChRs in the brain contains the β2- and α4- subunits and binds nicotinic agonists with high affinity. In the present study, we investigated in the mouse the consequences of the deletion of one of the nAChR components: the β2-subunit (β2−/−) on the microanatomy of cortical pyramidal cells. Using an intracellular injection method, complete basal dendritic arbors of 650 layer III pyramidal neurons were sampled from seven cortical fields, including primary sensory, motor, and associational areas, in both β2−/− and WT animals. We observed that the pyramidal cell phenotype shows significant quantitative differences among different cortical areas in mutant and WT mice. In WT mice, the density of dendritic spines was rather similar in all cortical fields, except in the prelimbic/infralimbic cortex, where it was significantly higher. In the absence of the β2-subunit, the most significant reduction in the density of spines took place in this high-order associational field. Our data suggest that the β2-subunit is involved in the dendritic morphogenesis of pyramidal neurons and, in particular, in the circuits that contribute to the high-order functional connectivity of the cerebral cortex. PMID:20534523

  5. Deformation of supersymmetric and conformal quantum mechanics through affine transformations

    NASA Technical Reports Server (NTRS)

    Spiridonov, Vyacheslav

    1993-01-01

    Affine transformations (dilatations and translations) are used to define a deformation of one-dimensional N = 2 supersymmetric quantum mechanics. Resulting physical systems do not have conserved charges and degeneracies in the spectra. Instead, superpartner Hamiltonians are q-isospectral, i.e. the spectrum of one can be obtained from another (with possible exception of the lowest level) by q(sup 2)-factor scaling. This construction allows easily to rederive a special self-similar potential found by Shabat and to show that for the latter a q-deformed harmonic oscillator algebra of Biedenharn and Macfarlane serves as the spectrum generating algebra. A general class of potentials related to the quantum conformal algebra su(sub q)(1,1) is described. Further possibilities for q-deformation of known solvable potentials are outlined.

  6. Robust template matching for affine resistant image watermarks.

    PubMed

    Pereira, S; Pun, T

    2000-01-01

    Digital watermarks have been proposed as a method for discouraging illicit copying and distribution of copyrighted material. This paper describes a method for the secure and robust copyright protection of digital images. We present an approach for embedding a digital watermark into an image using the Fourier transform. To this watermark is added a template in the Fourier transform domain to render the method robust against general linear transformations. We detail a new algorithm based on polar maps for the accurate and efficient recovery of the template in an image which has undergone a general affine transformation. We also present results which demonstrate the robustness of the method against some common image processing operations such as compression, rotation, scaling, and aspect ratio changes. PMID:18255481

  7. Hausdorff Dimension for Randomly Perturbed Self Affine Attractors

    NASA Astrophysics Data System (ADS)

    Jordan, Thomas; Pollicott, Mark; Simon, Károly

    2007-03-01

    In this paper we shall consider a self-affine iterated function system in mathbb{R}^d, d ≥ 2, where we allow a small random translation at each application of the contractions. We compute the dimension of a typical attractor of the resulting random iterated function system, complementing a famous deterministic result of Falconer, which necessarily requires restrictions on the norms of the contraction. However, our result has the advantage that we do not need to impose any additional assumptions on the norms. This is of benefit in practical applications, where such perturbations would correspond to the effect of random noise. We also give analogous results for the dimension of ergodic measures (in terms of their Lyapunov dimension). Finally, we apply our method to a problem originating in the theory of fractal image compression.

  8. The anatomy, affinity, and phylogenetic significance of Markuelia.

    PubMed

    Dong, Xi-Ping; Donoghue, Philip C J; Cunningham, John A; Liu, Jian-Bo; Cheng, Hong

    2005-01-01

    The fossil record provides a paucity of data on the development of extinct organisms, particularly for their embryology. The recovery of fossilized embryos heralds new insight into the evolution of development but advances are limited by an almost complete absence of phylogenetic constraint. Markuelia is an exception to this, known from cleavage and pre-hatchling stages as a vermiform and profusely annulated direct-developing bilaterian with terminal circumoral and posterior radial arrays of spines. Phylogenetic analyses have hitherto suggested assignment to stem-Scalidophora (phyla Kinorhyncha, Loricifera, Priapulida). We test this assumption with additional data and through the inclusion of additional taxa. The available evidence supports stem-Scalidophora affinity, leading to the conclusion that scalidophorans, cyclonerualians, and ecdysozoans are primitive direct developers, and the likelihood that scalidophorans are primitively metameric. PMID:16174039

  9. Local Structural Alignment of RNA with Affine Gap Model

    NASA Astrophysics Data System (ADS)

    Wong, Thomas K. F.; Cheung, Brenda W. Y.; Lam, T. W.; Yiu, S. M.

    Predicting new non-coding RNAs (ncRNAs) of a family can be done by aligning the potential candidate with a member of the family with known sequence and secondary structure. Existing tools either only consider the sequence similarity or cannot handle local alignment with gaps. In this paper, we consider the problem of finding the optimal local structural alignment between a query RNA sequence (with known secondary structure) and a target sequence (with unknown secondary structure) with the affine gap penalty model. We provide the algorithm to solve the problem. Based on a preliminary experiment, we show that there are ncRNA families in which considering local structural alignment with gap penalty model can identify real hits more effectively than using global alignment or local alignment without gap penalty model.

  10. Chelators whose affinity for calcium is decreased by illumination

    NASA Technical Reports Server (NTRS)

    Tsien, Roger Y. (Inventor); Grynkiewicz, Grzegorz (Inventor); Minta, Akwasi (Inventor)

    1987-01-01

    The present invention discloses a group of calcium chelating compounds which have a descreased affinity for calcium following illumination. These new compounds contain a photolabile nitrobenzyl derivative coupled to a tetracarboxylate Ca.sup.2+ chelating parent compound having the octacoordinate chelating groups characteristic of EGTA or BAPTA. In a first form, the new compounds are comprised of a BAPTA-like chelator coupled to a single 2-nitrobenzyl derivative, which in turn is a photochemical precursor of a 2-nitrosobenzophenone. In a second form, the new compounds are comprised of a BAPTA-like chelator coupled to two 2-nitrobenzyl derivatives, themselves photochemical prcursors of the related 2-nitrosobenzophenones. The present invention also discloses a novel method for preparing 1-hydroxy- or 1-alkoxy-1-(2-nitroaryl)-1-aryl methanes. Methanes of this type are critical to the preparation of, or actually constitute, the photolabile Ca.sup.2+ chelating compounds disclosed and claimed herein.

  11. Identification of protein interacting partners using tandem affinity purification.

    PubMed

    Bailey, Dalan; Urena, Luis; Thorne, Lucy; Goodfellow, Ian

    2012-01-01

    A critical and often limiting step in understanding the function of host and viral proteins is the identification of interacting cellular or viral protein partners. There are many approaches that allow the identification of interacting partners, including the yeast two hybrid system, as well as pull down assays using recombinant proteins and immunoprecipitation of endogenous proteins followed by mass spectrometry identification(1). Recent studies have highlighted the utility of double-affinity tag mediated purification, coupled with two specific elution steps in the identification of interacting proteins. This approach, termed Tandem Affinity Purification (TAP), was initially used in yeast(2,3) but more recently has been adapted to use in mammalian cells(4-8). As proof-of-concept we have established a tandem affinity purification (TAP) method using the well-characterized eukaryotic translation initiation factor eIF4E(9,10).The cellular translation factor eIF4E is a critical component of the cellular eIF4F complex involved in cap-dependent translation initiation(10). The TAP tag used in the current study is composed of two Protein G units and a streptavidin binding peptide separated by a Tobacco Etch Virus (TEV) protease cleavage sequence. The TAP tag used in the current study is composed of two Protein G units and a streptavidin binding peptide separated by a Tobacco Etch Virus (TEV) protease cleavage sequence(8). To forgo the need for the generation of clonal cell lines, we developed a rapid system that relies on the expression of the TAP-tagged bait protein from an episomally maintained plasmid based on pMEP4 (Invitrogen). Expression of tagged murine eIF4E from this plasmid was controlled using the cadmium chloride inducible metallothionein promoter. Lysis of the expressing cells and subsequent affinity purification via binding to rabbit IgG agarose, TEV protease cleavage, binding to streptavidin linked agarose and subsequent biotin elution identified numerous

  12. Growth factors with heparin binding affinity in human synovial fluid

    SciTech Connect

    Hamerman, D.; Taylor, S.; Kirschenbaum, I.; Klagsbrun, M.; Raines, E.W.; Ross, R.; Thomas, K.A.

    1987-12-01

    Synovial effusions were obtained from the knees of 15 subjects with joint trauma, menisceal or ligamentous injury, or osteoarthritis. Heparin-Sepharose affinity chromatography of these synovial fluids revealed, in general, three major peaks of mitogenic activity as measured by incorporation of /sup 3/H-thymidine into 3T3 cells. Gradient elution patterns showed activities at 0.5M NaCl, which is characteristic of platelet derived growth factor, and at 1.1 M NaCl and 1.6M NaCl, indicative of acidic and basic fibroblast growth factors, respectively. The identities of these mitogenic fractions were confirmed by specific immunologic and receptor-binding assays. The presence of platelet derived, acidic and basic fibroblast growth factors in the synovial fluid may contribute to wound healing in the arthritic joint.

  13. Search for Amyloid-Binding Proteins by Affinity Chromatography

    PubMed Central

    Calero, Miguel; Rostagno, Agueda; Ghiso, Jorge

    2013-01-01

    ‘Amyloid binging proteins’ is a generic term used to designate proteins that interact with different forms of amyloidogenic peptides or proteins and that, as a result, may modulate their physiological and pathological functions by altering solubility, transport, clearance, degradation, and fibril formation. We describe a simple affinity chromatography protocol to isolate and characterize amyloid-binding proteins based on the use of sequential elution steps that may provide further information on the type of binding interaction. As an example, we depict the application of this protocol to the study of Alzheimer’s amyloid β (Aβ) peptide-binding proteins derived from human plasma. Biochemical analysis of the proteins eluted under different conditions identified serum amyloid P component (SAP) and apolipoprotein J (clusterin) as the main plasma Aβ-binding proteins while various apolipoproteins (apoA-IV, apoE, and apoA-I), as well as albumin (HSA) and fibulin were identified as minor contributors. PMID:22528093

  14. Political ideology: its structure, functions, and elective affinities.

    PubMed

    Jost, John T; Federico, Christopher M; Napier, Jaime L

    2009-01-01

    Ideology has re-emerged as an important topic of inquiry among social, personality, and political psychologists. In this review, we examine recent theory and research concerning the structure, contents, and functions of ideological belief systems. We begin by defining the construct and placing it in historical and philosophical context. We then examine different perspectives on how many (and what types of) dimensions individuals use to organize their political opinions. We investigate (a) how and to what extent individuals acquire the discursive contents associated with various ideologies, and (b) the social-psychological functions that these ideologies serve for those who adopt them. Our review highlights "elective affinities" between situational and dispositional needs of individuals and groups and the structure and contents of specific ideologies. Finally, we consider the consequences of ideology, especially with respect to attitudes, evaluations, and processes of system justification. PMID:19035826

  15. Affinity sensor based on immobilized molecular imprinted synthetic recognition elements.

    PubMed

    Lenain, Pieterjan; De Saeger, Sarah; Mattiasson, Bo; Hedström, Martin

    2015-07-15

    An affinity sensor based on capacitive transduction was developed to detect a model compound, metergoline, in a continuous flow system. This system simulates the monitoring of low-molecular weight organic compounds in natural flowing waters, i.e. rivers and streams. During operation in such scenarios, control of the experimental parameters is not possible, which poses a true analytical challenge. A two-step approach was used to produce a sensor for metergoline. Submicron spherical molecularly imprinted polymers, used as recognition elements, were obtained through emulsion polymerization and subsequently coupled to the sensor surface by electropolymerization. This way, a robust and reusable sensor was obtained that regenerated spontaneously under the natural conditions in a river. Small organic compounds could be analyzed in water without manipulating the binding or regeneration conditions, thereby offering a viable tool for on-site application. PMID:25703726

  16. High-affinity uptake of noradrenaline in postsynaptic neurones.

    PubMed Central

    al-Damluji, S.; Krsmanovic, L. Z.; Catt, K. J.

    1993-01-01

    1. Neurotransmitters released from nerve endings are inactivated by re-uptake into the presynaptic nerve terminals and possibly into neighbouring glial cells. While analysing the functional properties of alpha 1-adrenoceptors in the hypothalamus, we observed a high-affinity uptake process for noradrenaline in postsynaptic peptidergic neurones. 2. In primary hypothalamic cell cultures and in a hypothalamic neuronal cell line, [3H]-prazosin bound with high affinity and was displaced by unlabelled prazosin in concentrations of 10(-10) to 10(-7) M. However, at concentrations of unlabelled prazosin above 10(-7) M, there was a paradoxical increase in apparent [3H]-prazosin binding. 3. Methoxamine, an alpha 1-adrenoceptor ligand that is not subject to significant neuronal uptake, displaced [3H]-prazosin but did not cause the paradoxical increase in the apparent binding of [3H]-prazosin. Cooling the cells to 4 degrees C reduced the total amount of prazosin associated with the cells; under these conditions, methoxamine almost completely inhibited [3H]-prazosin binding to the cells. 4. In the presence of desipramine (DMI), unlabelled prazosin displaced [3H]-prazosin as before, but no paradoxical increase in apparent binding was seen above 10(-7) M. 5. The paradoxical increase of [3H]-prazosin binding was not observed in membrane preparations of hypothalamic neurones. These findings indicated that the paradoxical increase in apparent [3H]-prazosin binding was due to a cellular uptake process that becomes evident at high concentrations of the ligand. 6. DMI (10(-5) M) had no effect on the specific binding of [3H]-prazosin.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8358534

  17. Rejuvenation of metallic glasses by non-affine thermal strain.

    PubMed

    Ketov, S V; Sun, Y H; Nachum, S; Lu, Z; Checchi, A; Beraldin, A R; Bai, H Y; Wang, W H; Louzguine-Luzgin, D V; Carpenter, M A; Greer, A L

    2015-08-13

    When a spatially uniform temperature change is imposed on a solid with more than one phase, or on a polycrystal of a single, non-cubic phase (showing anisotropic expansion-contraction), the resulting thermal strain is inhomogeneous (non-affine). Thermal cycling induces internal stresses, leading to structural and property changes that are usually deleterious. Glasses are the solids that form on cooling a liquid if crystallization is avoided--they might be considered the ultimate, uniform solids, without the microstructural features and defects associated with polycrystals. Here we explore the effects of cryogenic thermal cycling on glasses, specifically metallic glasses. We show that, contrary to the null effect expected from uniformity, thermal cycling induces rejuvenation, reaching less relaxed states of higher energy. We interpret these findings in the context that the dynamics in liquids become heterogeneous on cooling towards the glass transition, and that there may be consequent heterogeneities in the resulting glasses. For example, the vibrational dynamics of glassy silica at long wavelengths are those of an elastic continuum, but at wavelengths less than approximately three nanometres the vibrational dynamics are similar to those of a polycrystal with anisotropic grains. Thermal cycling of metallic glasses is easily applied, and gives improvements in compressive plasticity. The fact that such effects can be achieved is attributed to intrinsic non-uniformity of the glass structure, giving a non-uniform coefficient of thermal expansion. While metallic glasses may be particularly suitable for thermal cycling, the non-affine nature of strains in glasses in general deserves further study, whether they are induced by applied stresses or by temperature change. PMID:26268190

  18. A High-Affinity Adenosine Kinase from Anopheles Gambiae

    SciTech Connect

    M Cassera; M Ho; E Merino; E Burgos; A Rinaldo-Matthis; S Almo; V Schramm

    2011-12-31

    Genome analysis revealed a mosquito orthologue of adenosine kinase in Anopheles gambiae (AgAK; the most important vector for the transmission of Plasmodium falciparum in Africa). P. falciparum are purine auxotrophs and do not express an adenosine kinase but rely on their hosts for purines. AgAK was kinetically characterized and found to have the highest affinity for adenosine (K{sub m} = 8.1 nM) of any known adenosine kinase. AgAK is specific for adenosine at the nucleoside site, but several nucleotide triphosphate phosphoryl donors are tolerated. The AgAK crystal structure with a bound bisubstrate analogue Ap{sub 4}A (2.0 {angstrom} resolution) reveals interactions for adenosine and ATP and the geometry for phosphoryl transfer. The polyphosphate charge is partly neutralized by a bound Mg{sup 2+} ion and an ion pair to a catalytic site Arg. The AgAK structure consists of a large catalytic core in a three-layer {alpha}/{beta}/{alpha} sandwich, and a small cap domain in contact with adenosine. The specificity and tight binding for adenosine arise from hydrogen bond interactions of Asn14, Leu16, Leu40, Leu133, Leu168, Phe168, and Thr171 and the backbone of Ile39 and Phe168 with the adenine ring as well as through hydrogen bond interactions between Asp18, Gly64, and Asn68 and the ribosyl 2'- and 3'-hydroxyl groups. The structure is more similar to that of human adenosine kinase (48% identical) than to that of AK from Toxoplasma gondii (31% identical). With this extraordinary affinity for AgAK, adenosine is efficiently captured and converted to AMP at near the diffusion limit, suggesting an important role for this enzyme in the maintenance of the adenine nucleotide pool. mRNA analysis verifies that AgAK transcripts are produced in the adult insects.

  19. Brain structure resolves the segmental affinity of anomalocaridid appendages.

    PubMed

    Cong, Peiyun; Ma, Xiaoya; Hou, Xianguang; Edgecombe, Gregory D; Strausfeld, Nicholas J

    2014-09-25

    Despite being among the most celebrated taxa from Cambrian biotas, anomalocaridids (order Radiodonta) have provoked intense debate about their affinities within the moulting-animal clade that includes Arthropoda. Current alternatives identify anomalocaridids as either stem-group euarthropods, crown-group euarthropods near the ancestry of chelicerates, or a segmented ecdysozoan lineage with convergent similarity to arthropods in appendage construction. Determining unambiguous affinities has been impeded by uncertainties about the segmental affiliation of anomalocaridid frontal appendages. These structures are variably homologized with jointed appendages of the second (deutocerebral) head segment, including antennae and 'great appendages' of Cambrian arthropods, or with the paired antenniform frontal appendages of living Onychophora and some Cambrian lobopodians. Here we describe Lyrarapax unguispinus, a new anomalocaridid from the early Cambrian Chengjiang biota, southwest China, nearly complete specimens of which preserve traces of muscles, digestive tract and brain. The traces of brain provide the first direct evidence for the segmental composition of the anomalocaridid head and its appendicular organization. Carbon-rich areas in the head resolve paired pre-protocerebral ganglia at the origin of paired frontal appendages. The ganglia connect to areas indicative of a bilateral pre-oral brain that receives projections from the eyestalk neuropils and compound retina. The dorsal, segmented brain of L. unguispinus reinforces an alliance between anomalocaridids and arthropods rather than cycloneuralians. Correspondences in brain organization between anomalocaridids and Onychophora resolve pre-protocerebral ganglia, associated with pre-ocular frontal appendages, as characters of the last common ancestor of euarthropods and onychophorans. A position of Radiodonta on the euarthropod stem-lineage implies the transformation of frontal appendages to another structure in crown

  20. Electron affinity of cubic boron nitride terminated with vanadium oxide

    SciTech Connect

    Yang, Yu; Sun, Tianyin; Shammas, Joseph; Hao, Mei; Nemanich, Robert J.; Kaur, Manpuneet

    2015-10-28

    A thermally stable negative electron affinity (NEA) for a cubic boron nitride (c-BN) surface with vanadium-oxide-termination is achieved, and its electronic structure was analyzed with in-situ photoelectron spectroscopy. The c-BN films were prepared by electron cyclotron resonance plasma-enhanced chemical vapor deposition employing BF{sub 3} and N{sub 2} as precursors. Vanadium layers of ∼0.1 and 0.5 nm thickness were deposited on the c-BN surface in an electron beam deposition system. Oxidation of the metal layer was achieved by an oxygen plasma treatment. After 650 °C thermal annealing, the vanadium oxide on the c-BN surface was determined to be VO{sub 2}, and the surfaces were found to be thermally stable, exhibiting an NEA. In comparison, the oxygen-terminated c-BN surface, where B{sub 2}O{sub 3} was detected, showed a positive electron affinity of ∼1.2 eV. The B{sub 2}O{sub 3} evidently acts as a negatively charged layer introducing a surface dipole directed into the c-BN. Through the interaction of VO{sub 2} with the B{sub 2}O{sub 3} layer, a B-O-V layer structure would contribute a dipole between the O and V layers with the positive side facing vacuum. The lower enthalpy of formation for B{sub 2}O{sub 3} is favorable for the formation of the B-O-V layer structure, which provides a thermally stable surface dipole and an NEA surface.

