Science.gov

Sample records for affine weyl group

  1. Gauge field theory for the Poincaré-Weyl group

    NASA Astrophysics Data System (ADS)

    Babourova, O. V.; Frolov, B. N.; Zhukovsky, V. Ch.

    2006-09-01

    On the basis of the general principles of a gauge field theory, the gauge theory for the Poincaŕe-Weyl group is constructed. It is shown that tetrads are not true gauge fields, but represent functions of true gauge fields: Lorentzian, translational, and dilatational ones. The equations for gauge fields are obtained. Geometrical interpretation of the theory is developed demonstrating that as a result of localization of the Poincaré-Weyl group the space-time becomes a Weyl-Cartan space. The geometrical interpretation of a dilaton field as a component of the metric tensor of a tangent space in Weyl-Cartan geometry is also proposed.

  2. Polytope Contractions within Weyl Group Symmetries

    NASA Astrophysics Data System (ADS)

    Szajewska, Marzena

    2016-09-01

    A general scheme for constructing polytopes is implemented here specifically for the classes of the most important 3D polytopes, namely those whose vertices are labeled by integers relative to a particular basis, here called the ω-basis. The actual number of non-isomorphic polytopes of the same group has no limit. To put practical bounds on the number of polytopes to consider for each group we limit our consideration to polytopes with dominant point (vertex) that contains only nonnegative integers in ω-basis. A natural place to start the consideration of polytopes from is the generic dominant weight which were all three coordinates are the lowest positive integer numbers. Contraction is a continuous change of one or several coordinates to zero.

  3. Conformal field theory on affine Lie groups

    SciTech Connect

    Clubok, K.S.

    1996-04-01

    Working directly on affine Lie groups, we construct several new formulations of the WZW model, the gauged WZW model, and the generic affine-Virasoro action. In one formulation each of these conformal field theories (CFTs) is expressed as a one-dimensional mechanical system whose variables are coordinates on the affine Lie group. When written in terms of the affine group element, this formulation exhibits a two-dimensional WZW term. In another formulation each CFT is written as a two-dimensional field theory, with a three- dimensional WZW term, whose fields are coordinates on the affine group. On the basis of these equivalent formulations, we develop a translation dictionary in which the new formulations on the affine Lie group are understood as mode formulations of the conventional formulations on the Lie group. Using this dictionary, we also express each CFT as a three-dimensional field theory on the Lie group with a four-dimensional WZW term. 36 refs.

  4. On Weyl channels being covariant with respect to the maximum commutative group of unitaries

    SciTech Connect

    Amosov, Grigori G.

    2007-01-15

    We investigate the Weyl channels being covariant with respect to the maximum commutative group of unitary operators. This class includes the quantum depolarizing channel and the 'two-Pauli' channel as well. Then, we show that our estimation of the output entropy for a tensor product of the phase damping channel and the identity channel based upon the decreasing property of the relative entropy allows to prove the additivity conjecture for the minimal output entropy for the quantum depolarizing channel in any prime dimension and for the two-Pauli channel in the qubit case.

  5. Weight-lattice discretization of Weyl-orbit functions

    NASA Astrophysics Data System (ADS)

    Hrivnák, Jiří; Walton, Mark A.

    2016-08-01

    Weyl-orbit functions have been defined for each simple Lie algebra, and permit Fourier-like analysis on the fundamental region of the corresponding affine Weyl group. They have also been discretized, using a refinement of the coweight lattice, so that digitized data on the fundamental region can be Fourier-analyzed. The discretized orbit function has arguments that are redundant if related by the affine Weyl group, while its labels, the Weyl-orbit representatives, invoke the dual affine Weyl group. Here we discretize the orbit functions in a novel way, by using the weight lattice. A cleaner theory results with symmetry between the arguments and labels of the discretized orbit functions. Orthogonality of the new discretized orbit functions is proved, and leads to the construction of unitary, symmetric matrices with Weyl-orbit-valued elements. For one type of orbit function, the matrix coincides with the Kac-Peterson modular S matrix, important for Wess-Zumino-Novikov-Witten conformal field theory.

  6. Identity, Affinity, Reality: Making the Case for Affinity Groups in Elementary School

    ERIC Educational Resources Information Center

    Parsons, Julie; Ridley, Kimberly

    2012-01-01

    Affinity groups are places where students build connections and process "ouch" moments from their classes. Children talk about the isolation they sometimes feel. The relationships students gain through race-based affinity groups enable them to feel less alone with their emotions and help them build a stronger sense of self. At the same time,…

  7. Affine group formulation of the Standard Model coupled to gravity

    SciTech Connect

    Chou, Ching-Yi; Ita, Eyo; Soo, Chopin

    2014-04-15

    In this work we apply the affine group formalism for four dimensional gravity of Lorentzian signature, which is based on Klauder’s affine algebraic program, to the formulation of the Hamiltonian constraint of the interaction of matter and all forces, including gravity with non-vanishing cosmological constant Λ, as an affine Lie algebra. We use the hermitian action of fermions coupled to gravitation and Yang–Mills theory to find the density weight one fermionic super-Hamiltonian constraint. This term, combined with the Yang–Mills and Higgs energy densities, are composed with York’s integrated time functional. The result, when combined with the imaginary part of the Chern–Simons functional Q, forms the affine commutation relation with the volume element V(x). Affine algebraic quantization of gravitation and matter on equal footing implies a fundamental uncertainty relation which is predicated upon a non-vanishing cosmological constant. -- Highlights: •Wheeler–DeWitt equation (WDW) quantized as affine algebra, realizing Klauder’s program. •WDW formulated for interaction of matter and all forces, including gravity, as affine algebra. •WDW features Hermitian generators in spite of fermionic content: Standard Model addressed. •Constructed a family of physical states for the full, coupled theory via affine coherent states. •Fundamental uncertainty relation, predicated on non-vanishing cosmological constant.

  8. An affine projection algorithm using grouping selection of input vectors

    NASA Astrophysics Data System (ADS)

    Shin, JaeWook; Kong, NamWoong; Park, PooGyeon

    2011-10-01

    This paper present an affine projection algorithm (APA) using grouping selection of input vectors. To improve the performance of conventional APA, the proposed algorithm adjusts the number of the input vectors using two procedures: grouping procedure and selection procedure. In grouping procedure, the some input vectors that have overlapping information for update is grouped using normalized inner product. Then, few input vectors that have enough information for for coefficient update is selected using steady-state mean square error (MSE) in selection procedure. Finally, the filter coefficients update using selected input vectors. The experimental results show that the proposed algorithm has small steady-state estimation errors comparing with the existing algorithms.

  9. Weyl Magnon

    NASA Astrophysics Data System (ADS)

    Li, Fei-Ye; Li, Yao-Dong; Yu, Yue; Kim, Yong Baek; Balents, Leon; Chen, Gang

    Conventional magnetic orders in Mott insulators are often believed to be trivial as they are simple product states. In this talk, we argue that this belief is not always right. We study a realistic spin model on the breathing pyrochlore lattice. We find that, although the system has a magnetic ordered ground state, the magnetic excitation is rather nontrivial and supports linear band touchings in its spectrum. This linear band touching is a topological property of the magnon band structure and is thus robust against small perturbation. We thus name this magnon band touching as ``Weyl magnon''. Just like the Weyl fermion, the existence of Weyl magnon suggests the presence of chiral magnon surface states. Unlike the surface Fermi arcs for the Weyl fermions, the chiral surface state for Weyl magnon appears at a finite energy due to the bosonic nature of the magnons. Moreover, the external magnetic field only couples to the spins with a Zeeman term and thus can readily shift the Weyl node position. This provides a way to control the Weyl magnon. Our work will inspire a re-examination of the excitation spectrum of many magnetic ordered systems. Chggst@gmail.com.

  10. MCDHF calculation of electron affinities of Group I and Group IB atomic anions

    NASA Astrophysics Data System (ADS)

    Li, Junqin; Zhao, Zilong; Zhang, Xuemei

    2014-08-01

    The affinities of negative ions for elements of Group I and Group IB have been calculated using the multi-configuration Dirac-Hartree-Fock (MCDHF) method. The difference between the total energy of the ground state of the atom and that of its anion is used to obtain the electron affinity. The theoretical results for these elements agree well with measured values, and have a deviation less than 0.5% with respect to measured values for most of the elements. With a systematic calculation method, this work gives a high-accuracy theoretical value for the electron affinities of the elements of Group I and Group IB. For element Fr, there is no experimental value.

  11. The Purification of a Blood Group A Glycoprotein: An Affinity Chromatography Experiment.

    ERIC Educational Resources Information Center

    Estelrich, J.; Pouplana, R.

    1988-01-01

    Describes a purification process through affinity chromatography necessary to obtain specific blood group glycoproteins from erythrocytic membranes. Discusses the preparation of erythrocytic membranes, extraction of glycoprotein from membranes, affinity chromatography purification, determination of glycoproteins, and results. (CW)

  12. Hybrid Weyl semimetal

    NASA Astrophysics Data System (ADS)

    Li, Fei-Ye; Luo, Xi; Dai, Xi; Yu, Yue; Zhang, Fan; Chen, Gang

    2016-09-01

    We construct a tight-binding model realizing one pair of Weyl nodes and three distinct Weyl semimetals. In the type-I (type-II) Weyl semimetal, both nodes belong to type-I (type-II) Weyl nodes. In addition, there exists a third type, previously undiscovered and dubbed "hybrid Weyl semimetal", in which one Weyl node is of type I while the other is of type II. For the hybrid Weyl semimetal, we further demonstrate the bulk Fermi surfaces and the topologically protected surface states, analyze the unique Landau-level structure and quantum oscillation, and discuss the conditions for possible material realization.

  13. The thraustochytrids: a protist group with mixed affinities.

    PubMed

    Chamberlain, A H; Moss, S T

    1988-01-01

    The thraustochytrids, a group of marine, monocentric protists are reconsidered phylogenetically drawing upon ultrastructural and biochemical characters. They appear to have affiliations with both heterokont groups and other phyla of marine organisms, but still remain an essentially independent entity.

  14. Novel Kac-Moody-type affine extensions of non-crystallographic Coxeter groups

    NASA Astrophysics Data System (ADS)

    Dechant, Pierre-Philippe; Bœhm, Céline; Twarock, Reidun

    2012-07-01

    Motivated by recent results in mathematical virology, we present novel asymmetric {Z}[\\tau ]-integer-valued affine extensions of the non-crystallographic Coxeter groups H2, H3 and H4 derived in a Kac-Moody-type formalism. In particular, we show that the affine reflection planes which extend the Coxeter group H3 generate (twist) translations along two-, three- and five-fold axes of icosahedral symmetry, and we classify these translations in terms of the Fibonacci recursion relation applied to different start values. We thus provide an explanation of previous results concerning affine extensions of icosahedral symmetry in a Coxeter group context, and extend this analysis to the case of the non-crystallographic Coxeter groups H2 and H4. These results will enable new applications of group theory in physics (quasicrystals), biology (viruses) and chemistry (fullerenes).

  15. Spacetimes of Weyl and Ricci type N in higher dimensions

    NASA Astrophysics Data System (ADS)

    Kuchynka, M.; Pravdová, A.

    2016-06-01

    We study the geometrical properties of null congruences generated by an aligned null direction of the Weyl tensor (WAND) in spacetimes of Weyl and Ricci type N (possibly with a non-vanishing cosmological constant) in an arbitrary dimension. We prove that a type N Ricci tensor and a type III or N Weyl tensor have to be aligned. In such spacetimes, the multiple WAND has to be geodetic. For spacetimes with type N aligned Weyl and Ricci tensors, the canonical form of the optical matrix in the twisting and non-twisting cases is derived and the dependence of the Weyl and the Ricci tensors and Ricci rotation coefficients on the affine parameter of the geodetic null congruence generated by the WAND is obtained.

  16. 77 FR 28411 - Adrenalina, Affinity Technology Group, Inc., Braintech, Inc., Builders Transport, Incorporated...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-14

    ... COMMISSION Adrenalina, Affinity Technology Group, Inc., Braintech, Inc., Builders Transport, Incorporated... Exchange Commission that there is a lack of current and accurate information concerning the securities of... appears to the Securities and Exchange Commission that there is a lack of current and accurate...

  17. Development of thermo-responsive hydrogels with immobilized metal affinity groups

    NASA Astrophysics Data System (ADS)

    Yoon, Young-Seo

    A Hydrogel is defined as a polymeric material which possesses the ability to swell in water and retain a significant fraction of water within its structure, but which will not dissolve in water. Hydrogels have been studied by many researchers because they have many useful applications in bio related fields such as drug delivery, bioseparation, and etc. In this thesis, a new hydrogel system that possesses the characteristics of thermo-responsive swelling property and immobilized metal affinity was developed. This affinity material consists of a hydrogel with stimuli responsive swelling characteristics to provide modulated diffusivity and size selectivity. Covalently bound ligands within hydrogels provide highly selective and tunable affinity-based separation. Swelling and affinity properties can be independently controlled by regulating the temperature or pH of the solution to provide a sequential separations scheme. The developed affinity hydrogels incorporate multiple modes of separations or recovery and concentrate specific solutes in chromatographic systems. Thermal sensitive affinity hydrogels were synthesized from a N-isopropylacrylamide (NIPAAm) monomer, a crosslinker (1,4-bismethylene acrylamide) and a ligand attachable co-monomer acrylamide (AAm), using free radical chemistry. The ligand of choice is the metal affinity iminodiacetic acid (IDA) which is bound to hydrogel backbone via a spacer arm. The challenge lay in incorporating affinity ligands without affecting the temperature induced swelling of the hydrogel. Thus, PNIPAAm-Am hydrogels are functionalized with a spacer arm (1,4-butanediol diglycidyl ether), the chelating ligand IDA and a divalent metal ion (Cu2+). This ligand binds histidine groups at high pH and releases them upon protonation of histidine at low pH. This can be used to separate proteins based on the occurrence of surface histidine residues in them. The resulting affinity hydrogel was shown to adsorb the protein chicken egg white

  18. Isolation and purification of blood group antigens using immuno-affinity chromatography on short monolithic columns.

    PubMed

    Mönster, Andrea; Hiller, Oliver; Grüger, Daniela; Blasczyk, Rainer; Kasper, Cornelia

    2011-02-01

    Monolithic columns have gained increasing attention as stationary phases for the separation of biomolecules and biopharmaceuticals. In the present work the performance of monolithic convective interaction media (CIM(®)) chromatography for the purification of blood group antigens was established. The proteins employed in this study are derived from blood group antigens Knops, JMH and Scianna, equipped both with a His-tag and with a V5-tag by which they can be purified. In a first step a monoclonal antibody directed against the V5-tag was immobilized on a CIM(®) Disk with epoxy chemistry. After this, the immobilized CIM(®) Disk was used in immuno-affinity chromatography to purify the three blood group antigens from cell culture supernatant. Up-scaling of the applied technology was carried out using CIM(®) Tubes. In comparison to conventional affinity chromatography, blood group antigens were also purified via His-tag using a HiTrap(®) metal-affinity column. The two purifications have been compared regarding purity, yield and purification speed. Using the monolithic support, it was possible to isolate the blood group antigens with a higher flow rate than using the conventional bed-packed column.

  19. Type-II Weyl semimetals.

    PubMed

    Soluyanov, Alexey A; Gresch, Dominik; Wang, Zhijun; Wu, QuanSheng; Troyer, Matthias; Dai, Xi; Bernevig, B Andrei

    2015-11-26

    Fermions--elementary particles such as electrons--are classified as Dirac, Majorana or Weyl. Majorana and Weyl fermions had not been observed experimentally until the recent discovery of condensed matter systems such as topological superconductors and semimetals, in which they arise as low-energy excitations. Here we propose the existence of a previously overlooked type of Weyl fermion that emerges at the boundary between electron and hole pockets in a new phase of matter. This particle was missed by Weyl because it breaks the stringent Lorentz symmetry in high-energy physics. Lorentz invariance, however, is not present in condensed matter physics, and by generalizing the Dirac equation, we find the new type of Weyl fermion. In particular, whereas Weyl semimetals--materials hosting Weyl fermions--were previously thought to have standard Weyl points with a point-like Fermi surface (which we refer to as type-I), we discover a type-II Weyl point, which is still a protected crossing, but appears at the contact of electron and hole pockets in type-II Weyl semimetals. We predict that WTe2 is an example of a topological semimetal hosting the new particle as a low-energy excitation around such a type-II Weyl point. The existence of type-II Weyl points in WTe2 means that many of its physical properties are very different to those of standard Weyl semimetals with point-like Fermi surfaces.

  20. [Affinity of the elements in group VI of the periodic table to tumors and organs].

    PubMed

    Ando, A; Hisada, K; Ando, I

    1976-10-01

    In order to investigate the tumor affinity radioisotopes, chromium (51Cr), molybdenum (99Mo), tungsten (181W), selenium (75Se) and tellurium (127mTe)--the elements of group VI in the periodic table--were examined, using the rats which were subcutaneously transplanted with Yoshida sarcoma. Seven preprarations, sodium chromate (Na251CrO4), chromium chloride (51CrCl3), normal ammonium molybdate ((NH4)299MoO7), sodium tungstate (Na2181WO4), sodium selenate (Na275SeO4), sodium selenite (Na275SeO3) and tellurous acid (H2127mTeO3) were injected intravenously to each group of tumor bearing rats. These rats were sacrificed at various periods after injection of each preparation: 3 hours, 24 hours and 48 hours in all preparations. The radioactivities of the tumor, blood, muscle, liver, kidney and spleen were measured by a well-type scintillation counter, and retention values (in every tissue including the tumor) were calculated in percent of administered dose per g-tissue weight. All of seven preparations did not have any affinity for malignant tumor. Na251CrO4 and H2127mTeO3 had some affinity for the kidneys, and Na275SeO3 had some affinity for the liver. Na2181WO4 and (NH4)299MoO4 disappeared very rapidly from the blood and soft tissue, and about seventy-five percent of radioactivity was excreted in urine within first 3 hours.

  1. Dental affinities of the C-group inhabitants of Hierakonpolis, Egypt: Nubian, Egyptian, or both?

    PubMed

    Irish, J D; Friedman, R

    2010-04-01

    By c. 2050 BC a small community of C-Group Nubians was present deep within Egyptian territory at the city of Hierakonpolis. Their descendants stayed for the next 400 years. Today, the site of Hierakonpolis, 113 km north of Aswan, is known for its Egyptian deposits; however, it also contains a C-Group cemetery, which documents the northernmost occurrence of this culture. Sixty skeletons were excavated. Tombs feature Nubian architecture and goods, including leather garments, although the use of Egyptian mortuary practices and artifacts increased through time. Dates range from the early 11th Dynasty into the Second Intermediate period. During this time the Egyptian empire occupied Lower Nubia, and their state ideology vilified Nubians. Yet, at least in death, the C-Group inhabitants of Hierakonpolis proudly displayed their cultural heritage. Beyond discerning the reason(s) for their presence at the site (e.g., mercenaries, leather-workers, entertainers?), the focus of this report is to estimate their biological affinity. Were they akin to other Nubians, Egyptians, or both? And, was increasing 'Egyptianization' evident in the mortuary ritual accompanied by concomitant genetic influence? To address these queries, up to 36 dental morphological traits in the recovered individuals were compared to those in 26 regional comparative samples. The most influential traits were identified and phenetic affinities were calculated using the mean measure of divergence and other multivariate analyses. Assuming phenetic similarity provides an estimate of genetic relatedness, these affinities suggest the individuals comprising the C-Group sample were, and remained Nubian during their tenure at Hierakonpolis. PMID:20185126

  2. Weyl semimetals and topological phase transitions

    NASA Astrophysics Data System (ADS)

    Murakami, Shuichi

    Weyl semimetals are semimetals with nondegenerate 3D Dirac cones in the bulk. We showed that in a transition between different Z2 topological phases, i.e. between the normal insulator (NI) and topological insulator (TI), the Weyl semimetal phase necessarily appears when inversion symmetry is broken. In the presentation we show that this scenario holds for materials with any space groups without inversion symmetry. Namely, let us take any band insulator without inversion symmetry, and assume that the gap is closed by a change of an external parameter. In such cases we found that the system runs either into (i) a Weyl semimetal or (ii) a nodal-line semimetal, but no insulator-to-insulator transition happens. This is confirmed by classifying the gap closing in terms of the space groups and the wavevector. In the case (i), the number of Weyl nodes produced at the gap closing ranges from 2 to 12 depending on the symmetry. In (ii) the nodal line is protected by mirror symmetry. In the presentation, we explain some Weyl semimetal and nodal-line semimetals which we find by using this classification. As an example, we explain our result on ab initio calculation on tellurium (Te). Tellurium consists of helical chains, and therefore lacks inversion and mirror symmetries. At high pressure the band gap of Te decreases and finally it runs into a Weyl semimetal phase, as confirmed by our ab initio calculation. In such chiral systems as tellurium, we also theoretically propose chiral transport in systems with such helical structures; namely, an orbital magnetization is induced by a current along the chiral axis, in analogy with a solenoid.

  3. Bosonization of Weyl Fermions

    NASA Astrophysics Data System (ADS)

    Marino, Eduardo

    The electron, discovered by Thomson by the end of the nineteenth century, was the first experimentally observed particle. The Weyl fermion, though theoretically predicted since a long time, was observed in a condensed matter environment in an experiment reported only a few weeks ago. Is there any linking thread connecting the first and the last observed fermion (quasi)particles? The answer is positive. By generalizing the method known as bosonization, the first time in its full complete form, for a spacetime with 3+1 dimensions, we are able to show that both electrons and Weyl fermions can be expressed in terms of the same boson field, namely the Kalb-Ramond anti-symmetric tensor gauge field. The bosonized form of the Weyl chiral currents lead to the angle-dependent magneto-conductance behavior observed in these systems.

  4. Genetic evidence supports linguistic affinity of Mlabri - a hunter-gatherer group in Thailand

    PubMed Central

    2010-01-01

    Background The Mlabri are a group of nomadic hunter-gatherers inhabiting the rural highlands of Thailand. Little is known about the origins of the Mlabri and linguistic evidence suggests that the present-day Mlabri language most likely arose from Tin, a Khmuic language in the Austro-Asiatic language family. This study aims to examine whether the genetic affinity of the Mlabri is consistent with this linguistic relationship, and to further explore the origins of this enigmatic population. Results We conducted a genome-wide analysis of genetic variation using more than fifty thousand single nucleotide polymorphisms (SNPs) typed in thirteen population samples from Thailand, including the Mlabri, Htin and neighboring populations of the Northern Highlands, speaking Austro-Asiatic, Tai-Kadai and Hmong-Mien languages. The Mlabri population showed higher LD and lower haplotype diversity when compared with its neighboring populations. Both model-free and Bayesian model-based clustering analyses indicated a close genetic relationship between the Mlabri and the Htin, a group speaking a Tin language. Conclusion Our results strongly suggested that the Mlabri share more recent common ancestry with the Htin. We thus provided, to our knowledge, the first genetic evidence that supports the linguistic affinity of Mlabri, and this association between linguistic and genetic classifications could reflect the same past population processes. PMID:20302622

  5. Correlation between the linguistic affinity and genetic diversity of Chinese ethnic groups.

    PubMed

    Sun, Hao; Zhou, Chi; Huang, Xiaoqin; Liu, Shuyuan; Lin, Keqin; Yu, Liang; Huang, Kai; Chu, Jiayou; Yang, Zhaoqing

    2013-10-01

    As the world's most populous nation, China exhibits a population with 56 nationalities. We already know the associations between genetic relationship of these ethnic groups in China and their geographic distributions are closely. However, the correlations between genetic diversity and linguistic affinities have still not been fully revealed in China. To investigate these correlations, 31 populations and 1527 samples were chosen, and the languages of this population covered all of the languages spoken in mainland China (including 8 main linguistic families and 16 subfamilies). The genetic polymorphisms of the populations were investigated using 10 autosomal microsatellites. Five ethnic groups, which included 234 samples, were genotyped in this survey, and the data collected from the other 26 populations were obtained from our previous study. An analysis of molecular variance, principal coordinate analysis, clustering analysis using the STRUCTURE and the Mantel test were used to investigate the correlations between genetic diversity and linguistic affinity. These analyses indicated that most populations who speak the same language demonstrate a similar genetic composition, although a few populations deviated from this linkage between genetics and language. The demographic histories of these populations who deviated from this linkage were investigated. Obvious reasons for why evolutionary processes of genetics and linguistics separated in these populations included geographic isolation, gene replacement, language replacement and intermarriage. Thus, we proposed that the consistency of genetic and linguistic evolution is still present in most populations in China; however, this consistency can be broken by many factors, such as isolation, language replacement or intermarriage.

  6. Weyl Mott Insulator.

    PubMed

    Morimoto, Takahiro; Nagaosa, Naoto

    2016-01-01

    Relativistic Weyl fermion (WF) often appears in the band structure of three dimensional magnetic materials and acts as a source or sink of the Berry curvature, i.e., the (anti-)monopole. It has been believed that the WFs are stable due to their topological indices except when two Weyl fermions of opposite chiralities annihilate pairwise. Here, we theoretically show for a model including the electron-electron interaction that the Mott gap opens for each WF without violating the topological stability, leading to a topological Mott insulator dubbed Weyl Mott insulator (WMI). This WMI is characterized by several novel features such as (i) energy gaps in the angle-resolved photo-emission spectroscopy (ARPES) and the optical conductivity, (ii) the nonvanishing Hall conductance, and (iii) the Fermi arc on the surface with the penetration depth diverging as approaching to the momentum at which the Weyl point is projected. Experimental detection of the WMI by distinguishing from conventional Mott insulators is discussed with possible relevance to pyrochlore iridates. PMID:26822023

  7. Weyl card diagrams

    SciTech Connect

    Jones, Gregory; Wang, John E.

    2005-06-15

    To capture important physical properties of a spacetime we construct a new diagram, the card diagram, which accurately draws generalized Weyl spacetimes in arbitrary dimensions by encoding their global spacetime structure, singularities, horizons, and some aspects of causal structure including null infinity. Card diagrams draw only nontrivial directions providing a clearer picture of the geometric features of spacetimes as compared to Penrose diagrams, and can change continuously as a function of the geometric parameters. One of our main results is to describe how Weyl rods are traversable horizons and the entirety of the spacetime can be mapped out. We review Weyl techniques and as examples we systematically discuss properties of a variety of solutions including Kerr-Newman black holes, black rings, expanding bubbles, and recent spacelike-brane solutions. Families of solutions will share qualitatively similar cards. In addition we show how card diagrams not only capture information about a geometry but also its analytic continuations by providing a geometric picture of analytic continuation. Weyl techniques are generalized to higher dimensional charged solutions and applied to generate perturbations of bubble and S-brane solutions by Israel-Khan rods.

  8. Weyl Mott Insulator

    PubMed Central

    Morimoto, Takahiro; Nagaosa, Naoto

    2016-01-01

    Relativistic Weyl fermion (WF) often appears in the band structure of three dimensional magnetic materials and acts as a source or sink of the Berry curvature, i.e., the (anti-)monopole. It has been believed that the WFs are stable due to their topological indices except when two Weyl fermions of opposite chiralities annihilate pairwise. Here, we theoretically show for a model including the electron-electron interaction that the Mott gap opens for each WF without violating the topological stability, leading to a topological Mott insulator dubbed Weyl Mott insulator (WMI). This WMI is characterized by several novel features such as (i) energy gaps in the angle-resolved photo-emission spectroscopy (ARPES) and the optical conductivity, (ii) the nonvanishing Hall conductance, and (iii) the Fermi arc on the surface with the penetration depth diverging as approaching to the momentum at which the Weyl point is projected. Experimental detection of the WMI by distinguishing from conventional Mott insulators is discussed with possible relevance to pyrochlore iridates. PMID:26822023

  9. Functional group based Ligand binding affinity scoring function at atomic environmental level

    PubMed Central

    Varadwaj, Pritish Kumar; Lahiri, Tapobrata

    2009-01-01

    Use of knowledge based scoring function (KBSF) for virtual screening and molecular docking has become an established method for drug discovery. Lack of a precise and reliable free energy function that describes several interactions including water-mediated atomic interaction between amino-acid residues and ligand makes distance based statistical measure as the only alternative. Till now all the distance based scoring functions in KBSF arena use atom singularity concept, which neglects the environmental effect of the atom under consideration. We have developed a novel knowledge-based statistical energy function for protein-ligand complexes which takes atomic environment in to account hence functional group as a singular entity. The proposed knowledge based scoring function is fast, simple to construct, easy to use and moreover it tackle the existing problem of handling molecular orientation in active site pocket. We have designed and used Functional group based Ligand retrieval (FBLR) system which can identify and detect the orientation of functional groups in ligand. This decoy searching was used to build the above KBSF to quantify the activity and affinity of high resolution protein-ligand complexes. We have proposed the probable use of these decoys in molecular build-up as a de-novo drug designing approach. We have also discussed the possible use of the said KSBF in pharmacophore fragment detection and pseudo center based fragment alignment procedure. PMID:19255647

  10. Helicons in Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Pellegrino, Francesco M. D.; Katsnelson, Mikhail I.; Polini, Marco

    2015-11-01

    Helicons are transverse electromagnetic waves propagating in three-dimensional (3D) electron systems subject to a static magnetic field. We present a theory of helicons propagating through a 3D Weyl semimetal. Our approach relies on the evaluation of the optical conductivity tensor from semiclassical Boltzmann transport theory, with the inclusion of certain Berry curvature corrections that have been neglected in the earlier literature (such as the one due to the orbital magnetic moment). We demonstrate that the axion term characterizing the electromagnetic response of Weyl semimetals dramatically alters the helicon dispersion with respect to that in nontopological metals. We also discuss axion-related anomalies that appear in the plasmon dispersion relation.

  11. New type of Weyl semimetal with quadratic double Weyl fermions

    PubMed Central

    Huang, Shin-Ming; Xu, Su-Yang; Belopolski, Ilya; Lee, Chi-Cheng; Chang, Guoqing; Chang, Tay-Rong; Wang, BaoKai; Alidoust, Nasser; Bian, Guang; Neupane, Madhab; Sanchez, Daniel; Zheng, Hao; Jeng, Horng-Tay; Bansil, Arun; Neupert, Titus; Lin, Hsin; Hasan, M. Zahid

    2016-01-01

    Weyl semimetals have attracted worldwide attention due to their wide range of exotic properties predicted in theories. The experimental realization had remained elusive for a long time despite much effort. Very recently, the first Weyl semimetal has been discovered in an inversion-breaking, stoichiometric solid TaAs. So far, the TaAs class remains the only Weyl semimetal available in real materials. To facilitate the transition of Weyl semimetals from the realm of purely theoretical interest to the realm of experimental studies and device applications, it is of crucial importance to identify other robust candidates that are experimentally feasible to be realized. In this paper, we propose such a Weyl semimetal candidate in an inversion-breaking, stoichiometric compound strontium silicide, SrSi2, with many new and novel properties that are distinct from TaAs. We show that SrSi2 is a Weyl semimetal even without spin–orbit coupling and that, after the inclusion of spin–orbit coupling, two Weyl fermions stick together forming an exotic double Weyl fermion with quadratic dispersions and a higher chiral charge of ±2. Moreover, we find that the Weyl nodes with opposite charges are located at different energies due to the absence of mirror symmetry in SrSi2, paving the way for the realization of the chiral magnetic effect. Our systematic results not only identify a much-needed robust Weyl semimetal candidate but also open the door to new topological Weyl physics that is not possible in TaAs. PMID:26787914

  12. New type of Weyl semimetal with quadratic double Weyl fermions.

    PubMed

    Huang, Shin-Ming; Xu, Su-Yang; Belopolski, Ilya; Lee, Chi-Cheng; Chang, Guoqing; Chang, Tay-Rong; Wang, BaoKai; Alidoust, Nasser; Bian, Guang; Neupane, Madhab; Sanchez, Daniel; Zheng, Hao; Jeng, Horng-Tay; Bansil, Arun; Neupert, Titus; Lin, Hsin; Hasan, M Zahid

    2016-02-01

    Weyl semimetals have attracted worldwide attention due to their wide range of exotic properties predicted in theories. The experimental realization had remained elusive for a long time despite much effort. Very recently, the first Weyl semimetal has been discovered in an inversion-breaking, stoichiometric solid TaAs. So far, the TaAs class remains the only Weyl semimetal available in real materials. To facilitate the transition of Weyl semimetals from the realm of purely theoretical interest to the realm of experimental studies and device applications, it is of crucial importance to identify other robust candidates that are experimentally feasible to be realized. In this paper, we propose such a Weyl semimetal candidate in an inversion-breaking, stoichiometric compound strontium silicide, SrSi2, with many new and novel properties that are distinct from TaAs. We show that SrSi2 is a Weyl semimetal even without spin-orbit coupling and that, after the inclusion of spin-orbit coupling, two Weyl fermions stick together forming an exotic double Weyl fermion with quadratic dispersions and a higher chiral charge of ±2. Moreover, we find that the Weyl nodes with opposite charges are located at different energies due to the absence of mirror symmetry in SrSi2, paving the way for the realization of the chiral magnetic effect. Our systematic results not only identify a much-needed robust Weyl semimetal candidate but also open the door to new topological Weyl physics that is not possible in TaAs. PMID:26787914

  13. New type of Weyl semimetal with quadratic double Weyl fermions.

    PubMed

    Huang, Shin-Ming; Xu, Su-Yang; Belopolski, Ilya; Lee, Chi-Cheng; Chang, Guoqing; Chang, Tay-Rong; Wang, BaoKai; Alidoust, Nasser; Bian, Guang; Neupane, Madhab; Sanchez, Daniel; Zheng, Hao; Jeng, Horng-Tay; Bansil, Arun; Neupert, Titus; Lin, Hsin; Hasan, M Zahid

    2016-02-01

    Weyl semimetals have attracted worldwide attention due to their wide range of exotic properties predicted in theories. The experimental realization had remained elusive for a long time despite much effort. Very recently, the first Weyl semimetal has been discovered in an inversion-breaking, stoichiometric solid TaAs. So far, the TaAs class remains the only Weyl semimetal available in real materials. To facilitate the transition of Weyl semimetals from the realm of purely theoretical interest to the realm of experimental studies and device applications, it is of crucial importance to identify other robust candidates that are experimentally feasible to be realized. In this paper, we propose such a Weyl semimetal candidate in an inversion-breaking, stoichiometric compound strontium silicide, SrSi2, with many new and novel properties that are distinct from TaAs. We show that SrSi2 is a Weyl semimetal even without spin-orbit coupling and that, after the inclusion of spin-orbit coupling, two Weyl fermions stick together forming an exotic double Weyl fermion with quadratic dispersions and a higher chiral charge of ±2. Moreover, we find that the Weyl nodes with opposite charges are located at different energies due to the absence of mirror symmetry in SrSi2, paving the way for the realization of the chiral magnetic effect. Our systematic results not only identify a much-needed robust Weyl semimetal candidate but also open the door to new topological Weyl physics that is not possible in TaAs.

  14. STM studies of Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Inoue, Hiroyuki; Gyenis, Andras; Oh, Seong Woo; Li, Jian; Wang, Zhi Jun; Bernevig, Andrei; Ni, Ni; Yazdani, Ali

    Weyl semimetal exhibits a new gapless topological phase, which is characterized by an even number of band touching points of two non-degenerate bands in the bulk, called Weyl nodes. The surfaces of these compounds are expected to harbor topologically protected surface states with disconnected Fermi surfaces, called Fermi arcs, which connect surface projections of the Weyl nodes with opposing Chern numbers. Among the theoretically predicted Weyl semimetals, there have been several experimental reports on the presence of Fermi arcs in inversion-symmetry-broken monoarsenides, such as TaAs. In this talk, we will present atomic-scale imaging and spectroscopic mapping of the electronic properties of TaAs and other Weyl semimetal candidates. Such measurements have the potential to directly visualize the Fermi arc surface states of these compounds and to probe their properties. This work is supported by ARO and NSF.

  15. High affinity group III mGluRs regulate mossy fiber input to CA3 interneurons

    PubMed Central

    Cosgrove, Kathleen E.; Meriney, Stephen D.; Barrionuevo, Germán

    2010-01-01

    Stratum lacunosum-moleculare interneurons (L-Mi) in hippocampal area CA3 target the apical dendrite of pyramidal cells providing feedforward inhibition. Here we report that selective activation of group III metabotropic glutamate receptors (mGluRs) 4/8 with L-(+)-2-amino-4-phosphnobytyric acid (L-AP4; 10 μM) decreased the probability of glutamate release from the mossy fiber (MF) terminals synapsing onto L-Mi. Consistent with this interpretation, application of L-AP4 in the presence of 3 mM strontium decreased the frequency of asynchronous MF EPSCs in L-Mi. Furthermore, the dose response curve showed that L-AP4 at 400 μM produced no further decrease in MF EPSC amplitude compared to 20 μM L-AP4, indicating the lack of mGluRs 7 at these MF terminals. We also found that one mechanism of mGluRs 4/8-mediated inhibition of release is linked to N-type voltage gated calcium channels at MF terminals. Application of the group III mGluR antagonist MSOP (100 μM) demonstrated that mGluRs 4/8 are neither tonically active nor activated by low and moderate frequencies of activity. However, trains of stimuli to the MF at 20 and 40Hz delivered during the application of MSOP revealed a relief of inhibition of transmitter release and an increase in the overall probability of action potential firing in the postsynaptic L-Mi. Interestingly, the time to first action potential was significantly shorter in the presence of MSOP, indicating that mGluR 4/8 activation delays L-Mi firing in response to MF activity. Taken together, our data demonstrate that the timing and probability of action potentials in L-Mi evoked by MF synaptic input is regulated by the activation of presynaptic high affinity group III mGluRs. PMID:20824730

  16. On the Weyl curvature hypothesis

    SciTech Connect

    Stoica, Ovidiu Cristinel

    2013-11-15

    The Weyl curvature hypothesis of Penrose attempts to explain the high homogeneity and isotropy, and the very low entropy of the early universe, by conjecturing the vanishing of the Weyl tensor at the Big-Bang singularity. In previous papers it has been proposed an equivalent form of Einstein’s equation, which extends it and remains valid at an important class of singularities (including in particular the Schwarzschild, FLRW, and isotropic singularities). Here it is shown that if the Big-Bang singularity is from this class, it also satisfies the Weyl curvature hypothesis. As an application, we study a very general example of cosmological models, which generalizes the FLRW model by dropping the isotropy and homogeneity constraints. This model also generalizes isotropic singularities, and a class of singularities occurring in Bianchi cosmologies. We show that the Big-Bang singularity of this model is of the type under consideration, and satisfies therefore the Weyl curvature hypothesis. -- Highlights: •The singularities we introduce are described by finite geometric/physical objects. •Our singularities have smooth Riemann and Weyl curvatures. •We show they satisfy Penrose’s Weyl curvature hypothesis (Weyl=0 at singularities). •Examples: FLRW, isotropic singularities, an extension of Schwarzschild’s metric. •Example: a large class of singularities which may be anisotropic and inhomogeneous.

  17. Protecting group-free immobilization of glycans for affinity chromatography using glycosylsulfonohydrazide donors.

    PubMed

    Hernandez Armada, Daniel; Santos, Jobette T; Richards, Michele R; Cairo, Christopher W

    2015-11-19

    A variety of applications in glycobiology exploit affinity chromatography through the immobilization of glycans to a solid support. Although several strategies are known, they may provide certain advantages or disadvantages in how the sugar is attached to the affinity matrix. Additionally, the products of some methods may be hard to characterize chemically due to non-specific reactions. The lack of specificity in standard immobilization reactions makes affinity chromatography with expensive oligosaccharides challenging. As a result, methods for specific and efficient immobilization of oligosaccharides remain of interest. Herein, we present a method for the immobilization of saccharides using N'-glycosylsulfonohydrazide (GSH) carbohydrate donors. We have compared GSH immobilization to known strategies, including the use of divinyl sulfone (DVS) and cyanuric chloride (CC), for the generation of affinity matrices. We compared immobilization methods by determining their immobilization efficiency, based on a comparison of the mass of immobilized carbohydrate and the concentration of active binding sites (determined using lectins). Our results indicate that immobilization using GSH donors can provide comparable amounts of carbohydrate epitopes on solid support while consuming almost half of the material required for DVS immobilization. The lectin binding capacity observed for these two methods suggests that GSH immobilization is more efficient. We propose that this method of oligosaccharide immobilization will be an important tool for glycobiologists working with precious glycan samples purified from biological sources. PMID:26454791

  18. Astrophysical aspects of Weyl gravity

    NASA Technical Reports Server (NTRS)

    Kazanas, Demosthenes

    1991-01-01

    This paper discusses the astrophysical implications and applications of Weyl gravity, which is the theory resulting from the unique action allowed under the principle of local scale invariance in Einstein gravity. These applications include galactic dynamics, the mass-radius relation, the cosmological constant, and the 'Modified Newtonian Dynamics' proposed by Milgrom (1983). The relation of Weyl gravity to other scale-invariant theories is addressed.

  19. Holographic superconductors with Weyl corrections

    NASA Astrophysics Data System (ADS)

    Momeni, Davood; Raza, Muhammad; Myrzakulov, Ratbay

    2016-10-01

    A quick review on the analytical aspects of holographic superconductors (HSCs) with Weyl corrections has been presented. Mainly, we focus on matching method and variational approaches. Different types of such HSC have been investigated — s-wave, p-wave and Stúckelberg ones. We also review the fundamental construction of a p-wave type, in which the non-Abelian gauge field is coupled to the Weyl tensor. The results are compared from numerics to analytical results.

  20. Anomalous Hall effect in Weyl metals.

    PubMed

    Burkov, A A

    2014-10-31

    We present a theory of the anomalous Hall effect (AHE) in a doped Weyl semimetal, or Weyl metal, including both intrinsic and extrinsic (impurity scattering) contributions. We demonstrate that a Weyl metal is distinguished from an ordinary ferromagnetic metal by the absence of the extrinsic and the Fermi surface part of the intrinsic contributions to the AHE, as long as the Fermi energy is sufficiently close to the Weyl nodes. The AHE in a Weyl metal is thus shown to be a purely intrinsic, universal property, fully determined by the location of the Weyl nodes in the first Brillouin zone.

  1. Chronic imipramine treatment reduces inhibitory properties of group II mGlu receptors without affecting their density or affinity.

    PubMed

    Pałucha, Agnieszka; Brański, Piotr; Kĺak, Kinga; Sowa, Magdalena

    2007-01-01

    An increasing body of evidence indicates an important role of the glutamatergic system in the pathophysiology of depression. Not only ionotropic but also metabotropic glutamate receptors (mGlu receptors) have been suggested to be involved in the mechanism of action of antidepressant drugs. Moreover, several mGlu receptor ligands possess a great antidepressant potential. Group II mGlu receptor antagonists have been shown to induce antidepressant-like effects in rodents. An influence of chronic antidepressant treatment on group II mGlu receptors has also been suggested. In our studies, we examined an influence of repeated (21-day) imipramine treatment on the density of group II mGlu receptors and affinity of mGlu2 and mGlu3 receptor radioligand [3H]-LY341495 for group II mGlu receptors in the rat brain hippocampus and frontal cortex. Moreover, we analyzed an influence of chronic imipramine administration on the ability of group II mGlu receptor agonist, 2R,4R-APDC, to inhibit forskolin-stimulated cAMP accumulation in the rat brain cortical slices. We found that inhibitory properties of group II mGlu receptors were diminished after chronic, but not acute imipramine administration. However, no changes in the density or affinity of the mGlu2 and mGlu3 receptor ligand for group II mGlu receptors were observed. PMID:18048952

  2. Electromagnetic response of Weyl semimetals.

    PubMed

    Vazifeh, M M; Franz, M

    2013-07-12

    It has been suggested recently, based on subtle field-theoretical considerations, that the electromagnetic response of Weyl semimetals and the closely related Weyl insulators can be characterized by an axion term θE·B with space and time dependent axion angle θ(r,t). Here we construct a minimal lattice model of the Weyl medium and study its electromagnetic response by a combination of analytical and numerical techniques. We confirm the existence of the anomalous Hall effect expected on the basis of the field theory treatment. We find, contrary to the latter, that chiral magnetic effect (that is, ground state charge current induced by the applied magnetic field) is absent in both the semimetal and the insulator phase. We elucidate the reasons for this discrepancy.

  3. Weyl's Lagrangian in teleparallel form

    SciTech Connect

    Burnett, James; Vassiliev, Dmitri

    2009-10-15

    The Weyl Lagrangian is the massless Dirac Lagrangian. The dynamical variable in the Weyl Lagrangian is a spinor field. We provide a mathematically equivalent representation in terms of a different dynamical variable - the coframe (an orthonormal tetrad of covector fields). We show that when written in terms of this dynamical variable, the Weyl Lagrangian becomes remarkably simple: it is the wedge product of axial torsion of the teleparallel connection with a teleparallel lightlike element of the coframe. We also examine the issues of U(1)-invariance and conformal invariance. Examination of the latter motivates us to introduce a positive scalar field (equivalent to a density) as an additional dynamical variable; this makes conformal invariance self-evident.

  4. Star product and contact Weyl manifold

    NASA Astrophysics Data System (ADS)

    Yoshioka, Akira

    2016-09-01

    Contact algebra is introduced, which is a Lie algebra given as a one-dimesional exrention of a Weyl algebra. A contact Lie algebra bundle called a contact Weyl manifold is considered over a symplectic manifold which contains a Weyl manifold as a subbundle. A relationship is discussed between deformation quantization on s symplectic manifold and a Weyl manifold over the symplectic manifold. The contact Weyl manifold has a canonical connection which gives rise the relation, and is regarded as an extension of Fedosov connection.

  5. Quantum Weyl invariance and cosmology

    NASA Astrophysics Data System (ADS)

    Dabholkar, Atish

    2016-09-01

    Equations for cosmological evolution are formulated in a Weyl invariant formalism to take into account possible Weyl anomalies. Near two dimensions, the renormalized cosmological term leads to a nonlocal energy-momentum tensor and a slowly decaying vacuum energy. A natural generalization to four dimensions implies a quantum modification of Einstein field equations at long distances. It offers a new perspective on time-dependence of couplings and naturalness with potentially far-reaching consequences for the cosmological constant problem, inflation, and dark energy.

  6. Anomalous Hall effect in Weyl superconductors

    NASA Astrophysics Data System (ADS)

    Bednik, G.; Zyuzin, A. A.; Burkov, A. A.

    2016-08-01

    We present a theory of the anomalous Hall effect in a topological Weyl superconductor with broken time reversal symmetry. Specifically, we consider a ferromagnetic Weyl metal with two Weyl nodes of opposite chirality near the Fermi energy. In the presence of inversion symmetry, such a metal experiences a weak-coupling Bardeen-Cooper-Schrieffer instability, with pairing of parity-related eigenstates. Due to the nonzero topological charge, carried by the Weyl nodes, such a superconductor is necessarily topologically nontrivial, with Majorana surface states coexisting with the Fermi arcs of the normal Weyl metal. We demonstrate that, surprisingly, the anomalous Hall conductivity of such a superconducting Weyl metal coincides with that of a nonsuperconducting one, under certain conditions, in spite of the nonconservation of charge in a superconductor. We relate this to the existence of an extra (nearly) conserved quantity in a Weyl metal, the chiral charge.

  7. The Weyl Definition of Redshifts

    ERIC Educational Resources Information Center

    Harvey, Alex

    2012-01-01

    In 1923, Weyl published a (not widely known) protocol for the calculation of redshifts. It is completely independent of the origin of the shift and treats it as a pure Doppler shift. The method is comprehensive and depends solely on the relation between the world lines of source and observer. It has the merit of simplicity of statement and…

  8. Cambrian origins and affinities of an enigmatic fossil group of arthropods.

    PubMed

    Vaccari, N E; Edgecombe, G D; Escudero, C

    2004-07-29

    Euthycarcinoids are one of the most enigmatic arthropod groups, having been assigned to nearly all major clades of Arthropoda. Recent work has endorsed closest relationships with crustaceans or a myriapod-hexapod assemblage, a basal position in the Euarthropoda, or a placement in the Hexapoda or hexapod stem group. Euthycarcinoids are known from 13 species ranging in age from Late Ordovician or Early Silurian to Middle Triassic, all in freshwater or brackish water environments. Here we describe a euthycarcinoid from marine strata in Argentina dating from the latest Cambrian period, extending the group's record back as much as 50 million years. Despite its antiquity and marine occurrence, the Cambrian species demonstrates that morphological details were conserved in the transition to fresh water. Trackways in the same unit as the euthycarcinoid strengthen arguments that similar traces of subaerial origin from Cambro-Ordovician rocks were made by euthycarcinoids. Large mandibles in euthycarcinoids are confirmed by the Cambrian species. A morphology-based phylogeny resolves euthycarcinoids as stem-group Mandibulata, sister to the Myriapoda and Crustacea plus Hexapoda.

  9. Cambrian origins and affinities of an enigmatic fossil group of arthropods.

    PubMed

    Vaccari, N E; Edgecombe, G D; Escudero, C

    2004-07-29

    Euthycarcinoids are one of the most enigmatic arthropod groups, having been assigned to nearly all major clades of Arthropoda. Recent work has endorsed closest relationships with crustaceans or a myriapod-hexapod assemblage, a basal position in the Euarthropoda, or a placement in the Hexapoda or hexapod stem group. Euthycarcinoids are known from 13 species ranging in age from Late Ordovician or Early Silurian to Middle Triassic, all in freshwater or brackish water environments. Here we describe a euthycarcinoid from marine strata in Argentina dating from the latest Cambrian period, extending the group's record back as much as 50 million years. Despite its antiquity and marine occurrence, the Cambrian species demonstrates that morphological details were conserved in the transition to fresh water. Trackways in the same unit as the euthycarcinoid strengthen arguments that similar traces of subaerial origin from Cambro-Ordovician rocks were made by euthycarcinoids. Large mandibles in euthycarcinoids are confirmed by the Cambrian species. A morphology-based phylogeny resolves euthycarcinoids as stem-group Mandibulata, sister to the Myriapoda and Crustacea plus Hexapoda. PMID:15282604

  10. Photonic Weyl degeneracies in magnetized plasma.

    PubMed

    Gao, Wenlong; Yang, Biao; Lawrence, Mark; Fang, Fengzhou; Béri, Benjamin; Zhang, Shuang

    2016-01-01

    Weyl particles are elusive relativistic fermionic particles with vanishing mass. While not having been found as an elementary particle, they are found to emerge in solid-state materials where three-dimensional bands develop a topologically protected point-like crossing, a so-called Weyl point. Photonic Weyl points have been recently realised in three-dimensional photonic crystals with complex structures. Here we report the presence of a novel type of plasmonic Weyl points in a naturally existing medium-magnetized plasma, in which Weyl points arise as crossings between purely longitudinal plasma modes and transverse helical propagating modes. These photonic Weyl points are right at the critical transition between a Weyl point with the traditional closed finite equifrequency surfaces and the newly proposed 'type II' Weyl points with open equifrequency surfaces. Striking observable features of plasmon Weyl points include a half k-plane chirality manifested in electromagnetic reflection. Our study introduces Weyl physics into homogeneous photonic media, which could pave way for realizing new topological photonic devices. PMID:27506514

  11. Chiral anomaly and transport in Weyl metals.

    PubMed

    Burkov, A A

    2015-03-25

    We present an overview of our recent work on transport phenomena in Weyl metals, which may be connected to their nontrivial topological properties, particularly to chiral anomaly. We argue that there are two basic phenomena, which are related to chiral anomaly in Weyl metals: anomalous Hall effect (AHE) and chiral magnetic effect (CME). While AHE is in principle present in any ferromagnetic metal, we demonstrate that a magnetic Weyl metal is distinguished from an ordinary ferromagnetic metal by the absence of the extrinsic and the Fermi surface part of the intrinsic contributions to the AHE, as long as the Fermi energy is sufficiently close to the Weyl nodes. The AHE in a Weyl metal is thus shown to be a purely intrinsic, universal property, fully determined by the location of the Weyl nodes in the first Brillouin zone. In other words, a ferromagnetic Weyl metal may be thought of as the only example of a ferromagnetic metal with a purely intrinsic AHE. We further develop a fully microscopic theory of diffusive magnetotransport in Weyl metals. We derive coupled diffusion equations for the total and axial (i.e. node-antisymmetric) charge densities and show that chiral anomaly manifests as a magnetic-field-induced coupling between them. We demonstrate that an experimentally-observable consequence of CME in magnetotransport in Weyl metals is a quadratic negative magnetoresistance, which will dominate all other contributions to magnetoresistance under certain conditions and may be regarded as a smoking-gun transport characteristic, unique to Weyl metals.

  12. Chiral anomaly and transport in Weyl metals

    NASA Astrophysics Data System (ADS)

    Burkov, A. A.

    2015-03-01

    We present an overview of our recent work on transport phenomena in Weyl metals, which may be connected to their nontrivial topological properties, particularly to chiral anomaly. We argue that there are two basic phenomena, which are related to chiral anomaly in Weyl metals: anomalous Hall effect (AHE) and chiral magnetic effect (CME). While AHE is in principle present in any ferromagnetic metal, we demonstrate that a magnetic Weyl metal is distinguished from an ordinary ferromagnetic metal by the absence of the extrinsic and the Fermi surface part of the intrinsic contributions to the AHE, as long as the Fermi energy is sufficiently close to the Weyl nodes. The AHE in a Weyl metal is thus shown to be a purely intrinsic, universal property, fully determined by the location of the Weyl nodes in the first Brillouin zone. In other words, a ferromagnetic Weyl metal may be thought of as the only example of a ferromagnetic metal with a purely intrinsic AHE. We further develop a fully microscopic theory of diffusive magnetotransport in Weyl metals. We derive coupled diffusion equations for the total and axial (i.e. node-antisymmetric) charge densities and show that chiral anomaly manifests as a magnetic-field-induced coupling between them. We demonstrate that an experimentally-observable consequence of CME in magnetotransport in Weyl metals is a quadratic negative magnetoresistance, which will dominate all other contributions to magnetoresistance under certain conditions and may be regarded as a smoking-gun transport characteristic, unique to Weyl metals.

  13. Photonic Weyl degeneracies in magnetized plasma

    NASA Astrophysics Data System (ADS)

    Gao, Wenlong; Yang, Biao; Lawrence, Mark; Fang, Fengzhou; Béri, Benjamin; Zhang, Shuang

    2016-08-01

    Weyl particles are elusive relativistic fermionic particles with vanishing mass. While not having been found as an elementary particle, they are found to emerge in solid-state materials where three-dimensional bands develop a topologically protected point-like crossing, a so-called Weyl point. Photonic Weyl points have been recently realised in three-dimensional photonic crystals with complex structures. Here we report the presence of a novel type of plasmonic Weyl points in a naturally existing medium--magnetized plasma, in which Weyl points arise as crossings between purely longitudinal plasma modes and transverse helical propagating modes. These photonic Weyl points are right at the critical transition between a Weyl point with the traditional closed finite equifrequency surfaces and the newly proposed `type II' Weyl points with open equifrequency surfaces. Striking observable features of plasmon Weyl points include a half k-plane chirality manifested in electromagnetic reflection. Our study introduces Weyl physics into homogeneous photonic media, which could pave way for realizing new topological photonic devices.

  14. Chiral anomaly and transport in Weyl metals.

    PubMed

    Burkov, A A

    2015-03-25

    We present an overview of our recent work on transport phenomena in Weyl metals, which may be connected to their nontrivial topological properties, particularly to chiral anomaly. We argue that there are two basic phenomena, which are related to chiral anomaly in Weyl metals: anomalous Hall effect (AHE) and chiral magnetic effect (CME). While AHE is in principle present in any ferromagnetic metal, we demonstrate that a magnetic Weyl metal is distinguished from an ordinary ferromagnetic metal by the absence of the extrinsic and the Fermi surface part of the intrinsic contributions to the AHE, as long as the Fermi energy is sufficiently close to the Weyl nodes. The AHE in a Weyl metal is thus shown to be a purely intrinsic, universal property, fully determined by the location of the Weyl nodes in the first Brillouin zone. In other words, a ferromagnetic Weyl metal may be thought of as the only example of a ferromagnetic metal with a purely intrinsic AHE. We further develop a fully microscopic theory of diffusive magnetotransport in Weyl metals. We derive coupled diffusion equations for the total and axial (i.e. node-antisymmetric) charge densities and show that chiral anomaly manifests as a magnetic-field-induced coupling between them. We demonstrate that an experimentally-observable consequence of CME in magnetotransport in Weyl metals is a quadratic negative magnetoresistance, which will dominate all other contributions to magnetoresistance under certain conditions and may be regarded as a smoking-gun transport characteristic, unique to Weyl metals. PMID:25712419

  15. Photonic Weyl degeneracies in magnetized plasma

    PubMed Central

    Gao, Wenlong; Yang, Biao; Lawrence, Mark; Fang, Fengzhou; Béri, Benjamin; Zhang, Shuang

    2016-01-01

    Weyl particles are elusive relativistic fermionic particles with vanishing mass. While not having been found as an elementary particle, they are found to emerge in solid-state materials where three-dimensional bands develop a topologically protected point-like crossing, a so-called Weyl point. Photonic Weyl points have been recently realised in three-dimensional photonic crystals with complex structures. Here we report the presence of a novel type of plasmonic Weyl points in a naturally existing medium—magnetized plasma, in which Weyl points arise as crossings between purely longitudinal plasma modes and transverse helical propagating modes. These photonic Weyl points are right at the critical transition between a Weyl point with the traditional closed finite equifrequency surfaces and the newly proposed ‘type II' Weyl points with open equifrequency surfaces. Striking observable features of plasmon Weyl points include a half k-plane chirality manifested in electromagnetic reflection. Our study introduces Weyl physics into homogeneous photonic media, which could pave way for realizing new topological photonic devices. PMID:27506514

  16. Spacetimes with vector distortion: Inflation from generalised Weyl geometry

    NASA Astrophysics Data System (ADS)

    Beltrán Jiménez, Jose; Koivisto, Tomi S.

    2016-05-01

    Spacetime with general linear vector distortion is introduced. Thus, the torsion and the nonmetricity of the affine connection are assumed to be proportional to a vector field (and not its derivatives). The resulting two-parameter family of non-Riemannian geometries generalises the conformal Weyl geometry and some other interesting special cases. Taking into account the leading nonlinear correction to the Einstein-Hilbert action results uniquely in the one-parameter extension of the Starobinsky inflation known as the alpha-attractor. The most general quadratic curvature action introduces, in addition to the canonical vector kinetic term, novel ghost-free vector-tensor interactions.

  17. Tectonic affinity of the Mathinna Group in the Lachlan Fold Belt

    NASA Astrophysics Data System (ADS)

    Powell, C. McA.; Baillie, P. W.

    1992-11-01

    Pre-Carboniferous rocks of Tasmania comprise two disparate terranes which were brought together during the middle Palaeozoic. The Eastern Tasmania Terrane consists of middle Palaeozoic granitoids and the Mathinna Group, a turbidite succession of Ordovician to Early Devonian age. The older part of the adjacent Western Tasmania Terrane, the only part of the southern Tasmanides with exposed Precambrian basement, is related to the Kanmantoo Fold Belt and older tectonic provinces located northwest of Tasmania. The younger part of the Western Tasmania Terrane comprises Upper Cambrian to Lower Devonian terrestrial to shallow-marine siliciclastics and carbonates—a marked contrast to the coeval deep-water deposits of the Mathinna Group. The contact between the two terranes is concealed by the Tamar Valley in northern Tasmania. The main folds in the Eastern Tasmania Terrane verge to the northeast, whereas structures in the adjacent Western Tasmania Terrane indicate tectonic transport to the southwest, with the break in structural facing coinciding with the Tamar Valley. Reinvestigation of the structure of the westernmost Eastern Tasmania Terrane, where there is a large recumbent F 1-fold (> 10 km extent in profile view), raises the possibility that a second generation of structures, previously regarded as of only local importance, could have caused rotation of the upright to steeply west-dipping axial surfaces of F 1-folds to recumbent attitudes during southwesterly-directed thrusting. In this interpretation, recumbent or near-recumbent zones could reflect ramps in a sole thrust, and the mid-Devonian imbricate thrust zone near Beaconsfield on the west bank of the Tamar River would be either the frontal thrust system or a splay off the sole thrust which continues westward beneath the exposed ?Precambrian Badger Head Block. The implications of this new interpretation are that docking of the Eastern and Western Tasmania terranes must have occurred after the Ordovician but

  18. Picobiliphytes: a marine picoplanktonic algal group with unknown affinities to other eukaryotes.

    PubMed

    Not, Fabrice; Valentin, Klaus; Romari, Khadidja; Lovejoy, Connie; Massana, Ramon; Töbe, Kerstin; Vaulot, Daniel; Medlin, Linda K

    2007-01-12

    Environmental sequencing has revealed unimagined diversity among eukaryotic picoplankton. A distinct picoplanktonic algal group, initially detected from 18S ribosomal DNA (rDNA) sequences, was hybridized with rRNA-targeted probes, detected by tyramide signal amplification-fluorescent in situ hybridization, and showed an organelle-like body with orange fluorescence indicative of phycobilins. Using this fluorescence signal, cells were sorted by flow cytometry and probed. Hybridized cells contained a 4',6'-diamidino-2-phenylindole-stained organelle resembling a plastid with a nucleomorph. This suggests that they may be secondary endosymbiotic algae. Pending the isolation of living cells and their formal description, these algae have been termed picobiliphytes.

  19. Genetic affinities among Mongol ethnic groups and their relationship to Turks.

    PubMed

    Machulla, H K G; Batnasan, D; Steinborn, F; Uyar, F A; Saruhan-Direskeneli, G; Oguz, F S; Carin, M N; Dorak, M T

    2003-04-01

    The central Asian country Mongolia is home to more than 20 tribes and ethnic groups, some of which are related to neighboring Turkic populations. The main Mongolian people, Khalkha, live in central and eastern Mongolia while the Tsaatan minority lives in the north of the country. The Oold minority is from the western Altai mountain region and live in close proximity with Turkic people. We have typed the HLA-A, -B, -Cw, -DRB1 and -DQB1 loci by PCR-SSP in these three Mongolian populations as well as a sample of the German population. To examine their genetic relationships, a sample of the Turkish population already typed at the HLA-A, -B and -DRB1 loci were used. Altogether five populations were analyzed: Khalkha (n = 100), Tsaatan (n = 72), Oold (n = 52), German (n = 260) and (Anatolian) Turkish (n = 498). Nei's unbiased genetic identity (GI) and genetic distance (GD) were estimated from genotypes using PopGene v1.31, and dendrograms were constructed using phylip. The results suggested a close relationship of the Khalkha to the Tsaatan. The Turks and Germans were equally distant to all three Mongolian populations. These results confirmed the lack of strong genetic relationship between the Mongols and the Turks despite the close relationship of their languages (Altaic group) and shared historical neighborhood. This study has provided useful population data for genetic and anthropologic studies bridging eastern and western populations.

  20. Weyl semimetals in optical lattices: moving and merging of Weyl points, and hidden symmetry at Weyl points

    PubMed Central

    Hou, Jing-Min; Chen, Wei

    2016-01-01

    We propose to realize Weyl semimetals in a cubic optical lattice. We find that there exist three distinct Weyl semimetal phases in the cubic optical lattice for different parameter ranges. One of them has two pairs of Weyl points and the other two have one pair of Weyl points in the Brillouin zone. For a slab geometry with (010) surfaces, the Fermi arcs connecting the projections of Weyl points with opposite topological charges on the surface Brillouin zone is presented. By adjusting the parameters, the Weyl points can move in the Brillouin zone. Interestingly, for two pairs of Weyl points, as one pair of them meet and annihilate, the originial two Fermi arcs coneect into one. As the remaining Weyl points annihilate further, the Fermi arc vanishes and a gap is opened. Furthermore, we find that there always exists a hidden symmetry at Weyl points, regardless of anywhere they located in the Brillouin zone. The hidden symmetry has an antiunitary operator with its square being −1. PMID:27644114

  1. Weyl semimetals in optical lattices: moving and merging of Weyl points, and hidden symmetry at Weyl points.

    PubMed

    Hou, Jing-Min; Chen, Wei

    2016-01-01

    We propose to realize Weyl semimetals in a cubic optical lattice. We find that there exist three distinct Weyl semimetal phases in the cubic optical lattice for different parameter ranges. One of them has two pairs of Weyl points and the other two have one pair of Weyl points in the Brillouin zone. For a slab geometry with (010) surfaces, the Fermi arcs connecting the projections of Weyl points with opposite topological charges on the surface Brillouin zone is presented. By adjusting the parameters, the Weyl points can move in the Brillouin zone. Interestingly, for two pairs of Weyl points, as one pair of them meet and annihilate, the originial two Fermi arcs coneect into one. As the remaining Weyl points annihilate further, the Fermi arc vanishes and a gap is opened. Furthermore, we find that there always exists a hidden symmetry at Weyl points, regardless of anywhere they located in the Brillouin zone. The hidden symmetry has an antiunitary operator with its square being -1. PMID:27644114

  2. Correlation effects in 3D triple-Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Zhang, Shi-Xin; Jian, Shao-Kai; Yao, Hong

    We study interaction effects, including short-range interactions and long-range Coulomb interactions, in three-dimensional topological triple-Weyl semimetals whose triple-Weyl points are protected by crystalline symmetries. In the low-energy effective field theory of triple-Weyl semimetals, by considering symmetries and utilizing Fierz identity, we find that there are only four independent short-range interaction terms. We then perform Wilsonian renormalization group analysis to determine the effect of short-range interactions at low energy and long distance by finding fixed points as well as stable strong-coupling limits. For those strong-coupling limits due to short-range interactions, spontaneous symmetry-breaking ordering is expected and is analyzed by self-consistent mean-field calculations combined with RG flow. For long-range Coulomb interactions, we find anisotropic screening effect, similar with the one in double-Weyl semimetals, and hence a qualitatively different fixed point from the Gaussian one.