  1. Gangliosides as high affinity receptors for tetanus neurotoxin.

    PubMed

    Chen, Chen; Fu, Zhuji; Kim, Jung-Ja P; Barbieri, Joseph T; Baldwin, Michael R

    2009-09-25

    Tetanus neurotoxin (TeNT) is an exotoxin produced by Clostridium tetani that causes paralytic death to hundreds of thousands of humans annually. TeNT cleaves vesicle-associated membrane protein-2, which inhibits neurotransmitter release in the central nervous system to elicit spastic paralysis, but the molecular basis for TeNT entry into neurons remains unclear. TeNT is a approximately 150-kDa protein that has AB structure-function properties; the A domain is a zinc metalloprotease, and the B domain encodes a translocation domain and C-terminal receptor-binding domain (HCR/T). Earlier studies showed that HCR/T bound gangliosides via two carbohydrate-binding sites, termed the lactose-binding site (the "W" pocket) and the sialic acid-binding site (the "R" pocket). Here we report that TeNT high affinity binding to neurons is mediated solely by gangliosides. Glycan array and solid phase binding analyses identified gangliosides that bound exclusively to either the W pocket or the R pocket of TeNT; GM1a bound to the W pocket, and GD3 bound to the R pocket. Using these gangliosides and mutated forms of HCR/T that lacked one or both carbohydrate-binding pocket, gangliosides binding to both of the W and R pockets were shown to be necessary for high affinity binding to neuronal and non-neuronal cells. The crystal structure of a ternary complex of HCR/T with sugar components of two gangliosides bound to the W and R supported the binding of gangliosides to both carbohydrate pockets. These data show that gangliosides are functional dual receptors for TeNT. PMID:19602728

  2. Affinity Peptide for Targeted Detection of Dysplasia in Barrett's Esophagus

    PubMed Central

    Li, Meng; Anastassiades, Costas P.; Joshi, Bishnu; Komarck, Chris M.; Piraka, Cyrus; Elmunzer, Badih J.; Turgeon, Danielle K.; Johnson, Timothy D.; Appelman, Henry; Beer, David G.; Wang, Thomas D.

    2012-01-01

    Background & Aims Dysplasia is a pre-malignant condition in Barrett's esophagus that is difficult to detect on screening endoscopy because of its flat architecture and patchy distribution. Peptides are promising for use as novel molecular probes that identify cell surface targets unique to disease, and can be fluorescence-labeled for detection. We aim to select and validate an affinity peptide that binds to esophageal dysplasia for future clinical studies. Methods Peptide selection was performed using phage display by removing non-specific binders using Q-hTERT (intestinal metaplasia) cells and achieving specific binding against OE33 (esophageal adenocarcinoma) cells. Selective binding was confirmed on bound phage counts, ELISA, flow cytometry, competitive inhibition, and fluorescence microscopy. On stereomicroscopy, specific peptide binding to dysplasia on endoscopically resected specimens was assessed by rigorous registration of fluorescence intensity to histology in 1 mm intervals. Results The peptide sequence SNFYMPL was selected and demonstrated preferential binding to target cells on bound phage counts, ELISA, and flow cytometry. Reducing binding was observed on competition with unlabeled peptide in a dose dependent manner, an affinity of Kd = 164 nM was measured, and peptide binding to the surface of OE33 cells was validated on fluorescence microscopy. On esophageal specimens (n=12), the fluorescence intensity (mean±SEM) in 1 mm intervals classified histologically as squamous (n=145), intestinal metaplasia (n=83), dysplasia (n=61) and gastric mucosa (n=69) was 46.5±1.6, 62.3±5.8, 100.0±9.0, and 42.4±3.0 arb units, respectively. Conclusions The peptide sequence SNFYMPL binds specifically to dysplasia in Barrett's esophagus, and can be fluorescence-labeled to target pre-malignant mucosa on imaging. PMID:20637198

  3. A Molecular Mechanics Approach to Modeling Protein-Ligand Interactions: Relative Binding Affinities in Congeneric Series

    PubMed Central

    Rapp, Chaya S.; Kalyanaraman, Chakrapani; Schiffmiller, Aviva; Schoenbrun, Esther Leah; Jacobson, Matthew P.

    2011-01-01

    We introduce the “Prime-ligand” method for ranking ligands in congeneric series. The method employs a single scoring function, the OPLS-AA/GBSA molecular mechanics/implicit solvent model, for all stages of sampling and scoring. We evaluate the method using 12 test sets of congeneric series for which experimental binding data is available in the literature, as well as the structure of one member of the series bound to the protein. Ligands are ‘docked’ by superimposing a common stem fragment among the compounds in the series using a crystal complex from the Protein Databank, and sampling the conformational space of the variable region. Our results show good correlation between our predicted rankings and experimental data for cases in which binding affinities differ by at least one order of magnitude. For 11 out of 12 cases, >90% of such ligand pairs could be correctly ranked, while for the remaining case, Factor Xa, 76% of such pairs were correctly ranked. A small number of compounds could not be docked using the current protocol due to the large size of functional groups that could not be accommodated by a rigid receptor. CPU requirements for the method, involving CPU-minutes per ligand, are modest compared with more rigorous methods that use similar force fields, such as free energy perturbation. We also benchmark the scoring function using series of ligand bound to the same protein within the CSAR data set. We demonstrate that energy minimization of ligand in the crystal structures is critical to obtain any correlation with experimentally determined binding affinities. PMID:21780805

  4. Mass Spectrometric Detection of Neuropeptides Using Affinity-Enhanced Microdialysis with Antibody-Coated Magnetic Nanoparticles

    PubMed Central

    Schmerberg, Claire M.; Li, Lingjun

    2012-01-01

    Microdialysis (MD) is a useful sampling tool for many applications due to its ability to permit sampling from an animal concurrent with normal activity. MD is of particular importance in the field of neuroscience, in which it is used to sample neurotransmitters (NTs) while the animal is behaving in order to correlate dynamic changes in NTs with behavior. One important class of signaling molecules, the neuropeptides (NPs), however, presented significant challenges when studied with MD, due to the low relative recovery (RR) of NPs by this technique. Affinity-enhanced microdialysis (AE-MD) has previously been used to improve recovery of NPs and similar molecules. For AE-MD, an affinity agent (AA), such as an antibody-coated particle or free antibody, is added to the liquid perfusing the MD probe. This AA provides an additional mass transport driving force for analyte to pass through the dialysis membrane, and thus increases the RR. In this work, a variety of AAs have been investigated for AE-MD of NPs in vitro and in vivo, including particles with C18 surface functionality and antibody-coated particles. Antibody-coated magnetic nanoparticles (AbMnP) provided the best RR enhancement in vitro, with statistically significant (p<0.05) enhancements for 4 out of 6 NP standards tested, and RR increases up to 41-fold. These particles were then used for in vivo MD in the Jonah crab, Cancer borealis, during a feeding study, with mass spectrometric (MS) detection. 31 NPs were detected in a 30 min collection sample, compared to 17 when no AA was used. The use of AbMnP also increased the temporal resolution from 4–18 hrs in previous studies to just 30 min in this study. The levels of NPs detected were also sufficient for reliable quantitation with the MS system in use, permitting quantitative analysis of the concentration changes for 7 identified NPs on a 30 min time course during feeding. PMID:23249250

  5. Affinity Inequality among Serum Antibodies That Originate in Lymphoid Germinal Centers

    PubMed Central

    Eisen, Ellen A.; Chakraborty, Arup K.

    2015-01-01

    Upon natural infection with pathogens or vaccination, antibodies are produced by a process called affinity maturation. As affinity maturation ensues, average affinity values between an antibody and ligand increase with time. Purified antibodies isolated from serum are invariably heterogeneous with respect to their affinity for the ligands they bind, whether macromolecular antigens or haptens (low molecular weight approximations of epitopes on antigens). However, less is known about how the extent of this heterogeneity evolves with time during affinity maturation. To shed light on this issue, we have taken advantage of previously published data from Eisen and Siskind (1964). Using the ratio of the strongest to the weakest binding subsets as a metric of heterogeneity (or affinity inequality), we analyzed antibodies isolated from individual serum samples. The ratios were initially as high as 50-fold, and decreased over a few weeks after a single injection of small antigen doses to around unity. This decrease in the effective heterogeneity of antibody affinities with time is consistent with Darwinian evolution in the strong selection limit. By contrast, neither the average affinity nor the heterogeneity evolves much with time for high doses of antigen, as competition between clones of the same affinity is minimal. PMID:26444899

  6. Mathematical model accurately predicts protein release from an affinity-based delivery system.

    PubMed

    Vulic, Katarina; Pakulska, Malgosia M; Sonthalia, Rohit; Ramachandran, Arun; Shoichet, Molly S

    2015-01-10

    Affinity-based controlled release modulates the delivery of protein or small molecule therapeutics through transient dissociation/association. To understand which parameters can be used to tune release, we used a mathematical model based on simple binding kinetics. A comprehensive asymptotic analysis revealed three characteristic regimes for therapeutic release from affinity-based systems. These regimes can be controlled by diffusion or unbinding kinetics, and can exhibit release over either a single stage or two stages. This analysis fundamentally changes the way we think of controlling release from affinity-based systems and thereby explains some of the discrepancies in the literature on which parameters influence affinity-based release. The rate of protein release from affinity-based systems is determined by the balance of diffusion of the therapeutic agent through the hydrogel and the dissociation kinetics of the affinity pair. Equations for tuning protein release rate by altering the strength (KD) of the affinity interaction, the concentration of binding ligand in the system, the rate of dissociation (koff) of the complex, and the hydrogel size and geometry, are provided. We validated our model by collapsing the model simulations and the experimental data from a recently described affinity release system, to a single master curve. Importantly, this mathematical analysis can be applied to any single species affinity-based system to determine the parameters required for a desired release profile. PMID:25449806

  7. Affinity proteomics to study endogenous protein complexes: Pointers, pitfalls, preferences and perspectives

    PubMed Central

    LaCava, John; Molloy, Kelly R.; Taylor, Martin S.; Domanski, Michal; Chait, Brian T.; Rout, Michael P.

    2015-01-01

    Dissecting and studying cellular systems requires the ability to specifically isolate distinct proteins along with the co-assembled constituents of their associated complexes. Affinity capture techniques leverage high affinity, high specificity reagents to target and capture proteins of interest along with specifically associated proteins from cell extracts. Affinity capture coupled to mass spectrometry (MS)-based proteomic analyses has enabled the isolation and characterization of a wide range of endogenous protein complexes. Here, we outline effective procedures for the affinity capture of protein complexes, highlighting best practices and common pitfalls. PMID:25757543

  8. Affinity functions: recognizing essential parameters in fuzzy connectedness based image segmentation

    NASA Astrophysics Data System (ADS)

    Ciesielski, Krzysztof C.; Udupa, Jayaram K.

    2009-02-01

    Fuzzy connectedness (FC) constitutes an important class of image segmentation schemas. Although affinity functions represent the core aspect (main variability parameter) of FC algorithms, they have not been studied systematically in the literature. In this paper, we present a thorough study to fill this gap. Our analysis is based on the notion of equivalent affinities: if any two equivalent affinities are used in the same FC schema to produce two versions of the algorithm, then these algorithms are equivalent in the sense that they lead to identical segmentations. We give a complete characterization of the affinity equivalence and show that many natural definitions of affinity functions and their parameters used in the literature are redundant in the sense that different definitions and values of such parameters lead to equivalent affinities. We also show that two main affinity types - homogeneity based and object feature based - are equivalent, respectively, to the difference quotient of the intensity function and Rosenfeld's degree of connectivity. In addition, we demonstrate that any segmentation obtained via relative fuzzy connectedness (RFC) algorithm can be viewed as segmentation obtained via absolute fuzzy connectedness (AFC) algorithm with an automatic and adaptive threshold detection. We finish with an analysis of possible ways of combining different component affinities that result in non equivalent affinities.

  9. Accurate Ionization Potentials and Electron Affinities of Acceptor Molecules III: A Benchmark of GW Methods.

    PubMed

    Knight, Joseph W; Wang, Xiaopeng; Gallandi, Lukas; Dolgounitcheva, Olga; Ren, Xinguo; Ortiz, J Vincent; Rinke, Patrick; Körzdörfer, Thomas; Marom, Noa

    2016-02-01

    The performance of different GW methods is assessed for a set of 24 organic acceptors. Errors are evaluated with respect to coupled cluster singles, doubles, and perturbative triples [CCSD(T)] reference data for the vertical ionization potentials (IPs) and electron affinities (EAs), extrapolated to the complete basis set limit. Additional comparisons are made to experimental data, where available. We consider fully self-consistent GW (scGW), partial self-consistency in the Green's function (scGW0), non-self-consistent G0W0 based on several mean-field starting points, and a "beyond GW" second-order screened exchange (SOSEX) correction to G0W0. We also describe the implementation of the self-consistent Coulomb hole with screened exchange method (COHSEX), which serves as one of the mean-field starting points. The best performers overall are G0W0+SOSEX and G0W0 based on an IP-tuned long-range corrected hybrid functional with the former being more accurate for EAs and the latter for IPs. Both provide a balanced treatment of localized vs delocalized states and valence spectra in good agreement with photoemission spectroscopy (PES) experiments. PMID:26731609

  10. High Affinity Binding of Indium and Ruthenium Ions by Gastrins

    PubMed Central

    Baldwin, Graham S.; George, Graham N.; Pushie, M. Jake

    2015-01-01

    The peptide hormone gastrin binds two ferric ions with high affinity, and iron binding is essential for the biological activity of non-amidated forms of the hormone. Since gastrins act as growth factors in gastrointestinal cancers, and as peptides labelled with Ga and In isotopes are increasingly used for cancer diagnosis, the ability of gastrins to bind other metal ions was investigated systematically by absorption spectroscopy. The coordination structures of the complexes were characterized by extended X-ray absorption fine structure (EXAFS) spectroscopy. Changes in the absorption of gastrin in the presence of increasing concentrations of Ga3+ were fitted by a 2 site model with dissociation constants (Kd) of 3.3 x 10−7 and 1.1 x 10−6 M. Although the absorption of gastrin did not change upon the addition of In3+ ions, the changes in absorbance on Fe3+ ion binding in the presence of indium ions were fitted by a 2 site model with Kd values for In3+ of 6.5 x 10−15 and 1.7 x 10−7 M. Similar results were obtained with Ru3+ ions, although the Kd values for Ru3+ of 2.6 x 10−13 and 1.2 x 10−5 M were slightly larger than observed for In3+. The structures determined by EXAFS all had metal:gastrin stoichiometries of 2:1 but, while the metal ions in the Fe, Ga and In complexes were bridged by a carboxylate and an oxygen with a metal-metal separation of 3.0–3.3 Å, the Ru complex clearly demonstrated a short range Ru—Ru separation, which was significantly shorter, at 2.4 Å, indicative of a metal-metal bond. We conclude that gastrin selectively binds two In3+ or Ru3+ ions, and that the affinity of the first site for In3+ or Ru3+ ions is higher than for ferric ions. Some of the metal ion-gastrin complexes may be useful for cancer diagnosis and therapy. PMID:26457677

  11. The phylogeny of varanoid lizards and the affinities of snakes

    PubMed Central

    Lee, M. S. Y.

    1997-01-01

    Evidence that platynotan squamates (living varanoid lizards, snakes and their fossil relatives) are monophyletic is presented. Evolutionary relationships within this group are then ascertained through a cladistic analysis of 144 osteological characters. Mosasauroids (aigialosaurs and mosasaurs), a group of large marine lizards, are identified as the nearest relatives of snakes, thus resolving the long-standing problem of snake affinities. The mosasauroid–snake clade (Pythonomorpha) is corroborated by 40 derived characters, including recumbent replacement teeth, thecodonty, four or fewer premaxillary teeth, supratemporal–prootic contact, free mandibular tips, crista circumfenestralis, straight vertical splenio-angular joint, loss of posterior ramus of the coronoid, reduced basipterygoid processes, reduced interpterygoid vacuity, zygosphene–zygantral articulations, and absence of epiphyses on the axial skeleton and skull. After mosasauroids, the next closest relatives of snakes are varanids (Varanus, Saniwa and Saniwides) and lanthanotids (Lanthanotus and Cherminotus). Derived features uniting varanids and lanthanotids include nine cervical vertebrae and three or fewer pairs of sternal ribs. The varanid–lanthanotid–pythonomorph clade, here termed Thecoglossa, is supported by features such as the anteriorly positioned basal tubera, and the loss of the second epibranchial. Successive outgroups to thecoglossans are Telmasaurus, an unresolved polytomy (Estesia, Gobidermatidae and Helodermatidae), Paravaranus and Proplatynota. The 'necrosaurs' are demonstrated to be an artificial (polyphyletic) assemblage of primitive platynotans that are not particularly closely related to each other. Snakes are presumed to have evolved from small, limbless, burrowing lizards and the inability of previous analyses to resolve the affinities of snakes has been attributed to extensive convergence among the numerous lineages of such lizards. The present study contradicts this claim

  12. Computational design of the affinity and specificity of a therapeutic T cell receptor.

    PubMed

    Pierce, Brian G; Hellman, Lance M; Hossain, Moushumi; Singh, Nishant K; Vander Kooi, Craig W; Weng, Zhiping; Baker, Brian M

    2014-02-01

    T cell receptors (TCRs) are key to antigen-specific immunity and are increasingly being explored as therapeutics, most visibly in cancer immunotherapy. As TCRs typically possess only low-to-moderate affinity for their peptide/MHC (pMHC) ligands, there is a recognized need to develop affinity-enhanced TCR variants. Previous in vitro engineering efforts have yielded remarkable improvements in TCR affinity, yet concerns exist about the maintenance of peptide specificity and the biological impacts of ultra-high affinity. As opposed to in vitro engineering, computational design can directly address these issues, in theory permitting the rational control of peptide specificity together with relatively controlled increments in affinity. Here we explored the efficacy of computational design with the clinically relevant TCR DMF5, which recognizes nonameric and decameric epitopes from the melanoma-associated Melan-A/MART-1 protein presented by the class I MHC HLA-A2. We tested multiple mutations selected by flexible and rigid modeling protocols, assessed impacts on affinity and specificity, and utilized the data to examine and improve algorithmic performance. We identified multiple mutations that improved binding affinity, and characterized the structure, affinity, and binding kinetics of a previously reported double mutant that exhibits an impressive 400-fold affinity improvement for the decameric pMHC ligand without detectable binding to non-cognate ligands. The structure of this high affinity mutant indicated very little conformational consequences and emphasized the high fidelity of our modeling procedure. Overall, our work showcases the capability of computational design to generate TCRs with improved pMHC affinities while explicitly accounting for peptide specificity, as well as its potential for generating TCRs with customized antigen targeting capabilities. PMID:24550723

  13. Experimental Immunization Based on Plasmodium Antigens Isolated by Antibody Affinity

    PubMed Central

    Kamali, Ali N.; Marín-García, Patricia; Azcárate, Isabel G.; Puyet, Antonio; Diez, Amalia; Bautista, José M.

    2015-01-01

    Vaccines blocking malaria parasites in the blood-stage diminish mortality and morbidity caused by the disease. Here, we isolated antigens from total parasite proteins by antibody affinity chromatography to test an immunization against lethal malaria infection in a murine model. We used the sera of malaria self-resistant ICR mice to lethal Plasmodium yoelii yoelii 17XL for purification of their IgGs which were subsequently employed to isolate blood-stage parasite antigens that were inoculated to immunize BALB/c mice. The presence of specific antibodies in vaccinated mice serum was studied by immunoblot analysis at different days after vaccination and showed an intensive immune response to a wide range of antigens with molecular weight ranging between 22 and 250 kDa. The humoral response allowed delay of the infection after the inoculation to high lethal doses of P. yoelii yoelii 17XL resulting in a partial protection against malaria disease, although final survival was managed in a low proportion of challenged mice. This approach shows the potential to prevent malaria disease with a set of antigens isolated from blood-stage parasites. PMID:26539558

  14. Mining the soluble chloroplast proteome by affinity chromatography.

    PubMed

    Bayer, Roman G; Stael, Simon; Csaszar, Edina; Teige, Markus

    2011-04-01

    Chloroplasts are fundamental organelles enabling plant photoautotrophy. Besides their outstanding physiological role in fixation of atmospheric CO(2), they harbor many important metabolic processes such as biosynthesis of amino acids, vitamins or hormones. Technical advances in MS allowed the recent identification of most chloroplast proteins. However, for a deeper understanding of chloroplast function it is important to obtain a complete list of constituents, which is so far limited by the detection of low-abundant proteins. Therefore, we developed a two-step strategy for the enrichment of low-abundant soluble chloroplast proteins from Pisum sativum and their subsequent identification by MS. First, chloroplast protein extracts were depleted from the most abundant protein ribulose-1,5-bisphosphate carboxylase/oxygenase by SEC or heating. Further purification was carried out by affinity chromatography, using ligands specific for ATP- or metal-binding proteins. By these means, we were able to identify a total of 448 proteins including 43 putative novel chloroplast proteins. Additionally, the chloroplast localization of 13 selected proteins was confirmed using yellow fluorescent protein fusion analyses. The selected proteins included a phosphoglycerate mutase, a cysteine protease, a putative protein kinase and an EF-hand containing substrate carrier protein, which are expected to exhibit important metabolic or regulatory functions. PMID:21365755

  15. Solubilization and partial characterization of a microsomal high affinity GTPase

    SciTech Connect

    Nicchitta, C.; Williamson, J.R.