  3. Hyperbolic Weyl Point in Reciprocal Chiral Metamaterials

    NASA Astrophysics Data System (ADS)

    Xiao, Meng; Lin, Qian; Fan, Shanhui

    2016-07-01

    We report the existence of Weyl points in a class of noncentral symmetric metamaterials, which has time reversal symmetry, but does not have inversion symmetry due to chiral coupling between electric and magnetic fields. This class of metamaterial exhibits either type-I or type-II Weyl points depending on its nonlocal response. We also provide a physical realization of such metamaterial consisting of an array of metal wires in the shape of elliptical helices which exhibits type-II Weyl points.

  4. Hyperbolic Weyl Point in Reciprocal Chiral Metamaterials.

    PubMed

    Xiao, Meng; Lin, Qian; Fan, Shanhui

    2016-07-29

    We report the existence of Weyl points in a class of noncentral symmetric metamaterials, which has time reversal symmetry, but does not have inversion symmetry due to chiral coupling between electric and magnetic fields. This class of metamaterial exhibits either type-I or type-II Weyl points depending on its nonlocal response. We also provide a physical realization of such metamaterial consisting of an array of metal wires in the shape of elliptical helices which exhibits type-II Weyl points.

  5. The implications of a Silurian and other thylacocephalan crustaceans for the functional morphology and systematic affinities of the group

    PubMed Central

    2014-01-01

    Background Thylacocephala is a group of enigmatic extinct arthropods. Here we provide a full description of the oldest unequivocal thylacocephalan, a new genus and species Thylacares brandonensis, which is present in the Silurian Waukesha fauna from Wisconsin, USA. We also present details of younger, Jurassic specimens, from the Solnhofen lithographic limestones, which are crucial to our interpretation of the systematic position of Thylacocephala. In the past, Thylacocephala has been interpreted as a crustacean ingroup and as closely related to various groups such as cirripeds, decapods or remipeds. Results The Waukesha thylacocephalan, Thylacares brandonensis n. gen. n. sp., bears compound eyes and raptorial appendages that are relatively small compared to those of other representatives of the group. As in other thylacocephalans the large bivalved shield encloses much of the entire body. The shield lacks a marked optical notch. The eyes, which project just beyond the shield margin, appear to be stalked. Head appendages, which may represent antennulae, antennae and mandibles, appear to be present. The trunk is comprised of up to 22 segments. New details observed on thylacocephalans from the Jurassic Solnhofen lithographic limestones include antennulae and antennae of Mayrocaris bucculata, and endites on the raptorial appendages and an elongate last trunk appendage in Clausocaris lithographica. Preserved features of the internal morphology in C. lithographica include the muscles of the raptorial appendage and trunk. Conclusions Our results indicate that some ‘typical’ thylacocephalan characters are unique to the group; these autapomorphies contribute to the difficulty of determining thylacocephalan affinities. While the new features reported here are consistent with a eucrustacean affinity, most previous hypotheses for the position of Thylacocephala within Eucrustacea (as Stomatopoda, Thecostraca or Decapoda) are shown to be unlikely. A sister group relationship

  6. Extending the ADM formalism to Weyl geometry

    NASA Astrophysics Data System (ADS)

    Barreto, A. B.; Almeida, T. S.; Romero, C.

    2015-03-01

    In order to treat quantum cosmology in the framework of Weyl spacetimes we take the first step of extending the Arnowitt-Deser-Misner formalism to Weyl geometry. We then obtain an expression of the curvature tensor in terms of spatial quantities by splitting spacetime in (3+l)-dimensional form. We next write the Lagrangian of the gravitation field based in Weyl-type gravity theory. We extend the general relativistic formalism in such a way that it can be applied to investigate the quantum cosmology of models whose spacetimes are endowed with a Weyl geometrical structure.

  7. Topological photonic crystal with equifrequency Weyl points

    NASA Astrophysics Data System (ADS)

    Wang, Luyang; Jian, Shao-Kai; Yao, Hong

    2016-06-01

    Weyl points in three-dimensional photonic crystals behave as monopoles of Berry flux in momentum space. Here, based on general symmetry analysis, we show that a minimal number of four symmetry-related (consequently equifrequency) Weyl points can be realized in time-reversal invariant photonic crystals. We further propose an experimentally feasible way to modify double-gyroid photonic crystals to realize four equifrequency Weyl points, which is explicitly confirmed by our first-principle photonic band-structure calculations. Remarkably, photonic crystals with equifrequency Weyl points are qualitatively advantageous in applications including angular selectivity, frequency selectivity, invisibility cloaking, and three-dimensional imaging.

  8. Topological photonic crystal with ideal Weyl points

    NASA Astrophysics Data System (ADS)

    Wang, Luyang; Jian, Shao-Kai; Yao, Hong

    Weyl points in three-dimensional photonic crystals behave as monopoles of Berry flux in momentum space. Here, based on symmetry analysis, we show that a minimal number of symmetry-related Weyl points can be realized in time-reversal invariant photonic crystals. We propose to realize these ``ideal'' Weyl points in modified double-gyroid photonic crystals, which is confirmed by our first-principle photonic band-structure calculations. Photonic crystals with ideal Weyl points are qualitatively advantageous in applications such as angular and frequency selectivity, broadband invisibility cloaking, and broadband 3D-imaging.

  9. Extending the ADM formalism to Weyl geometry

    SciTech Connect

    Barreto, A. B.; Almeida, T. S.; Romero, C.

    2015-03-26

    In order to treat quantum cosmology in the framework of Weyl spacetimes we take the first step of extending the Arnowitt-Deser-Misner formalism to Weyl geometry. We then obtain an expression of the curvature tensor in terms of spatial quantities by splitting spacetime in (3+l)-dimensional form. We next write the Lagrangian of the gravitation field based in Weyl-type gravity theory. We extend the general relativistic formalism in such a way that it can be applied to investigate the quantum cosmology of models whose spacetimes are endowed with a Weyl geometrical structure.

  10. S-functions, spectral functions of hyperbolic geometry, and vertex operators with applications to structure for Weyl and orthogonal group invariants

    NASA Astrophysics Data System (ADS)

    Bytsenko, A. A.; Chaichian, M.

    2016-06-01

    In this paper we analyze the quantum homological invariants (the Poincaré polynomials of the slN link homology). In the case when the dimensions of homologies of appropriate topological spaces are precisely known, the procedure of the calculation of the Kovanov-Rozansky type homology, based on the Euler-Poincaré formula can be appreciably simplified. We express the formal character of the irreducible tensor representation of the classical groups in terms of the symmetric and spectral functions of hyperbolic geometry. On the basis of Labastida-Mariño-Ooguri-Vafa conjecture, we derive a representation of the Chern-Simons partition function in the form of an infinite product in terms of the Ruelle spectral functions (the cases of a knot, unknot, and links have been considered). We also derive an infinite-product formula for the orthogonal Chern-Simons partition functions and analyze the singularities and the symmetry properties of the infinite-product structures.

  11. Coulomb Interaction Effect in Weyl Fermions with Tilted Energy Dispersion in Two Dimensions.

    PubMed

    Isobe, Hiroki; Nagaosa, Naoto

    2016-03-18

    Weyl fermions with tilted linear dispersions characterized by several different velocities appear in some systems including the quasi-two-dimensional organic semiconductor α-(BEDT-TTF)_{2}I_{3} and three-dimensional WTe_{2}. The Coulomb interaction between electrons modifies the velocities in an essential way in the low-energy limit, where the logarithmic corrections dominate. Taking into account the coupling to both the transverse and longitudinal electromagnetic fields, we derive the renormalization group equations for the velocities of the tilted Weyl fermions in two dimensions, and found that they increase as the energy decreases and eventually hit the speed of light c to result in the Cherenkov radiation. Especially, the system restores the isotropic Weyl cone even when the bare Weyl cone is strongly tilted and the velocity of electrons becomes negative in certain directions. PMID:27035318

  12. Classification of stable Dirac and Weyl semimetals with reflection and rotational symmetry

    NASA Astrophysics Data System (ADS)

    Gao, Zihao; Hua, Meng; Zhang, Haijun; Zhang, Xiao

    2016-05-01

    Three-dimensional (3D) Dirac and Weyl semimetals are novel states of quantum matter. We classify stable 3D Dirac and Weyl semimetals with reflection and rotational symmetry in the presence of time reversal symmetry and spin-orbit coupling, which belong to seventeen different point groups. They have two classes of reflection symmetry, with the mirror plane parallel and perpendicular to rotation axis. In both cases two types of Dirac points, existing through accidental band crossing (ABC) or at a time reversal invariant momentum (TBC), are determined by four different reflection symmetries. We classify those two types of Dirac points with a combination of different reflection and rotational symmetries. We further classify Dirac and Weyl line nodes to show in which types of mirror plane they can exist. Finally we discuss that Weyl line nodes and Dirac points can exist at the same time taking C4 v symmetry as an example.

  13. Surface plasmon polaritons in topological Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Hofmann, Johannes; Das Sarma, Sankar

    2016-06-01

    We consider theoretically surface plasmon polaritons in Weyl semimetals. These materials contain pairs of band touching points—Weyl nodes—with a chiral topological charge, which induces an optical anisotropy and anomalous transport through the chiral anomaly. We show that these effects, which are not present in ordinary metals, have a direct fundamental manifestation in the surface plasmon dispersion. The retarded Weyl surface plasmon dispersion depends on the separation of the Weyl nodes in energy and momentum space. For Weyl semimetals with broken time-reversal symmetry, the distance between the nodes acts as an effective applied magnetic field in momentum space, and the Weyl surface plasmon polariton dispersion is strikingly similar to magnetoplasmons in ordinary metals. In particular, this implies the existence of nonreciprocal surface modes. In addition, we obtain the nonretarded Weyl magnetoplasmon modes, which acquire an additional longitudinal magnetic field dependence. These predicted surface plasmon results are observable manifestations of the chiral anomaly in Weyl semimetals and might have technological applications.

  14. Weyl invariance with a nontrivial mass scale

    NASA Astrophysics Data System (ADS)

    Álvarez, Enrique; González-Martín, Sergio

    2016-09-01

    A theory with a mass scale and yet Weyl invariant is presented. The theory is not invariant under all diffeomorphisms but only under transverse ones. This is the reason why Weyl invariance does not imply scale invariance in a free falling frame. Physical implications of this framework are discussed.

  15. Weyl magnons in breathing pyrochlore antiferromagnets.

    PubMed

    Li, Fei-Ye; Li, Yao-Dong; Kim, Yong Baek; Balents, Leon; Yu, Yue; Chen, Gang

    2016-01-01

    Frustrated quantum magnets not only provide exotic ground states and unusual magnetic structures, but also support unconventional excitations in many cases. Using a physically relevant spin model for a breathing pyrochlore lattice, we discuss the presence of topological linear band crossings of magnons in antiferromagnets. These are the analogues of Weyl fermions in electronic systems, which we dub Weyl magnons. The bulk Weyl magnon implies the presence of chiral magnon surface states forming arcs at finite energy. We argue that such antiferromagnets present a unique example, in which Weyl points can be manipulated in situ in the laboratory by applied fields. We discuss their appearance specifically in the breathing pyrochlore lattice, and give some general discussion of conditions to find Weyl magnons, and how they may be probed experimentally. Our work may inspire a re-examination of the magnetic excitations in many magnetically ordered systems. PMID:27650053

  16. Weyl magnons in breathing pyrochlore antiferromagnets

    NASA Astrophysics Data System (ADS)

    Li, Fei-Ye; Li, Yao-Dong; Kim, Yong Baek; Balents, Leon; Yu, Yue; Chen, Gang

    2016-09-01

    Frustrated quantum magnets not only provide exotic ground states and unusual magnetic structures, but also support unconventional excitations in many cases. Using a physically relevant spin model for a breathing pyrochlore lattice, we discuss the presence of topological linear band crossings of magnons in antiferromagnets. These are the analogues of Weyl fermions in electronic systems, which we dub Weyl magnons. The bulk Weyl magnon implies the presence of chiral magnon surface states forming arcs at finite energy. We argue that such antiferromagnets present a unique example, in which Weyl points can be manipulated in situ in the laboratory by applied fields. We discuss their appearance specifically in the breathing pyrochlore lattice, and give some general discussion of conditions to find Weyl magnons, and how they may be probed experimentally. Our work may inspire a re-examination of the magnetic excitations in many magnetically ordered systems.

  17. Weyl magnons in breathing pyrochlore antiferromagnets

    PubMed Central

    Li, Fei-Ye; Li, Yao-Dong; Kim, Yong Baek; Balents, Leon; Yu, Yue; Chen, Gang

    2016-01-01

    Frustrated quantum magnets not only provide exotic ground states and unusual magnetic structures, but also support unconventional excitations in many cases. Using a physically relevant spin model for a breathing pyrochlore lattice, we discuss the presence of topological linear band crossings of magnons in antiferromagnets. These are the analogues of Weyl fermions in electronic systems, which we dub Weyl magnons. The bulk Weyl magnon implies the presence of chiral magnon surface states forming arcs at finite energy. We argue that such antiferromagnets present a unique example, in which Weyl points can be manipulated in situ in the laboratory by applied fields. We discuss their appearance specifically in the breathing pyrochlore lattice, and give some general discussion of conditions to find Weyl magnons, and how they may be probed experimentally. Our work may inspire a re-examination of the magnetic excitations in many magnetically ordered systems. PMID:27650053

  18. G2(+)M study on N-alkylamino cation affinities of neutral main-group element hydrides: trends across the periodic table.

    PubMed

    Geng, Song; Wu, Ding-Lu; Yang, Jing; Wei, Xi-Guang; Zhu, Jun; Zhang, Hai-Bo; Ren, Yi; Lau, Kai-Chung

    2014-05-01

    We have made an extensive theoretical exploration of gas-phase N-alkylamino cation affinities (NAAMCA), including amino cation affinities (AMCA) and N-dimethylamino cation affinities (NDMAMCA), of neutral main-group element hydrides of groups 15-17 and periods 2-4 in the periodic table by using the G2(+)M method. Some similarities and differences are found between NAAMCA and the corresponding alkyl cation affinities (ACA) of H(n)X. Our calculations show that the AMCA and NDMAMCA are systematically lower than the corresponding proton affinities (PA) for H(n)X. In general, there is no linear correlation between NAAMCA and PA of H(n)X. Instead, the correlations exist only within the central elements X in period 2, or periods 3-4, which is significantly different from the reasonable correlations between ACA and PA for all H(n)X. NAAMCA (H(n)X) are weaker than NAAMCA (H(n-1)X(-)) by more than 700 kJ/mol and generally stronger than ACA (H(n)X), with three exceptions: H2ONR2(+)(R = H, Me) and HFNH2(+). These new findings can be rationalized by the negative hyperconjugation and Pauli repulsion.

  19. G2(+)M study on N-alkylamino cation affinities of neutral main-group element hydrides: trends across the periodic table.

    PubMed

    Geng, Song; Wu, Ding-Lu; Yang, Jing; Wei, Xi-Guang; Zhu, Jun; Zhang, Hai-Bo; Ren, Yi; Lau, Kai-Chung

    2014-05-01

    We have made an extensive theoretical exploration of gas-phase N-alkylamino cation affinities (NAAMCA), including amino cation affinities (AMCA) and N-dimethylamino cation affinities (NDMAMCA), of neutral main-group element hydrides of groups 15-17 and periods 2-4 in the periodic table by using the G2(+)M method. Some similarities and differences are found between NAAMCA and the corresponding alkyl cation affinities (ACA) of H(n)X. Our calculations show that the AMCA and NDMAMCA are systematically lower than the corresponding proton affinities (PA) for H(n)X. In general, there is no linear correlation between NAAMCA and PA of H(n)X. Instead, the correlations exist only within the central elements X in period 2, or periods 3-4, which is significantly different from the reasonable correlations between ACA and PA for all H(n)X. NAAMCA (H(n)X) are weaker than NAAMCA (H(n-1)X(-)) by more than 700 kJ/mol and generally stronger than ACA (H(n)X), with three exceptions: H2ONR2(+)(R = H, Me) and HFNH2(+). These new findings can be rationalized by the negative hyperconjugation and Pauli repulsion. PMID:24738576

  20. Predicted scaling behavior of Bloch oscillation in Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Wang, Yan-Qi; Liu, Xiong-Jun

    2016-09-01

    We predict a fundamental scaling law of Bloch oscillation in Weyl semimetals, which manifests that the transverse drift of quasiparticles accelerated bypassing a Weyl point exhibits asymptotically a linear log-log relation with respect to the minimal momentum measured from the Weyl point. This scaling relation is deeply connected to the topological monopole structure of Weyl points, thus being universal and providing a scheme to measure bulk topology of Weyl semimetals.

  1. Women Reading for Education, Affinity & Development (WREAD): An Evaluation of a Semistructured Reading Discussion Group for African American Female Adult-Literacy Students with Histories of Trauma

    ERIC Educational Resources Information Center

    Jones, Jayatta D.

    2012-01-01

    Women Reading for Education, Affinity & Development (WREAD), a reading discussion group geared toward African American female adult-literacy students with self-defined histories of trauma, was an outgrowth of research identifying links between trauma, women's struggles with literacy, and the need to be conscious of emotional health…

  2. Spin-1 Dirac-Weyl fermions protected by bipartite symmetry

    SciTech Connect

    Lin, Zeren; Liu, Zhirong

    2015-12-07

    We propose that bipartite symmetry allows spin-1 Dirac-Weyl points, a generalization of the spin-1/2 Dirac points in graphene, to appear as topologically protected at the Fermi level. In this spirit, we provide methodology to construct spin-1 Dirac-Weyl points of this kind in a given 2D space group and get the classification of the known spin-1 systems in the literature. We also apply the workflow to predict two new systems, P3m1-9 and P31m-15, to possess spin-1 at K/K′ in the Brillouin zone of hexagonal lattice. Their stability under various strains is investigated and compared with that of T{sub 3}, an extensively studied model of ultracold atoms trapped in optical lattice with spin-1 also at K/K′.

  3. Beyond Dirac and Weyl fermions: Unconventional quasiparticles in conventional crystals.

    PubMed

    Bradlyn, Barry; Cano, Jennifer; Wang, Zhijun; Vergniory, M G; Felser, C; Cava, R J; Bernevig, B Andrei

    2016-08-01

    In quantum field theory, we learn that fermions come in three varieties: Majorana, Weyl, and Dirac. Here, we show that in solid-state systems this classification is incomplete, and we find several additional types of crystal symmetry-protected free fermionic excitations. We exhaustively classify linear and quadratic three-, six-, and eight-band crossings stabilized by space group symmetries in solid-state systems with spin-orbit coupling and time-reversal symmetry. Several distinct types of fermions arise, differentiated by their degeneracies at and along high-symmetry points, lines, and surfaces. Some notable consequences of these fermions are the presence of Fermi arcs in non-Weyl systems and the existence of Dirac lines. Ab initio calculations identify a number of materials that realize these exotic fermions close to the Fermi level. PMID:27445310

  4. Polynomial Extensions of the Weyl C*-Algebra

    NASA Astrophysics Data System (ADS)

    Accardi, Luigi; Dhahri, Ameur

    2015-09-01

    We introduce higher order (polynomial) extensions of the unique (up to isomorphisms) nontrivial central extension of the Heisenberg algebra, which can be concretely realized as sub-Lie algebras of the polynomial algebra generated by the creation and annihilation operators in the Schrödinger representation. The simplest nontrivial of these extensions (the quadratic one) is isomorphic to the Galilei algebra, widely studied in quantum physics. By exponentiation of this representation we construct the corresponding polynomial analogue of the Weyl C*-algebra and compute the polynomial Weyl relations. From this we deduce the explicit form of the composition law of the associated nonlinear extensions of the 1-dimensional Heisenberg group. The above results are used to calculate a simple explicit form of the vacuum characteristic functions of the nonlinear field operators of the Galilei algebra, as well as of their moments. The corresponding measures turn out to be an interpolation family between Gaussian and Meixner, in particular Gamma.

  5. Interpretation of the Weyl tensor

    NASA Astrophysics Data System (ADS)

    Hofmann, Stefan; Niedermann, Florian; Schneider, Robert

    2013-09-01

    According to folklore in general relativity, the Weyl tensor can be decomposed into parts corresponding to Newton-like, incoming and outgoing wavelike field components. It is shown here that this one-to-one correspondence does not hold for space-time geometries with cylindrical isometries. This is done by investigating some well-known exact solutions of Einstein’s field equations with whole-cylindrical symmetry, for which the physical interpretation is very clear, but for which the standard Weyl interpretation would give contradictory results. For planar or spherical geometries, however, the standard interpretation works for both static and dynamical space-times. It is argued that one reason for the failure in the cylindrical case is that for waves spreading in two spatial dimensions there is no local criterion to distinguish incoming and outgoing waves already at the linear level. It turns out that Thorne’s local energy notion, subject to certain qualifications, provides an efficient diagnostic tool to extract the proper physical interpretation of the space-time geometry in the case of cylindrical configurations.

  6. Hyperbolic Weyl Point in Reciprocal Chiral Metamaterials.

    PubMed

    Xiao, Meng; Lin, Qian; Fan, Shanhui

    2016-07-29

    We report the existence of Weyl points in a class of noncentral symmetric metamaterials, which has time reversal symmetry, but does not have inversion symmetry due to chiral coupling between electric and magnetic fields. This class of metamaterial exhibits either type-I or type-II Weyl points depending on its nonlocal response. We also provide a physical realization of such metamaterial consisting of an array of metal wires in the shape of elliptical helices which exhibits type-II Weyl points. PMID:27517792

  7. Simple method for Shiga toxin 2e purification by affinity chromatography via binding to the divinyl sulfone group.

    PubMed

    Arimitsu, Hideyuki; Sasaki, Keiko; Kojima, Hiroe; Yanaka, Tadashi; Tsuji, Takao

    2013-01-01

    Here we describe a simple affinity purification method for Shiga toxin 2e (Stx2e), a major causative factor of edema disease in swine. Escherichia coli strain MV1184 transformed with the expression plasmid pBSK-Stx2e produced Stx2e when cultivated in CAYE broth containing lincomycin. Stx2e bound to commercial D-galactose gel, containing α-D-galactose immobilized on agarose resin via a divinyl sulfone linker, and was eluted with phosphate-buffered saline containing 4.5 M MgCl2. A small amount of Stx2e bound to another commercial α-galactose-immobilized agarose resin, but not to β-galactose-immobilized resin. In addition, Stx2e bound to thiophilic adsorbent resin containing β-mercaptoethanol immobilized on agarose resin via a divinyl sulfone, and was purified in the same manner as from D-galactose gel, but the Stx2e sample contained some contamination. These results indicate that Stx2e bound to D-galactose gel mainly through the divinyl sulfone group on the resin and to a lesser extent through α-D-galactose. With these methods, the yields of Stx2e and attenuated mutant Stx2e (mStx2e) from 1 L of culture were approximately 36 mg and 27.7 mg, respectively, and the binding capacity of the D-galactose gel and thiophilic adsorbent resin for Stx2e was at least 20 mg per 1 ml of resin. In addition, using chimeric toxins with prototype Stx2 which did not bind to thiophilic adsorbent resin and some types of mutant Stx2e and Stx2 which contained inserted mutations in the B subunits, we found that, at the least, asparagine (amino acid 17 of the B subunits) was associated with Stx2e binding to the divinyl sulfone group. The mStx2e that was isolated exhibited vaccine effects in ICR mice, indicating that these methods are beneficial for large-scale preparation of Stx2e toxoid, which protects swine from edema disease. PMID:24340102

  8. Simple Method for Shiga Toxin 2e Purification by Affinity Chromatography via Binding to the Divinyl Sulfone Group

    PubMed Central

    Arimitsu, Hideyuki; Sasaki, Keiko; Kojima, Hiroe; Yanaka, Tadashi; Tsuji, Takao

    2013-01-01

    Here we describe a simple affinity purification method for Shiga toxin 2e (Stx2e), a major causative factor of edema disease in swine. Escherichia coli strain MV1184 transformed with the expression plasmid pBSK-Stx2e produced Stx2e when cultivated in CAYE broth containing lincomycin. Stx2e bound to commercial D-galactose gel, containing α-D-galactose immobilized on agarose resin via a divinyl sulfone linker, and was eluted with phosphate-buffered saline containing 4.5 M MgCl2. A small amount of Stx2e bound to another commercial α-galactose-immobilized agarose resin, but not to β-galactose-immobilized resin. In addition, Stx2e bound to thiophilic adsorbent resin containing β-mercaptoethanol immobilized on agarose resin via a divinyl sulfone, and was purified in the same manner as from D-galactose gel, but the Stx2e sample contained some contamination. These results indicate that Stx2e bound to D-galactose gel mainly through the divinyl sulfone group on the resin and to a lesser extent through α-D-galactose. With these methods, the yields of Stx2e and attenuated mutant Stx2e (mStx2e) from 1 L of culture were approximately 36 mg and 27.7 mg, respectively, and the binding capacity of the D-galactose gel and thiophilic adsorbent resin for Stx2e was at least 20 mg per 1 ml of resin. In addition, using chimeric toxins with prototype Stx2 which did not bind to thiophilic adsorbent resin and some types of mutant Stx2e and Stx2 which contained inserted mutations in the B subunits, we found that, at the least, asparagine (amino acid 17 of the B subunits) was associated with Stx2e binding to the divinyl sulfone group. The mStx2e that was isolated exhibited vaccine effects in ICR mice, indicating that these methods are beneficial for large-scale preparation of Stx2e toxoid, which protects swine from edema disease. PMID:24340102

  9. Five-dimensional generalization of the topological Weyl semimetal

    NASA Astrophysics Data System (ADS)

    Lian, Biao; Zhang, Shou-Cheng

    2016-07-01

    We generalize the concept of three-dimensional topological Weyl semimetals to a class of five dimensional (5D) gapless solids, where Weyl points are generalized to Weyl surfaces which are two-dimensional closed manifolds in the momentum space. Each Weyl surface is characterized by a U (1 ) second Chern number C2 defined on a four-dimensional manifold enclosing the Weyl surface, which is equal to its topological linking number with other Weyl surfaces in 5D. In analogy to the Weyl semimetals, the surface states of the 5D metal take the form of topologically protected Weyl fermion arcs, which connect the projections of the bulk Weyl surfaces. The further generalization of topological metals in 2 n +1 dimensions carrying the n th Chern number Cn is also discussed.

  10. Quantum Materials: Weyl fermions go into orbit

    NASA Astrophysics Data System (ADS)

    Dai, Xi

    2016-08-01

    Due to their chirality, the massless fermions inside Weyl semimetals can take unusual paths that are governed by chiral dynamics, potentially providing a direct method to explore their topological nature.

  11. Quantum anomalies in superconducting Weyl metals

    NASA Astrophysics Data System (ADS)

    Wang, Rui; Hao, Lei; Wang, Baigeng; Ting, C. S.

    2016-05-01

    We theoretically study the quantum anomalies in the superconducting Weyl metals based on the topological field theory. It is demonstrated that the Fermi arc and the surface Andreev bound state, characteristic of the superconducting Weyl metals, are the manifestations of two underlying phenomena, namely, the chiral anomaly and the paritylike anomaly, respectively. The first anomaly is inherited from the Berry curvature around the original Weyl points, while the second is the result of the superconductivity. We show that all the fascinating topological behavior of the superconducting Weyl metals, either the intranode Fulde-Ferrell-Larkin-Ovchinnikov or the internode Bardeen-Cooper-Schrieffer pairing state, can be satisfactorily described and predicted by our topological field theory.

  12. Squeezing and quantum groups

    NASA Astrophysics Data System (ADS)

    Celeghini, E.; Rasetti, M.; Vitiello, G.

    1991-04-01

    Generalized quasicoherent states for the Weyl-Heisenberg quantum group have been defined by Biedenharn and MacFarlane. In this Letter other quantum Weyl-Heisenberg coherent states are defined for complex q in the usual Fock space. Such states are shown to exhibit interesting squeezing properties, in particular when ||q||~=1, for the q analog to the harmonic oscillator.

  13. Conventionalism and integrable Weyl geometry

    NASA Astrophysics Data System (ADS)

    Pucheu, M. L.

    2015-03-01

    Since the appearance of Einstein's general relativity, gravitation has been associated to the space-time curvature. This theory introduced a geometrodynamic language which became a convenient tool to predict matter behaviour. However, the properties of space-time itself cannot be measurable by experiments. Taking Poincaré idea that the geometry of space-time is merely a convention, we show that the general theory of relativity can be completely reformulated in a more general setting, a generalization of Riemannian geometry, namely, the Weyl integrable geometry. The choice of this new mathematical language implies, among other things, that the path of particles and light rays should now correspond to Weylian geodesies. Such modification in the dynamic of bodies brings a new perception of physical phenomena that we will explore.

  14. Transversal magnetoresistance in Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Klier, J.; Gornyi, I. V.; Mirlin, A. D.

    2015-11-01

    We explore theoretically the magnetoresistivity of three-dimensional Weyl and Dirac semimetals in transversal magnetic fields within two alternative models of disorder: (i) short-range impurities and (ii) charged (Coulomb) impurities. Impurity scattering is treated using the self-consistent Born approximation. We find that an unusual broadening of Landau levels leads to a variety of regimes of the resistivity scaling in the temperature-magnetic field plane. In particular, the magnetoresistance is nonmonotonous for the white-noise disorder model. For H →0 the magnetoresistance for short-range impurities vanishes in a nonanalytic way as H1 /3. In the limits of strongest magnetic fields H , the magnetoresistivity vanishes as 1 /H for pointlike impurities, while it is linear and positive in the model with Coulomb impurities.

  15. Thermodynamics and entanglement entropy with Weyl corrections

    NASA Astrophysics Data System (ADS)

    Dey, Anshuman; Mahapatra, Subhash; Sarkar, Tapobrata

    2016-07-01

    We consider charged black holes in four-dimensional anti-de Sitter space, in the presence of a Weyl correction. We obtain the solution including the effect of backreaction, perturbatively up to first order in the Weyl coupling, and study its thermodynamic properties. This is complemented by a calculation of the holographic entanglement entropy of the boundary theory. The consistency of results obtained from both computations is established.

  16. Metric reconstruction from Weyl scalars

    NASA Astrophysics Data System (ADS)

    Whiting, Bernard F.; Price, Larry R.

    2005-08-01

    The Kerr geometry has remained an elusive world in which to explore physics and delve into the more esoteric implications of general relativity. Following the discovery, by Kerr in 1963, of the metric for a rotating black hole, the most major advance has been an understanding of its Weyl curvature perturbations based on Teukolsky's discovery of separable wave equations some ten years later. In the current research climate, where experiments across the globe are preparing for the first detection of gravitational waves, a more complete understanding than concerns just the Weyl curvature is now called for. To understand precisely how comparatively small masses move in response to the gravitational waves they emit, a formalism has been developed based on a description of the whole spacetime metric perturbation in the neighbourhood of the emission region. Presently, such a description is not available for the Kerr geometry. While there does exist a prescription for obtaining metric perturbations once curvature perturbations are known, it has become apparent that there are gaps in that formalism which are still waiting to be filled. The most serious gaps include gauge inflexibility, the inability to include sources—which are essential when the emitting masses are considered—and the failure to describe the ell = 0 and 1 perturbation properties. Among these latter properties of the perturbed spacetime, arising from a point mass in orbit, are the perturbed mass and axial component of angular momentum, as well as the very elusive Carter constant for non-axial angular momentum. A status report is given on recent work which begins to repair these deficiencies in our current incomplete description of Kerr metric perturbations.

  17. Critical exponents at the unconventional disorder-driven transition in a Weyl semimetal

    NASA Astrophysics Data System (ADS)

    Syzranov, S. V.; Ostrovsky, P. M.; Gurarie, V.; Radzihovsky, L.

    2016-04-01

    Disordered noninteracting systems in sufficiently high dimensions have been predicted to display a non-Anderson disorder-driven transition that manifests itself in the critical behavior of the density of states and other physical observables. Recently, the critical properties of this transition have been extensively studied for the specific case of Weyl semimetals by means of numerical and renormalisation-group approaches. Despite this, the values of the critical exponents at such a transition in a Weyl semimetal are currently under debate. We present an independent calculation of the critical exponents using a two-loop renormalization-group approach for Weyl fermions in 2 -ɛ dimensions and resolve controversies currently existing in the literature.

  18. The Benzyl Ester Group of Amino Acid Monomers Enhances Substrate Affinity and Broadens the Substrate Specificity of the Enzyme Catalyst in Chemoenzymatic Copolymerization.

    PubMed

    Ageitos, Jose Manuel; Yazawa, Kenjiro; Tateishi, Ayaka; Tsuchiya, Kousuke; Numata, Keiji

    2016-01-11

    The chemoenzymatic polymerization of amino acid monomers by proteases involves a two-step reaction: the formation of a covalent acyl-intermediate complex between the protease and the carboxyl ester group of the monomer and the subsequent deacylation of the complex by aminolysis to form a peptide bond. Although the initiation with the ester group of the monomer is an important step, the influence of the ester group on the polymerization has not been studied in detail. Herein, we studied the effect of the ester groups (methyl, ethyl, benzyl, and tert-butyl esters) of alanine and glycine on the synthesis of peptides using papain as the catalyst. Alanine and glycine were selected as monomers because of their substantially different affinities toward papain. The efficiency of the polymerization of alanine and glycine benzyl esters was much greater than that of the other esters. The benzyl ester group therefore allowed papain to equally polymerize alanine and glycine, even though the affinity of alanine toward papain is substantially higher. The characterization of the copolymers of alanine and glycine in terms of the secondary structure and thermal properties revealed that the thermal stability of the peptides depends on the amino acid composition and resultant secondary structure. The current results indicate that the nature of the ester group drastically affects the polymerization efficiency and broadens the substrate specificity of the protease.

  19. Affinity Chromatography.

    ERIC Educational Resources Information Center

    Gray, Gary R.

    1980-01-01

    Presents selected recent advances in immobilization chemistry which have important connections to affinity chromatography. Discusses ligand immobilization and support modification. Cites 51 references. (CS)

  20. Tunable Magnon Weyl Points in Ferromagnetic Pyrochlores

    NASA Astrophysics Data System (ADS)

    Mook, Alexander; Henk, Jürgen; Mertig, Ingrid

    2016-10-01

    The dispersion relations of magnons in ferromagnetic pyrochlores with Dzyaloshinskii-Moriya interaction are shown to possess Weyl points, i. e., pairs of topologically nontrivial crossings of two magnon branches with opposite topological charge. As a consequence of their topological nature, their projections onto a surface are connected by magnon arcs, thereby resembling closely Fermi arcs of electronic Weyl semimetals. On top of this, the positions of the Weyl points in reciprocal space can be tuned widely by an external magnetic field: rotated within the surface plane, the Weyl points and magnon arcs are rotated as well; tilting the magnetic field out of plane shifts the Weyl points toward the center Γ ¯ of the surface Brillouin zone. The theory is valid for the class of ferromagnetic pyrochlores, i. e., three-dimensional extensions of topological magnon insulators on kagome lattices. In this Letter, we focus on the (111) surface, identify candidates of established ferromagnetic pyrochlores which apply to the considered spin model, and suggest experiments for the detection of the topological features.

  1. Spiraling Fermi arcs in Weyl materials

    NASA Astrophysics Data System (ADS)

    Li, Songci; Andreev, Anton

    In Weyl materials the valence and conduction electron bands touch at an even number of isolated points in the Brillouin zone. In the vicinity of these points the electron dispersion is linear and may be described by the massless Dirac equation. This results in nontrivial topology of Berry connection curvature. One of its consequences is the existence of peculiar surface electron states whose Fermi surfaces form arcs connecting projections of the Weyl points onto the surface plane. Band bending near the boundary of the crystal also produces surface states. We show that in Weyl materials band bending near the crystal surface gives rise to spiral structure of energy surfaces of arc states. The corresponding Fermi surface has the shape of a spiral that winds about the projection of the Weyl point onto the surface plane. The direction of the winding is determined by the helicity of the Weyl point and the sign of the band bending potential. For close valleys arc state morphology may be understood in terms of avoided crossing of oppositely winding spirals. This work is supported by the U.S. Department of Energy Office of Science, Basic Energy Sciences under Award Number DE-FG02-07ER46452.

  2. Spiraling Fermi arcs in Weyl materials

    NASA Astrophysics Data System (ADS)

    Li, Songci; Andreev, A. V.

    2015-11-01

    In Weyl materials the valence and conduction electron bands touch at an even number of isolated points in the Brillouin zone. In the vicinity of these points the electron dispersion is linear and may be described by the massless Dirac equation. This results in nontrivial topology of the Berry connection curvature. One of its consequences is the existence of peculiar surface electron states whose Fermi surfaces form arcs connecting projections of the Weyl points onto the surface plane. Band bending near the boundary of the crystal also produces surface states. We show that in Weyl materials band bending near the crystal surface gives rise to a spiral structure of energy surfaces of arc states. The corresponding Fermi surface has the shape of a spiral that winds about the projection of the Weyl point onto the surface plane. The direction of the winding is determined by the helicity of the Weyl point and the sign of the band-bending potential. For close valleys the arc state morphology may be understood in terms of the avoided crossing of oppositely winding spirals.

  3. Phase diagrams of disordered Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Shapourian, Hassan; Hughes, Taylor L.

    2016-02-01

    Weyl semimetals are gapless quasitopological materials with a set of isolated nodal points forming their Fermi surface. They manifest their quasitopological character in a series of topological electromagnetic responses including the anomalous Hall effect. Here, we study the effect of disorder on Weyl semimetals while monitoring both their nodal/semimetallic and topological properties through computations of the localization length and the Hall conductivity. We examine three different lattice tight-binding models which realize the Weyl semimetal in part of their phase diagram and look for universal features that are common to all of the models, and interesting distinguishing features of each model. We present detailed phase diagrams of these models for large system sizes and we find that weak disorder preserves the nodal points up to the diffusive limit, but does affect the Hall conductivity. We show that the trend of the Hall conductivity is consistent with an effective picture in which disorder causes the Weyl nodes move within the Brillouin zone along a specific direction that depends deterministically on the properties of the model and the neighboring phases to the Weyl semimetal phase. We also uncover an unusual (nonquantized) anomalous Hall insulator phase which can only exist in the presence of disorder.

  4. Weyl gravity and Cartan geometry

    NASA Astrophysics Data System (ADS)

    Attard, J.; François, J.; Lazzarini, S.

    2016-04-01

    We point out that the Cartan geometry known as the second-order conformal structure provides a natural differential geometric framework underlying gauge theories of conformal gravity. We are concerned with two theories: the first one is the associated Yang-Mills-like Lagrangian, while the second, inspired by [1], is a slightly more general one that relaxes the conformal Cartan geometry. The corresponding gauge symmetry is treated within the Becchi-Rouet-Stora-Tyutin language. We show that the Weyl gauge potential is a spurious degree of freedom, analogous to a Stueckelberg field, that can be eliminated through the dressing field method. We derive sets of field equations for both the studied Lagrangians. For the second one, they constrain the gauge field to be the "normal conformal Cartan connection.''Finally, we provide in a Lagrangian framework a justification of the identification, in dimension 4, of the Bach tensor with the Yang-Mills current of the normal conformal Cartan connection, as proved in [2].

  5. Metaplectic Representation, Conley-Zehnder Index, and Weyl Calculus on Phase Space

    NASA Astrophysics Data System (ADS)

    de Gosson, Maurice

    We define and study a metaplectically covariant class of pseudo-differential operators acting on functions on symplectic space and generalizing a modified form of the usual Weyl calculus. This construction requires a precise calculation of the twisted Weyl symbol of a class of generators of the metaplectic group and the use of a Conley-Zehnder type index for symplectic paths, defined without restrictions on the endpoint. Our calculus is related to the usual Weyl calculus using a family of isometries of L2(ℝn) on closed subspaces of L2(ℝ2n) and to an irreducible representation of the Heisenberg algebra distinct from the usual Schrödinger representation.

  6. Optical conductivity of disordered Weyl semimetals in collisionless regime at zero temperature

    NASA Astrophysics Data System (ADS)

    Juricic, Vladimir; Roy, Bitan

    Weyl semimetals have recently attracted considerable attention as prime examples of topologically nontrivial gapless states of quantum matter. They have been experimentally found and the chiral anomaly, which represents their hallmark feature, has been measured. In this work, we study transport in the disordered Weyl semimetals using the Kubo formalism. We consider point-like impurity potentials, which are irrelevant in the renormalization-group sense, and compute the corresponding leading correction to the collisionless conductivity at zero temperature. As a result, we find that all eight possible types of the point-like disorder potentials give rise to a correction to the real part of the optical conductivity in the clean limit, which is universal up to a sign. Consequently, the dielectric constant of a Weyl material receives a disorder correction which is linear in frequency. Finally, we discuss some experimental consequences of our findings.

  7. The Weyl tensor correlator in cosmological spacetimes

    SciTech Connect

    Fröb, Markus B.

    2014-12-05

    We give a general expression for the Weyl tensor two-point function in a general Friedmann-Lemaître-Robertson-Walker spacetime. We work in reduced phase space for the perturbations, i.e., quantize only the dynamical degrees of freedom without adding any gauge-fixing term. The general formula is illustrated by a calculation in slow-roll single-field inflation to first order in the slow-roll parameters ϵ and δ, and the result is shown to have the correct de Sitter limit as ϵ,δ→0. Furthermore, it is seen that the Weyl tensor correlation function in slow-roll does not suffer from infrared divergences, unlike the two-point functions of the metric and scalar field perturbations. Lastly, we show how to recover the usual tensor power spectrum from the Weyl tensor correlation function.

  8. A first look at Weyl anomalies in shape dynamics

    SciTech Connect

    Gomes, Henrique

    2013-11-15

    One of the more popular objections towards shape dynamics is the suspicion that anomalies in the spatial Weyl symmetry will arise upon quantization. The purpose of this short paper is to establish the tools required for an investigation of the sort of anomalies that can possibly arise. The first step is to adapt to our setting Barnich and Henneaux's formulation of gauge cohomology in the Hamiltonian setting, which serve to decompose the anomaly into a spatial component and time component. The spatial part of the anomaly, i.e., the anomaly in the symmetry algebra itself ([Ω, Ω] ∝ ℏ instead of vanishing) is given by a projection of the second ghost cohomology of the Hamiltonian BRST differential associated to Ω, modulo spatial derivatives. The temporal part, [Ω, H] ∝ ℏ is given by a different projection of the first ghost cohomology and an extra piece arising from a solution to a functional differential equation. Assuming locality of the gauge cohomology groups involved, this part is always local. Assuming locality for the gauge cohomology groups, using Barnich and Henneaux's results, the classification of Weyl cohomology for higher ghost numbers performed by Boulanger, and following the descent equations, we find a complete characterizations of anomalies in 3+1 dimensions. The spatial part of the anomaly and the first component of the temporal anomaly are always local given these assumptions even in shape dynamics. The part emerging from the solution of the functional differential equations explicitly involves the shape dynamics Hamiltonian, and thus might be non-local. If one restricts this extra piece of the temporal anomaly to be also local, then overall no Weyl anomalies, either temporal or spatial, emerge in the 3+1 case.

  9. Microevolution in lower Central America: genetic characterization of the Chibcha-speaking groups of Costa Rica and Panama, and a consensus taxonomy based on genetic and linguistic affinity.

    PubMed Central

    Barrantes, R; Smouse, P E; Mohrenweiser, H W; Gershowitz, H; Azofeifa, J; Arias, T D; Neel, J V

    1990-01-01

    There is evidence that Amerindians have continuously occupied the lower Central American Isthmus for as long as 10,000 years. There remains some doubt about the relationships of these original colonizers to the resident peoples of this zone at the time of European contact (approximately A.D. 1500). We present new genetic data for up to 48 genetic loci for 570 members of six Chibcha-speaking tribes of lower Central America--the Boruca, Bribri, Cabecar, and Guatuso of Costa Rica and the Kuna and Teribe of Panama--and delineate the genetic affinities among the various groups (these six tribes and the Guaymi and Bokota) of lower Central America. We convert standard genetic distance metrics into a form that is linear with the effective time since divergence, and we compare the genetic distances with linguistic distances for the same groups (r = .74, P less than .001). Geographic affinity accounts for some of the genetic divergence among groups (r = .49, P less than .084) and for some of the linguistic divergence (r = .53, P less than .037), but the correspondence between geographic position and taxonomic affinity is not high. We combine all of the genetic and linguistic data to construct a synthetic overview taxonomy of the lower Central American Chibcha. Both the genetic and linguistic data exhibit hierarchical organization of tribal groups, showing a general east-to-west pattern of grouping, with greater affinities between close neighbors. The presence of private genetic variants of some antiquity within the region and their absence outside the zone, coupled with the essential absence of the DI*A polymorphism of mongoloid origin that is widespread outside the zone, argue for a relatively isolated development of the Central American Chibcha. Our results do not support the old view of lower Central America as a frontier between more advanced cultures to the north and south. Any such explanation would require recent waves of migration from outside the region, migration

  10. Acoustic Faraday rotation in Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Liu, Donghao; Shi, Junren

    We investigate the phonon problems in Weyl semimetals, from which both the phonon Berry curvature and the phonon Damping could be obtained. We show that even without a magnetic field, the degenerate transverse acoustic modes could also be split due to the adiabatic curvature. In three dimensional case, acoustic Faraday rotation shows up. And furthermore, since the attenuation procedure could distinguish the polarized mode, single circularly polarized acoustic wave could be realized. We study the mechanism in the novel time reversal symmetry broken Weyl semimetal. New effects rise because of the linear dispersion, which give enlightenment in the measurement of this new kind of three-dimensional material.

  11. Dirac and Weyl superconductors in three dimensions.

    PubMed

    Yang, Shengyuan A; Pan, Hui; Zhang, Fan

    2014-07-25

    We introduce the concept of three-dimensional Dirac (Weyl) superconductors (SC), which have protected bulk fourfold (twofold) nodal points and surface Majorana arcs at zero energy. We provide a sufficient criterion for realizing them in centrosymmetric SCs with odd-parity pairing and mirror symmetry. Pairs of Dirac nodes appear in a mirror-invariant plane when the mirror winding number is nontrivial. Breaking mirror symmetry may gap Dirac nodes producing a topological SC. Each Dirac node evolves to a nodal ring when inversion-gauge symmetry is broken, whereas it splits into a pair of Weyl nodes when, and only when, time-reversal symmetry is broken. PMID:25105637

  12. Prediction of Weyl semimetal in orthorhombic MoTe2

    NASA Astrophysics Data System (ADS)

    Sun, Yan; Wu, Shu-Chun; Ali, Mazhar N.; Felser, Claudia; Yan, Binghai

    2015-10-01

    We investigate the orthorhombic phase (Td) of the layered transition-metal dichalcogenide MoTe2 as a Weyl semimetal candidate. MoTe2 exhibits four pairs of Weyl points lying slightly above (˜6 meV ) the Fermi energy in the bulk band structure. Different from its cousin WTe2, which was recently predicted to be a type-II Weyl semimetal, the spacing between each pair of Weyl points is found to be as large as 4% of the reciprocal lattice in MoTe2 (six times larger than that of WTe2). When projected onto the surface, the Weyl points are connected by Fermi arcs, which can be easily accessed by angle-resolved photoemission spectroscopy due to the large Weyl point separation. In addition, we show that the correlation effect or strain can drive MoTe2 from a type-II to a type-I Weyl semimetal.

  13. Bifurcation Diagrams and Quotient Topological Spaces Under the Action of the Affine Group of a Family of Planar Quadratic Vector Fields

    NASA Astrophysics Data System (ADS)

    Cerba Diaconescu, Oxana; Schlomiuk, Dana; Vulpe, Nicolae

    In this article, we consider the class QSL4{u +vc+w^c, ∞ } of all real quadratic differential systems (dx)/(dt) = p(x, y), (dy)/(dt) = q(x, y) with gcd(p, q) = 1, having invariant lines of total multiplicity four and two complex and one real infinite singularities. We first construct compactified canonical forms for the class QSL4{u +vc+w^c, ∞ } so as to include limit points in the 12-dimensional parameter space of this class. We next construct the bifurcation diagrams for these compactified canonical forms. These diagrams contain many repetitions of phase portraits and we show that these are due to many symmetries under the group action. To retain the essence of the dynamics we finally construct the quotient spaces under the action of the group G = Aff(2, ℝ) × ℝ* of affine transformations and time homotheties and we place the phase portraits in these quotient spaces. The final diagrams retain only the necessary information to capture the dynamics under the motion in the parameter space as well as under this group action. We also present here necessary and sufficient conditions for an affine line to be invariant of multiplicity k for a quadratic system.

  14. Chiral Weyl Pockets and Fermi Surface Topology of the Weyl Semimetal TaAs

    NASA Astrophysics Data System (ADS)

    Arnold, F.; Naumann, M.; Wu, S.-C.; Sun, Y.; Schmidt, M.; Borrmann, H.; Felser, C.; Yan, B.; Hassinger, E.

    2016-09-01

    Tantalum arsenide is a member of the noncentrosymmetric monopnictides, which are putative Weyl semimetals. In these materials, three-dimensional chiral massless quasiparticles, the so-called Weyl fermions, are predicted to induce novel quantum mechanical phenomena, such as the chiral anomaly and topological surface states. However, their chirality is only well defined if the Fermi level is close enough to the Weyl points that separate Fermi surface pockets of opposite chirality exist. In this Letter, we present the bulk Fermi surface topology of high quality single crystals of TaAs, as determined by angle-dependent Shubnikov-de Haas and de Haas-van Alphen measurements combined with ab initio band-structure calculations. Quantum oscillations originating from three different types of Fermi surface pockets were found in magnetization, magnetic torque, and magnetoresistance measurements performed in magnetic fields up to 14 T and temperatures down to 1.8 K. Of these Fermi pockets, two are pairs of topologically nontrivial electron pockets around the Weyl points and one is a trivial hole pocket. Unlike the other members of the noncentrosymmetric monopnictides, TaAs is the first Weyl semimetal candidate with the Fermi energy sufficiently close to both types of Weyl points to generate chiral quasiparticles at the Fermi surface.

  15. The non-compact Weyl equation

    NASA Astrophysics Data System (ADS)

    Doikou, Anastasia; Ioannidou, Theodora

    2011-04-01

    A non-compact version of the Weyl equation is proposed, based on the infinite dimensional spin zero representation of the mathfrak{s}{mathfrak{l}_2} algebra. Solutions of the aforementioned equation are obtained in terms of the Kummer functions. In this context, we discuss the ADHMN approach in order to construct the corresponding non-compact BPS monopoles.

  16. Research with Young Children: The Use of an Affinity Group Approach To Explore the Social Dynamics of Peer Culture

    ERIC Educational Resources Information Center

    Keddie, Amanda

    2004-01-01

    This paper describes the research approach of a case study ethnography. The study sought to explore the peer group understandings of five male friends aged between six and eight years. In exploring the social dynamics of peer culture, and in particular how these dynamics interacted to define, regulate and maintain particular understandings of…

  17. H2-saturation of high affinity H2-oxidizing bacteria alters the ecological niche of soil microorganisms unevenly among taxonomic groups

    PubMed Central

    Piché-Choquette, Sarah; Tremblay, Julien; Tringe, Susannah G.

    2016-01-01

    Soil microbial communities are continuously exposed to H2 diffusing into the soil from the atmosphere. N2-fixing nodules represent a peculiar microniche in soil where H2 can reach concentrations up to 20,000 fold higher than in the global atmosphere (0.530 ppmv). In this study, we investigated the impact of H2 exposure on soil bacterial community structure using dynamic microcosm chambers simulating soil H2 exposure from the atmosphere and N2-fixing nodules. Biphasic kinetic parameters governing H2 oxidation activity in soil changed drastically upon elevated H2 exposure, corresponding to a slight but significant decay of high affinity H2-oxidizing bacteria population, accompanied by an enrichment or activation of microorganisms displaying low-affinity for H2. In contrast to previous studies that unveiled limited response by a few species, the relative abundance of 958 bacterial ribotypes distributed among various taxonomic groups, rather than a few distinct taxa, was influenced by H2 exposure. Furthermore, correlation networks showed important alterations of ribotype covariation in response to H2 exposure, suggesting that H2 affects microbe-microbe interactions in soil. Taken together, our results demonstrate that H2-rich environments exert a direct influence on soil H2-oxidizing bacteria in addition to indirect effects on other members of the bacterial communities. PMID:26989620

  18. Novel estradiol derivatives labeled with Ru, W, and Co complexes. Influence on hormone-receptor affinity of several organometallic groups at the 17 alpha position.

    PubMed

    Top, Siden; el Hafa, Hassane; Vessiéres, Anne; Huché, Michel; Vaissermann, Jacqueline; Jaouen, Gérard

    2002-11-15

    In order to elucidate the extent to which recognition of the estrogen receptor is influenced by addition of an organometallic substituent at the 17 alpha position, modification of 17 beta-estradiol at this position was carried out by using the organometallic groups -C identical to C(eta 5-C5H4)RuCp, CH2-(eta 5-C5H4)RuCp, -C identical to C-(eta 5-C5H4)-W(CO)3(Me), -(C identical to CCHO)Co2(CO)6, and -(C identical to CCH2OH)Co2(CO)6. The relative binding affinity (RBA) values for estradiol receptor alpha showed that recognition was good (RBA between 20 and 13.5%) when the organometallic moiety was attached at the end of a rigid alkyne spacer. However, the affinity of the modified hormone for the receptor was severely reduced (RBA = 1%) for a substituent such as -CH2-(eta 5-C5H4)RuCP, in which the spacer is reduced to a single flexible sp3 carbon atom, allowing the organometallic moiety greater freedom of movement around the attachment point. The RBA values found were in agreement with results obtained from a molecular-modeling study in which 5, an organometallic hormone with a rigid spacer, or 7, a molecule with a flexible spacer, was inserted into the cavity of the recently characterized Ligand-Binding Domain of estrogen receptor alpha.

  19. A DFT and semiempirical model-based study of opioid receptor affinity and selectivity in a group of molecules with a morphine structural core.

    PubMed

    Bruna-Larenas, Tamara; Gómez-Jeria, Juan S

    2012-01-01

    We report the results of a search for model-based relationships between mu, delta, and kappa opioid receptor binding affinity and molecular structure for a group of molecules having in common a morphine structural core. The wave functions and local reactivity indices were obtained at the ZINDO/1 and B3LYP/6-31G(∗∗) levels of theory for comparison. New developments in the expression for the drug-receptor interaction energy expression allowed several local atomic reactivity indices to be included, such as local electronic chemical potential, local hardness, and local electrophilicity. These indices, together with a new proposal for the ordering of the independent variables, were incorporated in the statistical study. We found and discussed several statistically significant relationships for mu, delta, and kappa opioid receptor binding affinity at both levels of theory. Some of the new local reactivity indices incorporated in the theory appear in several equations for the first time in the history of model-based equations. Interaction pharmacophores were generated for mu, delta, and kappa receptors. We discuss possible differences regulating binding and selectivity in opioid receptor subtypes. This study, contrarily to the statistically backed ones, is able to provide a microscopic insight of the mechanisms involved in the binding process.

  20. Affinity labelling of phenylalanyl-tRNA synthetase from E. coli MRE-600 by E. coli tRNAphe containing photoreactive group.

    PubMed

    Gorshkova, I I; Knorre, D G; Lavrik, O I; Nevinsky, G A

    1976-06-01

    The photoinduced reaction of phenylalanyl-tRNA synthetase (E.C.6.1.1.20) from E.coli MRE-600 with tRNAphe containing photoreative p-N3-C6H4-NHCOCH2-group attached to 4-thiouridine sU8 (azido-tRNAphe) was investigated. The attachment of this group does not influence the dissociation constant of the complex of Phe-tRNAphe with the enzyme, however it results in sevenfold increase of Km in the enzymatic aminoacylation of tRNAphe. Under irradiation at 300 nm at pH 5.8 the covalent binding of [14C]-Phe-azido-tRNAphe to the enzyme takes place 0.3 moles of the reagent being attached per mole of the enzyme. tRNA prevents the reaction. Phenylalanine, ATP,ADP,AMP, adenosine and pyrophosphate (2.5 xx 10(-3) M) don't affect neither the stability of the tRNA-enzyme complex nor the rate of the affinity labelling. The presence of the mixture of either phenylalanine or phenylalaninol with ATP as well as phenylalaninol adenylate exhibits 50% inhibition of the photoinduced reaction. Therefore, the reaction of [14C]-Phe-azido-tRNA with the enzyme is significantly less sensitive to the presence of the ligands than the reaction of chlorambucilyl-tRNA with the reactive group attached to the acceptor end of the tRNA studied in 1. It has been concluded that the kinetics of the affinity labelling does permit to discriminate the influence of the low molecular weight ligands of the enzyme on the different sites of the tRNA enzyme interaction. PMID:8772

  1. Synthesis and structure-activity relationship studies of novel 2-diarylethyl substituted (2-carboxycycloprop-1-yl)glycines as high-affinity group II metabotropic glutamate receptor ligands.

    PubMed

    Sørensen, Ulrik S; Bleisch, Thomas J; Kingston, Anne E; Wright, Rebecca A; Johnson, Bryan G; Schoepp, Darryle D; Ornstein, Paul L

    2003-01-17

    The major excitatory neurotransmitter in the central nervous system, (S)-glutamic acid , activates both ionotropic and metabotropic excitatory amino acid receptors. Its importance in connection to neurological and psychiatric disorders has directed great attention to the development of compounds that modulate the effects of this endogenous ligand. Whereas L-carboxycyclopropylglycine (L-CCG-1) is a potent agonist at, primarily, group II metabotropic glutamate receptors, alkylation of at the alpha-carbon notoriously result in group II mGluR antagonists, of which the most potent compound described so far, LY341495, displays IC(50) values of 23 and 10 nM at the group II receptor subtypes mGlu2 and mGlu3, respectively. In this study we synthesized a series of structural analogues of in which the xanthyl moiety is replaced by two substituted-phenyl groups. The pharmacological characterization shows that these novel compounds have very high affinity for group II mGluRs when tested as their racemates. The most potent analogues demonstrate K(i) values in the range of 5-12 nM, being thus comparable to LY341495. PMID:12470714

  2. Magneto-optic measurements of the Weyl semimetal NbAs

    NASA Astrophysics Data System (ADS)

    Armstrong, Nathan; Shao, Yinming; Yuan, Zhujun; Jia, Shuang; Basov, D. N.; Timusk, Thomas

    NbAs is among the newly discovered Weyl semimetals that are of great interest because they have the potential to confirm the chiral anomaly predicted by particle physics. It has been theorized that two separated Weyl nodes of opposite chirality can have a chiral current flow between them with the application electric and magnetic fields parallel to the displacement of the nodes. Indeed, magnetoresistance measurements on TaAs and NbAs found a negative magnetoresistance with these fields. ARPES and band structure calculations show that NbAs has two different groups of Weyl nodes with all the node splittings in kx -ky planes. In addition to the Weyl nodes there are other trivial bands that create Fermi pockets elsewhere in the BZ that are also observed in reflectance measurements. We will present magneto-optics results from far infrared optical data of NbAs in Voigt geometry up to 8 Tesla. In the far infrared at large fields there are two strong features that show an 11% and 3% change of reflectance in field at 60 and 480 cm-1 , respectively. We evaluate these data with comparison to the above mentioned band structure of NbAs.

  3. Weyl superfluidity in a three-dimensional dipolar Fermi gas.

    PubMed

    Liu, Bo; Li, Xiaopeng; Yin, Lan; Liu, W Vincent

    2015-01-30

    Weyl superconductivity or superfluidity, a fascinating topological state of matter, features novel phenomena such as emergent Weyl fermionic excitations and anomalies. Here we report that an anisotropic Weyl superfluid state can arise as a low temperature stable phase in a 3D dipolar Fermi gas. A crucial ingredient of our model is a direction-dependent two-body effective attraction generated by a rotating external field. Experimental signatures are predicted for cold gases in radio-frequency spectroscopy. The finite temperature phase diagram of this system is studied and the transition temperature of the Weyl superfluidity is found to be within the experimental scope for atomic dipolar Fermi gases. PMID:25679898

  4. Tunable Weyl Points in Periodically Driven Nodal Line Semimetals.

    PubMed

    Yan, Zhongbo; Wang, Zhong

    2016-08-19

    Weyl semimetals and nodal line semimetals are characterized by linear band touching at zero-dimensional points and one-dimensional lines, respectively. We predict that a circularly polarized light drives nodal line semimetals into Weyl semimetals. The Floquet Weyl points thus obtained are tunable by the incident light, which enables investigations of them in a highly controllable manner. The transition from nodal line semimetals to Weyl semimetals is accompanied by the emergence of a large and tunable anomalous Hall conductivity. Our predictions are experimentally testable by transport measurement in film samples or by pump-probe angle-resolved photoemission spectroscopy. PMID:27588882

  5. Tunable Weyl Points in Periodically Driven Nodal Line Semimetals

    NASA Astrophysics Data System (ADS)

    Yan, Zhongbo; Wang, Zhong

    2016-08-01

    Weyl semimetals and nodal line semimetals are characterized by linear band touching at zero-dimensional points and one-dimensional lines, respectively. We predict that a circularly polarized light drives nodal line semimetals into Weyl semimetals. The Floquet Weyl points thus obtained are tunable by the incident light, which enables investigations of them in a highly controllable manner. The transition from nodal line semimetals to Weyl semimetals is accompanied by the emergence of a large and tunable anomalous Hall conductivity. Our predictions are experimentally testable by transport measurement in film samples or by pump-probe angle-resolved photoemission spectroscopy.

  6. Observation of Weyl nodes and Fermi arcs in tantalum phosphide

    PubMed Central

    Xu, N.; Weng, H. M.; Lv, B. Q.; Matt, C. E.; Park, J.; Bisti, F.; Strocov, V. N.; Gawryluk, D.; Pomjakushina, E.; Conder, K.; Plumb, N. C.; Radovic, M.; Autès, G.; Yazyev, O. V.; Fang, Z.; Dai, X.; Qian, T.; Mesot, J.; Ding, H.; Shi, M.

    2016-01-01

    A Weyl semimetal possesses spin-polarized band-crossings, called Weyl nodes, connected by topological surface arcs. The low-energy excitations near the crossing points behave the same as massless Weyl fermions, leading to exotic properties like chiral anomaly. To have the transport properties dominated by Weyl fermions, Weyl nodes need to locate nearly at the chemical potential and enclosed by pairs of individual Fermi surfaces with non-zero Fermi Chern numbers. Combining angle-resolved photoemission spectroscopy and first-principles calculation, here we show that TaP is a Weyl semimetal with only a single type of Weyl fermions, topologically distinguished from TaAs where two types of Weyl fermions contribute to the low-energy physical properties. The simple Weyl fermions in TaP are not only of fundamental interests but also of great potential for future applications. Fermi arcs on the Ta-terminated surface are observed, which appear in a different pattern from that on the As-termination in TaAs and NbAs. PMID:26983910

  7. Helical Spin Order from Topological Dirac and Weyl Semimetals

    SciTech Connect

    Sun, Xiao-Qi; Zhang, Shou-Cheng; Wang, Zhong

    2015-08-14

    In this paper, we study dynamical mass generation and the resultant helical spin orders in topological Dirac and Weyl semimetals, including the edge states of quantum spin Hall insulators, the surface states of weak topological insulators, and the bulk materials of Weyl semimetals. In particular, the helical spin textures of Weyl semimetals manifest the spin-momentum locking of Weyl fermions in a visible manner. Finally, the spin-wave fluctuations of the helical order carry electric charge density; therefore, the spin textures can be electrically controlled in a simple and predictable manner.

  8. Observation of Weyl nodes and Fermi arcs in tantalum phosphide.

    PubMed

    Xu, N; Weng, H M; Lv, B Q; Matt, C E; Park, J; Bisti, F; Strocov, V N; Gawryluk, D; Pomjakushina, E; Conder, K; Plumb, N C; Radovic, M; Autès, G; Yazyev, O V; Fang, Z; Dai, X; Qian, T; Mesot, J; Ding, H; Shi, M

    2016-01-01

    A Weyl semimetal possesses spin-polarized band-crossings, called Weyl nodes, connected by topological surface arcs. The low-energy excitations near the crossing points behave the same as massless Weyl fermions, leading to exotic properties like chiral anomaly. To have the transport properties dominated by Weyl fermions, Weyl nodes need to locate nearly at the chemical potential and enclosed by pairs of individual Fermi surfaces with non-zero Fermi Chern numbers. Combining angle-resolved photoemission spectroscopy and first-principles calculation, here we show that TaP is a Weyl semimetal with only a single type of Weyl fermions, topologically distinguished from TaAs where two types of Weyl fermions contribute to the low-energy physical properties. The simple Weyl fermions in TaP are not only of fundamental interests but also of great potential for future applications. Fermi arcs on the Ta-terminated surface are observed, which appear in a different pattern from that on the As-termination in TaAs and NbAs. PMID:26983910

  9. Disordered Weyl Semimetals and Their Topological Family.

    PubMed

    Zhao, Y X; Wang, Z D

    2015-05-22

    We develop a topological theory for disordered Weyl semimetals in the framework of the gauge invariance of the replica formalism and boundary-bulk correspondence of Chern insulators. An anisotropic topological θ term is analytically derived for the effective nonlinear σ model. It is this nontrivial topological term that ensures that the bulk transverse transport of Weyl semimetals is robust against disorders. Moreover, we establish a general diagram that reveals the intrinsic relations among topological terms in the nonlinear σ models and gauge response theories, respectively, for (2n+2)-dimensional topological insulators, (2n+1)-dimensional chiral fermions, (2n+1)-dimensional chiral semimetals, and (2n)-dimensional topological insulators with n being a positive integer.

  10. Mechanical Weyl Modes in Topological Maxwell Lattices.

    PubMed

    Rocklin, D Zeb; Chen, Bryan Gin-Ge; Falk, Martin; Vitelli, Vincenzo; Lubensky, T C

    2016-04-01

    We show that two-dimensional mechanical lattices can generically display topologically protected bulk zero-energy phonon modes at isolated points in the Brillouin zone, analogs of massless fermion modes of Weyl semimetals. We focus on deformed square lattices as the simplest Maxwell lattices, characterized by equal numbers of constraints and degrees of freedom, with this property. The Weyl points appear at the origin of the Brillouin zone along directions with vanishing sound speed and move away to the zone edge (or return to the origin) where they annihilate. Our results suggest a design strategy for topological metamaterials with bulk low-frequency acoustic modes and elastic instabilities at a particular, tunable finite wave vector. PMID:27081989

  11. Mechanical Weyl Modes in Topological Maxwell Lattices

    NASA Astrophysics Data System (ADS)

    Rocklin, D. Zeb; Chen, Bryan Gin-ge; Falk, Martin; Vitelli, Vincenzo; Lubensky, T. C.

    2016-04-01

    We show that two-dimensional mechanical lattices can generically display topologically protected bulk zero-energy phonon modes at isolated points in the Brillouin zone, analogs of massless fermion modes of Weyl semimetals. We focus on deformed square lattices as the simplest Maxwell lattices, characterized by equal numbers of constraints and degrees of freedom, with this property. The Weyl points appear at the origin of the Brillouin zone along directions with vanishing sound speed and move away to the zone edge (or return to the origin) where they annihilate. Our results suggest a design strategy for topological metamaterials with bulk low-frequency acoustic modes and elastic instabilities at a particular, tunable finite wave vector.

  12. Elastic Gauge Fields in Weyl Semimetals

    NASA Astrophysics Data System (ADS)

    Cortijo, Alberto; Ferreiros, Yago; Landsteiner, Karl; Hernandez Vozmediano, Maria Angeles

    We show that, as it happens in graphene, elastic deformations couple to the electronic degrees of freedom as pseudo gauge fields in Weyl semimetals. We derive the form of the elastic gauge fields in a tight-binding model hosting Weyl nodes and see that this vector electron-phonon coupling is chiral, providing an example of axial gauge fields in three dimensions. As an example of the new response functions that arise associated to these elastic gauge fields, we derive a non-zero phonon Hall viscosity for the neutral system at zero temperature. The axial nature of the fields provides a test of the chiral anomaly in high energy with three axial vector couplings. European Union structural funds and the Comunidad de Madrid MAD2D-CM Program (S2013/MIT-3007).

  13. Stability of the nakedness of Weyl singularities

    NASA Technical Reports Server (NTRS)

    Haugan, M. P.; Liang, E. P. T.

    1979-01-01

    The stability of the nakedness of the Weyl singularities against matter perturbations is investigated. Consideration is given to the effects of infalling test matter on the convergence of outgoing null rays. It is shown that the additional convergence induced by infalling test matter does not blow up sufficiently fast to reconverge diverging outgoing rays, at least in the equator, and that the nakedness seems to be stable in this limited sense.

  14. Space-time singularities in Weyl manifolds

    NASA Astrophysics Data System (ADS)

    Lobo, I. P.; Barreto, A. B.; Romero, C.

    2015-09-01

    We extend one of the Hawking-Penrose singularity theorems in general relativity to the case of some scalar-tensor gravity theories in which the scalar field has a geometrical character and space-time has the mathematical structure of a Weyl integrable space-time. We adopt an invariant formalism, so that the extended version of the theorem does not depend on a particular frame.

  15. Weyl anomaly and initial singularity crossing

    NASA Astrophysics Data System (ADS)

    Awad, Adel

    2016-04-01

    We consider the role of quantum effects, mainly, Weyl anomaly in modifying Friedmann-Lemaitre-Robertson-Walker (FLRW) model singular behavior at early times. Weyl anomaly corrections to FLRW models have been considered in the past, here we reconsider this model and show the following: The singularity of this model is weak according to Tipler and Krolak, therefore, the spacetime might admit a geodesic extension. Weyl anomaly corrections change the nature of the initial singularity from a big bang singularity to a sudden singularity. The two branches of solutions consistent with the semiclassical treatment form a disconnected manifold. Joining these two parts at the singularity provides us with a C1 extension to nonspacelike geodesics and leaves the spacetime geodesically complete. Using Gauss-Codazzi equations one can derive generalized junction conditions for this higher-derivative gravity. The extended spacetime obeys Friedmann and Raychaudhuri equations and the junction conditions. The junction does not generate Dirac delta functions in matter sources which keeps the equation of state unchanged.

  16. Unconventional electromagnetic mode in neutral Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Ferreiros, Yago; Cortijo, Alberto

    2016-05-01

    We study light propagation in a neutral Weyl semimetal with the Fermi level lying at the Weyl nodes in the weak self-interacting regime. The nontrivial topology induces a screening effect in one of the two transverse gauge fields, for which we find two branches of attenuated collective excitations. In addition to the known topologically gapped photon mode, a different massless and slightly damped excitation appears. Strikingly, at low energies, this excitation has a linear dispersion and it propagates with the same velocity as the electrons, while at energies well above the electron-hole continuum threshold it behaves as a massive attenuated photon with velocity similar to the speed of light in the material. There is a crossover at a certain momentum in the direction perpendicular to the separation of the Weyl nodes above which this gapless mode enters into an overdamped regime. Regarding the unscreened gauge field, we show that it is also attenuated, which is a nontopological property shared by Dirac semimetals as well.

  17. Weyl-gauge symmetry of graphene

    SciTech Connect

    Iorio, Alfredo

    2011-05-15

    Research Highlights: > Graphene action's Weyl symmetry identifies shapes for which the DOS is invariant. > Electrons on graphene might experience a general-relativistic-like spacetime. > Rich mathematical structures, such as the Liouville's equation, naturally arise. - Abstract: The conformal invariance of the low energy limit theory governing the electronic properties of graphene is explored. In particular, it is noted that the massless Dirac theory in point enjoys local Weyl symmetry, a very large symmetry. Exploiting this symmetry in the two spatial dimensions and in the associated three dimensional spacetime, we find the geometric constraints that correspond to specific shapes of the graphene sheet for which the electronic density of states is the same as that for planar graphene, provided the measurements are made in accordance to the inner reference frame of the electronic system. These results rely on the (surprising) general relativistic-like behavior of the graphene system arising from the combination of its well known special relativistic-like behavior with the less explored Weyl symmetry. Mathematical structures, such as the Virasoro algebra and the Liouville equation, naturally arise in this three-dimensional context and can be related to specific profiles of the graphene sheet. Speculations on possible applications of three-dimensional gravity are also proposed.

  18. Genomic diversity and affinities in population groups of North West India: an analysis of Alu insertion and a single nucleotide polymorphism.

    PubMed

    Saini, J S; Kumar, A; Matharoo, K; Sokhi, J; Badaruddoza; Bhanwer, A J S

    2012-12-15

    The North West region of India is extremely important to understand the peopling of India, as it acted as a corridor to the foreign invaders from Eurasia and Central Asia. A series of these invasions along with multiple migrations led to intermixture of variable populations, strongly contributing to genetic variations. The present investigation was designed to explore the genetic diversities and affinities among the five major ethnic groups from North West India; Brahmin, Jat Sikh, Bania, Rajput and Gujjar. A total of 327 individuals of the abovementioned ethnic groups were analyzed for 4 Alu insertion marker loci (ACE, PV92, APO and D1) and a Single Nucleotide Polymorphism (SNP) rs2234693 in the intronic region of the ESR1 gene. Statistical analysis was performed to interpret the genetic structure and diversity of the population groups. Genotypes for ACE, APO, ESR1 and PV92 loci were found to be in Hardy-Weinberg equilibrium in all the ethnic groups, while significant departures were observed at the D1 locus in every investigated population after Bonferroni's correction. The average heterozygosity for all the loci in these ethnic groups was fairly substantial ranging from 0.3927 ± 0.1877 to 0.4333 ± 0.1416. Inbreeding coefficient indicated an overall 10% decrease in heterozygosity in these North West Indian populations. The gene differentiation among the populations was observed to be of the order of 0.013. Genetic distance estimates revealed that Gujjars were close to Banias and Jat Sikhs were close to Rajputs. Overall the study favored the recent division of the populations of North West India into largely endogamous groups. It was observed that the populations of North West India represent a more or less homogenous genetic entity, owing to their common ancestral history as well as geographical proximity.

  19. Infinite-Dimensional Schur-Weyl Duality and the Coxeter-Laplace Operator

    NASA Astrophysics Data System (ADS)

    Tsilevich, N. V.; Vershik, A. M.

    2014-05-01

    We extend the classical Schur-Weyl duality between representations of the groups and to the case of and the infinite symmetric group . Our construction is based on a "dynamic," or inductive, scheme of Schur-Weyl dualities. It leads to a new class of representations of the infinite symmetric group, which has not appeared earlier. We describe these representations and, in particular, find their spectral types with respect to the Gelfand-Tsetlin algebra. The main example of such a representation acts in an incomplete infinite tensor product. As an important application, we consider the weak limit of the so-called Coxeter-Laplace operator, which is essentially the Hamiltonian of the XXX Heisenberg model, in these representations.

  20. How Weyl stumbled across electricity while pursuing mathematical justice

    NASA Astrophysics Data System (ADS)

    Afriat, Alexander

    It is argued that Weyl's theory of gravitation and electricity came out of 'mathematical justice': out of the equal rights of direction and length. Such justice was manifestly at work in the context of discovery, and is enough to derive all of source-free electromagnetism. Weyl's repeated references to coordinates and gauge are taken to express equal treatment of direction and length.

  1. Relativistic corrections to the Moyal-Weyl spacetime

    SciTech Connect

    Much, A.

    2015-02-15

    We use the framework of quantum field theory to obtain by deformation the Moyal-Weyl spacetime. This idea is extracted from recent progress in deformation theory concerning the emergence of the quantum plane of the Landau-quantization. The quantum field theoretical emerging spacetime is not equal to the standard Moyal-Weyl plane, but terms resembling relativistic corrections occur.

  2. Critical exponents at the unconventional disorder-driven transition in a Weyl semimetal

    NASA Astrophysics Data System (ADS)

    Syzranov, Sergey; Ostrovsky, Pavel; Gurarie, Victor; Radzihovsky, Leo

    Disordered non-interacting systems in sufficiently high dimensions have been predicted to display a non-Anderson disorder-driven transition that manifests itself in the critical behaviour of the density of states and other physical observables. Recently the critical properties of this transition have been extensively studied for the specific case of Weyl semimetals by means of numerical and renormalisation-group approaches. Despite this, the values of the critical exponents at such a transition in a Weyl semimetal are currently under debate. We present an independent calculation of the critical exponents using a two-loop renormalisation-group approach for Dirac fermions in 2 + ɛ dimensions and resolve controversies currently existing in the literature.

  3. Magnetic torque anomaly in the quantum limit of Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Moll, Philip J. W.; Potter, Andrew C.; Nair, Nityan L.; Ramshaw, B. J.; Modic, K. A.; Riggs, Scott; Zeng, Bin; Ghimire, Nirmal J.; Bauer, Eric D.; Kealhofer, Robert; Ronning, Filip; Analytis, James G.

    2016-08-01

    Electrons in materials with linear dispersion behave as massless Weyl- or Dirac-quasiparticles, and continue to intrigue due to their close resemblance to elusive ultra-relativistic particles as well as their potential for future electronics. Yet the experimental signatures of Weyl-fermions are often subtle and indirect, in particular if they coexist with conventional, massive quasiparticles. Here we show a pronounced anomaly in the magnetic torque of the Weyl semimetal NbAs upon entering the quantum limit state in high magnetic fields. The torque changes sign in the quantum limit, signalling a reversal of the magnetic anisotropy that can be directly attributed to the topological nature of the Weyl electrons. Our results establish that anomalous quantum limit torque measurements provide a direct experimental method to identify and distinguish Weyl and Dirac systems.

  4. Magnetic torque anomaly in the quantum limit of Weyl semimetals.

    PubMed

    Moll, Philip J W; Potter, Andrew C; Nair, Nityan L; Ramshaw, B J; Modic, K A; Riggs, Scott; Zeng, Bin; Ghimire, Nirmal J; Bauer, Eric D; Kealhofer, Robert; Ronning, Filip; Analytis, James G

    2016-01-01

    Electrons in materials with linear dispersion behave as massless Weyl- or Dirac-quasiparticles, and continue to intrigue due to their close resemblance to elusive ultra-relativistic particles as well as their potential for future electronics. Yet the experimental signatures of Weyl-fermions are often subtle and indirect, in particular if they coexist with conventional, massive quasiparticles. Here we show a pronounced anomaly in the magnetic torque of the Weyl semimetal NbAs upon entering the quantum limit state in high magnetic fields. The torque changes sign in the quantum limit, signalling a reversal of the magnetic anisotropy that can be directly attributed to the topological nature of the Weyl electrons. Our results establish that anomalous quantum limit torque measurements provide a direct experimental method to identify and distinguish Weyl and Dirac systems. PMID:27545105

  5. Type-II Weyl cone transitions in driven semimetals

    NASA Astrophysics Data System (ADS)

    Chan, Ching-Kit; Oh, Yun-Tak; Han, Jung Hoon; Lee, Patrick A.

    2016-09-01

    Periodically driven systems provide tunable platforms to realize interesting Floquet topological phases and phase transitions. In electronic systems with Weyl dispersions, the band crossings are topologically protected even in the presence of time-periodic perturbations. This robustness permits various routes to shift and tilt the Weyl spectra in the momentum and energy space using circularly polarized light of sufficient intensity. We show that type-II Weyl fermions, in which the Weyl dispersions are tilted with the appearance of pocketlike Fermi surfaces, can be induced in driven Dirac semimetals and line node semimetals. Under a circularly polarized drive, both semimetal systems immediately generate Weyl node pairs whose types can be further controlled by the driving amplitude and direction. The resultant phase diagrams demonstrate experimental feasibilities.

  6. Magnetic torque anomaly in the quantum limit of Weyl semimetals

    PubMed Central

    Moll, Philip J. W.; Potter, Andrew C.; Nair, Nityan L.; Ramshaw, B. J.; Modic, K. A.; Riggs, Scott; Zeng, Bin; Ghimire, Nirmal J.; Bauer, Eric D.; Kealhofer, Robert; Ronning, Filip; Analytis, James G.

    2016-01-01

    Electrons in materials with linear dispersion behave as massless Weyl- or Dirac-quasiparticles, and continue to intrigue due to their close resemblance to elusive ultra-relativistic particles as well as their potential for future electronics. Yet the experimental signatures of Weyl-fermions are often subtle and indirect, in particular if they coexist with conventional, massive quasiparticles. Here we show a pronounced anomaly in the magnetic torque of the Weyl semimetal NbAs upon entering the quantum limit state in high magnetic fields. The torque changes sign in the quantum limit, signalling a reversal of the magnetic anisotropy that can be directly attributed to the topological nature of the Weyl electrons. Our results establish that anomalous quantum limit torque measurements provide a direct experimental method to identify and distinguish Weyl and Dirac systems. PMID:27545105

  7. Chiral wave-packet scattering in Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Jiang, Qing-Dong; Jiang, Hua; Liu, Haiwen; Sun, Qing-Feng; Xie, X. C.

    2016-05-01

    In quantum mechanics, a particle is best described by the wave packet instead of the plane wave. Here, we study the wave-packet scattering problem in Weyl semimetals with the low-energy Weyl fermions of different chiralities. Our results show that the wave packet acquires a chirality-protected shift in the single-impurity scattering process. More importantly, the chirality-protected shift can lead to an anomalous scattering probability, and thus affects the transport properties in Weyl semimetals. We find that the ratio between the transport lifetime and the quantum lifetime increases sharply when the Fermi energy approaches the Weyl nodes, providing an explanation of the experimentally observed ultrahigh mobility in topological (Weyl or Dirac) semimetals.

  8. Genome Data Mining and Soil Survey for the Novel Group 5 [NiFe]-Hydrogenase To Explore the Diversity and Ecological Importance of Presumptive High-Affinity H2-Oxidizing Bacteria ▿†

    PubMed Central

    Constant, Philippe; Chowdhury, Soumitra Paul; Hesse, Laura; Pratscher, Jennifer; Conrad, Ralf

    2011-01-01

    Streptomyces soil isolates exhibiting the unique ability to oxidize atmospheric H2 possess genes specifying a putative high-affinity [NiFe]-hydrogenase. This study was undertaken to explore the taxonomic diversity and the ecological importance of this novel functional group. We propose to designate the genes encoding the small and large subunits of the putative high-affinity hydrogenase hhyS and hhyL, respectively. Genome data mining revealed that the hhyL gene is unevenly distributed in the phyla Actinobacteria, Proteobacteria, Chloroflexi, and Acidobacteria. The hhyL gene sequences comprised a phylogenetically distinct group, namely, the group 5 [NiFe]-hydrogenase genes. The presumptive high-affinity H2-oxidizing bacteria constituting group 5 were shown to possess a hydrogenase gene cluster, including the genes encoding auxiliary and structural components of the enzyme and four additional open reading frames (ORFs) of unknown function. A soil survey confirmed that both high-affinity H2 oxidation activity and the hhyL gene are ubiquitous. A quantitative PCR assay revealed that soil contained 106 to 108 hhyL gene copies g (dry weight)−1. Assuming one hhyL gene copy per genome, the abundance of presumptive high-affinity H2-oxidizing bacteria was higher than the maximal population size for which maintenance energy requirements would be fully supplied through the H2 oxidation activity measured in soil. Our data indicate that the abundance of the hhyL gene should not be taken as a reliable proxy for the uptake of atmospheric H2 by soil, because high-affinity H2 oxidation is a facultatively mixotrophic metabolism, and microorganisms harboring a nonfunctional group 5 [NiFe]-hydrogenase may occur. PMID:21742924

  9. Some cosmological consequences of Weyl invariance

    SciTech Connect

    Alvarez, Enrique; González-Martín, Sergio; Herrero-Valea, Mario

    2015-03-19

    We examine some Weyl invariant cosmological models in the framework of generalized dilaton gravity, in which the action is made of a set of N conformally coupled scalar fields. It will be shown that when the FRW ansatz for the spacetime metric is assumed, the Ward identity for conformal invariance guarantees that the gravitational equations hold whenever the scalar fields EM do so. It follows that any scale factor can solve the theory provided a non-trivial profile for a dilaton field. In particular, accelerated expansion is a natural solution to the full set of equations.

  10. Multifractality at non-Anderson disorder-driven transitions in Weyl semimetals and other systems

    NASA Astrophysics Data System (ADS)

    Syzranov, S. V.; Gurarie, V.; Radzihovsky, L.

    2016-10-01

    Systems with the power-law quasiparticle dispersion ɛk ∝kα exhibit non-Anderson disorder-driven transitions in dimensions d > 2 α, as exemplified by Weyl semimetals, 1D and 2D arrays of ultracold ions with long-range interactions, quantum kicked rotors, and semiconductor models in high dimensions. We study the wavefunction structure in such systems and demonstrate that at these transitions they exhibit fractal behaviour with an infinite set of multifractal exponents. The multifractality persists even when the wavefunction localisation is forbidden by symmetry or topology and occurs as a result of elastic scattering between all momentum states in the band on length scales shorter than the mean free path. We calculate explicitly the multifractal spectra in semiconductors and Weyl semimetals using one-loop and two-loop renormalisation-group approaches slightly above the marginal dimension d = 2 α.

  11. Landau levels and longitudinal magnetoresistance in generalized Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Li, Xiao; Roy, Bitan

    The notion of axial anomaly is a venerable concept in quantum field theory that has received ample attention in condensed matter physics due to the discovery of Weyl materials (WSMs). In such systems Kramers non-degenerate bands touch at isolated points in the Brillouin zone that act as (anti)monopoles of Berry flux, and the monopole number (m) defines the topological invariant of the system. Although so far only simple WSMs (with m = 1) has been found in various inversion and/or time-reversal asymmetric systems, generalized Weyl semimetals with m > 1 can also be found in nature, for example double-Weyl semimetals in HgCr2Se4 and SrSi2 and triple-Weyl semimetals. In this work, we demonstrate the Landau level spectrum in generalized Weyl systems and its ramification on longitudinal magnetotransport measurements. We show that in the quantum limit generalized Weyl semimetals display negative longitudinal magnetoresistance due to the chiral anomaly. Moreover, the magnetoresistance has nontrivial dependence on the relative orientation of the external fields with the crystallographic axis, stemming from underlying anisotropic quasiparticle dispersion in the pristine system. Our theory can thus provide diagnostic tools to pin the quasiparticle properties in Weyl systems.

  12. Theory of the strongly disordered Weyl semimetal

    NASA Astrophysics Data System (ADS)

    Altland, Alexander; Bagrets, Dmitry

    2016-02-01

    In disordered Weyl semimetals, mechanisms of topological origin lead to novel mechanisms of transport, which manifest themselves in unconventional types of electromagnetic response. Prominent examples of transport phenomena particular to the Weyl context include the anomalous Hall effect, the chiral magnetic effect, and the formation of totally field-dominated regimes of transport in which the longitudinal conductance is proportional to an external magnetic field. In this paper, we discuss the manifestations of these phenomena at large length scales including the cases of strong disorder and/or magnetic field which are beyond the scope of diagrammatic perturbation theory. Our perhaps most striking finding is the identification of a regime of drift-diffusion transport where diffusion at short scales gives way to effectively ballistic dynamics at large scales before a reentrance to diffusion takes place at yet larger scales. We show that this regime plays a key role in understanding the interplay of the various types of magnetoresponse of the system. Our results are obtained by describing the strongly disordered system in terms of an effective field theory of Chern-Simons type. The paper contains a self-contained derivation of this theory and a discussion of both equilibrium and nonequilibrium (noise) transport phenomena following from it.

  13. Weyl symmetric representation of SU(3) gluodynamics in abelian projection

    NASA Astrophysics Data System (ADS)

    Koma, Y.; Takayama, M.; Toki, H.; Ebert, D.

    2001-10-01

    The dual Ginzburg-Landau (DGL) theory corresponding to the SU(3) gluodynamics in Abelian projection is formulated in a Weyl symmetric way. The Weyl symmetric DGL theory can be regarded as the sum of three types of the U(1) dual Abelian Higgs (DAH) model. As an application of this approach, the hadronic flux-tube solution corresponding to the baryonic state is investigated adopting the similar techniques used in the U(1) DAH model. The string representation of the DGL theory is also discussed in a Weyl symmetric way.

  14. Heisenberg-Weyl Observables: Bloch vectors in phase space

    NASA Astrophysics Data System (ADS)

    Asadian, Ali; Erker, Paul; Huber, Marcus; Klöckl, Claude

    2016-07-01

    We introduce a Hermitian generalization of Pauli matrices to higher dimensions which is based on Heisenberg-Weyl operators. The complete set of Heisenberg-Weyl observables allows us to identify a real-valued Bloch vector for an arbitrary density operator in discrete phase space, with a smooth transition to infinite dimensions. Furthermore, we derive bounds on the sum of expectation values of any set of anticommuting observables. Such bounds can be used in entanglement detection and we show that Heisenberg-Weyl observables provide a first nontrivial example beyond the dichotomic case.

  15. Dynamics of Weyl quasiparticles in an optical lattice

    NASA Astrophysics Data System (ADS)

    Li, Zhi; Wang, Huai-Qiang; Zhang, Dan-Wei; Zhu, Shi-Liang; Xing, Ding-Yu

    2016-10-01

    We investigate the dynamics of the Weyl quasiparticles emerged in an optical lattice where the topological Weyl semimetal and trivial band insulator phases can be adjusted with the on-site energy. The evolution of the density distribution is demonstrated to have an anomalous velocity in the Weyl semimetal but a steady Zitterbewegung effect in the band insulator. Our analysis demonstrates that the chirality of the system can be directly determined from the positions of the atomic center of mass. Furthermore, the amplitude and the period of the relativistic Zitterbewegung oscillations are shown to be observable with the time-of-flight experiments.

  16. Chiral Anomaly and Giant Magnetochiral Anisotropy in Noncentrosymmetric Weyl Semimetals

    NASA Astrophysics Data System (ADS)

    Morimoto, Takahiro; Nagaosa, Naoto

    2016-09-01

    We theoretically propose that giant magnetochiral anisotropy is achieved in Weyl semimetals in noncentrosymmetric crystals as a consequence of the chiral anomaly. The magnetochiral anisotropy is the nonlinearity of the resistivity ρ that depends on the current I and the magnetic field B as ρ =ρ0(1 +γ I .B ) , and can be applied to rectifier devices controlled by B . We derive the formula for the coefficient γ in noncentrosymmetric Weyl semimetals. The obtained formula for γ shows that the magnetochiral anisotropy is strongly enhanced when the chemical potential is tuned to Weyl points, and that noncentrosymmetric Weyl semimetals such as TaAs can exhibit much larger magnetochiral anisotropy than that observed in other materials so far.

  17. Structured Weyl Points in Spin-Orbit Coupled Fermionic Superfluids

    NASA Astrophysics Data System (ADS)

    Xu, Yong; Zhang, Fan; Zhang, Chuanwei

    2015-12-01

    We demonstrate that a Weyl point, widely examined in 3D Weyl semimetals and superfluids, can develop a pair of nondegenerate gapless spheres. Such a bouquet of two spheres is characterized by three distinct topological invariants of manifolds with full energy gaps, i.e., the Chern number of a 0D point inside one developed sphere, the winding number of a 1D loop around the original Weyl point, and the Chern number of a 2D surface enclosing the whole bouquet. We show that such structured Weyl points can be realized in the superfluid quasiparticle spectrum of a 3D degenerate Fermi gas subject to spin-orbit couplings and Zeeman fields, which supports Fulde-Ferrell superfluids as the ground state.

  18. Higgs and gravitational scalar fields together induce Weyl gauge

    NASA Astrophysics Data System (ADS)

    Scholz, Erhard

    2015-02-01

    A common biquadratic potential for the Higgs field and an additional scalar field , non minimally coupled to gravity, is considered in a locally scale symmetric approach to standard model fields in curved spacetime. A common ground state of the two scalar fields exists and couples both fields to gravity, more precisely to Weyl geometric scalar curvature . In Einstein gauge (, often called "Einstein frame"), also is scaled to a constant. This condition makes perfect sense, even in the general case, in the Weyl geometric approach. There it has been called Weyl gauge, because it was first considered by Weyl in the different context of his original scale geometric theory of gravity of 1918. Now it may get new meaning as a combined effect of electroweak theory and gravity, and their common influence on atomic frequencies.

  19. Structured Weyl Points in Spin-Orbit Coupled Fermionic Superfluids.

    PubMed

    Xu, Yong; Zhang, Fan; Zhang, Chuanwei

    2015-12-31

    We demonstrate that a Weyl point, widely examined in 3D Weyl semimetals and superfluids, can develop a pair of nondegenerate gapless spheres. Such a bouquet of two spheres is characterized by three distinct topological invariants of manifolds with full energy gaps, i.e., the Chern number of a 0D point inside one developed sphere, the winding number of a 1D loop around the original Weyl point, and the Chern number of a 2D surface enclosing the whole bouquet. We show that such structured Weyl points can be realized in the superfluid quasiparticle spectrum of a 3D degenerate Fermi gas subject to spin-orbit couplings and Zeeman fields, which supports Fulde-Ferrell superfluids as the ground state. PMID:26765002

  20. FLRW cosmology in Weyl-integrable space-time

    SciTech Connect

    Gannouji, Radouane; Nandan, Hemwati; Dadhich, Naresh E-mail: hntheory@yahoo.co.in

    2011-11-01

    We investigate the Weyl space-time extension of general relativity (GR) for studying the FLRW cosmology through focusing and defocusing of the geodesic congruences. We have derived the equations of evolution for expansion, shear and rotation in the Weyl space-time. In particular, we consider the Starobinsky modification, f(R) = R+βR{sup 2}−2Λ, of gravity in the Einstein-Palatini formalism, which turns out to reduce to the Weyl integrable space-time (WIST) with the Weyl vector being a gradient. The modified Raychaudhuri equation takes the form of the Hill-type equation which is then analysed to study the formation of the caustics. In this model, it is possible to have a Big Bang singularity free cyclic Universe but unfortunately the periodicity turns out to be extremely short.

  1. Optical spectroscopy study of Weyl Semimetal NbP

    NASA Astrophysics Data System (ADS)

    Yang, Jeremy; Jiang, Yuxuan; Dun, Zhiling; Zhou, Haidong; Smirnov, Dmitry; Jiang, Zhigang

    Weyl semimetals have attracted much interest lately because of its unique band structure, where conduction band and valence band touch at discrete points. Here, we report on optical spectroscopy study of Weyl semimetal NbP, seeking evidence for the existence of Weyl fermions. Specifically, using Raman spectroscopy we investigate the anisotropic response of Raman-active phonon modes in NbP and compare with Quantum Espresso simulations. Using magneto-infrared spectroscopy in a high magnetic field up to 17.5T, we observe several Landau level transitions and compare with the theoretical model of three-dimensional massless Dirac/Weyl fermions. By combining our data with low-temperature magneto-transport measurement, the magnetic field dispersion of Landau levels in NbP is obtained.

  2. RKKY interaction of magnetic impurities in Dirac and Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Chang, Hao-Ran; Zhou, Jianhui; Wang, Shi-Xiong; Shan, Wen-Yu; Xiao, Di

    2015-12-01

    We theoretically study the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction between magnetic impurities in both Dirac and Weyl semimetals (SMs). We find that the internode process, as well as the unique three-dimensional spin-momentum locking, has significant influences on the RKKY interaction, resulting in both a Heisenberg and an Ising term, and an additional Dzyaloshinsky-Moriya term if the inversion symmetry is absent. These interactions can lead to rich spin textures and possible ferromagnetism in Dirac and time-reversal symmetry-invariant Weyl SMs. The effect of anisotropic Dirac and Weyl nodes on the RKKY interaction is also discussed. Our results provide an alternative scheme to engineer topological SMs and shed new light on the application of Dirac and Weyl SMs in spintronics.

  3. Emergent Weyl excitations in systems of polar particles

    NASA Astrophysics Data System (ADS)

    Syzranov, Sergey; Wall, Michael; Zhu, Bihui; Gurarie, Victor; Rey, Ana Maria

    2016-05-01

    Systems with Weyl quasiparticle dispersion have been predicted to display a plethora of novel fascinating phenomena: chiral anomaly, topologically protected Fermi arcs on the surfaces, non-Anderson disorder-driven transitions, etc. Over the last several years enormous research efforts have been directed at finding new Weyl semimetals in solid-state systems and ways to realise them in ultracold atomic gases. We demonstrate that excitations with Weyl dispersion generically exist in three-dimensional systems of polar particles in the presence of magnetic field. They emerge due to the dipolar-interaction-induced transitions between the J = 0 and J = 1 angular-momentum states of the particles. Also, we calculate the quasiparticle spectra microscopically for systems of alkaline-earth atoms that can be realised experimentally and suggest a Ramsey-spectroscopy protocol for observing Weyl excitations in them.

  4. Detecting monopole charge in Weyl semimetals via quantum interference transport

    NASA Astrophysics Data System (ADS)

    Dai, Xin; Lu, Hai-Zhou; Shen, Shun-Qing; Yao, Hong

    2016-04-01

    Topological Weyl semimetals can host Weyl nodes with monopole charges in momentum space. How to detect the signature of the monopole charges in quantum transport remains a challenging topic. Here, we reveal the connection between the parity of monopole charge in topological semimetals and the quantum interference corrections to the conductivity. We show that the parity of monopole charge determines the sign of the quantum interference correction, with odd and even parity yielding the weak antilocalization and weak localization effects, respectively. This is attributed to the Berry phase difference between time-reversed trajectories circulating the Fermi sphere that encloses the monopole charges. From standard Feynman diagram calculations, we further show that the weak-field magnetoconductivity at low temperatures is proportional to +√{B } in double-Weyl semimetals and -√{B } in single-Weyl semimetals, respectively, which could be verified experimentally.

  5. Weyl holographic superconductor in the Lifshitz black hole background

    NASA Astrophysics Data System (ADS)

    Mansoori, S. A. Hosseini; Mirza, B.; Mokhtari, A.; Dezaki, F. Lalehgani; Sherkatghanad, Z.

    2016-07-01

    We investigate analytically the properties of the Weyl holographic superconductor in the Lifshitz black hole background. We find that the critical temperature of the Weyl superconductor decreases with increasing Lifshitz dynamical exponent, z, indicating that condensation becomes difficult. In addition, it is found that the critical temperature and condensation operator could be affected by applying the Weyl coupling, γ. Moreover, we compute the critical magnetic field and investigate its dependence on the parameters γ and z. Finally, we show numerically that the Weyl coupling parameter γ and the Lifshitz dynamical exponent z together control the size and strength of the conductivity peak and the ratio of gap frequency over critical temperature ω g /T c .

  6. Bending of light in conformal Weyl gravity

    NASA Astrophysics Data System (ADS)

    Sultana, Joseph; Kazanas, Demosthenes

    2010-06-01

    We reexamine the bending of light issue associated with the metric of the static, spherically symmetric solution of Weyl gravity discovered by Mannheim and Kazanas (1989). To this end we employ the procedure used recently by Rindler and Ishak to obtain the bending angle of light by a centrally concentrated spherically symmetric matter distribution in a Schwarzschild-de Sitter background. In earlier studies the term γr in the metric led to the paradoxical result of a bending angle proportional to the photon impact parameter, when using the usual formalism appropriate to asymptotically flat space-times. However, employing the approach of light bending of Rindler and Ishak we show that the effects of this term are in fact insignificant, with the discrepancy between the two procedures attributed to the definition of the bending angle between the asymptotically flat and nonflat spaces.

  7. Conformal Weyl Gravity and Perihelion Precession

    NASA Technical Reports Server (NTRS)

    Sultana, Joseph; Kazanas, Demosthenes; Said, Jakson, Levi

    2012-01-01

    We investigate the perihelion shift of planetary motion in conformal Weyl gravity using the metric of the static, spherically symmetric solution discovered by Mannheim and Kazanas. To this end we employ a procedure similar to that used by Weinberg for the Schwarzschild solution, which has also been used recently to study the solar system effects of the cosmological constant Lambda. We show that besides the general relativistic terms obtained earlier from the Schwarzschild-de Sitter solution, the expression for the perihelion shift includes a negative contribution which arises from the linear term gamma ray in the metric. Using data for perihelion shift observations, we obtain constraints on the value of the constant gammma similar to that obtained earlier using galactic rotational curves.

  8. Field emission from Dirac and Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Mao, Ling-Feng; Li, X.; Ning, H.; Hu, Changjun; Wang, Gaofeng

    2016-09-01

    Based on theoretical investigation on characteristics of the field emission current of Dirac/Weyl semimetals, the dependence of the field emission current on the applied bias is deduced and studied. This theoretical study demonstrates that the field emission current of a Dirac semimetal is much smaller than that of a conventional material when they have similar carrier parameters. This makes Dirac semimetal a better candidate for gate/base electrode material than gold and other conventional metals for an ultra-thin gate oxide metal-oxide-semiconductor field effect transistor. The field emission current of a Dirac semimetal decreases with the effective electron mass, while it increases for a conventional material. This implies that such an effective mass dependence can be used as a simple criterion to probe a Dirac semimetal in practice.

  9. Massive mesons in Weyl-Dirac theory

    NASA Astrophysics Data System (ADS)

    Mirabotalebi, S.; Ahmadi, F.; Salehi, H.

    2008-01-01

    In order to study the mass generation of the vector fields in the framework of a conformal invariant gravitational model, the Weyl-Dirac theory is considered. The mass of the Weyl’s meson fields plays a principal role in this theory, it connects basically the conformal and gauge symmetries. We estimate this mass by using the large-scale characteristics of the observed universe. To do this we firstly specify a preferred conformal frame as a cosmological frame, then in this frame, we introduce an exact possible solution of the theory. We also study the dynamical effect of the massive vector meson fields on the trajectories of an elementary particle. We show that a local change of the cosmological frame leads to a Hamilton-Jacobi equation describing a particle with an adjustable mass. The dynamical effect of the massive vector meson field presents itself in the form of a correction term for the mass of the particle.

  10. Torus as phase space: Weyl quantization, dequantization, and Wigner formalism

    NASA Astrophysics Data System (ADS)

    Ligabò, Marilena

    2016-08-01

    The Weyl quantization of classical observables on the torus (as phase space) without regularity assumptions is explicitly computed. The equivalence class of symbols yielding the same Weyl operator is characterized. The Heisenberg equation for the dynamics of general quantum observables is written through the Moyal brackets on the torus and the support of the Wigner transform is characterized. Finally, a dequantization procedure is introduced that applies, for instance, to the Pauli matrices. As a result we obtain the corresponding classical symbols.

  11. Linear magnetoconductivity in an intrinsic topological Weyl semimetal

    NASA Astrophysics Data System (ADS)

    Zhang, Song-Bo; Lu, Hai-Zhou; Shen, Shun-Qing

    2016-05-01

    Searching for the signature of the violation of chiral charge conservation in solids has inspired a growing passion for the magneto-transport in topological semimetals. One of the open questions is how the conductivity depends on magnetic fields in a semimetal phase when the Fermi energy crosses the Weyl nodes. Here, we study both the longitudinal and transverse magnetoconductivity of a topological Weyl semimetal near the Weyl nodes with the help of a two-node model that includes all the topological semimetal properties. In the semimetal phase, the Fermi energy crosses only the 0th Landau bands in magnetic fields. For a finite potential range of impurities, it is found that both the longitudinal and transverse magnetoconductivity are positive and linear at the Weyl nodes, leading to an anisotropic and negative magnetoresistivity. The longitudinal magnetoconductivity depends on the potential range of impurities. The longitudinal conductivity remains finite at zero field, even though the density of states vanishes at the Weyl nodes. This work establishes a relation between the linear magnetoconductivity and the intrinsic topological Weyl semimetal phase.

  12. Thermo-electric transports in double-Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Chen, Qi; Fiete, Gregory A.

    Topological Weyl semimetals with linearly dispersing nodal points have received a surge of interest due to their experimental realization in real materials. Another nontrivial type of band crossing whose dispersion is not simply linear is the double Weyl point, around which the spectrum disperses linearly along one momentum direction but quadratically along the two remaining directions. In this work, we apply the semi-classical Boltzmann transport theory to study the thermo-electric conductivity of a double-Weyl fermion model. We find that the transport quantities exhibit an interesting dependence on the chemical potential and spatial anisotropic model parameters, differing from a simple quadratically or linearly dispersing electron gas. By applying a static magnetic field, we find that the double-Weyl point is only stable for a magnetic field along the linearly dispersing direction. The longitudinal and transverse electrical and thermal magneto-conductivity show a similar dependence on the in-plane cyclotron frequency to the linearly dispersing Weyl nodes. In the extreme quantum limit of chemical potential being much smaller than the cyclotron energy, we find that the lowest Landau levels are both chiral and doubly degenerate. The chiral anomaly contribution to the longitudinal magneto-conductivity is double that of a linearly dispersing Weyl node.

  13. Ruderman-Kittel-Kasuya-Yosida interaction in Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Hosseini, Mir Vahid; Askari, Mehdi

    2015-12-01

    We theoretically demonstrate the Ruderman-Kittel-Kasuya-Yosida interaction between magnetic impurities that is mediated by the Weyl fermions embedded inside a three-dimensional Weyl semimetal (WSM). The WSM is characterized by a pair of Weyl points separated in the momentum space. Using the Green's function method and a two-band model, we show that four terms contribute to the magnetic impurity interaction in the WSM phase: the Heisenberg, Dzyaloshinsky-Moriya, spin-frustrated, and Ising terms. Except for the last term which is vanishingly small in the plane perpendicular to the line connecting two Weyl points, all the other interaction terms are finite. Furthermore, the magnetic spins of the Dzyaloshinsky-Moriya and spin-frustrated terms lie in the plane perpendicular to the line connecting two Weyl points, but in this plane, the magnetic spins of the Ising term have no components. For each contribution, an analytical expression is obtained, falling off with a spatial dependence as R-5 at Weyl points and showing beating behavior that depends on the direction between two magnetic impurities.

  14. Report: Affinity Chromatography.

    ERIC Educational Resources Information Center

    Walters, Rodney R.

    1985-01-01

    Supports, affinity ligands, immobilization, elution methods, and a number of applications are among the topics considered in this discussion of affinity chromatography. An outline of the basic principles of affinity chromatography is included. (JN)

  15. Spinors, gravity and recalibration invariance. Microphysical motivation for the weyl geometry

    NASA Astrophysics Data System (ADS)

    Sławianowski, Jan J.

    1995-02-01

    Discussed is the status of scale and internal geometry in the theory of mutually interacting gravitational and spinor fields. Suggested is a class of dynamical models free of any introduced by hand scale standards, absolute objects, etc. in internal spaces of field multiplets. Weyl geometry of the physical space-time seems to be implied by the Finkelstein-Penrose-Weizsäcker idea [2,12] about two-component complex objects which describe an ultimate physical reality, underlying quantum phenomena and spatio-temporal structures. There are certain links with the Hehl's idea of dilaton [7] and the metric-affine gravitation theory. Our analysis seems to suggest that some short-range massive modes may appear in the gravitational sector of field quantities.

  16. Magnetic phases and unusual topological electronic structures of Weyl semimetals in strong interaction limit

    NASA Astrophysics Data System (ADS)

    Zhai, Liang-Jun; Chou, Po-Hao; Mou, Chung-Yu

    2016-09-01

    The interplay of electronic band structures and electron-electron interactions is known to develop new phases in condensed matter. In this paper, we investigate the thermodynamic phases and corresponding electronic structures of a Weyl semimetal in a strong on-site Coulomb interaction limit. Based on a minimum model of a Weyl semimetal with two linear Weyl nodes, it is shown that generically the Weyl semimetal becomes magnetic in the presence of interactions. In particular, it is shown that the Dzyaloshinskii-Moriya exchange interaction is generally induced so that the A-type antiferromagnetic (A-AFM) phase and the spiral spin density wave (SSDW) states are two generic phases. Furthermore, we find that Weyl nodes proliferate and it is possible to doubly enhance the unusual properties of noninteracting Weyl semimetals through the realization of double-Weyl nodes in a strong correlation limit. Specifically, it is shown that in the SSDW phase, linear Weyl nodes are tuned into double-Weyl nodes with the corresponding charges being ±2 . As the spin-orbit coupling increases, a quantum phase transition occurs with the SSDW phase being turned into an A-AFM phase and, at the same time, double-Weyl nodes are disintegrated into two pairs of linear Weyl nodes. Our results reveal the unusual interplay between the topology of electronic structures and magnetism in strongly correlated phases of Weyl semimetals.

  17. Disorder and Metal-Insulator Transitions in Weyl Semimetals.

    PubMed

    Chen, Chui-Zhen; Song, Juntao; Jiang, Hua; Sun, Qing-feng; Wang, Ziqiang; Xie, X C

    2015-12-11

    The Weyl semimetal (WSM) is a newly proposed quantum state of matter. It has Weyl nodes in bulk excitations and Fermi arc surface states. We study the effects of disorder and localization in WSMs and find three novel phase transitions. (i) Two Weyl nodes near the Brillouin zone boundary can be annihilated pairwise by disorder scattering, resulting in the opening of a topologically nontrivial gap and a transition from a WSM to a three-dimensional quantum anomalous Hall state. (ii) When the two Weyl nodes are well separated in momentum space, the emergent bulk extended states can give rise to a direct transition from a WSM to a 3D diffusive anomalous Hall metal. (iii) Two Weyl nodes can emerge near the zone center when an insulating gap closes with increasing disorder, enabling a direct transition from a normal band insulator to a WSM. We determine the phase diagram by numerically computing the localization length and the Hall conductivity, and propose that the novel phase transitions can be realized on a photonic lattice. PMID:26705648

  18. Chern numbers and chiral anomalies in Weyl butterflies

    NASA Astrophysics Data System (ADS)

    Roy, Sthitadhi; Kolodrubetz, Michael; Moore, Joel E.; Grushin, Adolfo G.

    2016-10-01

    The Hofstadter butterfly of lattice electrons in a strong magnetic field is a cornerstone of condensed matter physics, exploring the competition between periodicities imposed by the lattice and the field. Here, we introduce and characterize the Weyl butterfly, which emerges when a large magnetic field is applied to a three-dimensional Weyl semimetal. Using an experimentally motivated lattice model for cold-atomic systems, we solve this problem numerically. We find that Weyl nodes reemerge at commensurate fluxes and propose using wave-packet dynamics to reveal their chirality and location. Moreover, we show that the chiral anomaly—a hallmark of the topological Weyl semimetal—does not remain proportional to the magnetic field at large fields, but rather inherits a fractal structure of linear regimes as a function of the external field. The slope of each linear regime is determined by the difference of two Chern numbers in the gaps of the Weyl butterfly and can be measured experimentally in time of flight.

  19. Negative longitudinal magnetoresistance in Dirac and Weyl metals

    NASA Astrophysics Data System (ADS)

    Burkov, A. A.

    2015-06-01

    It has recently been found that Dirac and Weyl metals are characterized by an unusual weak-field longitudinal magnetoresistance: large, negative, and quadratic in the magnetic field. This has been shown to arise from the chiral anomaly, i.e., nonconservation of the chiral charge in the presence of external electric and magnetic fields, oriented collinearly. In this paper we report on a theory of this effect in both Dirac and Weyl metals. We demonstrate that this phenomenon contains two important ingredients. One is the magnetic-field-induced coupling between the chiral and the total (or vector, in relativistic field theory terminology) charge densities. This arises from the Berry curvature and is present in principle whenever the Berry curvature is nonzero, i.e., is nonspecific to Dirac and Weyl metals. This coupling, however, leads to a large negative quadratic magnetoresistance only when the second ingredient is present, namely when the chiral charge density is a nearly conserved quantity with a long relaxation time. This property is specific to Dirac and Weyl metals and is realized only when the Fermi energy is close to Dirac or Weyl nodes, expressing an important low-energy property of these materials, emergent chiral symmetry.

  20. Weyl, Dirac and Maxwell Quantum Cellular Automata

    NASA Astrophysics Data System (ADS)

    Bisio, Alessandro; D'Ariano, Giacomo Mauro; Perinotti, Paolo; Tosini, Alessandro

    2015-10-01

    Recent advances on quantum foundations achieved the derivation of free quantum field theory from general principles, without referring to mechanical notions and relativistic invariance. From the aforementioned principles a quantum cellular automata (QCA) theory follows, whose relativistic limit of small wave-vector provides the free dynamics of quantum field theory. The QCA theory can be regarded as an extended quantum field theory that describes in a unified way all scales ranging from an hypothetical discrete Planck scale up to the usual Fermi scale. The present paper reviews the automaton theory for the Weyl field, and the composite automata for Dirac and Maxwell fields. We then give a simple analysis of the dynamics in the momentum space in terms of a dispersive differential equation for narrowband wave-packets. We then review the phenomenology of the free-field automaton and consider possible visible effects arising from the discreteness of the framework. We conclude introducing the consequences of the automaton dispersion relation, leading to a deformed Lorentz covariance and to possible effects on the thermodynamics of ideal gases.

  1. Collective modes in multi-Weyl semimetals

    PubMed Central

    Ahn, Seongjin; Hwang, E. H.; Min, Hongki

    2016-01-01

    We investigate collective modes in three dimensional (3D) gapless multi-Weyl semimetals with anisotropic energy band dispersions (i.e., with a positive integer J). For comparison, we also consider the gapless semimetals with the isotropic band dispersions (i.e. E ~ kJ). We calculate analytically long-wavelength plasma frequencies incorporating interband transitions and chiral properties of carriers. For both the isotropic and anisotropic cases, we find that interband transitions and chirality lead to the depolarization shift of plasma frequencies. For the isotropic parabolic band dispersion the long-wavelength plasmons do not decay via Landau damping, while for the higher-order band dispersions the long-wavelength plasmons experience damping below a critical density. For systems with the anisotropic dispersion the density dependence of the long-wavelength plasma frequency along the direction of non-linear dispersion behaves like that of the isotropic linear band model, while along the direction of linear dispersion it behaves like that of the isotropic non-linear model. Plasmons along both directions remain undamped over a broad range of densities due to the chirality induced depolarization shift. Our results provide a comprehensive picture of how band dispersion and chirality affect plasmon behaviors in 3D gapless chiral systems with the arbitrary band dispersion. PMID:27687770

  2. Primordial nucleosynthesis in conformal Weyl gravity

    SciTech Connect

    Knox, L.; Kosowsky, A. |

    1993-10-01

    Recently conformal Weyl gravity has been considered as a candidate alternative gravity theory. This fourth-order theory is attractive because it is the only metric theory of gravity which is invariant under local conformal transformations of the metric. The authors calculate the primordial light element abundances in this theory. The major difference from the standard cosmology is that the universe expands far more slowly throughout the nucleosynthesis epoch. The production of {sup 4}He depends strongly on {eta}, the ratio of baryons to photons. For {eta} = 10{sup {minus}8} the mass fraction of {sup 4}He is X{sub 4} {approx_equal} 0.25 and the number densities relative to hydrogen for {sup 2}H, {sup 3}He and {sup 7}Li are n({sup 2}H)/n(H) {approx_equal} 9 {times} 10{sup {minus}20}, n({sup 3}He)/n(H) {approx_equal}4 {times} 10{sup {minus}18} and n({sup 7}Li)/n(H) {approx_equal} 10{sup {minus}13}. This value of {eta} corresponds to a baryon mass density close to the standard model critical density. However, adjusting {eta} to give a reasonable helium yield forces the deuterium and lithium yields to be small enough that the theory cannot be reconciled with observations.

  3. Collective modes in multi-Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Ahn, Seongjin; Hwang, E. H.; Min, Hongki

    2016-09-01

    We investigate collective modes in three dimensional (3D) gapless multi-Weyl semimetals with anisotropic energy band dispersions (i.e., with a positive integer J). For comparison, we also consider the gapless semimetals with the isotropic band dispersions (i.e. E ~ kJ). We calculate analytically long-wavelength plasma frequencies incorporating interband transitions and chiral properties of carriers. For both the isotropic and anisotropic cases, we find that interband transitions and chirality lead to the depolarization shift of plasma frequencies. For the isotropic parabolic band dispersion the long-wavelength plasmons do not decay via Landau damping, while for the higher-order band dispersions the long-wavelength plasmons experience damping below a critical density. For systems with the anisotropic dispersion the density dependence of the long-wavelength plasma frequency along the direction of non-linear dispersion behaves like that of the isotropic linear band model, while along the direction of linear dispersion it behaves like that of the isotropic non-linear model. Plasmons along both directions remain undamped over a broad range of densities due to the chirality induced depolarization shift. Our results provide a comprehensive picture of how band dispersion and chirality affect plasmon behaviors in 3D gapless chiral systems with the arbitrary band dispersion.

  4. Affine.m—Mathematica package for computations in representation theory of finite-dimensional and affine Lie algebras

    NASA Astrophysics Data System (ADS)

    Nazarov, Anton

    2012-11-01

    In this paper we present Affine.m-a program for computations in representation theory of finite-dimensional and affine Lie algebras and describe implemented algorithms. The algorithms are based on the properties of weights and Weyl symmetry. Computation of weight multiplicities in irreducible and Verma modules, branching of representations and tensor product decomposition are the most important problems for us. These problems have numerous applications in physics and we provide some examples of these applications. The program is implemented in the popular computer algebra system Mathematica and works with finite-dimensional and affine Lie algebras. Catalogue identifier: AENA_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AENB_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, UK Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 24 844 No. of bytes in distributed program, including test data, etc.: 1 045 908 Distribution format: tar.gz Programming language: Mathematica. Computer: i386-i686, x86_64. Operating system: Linux, Windows, Mac OS, Solaris. RAM: 5-500 Mb Classification: 4.2, 5. Nature of problem: Representation theory of finite-dimensional Lie algebras has many applications in different branches of physics, including elementary particle physics, molecular physics, nuclear physics. Representations of affine Lie algebras appear in string theories and two-dimensional conformal field theory used for the description of critical phenomena in two-dimensional systems. Also Lie symmetries play a major role in a study of quantum integrable systems. Solution method: We work with weights and roots of finite-dimensional and affine Lie algebras and use Weyl symmetry extensively. Central problems which are the computations of weight multiplicities, branching and fusion coefficients are solved using one general recurrent

  5. Topological Imbert-Fedorov Shift in Weyl Semimetals

    NASA Astrophysics Data System (ADS)

    Jiang, Qing-Dong; Jiang, Hua; Liu, Haiwen; Sun, Qing-Feng; Xie, X. C.

    2015-10-01

    The Goos-Hänchen (GH) shift and the Imbert-Fedorov (IF) shift are optical phenomena which describe the longitudinal and transverse lateral shifts at the reflection interface, respectively. Here, we predict the GH and IF shifts in Weyl semimetals (WSMs)—a promising material harboring low energy Weyl fermions, a massless fermionic cousin of photons. Our results show that the GH shift in WSMs is valley independent, which is analogous to that discovered in a 2D relativistic material—graphene. However, the IF shift has never been explored in nonoptical systems, and here we show that it is valley dependent. Furthermore, we find that the IF shift actually originates from the topological effect of the system. Experimentally, the topological IF shift can be utilized to characterize the Weyl semimetals, design valleytronic devices of high efficiency, and measure the Berry curvature.

  6. Topological Imbert-Fedorov Shift in Weyl Semimetals

    NASA Astrophysics Data System (ADS)

    Jiang, Qing-Dong; Jiang, Hua; Liu, Haiwen; Sun, Qing-Feng; Xie, Xin-Cheng

    The Goos-Hänchen (GH) shift and the Imbert-Fedorov (IF) shift are optical phenomena which describe the longitudinal and transverse lateral shifts at the reflection interface, respectively. Here, we predict the GHIF shifts in Weyl semimetals (WSMs)--a promising material harboring low energy Weyl fermions, afermionic cousin of photons. Our results show that the GH shift in WSMs is valley independent,is analogous to that discovered in a 2D relativistic material--graphene. However, the IF shift hasbeen explored in nonoptical systems, and here we show that it is valley dependent. Furthermore, wethat the IF shift actually originates from the topological effect of the system. Experimentally, theIF shift can be utilized to characterize theWeyl semimetals, design valleytronic devices of high, and measure the Berry curvature. Morever, we investigate the transport properties of topological semimetal using the wave-packet dynamics, which give some interesting results. NBRP of China, NSF-China.

  7. Simulating Weyl points and nodal loops in an optical superlattice

    NASA Astrophysics Data System (ADS)

    Zhang, Dan-Wei

    2016-08-01

    We propose a scheme to simulate Weyl points and nodal loops with ultracold atoms in an optical lattice that is subjected to realizable synthetic magnetic field and synthetic dimension. We show that a Hofstadter-like Hamiltonian with a cyclically parameterized on-site energy term can be realized in a tunable two-dimensional optical superlattice, based on the laser-assisted atomic tunneling method. This model effectively describes a three-dimensional periodic lattice system under magnetic fluxes, where a synthetic dimension is encoded by a cyclical phase of the optical lattice potential. For different atomic hopping configurations, the single-particle bands are demonstrated to, respectively, exhibit Weyl points and nodal loops in the extended three-dimensional Brillouin zone. Furthermore, we illustrate that the mimicked Weyl points and nodal loops can be experimentally detected by measuring the atomic transfer fraction in Bloch-Zener oscillations.

  8. Weyl's Raum, Zeit, Materie and its Early Reception

    NASA Astrophysics Data System (ADS)

    Eckes, Christophe

    2015-01-01

    Let us recall first some biographical data. Hermann Weyl (1885-1955) becomes professor at the ETH (Zürich) in 1913. At that time, he is well known for his contributions in pure mathematics: Riemann surfaces and integral equations. Already in his works on integral equations -- especially in 1912-1913 -- he has strong interest in mathematical physics. Weyl's career is almost immediately interrupted by the First World War. According to Thomas Hawkins "Although at first Weyl was judged physically unfit for military service by the German army, he was finally drafted in the spring of 1915 but was discharged the following spring at the request of the Swiss government." His scientific career begins anew in 1916. During the period 1916-1923, his research is mainly devoted to the formalization of special and general relativity...

  9. Optical spectroscopy of the Weyl semimetal TaAs

    DOE PAGES

    Xu, B.; Dai, Y. M.; Zhao, L. X.; Wang, K.; Yang, R.; Zhang, W.; Liu, J. Y.; Xiao, H.; Chen, G. F.; Taylor, A. J.; et al

    2016-03-24

    Here, we present a systematic study of both the temperature and frequency dependence of the optical response in TaAs, a material that has recently been realized to host the Weyl semimetal state. Our study reveals that the optical conductivity of TaAs features a narrow Drude response alongside a conspicuous linear dependence on frequency. The weight of the Drude peak decreases upon cooling, following a T2 temperature dependence, in good agreement with theoretical predictions. Two linear components with distinct slopes dominate the low-temperature optical conductivity. A comparison between our experimental results and theoretical calculations suggests that the linear conductivity below ~230more » cm–1 arises purely from interband transitions near the Weyl points, providing rich information about the Weyl semimetal state in TaAs.« less

  10. Anomalous Weyl superfluid in three-dimensional ultracold fermionic gases

    NASA Astrophysics Data System (ADS)

    Huang, Beibing

    2016-08-01

    In this paper we use layer construction method to construct an experimentally feasible model to realize one type of anomalous Weyl superfluids (WS) in the context of cold fermionic gases. This exotic phase still characterizes the Weyl points in the bulk but completely different Majorana Fermi arc surface state (MFASS) on the boundaries. In contrast to conventional WS, where MFASS only connects the projection of Weyl points, new MFASS continuously stretches to the border of surface Brillouin zone. We self-consistently determine the phase diagram of model at the mean-field level to claim the achievement of anomalous WS. In addition, inversion symmetry and band inversion in this model are analyzed in detail to provide unique feature of identifying anomalous WS experimentally by momentum-resolved radio-frequency spectroscopy.

  11. Einstein-Weyl spaces and third-order differential equations

    NASA Astrophysics Data System (ADS)

    Tod, K. P.

    2000-08-01

    The three-dimensional null-surface formalism of Tanimoto [M. Tanimoto, "On the null surface formalism," Report No. gr-qc/9703003 (1997)] and Forni et al. [Forni et al., "Null surfaces formation in 3D," J. Math Phys. (submitted)] are extended to describe Einstein-Weyl spaces, following Cartan [E. Cartan, "Les espaces généralisées et l'integration de certaines classes d'equations différentielles," C. R. Acad. Sci. 206, 1425-1429 (1938); "La geometria de las ecuaciones diferenciales de tercer order," Rev. Mat. Hispano-Am. 4, 1-31 (1941)]. In the resulting formalism, Einstein-Weyl spaces are obtained from a particular class of third-order differential equations. Some examples of the construction which include some new Einstein-Weyl spaces are given.

  12. P T -invariant Weyl semimetals in gauge-symmetric systems

    NASA Astrophysics Data System (ADS)

    Lepori, L.; Fulga, I. C.; Trombettoni, A.; Burrello, M.

    2016-08-01

    Weyl semimetals typically appear in systems in which either time-reversal (T ) or inversion (P ) symmetry is broken. Here we show that in the presence of gauge potentials these topological states of matter can also arise in fermionic lattices preserving both T and P . We analyze in detail the case of a cubic lattice model with π fluxes, discussing the role of gauge symmetries in the formation of Weyl points and the difference between the physical and the canonical T and P symmetries. We examine the robustness of this P T -invariant Weyl semimetal phase against perturbations that remove the chiral sublattice symmetries, and we discuss further generalizations. Finally, motivated by advances in ultracold-atom experiments and by the possibility of using synthetic magnetic fields, we study the effect of random perturbations of the magnetic fluxes, which can be compared to a local disorder in realistic scenarios.

  13. Water mediated ligand functional group cooperativity: the contribution of a methyl group to binding affinity is enhanced by a COO(-) group through changes in the structure and thermodynamics of the hydration waters of ligand-thermolysin complexes.

    PubMed

    Nasief, Nader N; Tan, Hongwei; Kong, Jing; Hangauer, David

    2012-10-11

    Ligand functional groups can modulate the contributions of one another to the ligand-protein binding thermodynamics, producing either positive or negative cooperativity. Data presented for four thermolysin phosphonamidate inhibitors demonstrate that the differential binding free energy and enthalpy caused by replacement of a H with a Me group, which binds in the well-hydrated S2' pocket, are more favorable in presence of a ligand carboxylate. The differential entropy is however less favorable. Dissection of these differential thermodynamic parameters, X-ray crystallography, and density-functional theory calculations suggest that these cooperativities are caused by variations in the thermodynamics of the complex hydration shell changes accompanying the H→Me replacement. Specifically, the COO(-) reduces both the enthalpic penalty and the entropic advantage of displacing water molecules from the S2' pocket and causes a subsequent acquisition of a more enthalpically, less entropically, favorable water network. This study contributes to understanding the important role water plays in ligand-protein binding.

  14. Emergent spinless Weyl semimetals between the topological crystalline insulator and normal insulator phases with glide symmetry

    NASA Astrophysics Data System (ADS)

    Kim, Heejae; Murakami, Shuichi

    2016-05-01

    We construct a theory describing phase transitions between the spinless topological crystalline insulator phase with glide symmetry and a normal insulator phase. We show that a spinless Weyl semimetal phase should intervene between these two phases. Here, because all the bands are free from degeneracy in general, a gap closing between a single conduction band and a single valence band at phase transition generally gives rise to a pair creation of Weyl nodes; hence the Weyl semimetal phase naturally appears. We show the relationship between the change of the Z2 topological number when the system goes through the Weyl semimetal phase, and the trajectory of the Weyl nodes.

  15. Crossed surface flat bands of Weyl semimetal superconductors.

    PubMed

    Lu, Bo; Yada, Keiji; Sato, Masatoshi; Tanaka, Yukio

    2015-03-01

    It has been noted that certain surfaces of Weyl semimetals have bound states forming open Fermi arcs, which are never seen in typical metallic states. We show that the Fermi arcs enable them to support an even more exotic surface state with crossed flat bands in the superconducting state. We clarify the topological origin of the crossed flat bands and the relevant symmetry that stabilizes the cross point. Our symmetry analysis is applicable to known candidate materials of time-reversal breaking Weyl semimetals. We also discuss their possible experimental verification by tunneling spectroscopy. PMID:25793841

  16. Predicted Unusual Magnetoresponse in Type-II Weyl Semimetals

    NASA Astrophysics Data System (ADS)

    Yu, Zhi-Ming; Yao, Yugui; Yang, Shengyuan A.