    1987-05-01

    Isolated rat liver microsomes release sequestered Ca/sup 2 +/ following addition of GTP. In contrast to permeabilized cells, GTP dependent microsomal Ca/sup 2 +/ release requires low concentrations of polyethylene glycol (PEG). They have identified a microsomal, PEG-sensitive high affinity GTPase which shares a number of characteristics with the GTP-dependent Ca/sup 2 +/ release system. To aid in further characterization of this activity they have initiated studies on the solubilization and purification of the microsomal GTPases. When microsomes are solubilized under the following conditions (150 mM NaCl, 5 mg protein/ml, 1% Triton X-114) PEG sensitive GTPase activity selectively partitions into the detergent rich phase of the Triton X-114 extract. As observed in intact microsomal membranes the Triton X-114 soluble GTPase is maximally stimulated by 3% PEG. Half maximal stimulation is observed at 1% PEG. PEG increases the Vmax of this activity; no effects on Km were observed. The Km for GTP of the detergent soluble GTPase is 5 ..mu..M. This GTPase is sensitive to inhibition by sulfhydryl reagents. PEG-sensitive GTPase activity was completely inhibited in the presence of 25 ..mu..M p-hydroxymercuribenzoate (PHMB); half maximal inhibition was observed at 5 ..mu..M. Labeling of the Triton X-114 extract with the photosensitive compound (/sup 32/P) 8-azido GTP indicated the presence of two prominent GTP binding proteins of approximate molecular weights 17 and 54 kD.

  16. Measurement of the electron affinity of atomic Ce

    NASA Astrophysics Data System (ADS)

    Felton, Jeremy; Ray, Manisha; Jarrold, Caroline Chick

    2014-03-01

    Photoelectron spectra of Ce- obtained using both 2.33- and 3.49-eV photon energies resolve numerous transitions between the 4H7/2 (⋯4f 5d2 6s2) anion ground state and excited neutral states, in addition to transitions from excited anion states to the ground and excited neutral states. Building on the theoretical work of O'Malley and Beck [S. M. O'Malley and D. R. Beck, Phys. Rev. A 74, 042509 (2006), 10.1103/PhysRevA.74.042509] and the known term energies of Ce excited states, we determined the adiabatic electron affinity of Ce to be 0.570(20) eV, which is lower than previously reported experimental values. The term energy of the lowest-energy excited anion state arising from the ⋯4f 5d 6s2 6p configuration was also determined to be 0.210(20) eV.

  17. High-throughput analysis of protein-DNA binding affinity.

    PubMed

    Franco-Zorrilla, José M; Solano, Roberto

    2014-01-01

    Sequence-specific protein-DNA interactions mediate most regulatory processes underlying gene expression, such as transcriptional regulation by transcription factors (TFs) or chromatin organization. Current knowledge about DNA-binding specificities of TFs is based mostly on low- to medium-throughput methodologies that are time-consuming and often fail to identify DNA motifs recognized by a TF with lower affinity but retaining biological relevance. The use of protein-binding microarrays (PBMs) offers a high-throughput alternative for the identification of protein-DNA specificities. PBM consists in an array of pseudorandomized DNA sequences that are optimized to include all the possible 10- or 11-mer DNA sequences, allowing the determination of binding specificities of most eukaryotic TFs. PBMs that can be synthesized by several manufacturing companies as single-stranded DNA are converted into double-stranded in a simple primer extension reaction. The protein of interest fused to an epitope tag is then incubated onto the PBM, and specific DNA-protein complexes are revealed in a series of immunological reactions coupled to a fluorophore. After scanning and quantifying PBMs, specific DNA motifs recognized by the protein are identified with ready-to-use scripts, generating comprehensive but accessible information about the DNA-binding specificity of the protein. This chapter describes detailed procedures for preparation of double-stranded PBMs, incubation with recombinant protein, and detection of protein-DNA complexes. Finally, we outline some cues for evaluating the biological role of DNA motifs obtained in vitro. PMID:24057393

  18. Predicting direct protein interactions from affinity purification mass spectrometry data

    PubMed Central

    2010-01-01

    Background Affinity purification followed by mass spectrometry identification (AP-MS) is an increasingly popular approach to observe protein-protein interactions (PPI) in vivo. One drawback of AP-MS, however, is that it is prone to detecting indirect interactions mixed with direct physical interactions. Therefore, the ability to distinguish direct interactions from indirect ones is of much interest. Results We first propose a simple probabilistic model for the interactions captured by AP-MS experiments, under which the problem of separating direct interactions from indirect ones is formulated. Then, given idealized quantitative AP-MS data, we study the problem of identifying the most likely set of direct interactions that produced the observed data. We address this challenging graph theoretical problem by first characterizing signatures that can identify weakly connected nodes as well as dense regions of the network. The rest of the direct PPI network is then inferred using a genetic algorithm. Our algorithm shows good performance on both simulated and biological networks with very high sensitivity and specificity. Then the algorithm is used to predict direct interactions from a set of AP-MS PPI data from yeast, and its performance is measured against a high-quality interaction dataset. Conclusions As the sensitivity of AP-MS pipeline improves, the fraction of indirect interactions detected will also increase, thereby making the ability to distinguish them even more desirable. Despite the simplicity of our model for indirect interactions, our method provides a good performance on the test networks. PMID:21034440

  19. Arithmetic exponents in piecewise-affine planar maps

    NASA Astrophysics Data System (ADS)

    Roberts, John A. G.; Vivaldi, Franco

    2015-04-01

    We consider the growth of some indicators of arithmetical complexity of rational orbits of (piecewise) affine maps of the plane, with rational parameters. The exponential growth rates are expressed by a set of exponents; one exponent describes the growth rate of the so-called logarithmic height of the points of an orbit, while the others describe the growth rate of the size of such points, measured with respect to the p-adic metric. Here p is any prime number which divides the parameters of the map. We show that almost all the points in a domain of linearity (such as an elliptic island in an area-preserving map) have the same set of exponents. We also show that the convergence of the p-adic exponents may be non-uniform, with arbitrarily large fluctuations occurring arbitrarily close to any point. We explore numerically the behaviour of these quantities in the chaotic regions, in both area-preserving and dissipative systems. In the former case, we conjecture that wherever the Lyapunov exponent is zero, the arithmetical exponents achieve a local maximum.

  20. Selective isolation of G-quadruplexes by affinity chromatography.

    PubMed

    Chang, Tianjun; Liu, Xiangjun; Cheng, Xiaohong; Qi, Cui; Mei, Hongcheng; Shangguan, Dihua

    2012-07-13

    G-quadruplex (G4) is a characteristic secondary structure of nucleic acids containing repetitive tandem guanines. G4-forming sequences are found prevalent in the human genome by bioinformatics analysis. Accumulating evidence has suggested that G4s are involved in many biological processes. Selective isolation of G4s would be an effective tool in the study of G4s. In this paper, we prepared four affinity matrixes using hemin or a perylene derivative (N,N'-Bis-(2-(amino)ethyl)-3,4,9,10-perylenetetracarboxylic acid diimide, Pery01) as ligand, and investigated the retention behaviors of different G4s on these matrixes. Our experimental results suggest that the π-π stacking interaction between ligand and G-tetrad plays a key role in the selective isolation of G4s, whereas the electrostatic interaction between DNA and matrix causes the nonspecific binding. One matrix prepared by immobilizing Pery01 on polyglycidylmethacrylate (PGMA) beads through an aminocaproic acid spacer exhibits good selectivity for parallel structure G4s and has been successfully used to directly isolate a spiked parallel G4 from plasma. PMID:22398385

  1. Affinity Purification Strategies for Proteomic Analysis of Transcription Factor Complexes

    PubMed Central

    2013-01-01

    Affinity purification (AP) coupled to mass spectrometry (MS) has been successful in elucidating protein molecular networks of mammalian cells. These approaches have dramatically increased the knowledge of the interconnectivity present among proteins and highlighted biological functions within different protein complexes. Despite significant technical improvements reached in the past years, it is still challenging to identify the interaction networks and the subsequent associated functions of nuclear proteins such as transcription factors (TFs). A straightforward and robust methodology is therefore required to obtain unbiased and reproducible interaction data. Here we present a new approach for TF AP-MS, exemplified with the CCAAT/enhancer binding protein alpha (C/EBPalpha). Utilizing the advantages of a double tag and three different MS strategies, we conducted a total of six independent AP-MS strategies to analyze the protein–protein interactions of C/EBPalpha. The resultant data were combined to produce a cohesive C/EBPalpha interactome. Our study describes a new methodology that robustly identifies specific molecular complexes associated with transcription factors. Moreover, it emphasizes the existence of TFs as protein complexes essential for cellular biological functions and not as single, static entities. PMID:23937658

  2. Suspension flow and sedimentation in self-affine fractures

    NASA Astrophysics Data System (ADS)

    Shing Lo, Tak; Koplik, Joel

    2012-05-01

    The transport and gravitational sedimentation of a particulate suspension in fracture joints with self-affinely rough walls is studied by lattice Boltzmann numerical simulations. We consider either homogeneous or bidisperse distributions of non-Brownian spheres in a Newtonian fluid, driven through a fracture by a pressure gradient, and acted upon by gravity. Most results concern the case of open fractures, in which the two walls of the channel do not approach closely enough to block the flow. We present profiles of particle density and profiles of particle and fluid velocities, along with total flow rates and characterizations of the sediment, for three values of particle concentration and a range of buoyancy and Reynolds numbers, principally in the inertial regime. We systematically study the effects of increasing the pressure gradient and the strength of sedimentation and compare the results to those for channel bounded by flat surfaces. We find that both the flow rate and the average particle velocity for flows through an open fracture, when suitably normalized, depend only on the volume fraction of the particles and the buoyancy number in the steady state regardless of the pressure drop, and observe interesting scaling laws in the large buoyancy number limit. We also investigate the possibility for correlations between the surface morphology of the sediment region and the geometry of the underlying fracture surface in the strong sedimentation limit, but no evidence for correlation is found.

  3. Defining the human gallbladder proteome by transcriptomics and affinity proteomics.

    PubMed

    Kampf, Caroline; Mardinoglu, Adil; Fagerberg, Linn; Hallström, Björn M; Danielsson, Angelika; Nielsen, Jens; Pontén, Fredrik; Uhlen, Mathias

    2014-11-01

    Global protein analysis of human gallbladder tissue is vital for identification of molecular regulators and effectors of its physiological activity. Here, we employed a genome-wide deep RNA sequencing analysis in 28 human tissues to identify the genes overrepresented in the gallbladder and complemented it with antibody-based immunohistochemistry in 48 human tissues. We characterized human gallbladder proteins and identified 140 gallbladder-specific proteins with an elevated expression in the gallbladder as compared to the other analyzed tissues. Five genes were categorized as enriched, with at least fivefold higher levels in gallbladder, 60 genes were categorized as group enriched with elevated transcript levels in gallbladder shared with at least one other tissue and 75 genes were categorized as enhanced with higher expression than the average expression in other tissues. We explored the localization of the genes within the gallbladder through cell-type specific antibody-based protein profiling and the subcellular localization of the genes through immunofluorescent-based profiling. Finally, we revealed the biological processes and metabolic functions carried out by these genes through the use of GO, KEGG Pathway, and HMR2.0 that is compilation of the human metabolic reactions. We demonstrated the results of the combined analysis of the transcriptomics and affinity proteomics. PMID:25175928

  4. Affinity entrapment of oligosaccharides and glycopeptides using free lectin solution.

    PubMed

    Yodoshi, Masahiro; Oyama, Takehiro; Masaki, Ken; Kakehi, Kazuaki; Hayakawa, Takao; Suzuki, Shigeo

    2011-01-01

    Two procedures were proposed for the specific recovery of fluorescent derivatives of glycoprotein-derived oligosaccharides and tryptic glycopeptides using certain plant lectins. The first was based on the salting out of oligosaccharide-lectin conjugates with ammonium sulfate. Oligosaccharides specifically bound to lectins were recovered free from lectins using ethanol precipitation after dissolution in water. This method enabled group separation of 2-aminopyridine-labeled oligosaccharides derived from ovalbumin to galacto-oligosaccharides and agalacto-oligosaccharides by Ricinus communis agglutinin, and to high mannose- and hybrid-type oligosaccharides by wheat-germ agglutinin. Fractional precipitation based on differences in affinity for concanavalin A was accomplished by adding an appropriate concentration of methyl α-mannoside as an inhibitor. In the second method, tryptic digests of glycoproteins were mixed with a lectin solution, and the glycopeptide-lectin conjugates were specifically trapped on a centrifugal ultrafiltration membrane with cut-off of 10 kD. Trapped glycopeptides, as retentates, were passed through membranes by resuspension in diluted acid. This method is particularly useful for the enrichment of glycopeptides in protease digestion mixtures for glycosylation analyses by liquid chromatography-mass spectrometry. PMID:21478615

  5. Magnetic particles as affinity matrix for purification of antithrombin

    NASA Astrophysics Data System (ADS)

    Mercês, A. A. D.; Maciel, J. C.; Carvalho Júnior, L. B.

    2015-11-01

    Immobilization of biomolecules onto insoluble supports is an important tool for the fabrication of a diverse range of functional materials. It provides advantages: enhanced stability and easy separation. In this work two different magnetic composites were synthesized (MAG-PANI-HS and mDAC-HS) to human antithrombin purification. The magnetic particles (MAG) were obtained by co-precipitation method of iron salts II and III and subsequently coated with polyaniline (MAG-PANI particles). Dacron (polyethylene terephthalate) suffered a hydrazinolysis reaction to obtain a powder (Dacron hydrazide) which was subsequently magnetized (mDAC particles) also by co-precipitation method. Heparan sulfate (HS) was immobilized to MAG-PANI and mDAC retained respectively 35μg and 38.6μg per of support. The magnetic composite containing HS immobilized (MAG-PANI-HS and mDAC-HS) was incubated with human blood plasma (1mL) and then washed with NaCl gradients. Electrophoresis of proteins present in eluates showed bands of antithrombin (58kDa). A reduction in the antithrombin activity was detected in plasma that were incubated in the composites magnetic with HS immobilized, suggesting that the antithrombin was removed of the human blood plasma and then purified. Therefore, the above results suggest that both preparations: MAG-PANI-HS and mDAC-HS are able to affinity purify antithrombin, an important component of blood coagulation.

  6. Preparation of phenylboronate affinity rigid monolith with macromolecular porogen.

    PubMed

    Li, Xiang-Jie; Jia, Man; Zhao, Yong-Xin; Liu, Zhao-Sheng; Akber Aisa, Haji

    2016-03-18

    Boronate-affinity monolithic column was first prepared via polystyrene (PS) as porogen in this work. The monolithic polymer was synthetized using 4-vinylphenylboronic acid (4-VPBA) as functional monomer, ethylene glycol dimethacrylate (EDMA) as crosslinker monomer, and a mixture of PS solution in tetrahydrofuran, the linear macromolecular porogen, and toluene as porogen. Isoquercitrin (ISO) and hyperoside (HYP), isomer diol flavonoid glycosides, can be baseline separated on the poly(VPBA-co-EDMA) monolith. The effect of polymerization variables on the selectivity factor, e.g., the ratio of monomer to crosslinker (M/C), the amount of PS and the molecular weight of macromolecular porogen was investigated. The surface properties of the monolithic polymer were characterized by scanning electron microscopy and nitrogen adsorption. The best polymerization condition was the M/C ratio of 7:3, and the PS concentration of 40 mg/ml. The poly(VPBA-co-EDMA) polymer was also applied to extract cis-diol flavonoid glycosides from the crude extraction of cotton flower. After treated by poly(VPBA-co-EDMA) for solid phase extraction, high purity ISO and HYP (>99.96%) can be obtained with recovery of 83.7% and 78.6%, respectively. PMID:26896914

  7. Ethanol increases affinity of protein kinase C for phosphatidylserine

    SciTech Connect

    Chin, J.H.

    1986-03-01

    Protein kinase C is a calcium-dependent enzyme that requires phospholipid for its activation. It is present in relatively high concentration in the brain and may be involved in neuronal function. The present experiments test whether the membrane disorder induced by ethanol affects the activity of kinase C by changing its interaction with membrane lipid. Fractions rich in kinase C were purified from rat brain cytosol by DEAE-cellulose chromatography and Sephadex G-200 gel filtration. Enzyme activity was assayed by measuring the phosphorylation of histone H1. As expected, phosphatidylserine activated the enzyme, and the stimulation was further increased by the addition of calcium and/or diacylglycerol. At low concentration of free calcium (0.5-1..mu..M), ethanol (800 mM0 enhanced kinase C activity if the presence of phospholipid. similar results were observed in the absence of calcium. Double reciprocal plots of the data showed that ethanol increased the affinity of the enzyme for phosphatidylserine without affecting the V/sub max. The stimulation of kinase C activity by ethanol was not observed at high calcium concentrations. These experiments suggest that ethanol may activated protein kinase C at physiological levels of calcium by facilitating its transfer into the hydrophobic membrane environment.

  8. Production and Purification of Streptokinase by Protected Affinity Chromatography

    PubMed Central

    Babashamsi, Mohammad; Razavian, Mohammad Hossein; Nejadmoghaddam, Mohammad Reza

    2009-01-01

    Streptokinase is an extracellular protein, extracted from certain strains of beta hemolytic streptococcus. It is a non-protease plasminogen activator that activates plasminogen to plasmin, the enzyme that degrades fibrin cloth through its specific lysine binding site; it is used therefore as a drug in thrombolytic therapy. The rate of bacterial growth and streptokinase production was studied in condition of excess glucose addition to culture media and its pH maintenance. The streptokinase product of the bacterial culture was preliminary extracted by salt precipitation and then purified by affinity chromatography on plasminogen substituted sepharose-4B in a condition that the plasminogen active site was protected from streptokinase-induced activation. The purity of streptokinase was confirmed by SDS-PAGE and its biological activity determined in a specific streptokinase assay. The results showed that in the fed–batch culture, the rate of streptokinase production increased over two times as compared with the batch culture while at the same time, shortening the streptokinase purification to a single step increased the yield over 95% at the chromatography stage. PMID:23407807

  9. Mining the soluble chloroplast proteome by affinity chromatography

    PubMed Central

    Bayer, Roman G; Stael, Simon; Csaszar, Edina; Teige, Markus

    2011-01-01

    Chloroplasts are fundamental organelles enabling plant photoautotrophy. Besides their outstanding physiological role in fixation of atmospheric CO2, they harbor many important metabolic processes such as biosynthesis of amino acids, vitamins or hormones. Technical advances in MS allowed the recent identification of most chloroplast proteins. However, for a deeper understanding of chloroplast function it is important to obtain a complete list of constituents, which is so far limited by the detection of low-abundant proteins. Therefore, we developed a two-step strategy for the enrichment of low-abundant soluble chloroplast proteins from Pisum sativum and their subsequent identification by MS. First, chloroplast protein extracts were depleted from the most abundant protein ribulose-1,5-bisphosphate carboxylase/oxygenase by SEC or heating. Further purification was carried out by affinity chromatography, using ligands specific for ATP- or metal-binding proteins. By these means, we were able to identify a total of 448 proteins including 43 putative novel chloroplast proteins. Additionally, the chloroplast localization of 13 selected proteins was confirmed using yellow fluorescent protein fusion analyses. The selected proteins included a phosphoglycerate mutase, a cysteine protease, a putative protein kinase and an EF-hand containing substrate carrier protein, which are expected to exhibit important metabolic or regulatory functions. PMID:21365755

  10. A designed repeat protein as an affinity capture reagent.

    PubMed

    Speltz, Elizabeth B; Brown, Rebecca S H; Hajare, Holly S; Schlieker, Christian; Regan, Lynne

    2015-10-01

    Repeat proteins are an attractive target for protein engineering and design. We have focused our attention on the design and engineering of one particular class: tetratricopeptide repeat (TPR) proteins. In previous work, we have shown that the structure and stability of TPR proteins can be manipulated in a rational fashion [Cortajarena (2011) Prot. Sci. 20: , 1042-1047; Main (2003) Structure 11: , 497-508]. Building on those studies, we have designed and characterized a number of different peptide-binding TPR modules and we have also assembled these modules into supramolecular arrays [Cortajarena (2009) ACS Chem. Biol. 5: , 545-552; Cortajarena (2008) ACS Chem. Biol. 3: , 161-166; Jackrel (2009) Prot. Sci. 18: , 762-774; Kajander (2007) Acta Crystallogr. D Biol. Crystallogr. 63: , 800-811]. Here we focus on the development of one such TPR-peptide interaction for a practical application, affinity purification. We illustrate the general utility of our designed protein interaction. Furthermore, this example highlights how basic research on protein-peptide interactions can lead to the development of novel reagents with important practical applications. PMID:26517897

  11. Methods for determining the genetic affinity of microorganisms and viruses

    NASA Technical Reports Server (NTRS)

    Fox, George E. (Inventor); Willson, III, Richard C. (Inventor); Zhang, Zhengdong (Inventor)

    2012-01-01

    Selecting which sub-sequences in a database of nucleic acid such as 16S rRNA are highly characteristic of particular groupings of bacteria, microorganisms, fungi, etc. on a substantially phylogenetic tree. Also applicable to viruses comprising viral genomic RNA or DNA. A catalogue of highly characteristic sequences identified by this method is assembled to establish the genetic identity of an unknown organism. The characteristic sequences are used to design nucleic acid hybridization probes that include the characteristic sequence or its complement, or are derived from one or more characteristic sequences. A plurality of these characteristic sequences is used in hybridization to determine the phylogenetic tree position of the organism(s) in a sample. Those target organisms represented in the original sequence database and sufficient characteristic sequences can identify to the species or subspecies level. Oligonucleotide arrays of many probes are especially preferred. A hybridization signal can comprise fluorescence, chemiluminescence, or isotopic labeling, etc.; or sequences in a sample can be detected by direct means, e.g. mass spectrometry. The method's characteristic sequences can also be used to design specific PCR primers. The method uniquely identifies the phylogenetic affinity of an unknown organism without requiring prior knowledge of what is present in the sample. Even if the organism has not been previously encountered, the method still provides useful information about which phylogenetic tree bifurcation nodes encompass the organism.