    2016-08-01

    We show several distinct signatures in the magnetoresponse of type-II Weyl semimetals. The energy tilt tends to squeeze the Landau levels (LLs), and, for a type-II Weyl node, there always exists a critical angle between the B field and the tilt, at which the LL spectrum collapses, regardless of the field strength. Before the collapse, signatures also appear in the magneto-optical spectrum, including the invariable presence of intraband peaks, the absence of absorption tails, and the special anisotropic field dependence.

  17. Predicted Unusual Magnetoresponse in Type-II Weyl Semimetals.

    PubMed

    Yu, Zhi-Ming; Yao, Yugui; Yang, Shengyuan A

    2016-08-12

    We show several distinct signatures in the magnetoresponse of type-II Weyl semimetals. The energy tilt tends to squeeze the Landau levels (LLs), and, for a type-II Weyl node, there always exists a critical angle between the B field and the tilt, at which the LL spectrum collapses, regardless of the field strength. Before the collapse, signatures also appear in the magneto-optical spectrum, including the invariable presence of intraband peaks, the absence of absorption tails, and the special anisotropic field dependence. PMID:27563994

  18. On the effective size of a non-Weyl graph

    NASA Astrophysics Data System (ADS)

    Lipovský, Jiřˇí

    2016-09-01

    We show how to find the coefficient of the leading term of the resonance asymptotics using the method of pseudo-orbit expansion for quantum graphs which do not obey Weyl asymptotics. For a non-Weyl graph we develop a method to reduce the number of edges of a corresponding directed graph. Through this method we prove bounds on the above coefficient depending on the structure of the graph, for graphs with the same lengths of internal edges. We explicitly find the positions of the resolvent resonances.

  19. Theoretical study of the structures and electron affinities of the dimers and trimers of the group IB metals (Cu, Ag, and Au)

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Partridge, Harry

    1989-01-01

    The molecular structure of both the neutral and negatively charged diatomic and triatomic systems containing the Cu, Ag, and Au metals are determined from ab initio calculations. For the neutral triatomic systems, the lowest energy structure is found to be triangular. The relative stability of the 2A1 and 2B2 structures can be predicted simply by knowing the constituent diatomic bond distances and atomic electron affinities (EAs). The lowest energy structure is linear for all of the negative ions. For anionic clusters containing Au, the Au atom(s) preferentially occupy the terminal position(s). The EAs of the heteronuclear systems can be predicted relatively accurately from a weighted average of the corresponding homonuclear systems. Although the theoretical EAs are systematically too small, accurate predictions for the EAs of the triatomics are obtained by uniformly scaling the ab initio results using the accurate experimental EA values available for the atoms and homonuclear diatomics.

  20. Scattering theory of the chiral magnetic effect in a Weyl semimetal: interplay of bulk Weyl cones and surface Fermi arcs

    NASA Astrophysics Data System (ADS)

    Baireuther, P.; Hutasoit, J. A.; Tworzydło, J.; Beenakker, C. W. J.

    2016-04-01

    We formulate a linear response theory of the chiral magnetic effect in a finite Weyl semimetal, expressing the electrical current density j induced by a slowly oscillating magnetic field B or chiral chemical potential μ in terms of the scattering matrix of Weyl fermions at the Fermi level. Surface conduction can be neglected in the infinite-system limit for δ j/δ μ , but not for δ j/δ B: the chirally circulating surface Fermi arcs give a comparable contribution to the bulk Weyl cones no matter how large the system is, because their smaller number is compensated by an increased flux sensitivity. The Fermi arc contribution to {μ }-1δ j/δ B has the universal value {(e/h)}2, protected by chirality against impurity scattering—unlike the bulk contribution of opposite sign.

  1. Symmetry-protected ideal Weyl semimetal in HgTe-class materials

    PubMed Central

    Ruan, Jiawei; Jian, Shao-Kai; Yao, Hong; Zhang, Haijun; Zhang, Shou-Cheng; Xing, Dingyu

    2016-01-01

    Ideal Weyl semimetals with all Weyl nodes exactly at the Fermi level and no coexisting trivial Fermi surfaces in the bulk, similar to graphene, could feature deep physics such as exotic transport phenomena induced by the chiral anomaly. Here, we show that HgTe and half-Heusler compounds, under a broad range of in-plane compressive strain, could be materials in nature realizing ideal Weyl semimetals with four pairs of Weyl nodes and topological surface Fermi arcs. Generically, we find that the HgTe-class materials with nontrivial band inversion and noncentrosymmetry provide a promising arena to realize ideal Weyl semimetals. Such ideal Weyl semimetals could further provide a unique platform to study emergent phenomena such as the interplay between ideal Weyl fermions and superconductivity in the half-Heusler compound LaPtBi. PMID:27033588

  2. Symmetry-protected ideal Weyl semimetal in HgTe-class materials.

    PubMed

    Ruan, Jiawei; Jian, Shao-Kai; Yao, Hong; Zhang, Haijun; Zhang, Shou-Cheng; Xing, Dingyu

    2016-01-01

    Ideal Weyl semimetals with all Weyl nodes exactly at the Fermi level and no coexisting trivial Fermi surfaces in the bulk, similar to graphene, could feature deep physics such as exotic transport phenomena induced by the chiral anomaly. Here, we show that HgTe and half-Heusler compounds, under a broad range of in-plane compressive strain, could be materials in nature realizing ideal Weyl semimetals with four pairs of Weyl nodes and topological surface Fermi arcs. Generically, we find that the HgTe-class materials with nontrivial band inversion and noncentrosymmetry provide a promising arena to realize ideal Weyl semimetals. Such ideal Weyl semimetals could further provide a unique platform to study emergent phenomena such as the interplay between ideal Weyl fermions and superconductivity in the half-Heusler compound LaPtBi. PMID:27033588

  3. Symmetry-protected ideal Weyl semimetal in HgTe-class materials

    NASA Astrophysics Data System (ADS)

    Ruan, Jiawei; Jian, Shao-Kai; Yao, Hong; Zhang, Haijun; Zhang, Shou-Cheng; Xing, Dingyu

    2016-04-01

    Ideal Weyl semimetals with all Weyl nodes exactly at the Fermi level and no coexisting trivial Fermi surfaces in the bulk, similar to graphene, could feature deep physics such as exotic transport phenomena induced by the chiral anomaly. Here, we show that HgTe and half-Heusler compounds, under a broad range of in-plane compressive strain, could be materials in nature realizing ideal Weyl semimetals with four pairs of Weyl nodes and topological surface Fermi arcs. Generically, we find that the HgTe-class materials with nontrivial band inversion and noncentrosymmetry provide a promising arena to realize ideal Weyl semimetals. Such ideal Weyl semimetals could further provide a unique platform to study emergent phenomena such as the interplay between ideal Weyl fermions and superconductivity in the half-Heusler compound LaPtBi.

  4. Symmetry-protected ideal Weyl semimetal in HgTe-class materials

    NASA Astrophysics Data System (ADS)

    Jian, Shao-Kai; Ruan, Jiawei; Yao, Hong; Zhang, Haijun; Zhang, Shou-Cheng; Xing, Dingyu

    Ideal Weyl semimetals with all Weyl nodes exactly at the Fermi level and no coexisting trivial Fermi surfaces in the bulk, similar to graphene, could feature deep and novel physics such as exotic transport phenomena induced by the chiral anomaly. Here, we show that HgTe and half-Heusler compounds, under a broad range of inplane compressive strain, could be the first materials in nature realizing ideal Weyl semimetals with four pairs of Weyl nodes and topological surface Fermi arcs. Generically, we find that the HgTe-class materials with nontrivial band inversion and noncentrosymmetry provide a promising arena to realize ideal Weyl semimetals. Such ideal Weyl semimetals could further provide a unique platform to study emergent phenomena such as the interplay between ideal Weyl fermions and superconductivity in the half-Heusler compound LaPtBi.

  5. Topological Phonons and Weyl Lines in Three Dimensions.

    PubMed

    Stenull, Olaf; Kane, C L; Lubensky, T C

    2016-08-01

    Topological mechanics and phononics have recently emerged as an exciting field of study. Here we introduce and study generalizations of the three-dimensional pyrochlore lattice that have topologically protected edge states and Weyl lines in their bulk phonon spectra, which lead to zero surface modes that flip from one edge to the opposite as a function of surface wave number. PMID:27541476

  6. Criteria for Directly Detecting Topological Fermi Arcs in Weyl Semimetals.

    PubMed

    Belopolski, Ilya; Xu, Su-Yang; Sanchez, Daniel S; Chang, Guoqing; Guo, Cheng; Neupane, Madhab; Zheng, Hao; Lee, Chi-Cheng; Huang, Shin-Ming; Bian, Guang; Alidoust, Nasser; Chang, Tay-Rong; Wang, BaoKai; Zhang, Xiao; Bansil, Arun; Jeng, Horng-Tay; Lin, Hsin; Jia, Shuang; Hasan, M Zahid

    2016-02-12

    The recent discovery of the first Weyl semimetal in TaAs provides the first observation of a Weyl fermion in nature and demonstrates a novel type of anomalous surface state, the Fermi arc. Like topological insulators, the bulk topological invariants of a Weyl semimetal are uniquely fixed by the surface states of a bulk sample. Here we present a set of distinct conditions, accessible by angle-resolved photoemission spectroscopy (ARPES), each of which demonstrates topological Fermi arcs in a surface state band structure, with minimal reliance on calculation. We apply these results to TaAs and NbP. For the first time, we rigorously demonstrate a nonzero Chern number in TaAs by counting chiral edge modes on a closed loop. We further show that it is unreasonable to directly observe Fermi arcs in NbP by ARPES within available experimental resolution and spectral linewidth. Our results are general and apply to any new material to demonstrate a Weyl semimetal. PMID:26919005

  7. Topological Phonons and Weyl Lines in Three Dimensions

    NASA Astrophysics Data System (ADS)

    Stenull, Olaf; Kane, C. L.; Lubensky, T. C.

    2016-08-01

    Topological mechanics and phononics have recently emerged as an exciting field of study. Here we introduce and study generalizations of the three-dimensional pyrochlore lattice that have topologically protected edge states and Weyl lines in their bulk phonon spectra, which lead to zero surface modes that flip from one edge to the opposite as a function of surface wave number.

  8. Weyl Phases in a Three Dimensional Network Model

    NASA Astrophysics Data System (ADS)

    Wang, Hailong; Chong, Yidong; theoretical photonics Team

    We study the topological properties of 3D ``Floquet'' band structures, defined using unitary evolution matrices rather than Hamiltonians. Such band structures can be realized in coherent-wave networks or lattices subjected to time-periodic drives. Previously, 2D Floquet band structures have been shown to exhibit unusual topological behaviors such as topologically-nontrivial zero-Chern-number phases. Here, we analyze the Floquet band structure of a 3D network model, which exhibits an Floquet analogue of a Weyl phase. The surface states exhibit topologically-protected ``Fermi'' arcs, similar to the recently-discovered Weyl semi-metals; however, the Weyl points in different quasi-energy gaps are related by a particle-hole symmetry which is unique to the Floquet system. By tuning the coupling parameters of the network, we can drive a transition between conventional insulator, weak topological insulator, and Weyl phases. Finally, we discuss the possibility of realizing this model using custom-designed electromagnetic networks. GRANT: Supported by Singapore National Research Foundation under Grant No. NRFF2012-02.

  9. Inflation with a Weyl term, or ghosts at work

    SciTech Connect

    Deruelle, Nathalie; Youssef, Ahmed; Sasaki, Misao; Sendouda, Yuuiti E-mail: misao@yukawa.kyoto-u.ac.jp E-mail: ahmed.youssef@apc.univ-paris7.fr

    2011-03-01

    In order to assess the role of ghosts in cosmology, we study the evolution of linear cosmological perturbations during inflation when a Weyl term is added to the action. Our main results are that vector perturbations can no longer be ignored and that scalar modes diverge in the newtonian gauge but remain bounded in the comoving slicing.

  10. "Clickable" agarose for affinity chromatography.

    PubMed

    Punna, Sreenivas; Kaltgrad, Eiton; Finn, M G

    2005-01-01

    Successful purification of biological molecules by affinity chromatography requires the attachment of desired ligands to biocompatible chromatographic supports. The Cu(I)-catalyzed cycloaddition of azides and alkynes-the premier example of "click chemistry"-is an efficient way to make covalent connections among diverse molecules and materials. Both azide and alkyne units are highly selective in their reactivity, being inert to most chemical functionalities and stable to wide ranges of solvent, temperature, and pH. We show that agarose beads bearing alkyne and azide groups can be easily made and are practical precursors to functionalized agarose materials for affinity chromatography.

  11. Experimental discovery of a topological Weyl semimetal state in TaP.

    PubMed

    Xu, Su-Yang; Belopolski, Ilya; Sanchez, Daniel S; Zhang, Chenglong; Chang, Guoqing; Guo, Cheng; Bian, Guang; Yuan, Zhujun; Lu, Hong; Chang, Tay-Rong; Shibayev, Pavel P; Prokopovych, Mykhailo L; Alidoust, Nasser; Zheng, Hao; Lee, Chi-Cheng; Huang, Shin-Ming; Sankar, Raman; Chou, Fangcheng; Hsu, Chuang-Han; Jeng, Horng-Tay; Bansil, Arun; Neupert, Titus; Strocov, Vladimir N; Lin, Hsin; Jia, Shuang; Hasan, M Zahid

    2015-11-01

    Weyl semimetals are expected to open up new horizons in physics and materials science because they provide the first realization of Weyl fermions and exhibit protected Fermi arc surface states. However, they had been found to be extremely rare in nature. Recently, a family of compounds, consisting of tantalum arsenide, tantalum phosphide (TaP), niobium arsenide, and niobium phosphide, was predicted as a Weyl semimetal candidates. We experimentally realize a Weyl semimetal state in TaP. Using photoemission spectroscopy, we directly observe the Weyl fermion cones and nodes in the bulk, and the Fermi arcs on the surface. Moreover, we find that the surface states show an unexpectedly rich structure, including both topological Fermi arcs and several topologically trivial closed contours in the vicinity of the Weyl points, which provides a promising platform to study the interplay between topological and trivial surface states on a Weyl semimetal's surface. We directly demonstrate the bulk-boundary correspondence and establish the topologically nontrivial nature of the Weyl semimetal state in TaP, by resolving the net number of chiral edge modes on a closed path that encloses the Weyl node. This also provides, for the first time, an experimentally practical approach to demonstrating a bulk Weyl fermion from a surface state dispersion measured in photoemission.

  12. Experimental discovery of a topological Weyl semimetal state in TaP

    PubMed Central

    Xu, Su-Yang; Belopolski, Ilya; Sanchez, Daniel S.; Zhang, Chenglong; Chang, Guoqing; Guo, Cheng; Bian, Guang; Yuan, Zhujun; Lu, Hong; Chang, Tay-Rong; Shibayev, Pavel P.; Prokopovych, Mykhailo L.; Alidoust, Nasser; Zheng, Hao; Lee, Chi-Cheng; Huang, Shin-Ming; Sankar, Raman; Chou, Fangcheng; Hsu, Chuang-Han; Jeng, Horng-Tay; Bansil, Arun; Neupert, Titus; Strocov, Vladimir N.; Lin, Hsin; Jia, Shuang; Hasan, M. Zahid

    2015-01-01

    Weyl semimetals are expected to open up new horizons in physics and materials science because they provide the first realization of Weyl fermions and exhibit protected Fermi arc surface states. However, they had been found to be extremely rare in nature. Recently, a family of compounds, consisting of tantalum arsenide, tantalum phosphide (TaP), niobium arsenide, and niobium phosphide, was predicted as a Weyl semimetal candidates. We experimentally realize a Weyl semimetal state in TaP. Using photoemission spectroscopy, we directly observe the Weyl fermion cones and nodes in the bulk, and the Fermi arcs on the surface. Moreover, we find that the surface states show an unexpectedly rich structure, including both topological Fermi arcs and several topologically trivial closed contours in the vicinity of the Weyl points, which provides a promising platform to study the interplay between topological and trivial surface states on a Weyl semimetal’s surface. We directly demonstrate the bulk-boundary correspondence and establish the topologically nontrivial nature of the Weyl semimetal state in TaP, by resolving the net number of chiral edge modes on a closed path that encloses the Weyl node. This also provides, for the first time, an experimentally practical approach to demonstrating a bulk Weyl fermion from a surface state dispersion measured in photoemission. PMID:26702446

  13. Spectroscopic evidence for a type II Weyl semimetallic state in MoTe2

    DOE PAGES

    Huang, Lunan; McCormick, Timothy M.; Ochi, Masayuki; Zhao, Zhiying; Suzuki, Michi -To; Arita, Ryotaro; Wu, Yun; Mou, Daixiang; Cao, Huibo; Yan, Jiaqiang; et al

    2016-07-11

    In a type I Dirac or Weyl semimetal, the low-energy states are squeezed to a single point in momentum space when the chemical potential μ is tuned precisely to the Dirac/Weyl point1, 2, 3, 4, 5, 6. Recently, a type II Weyl semimetal was predicted to exist, where the Weyl states connect hole and electron bands, separated by an indirect gap7, 8, 9, 10. This leads to unusual energy states, where hole and electron pockets touch at the Weyl point. Here we present the discovery of a type II topological Weyl semimetal state in pure MoTe2, where two sets ofmore » Weyl points (W±2 , W±3) exist at the touching points of electron and hole pockets and are located at different binding energies above EF. Using angle-resolved photoemission spectroscopy, modelling, density functional theory and calculations of Berry curvature, we identify the Weyl points and demonstrate that they are connected by different sets of Fermi arcs for each of the two surface terminations. We also find new surface ‘track states’ that form closed loops and are unique to type II Weyl semimetals. Lastly, this material provides an exciting, new platform to study the properties of Weyl fermions.« less

  14. Experimental discovery of a topological Weyl semimetal state in TaP.

    PubMed

    Xu, Su-Yang; Belopolski, Ilya; Sanchez, Daniel S; Zhang, Chenglong; Chang, Guoqing; Guo, Cheng; Bian, Guang; Yuan, Zhujun; Lu, Hong; Chang, Tay-Rong; Shibayev, Pavel P; Prokopovych, Mykhailo L; Alidoust, Nasser; Zheng, Hao; Lee, Chi-Cheng; Huang, Shin-Ming; Sankar, Raman; Chou, Fangcheng; Hsu, Chuang-Han; Jeng, Horng-Tay; Bansil, Arun; Neupert, Titus; Strocov, Vladimir N; Lin, Hsin; Jia, Shuang; Hasan, M Zahid

    2015-11-01

    Weyl semimetals are expected to open up new horizons in physics and materials science because they provide the first realization of Weyl fermions and exhibit protected Fermi arc surface states. However, they had been found to be extremely rare in nature. Recently, a family of compounds, consisting of tantalum arsenide, tantalum phosphide (TaP), niobium arsenide, and niobium phosphide, was predicted as a Weyl semimetal candidates. We experimentally realize a Weyl semimetal state in TaP. Using photoemission spectroscopy, we directly observe the Weyl fermion cones and nodes in the bulk, and the Fermi arcs on the surface. Moreover, we find that the surface states show an unexpectedly rich structure, including both topological Fermi arcs and several topologically trivial closed contours in the vicinity of the Weyl points, which provides a promising platform to study the interplay between topological and trivial surface states on a Weyl semimetal's surface. We directly demonstrate the bulk-boundary correspondence and establish the topologically nontrivial nature of the Weyl semimetal state in TaP, by resolving the net number of chiral edge modes on a closed path that encloses the Weyl node. This also provides, for the first time, an experimentally practical approach to demonstrating a bulk Weyl fermion from a surface state dispersion measured in photoemission. PMID:26702446

  15. Non-Fermi liquid phase and non-Gaussian itinerant quantum criticality of Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Goswami, Pallab

    A Weyl semimetal is a gapless topological phase in three dimensions, for which the touching points between two nondegenerate bands act as monopoles and antimonopoles of Abelian Berry curvature, with monopole strength m. Such a gapless phase can support m Fermi arcs as the protected, zero energy surface states. We consider the stability of a generalized Weyl semimetal with m > 1 in the presence of interaction and disorder by employing a renormalization group analysis, which is controlled by the parameter ɛ = 1 -1/m . For any m > 1 , we show how the long range Coulomb interaction gives rise to an infra-red stable, non-Fermi liquid phase without any sharp quasiparticle pole. In the presence of sufficiently strong short range interactions, the non-Fermi liquid can transform into a translational symmetry breaking, axionic insulator. We demonstrate that the associated itinerant quantum critical point possesses non-Gaussian scaling properties. We establish the stability of the emergent non-Fermi liquid phase and the itinerant quantum critical point against weak disorder. Finally, we discuss the scaling properties of physical quantities, the fate of the Fermi arcs, and the experimental relevance of our results for some candidate materials. NSF.

  16. Weyl points in three-dimensional optical lattices: synthetic magnetic monopoles in momentum space

    NASA Astrophysics Data System (ADS)

    Buljan, Hrvoje; Dubcek, Tena; Kennedy, Colin; Lu, Ling; Ketterle, Wolfgang; Soljacic, Marin

    2015-05-01

    We show that Hamiltonians with Weyl points can be realized for ultracold atoms using laser-assisted tunneling in three-dimensional (3D) optical lattices. Weyl points are synthetic magnetic monopoles that exhibit a robust, 3D linear dispersion (e.g., see). They are associated with many interesting topological states of matter, such as Weyl semimetals and chiral Weyl fermions. However, Weyl points have yet to be experimentally observed in any system. We show that this elusive goal is well-within experimental reach with an extension of the techniques recently used to obtain the Harper Hamiltonian. We propose using laser assisted tunneling to create a 3D optical lattice, with specifically designed hopping between lattice sites that breaks inversion symmetry. The design leads to creation of four Weyl points in the Brillouin zone of the lattice, which are verified to be monopoles of the synthetic magnetic field. Supported by the Unity through Knowledge Fund (Grant 5/13).

  17. Magnetic Torque Anomaly in the Quantum Limit of Weyl and Dirac Semimetals

    NASA Astrophysics Data System (ADS)

    Nair, Nityan L.; Moll, Philip J. W.; Potter, Andrew C.; Ramshaw, Brad; Modic, Kimberly; Riggs, Scott; Zeng, Bin; Ghimire, Nirmal; Bauer, Eric; Kealhofer, Robert; Li, Zhenglu; Louie, Steven; Ronning, Filip; Analytis, James G.

    Three dimensional Dirac and Weyl semimetals, characterized by bulk quasiparticles that behave as massless, linearly dispersing Dirac or Weyl fermions, have excited physicists with their unique topological properties and potential for applications. The experimental signatures of Weyl or Dirac fermions, however, are often subtle and indirect, especially in systems where they coexist with trivial electrons. Here, we report a novel method by which these topological systems can be unambiguously experimentally identified. Magnetic torque measurements were performed on the Weyl semimetal NbAs in high magnetic field, showing a large anomaly upon entering the quantum limit. The torque exhibits a striking sign reversal, corresponding to a change in the magnetic anisotropy that is a direct result of the topological properties of the charge carriers. This result can be generalized to other Dirac and Weyl semimetal systems and establishes quantum limit torque measurements as a simple and direct experimental method of distinguishing topologically non-trivial Weyl and Dirac systems from trivial semiconductors.

  18. Two-parameter scaling theory of the longitudinal magnetoconductivity in a Weyl metal phase: Chiral anomaly, weak disorder, and finite temperature

    NASA Astrophysics Data System (ADS)

    Kim, Kyoung-Min; Shin, Dongwoo; Sasaki, M.; Kim, Heon-Jung; Kim, Jeehoon; Kim, Ki-Seok

    2016-08-01

    It is at the heart of modern condensed matter physics to investigate the role of a topological structure in anomalous transport phenomena. In particular, chiral anomaly turns out to be the underlying mechanism for the negative longitudinal magnetoresistivity in a Weyl metal phase. The existence of a dissipationless current channel causes enhancement of electric currents along the direction of a pair of Weyl points or applied magnetic fields (B ). However, temperature (T ) dependence of the negative longitudinal magnetoresistivity has not been understood yet in the presence of disorder scattering since it is not clear at all how to introduce effects of disorder scattering into the topological-in-origin transport coefficient at finite temperatures. The calculation based on the Kubo formula of the current-current correlation function is simply not known for this anomalous transport coefficient. Combining the renormalization group analysis with the Boltzmann transport theory to encode the chiral anomaly, we reveal how disorder scattering renormalizes the distance between a pair of Weyl points and such a renormalization effect modifies the topological-in-origin transport coefficient at finite temperatures. As a result, we find breakdown of B /T scaling, given by B /T1 +η with 0 <η <1 . This breakdown may be regarded to be a fingerprint of the interplay between disorder scattering and topological structure in a Weyl metal phase.

  19. Weyl points in the ferromagnetic Heusler compound Co2MnAl

    NASA Astrophysics Data System (ADS)

    Kübler, J.; Felser, C.

    2016-05-01

    The anomalous Hall conductivity (AHC) in some ferromagnetic and antiferromagnetic Heusler compounds was theoretically and experimentally found to be exceptionally large. For the case of ferromagnetic Co2MnAl we here argue that the large AHC is connected with the appearance of Weyl points near the Fermi energy. We find four Weyl points slightly above the Fermi edge. We describe our analysis for a magnetization being in the (110)-direction. For the possible (100)-direction we find at least four Weyl points, too. We predict that Co2MnGa also possesses Weyl points near or at the Fermi energy.

  20. Weirdest Martensite: Smectic Liquid Crystal Microstructure and Weyl-Poincaré Invariance.

    PubMed

    Liarte, Danilo B; Bierbaum, Matthew; Mosna, Ricardo A; Kamien, Randall D; Sethna, James P

    2016-04-01

    Smectic liquid crystals are remarkable, beautiful examples of materials microstructure, with ordered patterns of geometrically perfect ellipses and hyperbolas. The solution of the complex problem of filling three-dimensional space with domains of focal conics under constraining boundary conditions yields a set of strict rules, which are similar to the compatibility conditions in a martensitic crystal. Here we present the rules giving compatible conditions for the concentric circle domains found at two-dimensional smectic interfaces with planar boundary conditions. Using configurations generated by numerical simulations, we develop a clustering algorithm to decompose the planar boundaries into domains. The interfaces between different domains agree well with the smectic compatibility conditions. We also discuss generalizations of our approach to describe the full three-dimensional smectic domains, where the variant symmetry group is the Weyl-Poincaré group of Lorentz boosts, translations, rotations, and dilatations. PMID:27104728

  1. Weirdest Martensite: Smectic Liquid Crystal Microstructure and Weyl-Poincaré Invariance

    NASA Astrophysics Data System (ADS)

    Liarte, Danilo B.; Bierbaum, Matthew; Mosna, Ricardo A.; Kamien, Randall D.; Sethna, James P.

    2016-04-01

    Smectic liquid crystals are remarkable, beautiful examples of materials microstructure, with ordered patterns of geometrically perfect ellipses and hyperbolas. The solution of the complex problem of filling three-dimensional space with domains of focal conics under constraining boundary conditions yields a set of strict rules, which are similar to the compatibility conditions in a martensitic crystal. Here we present the rules giving compatible conditions for the concentric circle domains found at two-dimensional smectic interfaces with planar boundary conditions. Using configurations generated by numerical simulations, we develop a clustering algorithm to decompose the planar boundaries into domains. The interfaces between different domains agree well with the smectic compatibility conditions. We also discuss generalizations of our approach to describe the full three-dimensional smectic domains, where the variant symmetry group is the Weyl-Poincaré group of Lorentz boosts, translations, rotations, and dilatations.

  2. Weirdest Martensite: Smectic Liquid Crystal Microstructure and Weyl-Poincaré Invariance.

    PubMed

    Liarte, Danilo B; Bierbaum, Matthew; Mosna, Ricardo A; Kamien, Randall D; Sethna, James P

    2016-04-01

    Smectic liquid crystals are remarkable, beautiful examples of materials microstructure, with ordered patterns of geometrically perfect ellipses and hyperbolas. The solution of the complex problem of filling three-dimensional space with domains of focal conics under constraining boundary conditions yields a set of strict rules, which are similar to the compatibility conditions in a martensitic crystal. Here we present the rules giving compatible conditions for the concentric circle domains found at two-dimensional smectic interfaces with planar boundary conditions. Using configurations generated by numerical simulations, we develop a clustering algorithm to decompose the planar boundaries into domains. The interfaces between different domains agree well with the smectic compatibility conditions. We also discuss generalizations of our approach to describe the full three-dimensional smectic domains, where the variant symmetry group is the Weyl-Poincaré group of Lorentz boosts, translations, rotations, and dilatations.

  3. Weyl problem and Casimir effects in spherical shell geometry

    NASA Astrophysics Data System (ADS)

    Kolomeisky, Eugene B.; Zaidi, Hussain; Langsjoen, Luke; Straley, Joseph P.

    2013-04-01

    We compute the generic mode sum that quantifies the effect on the spectrum of a harmonic field when a spherical shell is inserted into vacuum. This encompasses a variety of problems including the Weyl spectral problem and the Casimir effect of quantum electrodynamics. This allows us to resolve several long-standing controversies regarding the question of universality of the Casimir self-energy; the resolution comes naturally through the connection to the Weyl problem. Specifically we demonstrate that in the case of a scalar field obeying Dirichlet or Neumann boundary conditions on the shell surface the Casimir self-energy is cutoff dependent while in the case of the electromagnetic field perturbed by a conductive shell the Casimir self-energy is universal. We additionally show that an analog nonrelativistic Casimir effect due to zero-point magnons takes place when a nonmagnetic spherical shell is inserted inside a bulk ferromagnet.

  4. An example of non-Weyl preserving complex transformation

    NASA Astrophysics Data System (ADS)

    Lozanovski, C.

    2014-05-01

    It has been observed on a number of occasions that complex transformations, of real solutions of the field equations to other real solutions, often preserve certain properties of the Weyl tensor. That is, the Petrov type and/or gravito-electromagnetic (GEM) properties of the Weyl tensor are preserved. In this context, we present an outstanding example of a complex windmill transformation of a static (non-physical) anisotropic fluid spacetime of Petrov type that maps to a purely magnetic (PM) spacetime of Petrov type . The PM spacetime is analyzed and compared to the Arianrhod-Lun-McIntosh-Perjés spacetime. It is shown that these spacetimes, although similar in some aspects, are distinct solutions. The main distinction is that the generated PM spacetime satisfies all the standard energy-conditions. This intriguing but purely mathematical scenario may have implications in the area of GEM duality.

  5. Quantum oscillations in Weyl and Dirac semimetal ultrathin films

    NASA Astrophysics Data System (ADS)

    Bulmash, Daniel; Qi, Xiao-Liang

    2016-02-01

    We show that a Weyl or Dirac semimetal thin film with a strong in-plane magnetic field becomes a two-dimensional Fermi liquid with interesting properties. The Fermi surface in this system is strongly anisotropic, which originates from a combination of chiral bulk channels and Fermi arcs. The area enclosed by the Fermi surface depends strongly on the in-plane magnetic field component parallel to the Weyl/Dirac node splitting, which leads to unusual behavior in quantum oscillations when the magnetic field is tilted out of the plane. We estimate the oscillation frequencies and the regimes where such effects could be seen in Cd3As2 , Na3Bi , and TaAs.

  6. Wormhole geometries in fourth-order conformal Weyl gravity

    NASA Astrophysics Data System (ADS)

    Varieschi, Gabriele U.; Ault, Kellie L.

    2016-04-01

    We present an analysis of the classic wormhole geometries based on conformal Weyl gravity, rather than standard general relativity. The main characteristics of the resulting traversable wormholes remains the same as in the seminal study by Morris and Thorne, namely, that effective super-luminal motion is a viable consequence of the metric. Improving on previous work on the subject, we show that for particular choices of the shape and redshift functions the wormhole metric in the context of conformal gravity does not violate the main energy conditions at or near the wormhole throat. Some exotic matter might still be needed at the junction between our solutions and flat spacetime, but we demonstrate that the averaged null energy condition (as evaluated along radial null geodesics) is satisfied for a particular set of wormhole geometries. Therefore, if fourth-order conformal Weyl gravity is a correct extension of general relativity, traversable wormholes might become a realistic solution for interstellar travel.

  7. Wormhole geometries in fourth-order conformal Weyl gravity

    NASA Astrophysics Data System (ADS)

    Varieschi, Gabriele; Ault, Kellie

    2016-03-01

    We present an analysis of the classic wormhole geometries based on conformal Weyl gravity, rather than standard general relativity. The main characteristics of the resulting traversable wormholes remain the same as in the seminal study by Morris and Thorne, namely, that effective super-luminal motion is a viable consequence of the metric. Improving on previous work on the subject, we show that for particular choices of the shape and redshift functions, the wormhole metric in the context of conformal gravity does not violate the main energy conditions, as was the case of the original solutions. In particular, the resulting geometry does not require the use of exotic matter at or near the wormhole throat. Therefore, if fourth-order conformal Weyl gravity is a correct extension of general relativity, traversable wormholes might become a realistic solution for interstellar travel. This work was supported by a Grant from the Frank R. Seaver College of Science and Engineering, Loyola Marymount University.

  8. On the null trajectories in conformal Weyl gravity

    SciTech Connect

    Villanueva, J.R.; Olivares, Marco E-mail: marco.olivaresrubilar@gmail.com

    2013-06-01

    In this work we find analytical solutions to the null geodesics around a black hole in the conformal Weyl gravity. Exact expressions for the horizons are found, and they depend on the cosmological constant and the coupling constants of the conformal Weyl gravity. Then, we study the radial motion from the point of view of the proper and coordinate frames, and compare it with that found in spacetimes of general relativity. The angular motion is also examined qualitatively by means of an effective potential; quantitatively, the equation of motion is solved in terms of wp-Weierstrass elliptic function. Thus, we find the deflection angle for photons without using any approximation, which is a novel result for this kind of gravity.

  9. Analog simulation of Weyl particles with cold atoms

    NASA Astrophysics Data System (ADS)

    Rabinovic, Mihail; Suchet, Daniel; Reimann, Thomas; Kretzschmar, Norman; Sievers, Franz; Salomon, Christophe; Lau, Jonathan; Lobo, Carlos; Goulko, Olga; Chevy, Frederic

    2016-05-01

    The high degree of control of the properties of ultracold gases offers the possibility to study experimentally unconventional many-body systems. An example is given by massless relativistic Weyl fermions, which are of particular interest in high energy and condensed matter physics, where they emerge in the form of low energy excitations of exotic compounds like TaAs. The particular case of harmonically trapped Weyl particles can be mimicked by a laser-cooled cloud of 6Li trapped in a magnetic quadrupole potential. The non-separability of this particular potential enables a quasi-thermalization of the single particle distribution function even in the absence of interactions. Surprisingly, the dynamics features an effective decoupling between the strong trapping axis and the weak trapping plane. We studied both, numerically and experimentally, the relaxation of the excited cloud towards its equilibrium distribution, mapping this dynamics directly to the case of non-interaction massless particles in a harmonic potential.

  10. Coexistence of Weyl fermion and massless triply degenerate nodal points

    NASA Astrophysics Data System (ADS)

    Weng, Hongming; Fang, Chen; Fang, Zhong; Dai, Xi

    2016-10-01

    By using first-principles calculations, we propose that WC-type ZrTe is a new type of topological semimetal (TSM). It has six pairs of chiral Weyl nodes in its first Brillouin zone, but it is distinguished from other existing TSMs by having an additional two paris of massless fermions with triply degenerate nodal points as proposed in the isostructural compounds TaN and NbN. The mirror symmetry, threefold rotational symmetry, and time-reversal symmetry require all of the Weyl nodes to have the same velocity vectors and locate at the same energy level. The Fermi arcs on different surfaces are shown, which may be measured by future experiments. It demonstrates that the "material universe" can support more intriguing particles simultaneously.

  11. The Weyl-Cartan Gauss-Bonnet gravity

    NASA Astrophysics Data System (ADS)

    Haghani, Zahra; Khosravi, Nima; Shahidi, Shahab

    2015-11-01

    In this paper, we consider the generalized Gauss-Bonnet action in four-dimensional Weyl-Cartan spacetime. In this spacetime, the presence of a torsion tensor and Weyl vector implies that the generalized Gauss-Bonnet action will not be a total derivative in four-dimensional spacetime. It will be shown that the higher than two time derivatives can be removed from the action by choosing a suitable set of parameters. In the special case where only the trace part of the torsion remains, the model reduces to general relativity plus two vector fields, one of which is massless and the other is massive. We will then obtain the healthy region of the five-dimensional parameter space of the theory in some special cases.

  12. A short proof of Weyl's law for fractional differential operators

    SciTech Connect

    Geisinger, Leander

    2014-01-15

    We study spectral asymptotics for a large class of differential operators on an open subset of R{sup d} with finite volume. This class includes the Dirichlet Laplacian, the fractional Laplacian, and also fractional differential operators with non-homogeneous symbols. Based on a sharp estimate for the sum of the eigenvalues we establish the first term of the semiclassical asymptotics. This generalizes Weyl's law for the Laplace operator.

  13. Magnetotransport phenomena related to the chiral anomaly in Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Spivak, B. Z.; Andreev, A. V.

    2016-02-01

    We present a theory of magnetotransport phenomena related to the chiral anomaly in Weyl semimetals. We show that conductivity, thermal conductivity, thermoelectric, and the sound absorption coefficients exhibit strong and anisotropic magnetic field dependencies. We also discuss properties of magnetoplasmons and magnetopolaritons, whose existences are entirely determined by the chiral anomaly. Finally, we discuss the conditions of applicability of the quasiclassical description of electron transport phenomena related to the chiral anomaly.

  14. On Weyl wormholes supported by massless K-essence

    SciTech Connect

    Estevez-Delgado, J.; Zannias, T.

    2008-12-04

    We show that Weyl wormholes supported by mass-less K-essence can be generated by a pair of axisymmetric harmonic functions. We study properties of space-times generated by harmonic functions describing the exterior potential of a thin conducting disk held at fixed potential. We find that within this family, only a particular subfamily generates wormholes and the resulting wormholes are necessarily spherical. In general, the topology of the space-times generated by an arbitrary pair is multi sheeted.

  15. Extended Gauss-Bonnet gravities in Weyl geometry

    NASA Astrophysics Data System (ADS)

    Beltrán Jiménez, Jose; Koivisto, Tomi S.

    2014-07-01

    In this paper we consider an extended Gauss-Bonnet gravity theory in arbitrary dimensions and in a space provided with a Weyl connection, which is torsion-free but non-metric-compatible, the non-metricity tensor being determined by a vector field. The action considered consists of the usual Einstein-Hilbert action plus all the terms quadratic in the curvature that reduce to the usual Gauss-Bonnet term for vanishing Weyl connection, i.e., when only the Levi-Civita part of the connection is present. We expand the action in terms of Riemannian quantities and obtain vector-tensor theories. We find that all the free parameters only appear in the kinetic term of the vector field, so two branches are possible: one with a propagating vector field and another one where the vector field does not propagate. We focus on the propagating case. We find that in four dimensions, the theory is equivalent to Einstein's gravity plus a Proca field. This field is naturally decoupled from matter, so it represents a natural dark matter candidate. Also for d = 4, we discuss a non-trivial cubic term in the curvature that can be constructed without spoiling the second-order nature of the field equations, because it leads to the vector-tensor Horndeski interaction. In arbitrary dimensions, the theory becomes more involved. We show that, even though the vector field presents kinetic interactions which do not have U\\left( 1 \\right) symmetry, there are no additional propagating degrees of freedom with respect to the usual massive case. We show that, interestingly, this relies on the fact that the corresponding Stückelberg field belongs to a specific class within the general Horndeski theories. Finally, since Weyl geometries provide the natural ground on which to build scale invariant theories, we apply the usual Weyl gauging in order to make the Horndeski action locally scale invariant, and discuss new terms that can be added.

  16. Affine projective Osserman structures

    NASA Astrophysics Data System (ADS)

    Gilkey, P.; Nikčević, S.

    2013-08-01

    By considering the projectivized spectrum of the Jacobi operator, we introduce the concept of projective Osserman manifold in both the affine and in the pseudo-Riemannian settings. If M is an affine projective Osserman manifold, then the deformed Riemannian extension metric on the cotangent bundle is both spacelike and timelike projective Osserman. Since any rank-1-symmetric space is affine projective Osserman, this provides additional information concerning the cotangent bundle of a rank-1 Riemannian symmetric space with the deformed Riemannian extension metric. We construct other examples of affine projective Osserman manifolds where the Ricci tensor is not symmetric and thus the connection in question is not the Levi-Civita connection of any metric. If the dimension is odd, we use methods of algebraic topology to show the Jacobi operator of an affine projective Osserman manifold has only one non-zero eigenvalue and that eigenvalue is real.

  17. Universal optical conductivity of a disordered Weyl semimetal.

    PubMed

    Roy, Bitan; Juričić, Vladimir; Das Sarma, Sankar

    2016-01-01

    Topological Weyl semimetals, besides manifesting chiral anomaly, can also accommodate a disorder-driven unconventional quantum phase transition into a metallic phase. A fundamentally and practically important question in this regard concerns an experimentally measurable quantity that can clearly distinguish these two phases. We show that the optical conductivity while serving this purpose can also play the role of a bonafide order parameter across such disorder-driven semimetal-metal quantum phase transition by virtue of displaying distinct scaling behavior in the semimetallic and metallic phases, as well as inside the quantum critical fan supporting a non-Fermi liquid. We demonstrate that the correction to the dielectric constant and optical conductivity in a dirty Weyl semimetal due to weak disorder is independent of the actual nature of point-like impurity scatterers. Therefore, optical conductivity can be used as an experimentally measurable quantity to study the critical properties and to pin the universality class of the disorder-driven quantum phase transition in Weyl semimetals. PMID:27573668

  18. Universal optical conductivity of a disordered Weyl semimetal

    PubMed Central

    Roy, Bitan; Juričić, Vladimir; Das Sarma, Sankar

    2016-01-01

    Topological Weyl semimetals, besides manifesting chiral anomaly, can also accommodate a disorder-driven unconventional quantum phase transition into a metallic phase. A fundamentally and practically important question in this regard concerns an experimentally measurable quantity that can clearly distinguish these two phases. We show that the optical conductivity while serving this purpose can also play the role of a bonafide order parameter across such disorder-driven semimetal-metal quantum phase transition by virtue of displaying distinct scaling behavior in the semimetallic and metallic phases, as well as inside the quantum critical fan supporting a non-Fermi liquid. We demonstrate that the correction to the dielectric constant and optical conductivity in a dirty Weyl semimetal due to weak disorder is independent of the actual nature of point-like impurity scatterers. Therefore, optical conductivity can be used as an experimentally measurable quantity to study the critical properties and to pin the universality class of the disorder-driven quantum phase transition in Weyl semimetals. PMID:27573668

  19. Implications of Einstein-Weyl Causality on Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Bendaniel, David

    A fundamental physical principle that has consequences for the topology of space-time is the principle of Einstein-Weyl causality. This also has quantum mechanical manifestations. Borchers and Sen have rigorously investigated the mathematical implications of Einstein-Weyl causality and shown the denumerable space-time Q2 would be implied. They were left with important philosophical paradoxes regarding the nature of the physical real line E, e.g., whether E = R, the real line of mathematics. In order to remove these paradoxes an investigation into a constructible foundation is suggested. We have pursued such a program and find it indeed provides a dense, denumerable space-time and, moreover, an interesting connection with quantum mechanics. We first show that this constructible theory contains polynomial functions which are locally homeomorphic with a dense, denumerable metric space R* and are inherently quantized. Eigenfunctions governing fields can then be effectively obtained by computational iteration. Postulating a Lagrangian for fields in a compactified space-time, we get a general description of which the Schrodinger equation is a special case. From these results we can then also show that this denumerable space-time is relational (in the sense that space is not infinitesimally small if and only if it contains a quantized field) and, since Q2 is imbedded in R*2, it directly fulfills the strict topological requirements for Einstein-Weyl causality. Therefore, the theory predicts that E = R*.

  20. Nanostructured Carbon Allotropes with Weyl-like Loops and Points.

    PubMed

    Chen, Yuanping; Xie, Yuee; Yang, Shengyuan A; Pan, Hui; Zhang, Fan; Cohen, Marvin L; Zhang, Shengbai

    2015-10-14

    Carbon allotropes are subject of intense investigations for their superb structural, electronic, and chemical properties, but not for topological band properties because of the lack of strong spin-orbit coupling (SOC). Here, we show that conjugated p-orbital interactions, common to most carbon allotropes, can in principle produce a new type of topological band structure, forming the so-called Weyl-like semimetal in the absence of SOC. Taking a structurally stable interpenetrated graphene network (IGN) as example, we show, by first-principles calculations and tight-binding modeling, that its Fermi surface is made of two symmetry-protected Weyl-like loops with linear dispersion along perpendicular directions. These loops are reduced to Weyl-like points upon breaking of the inversion symmetry. Because of the topological properties of these band-structure anomalies, remarkably, at a surface terminated by vacuum there emerges a flat band in the loop case and two Fermi arcs in the point case. These topological carbon materials may also find applications in the fields of catalysts.

  1. Universal optical conductivity of a disordered Weyl semimetal.

    PubMed

    Roy, Bitan; Juričić, Vladimir; Das Sarma, Sankar

    2016-08-30

    Topological Weyl semimetals, besides manifesting chiral anomaly, can also accommodate a disorder-driven unconventional quantum phase transition into a metallic phase. A fundamentally and practically important question in this regard concerns an experimentally measurable quantity that can clearly distinguish these two phases. We show that the optical conductivity while serving this purpose can also play the role of a bonafide order parameter across such disorder-driven semimetal-metal quantum phase transition by virtue of displaying distinct scaling behavior in the semimetallic and metallic phases, as well as inside the quantum critical fan supporting a non-Fermi liquid. We demonstrate that the correction to the dielectric constant and optical conductivity in a dirty Weyl semimetal due to weak disorder is independent of the actual nature of point-like impurity scatterers. Therefore, optical conductivity can be used as an experimentally measurable quantity to study the critical properties and to pin the universality class of the disorder-driven quantum phase transition in Weyl semimetals.

  2. Universal optical conductivity of a disordered Weyl semimetal

    NASA Astrophysics Data System (ADS)

    Roy, Bitan; Juričić, Vladimir; Das Sarma, Sankar

    2016-08-01

    Topological Weyl semimetals, besides manifesting chiral anomaly, can also accommodate a disorder-driven unconventional quantum phase transition into a metallic phase. A fundamentally and practically important question in this regard concerns an experimentally measurable quantity that can clearly distinguish these two phases. We show that the optical conductivity while serving this purpose can also play the role of a bonafide order parameter across such disorder-driven semimetal-metal quantum phase transition by virtue of displaying distinct scaling behavior in the semimetallic and metallic phases, as well as inside the quantum critical fan supporting a non-Fermi liquid. We demonstrate that the correction to the dielectric constant and optical conductivity in a dirty Weyl semimetal due to weak disorder is independent of the actual nature of point-like impurity scatterers. Therefore, optical conductivity can be used as an experimentally measurable quantity to study the critical properties and to pin the universality class of the disorder-driven quantum phase transition in Weyl semimetals.

  3. Chiral magnetic effect and natural optical activity in (Weyl) metals

    NASA Astrophysics Data System (ADS)

    Pesin, Dmytro; Ma, Jing

    We consider the phenomenon of natural optical activity, and related chiral magnetic effect in metals with low carrier concentration. To reveal the correspondence between the two phenomena, we compute the optical conductivity of a noncentrosymmetric metal to linear order in the wave vector of the light wave, specializing to the low-frequency regime. We show that it is the orbital magnetic moment of quasiparticles that is responsible for the natural optical activity, and thus the chiral magnetic effect. While for purely static magnetic fields the chiral magnetic effect is known to have a topological origin and to be related to the presence of Berry curvature monopoles (Weyl points) in the band structure, we show that the existence of Berry monopoles is not required for the dynamic chiral magnetic effect to appear; the latter is thus not unique to Weyl metals. The magnitude of the dynamic chiral magnetic effect in a material is related to the trace of its gyrotropic tensor. We discuss the conditions under which this trace is non-zero; in noncentrosymmetric Weyl metals it is found to be proportional to the energy-space dipole moment of Berry curvature monopoles. The calculations are done within both the semiclassical kinetic equation, and Kubo linear response formalisms. This work was supported by NSF Grant No. DMR-1409089.

  4. Magnetic catalysis and axionic charge density wave in Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Roy, Bitan; Sau, Jay D.

    2015-09-01

    Three-dimensional Weyl and Dirac semimetals can support a chiral-symmetry-breaking, fully gapped, charge-density-wave order even for sufficiently weak repulsive electron-electron interactions, when placed in strong magnetic fields. In the former systems, due to the natural momentum space separation of Weyl nodes the ordered phase lacks the translational symmetry and represents an axionic phase of matter, while that in a Dirac semimetal (neglecting the Zeeman coupling) is only a trivial insulator. We present the scaling of this spectral gap for a wide range of subcritical (weak) interactions as well as that of the diamagnetic susceptibility with the magnetic field. A similar mechanism for charge-density-wave ordering at weak coupling is shown to be operative in double- and triple-Weyl semimetals, where the dispersion is linear (quadratic and cubic, respectively) for the z (planar) component(s) of the momentum. We here also address the competition between the charge-density-wave and a spin-density-wave orders, both of which breaks the chiral symmetry and leads to gapped spectrum, and show that at least in the weak coupling regime the former is energetically favored. The anomalous surface Hall conductivity, role of topological defects such as axion strings, existence of one-dimensional gapless dispersive modes along the core of such defects, and anomaly cancellation through the Callan-Harvey mechanism are discussed.

  5. Special Report: Affinity Chromatography.

    ERIC Educational Resources Information Center

    Parikh, Indu; Cuatrecasas, Pedro

    1985-01-01

    Describes the nature of affinity chromatography and its use in purifying enzymes, studying cell interactions, exploring hormone receptors, and other areas. The potential the technique may have in treating disease is also considered. (JN)

  6. The Heisenberg-Weyl algebra on the circle and a related quantum mechanical model for hindered rotation.

    PubMed

    Kouri, Donald J; Markovich, Thomas; Maxwell, Nicholas; Bodmann, Bernhard G

    2009-07-01

    We discuss a periodic variant of the Heisenberg-Weyl algebra, associated with the group of translations and modulations on the circle. Our study of uncertainty minimizers leads to a periodic version of canonical coherent states. Unlike the canonical, Cartesian case, there are states for which the uncertainty product associated with the generators of the algebra vanishes. Next, we explore the supersymmetric (SUSY) quantum mechanical setting for the uncertainty-minimizing states and interpret them as leading to a family of "hindered rotors". Finally, we present a standard quantum mechanical treatment of one of these hindered rotor systems, including numerically generated eigenstates and energies.

  7. Photonic crystals possessing multiple Weyl points and the experimental observation of robust surface states

    NASA Astrophysics Data System (ADS)

    Chen, Wen-Jie; Xiao, Meng; Chan, C. T.

    2016-10-01

    Weyl points, as monopoles of Berry curvature in momentum space, have captured much attention recently in various branches of physics. Realizing topological materials that exhibit such nodal points is challenging and indeed, Weyl points have been found experimentally in transition metal arsenide and phosphide and gyroid photonic crystal whose structure is complex. If realizing even the simplest type of single Weyl nodes with a topological charge of 1 is difficult, then making a real crystal carrying higher topological charges may seem more challenging. Here we design, and fabricate using planar fabrication technology, a photonic crystal possessing single Weyl points (including type-II nodes) and multiple Weyl points with topological charges of 2 and 3. We characterize this photonic crystal and find nontrivial 2D bulk band gaps for a fixed kz and the associated surface modes. The robustness of these surface states against kz-preserving scattering is experimentally observed for the first time.

  8. TaIrTe4: A ternary type-II Weyl semimetal

    NASA Astrophysics Data System (ADS)

    Koepernik, K.; Kasinathan, D.; Efremov, D. V.; Khim, Seunghyun; Borisenko, Sergey; Büchner, Bernd; van den Brink, Jeroen

    2016-05-01

    In metallic condensed matter systems two different types of Weyl fermions can in principle emerge, with either a vanishing (type-I) or with a finite (type-II) density of states at the Weyl node energy. So far only WTe2 and MoTe2 were predicted to be type-II Weyl semimetals. Here we identify TaIrTe4 as a third member of this family of topological semimetals. TaIrTe4 has the attractive feature that it hosts only four well-separated Weyl points, the minimum imposed by symmetry. Moreover, the resulting topological surface states—Fermi arcs connecting Weyl nodes of opposite chirality—extend to about 1/3 of the surface Brillouin zone. This large momentum-space separation is very favorable for detecting the Fermi arcs spectroscopically and in transport experiments.

  9. When Chiral Photons Meet Chiral Fermions: Photoinduced Anomalous Hall Effects in Weyl Semimetals.

    PubMed

    Chan, Ching-Kit; Lee, Patrick A; Burch, Kenneth S; Han, Jung Hoon; Ran, Ying

    2016-01-15

    The Weyl semimetal is characterized by three-dimensional linear band touching points called Weyl nodes. These nodes come in pairs with opposite chiralities. We show that the coupling of circularly polarized photons with these chiral electrons generates a Hall conductivity without any applied magnetic field in the plane orthogonal to the light propagation. This phenomenon comes about because with all three Pauli matrices exhausted to form the three-dimensional linear dispersion, the Weyl nodes cannot be gapped. Rather, the net influence of chiral photons is to shift the positions of the Weyl nodes. Interestingly, the momentum shift is tightly correlated with the chirality of the node to produce a net anomalous Hall signal. Application of our proposal to the recently discovered TaAs family of Weyl semimetals leads to an order-of-magnitude estimate of the photoinduced Hall conductivity which is within the experimentally accessible range. PMID:26824561

  10. When Chiral Photons Meet Chiral Fermions: Photoinduced Anomalous Hall Effects in Weyl Semimetals

    NASA Astrophysics Data System (ADS)

    Chan, Ching-Kit; Lee, Patrick A.; Burch, Kenneth S.; Han, Jung Hoon; Ran, Ying

    2016-01-01

    The Weyl semimetal is characterized by three-dimensional linear band touching points called Weyl nodes. These nodes come in pairs with opposite chiralities. We show that the coupling of circularly polarized photons with these chiral electrons generates a Hall conductivity without any applied magnetic field in the plane orthogonal to the light propagation. This phenomenon comes about because with all three Pauli matrices exhausted to form the three-dimensional linear dispersion, the Weyl nodes cannot be gapped. Rather, the net influence of chiral photons is to shift the positions of the Weyl nodes. Interestingly, the momentum shift is tightly correlated with the chirality of the node to produce a net anomalous Hall signal. Application of our proposal to the recently discovered TaAs family of Weyl semimetals leads to an order-of-magnitude estimate of the photoinduced Hall conductivity which is within the experimentally accessible range.

  11. Realization and detection of Weyl semimetals and the chiral anomaly in cold atomic systems

    NASA Astrophysics Data System (ADS)

    He, Wen-Yu; Zhang, Shizhong; Law, K. T.

    2016-07-01

    In this work, we describe a method to realize a three-dimensional Weyl semimetal by coupling multilayers of a honeycomb optical lattice in the presence of a pair of Raman lasers. The Raman lasers render each isolated honeycomb layer a Chern insulator. With finite interlayer coupling, the bulk gap of the system closes at certain out-of-plane momenta due to Raman assisted tunneling and results in the Weyl semimetal phase. Using experimentally relevant parameters, we show that both one pair and two pairs of Weyl points can be realized by tuning the interlayer coupling strength. We suggest that Landau-Zener tunneling can be used to detect Weyl points and show that the transition probability increases dramatically when the Weyl point emerges. The realization of chiral anomaly by using a magnetic-field gradient is also discussed.

  12. Photonic crystals possessing multiple Weyl points and the experimental observation of robust surface states

    PubMed Central

    Chen, Wen-Jie; Xiao, Meng; Chan, C. T.

    2016-01-01

    Weyl points, as monopoles of Berry curvature in momentum space, have captured much attention recently in various branches of physics. Realizing topological materials that exhibit such nodal points is challenging and indeed, Weyl points have been found experimentally in transition metal arsenide and phosphide and gyroid photonic crystal whose structure is complex. If realizing even the simplest type of single Weyl nodes with a topological charge of 1 is difficult, then making a real crystal carrying higher topological charges may seem more challenging. Here we design, and fabricate using planar fabrication technology, a photonic crystal possessing single Weyl points (including type-II nodes) and multiple Weyl points with topological charges of 2 and 3. We characterize this photonic crystal and find nontrivial 2D bulk band gaps for a fixed kz and the associated surface modes. The robustness of these surface states against kz-preserving scattering is experimentally observed for the first time. PMID:27703140

  13. Signatures of the Adler-Bell-Jackiw chiral anomaly in a Weyl fermion semimetal

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng-Long; Xu, Su-Yang; Belopolski, Ilya; Yuan, Zhujun; Lin, Ziquan; Tong, Bingbing; Bian, Guang; Alidoust, Nasser; Lee, Chi-Cheng; Huang, Shin-Ming; Chang, Tay-Rong; Chang, Guoqing; Hsu, Chuang-Han; Jeng, Horng-Tay; Neupane, Madhab; Sanchez, Daniel S.; Zheng, Hao; Wang, Junfeng; Lin, Hsin; Zhang, Chi; Lu, Hai-Zhou; Shen, Shun-Qing; Neupert, Titus; Zahid Hasan, M.; Jia, Shuang

    2016-02-01

    Weyl semimetals provide the realization of Weyl fermions in solid-state physics. Among all the physical phenomena that are enabled by Weyl semimetals, the chiral anomaly is the most unusual one. Here, we report signatures of the chiral anomaly in the magneto-transport measurements on the first Weyl semimetal TaAs. We show negative magnetoresistance under parallel electric and magnetic fields, that is, unlike most metals whose resistivity increases under an external magnetic field, we observe that our high mobility TaAs samples become more conductive as a magnetic field is applied along the direction of the current for certain ranges of the field strength. We present systematically detailed data and careful analyses, which allow us to exclude other possible origins of the observed negative magnetoresistance. Our transport data, corroborated by photoemission measurements, first-principles calculations and theoretical analyses, collectively demonstrate signatures of the Weyl fermion chiral anomaly in the magneto-transport of TaAs.

  14. Fermi Arcs and Their Topological Character in the Candidate Type-II Weyl Semimetal MoTe2

    NASA Astrophysics Data System (ADS)

    Tamai, A.; Wu, Q. S.; Cucchi, I.; Bruno, F. Y.; Riccò, S.; Kim, T. K.; Hoesch, M.; Barreteau, C.; Giannini, E.; Besnard, C.; Soluyanov, A. A.; Baumberger, F.

    2016-07-01

    We report a combined experimental and theoretical study of the candidate type-II Weyl semimetal MoTe2 . Using laser-based angle-resolved photoemission, we resolve multiple distinct Fermi arcs on the inequivalent top and bottom (001) surfaces. All surface states observed experimentally are reproduced by an electronic structure calculation for the experimental crystal structure that predicts a topological Weyl semimetal state with eight type-II Weyl points. We further use systematic electronic structure calculations simulating different Weyl point arrangements to discuss the robustness of the identified Weyl semimetal state and the topological character of Fermi arcs in MoTe2 .

  15. Numerical analysis of Weyl's method for integrating boundary layer equations

    NASA Technical Reports Server (NTRS)

    Najfeld, I.

    1982-01-01

    A fast method for accurate numerical integration of Blasius equation is proposed. It is based on the limit interchange in Weyl's fixed point method formulated as an iterated limit process. Each inner limit represents convergence to a discrete solution. It is shown that the error in a discrete solution admits asymptotic expansion in even powers of step size. An extrapolation process is set up to operate on a sequence of discrete solutions to reach the outer limit. Finally, this method is extended to related boundary layer equations.

  16. Physical account of Weyl anomaly from Dirac Sea

    NASA Astrophysics Data System (ADS)

    Habara, Yoshinobu; Nielsen, Holger B.; Ninomiya, Masao

    2015-09-01

    We rederive in a physical manner the Weyl anomaly in two-dimensional space-time by considering the Dirac Sea. It is regularized by some bosonic extra species which are formally negatively counted. In fact, we calculate the trace of the energy-momentum tensor in the Dirac Sea in presence of background gravitational field. It has to be regularized, since the Dirac Sea is bottomless and thus causes divergence. The new regularization method consists in adding various massive bosonic species some of which are to be counted negative in the Dirac Sea. The mass terms in the Lagrangian of the regularization fields have a dependence on the background gravitational field.

  17. Chirality-Dependent Hall Effect in Weyl Semimetals.

    PubMed

    Yang, Shengyuan A; Pan, Hui; Zhang, Fan

    2015-10-01

    We generalize a semiclassical theory and use the argument of angular momentum conservation to examine the ballistic transport in lightly doped Weyl semimetals, taking into account various phase-space Berry curvatures. We predict universal transverse shifts of the wave-packet center in transmission and reflection, perpendicular to the direction in which the Fermi energy or velocities change adiabatically. The anomalous shifts are opposite for electrons with different chirality, and they can be made imbalanced by breaking inversion symmetry. We discuss how to utilize local gates, strain effects, and circularly polarized lights to generate and probe such a chirality-dependent Hall effect.

  18. Electron bubbles and Weyl fermions in chiral superfluid 3He-A

    NASA Astrophysics Data System (ADS)

    Shevtsov, Oleksii; Sauls, J. A.

    2016-08-01

    Electrons embedded in liquid 3He form mesoscopic bubbles with large radii compared to the interatomic distance between 3He atoms, voids of Nbubble≈200 3He atoms, generating a negative ion with a large effective mass that scatters thermal excitations. Electron bubbles in chiral superfluid 3He-A also provide a local probe of the ground state. We develop a scattering theory of Bogoliubov quasiparticles by negative ions embedded in 3He-A that incorporates the broken symmetries of 3He-A , particularly broken symmetries under time reversal and mirror symmetry in a plane containing the chiral axis l ̂. Multiple scattering by the ion potential, combined with branch conversion scattering by the chiral order parameter, leads to a spectrum of Weyl fermions bound to the ion that support a mass current circulating the electron bubble—a mesoscopic realization of chiral edge currents in superfluid 3He-A films. A consequence is that electron bubbles embedded in 3He-A acquire angular momentum, L ≈-(Nbubble/2 ) ℏ l ̂ , inherited from the chiral ground state. We extend the scattering theory to calculate the forces on a moving electron bubble, both the Stokes drag and a transverse force, FW=e/c v ×BW , defined by an effective magnetic field, BW∝l ̂ , generated by the scattering of thermal quasiparticles off the spectrum of Weyl fermions bound to the moving ion. The transverse force is responsible for the anomalous Hall effect for electron bubbles driven by an electric field reported by the RIKEN group. Our results for the scattering cross section, drag, and transverse forces on moving ions are compared with experiments and shown to provide a quantitative understanding of the temperature dependence of the mobility and anomalous Hall angle for electron bubbles in normal and superfluid 3He-A . We also discuss our results in relation to earlier work on the theory of negative ions in superfluid 3He.

  19. A Weyl Fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class

    PubMed Central

    Huang, Shin-Ming; Xu, Su-Yang; Belopolski, Ilya; Lee, Chi-Cheng; Chang, Guoqing; Wang, BaoKai; Alidoust, Nasser; Bian, Guang; Neupane, Madhab; Zhang, Chenglong; Jia, Shuang; Bansil, Arun; Lin, Hsin; Hasan, M. Zahid

    2015-01-01

    Weyl fermions are massless chiral fermions that play an important role in quantum field theory but have never been observed as fundamental particles. A Weyl semimetal is an unusual crystal that hosts Weyl fermions as quasiparticle excitations and features Fermi arcs on its surface. Such a semimetal not only provides a condensed matter realization of the anomalies in quantum field theories but also demonstrates the topological classification beyond the gapped topological insulators. Here, we identify a topological Weyl semimetal state in the transition metal monopnictide materials class. Our first-principles calculations on TaAs reveal its bulk Weyl fermion cones and surface Fermi arcs. Our results show that in the TaAs-type materials the Weyl semimetal state does not depend on fine-tuning of chemical composition or magnetic order, which opens the door for the experimental realization of Weyl semimetals and Fermi arc surface states in real materials. PMID:26067579

  20. Discovery of a Weyl fermion state with Fermi arcs in niobium arsenide

    NASA Astrophysics Data System (ADS)

    Xu, Su-Yang; Alidoust, Nasser; Belopolski, Ilya; Yuan, Zhujun; Bian, Guang; Chang, Tay-Rong; Zheng, Hao; Strocov, Vladimir N.; Sanchez, Daniel S.; Chang, Guoqing; Zhang, Chenglong; Mou, Daixiang; Wu, Yun; Huang, Lunan; Lee, Chi-Cheng; Huang, Shin-Ming; Wang, Baokai; Bansil, Arun; Jeng, Horng-Tay; Neupert, Titus; Kaminski, Adam; Lin, Hsin; Jia, Shuang; Zahid Hasan, M.

    2015-09-01

    Three types of fermions play a fundamental role in our understanding of nature: Dirac, Majorana and Weyl. Whereas Dirac fermions have been known for decades, the latter two have not been observed as any fundamental particle in high-energy physics, and have emerged as a much-sought-out treasure in condensed matter physics. A Weyl semimetal is a novel crystal whose low-energy electronic excitations behave as Weyl fermions. It has received worldwide interest and is believed to open the next era of condensed matter physics after graphene and three-dimensional topological insulators. However, experimental research has been held back because Weyl semimetals are extremely rare in nature. Here, we present the experimental discovery of the Weyl semimetal state in an inversion-symmetry-breaking single-crystalline solid, niobium arsenide (NbAs). Utilizing the combination of soft X-ray and ultraviolet photoemission spectroscopy, we systematically study both the surface and bulk electronic structure of NbAs. We experimentally observe both the Weyl cones in the bulk and the Fermi arcs on the surface of this system. Our ARPES data, in agreement with our theoretical band structure calculations, identify the Weyl semimetal state in NbAs, which provides a real platform to test the potential of Weyltronics.

  1. Superconductivity in Weyl semimetal candidate MoTe2.

    PubMed

    Qi, Yanpeng; Naumov, Pavel G; Ali, Mazhar N; Rajamathi, Catherine R; Schnelle, Walter; Barkalov, Oleg; Hanfland, Michael; Wu, Shu-Chun; Shekhar, Chandra; Sun, Yan; Süß, Vicky; Schmidt, Marcus; Schwarz, Ulrich; Pippel, Eckhard; Werner, Peter; Hillebrand, Reinald; Förster, Tobias; Kampert, Erik; Parkin, Stuart; Cava, R J; Felser, Claudia; Yan, Binghai; Medvedev, Sergey A

    2016-03-14

    Transition metal dichalcogenides have attracted research interest over the last few decades due to their interesting structural chemistry, unusual electronic properties, rich intercalation chemistry and wide spectrum of potential applications. Despite the fact that the majority of related research focuses on semiconducting transition-metal dichalcogenides (for example, MoS2), recently discovered unexpected properties of WTe2 are provoking strong interest in semimetallic transition metal dichalcogenides featuring large magnetoresistance, pressure-driven superconductivity and Weyl semimetal states. We investigate the sister compound of WTe2, MoTe2, predicted to be a Weyl semimetal and a quantum spin Hall insulator in bulk and monolayer form, respectively. We find that bulk MoTe2 exhibits superconductivity with a transition temperature of 0.10 K. Application of external pressure dramatically enhances the transition temperature up to maximum value of 8.2 K at 11.7 GPa. The observed dome-shaped superconductivity phase diagram provides insights into the interplay between superconductivity and topological physics.

  2. Superconductivity in Weyl semimetal candidate MoTe2.

    PubMed

    Qi, Yanpeng; Naumov, Pavel G; Ali, Mazhar N; Rajamathi, Catherine R; Schnelle, Walter; Barkalov, Oleg; Hanfland, Michael; Wu, Shu-Chun; Shekhar, Chandra; Sun, Yan; Süß, Vicky; Schmidt, Marcus; Schwarz, Ulrich; Pippel, Eckhard; Werner, Peter; Hillebrand, Reinald; Förster, Tobias; Kampert, Erik; Parkin, Stuart; Cava, R J; Felser, Claudia; Yan, Binghai; Medvedev, Sergey A

    2016-01-01

    Transition metal dichalcogenides have attracted research interest over the last few decades due to their interesting structural chemistry, unusual electronic properties, rich intercalation chemistry and wide spectrum of potential applications. Despite the fact that the majority of related research focuses on semiconducting transition-metal dichalcogenides (for example, MoS2), recently discovered unexpected properties of WTe2 are provoking strong interest in semimetallic transition metal dichalcogenides featuring large magnetoresistance, pressure-driven superconductivity and Weyl semimetal states. We investigate the sister compound of WTe2, MoTe2, predicted to be a Weyl semimetal and a quantum spin Hall insulator in bulk and monolayer form, respectively. We find that bulk MoTe2 exhibits superconductivity with a transition temperature of 0.10 K. Application of external pressure dramatically enhances the transition temperature up to maximum value of 8.2 K at 11.7 GPa. The observed dome-shaped superconductivity phase diagram provides insights into the interplay between superconductivity and topological physics. PMID:26972450

  3. Superconductivity in Weyl semimetal candidate MoTe2

    NASA Astrophysics Data System (ADS)

    Qi, Yanpeng; Naumov, Pavel G.; Ali, Mazhar N.; Rajamathi, Catherine R.; Schnelle, Walter; Barkalov, Oleg; Hanfland, Michael; Wu, Shu-Chun; Shekhar, Chandra; Sun, Yan; Süß, Vicky; Schmidt, Marcus; Schwarz, Ulrich; Pippel, Eckhard; Werner, Peter; Hillebrand, Reinald; Förster, Tobias; Kampert, Erik; Parkin, Stuart; Cava, R. J.; Felser, Claudia; Yan, Binghai; Medvedev, Sergey A.

    2016-03-01

    Transition metal dichalcogenides have attracted research interest over the last few decades due to their interesting structural chemistry, unusual electronic properties, rich intercalation chemistry and wide spectrum of potential applications. Despite the fact that the majority of related research focuses on semiconducting transition-metal dichalcogenides (for example, MoS2), recently discovered unexpected properties of WTe2 are provoking strong interest in semimetallic transition metal dichalcogenides featuring large magnetoresistance, pressure-driven superconductivity and Weyl semimetal states. We investigate the sister compound of WTe2, MoTe2, predicted to be a Weyl semimetal and a quantum spin Hall insulator in bulk and monolayer form, respectively. We find that bulk MoTe2 exhibits superconductivity with a transition temperature of 0.10 K. Application of external pressure dramatically enhances the transition temperature up to maximum value of 8.2 K at 11.7 GPa. The observed dome-shaped superconductivity phase diagram provides insights into the interplay between superconductivity and topological physics.

  4. Chiral tunneling in gated inversion symmetric Weyl semimetal.

    PubMed

    Bai, Chunxu; Yang, Yanling; Chang, Kai

    2016-01-01

    Based on the chirality-resolved transfer-matrix method, we evaluate the chiral transport tunneling through Weyl semimetal multi-barrier structures created by periodic gates. It is shown that, in sharp contrast to the cases of three dimensional normal semimetals, the tunneling coefficient as a function of incident angle shows a strong anisotropic behavior. Importantly, the tunneling coefficients display an interesting periodic oscillation as a function of the crystallographic angle of the structures. With the increasement of the barriers, the tunneling current shows a Fabry-Perot type interferences. For superlattice structures, the fancy miniband effect has been revealed. Our results show that the angular dependence of the first bandgap can be reduced into a Lorentz formula. The disorder suppresses the oscillation of the tunneling conductance, but would not affect its average amplitude. This is in sharp contrast to that in multi-barrier conventional semiconductor structures. Moreover, numerical results for the dependence of the angularly averaged conductance on the incident energy and the structure parameters are presented and contrasted with those in two dimensional relativistic materials. Our work suggests that the gated Weyl semimetal opens a possible new route to access to new type nanoelectronic device. PMID:26888491

  5. Superconductivity in Weyl semimetal candidate MoTe2

    PubMed Central

    Qi, Yanpeng; Naumov, Pavel G.; Ali, Mazhar N.; Rajamathi, Catherine R.; Schnelle, Walter; Barkalov, Oleg; Hanfland, Michael; Wu, Shu-Chun; Shekhar, Chandra; Sun, Yan; Süß, Vicky; Schmidt, Marcus; Schwarz, Ulrich; Pippel, Eckhard; Werner, Peter; Hillebrand, Reinald; Förster, Tobias; Kampert, Erik; Parkin, Stuart; Cava, R. J.; Felser, Claudia; Yan, Binghai; Medvedev, Sergey A.

    2016-01-01

    Transition metal dichalcogenides have attracted research interest over the last few decades due to their interesting structural chemistry, unusual electronic properties, rich intercalation chemistry and wide spectrum of potential applications. Despite the fact that the majority of related research focuses on semiconducting transition-metal dichalcogenides (for example, MoS2), recently discovered unexpected properties of WTe2 are provoking strong interest in semimetallic transition metal dichalcogenides featuring large magnetoresistance, pressure-driven superconductivity and Weyl semimetal states. We investigate the sister compound of WTe2, MoTe2, predicted to be a Weyl semimetal and a quantum spin Hall insulator in bulk and monolayer form, respectively. We find that bulk MoTe2 exhibits superconductivity with a transition temperature of 0.10 K. Application of external pressure dramatically enhances the transition temperature up to maximum value of 8.2 K at 11.7 GPa. The observed dome-shaped superconductivity phase diagram provides insights into the interplay between superconductivity and topological physics. PMID:26972450

  6. Axionic field theory of (3+1)-dimensional Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Goswami, Pallab; Tewari, Sumanta

    2013-12-01

    From a direct calculation of the anomalous Hall conductivity and an effective electromagnetic action obtained via Fujikawa's chiral rotation technique, we conclude that an axionic field theory with a nonquantized coefficient describes the electromagnetic response of the (3+1)-dimensional Weyl semimetal. The coefficient is proportional to the momentum space separation of the Weyl nodes. Akin to the Chern-Simons field theory of quantum Hall effect, the axion field theory violates gauge invariance in the presence of the boundary, which is cured by the chiral anomaly of the surface states via the Callan-Harvey mechanism. This provides a unique solution for the radiatively induced CPT-odd term in the electromagnetic polarization tensor of the Lorentz violating spinor electrodynamics, where the source of the Lorentz violation is a constant axial 4-vector term for the Dirac fermion. A direct linear response calculation also establishes anomalous thermal Hall effect and a Wiedemann-Franz law, but thermal Hall conductivity does not directly follow from the well known formula for the gravitational chiral anomaly.

  7. Chiral tunneling in gated inversion symmetric Weyl semimetal

    PubMed Central

    Bai, Chunxu; Yang, Yanling; Chang, Kai

    2016-01-01

    Based on the chirality-resolved transfer-matrix method, we evaluate the chiral transport tunneling through Weyl semimetal multi-barrier structures created by periodic gates. It is shown that, in sharp contrast to the cases of three dimensional normal semimetals, the tunneling coefficient as a function of incident angle shows a strong anisotropic behavior. Importantly, the tunneling coefficients display an interesting periodic oscillation as a function of the crystallographic angle of the structures. With the increasement of the barriers, the tunneling current shows a Fabry-Perot type interferences. For superlattice structures, the fancy miniband effect has been revealed. Our results show that the angular dependence of the first bandgap can be reduced into a Lorentz formula. The disorder suppresses the oscillation of the tunneling conductance, but would not affect its average amplitude. This is in sharp contrast to that in multi-barrier conventional semiconductor structures. Moreover, numerical results for the dependence of the angularly averaged conductance on the incident energy and the structure parameters are presented and contrasted with those in two dimensional relativistic materials. Our work suggests that the gated Weyl semimetal opens a possible new route to access to new type nanoelectronic device. PMID:26888491

  8. Chiral tunneling in gated inversion symmetric Weyl semimetal

    NASA Astrophysics Data System (ADS)

    Bai, Chunxu; Yang, Yanling; Chang, Kai

    2016-02-01

    Based on the chirality-resolved transfer-matrix method, we evaluate the chiral transport tunneling through Weyl semimetal multi-barrier structures created by periodic gates. It is shown that, in sharp contrast to the cases of three dimensional normal semimetals, the tunneling coefficient as a function of incident angle shows a strong anisotropic behavior. Importantly, the tunneling coefficients display an interesting periodic oscillation as a function of the crystallographic angle of the structures. With the increasement of the barriers, the tunneling current shows a Fabry-Perot type interferences. For superlattice structures, the fancy miniband effect has been revealed. Our results show that the angular dependence of the first bandgap can be reduced into a Lorentz formula. The disorder suppresses the oscillation of the tunneling conductance, but would not affect its average amplitude. This is in sharp contrast to that in multi-barrier conventional semiconductor structures. Moreover, numerical results for the dependence of the angularly averaged conductance on the incident energy and the structure parameters are presented and contrasted with those in two dimensional relativistic materials. Our work suggests that the gated Weyl semimetal opens a possible new route to access to new type nanoelectronic device.

  9. Semiclassical Limits of Ore Extensions and a Poisson Generalized Weyl Algebra

    NASA Astrophysics Data System (ADS)

    Cho, Eun-Hee; Oh, Sei-Qwon

    2016-07-01

    We observe [Launois and Lecoutre, Trans. Am. Math. Soc. 368:755-785, 2016, Proposition 4.1] that Poisson polynomial extensions appear as semiclassical limits of a class of Ore extensions. As an application, a Poisson generalized Weyl algebra A 1, considered as a Poisson version of the quantum generalized Weyl algebra, is constructed and its Poisson structures are studied. In particular, a necessary and sufficient condition is obtained, such that A 1 is Poisson simple and established that the Poisson endomorphisms of A 1 are Poisson analogues of the endomorphisms of the quantum generalized Weyl algebra.

  10. Hydrodynamic theory of thermoelectric transport and negative magnetoresistance in Weyl semimetals.

    PubMed

    Lucas, Andrew; Davison, Richard A; Sachdev, Subir

    2016-08-23

    We present a theory of thermoelectric transport in weakly disordered Weyl semimetals where the electron-electron scattering time is faster than the electron-impurity scattering time. Our hydrodynamic theory consists of relativistic fluids at each Weyl node, coupled together by perturbatively small intervalley scattering, and long-range Coulomb interactions. The conductivity matrix of our theory is Onsager reciprocal and positive semidefinite. In addition to the usual axial anomaly, we account for the effects of a distinct, axial-gravitational anomaly expected to be present in Weyl semimetals. Negative thermal magnetoresistance is a sharp, experimentally accessible signature of this axial-gravitational anomaly, even beyond the hydrodynamic limit.

  11. Hydrodynamic theory of thermoelectric transport and negative magnetoresistance in Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Lucas, Andrew; Davison, Richard A.; Sachdev, Subir

    2016-08-01

    We present a theory of thermoelectric transport in weakly disordered Weyl semimetals where the electron-electron scattering time is faster than the electron-impurity scattering time. Our hydrodynamic theory consists of relativistic fluids at each Weyl node, coupled together by perturbatively small intervalley scattering, and long-range Coulomb interactions. The conductivity matrix of our theory is Onsager reciprocal and positive semidefinite. In addition to the usual axial anomaly, we account for the effects of a distinct, axial-gravitational anomaly expected to be present in Weyl semimetals. Negative thermal magnetoresistance is a sharp, experimentally accessible signature of this axial-gravitational anomaly, even beyond the hydrodynamic limit.

  12. Hydrodynamic theory of thermoelectric transport and negative magnetoresistance in Weyl semimetals.

    PubMed

    Lucas, Andrew; Davison, Richard A; Sachdev, Subir

    2016-08-23

    We present a theory of thermoelectric transport in weakly disordered Weyl semimetals where the electron-electron scattering time is faster than the electron-impurity scattering time. Our hydrodynamic theory consists of relativistic fluids at each Weyl node, coupled together by perturbatively small intervalley scattering, and long-range Coulomb interactions. The conductivity matrix of our theory is Onsager reciprocal and positive semidefinite. In addition to the usual axial anomaly, we account for the effects of a distinct, axial-gravitational anomaly expected to be present in Weyl semimetals. Negative thermal magnetoresistance is a sharp, experimentally accessible signature of this axial-gravitational anomaly, even beyond the hydrodynamic limit. PMID:27512042

  13. Weyl invariant formulation of the flux-tube solution in the dual Ginzburg-Landau theory

    NASA Astrophysics Data System (ADS)

    Koma, Yoshiaki; Toki, Hiroshi

    2000-09-01

    The flux-tube solution in the dual Ginzburg-Landau (DGL) theory in the Bogomol'nyi limit is studied by using the manifestly Weyl invariant form of the DGL Lagrangian. The dual gauge symmetry is extended to [U(1)]3m, and, accordingly, there appear three different types of flux tube. The string tension for each flux tube is calculated analytically and is found to be the same owing to Weyl symmetry. It is suggested that the manifestly Weyl invariant approach enables us to treat flux tubes of various types in the DGL theory in a framework quite similar to the U(1) dual Abelian Higgs theory.

  14. On spectral deformations and singular Weyl functions for one-dimensional Dirac operators

    NASA Astrophysics Data System (ADS)

    Beigl, Alexander; Eckhardt, Jonathan; Kostenko, Aleksey; Teschl, Gerald

    2015-01-01

    We investigate the connection between singular Weyl-Titchmarsh-Kodaira theory and the double commutation method for one-dimensional Dirac operators. In particular, we compute the singular Weyl function of the commuted operator in terms of the data from the original operator. These results are then applied to radial Dirac operators in order to show that the singular Weyl function of such an operator belongs to a generalized Nevanlinna class Nκ0 with κ 0 = |κ| + /1 2, where κ ∈ ℝ is the corresponding angular momentum.

  15. High affinity retinoic acid receptor antagonists: analogs of AGN 193109.

    PubMed

    Johnson, A T; Wang, L; Gillett, S J; Chandraratna, R A

    1999-02-22

    A series of high affinity retinoic acid receptor (RAR) antagonists were prepared based upon the known antagonist AGN 193109 (2). Introduction of various phenyl groups revealed a preference for substitution at the para-position relative to the meta-site. Antagonists with the highest affinities for the RARs possessed hydrophobic groups, however, the presence of polar functionality was also well tolerated.

  16. Strong gravitational lensing for the photons coupled to Weyl tensor in a Schwarzschild black hole spacetime

    SciTech Connect

    Chen, Songbai; Jing, Jiliang E-mail: jljing@hunnu.edu.cn

    2015-10-01

    We have investigated the strong gravitational lensing for the photons coupled to Weyl tensor in a Schwarzschild black hole spacetime. We find that in the four-dimensional black hole spacetime the equation of motion of the photons depends not only on the coupling between photon and Weyl tensor, but also on the polarization direction of the photons. It is quite different from that in the case of the usual photon without coupling to Weyl tensor in which the equation of motion is independent of the polarization of the photon. Moreover, we find that the coupling and the polarization direction modify the properties of the photon sphere, the deflection angle, the coefficients in strong field lensing, and the observational gravitational lensing variables. Combining with the supermassive central object in our Galaxy, we estimated three observables in the strong gravitational lensing for the photons coupled to Weyl tensor.

  17. Visualizing Weyl Fermions in MoTe2 Using Scanning Tunneling Microscopy

    NASA Astrophysics Data System (ADS)

    Notis, Ayelet; Andrade, Erick; Cheong, Sang-Wook; Pasupathy, Abhay

    MoTe2, a transition metal dichalcogenide, has a metastable orthorhombic phase at temperatures below 250 K. This phase is predicted to be a type II Weyl semimetal, providing us an exciting new opportunity to explore Weyl Fermions, a type of particle long sought after but only recently realized as a quasiparticle excitation in a crystal. A topological consequence of the existence of Weyl points in a crystal is the existence of Fermi arc surface states that connect pairs of Weyl points. Here, we present scanning tunneling microscopy and spectroscopy (STM and STS) studies investigating the topography and electronic structure of this material. We resolve the crystal structure of the orthorhombic phase in STM topography, and probe the electronic structure of the Fermi arc states using quasiparticle interference imaging.

  18. Simulating and exploring Weyl semimetal physics with cold atoms in a two-dimensional optical lattice

    NASA Astrophysics Data System (ADS)

    Zhang, Dan-Wei; Zhu, Shi-Liang; Wang, Z. D.

    2015-07-01

    We propose a scheme to simulate and explore Weyl semimetal physics with ultracold fermionic atoms in a two-dimensional square optical lattice subjected to experimentally realizable spin-orbit coupling and an artificial dimension from an external parameter space, which may increase experimental feasibility compared with the cases in three-dimensional optical lattices. It is shown that this system with a tight-binding model is able to describe essentially three-dimensional Weyl semimetals with tunable Weyl points. The relevant topological properties are also addressed by means of the Chern number and the gapless edge states. Furthermore, we illustrate that the mimicked Weyl points can be experimentally detected by measuring the atomic transfer fractions in a Bloch-Zener oscillation, and the characteristic topological invariant can be measured with the particle pumping approach.

  19. Magnetic Breakdown and Klein Tunneling in a Type-II Weyl Semimetal.

    PubMed

    O'Brien, T E; Diez, M; Beenakker, C W J

    2016-06-10

    The band structure of a type-II Weyl semimetal has pairs of electron and hole pockets that coexist over a range of energies and touch at a topologically protected conical point. We identify signatures of this Weyl point in the magnetic quantum oscillations of the density of states, observable in thermodynamic properties. Tunneling between the electron and hole pockets in a magnetic field is the momentum space counterpart of Klein tunneling at a p-n junction in real space. This magnetic breakdown happens at a characteristic field strength that vanishes when the Fermi level approaches the Weyl point. The topological distinction between connected and disconnected pairs of type-II Weyl cones can be distinguished by the qualitatively different dependence of the quantum oscillations on the direction of the magnetic field. PMID:27341246

  20. Quasiparticle interference of the Fermi arcs and surface-bulk connectivity of a Weyl semimetal.

    PubMed

    Inoue, Hiroyuki; Gyenis, András; Wang, Zhijun; Li, Jian; Oh, Seong Woo; Jiang, Shan; Ni, Ni; Bernevig, B Andrei; Yazdani, Ali

    2016-03-11

    Weyl semimetals host topologically protected surface states, with arced Fermi surface contours that are predicted to propagate through the bulk when their momentum matches that of the surface projections of the bulk's Weyl nodes. We used spectroscopic mapping with a scanning tunneling microscope to visualize quasiparticle scattering and interference at the surface of the Weyl semimetal TaAs. Our measurements reveal 10 different scattering wave vectors, which can be understood and precisely reproduced with a theory that takes into account the shape, spin texture, and momentum-dependent propagation of the Fermi arc surface states into the bulk. Our findings provide evidence that Weyl nodes act as sinks for electron transport on the surface of these materials. PMID:26965625

  1. Magnetic Breakdown and Klein Tunneling in a Type-II Weyl Semimetal

    NASA Astrophysics Data System (ADS)

    O'Brien, T. E.; Diez, M.; Beenakker, C. W. J.

    2016-06-01

    The band structure of a type-II Weyl semimetal has pairs of electron and hole pockets that coexist over a range of energies and touch at a topologically protected conical point. We identify signatures of this Weyl point in the magnetic quantum oscillations of the density of states, observable in thermodynamic properties. Tunneling between the electron and hole pockets in a magnetic field is the momentum space counterpart of Klein tunneling at a p -n junction in real space. This magnetic breakdown happens at a characteristic field strength that vanishes when the Fermi level approaches the Weyl point. The topological distinction between connected and disconnected pairs of type-II Weyl cones can be distinguished by the qualitatively different dependence of the quantum oscillations on the direction of the magnetic field.

  2. Pressure-Induced New Topological Weyl Semimetal Phase in TaAs

    NASA Astrophysics Data System (ADS)

    Zhou, Yonghui; Lu, Pengchao; Du, Yongping; Zhu, Xiangde; Zhang, Ganghua; Zhang, Ranran; Shao, Dexi; Chen, Xuliang; Wang, Xuefei; Tian, Mingliang; Sun, Jian; Wan, Xiangang; Yang, Zhaorong; Yang, Wenge; Zhang, Yuheng; Xing, Dingyu

    2016-09-01

    We report a new pressure-induced phase in TaAs with different Weyl fermions than the ambient structure with the aid of theoretical calculations, experimental transport and synchrotron structure investigations up to 53 GPa. We show that TaAs transforms from an ambient I 41m d phase (t -TaAs ) to a high-pressure hexagonal P -6 m 2 (h -TaAs ) phase at 14 GPa, along with changes of the electronic state from containing 24 Weyl nodes distributed at two energy levels to possessing 12 Weyl nodes at an isoenergy level, which substantially reduces the interference between the surface and bulk states. The new pressure-induced phase can be reserved upon releasing pressure to ambient condition, which allows one to study the exotic behavior of a single set of Weyl fermions, such as the interplay between surface states and other properties.

  3. Completeness in quantum mechanics and the Weyl-Titchmarsh-Kodaira theorem

    NASA Astrophysics Data System (ADS)

    Palma, G.; Prado, H.; Reyes, E. G.

    2010-06-01

    We discuss the completeness of (generalized) eigenfunctions in quantum mechanics using the classical theory developed by Weyl, Titchmarsh, and Kodaira. As applications, we rigorously prove the completeness of generalized eigenfunctions for the step and well potentials.

  4. Quasiparticle interference of the Fermi arcs and surface-bulk connectivity of a Weyl semimetal.

    PubMed

    Inoue, Hiroyuki; Gyenis, András; Wang, Zhijun; Li, Jian; Oh, Seong Woo; Jiang, Shan; Ni, Ni; Bernevig, B Andrei; Yazdani, Ali

    2016-03-11

    Weyl semimetals host topologically protected surface states, with arced Fermi surface contours that are predicted to propagate through the bulk when their momentum matches that of the surface projections of the bulk's Weyl nodes. We used spectroscopic mapping with a scanning tunneling microscope to visualize quasiparticle scattering and interference at the surface of the Weyl semimetal TaAs. Our measurements reveal 10 different scattering wave vectors, which can be understood and precisely reproduced with a theory that takes into account the shape, spin texture, and momentum-dependent propagation of the Fermi arc surface states into the bulk. Our findings provide evidence that Weyl nodes act as sinks for electron transport on the surface of these materials.

  5. Affinity driven social networks

    NASA Astrophysics Data System (ADS)

    Ruyú, B.; Kuperman, M. N.

    2007-04-01

    In this work we present a model for evolving networks, where the driven force is related to the social affinity between individuals of a population. In the model, a set of individuals initially arranged on a regular ordered network and thus linked with their closest neighbors are allowed to rearrange their connections according to a dynamics closely related to that of the stable marriage problem. We show that the behavior of some topological properties of the resulting networks follows a non trivial pattern.

  6. Deflection of light to second order in conformal Weyl gravity

    NASA Astrophysics Data System (ADS)

    Sultana, Joseph

    2013-04-01

    We reexamine the deflection of light in conformal Weyl gravity obtained in Sultana and Kazanas (2010), by extending the calculation based on the procedure by Rindler and Ishak, for the bending angle by a centrally concentrated spherically symmetric matter distribution, to second order in M/R, where M is the mass of the source and R is the impact parameter. It has recently been reported in Bhattacharya et al. (JCAP 09 (2010) 004; JCAP 02 (2011) 028), that when this calculation is done to second order, the term γr in the Mannheim-Kazanas metric, yields again the paradoxical contribution γR (where the bending angle is proportional to the impact parameter) obtained by standard formalisms appropriate to asymptotically flat spacetimes. We show that no such contribution is obtained for a second order calculation and the effects of the term γr in the metric are again insignificant as reported in our earlier work.

  7. A spin filter transistor made of topological Weyl semimetal

    SciTech Connect

    Shi, Zhangsheng; Wang, Maoji; Wu, Jiansheng

    2015-09-07

    Topological boundary states (TBSs) in Weyl semimetal (WSM) thin film can induce tunneling. Such TBSs are spin polarized inducing spin-polarized current, which can be used to build a spin-filter transistor (SFT) in spintronics. The WSM thin film can be viewed as a series of decoupled quantum anomalous Hall insulator (QAHI) wires connected in parallel, so compared with the proposed SFT made of QAHI nanowire, this SFT has a broader working energy region and easier to be manipulated. And within a narrow region outside this energy domain, the 2D WSM is with very low conductance, so it makes a good on/off switch device with controllable chemical potential induced by liquid ion gate. We also construct a loop device made of 2D WSM with inserted controllable flux to control the polarized current.

  8. Intertwined Rashba, Dirac, and Weyl Fermions in Hexagonal Hyperferroelectrics

    NASA Astrophysics Data System (ADS)

    Di Sante, Domenico; Barone, Paolo; Stroppa, Alessandro; Garrity, Kevin F.; Vanderbilt, David; Picozzi, Silvia

    2016-08-01

    By means of density functional theory based calculations, we study the role of spin-orbit coupling in the new family of A B C hyperferroelectrics [Garrity, Rabe, and Vanderbilt Phys. Rev. Lett. 112, 127601 (2014)]. We unveil an extremely rich physics strongly linked to ferroelectric properties, ranging from the electric control of bulk Rashba effect to the existence of a three-dimensional topological insulator phase, with concomitant topological surface states even in the ultrathin film limit. Moreover, we predict that the topological transition, as induced by alloying, is followed by a Weyl semimetal phase of finite concentration extension, which is robust against disorder, putting forward hyperferroelectrics as promising candidates for spin-orbitronic applications.

  9. Current at a distance and resonant transparency in Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Stern, Ady; Baum, Yuval; Berg, Erez; Parameswaran, Siddharth

    Surface Fermi arcs are the most prominent manifestation of the topological nature of Weyl semimetals. In the presence of a static magnetic field oriented perpendicular to the sample surface, their existence leads to unique inter-surface cyclotron orbits. We propose two experiments which directly probe the Fermi arcs: a magnetic field dependent non-local DC voltage and sharp resonances in the transmission of electromagnetic waves at frequencies controlled by the field. We show that these experiments are insensitive to small momentum scattering and do not rely on quantum mechanical phase coherence, which renders them far more robust and experimentally accessible than quantum effects. We also comment on the applicability of these ideas to Dirac semimetals.

  10. Intertwined Rashba, Dirac, and Weyl Fermions in Hexagonal Hyperferroelectrics.

    PubMed

    Di Sante, Domenico; Barone, Paolo; Stroppa, Alessandro; Garrity, Kevin F; Vanderbilt, David; Picozzi, Silvia

    2016-08-12

    By means of density functional theory based calculations, we study the role of spin-orbit coupling in the new family of ABC hyperferroelectrics [Garrity, Rabe, and Vanderbilt Phys. Rev. Lett. 112, 127601 (2014)]. We unveil an extremely rich physics strongly linked to ferroelectric properties, ranging from the electric control of bulk Rashba effect to the existence of a three-dimensional topological insulator phase, with concomitant topological surface states even in the ultrathin film limit. Moreover, we predict that the topological transition, as induced by alloying, is followed by a Weyl semimetal phase of finite concentration extension, which is robust against disorder, putting forward hyperferroelectrics as promising candidates for spin-orbitronic applications. PMID:27563977

  11. A spin filter transistor made of topological Weyl semimetal

    NASA Astrophysics Data System (ADS)

    Shi, Zhangsheng; Wang, Maoji; Wu, Jiansheng

    2015-09-01

    Topological boundary states (TBSs) in Weyl semimetal (WSM) thin film can induce tunneling. Such TBSs are spin polarized inducing spin-polarized current, which can be used to build a spin-filter transistor (SFT) in spintronics. The WSM thin film can be viewed as a series of decoupled quantum anomalous Hall insulator (QAHI) wires connected in parallel, so compared with the proposed SFT made of QAHI nanowire, this SFT has a broader working energy region and easier to be manipulated. And within a narrow region outside this energy domain, the 2D WSM is with very low conductance, so it makes a good on/off switch device with controllable chemical potential induced by liquid ion gate. We also construct a loop device made of 2D WSM with inserted controllable flux to control the polarized current.

  12. Effective Field Theory of the Disordered Weyl Semimetal.

    PubMed

    Altland, Alexander; Bagrets, Dmitry

    2015-06-26

    In disordered Weyl semimetals, mechanisms of topological origin lead to the protection against Anderson localization, and at the same time to different types of transverse electromagnetic response-the anomalous Hall and the chiral magnetic effect. We here apply field theory methods to discuss the manifestation of these phenomena at length scales that are beyond the scope of diagrammatic perturbation theory. Specifically, we show how an interplay of symmetry breaking and the chiral anomaly leads to a field theory containing two types of topological terms. Generating the unconventional response coefficients of the system, these terms remain largely unaffected by disorder, i.e., information on the chirality of the system remains visible even at large length scales.

  13. Synthetic gauge flux and Weyl points in acoustic systems

    NASA Astrophysics Data System (ADS)

    Xiao, Meng; Chen, Wen-Jie; He, Wen-Yu; Chan, C. T.

    We consider acoustic systems comprising a honeycomb lattice in the xy plane and periodic along the z direction. As kz is a good quantum number here, for each fixed kz, this system can be treated as a reduced two-dimensional system. By engineering the interlayer coupling in the z-direction, we show that we can realize effective inversion symmetry breaking and synthetic staggered gauge flux in the reduced two-dimensional system. The realizations of chiral edge states for fixed values of kz are direct consequences of the staggered gauge flux. And we then show that the synthetic gauge flux is closely related to the Weyl points in the three-dimensional band structure. This work was supported by the Hong Kong Research Grants Council (Grant No. AoE/P-02/12).

  14. MOND-Like Acceleration in Integrable Weyl Geometric Gravity

    NASA Astrophysics Data System (ADS)

    Scholz, Erhard

    2016-02-01

    We study a Weyl geometric scalar tensor theory of gravity with scalar field φ and scale invariant "aquadratic" (cubic) kinematical Lagrange density. The Weylian scale connection in Einstein gauge induces an additional acceleration. In the weak field, static, low velocity limit it acquires the deep MOND form of Milgrom/Bekenstein's gravity. The energy momentum of φ leads to another add on to Newton acceleration. Both additional accelerations together imply a MOND-ian phenomenology of the model. It has unusual transition functions μ _w(x), ν _w(y). They imply higher phantom energy density than in the case of the more common MOND models with transition functions μ _1(x), μ _2(x). A considerable part of it is due to the scalar field's energy density which, in our model, gives a scale and generally covariant expression for the self-energy of the gravitational field.

  15. Cosmology for quadratic gravity in generalized Weyl geometry

    NASA Astrophysics Data System (ADS)

    Beltrán Jiménez, Jose; Heisenberg, Lavinia; Koivisto, Tomi S.

    2016-04-01

    A class of vector-tensor theories arises naturally in the framework of quadratic gravity in spacetimes with linear vector distortion. Requiring the absence of ghosts for the vector field imposes an interesting condition on the allowed connections with vector distortion: the resulting one-parameter family of connections generalises the usual Weyl geometry with polar torsion. The cosmology of this class of theories is studied, focusing on isotropic solutions wherein the vector field is dominated by the temporal component. De Sitter attractors are found and inhomogeneous perturbations around such backgrounds are analysed. In particular, further constraints on the models are imposed by excluding pathologies in the scalar, vector and tensor fluctuations. Various exact background solutions are presented, describing a constant and an evolving dark energy, a bounce and a self-tuning de Sitter phase. However, the latter two scenarios are not viable under a closer scrutiny.

  16. Dirac and Weyl rings in three-dimensional cold-atom optical lattices

    NASA Astrophysics Data System (ADS)

    Xu, Yong; Zhang, Chuanwei

    2016-06-01

    Recently three-dimensional topological quantum materials with gapless energy spectra have attracted considerable interest in many branches of physics. Besides the celebrated example, Dirac and Weyl points which possess gapless point structures in the underlying energy dispersion, the topologically protected gapless spectrum, can also occur along a ring, named Dirac and Weyl nodal rings. Ultracold atomic gases provide an ideal platform for exploring new topological materials with designed symmetries and dispersion. However, whether Dirac and Weyl rings can exist in the single-particle spectrum of cold atoms remains elusive. Here we propose a realistic model for realizing Dirac and Weyl rings in the single-particle band dispersion of a cold-atom optical lattice. Our scheme is based on a previously experimentally implemented Raman coupling setup for realizing spin-orbit coupling. Without the Zeeman field, the model preserves both pseudo-time-reversal and inversion symmetries, allowing Dirac rings. The Dirac rings split into Weyl rings with a Zeeman field that breaks the pseudo-time-reversal symmetry. We examine the superfluidity of attractive Fermi gases in this model and also find Dirac and Weyl rings in the quasiparticle spectrum.

  17. Discovery of a Weyl fermion state with Fermi arcs in niobium arsenide

    NASA Astrophysics Data System (ADS)

    Alidoust, Nasser; Xu, Su-Yang; Belopolski, Ilya; Bian, Guang; Zheng, Hao; Sanchez, Daniel S.; Neupert, Titus; Hasan, M. Zahid; Yuan, Zhujun; Zhang, Chenglong; Jia, Shuang; Mou, Daixiang; Wu, Yun; Huang, Lunan; Kaminski, Adam; Strocov, Vladimir N.; Wang, Baokai; Bansil, Arun; Chang, Tay-Rong; Jeng, Horng-Tay; Chang, Guoqing; Lee, Chi-Cheng; Huang, Shin-Ming; Lin, Hsin

    Three types of fermions play a fundamental role in our understanding of nature: Dirac, Majorana and Weyl. A Weyl semimetal is a novel crystal whose low-energy electronic excitations behave as Weyl fermions. Here, we present the experimental discovery of the Weyl semimetal state in an inversion-symmetry-breaking single-crystalline solid, niobium arsenide (NbAs). Utilizing the combination of soft X-ray and ultraviolet photoemission spectroscopy, we systematically study both the surface and bulk electronic structure of NbAs. We experimentally observe both the Weyl cones in the bulk and the Fermi arcs on the surface of this system. Our ARPES data, in agreement with our theoretical calculations, identify the Weyl semimetal state in NbAs, which provides a platform to test the potential of Weyltronics. The work at Princeton and Princeton-led ARPES measurements were supported by Gordon and Betty Moore Foundations EPiQS Initiative, Grant GBMF4547 (Hasan), and by U.S. DOE DE-FG-02-05ER46200.

  18. Spin Polarization and Texture of the Fermi Arcs in the Weyl Fermion Semimetal TaAs.

    PubMed

    Xu, Su-Yang; Belopolski, Ilya; Sanchez, Daniel S; Neupane, Madhab; Chang, Guoqing; Yaji, Koichiro; Yuan, Zhujun; Zhang, Chenglong; Kuroda, Kenta; Bian, Guang; Guo, Cheng; Lu, Hong; Chang, Tay-Rong; Alidoust, Nasser; Zheng, Hao; Lee, Chi-Cheng; Huang, Shin-Ming; Hsu, Chuang-Han; Jeng, Horng-Tay; Bansil, Arun; Neupert, Titus; Komori, Fumio; Kondo, Takeshi; Shin, Shik; Lin, Hsin; Jia, Shuang; Hasan, M Zahid

    2016-03-01

    A Weyl semimetal is a new state of matter that hosts Weyl fermions as quasiparticle excitations. The Weyl fermions at zero energy correspond to points of bulk-band degeneracy, called Weyl nodes, which are separated in momentum space and are connected only through the crystal's boundary by an exotic Fermi arc surface state. We experimentally measure the spin polarization of the Fermi arcs in the first experimentally discovered Weyl semimetal TaAs. Our spin data, for the first time, reveal that the Fermi arcs' spin-polarization magnitude is as large as 80% and lies completely in the plane of the surface. Moreover, we demonstrate that the chirality of the Weyl nodes in TaAs cannot be inferred by the spin texture of the Fermi arcs. The observed nondegenerate property of the Fermi arcs is important for establishing its exact topological nature, which reveals that spins on the arc form a novel type of 2D matter. Additionally, the nearly full spin polarization we observed (∼80%) may be useful in spintronic applications. PMID:26991191

  19. Robust Type-II Weyl Semimetal Phase in Transition Metal Diphosphides XP_{2} (X=Mo, W).

    PubMed

    Autès, G; Gresch, D; Troyer, M; Soluyanov, A A; Yazyev, O V

    2016-08-01

    The recently discovered type-II Weyl points appear at the boundary between electron and hole pockets. Type-II Weyl semimetals that host such points are predicted to exhibit a new type of chiral anomaly and possess thermodynamic properties very different from their type-I counterparts. In this Letter, we describe the prediction of a type-II Weyl semimetal phase in the transition metal diphosphides MoP_{2} and WP_{2}. These materials are characterized by relatively simple band structures with four pairs of type-II Weyl points. Neighboring Weyl points have the same chirality, which makes the predicted topological phase robust with respect to small perturbations of the crystalline lattice. In addition, this peculiar arrangement of the Weyl points results in long topological Fermi arcs, thus making them readily accessible in angle-resolved photoemission spectroscopy. PMID:27541470

  20. Robust Type-II Weyl Semimetal Phase in Transition Metal Diphosphides X P2 (X =Mo , W)

    NASA Astrophysics Data System (ADS)

    Autès, G.; Gresch, D.; Troyer, M.; Soluyanov, A. A.; Yazyev, O. V.

    2016-08-01

    The recently discovered type-II Weyl points appear at the boundary between electron and hole pockets. Type-II Weyl semimetals that host such points are predicted to exhibit a new type of chiral anomaly and possess thermodynamic properties very different from their type-I counterparts. In this Letter, we describe the prediction of a type-II Weyl semimetal phase in the transition metal diphosphides MoP2 and WP2 . These materials are characterized by relatively simple band structures with four pairs of type-II Weyl points. Neighboring Weyl points have the same chirality, which makes the predicted topological phase robust with respect to small perturbations of the crystalline lattice. In addition, this peculiar arrangement of the Weyl points results in long topological Fermi arcs, thus making them readily accessible in angle-resolved photoemission spectroscopy.

  1. Prediction of an arc-tunable Weyl Fermion metallic state in MoxW1−xTe2

    PubMed Central

    Chang, Tay-Rong; Xu, Su-Yang; Chang, Guoqing; Lee, Chi-Cheng; Huang, Shin-Ming; Wang, BaoKai; Bian, Guang; Zheng, Hao; Sanchez, Daniel S.; Belopolski, Ilya; Alidoust, Nasser; Neupane, Madhab; Bansil, Arun; Jeng, Horng-Tay; Lin, Hsin; Zahid Hasan, M.

    2016-01-01

    A Weyl semimetal is a new state of matter that hosts Weyl fermions as emergent quasiparticles. The Weyl fermions correspond to isolated points of bulk band degeneracy, Weyl nodes, which are connected only through the crystal's boundary by exotic Fermi arcs. The length of the Fermi arc gives a measure of the topological strength, because the only way to destroy the Weyl nodes is to annihilate them in pairs in the reciprocal space. To date, Weyl semimetals are only realized in the TaAs class. Here, we propose a tunable Weyl state in MoxW1−xTe2 where Weyl nodes are formed by touching points between metallic pockets. We show that the Fermi arc length can be changed as a function of Mo concentration, thus tuning the topological strength. Our results provide an experimentally feasible route to realizing Weyl physics in the layered compound MoxW1−xTe2, where non-saturating magneto-resistance and pressure-driven superconductivity have been observed. PMID:26875819

  2. Prediction of an arc-tunable Weyl Fermion metallic state in Mo(x)W(1-x)Te2.

    PubMed

    Chang, Tay-Rong; Xu, Su-Yang; Chang, Guoqing; Lee, Chi-Cheng; Huang, Shin-Ming; Wang, BaoKai; Bian, Guang; Zheng, Hao; Sanchez, Daniel S; Belopolski, Ilya; Alidoust, Nasser; Neupane, Madhab; Bansil, Arun; Jeng, Horng-Tay; Lin, Hsin; Zahid Hasan, M

    2016-01-01

    A Weyl semimetal is a new state of matter that hosts Weyl fermions as emergent quasiparticles. The Weyl fermions correspond to isolated points of bulk band degeneracy, Weyl nodes, which are connected only through the crystal's boundary by exotic Fermi arcs. The length of the Fermi arc gives a measure of the topological strength, because the only way to destroy the Weyl nodes is to annihilate them in pairs in the reciprocal space. To date, Weyl semimetals are only realized in the TaAs class. Here, we propose a tunable Weyl state in Mo(x)W(1-x)Te2 where Weyl nodes are formed by touching points between metallic pockets. We show that the Fermi arc length can be changed as a function of Mo concentration, thus tuning the topological strength. Our results provide an experimentally feasible route to realizing Weyl physics in the layered compound Mo(x)W(1-x)Te2, where non-saturating magneto-resistance and pressure-driven superconductivity have been observed. PMID:26875819

  3. Prediction of an arc-tunable Weyl Fermion metallic state in MoxW1-xTe2

    DOE PAGES

    Chang, Tay-Rong; Xu, Su-Yang; Chang, Guoqing; Lee, Chi-Cheng; Huang, Shin-Ming; Wang, BaoKai; Bian, Guang; Zheng, Hao; Sanchez, Daniel S.; Belopolski, Ilya; et al

    2016-02-15

    A Weyl semimetal is a new state of matter that hosts Weyl fermions as emergent quasiparticles. The Weyl fermions correspond to isolated points of bulk band degeneracy, Weyl nodes, which are connected only through the crystal’s boundary by exotic Fermi arcs. The length of the Fermi arc gives a measure of the topological strength, because the only way to destroy the Weyl nodes is to annihilate them in pairs in the reciprocal space. To date, Weyl semimetals are only realized in the TaAs class. Here, we propose a tunable Weyl state in MoxW1₋xTe2 where Weyl nodes are formed by touchingmore » points between metallic pockets. We show that the Fermi arc length can be changed as a function of Mo concentration, thus tuning the topological strength. Lastly,our results provide an experimentally feasible route to realizing Weyl physics in the layered compound MoxW1₋xTe2, where non-saturating magneto-resistance and pressure-driven superconductivity have been observed.« less

  4. Prediction of an arc-tunable Weyl Fermion metallic state in MoxW1-xTe2

    NASA Astrophysics Data System (ADS)

    Chang, Tay-Rong; Xu, Su-Yang; Chang, Guoqing; Lee, Chi-Cheng; Huang, Shin-Ming; Wang, Baokai; Bian, Guang; Zheng, Hao; Sanchez, Daniel S.; Belopolski, Ilya; Alidoust, Nasser; Neupane, Madhab; Bansil, Arun; Jeng, Horng-Tay; Lin, Hsin; Zahid Hasan, M.

    2016-02-01

    A Weyl semimetal is a new state of matter that hosts Weyl fermions as emergent quasiparticles. The Weyl fermions correspond to isolated points of bulk band degeneracy, Weyl nodes, which are connected only through the crystal's boundary by exotic Fermi arcs. The length of the Fermi arc gives a measure of the topological strength, because the only way to destroy the Weyl nodes is to annihilate them in pairs in the reciprocal space. To date, Weyl semimetals are only realized in the TaAs class. Here, we propose a tunable Weyl state in MoxW1-xTe2 where Weyl nodes are formed by touching points between metallic pockets. We show that the Fermi arc length can be changed as a function of Mo concentration, thus tuning the topological strength. Our results provide an experimentally feasible route to realizing Weyl physics in the layered compound MoxW1-xTe2, where non-saturating magneto-resistance and pressure-driven superconductivity have been observed.

  5. A simple method to recover Norovirus from fresh produce with large sample size by using histo-blood group antigen-conjugated to magnetic beads in a recirculating affinity magnetic separation system (RCAMS).

    PubMed

    Tian, Peng; Yang, David; Mandrell, Robert

    2011-06-30

    Human norovirus (NoV) outbreaks are major food safety concerns. The virus has to be concentrated from food samples in order to be detected. PEG precipitation is the most common method to recover the virus. Recently, histo-blood group antigens (HBGA) have been recognized as receptors for human NoV, and have been utilized as an alternative method to concentrate human NoV for samples up to 40 mL in volume. However, to wash off the virus from contaminated fresh food samples, at least 250 mL of wash volume is required. Recirculating affinity magnetic separation system (RCAMS) has been tried by others to concentrate human NoV from large-volume samples and failed to yield consistent results with the standard procedure of 30 min of recirculation at the default flow rate. Our work here demonstrates that proper recirculation time and flow rate are key factors for success in using the RCAMS. The bead recovery rate was increased from 28% to 47%, 67% and 90% when recirculation times were extended from 30 min to 60 min, 120 min and 180 min, respectively. The kinetics study suggests that at least 120 min recirculation is required to obtain a good recovery of NoV. In addition, different binding and elution conditions were compared for releasing NoV from inoculated lettuce. Phosphate-buffered saline (PBS) and water results in similar efficacy for virus release, but the released virus does not bind to RCAMS effectively unless pH was adjusted to acidic. Either citrate-buffered saline (CBS) wash, or water wash followed by CBS adjustment, resulted in an enhanced recovery of virus. We also demonstrated that the standard curve generated from viral RNA extracted from serially-diluted virus samples is more accurate for quantitative analysis than standard curves generated from serially-diluted plasmid DNA or transcribed-RNA templates, both of which tend to overestimate the concentration power. The efficacy of recovery of NoV from produce using RCAMS was directly compared with that of the

  6. Adsorption affinity of anions on metal oxyhydroxides

    NASA Astrophysics Data System (ADS)

    Pechenyuk, S. I.; Semushina, Yu. P.; Kuz'mich, L. F.

    2013-03-01

    The dependences of anion (phosphate, carbonate, sulfate, chromate, oxalate, tartrate, and citrate) adsorption affinity anions from geometric characteristics, acid-base properties, and complex forming ability are generalized. It is shown that adsorption depends on the nature of both the anions and the ionic medium and adsorbent. It is established that anions are generally grouped into the following series of adsorption affinity reduction: PO{4/3-}, CO{3/2-} > C2O{4/2-}, C(OH)(CH2)2(COO){3/3-}, (CHOH)2(COO){2/2-} > CrO{4/2-} ≫ SO{4/2-}.

  7. Towards three-dimensional Weyl-surface semimetals in graphene networks

    NASA Astrophysics Data System (ADS)

    Zhong, Chengyong; Chen, Yuanping; Xie, Yuee; Yang, Shengyuan A.; Cohen, Marvin L.; Zhang, S. B.

    2016-03-01

    Graphene as a two-dimensional topological semimetal has attracted much attention for its outstanding properties. In contrast, three-dimensional (3D) topological semimetals of carbon are still rare. Searching for such materials with salient physics has become a new direction in carbon research. Here, using first-principles calculations and tight-binding modeling, we propose a new class of Weyl semimetals based on three types of 3D graphene networks. In the band structures of these materials, two flat Weyl surfaces appear in the Brillouin zone, which straddle the Fermi level and are robust against external strain. Their unique atomic and electronic structures enable applications in correlated electronics, as well as in energy storage, molecular sieves, and catalysis. When the networks are cut, the resulting slabs and nanowires remain semimetallic with Weyl lines and points at the Fermi surfaces, respectively. Between the Weyl lines, flat surface bands emerge with possible strong magnetism. The robustness of these structures can be traced back to a bulk topological invariant, ensured by the sublattice symmetry, and to the one-dimensional Weyl semimetal behavior of the zigzag carbon chain.Graphene as a two-dimensional topological semimetal has attracted much attention for its outstanding properties. In contrast, three-dimensional (3D) topological semimetals of carbon are still rare. Searching for such materials with salient physics has become a new direction in carbon research. Here, using first-principles calculations and tight-binding modeling, we propose a new class of Weyl semimetals based on three types of 3D graphene networks. In the band structures of these materials, two flat Weyl surfaces appear in the Brillouin zone, which straddle the Fermi level and are robust against external strain. Their unique atomic and electronic structures enable applications in correlated electronics, as well as in energy storage, molecular sieves, and catalysis. When the networks

  8. Mass decomposition of SLACS lens galaxies in Weyl conformal gravity

    NASA Astrophysics Data System (ADS)

    Potapov, Alexander A.; Izmailov, Ramil N.; Nandi, Kamal K.

    2016-06-01

    We study here, using the Mannheim-Kazanas solution of Weyl conformal theory, the mass decomposition in the representative subsample of 57 early-type elliptical lens galaxies of the Sloan Lens Advanced Camera for Surveys (SLACS) on board the Hubble Space Telescope. We begin by showing that the solution need not be an exclusive solution of conformal gravity but can also be viewed as a solution of a class of f (R ) gravity theories coupled to nonlinear electrodynamics thereby rendering the ensuing results more universal. Since lensing involves light bending, we shall first show that the solution adds to Schwarzschild light bending caused by the luminous mass (M*) a positive contribution +γ R contrary to the previous results in the literature, thereby resolving a long-standing problem. The cause of the error is critically examined. Next, applying the expressions for light bending together with an input equating Einstein and Weyl angles, we develop a novel algorithm for separating the luminous component from the total lens mass (luminous+dark ) within the Einstein radius. Our results indicate that the luminous mass estimates differ from the observed total lens masses by a linear proportionality factor across the subsample, which qualitatively agrees with the common conclusion from a number of different simulations in the literature. In quantitative detail, we observe that the ratios of luminous over total lens mass (f*) within the Einstein radius of individual galaxies take on values near unity, many of which remarkably fall inside or just marginally outside the specified error bars obtained from a simulation based on the Bruzual-Charlot stellar population synthesis model together with the Salpeter initial mass function favored on the ground of metallicity [Grillo et al., Astron. Astrophys. 501, 461 (2009)]. We shall also calculate the average dark matter density ⟨ρ⟩ av of individual galaxies within their respective Einstein spheres. To our knowledge, the present

  9. Unconventional localisation transition in high-dimensional semiconductors and Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Syzranov, Sergey; Gurarie, Victor; Radzihovsky, Leo

    2015-03-01

    We study a class of non-interacting electron systems with a power-law quasiparticle dispersion ξk ~kα and a random short-correlated potential. We show that, unlike the case of lower dimensions, for d > 2 α there exists a critical disorder strength (set by the band width), at which the system exhibits a disorder-driven quantum phase transition at the bottom of the band, that lies in a universality class distinct from the Anderson transition. In contrast to the conventional wisdom, it manifests itself in, e.g., the disorder-averaged density of states. For systems in symmetry classes that permit localisation, the striking signature is a non-analytic behaviour of the mobility edge, that is pinned to the bottom of the band for subcritical disorder and grows for disorder exceeding a critical strength. Focusing on the density of states, we calculate the critical behaviour (exponents and scaling functions) at this novel transition, using a renormalisation group, controlled by an ɛ = d - 2 α expansion. We also apply our analysis to Dirac materials, e.g., Weyl semimetal, where this transition takes place in physically interesting three dimensions.

  10. Adjoint affine fusion and tadpoles

    NASA Astrophysics Data System (ADS)

    Urichuk, Andrew; Walton, Mark A.

    2016-06-01

    We study affine fusion with the adjoint representation. For simple Lie algebras, elementary and universal formulas determine the decomposition of a tensor product of an integrable highest-weight representation with the adjoint representation. Using the (refined) affine depth rule, we prove that equally striking results apply to adjoint affine fusion. For diagonal fusion, a coefficient equals the number of nonzero Dynkin labels of the relevant affine highest weight, minus 1. A nice lattice-polytope interpretation follows and allows the straightforward calculation of the genus-1 1-point adjoint Verlinde dimension, the adjoint affine fusion tadpole. Explicit formulas, (piecewise) polynomial in the level, are written for the adjoint tadpoles of all classical Lie algebras. We show that off-diagonal adjoint affine fusion is obtained from the corresponding tensor product by simply dropping non-dominant representations.

  11. Signatures of the Adler–Bell–Jackiw chiral anomaly in a Weyl fermion semimetal

    PubMed Central

    Zhang, Cheng-Long; Xu, Su-Yang; Belopolski, Ilya; Yuan, Zhujun; Lin, Ziquan; Tong, Bingbing; Bian, Guang; Alidoust, Nasser; Lee, Chi-Cheng; Huang, Shin-Ming; Chang, Tay-Rong; Chang, Guoqing; Hsu, Chuang-Han; Jeng, Horng-Tay; Neupane, Madhab; Sanchez, Daniel S.; Zheng, Hao; Wang, Junfeng; Lin, Hsin; Zhang, Chi; Lu, Hai-Zhou; Shen, Shun-Qing; Neupert, Titus; Zahid Hasan, M.; Jia, Shuang

    2016-01-01

    Weyl semimetals provide the realization of Weyl fermions in solid-state physics. Among all the physical phenomena that are enabled by Weyl semimetals, the chiral anomaly is the most unusual one. Here, we report signatures of the chiral anomaly in the magneto-transport measurements on the first Weyl semimetal TaAs. We show negative magnetoresistance under parallel electric and magnetic fields, that is, unlike most metals whose resistivity increases under an external magnetic field, we observe that our high mobility TaAs samples become more conductive as a magnetic field is applied along the direction of the current for certain ranges of the field strength. We present systematically detailed data and careful analyses, which allow us to exclude other possible origins of the observed negative magnetoresistance. Our transport data, corroborated by photoemission measurements, first-principles calculations and theoretical analyses, collectively demonstrate signatures of the Weyl fermion chiral anomaly in the magneto-transport of TaAs. PMID:26911701

  12. Towards three-dimensional Weyl-surface semimetals in graphene networks.

    PubMed

    Zhong, Chengyong; Chen, Yuanping; Xie, Yuee; Yang, Shengyuan A; Cohen, Marvin L; Zhang, S B

    2016-04-01

    Graphene as a two-dimensional topological semimetal has attracted much attention for its outstanding properties. In contrast, three-dimensional (3D) topological semimetals of carbon are still rare. Searching for such materials with salient physics has become a new direction in carbon research. Here, using first-principles calculations and tight-binding modeling, we propose a new class of Weyl semimetals based on three types of 3D graphene networks. In the band structures of these materials, two flat Weyl surfaces appear in the Brillouin zone, which straddle the Fermi level and are robust against external strain. Their unique atomic and electronic structures enable applications in correlated electronics, as well as in energy storage, molecular sieves, and catalysis. When the networks are cut, the resulting slabs and nanowires remain semimetallic with Weyl lines and points at the Fermi surfaces, respectively. Between the Weyl lines, flat surface bands emerge with possible strong magnetism. The robustness of these structures can be traced back to a bulk topological invariant, ensured by the sublattice symmetry, and to the one-dimensional Weyl semimetal behavior of the zigzag carbon chain. PMID:26971563

  13. Signatures of the Adler-Bell-Jackiw chiral anomaly in a Weyl fermion semimetal.

    PubMed

    Zhang, Cheng-Long; Xu, Su-Yang; Belopolski, Ilya; Yuan, Zhujun; Lin, Ziquan; Tong, Bingbing; Bian, Guang; Alidoust, Nasser; Lee, Chi-Cheng; Huang, Shin-Ming; Chang, Tay-Rong; Chang, Guoqing; Hsu, Chuang-Han; Jeng, Horng-Tay; Neupane, Madhab; Sanchez, Daniel S; Zheng, Hao; Wang, Junfeng; Lin, Hsin; Zhang, Chi; Lu, Hai-Zhou; Shen, Shun-Qing; Neupert, Titus; Zahid Hasan, M; Jia, Shuang

    2016-01-01

    Weyl semimetals provide the realization of Weyl fermions in solid-state physics. Among all the physical phenomena that are enabled by Weyl semimetals, the chiral anomaly is the most unusual one. Here, we report signatures of the chiral anomaly in the magneto-transport measurements on the first Weyl semimetal TaAs. We show negative magnetoresistance under parallel electric and magnetic fields, that is, unlike most metals whose resistivity increases under an external magnetic field, we observe that our high mobility TaAs samples become more conductive as a magnetic field is applied along the direction of the current for certain ranges of the field strength. We present systematically detailed data and careful analyses, which allow us to exclude other possible origins of the observed negative magnetoresistance. Our transport data, corroborated by photoemission measurements, first-principles calculations and theoretical analyses, collectively demonstrate signatures of the Weyl fermion chiral anomaly in the magneto-transport of TaAs. PMID:26911701

  14. Signatures of the Adler–Bell–Jackiw chiral anomaly in a Weyl fermion semimetal

    DOE PAGES

    Zhang, Cheng-Long; Xu, Su-Yang; Belopolski, Ilya; Yuan, Zhujun; Lin, Ziquan; Tong, Bingbing; Bian, Guang; Alidoust, Nasser; Lee, Chi-Cheng; Huang, Shin-Ming; et al

    2016-02-25

    Weyl semimetals provide the realization of Weyl fermions in solid-state physics. Among all the physical phenomena that are enabled by Weyl semimetals, the chiral anomaly is the most unusual one. Here, we report signatures of the chiral anomaly in the magneto-transport measurements on the first Weyl semimetal TaAs. We show negative magnetoresistance under parallel electric and magnetic fields, that is, unlike most metals whose resistivity increases under an external magnetic field, we observe that our high mobility TaAs samples become more conductive as a magnetic field is applied along the direction of the current for certain ranges of the fieldmore » strength. We present systematically detailed data and careful analyses, which allow us to exclude other possible origins of the observed negative magnetoresistance. Finally, our transport data, corroborated by photoemission measurements, first-principles calculations and theoretical analyses, collectively demonstrate signatures of the Weyl fermion chiral anomaly in the magneto-transport of TaAs.« less

  15. Gyroid photonic crystal with Weyl points: synthesis and mid-infrared photonic characterization

    NASA Astrophysics Data System (ADS)

    Peng, Siying; Khabiboulline, Emil; Zhang, Runyu; Chen, Hongjie; Hon, Philip; Sweatlock, Luke; Braun, Paul; Atwater, Harry

    Weyl points are degenerate energy states resulting from crossings of linear bands in 3D momentum space. Unlike their 2D counterparts, Weyl points are bulk degenerate states that are stable to weak perturbation. The topological surface states associated with Weyl points exhibit unidirectional backscattering-immune transport. Double gyroid photonic crystals with a parity-breaking perturbation are predicted to possess Weyl points. We designed and synthesized single and double gyroid mid-IR photonic crystals composed of a-Si. We characterized them by mid-IR spectroscopy. We observed 100% reflection at 8 μm for single gyroids with unit cell size of 5 μm, in agreement with the predicted photonic bandgap seen in full-wave EM simulations. As the unit cell size of single gyroids changes to 6 μm, the observed reflection peak shifted to 9 μm, also agreeing with simulation. For double gyroids with unit cell size of 5 μm, we observed a 20% decrease in reflection at 8 μm, which could be explained by a new pair of states appearing within the bandgap from our simulation of double gyroids. We use angle-resolved mid-IR spectroscopy with a QCL to characterize Weyl points.

  16. Strong Intrinsic Spin Hall Effect in the TaAs Family of Weyl Semimetals

    NASA Astrophysics Data System (ADS)

    Sun, Yan; Zhang, Yang; Felser, Claudia; Yan, Binghai

    2016-09-01

    Since their discovery, topological insulators are expected to be ideal spintronic materials owing to the spin currents carried by surface states with spin-momentum locking. However, the bulk doping problem remains an obstacle that hinders such an application. In this work, we predict that a newly discovered family of topological materials, the Weyl semimetals, exhibits a large intrinsic spin Hall effect that can be utilized to generate and detect spin currents. Our ab initio calculations reveal a large spin Hall conductivity in the TaAs family of Weyl materials. Considering the low charge conductivity of semimetals, Weyl semimetals are believed to present a larger spin Hall angle (the ratio of the spin Hall conductivity over the charge conductivity) than that of conventional spin Hall systems such as the 4 d and 5 d transition metals. The spin Hall effect originates intrinsically from the bulk band structure of Weyl semimetals, which exhibit a large Berry curvature and spin-orbit coupling, so the bulk carrier problem in the topological insulators is naturally avoided. Our work not only paves the way for employing Weyl semimetals in spintronics, but also proposes a new guideline for searching for the spin Hall effect in various topological materials.

  17. Mass gap for gravity localized on Weyl thick branes

    SciTech Connect

    Barbosa-Cendejas, N.; Santos, M. A. Reyes; Herrera-Aguilar, A.; Schubert, C.

    2008-06-15

    We consider thick brane configurations in a pure geometric Weyl integrable 5D space-time, a non-Riemannian generalization of Kaluza-Klein (KK) theory involving a geometric scalar field. Thus, the 5D theory describes gravity coupled to a self-interacting scalar field which gives rise to the structure of the thick branes. We continue the study of the properties of a previously found family of solutions which is smooth at the position of the brane but involves naked singularities in the fifth dimension. Analyzing their graviton spectrum, we find that a particularly interesting situation arises for a special case in which the 4D graviton is separated from the KK gravitons by a mass gap. The corresponding effective Schroedinger equation has a modified Poeschl-Teller potential and can be solved exactly. Apart from the massless 4D graviton, it contains one massive KK bound state, and the continuum spectrum of delocalized KK modes. We also discuss the mass hierarchy problem, and explicitly compute the corrections to Newton's law in the thin brane limit.

  18. Probing unconventional superconductivity in inversion-symmetric doped Weyl semimetal

    NASA Astrophysics Data System (ADS)

    Kim, Youngseok; Park, Moon Jip; Gilbert, Matthew J.