  12. Displacement affinity chromatography of protein phosphatase one (PP1) complexes

    PubMed Central

    Moorhead, Greg BG; Trinkle-Mulcahy, Laura; Nimick, Mhairi; De Wever, Veerle; Campbell, David G; Gourlay, Robert; Lam, Yun Wah; Lamond, Angus I

    2008-01-01

    Background Protein phosphatase one (PP1) is a ubiquitously expressed, highly conserved protein phosphatase that dephosphorylates target protein serine and threonine residues. PP1 is localized to its site of action by interacting with targeting or regulatory proteins, a majority of which contains a primary docking site referred to as the RVXF/W motif. Results We demonstrate that a peptide based on the RVXF/W motif can effectively displace PP1 bound proteins from PP1 retained on the phosphatase affinity matrix microcystin-Sepharose. Subsequent co-immunoprecipitation experiments confirmed that each identified binding protein was either a direct PP1 interactor or was in a complex that contains PP1. Our results have linked PP1 to numerous new nuclear functions and proteins, including Ki-67, Rif-1, topoisomerase IIα, several nuclear helicases, NUP153 and the TRRAP complex. Conclusion This modification of the microcystin-Sepharose technique offers an effective means of purifying novel PP1 regulatory subunits and associated proteins and provides a simple method to uncover a link between PP1 and additional cellular processes. PMID:19000314

  13. Polymer versus monomer as displacer in immobilized metal affinity chromatography.

    PubMed

    Arvidsson, P; Ivanov, A E; Galaev IYu; Mattiasson, B

    2001-04-01

    Successful immobilized metal affinity chromatography (IMAC) of proteins on Cu2+-iminodiacetic acid Sepharose has been carried out in a displacement mode using a synthetic copolymer of vinyl imidazole and vinyl caprolactam [poly(VI-VCL)] as a displacer. Vinyl caprolactam renders the co-polymer with the thermosensitivity, e.g., property of the co-polymer to precipitate nearly quantitatively from aqueous solution on increase of the temperature to 48 degrees C. A thermostable lactate dehydrogenase from the thermophilic bacterium Bacillus stearothermophilus modified with a (His)6-tag [(His)6-LDH] has been purified using an IMAC column. For the first time it was clearly demonstrated that a polymeric displacer [poly(VI-VCL)] was more efficient compared to a monomeric displacer (imidazole) of the same chemical nature, probably due to the multipoint interaction of imidazole groups within the same macromolecule with one Cu2+ ion. Complete elution of bound (His)6-LDH has been achieved at 3.7 mM concentration of imidazole units of the co-polymer (5 mg/ml), while this concentration of free imidazole was sufficient to elute only weakly bound proteins. Complete elution of (His)6-LDH by the free imidazole was achieved only at concentrations as high as 160 mM. Thus, it was clearly demonstrated, that the efficiency of low-molecular-mass displacer could be improved significantly by converting it into a polymeric displacer having interacting groups of the same chemical nature. PMID:11334341

  14. Two measured completely different electron affinities for atomic Eu?

    NASA Astrophysics Data System (ADS)

    Msezane, A. Z.; Felfli, Z.

    2016-05-01

    Recently, the electron affinity (EA) of atomic Eu was measured to be 0.116?eV. This value is in outstanding agreement with the theoretically calculated values using the Regge pole and MCDF-RCI methods. Previously, the EA of Eu was measured to be 1.053 eV. In an attempt to resolve the discrepancy between the two measured values, we have adopted the complex angular momentum (CAM) method and investigated in the electron energy range 0.11 eV

  15. Sliding Window Generalized Kernel Affine Projection Algorithm Using Projection Mappings

    NASA Astrophysics Data System (ADS)

    Slavakis, Konstantinos; Theodoridis, Sergios

    2008-12-01

    Very recently, a solution to the kernel-based online classification problem has been given by the adaptive projected subgradient method (APSM). The developed algorithm can be considered as a generalization of a kernel affine projection algorithm (APA) and the kernel normalized least mean squares (NLMS). Furthermore, sparsification of the resulting kernel series expansion was achieved by imposing a closed ball (convex set) constraint on the norm of the classifiers. This paper presents another sparsification method for the APSM approach to the online classification task by generating a sequence of linear subspaces in a reproducing kernel Hilbert space (RKHS). To cope with the inherent memory limitations of online systems and to embed tracking capabilities to the design, an upper bound on the dimension of the linear subspaces is imposed. The underlying principle of the design is the notion of projection mappings. Classification is performed by metric projection mappings, sparsification is achieved by orthogonal projections, while the online system's memory requirements and tracking are attained by oblique projections. The resulting sparsification scheme shows strong similarities with the classical sliding window adaptive schemes. The proposed design is validated by the adaptive equalization problem of a nonlinear communication channel, and is compared with classical and recent stochastic gradient descent techniques, as well as with the APSM's solution where sparsification is performed by a closed ball constraint on the norm of the classifiers.

  16. Generation of acetyllysine antibodies and affinity enrichment of acetylated peptides

    PubMed Central

    Guan, Kun-Liang; Yu, Wei; Lin, Yan; Xiong, Yue; Zhao, Shimin

    2016-01-01

    Lysine acetylation has emerged as one of the major post-translational modifications, as indicated by its roles in chromatin remodeling, activation of transcription factors and, most recently, regulation of metabolic enzymes. Identification of acetylation sites in a protein is the first essential step for functional characterization of acetylation in physiological regulation. However, the study of the acetylome is hindered by the lack of suitable physical and biochemical properties of the acetyl group and existence of high-abundance acetylated histones in the cell, and needs a robust method to overcome these problems. Here we present protocols for (i) using chemically acetylated ovalbumin and synthetic acetylated peptide to generate a pan-acetyllysine antibody and a site-specific antibody to Lys288-acetylated argininosuccinate lyase, respectively; (ii) using subcellular fractionation to reduce highly abundant acetylated histones; and (iii) using acetyllysine antibody affinity purification and mass spectrometry to characterize acetylome of human liver tissue. The entire characterization procedure takes ~2–3 d to complete. PMID:21085124

  17. PREDICTING ER BINDING AFFINITY FOR EDC RANKING AND PRIORITIZATION: MODEL II

    EPA Science Inventory

    The training set used to derive a common reactivity pattern (COREPA) model for estrogen receptor (ER) binding affinity in Model I (see Abstract I in this series) was extended to include 47 rat estrogen receptor (rER) relative binding affinity (RBA) measurements in addition to the...

  18. High-affinity immobilization of proteins using biotin- and GST-based coupling strategies.

    PubMed

    Hutsell, Stephanie Q; Kimple, Randall J; Siderovski, David P; Willard, Francis S; Kimple, Adam J

    2010-01-01

    Surface plasmon resonance (SPR) is a highly sensitive method for the detection of molecular interactions. One interacting partner is immobilized on the sensor chip surface while the other is injected across the sensor surface. This chapter focuses on high-affinity immobilization of protein substrates for affinity and kinetic analyses using biotin/streptavidin interaction and GST/anti-GST-antibody interaction. PMID:20217614

  19. High-affinity binding of (/sup 3/H)acetylcholine to muscarinic cholinergic receptors

    SciTech Connect

    Kellar, K.J.; Martino, A.M.; Hall, D.P. Jr.; Schwartz, R.D.; Taylor, R.L.

    1985-06-01

    High-affinity binding of (/sup 3/H)acetylcholine to muscarinic cholinergic sites in rat CNS and peripheral tissues was measured in the presence of cytisin, which occupies nicotinic cholinergic receptors. The muscarinic sites were characterized with regard to binding kinetics, pharmacology, anatomical distribution, and regulation by guanyl nucleotides. These binding sites have characteristics of high-affinity muscarinic cholinergic receptors with a Kd of approximately 30 nM. Most of the muscarinic agonist and antagonist drugs tested have high affinity for the (/sup 3/H)acetylcholine binding site, but pirenzepine, an antagonist which is selective for M-1 receptors, has relatively low affinity. The ratio of high-affinity (/sup 3/H)acetylcholine binding sites to total muscarinic binding sites labeled by (/sup 3/H)quinuclidinyl benzilate varies from 9 to 90% in different tissues, with the highest ratios in the pons, medulla, and heart atrium. In the presence of guanyl nucleotides, (/sup 3/H) acetylcholine binding is decreased, but the extent of decrease varies from 40 to 90% in different tissues, with the largest decreases being found in the pons, medulla, cerebellum, and heart atrium. The results indicate that (/sup 3/H)acetylcholine binds to high-affinity M-1 and M-2 muscarinic receptors, and they suggest that most M-2 sites have high affinity for acetylcholine but that only a small fraction of M-1 sites have such high affinity.

  20. The Impact of the Affinity Learning Authoring Tool on Student Learning

    ERIC Educational Resources Information Center

    Soh, Leen-Kiat; Fowler, David; Zygielbaum, Art I.

    2008-01-01

    Affinity Learning is a system that allows the user to build a lesson on a subject matter by breaking it down into concepts, misconceptions, assessments, and remediation steps. Examples and questions can also used in these components. Affinity Learning has been found to be effective and can offer critical insights to student learning strategies.…

  1. Affinity-based thermoresponsive precipitation of proteins modified with polymer-binding peptides.

    PubMed

    Suzuki, Seigo; Sawada, Toshiki; Ishizone, Takashi; Serizawa, Takeshi

    2016-04-14

    A 12-mer peptide with an affinity for the meso diad sequence of poly(N-isopropylacrylamide) (PNIPAM) was identified through affinity-based peptide screening. A model protein (i.e., human serum albumin (HSA)) chemically modified with the peptide was successfully precipitated with PNIPAM above the lower critical solution temperature (LCST) of PNIPAM. PMID:26996430

  2. Affinity Spaces and Identity: Recommended Children's Literature for Use in Schools

    ERIC Educational Resources Information Center

    Schrader, Lindsay L.; Holder, K. C.

    2012-01-01

    The purpose of this review of literature was to describe affinity spaces and identity formation for children of color in schools and recommend texts currently in use. The literature reviewed included studies utilizing qualitative and quantitative research and the Undoing Racism workshop. Topics reviewed include affinity spaces, understanding…

  3. High affinity immobilization of proteins using biotin- and GST-based coupling strategies

    PubMed Central

    Hutsell, Stephanie Q.; Kimple, Randall J.; Siderovski, David P.; Willard, Francis S.; Kimple, Adam J.

    2011-01-01

    Surface Plasmon Resonance (SPR) is a highly sensitive method for the detection of molecular interactions. One interacting partner is immobilized on the sensor chip surface while the other is injected across the sensor surface. This chapter focuses on high affinity immobilization of protein substrates for affinity and kinetic analyses using biotin/streptavidin interaction and GST/anti-GST-antibody interaction. PMID:20217614

  4. A HIGH-LEVEL CALCULATION OF THE PROTON AFFINITY OF DIBORANE

    EPA Science Inventory

    The experimental proton affinity of diborane (B2H6) is based on an unstable species, B2H,+, 4 which has been observed only at low temperatures. The present work calculates the proton 5 affinity of diborane using the Gaussian-3 method and other high-level compound ab initio 6 met...

  5. Development and application of high-performance affinity beads: toward chemical biology and drug discovery.

    PubMed

    Sakamoto, Satoshi; Kabe, Yasuaki; Hatakeyama, Mamoru; Yamaguchi, Yuki; Handa, Hiroshi

    2009-01-01

    In drug development research, the elucidation and understanding of the interactions between physiologically active substances and proteins that numerous genes produce is important. Currently, most commercially available drugs and physiologically active substances have been brought to market without knowledge of factors interacting with the drugs and the substances. Affinity purification is a useful and powerful technique employed to understand factors that are targeted by drugs and physiologically active substances. However, use of conventional matrices for affinity chromatography often causes a decrease in efficiency of affinity purification and, as a result, more practical matrices for affinity purification have been developed for application in drug discovery research. In this paper, we describe the development of high-performance affinity beads (SG beads and FG beads) that enable one-step affinity purification of drug targets and the elucidation of the mechanism of the action of the drugs. We also describe a chemical screening system using our affinity beads. We hope that utilization of the affinity beads will contribute to the progress of research in chemical biology. PMID:19243077

  6. Structural insights into the affinity of Cel7A carbohydrate-binding module for lignin.

    PubMed

    Strobel, Kathryn L; Pfeiffer, Katherine A; Blanch, Harvey W; Clark, Douglas S

    2015-09-11

    The high cost of hydrolytic enzymes impedes the commercial production of lignocellulosic biofuels. High enzyme loadings are required in part due to their non-productive adsorption to lignin, a major component of biomass. Despite numerous studies documenting cellulase adsorption to lignin, few attempts have been made to engineer enzymes to reduce lignin binding. In this work, we used alanine-scanning mutagenesis to elucidate the structural basis for the lignin affinity of Trichoderma reesei Cel7A carbohydrate binding module (CBM). T. reesei Cel7A CBM mutants were produced with a Talaromyces emersonii Cel7A catalytic domain and screened for their binding to cellulose and lignin. Mutation of aromatic and polar residues on the planar face of the CBM greatly decreased binding to both cellulose and lignin, supporting the hypothesis that the cellulose-binding face is also responsible for lignin affinity. Cellulose and lignin affinity of the 31 mutants were highly correlated, although several mutants displayed selective reductions in lignin or cellulose affinity. Four mutants with increased cellulose selectivity (Q2A, H4A, V18A, and P30A) did not exhibit improved hydrolysis of cellulose in the presence of lignin. Further reduction in lignin affinity while maintaining a high level of cellulose affinity is thus necessary to generate an enzyme with improved hydrolysis capability. This work provides insights into the structural underpinnings of lignin affinity, identifies residues amenable to mutation without compromising cellulose affinity, and informs engineering strategies for family one CBMs. PMID:26209638

  7. 14 CFR 212.5 - Operation of affinity (pro rata) charters.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... school. (e) The charter price due the direct air carrier shall be prorated equally among all the charter... (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS CHARTER RULES FOR U.S. AND FOREIGN DIRECT AIR CARRIERS § 212.5 Operation of affinity (pro rata) charters. An affinity (pro rata) charter operated by a certificated...

  8. 14 CFR 212.5 - Operation of affinity (pro rata) charters.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... school. (e) The charter price due the direct air carrier shall be prorated equally among all the charter... (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS CHARTER RULES FOR U.S. AND FOREIGN DIRECT AIR CARRIERS § 212.5 Operation of affinity (pro rata) charters. An affinity (pro rata) charter operated by a certificated...

  9. 14 CFR 212.5 - Operation of affinity (pro rata) charters.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... school. (e) The charter price due the direct air carrier shall be prorated equally among all the charter... (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS CHARTER RULES FOR U.S. AND FOREIGN DIRECT AIR CARRIERS § 212.5 Operation of affinity (pro rata) charters. An affinity (pro rata) charter operated by a certificated...

  10. 14 CFR 212.5 - Operation of affinity (pro rata) charters.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... school. (e) The charter price due the direct air carrier shall be prorated equally among all the charter... (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS CHARTER RULES FOR U.S. AND FOREIGN DIRECT AIR CARRIERS § 212.5 Operation of affinity (pro rata) charters. An affinity (pro rata) charter operated by a certificated...

  11. 14 CFR 212.5 - Operation of affinity (pro rata) charters.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... school. (e) The charter price due the direct air carrier shall be prorated equally among all the charter... (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS CHARTER RULES FOR U.S. AND FOREIGN DIRECT AIR CARRIERS § 212.5 Operation of affinity (pro rata) charters. An affinity (pro rata) charter operated by a certificated...

  12. Affinity for Quantitative Tools: Undergraduate Marketing Students Moving beyond Quantitative Anxiety

    ERIC Educational Resources Information Center

    Tarasi, Crina O.; Wilson, J. Holton; Puri, Cheenu; Divine, Richard L.

    2013-01-01

    Marketing students are known as less likely to have an affinity for the quantitative aspects of the marketing discipline. In this article, we study the reasons why this might be true and develop a parsimonious 20-item scale for measuring quantitative affinity in undergraduate marketing students. The scale was administered to a sample of business…

  13. Structural Insights into the Affinity of Cel7A Carbohydrate-binding Module for Lignin*

    PubMed Central

    Strobel, Kathryn L.; Pfeiffer, Katherine A.; Blanch, Harvey W.; Clark, Douglas S.

    2015-01-01

    The high cost of hydrolytic enzymes impedes the commercial production of lignocellulosic biofuels. High enzyme loadings are required in part due to their non-productive adsorption to lignin, a major component of biomass. Despite numerous studies documenting cellulase adsorption to lignin, few attempts have been made to engineer enzymes to reduce lignin binding. In this work, we used alanine-scanning mutagenesis to elucidate the structural basis for the lignin affinity of Trichoderma reesei Cel7A carbohydrate binding module (CBM). T. reesei Cel7A CBM mutants were produced with a Talaromyces emersonii Cel7A catalytic domain and screened for their binding to cellulose and lignin. Mutation of aromatic and polar residues on the planar face of the CBM greatly decreased binding to both cellulose and lignin, supporting the hypothesis that the cellulose-binding face is also responsible for lignin affinity. Cellulose and lignin affinity of the 31 mutants were highly correlated, although several mutants displayed selective reductions in lignin or cellulose affinity. Four mutants with increased cellulose selectivity (Q2A, H4A, V18A, and P30A) did not exhibit improved hydrolysis of cellulose in the presence of lignin. Further reduction in lignin affinity while maintaining a high level of cellulose affinity is thus necessary to generate an enzyme with improved hydrolysis capability. This work provides insights into the structural underpinnings of lignin affinity, identifies residues amenable to mutation without compromising cellulose affinity, and informs engineering strategies for family one CBMs. PMID:26209638

  14. Tuning Metal-Organic Frameworks with Open-Metal Sites and Its Origin for Enhancing CO2 Affinity by Metal Substitution.