    2016-06-01

    Unconventional superconductivity has been predicted to arise in the topologically nontrivial Fermi surface of doped inversion-symmetric Weyl semimetals (WSMs). In particular, Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) and nodal BCS states are theoretically predicted to be possible superconductor pairing states in inversion-symmetric doped WSMs. In an effort to resolve the preferred pairing state, we theoretically study two separate four-terminal quantum transport methods that each exhibit a unique electrical signature in the presence of FFLO and nodal BCS states in doped WSMs. We first introduce a Josephson junction that consists of a doped WSM and an s -wave superconductor in which we show that the application of a transverse uniform current in s -wave superconductors effectively cancels the momentum carried by FFLO states in doped WSMs. From our numerical analysis, we find a peak in Josephson current amplitude at finite uniform current in s -wave superconductors that serves as an indicator of FFLO states in doped WSMs. Furthermore, we show using a four-terminal measurement configuration that the nodal points may be shifted by an application of transverse uniform current in doped WSMs. We analyze the topological phase transitions induced by nodal pair annihilation in nonequilibrium by constructing the phase diagram and we find a characteristic decrease in the density of states that serves as a signature of the quantum critical point in the topological phase transition, thereby identifying nodal BCS states in doped WSMs.

  19. Extended Weyl invariance in a bimetric model and partial masslessness

    NASA Astrophysics Data System (ADS)

    Hassan, S. F.; Schmidt-May, Angnis; von Strauss, Mikael

    2016-01-01

    We revisit a particular ghost-free bimetric model which is related to both partial masslessness (PM) and conformal gravity. Linearly, the model propagates six instead of seven degrees of freedom not only around de Sitter but also around flat spacetime. Nonlinearly, the equations of motion can be recast in the form of expansions in powers of curvatures, and exhibit a remarkable amount of structure. In this form, the equations are shown to be invariant under scalar gauge transformations, at least up to six orders in derivatives, the lowest order term being a Weyl scaling of the metrics. The terms at two-derivative order reproduce the usual PM gauge transformations on de Sitter backgrounds. At the four-derivative order, a potential obstruction that could destroy the symmetry is shown to vanish. This in turn guarantees the gauge invariance to at least six-orders in derivatives. This is equivalent to adding up to ten-derivative corrections to conformal gravity. More generally, we outline a procedure for constructing the gauge transformations order by order as an expansion in derivatives and comment on the validity and limitations of the procedure. We also discuss recent arguments against the existence of a PM gauge symmetry in bimetric theory and show that, at least in their present form, they are evaded by the model considered here. Finally, we argue that a bimetric approach to PM theory is more promising than one based on the existence of a fundamental PM field.

  20. 'Hard' crystalline lattice in the Weyl semimetal NbAs.

    PubMed

    Luo, Yongkang; Ghimire, N J; Bauer, E D; Thompson, J D; Ronning, F

    2016-02-10

    We report the effect of hydrostatic pressure on the magnetotransport properties of the Weyl semimetal NbAs. Subtle changes can be seen in the ρ(xx)(T) profiles with pressure up to 2.31 GPa. The Fermi surfaces undergo an anisotropic evolution under pressure: the extremal areas slightly increase in the k(x)-k(y) plane, but decrease in the k(z)-k(y)(k(x)) plane. The topological features of the two pockets observed at atmospheric pressure, however, remain unchanged at 2.31 GPa. No superconductivity can be seen down to 0.3 K for all the pressures measured. By fitting the temperature dependence of specific heat to the Debye model, we obtain a small Sommerfeld coefficient γ(0) = 0.09(1) mJ (mol·K(2))(-1) and a large Debye temperature, Θ(D) = 450(9) K, confirming a 'hard' crystalline lattice that is stable under pressure. We also studied the Kadowaki-Woods ratio of this low-carrier-density massless system, R(KW) = 3.2 × 10(4) μΩ cm mol(2) K(2) J(-2). After accounting for the small carrier density in NbAs, this R(KW) indicates a suppressed transport scattering rate relative to other metals. PMID:26764313

  1. The Weyl expansion for systems of independent identical particles

    NASA Astrophysics Data System (ADS)

    Hummel, Quirin; Urbina, Juan Diego; Richter, Klaus

    2014-01-01

    We present a novel analytical approach for the calculation of the mean density of states in many-body systems consisting of confined indistinguishable and independent particles. Our method makes explicit the intrinsic geometry inherent in the symmetrization postulate. In the spirit of the usual Weyl expansion for the smooth part of the density of states in confined single-particle systems, our results take the form of a sum over clusters of particles moving freely around manifolds in configuration space invariant under permutations. In our approach the emergence of the fermionic ground state is a consequence of a delicate cancellation effect of cluster contributions. As an asymptotic expansion, our approximation gives increasingly better results for large excitation energies, and we show that it coincides with the Bethe estimate in the appropriate region. Moreover, our construction gives the correct high-energy asymptotics expected from general considerations. Our expansion in cluster zones is naturally incorporated for systems of interacting particles, opening an alternative road to address the interplay between symmetry, confinement and interactions in many-body systems of identical bosonic or fermionic particles.

  2. Signatures of Fermi Arcs in the Quasiparticle Interferences of the Weyl Semimetals TaAs and NbP.

    PubMed

    Chang, Guoqing; Xu, Su-Yang; Zheng, Hao; Lee, Chi-Cheng; Huang, Shin-Ming; Belopolski, Ilya; Sanchez, Daniel S; Bian, Guang; Alidoust, Nasser; Chang, Tay-Rong; Hsu, Chuang-Han; Jeng, Horng-Tay; Bansil, Arun; Lin, Hsin; Hasan, M Zahid

    2016-02-12

    The recent discovery of the first Weyl semimetal in TaAs provides the first observation of a Weyl fermion in nature. Such a topological semimetal features a novel type of anomalous surface state, the Fermi arc, which connects a pair of Weyl nodes through the boundary of the crystal. Here, we present theoretical calculations of the quasiparticle interference (QPI) patterns that arise from the surface states including the topological Fermi arcs in the Weyl semimetals TaAs and NbP. Most importantly, we discover that the QPI exhibits termination points that are fingerprints of the Weyl nodes in the interference pattern. Our results, for the first time, propose a universal interference signature of the topological Fermi arcs in TaAs, which is fundamental for scanning tunneling microscope (STM) measurements on this prototypical Weyl semimetal compound. More generally, our work provides critical guideline and methodology for STM studies on new Weyl semimetals. Further, the scattering channels revealed by our QPIs are broadly relevant to surface transport and device applications based on Weyl semimetals. PMID:26919003

  3. Weyl fermions and spin dynamics of metallic ferromagnet SrRuO3.

    PubMed

    Itoh, Shinichi; Endoh, Yasuo; Yokoo, Tetsuya; Ibuka, Soshi; Park, Je-Geun; Kaneko, Yoshio; Takahashi, Kei S; Tokura, Yoshinori; Nagaosa, Naoto

    2016-01-01

    Weyl fermions that emerge at band crossings in momentum space caused by the spin-orbit interaction act as magnetic monopoles of the Berry curvature and contribute to a variety of novel transport phenomena such as anomalous Hall effect and magnetoresistance. However, their roles in other physical properties remain mostly unexplored. Here, we provide evidence by neutron Brillouin scattering that the spin dynamics of the metallic ferromagnet SrRuO3 in the very low energy range of milli-electron volts is closely relevant to Weyl fermions near Fermi energy. Although the observed spin wave dispersion is well described by the quadratic momentum dependence, the temperature dependence of the spin wave gap shows a nonmonotonous behaviour, which can be related to that of the anomalous Hall conductivity. This shows that the spin dynamics directly reflects the crucial role of Weyl fermions in the metallic ferromagnet. PMID:27273207

  4. Negative magnetoresistance without well-defined chirality in the Weyl semimetal TaP

    PubMed Central

    Arnold, Frank; Shekhar, Chandra; Wu, Shu-Chun; Sun, Yan; dos Reis, Ricardo Donizeth; Kumar, Nitesh; Naumann, Marcel; Ajeesh, Mukkattu O.; Schmidt, Marcus; Grushin, Adolfo G.; Bardarson, Jens H.; Baenitz, Michael; Sokolov, Dmitry; Borrmann, Horst; Nicklas, Michael; Felser, Claudia; Hassinger, Elena; Yan, Binghai

    2016-01-01

    Weyl semimetals (WSMs) are topological quantum states wherein the electronic bands disperse linearly around pairs of nodes with fixed chirality, the Weyl points. In WSMs, nonorthogonal electric and magnetic fields induce an exotic phenomenon known as the chiral anomaly, resulting in an unconventional negative longitudinal magnetoresistance, the chiral-magnetic effect. However, it remains an open question to which extent this effect survives when chirality is not well-defined. Here, we establish the detailed Fermi-surface topology of the recently identified WSM TaP via combined angle-resolved quantum-oscillation spectra and band-structure calculations. The Fermi surface forms banana-shaped electron and hole pockets surrounding pairs of Weyl points. Although this means that chirality is ill-defined in TaP, we observe a large negative longitudinal magnetoresistance. We show that the magnetoresistance can be affected by a magnetic field-induced inhomogeneous current distribution inside the sample. PMID:27186980

  5. Atomic-Scale Visualization of Quantum Interference on a Weyl Semimetal Surface by Scanning Tunneling Microscopy.

    PubMed

    Zheng, Hao; Xu, Su-Yang; Bian, Guang; Guo, Cheng; Chang, Guoqing; Sanchez, Daniel S; Belopolski, Ilya; Lee, Chi-Cheng; Huang, Shin-Ming; Zhang, Xiao; Sankar, Raman; Alidoust, Nasser; Chang, Tay-Rong; Wu, Fan; Neupert, Titus; Chou, Fangcheng; Jeng, Horng-Tay; Yao, Nan; Bansil, Arun; Jia, Shuang; Lin, Hsin; Hasan, M Zahid

    2016-01-26

    Weyl semimetals may open a new era in condensed matter physics, materials science, and nanotechnology after graphene and topological insulators. We report the first atomic scale view of the surface states of a Weyl semimetal (NbP) using scanning tunneling microscopy/spectroscopy. We observe coherent quantum interference patterns that arise from the scattering of quasiparticles near point defects on the surface. The measurements reveal the surface electronic structure both below and above the chemical potential in both real and reciprocal spaces. Moreover, the interference maps uncover the scattering processes of NbP's exotic surface states. Through comparison between experimental data and theoretical calculations, we further discover that the orbital and/or spin texture of the surface bands may suppress certain scattering channels on NbP. These results provide a comprehensive understanding of electronic properties on Weyl semimetal surfaces. PMID:26743693

  6. Negative magnetoresistance without well-defined chirality in the Weyl semimetal TaP.

    PubMed

    Arnold, Frank; Shekhar, Chandra; Wu, Shu-Chun; Sun, Yan; Dos Reis, Ricardo Donizeth; Kumar, Nitesh; Naumann, Marcel; Ajeesh, Mukkattu O; Schmidt, Marcus; Grushin, Adolfo G; Bardarson, Jens H; Baenitz, Michael; Sokolov, Dmitry; Borrmann, Horst; Nicklas, Michael; Felser, Claudia; Hassinger, Elena; Yan, Binghai

    2016-01-01

    Weyl semimetals (WSMs) are topological quantum states wherein the electronic bands disperse linearly around pairs of nodes with fixed chirality, the Weyl points. In WSMs, nonorthogonal electric and magnetic fields induce an exotic phenomenon known as the chiral anomaly, resulting in an unconventional negative longitudinal magnetoresistance, the chiral-magnetic effect. However, it remains an open question to which extent this effect survives when chirality is not well-defined. Here, we establish the detailed Fermi-surface topology of the recently identified WSM TaP via combined angle-resolved quantum-oscillation spectra and band-structure calculations. The Fermi surface forms banana-shaped electron and hole pockets surrounding pairs of Weyl points. Although this means that chirality is ill-defined in TaP, we observe a large negative longitudinal magnetoresistance. We show that the magnetoresistance can be affected by a magnetic field-induced inhomogeneous current distribution inside the sample. PMID:27186980

  7. Weyl fermions and spin dynamics of metallic ferromagnet SrRuO3

    PubMed Central

    Itoh, Shinichi; Endoh, Yasuo; Yokoo, Tetsuya; Ibuka, Soshi; Park, Je-Geun; Kaneko, Yoshio; Takahashi, Kei S.; Tokura, Yoshinori; Nagaosa, Naoto

    2016-01-01

    Weyl fermions that emerge at band crossings in momentum space caused by the spin–orbit interaction act as magnetic monopoles of the Berry curvature and contribute to a variety of novel transport phenomena such as anomalous Hall effect and magnetoresistance. However, their roles in other physical properties remain mostly unexplored. Here, we provide evidence by neutron Brillouin scattering that the spin dynamics of the metallic ferromagnet SrRuO3 in the very low energy range of milli-electron volts is closely relevant to Weyl fermions near Fermi energy. Although the observed spin wave dispersion is well described by the quadratic momentum dependence, the temperature dependence of the spin wave gap shows a nonmonotonous behaviour, which can be related to that of the anomalous Hall conductivity. This shows that the spin dynamics directly reflects the crucial role of Weyl fermions in the metallic ferromagnet. PMID:27273207

  8. Negative magnetoresistance without well-defined chirality in the Weyl semimetal TaP

    NASA Astrophysics Data System (ADS)

    Arnold, Frank; Shekhar, Chandra; Wu, Shu-Chun; Sun, Yan; Dos Reis, Ricardo Donizeth; Kumar, Nitesh; Naumann, Marcel; Ajeesh, Mukkattu O.; Schmidt, Marcus; Grushin, Adolfo G.; Bardarson, Jens H.; Baenitz, Michael; Sokolov, Dmitry; Borrmann, Horst; Nicklas, Michael; Felser, Claudia; Hassinger, Elena; Yan, Binghai

    2016-05-01

    Weyl semimetals (WSMs) are topological quantum states wherein the electronic bands disperse linearly around pairs of nodes with fixed chirality, the Weyl points. In WSMs, nonorthogonal electric and magnetic fields induce an exotic phenomenon known as the chiral anomaly, resulting in an unconventional negative longitudinal magnetoresistance, the chiral-magnetic effect. However, it remains an open question to which extent this effect survives when chirality is not well-defined. Here, we establish the detailed Fermi-surface topology of the recently identified WSM TaP via combined angle-resolved quantum-oscillation spectra and band-structure calculations. The Fermi surface forms banana-shaped electron and hole pockets surrounding pairs of Weyl points. Although this means that chirality is ill-defined in TaP, we observe a large negative longitudinal magnetoresistance. We show that the magnetoresistance can be affected by a magnetic field-induced inhomogeneous current distribution inside the sample.

  9. Affinity+: Semi-Structured Brainstorming on Large Displays

    SciTech Connect

    Burtner, Edwin R.; May, Richard A.; Scarberry, Randall E.; LaMothe, Ryan R.; Endert, Alexander

    2013-04-27

    Affinity diagraming is a powerful method for encouraging and capturing lateral thinking in a group environment. The Affinity+ Concept was designed to improve the collaborative brainstorm process through the use of large display surfaces in conjunction with mobile devices like smart phones and tablets. The system works by capturing the ideas digitally and allowing users to sort and group them on a large touch screen manually. Additionally, Affinity+ incorporates theme detection, topic clustering, and other processing algorithms that help bring structured analytic techniques to the process without requiring explicit leadership roles and other overhead typically involved in these activities.

  10. Affinity chromatography: a historical perspective.

    PubMed

    Hage, David S; Matsuda, Ryan

    2015-01-01

    Affinity chromatography is one of the most selective and versatile forms of liquid chromatography for the separation or analysis of chemicals in complex mixtures. This method makes use of a biologically related agent as the stationary phase, which provides an affinity column with the ability to bind selectively and reversibly to a given target in a sample. This review examines the early work in this method and various developments that have lead to the current status of this technique. The general principles of affinity chromatography are briefly described as part of this discussion. Past and recent efforts in the generation of new binding agents, supports, and immobilization methods for this method are considered. Various applications of affinity chromatography are also summarized, as well as the influence this field has played in the creation of other affinity-based separation or analysis methods. PMID:25749941

  11. Magnetic-Field-Induced Relativistic Properties in Type-I and Type-II Weyl Semimetals

    NASA Astrophysics Data System (ADS)

    Tchoumakov, Serguei; Civelli, Marcello; Goerbig, Mark O.

    2016-08-01

    We investigate Weyl semimetals with tilted conical bands in a magnetic field. Even when the cones are overtilted (type-II Weyl semimetal), Landau-level quantization can be possible as long as the magnetic field is oriented close to the tilt direction. Most saliently, the tilt can be described within the relativistic framework of Lorentz transformations that give rise to a rich spectrum, displaying new transitions beyond the usual dipolar ones in the optical conductivity. We identify particular features in the latter that allow one to distinguish between semimetals of different types.

  12. Superconducting Proximity Effect in the Weyl Semimetal WTe2 and MoTe2

    NASA Astrophysics Data System (ADS)

    Wang, Wudi; Liu, Minhao; Gibson, Quinn; Cava, R. J.; Ong, N. P.

    WTe2 and MoTe2 are predicted to have type-II Weyl nodes and many novel transport properties have been studied. We investigated the transport of cooper pairs and Andreev reflection in Weyl semimetals by proximitizing WTe2 and MoTe2 nanoflakes with superconducting pads (Nb and Al). We have fabricated superconductor-nanoflakes-superconductor structure with different length. Supercurrent were observed in both materials with junction length up to 700nm. We conducted dc IV curve measurements and got exotic Fraunhofer patterns. We also measured the current-phase relation with a radio frequency-based CPR measurement technique.

  13. Magnetic-Field-Induced Relativistic Properties in Type-I and Type-II Weyl Semimetals.

    PubMed

    Tchoumakov, Serguei; Civelli, Marcello; Goerbig, Mark O

    2016-08-19

    We investigate Weyl semimetals with tilted conical bands in a magnetic field. Even when the cones are overtilted (type-II Weyl semimetal), Landau-level quantization can be possible as long as the magnetic field is oriented close to the tilt direction. Most saliently, the tilt can be described within the relativistic framework of Lorentz transformations that give rise to a rich spectrum, displaying new transitions beyond the usual dipolar ones in the optical conductivity. We identify particular features in the latter that allow one to distinguish between semimetals of different types. PMID:27588870

  14. Torsional Chiral Magnetic Effect in a Weyl Semimetal with a Topological Defect.

    PubMed

    Sumiyoshi, Hiroaki; Fujimoto, Satoshi

    2016-04-22

    We propose a torsional response raised by a lattice dislocation in Weyl semimetals akin to a chiral magnetic effect; i.e., a fictitious magnetic field arising from a screw or edge dislocation induces a charge current. We demonstrate that, in sharp contrast to the usual chiral magnetic effect that vanishes in real solid state materials, the torsional chiral magnetic effect exists even for realistic lattice models, which implies the experimental detection of the effect via superconducting quantum interference device or nonlocal resistivity measurements in Weyl semimetal materials. PMID:27152814

  15. Hierarchical fractal Weyl laws for chaotic resonance states in open mixed systems.

    PubMed

    Körber, M J; Michler, M; Bäcker, A; Ketzmerick, R

    2013-09-13

    In open chaotic systems the number of long-lived resonance states obeys a fractal Weyl law, which depends on the fractal dimension of the chaotic saddle. We study the generic case of a mixed phase space with regular and chaotic dynamics. We find a hierarchy of fractal Weyl laws, one for each region of the hierarchical decomposition of the chaotic phase-space component. This is based on our observation of hierarchical resonance states localizing on these regions. Numerically this is verified for the standard map and a hierarchical model system.

  16. Cyclotron resonance of figure-of-eight orbits in a type-II Weyl semimetal

    NASA Astrophysics Data System (ADS)

    Koshino, Mikito

    2016-07-01

    We study the cyclotron resonance in the electron-hole joint Fermi surface of a type-II Weyl semimetal. In magnetic field, the electron and hole pockets touching at the Weyl node are hybridized to form quantized Landau levels corresponding to semiclassical 8-shaped orbits. We calculate the dynamical conductivities for the electric fields oscillating in x and y directions and find that the resonant frequencies in x and y differ by a factor of two, reflecting the figure-of-eight electron motion in real space. The peculiar anisotropy in the cyclotron resonance serves as a unique characteristic of the dumbbell-like Fermi surface.

  17. Klein tunneling and magnetoresistance of p -n junctions in Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Li, Songci; Andreev, A. V.; Spivak, B. Z.

    2016-08-01

    We study the zero temperature conductance and magnetoconductance of ballistic p -n junctions in Weyl semimetals. Electron transport is mediated by Klein tunneling between the n and p regions. The chiral anomaly that is realized in Weyl semimetals plays a crucial role in the magnetoconductance of the junction. With the exception of field orientations where the angle between B and the junction plane is small, magnetoconductance is positive and linear in B at both weak and strong magnetic fields. In contrast, magnetoconductance in conventional p -n junctions is always negative.

  18. Large anomalous magnetic moment in three-dimensional Dirac and Weyl semimetals

    NASA Astrophysics Data System (ADS)

    van der Wurff, E. C. I.; Stoof, H. T. C.

    2016-10-01

    We investigate the effect of Coulomb interactions on the electromagnetic response of three-dimensional Dirac and Weyl semimetals. In a calculation reminiscent of Schwinger's seminal work on quantum electrodynamics, we find three physically distinct effects for the anomalous magnetic moment of the relativisticlike quasiparticles in the semimetal. In the case of nonzero doping, the anomalous magnetic moment is finite at long wavelengths and typically orders of magnitude larger than Schwinger's result. We also find interesting effects of one of the three new Hamiltonian terms on the topological surface states at the interface between vacuum and a Weyl semimetal. We conclude that observation of these effects should be within experimental reach.

  19. Superconducting proximity effect and Majorana flat bands at the surface of a Weyl semimetal

    NASA Astrophysics Data System (ADS)

    Chen, Anffany; Franz, M.

    2016-05-01

    We study the proximity effect between an s -wave superconductor (SC) and the surface states of a Weyl semimetal. An interesting two-dimensional SC forms in such an interface with properties resembling in certain aspects the Fu-Kane superconductor with some notable differences. In a Weyl semimetal with unbroken time-reversal symmetry the interface SC supports completely flat Majorana bands in a linear Josephson junction with a π phase difference. We discuss the stability of these bands against disorder and propose ways in which they can be observed experimentally.

  20. Torsional Chiral Magnetic Effect in a Weyl Semimetal with a Topological Defect

    NASA Astrophysics Data System (ADS)

    Sumiyoshi, Hiroaki; Fujimoto, Satoshi

    2016-04-01

    We propose a torsional response raised by a lattice dislocation in Weyl semimetals akin to a chiral magnetic effect; i.e., a fictitious magnetic field arising from a screw or edge dislocation induces a charge current. We demonstrate that, in sharp contrast to the usual chiral magnetic effect that vanishes in real solid state materials, the torsional chiral magnetic effect exists even for realistic lattice models, which implies the experimental detection of the effect via superconducting quantum interference device or nonlocal resistivity measurements in Weyl semimetal materials.

  1. Affinity Monolith-Integrated Microchips for Protein Purification and Concentration.

    PubMed

    Gao, Changlu; Sun, Xiuhua; Wang, Huaixin; Qiao, Wei; Hu, Bo

    2016-01-01

    Affinity chromatography is a valuable method to purify and concentrate minute amount of proteins. Monoliths with epoxy groups for affinity immobilization were prepared by direct in-situ photopolymerization of glycidyl methacrylate and ethylene glycol dimethacrylate in porogenic solvents consisting of 1-dodecanol and cyclohexanol. By integrating affinity monoliths onto a microfluidic system, targeted biomolecules can be captured and retained on affinity column, while other biomolecules having no specific interactions toward the immobilized ligands flow through the microchannel. Therefore, proteins which remain on the affinity column are purified and concentrated, and then eluted by appropriate solutions and finally, separated by microchip capillary electrophoresis. This integrated microfluidic device has been applied to the purification and separation of specific proteins (FITC-labeled human serum albumin and IgG) in a mixture.

  2. Affinity Monolith-Integrated Microchips for Protein Purification and Concentration.

    PubMed

    Gao, Changlu; Sun, Xiuhua; Wang, Huaixin; Qiao, Wei; Hu, Bo

    2016-01-01

    Affinity chromatography is a valuable method to purify and concentrate minute amount of proteins. Monoliths with epoxy groups for affinity immobilization were prepared by direct in-situ photopolymerization of glycidyl methacrylate and ethylene glycol dimethacrylate in porogenic solvents consisting of 1-dodecanol and cyclohexanol. By integrating affinity monoliths onto a microfluidic system, targeted biomolecules can be captured and retained on affinity column, while other biomolecules having no specific interactions toward the immobilized ligands flow through the microchannel. Therefore, proteins which remain on the affinity column are purified and concentrated, and then eluted by appropriate solutions and finally, separated by microchip capillary electrophoresis. This integrated microfluidic device has been applied to the purification and separation of specific proteins (FITC-labeled human serum albumin and IgG) in a mixture. PMID:27473483

  3. Field-Selective Anomaly and Chiral Mode Reversal in Type-II Weyl Materials.

    PubMed

    Udagawa, M; Bergholtz, E J

    2016-08-19

    Three-dimensional condensed matter incarnations of Weyl fermions generically have a tilted dispersion-in sharp contrast to their elusive high-energy relatives where a tilt is forbidden by Lorentz invariance, and with the low-energy excitations of two-dimensional graphene sheets where a tilt is forbidden by either crystalline or particle-hole symmetry. Very recently, a number of materials (MoTe_{2}, LaAlGe, and WTe_{2}) have been identified as hosts of so-called type-II Weyl fermions whose dispersion is so strongly tilted that a Fermi surface is formed, whereby the Weyl node becomes a singular point connecting electron and hole pockets. We here predict that these systems have remarkable properties in the presence of magnetic fields. Most saliently, we show that the nature of the chiral anomaly depends crucially on the relative angle between the applied field and the tilt, and that an inversion-asymmetric overtilting creates an imbalance in the number of chiral modes with positive and negative slopes. The field-selective anomaly gives a novel magneto-optical resonance, providing an experimental way to detect concealed Weyl nodes. PMID:27588869

  4. Field-Selective Anomaly and Chiral Mode Reversal in Type-II Weyl Materials

    NASA Astrophysics Data System (ADS)

    Udagawa, M.; Bergholtz, E. J.

    2016-08-01

    Three-dimensional condensed matter incarnations of Weyl fermions generically have a tilted dispersion—in sharp contrast to their elusive high-energy relatives where a tilt is forbidden by Lorentz invariance, and with the low-energy excitations of two-dimensional graphene sheets where a tilt is forbidden by either crystalline or particle-hole symmetry. Very recently, a number of materials (MoTe2 , LaAlGe, and WTe2 ) have been identified as hosts of so-called type-II Weyl fermions whose dispersion is so strongly tilted that a Fermi surface is formed, whereby the Weyl node becomes a singular point connecting electron and hole pockets. We here predict that these systems have remarkable properties in the presence of magnetic fields. Most saliently, we show that the nature of the chiral anomaly depends crucially on the relative angle between the applied field and the tilt, and that an inversion-asymmetric overtilting creates an imbalance in the number of chiral modes with positive and negative slopes. The field-selective anomaly gives a novel magneto-optical resonance, providing an experimental way to detect concealed Weyl nodes.

  5. Non uniqueness and equivalence of the q-deformed Weyl-Heisenberg algebra representations

    NASA Astrophysics Data System (ADS)

    Boucerredj, N.; Mebarki, N.

    2012-06-01

    The non uniqueness and equivalence of the q-deformed Weyl-Heinsenberg algebra are studied in the weak deformation parameter approximation. It turns out that the Macfarlane representation is not unique leading to inequivalant solutions of the q-deformed coherent states. Moreover, it is shown that the Krolikowski representation gives also a completely different result for the same algebra.

  6. Weyl fluid dark matter model tested on the galactic scale by weak gravitational lensing

    NASA Astrophysics Data System (ADS)

    Wong, K. C.; Harko, T.; Cheng, K. S.; Gergely, L. Á.

    2012-08-01

    The higher-dimensional Weyl curvature induces on the brane a new source of gravity. This Weyl fluid of geometrical origin (reducing in the spherically symmetric, static configuration to a dark radiation and dark pressure) modifies spacetime geometry around galaxies and has been shown to explain the flatness of galactic rotation curves. Independent observations for discerning between the Weyl fluid and other dark matter models are necessary. Gravitational lensing could provide such a test. Therefore we study null geodesics and weak gravitational lensing in the dark radiation dominated region of galaxies in a class of spherically symmetric braneworld metrics. We find that the lensing profile in the braneworld scenario is distinguishable from dark matter lensing, despite both the braneworld scenario and dark matter models fitting the rotation curve data. In particular, in the asymptotic regions, light deflection is 18% enhanced as compared to dark matter halo predictions. For a linear equation of state of the Weyl fluid, we further find a critical radius below which braneworld effects reduce, while above it they amplify light deflection. This is in contrast to any dark matter model, the addition of which always increases the deflection angle.

  7. π Berry phase and Zeeman splitting of Weyl semimetal TaP

    PubMed Central

    Hu, J.; Liu, J. Y.; Graf, D.; Radmanesh, S. M. A.; Adams, D. J.; Chuang, A.; Wang, Y.; Chiorescu, I.; Wei, J.; Spinu, L.; Mao, Z. Q.

    2016-01-01

    The recent breakthrough in the discovery of Weyl fermions in monopnictide semimetals provides opportunities to explore the exotic properties of relativistic fermions in condensed matter. The chiral anomaly-induced negative magnetoresistance and π Berry phase are two fundamental transport properties associated with the topological characteristics of Weyl semimetals. Since monopnictide semimetals are multiple-band systems, resolving clear Berry phase for each Fermi pocket remains a challenge. Here we report the determination of Berry phases of multiple Fermi pockets of Weyl semimetal TaP through high field quantum transport measurements. We show our TaP single crystal has the signatures of a Weyl state, including light effective quasiparticle masses, ultrahigh carrier mobility, as well as negative longitudinal magnetoresistance. Furthermore, we have generalized the Lifshitz-Kosevich formula for multiple-band Shubnikov-de Haas (SdH) oscillations and extracted the Berry phases of π for multiple Fermi pockets in TaP through the direct fits of the modified LK formula to the SdH oscillations. In high fields, we also probed signatures of Zeeman splitting, from which the Landé g-factor is extracted. PMID:26726050

  8. General structure of the gravitational equations of motion in conformal Weyl gravity

    NASA Technical Reports Server (NTRS)

    Kazanas, Demosthenes; Mannheim, Philip D.

    1991-01-01

    A general method for determining the structure of the gravitational equations of motion is presented in the fourth-order theory of gravity based on local conformal Weyl invariance of the gravitational action. The explicit structure for these equations is given for a time-dependent, spherically symmetric geometry.

  9. π Berry phase and Zeeman splitting of Weyl semimetal TaP.

    PubMed

    Hu, J; Liu, J Y; Graf, D; Radmanesh, S M A; Adams, D J; Chuang, A; Wang, Y; Chiorescu, I; Wei, J; Spinu, L; Mao, Z Q

    2016-01-01

    The recent breakthrough in the discovery of Weyl fermions in monopnictide semimetals provides opportunities to explore the exotic properties of relativistic fermions in condensed matter. The chiral anomaly-induced negative magnetoresistance and π Berry phase are two fundamental transport properties associated with the topological characteristics of Weyl semimetals. Since monopnictide semimetals are multiple-band systems, resolving clear Berry phase for each Fermi pocket remains a challenge. Here we report the determination of Berry phases of multiple Fermi pockets of Weyl semimetal TaP through high field quantum transport measurements. We show our TaP single crystal has the signatures of a Weyl state, including light effective quasiparticle masses, ultrahigh carrier mobility, as well as negative longitudinal magnetoresistance. Furthermore, we have generalized the Lifshitz-Kosevich formula for multiple-band Shubnikov-de Haas (SdH) oscillations and extracted the Berry phases of π for multiple Fermi pockets in TaP through the direct fits of the modified LK formula to the SdH oscillations. In high fields, we also probed signatures of Zeeman splitting, from which the Landé g-factor is extracted. PMID:26726050

  10. Visualizing weakly bound surface Fermi arcs and their correspondence to bulk Weyl fermions.

    PubMed

    Batabyal, Rajib; Morali, Noam; Avraham, Nurit; Sun, Yan; Schmidt, Marcus; Felser, Claudia; Stern, Ady; Yan, Binghai; Beidenkopf, Haim

    2016-08-01

    Fermi arcs are the surface manifestation of the topological nature of Weyl semimetals, enforced by the bulk-boundary correspondence with the bulk Weyl nodes. The surface of tantalum arsenide, similar to that of other members of the Weyl semimetal class, hosts nontopological bands that obscure the exploration of this correspondence. We use the spatial structure of the Fermi arc wave function, probed by scanning tunneling microscopy, as a spectroscopic tool to distinguish and characterize the surface Fermi arc bands. We find that, as opposed to nontopological states, the Fermi arc wave function is weakly affected by the surface potential: it spreads rather uniformly within the unit cell and penetrates deeper into the bulk. Fermi arcs reside predominantly on tantalum sites, from which the topological bulk bands are derived. Furthermore, we identify a correspondence between the Fermi arc dispersion and the energy and momentum of the bulk Weyl nodes that classify this material as topological. We obtain these results by introducing an analysis based on the role the Bloch wave function has in shaping quantum electronic interference patterns. It thus carries broader applicability to the study of other electronic systems and other physical processes. PMID:27551687

  11. Weyl gauge-vector and complex dilaton scalar for conformal symmetry and its breaking

    NASA Astrophysics Data System (ADS)

    Ohanian, Hans C.

    2016-03-01

    Instead of the scalar "dilaton" field that is usually adopted to construct conformally invariant Lagrangians for gravitation, we here propose a hybrid construction, involving both a complex dilaton scalar and a Weyl gauge-vector, in accord with Weyl's original concept of a non-Riemannian conformal geometry with a transport law for length and time intervals, for which this gauge vector is required. Such a hybrid construction permits us to avoid the wrong sign of the dilaton kinetic term (the ghost problem) that afflicts the usual construction. The introduction of a Weyl gauge-vector and its interaction with the dilaton also has the collateral benefit of providing an explicit mechanism for spontaneous breaking of the conformal symmetry, whereby the dilaton and the Weyl gauge-vector acquire masses somewhat smaller than {m}_{P} by the Coleman-Weinberg mechanism. Conformal symmetry breaking is assumed to precede inflation, which occurs later by a separate GUT or electroweak symmetry breaking, as in inflationary models based on the Higgs boson.

  12. Visualizing weakly bound surface Fermi arcs and their correspondence to bulk Weyl fermions

    PubMed Central

    Batabyal, Rajib; Morali, Noam; Avraham, Nurit; Sun, Yan; Schmidt, Marcus; Felser, Claudia; Stern, Ady; Yan, Binghai; Beidenkopf, Haim

    2016-01-01

    Fermi arcs are the surface manifestation of the topological nature of Weyl semimetals, enforced by the bulk-boundary correspondence with the bulk Weyl nodes. The surface of tantalum arsenide, similar to that of other members of the Weyl semimetal class, hosts nontopological bands that obscure the exploration of this correspondence. We use the spatial structure of the Fermi arc wave function, probed by scanning tunneling microscopy, as a spectroscopic tool to distinguish and characterize the surface Fermi arc bands. We find that, as opposed to nontopological states, the Fermi arc wave function is weakly affected by the surface potential: it spreads rather uniformly within the unit cell and penetrates deeper into the bulk. Fermi arcs reside predominantly on tantalum sites, from which the topological bulk bands are derived. Furthermore, we identify a correspondence between the Fermi arc dispersion and the energy and momentum of the bulk Weyl nodes that classify this material as topological. We obtain these results by introducing an analysis based on the role the Bloch wave function has in shaping quantum electronic interference patterns. It thus carries broader applicability to the study of other electronic systems and other physical processes. PMID:27551687

  13. Visualizing weakly bound surface Fermi arcs and their correspondence to bulk Weyl fermions.

    PubMed

    Batabyal, Rajib; Morali, Noam; Avraham, Nurit; Sun, Yan; Schmidt, Marcus; Felser, Claudia; Stern, Ady; Yan, Binghai; Beidenkopf, Haim

    2016-08-01

    Fermi arcs are the surface manifestation of the topological nature of Weyl semimetals, enforced by the bulk-boundary correspondence with the bulk Weyl nodes. The surface of tantalum arsenide, similar to that of other members of the Weyl semimetal class, hosts nontopological bands that obscure the exploration of this correspondence. We use the spatial structure of the Fermi arc wave function, probed by scanning tunneling microscopy, as a spectroscopic tool to distinguish and characterize the surface Fermi arc bands. We find that, as opposed to nontopological states, the Fermi arc wave function is weakly affected by the surface potential: it spreads rather uniformly within the unit cell and penetrates deeper into the bulk. Fermi arcs reside predominantly on tantalum sites, from which the topological bulk bands are derived. Furthermore, we identify a correspondence between the Fermi arc dispersion and the energy and momentum of the bulk Weyl nodes that classify this material as topological. We obtain these results by introducing an analysis based on the role the Bloch wave function has in shaping quantum electronic interference patterns. It thus carries broader applicability to the study of other electronic systems and other physical processes.

  14. Smooth big bounce from affine quantization

    NASA Astrophysics Data System (ADS)

    Bergeron, Hervé; Dapor, Andrea; Gazeau, Jean Pierre; Małkiewicz, Przemysław

    2014-04-01

    We examine the possibility of dealing with gravitational singularities on a quantum level through the use of coherent state or wavelet quantization instead of canonical quantization. We consider the Robertson-Walker metric coupled to a perfect fluid. It is the simplest model of a gravitational collapse, and the results obtained here may serve as a useful starting point for more complex investigations in the future. We follow a quantization procedure based on affine coherent states or wavelets built from the unitary irreducible representation of the affine group of the real line with positive dilation. The main issue of our approach is the appearance of a quantum centrifugal potential allowing for regularization of the singularity, essential self-adjointness of the Hamiltonian, and unambiguous quantum dynamical evolution.

  15. FAST TRACK COMMUNICATION Algebraic classification of the Weyl tensor in higher dimensions based on its 'superenergy' tensor

    NASA Astrophysics Data System (ADS)

    Senovilla, José M. M.

    2010-11-01

    The algebraic classification of the Weyl tensor in the arbitrary dimension n is recovered by means of the principal directions of its 'superenergy' tensor. This point of view can be helpful in order to compute the Weyl aligned null directions explicitly, and permits one to obtain the algebraic type of the Weyl tensor by computing the principal eigenvalue of rank-2 symmetric future tensors. The algebraic types compatible with states of intrinsic gravitational radiation can then be explored. The underlying ideas are general, so that a classification of arbitrary tensors in the general dimension can be achieved.

  16. Casimir effect due to a single boundary as a manifestation of the Weyl problem

    NASA Astrophysics Data System (ADS)

    Kolomeisky, Eugene B.; Straley, Joseph P.; Langsjoen, Luke S.; Zaidi, Hussain

    2010-09-01

    The Casimir self-energy of a boundary is ultraviolet-divergent. In many cases, the divergences can be eliminated by methods such as zeta-function regularization or through physical arguments (ultraviolet transparency of the boundary would provide a cutoff). Using the example of a massless scalar field theory with a single Dirichlet boundary, we explore the relationship between such approaches, with the goal of better understanding of the origin of the divergences. We are guided by the insight due to Dowker and Kennedy (1978 J. Phys. A: Math. Gen. 11 895) and Deutsch and Candelas (1979 Phys. Rev. D 20 3063) that the divergences represent measurable effects that can be interpreted with the aid of the theory of the asymptotic distribution of eigenvalues of the Laplacian discussed by Weyl. In many cases, the Casimir self-energy is the sum of cutoff-dependent (Weyl) terms having a geometrical origin, and an 'intrinsic' term that is independent of the cutoff. The Weyl terms make a measurable contribution to the physical situation even when regularization methods succeed in isolating the intrinsic part. Regularization methods fail when the Weyl terms and intrinsic parts of the Casimir effect cannot be clearly separated. Specifically, we demonstrate that the Casimir self-energy of a smooth boundary in two dimensions is a sum of two Weyl terms (exhibiting quadratic and logarithmic cutoff dependence), a geometrical term that is independent of cutoff and a non-geometrical intrinsic term. As by-products, we resolve the puzzle of the divergent Casimir force on a ring and correct the sign of the coefficient of linear tension of the Dirichlet line predicted in earlier treatments.

  17. On the search for the chiral anomaly in Weyl semimetals: the negative longitudinal magnetoresistance

    NASA Astrophysics Data System (ADS)

    dos Reis, R. D.; Ajeesh, M. O.; Kumar, N.; Arnold, F.; Shekhar, C.; Naumann, M.; Schmidt, M.; Nicklas, M.; Hassinger, E.

    2016-08-01

    Recently, the existence of massless chiral (Weyl) fermions has been postulated in a class of semi-metals with a non-trivial energy dispersion. These materials are now commonly dubbed Weyl semi-metals (WSM). One predicted property of Weyl fermions is the chiral or Adler-Bell-Jackiw anomaly, a chirality imbalance in the presence of parallel magnetic and electric fields. In WSM, it is expected to induce a negative longitudinal magnetoresistance (MR). Here, we present experimental evidence that the observation of the chiral anomaly can be hindered by an effect called ‘current jetting’. This effect also leads to a strong apparent negative longitudinal MR, but it is characterized by a highly non-uniform current distribution inside the sample. It appears in materials possessing a large field-induced anisotropy of the resistivity tensor, such as almost compensated high-mobility semimetals due to the orbital effect. In case of a non-homogeneous current injection, the potential distribution is strongly distorted in the sample. As a consequence, an experimentally measured potential difference is not proportional to the intrinsic resistance. Our results on the MR of the Weyl semimetal candidate materials NbP, NbAs, TaAs, and TaP exhibit distinct signatures of an inhomogeneous current distribution, such as a field-induced ‘zero resistance’ and a strong dependence of the ‘measured resistance’ on the position, shape, and type of the voltage and current contacts on the sample. A misalignment between the current and the magnetic-field directions can even induce a ‘negative resistance’. Finite-element simulations of the potential distribution inside the sample, using typical resistance anisotropies, are in good agreement with the experimental findings. Our study demonstrates that great care must be taken before interpreting measurements of a negative longitudinal MR as evidence for the chiral anomaly in putative Weyl semimetals.

  18. On the search for the chiral anomaly in Weyl semimetals: the negative longitudinal magnetoresistance

    NASA Astrophysics Data System (ADS)

    dos Reis, R. D.; Ajeesh, M. O.; Kumar, N.; Arnold, F.; Shekhar, C.; Naumann, M.; Schmidt, M.; Nicklas, M.; Hassinger, E.

    2016-08-01

    Recently, the existence of massless chiral (Weyl) fermions has been postulated in a class of semi-metals with a non-trivial energy dispersion. These materials are now commonly dubbed Weyl semi-metals (WSM). One predicted property of Weyl fermions is the chiral or Adler–Bell–Jackiw anomaly, a chirality imbalance in the presence of parallel magnetic and electric fields. In WSM, it is expected to induce a negative longitudinal magnetoresistance (MR). Here, we present experimental evidence that the observation of the chiral anomaly can be hindered by an effect called ‘current jetting’. This effect also leads to a strong apparent negative longitudinal MR, but it is characterized by a highly non-uniform current distribution inside the sample. It appears in materials possessing a large field-induced anisotropy of the resistivity tensor, such as almost compensated high-mobility semimetals due to the orbital effect. In case of a non-homogeneous current injection, the potential distribution is strongly distorted in the sample. As a consequence, an experimentally measured potential difference is not proportional to the intrinsic resistance. Our results on the MR of the Weyl semimetal candidate materials NbP, NbAs, TaAs, and TaP exhibit distinct signatures of an inhomogeneous current distribution, such as a field-induced ‘zero resistance’ and a strong dependence of the ‘measured resistance’ on the position, shape, and type of the voltage and current contacts on the sample. A misalignment between the current and the magnetic-field directions can even induce a ‘negative resistance’. Finite-element simulations of the potential distribution inside the sample, using typical resistance anisotropies, are in good agreement with the experimental findings. Our study demonstrates that great care must be taken before interpreting measurements of a negative longitudinal MR as evidence for the chiral anomaly in putative Weyl semimetals.

  19. From Weyl to Born-Jordan quantization: The Schrödinger representation revisited

    NASA Astrophysics Data System (ADS)

    de Gosson, Maurice A.

    2016-03-01

    The ordering problem has been one of the long standing and much discussed questions in quantum mechanics from its very beginning. Nowadays, there is more or less a consensus among physicists that the right prescription is Weyl's rule, which is closely related to the Moyal-Wigner phase space formalism. We propose in this report an alternative approach by replacing Weyl quantization with the less well-known Born-Jordan quantization. This choice is actually natural if we want the Heisenberg and Schrödinger pictures of quantum mechanics to be mathematically equivalent. It turns out that, in addition, Born-Jordan quantization can be recovered from Feynman's path integral approach provided that one used short-time propagators arising from correct formulas for the short-time action, as observed by Makri and Miller. These observations lead to a slightly different quantum mechanics, exhibiting some unexpected features, and this without affecting the main existing theory; for instance quantizations of physical Hamiltonian functions are the same as in the Weyl correspondence. The differences are in fact of a more subtle nature; for instance, the quantum observables will not correspond in a one-to-one fashion to classical ones, and the dequantization of a Born-Jordan quantum operator is less straightforward than that of the corresponding Weyl operator. The use of Born-Jordan quantization moreover solves the "angular momentum dilemma", which already puzzled L. Pauling. Born-Jordan quantization has been known for some time (but not fully exploited) by mathematicians working in time-frequency analysis and signal analysis, but ignored by physicists. One of the aims of this report is to collect and synthesize these sporadic discussions, while analyzing the conceptual differences with Weyl quantization, which is also reviewed in detail. Another striking feature is that the Born-Jordan formalism leads to a redefinition of phase space quantum mechanics, where the usual Wigner

  20. Phosphopeptide Enrichment by Immobilized Metal Affinity Chromatography.

    PubMed

    Thingholm, Tine E; Larsen, Martin R

    2016-01-01

    Immobilized metal affinity chromatography (IMAC) has been the method of choice for phosphopeptide enrichment prior to mass spectrometric analysis for many years and it is still used extensively in many laboratories. Using the affinity of negatively charged phosphate groups towards positively charged metal ions such as Fe(3+), Ga(3+), Al(3+), Zr(4+), and Ti(4+) has made it possible to enrich phosphorylated peptides from peptide samples. However, the selectivity of most of the metal ions is limited, when working with highly complex samples, e.g., whole-cell extracts, resulting in contamination from nonspecific binding of non-phosphorylated peptides. This problem is mainly caused by highly acidic peptides that also share high binding affinity towards these metal ions. By lowering the pH of the loading buffer nonspecific binding can be reduced significantly, however with the risk of reducing specific binding capacity. After binding, the enriched phosphopeptides are released from the metal ions using alkaline buffers of pH 10-11, EDTA, or phosphate-containing buffers. Here we describe a protocol for IMAC using Fe(3+) for phosphopeptide enrichment. The principles are illustrated on a semi-complex peptide mixture. PMID:26584922

  1. Cesium cation affinities and basicities

    NASA Astrophysics Data System (ADS)

    Gal, Jean-François; Maria, Pierre-Charles; Massi, Lionel; Mayeux, Charly; Burk, Peeter; Tammiku-Taul, Jaana

    2007-11-01

    This review focuses on the quantitative data related to cesium cation interaction with neutral or negatively charged ligands. The techniques used for measuring the cesium cation affinity (enthalpies, CCA), and cesium cation basicities (Gibbs free energies, CCB) are briefly described. The quantum chemical calculations methods that were specifically designed for the determination of cesium cation adduct structures and the energetic aspects of the interaction are discussed. The experimental results, obtained essentially from mass spectrometry techniques, and complemented by thermochemical data, are tabulated and commented. In particular, the correlations between cesium cation affinities and lithium cation affinities for the various kinds of ligands (rare gases, polyatomic neutral molecules, among them aromatic compounds and negative ions) serve as a basis for the interpretation of the diverse electrostatic modes of interaction. A brief account of some recent analytical applications of ion/molecule reactions with Cs+, as well as other cationization approaches by Cs+, is given.

  2. Affine differential geometry analysis of human arm movements.

    PubMed

    Flash, Tamar; Handzel, Amir A

    2007-06-01

    Humans interact with their environment through sensory information and motor actions. These interactions may be understood via the underlying geometry of both perception and action. While the motor space is typically considered by default to be Euclidean, persistent behavioral observations point to a different underlying geometric structure. These observed regularities include the "two-thirds power law", which connects path curvature with velocity, and "local isochrony", which prescribes the relation between movement time and its extent. Starting with these empirical observations, we have developed a mathematical framework based on differential geometry, Lie group theory and Cartan's moving frame method for the analysis of human hand trajectories. We also use this method to identify possible motion primitives, i.e., elementary building blocks from which more complicated movements are constructed. We show that a natural geometric description of continuous repetitive hand trajectories is not Euclidean but equi-affine. Specifically, equi-affine velocity is piecewise constant along movement segments, and movement execution time for a given segment is proportional to its equi-affine arc-length. Using this mathematical framework, we then analyze experimentally recorded drawing movements. To examine movement segmentation and classification, the two fundamental equi-affine differential invariants-equi-affine arc-length and curvature are calculated for the recorded movements. We also discuss the possible role of conic sections, i.e., curves with constant equi-affine curvature, as motor primitives and focus in more detail on parabolas, the equi-affine geodesics. Finally, we explore possible schemes for the internal neural coding of motor commands by showing that the equi-affine framework is compatible with the common model of population coding of the hand velocity vector when combined with a simple assumption on its dynamics. We then discuss several alternative explanations

  3. Overview of affinity tags for protein purification.

    PubMed

    Kimple, Michelle E; Brill, Allison L; Pasker, Renee L

    2013-01-01

    Addition of an affinity tag is a useful method for differentiating recombinant proteins expressed in bacterial and eukaryotic expression systems from the background of total cellular proteins, as well as for detecting protein-protein interactions. This overview describes the historical basis for the development of affinity tags, affinity tags that are commonly used today, how to choose an appropriate affinity tag for a particular purpose, and several recently developed affinity tag technologies that may prove useful in the near future. PMID:24510596

  4. Quantifying Affinity among Chinese Dialects.

    ERIC Educational Resources Information Center

    Cheng, Chin-Chuan

    A study of the relationships between Chinese dialects based on a quantitative measure of dialect affinity is summarized. First, tone values in all the dialect localities available in the early 1970s were used to calculate the dialectal differences in terms of tone height with respect to the "yin and yang" split. In the late 1970s, calculations of…

  5. Affine Contractions on the Plane

    ERIC Educational Resources Information Center

    Celik, D.; Ozdemir, Y.; Ureyen, M.

    2007-01-01

    Contractions play a considerable role in the theory of fractals. However, it is not easy to find contractions which are not similitudes. In this study, it is shown by counter examples that an affine transformation of the plane carrying a given triangle onto another triangle may not be a contraction even if it contracts edges, heights or medians.…

  6. Universal charge and current on magnetic domain walls in Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Araki, Yasufumi; Yoshida, Akihide; Nomura, Kentaro

    2016-09-01

    Domain walls in three-dimensional Weyl semimetals, formed by localized magnetic moments, are investigated. There appear bound states around the domain wall with the discrete spectrum, among which we find "Fermi arc" states with the linear dispersion. The Fermi arc modes contribute to the electric charge and current localized at the domain wall, which reveal a universal behavior depending only on chemical potential and the splitting of the Weyl nodes. This equilibrium current can be traced back to the chiral magnetic effect, or the edge counterpart of the anomalous Hall effect in the bulk. We propose a way to manipulate the motion of the domain wall, accompanied with the localized charge, by applying an external electric field.

  7. Primordial massive gravitational waves from Einstein-Chern-Simons-Weyl gravity

    SciTech Connect

    Myung, Yun Soo; Moon, Taeyoon E-mail: tymoon@inje.ac.kr

    2014-08-01

    We investigate the evolution of cosmological perturbations during de Sitter inflation in the Einstein-Chern-Simons-Weyl gravity. Primordial massive gravitational waves are composed of one scalar, two vector and four tensor circularly polarized modes. We show that the vector power spectrum decays quickly like a transversely massive vector in the superhorizon limit z → 0. In this limit, the power spectrum coming from massive tensor modes decays quickly, leading to the conventional tensor power spectrum. Also, we find that in the limit of m{sup 2} → 0 (keeping the Weyl-squared term only), the vector and tensor power spectra disappear. It implies that their power spectra are not gravitationally produced because they (vector and tensor) are decoupled from the expanding de Sitter background, as a result of conformal invariance.

  8. Quantum Oscillations in Weyl and Dirac Semimetal Ultra-Thin Films

    NASA Astrophysics Data System (ADS)

    Bulmash, Daniel; Qi, Xiao-Liang

    We show that a thin film of Weyl or Dirac semimetal with a strong in-plane magnetic field becomes a novel two-dimensional Fermi liquid with interesting properties. The Fermi surface in this system is strongly anisotropic, consisting of a combination of chiral bulk channels and the Fermi arcs. The area enclosed by the Fermi surface is proportional to the magnetic field component parallel to the Weyl/Dirac node splitting, which leads to unusual behavior in quantum oscillations when the magnetic field is tilted out of the plane. We estimate the oscillation frequencies and the regimes where such effects could be seen in Cd3As2 and TaAs.

  9. Kondo effect and non-Fermi-liquid behavior in Dirac and Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Principi, Alessandro; Vignale, Giovanni; Rossi, E.

    2015-07-01

    We study the Kondo effect in three-dimensional (3D) Dirac materials and Weyl semimetals. We find the scaling of the Kondo temperature with respect to the doping n and the coupling J between the moment of the magnetic impurity and the carriers of the semimetal. We consider the interplay of long-range scalar disorder and Kondo screening and find that it causes the Kondo effect to be characterized not by a Kondo temperature, but by a distribution of Kondo temperatures with features that cause the appearance of strong non-Fermi-liquid behavior. We then consider the effect of Kondo screening, and of the interplay of Kondo screening and long-range scalar disorder, on the transport properties of Weyl semimetals. Finally, we compare the properties of the Kondo effect in 3D and 2D Dirac materials such as graphene and topological insulators.

  10. Poincaré covariant pseudoscalar and scalar meson spectroscopy in Wigner-Weyl phase

    NASA Astrophysics Data System (ADS)

    Hilger, T.

    2016-03-01

    The coupled quark Dyson-Schwinger and meson Bethe-Salpeter equations in rainbow-ladder truncation for spin-0 mesons are solved in the Wigner-Weyl phase in the chiral limit and beyond, retaining only the ultraviolet finite terms of the phenomenologically most successful Maris-Tandy interaction. This allows one to reveal and discuss the scalar and pseudoscalar meson masses in a chirally symmetric setting without additional medium effects. Independent of the current-quark mass, the found solutions are spacelike, i.e., have negative squared masses. The current-quark mass dependence of meson masses, leptonic decay constants and chiral condensate are illustrated in the Wigner-Weyl phase.

  11. Spacetime encodings. IV. The relationship between Weyl curvature and Killing tensors in stationary axisymmetric vacuum spacetimes

    SciTech Connect

    Brink, Jeandrew

    2010-01-15

    The problem of obtaining an explicit representation for the fourth invariant of geodesic motion (generalized Carter constant) of an arbitrary stationary axisymmetric vacuum spacetime generated from an Ernst potential is considered. The coupling between the nonlocal curvature content of the spacetime as encoded in the Weyl tensor, and the existence of a Killing tensor is explored and a constructive, algebraic test for a fourth-order Killing tensor suggested. The approach used exploits the variables defined for the Baecklund transformations to clarify the relationship between Weyl curvature, constants of geodesic motion, expressed as Killing tensors, and the solution-generation techniques. A new symmetric noncovariant formulation of the Killing equations is given. This formulation transforms the problem of looking for fourth-order Killing tensors in 4D into one of looking for four interlocking two-manifolds admitting fourth-order Killing tensors in 2D.

  12. The Coleman-Weinberg mechanism in a conformal (Weyl) invariant theory: application to a magnetic monopole

    NASA Astrophysics Data System (ADS)

    Edery, Ariel; Graham, Noah

    2015-05-01

    We consider a massless conformally (Weyl) invariant classical action consisting of a magnetic monopole coupled to gravity in an anti-de Sitter background spacetime. We implement quantum corrections and this breaks the conformal (Weyl) symmetry, introduces a length scale via the process of renormalization and leads to the trace anomaly. We calculate the one-loop effective potential and determine from it the vacuum expectation value (VEV). Spontaneous symmetry breaking is radiatively induced a la Coleman-Weinberg and the scalar coupling constant is exchanged for the dimensionful VEV via dimensional transmutation. An important result is that the Ricci scalar of the AdS background spacetimeis determined entirely by the value of the VEV.

  13. Reducibility of valence-3 Killing tensors in Weyl's class of stationary and axially symmetric spacetimes

    NASA Astrophysics Data System (ADS)

    Vollmer, Andreas

    2015-10-01

    Stationary and axially symmetric spacetimes play an important role in astrophysics, particularly in the theory of neutron stars and black holes. The static vacuum subclass of these spacetimes is known as Weyl's class, and contains the Schwarzschild spacetime as its most prominent example. This paper is going to study the space of Killing tensor fields of valence 3 for spacetimes of Weyl's class. Killing tensor fields play a crucial role in physics since they are in correspondence to invariants of the geodesic motion (i.e. constants of the motion). It will be proven that in static and axially symmetric vacuum spacetimes the space of Killing tensor fields of valence 3 is generated by Killing vector fields and quadratic Killing tensor fields. Using this result, it will be proven that for the family of Zipoy-Voorhees metrics, valence-3 Killing tensor fields are always generated by Killing vector fields and the metric.

  14. Existence of Lanczos potentials and superpotentials for the Weyl spinor/tensor

    NASA Astrophysics Data System (ADS)

    Andersson, Fredrik; Edgar, S. Brian

    2001-06-01

    A new and concise proof of existence - emphasizing the very natural and simple structure - is given for the Lanczos spinor potential LABCA' of an arbitrary symmetric spinor WABCD defined by WABCD = 2∇(AA'LBCD)A' this proof is easily translated into tensors in such a way that it is valid in four-dimensional spaces of any signature. In particular, this means that the Weyl spinor ΨABCD has Lanczos potentials in all spacetimes, and furthermore that the Weyl tensor has Lanczos potentials on all four-dimensional spaces, irrespective of signature. In addition, two superpotentials for WABCD are identified: the first TABCD ( = T(ABC)D) is given by LABCA' = ∇A'DTABCD, while the second HABA'B' ( = H(AB)(A'B')) (which is restricted to Einstein spacetimes) is given by LABCA' = ∇(AB'HBC)A'B'. The superpotential TABCD is used to describe the gauge freedom in the Lanczos potential.

  15. Unitarity of spin-2 theories with linearized Weyl symmetry in D=2+1 dimensions

    SciTech Connect

    Dalmazi, D.

    2009-10-15

    Here we prove unitarity of the recently found fourth-order (in derivatives) self-dual model of spin-2 by investigating the analytic structure of its propagator. The model describes massive particles of helicity +2 (or -2) in D=2+1 dimensions and corresponds to the quadratic truncation of a higher derivative topologically massive gravity about a flat background. It is an intriguing example of a theory where a term in the propagator of the form 1/[{open_square}{sup 2}({open_square}-m{sup 2})] does not lead to ghosts. The crucial role of the linearized Weyl symmetry in getting rid of the ghosts is pointed out. We use a peculiar pair of gauge conditions which fix the linearized reparametrizations and linearized Weyl symmetries separately.

  16. Berry phase and band structure analysis of the Weyl semimetal NbP

    PubMed Central

    Sergelius, Philip; Gooth, Johannes; Bäßler, Svenja; Zierold, Robert; Wiegand, Christoph; Niemann, Anna; Reith, Heiko; Shekhar, Chandra; Felser, Claudia; Yan, Binghai; Nielsch, Kornelius

    2016-01-01

    Weyl semimetals are often considered the 3D-analogon of graphene or topological insulators. The evaluation of quantum oscillations in these systems remains challenging because there are often multiple conduction bands. We observe de Haas-van Alphen oscillations with several frequencies in a single crystal of the Weyl semimetal niobium phosphide. For each fundamental crystal axis, we can fit the raw data to a superposition of sinusoidal functions, which enables us to calculate the characteristic parameters of all individual bulk conduction bands using Fourier transform with an analysis of the temperature and magnetic field-dependent oscillation amplitude decay. Our experimental results indicate that the band structure consists of Dirac bands with low cyclotron mass, a non-trivial Berry phase and parabolic bands with a higher effective mass and trivial Berry phase. PMID:27667203

  17. Dirac versus Weyl fermions in topological insulators: Adler-Bell-Jackiw anomaly in transport phenomena.

    PubMed

    Kim, Heon-Jung; Kim, Ki-Seok; Wang, J-F; Sasaki, M; Satoh, N; Ohnishi, A; Kitaura, M; Yang, M; Li, L

    2013-12-13

    Dirac metals (gapless semiconductors) are believed to turn into Weyl metals when perturbations, which break either time reversal symmetry or inversion symmetry, are employed. However, no experimental evidence has been reported for the existence of Weyl fermions in three dimensions. Applying magnetic fields near the topological phase transition from a topological insulator to a band insulator in Bi1-xSbx we observe not only the weak antilocalization phenomenon in magnetoconductivity near zero magnetic fields (B<0.4  T), but also its upturn above 0.4 T only for E//B. This "incompatible" coexistence between weak antilocalization and "negative" magnetoresistivity is attributed to the Adler-Bell-Jackiw anomaly ("topological" E·B term) in the presence of weak antilocalization corrections.

  18. Exact vacuum solution to conformal Weyl gravity and galactic rotation curves

    NASA Technical Reports Server (NTRS)

    Mannheim, Philip D.; Kazanas, Demosthenes

    1989-01-01

    The complete, exact exterior solution for a static, spherically symmetric source in locally conformal invariant Weyl gravity is presented. The solution includes the familiar exterior Schwarzschild solution as a special case and contains an extra gravitational potential term which grows linearly with distance. The obtained solution provides a potential explanation for observed galactic rotation curves without the need for dark matter. The solution also has some interesting implications for cosmology.

  19. Weyl-Cartan-Weitzenböck gravity as a generalization of teleparallel gravity

    SciTech Connect

    Haghani, Zahra; Sepangi, Hamid Reza; Shahidi, Shahab; Harko, Tiberiu E-mail: harko@hkucc.hku.hk E-mail: s_shahidi@sbu.ac.ir

    2012-10-01

    We consider a gravitational model in a Weyl-Cartan space-time in which the Weitzenböck condition of the vanishing of the sum of the curvature and torsion scalar is imposed. In contrast to the standard teleparallel theories, our model is formulated in a four-dimensional curved spacetime. The properties of the gravitational field are then described by the torsion tensor and Weyl vector fields. A kinetic term for the torsion is also included in the gravitational action. The field equations of the model are obtained from a Hilbert-Einstein type variational principle, and they lead to a complete description of the gravitational field in terms of two fields, the Weyl vector and the torsion, respectively, defined in a curved background. The cosmological applications of the model are investigated for a particular choice of the free parameters in which the torsion vector is proportional to the Weyl vector. The Newtonian limit of the model is also considered, and it is shown that the Poisson equation can be recovered in the weak field approximation. Depending on the numerical values of the parameters of the cosmological model, a large variety of dynamic evolutions can be obtained, ranging from inflationary/accelerated expansions to non-inflationary behaviors. In particular we show that a de Sitter type late time evolution can be naturally obtained from the field equations of the model. Therefore the present model leads to the possibility of a purely geometrical description of the dark energy, in which the late time acceleration of the Universe is determined by the intrinsic geometry of the space-time.

  20. Topological density-wave states in a particle-hole symmetric Weyl metal

    NASA Astrophysics Data System (ADS)

    Wang, Yuxuan; Ye, Peng

    2016-08-01

    We study the instabilities of a particle-hole symmetric Weyl metal with both electron and hole Fermi surfaces (FSs) around the Weyl points. For a repulsive interaction we find that the leading instability is towards a longitudinal spin-density-wave (SDWz) order. Besides, there exist three degenerate subleading instabilities: a charge-density-wave (CDW) instability, and two transverse spin-density-wave (SDWx ,y) instabilities. For an attractive interaction the leading instabilities are towards two pair-density-wave (PDW) orders which pair the two FSs separately. Both the PDW and SDWz order parameters fully gap out the FSs, while the CDW and SDWx ,y ones leave line nodes on both FSs. For the SDWz and the PDW states, the surface Fermi arc in the metallic state evolves to a chiral Fermi line which passes the projection of the Weyl points and traverses the full momentum space. For the CDW state, the line node projects to a "drumhead" band localized on the surface, which can lead to a topological charge polarization. We verify the surface states by computing the angular-resolved photoemission spectroscopy data.

  1. Quantum oscillations from generic surface Fermi arcs and bulk chiral modes in Weyl semimetals

    PubMed Central

    Zhang, Yi; Bulmash, Daniel; Hosur, Pavan; Potter, Andrew C.; Vishwanath, Ashvin

    2016-01-01

    We re-examine the question of quantum oscillations from surface Fermi arcs and chiral modes in Weyl semimetals. By introducing two tools - semiclassical phase-space quantization and a numerical implementation of a layered construction of Weyl semimetals - we discover several important generalizations to previous conclusions that were implicitly tailored to the special case of identical Fermi arcs on top and bottom surfaces. We show that the phase-space quantization picture fixes an ambiguity in the previously utilized energy-time quantization approach and correctly reproduces the numerically calculated quantum oscillations for generic Weyl semimetals with distinctly curved Fermi arcs on the two surfaces. Based on these methods, we identify a ‘magic’ magnetic-field angle where quantum oscillations become independent of sample thickness, with striking experimental implications. We also analyze the stability of these quantum oscillations to disorder, and show that the high-field oscillations are expected to persist in samples whose thickness parametrically exceeds the quantum mean free path. PMID:27033563

  2. Quantum oscillations from generic surface Fermi arcs and bulk chiral modes in Weyl semimetals.

    PubMed

    Zhang, Yi; Bulmash, Daniel; Hosur, Pavan; Potter, Andrew C; Vishwanath, Ashvin

    2016-01-01

    We re-examine the question of quantum oscillations from surface Fermi arcs and chiral modes in Weyl semimetals. By introducing two tools--semiclassical phase-space quantization and a numerical implementation of a layered construction of Weyl semimetals--we discover several important generalizations to previous conclusions that were implicitly tailored to the special case of identical Fermi arcs on top and bottom surfaces. We show that the phase-space quantization picture fixes an ambiguity in the previously utilized energy-time quantization approach and correctly reproduces the numerically calculated quantum oscillations for generic Weyl semimetals with distinctly curved Fermi arcs on the two surfaces. Based on these methods, we identify a 'magic' magnetic-field angle where quantum oscillations become independent of sample thickness, with striking experimental implications. We also analyze the stability of these quantum oscillations to disorder, and show that the high-field oscillations are expected to persist in samples whose thickness parametrically exceeds the quantum mean free path. PMID:27033563

  3. Quantum oscillations from generic surface Fermi arcs and bulk chiral modes in Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Bulmash, Daniel; Hosur, Pavan; Potter, Andrew C.; Vishwanath, Ashvin

    2016-04-01

    We re-examine the question of quantum oscillations from surface Fermi arcs and chiral modes in Weyl semimetals. By introducing two tools - semiclassical phase-space quantization and a numerical implementation of a layered construction of Weyl semimetals - we discover several important generalizations to previous conclusions that were implicitly tailored to the special case of identical Fermi arcs on top and bottom surfaces. We show that the phase-space quantization picture fixes an ambiguity in the previously utilized energy-time quantization approach and correctly reproduces the numerically calculated quantum oscillations for generic Weyl semimetals with distinctly curved Fermi arcs on the two surfaces. Based on these methods, we identify a ‘magic’ magnetic-field angle where quantum oscillations become independent of sample thickness, with striking experimental implications. We also analyze the stability of these quantum oscillations to disorder, and show that the high-field oscillations are expected to persist in samples whose thickness parametrically exceeds the quantum mean free path.

  4. Gate-tunable negative longitudinal magnetoresistance in the predicted type-II Weyl semimetal WTe2

    NASA Astrophysics Data System (ADS)

    Wang, Yaojia; Liu, Erfu; Liu, Huimei; Pan, Yiming; Zhang, Longqiang; Zeng, Junwen; Fu, Yajun; Wang, Miao; Xu, Kang; Huang, Zhong; Wang, Zhenlin; Lu, Hai-Zhou; Xing, Dingyu; Wang, Baigeng; Wan, Xiangang; Miao, Feng

    2016-10-01

    The progress in exploiting new electronic materials has been a major driving force in solid-state physics. As a new state of matter, a Weyl semimetal (WSM), in particular a type-II WSM, hosts Weyl fermions as emergent quasiparticles and may harbour novel electrical transport properties. Nevertheless, such a type-II WSM material has not been experimentally observed. In this work, by performing systematic magneto-transport studies on thin films of a predicted material candidate WTe2, we observe notable negative longitudinal magnetoresistance, which can be attributed to the chiral anomaly in WSM. This phenomenon also exhibits strong planar orientation dependence with the absence along the tungsten chains, consistent with the distinctive feature of a type-II WSM. By applying a gate voltage, we demonstrate that the Fermi energy can be in-situ tuned through the Weyl points via the electric field effect. Our results may open opportunities for implementing new electronic applications, such as field-effect chiral devices.

  5. Studies of Dirac and Weyl fermions by angle resolved photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Huang, Lunan

    This dissertation consists of three parts. First, we study magnetic domains in Nd2Fe14 B single crystals using high resolution magnetic force microscopy (MFM). In addition to the elongated, wavy nano-domains reported by a previous MFM study, we found that the micrometer size, star-shaped fractal pattern is constructed of an elongated network of nano-domains about 20 nm in width, with resolution-limited domain walls thinner than 2 nm. Second, we studied extra Dirac cones of multilayer graphene on SiC surface by ARPES and SPA-LEED. We discovered extra Dirac cones on Fermi surface due to SiC 6 x 6 and graphene 6√3 x 6√3 coincidence lattice on both single-layer and three-layer graphene sheets. We interpreted the position and intensity of the Dirac cone replicas, based on the scattering vectors from LEED patterns. We found the positions of replica Dirac cones are determined mostly by the 6 x 6 SiC superlattice even graphene layers grown thicker. Finally, we studied the electronic structure of MoTe2 by ARPES and experimentally confirmed the prediction of type II Weyl state in this material. By combining the result of Density Functional Theory calculations and Berry curvature calculations with out experimental data, we identified Fermi arcs, track states and Weyl points, all features predicted to exist in a type II Weyl semimetal. This material is an excellent playground for studies of exotic Fermions.

  6. Optical evidence for a Weyl semimetal state in pyrochlore Eu2 Ir2 O7

    NASA Astrophysics Data System (ADS)

    Sushkov, Andrei; Hofmann, Johannes; Jenkins, Gregory; Drew, Dennis; Ishikawa, Jun; Nakatsuji, Satoru

    Possible realization of a Weyl semimetallic state with the broken time-reversal symmetry in pyrochlore iridates is still under debate. In the absense of ARPES and neutron data, optical evidence become very important. We found that the THz optical conductivity and temperature dependence of the free carrier response in pyrochlore Eu2Ir2O7 match the predictions for a Weyl semimetal and suggest novel Dirac liquid behavior. The interband optical conductivity vanishes continuously at low frequencies signifying a semimetal. The metal-semimetal transition at TN = 110 K is manifested in the Drude spectral weight, which is independent of temperature in the metallic phase, and which decreases smoothly in the ordered phase. The temperature dependence of the free carrier weight below TN is in good agreement with theoretical predictions for a Weyl semimetal. The fit of experimental Drude weight yields a Fermi velocity 4x107 cm/s, a logarithmic renormalization scale ΛL ~ 600 K, and require a Fermi temperature of 100 K associated with residual unintentional doping to account for the low temperature optical response and dc resistivity. This work was supported by Grants: NSF DMR-1104343 and 1066293, DOE ER46741-SC0005436, LPS-MPO-CMTC, the Japanese Society for the Promotion of Science R2604, and Grants-in-Aid for Scientific Research 25707030.

  7. Chiral magnetic effect and natural optical activity in metals with or without Weyl points

    NASA Astrophysics Data System (ADS)

    Ma, Jing; Pesin, D. A.

    2015-12-01

    We consider the phenomenon of natural optical activity, and related chiral magnetic effect in metals with low carrier concentration. To reveal the correspondence between the two phenomena, we compute the optical conductivity of a noncentrosymmetric metal to linear order in the wave vector of the light wave, specializing to the low-frequency regime. We show that it is the orbital magnetic moment of quasiparticles that is responsible for the natural optical activity, and thus the chiral magnetic effect. While for purely static magnetic fields the chiral magnetic effect is known to have a topological origin and to be related to the presence of Berry curvature monopoles (Weyl points) in the band structure, we show that the existence of Berry monopoles is not required for the dynamic chiral magnetic effect to appear; the latter is thus not unique to Weyl metals. The magnitude of the dynamic chiral magnetic effect in a material is related to the trace of its gyrotropic tensor. We discuss the conditions under which this trace is nonzero; in noncentrosymmetric Weyl metals it is found to be proportional to the energy-space dipole moment of Berry curvature monopoles. The calculations are done within both the semiclassical kinetic equation, and Kubo linear-response formalisms, with coincident results.

  8. Gate-tunable negative longitudinal magnetoresistance in the predicted type-II Weyl semimetal WTe2

    PubMed Central

    Wang, Yaojia; Liu, Erfu; Liu, Huimei; Pan, Yiming; Zhang, Longqiang; Zeng, Junwen; Fu, Yajun; Wang, Miao; Xu, Kang; Huang, Zhong; Wang, Zhenlin; Lu, Hai-Zhou; Xing, Dingyu; Wang, Baigeng; Wan, Xiangang; Miao, Feng

    2016-01-01

    The progress in exploiting new electronic materials has been a major driving force in solid-state physics. As a new state of matter, a Weyl semimetal (WSM), in particular a type-II WSM, hosts Weyl fermions as emergent quasiparticles and may harbour novel electrical transport properties. Nevertheless, such a type-II WSM material has not been experimentally observed. In this work, by performing systematic magneto-transport studies on thin films of a predicted material candidate WTe2, we observe notable negative longitudinal magnetoresistance, which can be attributed to the chiral anomaly in WSM. This phenomenon also exhibits strong planar orientation dependence with the absence along the tungsten chains, consistent with the distinctive feature of a type-II WSM. By applying a gate voltage, we demonstrate that the Fermi energy can be in-situ tuned through the Weyl points via the electric field effect. Our results may open opportunities for implementing new electronic applications, such as field-effect chiral devices. PMID:27725682

  9. Optical conductivity of Weyl semimetals and signatures of the gapped semimetal phase transition

    NASA Astrophysics Data System (ADS)

    Tabert, C. J.; Carbotte, J. P.

    2016-02-01

    The interband optical response of a three-dimensional Dirac cone is linear in photon energy (Ω ) . Here, we study the evolution of the interband response within a model Hamiltonian which contains Dirac, Weyl, and gapped semimetal phases. In the pure Dirac case, a single linear dependence is observed, while in the Weyl phase, we find two quasilinear regions with different slopes. These regions are also distinct from the large-Ω dependence. As the boundary between the Weyl (WSM) and gapped phases is approached, the slope of the low-Ω response increases, while the photon-energy range over which it applies decreases. At the phase boundary, a square root behavior is obtained which is followed by a gapped response in the gapped semimetal phase. The density of states parallels these behaviors with the linear law replaced by quadratic behavior in the WSM phase and the square root dependence at the phase boundary changed to |ω| 3 /2. The optical spectral weight under the intraband (Drude) response at low temperature (T ) and/or small chemical potential (μ ) is found to change from T2 (μ2) in the WSM phase to T3 /2 (|μ |3/2) at the phase boundary.

  10. Response properties of axion insulators and Weyl semimetals driven by screw dislocations and dynamical axion strings

    NASA Astrophysics Data System (ADS)

    You, Yizhi; Cho, Gil Young; Hughes, Taylor L.

    2016-08-01

    In this paper, we investigate the theory of dynamical axion strings emerging from chiral symmetry breaking in three-dimensional Weyl semimetals. The chiral symmetry is spontaneously broken by a charge density wave (CDW) order which opens an energy gap and converts the Weyl semimetal into an axion insulator. Indeed, the phase fluctuations of the CDW order parameter act as a dynamical axion field θ (x ⃗,t ) and couple to electromagnetic field via Lθ=θ/(x ⃗,t ) 32 π2 ɛσ τ ν μFσ τFν μ. Additionally, when the axion insulator is coupled to deformations of the background geometry/strain fields via torsional defects, e.g., screw dislocations, there is interesting interplay between the crystal dislocations and dynamical axion strings. For example, the screw dislocation traps axial charge, and there is a Berry phase accumulation when an axion string (which carries axial flux) is braided with a screw dislocation. In addition, a cubic coupling between the axial current and the geometry fields is nonvanishing and indicates a Berry phase accumulation during a particular three-loop braiding procedure where a dislocation loop is braided with another dislocation and they are both threaded by an axion string. We also observe a chiral magnetic effect induced by a screw dislocation density in the absence of a nodal energy imbalance between Weyl points and describe an additional chiral geometric effect and a geometric Witten effect.

  11. The metrizability problem for Lorentz-invariant affine connections

    NASA Astrophysics Data System (ADS)

    Urban, Zbyněk; Volná, Jana

    2016-07-01

    The invariant metrizability problem for affine connections on a manifold, formulated by Tanaka and Krupka for connected Lie groups actions, is considered in the particular cases of Lorentz and Poincaré (inhomogeneous Lorentz) groups. Conditions under which an affine connection on the open submanifold ℝ × (ℝ3\\{(0, 0, 0)}) of the Euclidean space ℝ4 coincides with the Levi-Civita connection of some SO(3, 1), respectively (ℝ4 × sSO(3, 1))-invariant metric field are studied. We give complete description of metrizable Lorentz-invariant connections. Explicit solutions (metric fields) of the invariant metrizability equations are found and their properties are discussed.

  12. Affinity Adsorbents Based on Carriers Activated by Epoxy-compounds

    NASA Astrophysics Data System (ADS)

    Klyashchitskii, B. A.; Kuznetsov, P. V.

    1984-10-01

    The review is devoted to the synthesis and applications of affinity adsorbents based on carriers activated by epoxy-compounds. The methods for the introduction of epoxy-groups into carriers of different chemical types are discussed and conditions for the immobilisation of three-dimensional spacers and low-molecular-weight and polymeric ligands on carriers containing epoxy-groups are considered. Data are presented on the properties and applications of adsorbents of this type in affinity chromatography. The bibliography includes 144 references.

  13. Holographic trace anomaly and local renormalization group

    NASA Astrophysics Data System (ADS)

    Rajagopal, Srivatsan; Stergiou, Andreas; Zhu, Yechao

    2015-11-01

    The Hamilton-Jacobi method in holography has produced important results both at a renormalization group (RG) fixed point and away from it. In this paper we use the Hamilton-Jacobi method to compute the holographic trace anomaly for four- and six-dimensional boundary conformal field theories (CFTs), assuming higher-derivative gravity and interactions of scalar fields in the bulk. The scalar field contributions to the anomaly appear in CFTs with exactly marginal operators. Moving away from the fixed point, we show that the Hamilton-Jacobi formalism provides a deep connection between the holographic and the local RG. We derive the local RG equation holographically, and verify explicitly that it satisfies Weyl consistency conditions stemming from the commutativity of Weyl scalings. We also consider massive scalar fields in the bulk corresponding to boundary relevant operators, and comment on their effects to the local RG equation.

  14. Unifying the rotational and permutation symmetry of nuclear spin states: Schur-Weyl duality in molecular physics

    NASA Astrophysics Data System (ADS)

    Schmiedt, Hanno; Jensen, Per; Schlemmer, Stephan

    2016-08-01

    In modern physics and chemistry concerned with many-body systems, one of the mainstays is identical-particle-permutation symmetry. In particular, both the intra-molecular dynamics of a single molecule and the inter-molecular dynamics associated, for example, with reactive molecular collisions are strongly affected by selection rules originating in nuclear-permutation symmetry operations being applied to the total internal wavefunctions, including nuclear spin, of the molecules involved. We propose here a general tool to determine coherently the permutation symmetry and the rotational symmetry (associated with the group of arbitrary rotations of the entire molecule in space) of molecular wavefunctions, in particular the nuclear-spin functions. Thus far, these two symmetries were believed to be mutually independent and it has even been argued that under certain circumstances, it is impossible to establish a one-to-one correspondence between them. However, using the Schur-Weyl duality theorem we show that the two types of symmetry are inherently coupled. In addition, we use the ingenious representation-theory technique of Young tableaus to represent the molecular nuclear-spin degrees of freedom in terms of well-defined mathematical objects. This simplifies the symmetry classification of the nuclear wavefunction even for large molecules. Also, the application to reactive collisions is very straightforward and provides a much simplified approach to obtaining selection rules.

  15. Unifying the rotational and permutation symmetry of nuclear spin states: Schur-Weyl duality in molecular physics.

    PubMed

    Schmiedt, Hanno; Jensen, Per; Schlemmer, Stephan

    2016-08-21

    In modern physics and chemistry concerned with many-body systems, one of the mainstays is identical-particle-permutation symmetry. In particular, both the intra-molecular dynamics of a single molecule and the inter-molecular dynamics associated, for example, with reactive molecular collisions are strongly affected by selection rules originating in nuclear-permutation symmetry operations being applied to the total internal wavefunctions, including nuclear spin, of the molecules involved. We propose here a general tool to determine coherently the permutation symmetry and the rotational symmetry (associated with the group of arbitrary rotations of the entire molecule in space) of molecular wavefunctions, in particular the nuclear-spin functions. Thus far, these two symmetries were believed to be mutually independent and it has even been argued that under certain circumstances, it is impossible to establish a one-to-one correspondence between them. However, using the Schur-Weyl duality theorem we show that the two types of symmetry are inherently coupled. In addition, we use the ingenious representation-theory technique of Young tableaus to represent the molecular nuclear-spin degrees of freedom in terms of well-defined mathematical objects. This simplifies the symmetry classification of the nuclear wavefunction even for large molecules. Also, the application to reactive collisions is very straightforward and provides a much simplified approach to obtaining selection rules. PMID:27544099

  16. Unifying the rotational and permutation symmetry of nuclear spin states: Schur-Weyl duality in molecular physics.

    PubMed

    Schmiedt, Hanno; Jensen, Per; Schlemmer, Stephan

    2016-08-21

    In modern physics and chemistry concerned with many-body systems, one of the mainstays is identical-particle-permutation symmetry. In particular, both the intra-molecular dynamics of a single molecule and the inter-molecular dynamics associated, for example, with reactive molecular collisions are strongly affected by selection rules originating in nuclear-permutation symmetry operations being applied to the total internal wavefunctions, including nuclear spin, of the molecules involved. We propose here a general tool to determine coherently the permutation symmetry and the rotational symmetry (associated with the group of arbitrary rotations of the entire molecule in space) of molecular wavefunctions, in particular the nuclear-spin functions. Thus far, these two symmetries were believed to be mutually independent and it has even been argued that under certain circumstances, it is impossible to establish a one-to-one correspondence between them. However, using the Schur-Weyl duality theorem we show that the two types of symmetry are inherently coupled. In addition, we use the ingenious representation-theory technique of Young tableaus to represent the molecular nuclear-spin degrees of freedom in terms of well-defined mathematical objects. This simplifies the symmetry classification of the nuclear wavefunction even for large molecules. Also, the application to reactive collisions is very straightforward and provides a much simplified approach to obtaining selection rules.

  17. Lectin affinity chromatography of glycolipids

    SciTech Connect

    Torres, B.V.; Smith, D.F.

    1987-05-01

    Since glycolipids (GLs) are either insoluble or form mixed micelles in water, lectin affinity chromatography in aqueous systems has not been applied to their separation. They have overcome this problem by using tetrahydrofuran (THF) in the mobile phase during chromatography. Affinity columns prepared with the GalNAc-specific Helix pomatia agglutinin (HPA) and equilibrated in THF specifically bind the (/sup 3/H)oligosaccharide derived from Forssman GL indicating that the immobilized HPA retained its carbohydrate-binding specificity in this solvent. Intact Forssman GL was bound by the HPA-column equilibrated in THF and was specifically eluted with 0.1 mg/ml GalNAc in THF. Purification of the Forssman GL was achieved when a crude lipid extract of sheep erythrocyte membranes was applied to the HPA-column in THF. Non-specifically bound GLs were eluted from the column using a step gradient of aqueous buffer in THF, while the addition of GalNAc was required to elute the specifically bound GLs. Using this procedure the A-active GLs were purified from a crude lipid extract of type A human erythrocytes in a single chromatographic step. The use of solvents that maintain carbohydrate-binding specificity and lipid solubility will permit the application of affinity chromatography on immobilized carbohydrate-binding proteins to intact GLs.

  18. Two-parameter twisted quantum affine algebras

    NASA Astrophysics Data System (ADS)

    Jing, Naihuan; Zhang, Honglian

    2016-09-01

    We establish Drinfeld realization for the two-parameter twisted quantum affine algebras using a new method. The Hopf algebra structure for Drinfeld generators is given for both untwisted and twisted two-parameter quantum affine algebras, which include the quantum affine algebras as special cases.

  19. Ideal Weyl Semimetals in the Chalcopyrites CuTlSe2 , AgTlTe2 , AuTlTe2 , and ZnPbAs2

    NASA Astrophysics Data System (ADS)

    Ruan, Jiawei; Jian, Shao-Kai; Zhang, Dongqin; Yao, Hong; Zhang, Haijun; Zhang, Shou-Cheng; Xing, Dingyu

    2016-06-01

    Weyl semimetals are new states of matter which feature novel Fermi arcs and exotic transport phenomena. Based on first-principles calculations, we report that the chalcopyrites CuTlSe2 , AgTlTe2 , AuTlTe2 , and ZnPbAs2 are ideal Weyl semimetals, having largely separated Weyl points (˜0.05 Å-1 ) and uncovered Fermi arcs that are amenable to experimental detections. We also construct a minimal effective model to capture the low-energy physics of this class of Weyl semimetals. Our discovery is a major step toward a perfect playground of intriguing Weyl semimetals and potential applications for low-power and high-speed electronics.

  20. Ideal Weyl Semimetals in the Chalcopyrites CuTlSe_{2}, AgTlTe_{2}, AuTlTe_{2}, and ZnPbAs_{2}.

    PubMed

    Ruan, Jiawei; Jian, Shao-Kai; Zhang, Dongqin; Yao, Hong; Zhang, Haijun; Zhang, Shou-Cheng; Xing, Dingyu

    2016-06-01

    Weyl semimetals are new states of matter which feature novel Fermi arcs and exotic transport phenomena. Based on first-principles calculations, we report that the chalcopyrites CuTlSe_{2}, AgTlTe_{2}, AuTlTe_{2}, and ZnPbAs_{2} are ideal Weyl semimetals, having largely separated Weyl points (∼0.05  Å^{-1}) and uncovered Fermi arcs that are amenable to experimental detections. We also construct a minimal effective model to capture the low-energy physics of this class of Weyl semimetals. Our discovery is a major step toward a perfect playground of intriguing Weyl semimetals and potential applications for low-power and high-speed electronics. PMID:27314733

  1. Floquet-Weyl and Floquet-topological-insulator phases in a stacked two-dimensional ring-network lattice

    NASA Astrophysics Data System (ADS)

    Ochiai, Tetsuyuki

    2016-10-01

    We show the presence of Floquet-Weyl and Floquet-topological-insulator phases in a stacked two-dimensional ring-network lattice. The Weyl points in the three-dimensional Brillouin zone and Fermi-arc surface states are clearly demonstrated in the quasienergy spectrum of the system in the Floquet-Weyl phase. In addition, chiral surface states coexist in this phase. The Floquet-topological-insulator phase is characterized by the winding number of two in the reflection matrices of the semi-infinite system and resulting two gapless surface states in the quasienergy gap of the bulk. The phase diagram of the system is derived in the two-parameter space of hopping S-matrices among the rings. We also discuss a possible optical realization of the system together with the introduction of synthetic gauge fields.

  2. Floquet-Weyl and Floquet-topological-insulator phases in a stacked two-dimensional ring-network lattice.

    PubMed

    Ochiai, Tetsuyuki

    2016-10-26

    We show the presence of Floquet-Weyl and Floquet-topological-insulator phases in a stacked two-dimensional ring-network lattice. The Weyl points in the three-dimensional Brillouin zone and Fermi-arc surface states are clearly demonstrated in the quasienergy spectrum of the system in the Floquet-Weyl phase. In addition, chiral surface states coexist in this phase. The Floquet-topological-insulator phase is characterized by the winding number of two in the reflection matrices of the semi-infinite system and resulting two gapless surface states in the quasienergy gap of the bulk. The phase diagram of the system is derived in the two-parameter space of hopping S-matrices among the rings. We also discuss a possible optical realization of the system together with the introduction of synthetic gauge fields. PMID:27589340

  3. Chiral magnetic conductivity and surface states of Weyl semimetals in topological insulator ultra-thin film multilayer

    NASA Astrophysics Data System (ADS)

    Owerre, S. A.

    2016-06-01

    We investigate an ultra-thin film of topological insulator (TI) multilayer as a model for a three-dimensional (3D) Weyl semimetal. We introduce tunneling parameters t S, {{t}\\bot} , and t D, where the former two parameters couple layers of the same thin film at small and large momenta, and the latter parameter couples neighbouring thin film layers along the z-direction. The Chern number is computed in each topological phase of the system and we find that for {{t}\\text{S}},{{t}\\text{D}}>0 , the tunneling parameter {{t}\\bot} changes from positive to negative as the system transits from Weyl semi-metallic phase to insulating phases. We further study the chiral magnetic effect (CME) of the system in the presence of a time dependent magnetic field. We compute the low-temperature dependence of the chiral magnetic conductivity and show that it captures three distinct phases of the system separated by plateaus. Furthermore, we propose and study a 3D lattice model of Porphyrin thin film, an organic material known to support topological Frenkel exciton edge states. We show that this model exhibits a 3D Weyl semi-metallic phase and also supports a 2D Weyl semi-metallic phase. We further show that this model recovers that of 3D Weyl semimetal in topological insulator thin film multilayer. Thus, paving the way for simulating a 3D Weyl semimetal in topological insulator thin film multilayer. We obtain the surface states (Fermi arcs) in the 3D model and the chiral edge states in the 2D model and analyze their topological properties.

  4. Chiral magnetic conductivity and surface states of Weyl semimetals in topological insulator ultra-thin film multilayer.

    PubMed

    Owerre, S A

    2016-06-15

    We investigate an ultra-thin film of topological insulator (TI) multilayer as a model for a three-dimensional (3D) Weyl semimetal. We introduce tunneling parameters t S, [Formula: see text], and t D, where the former two parameters couple layers of the same thin film at small and large momenta, and the latter parameter couples neighbouring thin film layers along the z-direction. The Chern number is computed in each topological phase of the system and we find that for [Formula: see text], the tunneling parameter [Formula: see text] changes from positive to negative as the system transits from Weyl semi-metallic phase to insulating phases. We further study the chiral magnetic effect (CME) of the system in the presence of a time dependent magnetic field. We compute the low-temperature dependence of the chiral magnetic conductivity and show that it captures three distinct phases of the system separated by plateaus. Furthermore, we propose and study a 3D lattice model of Porphyrin thin film, an organic material known to support topological Frenkel exciton edge states. We show that this model exhibits a 3D Weyl semi-metallic phase and also supports a 2D Weyl semi-metallic phase. We further show that this model recovers that of 3D Weyl semimetal in topological insulator thin film multilayer. Thus, paving the way for simulating a 3D Weyl semimetal in topological insulator thin film multilayer. We obtain the surface states (Fermi arcs) in the 3D model and the chiral edge states in the 2D model and analyze their topological properties.

  5. Chiral magnetic conductivity and surface states of Weyl semimetals in topological insulator ultra-thin film multilayer.

    PubMed

    Owerre, S A

    2016-06-15

    We investigate an ultra-thin film of topological insulator (TI) multilayer as a model for a three-dimensional (3D) Weyl semimetal. We introduce tunneling parameters t S, [Formula: see text], and t D, where the former two parameters couple layers of the same thin film at small and large momenta, and the latter parameter couples neighbouring thin film layers along the z-direction. The Chern number is computed in each topological phase of the system and we find that for [Formula: see text], the tunneling parameter [Formula: see text] changes from positive to negative as the system transits from Weyl semi-metallic phase to insulating phases. We further study the chiral magnetic effect (CME) of the system in the presence of a time dependent magnetic field. We compute the low-temperature dependence of the chiral magnetic conductivity and show that it captures three distinct phases of the system separated by plateaus. Furthermore, we propose and study a 3D lattice model of Porphyrin thin film, an organic material known to support topological Frenkel exciton edge states. We show that this model exhibits a 3D Weyl semi-metallic phase and also supports a 2D Weyl semi-metallic phase. We further show that this model recovers that of 3D Weyl semimetal in topological insulator thin film multilayer. Thus, paving the way for simulating a 3D Weyl semimetal in topological insulator thin film multilayer. We obtain the surface states (Fermi arcs) in the 3D model and the chiral edge states in the 2D model and analyze their topological properties. PMID:27157544

  6. Constructing a Weyl semimetal by stacking one-dimensional topological phases

    NASA Astrophysics Data System (ADS)

    Ganeshan, Sriram; Das Sarma, S.

    2015-03-01

    Topological semimetals in three-dimensions (e.g., a Weyl semimetal) can be built by stacking two-dimensional topological phases. The interesting aspect of such a construction is that even though the topological building blocks in the low dimension may be gapped, the higher dimensional semimetallic phase emerges as a gapless critical point of a topological phase transition between two distinct insulating phases. In this work, we extend this idea by constructing three-dimensional topological semimetallic phases akin to Weyl systems by stacking one-dimensional Aubry-Andre-Harper (AAH) lattice tight-binding models with nontrivial topology. The generalized AAH model is a family of one-dimensional tight-binding models with cosine modulations in both hopping and on-site energy terms. In this paper, we present a two-parameter generalization of the AAH model that can access topological phases in three dimensions within a unified framework. We show that the π -flux state of this two-parameter AAH model manifests three-dimensional topological semimetallic phases where the topological features are embedded in one dimension. The topological nature of the band touching points of the semimetallic phase in 3D is explicitly established both analytically and numerically from the 1D perspective. This dimensional reduction provides a simple protocol to experimentally construct the three-dimensional Brillouin zone of the topological semimetallic phases using "legos" of simple 1D double well optical lattices. We also propose Zak phase imaging of optical lattices as a tool to capture the topological nature of the band touching points. Our work provides a theoretical connection between the commensurate AAH model in 1D and Weyl semimetals in 3D, and points toward practical methods for the laboratory realization of such three-dimensional topological systems in atomic optical lattices.

  7. Resonant plasmon-axion excitations induced by charge density wave order in a Weyl semimetal

    NASA Astrophysics Data System (ADS)

    Redell, Matthew D.; Mukherjee, Shantanu; Lee, Wei-Cheng

    2016-06-01

    We investigate the charge excitations of a Weyl semimetal in the axionic charge density wave (axionic CDW) state. While it has been shown that the topological response (anomalous Hall conductivity) is protected against the CDW state, we find that the long-wavelength plasmon excitation is radically influenced by the dynamics of the CDW order parameter. In the normal state, we show that an undamped collective mode should exist at q ⃗≈Q⃗CDW if there is an attractive interaction favoring the formation of the CDW state. The undamped nature of this collective mode is attributed to a gaplike feature in the particle-hole continuum at q ⃗≈Q⃗CDW due to the chirality of the Weyl nodes, which is not seen in other materials with CDW instability. In the CDW state, the long-wavelength plasmon excitations become more dispersive due to the additional interband scattering not allowed in the normal state. Moreover, because the translational symmetry is spontaneously broken, umklapp scattering, the process conserving the total momentum only up to n Q⃗CDW , with n an integer and Q⃗CDW the ordering wave vector, emerges in the CDW state. We find that the plasmon excitation couples to the phonon mode of the CDW order via the umklapp scattering, leading to two branches of resonant collective modes observable in the density-density correlation function at q ⃗≈0 and q ⃗≈Q⃗CDW . Based on our analysis, we propose that measuring these resonant plasmon-axion excitations around q ⃗≈0 and q ⃗≈Q⃗CDW by momentum-resolved electron energy loss spectroscopy could serve as a reliable way to detect the axionic CDW state in Weyl semimetals.

  8. Optical and transport properties in three-dimensional Dirac and Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Tabert, C. J.; Carbotte, J. P.; Nicol, E. J.

    2016-02-01

    Within a Kubo formalism, we study dc transport and ac optical properties of 3D Dirac and Weyl semimetals. Emphasis is placed on the approach to charge neutrality and on the differences between Dirac and Weyl materials. At charge neutrality, the zero-temperature limit of the dc conductivity is not universal and also depends on the residual scattering model employed. However, the Lorenz number L retains its usual value L0. With increasing temperature, the Wiedemann-Franz law is violated. At high temperatures, L exhibits a new plateau at a value dependent on the details of the scattering rate. Such details can also appear in the optical conductivity, both in the Drude response and interband background. In the clean limit, the interband background is linear in photon energy and always extrapolates to the origin. This background can be shifted to the right through the introduction of a massless gap. In this case, the extrapolation can cut the axis at a finite photon energy as is observed in some experiments. It is also of interest to differentiate between the two types of Weyl semimetals: those with broken time-reversal symmetry and those with broken spatial-inversion symmetry. We show that, while the former will follow the same behavior as the 3D Dirac semimetals, for the zero magnetic field properties discussed here, the latter type will show a double step in the optical conductivity at finite doping and a single absorption edge at charge neutrality. The Drude conductivity is always finite in this case, even at charge neutrality.

  9. Specific capture of uranyl protein targets by metal affinity chromatography.

    PubMed

    Basset, Christian; Dedieu, Alain; Guérin, Philippe; Quéméneur, Eric; Meyer, Daniel; Vidaud, Claude

    2008-03-28

    To improve general understanding of biochemical mechanisms in the field of uranium toxicology, the identification of protein targets needs to be intensified. Immobilized metal affinity chromatography (IMAC) has been widely developed as a powerful tool for capturing metal binding proteins from biological extracts. However uranyl cations (UO2(2+)) have particular physico-chemical characteristics which prevent them from being immobilized on classical metal chelating supports. We report here on the first development of an immobilized uranyl affinity chromatography method, based on the cation-exchange properties of aminophosphonate groups for uranyl binding. The cation distribution coefficient and loading capacity on the support were determined. Then the stability of the uranyl-bonded phase under our chromatographic conditions was optimized to promote affinity mechanisms. The successful enrichment of uranyl binding proteins from human serum was then proven using proteomic and mass spectral analysis. PMID:18308325

  10. Majorana-Weyl fermions in the chiral superconductor Sr{sub 2}RuO{sub 4}

    SciTech Connect

    Nobukane, Hiroyoshi; Tokuno, Akiyuki; Tanda, Satoshi; Matsuyama, Toyoki

    2011-04-01

    We found Majorana-Weyl fermions in a chiral superconductor Sr{sub 2}RuO{sub 4}. The current-voltage curves reveal anomalous behavior: The induced voltage is an even function of the bias current. The zero-bias conductance peak was observed through the tunnel junction at the edge. The magnetic-field dependence suggests the excitation of the Majorana-Weyl fermions along the closed chiral edge current of the single domain under a bias current. We also discuss the relationship between a change in the chirality and the spontaneous magnetization of the single domain Sr{sub 2}RuO{sub 4}.

  11. Odd Viscosity in the Quantum Critical Region of a Holographic Weyl Semimetal

    NASA Astrophysics Data System (ADS)

    Landsteiner, Karl; Liu, Yan; Sun, Ya-Wen

    2016-08-01

    We study odd viscosity in a holographic model of a Weyl semimetal. The model is characterized by a quantum phase transition from a topological semimetal to a trivial semimetal state. Since the model is axisymmetric in three spatial dimensions there are two independent odd viscosities. Both odd viscosity coefficients are nonvanishing in the quantum critical region and nonzero only due to the mixed axial gravitational anomaly. It is therefore a novel example in which the mixed axial gravitational anomaly gives rise to a transport coefficient at first order in derivatives at finite temperature. In the quantum critical region, the physics of viscosities as well as conductivities is governed by the quantum critical point.

  12. Noncollinear drag force in Bose-Einstein condensates with Weyl spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Liao, Renyuan; Fialko, Oleksandr; Brand, Joachim; Zülicke, Ulrich

    2016-02-01

    We consider the motion of a pointlike impurity through a three-dimensional two-component Bose-Einstein condensate subject to Weyl spin-orbit coupling. Using linear-response theory, we calculate the drag force felt by the impurity and the associated anisotropic critical velocity from the spectrum of elementary excitations. The drag force is shown to be generally not collinear with the velocity of the impurity. This unusual behavior is a consequence of condensation into a finite-momentum state due to the spin-orbit coupling.

  13. Short periodic orbit approach to resonances and the fractal Weyl law.

    PubMed

    Pedrosa, J M; Wisniacki, D; Carlo, G G; Novaes, M

    2012-03-01

    We investigate the properties of the semiclassical short periodic orbit approach for the study of open quantum maps that was recently introduced [Novaes, Pedrosa, Wisniacki, Carlo, and Keating, Phys. Rev. E 80, 035202(R) (2009)]. We provide solid numerical evidence, for the paradigmatic systems of the open baker and cat maps, that by using this approach the dimensionality of the eigenvalue problem is reduced according to the fractal Weyl law. The method also reproduces the projectors |ψ(n)(R)><ψ(n)(L)|, which involves the right and left states associated with a given eigenvalue and is supported on the classical phase-space repeller.

  14. From the Weyl quantization of a particle on the circle to number-phase Wigner functions

    NASA Astrophysics Data System (ADS)

    Przanowski, Maciej; Brzykcy, Przemysław; Tosiek, Jaromir

    2014-12-01

    A generalized Weyl quantization formalism for a particle on the circle is shown to supply an effective method for defining the number-phase Wigner function in quantum optics. A Wigner function for the state ϱ' and the kernel K for a particle on the circle is defined and its properties are analysed. Then it is shown how this Wigner function can be easily modified to give the number-phase Wigner function in quantum optics. Some examples of such number-phase Wigner functions are considered.

  15. Strong gravitational field time delay for photons coupled to Weyl tensor in a Schwarzschild black hole

    NASA Astrophysics Data System (ADS)

    Lu, Xu; Yang, Feng-Wei; Xie, Yi

    2016-07-01

    We analyze strong gravitational field time delay for photons coupled to the Weyl tensor in a Schwarzschild black hole. By making use of the method of strong deflection limit, we find that these time delays between relativistic images are significantly affected by polarization directions of such a coupling. A practical problem about determination of the polarization direction by observations is investigated. It is found that if the first and second relativistic images can be resolved, the measurement of time delay can more effectively improve detectability of the polarization direction.

  16. Generic Weyl phase in the vortex state of quasi-two-dimensional chiral superconductors

    NASA Astrophysics Data System (ADS)

    Yoshida, Tomohiro; Udagawa, Masafumi

    2016-08-01

    We study the collective behavior of Majorana modes in the vortex state of chiral p -wave superconductors. Away from the isolated vortex limit, the zero-energy Majorana states communicate with each other on a vortex lattice, and form a coherent band structure with a nontrivial topological character. We reveal that the topological nature of Majorana bands changes sensitively via quantum phase transitions in two-dimensional (2D) systems, by sweeping magnetic field or Fermi energy. Through the idea of dimensional reduction, we show the existence of a generic superconducting Weyl phase in a low magnetic field region of quasi-2D chiral superconductors.

  17. On the Asymptotic Behavior of the Weyl-Titchmarsh m-FUNCTION

    NASA Astrophysics Data System (ADS)

    Danielyan, A. A.; Levitan, B. M.

    1991-06-01

    The asymptotic expansion \\displaystyle m(z) = \\dfrac{i}{\\sqrt z}+ \\sum_{k = 1}^{n + 1} a_k(-z)^{-(k + 2)/2} + \\varepsilon_n(z), \\qquad\\varepsilon_n(z) = o(\\vert z\\vert^{-(k + 3)/2}), valid outside any angle \\vert\\tan \\theta\\vert < \\varepsilon, \\varepsilon > 0, is obtained for the Weyl-Titchmarsh function of the Sturm-Liouville problem on the half-axis with potential q(x) \\in C^n\\lbrack 0, \\delta). Bibliography: 8 titles.

  18. Gradient-based habitat affinities predict species vulnerability to drought.

    PubMed

    Debinski, Diane M; Caruthers, Jennet C; Cook, Dianne; Crowley, Jason; Wickham, Hadley

    2013-05-01

    Ecological fingerprints of climate change are becoming increasingly evident at broad geographical scales as measured by species range shifts and changes in phenology. However, finer-scale species-level responses to environmental fluctuations may also provide an important bellwether of impending future community responses. Here we examined changes in abundance of butterfly species along a hydrological gradient of six montane meadow habitat types in response to drought. Our data collection began prior to the drought, and we were able to track changes for 11 years, of which eight were considered mild to extreme drought conditions. We separated the species into those that had an affinity for hydric vs. xeric habitats. We suspected that drought would favor species with xeric habitat affinities, but that there could be variations in species-level responses along the hydrological gradient. We also suspected that mesic meadows would be most sensitive to drought conditions. Temporal trajectories were modeled for both species groups (hydric vs. xeric affinity) and individual species. Abundances of species with affinity for xeric habitats increased in virtually all meadow types. Conversely, abundances of species with affinity for hydric habitats decreased, particularly in mesic and xeric meadows. Mesic meadows showed the most striking temporal abundance trajectory: Increasing abundances of species with xeric habitat affinity were offset by decreasing or stable abundances of species with hydric habitat affinity. The one counterintuitive finding was that, in some hydric meadows, species with affinity for hydric habitats increased. In these cases, we suspect that decreasing moisture conditions in hydric meadows actually increased habitat suitability because sites near the limit of moisture extremes for some species became more acceptable. Thus, species responses were relatively predictable based upon habitat affinity and habitat location along the hydrological gradient, and

  19. The maximal affinity of ligands

    PubMed Central

    Kuntz, I. D.; Chen, K.; Sharp, K. A.; Kollman, P. A.

    1999-01-01

    We explore the question of what are the best ligands for macromolecular targets. A survey of experimental data on a large number of the strongest-binding ligands indicates that the free energy of binding increases with the number of nonhydrogen atoms with an initial slope of ≈−1.5 kcal/mol (1 cal = 4.18 J) per atom. For ligands that contain more than 15 nonhydrogen atoms, the free energy of binding increases very little with relative molecular mass. This nonlinearity is largely ascribed to nonthermodynamic factors. An analysis of the dominant interactions suggests that van der Waals interactions and hydrophobic effects provide a reasonable basis for understanding binding affinities across the entire set of ligands. Interesting outliers that bind unusually strongly on a per atom basis include metal ions, covalently attached ligands, and a few well known complexes such as biotin–avidin. PMID:10468550

  20. Engineering antibody affinity and specificity.

    PubMed

    Webster, D M; Roberts, S; Cheetham, J C; Griest, R; Rees, A R

    1988-01-01

    A combination of ab initio calculations, "knowledge-based prediction", molecular graphics and site-directed mutagenesis has enabled us to probe the molecular details of antibody:antigen recognition and binding and to alter the affinity and specificity of an antibody for its antigen. The significance of electrostatic hydrogen bonding, hydrophilic/hydrophobic patch matching and van der Waals interactions as well as CDR:CDR interactions are discussed in relation to the results of site-directed mutagenesis experiments on the anti-lysozyme antibody Gloop2. The ability to generate reconstructed antibodies, chimeric antibodies, catalytic antibodies and the use of modelled antibodies for the design of drugs is discussed. PMID:3209295

  1. Proton affinities of hydrated molecules

    NASA Astrophysics Data System (ADS)

    Valadbeigi, Younes

    2016-09-01

    Proton affinities (PA) of non-hydrated, M, and hydrated forms, M(H2O)1,2,3, of 20 organic molecules including alcohols, ethers, aldehydes, ketones and amines were calculated by the B3LYP/6-311++G(d,p) method. For homogeneous families, linear correlations were observed between PAs of the M(H2O)1,2,3 and the PAs of the non-hydrated molecules. Also, the absolute values of the hydration enthalpies of the protonated molecules decreased linearly with the PAs. The correlation functions predicted that for an amine with PA < 1100 kJ/mol the PA(M(H2O)) is larger than the corresponding PA, while for an amine with PA > 1100 kJ/mol the PA(M(H2O)) is smaller than the PA.

  2. Topological insulators, topological superconductors and Weyl fermion semimetals: discoveries, perspectives and outlooks

    NASA Astrophysics Data System (ADS)

    Zahid Hasan, M.; Xu, Su-Yang; Bian, Guang

    2015-12-01

    Unlike string theory, topological physics in lower dimensional condensed matter systems is an experimental reality since the bulk-boundary correspondence can be probed experimentally in lower dimensions. In addition, recent experimental discoveries of non-quantum-Hall-like topological insulators, topological superconductors, Weyl semimetals and other topological states of matter also signal a clear departure from the quantum-Hall-effect-like transport paradigm that has dominated the field since the 1980s. It is these new forms of matter that enabled realizations of topological-Dirac, Weyl cones, helical-Cooper-pairs, Fermi-arc-quasiparticles and other emergent phenomena in fine-tuned photoemission (ARPES) experiments since ARPES experiments directly allow the study of bulk-boundary (topological) correspondence. In this proceeding we provide a brief overview of the key experiments and discuss our perspectives regarding the new research frontiers enabled by these experiments. Taken collectively, we argue in favor of the emergence of ‘topological-condensed-matter-physics’ in laboratory experiments for which a variety of theoretical concepts over the last 80 years paved the way.

  3. Effective action and electromagnetic response of topological superconductors and Majorana-mass Weyl fermions

    NASA Astrophysics Data System (ADS)

    Stone, Michael; Lopes, Pedro L. e. S.

    2016-05-01

    Motivated by an apparent paradox in [X.-L. Qi, E. Witten, and S.-C. Zhang, Phys. Rev. B 87, 134519 (2013), 10.1103/PhysRevB.87.134519], we use the method of gauged Wess-Zumino-Witten functionals to construct an effective action for a Weyl fermion with a Majorana mass that arises from coupling to a charged condensate. We obtain expressions for the current induced by an external gauge field and observe that the topological part of the current is only one-third of that that might have been expected from the gauge anomaly. The anomaly is not changed by the induced mass gap, however. The topological current is supplemented by a conventional supercurrent that provides the remaining two-thirds of the anomaly once the equation of motion for the Goldstone mode is satisfied. We apply our formula for the current to resolve the apparent paradox and also to the chiral magnetic effect (CME), where it predicts a reduction of the CME current to one-third of its value for a free Weyl gas in thermal equilibrium. We attribute this reduction to a partial cancellation of the CME by a chiral vortical effect current arising from the persistent rotation of the fluid induced by the external magnetic field.

  4. Anisotropic thermal transport in Weyl semimetal TaAs: a first principles calculation.

    PubMed

    Ouyang, Tao; Xiao, Huaping; Tang, Chao; Hu, Ming; Zhong, Jianxin

    2016-06-22

    A fundamental understanding of the phonon transport property is crucial to predict the thermal management performance in micro/nano-electronic devices. By combining first principle calculations and Boltzmann phonon transport equation, we investigate thermal transport in TaAs-a typical Weyl semimetal. The lattice thermal conductivity of TaAs at room temperature was found to be 39.26 W mK(-1) and 24.78 W mK(-1) along the a(b) and c crystal axis, respectively, showing obvious anisotropy. Detailed analyses of the mode level phonon properties further revealed that the three acoustic phonon modes dominate the overall thermal transport and the major phonon scattering channels in this typical Weyl semimetal were TA1/TA2/LA + O ↔ O and A + A ↔ O. The representative phonon mean free path of TaAs was also calculated in this paper, which provide helpful guidance for the thermal management of TaAs-based electronic devices. PMID:27271203

  5. Large unsaturated positive and negative magnetoresistance in Weyl semimetal TaP

    NASA Astrophysics Data System (ADS)

    Du, JianHua; Wang, HangDong; Chen, Qin; Mao, QianHui; Khan, Rajwali; Xu, BinJie; Zhou, YuXing; Zhang, YanNan; Yang, JinHu; Chen, Bin; Feng, ChunMu; Fang, MingHu

    2016-05-01

    After successfully growing single-crystal TaP, we measured its longitudinal resistivity ( ρ xx ) and Hall resistivity ( ρ yx ) at magnetic fields up to 9 T in the temperature range of 2-300 K. At 8 T, the magnetoresistance (MR) reached 3.28 × 105% at 2 K, 176% at 300 K. Neither value appeared saturated. We confirmed that TaP is a hole-electron compensated semimetal with a low carrier concentration and high hole mobility of μ h=3.71 × 105 cm2/V s, and found that a magnetic-field-induced metal-insulator transition occurs at room temperature. Remarkably, because a magnetic field ( H) was applied in parallel to the electric field ( E), a negative MR due to a chiral anomaly was observed and reached -3000% at 9 T without any sign of saturation, either, which is in contrast to other Weyl semimetals (WSMs). The analysis of the Shubnikov-de Haas (SdH) oscillations superimposed on the MR revealed that a nontrivial Berry's phase with a strong offset of 0.3958, which is the characteristic feature of charge carriers enclosing a Weyl node. These results indicate that TaP is a promising candidate not only for revealing fundamental physics of the WSM state but also for some novel applications.

  6. Geometry of deformed black holes. II. Schwarzschild hole surrounded by a Bach-Weyl ring

    NASA Astrophysics Data System (ADS)

    Basovník, M.; Semerák, O.

    2016-08-01

    We continue to study the response of black-hole space-times on the presence of additional strong sources of gravity. Restricting ourselves to static and axially symmetric (electro)vacuum exact solutions of Einstein's equations, we first considered the Majumdar-Papapetrou solution for a binary of extreme black holes in a previous paper, while here we deal with a Schwarzschild black hole surrounded by a concentric thin ring described by the Bach-Weyl solution. The geometry is again revealed on the simplest invariants determined by the metric (lapse function) and its gradient (gravitational acceleration), and by curvature (Kretschmann scalar). Extending the metric inside the black hole along null geodesics tangent to the horizon, we mainly focus on the black-hole interior (specifically, on its sections at constant Killing time) where the quantities behave in a way indicating a surprisingly strong influence of the external source. Being already distinct on the level of potential and acceleration, this is still more pronounced on the level of curvature: for a sufficiently massive and/or nearby (small) ring, the Kretschmann scalar even becomes negative in certain toroidal regions mostly touching the horizon from inside. Such regions have been interpreted as those where magnetic-type curvature dominates, but here we deal with space-times which do not involve rotation and the negative value is achieved due to the electric-type components of the Riemann/Weyl tensor. The Kretschmann scalar also shapes rather nontrivial landscapes outside the horizon.

  7. Magnetotransport in Weyl semimetals in the quantum limit: Role of topological surface states

    NASA Astrophysics Data System (ADS)

    Ominato, Yuya; Koshino, Mikito

    2016-06-01

    We theoretically study the magnetoconductivity of Weyl semimetals with a surface boundary under E ||B geometry and demonstrate that the topological surface state plays an essential role in the magnetotransport. In the long-range-disorder limit where the scattering between the two Weyl nodes vanishes, the conductivity diverges in the bulk model (i.e., periodic boundary condition) as usually expected since the direct internode relaxation is absent. In the presence of the surface, however, the internode relaxation always takes place through the mediation by the surface states, and that prevents the conductivity divergence. The magnetic-field dependence becomes also quite different between the two cases, where the conductivity linearly increases in B in the surface boundary case, in contrast to B -independent behavior in the bulk periodic case. This is an interesting example in which the same system exhibits completely different properties in the surface boundary condition and the periodic boundary condition even in the macroscopic size limit. In the short-range regime where the direct intervalley scattering is dominant, the surface states are irrelevant, and the conductivity approaches that of the bulk periodic model.

  8. Optical evidence for a Weyl semimetal state in pyrochlore Eu2Ir2O7

    NASA Astrophysics Data System (ADS)

    Sushkov, A. B.; Hofmann, J. B.; Jenkins, G. S.; Ishikawa, J.; Nakatsuji, S.; Das Sarma, S.; Drew, H. D.

    2015-12-01

    A Weyl semimetallic state with pairs of nondegenerate Dirac cones in three dimensions was recently predicted to occur in the antiferromagnetic state of the pyrochlore iridates. Here, we show that the THz optical conductivity and temperature dependence of the free carrier response in pyrochlore Eu2Ir2O7 match the predictions for a Weyl semimetal and suggest novel Dirac liquid behavior. The interband optical conductivity vanishes continuously at low frequencies signifying a semimetal. The metal-semimetal transition at TN=110 K is manifested in the Drude spectral weight, which is independent of temperature in the metallic phase and decreases smoothly in the ordered phase. The temperature dependence of the free carrier weight below TN is in good agreement with theoretical predictions for a Dirac material. The data yield a Fermi velocity vF≈4 ×107 cm/s, a logarithmic renormalization scale ΛL≈600 K, and require a Fermi temperature of TF≈100 K associated with residual unintentional doping to account for the low temperature optical response and dc resistivity.

  9. Affine transformations capture beak shape variation in Darwin's Finches

    NASA Astrophysics Data System (ADS)

    Brenner, Michael; Campas, Otger; Mallarino, Riccardo; Abzhanov, Arhat

    2009-11-01

    Evolution by natural selection has resulted in extraordinary morphological complexity of living organisms, whose description has thus far defied any precise mathematical characterization linked to the underlying developmental genetics. Here we demonstrate that the morphological diversity of the beaks of Darwin's finches, the classical example of adaptive morphological radiation, is quantitatively accounted for through the mathematical group of affine transformations. Specifically, we show that all beak shapes of Ground Finches (genus Geospiza) are related by scaling transformations (a subgroup of the affine group), and the same scheme occurs for all the beak shapes of Tree and Warbler finches. This analysis shows that the beak shapes within each of these groups differ only by their scales, such as length and depth, each of which is knownto be under genetic control.The complete morphological variability within the beaks of Darwin's finches can be explained by extending the scaling transformations to the entire affine group, by including shear transformations. Altogether our results suggest that the mathematical theory of groups can help decode morphological variability, and points to a potentially hierarchical structure of morphological diversity and the underlying developmental processes.

  10. Structural determinants of sigma receptor affinity

    SciTech Connect

    Largent, B.L.; Wikstroem, H.G.; Gundlach, A.L.; Snyder, S.H.

    1987-12-01

    The structural determinants of sigma receptor affinity have been evaluated by examining a wide range of compounds related to opioids, neuroleptics, and phenylpiperidine dopaminergic structures for affinity at sigma receptor-binding sites labeled with (+)-(/sup 3/H)3-PPP. Among opioid compounds, requirements for sigma receptor affinity differ strikingly from the determinants of affinity for conventional opiate receptors. Sigma sites display reverse stereoselectivity to classical opiate receptors. Multi-ringed opiate-related compounds such as morphine and naloxone have negligible affinity for sigma sites, with the highest sigma receptor affinity apparent for benzomorphans which lack the C ring of opioids. Highest affinity among opioids and other compounds occurs with more lipophilic N-substituents. This feature is particularly striking among the 3-PPP derivatives as well as the opioids. The butyrophenone haloperidol is the most potent drug at sigma receptors we have detected. Among the series of butyrophenones, receptor affinity is primarily associated with the 4-phenylpiperidine moiety. Conformational calculations for various compounds indicate a fairly wide range of tolerance for distances between the aromatic ring and the amine nitrogen, which may account for the potency at sigma receptors of structures of considerable diversity. Among the wide range of structures that bind to sigma receptor-binding sites, the common pharmacophore associated with high receptor affinity is a phenylpiperidine with a lipophilic N-substituent.

  11. Non-affine deformations in polymer hydrogels

    PubMed Central

    Wen, Qi; Basu, Anindita; Janmey, Paul A.; Yodh, A. G.

    2012-01-01

    Most theories of soft matter elasticity assume that the local strain in a sample after deformation is identical everywhere and equal to the macroscopic strain, or equivalently that the deformation is affine. We discuss the elasticity of hydrogels of crosslinked polymers with special attention to affine and non-affine theories of elasticity. Experimental procedures to measure non-affine deformations are also described. Entropic theories, which account for gel elasticity based on stretching out individual polymer chains, predict affine deformations. In contrast, simulations of network deformation that result in bending of the stiff constituent filaments generally predict non-affine behavior. Results from experiments show significant non-affine deformation in hydrogels even when they are formed by flexible polymers for which bending would appear to be negligible compared to stretching. However, this finding is not necessarily an experimental proof of the non-affine model for elasticity. We emphasize the insights gained from experiments using confocal rheoscope and show that, in addition to filament bending, sample micro-inhomogeneity can be a significant alternative source of non-affine deformation. PMID:23002395

  12. A Novel Vertex Affinity for Community Detection

    SciTech Connect

    Yoo, Andy; Sanders, Geoffrey; Henson, Van; Vassilevski, Panayot

    2015-10-05

    We propose a novel vertex affinity measure in this paper. The new vertex affinity quantifies the proximity between two vertices in terms of their clustering strength and is ideal for such graph analytics applications as community detection. We also developed a framework that combines simple graph searches and resistance circuit formulas to compute the vertex affinity efficiently. We study the properties of the new affinity measure empirically in comparison to those of other popular vertex proximity metrics. Our results show that the existing metrics are ill-suited for community detection due to their lack of fundamental properties that are essential for correctly capturing inter- and intra-cluster vertex proximity.

  13. Coexistence of Weyl physics and planar defects in the semimetals TaP and TaAs

    NASA Astrophysics Data System (ADS)

    Besara, T.; Rhodes, D. A.; Chen, K.-W.; Das, S.; Zhang, Q. R.; Sun, J.; Zeng, B.; Xin, Y.; Balicas, L.; Baumbach, R. E.; Manousakis, E.; Singh, D. J.; Siegrist, T.

    2016-06-01

    We report a structural study of the Weyl semimetals TaAs and TaP, utilizing diffraction and imaging techniques, where we show that they contain a high density of defects, leading to nonstoichiometric single crystals of both semimetals. Despite the observed defects and nonstoichiometry on samples grown using techniques already reported in the literature, de Haas-van Alphen measurements on TaP reveal quantum oscillations and a high carrier mobility, an indication that the crystals are of quality comparable to those reported elsewhere. Electronic structure calculations on TaAs reveal that the position of the Weyl points relative to the Fermi level shift with the introduction of vacancies and stacking faults. In the case of vacancies the Fermi surface becomes considerably altered, while the effect of stacking faults on the electronic structure is to allow the Weyl pockets to remain close to the Fermi surface. The observation of quantum oscillations in a nonstoichiometric crystal and the persistence of Weyl fermion pockets near the Fermi surface in a crystal with stacking faults point to the robustness of these quantum phenomena in these materials.

  14. New family of Dirac and Weyl semimetals in XAuTe (X = Na, K, Rb) ternary honeycomb compounds

    NASA Astrophysics Data System (ADS)

    Sun, Hao; Zhao, Jin

    2016-10-01

    We propose a new family of 3D Dirac semimetals based on XAuTe (X = K, Na, Rb) ternary honeycomb compounds, determined based on first-principles calculations, which are shown to be topological Dirac semimetals in which the Dirac points are induced by band inversion. Dirac points with four-fold degeneracy that are protected by C3 rotation symmetry and located on the Γ-A high-symmetry path are found. Through spatial-inversion symmetry breaking, a K(Au0.5 Hg0.5)(Te0.5As0.5) superlattice structure composed of KHgAs and KAuTe compounds is proven to be a Weyl semimetal with type-II Weyl points, which connect electronand hole-like bands. In this superlattice structure, the six pairs of Weyl nodes are distributed along the K- Γ high-symmetry path on the k z = 0 plane. Our research expands the family of topological Dirac and type-II Weyl semimetals.

  15. High Orders of the Weyl Expansion for Quantum Billiards: Resurgence of Periodic Orbits, and the Stokes Phenomenon

    NASA Astrophysics Data System (ADS)

    Berry, M. V.; Howls, C. J.

    1994-12-01

    A formalism is developed for calculating high coefficients cr of the Weyl (high energy) expansion for the trace of the resolvent of the Laplace operator in a domain B with smooth boundary partial B. The cr are used to test the following conjectures. (a) The sequence of cr diverges factorially, controlled by the shortest accessible real or complex periodic geodesic. (b) If this is a 2-bounce orbit, it corresponds to the saddle of the chord length function whose contour is first crossed when climbing from the diagonal of the Mobius strip which is the space of chords of B. (c) This orbit gives an exponential contribution to the remainder when the Weyl series, truncated at its least term, is subtracted from the resolvent; the exponential switches on smoothly (according to an error function) where it is smallest, that is across the negative energy axis (Stokes line). These conjectures are motivated by recent results in asymptotics. They survive tests for the circle billiard, and for a family of curves with 2 and 3 bulges, where the dominant orbit is not always the shortest and is sometimes complex. For some systems which are not smooth billiards (e.g. a particle on a ring, or in a billiard where partial B is a polygon), the Weyl series terminates and so no geodesics are accessible; for a particle on a compact surface of constant negative curvature, only the complex geodesics are accessible from the Weyl series.

  16. Structure of classical affine and classical affine fractional W-algebras

    SciTech Connect

    Suh, Uhi Rinn

    2015-01-15

    We introduce a classical BRST complex (See Definition 3.2.) and show that one can construct a classical affine W-algebra via the complex. This definition clarifies that classical affine W-algebras can be considered as quasi-classical limits of quantum affine W-algebras. We also give a definition of a classical affine fractional W-algebra as a Poisson vertex algebra. As in the classical affine case, a classical affine fractional W-algebra has two compatible λ-brackets and is isomorphic to an algebra of differential polynomials as a differential algebra. When a classical affine fractional W-algebra is associated to a minimal nilpotent, we describe explicit forms of free generators and compute λ-brackets between them. Provided some assumptions on a classical affine fractional W-algebra, we find an infinite sequence of integrable systems related to the algebra, using the generalized Drinfel’d and Sokolov reduction.

  17. Methods for Improving Aptamer Binding Affinity.

    PubMed

    Hasegawa, Hijiri; Savory, Nasa; Abe, Koichi; Ikebukuro, Kazunori

    2016-01-01

    Aptamers are single stranded oligonucleotides that bind a wide range of biological targets. Although aptamers can be isolated from pools of random sequence oligonucleotides using affinity-based selection, aptamers with high affinities are not always obtained. Therefore, further refinement of aptamers is required to achieve desired binding affinities. The optimization of primary sequences and stabilization of aptamer conformations are the main approaches to refining the binding properties of aptamers. In particular, sequence optimization using combined in silico sequence recombinations and in vitro functional evaluations is effective for the improvement of binding affinities, however, the binding affinities of aptamers are limited by the low hydrophobicity of nucleic acids. Accordingly, introduction of hydrophobic moieties into aptamers expands the diversity of interactions between aptamers and targets. Moreover, construction of multivalent aptamers by connecting aptamers that recognize distinct epitopes is an attractive approach to substantial increases in binding affinity. In addition, binding affinities can be tuned by optimizing the scaffolds of multivalent constructs. In this review, we summarize the various techniques for improving the binding affinities of aptamers. PMID:27043498

  18. Improving image segmentation by learning region affinities

    SciTech Connect

    Prasad, Lakshman; Yang, Xingwei; Latecki, Longin J

    2010-11-03

    We utilize the context information of other regions in hierarchical image segmentation to learn new regions affinities. It is well known that a single choice of quantization of an image space is highly unlikely to be a common optimal quantization level for all categories. Each level of quantization has its own benefits. Therefore, we utilize the hierarchical information among different quantizations as well as spatial proximity of their regions. The proposed affinity learning takes into account higher order relations among image regions, both local and long range relations, making it robust to instabilities and errors of the original, pairwise region affinities. Once the learnt affinities are obtained, we use a standard image segmentation algorithm to get the final segmentation. Moreover, the learnt affinities can be naturally unutilized in interactive segmentation. Experimental results on Berkeley Segmentation Dataset and MSRC Object Recognition Dataset are comparable and in some aspects better than the state-of-art methods.

  19. 2d Affine XY-Spin Model/4d Gauge Theory Duality and Deconfinement

    SciTech Connect

    Anber, Mohamed M.; Poppitz, Erich; Unsal, Mithat; /SLAC /Stanford U., Phys. Dept. /San Francisco State U.

    2012-08-16

    We introduce a duality between two-dimensional XY-spin models with symmetry-breaking perturbations and certain four-dimensional SU(2) and SU(2) = Z{sub 2} gauge theories, compactified on a small spatial circle R{sup 1,2} x S{sup 1}, and considered at temperatures near the deconfinement transition. In a Euclidean set up, the theory is defined on R{sup 2} x T{sup 2}. Similarly, thermal gauge theories of higher rank are dual to new families of 'affine' XY-spin models with perturbations. For rank two, these are related to models used to describe the melting of a 2d crystal with a triangular lattice. The connection is made through a multi-component electric-magnetic Coulomb gas representation for both systems. Perturbations in the spin system map to topological defects in the gauge theory, such as monopole-instantons or magnetic bions, and the vortices in the spin system map to the electrically charged W-bosons in field theory (or vice versa, depending on the duality frame). The duality permits one to use the two-dimensional technology of spin systems to study the thermal deconfinement and discrete chiral transitions in four-dimensional SU(N{sub c}) gauge theories with n{sub f} {ge} 1 adjoint Weyl fermions.