    PubMed

    Park, Joonho; Kim, Heejin; Han, Sang Soo; Jung, Yousung

    2012-04-01

    Reducing anthropogenic carbon emission is a problem that requires immediate attention. Metal-organic frameworks (MOFs) have emerged as a promising new materials platform for carbon capture, of which Mg-MOF-74 offers chemospecific affinity toward CO2 because of the open Mg sites. Here we tune the binding affinity of CO2 for M-MOF-74 by metal substitution (M = Mg, Ca, and the first transition metal elements) and show that Ti- and V-MOF-74 can have an enhanced affinity compared to Mg-MOF-74 by 6-9 kJ/mol. Electronic structure calculations suggest that the origin of the major affinity trend is the local electric field effect of the open metal site that stabilizes CO2, but forward donation from the lone-pair electrons of CO2 to the empty d-levels of transition metals as in a weak coordination bond makes Ti and V have an even higher binding strength than Mg, Ca, and Sc. PMID:26286404

  15. Preparation of λN-GST fusion protein for affinity immobilization of RNA.

    PubMed

    Di Tomasso, Geneviève; Lampron, Philipe; Omichinski, James G; Legault, Pascale

    2012-01-01

    Affinity purification of in vitro transcribed RNA is becoming an attractive alternative to purification using standard denaturing gel electrophoresis. Affinity purification is particularly advantageous because it can be performed in a few hours under non-denaturing conditions. However, the performance of affinity purification methods can vary tremendously depending on the RNA immobilization matrix. It was previously shown that RNA immobilization via an optimized λN-GST fusion protein bound to glutathione-Sepharose resin allows affinity purification of RNA with very high purity and yield. This Chapter outlines the experimental procedure employed to prepare the λN-GST fusion protein used for RNA immobilization in successful affinity purifications of RNA. It describes the details of protein expression and purification as well as routine quality control analyses. PMID:23065558

  16. Low affinity binding site clusters confer hox specificity and regulatory robustness.

    PubMed

    Crocker, Justin; Abe, Namiko; Rinaldi, Lucrezia; McGregor, Alistair P; Frankel, Nicolás; Wang, Shu; Alsawadi, Ahmad; Valenti, Philippe; Plaza, Serge; Payre, François; Mann, Richard S; Stern, David L

    2015-01-15

    In animals, Hox transcription factors define regional identity in distinct anatomical domains. How Hox genes encode this specificity is a paradox, because different Hox proteins bind with high affinity in vitro to similar DNA sequences. Here, we demonstrate that the Hox protein Ultrabithorax (Ubx) in complex with its cofactor Extradenticle (Exd) bound specifically to clusters of very low affinity sites in enhancers of the shavenbaby gene of Drosophila. These low affinity sites conferred specificity for Ubx binding in vivo, but multiple clustered sites were required for robust expression when embryos developed in variable environments. Although most individual Ubx binding sites are not evolutionarily conserved, the overall enhancer architecture-clusters of low affinity binding sites-is maintained and required for enhancer function. Natural selection therefore works at the level of the enhancer, requiring a particular density of low affinity Ubx sites to confer both specific and robust expression. PMID:25557079

  17. Importance of non-affine viscoelastic response in disordered fibre networks.

    PubMed

    Rizzi, L G; Auer, S; Head, D A

    2016-05-11

    Disordered fibre networks are ubiquitous in nature and have a wide range of industrial applications as novel biomaterials. Predicting their viscoelastic response is straightforward for affine deformations that are uniform over all length scales, but when affinity fails, as has been observed experimentally, modelling becomes challenging. Here we present a numerical methodology, related to an existing framework for amorphous packings, to predict the steady-state viscoelastic spectra and degree of affinity for disordered fibre networks driven at arbitrary frequencies. Applying this method to a peptide gel model reveals a monotonic increase of the shear modulus as the soft, non-affine normal modes are successively suppressed as the driving frequency increases. In addition to being dominated by fibril bending, these low frequency network modes are also shown to be delocalised. The presented methodology provides insights into the importance of non-affinity in the viscoelastic response of peptide gels, and is easily extendible to all types of fibre networks. PMID:27079274

  18. Host-Guest Complexes with Protein-Ligand-Like Affinities: Computational Analysis and Design

    PubMed Central

    Moghaddam, Sarvin; Inoue, Yoshihisa

    2009-01-01

    It has recently been discovered that guests combining a nonpolar core with cationic substituents bind cucurbit[7]uril (CB[7]) in water with ultra-high affinities. The present study uses the Mining Minima algorithm to study the physics of these extraordinary associations and to computationally test a new series of CB[7] ligands designed to bind with similarly high affinity. The calculations reproduce key experimental observations regarding the affinities of ferrocene-based guests with CB[7] and β-cyclodextrin and provide a coherent view of the roles of electrostatics and configurational entropy as determinants of affinity in these systems. The newly designed series of compounds is based on a bicyclo[2.2.2]octane core, which is similar in size and polarity to the ferrocene core of the existing series. Mining Minima predicts that these new compounds will, like the ferrocenes, bind CB[7] with extremely high affinities. PMID:19133781

  19. Multiple GPCR conformations and signalling pathways: implications for antagonist affinity estimates

    PubMed Central

    Baker, Jillian G.; Hill, Stephen J.

    2007-01-01

    Antagonist affinity measurements have traditionally been considered important in characterizing the cell-surface receptors present in a particular cell or tissue. A central assumption has been that antagonist affinity is constant for a given receptor–antagonist interaction, regardless of the agonist used to stimulate that receptor or the downstream response that is measured. As a consequence, changes in antagonist affinity values have been taken as initial evidence for the presence of novel receptor subtypes. Emerging evidence suggests, however, that receptors can possess multiple binding sites and the same receptor can show different antagonist affinity measurements under distinct experimental conditions. Here, we discuss several mechanisms by which antagonists have different affinities for the same receptor as a consequence of allosterism, coupling to different G proteins, multiple (but non-interacting) receptor sites, and signal-pathway-dependent pharmacology (where the pharmacology observed varies depending on the signalling pathway measured). PMID:17629959

  20. Characterizing informative sequence descriptors and predicting binding affinities of heterodimeric protein complexes

    PubMed Central

    2015-01-01

    Background Protein-protein interactions (PPIs) are involved in various biological processes, and underlying mechanism of the interactions plays a crucial role in therapeutics and protein engineering. Most machine learning approaches have been developed for predicting the binding affinity of protein-protein complexes based on structure and functional information. This work aims to predict the binding affinity of heterodimeric protein complexes from sequences only. Results This work proposes a support vector machine (SVM) based binding affinity classifier, called SVM-BAC, to classify heterodimeric protein complexes based on the prediction of their binding affinity. SVM-BAC identified 14 of 580 sequence descriptors (physicochemical, energetic and conformational properties of the 20 amino acids) to classify 216 heterodimeric protein complexes into low and high binding affinity. SVM-BAC yielded the training accuracy, sensitivity, specificity, AUC and test accuracy of 85.80%, 0.89, 0.83, 0.86 and 83.33%, respectively, better than existing machine learning algorithms. The 14 features and support vector regression were further used to estimate the binding affinities (Pkd) of 200 heterodimeric protein complexes. Prediction performance of a Jackknife test was the correlation coefficient of 0.34 and mean absolute error of 1.4. We further analyze three informative physicochemical properties according to their contribution to prediction performance. Results reveal that the following properties are effective in predicting the binding affinity of heterodimeric protein complexes: apparent partition energy based on buried molar fractions, relations between chemical structure and biological activity in principal component analysis IV, and normalized frequency of beta turn. Conclusions The proposed sequence-based prediction method SVM-BAC uses an optimal feature selection method to identify 14 informative features to classify and predict binding affinity of heterodimeric protein

  1. Purification of phage display-modified bacteriophage T4 by affinity chromatography

    PubMed Central

    2011-01-01

    Background Affinity chromatography is one of the most efficient protein purification strategies. This technique comprises a one-step procedure with a purification level in the order of several thousand-fold, adaptable for various proteins, differentiated in their size, shape, charge, and other properties. The aim of this work was to verify the possibility of applying affinity chromatography in bacteriophage purification, with the perspective of therapeutic purposes. T4 is a large, icosahedral phage that may serve as an efficient display platform for foreign peptides or proteins. Here we propose a new method of T4 phage purification by affinity chromatography after its modification with affinity tags (GST and Histag) by in vivo phage display. As any permanent introduction of extraneous DNA into a phage genome is strongly unfavourable for medical purposes, integration of foreign motifs with the phage genome was not applied. The phage was propagated in bacteria expressing fusions of the phage protein Hoc with affinity tags from bacterial plasmids, independently from the phage expression system. Results Elution profiles of phages modified with the specific affinity motifs (compared to non-specific phages) document their binding to the affinity resins and effective elution with standard competitive agents. Non-specific binding was also observed, but was 102-105 times weaker than the specific one. GST-modified bacteriophages were also effectively released from glutathione Sepharose by proteolytic cleavage. The possibility of proteolytic release was designed at the stage of expression vector construction. Decrease in LPS content in phage preparations was dependent on the washing intensity; intensive washing resulted in preparations of 11-40 EU/ml. Conclusions Affinity tags can be successfully incorporated into the T4 phage capsid by the in vivo phage display technique and they strongly elevate bacteriophage affinity to a specific resin. Affinity chromatography can be

  2. A novel gigaporous GSH affinity medium for high-speed affinity chromatography of GST-tagged proteins.

    PubMed

    Huang, Yongdong; Zhang, Rongyue; Li, Juan; Li, Qiang; Su, Zhiguo; Ma, Guanghui

    2014-03-01

    Novel GSH-AP (phenoxyl agarose coated gigaporous polystyrene, Agap-co-PSt) microspheres were successfully prepared by introducing GSH ligand into hydrophilic AP microspheres pre-activated with 1,4-butanediol diglycidyl ether. The gigaporous structure and chromatographic properties of GSH-AP medium were evaluated and compared with commercial GSH Sepharose FF (GSH-FF) medium. The macropores (100-500nm) of gigaporous PSt microspheres were well maintained after coating with agarose and functionalized with GSH ligand. Hydrodynamic experiments showed that GSH-AP column had less backpressure and plate height than those of GSH-FF column at high flow velocity, which was beneficial for its use in high-speed chromatography. The presence of flow-through pores in GSH-AP microspheres also accelerated the mass transfer rate of biomolecules induced by convective flow, leading to high protein resolution and high dynamic binding capacity (DBC) of glutathione S-transferase (GST) at high flow velocity. High purity of GST and GST-tagged recombinant human interleukin-1 receptor antagonist (rhIL-1RA) were obtained from crude extract with an acceptable recovery yield within 1.5min at a velocity up to 1400cm/h. GSH-AP medium is promising for high-speed affinity chromatography for the purification of GST and GST-tagged proteins. PMID:24269760

  3. Affinity Interaction between Hexamer Peptide Ligand HWRGWV and Immunoglobulin G Studied by Quartz Crystal Microbalance and Surface Plasmon Resonance

    NASA Astrophysics Data System (ADS)

    Shen, Fei

    Immunoglobulins (Ig), also referred to as antibodies, act as protective agents against pathogens trying to invade an organism. Human immunoglobulin G (hIgG), as the most prominent immunoglobulin presented in serum and other human fluids, has broad applications in fields like immunotherapy and clinical diagnostics. Staphylococcus aureus Protein A and Streptococcus Protein G are the most common affinity ligands for IgG purifaction and detection. However, drawbacks associated with these two protein ligands have motivated searches for alternative affinity ligands. The hexamer peptide ligand HWRGWV identified from a one-bead-one-peptide combinatorial library synthesized on chromatography resins has demonstrated high affinity and specificity to the Fc fragment of hIgG. A chromatography resin with HWRGWV can purify human IgG (hIgG) from complete minimum essential medium (cMEM) with purities and yields as high as 95%, which are comparable to using Protein A as affinity ligand (4). As a short peptide ligand, HWRGWV can be produced at relatively low costs under good manufacturing practices (GMP) conditions, it is highly robust, less immunogenic and allows for milder elution conditions for the bound antibody (3, 5). Although this short peptide ligand has exhibited promising properties for IgG capture and purification, limited information is available on the intrinsic mechanisms of affinity interaction between the peptide ligand and target protein. In this study, the affinity interaction between hIgG and peptide ligand immobilized on solid surfaces was studied by quartz crystal microbalance (QCM) and surface plasmon resonance (SPR). Compared with previous methods employed for the peptide characterization, QCM and SPR can provide direct measurements of equilibrium adsorption isotherms and rates of adsorption, allowing a complete kinetic and thermodynamics analyses of the ligand-target interactions. New methods were developed to modify gold and silica surfaces of QCM and SPR

  4. Binding Kinetics versus Affinities in BRD4 Inhibition.

    PubMed

    Kuang, Ming; Zhou, Jingwei; Wang, Laiyou; Liu, Zhihong; Guo, Jiao; Wu, Ruibo

    2015-09-28

    Bromodomains (BRDs) are protein modules that selectively recognize histones as a "reader" by binding to an acetylated lysine substrate. The human BRD4 has emerged as a promising drug target for a number of disease pathways, and several potent BRD inhibitors have been discovered experimentally recently. However, the detailed inhibition mechanism especially for the inhibitor binding kinetics is not clear. Herein, by employing classical molecular dynamics (MD) and state-of-the-art density functional QM/MM MD simulations, the dynamic characteristics of ZA-loop in BRD4 are revealed. And then the correlation between binding pocket size and ZA-loop motion is elucidated. Moreover, our simulations found that the compound (-)-JQ1 could be accommodated reasonably in thermodynamics whereas it is infeasible in binding kinetics against BRD4. Its racemate (+)-JQ1 proved to be both thermodynamically reasonable and kinetically achievable against BRD4, which could explain the previous experimental results that (+)-JQ1 shows a high inhibitory effect toward BRD4 (IC50 is 77 nM) while (-)-JQ1 is inactive (>10 μM). Furthermore, the L92/L94/Y97 in the ZA-loop and Asn140 in the BC-loop are identified to be critical residues in (+)-JQ1 binding/releasing kinetics. All these findings shed light on further selective inhibitor design toward BRD family, by exploiting the non-negligible ligand binding kinetics features and flexible ZA-loop motions of BRD, instead of only the static ligand-protein binding affinity. PMID:26263125

  5. Structural determinants of trypsin affinity and specificity for cationic inhibitors.

    PubMed Central

    Polticelli, F.; Ascenzi, P.; Bolognesi, M.; Honig, B.

    1999-01-01

    The binding free energies of four inhibitors to bovine beta-trypsin are calculated. The inhibitors use either ornithine, lysine, or arginine to bind to the S1 specificity site. The electrostatic contribution to binding free energy is calculated by solving the finite difference Poisson-Boltzmann equation, the contribution of nonpolar interactions is calculated using a free energy-surface area relationship and the loss of conformational entropy is estimated both for trypsin and ligand side chains. Binding free energy values are of a reasonable magnitude and the relative affinity of the four inhibitors for trypsin is correctly predicted. Electrostatic interactions are found to oppose binding in all cases. However, in the case of ornithine- and lysine-based inhibitors, the salt bridge formed between their charged group and the partially buried carboxylate of Asp189 is found to stabilize the complex. Our analysis reveals how the molecular architecture of the trypsin binding site results in highly specific recognition of substrates and inhibitors. Specifically, partially burying Asp189 in the inhibitor-free enzyme decreases the penalty for desolvation of this group upon complexation. Water molecules trapped in the binding interface further stabilize the buried ion pair, resulting in a favorable electrostatic contribution of the ion pair formed with ornithine and lysine side chains. Moreover, all side chains that form the trypsin specificity site are partially buried, and hence, relatively immobile in the inhibitor-free state, thus reducing the entropic cost of complexation. The implications of the results for the general problem of recognition and binding are considered. A novel finding in this regard is that like charged molecules can have electrostatic contributions to binding that are more favorable than oppositely charged molecules due to enhanced interactions with the solvent in the highly charged complex that is formed. PMID:10631977

  6. Benzonitrile: Electron affinity, excited states, and anion solvation

    NASA Astrophysics Data System (ADS)

    Dixon, Andrew R.; Khuseynov, Dmitry; Sanov, Andrei

    2015-10-01

    We report a negative-ion photoelectron imaging study of benzonitrile and several of its hydrated, oxygenated, and homo-molecularly solvated cluster anions. The photodetachment from the unsolvated benzonitrile anion to the X ˜ 1 A 1 state of the neutral peaks at 58 ± 5 meV. This value is assigned as the vertical detachment energy (VDE) of the valence anion and the upper bound of adiabatic electron affinity (EA) of benzonitrile. The EA of the lowest excited electronic state of benzonitrile, a ˜ 3 A 1 , is determined as 3.41 ± 0.01 eV, corresponding to a 3.35 eV lower bound for the singlet-triplet splitting. The next excited state, the open-shell singlet A ˜ 1 A 1 , is found about an electron-volt above the triplet, with a VDE of 4.45 ± 0.01 eV. These results are in good agreement with ab initio calculations for neutral benzonitrile and its valence anion but do not preclude the existence of a dipole-bound state of similar energy and geometry. The step-wise and cumulative solvation energies of benzonitrile anions by several types of species were determined, including homo-molecular solvation by benzonitrile, hydration by 1-3 waters, oxygenation by 1-3 oxygen molecules, and mixed solvation by various combinations of O2, H2O, and benzonitrile. The plausible structures of the dimer anion of benzonitrile were examined using density functional theory and compared to the experimental observations. It is predicted that the dimer anion favors a stacked geometry capitalizing on the π-π interactions between the two partially charged benzonitrile moieties.

  7. Template affinity role in CH shrink by DSA planarization

    NASA Astrophysics Data System (ADS)

    Tiron, R.; Gharbi, A.; Pimenta Barros, P.; Bouanani, S.; Lapeyre, C.; Bos, S.; Fouquet, A.; Hazart, J.; Chevalier, X.; Argoud, M.; Chamiot-Maitral, G.; Barnola, S.; Monget, C.; Farys, V.; Berard-Bergery, S.; Perraud, L.; Navarro, C.; Nicolet, C.; Hadziioannou, G.; Fleury, G.

    2015-03-01

    Density multiplication and contact shrinkage of patterned templates by directed self-assembly (DSA) of block copolymers (BCP) stands out as a promising alternative to overcome the limitations of conventional lithography. The main goal of this paper is to investigate the potential of DSA to address contact and via levels patterning with high resolution by performing either CD shrink or contact multiplication. Different DSA processes are benchmarked based on several success criteria such as: CD control, defectivity (missing holes) as well as placement control. More specifically, the methodology employed to measure DSA contact overlay and the impact of process parameters on placement error control is detailed. Using the 300mm pilot line available in LETI and Arkema's materials, our approach is based on the graphoepitaxy of PS-b-PMMA block copolymers. Our integration scheme, depicted in figure 1, is based on BCP self-assembly inside organic hard mask guiding patterns obtained using 193i nm lithography. The process is monitored at different steps: the generation of guiding patterns, the directed self-assembly of block copolymers and PMMA removal, and finally the transfer of PS patterns into the metallic under layer by plasma etching. Furthermore, several process flows are investigated, either by tuning different material related parameters such as the block copolymer intrinsic period or the interaction with the guiding pattern surface (sidewall and bottom-side affinity). The final lithographic performances are finely optimized as a function of the self-assembly process parameters such as the film thickness and bake (temperature and time). Finally, DSA performances as a function of guiding patterns density are investigated. Thus, for the best integration approach, defect-free isolated and dense patterns for both contact shrink and multiplication (doubling and more) have been achieved on the same processed wafer. These results show that contact hole shrink and

  8. Synthesis and binding affinity of an iodinated juvenile hormone

    SciTech Connect

    Prestwich, G.D.; Eng, W.S.; Robles, S.; Vogt, R.G.; Wisniewski, J.R.; Wawrzenczyk, C.

    1988-01-25

    The synthesis of the first iodinated juvenile hormone (JH) in enantiomerically enriched form is reported. This chiral compound, 12-iodo-JH I, has an iodine atom replacing a methyl group of the natural insect juvenile hormone, JH I, which is important in regulating morphogenesis and reproduction in the Lepidoptera. The unlabeled compound shows approximately 10% of the relative binding affinity for the larval hemolymph JH binding protein (JHBP) of Manduca sexta, which specifically binds natural /sup 3/H-10R,11S-JH I (labeled at 58 Ci/mmol) with a KD of 8 X 10(-8) M. It is also approximately one-tenth as biologically active as JH I in the black Manduca and epidermal commitment assays. The 12-hydroxy and 12-oxo compounds are poor competitors and are also biologically inactive. The radioiodinated (/sup 125/I)12-iodo-JH I can be prepared in low yield at greater than 2500 Ci/mmol by nucleophilic displacement using no-carrier-added /sup 125/I-labeled sodium iodide in acetone; however, synthesis using sodium iodide carrier to give the approximately 50 Ci/mmol radioiodinated ligand proceeds in higher radiochemical yield with fewer by-products and provides a radioligand which is more readily handled in binding assays. The KD of (/sup 125/I)12-iodo-JH I was determined for hemolymph JHBP of three insects: M. sexta, 795 nM; Galleria mellonella, 47 nM; Locusta migratoria, 77 nM. The selectivity of 12-iodo-JH I for the 32-kDa JHBP of M. sexta was demonstrated by direct autoradiography of a native polyacrylamide gel electrophoresis gel of larval hemolymph incubated with the radioiodinated ligand. Thus, the in vitro and in vivo activity of 12-iodo-JH I indicate that it can serve as an important new gamma-emitting probe in the search for JH receptor proteins in target tissues.

  9. Genetic Affinities of the Central Indian Tribal Populations

    PubMed Central

    Singh, Vipin Kumar; Shah, Anish M.; Anugula, Sharath; Rani, Deepa Selvi; Reddy, Alla G.; Eaaswarkhanth, Muthukrishnan; Chaubey, Gyaneshwer; Singh, Lalji; Thangaraj, Kumarasamy

    2012-01-01

    Background The central Indian state Madhya Pradesh is often called as ‘heart of India’ and has always been an important region functioning as a trinexus belt for three major language families (Indo-European, Dravidian and Austroasiatic). There are less detailed genetic studies on the populations inhabited in this region. Therefore, this study is an attempt for extensive characterization of genetic ancestries of three tribal populations, namely; Bharia, Bhil and Sahariya, inhabiting this region using haploid and diploid DNA markers. Methodology/Principal Findings Mitochondrial DNA analysis showed high diversity, including some of the older sublineages of M haplogroup and prominent R lineages in all the three tribes. Y-chromosomal biallelic markers revealed high frequency of Austroasiatic-specific M95-O2a haplogroup in Bharia and Sahariya, M82-H1a in Bhil and M17-R1a in Bhil and Sahariya. The results obtained by haploid as well as diploid genetic markers revealed strong genetic affinity of Bharia (a Dravidian speaking tribe) with the Austroasiatic (Munda) group. The gene flow from Austroasiatic group is further confirmed by their Y-STRs haplotype sharing analysis, where we determined their founder haplotype from the North Munda speaking tribe, while, autosomal analysis was largely in concordant with the haploid DNA results. Conclusions/Significance Bhil exhibited largely Indo-European specific ancestry, while Sahariya and Bharia showed admixed genetic package of Indo-European and Austroasiatic populations. Hence, in a landscape like India, linguistic label doesn't unequivocally follow the genetic footprints. PMID:22393414

  10. Structural determinants of trypsin affinity and specificity for cationic inhibitors.

    PubMed

    Polticelli, F; Ascenzi, P; Bolognesi, M; Honig, B

    1999-12-01

    The binding free energies of four inhibitors to bovine beta-trypsin are calculated. The inhibitors use either ornithine, lysine, or arginine to bind to the S1 specificity site. The electrostatic contribution to binding free energy is calculated by solving the finite difference Poisson-Boltzmann equation, the contribution of nonpolar interactions is calculated using a free energy-surface area relationship and the loss of conformational entropy is estimated both for trypsin and ligand side chains. Binding free energy values are of a reasonable magnitude and the relative affinity of the four inhibitors for trypsin is correctly predicted. Electrostatic interactions are found to oppose binding in all cases. However, in the case of ornithine- and lysine-based inhibitors, the salt bridge formed between their charged group and the partially buried carboxylate of Asp189 is found to stabilize the complex. Our analysis reveals how the molecular architecture of the trypsin binding site results in highly specific recognition of substrates and inhibitors. Specifically, partially burying Asp189 in the inhibitor-free enzyme decreases the penalty for desolvation of this group upon complexation. Water molecules trapped in the binding interface further stabilize the buried ion pair, resulting in a favorable electrostatic contribution of the ion pair formed with ornithine and lysine side chains. Moreover, all side chains that form the trypsin specificity site are partially buried, and hence, relatively immobile in the inhibitor-free state, thus reducing the entropic cost of complexation. The implications of the results for the general problem of recognition and binding are considered. A novel finding in this regard is that like charged molecules can have electrostatic contributions to binding that are more favorable than oppositely charged molecules due to enhanced interactions with the solvent in the highly charged complex that is formed. PMID:10631977

  11. Determination of proton affinities and acidity constants of sugars.

    PubMed

    Feng, Shuting; Bagia, Christina; Mpourmpakis, Giannis

    2013-06-20

    Proton transfer reactions play a key role in the conversion of biomass derived sugars to chemicals. In this study, we employ high level ab initio theoretical methods, in tandem with solvation effects to calculate the proton affinities (PA) and acidity constants (pKa) of various d-glucose and d-fructose tautomers (protonation-deprotonation processes). In addition, we compare the theoretically derived pH values of sugar solutions against experimentally measured pH values in our lab. Our results demonstrate that the protonation of any of the O atoms of the sugars is thermodynamically preferred without any significant variation in the PA values. Intramolecular hydrogen transfers, dehydration reactions, and ring-opening processes were observed, resulting from the protonation of specific hydroxyl groups on the sugars. Regarding the deprotonation processes (pKa), we found that the sugars' anomeric hydroxyls exhibit the highest acidity. The theoretically calculated pH values of sugar solutions are in excellent agreement with experimental pH measurements at low sugar concentrations. At higher sugar concentrations the calculations predict less acidic solutions than the experiments. In this case, we expect the sugars to act as solvents increasing the proton solvation energy and the acidity of the solutions. We demonstrated through linear relationships that the pKa values are correlated with the relative stability of the conjugate bases. The latter is related to hydrogen bonding and polarization of the C-O(-) bond. A plausible explanation for the good performance of the direct method in calculating the pKa values of sugars can be the presence of intramolecular hydrogen bonds on the conjugate base. Both theory and experiments manifest that fructose is a stronger acid than glucose, which is of significant importance in self-catalyzed biomass-relevant dehydration reactions. PMID:23706015

  12. High-affinity binding of fibronectin to cultured Kupffer cells

    SciTech Connect

    Cardarelli, P.M.; Blumenstock, F.A.; McKeown-Longo, P.J.; Saba, T.M.; Mazurkiewicz, J.E.; Dias, J.A. )

    1990-11-01

    Hepatic Kupffer cells are a major component of the reticuloendothelial or macrophage system. They were the first phagocytic cell type whose phagocytosis was shown to be influenced by plasma fibronectin, a dimeric opsonic glycoprotein. In the current study, the binding of soluble radioiodinated fibronectin purified from rat serum to isolated rat hepatic Kupffer cells was investigated using a cultured Kupffer cell monolayer technique. Binding was specific, since unlabeled purified fibronectin competed in a dose-dependent manner with the 125I-fibronectin for binding to the Kupffer cells. Addition of gelatin enhanced the binding of 125I-fibronectin to Kupffer cells. The phagocytosis of gelatinized-coated red cells by Kupffer cells was increased either by preopsonizing the target particles with purified fibronectin or by the addition of purified fibronectin to the culture medium. In contrast, exposure of the Kupffer cells to medium containing purified fibronectin followed by wash-removal of the fibronectin did not increase the uptake of gelatin-coated red blood cells, even though fibronectin was detected on the surface of the Kupffer cells by immunofluorescence. Trypsinized monolayers expressed decreased capacity to bind 125I-fibronectin as well as fibronectin-coated sheep erythrocytes. The binding of 125I-fibronectin-gelatin complexes was inhibited by excess unlabeled fibronectin. We calculated that specific high-affinity (Kd = 7.46 x 10(-9) M) binding sites for fibronectin exist on Kupffer cells. There are approximately 2,800-3,500 binding sites or putative fibronectin receptors per Kupffer cell. These sites appear to mediate the enhanced phagocytosis of gelatin-coated particles opsonized by fibronectin.

  13. A novel high affinity human monoclonal antibody to mesothelin

    PubMed Central

    Ho, Mitchell; Feng, Mingqian; Fisher, Robert J.; Rader, Christoph; Pastan, Ira

    2010-01-01

    Mesothelin is a glycosylphosphatidylinisotol-anchored glycoprotein that is highly expressed on the cell surface of mesothelioma, ovarian cancer and other malignant tumors. The interaction between mesothelin and CA125 (also called MUC16) may facilitate the implantation and metastasis of tumors in the peritoneal cavity. A desirable therapeutic agent involves finding a fully human monoclonal antibody (mAb) that binds to mesothelin or CA125 and inhibits their interaction. Here we report the identification of a novel human mAb to mesothelin. HN1, a human single chain Fv specific for mesothelin, was isolated from a naïve human scFv phage display library. To investigate HN1 as a potential therapeutic, we generated a fully human IgG with the γ 1 heavy chain and the κ light chain, and an immuntoxin by fusing the HN1 scFv to a truncated Pseudomonas exotoxin A. The HN1 IgG kills cancer cells with very strong antibody-dependent cell-mediated cytotoxicity. HN1 binds a conformation-sensitive epitope in human mesothelin with high affinity (KD = 3 nM). The HN1 epitope is different from that of SS1, a mouse Fv used to develop therapeutic antibodies that are currently in clinical trials. HN1 binds to cell surface-associated mesothelin on human mesothelioma, ovarian cancer, lung adenocarcinoma and pancreatic cancer cells. In addition, HN1 can functionally block the interaction of mesothelin and CA125 on cancer cells. Most importantly, because the HN1 immuntoxin kills mesothelin-expressing cancer cells with high cytotoxic activity, we believe that it has significant potential for mesothelin-expressing cancer treatment and diagnosis. PMID:20635390

  14. A global/local affinity graph for image segmentation.

    PubMed

    Xiaofang Wang; Yuxing Tang; Masnou, Simon; Liming Chen

    2015-04-01

    Construction of a reliable graph capturing perceptual grouping cues of an image is fundamental for graph-cut based image segmentation methods. In this paper, we propose a novel sparse global/local affinity graph over superpixels of an input image to capture both short- and long-range grouping cues, and thereby enabling perceptual grouping laws, including proximity, similarity, continuity, and to enter in action through a suitable graph-cut algorithm. Moreover, we also evaluate three major visual features, namely, color, texture, and shape, for their effectiveness in perceptual segmentation and propose a simple graph fusion scheme to implement some recent findings from psychophysics, which suggest combining these visual features with different emphases for perceptual grouping. In particular, an input image is first oversegmented into superpixels at different scales. We postulate a gravitation law based on empirical observations and divide superpixels adaptively into small-, medium-, and large-sized sets. Global grouping is achieved using medium-sized superpixels through a sparse representation of superpixels' features by solving a ℓ0-minimization problem, and thereby enabling continuity or propagation of local smoothness over long-range connections. Small- and large-sized superpixels are then used to achieve local smoothness through an adjacent graph in a given feature space, and thus implementing perceptual laws, for example, similarity and proximity. Finally, a bipartite graph is also introduced to enable propagation of grouping cues between superpixels of different scales. Extensive experiments are carried out on the Berkeley segmentation database in comparison with several state-of-the-art graph constructions. The results show the effectiveness of the proposed approach, which outperforms state-of-the-art graphs using four different objective criteria, namely, the probabilistic rand index, the variation of information, the global consistency error, and the

  15. [Ecological affinity and current distribution of primates (Cebidae) in Campeche, Mexico].

    PubMed

    Navarro Fernández, Eloísa; Pozo de la Tijera, Carmen; Escobedo Cabrera, Enrique

    2003-06-01

    We carried out surveys realized field work from March to September 2000 to get the current distribution of Cebids in the state of Campeche, Mexico. Based on interviews and direct observations. We defined the distribution of Ateles geoffroyi yucatanensis and Alouatta pigra and we documented the first time localities where Allouata palliata is found in the state. We made distributional maps of each species using vegetation overlays from Inventario Nacional Forestal (Inv For) and each point documented during fieldwork. We presented the distribution of species according to confiability of the verified or expected data. Using the attributes table of Inv For, we calculated the areas of distribution which were 22,735 km2 for Alouatta sp. and 18,501 km2 for A. g. yucatanensis. We also presented the area occupied by each species according to vegetation types and the relative proportion of these vegetation types in the state. We confirmed the ability of Alouatta sp. to survive in disturbed environments produced by habitat fragmentation, and the affinity of A. g. yucatanesis to well preserved habitats. PMID:15162751

  16. Antibody purification using affinity chromatography: a case study with a monoclonal antibody to ractopamine.

    PubMed

    Wang, Zhanhui; Liang, Qi; Wen, Kai; Zhang, Suxia; Shen, Jianzhong

    2014-11-15

    The application of antibodies to small molecules in the field of bioanalytics requires antibodies with stable biological activity and high purity; thus, there is a growing interest in developing rapid, inexpensive and effective procedures to obtain such antibodies. In this work, a ractopamine (RAC) derivative, N-4-aminobutyl ractopamine (ABR), was synthesized for preparing new specific affinity chromatography to purify a murine monoclonal antibody (mAb) against RAC from ascites. The performance of the new specific chromatography was compared with four other purification methods in terms of recovery, purity and biological activity of mAb. These four purification methods were prepared by using specific ligands (RAC and RAC-ovalbumin) and commercial ligands (protein G and protein A), respectively. The results showed that the highest recovery (88.1%) was achieved using the new chromatography; in comparison, the recoveries from the other methods were all below 70%. The purity of the mAbs from the new chromatography was 88.3%, while, the highest purity of 97.6% was from protein G chromatography and the lowest purity of 84.7% was from protein A chromatography. The biological activity of the purified mAb from all of the chromatography methods was comparable in enzyme-linked immunosorbent immunoassay (ELISA). PMID:25261834

  17. Traces of Intertwiners for Quantum Affine sl_2 and Felder-Varchenko Functions

    NASA Astrophysics Data System (ADS)

    Sun, Yi

    2016-02-01

    We show that the traces of {U_q({{sl}_2)} -intertwiners of [ESV02] valued in the three-dimensional evaluation representation converge in a certain region of parameters and give a representation-theoretic construction of Felder-Varchenko's hypergeometric solutions to the q-KZB heat equation given in [FV02]. This gives the first proof that such a trace function converges and resolves the first case of the Etingof-Varchenko conjecture of [EV00]. As applications, we prove a symmetry property for traces of intertwiners and prove Felder-Varchenko's conjecture in [FV04] that their elliptic Macdonald polynomials are related to the affine Macdonald polynomials defined as traces over irreducible integrable {U_q({widehat{sl}}_2)} -modules in [EK95]. In the trigonometric and classical limits, we recover results of [EK94,EV00]. Our method relies on an interplay between the method of coherent states applied to the free field realization of the q-Wakimoto module of [Mat94], convergence properties given by the theta hypergeometric integrals of [FV02], and rationality properties originating from the representation-theoretic definition of the trace function.

  18. Brownian-motion based simulation of stochastic reaction-diffusion systems for affinity based sensors

    NASA Astrophysics Data System (ADS)

    Tulzer, Gerhard; Heitzinger, Clemens

    2016-04-01

    In this work, we develop a 2D algorithm for stochastic reaction-diffusion systems describing the binding and unbinding of target molecules at the surfaces of affinity-based sensors. In particular, we simulate the detection of DNA oligomers using silicon-nanowire field-effect biosensors. Since these devices are uniform along the nanowire, two dimensions are sufficient to capture the kinetic effects features. The model combines a stochastic ordinary differential equation for the binding and unbinding of target molecules as well as a diffusion equation for their transport in the liquid. A Brownian-motion based algorithm simulates the diffusion process, which is linked to a stochastic-simulation algorithm for association at and dissociation from the surface. The simulation data show that the shape of the cross section of the sensor yields areas with significantly different target-molecule coverage. Different initial conditions are investigated as well in order to aid rational sensor design. A comparison of the association/hybridization behavior for different receptor densities allows optimization of the functionalization setup depending on the target-molecule density.

  19. Magnetoencephalography source localization using the source affine image reconstruction (SAFFIRE) algorithm.

    PubMed

    Popescu, Mihai; Blunt, Shannon D; Chan, Tszping

    2010-07-01

    Nonparametric iterative algorithms have been previously proposed to achieve high-resolution, sparse solutions to the bioelectromagnetic inverse problem applicable to multichannel magnetoencephalography and EEG recordings. Using a mmse estimation framework, we propose a new algorithm of this type denoted as source affine image reconstruction (SAFFIRE) aiming to reduce the vulnerability to initialization bias, augment robustness to noise, and decrease sensitivity to the choice of regularization. The proposed approach operates in a normalized lead-field space and employs an initial estimate based on matched filtering to combat the potential biasing effect of previously proposed initialization methods. SAFFIRE minimizes difficulties associated with the selection of the most appropriate regularization parameter by using two separate loading terms: a fixed noise-dependent term that can be directly estimated from the data and arises naturally from the mmse formulation, and an adaptive term (adjusted according to the update of the source estimate) that accounts for uncertainties of the forward model in real-experimental applications. We also show that a noncoherent integration scheme can be used within the SAFFIRE algorithm structure to further enhance the reconstruction accuracy and improve robustness to noise. PMID:20409987

  20. 2d Affine XY-Spin Model/4d Gauge Theory Duality and Deconfinement

    SciTech Connect

    Anber, Mohamed M.; Poppitz, Erich; Unsal, Mithat; /SLAC /Stanford U., Phys. Dept. /San Francisco State U.

    2012-08-16

    We introduce a duality between two-dimensional XY-spin models with symmetry-breaking perturbations and certain four-dimensional SU(2) and SU(2) = Z{sub 2} gauge theories, compactified on a small spatial circle R{sup 1,2} x S{sup 1}, and considered at temperatures near the deconfinement transition. In a Euclidean set up, the theory is defined on R{sup 2} x T{sup 2}. Similarly, thermal gauge theories of higher rank are dual to new families of 'affine' XY-spin models with perturbations. For rank two, these are related to models used to describe the melting of a 2d crystal with a triangular lattice. The connection is made through a multi-component electric-magnetic Coulomb gas representation for both systems. Perturbations in the spin system map to topological defects in the gauge theory, such as monopole-instantons or magnetic bions, and the vortices in the spin system map to the electrically charged W-bosons in field theory (or vice versa, depending on the duality frame). The duality permits one to use the two-dimensional technology of spin systems to study the thermal deconfinement and discrete chiral transitions in four-dimensional SU(N{sub c}) gauge theories with n{sub f} {ge} 1 adjoint Weyl fermions.

  1. Analysis of affinities between specific biological ligands using atomic force microscopy.

    PubMed

    Hu, Xiao; Dinu, Cerasela Zoica

    2015-12-21

    In the cell, protein-ligand recognition involves association and dissociation processes controlled by the affinity of the two binding partners and chemical harvesting of adenosine triphosphate energy. Fundamental knowledge of selected recognition events is currently translated in a synthetic environment for biosensors, immunoassays and diagnosis applications, or for pharmaceutical development. However, in order to advance such fields, one needs to determine the lifetime and binding efficiency of the two partners, as well as the complex energy landscape parameters. We employed contact mode atomic force microscopy to evaluate the association and dissociation events between streptavidin protein and its anti-streptavidin antibody ligand currently used for nucleotide array, ELISA, and flow cytometry applications, just to name a few. Using biotin as the control, our analysis helped characterize and differentiate multi- or single bonds of different strengths as well as associated energy landscapes to determine the protein-ligand structural arrangement at nanointerfaces and how these depend on the specificity of the ligand-recognition reaction. Our results suggest that understanding the importance of the rupture forces between a protein and its ligand could serve as the first step to protect on-off switches for biomedical research applications where specificity and selectivity are foremost sought. PMID:26525901

  2. Intra-cavity photodetachment microscopy and the electron affinity of germanium

    NASA Astrophysics Data System (ADS)

    Bresteau, D.; Babilotte, Ph; Drag, C.; Blondel, C.

    2015-06-01

    A beam of Ge- ions produced by a cesium sputtering ion source is photodetached, in the presence of an electric field, inside a linear optical cavity injected with a single mode ring Ti:Sa laser. The laser wavenumber can be set either above the highest 3{{P}2} fine-structure excitation threshold or just above the 3{{P}1}, intermediate fine-structure threshold of the 3P ground-term of Ge I. A single-electron interferogram is produced, according to the principles of photodetachment microscopy, which contains both photoelectron energies produced by the two opposite wave vectors contained in the optical cavity. This makes the Doppler-free measurement of the photodetachment threshold even more direct than with the usual double-spot photodetachment microscopy method, at the expense of some reduction of the contrast in the interferograms. Both methods concur in producing a revised value of the electron affinity of germanium: 994 220.6 (10) {{m}-1}, or 1.232 6764 (12) eV, one order of magnitude more precise and significantly smaller than the last measured value 994 249 (12) {{m}-1}, or 1.232 712 (15) eV. This new technique can be applied to weaker detachment thresholds or p-wave detachment.

  3. CHARACTERIZATION OF DRUG-PROTEIN INTERACTIONS IN BLOOD USING HIGH-PERFORMANCE AFFINITY CHROMATOGRAPHY

    PubMed Central

    Hage, David S.; Jackson, Abby; Sobansky, Matt; Schiel, John E.; Yoo, Michelle J.; Joseph, K. S.