  20. Gravitational waves from a Weyl-Integrable manifold: A new formalism

    NASA Astrophysics Data System (ADS)

    Romero, Jesús Martín; Bellini, Mauricio; Madriz Aguilar, José Edgar

    2016-09-01

    We study the variational principle over an Hilbert-Einstein like action for an extended geometry taking into account torsion and non-metricity. By extending the semi-Riemannian geometry, we obtain an effective energy-momentum tensor which can be interpreted as physical sources. As an application we develop a new manner to obtain the gravitational wave equations on a Weyl-integrable manifold taking into account the non-metricity and non-trivial boundary conditions on the minimization of the action, which can be identified as possible sources for the cosmological constant and provides two different equations for gravitational waves. We examine gravitational waves in a pre-inflationary cosmological model.

  1. MoTe_{2}: A Type-II Weyl Topological Metal.

    PubMed

    Wang, Zhijun; Gresch, Dominik; Soluyanov, Alexey A; Xie, Weiwei; Kushwaha, S; Dai, Xi; Troyer, Matthias; Cava, Robert J; Bernevig, B Andrei

    2016-07-29

    Based on the ab initio calculations, we show that MoTe_{2}, in its low-temperature orthorhombic structure characterized by an x-ray diffraction study at 100 K, realizes 4 type-II Weyl points between the Nth and (N+1)th bands, where N is the total number of valence electrons per unit cell. Other WPs and nodal lines between different other bands also appear close to the Fermi level due to a complex topological band structure. We predict a series of strain-driven topological phase transitions in this compound, opening a wide range of possible experimental realizations of different topological semimetal phases. Crucially, with no strain, the number of observable surface Fermi arcs in this material is 2-the smallest number of arcs consistent with time-reversal symmetry. PMID:27517788

  2. A Generalization of Schur-Weyl Duality with Applications in Quantum Estimation

    NASA Astrophysics Data System (ADS)

    Marvian, Iman; Spekkens, Robert W.

    2014-10-01

    Schur-Weyl duality is a powerful tool in representation theory which has many applications to quantum information theory. We provide a generalization of this duality and demonstrate some of its applications. In particular, we use it to develop a general framework for the study of a family of quantum estimation problems wherein one is given n copies of an unknown quantum state according to some prior and the goal is to estimate certain parameters of the given state. In particular, we are interested to know whether collective measurements are useful and if so to find an upper bound on the amount of entanglement which is required to achieve the optimal estimation. In the case of pure states, we show that commutativity of the set of observables that define the estimation problem implies the sufficiency of unentangled measurements.

  3. Scalar perturbations in a Friedmann-like metric with non-null Weyl tensor

    SciTech Connect

    Santos, G.B.; Bittencourt, E.; Salim, J.M. E-mail: eduardo.bittencourt@icranet.org

    2015-06-01

    In a previous work the authors have solved the Einstein equations of General Relativity for a class of metrics with constant spatial curvature, where it was found a non vanishing Weyl tensor in the presence of a primordial magnetic field with an anisotropic pressure component. Here, we perform the perturbative analysis of this model in order to study the gravitational stability under linear scalar perturbations. For this purpose, we take the Quasi-Maxwellian formalism of General Relativity as our framework, which offers a naturally covariant and gauge-invariant approach to deal with perturbations that are directly linked to observational quantities. We then compare this scenario with the perturbed dust-dominated Friedmann model emphasizing how the growth of density perturbations are enhanced in our case.

  4. Chiral magnetic conductivity in an interacting lattice model of parity-breaking Weyl semimetal

    NASA Astrophysics Data System (ADS)

    Buividovich, P. V.; Puhr, M.; Valgushev, S. N.

    2015-11-01

    We report on the mean-field study of the chiral magnetic effect (CME) in static magnetic fields within a simple model of parity-breaking Weyl semimetal given by the lattice Wilson-Dirac Hamiltonian with constant chiral chemical potential. We consider both the mean-field renormalization of the model parameters and nontrivial corrections to the CME originating from resummed ladder diagrams with arbitrary number of loops. We find that onsite repulsive interactions affect the chiral magnetic conductivity almost exclusively through the enhancement of the renormalized chiral chemical potential. Our results suggest that nontrivial corrections to the chiral magnetic conductivity due to interfermion interactions are not relevant in practice since they only become important when the CME response is strongly suppressed by the large gap in the energy spectrum.

  5. Supersymmetric Rényi entropy and Weyl anomalies in six-dimensional (2,0) theories

    NASA Astrophysics Data System (ADS)

    Zhou, Yang

    2016-06-01

    We propose a closed formula of the universal part of supersymmetric Rényi entropy S q for (2 , 0) superconformal theories in six-dimensions. We show that S q across a spherical entangling surface is a cubic polynomial of γ := 1 /q, with all coefficients expressed in terms of the newly discovered Weyl anomalies a and c. This is equivalent to a similar statement of the supersymmetric free energy on conic (or squashed) six-sphere. We first obtain the closed formula by promoting the free tensor multiplet result and then provide an independent derivation by assuming that S q can be written as a linear combination of 't Hooft anomaly coefficients. We discuss a possible lower bound a/cge 3/7 implied by our result.

  6. Quantum transport in three-dimensional Weyl electron system in the presence of charged impurity scattering

    NASA Astrophysics Data System (ADS)

    Ominato, Yuya; Koshino, Mikito

    2015-01-01

    We theoretically study the quantum transport in a three-dimensional Weyl electron system in the presence of the charged impurity scattering using a self-consistent Born approximation. The scattering strength is characterized by the effective fine-structure constant α , which depends on the dielectric constant and the Fermi velocity of the linear band. We find that the Boltzmann theory fails at the band touching point, where the conductivity takes a nearly constant value almost independent of α , even though the density of states linearly increases with α . There the magnitude of the conductivity only depends on the impurity density. The qualitative behavior is quite different from the case of the Gaussian impurities, where the minimum conductivity vanishes below a certain critical impurity strength.

  7. Visualizing the Weyl Curvature Tensor: Frame-Drag Vortex Lines and Tidal Tendex Lines

    NASA Astrophysics Data System (ADS)

    Thorne, Kip S.; Chen, Yanbei; Kaplan, Jeffrey D.; Matthews, Keith D.; Nichols, David A.; Scheel, Mark; Zhang, Fan; Zimmerman, Aaron; Lovelace, Geoffrey; Owen, Robert; Brink, Jeandrew

    2011-04-01

    When one slices spacetime into space plus time, the Weyl curvature tensor gets split into two symmetric, trace-free tensors: its ``electric'' part, which describes tidal forces, and its ``magnetic'' part, which describes differential frame dragging. The electric part is completely characterized by tidal tendex lines (integral curves of its eigenvectors) and their tendicities (eigenvalues); and the magnetic part, by corresponding frame-drag vortex lines and their vorticities. We will discuss the physical meanings of these quantities and their use to visualize spacetime curvature, and we will illustrate them for stationary situations: a spinning body in linearized theory, and a Kerr black hole. This work was supported by NSF grants PHY-0601459, PHY-0653653, PHY-0960291, PHY-0969111, PHY-1005426 and PHY-0956189; NASA grants NNX09AF97G and NNX09AF96G, the Sherman Fairchild and Brinson Foundations, and the David and Barbara Groce Fund.

  8. Einstein--Weyl space-times with geodesic and shear-free neutrino rays: asymptotic behaviour

    SciTech Connect

    Kolassis, C.A.; Santos, N.O.

    1987-02-15

    We consider a neutrino field with geodesic and shear-free rays, in interaction with a gravitational field according to the Einstein--Weyl field equations. Furthermore we suppose that there exists a Killing vector r/sup ..mu../ whose magnitude is almost everywhere bounded at the future and past endpoints of the neutrino rays. The implications of the asymptotic behavior of r/sup ..mu../ on the structure of space-time are investigated and a useful set of reduced equations is obtained. It is found that under these hypothes the space-time cannot be asymptotically flat if the neutrino field is nonvanishing. All the Demianski--Kerr--NUT-like space-times as well as the space-times which admit a covariantly constant null vector are explicity obtained. copyright 1987 Academic Press, Inc.

  9. MoTe2 : A Type-II Weyl Topological Metal

    NASA Astrophysics Data System (ADS)

    Wang, Zhijun; Gresch, Dominik; Soluyanov, Alexey A.; Xie, Weiwei; Kushwaha, S.; Dai, Xi; Troyer, Matthias; Cava, Robert J.; Bernevig, B. Andrei

    2016-07-01

    Based on the ab initio calculations, we show that MoTe2 , in its low-temperature orthorhombic structure characterized by an x-ray diffraction study at 100 K, realizes 4 type-II Weyl points between the N th and (N +1 )th bands, where N is the total number of valence electrons per unit cell. Other WPs and nodal lines between different other bands also appear close to the Fermi level due to a complex topological band structure. We predict a series of strain-driven topological phase transitions in this compound, opening a wide range of possible experimental realizations of different topological semimetal phases. Crucially, with no strain, the number of observable surface Fermi arcs in this material is 2—the smallest number of arcs consistent with time-reversal symmetry.

  10. Odd Viscosity in the Quantum Critical Region of a Holographic Weyl Semimetal.

    PubMed

    Landsteiner, Karl; Liu, Yan; Sun, Ya-Wen

    2016-08-19

    We study odd viscosity in a holographic model of a Weyl semimetal. The model is characterized by a quantum phase transition from a topological semimetal to a trivial semimetal state. Since the model is axisymmetric in three spatial dimensions there are two independent odd viscosities. Both odd viscosity coefficients are nonvanishing in the quantum critical region and nonzero only due to the mixed axial gravitational anomaly. It is therefore a novel example in which the mixed axial gravitational anomaly gives rise to a transport coefficient at first order in derivatives at finite temperature. In the quantum critical region, the physics of viscosities as well as conductivities is governed by the quantum critical point. PMID:27588846

  11. Weak Topological Insulators and Composite Weyl Semimetals: β -Bi4X4 (X=Br, I)

    NASA Astrophysics Data System (ADS)

    Zhang, Fan; Liu, Cheng-Cheng; Zhou, Jin-Jian; Yao, Yugui

    While strong topological insulators (STI) have been experimentally realized soon after their theoretical predictions, a weak topological insulator (WTI) has yet to be unambiguously confirmed. A major obstacle is the lack of distinct natural cleavage surfaces to test the surface selective hallmark of WTI. With a new scheme, we discover that Bi4X4 (X=Br, I), stable or synthesized before, can be WTI with two natural cleavage surfaces, where two anisotropic Dirac cones stabilize and annihilate, respectively. We further find four surface state Lifshitz transitions under charge doping and two bulk topological phase transitions under uniaxial strain. Near the WTI-STI transition, there emerges a novel Weyl semimetal phase, in which the Fermi arcs generically appear at both cleavage surfaces whereas the Fermi circle only appears at one selected surface.

  12. Weak Topological Insulators and Composite Weyl Semimetals: β -Bi4X4 (X =Br , I)

    NASA Astrophysics Data System (ADS)

    Liu, Cheng-Cheng; Zhou, Jin-Jian; Yao, Yugui; Zhang, Fan

    2016-02-01

    While strong topological insulators (STIs) were experimentally realized soon after they were theoretically predicted, a weak topological insulator (WTI) has yet to be unambiguously confirmed. A major obstacle is the lack of distinct natural cleavage surfaces to test the surface selective hallmark of a WTI. With a new scheme, we discover that β -Bi4X4 (X =Br , I), dynamically stable or synthesized before, can be a prototype WTI with two natural cleavage surfaces, where two anisotropic Dirac cones stabilize and annihilate, respectively. We further find four surface-state Lifshitz transitions under charge doping and two bulk topological phase transitions under uniaxial strain. Near the WTI-STI transition, there emerges a novel Weyl semimetal phase, in which the Fermi arcs generically appear at both cleavage surfaces whereas the Fermi circle only appears at one selected surface.

  13. Topological Weyl superconductor to diffusive thermal Hall metal crossover in the B phase of UPt3

    NASA Astrophysics Data System (ADS)

    Goswami, Pallab; Nevidomskyy, Andriy H.

    2015-12-01

    The recent phase-sensitive measurements in the superconducting B phase of UPt3 provide strong evidence for the triplet, chiral kz(kx±i ky) 2 pairing symmetries, which endow the Cooper pairs with orbital angular momentum projections Lz=±2 along the c axis. In the absence of disorder such pairing can support both line and point nodes, and both types of nodal quasiparticles exhibit nontrivial topology in the momentum space. The point nodes, located at the intersections of the closed Fermi surfaces with the c axis, act as the double monopoles and the antimonopoles of the Berry curvature, and generalize the notion of Weyl quasiparticles. Consequently, the B phase should support an anomalous thermal Hall effect, the polar Kerr effect, in addition to the protected Fermi arcs on the (1 ,0 ,0 ) and the (0 ,1 ,0 ) surfaces. The line node at the Fermi surface equator acts as a vortex loop in the momentum space and gives rise to the zero-energy, dispersionless Andreev bound states on the (0 ,0 ,1 ) surface. At the transition from the B phase to the A phase, the time-reversal symmetry is restored, and only the line node survives inside the A phase. As both line and double-Weyl point nodes possess linearly vanishing density of states, we show that weak disorder acts as a marginally relevant perturbation. Consequently, an infinitesimal amount of disorder destroys the ballistic quasiparticle pole, while giving rise to a diffusive phase with a finite density of states at the zero energy. The resulting diffusive phase exhibits T -linear specific heat, and an anomalous thermal Hall effect. We predict that the low-temperature thermodynamic and transport properties display a crossover between a ballistic thermal Hall semimetal and a diffusive thermal Hall metal. By contrast, the diffusive phase obtained from a time-reversal-invariant pairing exhibits only the T -linear specific heat without any anomalous thermal Hall effect.

  14. Telonemia, a new protist phylum with affinity to chromist lineages.

    PubMed

    Shalchian-Tabrizi, K; Eikrem, W; Klaveness, D; Vaulot, D; Minge, M A; Le Gall, F; Romari, K; Throndsen, J; Botnen, A; Massana, R; Thomsen, H A; Jakobsen, K S

    2006-07-22

    Recent molecular investigations of marine samples taken from different environments, including tropical, temperate and polar areas, as well as deep thermal vents, have revealed an unexpectedly high diversity of protists, some of them forming deep-branching clades within important lineages, such as the alveolates and heterokonts. Using the same approach on coastal samples, we have identified a novel group of protist small subunit (SSU) rDNA sequences that do not correspond to any phylogenetic group previously identified. Comparison with other sequences obtained from cultures of heterotrophic protists showed that the environmental sequences grouped together with Telonema, a genus known since 1913 but of uncertain taxonomic affinity. Phylogenetic analyses using four genes (SSU, Hsp90, alpha-tubulin and beta-tubulin), and accounting for gamma- and covarion-distributed substitution rates, revealed Telonema as a distinct group of species branching off close to chromist lineages. Consistent with these gene trees, Telonema possesses ultrastructures revealing both the distinctness of the group and the evolutionary affinity to chromist groups. Altogether, the data suggest that Telonema constitutes a new eukaryotic phylum, here defined as Telonemia, possibly representing a key clade for the understanding of the early evolution of bikont protist groups, such as the proposed chromalveolate supergroup. PMID:16790418

  15. Telonemia, a new protist phylum with affinity to chromist lineages.

    PubMed

    Shalchian-Tabrizi, K; Eikrem, W; Klaveness, D; Vaulot, D; Minge, M A; Le Gall, F; Romari, K; Throndsen, J; Botnen, A; Massana, R; Thomsen, H A; Jakobsen, K S

    2006-07-22

    Recent molecular investigations of marine samples taken from different environments, including tropical, temperate and polar areas, as well as deep thermal vents, have revealed an unexpectedly high diversity of protists, some of them forming deep-branching clades within important lineages, such as the alveolates and heterokonts. Using the same approach on coastal samples, we have identified a novel group of protist small subunit (SSU) rDNA sequences that do not correspond to any phylogenetic group previously identified. Comparison with other sequences obtained from cultures of heterotrophic protists showed that the environmental sequences grouped together with Telonema, a genus known since 1913 but of uncertain taxonomic affinity. Phylogenetic analyses using four genes (SSU, Hsp90, alpha-tubulin and beta-tubulin), and accounting for gamma- and covarion-distributed substitution rates, revealed Telonema as a distinct group of species branching off close to chromist lineages. Consistent with these gene trees, Telonema possesses ultrastructures revealing both the distinctness of the group and the evolutionary affinity to chromist groups. Altogether, the data suggest that Telonema constitutes a new eukaryotic phylum, here defined as Telonemia, possibly representing a key clade for the understanding of the early evolution of bikont protist groups, such as the proposed chromalveolate supergroup.

  16. Affinity Proteomics in the mountains: Alpbach 2015.

    PubMed

    Taussig, Michael J

    2016-09-25

    The 2015 Alpbach Workshop on Affinity Proteomics, organised by the EU AFFINOMICS consortium, was the 7th workshop in this series. As in previous years, the focus of the event was the current state of affinity methods for proteome analysis, including complementarity with mass spectrometry, progress in recombinant binder production methods, alternatives to classical antibodies as affinity reagents, analysis of proteome targets, industry focus on biomarkers, and diagnostic and clinical applications. The combination of excellent science with Austrian mountain scenery and winter sports engender an atmosphere that makes this series of workshops exceptional. The articles in this Special Issue represent a cross-section of the presentations at the 2015 meeting. PMID:27118167

  17. Aptamers in Affinity Separations: Stationary Separation

    NASA Astrophysics Data System (ADS)

    Ravelet, Corinne; Peyrin, Eric

    The use of DNA or RNA aptamers as tools in analytical chemistry is a very promising field of research because of their capabilities to bind specifically the target molecules with an affinity similar to that of antibodies. Notably, they appear to be of great interest as target-specific ligands for the separation and capture of various analytes in affinity chromatography and related affinity-based methods such as magnetic bead technology. In this chapter, the recent developments of these aptamer-based separation/capture approaches are addressed.

  18. PRINCIPLES OF AFFINITY-BASED BIOSENSORS

    EPA Science Inventory

    Despite the amount of resources that have been invested by national and international academic, government, and commercial sectors to develop affinity-based biosensor products, little obvious success has been realized through commercialization of these devices for specific applic...

  19. Visualizing Antibody Affinity Maturation in Germinal Centers

    PubMed Central

    Tas, Jeroen M.J.; Mesin, Luka; Pasqual, Giulia; Targ, Sasha; Jacobsen, Johanne T.; Mano, Yasuko M.; Chen, Casie S.; Weill, Jean-Claude; Reynaud, Claude-Agnès; Browne, Edward P.; Meyer-Hermann, Michael; Victora, Gabriel D.

    2016-01-01

    Antibodies somatically mutate to attain high affinity in germinal centers (GCs). There, competition between B cell clones and among somatic mutants of each clone drives an increase in average affinity across the population. The extent to which higher-affinity cells eliminating competitors restricts clonal diversity is unknown. By combining multiphoton microscopy and sequencing, we show that tens to hundreds of distinct B cell clones seed each GC, and that GCs lose clonal diversity at widely disparate rates. Furthermore, efficient affinity maturation can occur in the absence of homogenizing selection, ensuring that many clones can mature in parallel within the same GC. Our findings have implications for development of vaccines in which antibodies with non-immunodominant specificities must be elicited, as is the case for HIV-1 and influenza. PMID:26912368

  20. Protein purification using PDZ affinity chromatography.

    PubMed

    Walkup, Ward G; Kennedy, Mary B

    2015-01-01

    PDZ domains function in nature as protein-binding domains within scaffold and membrane-associated proteins. They comprise approximately 90 residues and undergo specific, high-affinity interactions with complementary C-terminal peptide sequences, other PDZ domains, and/or phospholipids. We have previously shown that the specific, strong interactions of PDZ domains with their ligands make them well suited for use in affinity chromatography. This unit provides protocols for the PDZ affinity chromatography procedure that are applicable for the purification of proteins that contain PDZ domains or PDZ domain-binding ligands, either naturally or introduced by genetic engineering. We detail the preparation of affinity resins composed of PDZ domains or PDZ domain peptide ligands coupled to solid supports. These resins can be used to purify proteins containing endogenous or genetically introduced PDZ domains or ligands, eluting the proteins with free PDZ domain peptide ligands. PMID:25829303

  1. Designing Chaotic Systems by Piecewise Affine Systems

    NASA Astrophysics Data System (ADS)

    Wu, Tiantian; Li, Qingdu; Yang, Xiao-Song

    Based on mathematical analysis, this paper provides a methodology to ensure the existence of homoclinic orbits in a class of three-dimensional piecewise affine systems. In addition, two chaotic generators are provided to illustrate the effectiveness of the method.

  2. Relative binding affinities of monolignols to horseradish peroxidase

    DOE PAGES

    Sangha, Amandeep K.; Petridis, Loukas; Cheng, Xiaolin; Smith, Jeremy C.

    2016-07-22

    Monolignol binding to the peroxidase active site is the first step in lignin polymerization in plant cell walls. Using molecular dynamics, docking, and free energy perturbation calculations, we investigate the binding of monolignols to horseradish peroxidase C. Our results suggest that p-coumaryl alcohol has the strongest binding affinity followed by sinapyl and coniferyl alcohol. Stacking interactions between the monolignol aromatic rings and nearby phenylalanine residues play an important role in determining the calculated relative binding affinities. p-Coumaryl and coniferyl alcohols bind in a pose productive for reaction in which a direct H-bond is formed between the phenolic –OH group andmore » a water molecule (W2) that may facilitate proton transfer during oxidation. In contrast, in the case of sinapyl alcohol there is no such direct interaction, the phenolic –OH group instead interacting with Pro139. Furthermore, since proton and electron transfer is the rate-limiting step in monolignol oxidation by peroxidase, the binding pose (and thus the formation of near attack conformation) appears to play a more important role than the overall binding affinity in determining the oxidation rate.« less

  3. Relative Binding Affinities of Monolignols to Horseradish Peroxidase.

    PubMed

    Sangha, Amandeep K; Petridis, Loukas; Cheng, Xiaolin; Smith, Jeremy C

    2016-08-11

    Monolignol binding to the peroxidase active site is the first step in lignin polymerization in plant cell walls. Using molecular dynamics, docking, and free energy perturbation calculations, we investigate the binding of monolignols to horseradish peroxidase C. Our results suggest that p-coumaryl alcohol has the strongest binding affinity followed by sinapyl and coniferyl alcohol. Stacking interactions between the monolignol aromatic rings and nearby phenylalanine residues play an important role in determining the calculated relative binding affinities. p-Coumaryl and coniferyl alcohols bind in a pose productive for reaction in which a direct H-bond is formed between the phenolic -OH group and a water molecule (W2) that may facilitate proton transfer during oxidation. In contrast, in the case of sinapyl alcohol there is no such direct interaction, the phenolic -OH group instead interacting with Pro139. Since proton and electron transfer is the rate-limiting step in monolignol oxidation by peroxidase, the binding pose (and thus the formation of near attack conformation) appears to play a more important role than the overall binding affinity in determining the oxidation rate. PMID:27447548

  4. Affinity Electrophoresis Using Ligands Attached To Polymers

    NASA Technical Reports Server (NTRS)

    Van Alstine, James M.; Snyder, Robert S.; Harris, J. M.; Brooks, D. E.

    1990-01-01

    In new technique, reduction of electrophoretic mobilities by addition of polyethylene glycol to ligands increases electrophoretic separabilities. In immuno-affinity electrophoresis, modification of ligands extends specificity of electrophoretic separation to particles having surface electric-charge structures otherwise making them electrophoretically inseparable. Modification of antibodies by polyethylene glycol greatly reduces ability to aggregate while enhancing ability to affect electrophoretic mobilities of cells. In hydrophobic-affinity electrophoresis, addition of polyethylene glycol reduces tendency toward aggregation of cells or macromolecules.

  5. Stable high capacity, F-actin affinity column

    SciTech Connect

    Luna, E.J.; Wang, Y.L.; Voss, E.W. Jr.; Branton, D.; Taylor, D.L.

    1982-11-10

    A high capacity F-actin affinity matrix is constructed by binding fluorescyl-actin to rabbit anti-fluorescein IgG that is covalently bound to Sepharose 4B. When stabilized with phalloidin, the actin remains associated with the Sepharose beads during repeated washes, activates the ATPase activity of myosin subfragment 1, and specifically binds /sup 125/I-heavy meromyosin and /sup 125/I-tropomyosin. The associations between the F-actin-binding proteins are monitored both by affinity chromatography and by a rapid, low speed sedimentation assay. Anti-fluorescein IgG-Sepharose should be generally useful as a matrix for the immobilization of proteins containing accessible, covalently bound fluorescein groups.

  6. Gauge invariant fluctuations of the metric during inflation from a new scalar-tensor Weyl-integrable gravity model

    NASA Astrophysics Data System (ADS)

    Pucheu, M. L.; Romero, C.; Bellini, M.; Madriz Aguilar, José Edgar

    2016-09-01

    We investigate gauge invariant scalar fluctuations of the metric during inflation in a nonperturbative formalism in the framework of a recently formulated scalar-tensor theory of gravity, in which the geometry of space-time is that of a Weyl integrable manifold. We show that in this scenario the Weyl scalar field can play the role of the inflaton field. As an application of the theory, we examine the case of a power-law inflation. In this case, the quasi-scale invariance of the spectrum for scalar fluctuations of the metric is achieved for determined values of the parameter ω of the scalar-tensor theory. We stress the fact that in our formalism the physical inflaton field has a purely geometrical origin.

  7. Affinity chromatography of nicotinamide-adenine dinucleotide-linked dehydrogenases on immobilized derivatives of the dinucleotide.

    PubMed

    Barry, S; O'Carra, P

    1973-12-01

    1. Three established methods for immobilization of ligands through primary amino groups promoted little or no attachment of NAD(+) through the 6-amino group of the adenine residue. Two of these methods (coupling to CNBr-activated agarose and to carbodi-imide-activated carboxylated agarose derivatives) resulted instead in attachment predominantly through the ribosyl residues. Other immobilized derivatives were prepared by azolinkage of NAD(+) (probably through the 8 position of the adenine residue) to a number of different spacer-arm-agarose derivatives. 2. The effectiveness of these derivatives in the affinity chromatography of a variety of NAD-linked dehydrogenases was investigated, applying rigorous criteria to distinguish general or non-specific adsorption effects from truly NAD-specific affinity (bio-affinity). The ribosyl-attached NAD(+) derivatives displayed negligible bio-affinity for any of the NAD-linked dehydrogenases tested. The most effective azo-linked derivative displayed strong bio-affinity for glycer-aldehyde 3-phosphate dehydrogenase, weaker bio-affinity for lactate dehydrogenase and none at all for malate dehydrogenase, although these three enzymes have very similar affinities for soluble NAD(+). Alcohol dehydrogenase and xanthine dehydrogenase were subject to such strong non-specific interactions with the hydrocarbon spacer-arm assembly that any specific affinity was completely eclipsed. 3. It is concluded that, in practice, the general effectiveness of a general ligand may be considerably distorted and attenuated by the nature of the immobilization linkage. However, this attenuation can result in an increase in specific effectiveness, allowing dehydrogenases to be separated from one another in a manner unlikely to be feasible if the general effectiveness of the ligand remained intact. 4. The bio-affinity of the various derivatives for lactate dehydrogenase is correlated with the known structure of the NAD(+)-binding site of this enzyme. Problems

  8. Synthesis and NMDA receptor affinity of fluorinated dioxadrol analogues.

    PubMed

    Banerjee, Ashutosh; Schepmann, Dirk; Wünsch, Bernhard

    2010-06-01

    A series of dioxadrol analogues with fluorine substituents in position 4 of the piperidine ring has been synthesized and pharmacologically evaluated. The key step in the synthesis was the fluorination of diastereomeric piperidones 6a and 6c as well as diastereomeric alcohols 9a and 9c with DAST. The reaction of the alcohols 9a and 9c took place with inversion of configuration. After removal of the Cbz-protective group, the NMDA receptor affinities of the resulting secondary amines 8a, 8c, 12b, and 12d were investigated in receptor binding studies. It was shown that the like-configuration of the ring junction was crucial for high NMDA receptor affinity. An axially oriented fluorine atom in position 4 led to 2-(2,2-diphenyl-1,3-dioxolan-4-yl)-4-fluoropiperidine (12d, WMS-2517) with a K(i)-value of 27nM. The NMDA receptor affinity of 8c (WMS-2513) with an additional fluorine atom in equatorial 4-position was slightly reduced (K(i)=81 nM). Both fluorinated dioxadrol derivatives 8c and 12d showed high selectivity against sigma(1) and sigma(2) receptors as well as the polyamine binding site of NR2B receptors.

  9. Affinity labeling of the ribosomal P site in Drosophila melanogaster

    SciTech Connect

    North, D.

    1987-01-01

    Several recent studies have probed the peptidyl transferase region of the Drosophila ribosome via the use of reactive site specific analogues (affinity labels). P site proteins adjacent to the 3' end of the amino acid bearing tRNA strand were labeled with modified tRNA fragments. Drugs affecting the binding of these agents were used to further clarify the nature of the region. The nascent peptide region of the P site was not labeled in previous experiments. To label that region radioactive Bromoacetylphenylalanyl-tRNA (BrAcphe-tRNA) was synthesized. The alpha-bromoacetyl group of this analogue is potentially reactive with nucleophiles present in either proteins or RNAs. Charged tRNAs and tRNA analogues bearing a peptide bond on the N-terminus of their amino acid are recognized as having affinity for the ribosomal P site. Specific labeling of the P site by BrAcphe-tRNA was confirmed by its ability to radioactively label proteins indirectly. As many as 8 ribosomal proteins may be labeled under these conditions, however, the majority of the bound label is associated with 3 large subunit proteins and 2 small subunit proteins. Overlaps between the proteins labeled by BrAcphe-tRNA and those labeled by other affinity labels are examined and a model of the peptidyl transferase region of Drosophila ribosomes is presented.

  10. Classification of neocortical interneurons using affinity propagation

    PubMed Central

    Santana, Roberto; McGarry, Laura M.; Bielza, Concha; Larrañaga, Pedro; Yuste, Rafael

    2013-01-01

    In spite of over a century of research on cortical circuits, it is still unknown how many classes of cortical neurons exist. In fact, neuronal classification is a difficult problem because it is unclear how to designate a neuronal cell class and what are the best characteristics to define them. Recently, unsupervised classifications using cluster analysis based on morphological, physiological, or molecular characteristics, have provided quantitative and unbiased identification of distinct neuronal subtypes, when applied to selected datasets. However, better and more robust classification methods are needed for increasingly complex and larger datasets. Here, we explored the use of affinity propagation, a recently developed unsupervised classification algorithm imported from machine learning, which gives a representative example or exemplar for each cluster. As a case study, we applied affinity propagation to a test dataset of 337 interneurons belonging to four subtypes, previously identified based on morphological and physiological characteristics. We found that affinity propagation correctly classified most of the neurons in a blind, non-supervised manner. Affinity propagation outperformed Ward's method, a current standard clustering approach, in classifying the neurons into 4 subtypes. Affinity propagation could therefore be used in future studies to validly classify neurons, as a first step to help reverse engineer neural circuits. PMID:24348339

  11. BC(50): a generalized, unifying affinity descriptor.

    PubMed

    Vacca, Alberto; Francesconi, Oscar; Roelens, Stefano

    2012-12-01

    Assessing binding affinities is an unavoidable step that we come across any time interactions between binding species are investigated. A quantitative evaluation of binding affinities relies on the determination of binding constants but, whilst the binding constant fully defines the affinity of a reagent for a ligand when only one complex species is formed, the same is not true when the interacting partners form more than one complex of different stoichiometry, because all complexes contribute to the overall binding affinity. Unfortunately, this situation is the rule rather than the exception in chemical systems, but a generally accepted solution for this issue has not yet been settled. In this Personal Account, we describe the evolution, from the initial idea to a fully developed stage, of a binding descriptor that has been developed with the aim of filling this gap, thereby providing scientists in all fields of chemistry with a unifying tool for the assessment of binding affinities based on the knowledge of the binding constants in systems that involve any number of complex species.

  12. Classification of neocortical interneurons using affinity propagation.

    PubMed

    Santana, Roberto; McGarry, Laura M; Bielza, Concha; Larrañaga, Pedro; Yuste, Rafael

    2013-01-01

    In spite of over a century of research on cortical circuits, it is still unknown how many classes of cortical neurons exist. In fact, neuronal classification is a difficult problem because it is unclear how to designate a neuronal cell class and what are the best characteristics to define them. Recently, unsupervised classifications using cluster analysis based on morphological, physiological, or molecular characteristics, have provided quantitative and unbiased identification of distinct neuronal subtypes, when applied to selected datasets. However, better and more robust classification methods are needed for increasingly complex and larger datasets. Here, we explored the use of affinity propagation, a recently developed unsupervised classification algorithm imported from machine learning, which gives a representative example or exemplar for each cluster. As a case study, we applied affinity propagation to a test dataset of 337 interneurons belonging to four subtypes, previously identified based on morphological and physiological characteristics. We found that affinity propagation correctly classified most of the neurons in a blind, non-supervised manner. Affinity propagation outperformed Ward's method, a current standard clustering approach, in classifying the neurons into 4 subtypes. Affinity propagation could therefore be used in future studies to validly classify neurons, as a first step to help reverse engineer neural circuits.

  13. Classification of neocortical interneurons using affinity propagation.

    PubMed

    Santana, Roberto; McGarry, Laura M; Bielza, Concha; Larrañaga, Pedro; Yuste, Rafael

    2013-01-01

    In spite of over a century of research on cortical circuits, it is still unknown how many classes of cortical neurons exist. In fact, neuronal classification is a difficult problem because it is unclear how to designate a neuronal cell class and what are the best characteristics to define them. Recently, unsupervised classifications using cluster analysis based on morphological, physiological, or molecular characteristics, have provided quantitative and unbiased identification of distinct neuronal subtypes, when applied to selected datasets. However, better and more robust classification methods are needed for increasingly complex and larger datasets. Here, we explored the use of affinity propagation, a recently developed unsupervised classification algorithm imported from machine learning, which gives a representative example or exemplar for each cluster. As a case study, we applied affinity propagation to a test dataset of 337 interneurons belonging to four subtypes, previously identified based on morphological and physiological characteristics. We found that affinity propagation correctly classified most of the neurons in a blind, non-supervised manner. Affinity propagation outperformed Ward's method, a current standard clustering approach, in classifying the neurons into 4 subtypes. Affinity propagation could therefore be used in future studies to validly classify neurons, as a first step to help reverse engineer neural circuits. PMID:24348339

  14. Affinity purification of aprotinin from bovine lung.

    PubMed

    Xin, Yu; Liu, Lanhua; Chen, Beizhan; Zhang, Ling; Tong, Yanjun

    2015-05-01

    An affinity protocol for the purification of aprotinin from bovine lung was developed. To simulate the structure of sucrose octasulfate, a natural specific probe for aprotinin, the affinity ligand was composed of an acidic head and a hydrophobic stick, and was then linked with Sepharose. The sorbent was then subjected to adsorption analysis with pure aprotinin. The purification process consisted of one step of affinity chromatography and another step of ultrafiltration. Then purified aprotinin was subjected to sodium dodecyl sulfate polyacrylamide gel electrophoresis, trypsin inhibitor activity, gel-filtration, and thin-layer chromatography analysis. As calculated, the theoretical maximum adsorption (Qmax ) of the affinity sorbent was 25,476.0 ± 184.8 kallikrein inactivator unit/g wet gel; the dissociation constant of the complex "immobilized ligand-aprotinin" (Kd ) was 4.6 ± 0.1 kallikrein inactivator unit/mL. After the affinity separation of bovine lung aprotinin, reducing sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis and gel-filtration chromatography revealed that the protein was a single polypeptide, and the purities were ∼ 97 and 100%, respectively; the purified peptide was also confirmed with aprotinin standard by gel-filtration chromatography and thin-layer chromatography. After the whole purification process, protein, and bioactivity recoveries were 2.2 and 92.6%, respectively; and the specific activity was up to 15,907.1 ± 10.2 kallikrein inactivator unit/mg. PMID:25677462

  15. Stepparents' Affinity-Seeking and Affinity-Maintaining Strategies with Stepchildren.

    ERIC Educational Resources Information Center

    Ganong, Lawrence; Coleman, Marilyn; Fine, Mark; Martin, Patricia

    1999-01-01

    Examines the strategies that stepparents use to develop and maintain affinity with stepchildren and the effects that these strategies have on the development of stepparent-stepchildren relationships. Thirty-one affinity-seeking strategies are identified. Results show that dyadic activities worked best, but it is important that stepchildren…

  16. Methyl cation affinities of neutral and anionic maingroup-element hydrides: trends across the periodic table and correlation with proton affinities.

    PubMed

    Mulder, R Joshua; Guerra, Célia Fonseca; Bickelhaupt, F Matthias

    2010-07-22

    We have computed the methyl cation affinities in the gas phase of archetypal anionic and neutral bases across the periodic table using ZORA-relativistic density functional theory (DFT) at BP86/QZ4P//BP86/TZ2P. The main purpose of this work is to provide the methyl cation affinities (and corresponding entropies) at 298 K of all anionic (XH(n-1)(-)) and neutral bases (XH(n)) constituted by maingroup-element hydrides of groups 14-17 and the noble gases (i.e., group 18) along the periods 2-6. The cation affinity of the bases decreases from H(+) to CH(3)(+). To understand this trend, we have carried out quantitative bond energy decomposition analyses (EDA). Quantitative correlations are established between the MCA and PA values.

  17. Methyl cation affinities of neutral and anionic maingroup-element hydrides: trends across the periodic table and correlation with proton affinities.

    PubMed

    Mulder, R Joshua; Guerra, Célia Fonseca; Bickelhaupt, F Matthias

    2010-07-22

    We have computed the methyl cation affinities in the gas phase of archetypal anionic and neutral bases across the periodic table using ZORA-relativistic density functional theory (DFT) at BP86/QZ4P//BP86/TZ2P. The main purpose of this work is to provide the methyl cation affinities (and corresponding entropies) at 298 K of all anionic (XH(n-1)(-)) and neutral bases (XH(n)) constituted by maingroup-element hydrides of groups 14-17 and the noble gases (i.e., group 18) along the periods 2-6. The cation affinity of the bases decreases from H(+) to CH(3)(+). To understand this trend, we have carried out quantitative bond energy decomposition analyses (EDA). Quantitative correlations are established between the MCA and PA values. PMID:20575582

  18. Theoretical study for the electron affinities of negative ions with the MCDHF method

    NASA Astrophysics Data System (ADS)

    Li, Junqin; Zhao, Zilong; Andersson, Martin; Zhang, Xuemei; Chen, Chongyang

    2012-08-01

    Systematic theoretical calculations based on the multi-configuration Dirac-Hartree-Fock method have been carried out for the electron affinities of anions of the elements of group III (B, Al, Ga, In and Tl), group IV (C, Si, Ge, Sn and Pb), group V (N, P and As), group VI (O, S, Se, Te and Po) and group VII (F, Cl, Br, I and At) by studying the ground energies of neutral atoms and their corresponding negative ions. The differences between the calculated total energies of the neutral atom and its anion were used to obtain the electron affinities. We discuss in detail the effects of configuration interaction, investigate the importance of including different types of correlations and check the impact of the higher order relativistic corrections on electron affinities. Our calculated electron affinities are compared with experimental and other available theoretical results. The present studies are the first systematic studies of all these elements. We give the first theoretical values for the affinities of elements Se, Te, Po and At; thereinto, there is no experimental value for elements Po and At.

  19. Affinity chromatography of bacterial lactate dehydrogenases.

    PubMed Central

    Kelly, N; Delaney, M; O'Carra, P

    1978-01-01

    The affinity system used was the immobilized oxamate derivative previously used to purify mammalian lactate dehydrogenases. The bacterial dehydrogenases specific for the L-stereoisomer of lactate behaved in the same way as the mammalian enzymes, binding strongly in the presence of NADH. The D-lactate-specific enzymes, however, did not show any biospecific affinity for this gel. The L-specific enzymes could be purified to homogeneity in one affinity-chromatographic step. The D-specific enzymes could be efficiently separated from the L-specific ones and could then be further purified on an immobilized NAD derivative. The mechanism of activation of the lactate dehydrogenase from Streptococcus faecalis by fructose 1,6-bisphosphate was investigated by using the immobilized oxamate gel. PMID:666726

  20. Affinity chromatography of bacterial lactate dehydrogenases.

    PubMed

    Kelly, N; Delaney, M; O'Carra, P

    1978-06-01

    The affinity system used was the immobilized oxamate derivative previously used to purify mammalian lactate dehydrogenases. The bacterial dehydrogenases specific for the L-stereoisomer of lactate behaved in the same way as the mammalian enzymes, binding strongly in the presence of NADH. The D-lactate-specific enzymes, however, did not show any biospecific affinity for this gel. The L-specific enzymes could be purified to homogeneity in one affinity-chromatographic step. The D-specific enzymes could be efficiently separated from the L-specific ones and could then be further purified on an immobilized NAD derivative. The mechanism of activation of the lactate dehydrogenase from Streptococcus faecalis by fructose 1,6-bisphosphate was investigated by using the immobilized oxamate gel. PMID:666726

  1. European and international collaboration in affinity proteomics.

    PubMed

    Stoevesandt, Oda; Taussig, Michael J

    2012-06-15

    In affinity proteomics, specific protein-binding molecules (a.k.a. binders), principally antibodies, are applied as reagents in proteome analysis. In recent years, advances in binder technologies have created the potential for an unprecedented view on protein expression and distribution patterns in plasma, cells and tissues and increasingly on protein function. Particular strengths of affinity proteomics methods include detecting proteins in their natural environments of cell or tissue, high sensitivity and selectivity for detection of low abundance proteins and exploiting binding actions such as functional interference in living cells. To maximise the use and impact of affinity reagents, it will be essential to create comprehensive, standardised binder collections. With this in mind, the EU FP7 programme AFFINOMICS (http://www.affinomics.org), together with the preceding EU programmes ProteomeBinders and AffinityProteome, aims to extend affinity proteomics research by generating a large-scale resource of validated protein-binding molecules for characterisation of the human proteome. Activity is directed at producing binders to about 1000 protein targets, primarily in signal transduction and cancer, by establishing a high throughput, coordinated production pipeline. An important aspect of AFFINOMICS is the development of highly efficient recombinant selection methods, based on phage, cell and ribosome display, capable of producing high quality binders at greater throughput and lower cost than hitherto. The programme also involves development of innovative and sensitive technologies for specific detection of target proteins and their interactions, and deployment of binders in proteomics studies of clinical relevance. The need for such binder generation programmes is now recognised internationally, with parallel initiatives in the USA for cancer (NCI) and transcription factors (NIH) and within the Human Proteome Organisation (HUPO). The papers in this volume of New

  2. Displacement phenomena in lectin affinity chromatography.

    PubMed

    Cho, Wonryeon

    2015-10-01

    The work described here examines displacement phenomena that play a role in lectin affinity chromatography and their potential to impact reproducibility. This was achieved using Lycopersicon esculentum lectin (LEL), a lectin widely used in monitoring cancer. Four small identical LEL columns were coupled in series to form a single affinity chromatography system with the last in the series connected to an absorbance detector. The serial affinity column set (SACS) was then loaded with human plasma proteins. At the completion of loading, the column set was disassembled, the four columns were eluted individually, the captured proteins were trypsin digested, the peptides were deglycosylated with PNGase F, and the parent proteins were identified through mass spectral analyses. Significantly different sets of glycoproteins were selected by each column, some proteins appearing to be exclusively bound to the first column while others were bound further along in the series. Clearly, sample displacement chromatography (SDC) occurs. Glycoproteins were bound at different places in the column train, identifying the presence of glycoforms with different affinity on a single glycoprotein. It is not possible to see these phenomena in the single column mode of chromatography. Moreover, low abundance proteins were enriched, which facilitates detection. The great advantage of this method is that it differentiates between glycoproteins on the basis of their binding affinity. Displacement phenomena are concluded to be a significant component of the separation mechanism in heavily loaded lectin affinity chromatography columns. This further suggests that care must be exercised in sample loading of lectin columns to prevent analyte displacement with nonretained proteins. PMID:26348026

  3. The dynamics of metric-affine gravity

    SciTech Connect

    Vitagliano, Vincenzo; Sotiriou, Thomas P.; Liberati, Stefano

    2011-05-15

    Highlights: > The role and the dynamics of the connection in metric-affine theories is explored. > The most general second order action does not lead to a dynamical connection. > Including higher order invariants excites new degrees of freedom in the connection. > f(R) actions are also discussed and shown to be a non- representative class. - Abstract: Metric-affine theories of gravity provide an interesting alternative to general relativity: in such an approach, the metric and the affine (not necessarily symmetric) connection are independent quantities. Furthermore, the action should include covariant derivatives of the matter fields, with the covariant derivative naturally defined using the independent connection. As a result, in metric-affine theories a direct coupling involving matter and connection is also present. The role and the dynamics of the connection in such theories is explored. We employ power counting in order to construct the action and search for the minimal requirements it should satisfy for the connection to be dynamical. We find that for the most general action containing lower order invariants of the curvature and the torsion the independent connection does not carry any dynamics. It actually reduces to the role of an auxiliary field and can be completely eliminated algebraically in favour of the metric and the matter field, introducing extra interactions with respect to general relativity. However, we also show that including higher order terms in the action radically changes this picture and excites new degrees of freedom in the connection, making it (or parts of it) dynamical. Constructing actions that constitute exceptions to this rule requires significant fine tuned and/or extra a priori constraints on the connection. We also consider f(R) actions as a particular example in order to show that they constitute a distinct class of metric-affine theories with special properties, and as such they cannot be used as representative toy theories to

  4. Affine Invariant Character Recognition by Progressive Removing

    NASA Astrophysics Data System (ADS)

    Iwamura, Masakazu; Horimatsu, Akira; Niwa, Ryo; Kise, Koichi; Uchida, Seiichi; Omachi, Shinichiro

    Recognizing characters in scene images suffering from perspective distortion is a challenge. Although there are some methods to overcome this difficulty, they are time-consuming. In this paper, we propose a set of affine invariant features and a new recognition scheme called “progressive removing” that can help reduce the processing time. Progressive removing gradually removes less feasible categories and skew angles by using multiple classifiers. We observed that progressive removing and the use of the affine invariant features reduced the processing time by about 60% in comparison to a trivial one without decreasing the recognition rate.

  5. Negative Electron Affinity Mechanism for Diamond Surfaces

    NASA Technical Reports Server (NTRS)

    Krainsky, I. L.; Asnin, V. M.

    1998-01-01

    The energy distribution of the secondary electrons for chemical vacuum deposited diamond films with Negative Electron Affinity (NEA) was investigated. It was found that while for completely hydrogenated diamond surfaces the negative electron affinity peak in the energy spectrum of the secondary electrons is present for any energy of the primary electrons, for partially hydrogenated diamond surfaces there is a critical energy above which the peak is present in the spectrum. This critical energy increases sharply when hydrogen coverage of the diamond surface diminishes. This effect was explained by the change of the NEA from the true type for the completely hydrogenated surface to the effective type for the partially hydrogenated surfaces.

  6. New unitary affine-Virasoro constructions

    SciTech Connect

    Halpern, M.B.; Kiritsis, E.; Obers, N.A.; Poratti, M. ); Yamron, J.P. )

    1990-06-20

    This paper reports on a quasi-systematic investigation of the Virasoro master equation. The space of all affine-Virasoro constructions is organized by K-conjugation into affine-Virasoro nests, and an estimate of the dimension of the space shows that most solutions await discovery. With consistent ansatze for the master equation, large classes of new unitary nests are constructed, including quadratic deformation nests with continuous conformal weights, and unitary irrational central charge nests, which may dominate unitary rational central charge on compact g.

  7. Weyl-Euler-Lagrange equations on twistor space for tangent structure

    NASA Astrophysics Data System (ADS)

    Kasap, Zeki

    2016-06-01

    Twistor spaces are certain complex three-manifolds, which are associated with special conformal Riemannian geometries on four-manifolds. Also, classical mechanic is one of the major subfields for mechanics of dynamical system. A dynamical system has a state determined by a collection of real numbers, or more generally by a set of points in an appropriate state space for classical mechanic. Euler-Lagrange equations are an efficient use of classical mechanics to solve problems using mathematical modeling. On the other hand, Weyl submitted a metric with a conformal transformation for unified theory of classical mechanic. This paper aims to introduce Euler-Lagrage partial differential equations (mathematical modeling, the equations of motion according to the time) for the movement of objects on twistor space and also to offer a general solution of differential equation system using the Maple software. Additionally, the implicit solution of the equation will be obtained as a result of a special selection of graphics to be drawn.

  8. Visualizing the chiral anomaly in Dirac and Weyl semimetals with photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Behrends, Jan; Grushin, Adolfo G.; Ojanen, Teemu; Bardarson, Jens H.

    2016-02-01

    Quantum anomalies are the breaking of a classical symmetry by quantum fluctuations. They dictate how physical systems of diverse nature, ranging from fundamental particles to crystalline materials, respond topologically to external perturbations, insensitive to local details. The anomaly paradigm was triggered by the discovery of the chiral anomaly that contributes to the decay of pions into photons and influences the motion of superfluid vortices in 3He-A. In the solid state, it also fundamentally affects the properties of topological Weyl and Dirac semimetals, recently realized experimentally. In this work we propose that the most identifying consequence of the chiral anomaly, the charge density imbalance between fermions of different chirality induced by nonorthogonal electric and magnetic fields, can be directly observed in these materials with the existing technology of photoemission spectroscopy. With angle resolution, the chiral anomaly is identified by a characteristic note-shaped pattern of the emission spectra, originating from the imbalanced occupation of the bulk states and a previously unreported momentum dependent energy shift of the surface state Fermi arcs. We further demonstrate that the chiral anomaly likewise leaves an imprint in angle averaged emission spectra, facilitating its experimental detection. Thereby, our work provides essential theoretical input to foster the direct visualization of the chiral anomaly in condensed matter, in contrast to transport properties, such as negative magnetoresistance, which can also be obtained in the absence of a chiral anomaly.

  9. Superconductivity enhancement in the S-doped Weyl semimetal candidate MoTe2

    NASA Astrophysics Data System (ADS)

    Chen, F. C.; Luo, X.; Xiao, R. C.; Lu, W. J.; Zhang, B.; Yang, H. X.; Li, J. Q.; Pei, Q. L.; Shao, D. F.; Zhang, R. R.; Ling, L. S.; Xi, C. Y.; Song, W. H.; Sun, Y. P.

    2016-04-01

    Two-dimensional transition-metal dichalcogenide (TMDs) MoTe2 has attracted much attention due to its predicted Weyl semimetal state and a quantum spin Hall insulator in bulk and monolayer form, respectively. We find that the superconductivity in MoTe2 single crystal can be greatly enhanced by the partial substitution of the Te ions by the S ones. The maximum superconducting temperature TC of MoTe1.8S0.2 single crystal is about 1.3 K. Compared with the parent MoTe2 single crystal (TC = 0.1 K), nearly 13-fold in TC is improved in the MoTe1.8S0.2 one. The superconductivity has been investigated through the resistivity and magnetization measurements. MoTe2-xSx single crystals belong to weak coupling superconductors and the improvement of the superconductivity may be related to the enhanced electron-phonon coupling induced by the S-ion substitution. A dome-shaped superconducting phase diagram is obtained in the S-doped MoTe2 single crystals. MoTe2-xSx materials may provide a new platform for our understanding of superconductivity phenomena and topological physics in TMDs.

  10. Magnetic and nematic phases in a Weyl type spin-orbit-coupled spin-1 Bose gas

    NASA Astrophysics Data System (ADS)

    Chen, Guanjun; Chen, Li; Zhang, Yunbo

    2016-06-01

    We present a variational study of the spin-1 Bose gases in a harmonic trap with three-dimensional spin-orbit (SO) coupling of Weyl type. For weak SO coupling, we treat the single-particle ground states as the form of perturbational harmonic oscillator states in the lowest total angular momentum manifold with j = 1, m j = 1, 0, -1. When the two-body interaction is considered, we set the trail order parameter as the superposition of three degenerate single-particle ground-states and the weight coefficients are determined by minimizing the energy functional. Two ground state phases, namely the magnetic and the nematic phases, are identified depending on the spin-independent and the spin-dependent interactions. Unlike the non-SO-coupled spin-1 Bose-Einstein condensate for which the phase boundary between the magnetic and the nematic phase lies exactly at zero spin-dependent interaction, the boundary is modified by the SO-coupling. We find the magnetic phase is featured with phase-separated density distributions, 3D skyrmion-like spin textures and competing magnetic and biaxial nematic orders, while the nematic phase is featured with miscible density distributions, zero magnetization and spatially modulated uniaxial nematic order. The emergence of higher spin order creates new opportunities for exploring spin-tensor-related physics in SO coupled superfluid.

  11. ‘Hard’ crystalline lattice in the Weyl semimetal NbAs

    NASA Astrophysics Data System (ADS)

    Luo, Yongkang; Ghimire, N. J.; Bauer, E. D.; Thompson, J. D.; Ronning, F.

    2016-02-01

    We report the effect of hydrostatic pressure on the magnetotransport properties of the Weyl semimetal NbAs. Subtle changes can be seen in the {ρxx}(T) profiles with pressure up to 2.31 GPa. The Fermi surfaces undergo an anisotropic evolution under pressure: the extremal areas slightly increase in the {{\\mathbf{k}}\\mathbf{x}} -{{\\mathbf{k}}\\mathbf{y}} plane, but decrease in the {{\\mathbf{k}}\\mathbf{z}} -{{\\mathbf{k}}\\mathbf{y}} ({{\\mathbf{k}}\\mathbf{x}} ) plane. The topological features of the two pockets observed at atmospheric pressure, however, remain unchanged at 2.31 GPa. No superconductivity can be seen down to 0.3 K for all the pressures measured. By fitting the temperature dependence of specific heat to the Debye model, we obtain a small Sommerfeld coefficient {γ0}=0.09(1) mJ (mol·K2)-1 and a large Debye temperature, {{\\Theta}\\text{D}}=450(9) K, confirming a ‘hard’ crystalline lattice that is stable under pressure. We also studied the Kadowaki-Woods ratio of this low-carrier-density massless system, {{R}\\text{KW}}=3.2× {{10}4} μ Ω cm mol2 K2 J-2. After accounting for the small carrier density in NbAs, this {{R}\\text{KW}} indicates a suppressed transport scattering rate relative to other metals.

  12. ‘Hard’ crystalline lattice in the Weyl semimetal NbAs

    DOE PAGES

    Luo, Yongkang; Ghimire, N. J.; Bauer, E. D.; Thompson, J. D.; Ronning, F.

    2016-01-14

    Here, we report the effect of hydrostatic pressure on the magnetotransport properties of the Weyl semimetal NbAs. Subtle changes can be seen in the ρxx(T) profiles with pressure up to 2.31 GPa. The Fermi surfaces undergo an anisotropic evolution under pressure: the extremal areas slightly increase in the kx-ky plane, but decrease in the kz-ky(kx) plane. The topological features of the two pockets observed at atmospheric pressure, however, remain unchanged at 2.31 GPa. No superconductivity can be seen down to 0.3 K for all the pressures measured. By fitting the temperature dependence of specific heat to the Debye model, wemore » obtain a small Sommerfeld coefficient γ0=0.09(1) mJ (mol•K2)-1 and a large Debye temperature, θD=450(9) K, confirming a 'hard' crystalline lattice that is stable under pressure. We also studied the Kadowaki–Woods ratio of this low-carrier-density massless system, RKW=3.2 x 104 μΩ cm mol2 K2 J-2. After we account for the small carrier density in NbAs, this RKW indicates a suppressed transport scattering rate relative to other metals.« less

  13. Uncovering the hidden quantum critical point in disordered massless Dirac and Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Pixley, J. H.; Huse, David A.; Das Sarma, S.

    2016-09-01

    We study the properties of the avoided or hidden quantum critical point (AQCP) in three-dimensional Dirac and Weyl semimetals in the presence of short range potential disorder. By computing the averaged density of states (along with its second and fourth derivative at zero energy) with the kernel polynomial method (KPM) we systematically tune the effective length scale that eventually rounds out the transition and leads to an AQCP. We show how to determine the strength of the avoidance, establishing that it is not controlled by the long wavelength component of the disorder. Instead, the amount of avoidance can be adjusted via the tails of the probability distribution of the local random potentials. A binary distribution with no tails produces much less avoidance than a Gaussian distribution. We introduce a double Gaussian distribution to interpolate between these two limits. As a result we are able to make the length scale of the avoidance sufficiently large so that we can accurately study the properties of the underlying transition (that is eventually rounded out), unambiguously identify its location, and provide accurate estimates of the critical exponents ν =1.01 ±0.06 and z =1.50 ±0.04 . We also show that the KPM expansion order introduces an effective length scale that can also round out the transition in the scaling regime near the AQCP.

  14. Spin correlations and spin-wave excitations in Dirac-Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Araki, Yasufumi; Nomura, Kentaro

    We study correlations among magnetic dopants in three-dimensional Dirac and Weyl semimetals. Effective field theory for localized magnetic moments is derived by integrating out the itinerant electron degrees of freedom. We find that spin correlation in the spatial direction parallel to local magnetization is more rigid than that in the perpendicular direction, reflecting spin-momentum locking nature of the Dirac Hamiltonian. Such an anisotropy becomes stronger for Fermi level close to the Dirac points, due to Van Vleck paramagnetism triggered by spin-orbit coupling. One can expect topologically nontrivial spin textures under this anisotropy, such as a hedgehog around a single point, or a radial vortex around an axis, as well as a uniform ferromagnetic order. We further investigate the characteristics of spin waves in the ferromagnetic state. Spin-wave dispersion also shows a spatial anisotropy, which is less dispersed in the direction transverse to the magnetization than that in the longitudinal direction. The spin-wave dispersion anisotropy can be traced back to the rigidity and flexibility of spin correlations discussed above. This work was supported by Grant-in-Aid for Scientific Research (Grants No.15H05854, No.26107505, and No.26400308) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan.

  15. Conserved charges of black holes in Weyl and Einstein-Gauss-Bonnet gravities

    NASA Astrophysics Data System (ADS)

    Peng, Jun-Jin

    2014-11-01

    An off-shell generalization of the Abbott-Deser-Tekin (ADT) conserved charge was recently proposed by Kim et al. They achieved this by introducing off-shell Noether currents and potentials. In this paper, we construct the crucial off-shell Noether current by the variation of the Bianchi identity for the expression of EOM, with the help of the property of Killing vector. Our Noether current, which contains an additional term that is just one half of the Lie derivative of a surface term with respect to the Killing vector, takes a different form in comparison with the one in their work. Then we employ the generalized formulation to calculate the quasi-local conserved charges for the most general charged spherically symmetric and the dyonic rotating black holes with AdS asymptotics in four-dimensional conformal Weyl gravity, as well as the charged spherically symmetric black holes in arbitrary dimensional Einstein-Gauss-Bonnet gravity coupled to Maxwell or nonlinear electrodynamics in AdS spacetime. Our results confirm those obtained through other methods in the literature.

  16. Anion-induced increases in the affinity of colcemid binding to tubulin.

    PubMed

    Ray, K; Bhattacharyya, B; Biswas, B B

    1984-08-01

    Colcemid binds tubulin rapidly and reversibly in contrast to colchicine which binds tubulin relatively slowly and essentially irreversibly. At 37 degrees C the association rate constant for colcemid binding is 1.88 X 10(6) M-1 h-1, about 10 times higher than that for colchicine; this is reflected in the activation energies for binding which are 51.4 kJ/mol for colcemid and 84.8 kJ/mol for colchicine. Scatchard analysis indicates two binding sites on tubulin having different affinities for colcemid. The high-affinity site (Ka = 0.7 X 10(5) M-1 at 37 degrees C) is sensitive to temperature and binds both colchicine and colcemid and hence they are mutually competitive inhibitors. The low-affinity site (Kb = 1.2 X 10(4) M-1) is rather insensitive to temperature and binds only colcemid. Like colchicine, 0.6 mol of colcemid are bound/mol of tubulin dimer (at the high-affinity site) and the reaction is entropy driven (163 J K-1 mol-1). Similar to colchicine, colcemid binding to tubulin is stimulated by certain anions (viz. sulfate and tartrate) but by a different mechanism. Colcemid binding affinity at the lower-affinity site of tubulin is increased in the presence of ammonium sulfate. Interestingly, the lower-affinity site on tubulin for colcemid, even when converted to higher affinity in presence of ammonium sulfate, is not recognized by colchicine. We conclude that tubulin possesses two binding sites, one of which specifically recognized the groups present on the B-ring of colchicine molecule and is effected by the ammonium sulfate, whereas the higher-affinity site, which could accommodate both colchicine and colcemid, possibly recognized the A and C ring of colchicine.

  17. Affinity enhancement by dendritic side chains in synthetic carbohydrate receptors.

    PubMed

    Destecroix, Harry; Renney, Charles M; Mooibroek, Tiddo J; Carter, Tom S; Stewart, Patrick F N; Crump, Matthew P; Davis, Anthony P

    2015-02-01

    Dendritic side chains have been used to modify the binding environment in anthracene-based synthetic carbohydrate receptors. Control of length, charge, and branching enabled the positioning of side-chain carboxylate groups in such a way that they assisted in binding substrates rather than blocking the cavity. Conformational degeneracy in the dendrimers resulted in effective preorganization despite the flexibility of the system. Strong binding was observed to glucosammonium ions in water, with Ka values up to 7000 M(-1) . Affinities for uncharged substrates (glucose and N-acetylglucosamine) were also enhanced, despite competition from solvent and the absence of electrostatic interactions. PMID:25645064

  18. ELISA-mimic screen for synthetic polymer nanoparticles with high affinity to target proteins.

    PubMed

    Yonamine, Yusuke; Hoshino, Yu; Shea, Kenneth J

    2012-09-10

    Synthetic polymer nanoparticles (NPs) that display high affinity to protein targets have significant potential for medical and biotechnological applications as protein capture agents or functional replacements of antibodies ("plastic antibodies"). In this study, we modified an immunological assay (enzyme-linked immunosorbent assay: ELISA) into a high-throughput screening method to select nanoparticles with high affinity to target proteins. Histone and fibrinogen were chosen as target proteins to demonstrate this concept. The selection process utilized a biotinylated NP library constructed with combinations of functional monomers. The screen identified NPs with distinctive functional group compositions that exhibited high affinity to either histone or fibrinogen. The variation of protein affinity with changes in the nature and amount of functional groups in the NP provided chemical insight into the principle determinants of protein-NP binding. The NP affinity was semiquantified using the ELISA-mimic assay by varying the NP concentrations. The screening results were found to correlate with solution-based assay results. This screening system utilizing a biotinylated NP is a general approach to optimize functional monomer compositions and can be used to rapidly search for synthetic polymers with high (or low) affinity for target biological macromolecules. PMID:22813352

  19. Modern affinity reagents: Recombinant antibodies and aptamers.

    PubMed

    Groff, Katherine; Brown, Jeffrey; Clippinger, Amy J

    2015-12-01

    Affinity reagents are essential tools in both basic and applied research; however, there is a growing concern about the reproducibility of animal-derived monoclonal antibodies. The need for higher quality affinity reagents has prompted the development of methods that provide scientific, economic, and time-saving advantages and do not require the use of animals. This review describes two types of affinity reagents, recombinant antibodies and aptamers, which are non-animal technologies that can replace the use of animal-derived monoclonal antibodies. Recombinant antibodies are protein-based reagents, while aptamers are nucleic-acid-based. In light of the scientific advantages of these technologies, this review also discusses ways to gain momentum in the use of modern affinity reagents, including an update to the 1999 National Academy of Sciences monoclonal antibody production report and federal incentives for recombinant antibody and aptamer efforts. In the long-term, these efforts have the potential to improve the overall quality and decrease the cost of scientific research.

  20. Fan Affinity Laws from a Collision Model

    ERIC Educational Resources Information Center

    Bhattacharjee, Shayak

    2012-01-01

    The performance of a fan is usually estimated using hydrodynamical considerations. The calculations are long and involved and the results are expressed in terms of three affinity laws. In this paper we use kinetic theory to attack this problem. A hard sphere collision model is used, and subsequently a correction to account for the flow behaviour…