    2009-01-01

    The binding of drugs with proteins in blood, serum or plasma is an important process in determining the activity, distribution, rate of excretion, and toxicity of drugs in the body. High-performance affinity chromatography (HPAC) has received a great deal of interest as a means for studying these interactions. This review examines the various techniques that have been used in HPAC to examine drug-protein binding and discusses the types of information that can be obtained through this approach. A comparison of these techniques with traditional methods for binding studies (e.g., equilibrium dialysis and ultrafiltration) will also be presented. The use of HPAC with specific serum proteins and binding agents will then be discussed, including human serum albumin and α1-acid glycoprotein. Several examples from the literature are provided to illustrate the applications of such research. Recent developments in this field are also described, such as the use of improved immobilization techniques, new data analysis methods, techniques for working for directly with complex biological samples, and work with immobilized lipoproteins. The relative advantages and limitations of the methods that are described will be considered and the possible use of these techniques in the high-throughput screening or characterization of drug-protein binding will be discussed. PMID:19278006

  4. Ligand-Binding Affinity Estimates Supported by Quantum-Mechanical Methods.

    PubMed

    Ryde, Ulf; Söderhjelm, Pär

    2016-05-11

    One of the largest challenges of computational chemistry is calculation of accurate free energies for the binding of a small molecule to a biological macromolecule, which has immense implications in drug development. It is well-known that standard molecular-mechanics force fields used in most such calculations have a limited accuracy. Therefore, there has been a great interest in improving the estimates using quantum-mechanical (QM) methods. We review here approaches involving explicit QM energies to calculate binding affinities, with an emphasis on the methods, rather than on specific applications. Many different QM methods have been employed, ranging from semiempirical QM calculations, via density-functional theory, to strict coupled-cluster calculations. Dispersion and other empirical corrections are mandatory for the approximate methods, as well as large basis sets for the stricter methods. QM has been used for the ligand, for a few crucial groups around the ligand, for all the closest atoms (200-1000 atoms), or for the full receptor-ligand complex, but it is likely that with a proper embedding it might be enough to include all groups within ∼6 Å of the ligand. Approaches involving minimized structures, simulations of the end states of the binding reaction, or full free-energy simulations have been tested. PMID:27077817

  5. The Lectin Frontier Database (LfDB), and data generation based on frontal affinity chromatography.

    PubMed

    Hirabayashi, Jun; Tateno, Hiroaki; Shikanai, Toshihide; Aoki-Kinoshita, Kiyoko F; Narimatsu, Hisashi

    2015-01-01

    Lectins are a large group of carbohydrate-binding proteins, having been shown to comprise at least 48 protein scaffolds or protein family entries. They occur ubiquitously in living organisms-from humans to microorganisms, including viruses-and while their functions are yet to be fully elucidated, their main underlying actions are thought to mediate cell-cell and cell-glycoconjugate interactions, which play important roles in an extensive range of biological processes. The basic feature of each lectin's function resides in its specific sugar-binding properties. In this regard, it is beneficial for researchers to have access to fundamental information about the detailed oligosaccharide specificities of diverse lectins. In this review, the authors describe a publicly available lectin database named "Lectin frontier DataBase (LfDB)", which undertakes the continuous publication and updating of comprehensive data for lectin-standard oligosaccharide interactions in terms of dissociation constants (Kd's). For Kd determination, an advanced system of frontal affinity chromatography (FAC) is used, with which quantitative datasets of interactions between immobilized lectins and >100 fluorescently labeled standard glycans have been generated. The FAC system is unique in its clear principle, simple procedure and high sensitivity, with an increasing number (>67) of associated publications that attest to its reliability. Thus, LfDB, is expected to play an essential role in lectin research, not only in basic but also in applied fields of glycoscience. PMID:25580689

  6. Brownian-motion based simulation of stochastic reaction-diffusion systems for affinity based sensors.

    PubMed

    Tulzer, Gerhard; Heitzinger, Clemens

    2016-04-22

    In this work, we develop a 2D algorithm for stochastic reaction-diffusion systems describing the binding and unbinding of target molecules at the surfaces of affinity-based sensors. In particular, we simulate the detection of DNA oligomers using silicon-nanowire field-effect biosensors. Since these devices are uniform along the nanowire, two dimensions are sufficient to capture the kinetic effects features. The model combines a stochastic ordinary differential equation for the binding and unbinding of target molecules as well as a diffusion equation for their transport in the liquid. A Brownian-motion based algorithm simulates the diffusion process, which is linked to a stochastic-simulation algorithm for association at and dissociation from the surface. The simulation data show that the shape of the cross section of the sensor yields areas with significantly different target-molecule coverage. Different initial conditions are investigated as well in order to aid rational sensor design. A comparison of the association/hybridization behavior for different receptor densities allows optimization of the functionalization setup depending on the target-molecule density. PMID:26939610

  7. [Geobotanical studies on the island of Tanegashima (affinity of world property island Yakushima)].

    PubMed

    Satake, M; Kaburagi, K; Seki, T; Nozaki, T; Lee, I; Katsuki, S

    1999-01-01

    A list was drawn up of wild plants growing on Tanegashiama island that were identified in our field work, and the list was compared with the flora of the rest of Japan and the flora of Taiwan. There were 166 families and 1,218 species consisting of 23 families and 159 species of Pteridophyta, 4 families and 7 species of Gymnosperma, 113 families and 700 species of the dicotyledous Angiosperma, and 26 families and 353 species of monocotyledous Angiosperma. There are 229 families and 5,500 species of plants in Japan, 196 families and 3,019 species in Kyushu, and 228 families and 3,477 species in Taiwan. There are 11 species of endemic plants on Tanegashima and Yakushima, and the best known of them is Pinus armandii Francht. var. amamiana Hatsushima. There are 181 species of flora of flora limited to the northern element, including several important medicinal plants, such as Akebia quinata Decaisne and Zanthoxylum piperitum DC. The 69 species of flora limited to the southern element include several important tropical plants, such as Messerschmidia argentea Johnston and Clerodendrum inerme Gaertn. Most of these plants are distributed on both island, but some of are distributed only Tanegashima. We concluded that one of the temperate borderlines of Japanese flora in the temperate zone is the islands of Tokara. The flora of Tanegashima and Yakushima are having a closely affinity of plant species and having the rich plant species. PMID:10859935

  8. Computational protein design suggests that human PCNA-partner interactions are not optimized for affinity.

    PubMed

    Fridman, Yearit; Gur, Eyal; Fleishman, Sarel J; Aharoni, Amir

    2013-02-01

    Increasing the affinity of binding proteins is invaluable for basic and applied biological research. Currently, directed protein evolution experiments are the main approach for generating such proteins through the construction and screening of large mutant libraries. Proliferating cell nuclear antigen (PCNA) is an essential hub protein that interacts with many different partners to tightly regulate DNA replication and repair in all eukaryotes. Here, we used computational design to generate human PCNA mutants with enhanced affinity for several different partners. We identified double mutations in PCNA, outside the main partner binding site, that were predicted to increase PCNA-partner binding affinities compared to the wild-type protein by forming additional hydrophobic interactions with conserved residues in the PCNA partners. Affinity increases were experimentally validated with four different PCNA partners, demonstrating that computational design can reveal unexpected regions where affinity enhancements in natural systems are possible. The designed PCNA mutants can be used as a valuable tool for further examination of the regulation of PCNA-partner interactions during DNA replication and repair both in vitro and in vivo. More broadly, the ability to engineer affinity increases toward several PCNA partners suggests that interaction affinity is not an evolutionarily optimized trait of this system. PMID:23011891

  9. Controlling Affinity Binding with Peptide-Functionalized Poly(ethylene glycol) Hydrogels**

    PubMed Central

    Lin, Chien-Chi; Anseth, Kristi S.

    2009-01-01

    Poly(ethylene glycol) (PEG) hydrogels functionalized with peptide moieties have been widely used in regenerative medicine applications. While many studies have suggested the importance of affinity binding within PEG hydrogels, the relationships between the structures of the peptide motifs and their binding to protein therapeutics remain largely unexplored, especially in the recently developed thiol-acrylate photopolymerization systems. Herein, we employ Förster resonance energy transfer (FRET) and thiol-acrylate photopolymerizations to investigate how the architectures of affinity peptides in crosslinked hydrogels affect their binding to diffusible proteins. The binding between diffusible streptavidin and biotinylated peptide immobilized to PEG hydrogel network was used as a model system to reveal the interplay between affinity binding and peptide sequences/architectures. In addition, we design peptides with different structures to enhance affinity binding within PEG hydrogels and to provide tunable affinity-based controlled delivery of basic fibroblast growth factor (bFGF). This study demonstrates the importance of affinity binding in controlling the availability of hydrogel-encapsulated proteins and provides strategies for enhancing affinity binding of protein therapeutics to bound peptide moieties in thiol-acrylate photopolymerized PEG hydrogels. The results presented herein should find useful on the design and fabrication of hydrogels to retain and sustained release of growth factors for promoting tissue regeneration. PMID:20148198

  10. Characterization of opiate receptor heterogeneity using affinity ligands and phospholipase A/sub 2/

    SciTech Connect

    Reichman, M.

    1985-01-01

    The primary aim of the dissertation was to study the heterogeneity of opiate receptors by utilizing affinity ligands, and by modification of the receptor lipid-microenvironment with phospholipase A/sub 2/ (PLA/sub 2/). The affinity ligands, 14-bromacetamidomorphine (BAM) and 14-chloroacetylnaltrexone (CAN), selectively inactivated high affinity dihydromorphine binding sites in an apparently irreversible manner (the inhibition was resistant to extensive washes of treated neural membrane homogenates). The inhibitory effect of PLA/sub 2/ (10 ng/ml) on opiate receptor subtypes was determined using (/sup 3/H)-dihydromorphine (..mu..-type agonist), (/sup 3/H)-enkephalin (delta agonist) and (/sup 3/H)-naloxone (..mu.. antagonist). PLA/sub 2/ abolished the high affinity antagonist binding site, whereas it inhibited high and low affinity agonist binding sites similarly. The results suggest that high affinity antagonist binding sites are different from high affinity agonist binding sites. Indirect binding assays demonstrated that the selectivities of ..mu..- and delta receptors are not affected significantly by PLA/sub 2/ treatment.

  11. Anti-HA Glycoforms Drive B Cell Affinity Selection and Determine Influenza Vaccine Efficacy.

    PubMed

    Wang, Taia T; Maamary, Jad; Tan, Gene S; Bournazos, Stylianos; Davis, Carl W; Krammer, Florian; Schlesinger, Sarah J; Palese, Peter; Ahmed, Rafi; Ravetch, Jeffrey V

    2015-07-01

    Protective vaccines elicit high-affinity, neutralizing antibodies by selection of somatically hypermutated B cell antigen receptors (BCR) on immune complexes (ICs). This implicates Fc-Fc receptor (FcR) interactions in affinity maturation, which, in turn, are determined by IgG subclass and Fc glycan composition within ICs. Trivalent influenza virus vaccination elicited regulation of anti-hemagglutinin (HA) IgG subclass and Fc glycans, with abundance of sialylated Fc glycans (sFc) predicting quality of vaccine response. We show that sFcs drive BCR affinity selection by binding the Type-II FcR CD23, thus upregulating the inhibitory FcγRIIB on activated B cells. This elevates the threshold requirement for BCR signaling, resulting in B cell selection for higher affinity BCR. Immunization with sFc HA ICs elicited protective, high-affinity IgGs against the conserved stalk of the HA. These results reveal a novel, endogenous pathway for affinity maturation that can be exploited for eliciting high-affinity, broadly neutralizing antibodies through immunization with sialylated immune complexes. PMID:26140596

  12. TCR Affinity for Self-Ligands Influences the Development and Function of Encephalitogenic T Cells

    PubMed Central

    Sant'Angelo, Derek B.

    2011-01-01

    The specificity and affinity of self-reactive T cells is likely to impact the development of autoimmune-disease causing T cells in the thymus as well as their function in the periphery. We identified a naturally occurring, low affinity variant of an MBP Ac1-11/I-Au specific TCR that is known to induce EAE. Thymocytes in mice carrying the transgenes for this low affinity TCR were poorly positively selected, as compared to their high affinity TCR expressing counterparts. Nonetheless, CD4 T cells bearing the low affinity TCR accumulated in the periphery of the mice. Unlike mice expressing the high affinity TCR, these mice very rarely developed disease. However, if endogenous TCR expression was eliminated by breeding to RAG1 deficient mice, 100% of the mice carrying either the high or the low affinity versions of the TCR developed EAE. Intriguingly, while the incidence of EAE increased, the age of onset of disease in both mice was identical. These data suggest disease onset occurs during a short window of mouse development. PMID:21437282

  13. Specificity and Affinity Quantification of Flexible Recognition from Underlying Energy Landscape Topography

    PubMed Central

    Chu, Xiakun; Wang, Jin

    2014-01-01

    Flexibility in biomolecular recognition is essential and critical for many cellular activities. Flexible recognition often leads to moderate affinity but high specificity, in contradiction with the conventional wisdom that high affinity and high specificity are coupled. Furthermore, quantitative understanding of the role of flexibility in biomolecular recognition is still challenging. Here, we meet the challenge by quantifying the intrinsic biomolecular recognition energy landscapes with and without flexibility through the underlying density of states. We quantified the thermodynamic intrinsic specificity by the topography of the intrinsic binding energy landscape and the kinetic specificity by association rate. We found that the thermodynamic and kinetic specificity are strongly correlated. Furthermore, we found that flexibility decreases binding affinity on one hand, but increases binding specificity on the other hand, and the decreasing or increasing proportion of affinity and specificity are strongly correlated with the degree of flexibility. This shows more (less) flexibility leads to weaker (stronger) coupling between affinity and specificity. Our work provides a theoretical foundation and quantitative explanation of the previous qualitative studies on the relationship among flexibility, affinity and specificity. In addition, we found that the folding energy landscapes are more funneled with binding, indicating that binding helps folding during the recognition. Finally, we demonstrated that the whole binding-folding energy landscapes can be integrated by the rigid binding and isolated folding energy landscapes under weak flexibility. Our results provide a novel way to quantify the affinity and specificity in flexible biomolecular recognition. PMID:25144525

  14. N-Alkyl Ammonium Resorcinarene Salts as High-Affinity Tetravalent Chloride Receptors.

    PubMed

    Beyeh, N Kodiah; Pan, Fangfang; Bhowmik, Sandip; Mäkelä, Toni; Ras, Robin H A; Rissanen, Kari

    2016-01-22

    N-Alkyl ammonium resorcinarene salts (NARYs, Y=triflate, picrate, nitrate, trifluoroacetates and NARBr) as tetravalent receptors, are shown to have a strong affinity for chlorides. The high affinity for chlorides was confirmed from a multitude of exchange experiments in solution (NMR and UV/Vis), gas phase (mass spectrometry), and solid-state (X-ray crystallography). A new tetra-iodide resorcinarene salt (NARI) was isolated and fully characterized from exchange experiments in the solid-state. Competition experiments with a known monovalent bis-urea receptor (5) with strong affinity for chloride, reveals these receptors to have a much higher affinity for the first two chlorides, a similar affinity as 5 for the third chloride, and lower affinity for the fourth chloride. The receptors affinity toward chloride follows the trend K1 ≫K2 ≫K3 ≈5>K4, with Ka =5011 m(-1) for 5 in 9:1 CDCl3/[D6]DMSO. PMID:26671730

  15. Proton Affinity of Isomeric Dipeptides Containing Lysine and Non-Proteinogenic Lysine Homologues.

    PubMed

    Batoon, Patrick; Ren, Jianhua

    2016-08-18

    Conformational effects on the proton affinity of oligopeptides have been studied using six alanine (A)-based acetylated dipeptides containing a basic probe that is placed closest to either the C- or the N-terminus. The basic probe includes Lysine (Lys) and two nonproteinogenic Lys-homologues, ornithine (Orn) and 2,3-diaminopropionic acid (Dap). The proton affinities of the peptides have been determined using the extended Cooks kinetic method in a triple quadrupole mass spectrometer. Computational studies have been carried out to search for the lowest energy conformers and to calculate theoretical proton affinities as well as various molecular properties using the density functional theory. The dipeptides containing a C-terminal probe, ALys, AOrn, and ADap, were determined to have a higher proton affinity by 1-4 kcal/mol than the corresponding dipeptides containing an N-terminal probe, LysA, OrnA, and DapA. For either the C-probe peptides or the N-probe peptides, the proton affinity reduces systematically as the side-chain of the probe residue is shortened. The difference in the proton affinities between isomeric peptides is largely associated with the variation of the conformations. The peptides with higher values of the proton affinity adopt a relatively compact conformation such that the protonated peptides can be stabilized through more efficient internal solvation. PMID:27459294

  16. Sequence and structural requirements for high-affinity DNA binding by the WT1 gene product.

    PubMed Central

    Nakagama, H; Heinrich, G; Pelletier, J; Housman, D E

    1995-01-01

    The Wilms' tumor suppressor gene, WT1, encodes a zinc finger polypeptide which plays a key role regulating cell growth and differentiation in the urogenital system. Using the whole-genome PCR approach, we searched murine genomic DNA for high-affinity WT1 binding sites and identified a 10-bp motif 5'GCGTGGGAGT3' which we term WTE). The WTE motif is similar to the consensus binding sequence 5'GCG(G/T)GGGCG3' recognized by EGR-1 and is also suggested to function as a binding site for WT1, setting up a competitive regulatory loop. To evaluate the underlying biochemical basis for such competition, we compared the binding affinities of WT1 and EGR1 for both sequences. WT1 shows a 20- to 30-fold-higher affinity for the WTE sequence compared with that of the EGR-1 binding motif. Mutational analysis of the WTE motif revealed a significant contribution to binding affinity by the adenine nucleotide at the eighth position (5'GCGTGGGAGT3') as well as by the 3'-most thymine (5'GCGTGGGAGT3'), whereas mutations in either flanking nucleotides or other nucleotides in the core sequence did not significantly affect the specific binding affinity. Mutations within WT1 zinc fingers II to IV abolished the sequence-specific binding of WT1 to WTE, whereas alterations within the first WT1 zinc finger reduced the binding affinity approximately 10-fold but did not abolish sequence recognition. We have thus identified a WT1 target, which, although similar in sequence to the EGR-1 motif, shows a 20- to 30-fold-higher affinity for WT1. These results suggest that physiological action of WT1 is mediated by binding sites of significantly higher affinity than the 9-bp EGR-1 binding motif. The role of the thymine base in contributing to binding affinity is discussed in the context of recent structural analysis. PMID:7862142

  17. Affinity chromatography of nicotinamide–adenine dinucleotide-linked dehydrogenases on immobilized derivatives of the dinucleotide

    PubMed Central

    Barry, Standish; O'Carra, Pádraig

    1973-01-01

    1. Three established methods for immobilization of ligands through primary amino groups promoted little or no attachment of NAD+ through the 6-amino group of the adenine residue. Two of these methods (coupling to CNBr-activated agarose and to carbodi-imide-activated carboxylated agarose derivatives) resulted instead in attachment predominantly through the ribosyl residues. Other immobilized derivatives were prepared by azolinkage of NAD+ (probably through the 8 position of the adenine residue) to a number of different spacer-arm–agarose derivatives. 2. The effectiveness of these derivatives in the affinity chromatography of a variety of NAD-linked dehydrogenases was investigated, applying rigorous criteria to distinguish general or non-specific adsorption effects from truly NAD-specific affinity (bio-affinity). The ribosyl-attached NAD+ derivatives displayed negligible bio-affinity for any of the NAD-linked dehydrogenases tested. The most effective azo-linked derivative displayed strong bio-affinity for glycer-aldehyde 3-phosphate dehydrogenase, weaker bio-affinity for lactate dehydrogenase and none at all for malate dehydrogenase, although these three enzymes have very similar affinities for soluble NAD+. Alcohol dehydrogenase and xanthine dehydrogenase were subject to such strong non-specific interactions with the hydrocarbon spacer-arm assembly that any specific affinity was completely eclipsed. 3. It is concluded that, in practice, the general effectiveness of a general ligand may be considerably distorted and attenuated by the nature of the immobilization linkage. However, this attenuation can result in an increase in specific effectiveness, allowing dehydrogenases to be separated from one another in a manner unlikely to be feasible if the general effectiveness of the ligand remained intact. 4. The bio-affinity of the various derivatives for lactate dehydrogenase is correlated with the known structure of the NAD+-binding site of this enzyme. Problems

  18. Methyl cation affinities of neutral and anionic maingroup-element hydrides: trends across the periodic table and correlation with proton affinities.

    PubMed

    Mulder, R Joshua; Guerra, Célia Fonseca; Bickelhaupt, F Matthias

    2010-07-22

    We have computed the methyl cation affinities in the gas phase of archetypal anionic and neutral bases across the periodic table using ZORA-relativistic density functional theory (DFT) at BP86/QZ4P//BP86/TZ2P. The main purpose of this work is to provide the methyl cation affinities (and corresponding entropies) at 298 K of all anionic (XH(n-1)(-)) and neutral bases (XH(n)) constituted by maingroup-element hydrides of groups 14-17 and the noble gases (i.e., group 18) along the periods 2-6. The cation affinity of the bases decreases from H(+) to CH(3)(+). To understand this trend, we have carried out quantitative bond energy decomposition analyses (EDA). Quantitative correlations are established between the MCA and PA values. PMID:20575582

  19. Affinity of pyridylalkylamines for nicotinic, muscarinic and histaminic recognition sites in brain tissue preparations.

    PubMed

    Repond, C; Pratt, J A; Stolerman, I P; Mayer, J M; Jenner, P; Marsden, C D; Testa, B

    1986-08-01

    The affinity of 15 regioisomeric and homologous pyridylalkylamines was examined in brain preparations for nicotinic, muscarinic, and H1-histaminic binding sites as labeled by [3H]-nicotine, [3H]-dexetimide and [3H]-mepyramine, respectively. Overall, the compounds show a clear selectivity for the nicotinic versus muscarinic binding sites, and a weak affinity for the H1-histaminic sites. Variations in affinity appear to be partly influenced by steric factors (such as position of attachment, length and rigidity of side-chain) and marginally by lipophilicity. PMID:3778556

  20. (/sup 14/C)chloroacetylcholine as an advantageous affinity label of the acetylcholine receptor

    SciTech Connect

    Bodmer, D.M.; Sin-Ren, A.C.; Waser, P.G.

    1987-01-01

    The alkylating agent (/sup 14/C)chloroacetylcholine perchlorate ((/sup 14/C) ClACh) was synthesized and used for affinity labelling of the nicotinic acetylcholine receptor from Torpedo marmorata. Solubilized and affinity-purified receptor proteins were reduced and alkylated according to the bromoacetylcholine-method. Covalent binding of (/sup 14/C) ClACh to the cholinergic receptor proved to be specific and saturable, and occurred exclusively to the alpha-subunit. Halogen substitution of acetylcholine by chlorine and insertion of a /sup 14/C-isotope instead of the widely used /sup 3/H resulted in favorable properties of the affinity label.

  1. A novel protein complex identification algorithm based on Connected Affinity Clique Extension (CACE).

    PubMed

    Li, Peng; He, Tingting; Hu, Xiaohua; Zhao, Junmin; Shen, Xianjun; Zhang, Ming; Wang, Yan

    2014-06-01

    A novel algorithm based on Connected Affinity Clique Extension (CACE) for mining overlapping functional modules in protein interaction network is proposed in this paper. In this approach, the value of protein connected affinity which is inferred from protein complexes is interpreted as the reliability and possibility of interaction. The protein interaction network is constructed as a weighted graph, and the weight is dependent on the connected affinity coefficient. The experimental results of our CACE in two test data sets show that the CACE can detect the functional modules much more effectively and accurately when compared with other state-of-art algorithms CPM and IPC-MCE. PMID:24803142

  2. Use of Tandem Affinity Chromatography for Purification of Cannabinoid Receptor CB2

    PubMed Central

    Locatelli-Hoops, Silvia C.; Yeliseev, Alexei A.

    2016-01-01

    Tandem affinity purification has been increasingly applied to isolation of recombinant proteins. It relies on two consecutive chromatographic steps that take advantage of the affinity tags placed at opposing ends of the target protein. This allows for efficient removal of contaminating proteins, including products of proteolytic degradation of the fusion that lack either N- or C-terminal tags. Here, we describe the use of two small affinity tags, a poly-histidine tag and a Strep-tag for expression and purification of the human cannabinoid receptor CB2, an integral membrane G protein-coupled receptor. PMID:24943318

  3. Constraints on the affinity term for modeling long-term glass dissolution rates

    SciTech Connect

    Bourcier, W.L.; Carroll, S.A.; Phillips, B.L.

    1993-11-01

    Predictions of long-term glass dissolution rates are highly dependent on the form of the affinity term in the rate expression. Analysis of the quantitative effect of saturation state on glass dissolution rate for CSG glass (a simple analog of SRL-165 glass), shows that a simple (1-Q/K) affinity term does not match experimental results. Our data at 100{degree}C show that the data is better fit by an affinity term having the form (1 {minus} (Q/K){sup 1}/{sigma}) where {sigma} = 10.

  4. Affinity of Iresine herbstii and Brugmansia arborea extracts on different cerebral receptors.

    PubMed

    Nencini, Cristina; Cavallo, Federica; Bruni, Giancarlo; Capasso, Anna; De Feo, Vincenzo; De Martino, Laura; Giorgi, Giorgio; Micheli, Lucia

    2006-05-24

    Iresine herbstii Hook. (Amaranthaceae) and Brugmansia arborea (L.) Lagerheim (Solanaceae) are used in the northern Peruvian Andes for magic-therapeutical purposes. The traditional healers use Iresine herbstii with the ritual aim to expel bad spirits from the body. Furthermore, Iresine herbstii was used in association with other plants, such as Trichocereus pachanoi Britt. et Rose, for divination, to diagnose diseases, and to take possession of another identity. Also, species of Brugmansia have been reported to be used during ritual practices for magical and curative purposes. Given the above evidence, the aim of the present study is to evaluate if the central effects of Iresine herbstii and Brugmansia arborea could be associated with interaction with SNC receptors. Two Iresine herbstii extracts (methanolic and aqueous) and one Brugmansia arborea aqueous extract were tested for in vitro affinity on 5-HT(1A), 5-HT(2A), 5-HT(2C), D1, D2, alpha(1), and alpha(2) receptors by radioligand binding assays. The biological materials for binding assay (cerebral cortex) were taken from male Sprague-Dawley rats. The extracts affinity for receptors is definite as inhibition percentage of radioligand/receptor binding and measured as the radioactivity of remaining complex radioligand/receptor. The data obtained for Iresine extracts have shown a low affinity for the 5-HT(1A) receptor and no affinity for 5-HT(2A) receptor. Otherwise the methanolic extract showed affinity for 5-HT(2C) receptor (IC(50): 34.78 microg/ml) and for D1 receptor (IC(50): 19.63 microg/ml), instead the Iresine aqueous extract displayed a lower affinity for D1 (48.3% at the maximum concentration tested) and a higher value of affinity for D2 receptors (IC(50): 32.08 microg/ml). The Brugmansia aqueous extract displayed affinity for D1 receptors (IC(50): 17.68 microg/ml), D2 receptors (IC(50): 15.95 microg/ml) and weak affinity for the serotoninergic receptors. None of the three extracts showed relevant affinity

  5. Indium phosphide negative electron affinity photocathodes: Surface cleaning and activation

    NASA Astrophysics Data System (ADS)

    Sun, Yun

    InP(100) is a very important semi-conductor for many applications. When activated by Cs and oxygen, the InP surface achieves the state of Negative Electron Affinity (NEA) making the Cs+O/InP system a very efficient electron source. Despite many years of study, the chemical cleaning and activation of InP are still not well understood. In our work, we have established an understanding of the basic physics and chemistry for the chemical cleaning and activation of the InP(100) surface. Synchrotron Radiation Photoelectron Spectroscopy is the main technique used in this study because of its high surface sensitivity and ability to identify chemical species present on the surface at each stage of our process. A clean, stoichiometric InP(100) surface is crucial for obtaining high performance of NEA photocathodes. Therefore, the first part of our study focused on the chemical cleaning of InP(100). We found that hydrogen peroxide based solutions alone, originally developed to clean GaAs(100) surfaces and widely used for InP(100), do not result in clean InP(I00) surfaces because oxide is left on the surface. A second cleaning step, which uses acid solutions like HCl or H2SO4, can remove all the oxide and leave a 0.4 ML protective layer of elemental phosphorous on the surface. The elemental phosphorous can be removed by annealing at 330°C and a clean InP(100) surface can be obtained. Cs deposition on InP(100) surface shows clear charge transfer from the Cs ad-atoms to the substrate. When the Cs/InP(100) surface is dosed with oxygen, the charge transfer from the Cs to substrate is reduced and substrate is oxidized. The activation of InP as a NEA photocathode is carried out by an alternating series of steps consisting of Cs deposition and Cs+O co-deposition. Two types of oxygen are found after activation. The first is dissociated oxygen and the other is a di-oxygen species (peroxide or superoxide). The decay of quantum-yield with time and with annealing is studied and changes in

  6. European bioclimatic affinity groups: Data-model comparisons

    NASA Astrophysics Data System (ADS)

    Laurent, J.-M.; François, L.; Bar-Hen, A.; Bel, L.; Cheddadi, R.

    2008-03-01

    Global vegetation models are remarkably effective when considering large areas such as Europe. However, their accuracy at finer scales remains to be tested. In this paper, we validate the simulation of modern potential vegetation by the CARbon Assimilation In the Biosphere (CARAIB) model in Europe. Then, in order to evaluate the simulation of tree group distributions at a finer scale, in France, we present a comparison between observed distributions, distributions reconstructed from palynological data, and model simulated ranges. The results will help to validate past vegetation simulations. For this analysis, we use Bioclimatic Affinity Groups (BAGs), based on vegetation groups' climatic tolerances and requirements. The CARAIB model was adapted to simulate the net primary productivity (NPP), biomass and range of the arboreal BAGs. In Europe, at a 30' latitude/longitude grid scale, simulated NPP of BAGs are used to define classes of vegetation as being present or absent, with a classification rule, based on Kappa statistics. In France, at a 10' lat./long. scale, a second discriminant analysis, based on Classification And Regression Tree (CART), allows for a similar classification with BAG pollen percentages. At each palynological sampling site, we then compared the simulation to the reconstruction from pollen data. With 30' lat./long. resolution, most thresholds that discriminate NPP into absence or presence classes are low, ranging from 1 to 77 g/m 2. Agreement indices between observed and simulated distributions range from 0.4 to 0.83, with broad scale BAG potential patterns and boundaries being accurately simulated by CARAIB. In France, on the 10' lat./long. scale, pollen percentages correctly account for BAG presence/absence despite non-linear pollen-vegetation relationships. Agreement ratios between observed and reconstructed patterns range from 0.53 to 0.95. At the 10' lat./long. scale, the validation of simulated ranges with pollen data is reliable for 9 of

  7. Accurate proton affinities - Ab initio proton binding energies for N2, CO, CO2, and CH4

    NASA Astrophysics Data System (ADS)

    Komornicki, Andrew; Dixon, David A.

    1992-07-01

    A set of large-scale ab initio molecular orbital calculations on the title molecules and their protonated forms has been performed. The aim of the present study has been to help establish very accurate absolute proton affinities for each of these molecules. For each molecule a series of calculations was performed using increasingly larger atomic natural orbital (ANO) one-particle spaces. The energetics of protonation were then evaluated using four methods. These include self-consistent-field (SCF), second-order perturbation theory (MP2), the singles and doubles coupled-cluster (CCSD) ansatz, and the CCSD(T) method, which includes a perturbational estimate of connected triple excitations. At each of these levels of theory the incompleteness of the one and N-particle spaces was ascertained by an evaluation of the basis set superposition error (BSSE) for the protonation reaction. It is believed that the final proton affinities all attain chemical accuracy in that they contain less than 1 kcal/mol error.

  8. Affinity Chromatography of Native and Recombinant Proteins from Receptors for Insulin and IGF-I to Recombinant Single Chain Antibodies.

    PubMed

    Fujita-Yamaguchi, Yoko

    2015-01-01

    Affinity chromatography is an efficient method to isolate proteins by taking advantage of their affinities for specific molecules such as substrates, inhibitors, antigens, ligands, antibodies, and other interacting molecules, including subunits. Nowadays, we take the effectiveness and excellence of this technology for granted. This essay will mainly cover the use of affinity chromatography based on my experience. PMID:26579073

  9. Affinity Chromatography of Native and Recombinant Proteins from Receptors for Insulin and IGF-I to Recombinant Single Chain Antibodies

    PubMed Central

    Fujita-Yamaguchi, Yoko

    2015-01-01

    Affinity chromatography is an efficient method to isolate proteins by taking advantage of their affinities for specific molecules such as substrates, inhibitors, antigens, ligands, antibodies, and other interacting molecules, including subunits. Nowadays, we take the effectiveness and excellence of this technology for granted. This essay will mainly cover the use of affinity chromatography based on my experience. PMID:26579073

  10. Bosonization of Bosons in Vertex Operator Representations of Affine Kac-Moody Algebras

    NASA Astrophysics Data System (ADS)

    Sakamoto, M.

    1990-08-01

    It is shown that various compactified closed string theories on orbifolds and tori are connected with one another through the change of bases of affine Kac-Moody algebras in vertex operator representations.

  11. Affinity measurement of single chain antibodies: a mathematical method facilitated by statistical software SigmaPlot.

    PubMed

    Safdari, Yaghoub; Farajnia, Safar; Asgharzadeh, Mohammad; Khalili, Masoumeh; Jaliani, Hossein Zarei

    2014-02-01

    Because they are monovalent for antigen, single chain antibodies display a different antibody-antigen interaction pattern from that of full-length antibodies. Using the law of mass action and considering the antibody-antigen binding pattern at OD-100% and OD-50% points, we introduced a formula for estimating single chain antibody affinity. Sigmoid curves of optical density values versus antibody concentrations were drawn and used to determine antibody concentrations at OD-50% points using statistical software SigmaPlot. The OD-50% points were then used to calculate the affinity via the mathematical formula. A software-adapted format of the equation is also presented for further facilitation of the calculation process. The accuracy of this method for affinity calculation was proved by surface plasma resonance. This method offers a precise evaluation of antibody affinity without requiring special material or apparatus, making it possible to be performed in any biological laboratory with minimum facilities. PMID:24555931

  12. Tandem Affinity Purification Combined with Mass Spectrometry to Identify Components of Protein Complexes

    PubMed Central

    Kaiser, Peter; Meierhofer, David; Wang, Xiaorong; Huang, Lan

    2011-01-01

    Most biological processes are governed by multiprotein complexes rather than individual proteins. Identification of protein complexes therefore is becoming increasingly important to gain a molecular understanding of cells and organisms. Mass spectrometry–based proteomics combined with affinity-tag-based protein purification is one of the most effective strategies to isolate and identify protein complexes. The development of tandem-affinity purification approaches has revolutionized proteomics experiments. These two-step affinity purification strategies allow rapid, effective purification of protein complexes and, at the same time, minimize background. Identification of even very low-abundant protein complexes with modern sensitive mass spectrometers has become routine. Here, we describe two general strategies for tandem-affinity purification followed by mass spectrometric identification of protein complexes. PMID:18370112

  13. Quantum image encryption based on generalized affine transform and logistic map

    NASA Astrophysics Data System (ADS)

    Liang, Hao-Ran; Tao, Xiang-Yang; Zhou, Nan-Run

    2016-03-01

    Quantum circuits of the generalized affine transform are devised based on the novel enhanced quantum representation of digital images. A novel quantum image encryption algorithm combining the generalized affine transform with logistic map is suggested. The gray-level information of the quantum image is encrypted by the XOR operation with a key generator controlled by the logistic map, while the position information of the quantum image is encoded by the generalized affine transform. The encryption keys include the independent control parameters used in the generalized affine transform and the logistic map. Thus, the key space is large enough to frustrate the possible brute-force attack. Numerical simulations and analyses indicate that the proposed algorithm is realizable, robust and has a better performance than its classical counterpart in terms of computational complexity.

  14. 77 FR 28411 - Adrenalina, Affinity Technology Group, Inc., Braintech, Inc., Builders Transport, Incorporated...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-14

    ... From the Federal Register Online via the Government Publishing Office SECURITIES AND EXCHANGE COMMISSION Adrenalina, Affinity Technology Group, Inc., Braintech, Inc., Builders Transport, Incorporated... Adrenalina because it has not filed any periodic reports since the period ended September 30, 2008....

  15. Dual-tagging system for the affinity purification of mammalian protein complexes

    SciTech Connect

    Giannone, Richard J; McDonald, W Hayes; Hurst, Gregory {Greg} B; Huang, Ying; Wu, Jun; Liu, Yie; Wang, Yisong

    2007-01-01

    Although affinity purification coupled with mass spectrometry (MS) provides a powerful tool to study protein-protein interactions, this strategy has encountered numerous difficulties when adapted to mammalian cells. Here we describe a Gateway{reg_sign}-compatible dual-tag affinity purification system that integrates regulatable expression, tetracysteine motifs, and various combinations of affinity tags to facilitate the cloning, detection, and purification of bait proteins and their interacting partners. Utilizing the human telomere binding protein TRF2 as a benchmark, we demonstrate bait protein recoveries upwards of approximately 16% from as little as 1-7 x 10{sup 7} cells and successfully identify known TRF2 interacting proteins, suggesting that our dual-tag affinity purification approach is a capable new tool for expanding the capacity to explore mammalian proteomic networks.

  16. Purification of rat liver plasma membranes by wheat-germ-agglutinin affinity partitioning.

    PubMed Central

    Persson, A; Johansson, B; Olsson, H; Jergil, B

    1991-01-01

    Rat liver plasma membranes were separated from other cellular membranes by affinity partitioning in an aqueous polymer two-phase system by using the lectin wheat-germ agglutinin covalently bound to dextran as the affinity ligand. In borate buffer the bulk of membranes partitioned in the poly(ethylene glycol)-rich top phase, whereas plasma membranes were pulled selectively into the dextran-rich bottom phase in the presence of ligand. The purity and yield of plasma membranes prepared by lectin affinity partitioning and by conventional sucrose-density-gradient centrifugation was similar, as judged from marker-enzyme activities. The affinity procedure, not dependent on lengthy centrifugations, is fast and gentle and will be advantageous when studying labile components. PMID:1703408

  17. The effect of immunological adjuvants on the relative affinity of anti-protein antibodies.

    PubMed Central

    Petty, R E; Steward, M W

    1977-01-01

    Inbred mice of a strain (B1OD2 new) known to produce either no detectable antibody or antibody of low affinity to two protein antigens administered in saline, were immunized with human serum transferrin (HST) in one of nine adjuvants. Such immunization increases the level and relative affinity of anti-HST antibody. The adjuvants used varied in the degree to which they augmented these parameters of the antibody response--that is, FCA and FIA were capable of inducing high levels of high affinity antibody, whereas other adjuvants elicited lower levels of high affinity antibody. The possibility is discussed that substances with adjuvant activity may effect antibody production at two stages: (1) at the stage of antigen selection of cells for proliferation and (2) at the stage or proliferation of antibody producing cell precursors. PMID:844888

  18. [Reliability and validity of the Japanese revised version of the television affinity scale].

    PubMed

    Erikawa, Shigeru; Yamada, Kazunari

    2012-02-01

    The purpose of this study was to improve the Japanese version of the Television Affinity Scale (TAS), and to examine the relationship between affinity for television and viewing behavior. Data was based on a random sample of 552 people in Hachioji City (Tokyo, Japan); the response rate was 55.2%. The results revealed the following: (a) the TAS 6-item version had sufficient reliability and validity, (b) the TAS provided information which could not be explained directly by demographic factors, and (c) affinity for television was positively correlated with unplanned and non-concentrated television viewing. These results are consistent with the findings of Erikawa, Yamada, Kawabata, and Numazaki (2007). In addition, the TAS scores correlated positively with entertainment program viewing. This is consistent with the findings of Rubin (1984) that television affinity correlated with ritualized television viewing. The implications of these results for contemporary television viewing are discussed. PMID:22514907

  19. The Binding of Biotin to Sepharose-Avidin Column: Demonstration of the Affinity Chromatography Technique

    ERIC Educational Resources Information Center

    Landman, A. D.; Landman, N. N.

    1976-01-01

    Describes a biochemistry experiment that illustrates the methodology of affinity chromatography by attaching avidin, a glycoprotein in egg white, to a Sepharose matrix in order to bind biotin-containing proteins. (MLH)

  20. Affinity Chromatography of Lactate Dehydrogenase: An Experiment for the Undergraduate Biochemistry Laboratory.

    ERIC Educational Resources Information Center

    Anderson, Alexander J.

    1988-01-01

    Discusses a laboratory technique of enzyme purification by affinity chromatography as part of an undergraduate biochemical methodology course. Provides preparation details of the rat muscle homogenate and reagents. Proposes column requirements and assaying information. (MVL)